
Aus dem Institut für Gesundheitsökonomie und 

Management im Gesundheitswesen 

Helmholtz Zentrum München - 

Deutsches Forschungszentrum für Gesundheit und Umwelt 

Leiter: Prof. Dr. Reiner Leidl 

 

 

 

External validation of decision-analytic models  

based on claims data of health insurance funds 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Humanbiologie 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 

 

 

vorgelegt von 

Alina Christa Annemarie Brandes 

 

aus 

München 

 

2016 

 

 

 



 

Mit Genehmigung der Medizinischen Fakultät  

der Universität München 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter: Priv. Doz. Dr. Wolf Rogowski 

Mitberichterstatter: Prof. Dr. Konstantin Strauch 

Prof. Dr. Klaus A. Kuhn 

Dekan: Prof. Dr. med. dent. Reinhard Hickel 

Tag der mündlichen Prüfung: 16.03.2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

To  

Trixi, Rudi, Theresa, and most of all Daniel 

~ 

Without their support I wouldn’t have come this far



Abstract 

Background: Decision-analytic models are used in the context of economic evaluation to 

bring together the best available evidence and to support the decision on the adoption of a 

health technology. A decision model’s credibility is, however, diminished by uncertainty 

which, to large part, stems from parameter uncertainty. Especially when novel technologies 

are evaluated, high quality evidence may not be available at the point of coverage decision 

making. A decision model incorporating uncertain parameter values eventually simulates 

uncertain effectiveness and cost outcomes. 

To enhance credibility of decision models, external validation of uncertain parameter values 

is vital. Data sources for external validation should be able to reflect the model’s study 

design and patient cohort, and estimate real-world effectiveness and costs.  

Objective: This study assesses whether claims data of health insurance funds are suitable to 

externally validate decision-analytic models. 

Methods: To answer the research question, a validation approach is developed which 

highlights critical steps in the validation of decision models based on claims data. The 

validation steps are: 1) selection of the validation level, 2) selection of the claims dataset, 

study design, and patient cohort, 3) selection of disease-relevant health technologies and 

costs, 4) statistical analysis of claims data, 5) changes to the decision model, 6) comparison 

between model and claims data, and 7) sensitivity analyses.  

The validation approach is exemplarily applied in the validation of a Markov model 

comparing treatment of localized prostate cancer (active surveillance and radical 

prostatectomy) in a German health care context, based on claims data of the German AOK 

statutory health insurance fund. An external validation of resource use, probability of 

utilization, and cost parameters is chosen, because these parameters are afflicted by a high 

degree of uncertainty in the decision model.  

Two different approaches to the analysis of relevant health technologies for prostate cancer 

treatment are presented in claims data analysis: an excess approach and a disease-related 

approach.  

Results: The decision model assumes that resource use and unit costs are identical in the 

two treatment groups; this is, however, not observed in claims data analysis.  



 

Excess cost analysis and disease-related cost analysis of AOK claims data as well as model 

analysis show that, overall, active surveillance is the less costly strategy compared to radical 

prostatectomy, with total incremental costs of €-6,611, €-6,260, and €-7,486 respectively. 

When testing differences between model and outcomes of claims data analysis, p-values of 

0.61 (excess approach) and 0.18 (disease-related approach) indicate an agreement that is 

sufficient to assume that the decision model simulates real-world costs validly. 

Discussion: This study reveals general strengths and limitations of claims data based model 

validation.  

Claims data are able to provide evidence on real-world resource utilization and, with 

limitations regarding clinical information, effectiveness of a wide range of indications and 

treatments for a large patient cohort. Validation based on claims data is especially suitable 

when the decision maker, interested in the validity of the model in question, is the insurance 

fund providing access to the claims data.  

Suitability of claims data based validation is, however, limited concerning the replication of 

decision models’ structure and patient cohort. For one, the identification of distinct health 

states is limited, because clinical information is not included in sufficient detail. Secondly, 

due to non-randomization and a restricted number of variables available to adjust for 

confounding, comparability of treatment groups is limited in claims data analysis. Thirdly, 

distinct identification of health technology utilization and corresponding costs is not possible 

if the technology of interest is not specifically coded. Finally, claims data are, generally, 

collected for billing purposes; diagnoses and technology utilization are only coded if they are 

relevant for reimbursement by the insurance fund, which biases outcomes of model 

validation in cases where treatment is not covered by the insurance fund. 

Conclusion: The presented validation approach indicates critical aspects of the validation 

based on claims data, which may support researchers and decision makers in their decision 

on the suitability of claims data for model validation.   

The suitability of claims data for the external validation of a decision model ultimately 

depends on the ability of the claims data source to reflect the model’s patient cohort and 

outcome measures. 



Zusammenfassung 

Hintergrund: Entscheidungsanalytische Modelle kommen im Rahmen der 

gesundheitsökonomischen Evaluation von Gesundheitstechnologien zum Einsatz, um die 

beste verfügbare Evidenz zusammenzuführen und damit die Erstattungsentscheidung zu 

unterstützen. Bei der Evaluation von innovativen Technologien ist allerdings häufig zum 

Zeitpunkt der Erstattungsentscheidung keine hochwertige Evidenz, etwas aus klinischen 

Studien, verfügbar. Diese Parameterunsicherheit spiegelt sich letztlich in der im 

Entscheidungsmodell simulierten Kosteneffektivität der jeweiligen innovativen Technologien 

wieder. Für den Entscheidungsträger ist somit die Glaubwürdigkeit von 

Entscheidungsmodellen eingeschränkt.  

Um die Glaubwürdigkeit eines Entscheidungsmodells zu erhöhen, ist eine externe 

Validierung der unsicheren Parameterwerte von entscheidender Bedeutung. Datenquellen 

für eine externe Validierung sollten in der Lage sein, das Studiendesign und die Kohorte des 

Entscheidungsmodells zu reflektieren sowie reale Effekte und Kosten der evaluierten 

Technologie zu schätzen. 

Fragestellung: Im Rahmen dieser Studie wird untersucht, in wie weit sich Abrechnungsdaten 

von Krankenkassen für die externe Validierung von entscheidungsanalytischen Modellen 

eignen. 

Methoden: Um die Forschungsfrage zu beantworten, wurde ein Validierungsansatz 

entwickelt, welcher entscheidende Schritte bei der Validierung von Entscheidungsmodellen 

auf der Basis von Abrechnungsdaten beschreibt. Die einzelnen Validierungsschritte sind: 1) 

Auswahl der Validierungsebene, 2) Auswahl des externen Datensatzes, des Studiendesigns 

und der Patientenkohorte, 3) Definition von krankheitsrelevanten Gesundheitstechnologien 

und Kosten, 4) Auswahl der statistischen Methoden zur Analyse der Abrechnungsdaten, 5) 

Anpassung des Entscheidungsmodells, 6) Auswahl von Methoden zum Vergleich zwischen 

Modell und Abrechnungsdaten, und 7) Sensitivitätsanalysen. 

Der Validierungsansatz wird beispielhaft für die Validierung eines Markov-Modells 

angewendet, welches Behandlungsmethoden des lokalisierten Prostatakarzinoms (Active 

Surveillance und radikale Prostatektomie) in einem deutschen Versorgungskontext 

vergleicht. Zur Validierung werden Abrechnungsdaten einer deutschen gesetzlichen 



 

Krankenkasse, der AOK Baden-Württemberg, herangezogen. Es werden Parameterwerte des 

Entscheidungsmodells zum Ressourcenverbrauch, zur Inanspruchnahmewahrscheinlichkeit 

und zu Kosten validiert, da diese Parameter die größte Unsicherheit aufweisen. Dabei 

werden zwei verschiedene Vorgehensweisen zur Analyse der Abrechnungsdaten der AOK 

herangezogen: ein Excesskosten-Ansatz und ein Krankheitskosten-Ansatz. 

Ergebnisse: Im Entscheidungsmodell wird davon ausgegangen, dass Ressourcenverbrauch 

und Stückkosten in beiden Behandlungsgruppen identisch sind; in den Abrechnungsdaten 

der AOK ist diese Annahme allerdings nicht wiederzufinden. 

Sowohl die Excesskosten-Analyse und die krankheitskostenbezogene Analyse der AOK-Daten 

als auch die Modellanalyse zeigen, dass Active Surveillance insgesamt die kostengünstigere 

Strategie mit einer Ersparnis von jeweils 6.611€, 6.260€ und 7.486€ gegenüber der radikalen 

Prostatektomie ist. Der statistische Test der Kostendifferenz aus Modell und AOK-Daten 

ergibt p-Werte von 0,61 (Excesskosten-Ansatz) und 0,18 (Krankheitskosten-Ansatz), die auf 

eine signifikante Übereinstimmung der Schätzer aus Modell und AOK-Daten schließen 

lassen. Die Übereinstimmung der Schätzer lässt vermuten, dass das Entscheidungsmodell in 

der Lage ist, die Kosten der Behandlung des lokalisierten Prostatakarzinoms valide zu 

simulieren. 

Diskussion: Die beispielhafte Validierung des Markov-Modells anhand von 

Abrechnungsdaten der AOK Baden-Württemberg zeigt allgemeine Stärken und Schwächen 

der Kassendaten-basierten Modellvalidierung auf. 

Abrechnungsdaten sind in der Lage, Evidenz zur tatsächlichen Utilisierung von 

Gesundheitsleistungen und, mit Einschränkungen in Bezug auf klinische Informationen, 

Wirksamkeit einer Vielzahl von Behandlungsoptionen für eine große Patientenpopulation zu 

liefern. Die Validierung auf Basis von Abrechnungsdaten ist vor allem sinnvoll, wenn die 

Modellvalidierung aus der Perspektive einer Krankenkasse durchgeführt werden soll. 

Die Eignung von Abrechnungsdaten für die Modellvalidierung ist jedoch hinsichtlich der 

Nachbildung der Modellstruktur und der Patientenkohorte des Entscheidungsmodells 

limitiert. Erstens ist die Identifikation von Gesundheitszuständen in Kassendaten begrenzt, 

da klinische Informationen nicht ausreichend detailliert enthalten sind. Zweitens ist die 

Vergleichbarkeit der Behandlungsgruppen eingeschränkt, da eine Randomisierung nicht 

möglich ist und nur eine begrenzte Anzahl an Variablen zur Verfügung steht, um für 



Confounder zu adjustieren. Drittens ist eine eindeutige Identifizierung von 

Gesundheitsleistungen und deren Kosten schwierig, wenn die Leistung nicht explizit in den 

Abrechnungsdaten kodiert ist. Viertens werden Kassendaten zu Abrechnungszwecken 

gesammelt und deshalb werden auch nur solche Diagnosen und Gesundheitsleistungen 

kodiert, die für die Erstattung durch die Krankenkasse relevant sind. Für 

Gesundheitsleistungen, die nicht von der Krankenkasse vergütet werden, ist unter 

Umständen keine valide Schätzung zu Ressourcenverbrauch und Kosten möglich. 

Fazit: Der entwickelte Validierungsansatz zeigt kritische Aspekte der Modellvalidierung auf 

Basis von Abrechnungsdaten von Krankenkassen auf. Er soll Wissenschaftler und 

Entscheidungsträger bei der Entscheidung über die Eignung von Abrechnungsdaten für die 

externe Validierung eines Modells unterstützen. 

Die Eignung von Abrechnungsdaten für die externe Validierung eines Entscheidungsmodells 

hängt letztlich von der Fähigkeit ab, Modellstruktur, Kohorte und Zielparameter des Modells 

abzubilden. 
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1 Background and objective 

1.1 Decision-analytic modeling 

1.1.1 Modeling in health economic evaluations 

Economic evaluation in health care is defined as the comparison of alternative health 

technologies regarding their costs and consequences (1). The term ‘health technologies’ 

refers to a range of health care resources including medical devices, pharmaceuticals, 

procedures, organizational support systems, screening, and health promotion programs (2).  

The most frequently used types of economic evaluation include cost-effectiveness analysis, 

cost-utility analysis, and cost-benefit analysis (1). In cost-effectiveness analysis consequences 

are measured in natural units, for example the life years gained by an intervention. The 

alternative technologies are then compared by the calculation of an incremental cost-

effectiveness ratio (ICER). Cost-utility analysis allows comparison of interventions with 

different health outcomes by a single parameter – the utility. The standard measure for 

utility in health economics are quality-adjusted life years (QALY). QALY allows incorporation 

of life time and quality of life effects in a single outcome measure. Alternatives are, again, 

compared by the ICER (costs per QALY). Cost-benefit analysis measures consequences in 

monetary units. The decision to implement a health technology is positive if its monetary 

benefit exceeds the costs (1). 

Economic evaluation is used to inform decision makers about which health technologies to 

fund from available resources. This requires an incorporation of all adequate evidence in the 

evaluation to compare new technologies with all relevant alternative technologies. To come 

to a valid decision, it is also necessary to reveal uncertainty in evidence which can be 

addressed in future research (1). Randomized controlled trials (RCT) or observational studies 

can hardly accomplish these requirements independently, which provides a strong rationale 

for decision-analytic modeling as a framework for economic evaluation.  

Models bring together the best available evidence and systematically address uncertainty in 

threshold and sensitivity analyses (2). Decision-analytic models also allow evaluation of cost-

effectiveness of novel health technologies at an early stage of the development process 

where evidence from clinical trials is not available yet (3).  
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The two most frequently used types of decision-analytic models are decision-trees and 

Markov models. A decision-tree is the simplest form of a decision-analytic model. It is the 

visual representation of all possible options and the consequences following these. 

However, in case of indications with recurring events and lifetime analysis – such as prostate 

cancer – decision-trees become very complex. Markov models address this complexity by 

modeling events as transitions between defined health states (Markov states) in defined 

time intervals (cycles). Markov models take dates of events into account; time-dependent 

event probabilities as well as costs can be modeled (4). 

1.1.2 Evidence sources 

The best available evidence incorporated in a decision model usually stems from a variety of 

evidence sources and is used with different purposes within the model. Primary and 

secondary data sources can be incorporated in a decision-analytic model.  

In the design and specification of the model, evidence is used which describes the 

epidemiology of the underlying indication and its clinical care as well as clinical outcomes 

and resource use. Information on this is drawn from a range of evidence sources including 

RCTs, clinical guidelines, and administrative data sources (5). Evidence on clinical outcome is 

often found in RCTs and meta-analysis. In addition to primary evidence sources, national 

reimbursement catalogues (e.g. the German diagnosis related group (DRG) catalogue for 

inpatient costs) are frequently used to inform cost parameters (5, 6).  

The relevance of administrative data and reference sources, such as reimbursement 

catalogues, is often specific to the decision-making context, concerning geographical or 

reimbursement process features (5). Expert opinion is a common method used in the 

population of model parameters if no other evidence source is available. Expert estimates 

derived from formal methods such as Delphi or Nominal Group techniques are preferable to 

non-formal methods (6, 7). Reasonable effort to obtain new additional data prior to 

modeling should be considered. However, cost and delay in obtaining the data must be 

weighed against the benefit of reduction in uncertainty (7). 

1.1.3 Uncertainty 

Combining evidence on alternative health technologies from different evidence sources in 

decision models is a process that is inherently uncertain, because there will hardly ever be 
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complete information on all the possible cost and consequences of a technology in a given 

population (8). Especially at the time of introduction of a novel health technology, evidence 

which is relevant for the design of the model, such as treatment practice, patients’ 

compliance, as well as effectiveness and cost outcome, is usually scarce (9).   

The following types of uncertainty in decision models are described in the literature:  

o Methodological uncertainty includes uncertainty about the decision-making 

perspective, time horizon, or discount rate assumed in the model (2).  

o Structural uncertainty refers to uncertainty about the extent to which the structure 

of the model adequately captures relevant characteristics of the disease and health 

technology being investigated. This includes, for example, uncertainty about which 

disease states to incorporate or whether transitions between particular disease 

states are possible from a clinical point of view (8). 

o Parameter uncertainty describes the uncertainty about the value of each parameter 

of the model. This uncertainty arises from various sources. Uncertainty due to 

variability between individuals occurs by chance and cannot be addressed by 

generating further evidence. Parameter uncertainty may also arise from a lack of high 

quality evidence or an imprecision in measuring parameters which can be mitigated 

by further evidence collection (2). This is especially the case for novel health 

technologies which are not yet regularly used in clinical practice and for whom no 

evidence on effectiveness and costs is available. 

The overall uncertainty a decision maker is faced with, when deciding on the adoption of a 

novel technology, arises from the extent of methodological, structural, and parameter 

uncertainty in the decision model. To quantify the influence of parameter uncertainty on 

outcomes, probabilistic analysis methods have been developed, where variability of 

parameters is reflected by distribution functions; single or multiple parameters may be 

changed in the analysis (2). Further methods for quantifying uncertainty in decision-analytic 

models have been described in detail elsewhere (8). 

The credibility of the model in simulating outcomes which are relevant for the decision 

maker is, however, not established by quantifying uncertainty. This lack of trust is one of the 
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greatest challenges facing decision-analytic modeling; if it is not overcome decision makers 

may dismiss models as generally untrustworthy (9, 10).  

To assess how believable a model is and whether a coverage decision can be based on it, a 

sound validation of the model is necessary. Types of model validity and validation 

techniques are described in the following chapter.  
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1.2 Validation of decision-analytic models 

1.2.1 Levels of model validity 

Levels of model validity have been identified in the literature, but definitions do not always 

overlap (11-16). Here the definition, proposed by the joint modeling good research practices 

task force of the International Society for Pharmacoeconomics and Outcomes Research 

(ISPOR) and the Society for Medical Decision Making, is used (16): 

o Face validity refers to the extent to which a model and its assumptions and 

applications correspond to current science and evidence as judged by experts.  

o Internal validity describes the extent to which the mathematical calculations are 

performed correctly and are consistent with the model’s specifications.  

o Cross validity determines to which extent the decision model calculates same results 

as other models evaluating the same technology.  

o External validity refers to the extent the model is able to simulate real-world 

outcomes from actual event data. External validity can refer to the model as a whole 

or to some components of it.  

o Predictive validity describes whether the model is able to forecast actual events 

which are reported in observational studies and RCTs. 

External and predictive validity of a decision model are most critical for the decision maker 

because they closely correspond to the model’s purpose to anticipate what will occur if 

decision makers adapt a novel technology (16). 

1.2.2 Levels of model validation 

Philips et al. (2006) propose a framework for the quality assessment of decision-analytic 

models, which is not only a supporting tool for readers, but also a guideline for researches 

building models (17). It presents a literature overview of recommended validation 

techniques. 

Face validity may be assessed by the modeling team in accordance with clinical experts to 

assess whether the model’s structure corresponds to current research.  

It is recommended that the mathematical logic of the model (internal validity) is tested by 

sensitivity analyses, where null or extreme values are used for some parameter inputs and 
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the direction of results is examined based on these. The model might also be programmed in 

an alternative software package or by another researcher (6, 18). 

Comparing model outcomes with other decision-analytic models (cross validation) increases 

confidence. However, these tests may not be helpful if models are not independent and are 

all built on the same flawed assumptions (19).  

External validity can be addressed by comparing final or intermediate model results with 

available, independent evidence. External validation is performed based on formal data 

sources, which are generated for the purpose of model validation, or informal (secondary) 

data sources. Depending on the extent to which the original model is based on information 

from the data source that is used for validation, the validation is called dependent or 

independent. Data should not be withheld from the model for the purpose of external 

validation, though (6, 19). Published validation examples show that observational data from 

medical records or claims data as well as RCT data are used for external validation (20-25). 

In predictive validation the model is used to forecast events and, after some time, the 

forecasted outcomes are compared to the actual ones. Whether predictive validity of a 

model should be tested is discussed controversially in the literature. Some guidelines 

suggest that a model should demonstrate predictive validity (26, 27). Other authors 

conclude that some decision-analytic models are intended to support decisions at a 

particular point in time and not necessarily to predict future outcomes (6, 18).  

Generally, the value of the information obtained by external and predictive validation must 

be weighed against the costs of obtaining it (19). External and predictive validity are the 

most difficult levels of validation as real-world data are often scarce or costly and time-

consuming to collect (16). Also, external and predictive validation are methodologically the 

most critical part of model validation, because it involves the comparison of either outcomes 

of different models or comparison of model outcomes with outcomes found in the external 

data source. In the following, techniques for the validation of decision models based on 

external data sources are described. 

1.2.3 External validation techniques 

Two general approaches to external validation of decision models are identified in published 

model validations. In the first approach, the decision model simulates interventions, 

randomization into treatment groups, and follow-up according to the protocol of the study 
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that is employed for external validation. The decision model is run with parameter values 

extracted from the external trial; finally observed trial outcome and predicted model 

outcome based on trial data are compared (21-24). The second approach compares 

outcomes independently observed in the trial and predicted in the decision model. Evidence 

from the external trial is not incorporated in the decision model (20, 25). 

Furthermore, the decision on validation based on published evidence or evidence generated 

for the purpose of model validation influences the validation approach. In validation studies, 

where external data stem from published studies, the decision model has to be adapted to 

the external data source; study design and cohort selection cannot be influenced in the 

external data source (22-25). Published studies are reproduced in the model by recreating 

cohorts in terms of demographics, baseline risk factors and complications, treatment 

patterns and patient management strategies (21-24).  

When external validation is based on evidence generated for the purpose of model 

validation, the decision model’s structure and outcome can be replicated in the external 

data source. The study by Ishida et al. (2008), for example, analyzes medical records 

according to the patient characteristics and study design of the validated decision model 

(20). More comprehensive information on patient characteristics, diagnostics, and resource 

utilization in the external data source allows a more precise replication of model 

assumptions.    

ISPOR guidelines for model validation stress the importance of quantitative assessment of 

how well the model’s results match the externally reported outcomes (16). The motivation is 

to determine whether differences observed between the model and external data source 

are significant enough to affect any conclusions derived from the model. A variety of 

quantitative measures are proposed in the literature, but the specific choice of measure 

applicable to the present validation is not readily apparent. Additionally, the interpretation 

of some quantitative measures of goodness of fit is unclear. Percentage errors estimated for 

decision models, for example, need to be interpreted in relation to other model outcomes, 

because from the absolute numbers no inference on goodness of fit is possible (22, 28). 

A simple way to compare estimates of the external data source with the decision model is a 

graphical display of observed and simulated outcomes. To compare survival outcomes the 

comparison of Kaplan-Meier curves is applied in the literature (20, 23). For comparison of 
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cost outcomes, the output of the external data source and the decision model may be 

plotted in form of histograms such that the horizontal axis denotes costs and the vertical axis 

denotes the observed and simulated values, respectively (29, 30). 

Statistical tests are proposed in addition to graphical analysis to obtain quantitative 

information about the validity of the decision model. Several studies test the null hypothesis 

of no difference between observed and predicted outcomes with the Student t-test (22, 29). 

The problem with the t-test is, however, that on the one hand the difference between 

observed and simulated estimates can never exactly be zero; on the other hand, the bigger 

the sample size is chosen, for example during bootstrapping, the smaller the critical value of 

the t-statistic becomes, which in turn means that a simulation model has a higher chance of 

being rejected as its sample size gets bigger. The t-statistic may, consequently, show a 

significant difference of observed and simulated estimates and yet make no statement about 

the validity of the decision model in simulating observed outcomes. If the sample is very 

large the t-statistic is nearly always significant for the difference of estimates being unequal 

to null. This is also called a type I or alpha error; the model is rejected while the model is 

valid (29).  

Test-statistics other than the t-statistic are also described in the literature. These include the 

corrected Chi2-test, as well as nonparametric statistical tests such as the Wilcoxon signed-

rank test as a test of systematic error and Spearman’s correlation coefficient for continuous 

variables (23, 31). 

Alternatively, a hypothesis test based on bootstrapping can be employed, where it is tested 

whether the point estimate of the external data source is included in the model’s confidence 

interval (CI) and the other way round (22, 25, 30). That way the problem of the t-test is 

avoided and no assumptions on the distribution of estimates are necessary, as in the Chi2-

test.   

Also, the difference in outcome may be tested against a threshold – defined as the 

difference which is just acceptable to conclude that outcomes of claims data analysis and 

model simulation are comparable – because even in the best model results between actual 

treatment and model will deviate to a certain degree. However, determination of this 

threshold can only be based on subjective criteria (e.g. a deviation of less than 10% of 

outcomes estimated in claims data). 
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Furthermore, linear regression analysis is proposed in the literature to compare observed 

and simulated outcomes (22, 24, 32). Closeness of fit is assessed by plotting outcomes 

predicted by the model versus observed outcomes reported in the external data source, by 

fitting a linear curve through the points with the intercept set at zero. A squared linear 

correlation coefficient is obtained which provides an index of the degree to which the paired 

measures co-vary. It is then tested whether the linear correlation coefficient is larger than 

null; the simulated and real response may not necessarily have the same mean, but they 

may be positively correlated. A prerequisite for regression analysis is that pairs of patients 

(paired observations) are present in model simulation and observed data (e.g. by matching 

exact pairs from model and claims data).  

Studies comparing outcomes from different models apply goodness of fit tests to assess 

validity of the validated model (22, 33). These include the mean absolute percentage error 

and the root mean square percentage error. 

As described previously, external validation can be based on published data sources or on 

data sources which are generated for the purpose of model validation. A published external 

data source is usually not a gold standard when compared with model outputs. This is 

because the purpose of the model is to support decision making, which is usually not the 

purpose of a clinical or observational study (6, 19). 

Data sources generated for the purpose of model validation may origin in primary data 

collection, such as RCTs, or in secondary data sources such as registries or administrative 

data bases. The information included in different data sources can be the gold standard for 

different model perspectives; registries might, for example, provide evidence for models 

with a focus on effects in the general population. On the other hand, administrative data, 

especially claims data, might be valuable to provide evidence for models with a health 

insurance perspective. 

In the following chapters the use of claims data as a secondary data source in health 

economic research is described.   
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1.3 Claims data as a secondary data source 

1.3.1 Definition 

Secondary data in research are data which have not been collected with a specific research 

purpose. Such data are collected for management, administration or planning purposes, for 

the evaluation of activities within health care, for control functions, and in line with 

registries for surveillance purposes (34, 35).  

Claims data are a secondary data source because they are collected with the purpose of 

billing health care provision at the expense of health insurance funds. Claims data are in the 

following defined as routinely collected data from various health care service categories 

(inpatient care, outpatient care, pharmaceuticals, physiotherapy, assistive technologies, and 

rehabilitative care), as well as basic information on characteristics of insured individuals, 

such as age, gender, and insurance status (36). 

1.3.2 Claims data in health economic research 

The ISPOR task force on real-world data developed a framework to assist health-care 

decision-makers in dealing with real-world data, including claims data. The report states that 

real-world data are essential for sound coverage and reimbursement decisions. Decision 

analytic models are the primary tool for combining clinical and claims data. Real-world data 

are also needed in assessing the post-launch cost-effectiveness of novel technologies to 

update the modeling outcomes which are made to support the initial coverage and 

reimbursement decisions  (37). 

The strength of secondary data generally lies on the generation of effectiveness evidence for 

the population that is of interest for the decision maker. While RCT data typically are 

considered as the gold standard for evidence generation on efficacy in a particular group or 

subgroup, they are insufficient to project the size of the effectiveness impact on the whole 

population (38, 39). The particular strength of claims data is the data’s ability to display 

utilization of medical technologies in routine care and real-world cost data incurred by 

insurance funds (40). 

Another advantage of using secondary data sources is that they already exist and the time 

spent on the study is therefore likely to be considerably less than on studies based on 
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primary data collection (35). Especially in the coverage decision-making process, where a 

timely generation of evidence is of importance, use of secondary data sources is useful (37). 

Furthermore, study costs are significantly reduced compared with collection of primary data 

(35). 

A particular advantage of the use of claims data is the size of the covered population, which 

allows researchers to identify rare events and assess economic impact of various 

interventions (37). Furthermore, collection of claims data does not impose an additional 

burden on patients and clinicians, in contrast to clinical trials and registries (41). 

Limitations of secondary data sources regarding data quality include missing data, coding 

errors, and the lack of comprehensive data across health care service categories. Claims data 

are especially limited in the extent of clinical information on inpatient stays, health 

outcomes, health status, and symptoms. A distinction between costs and charges might in 

some cases be not possible based on claims data (37). Completeness of claims data is limited 

to those who seek care in the first place and additionally obtain care through the insurance 

fund (42). Generally, claims data are not collected for clinical research and coding practice 

might follow economic incentives of the underlying reimbursement system (40, 43). 

The most common and challenging methodological issue arises from treatment selection 

bias. Due to non-randomization, estimates of effects and costs can be biased because of a 

correlation between unobserved factors associated with treatment selection and outcome, 

for example the baseline health status (37). Matching-techniques and other statistical 

methods can be used to mitigate this bias (44). 

General limitations of claims data compared to primary data collection and techniques to 

handle these have been discussed extensively (40, 44-49).  

1.3.3 German statutory health insurance claims data 

In Germany, claims data of statutory health insurance (SHI) funds are a valuable source of 

evidence for research, because medical care, resource use, and reimbursement are 

documented in detail and over a long period of time for a large cohort of patients.  

About 85% of the German population is insured within the social security system of SHI. The 

remaining 15% of the population are covered by private insurance. The German statutory 
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health care system is characterized by pay-as-you-go financing and income-based insurance 

contributions. All SHI schemes are regulated by the Social Code Book V (SGB V). The SHI 

funds are responsible for negotiating prices, quantities, and quality assurance measures with 

providers on behalf of their members (50). 

SHI covers inpatient and outpatient care, pharmaceuticals, medical devices, assistive 

technologies, physiotherapy, (ambulatory) rehabilitative care, and sickness benefits. Co-

payments of patients are compulsory, especially for pharmaceuticals and assistive 

technologies. A small part of health-related social services is covered by accident insurance, 

retirement insurance, and long-term care insurance. Services covered by these funds are not 

documented in SHI claims data (50). 

In SHI claims data, diagnostic information is coded by the German application of the 

International Classification of Disease, version 10 (ICD-10 GM). In outpatient care, the 

certainty of the diagnosis is stated by an additional code (secured: G, tentative: V, exclusion: 

A, status post: Z). In inpatient care information is given on the point in time during the 

hospital stay and the department by which the diagnosis was coded and whether it is the 

primary or secondary diagnosis. Inpatient procedures are coded by operation and procedure 

codes (OPS) and reimbursement of these is reflected in DRGs. Outpatient procedures and 

reimbursement of these are found in the uniform value scale (Einheitlicher 

Bewertungsmaßstab, EBM) for SHI physicians. Pharmaceuticals are distinctly coded by a 

uniform pharmaceutical identification key (Pharmazentralnummer, PZN); assistive 

technologies and physiotherapeutic procedures have distinct codes as well (51). 

Due to the administrative nature of the data, only SHI relevant hospital episodes and 

outpatient visits are coded (52). Additionally, SHI claims data contain basic information on 

date of birth, gender and place of living, whereas more sophisticated socio-demographic 

information (household size and income, education, occupation) is not comprehensively 

documented for all insured individuals. Reasons for dropout are also coded which could be 

death or transition to another insurance fund. 

Cost data are available for inpatient and outpatient care, as well as pharmaceuticals, 

physiotherapy, assistive technologies, and rehabilitation on a patient level in SHI claims data.  

Complete inpatient data have to be reported to sickness funds immediately after discharge 

(53). Outpatient data are usually delayed by about six months as they are transferred over 
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the association of SHI physicians to sickness funds. Diagnostic information in outpatient data 

is, in general, summarized on a quarterly basis per patient, whereas inpatient data are 

reported on a hospital-episode basis per case (54, 55).  

Confidentiality issues are to be considered when patient data are not anonymous or 

pseudonymization is not possible. In such cases ethics approval and/ or the approval of the 

data protection agency as well as informed consent of affected patients is necessary to use 

claims data for research (56).  
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1.4 Objective 

Decision-analytic models are developed to inform decision-makers about adoption and 

reimbursement of novel health technologies in treatment practice. Uncertainty about the 

validity of decision models and generalizability of simulated outcomes, however, limits the 

credibility of models for decision making. Validation is essential to establish trustworthiness 

of decision-analytic models in the decision making process.   

Independent external data sources for validation are, however, often scarce. During model 

building not only a trade-off between incorporation of all best available evidence and 

exclusion of data sources for the purpose of external validation has to be made. Also, 

generation of primary data with the aim of model validation is usually costly and time-

consuming, especially evidence from clinical trials. 

This study assesses an alternative to external validation of decision-analytic models with 

primary data sources – external validation based on claims data of health insurance funds.  

The underlying assumption is that claims data represent the gold standard for real-world 

resource use and costs incurred by health insurance funds. Outcomes from claims data are 

representative for the study population most relevant to health insurance funds, which 

make the decision to reimburse a novel technology. Analysis of claims data for the purpose 

of model validation is, also, less costly and realized in a timelier manner than clinical trials.  

A validation approach is developed which highlights critical steps in the external validation 

based on claims data. The validation approach is exemplarily applied to the external 

validation of a Markov model comparing treatment options of localized prostate cancer in a 

German health care context. It is validated based on claims data of a large German SHI fund.  

The claims data set is used to build a cohort reflecting the model population as closely as 

possible. Input parameters for unit costs as well as resource use and treatment costs 

accumulated over the study duration are estimated in the claims data analysis. Comparison 

with model outcomes is based on statistical tests, with the underlying hypothesis that costs 

simulated by the model are equal to the costs observed in claims data.  

The focus of this study lies on the methodological approach to the external validation based 

on claims data. Application of the validation approach to other health care systems and 
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medical indications is discussed in detail. Strengths and limitations of claims data based 

validation are presented to answer the research question:  

‘Are claims data of health insurance funds suitable to externally validate decision-analytic 

models?’ 
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1.5 Structure of the dissertation 

Chapter 2 gives an introduction to the example of use – localized prostate cancer (PCa). 

Disease background including epidemiologic and socioeconomic burden as well as 

diagnostics and disease classification are presented. Treatment options for localized PCa, 

evidence on comparative effectiveness, and cost studies are summarized. Finally, the 

structure, basic assumptions, and data sources of the validated Markov model, comparing 

costs and utilities of treatment of localized PCa by Koerber et al. (2014), are described. 

The main focus of this study lies on chapter 3, where the methods of validation are 

described. Chapter 3.1 presents an overview of the proposed step-wise validation approach, 

whose implementation is described on the exemplary validation of the model by Koerber et 

al. (2014) in the chapters 3.2 to 3.8. 

First, the selection of the validation level is presented. Then, study design and methods for 

cohort selection in the claims dataset are described, which allow creation and follow-up of a 

patient cohort comparable to the Markov model. Special attention is given to the selection 

of procedure and diagnostic codes in the claims data that reflect disease-related resource 

use and costs assumed in the model. Statistical methods for calculation of resource use and 

costs in claims data are described separately for an excess cost and a disease-related cost 

approach. Changes to the Markov model’s runtime and age structure of the cohort are 

described in line with additional model analyses conducted to gain resource use and cost 

outcomes in a comparable format to outcomes from claims data analysis. In chapter 3.7 

methods for comparison of input parameter values for unit costs in the Markov model and 

unit costs calculated in claims data is presented. Also, methods to compare costs and 

resource use simulated by the model against observed outcomes of claims analysis are 

described. Finally, sensitivity analyses are presented which are constructed to test 

robustness of outcomes to modification of the claims data cohort. Further sensitivity 

analyses relate to the impact of a change of the age structure of the model cohort on the 

agreement of model and claims data outcomes. 

In chapter 4 results of the validation of the PCa-model are presented; first, results of the 

claims data analysis. Secondly, results of the additional model analyses conducted for this 

study are displayed. Input parameters as well as simulation outcomes of model and claims 
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data are compared; unadjusted and simulated results of the comparison are presented in 

tables and graphs. The impact of sensitivity analyses on outcomes is described, as well. 

Chapter 5 interprets and contrasts results presented here to published validation 

approaches. Strengths and limitations of claims data in respect to the research question are 

discussed. The practical implications of results for model validation but also application of 

the validation approach in industry is debated. Special focus lies on the critical assessment of 

the proposed validation approach. The applicability of the validation approach to 

administrative data from health care systems other than the German SHI and applicability to 

indications other than PCa are discussed.   

Chapter 6 contains concluding remarks and indicates areas requiring further research. 
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2 Example of use: localized prostate cancer 

2.1 Disease background 

2.1.1 Epidemiology and socioeconomic burden 

PCa is the second most common cancer in men worldwide and the most common in 

Germany, making it a major health concern (57, 58). Reported worldwide incidence rates 

vary widely, being highest in the regions of the United States (US) and Europe where 

prostate specific antigen (PSA) testing and subsequent biopsies have become widespread, 

leading to a continuous increase in incidence rates (59).   

PCa-specific mortality rates, on the other hand, are decreasing since the 1990s in Germany 

and other European countries (60). Today, 5-year relative survival rates are around 83% for 

men newly diagnosed with PCa (61). This is, in part, due to the fact that screening methods 

allow earlier tumor detection (62).  

 

Source: according to Luengo-Fernandez et al. 2013 (63) 

Figure 2-1: Health care costs of prostate cancer per person in European Union countries in 
2009, by health care service category 
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PCa is a diagnosis which occurs mostly in older men; mean age at diagnosis is 69 years (59). 

In the light of demographic change – it is estimated that around 34% of the population will 

be over 65 years of age in 2060 in Germany – a further increase in incidence of PCa is 

expected (64). In turn, the discrepancy between incidence and mortality rate will likely 

increase further. 

With the expected demographic change and increase in the incidence of PCa, the economic 

burden in Europe is also expected to increase significantly. Even today, annual health care 

spending due to PCa is substantial and accounts for €5.43 billion in the European Union (EU), 

with a high proportion of the health care costs occurring in the first year after diagnosis. 

Germany exhibits the highest PCa-related health care costs per person in the EU, mostly due 

to inpatient expenditures (Figure 2-1). The correlation between health care expenditure and 

cancer mortality is, however, unclear (63). A cross-country comparison of PCa incidence and 

mortality rates indicates that health outcome in Germany is slightly better than in other 

European countries (Figure 2-2) (59). 

                                        

Source: according to Robert-Koch-Institut et al. (2013) (59) 

Figure 2-2: Cross-country comparison of age-standardized prostate cancer incidence and 
prostate cancer-specific mortality rates (per 100,000), 2009/2010  



20  Example of use: localized prostate cancer 

 

 

2.1.2 Diagnosis and tumor classification 

The diagnosis of early stage PCa is usually suspected based on digital rectal examination 

(DRE) and PSA levels. PSA is a serum marker, with higher values indicating a higher 

probability of PCa (65). 

Confirmation of the diagnosis requires histopathological verification of the tumor, usually 

adenocarcinoma, in the prostate biopsy cores or operative specimens.  

T - Primary tumor 
TX   Primary tumor cannot be assessed 
T0   No evidence of primary tumor 
T1   Clinically inapparent tumor not palpable or visible by imaging 
 T1a Tumor incidental histological finding in 5% or less of tissue resected 
 T1b Tumor incidental histological finding in more than 5% of tissue resected 
 T1c Tumor identified by needle biopsy  
T2  Tumor confined within the prostate 
 T2a Tumor involves one half of one lobe or less 
 T2b Tumor involves more than half of one lobe, but not both lobes 
 T2c Tumor involves both lobes 
T3  Tumor extends through the prostatic capsule 
 T3a Extracapsular extension (unilateral or bilateral) including microscopic bladder 

neck involvement 
 T3b Tumor invades seminal vesicle(s) 
T4  Tumor is fixed or invades adjacent structures other than seminal vesicles: 

external sphincter, rectum, levator muscles, and/or pelvic wall 

N - Regional lymph nodes 
NX  Regional lymph nodes cannot be assessed 
N0  No regional lymph node metastasis 
N1  Regional lymph node metastasis 

M - Distant metastasis 
MX  Distant metastasis cannot be assessed 
M0  No distant metastasis 
M1  Distant metastasis 
 M1a Non-regional lymph node(s) 
 M1b Bone(s) 
 M1c Other site(s) 

Source: according to Sobin et al. 2009 (66) 

Table 2-1: Tumor Node Metastasis (TNM) classification of PCa 
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The standard diagnostic procedure is to use ultrasound to guide prostate biopsies and to 

administer oral antibiotics before the procedure to prevent an infection (65). Complications 

of prostate biopsy include hematuria and hematospermia as well as post-procedural 

infections. Reported rates of severe infections have increased due to the evolution of 

antibiotic resistant strains (67). 

Tumor grade is based on the pathology of prostate core biopsies or surgery specimens. The 

(modified) Gleason grading system, as defined by the 2005 consensus conference of the 

International Society of Urological Pathology, is used to grade prostatic adenocarcinoma. In 

the Gleason system, grades are based on the architectural pattern of the tumor (grade 1-5). 

The Gleason score is reported as the sum of the two most common grade patterns (score 2-

10) (68).  

Tumor stage describes the extent of the prostatic carcinoma. It is usually assessed by DRE 

and PSA testing and supplemented by bone scan or computed tomography (65, 69). It is 

standard in clinical trials and routine care to define tumor stage by the  Tumor Node 

Metastasis (TNM) classification proposed by the International Union Against Cancer (Table 

2-1) (66). ‘Localized PCa’ is present in stages T1-2 N0 M0, whereas ‘locally advanced PCa’ in 

stages T3-4 N0 M0. Stages N1 and M1 indicate ‘metastatic PCa’. 

Based on PSA level, Gleason score, and TNM stage, localized tumors are further categorized 

regarding the risk of recurrence (70): 

o Low-risk:   PSA ≤ 10 ng/ml and Gleason score ≤ 6 and T-stage 1/ 2a 

o Intermediate-risk:  PSA > 10 ng/ml - 20 ng/ml or Gleason score 7 or T-stage 2b 

o High-risk:   PSA > 20 ng/ml or Gleason score ≥ 8 or T-stage 2c 

Risk factors for PCa are still unclear; however there is a strong correlation with age and 

family history of PCa. Untreated prostate tumors are, generally, characterized by a slow 

natural progression where patients predominantly die of other causes than PCa (69). 

Detected tumors are often localized, clinically insignificant cancers, which do not require any 

treatment in their lifetime (Figure 2-3) (59, 71).  

In this light, early detection and screening programs for PCa are controversial among experts 

as they bear the risk of over-detection and, following that, overtreatment. A Cochrane 

review of five randomized controlled trials, representing more than 341,000 randomized 

men, could not show any PCa-specific survival benefit of screening (72). In Germany, no 
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population screening program for PCa based on PSA testing is recommended by health 

authorities; regular DREs are covered by SHI in line with PCa screening. However, if a patient 

wishes an early detection examination in form of PSA testing, this is covered by SHI as well 

(69).  

        

Source: according to Robert-Koch-Institut et al. 2013 (59) 

Figure 2-3: Distribution of tumor stage at diagnosis, Germany 2009/ 2010 

2.1.3 Treatment of localized prostate cancer 

Treatment of localized PCa can be divided into two groups: treatment strategies with a 

curative intention and conservative management (CM) strategies with deferred treatment.  

Standard curative treatment of localized PCa is radical prostatectomy (RP), which can be 

performed with a retropubic, perineal, or (robot-assisted) laparoscopic approach.  The entire 

prostate gland is removed between the urethra and bladder, and both seminal vesicles, 

along with sufficient surrounding tissue to obtain a negative margin, are removed (65). The 

aim of RP is eradication of disease, while preserving urinary continence and if possible 

erectile function (73). Still, post-operative urinary incontinence (IC) and erectile dysfunction 

(ED) are common complications following RP. Recent systematic reviews report mean 

continence rates of 80-97% with retropubic RP versus 89-100% with robot-assisted RP and 

mean potency rates of 26-63% versus 55-81%, respectively, 12 months after surgery (74, 75).   

Radiotherapy is an alternative to surgery for curative therapy of localized PCa. Definitive 

radiotherapy includes external-beam radiotherapy (EBRT) and brachytherapy. Intensity-

modulated radiotherapy, with or without image-guidance, is the gold standard for EBRT (65). 

Brachytherapy describes a therapy option where a radiation source is implanted via a 

transperineal approach (69). Complications of radiotherapy are late genitourinary (including 

IC) or gastrointestinal toxicity as well as ED (65, 76). Radiotherapy affects potency, however, 

to a lesser degree than retropubic RP: a meta-analysis from 2002 reports 12-month 

probability for maintaining erectile function of 55-76% after radiotherapy and 25-34% after 

RP (77). 
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Other curative therapies, with less evidence regarding outcomes, are not recommended in 

guidelines as primary treatment of localized PCa. These include proton beam therapy, 

cryosurgery, and high-intensity focused ultrasound therapy (65, 69). 

Data suggest that many men with localized PCa do not benefit from curative treatment in 

terms of survival, because tumor progression is so slow that no treatment is required (78). 

The CM strategies active surveillance (AS) and watchful waiting (WW) have been proposed 

as alternatives to curative treatment to reduce overtreatment and subsequent 

complications. It is estimated that about 45% of men with a PSA-detected PCa are 

candidates for CM (79).  

Based on published evidence, the German Association of Urology (Deutsche Gesellschaft für 

Urologie; DGU) and the European Association of Urology (EAU) define eligibility for AS 

strategy by the following criteria (69, 80, 81): 

o PSA-level ≤ 10 ng/ml 

o Gleason score ≤ 6 

o Tumor stage T1 and T2a 

o Life expectancy ≥ 10 years 

The recommended surveillance scheme consists of PSA testing, DRE, and regular biopsies 

(69). PSA tests and DRE should be performed every 3 months for the first 2 years, after that 

every 6 months if the PSA level is stable. The first biopsy is supposed to be taken 6 months 

after surveillance initiation and in the first 3 years, follow-up biopsies are taken every 12-18 

months. If tumor status is stable, further biopsies are performed every 3 years. Studies 

suggest, though, that in addition to complications described previously, regular biopsies 

might affect erectile function (82, 83). 

Curative treatment is initiated if the inclusion criteria described above are no longer met. 5 

to 10 percent of men under AS choose a curative treatment although tumor progression 

does not require it (84). 

If life expectancy is less than 10 years or co-morbidity does not allow any other form of PCa-

treatment, watchful waiting (WW) is suggested. This strategy has no standardized follow-up 

scheme and does not monitor tumor progression closely. Symptom-oriented, palliative 

therapy is initiated if disease progresses (69). 
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Comparative effectiveness of localized PCa treatment is usually reported as overall mortality, 

PCa-specific mortality, or health-related quality of life. At the time of literature search, only 

two RCTs report comparative effectiveness outcomes of localized PCa treatment: the 

Scandinavian SPCG-4 trial and the US-based PIVOT trial.  

The SPCG-4 trial randomly assigned 695 newly diagnosed, localized PCa cases to RP or WW. 

After a follow-up of 23 years, the SPCG-4 trial showed that RP was associated with a 

reduction of all-cause mortality compared to WW (relative risk (RR)=0.77, confidence 

interval (CI) [0.59;0.86], p<0.001). RP was also associated with a reduction in PCa-specific 

mortality (RR=0.56, CI [0.41;0.77], p=0.001) as well as development of distant metastases 

(RR=0.57, CI [0.44;0.75], p<0.001) and use of androgen-deprivation therapy (ADT) (RR=0.49, 

CI [0.39;0.60], p<0.001) (85). Health-related quality of life was better in the RP group than in 

the WW group, but lower in both cases compared to a general-population control. 

Reduction in quality of life is induced by ED and IC in case of RP, whereas men under WW 

are predominantly affected by symptoms of tumor progression (86). 

The PIVOT trial also randomized 731 men with localized PCa to RP or WW. After a median 

follow-up of 10 years the trial showed, contrary to SPCG-4, that RP did not significantly 

reduce all-cause mortality (hazard ratio (HR)=0.88, CI [0.71;1.08], p=0.22) or PCa-specific 

mortality (HR=0.63, CI [0.36;1.09], p=0.09) compared to WW (87). 

RCT evidence on comparative (cost-)effectiveness of RP, EBRT, brachytherapy, and AS is 

expected to be available when results of the ongoing ProtecT trial (United Kingdom; UK) and 

the German PREFERE trial are available (88, 89).  

Several observational studies report comparative effectiveness outcomes. In a study with 

about 28,000 localized PCa-cases, identified in the Surveillance, Epidemiology, and End 

Results (SEER) population-based cancer registry (US), non-curative therapies (AS, WW, TURP) 

are significantly associated with an increased risk of PCa-specific mortality compared to 

curative therapies (RP, EBRT, brachytherapy) (HR=1.05, CI [1.02;1.08], p<0.001) over a 2.5 

year study duration (90). First results of the German observational study, HAROW, indicate 

that after 2 years of follow-up, AS exhibits the highest tumor progression rate (31%) and 

EBRT the lowest (7%) compared to RP, ADT, and WW. All-cause and PCa-specific mortality 

have not been reported yet (91). Results of both studies, however, are limited in their 

validity due to a short follow-up and non-randomization. 
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In the CaPSURE-registry (US) health-related quality of life outcomes are shown for several 

localized PCa therapies (RP, EBRT, brachytherapy, ADT, WW/ AS). There is no significant 

difference in physical and mental health, assessed by the Medical Outcomes Studies Short 

Form-36 (SF-36), after 10 years of follow-up (92). Similarly, the PCOS study, a US-based 

registry including about 3,500 men newly diagnosed with PCa and treated with either RP or 

radiotherapy, found no significant differences between the groups regarding SF-36 results. 

(93). 

A meta-analysis examining curative treatment of low-risk PCa reports higher progression-

free survival rates for brachytherapy than RP and EBRT, which have comparable rates (94). 

The PRIAS study recruits men under AS worldwide and reports effectiveness outcomes, but 

does not compare these to any other PCa-specific treatments (95). 
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2.2 Cost studies 

One economic study reports disease-related resource use and costs for treatment of 

localized PCa based on RCT data – the SPCG-4 trial. After 12 years of follow-up, total mean 

costs per patient are significantly higher in the RP group than in the WW group with a 

difference of €6,123 (34%, p<0.01). This difference originates predominantly in the costs of 

the surgical procedure (96). A cost study based on CaPSURE registry data (US) also concludes 

that WW generates lowest annual disease-related costs over a period of 5 years compared 

to RP, EBRT, brachytherapy, cryotherapy, and ADT (97). Similar results are presented by both 

a cost study on data from the French network of cancer registries and a cost analysis based 

on SEER-Medicare linked data (98, 99). 

A cost study conducted with claims data from several US health insurance funds reports 

that, while costs of RP and EBRT are significantly higher than costs of CM in year 1 with 

additional $15,200 and $18,900 respectively, after year 2 no significant cost differences can 

be shown between treatment strategies (100). Only one cost analysis comparing in- and 

outpatient urologist reimbursement for AS to RP over a period of 10 years reports that costs 

of AS exceed costs of surgery after 4 years of follow-up (101). 

Cost analyses based on decision-analytic models present similar results to observational 

studies: A Markov model, comparing costs of RP, EBRT, brachytherapy, ADT, and AS, reports 

cost savings per patient of AS amounting to $16,039 (CI [16,039;16,042], p<0.001) after 5 

years and $9,944 (CI [9,941;9,948], p<0.001) after 10 years compared to immediate curative 

therapy. EBRT in combination with ADT has the highest costs after 5 and 10 years follow-up 

(102). Eldefrawy et al. (2013) and Corcoran et al. (2010) also report that cumulative costs of 

AS are lowest, even though AS has higher follow-up costs than curative treatment (103, 104). 

When considering effectiveness and costs, the Markov model by Koerber et al. (2014) shows 

that AS is the dominant strategy compared to RP with 0.04 additional QALYs and a cost 

reduction of €6,883 per patient. Considering only life years gained without quality 

adjustment as outcome measure, RP is more effective with an ICER of €96,420/life year 

gained (105). In contrast, a Markov model based on SPCG-4 trial data reports that RP has 

higher costs but also higher QALY outcomes than AS (106). 

The decision analytic model by Hayes et al. (2013) directly compares AS and WW in a cost-

effectiveness analysis. It shows that WW is cost-saving compared to AS by $15,374 with a 
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quality-adjusted life expectancy gain of 2 months. AS becomes as effective as WW if less 

than 63% of men progress to curative treatment in their lifetime (78). 

A cost-effectiveness analysis of RP compared to radiotherapy shows that  surgical methods 

are – in terms of QALYs – significantly more effective and less expensive than radiotherapy 

strategies for the treatment of low-risk PCa (107). 

Overall, evidence suggests that CM strategies, especially WW, save health care costs which 

arise due to unnecessary curative therapy and treatment of its adverse effects, and 

additionally achieve better quality of life outcomes. Most studies base cost analysis on US 

reimbursement values, though, which are not representative for European health care 

systems, mainly due to cost differences between public and private health care systems 

(108).  
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2.3 Validated model 

A lifetime Markov model by Koerber et al. (2014), comparing the cost-utility of AS and RP for 

a cohort of men newly diagnosed with low-risk PCa, was chosen as the basis for validation 

(105). The PCa-model was selected from 3 decision models on different indications, 

developed at Helmholtz Zentrum München, because it features structural assumptions and 

data sources that are commonly used in decision-analytic modeling. Also, it includes 

resource use and cost parameters from a wide range of health care service categories. These 

characteristics make the model suitable for a validation example; results of the validation 

can be transferred to other indications. Also, the decision model is highly relevant for 

German SHI funds because PCa has a high (socioeconomic) burden of disease in Germany 

and treatment incurs substantial costs at the expense of SHI funds. Thus, external validation 

based on SHI claims data seems suitable for this model, as it is assumed that a patient cohort 

and outcomes relevant for SHI funds can be analyzed in SHI claims data. 

In the decision model by Koerber et al. (2014) men enter the model at the age of 65 years 

and are assumed to have a life expectancy greater than 15 years as well as no severe co-

morbidities, including benign prostate hyperplasia (BPH).  

Utility is measured in QALYs; direct medical costs, including out-of-pocket payments, from a 

broad range of health care service categories (in- and outpatient care, pharmaceuticals, 

assistive technologies, physiotherapy) are considered. The model adopts the perspective of 

the SHI scheme insurant population as recommended by the German Institute for Quality 

and Efficiency in Health Care (Institut für Qualität und Wirtschaftlichkeit im 

Gesundheitswesen; IQWiG). 

Figure 2-4 provides an overview of the Markov model. In case of local recurrence after RP, 

EBRT is the primary treatment option. In case of local progression under AS, RP is the 

standard treatment for men < 72 years of age and EBRT for older men, respectively. 

Metastatic disease is treated by ADT and in case of refractory disease by chemotherapy. For 

bone metastasis treatment with zoledronic acid and radiation therapy is assumed.  

Adverse effects of RP include short- and long-term ED, IC, and a combination of both. After 

EBRT men may, additionally, develop bowel problems which include abdominal pain, 
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bloating, and diarrhea. Regular biopsies performed under AS may lead to urosepsis requiring 

hospitalization. PCa-specific or other-cause death may occur in any state. 

The model is implemented in Treeage Pro 2013. 

 

Source: Koerber et al. 2014 (105) 

Figure 2-4: Structure of the validated model by Koerber et al.  

A variety of data sources provide evidence for the model. Treatment pathways are based on 

recommendations from DGU (109). Health state specific utility rates are derived from 

published literature (110-112). In the absence of suitable evidence, it is assumed that AS 

exhibits the same utility as life after curative treatment without side effects. Comparative 

PCa-specific mortality is based on evidence from the SPCG-4 trial comparing RP and WW 

(113). To adapt results to AS strategy it is assumed that half the treatment effect of RP is 

maintained compared to AS. The transition probability of developing metastases under AS is 
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also adapted from the SPCG-4 trial. All other transition probabilities are derived from a 

meta-analysis comparing AS and RP (114).   

Resource utilization is based on treatment guidelines and estimation by clinical experts 

(109). Outpatient unit costs are based on values of the physicians’ fee catalogue and 

inpatient costs on DRG weights from the German DRG catalogue (115, 116). Pharmaceutical 

prices are extracted from the German formulary (117); unit costs of assistive technologies 

and physiotherapy are based on market prices provided by health care providers. 

Parts of the model were validated during model building. Face validity of the model 

structure and of major assumptions was screened within the modeling team and by a clinical 

expert. This resulted in adaptation of the model regarding development and treatment 

probabilities of adverse effects as well as assumptions on resource utilization.  Results of the 

model were cross validated with results of two existing decision-analytic models comparing 

effectiveness and one cost-utility analysis comparing effectiveness and costs of AS and RP. 

All studies report that more QALYs are generated under AS than with initial RP (78, 112, 

118). The QALY advantage of AS reported by Koerber et al. (2014) is, however, smaller 

because an age related decline in quality of life is considered. Regarding costs, Hayes et al. 

(2013) also found that AS is a cost-saving strategy. The probability of PCa-specific death was 

externally validated with data from the PIVOT RCT, which did not change strategy rankings 

(87).  

 



Methods  31 

 

 

3 Methods 

3.1 Validation approach 

Based on the theoretical literature and published examples of external model validation, 

described in chapter 1.2, an approach to the external validation of decision-analytic models 

based on claims data is proposed which highlights critical steps in the validation process. The 

individual validation steps include the selection of 1) validation level, 2) claims dataset, study 

design, and patient cohort, 3) relevant health states and health technologies, 4) statistical 

methods for claims data analysis, 5) changes to the decision model, 6) comparison between 

model and claims data, and 7) sensitivity analyses. 

Implementation of this step-wise approach is described exemplarily for the validation of the 

Markov model on treatment of localized PCa by Koerber et al. (2014) based on claims data 

from a German SHI fund in the following chapters 3.2 to 3.8. 

Step 1: Validation level 

The decision on the validation level depends on the uncertainty present in the validated 

model. An external validation based on claims data is useful for decision-analytic models, 

which present substantial parameter uncertainty regarding resource use, probability of 

utilization, or costs. Efficacy or quality of life outcome measures are difficult to validate 

based on claims data, because clinical information is typically very limited and diagnostic 

codes are, in most cases, not sufficient to describe severity of disease and quality of life. 

Effectiveness measures concerning utilization of health technologies, such as number of 

hospital episodes, on the other hand, are validly represented in claims data. 

To compare outcomes of the decision model and the external data source two general 

approaches are possible. In the first approach, the decision model simulates cohort 

characteristics and study design of the external data source, which is usually a published RCT 

or observational study; the decision model is then run with the parameter values extracted 

from the external data source. In the second approach, outcomes are independently 

estimated in the external data source and the decision model; parameter values of the 

external data source are not incorporated in the decision model.   

External validation can be applied to input parameters fed into the model (such as resource 

use and unit costs) and simulation outcomes generated by the model (such as probability of 
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utilization and accumulated costs over the study period). Validation of input parameters is 

useful to explain differences between model simulation outcomes and claims data 

outcomes. Differences in outcome might be due to differing input parameters, the model 

calculation itself, or a combination of both. 

Step 2: Claims dataset, study design, and patient cohort 

The most important criterion for the selection of the claims dataset used for the validation is 

that study design, assumptions, and patient cohort of the decision model can be replicated 

as closely as possible. To achieve this, the insurance fund(s) providing the dataset should be 

located in a health-care system with similar treatment pathways and reimbursement 

arrangements as assumed in the decision model.  

The indication or treatment of interest should be present in the claims dataset in a 

population large enough to estimate valid outcomes. Furthermore, characteristics of the 

model cohort (such as age structure, co-morbidity, or socioeconomic status) should be found 

in the claims dataset. The coding of diagnoses and procedures in the claims dataset should 

make it possible to select a cohort according to the inclusion criteria of the model (e.g. 

distinction between localized and metastatic PCa-disease).  

It should also be ensured that the claims dataset allows a long enough follow-up of patients 

to be comparable to the whole model span or, at least, parts of it representing relevant 

disease stages. A unique identification number is necessary to merge claims from different 

health care service categories and years on an individual insurant level.  

Step 3: Relevant health technologies and costs  

To identify within the claims data set the utilization and costs of treatment strategies 

compared in the model, a definition of disease-related health technologies is necessary. This 

definition can be set more or less closely to the decision model’s definition of disease-

related health care utilization. It can either strictly follow the definition used in the decision 

model by, for example, using the same procedure codes on which the identification of 

disease-related health technology utilization is based. Or a wider definition of codes may be 

applied, if no information on the definition of disease-related health care utilization is 

provided for the model or codes used in the model do not exist in claims data.  



Methods  33 

 

 

Codes for calculation might also be defined irrespective of the model’s definition of disease-

related technology utilization. In addition to parameter uncertainty, structural uncertainty 

regarding the definition of resource utilization in the model is addressed in this case. 

An alternative approach to estimation of disease-related technology utilization is an excess 

approach. In this case, all health care utilization incurred at the health insurance fund, 

irrespective of the relevance for the treatment of interest, is summarized and compared 

between treatment alternatives. The absolute value of resource utilization and 

corresponding costs of a treatment strategy estimated via an excess approach has no 

informative value and, thus, only validation of incremental outcomes of the decision model 

is possible.  

Resource use and costs may be defined by codes of inpatient (OPS) and outpatient 

procedures (EBM), pharmaceuticals (PZN), assistive technologies, and physiotherapeutic 

procedures in SHI claims data. For the identification of health technologies relevant for the 

treatment of adverse effects of PCa-treatment, identification of health states that describe 

these adverse effects may be necessary. Health states are usually defined as diagnostic ICD-

codes in claims data. 

Depending on the perspective of the decision model only costs incurred by the SHI fund or 

costs additionally including co-payments of insured individuals (SHI scheme insured 

community) can be considered in SHI claims data analysis. 

Step 4: Statistical methods for claims data analysis  

For one, statistical methods are used to reflect cohort assumptions of the decision model in 

the claims data analysis. An important assumption in decision models is that treatment 

groups are equal in their baseline characteristics, such as age, gender, and co-morbidity. In 

claims data analysis, as in all observational studies, no randomization into treatment groups 

is possible which would ensure equal distribution of baseline characteristics. Statistical 

methods are available to mitigate selection bias due to non-randomization in claims data 

analysis. These include matching techniques, adjustment in regression analysis, and 

stratified analysis. 

Secondly, standard statistical methods for health economic evaluation should be applied for 

cost analysis in claims data. These include methods which take the skewed distribution of 

cost data into account, such as generalized linear models with a gamma-distribution and log-
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link as well as two-part models. Application of the recycled predictions method is useful to 

estimate an absolute cost difference between treatment strategies which is needed for the 

comparison with model outcomes.  

Step 5: Changes to decision model  

Depending on the characteristics of the claims data set, it might be necessary to change 

model assumptions to make comparison with claims data possible – provided that access to 

the model is granted. This may include adaptation of the runtime of the model to the study 

period of the claims data analysis.  

In addition, it might be difficult to replicate the age structure of the model cohort in claims 

data. Especially, if the model assumes that patients all have the same age at treatment 

initiation, treatment groups in claims data can become very small. Adaptation of the age 

structure of the model to the claims data cohort is necessary in this case.  

Additional analyses may be necessary, because decision models usually only report total 

costs per strategy. For the validation, however, it might also be interesting to simulate 

probability of utilization and costs of single treatments; differing total costs in claims data 

and model may be explained by differing utilization and costs of single treatments. 

Furthermore, it is of interest to analyze the validity of model simulations in different health 

care service categories, such as inpatient and outpatient care.  

The model structure should not be changed to conduct additional analyses; the aim of 

external validation is the comparison of input parameters and simulation outcomes of the 

model as it was originally designed with an external data source, and not the adaptation of 

the model structure to the external data source. 

Step 6: Comparison between model and claims data  

Absolute costs of each treatment strategy might be compared between model and claims 

data. Alternatively, incremental costs as estimated by claims data and model are compared, 

which is of greater importance for the decision maker. 

As a first step, resource use and costs estimated in claims data analysis may be compared 

with outcomes generated by a microsimulation of the decision model; in microsimulation a 

cohort including the same number of patients as in claims data analysis is simulated in the 

decision model. Microsimulation pictures variability due to the alternative pathways through 
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the decision model and is similar to the population variability of outcome in the claims data 

analysis. Descriptive (mean, standard deviation, median, interquartile range) and graphical 

presentation is useful to show distribution and variability of results. 

In a second step, uncertainty of parameters in claims data and model analysis may be 

considered. Outcomes generated by regression analysis and bootstrapping of claims data are 

compared with outcomes of Monte Carlo simulation of the decision model. Overlapping of 

simulated outcomes can be shown graphically. Additionally, the hypothesis that simulated 

incremental costs of the model are equal to observed incremental costs of claims data 

analysis may be tested by statistical methods described in chapter 1.2.3. 

Step 7: Sensitivity analyses 

Sensitivity analyses are useful to explain differences between model and claims data. For 

one, sensitivity analyses can address changes to the claims data cohort. This might include 

changes to the inclusion criteria in the claims data cohort to replicate the assumptions of the 

decision model more closely.  

Apart from sensitivity analyses conducted with claims data, it might be useful to vary model 

assumptions as well, for example the age structure in the decision model, to assess whether 

differences in outcome are due to differing assumptions in model and claims data analysis. 

 



36  Methods 

 

 

3.2 Validation level 

As described above, the first step in the external validation of the PCa-model by Koerber et 

al. (2014) is the selection of the validation level. 

In this study an external validation of resource use, probability of utilization, and cost 

parameters is chosen, because in the decision model these parameters are mainly based on 

expert estimates and national reimbursement catalogues, which are afflicted by a high 

degree of uncertainty. Effectiveness parameters, on the other hand, are based on high 

quality evidence from clinical trials and should be more valid. Also, effectiveness outcome is 

measured in QALYs in the PCa-model, which cannot be assessed in the AOK claims data set 

because clinical information is not included in sufficient detail to establish quality of life. 

Resource use and costs are independently calculated in AOK claims data analysis and PCa 

model; outcomes of AOK claims analysis are not incorporated in the model. Instead PCa 

model’s cohort and study design are replicated in AOK claims data analysis to achieve 

comparable results. 

Furthermore, both input parameters (resource use and unit costs) and simulated outcomes 

(probability of utilization and per capita costs) of the PCa-model are validated in this study.  
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3.3 Claims data set, study design, and patient cohort 

3.3.1 Dataset 

In the second step of the validation approach, a suitable claims dataset for the validation of 

the PCa decision model is selected. A dataset from a German SHI fund is useful for the 

validation of a decision model set in a German health care context with the perspective of 

the SHI scheme insurant population. The insurant population expected to be treated for 

localized PCa was estimated in the study planning phase, based on prevalence data for the 

general German population for 2 SHI funds, AOK Baden-Württemberg and Deutsche 

Angestellten-Krankenkasse (DAK). It was decided to perform model validation with data 

from AOK Baden-Württemberg, as the PCa-cohort was estimated to be larger than in DAK 

data (estimated number of incident PCa-cases AOK Baden-Württemberg: 3,817, DAK: 929). 

AOK Baden-Württemberg is the largest SHI fund in the south-western German federal state 

of Baden-Württemberg with about 3.9 million insured individuals in 2014, which 

corresponds to 43% of the SHI scheme insured community in Baden-Württemberg. About 

44% of insured individuals are mandatory members, 25% of insured individuals are retired, 

the remaining individuals are either family members or voluntarily insured at AOK Baden-

Württemberg (119).  

Historically, AOK insurance funds provided health insurance for blue collar workers with 

lower educational status and income compared to other SHI funds. This insurant structure of 

AOK still exists in alleviated form (Figure 3-1), although insured individuals are free to choose 

an insurance fund since the 1990s in Germany (120). Implications of insurant structure on 

generalizability of results are discussed in chapter 5.3.2. 

AOK Baden-Württemberg provided access to data on all claims incurred between 2008 and 

2011 in the following health care service categories: inpatient and outpatient care, 

pharmaceuticals, assistive technologies, physiotherapy, outpatient rehabilitation, work 

incapacity and sick pay. Additionally, basic insurant information such as age, gender, 

nationality, insurance status, date of death or date of termination of membership are 

provided. Earlier claims were not accessible because of a change in the database system 

which does not allow merging data before and after 2008. Claims after 2011 were not 
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available yet, at the time of data selection in July 2012. All claims are available on a patient 

level and can be merged by a personalized insurant identification number. Co-payments to 

medical services covered by SHI are included in the dataset, whereas patients’ out-of-pocket 

payments for other services are not.  

German data protection laws were considered during extraction and analysis of data and 

AOK Baden-Württemberg approved of the intended use of the data. An ethics committee 

was consulted regarding this study; ethics approval is not necessary as identification of 

individual persons is not possible in the dataset (see Appendix B for ethics committee 

statement).  

 
Source: according to Gesundheitsmonitor 2008 (120) 

Figure 3-1: Social status of insured individuals (%), by insurance 
fund 

3.3.2 Study design 

In the second step of the validation approach, also a study design for the AOK claims data is 

selected, which replicates model assumptions. Due to the secondary nature of the 

underlying data source, an observational study design is given where no form of 
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randomization into treatment groups or intervention is possible. To replicate the modeling 

approach a prospective, longitudinal study design is chosen, where a cohort of men 

diagnosed with early-stage PCa is followed from the point of treatment initiation (121). As in 

the model, the alternative treatment options RP and AS are considered. 4 consecutive years 

of AOK claims allows a maximum follow-up of 2.5 years, which in turn allows validation of 

the first 10 3-month cycles of the decision model by Koerber et al. (2014). Thus, only the part 

of the decision model representing treatment of localized disease is considered for 

validation, because follow-up is too short to include individuals with disease progression. 

The probability for disease progression in the first years after initial treatment, assumed in 

the model is extremely small (< 1%). 

 

Figure 3-2: Study timeline (AOK) 

The study period covers 4 years, from January 1st 2008 to December 31st 2011, and is 

divided into 3 sections (Figure 3-2):  

1) The 6-month pre-observation period ranges from January 1st 2008 to June 30th 2008. In 

order to allow for co-morbidity adjustment of outcomes, this period before initial 

treatment is created as a basis to calculate a Charlson Co-morbidity Score (CCS) for each 

insured individual. CCS is calculated based on diagnoses coded before initial treatment, 

to ensure that diseases, which are complications of the treatment of interest (AS or RP), 

are not considered in the calculation (122). 

2) In the 12-month observation period from July 1st 2008 to June 30th 2009 PCa-cases are 

identified and categorized into treatment groups.  An observation period of 12 months is 

chosen, on the one hand, to identify a sufficient number of men treated with AS or RP to 
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analyze resource utilization and costs. On the other hand, the risk is decreased that men 

waiting for radical treatment are falsely classified as AS-patients.  

3) The cohort is followed-up for a period of 2.5 years (follow-up period). In case of RP, 

follow-up time starts individually after the date of the initial surgery for each insured 

individual. Individuals under AS are followed for a fixed period from July 1st 2009 to 

December 31st 2011. One reason for this is that the starting point of AS cannot be 

established in the chosen cohort, because the time of initial PCa-diagnosis – when AS 

usually starts – cannot be identified in the AOK data. Thus, an artificial starting point for 

AS has to be created, which is the beginning of the observation period (July 1st 2008). 

Secondly, follow-up is not intended to start with the onset of AS. This is due to the 

selection process in this study, where men under AS have to be surveyed for at least 12-

months (the observation period) to be included in the cohort. Thus, men under AS who 

die in this period are not considered for analysis. In the RP-group, on the other hand, a 

single event (the RP surgery) at some point in the observation period determines 

inclusion in the cohort, which in turn possibly includes men dying in this period. In 

conclusion, individuals under AS have, by definition of the selection strategy, a lower 

probability to die in the observation period. To account for this bias, follow-up of AS is 

offset by 12 months. 

3.3.3 Cohort selection 

Furthermore, in step 2 of the validation process the cohort is selected in AOK claims data. 

In a first step all insured individuals with an ICD-coding of ‘C61 - Malignant neoplasm of 

prostate’ in any health care sector were identified in the complete claims of AOK Baden-

Württemberg of the year 2008. For the identified individuals claims from all health care 

sectors of the years 2008 to 2011 were extracted. To comply with data protection laws the 

baseline dataset was pseudonymized, which includes deletion of all information that allows 

identification of individuals (insurant identification number, name, address, date of birth) 

and creation of a pseudonymized identification number for each individual. Furthermore, 

information which allows identification of single health care providers (e.g. hospitals, 

physicians, pharmacies) was deleted from the baseline dataset. The pseudonymized baseline 



Methods  41 

 

 

dataset was transferred from AOK Baden-Württemberg to Helmholtz Zentrum München for 

data analysis. 

 

Figure 3-3: Cohort selection (AOK) 

The first step of the cohort selection process (Figure 3-3) is to identify individuals with a 

validated PCa-diagnosis in the 12-month observation period. PCa diagnosis is validated in 

three ways. First, only men are considered with at least one inpatient or at least two 

outpatient diagnostic codes of C61 in different quarters of the observation period. Secondly, 

only main diagnostic codes determined at discharge are used in case of inpatient diagnoses, 

because these codes are most valid for hospital care (123). Thirdly, only codes with the 

additional diagnostic certainty code ‘secured’ (G, gesicherte Diagnose) are considered for 

outpatient diagnoses. In German outpatient care tentative diagnoses are usually added the 

code ’V: tentative diagnosis’ or ‘A: exclusion of the coded diagnosis’. When the diagnosis is 

clarified, the code ‘G: secured diagnosis’ is added. If the disease is cured the additional code 

is changed to ‘Z: state after disease’. To include only patients in the cohort with a current 
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diagnosis of C61, all diagnoses with additional codes other than G are not considered for 

cohort selection. By applying the criterion of at least two diagnostic codes, consideration of 

tentative diagnoses is further minimized (124). 25,367 insured individuals apply to these 

criteria.  

After exclusion of individuals not constantly enrolled in the study period or with female 

gender coding, the dataset includes 25,293 individuals. 

Diagnostic ICD-10 GM codes, inpatient (OPS) and outpatient procedure (EBM) codes, as well 

as pharmaceutical prescriptions (coded by ATC codes) are used to define inclusion and 

exclusion criteria for cohort selection (Table 3-1 and Table 3-2).  

Diagnosis ICD-10 GM 

Metastases C77, C78, C79 

Other cancer C00-C14, C15-C26, C30- C39, C40-C41, C43-C44, C45-C49, C50, C51-C58, C60, 
C62, C63, C64-C68, C69-C72, C73- C75, C76, C80, C81-C96 

PCa C61 

Table 3-1: Diagnostic codes for cohort selection (AOK) 

Procedure 
Inpatient  

(OPS) 

Outpatient  

(EBM) 

Pharmaceuticals 
(ATC) 

PSA test - 32351 - 

Prostate biopsy - 26341 - 

RP 5-604 36276, 36277, 36287 - 

EBRT 8-520, 8-521, 8-522, 8-523  25321 - 

Chemotherapy 8-54 86512, 86514 - 

Brachytherapy 8-524, 8-525 25333 - 

Orchiectomy 5-622 - - 

ADT - - L02AE 

Table 3-2: Procedure codes for cohort selection (AOK) 
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Following the definition of AS in the PCa-model by Koerber et al., which is based on the 

surveillance recommendation of the DGU of 2014 (69), AS is defined by EBM codes of at 

least two PSA tests and at least one prostate biopsy during the observation period. DREs, 

which are recommended in a 3 monthly frequency, cannot be identified in SHI data, because 

these are covered by the urologic insurant lump sum and are, thus, not coded separately. To 

limit the cohort to early stage PCa, men with diagnoses on metastatic or any other kind of 

cancer disease are excluded. Additionally, patients undergoing any form of PCa-specific 

therapy other than AS (RP, EBRT, brachytherapy, chemotherapy, orchiectomy, and ADT) in 

the observation period are excluded to avoid misclassification of individuals waiting for 

radical treatment as AS cases. The inclusion and exclusion criteria mentioned above apply to 

the observation period only. In the follow-up period, men in the AS-group do not have to be 

surveyed as closely as defined in the observation period. They may move on to any other 

form of PCa-specific therapy or develop metastatic disease, as assumed in the decision 

model.  

RP is defined by inpatient as well as outpatient procedure codes on open, laparoscopic, or 

robotic-assisted radical prostatectomy. Individuals with a diagnosis of metastatic or any 

other kind of cancer than PCa in the observation period are excluded. Other forms of PCa-

specific treatment may be performed in addition to RP in the observation period, because 

inclusion criteria are not supposed to be so strict that treatment practice is not reflected in 

the cohort.  

Application of above mentioned inclusion and exclusion criteria creates a cohort consisting 

of 124 individuals in the AS-group and 910 in the RP-group. 
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3.4 Relevant health technologies and costs 

In step 3 of the validation, health technologies and corresponding costs relevant for PCa-

treatment are defined. In this study, two different approaches for the definition of relevant 

health technologies in the AOK claims data are explored: an excess approach and a disease-

related approach.  

3.4.1 Excess approach 

The excess analysis is a pragmatic approach to external validation of decision models based 

on claims data; it gets by with few assumptions in addition to study design and cohort 

selection in claims data, because no definition of disease-specific health care utilization is 

necessary. All health care utilization and corresponding costs accruing in the follow-up 

period are considered for analysis. When comparability of the AS- and the RP-group 

regarding patients’ baseline characteristics can be ensured (e.g. by statistical methods 

described in the following), the difference in outcome is solely attributable to the difference 

in initial PCa-treatment (52).  

However, the absolute outcome values (resource use or costs) of treatment strategies have 

no informative value for validation, because disease-specific costs which are considered in 

the PCa model are not represented. With the excess approach only the validation of 

incremental outcome measures is possible. All the same, excess analysis is useful for the 

validation, because it indicates whether AOK claims data estimate similar incremental 

outcomes as the decision model and whether it is reasonable to go to the time and effort to 

analyze AOK claims data on a disease-related basis. 

3.4.2 Disease-related approach 

In disease-related analysis only resource use of health technologies and corresponding costs 

that are relevant for the treatment of localized PCa are considered. Disease-related analysis 

allows validation of absolute values of resource use and costs of the 2 treatment strategies 

in addition to incremental outcomes. Also, comparison of utilization and costs of single 

health technologies is possible; by that not only total outcome of the model is validated but 

also outcome in different health care service categories. The validity of model outcomes 

might, for example, differ in in- and outpatient care. Furthermore, disease-related analysis 
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helps to explain difference in total outcome between model and claims data by difference in 

outcome of single health technology utilization or difference in unit cost estimates. 

Health care utilization and corresponding costs of PCa-treatment are identified in the 2.5 

years of follow-up after initial treatment. Only treatment relevant for localized PCa is 

considered, whereas treatment of metastatic disease and palliative therapy are not 

considered; only the part of the PCa-model is validated which evaluates treatment of 

localized PCa. 

The definition of health technologies relevant for the treatment of localized PCa in claims 

data analysis follows the definition of the model very closely. Whenever codes for the 

calculation of resource use and costs are explicitly mentioned in the model, these codes are 

used in claims data analysis as well. In in- and outpatient care DRG and EBM codes are 

reported in the model to identify health technology utilization. In all other health care 

service categories no specific codes of health technologies are available; in these cases 

corresponding codes are identified in claims data in consultation with the modeling team. 

Costs are reported in Euro (€) as in the decision model. Discounting of costs is not necessary 

due to the short study period. 

Some deviations from the definition of disease-related costs in the PCa-model are necessary; 

mainly to ensure that only PCa-relevant treatment is included in claims data analysis. For 

one, inpatient treatment is defined by OPS codes in claims analysis rather than by DRGs as in 

the PCa-model, because OPS codes are more specific. For example, to identify the utilization 

and costs of prostatectomy without complications, a search for a combination of DRG M01B 

‘Major procedure at the male pelvic organs without complications’ and OPS 5-604 ‘Radical 

prostatectomy’ is used. The DRG code alone is too unspecific to identify RP in claims data, 

because code M01B is also used to bill procedures other than RP.   

Secondly, in claims data analysis criteria for the temporal link between ICD, EBM, or OPS 

codes are defined. For example, treatment of IC by a general practitioner (GP) is defined by 

generic EBM codes, because no specific codes for treatment of IC are available. Thus, to 

consider this treatment relevant for the analysis a diagnosis of IC in the same quarter is 

required.  
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Table 3-3 lists all health technologies that are assumed to be relevant for the treatment of 

localized PCa by health care service category; corresponding codes for the selection of 

disease-related technologies in claims data are provided. 

Regarding costs of the identified health technologies, generally, all costs are considered that 

are relevant for the perspective of the SHI scheme insured community, which includes 

reimbursement by the insurance fund as well as out-of-pocket payments of insured 

individuals. DRG codes for hospital episodes, in which relevant procedures are performed, 

are used to estimate costs in claims data analysis. In case of outpatient treatment, costs are 

usually reported on a quarterly case basis by EBM codes. To make costs comparable to the 

decision model, costs of single EBM procedures are considered and not the costs of the 

whole case.  

To allow direct comparison of utilization probability and costs estimated in claims data with 

outcomes of the decision model, single health technologies are summarized in cost groups 

according to the cost groups defined in the decision model (Table 3-4). 
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Cost group model Treatment claims data 

ED Outpatient treatment ED (urologist) 

Outpatient treatment ED (GP) 

Pharmaceutical PDE5 inhibitors 

Vacuum pump, rings 

IC Outpatient treatment IC (urologist) 

Outpatient treatment IC (GP) 

Incontinence aids 

Physiotherapy pelvic floor 

RP w/o complications Prostatectomy w/ o complications 

AS PSA testing and biopsies (urologist) 

Antibiotics before prostate biopsy 

EBRT EBRT after AS (radiotherapist) 

Urosepsis Inpatient treatment urosepsis 

TURP Transurethral prostate resection for BPH 

Surgery IC Artificial urethral sphincter surgery  

Sling surgery  

Surgery ED Penis prosthesis surgery 

RP with complications Prostatectomy with complications 

BPH  Alpha blockers, 5α-reductase inhibitors 

Stricture  Inpatient treatment stricture 

Monitoring RP Follow-up RP: PSA testing  (urologist) 

Total Sum of all cost groups  

Table 3-4: Assignment of health technologies to cost groups  
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3.5 Statistical methods for claims data analysis 

In step 4 of the validation of the PCa-model, statistical methods are selected which allow 

estimation of outcomes in AOK claims data comparable to outcomes of the decision model. 

These include matching of individuals in the AS- and the RP-group as well as regression 

analysis of effect and cost outcomes.  

3.5.1 Matching 

Matching is a statistical technique which, in part, corrects the treatment selection bias 

induced by non-randomization. Each AS-subject is individually paired with a RP-subject for 

variables that might confuse the comparison. Matching is only useful, though, for variables 

that are strongly related to both the treatment and outcome of interest (28). Age is chosen 

as the matching variable because it is strongly related to the treatment decision; AS is 

recommended for patients with a life expectancy greater than 10 years. Regarding health 

outcome, rates of ED and IC as well as corresponding health care utilization are also 

correlated with age (125). Furthermore, matching of the claims data cohort makes the 

comparison with the decision model more valid, because the model assumes that there is no 

difference in age distribution between treatment groups. 

Treatment groups are matched by +/- 2 years of age and in a ratio of 1 AS-subject to 2 RP-

subjects to account for the relatively smaller group of patients under AS. Especially for rare 

events the strength of the study can be increased by having more RP-subjects than AS-

subjects in the cohort (28). 

After matching, the AS-group includes 107 individuals and the RP-group 214, respectively. 

All statistical analyses are performed with the software package SAS, version 9.3. 

3.5.2 Descriptive analysis of patient characteristics 

Patients’ age and CCS as well as prevalence of ED, IC, and benign prostate hyperplasia (BPH) 

are calculated at baseline before and after matching. For calculation of CCS the co-morbidity 

group ‘cancer’ is set to 0, because diseases other than PCa are of interest for adjustment.  

Definition of ED, IC, and BPH on the basis of ICD-10 GM codes is shown in tTable 3-5. 



Methods  51 

 

 

Diagnoses coded in in- and outpatient care are used and the same criteria for validity of 

diagnoses as for cohort selection are applied: only inpatient discharge diagnoses and 

outpatient diagnoses with the additional coding ‘secured’ are used. 

Comparison of patient characteristics in the 2 treatment groups allows estimation of the 

usefulness and performance of matching. Furthermore, characteristics of the claims data 

cohort and model cohort are compared based on the descriptive analysis.  

Diagnosis ICD-10 GM 

Benign prostate hyperplasia (BPH) N40 

Erectile dysfunction (ED) N48.4, F52.2 

Urinary incontinence (IC) N39.3, N39.4, R32, F98.0 

Table 3-5: Diagnostic codes for effect analysis (AOK) 

3.5.3 Effect analysis 

Rates of short- and long-term (continuous diagnosis > 90 days after initial treatment) ED and 

IC as well as rates of BPH are estimated per treatment group in the follow-up period of 2.5 

years. These rates are relevant for the analysis of disease-related resource utilization: 

identification of individuals with complications of PCa treatment is required for the 

identification of utilization of PCa-relevant health technologies, which are not specifically 

coded as treatment of PCa and are not linked to diagnostic information in claims data (e.g. 

outpatient treatment of IC).  

‘Incident’ ED and IC diagnoses are considered in effect analysis, which means that only 

subjects are included which do not have a diagnosis of IC or ED before the initial RP surgery 

or, in case of AS, before the beginning of follow-up. This is important for the comparison 

with the model, because it is assumed in the model that individuals in both treatment 

groups do not have ED, IC, or BPH before initial treatment. The definition of diagnostic codes 

for effect analysis has been described previously (Table 3-5). 

To address bias in complication rates due to difference in baseline co-morbidity in the 2 

treatment groups, a logistic regression model is used to adjust for CCS. Logistic regression 

models are suitable to predict the proportion of subjects with a complication of interest by 

using a logit transformation. The odds ratio of an individual having the complication is 

predicted by the logistic regression model (28). 
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The method of recycled predictions is applied to estimate mean complication rates per 

treatment strategy (the probability of having the complication of interest) in addition to 

odds ratios. Recycled predictions can impart the scale of group differences better than the 

regression coefficients alone, because probabilities are easier to interpret than odds ratios 

(126). To achieve this, the predicted probabilities of complications are at first estimated 

under the assumption that all individuals in the sample are treated with RP and all other 

variables remain the same; secondly, the predicted probabilities of complications are 

estimated assuming all in the sample are under AS and, again, all other variables remain the 

same. Finally, the averages of these two predicted probabilities are compared and a new 

estimate of the difference between AS and RP is produced (126).  

95% CIs of mean complication rates per treatment strategy and incremental complication 

rates are calculated via non-parametric bootstrapping with 1,000 replications. The 

bootstrapping method refers to a random sampling technique with replacement. The mean 

costs are calculated for each re-sample and these re-samples make up the empirical 

estimate of the distribution of mean costs. This allows calculation of accuracy measures – 

such as confidence limits – for estimated means, in samples with small observation numbers, 

where the assumption of asymptotic normality of the estimator is questionable. To calculate 

95% CIs, the 2.5 and 97.5 percentile values of the sampled distribution are taken to 

represent the endpoints of the interval (127, 128). P-values indicating significant differences 

in complication rates between treatment strategies are estimated via bootstrap hypothesis 

testing; p-values less or equal to 0.05 are considered statistically significant.      

3.5.4 Excess analysis of resource use and costs 

For the excess analysis all health care utilization incurred at the SHI fund are considered, 

irrespective of the relevance for PCa treatment. As in the decision model, utilization of 

inpatient and outpatient care, pharmaceuticals, physiotherapy, and assistive technologies 

are considered and corresponding costs are summarized to total costs per treatment 

strategy. The difference in costs reflects the excess costs of AS compared to RP, assuming 

that matching and adjustment in regression analysis control for treatment selection bias and 

the difference is solely attributable to the treatment. 
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All direct medical costs are considered that are relevant for the perspective of the SHI 

scheme insured community, according to the German SGB V (§ 35b (1) SGBV) (129). Co-

morbidity adjusted costs are estimated per treatment group by a generalized linear model 

(GLM) with a gamma distribution and log link to account for the typically skewed distribution 

of cost data. To individuals with zero costs a small amount of €1 is assigned to include them 

in the analysis (130). When individuals with zero costs account for more than 10% of the 

cohort a two-part model is used: at first the probability of health care expenditure is 

predicted with a logistic regression model. In a second step costs are estimated by a GLM, as 

described previously, conditional for nonzero costs. To derive unconditional per capita costs 

the probability of expenditure is multiplied by the predicted conditional costs (131). The 

GLM reports the cost difference between the AS- and the RP-strategy as a percentage. 

Additionally, recycled predictions method is applied to estimate absolute values of mean 

costs per strategy and difference in costs (52, 126). All costs are rounded to the nearest € 

and inflation is not considered due to the short study period. 

For per capita costs and difference in costs 95%-CIs are calculated via a non-parametric 

bootstrap approach based on 1,000 replications, by taking the 2.5 and 97.5 percentile values 

to represent the endpoints (128, 132). P-values indicating significant differences in costs are 

estimated via bootstrap hypothesis testing; p-values less or equal to 0.05 are considered 

statistically significant. The CCS is included in the regression models as a continuous variable 

to adjust for difference in co-morbidity in the treatment strategies (133, 134). To additionally 

estimate the influence of ED and IC on treatment costs, complication is included in the 

regression models as a binary variable. Extended models, with an interaction between 

treatment strategy and CCS, do not improve model fit. 

3.5.5 Disease-related analysis of resource use and costs 

In disease-related analysis 4 different outcome measures are estimated: resource use of 

treated individuals, unit costs, probability of technology utilization, and per capita costs 

accumulated during follow-up. 

o Resource use is reported as the quantity of utilization per person of a single health 

care technology, averaged over all individuals treated with the technology of interest, 
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in the follow-up period. RP surgery is, for example, expected to be performed only 

once per person, whereas treatment with EBRT involves several radiation sessions.  

o Unit costs describe the mean costs of one procedure, hospital episode, or 

pharmaceutical description.  

o The absolute and relative number (probability) of individuals in the cohort utilizing a 

health technology is reported for single treatments and for cost groups.  

o Per capita costs accumulating during follow-up are reported for cost groups with 

standard deviation (STD) as well as median and interquartile range, to give an 

indication of the distribution of costs. Especially in cost groups where a small number 

of individuals causes costs, extremely skewed distribution of costs is possible; in that 

case STD has no meaningful interpretation (28). 

To adjust costs for difference in co-morbidity a GLM with a gamma distribution and log-link 

including CCS as a continuous variable is used, as described in chapter 3.5.4. Non-parametric 

bootstrapping with 1,000 replications is applied to estimate 95% CIs for mean costs of all 

cost groups. P-values indicating significant differences in costs between treatment strategies 

are estimated via bootstrap hypothesis testing; p-values less or equal to 0.05 are considered 

statistically significant. A random number seed is set during bootstrapping to allow 

replication of results and to generate comparable results for all cost groups. 
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3.6 Changes to the decision model 

In step 5 of the validation approach, model assumptions are changed and additional analyses 

are conducted to make the comparison of outcomes with claims data more valid. Such a 

change of assumptions is possible because access to the PCa-model in Treeage is granted by 

Koerber et al. (2014). 

3.6.1 Adaptation of model assumptions to claims data 

Change of model assumptions includes adaptation of the runtime of the decision model to 

the follow-up period of the AOK claims data analysis of 2.5 years, which corresponds to 10 

cycles of 3 months in the model. A longer follow-up or lifetime perspective could not be 

created in the claims data analysis, because claims are only available for a period of 4 

consecutive years. 

Also, it is not possible to replicate the age structure of the model cohort in claims data. If 

inclusion in the claims data cohort requires that all patients are 65 years of age at treatment 

initiation as in the decision model, treatment groups in claims data would become very 

small. Adaptation of the age structure of the model to the claims data cohort is necessary; 

consequently the mean age of the SHI cohort at treatment initiation (70 years) is assumed in 

the PCa-model. Mortality rates and the probability to be treated with either RP or EBRT 

following AS – which are the only relevant age-dependent probabilities – are adapted 

accordingly in the PCa-model. 

Furthermore, discounting of costs is not performed in claims data analysis, due to the short 

period of follow-up. The PCa-model as published by Koerber et al. (2014) assumes an annual 

discount rate of 3% for costs, which is set to 0% for the purpose of this validation. 

3.6.2 Additional analyses 

For the model validation it is interesting to compare not only the probability and costs of all 

PCa-relevant health care utilization combined but also of single treatments. It is especially 

interesting in this study whether the validity of model parameters is higher in inpatient care, 

where OPS codes allow specific identification of procedures and DRG reimbursement 

provides valid cost estimates, than, for example, in outpatient care where coding of 

procedures via EBM codes is less specific.  
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To simulate health care utilization and costs of single treatments in the decision model, 

additional analyses are necessary, because the decision model reports only total costs per 

treatment arm. Such additional analyses are conducted without changing the model 

structure. 

To compare utilization probability in the decision model with utilization probability 

estimated in claims data analysis, a microsimulation (also referred to as first-order Monte 

Carlo simulation) is performed in Treeage Pro 2013. Microsimulation pictures variability due 

to the alternative pathways of simulated individuals through the decision model and is 

similar to the population variability of outcome in the claims data (135). A cohort of 321 men 

in each treatment arm is followed individually through the model.  

To estimate probability of utilization per cost group the microsimulation is run for each cost 

group separately, each with all other cost groups set to 0. The utilization probability of 

health technologies in each cost group is estimated as the number of individuals with costs > 

0.  

Averaging the costs over the 321 patients gives the overall estimate of the mean costs in 

each treatment arm. Simulated outcomes are exported from Treeage and imported to SAS 

for analysis of mean costs, STD, median, and interquartile range.  

To account for parameter uncertainty in cost estimates probabilistic sensitivity analysis, 

using second-order Monte Carlo simulation with 1,000 replications, is performed in Treeage 

Pro 2013 for each cost group and total costs individually. Monte Carlo simulation allows 

simultaneously sampling from each cost parameter distribution (135). Because the precision 

of simulation point estimates depends on the number of replications, a consistent approach 

with 1,000 replications is used for model and claims data (22). Monte Carlo simulation 

samples are exported to SAS for cost analysis. Mean costs estimated by each sample are 

averaged over all 1,000 replications to calculate 95% CIs by taking the 2.5 and 97.5 

percentile values to represent the endpoints of the interval (135). 

A random number seed is set in Monte Carlo simulation as well as in microsimulation to 

ensure that the results are replicable from one run to the next and to make outcomes 

comparable between cost groups.  
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3.7 Comparison between model and claims data 

In step 6 of the validation of the PCa-model based on AOK claims data, methods for the 

comparison of model and claims data outcomes are selected. 

3.7.1 Input parameters: resource use and unit costs 

Input parameters of resource use and unit costs included in the decision model are 

compared with resource use and unit costs estimated in claims data analysis. Difference in 

resource use and unit costs is described, whereas treatments which have a presumably high 

influence on total difference are especially highlighted. 

3.7.2 Simulation outcome: probability of utilization and per capita costs 

The probability of utilization of health technologies summarized in cost groups is displayed 

graphically in form of bar charts, directly comparing outcomes of unadjusted claims data 

analysis and microsimulation of the PCa-model. Bar charts are created for the AS- and the 

RP-group separately. Differences between outcomes are described, focusing on results that 

are most relevant to explain differences in total costs. 

Unadjusted mean costs estimated in claims data analysis are compared with outcomes 

predicted by microsimulation of the decision model. Distribution of costs is displayed 

graphically in form of histograms contrasting estimates of claims data analysis with 

estimates of model microsimulation. Histograms show results separately for the AS- and the 

RP-group. 

To test agreement between estimates of AOK dataset and model simulation statistically, the 

difference between incremental costs estimated in adjusted claims data analysis and 

incremental costs predicted by the decision model in Monte Carlo simulation is calculated; 

the difference in incremental costs is calculated for all cost groups and for total costs. 

Calculation of differences is based on the 1,000 sampled means of bootstrapping and Monte 

Carlo simulation, accordingly; each bootstrapped sample is assigned to a sample generated 

in Monte Carlo simulation and the difference in costs is then calculated for each of this 

samples. Based on the 1,000 sampled differences a mean difference is estimated.  
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Bootstrapping of outcomes generates a non-parametric distribution of the cost differences. 

For mean differences 95% CIs are calculated, taking the 2.5 and 97.5 percentile values of the 

bootstrap generated distribution to represent the endpoints.   

The research hypothesis in this study is that the model is able to simulate outcomes 

observed in claims data. Consequently, incremental costs estimated in claims data are 

expected to be the same as incremental costs simulated in the model; the difference in 

incremental costs of model and claims data is expected to be 0. In hypothesis testing the 

research hypothesis – which one wants to prove – is usually expressed in the alternative 

hypothesis (H1). The null hypothesis (H0) is the negation of the research hypothesis. H0 is 

rejected, if the probability that the observed data could have been obtained with H0 being 

true (the p-value), is lower than a predefined significance level, usually 0.05. Following this, 

H0 would have to state in this study that the cost difference between claims data and model 

is unequal; a test of this hypothesis is, however, statistically not possible (28). 

Consequently, the test is formulated in the usual manner:  

H0: incremental costsAOK = incremental costsmodel 

H1: incremental costsAOK ≠ incremental costsmodel 

H0 is tested based on simulated samples via bootstrap hypothesis testing (136). When 0 is 

included in the 95% CI or the p-value is greater than 0.05, H0 is not neglected, but this does 

not mean that H0 is accepted or proven. P-values lower than 0.05 indicate a rejection of H0 

and a significant difference between incremental costs of claims data and model (28, 29).  

Additionally to hypothesis testing, the distribution of sampled incremental costs of claims 

data analysis and decision model is displayed in histograms for all cost groups and total 

costs. An overlapping of the histograms indicates an agreement between incremental costs 

of claims data analysis and Monte Carlo simulation.  



Methods  59 

 

 

3.8 Sensitivity analyses 

In step 7 of the validation approach, sensitivity analyses are selected which test the 

influence of claims data and model assumptions on outcome. 

3.8.1 Incident PCa-cases in claims data analysis 

In a sensitivity analysis only incident PCa cases are included to estimate the influence of the 

cohort selection on difference in costs in claims data analysis. A more valid comparison with 

the PCa-model is possible, because the model assumes incidence of disease. Incidence of 

disease might be especially relevant in the AS group; it can be ensured that only individuals 

are included in the analysis who started AS in the observation period. That way, time under 

treatment is the same in the RP- and the AS-group.  

 

Figure 3-4: Cohort selection of incident PCa-cases (AOK) 
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Individuals with no coding of PCa, identified by ICD-10 GM code C61, in the pre-observation 

period and at least one inpatient or two outpatient diagnostic codes in the observation 

period are considered for analysis. After exclusion of individuals with incorrect gender 

coding or dropping-out during the study period, 5,720 individuals remain in the incident 

cohort (Figure 3-4). Applying the inclusion and exclusion criteria for treatment groups 

described previously, leaves 88 individuals in the AS-group and 776 individuals in the RP-

group. After matching for age in a ratio of 1:2, the AS-group consists of 64 individuals and 

the RP-group of 128, respectively. 

Excess costs and total disease-related costs are estimated in claims data analysis per 

treatment strategy. Adjusted and bootstrapped incremental costs are compared with 

outcomes of Monte Carlo simulation of the PCa-model as described in the base analysis 

(chapter 3.7). 

3.8.2 Age distribution in the decision model 

In a second sensitivity analysis the influence of the age at treatment initiation, assumed in 

the decision model cohort, on agreement with claims data estimates is tested. As described 

previously, age at treatment initiation and corresponding age-dependent variables are 

changed to 70 years of age, to reflect the mean age of the claims data cohort. Age in the 

claims data cohort, however, varies: the 2.5 percentile is 51 years of age and the 97.5 

percentile is 79, respectively.  

Age at treatment initiation is relevant in the model because treatment with RP or EBRT after 

AS depends on age; before 72 years of age RP is recommended, older men are treated with 

EBRT. If every individual in the base case model starts AS at the age of 70 and follow-up 

continues for 2.5 years, the probability of being treated with EBRT in follow-up is much 

lower than being treated with RP. As EBRT is less costly than RP, costs of AS-strategy may be 

overestimated. 

To test this influence on agreement of claims data and model, the PCa-model is once run 

with an age at treatment initiation of 51 years and once with 79 years, respectively. In the 

first analysis, with mean age of 51 years of age, no patient in the AS-group is assumed to be 

treated with EBRT and in the second analysis, with 79 years of age, all patients in the AS-

group are treated with EBRT in follow-up. 

Difference in incremental costs is compared as described in base analysis (chapter 3.7).   
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4 Results 

4.1 Patient cohort in claims data 

Results of the baseline characteristics of the patient cohort in the claims data set, which is 

defined in step 2 of the validation approach, are presented in the following. 

Mean age at baseline (before the initial treatment) in the claims data cohort is 69 years (STD 

6.80) in the RP-group and 70 years (STD 7.13) in the AS-group after matching (Table 4-1). 

Mean CCS, representing co-morbidity in the cohort, is 0.11 in the RP-group and 0.19 in the 

AS-group. STD of 0.63 in both treatment strategies is comparatively high, which indicates a 

skewed distribution of co-morbidity in the treatment groups; a small number of men have 

high co-morbidity scores compared to the remaining individuals in the cohort with CCS of 0.  

Prevalence of ED and IC is slightly higher in the RP-group than in the AS-group at baseline 

after matching (ED: 0.11 vs. 0.05, IC: 0.05 vs. 0.03). Prevalence of BPH is considerably higher 

in the RP-group with 0.77 as opposed to 0.68 in the AS-group. From a medical point of view, 

this result can be explained by the fact that men suffering from symptoms of BPH tend to 

surgery for treatment of PCa because BPH is cured by RP as well.  

 Before matching  After matching 
 RP AS  RP AS 

Total (n) 910 124  214 107 

Age (m, STD) 66 (6.64) 70 (8.31)  69 (6.80) 70 (7.13) 

CCS (m, STD) 0.13 (0.71) 0.19 (0.62)  0.11 (0.63) 0.19 (0.63) 

ED (n, p) 79 (0.09) 5 (0.04)  24 (0.11) 5 (0.05) 

IC (n, p) 18 (0.02) 5 (0.04)  10 (0.05) 3 (0.03) 

BPH (n, p) 511 (0.56) 83 (0.67)  164 (0.77) 73 (0.68) 

m = mean, n = number, p = proportion 

Table 4-1: Baseline characteristics before and after matching (AOK) 
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Comparison of baseline results before and after matching shows that the RP-group gets 

older and, in line with that, prevalence rates of ED and IC as well as BPH increase. The AS-

group, on the other hand, features predominantly the same baseline characteristics before 

and after matching. Overall, the RP- and the AS-group show a satisfactory concordance in 

baseline characteristics after matching, except for co-morbidity. To account for different co-

morbidity structures in the treatment groups, CCS is adjusted for in regression models in the 

following. 

In the claims data cohort 14 out of 321 individuals (4.4%) die during follow-up; the mortality 

rate is, however, greater in the AS-group (7.5%) than in the RP-group (2.8%).  
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4.2 Effect analysis of claims data 

Results of the analysis of complication rates, described in step 4 of the validation approach, 

are presented in the following. 

Unadjusted analysis of short- and long-term ED and IC rates in the follow-up period indicates 

that after RP complication rates are higher than after AS (0.48 vs. 0.12) (Table 4-2). However, 

the number of individuals with some complications is extremely small in the AS-group. For 

example, only 2 individuals suffer from a combination of ED and IC. Even though this result is 

valid from a medical point of view, it is difficult to estimate valid costs based on such a small 

number of individuals; this should be considered when assessing the validity of disease-

related cost estimates in the AS-group. 

Complication RP (n=214) AS (n=107) 

ED < 90 d  31 (0.15) 6 (0.06) 
ED > 90 d  26 (0.12) 6 (0.06) 
IC < 90 d  92 (0.43) 9 (0.08) 
IC > 90 d 70 (0.33) 9 (0.08) 
ED & IC < 90 d  20 (0.09) 2 (0.02) 
ED & IC > 90 d 16 (0.08) 2 (0.02) 
Total (ED or IC or both) 103 (0.48) 13 (0.12) 

d = days, n = number  

Table 4-2: Mean complication rates – unadjusted (AOK) 

Complication 
                 RP                AS 
      m      95% CI        m       95% CI 

ED < 90 d 0.15 0.10 to 0.20  0.06 0.02 to 0.10 
ED > 90 d  0.12 0.08 to 0.17  0.06 0.02 to 0.10 
IC < 90 d 0.44 0.36 to 0.50  0.08 0.04 to 0.14 
IC > 90 d 0.33 0.27 to 0.40  0.08 0.04 to 0.14 
ED & IC < 90 d 0.10 0.06 to 0.14  0.02 0.00 to 0.05 
ED & IC > 90 d 0.08 0.08 to 0.12  0.02 0.00 to 0.05 
Total (ED or IC or both) 0.49 0.42 to 0.55  0.12 0.07 to 0.19 

CI = confidence interval, d=days, m = mean 

Table 4-3: Mean complication rates – adjusted (AOK) 
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When adjusting for co-morbidity, results change very little. After RP rates of short- and long-

term IC (0.44, CI [0.36; 0.50] and 0.30, CI [0.27; 0.40]) as well as short-term ED (0.15, CI 

[0.10; 0.20]) are significantly higher than in the AS-group (0.08, CI [0.04; 0.14]; 0.08, CI [0.04; 

0.14]; 0.06, CI [0.02; 0.10]) (Table 4-3). Overall, total complication rates are significantly 

lower in the AS-group than in the RP-group (-0.37, CI [-0.45; -0.27], p< 0.0001) (Table 4-4). 

Complication 
                       AS - RP 

   m      95% CI  p-value 

ED < 90 d  -0.09 -0.15 to -0.02      0.008 

ED > 90 d  -0.07 -0.13 to 0.00      0.050 

IC < 90 d  -0.35 -0.43 to -0.26 < 0.0001 

IC > 90 d -0.25 -0.33 to -0.16 < 0.0001 

ED & IC < 90 d  -0.08 -0.12 to -0.03 < 0.0001 

ED & IC > 90 d -0.06 -0.10 to -0.02      0.006 

Total (ED or IC or both) -0.37 -0.45 to -0.27 < 0.0001 

CI = confidence interval, m = mean 

Table 4-4: Difference in complications rates – adjusted (AOK)  
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4.3 Excess analysis of claims data 

In the following results of the excess analysis of claims data are presented; definition of 

health technologies relevant for excess analysis and statistical methods for analysis are 

described in steps 3 and 4 of the validation approach.  

 
Figure 4-1: Per capita total costs (€), by treatment strategy and health care service 

category – unadjusted (AOK) 

 RP (n=214) AS (n=107) AS - RP

Inpatient   10,964 5,227  -5,737

Outpatient 3,668  2,750 -918

Pharmaceuticals 2,774  3,321  547

Physical therapy 331  271  -60

Assistive technologies 281  139  -142

Total costs  18,018  11,708  -6,310

Table 4-5: Per capita total and excess costs (€), by treatment strategy and 
health care service category – unadjusted (AOK) 
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Figure 4-1 shows unadjusted per capita costs for the two treatment strategies grouped by 

inpatient and outpatient treatment, pharmaceuticals, physiotherapy, and assistive 

technologies. AS incurs lower mean costs than RP in all health care service categories, except 

in case of pharmaceutical prescriptions (Table 4-5). 

Co-morbidity adjusted analysis confirms unadjusted excess cost analysis (Table 4-6 and Table 

4-7). Total costs of AS (€11,933, CI [9,430; 14,554]) are significantly lower than total costs of 

RP (€18,544, CI [16,867; 20,660]) by €-6,611 (CI [-9,734; -3,547], p<0.0001).  

Comparison of adjusted costs in single health care service categories displays that AS has 

significantly lower mean inpatient (€-5,845, CI [-7,632; -3,895], p<0.0001) and outpatient 

costs (€-961, CI [-1,622; -361], p=0.002) as well as costs for assistive technologies (€-141, CI [-

230; -50], p=0.006) than RP.  

Inclusion of complication as a binary variable into the regression models does not change 

cost differences between treatment strategies. Concerning total costs there seems to be no 

significant cost difference between individuals with and without complications. In case of 

assistive technologies a 30% increase in costs for individuals with complications is estimated 

(p=0.018). 

 RP AS 
    m              95% CI       m        95% CI 

Inpatient  11,123    10,157 to 12,308 5,278  3,718 to 6,977 

Outpatient 3,751     3,342 to 4,276 2,790  2,360 to 3,295 

Pharmaceuticals  2,893     2,267 to 3,776 3,480     2,718 to 4,490 

Physical therapy  346     236 to 491 288  182 to 428 

Assistive technologies  281     223 to 343 140     83 to 212 

Total costs  18,544     16,867 to 20,660 11,933     9,430 to 14,554 

m = mean 

Table 4-6: Per capita total costs (€), by treatment strategy and health care service 
category – adjusted (AOK) 
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                          AS - RP  

 m               95% CI     p-value

Inpatient  -5845        -7,632 to -3,895 < 0.0001

Outpatient -961    -1,622 to -361 0.002

Pharmaceuticals  587         -556 to 1,718 0.274

Physical therapy  -58      -214 to 114 0.460

Assistive technologies  -141      -230 to -50 0.006

Total costs  -6,611 -9,734 to -3,547 < 0.0001

Table 4-7: Excess costs (€), by health care service category – adjusted (AOK) 
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4.4 Disease-related analysis of claims data 

Results of disease-related analysis are presented in the following; disease-related health 

care utilization and methods for disease-related analysis are described in steps 3 and 4 of 

the validation approach. 

4.4.1 Resource use and unit costs 

The average quantity of resource use of treated individuals in the follow-up period and unit 

costs of disease-related health technologies are compared for the RP- and the AS-group in 

Table 4-8. 

When a health technology is not utilized in one of the treatment groups, no resource use 

and unit costs can be estimated in claims data analysis. For example, no unit costs can be 

estimated for EBRT as primary treatment in the RP-group because radiation after surgery is 

performed in case of disease progression and not as primary treatment of localized PCa.  

Inpatient treatment is predominantly utilized once; outpatient treatment is utilized several 

times. Follow-up after RP surgery by an urologist is performed about 2.5 times more on 

individuals in the RP-group (8.62) than on individuals in the AS-group treated with RP (3.50). 

This could, however, be due to a shorter period of follow-up after RP in the AS-group; follow-

up is overall limited to 2.5 years after the initial treatment. Resource use of remaining health 

technologies is comparable between treatment groups, if the health technology is utilized at 

all. 

Highest unit costs are estimated for RP surgery with complications (€10,141), artificial 

urethral sphincter surgery (€11,732), and penis prosthesis surgery (€7,586). However, all of 

these surgeries are performed in a small number of patients (number of treated individuals: 

41, 1, and 1, respectively) and each in only one of the two treatment groups; thus, unit cost 

estimates may not be representative for the cohort (Table A-1 appendix). 

If a health technology is utilized, unit costs are comparable between treatment groups. Small 

differences between the AS- and the RP-group in unit costs may arise because of annually 

varying reimbursement rates. In case of inpatient treatment, different length of stay or 

additional reimbursement, of for example intensive care, can explain small differences, as 

well. 
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Treatment               Resource use p.p.              Unit costs (€) 
  RP AS RP AS

Inpatient     
Prostatectomy w/ o complications 1.00 1.00 6,417 6,295

Prostatectomy with complications 1.00 0.00 10,141 0

Treatment stricture (RP) 1.10 1.00 4,298 4,824

Penis prosthesis (ED) 1.00 0.00 7,586 0

Artificial urethral sphincter (IC) 0.00 1.00 0 11,732

Sling surgery (IC) 1.00 0.00 5,865 0

Treatment urosepsis (AS) 1.00 1.00 2,015 2,002

Transurethral prostate resection for BPH 0.00 1.10 0 4,715

Outpatient     

Follow-up RP: PSA testing  (urologist) 8.62 3.50 25 23

Treatment ED (urologist) 6.00 7.75 19 19

Treatment ED (GP) 4.75 6.20 35 36

Treatment IC (urologist) 6.24 9.14 20 19

Treatment IC (GP) 5.54 5.80 35 36

EBRT after AS (radiotherapist) 0.00 1.82 0 1,380

AS: PSA testing and biopsies (urologist) 0.00 7.36 0 44

Pharmaceuticals     

Antibiotics before prostate biopsy 0.00 1.12 0 16

α-blockers, 5α-reductase inhibitors (BPH) 0.00 5.93 0 47

PDE5 inhibitors (ED) 1.00 0.00 23 0

Assistive technologies     

Vacuum pump, rings (ED) 1.00 1.00 205 198

Incontinence aids (IC) 6.11 8.25 39 29

Physiotherapy     

Physiotherapy pelvic floor (IC) 22.52 17.00 14 14

Table 4-8: Resource use and unit costs of single health technologies (AOK) 
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4.4.2 Probability of utilization and per capita costs 

4.4.2.1 Unadjusted analysis 

The health technology with the highest utilization in the RP-group is the RP surgery itself 

(80% without complications, 20% with complications) and follow-up after surgery by an 

urologist (72%). In the AS-group highest utilization is found for PSA testing and biopsies 

(100%), which constitute the surveillance scheme (Table A-1 appendix). 

Utilization of remaining health technologies is low (< 10%) in both treatment groups, except 

for outpatient treatment of IC and use of incontinence aids in the RP-group with about 26% 

and 21%, respectively. Utilization of pharmaceuticals to treat symptoms of BPH is around 

50% in the AS-group.  

Low utilization, which corresponds to a low number of observations, influences validity of 

estimates of per capita costs; estimates based on a very low number of observations may 

not be representative of the whole cohort. Artificial urethral sphincter surgery, for example, 

is utilized by one individual in the AS-group only; estimated mean costs of treated individuals 

are extremely high with €11,732, which is about 2 times higher than the DRG (L04C, ca. 

€5,650) usually claimed for this procedure. 

The relation of cost group utilization corresponds to utilization of single health technologies, 

described above. The cost group ‘total’ comprises utilization of any of the listed cost groups. 

A utilization of 100% in both treatment groups indicates that every individual in the cohort is 

utilizing at least one of the health technologies in the follow-up period. Figure 4-2 shows the 

probability of utilization, categorized in cost groups as defined in the decision model, for the 

RP- and the AS-group. 
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Figure 4-2: Probability of utilization (%), by treatment strategy and cost group - unadjusted 
(AOK) 

Summarizing health technologies in cost groups mitigates the problem of small numbers of 

observations to a certain degree. Especially, the integration of health technologies for the 

treatment of ED and IC in corresponding cost groups, allows estimation of per capita costs 

based on larger numbers of observations (RP: 33 and 95 individuals, AS: 7 and 10 individuals) 

(Table A-2 appendix). 

Highest unadjusted per capita costs are found for RP surgery without complications in the 

RP-group (€5,067, STD €2,741) (Table A-2 appendix). A median of €6,335 and interquartile 

range of €1,424 show a relatively even distribution of surgery costs in the RP-group. Costs of 

RP surgery in the AS-group, on the other hand, accumulate to €235 per person. STD (€1,207), 

median (€0) and interquartile range (€0) show an extremely skewed distribution of surgery 

costs in the AS-group, where a small number of individuals incurs high costs. This cost 

distribution can be found in almost all cost groups, except for per capita costs of surveillance 

in the AS-group (€88, STD €40) and follow-up after surgery in the RP-group (€133, STD €101). 
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Total per capita costs amount to €7,711 (STD €3,511, median €6,990, interquartile range 

€1,771) in the RP-group and €1,658 (STD €4,142, median €250, interquartile range €703) in 

the AS-group, respectively.  

When comparing per capita costs between treatment groups in unadjusted analysis, it is 

shown that in 8 out of 13 cost groups the AS-group has lower costs, indicated by the minus 

sign (Table 4-9). The largest incremental costs are found for RP surgery without 

complications (€-4,832, STD 2,346). TURP and EBRT are by €685 and €258, respectively, 

more costly in the AS-group than in the RP-group. High STDs in both cost groups (€1,843 and 

€477) indicate extremely skewed distributions of incremental costs. 

In total, unadjusted per capita costs in the AS-group are by €6,054 (STD 3,733) lower than in 

the RP-group. 

Cost group  Incremental costs AS vs. RP (€) 
                          m                     STD 

ED -20 13
IC -132 334

RP w/o complications -4,832 2,346

AS 88 23

EBRT 258 477

Urosepsis -10 306

TURP 685 1,843

Surgery IC 55 825

Surgery ED -36 424

RP with complications -1,943 3,624

BPH 138 135

Stricture -176 1,231

Monitoring RP -131 83

Total -6,054 3,733

m= mean 

Table 4-9: Disease-related, per capita incremental costs (€), 
by cost group – unadjusted (AOK) 
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4.4.2.2 Adjusted, bootstrapped analysis 

When adjusting for co-morbidity in the regression model, highest per capita costs are found 

for RP surgery without complications (€5,051, CI [4,682; 5,400]) in the RP-group (Table 4-10). 

RP with complications incurs costs of €1,986 (CI [1,384; 2,655]) per person in the RP-group. 

In the AS-group highest per capita costs accumulate for the treatment of BPH with TURP 

(€771, CI [187; 1,792]); however, the wide 95% CI indicates substantial uncertainty regarding 

the cost estimate. Total costs amount to €7,861 (CI [7,314; 8,765]) in the RP-group and 

€1,601 (CI [928; 2,406]) in the AS-group, respectively. 

Cost group 

Costs p.p (€) 

                   RP    AS 

m       95% CI m   95% CI 

ED 39      26 to 55   20    5 to 39   
IC 172      127 to 223   40    8 to 82   

RP w/o complications 5,051      4,682 to 5,400   246    60 to 507   

AS 0      0 to 0  88  81 to 97   

EBRT 0      0 to 0  271   119 to 469   

Urosepsis 50       14 to 96   42    13 to 103   

TURP 0      0 to 0  771      187 to 1,792  

Surgery IC 69        15 to 149   178   110 to 358   

Surgery ED 83        68 to 143   0  0 to 0  

RP with complications 1,986      1,384 to 2,655   0  0 to 0  

BPH  0     0 to 0  140     97 to 188   

Stricture  223        70 to 443   69     34 to 170   

Monitoring RP 133      119 to 146   2   1 to 5   

Total 7,861      7,314 to 8,765   1,601       928 to 2,406  

m=mean 

Table 4-10: Disease-related, per capita costs (€), by cost group – adjusted (AOK) 

Adjusted incremental cost analysis shows that in the AS-group per capita costs of RP surgery 

without complications are by €4,805 (CI [-5,227; -4,359], p<0.0001) significantly lower than 

in the RP-group (Table 4-11). Costs of IC treatment (€-133, CI [-194; -71], p<0.0001) and 

monitoring after RP surgery (€-131, CI [-144; -117], p<0.0001] are also significantly lower in 
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the AS-group. In the remaining cost groups either no significant cost differences are found, 

or 95% CIs and p-values could not be estimated by the regression model, because in one of 

the treatment groups all individuals have costs of 0.  

In total, adjusted per capita costs in the AS-group are estimated to be by €6,260 (CI [-7,417; -

5,205], p<0.0001) significantly lower than in the RP-group. 

Cost group 
Incremental costs (€) AS vs. RP 

m    95% CI p-value

ED -19   -42 to 3     0.088

IC -133    -194 to -71  < 0.0001

RP w/o complications -4,805      -5,227 to -4,359   < 0.0001

AS 88 - -

EBRT 271 - -

Urosepsis -8     -64 to 63   0.606

TURP 771 - -

Surgery IC 106        -28 to 313   0.962

Surgery ED -34 - -

RP with complications -1,986 - -

BPH  140 - -

Stricture  -154   -389 to 24   0.060

Monitoring RP -131     -144 to -117   < 0.0001

Total -6,260      -7,417 to -5,205   < 0.0001

m=mean  

Table 4-11: Disease-related, per capita incremental costs (€), by cost 
group – adjusted (AOK) 
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4.5 Changes to decision model 

Results of changes to the decision model’s assumptions and additional analyses conducted 

with the model described in step 5 of the validation approach are presented in the following. 

4.5.1 Input parameters: resource use and unit costs 

Treatment Resource use p.p.         Unit costs (€) 

Inpatient  

Prostatectomy w/ o complications 1.00 6,886

Prostatectomy with complications 1.00 9,559

Treatment stricture (RP) 1.00 2,010

Penis prosthesis (ED) 1.00 8,452

Artificial urethral sphincter (IC) 1.00 6,394

Sling surgery (IC) 1.00 3,677

Treatment urosepsis (AS) 1.00 3,075

Transurethral prostate resection for BPH 1.00 3,037

Outpatient 

Follow-up RP: PSA testing  (urologist) 10.00 37

Treatment ED (urologist) 2.50 32

Treatment ED (GP) 5.00 54

Treatment IC (urologist) 2.50 32

Treatment IC (GP) 5.00 53

EBRT after AS (radiotherapist) 1.00 4,742

AS: PSA testing and biopsies (urologist) 9.00 55

Pharmaceuticals 

Antibiotics before prostate biopsy 2.50 8

Alpha blockers, 5α-reductase inhibitors (BPH) 16.25 108

PDE5 inhibitors (ED) 21.88 114

Assistive technologies 

Vacuum pump, rings (ED) 10.00 319

Incontinence aids (IC) - 39

Physiotherapy 

Physiotherapy pelvic floor (IC) 30.00 15

Table 4-12: Resource use and unit costs of single health technologies (PCa-model) 
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Same input parameters of resource use and unit costs are included in the decision model for 

the AS- and the RP-group. 

Resource use – incorporated in the model from published literature and expert interviews – 

is adapted to 10 cycles, corresponding to 2.5 years of follow-up. It shows that inpatient 

treatments are utilized once on average (Table 4-12). The largest quantity of utilization, in 

terms of number of treatments, is assumed for physiotherapy (30 treatments). 

Highest unit costs are assumed in the model for RP surgery with and without complications 

(€9,559 and €6,886) and penis prosthesis surgery (€8,452). Inpatient unit costs are, 

generally, considerably higher than unit costs of technologies in the remaining health care 

service categories.  

4.5.2 Simulation outcome: probability of utilization and per capita costs 

4.5.2.1 Microsimulation 

 

Figure 4-3: Probability of utilization (%), by treatment strategy and cost group - 
microsimulation (PCa-model) 
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Figure 4-3 shows the probability of utilization, categorized in cost groups of the PCa-model, 

for the RP- and the AS-group. 

Highest utilization in the RP-group is found for the RP surgery without complications and 

monitoring after surgery by an urologist. Both treatments are utilized by 99% of individuals 

in the RP-group. It is assumed in the model that 100% of individuals in the RP-group receive 

these treatments; the utilization simulated during 10 cycles is less, because 2 individuals die 

before treatment (Table A-3 appendix). Health technologies for the treatment of ED and IC 

also have a high utilization in the RP-group (73% and 43%).  

Individuals under AS predominantly utilize technologies that relate to the surveillance itself 

(99%). Again, AS is assumed to be utilized by all individuals in this group, but utilization is 

lower because of early mortality. About 15% of individuals under AS receive a RP surgery and 

are monitored after the surgery.  

Treatment of ED and IC is considerably lower in the AS-group than in the RP-group with 12% 

vs. 73% and 7% vs. 43%, respectively. Pharmaceutical treatment of BPH is utilized by 33% of 

individuals in the AS-group, as compared to no utilization in the RP-group; by assumption 

BPH is cured in the RP-group by the initial surgery. In the remaining cost groups utilization is 

low (<5%) in the AS- and the RP-group. Due to the early death of 4 individuals (2 in each 

treatment group), total utilization of any health technology amounts to 99%. 

In both treatment groups per capita costs, accumulated during follow-up, are highest for RP 

surgery (RP: mean €6,843, STD 543, median 6,886, interquartile range 0; AS: mean €1,051, 

STD 2,480, median 0, interquartile range 0) (Table A-3 appendix). In the RP-group €1,073 per 

person (STD 85, median 1,080, interquartile range 0) arise for monitoring after the surgery; 

€889 per person (STD 884, median 189, interquartile range 1,890) accrue due to the 

treatment of ED. For the surveillance of individuals under AS on average €416 (STD 111, 

median 463, interquartile range 0) are spent over the study duration of 2.5 years. 

For cost groups with low utilization estimates of per capita costs are extremely uncertain, 

indicated by large absolute values of STD. This is, for example, the case for IC surgery; in 

both treatment groups mean costs are low (€31 and €63) while STDs are high (€562 and 

€794). Total per capita costs amount to €9,712 (STD 2,585, median 9,856, interquartile range 

1,505) in the RP-group and €2,220 (STD 3,354, median 463, interquartile range 1,080) in the 

AS-group, respectively. 
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Cost group Incremental costs (€) AS vs. RP 

 m STD

ED -818 652 

IC -214 379

RP w/o complications -5,792 1,795 

AS 416 79

EBRT 0 0 

Urosepsis 96 378 

TURP 0 0 

Surgery IC 31 688

Surgery ED -448 1,341

RP with complications -298 1,390  

BPH  317 336

Stricture  -88 291 

Monitoring RP -908 282

Total -7,492 2,994 

m=mean 

Table 4-13: Disease-related, per capita incremental costs (€), 
by cost group – microsimulation (PCa-model) 

The comparison of per capita costs shows that in the AS-group €5,792 (STD 1,795) less is 

spent on RP surgery without complications (Table 4-13). Treatment of ED (€-818, STD 652) as 

well as monitoring after RP surgery (€-908, STD 282) are also less costly in the AS-group. 

Costs of surveillance, on the other hand, are by €416 (STD 79) higher in the AS-group than in 

the RP-group. 

Generally, individuals in the AS-group incur fewer costs than individuals in the RP-group in 7 

out of 13 cost groups. Total per capita costs are by €7,492 (STD 2,994) lower in the AS-group 

than in the RP-group in the microsimulation of the decision model. 

4.5.2.2 Monte Carlo simulation 

By using Monte Carlo simulation, 95% CIs of per capita costs are estimated per cost group 

and treatment strategy; for incremental costs p-values are estimated. 
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Similar to results of microsimulation, highest per capita costs in both treatment strategies 

are incurred by RP surgery with (RP: €6,950, CI [5,392; 8,677]; AS: €1,028, CI [638; 1,534]) or 

without complications (RP: €6,826, CI [5,291; 8,551]; AS: €1,010, CI [627; 1,515]) (Table 

4-14). The range of CIs shows, though, that considerable uncertainty is present in the cost 

estimates. 

Not considering cost groups with null costs, lowest per capita costs incurs IC surgery in the 

RP-group (€19, CI [8; 36]); treatment of BPH by TURP (€4, CI [4; 4]) and surgery due to ED 

(€4, CI [2; 7]) incur lowest costs in the AS-group. Total per capita costs, as estimated by 

Monte Carlo simulation, amount to €9,627 (CI [8,009; 11,387]) in the RP-group and to €2,141 

(CI [1,662; 2,738]) in the AS-group, respectively. 

Cost group 
Costs p.p. (€) 

RP AS 

m    95% CI m    95% CI 

ED 837        608 to 1,095 69      42 to 106 

IC 240            0 to 1,960 26    15 to 39 

RP w/o complications 6,826     5,291 to 8,551 1,010       627 to 1,515 

AS 0     0 to 0 417    404 to 428 

EBRT 0     0 to 0 0    0 to 0 

Urosepsis 0    0 to 0 95      37 to 183 

TURP 0    0 to 0 4    4 to 4 

Surgery IC 19      8 to 36 33    18 to 53 

Surgery ED 415    286 to 589 4    2 to 7 

RP with complications 6,950    5,392 to 8,677 1,028       638 to 1,534 

BPH  0    0 to 0 297    227 to 376 

Stricture  69    61 to 77 10       7 to 14 

Monitoring RP 1,075    1,075 to 1,075 159     104 to 220 

Total 9,627     8,009 to 11,387 2,141     1,662 to 2,738 

m=mean  

Table 4-14: Disease-related, per capita costs (€), by cost group – Monte Carlo simulation 
(PCa-model) 
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When comparing per capita costs estimated in Monte Carlo simulation, the highest cost 

difference between AS and RP is found for RP surgery with (€-5,922, CI [-7,480; -4,589], 

p<0.0001) and without complications (€-5,816, CI [-7,339; -4,493], p<0.0001) (Table 4-15); 

these differences are highly significant. The AS scheme incurs significantly higher costs in the 

AS-group than in the RP-group (€417, CI [404; 428], p<0.0001), which corresponds to the 

model assumption that AS is not performed after RP surgery. Pharmaceutical treatment of 

BPH is also significantly more costly in the AS-group than in the RP-group (€297, CI [227; 

376], p<0.0001). 

Overall, 7 out of 13 cost groups incur higher costs in the RP-group than in the AS-group and 

cost differences in all of these are highly significant (p<0.0001). Total costs of the AS-group 

are significantly lower by €7,486 (CI [-9,059; -6,093], p<0.0001) than total costs of the RP-

group. 

Cost group 
Incremental costs (€) AS vs. RP 

m       95% CI p-value

ED -769     -1,003 to -552 < 0.0001

IC -236        -317 to -167 < 0.0001

RP w/o complications -5,816        -7,339 to -4,493 < 0.0001

AS 417        404 to 428 < 0.0001

EBRT 0        0 to 0 -

Urosepsis 95          37 to 183 < 0.0001

TURP 4        4 to 4 < 0.0001

Surgery IC 13        -7 to 33 < 0.0001

Surgery ED -411       -584 to -282 < 0.0001

RP with complications -5,922       -7,480 to -4,589 < 0.0001

BPH  297       227 to 376 < 0.0001

Stricture  -59       -66 to -51 < 0.0001

Monitoring RP -916       -971 to -856 < 0.0001

Total -7,486       -9,059 to -6,093 < 0.0001

m=mean 

Table 4-15: Disease-related, per capita incremental costs (€), by cost group –
Monte Carlo simulation (PCa-model) 
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4.6 Comparison between model and claims data 

Results of the comparison between outcomes of the PCa-model and AOK claims data are 

presented in the following; methods for outcome comparison are described in step 6 of the 

validation approach. 

4.6.1 Input parameters: resource use and unit costs 

The PCa-model, generally, assumes that the quantity of resource utilization is identical in the 

AS- and the RP-group (Table 4-12). Claims data analysis, however, shows that resource use 

differs between the treatment groups; individuals in the AS-group have higher resource use 

than individuals in the RP-group in outpatient treatment, pharmaceuticals, assistive 

technologies, and physiotherapy (Table 4-8). The exception is outpatient follow-up of RP 

surgery (RP: 8.62, AS: 3.50) and physiotherapy as a treatment of incontinence (RP: 22.52, AS: 

17.00), where resource use is lower in the AS-group. 

Inpatient procedures are utilized once, both in AOK dataset and model, with the exception 

of TURP in the AS-group (AOK) which is utilized 2 times by one of the treated individuals. The 

quantity of utilized outpatient procedures is higher in the PCa-model in case of follow-up of 

RP surgery (AOK: 8.62 and 3.50, model: 10.00) and surveillance of AS individuals (model: 

9.00, AOK: 7.36). The model assumes lower resource use for all remaining outpatient 

procedures than estimated in claims data analysis for both treatment groups. 

The number of pharmaceutical prescriptions varies widely between AOK estimates and 

model input parameters; claims data analysis estimates lower resource use throughout. 

Especially consumption of PDE5 inhibitors for the treatment of ED is, with 1 prescription, 

considerably lower than assumed in the model (22 prescriptions). In this case, the AOK 

estimate is probably too low, because PDE5 inhibitors are generally not covered by SHI; thus, 

prescriptions are not coded in AOK data. This is also the explanation for lower estimated 

utilization of assistive technologies for the treatment of ED in claims data (RP: 1.00, AS: 1.00) 

than in the model (10.00).  

The PCa-model assumes equal unit costs of health technologies for the AS- and the RP-

group. Unit costs estimated in claims data analysis are overall comparable between 

treatment groups, which supports the assumption of equal unit costs in the model. 
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Unit costs of inpatient procedures are comparable between the AOK data analysis and the 

PCa-model. Unit costs of inpatient treatment of stricture (AOK: €4,298; model: €2,010) and 

artificial urethral sphincter surgery (AOK: €11,732; model: €6,394), however, are about 2 

times higher in claims data analysis than assumed in the decision model. Both claims data 

estimates are based on an extremely low number of observations, which limits validity 

considerably. Unit costs included in the model may be more valid in this case. 

In outpatient treatment, unit costs of EBRT are considerably overestimated in the PCa-model 

with €4,742, in comparison to €1,380 estimated in claims data analysis. Here, claims data 

analysis is based on a number of observations sufficient to estimate valid unit costs of EBRT.  

In case of pharmaceutical treatment, unit cost estimates vary widely between claims data 

analysis and decision model. Especially, unit costs of pharmaceutical treatment of BPH (AOK: 

€47; model: €108) and ED (AOK: €23; model: €114) included in the model are 2 and 5 times 

higher, respectively, than claims data estimates. As described previously, pharmaceutical 

treatment of ED is usually not covered by SHI and unit cost estimates may, thus, be limited in 

their validity.     

4.6.2 Simulation outcome: probability of utilization and per capita costs 

4.6.2.1 Unadjusted claims data analysis vs. microsimulation model 

Figure 4-4 and Figure 4-5 show the comparison of utilization probability, as estimated in 

claims data analysis and microsimulation of the model, for the AS-group and the RP-group, 

respectively. Estimates of utilization probability of the initial treatment (AS or RP with/ 

without complications) and of total costs are equal in both data sources (AOK: 100%, model: 

99%) (see also Table A-2 and Table A-3 appendix). However, claims data analysis estimates a 

considerably higher probability of RP with complications (19%) compared to the model (4%).  

In microsimulation of the PCa-model treatment of ED is utilized by 12% in the AS-group 

compared to just 7% estimated in claims data analysis, respectively. In the RP-group the 

estimate of ED-treatment is also considerably lower in claims data analysis than in 

microsimulation (AOK: 15%, model: 73%). As described previously, claims data analysis is 

limited in this respect, because treatment of ED is covered by SHI in exceptional cases only. 
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Figure 4-4: Probability of utilization (%) in AS-group, by data source 

 

 

Figure 4-5: Probability of utilization (%) in RP-group, by data source 
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Treatment of IC is similar in AOK dataset and model, with 7% and 9% in the AS-group and 

44% and 43% in the RP-group. The PCa-model assumes that in 15% of individuals in the AS-

group a RP surgery is performed in follow-up, whereas this number is estimated to be 

considerably lower in claims data (4%). 

As assumed in the PCa-model, EBRT is not performed at all during follow-up after AS, 

whereas claims data analysis shows that EBRT is utilized by 10% of individuals in the AS-

group. Equal results are found for the treatment of BPH by TURP, where the model assumes 

no utilization, whereas in claims data analysis 9% of AS-individuals are treated. 

Treatment of urosepsis, surgery for IC and ED, and treatment of stricture have an equally 

low probability of utilization in both datasets and treatment strategies. 

 
Figure 4-6: Total disease-related, per capita costs (€), by treatment strategy and data source 

When comparing unadjusted incremental costs estimated in claims data analysis and 

incremental costs simulated in the model, the largest deviation is found for RP surgery with 

complications. Mean incremental costs in AOK dataset (€-1,943, STD 3,624) are about 6.5 
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times higher than simulated incremental costs in the model (€-298, STD 1,390). Both, 

however, suggest that costs in the AS-group are lower than in the RP-group. 

Generally, in cost groups where the PCa-model simulates lower costs for the AS-group, this 

relationship is also found in claims data analysis. The exception is inpatient treatment of 

urosepsis, where claims data analysis estimates that the AS-group has slightly lower mean 

costs than the RP-group (€-10, STD 306), whereas the model simulates by 96€ (STD 378) 

higher costs per individual in the AS-group. 

Total incremental costs estimated in unadjusted claims data analysis (€-6,054, STD 3,733) are 

€1,438 (19%) lower than total incremental costs simulated in the PCa-model (€-7,492, STD 

2,994). Figure 4-6 pictures the distribution of total incremental costs estimated in claims 

data analysis and microsimulation of the model for the AS- and the RP-group separately (for 

comparison of single cost groups see figure A-1 in appendix). 

4.6.2.2 Adjusted, bootstrapped claims data analysis vs. Monte Carlo simulation model 

 
Figure 4-7: Histogram of total incremental costs estimated by excess cost analysis and Monte 

Carlo simulation (€), by data source 
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Excess costs of the AS-group estimated in adjusted, bootstrapped claims data analysis 

amount to €-6,611 (CI [-9,734; -3,547]), as described previously. Monte Carlo simulation of 

the PCa-model reports total incremental costs of €-7,486 (CI [-9,059; -6,093]). The difference 

between the claims data and model estimate amounts to €875 (CI [-2376; 4301]). A p-value 

of 0.605, estimated via bootstrap hypothesis testing, suggests a significant agreement 

between estimates on the 95% level, which is not due to random variation in both datasets. 

Figure 4-7 shows a graphical overlap of the distributions of mean excess costs generated by 

bootstrapping of claims data and Monte Carlo simulation, respectively. 

For the comparison of incremental costs estimated in disease-related cost analysis with 

model outcomes, the difference in costs between AOK data and model is calculated for each 

cost group individually in addition to total costs (Table 4-16).  

Cost group 
Mean 

AOK
Mean 
model

Difference 
AOK-model

95% CI p-value

ED -19 -769 750       530 to 986 0.004

IC -133 -236 103        10 to 199 0.038

RP w/o complications -4,806 -5,816 1,011       -400 to 2,527 0.186

AS 88 417 -383       -342 to -313 <0.0001

EBRT 271 0 271       119 to 469 <0.0001

Urosepsis -13 95 -108        -212 to -8 0.040

TURP 771 4 768         183 to 1,788 <0.0001

Surgery IC 60 13 46       -28 to 314 0.936

Surgery ED -34 -411 377      216 to 556 <0.0001

RP with complications -1,986 -5,922 3,936     2,406 to 5,602 <0.0001

BPH  140 297 -157       -244 to -69 <0.0001

Stricture  -181 -59 -122       -364 to 62 0.214

Monitoring RP -131 -916 785       723 to 840 <0.0001

Total -6,260 -7,486 1,226   -621 to 2,937 0.180

Table 4-16: Comparison of disease-related incremental costs in claims data and model, 
by cost group 
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Significant overlap – corresponding to a p-value larger than 0.05 – between claims data 

estimate and model estimate is found for RP with complications (€1,011, CI [-400; 2,527], 

p=0.186), surgery for IC (€46, CI [-28; 314], p=0.936), inpatient treatment of stricture (€-122, 

CI [-364; 62], p=0.214), and total costs (€1,226, CI [-621; 2,937], p=0.180). Figure 4-8 shows 

results of total incremental cost comparison graphically and strengthens the notion that 

confidence limits of both estimates significantly overlap (for comparison of single cost 

groups see Figure A-2 in appendix). 

P-values of treatment of IC (p=0.038) and urosepsis (p=0.040) are just below the threshold 

for significant agreement, in all remaining cost groups highly significant difference in 

estimates is indicated (p<0.0001). 

 

Figure 4-8: Histogram of disease-related total incremental costs estimated by adjusted 
claims data analysis and Monte Carlo simulation (€), by data source 
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4.7 Sensitivity analyses 

Results of sensitivity analysis described in step 7 of the validation approach are presented in 

the following. 

4.7.1 Incident PCa-cases in claims data analysis 

In the first sensitivity analysis, including only incident PCa-cases, excess costs and total 

disease-related costs are analyzed for an age-matched cohort of 192 men (AS: 64, RP: 128). 

Mean age in the incident cohort is 72 years, 2 years older than the base case cohort. 

Excess cost analysis reveals that mean co-morbidity adjusted costs of AS increase by €1,650 

to €13,358 (CI [9,698; 17,308]) in total compared to base case. Per capita costs of the RP-

group (€18,641, CI [16,216; 22,107]), on the other hand, do not change notably compared to 

the base case. AS is still significantly less costly than RP (€-5,283, CI [-9,585; -1,101], 

p=0.016), though. When comparing excess costs of claims data analysis with model 

simulation outcome (€-7486), a difference in incremental costs of €2,202 (CI [-2,132; 6,652]) 

is found. A p-value of 0.342 indicates that a significant agreement between estimates of 

excess cost analysis and model simulation is indicated. 

The analysis of disease-related costs of the incident PCa-cohort reports only results of total 

costs, because estimation of valid costs of single health technologies is not possible due to 

very small numbers of treated patients. Bootstrapped and co-morbidity adjusted analysis 

estimates total costs of €7,793 (CI [7,185; 8,619]) in the RP-group and €1,976 (CI [885; 

3,328]) in the AS-group, respectively. As in excess cost analysis, total costs of the RP-group 

are almost unchanged, whereas costs of the AS-group increase by €375 compared to base 

case analysis. Despite this increase, AS is still significantly less costly than RP (€-5,817, CI [-

7,300; -4,213], p<0.0001) in the incident PCa-cohort. When comparing outcomes of disease-

related cost analysis with total incremental costs simulated in the PCa-model (€-7,486) a 

mean difference of €1,670 (CI [-388; 3720], p=0.106) is found. In addition to this result, 

Figure 4-9 indicates that there is a significant overlap between estimates of incident claims 

data analysis and model simulation. 
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Figure 4-9: Histogram of disease-related total incremental costs (€) in incident PCa-cohort, 

by data source 

4.7.2 Age distribution in the decision model 

To test the influence of age at treatment initiation on total costs, the PCa-model is run twice; 

first with a mean age of 51 years at treatment initiation and corresponding age-dependent 

transition probabilities, secondly with a mean age of 79 years, respectively.  

In the model with mean age of 51 years at treatment initiation, the probability of utilization 

of any health technology is 100%. No deaths occur in the follow-up period, owing to the 

considerably lower mortality rates in this age group. Monte Carlo simulation reports per 

capita costs of €9,682 (CI [8,058; 11,450]) in the RP-group and €2,178 (CI [1,691; 2,786]) in 

the AS-group respectively, which are not notably different from base analysis. Incremental 

cost analysis shows that per capita costs in the AS-group are by €-7,505 (CI [-9,079; -6,106], 

p<0.0001) significantly lower than in the RP-group. Comparison of model incremental costs 

with incremental costs from disease-related claims data analysis reports a difference of 
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€1,245 (CI [-612; 2,966], p=0.172), which indicates a significant agreement between 

estimates (Figure 4-10). 

 

Figure 4-10: Histogram of disease-related total incremental costs (€) in PCa-model cohort 
with mean age of 51 years, by data source 

When the PCa-model assumes an age of 79 years at treatment initiation, utilization of health 

technologies is reported for 97.8% of individuals in the cohort. Due to an increase in 

mortality in this age group, 7 individuals in each treatment group die early in the follow-up 

period and incur no costs. In Monte Carlo simulation per capita costs of €9,445 (CI [7,846; 

11,181]) are estimated for individuals in the RP-group and €1,542 (CI [1,267; 1,852]) for 

individuals in the AS-group, respectively. These estimates of per capita costs are slightly 

lower than estimates of base case analysis, which is due to the higher number of 

observations with 0 costs. Furthermore, all individuals in the AS-group progressing to radical 

treatment are treated by EBRT and not RP, because of age-based assumptions in the model. 

This has the effect that total costs of the AS-strategy decrease compared to the base case, 

because EBRT is less costly than RP surgery.  This is also reflected in incremental cost 
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analysis; total costs in the AS-group are significantly lower by €7,903 (CI [-9,628; -6,336], 

p<0.0001) than in the RP-group. In the base case analysis, in contrast, incremental costs 

amount to €-7,486 (CI [-9,059; -6,093]). In comparison to incremental costs of disease-

related claims data analysis a difference of €1,644 (CI [-211; 3,530]) is found. A p-value of 

0.08 indicates a significant agreement between estimates (Figure 4-11). 

 
Figure 4-11: Histogram of disease-related total incremental costs (€) in PCa-model cohort 

with mean age of 79 years, by data source 
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5 Discussion 

5.1 Interpretation of results 

5.1.1 Patient cohort 

The mean age in the claims data cohort is 70 years at treatment initiation which is replicated 

in the model cohort. Based on evidence from RCTs the PCa-model assumes that no co-

morbidity is present in the cohort at treatment initiation; claims data analysis, however, 

shows that this is not reflected in treatment practice. Especially BPH is a common co-

morbidity in the AS- and the RP-group with rates of 68% and 77%, respectively. ED is also 

present at baseline in both treatment groups with rates of 5% and 11%, respectively. The 

difference in baseline co-morbidity between treatment groups in claims data analysis is 

probably conditioned by the initial treatment decision; men with BPH and ED tend to radical 

therapy because their symptoms are cured as well. To account for this difference, costs are 

adjusted for co-morbidity in claims data analysis. 

During cohort selection in the claims dataset, the majority of PCa-cases are lost in the 

process of assignment to treatment groups; 25,293 individuals are identified as valid PCa-

cases, whereas only about 1,000 individuals are included each in the AS- and the RP-group, 

another 1,000 individuals are treated by EBRT (before limitation to localized PCa disease). 

This might be explained by comparatively higher prevalence rates than incidence rates in 

Germany; most PCa-cases in the AOK data set are not newly diagnosed and are, thus, not 

treated by AS, RP, or EBRT. The analysis of incident PCa-cases with no PCa-diagnosis before 

initial treatment supports this assumption; the number of individuals with a validated PCa-

diagnosis decreases to 5,720. Individuals excluded from the claims data cohort are either in 

an advanced stage of PCa disease and are, thus, treated with other therapies than analyzed 

here. Alternatively, individuals are under WW because of advanced age. It is also possible 

that individuals with localized PCa were treated before beginning of the study period and 

PCa-diagnosis is still coded in the claims dataset, due to the coding practice in Germany. 

Mortality rates in the claims data cohort and the model cohort differ significantly. Compared 

with the annual mortality rate of the male German population for the age group of 70 years 

(2.3%), mortality in the decision model (0.62%) is notably lower; mortality in the claims data 

cohort is notably higher in the AS-group (7.5%), whereas mortality rates in the RP-group 
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(2.8%) accord with rates of the German population. One reason for the notable difference in 

mortality rates between treatment groups in claims data analysis might be that follow-up of 

AS-patients begins on average 12 months later than follow-up of RP-patients; AS-patients 

are, thus, on average 12 months older than RP-patients. Mortality rates do, however, not 

increase so notably in the general German population in the course of 12 months.  

As overall and PCa-specific mortality cannot be differentiated in claims data no inference on 

effectiveness of treatment strategies based on mortality rates is possible. The extreme 

difference in mortality rates between the treatment strategies in the claims data analysis 

and between claims data and decision model influences, however, analysis of resource use 

and costs. The comparatively higher mortality rate in the AS-group may, on the one hand, 

lead to an underestimation of health technology utilization, because due to the premature 

death fewer resources are utilized by these individuals than by individuals surviving in the 

study duration. On the other hand, evidence suggests that health care utilization and costs 

are significantly higher in end-of-life care, 6 months before death, than in the phases of 

initial treatment and follow-up, which might lead to an overestimation of costs of the AS-

strategy compared to the RP-strategy (137). 

5.1.2 Claims data and model analysis 

Claims data analysis shows that individuals with RP surgery experience significantly more 

complications in follow-up (49%) compared to individuals under AS (12%). These 

complication rates should, however, be interpreted in the light of the limitations of analysis 

of effectiveness in the AOK dataset described in chapter 5.3.  

The PCa-model does not report complication rates; however, it is shown that the RP-strategy 

generates less QALYs than the AS-strategy, which predominantly originates in the quality of 

life loss due to complications of ED and IC after RP-surgery. 

Excess cost analysis and disease-related cost analysis of AOK claims data both show that 

overall AS is the less costly strategy compared to RP, with total incremental costs of €-6,611 

and €-6,260, respectively.   

Considering excess costs only, AS is significantly less costly than RP in inpatient care which 

originates mainly in the high costs of the hospital stay of the initial RP surgery (€-5,845). 

Disease-related cost analysis confirms this; the AS-group incurs €4,805 less for RP surgery 
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without complications and €1,986 less for RP surgery with complications. The difference in 

costs of RP surgery predominantly accounts for the total difference in costs between 

treatment groups, in excess cost analysis as well as in disease-related cost analysis. PCa-

model simulation reports this as well; the difference in costs of RP surgery (€-5,816) 

constitutes the predominant part of total incremental costs of €-7,486.    

Excess cost analysis reports that, compared to RP, outpatient care is less costly under AS (€-

961) in the period of 2.5 years follow-up, even though the main costs of AS arise in 

outpatient care. In disease-related analysis, outpatient treatment is further categorized in 

treatment with single health technologies and results show a more differentiated picture of 

outpatient care; in the AS-group costs of the surveillance scheme itself (€88) and EBRT 

(€271) incur higher costs than in the RP-group. Outpatient treatment of ED (€-19) and IC (€-

133) as well as monitoring after RP surgery by an urologist (€-131) is less costly in the AS-

group. In the decision model cost differences are larger, but point to the same conclusion 

that outpatient surveillance is more costly in the AS-group (€417), while outpatient 

treatment of ED (€-769), IC (€-236), and monitoring after RP surgery (€-916) are significantly 

less costly than in the RP-strategy. The AS- and the RP-strategy, generally, show different 

cost patterns; the RP-strategy incurs high initial outpatient costs (e.g. for monitoring after 

the surgery) while costs of AS are more equally distributed over time (102, 104, 105, 138).  

Pharmaceutical treatment of BPH is more costly in the AS-group, as estimated by disease-

related claims data analysis (€140) and Markov model analysis (€297). Excess cost analysis 

does not explicitly analyze BPH treatment; however, overall costs of pharmaceutical therapy 

are by €587 higher in the AS-group than in the RP-group.  

Furthermore, excess cost analysis of claims data shows that costs of assistive technologies - 

mainly incontinence aids - are significantly higher in the RP-group by €141, attributable to 

the higher IC rate in the RP-group. When complication is included as a variable in the 

regression analysis of claims data, a significant increase in costs for assistive technologies is 

found for individuals with complications. In disease-related claims data analysis and Markov 

model simulation utilization of assistive technologies is included in the cost groups ED and IC 

which both incur higher costs in the RP-group than in the AS-group, as described previously.  
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5.1.3 Comparison between model and claims data 

No significant differences between the claims data estimate and model estimate of 

incremental costs are found for RP surgery without complications, surgery in case of IC, and 

surgical treatment of a stricture. The incremental cost estimate of RP surgery is based on a 

large number of observations and is afflicted by relatively little variability in the parameter 

estimates of the two treatment groups; the estimate of claims data analysis is very likely 

representative for costs incurred by AOK. The agreement between AOK and model estimate 

can be interpreted as sufficient to assume that the PCa-model simulates costs of RP surgery 

validly. Cost estimates of IC surgery and treatment of stricture, on the other hand, are based 

on a small number of observations in claims data analysis; the same limitation is found in 

PCa-model analysis. Both estimates of incremental costs are afflicted by considerable 

uncertainty, which is represented in wide 95% CIs. Even though an agreement between both 

estimates is found, it remains unclear whether the model predicts costs of IC and stricture 

surgery in treatment practice validly. However, in the interest of the decision maker 

validating the PCa-model total cost difference is most important. As described previously, 

the cost difference in RP surgery is the best indicator of the total cost difference and this 

parameter is predicted validly by the decision model. 

No agreement between claims data and model estimate could be found in the remaining 

cost groups; this finding stems from different sources. In case of costs of the AS scheme for 

example, the model assumes higher resource use and unit costs than observed in claims 

data analysis, which in turn leads to about 4.5 times higher incremental costs of the AS-

strategy in the decision model than in claims data. In case of EBRT treatment, on the other 

hand, no patients in both treatment groups receive this treatment in the decision model, 

whereas individuals in the AS-group in claims data analysis are treated by EBRT; 

consequently, no agreement of incremental cost estimates of claims data and model is 

found for EBRT treatment. 

Overall, an agreement between total incremental cost estimates of excess cost analysis as 

well as disease-related cost analysis of claims data and PCa-model exists. P-values of 0.61 

and 0.18, respectively, show a significant agreement of total incremental costs estimated by 

claims data analysis and PCa-model simulation. Results are robust to both changes to the 
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claims data cohort (incident PCa-cases; p=0.342) and changes to the model cohort (age 51 

years: p=0.172, age 79 years: p=0.08). 

The question arises whether inferring lifetime costs of AS compared to RP based on the 

validation of short-term resource use and costs of the PCa-model is possible: Incremental 

total costs of AS compared to RP in the short-term decision model amount to €-7,486, which 

show significant agreement with the observed incremental costs of €-6,260 in claims 

analysis; incremental costs are almost exclusively due to the high costs of the initial RP-

surgery, both in model and claims data analysis. In the published PCa-model by Koerber et 

al., which evaluates a patient cohort of men aged 65 years in a lifetime perspective, 

incremental costs of AS compared to RP amount to €-6,883, which are also due to the costs 

of the initial RP-surgery. As the simulation of short-term costs is valid, it is very likely that 

long-term costs simulated by the decision model are valid as well. Inferring the validity of 

effectiveness outcome and, following this, cost-effectiveness outcome of the PCa-model is 

not possible based on this validation, though, because quality of life outcome cannot be 

assessed validly in AOK claims data.  
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5.2 Comparison with literature 

5.2.1 Literature on PCa treatment 

Rates of short- and long-term ED after RP (15% and 12%) estimated in claims data analysis 

are considerably lower than rates reported in clinical trials. A recent meta-analysis by Ficarra 

et al. (2012) reports ED rates of about 35%-75%, 12 months after surgery (75). In the PCa-

model short-term ED occurs in 39% of individuals in the RP-group and long-term ED in 35%, 

respectively, based on data from a meta-analysis by Ollendorf et al. (2009) (114).  

According to claims data analysis, 6% of individuals in the AS-group develop ED in the follow-

up period. In comparison, a study by Braun et al. (2014) reports an ED rate of roughly 35% in 

a cohort of men under AS at baseline; even without possible decrease of erectile function 

due to repeat prostate biopsies, ED rates are considerably higher than in the AOK cohort. ED 

rates are generally underestimated in the AOK dataset, because treatment of ED is usually 

not covered by SHI and, thus, diagnoses are not validly coded. 

Claims data analysis reports rates of IC after RP of 44% (short-term) and 33% (long-term). 

These rates are slightly higher than the IC rate reported in a meta-analysis by Ficarra et al. 

(2012) of about 20%, 12 months after surgery (74). IC rates included in the model (short-

term 9%, long-term 2.5%) are, however, considerably lower than rates of claims data 

analysis (114). In case of IC, treatment is covered by SHI and diagnoses are validly coded in 

AOK dataset. It is, however, not possible to distinguish age-related and surgery induced 

decline of urinary function in SHI data. This may be a reason for the higher IC rates reported 

in AOK data analysis compared to published evidence.  

Validity of ED and IC rates also influences validity of cost estimates of ED and IC treatment. In 

case of ED treatment in the AS-group, for example, estimates of unit costs may not be valid 

due to a small number of observations.  

Anderson et al. (2011) compare costs of RP and WW in a study based on data from the 

SPCG-4 trial (96); the authors calculate unit costs of penis prosthesis surgery of €7,010, 

similar to the unit cost estimate of claims data analysis (€7,586) presented in this study. 

Anderson et al. (2011) estimate per capita costs of penis prosthesis surgery in the RP-group 

of €131 over a study duration of 12 years. AOK claims analysis, however, estimates lower 

costs of about €36 per individual in the RP-group, which is on the one hand due to the 
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considerably shorter follow-up period; on the other hand, per capita costs are 

underestimated in SHI claims because ED-cases are not comprehensively included in the 

analysis. 

Unit costs of IC surgery (€9,072) based on the SPCG-4 trial are similar to unit cost estimated 

in claims data analysis (€8,799). Even though the number of individuals with IC surgery is 

very low in the AOK data set, the estimate of unit costs is comparable to published costs. 

However, per capita costs in AOK data analysis for IC surgery (RP: €55, AS: €110) are 

considerably lower than in the SPCG-4 trial (RP: €1,017, WW: €86), due to the shorter follow-

up period. 

Anderson et al. (2011) estimate unit costs of €6,031 for RP surgery, similar to the unit costs 

presented in this study (€6,356). Per capita costs of RP surgery accumulate to €7,732 in the 

RP-group and €746 in the AS-group, as estimated by the SPCG-4 trial; in AOK claims analysis 

unit costs amount to €5,051 and €246, respectively. AOK estimates are lower than SPCG-4 

trial estimates; however, in both studies per capita costs of RP surgery are significantly 

higher in the RP-group than in the AS-group with a p-value lower than 0.0001. In the SPCG-4 

trial, costs attributable to the WW scheme (physician contacts and laboratory tests) do not 

differ between treatment strategies, because WW does not have such a strict surveillance 

scheme as AS. 

Over a study duration of 12 years, total incremental costs of €6,123 between the WW- and 

the RP-strategy are estimated based on SPCG-4 data, corresponding to results of claims data 

and model analysis presented here. Despite differing length of study duration in claims data 

analysis and PCa-model simulation compared to the study by Anderson et al. (2011), the cost 

difference is driven almost exclusively by the costs of RP surgery in all 3 studies. 

As described in chapter 2.2, several US-based modeling and observational studies with 

comparable patient cohorts and time horizons show that the AS-strategy or the CM-strategy 

(including AS and WW) are least costly over the whole study duration (78, 97, 99, 102, 103). 

Only the study by Perlroth et al. (2012) reports that from year 2 of the study on costs of CM 

become equal to RP (100). Perlroth et al. do not state unit costs of the surveillance scheme; 

however, other US-based studies show that the unit costs of prostate biopsy ($605-$1,102) 

alone are considerably higher in the US health-care context than unit costs of the whole 

surveillance scheme (PSA testing and biopsy) in Germany (€44) (78, 102, 103).  
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Results presented here suggest that in an European health care context - contrary to US 

health care - cost differences between AS and RP arise in the first years after treatment and 

do not converge in a lifetime perspective because of the relatively low costs of the AS 

scheme (101).  

5.2.2 Literature on model validation 

In a qualitative literature search several studies are found which validate decision models 

with external data sources (20-25). Both studies by Palmer et al. (2004) and McEwan et al. 

(2014) use published RCT data to externally validate complication and mortality rates of the 

CORE diabetes model (22, 24). Similarly, Eddy and Schlessinger (2003) conduct an external 

validation of the Archimedes diabetes model with RCT data, which are not incorporated in 

the decision model (23). The study by Ishida et al. (2008) employs data from medical records 

to externally validate survival rates predicted by a Markov model which compares treatment 

for hepatitis C virus-related hepatocellular carcinoma (20). Van Staa et al. (2013) validate 

several RCT-based decision models comparing costs and effects of nonsteroidal anti-

inflammatory drugs and selective cox-2 inhibitors with outcomes from a claims data based 

simulation model (21). Stollenwerk et al. (2009) validate a Markov model for coronary artery 

disease risk screening in Germany with empirical data from an observational study (25). 

In addition, 2 studies are found which do not validate a decision model, but give indications 

on the methodological approach to validation with external data sources. For one, Bratzler 

et al. (2011) validate a claims data based regression model which predicts 30-day hospital 

mortality by mortality rates reported in medical records (32). Secondly, a study by Janson et 

al. (2005) conducts an economic evaluation of open versus laparoscopic surgery for colon 

cancer based on self-reported patient data from a clinical trial; self-reported data of a subset 

of study participants are validated with data from medical records and social security claims 

(31). 

This study compares outcomes independently observed in the trial and predicted in the 

decision model; evidence from the external trial is not incorporated in the decision model as 

in the studies by Ishida et al. (2008) and Stollenwerk et al. (2009) (20, 25). 

In contrast to studies changing characteristics of the decision model (21-24), the aim of the 

study presented here is to validate the decision model as it was originally designed and avoid 
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changes to the model as far as possible; instead, the cohort of the external data source – the 

AOK dataset – is adapted to the model’s cohort. Likewise, the study design assumed in the 

model, including length of follow-up and treatment strategies, is replicated in the external 

data source in this study. However, adaptation of the external data source is limited to 

available parameters; demographic information, for example, is not sufficient in the AOK 

dataset to replicate all cohort characteristics of the PCa-model, as it is possible in the study 

by Ishida et al. (2008) which uses detailed information from medical records (20). 

This replication of model characteristics in the external dataset is possible, because AOK data 

are originally analyzed for the purpose of model validation, contrary to studies where 

external evidence stems from published studies (22-25). 

In this study, as proposed in the literature, the output of the external data source and the 

decision model are plotted graphically in form of histograms such that the horizontal axis 

denotes costs and the vertical axis denotes the observed and simulated values, respectively 

(29, 30). 

As statistical tests are recommended in addition to graphical analysis to obtain quantitative 

information about the validity of the decision model, in this study a hypothesis test based on 

bootstrapping is employed. It is tested whether the point estimate of the external data 

source is included in the model’s CI and the other way round (22, 25, 30). By using bootstrap 

hypothesis testing the problems of other test statistics, such as the Student t-test, described 

in chapter 1.2.3, are avoided. 

Furthermore, linear regression analysis is proposed in the literature to compare observed 

and simulated outcomes (22, 24, 32). A prerequisite for regression analysis is that pairs of 

patients (paired observations) are present in model simulation and observed data. 

Observations are not paired in this study, though, and consequently linear regression 

analysis would estimate correlation for random pairs of observations. No conclusion on the 

validity of the decision model can be drawn from linear regression analysis in this study. 

Studies comparing outcomes of different decision models apply goodness of fit tests to 

assess validity of the validated model (22, 33). In this study, outcomes of the decision model 

are compared with independently analyzed outcomes in claims data, so tests for goodness 

of model fit are not relevant to assess the validity of the PCa-model.  
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5.3 Strengths and limitations 

In the following, the proposed approach for the validation of decision models based on 

claims data is discussed by highlighting strengths and limitations of claims data in the 

individual validation steps.  

5.3.1 Validation level 

One of the strengths of this study is that in step 1 of the validation approach, both input 

parameters and simulation outcome of the decision model are validated. Differences in 

input parameters between AOK data and the PCa-model help to explain differences in 

simulation outcome.  

Another strength is that outcomes of claims data and model are estimated independently by 

adapting the study design of the claims data analysis to model assumptions and not the 

other way round, as it is often seen in published validation studies. That way the decision 

model is validated in the form it was originally constructed. 

A limitation, on the other hand is that quality of life indicators are not representable in 

claims data analysis; consequently, the effectiveness outcome of the decision model cannot 

be validated in this study. Only the cost outcome of the decision model is validated, which is 

of greater importance anyway, because input parameters of unit costs and assumptions on 

resource use are afflicted by a higher degree of uncertainty than effectiveness parameters 

incorporated from high quality clinical trials. 

This study is also limited in respect to its explanatory power of the model’s predictive 

validity. In the external validation presented here, the model’s structure is not validated; 

errors in the model assumptions are, thus, replicated in claims data analysis. During claims 

data analysis it became apparent that observed treatment pathways differ from the model’s 

definition occasionally; for example, utilization of laboratory services in line with the 

surveillance scheme are found in the AOK data set, but these are not considered in the 

model and are, thus, not considered as disease-related costs in claims data analysis. 

Validation of the model structure or predictive power is not the focus of this study. The 

study does, however, indicate that validation of the models structure, especially regarding 

clinical care pathways, is possible based on claims data. 
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5.3.2 Claims data set, study design, and patient cohort 

The major strength of the analysis of the AOK data set in step 2 of the validation approach is 

that actual treatment practice and costs of early-stage PCa incurred by the SHI scheme 

insured population in Germany is pictured in SHI claims data. A real-world cohort of patients 

who are treated with RP or AS is followed for complications and costs. In AOK data, analysis 

is based on exact and detailed utilization and cost information on different health care 

sectors. In contrast to the decision model, assumptions on resource use, reimbursement 

practice, and prices are not required. Overall, utilization and cost information from SHI 

claims data is reliable because actual spending on a broad range of services and technologies 

incurred by SHI is reported (52). For the validation of the model it is of importance to picture 

real-world costs in the external data source, because these are the relevant outcome 

measures in the decision model. Claims data of AOK are, thus, well suited to report these 

outcomes for validation of the PCa-model. 

In addition, the AOK dataset provides a large number of cases with PCa to select treatment 

groups from. This permits the detection of rare events, such as treatment of ED and IC with 

surgery. In a smaller cohort these events are likely to be overlooked. 

The claims data analysis replicates the study design simulated in model analysis, which is a 

major strength of the AOK data. Patients are initially treated with either AS or RP and are 

followed-up to assess complications and corresponding costs of the initial treatment. A long-

enough follow-up is chosen to replicate the first part of the decision model which represents 

treatment of early-stage PCa, not considering treatment and costs of advanced disease. 

Additionally, a unique identification number in the AOK dataset allows merging of claims 

over the study duration and health care service categories on an individual insurant level 

without loss of information due to aggregation of data. 

A limitation of SHI data in general is that no detailed clinical information is included. This is 

especially limiting in this study because no information on tumor stage or Gleason score – 

which might allow clinical classification of PCa – is available in the AOK dataset. To overcome 

this limitation, early-stage PCa is defined as absence of diagnoses of metastases. However, 

by this definition only a distinction between metastatic and non-metastatic PCa is possible. A 

sub-division of non-metastatic PCa in localized and locally advanced PCa and further 
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distinction of risk groups, as described in chapter 2.1.2, is not possible. To take this limitation 

into account, individuals receiving treatment associated with recurrence or advanced tumor 

progression are also excluded from the cohort. 

In addition to this limitation, a study by Stausberg et al. (2008) shows that reliability of 

diagnoses coding with ICD-10 GM is only fair to moderate with agreement rates between 

coders of around 50% (139). Regarding the coding quality of diagnostic codes, inpatient data 

are assumed to be more comprehensive than outpatient data (140, 141). To take the lower 

validity of outpatient diagnostic codes into account in this study, outpatient diagnoses are 

only considered when 2 consecutive codes are found in the dataset.   

Generally, only medical care and diagnoses that are relevant for SHI reimbursement are 

included in claims data; coding is biased by the underlying billing purpose of claims data. This 

effect should be equally distributed across treatment groups and not bias comparative 

outcomes. However, when complication rates or costs of single treatments are supposed to 

be representative for the general population, this limitation biases results considerably. 

Diagnosis and treatment of ED is an example in the AOK data analysis, where comparison 

with published complication rates shows that ED rates are considerably underestimated in 

claims data analysis. The reason for this is that treatment of ED, surgical or pharmaceutical, 

is generally not covered by SHI. As treatment of ED is not relevant for SHI reimbursement, 

physicians either have no incentive to code ED comprehensively despite established 

diagnosis or patients do not consult a physician in the first place. In turn, the 

underestimation of complication rates influences the validity of resource use and cost 

estimates. Unit costs of ED treatment estimated in claims data analysis are, thus, not valid 

for the validation of unit costs incorporated in the decision model. Validation of incremental 

costs, on the other hand, is not afflicted by this limitation of the claims data analysis. 

Furthermore, while date of death is coded for all insured persons in claims data, no 

information on cause of death is available. This infringes validity of claims data as death 

cannot be causally linked to a certain diagnosis or health technology utilization. Especially in 

analysis of cancer diseases, cancer-specific mortality is an outcome of interest which cannot 

be validly reported in claims data. In this study on PCa, mortality is not of primary interest 

because due to the nature of the tumor progression mortality rates are low in a study period 

of 2.5 years. Still, it would be interesting to have information on cause of death to assess 
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whether the high difference in mortality rates between AS and RP found in claims data 

analysis is due to the initial treatment decision.  

Concerning the study design several limitations are present in this study. Claims data are 

available for one insurance fund with a regional focus on Baden-Württemberg only. AOK 

insurance funds tend to insure a proportionally larger population of individuals with lower 

educational status and low-skilled professions than found in the general German population, 

as described in chapter 3.3.1. This may influence outcomes of claims data analysis, because 

patients with lower socioeconomic status tend to have a higher PCa tumor grade and more 

advanced stage of disease at the time of diagnosis than patients with higher socioeconomic 

status (142). Evidence suggests that even when considering only patients with early-stage 

PCa, men with lower socioeconomic status are more likely to be treated with WW and less 

likely to receive treatment with curative intent (142). However, socioeconomic information 

is not included in such detail in the AOK claims data set to adjust for differences in 

socioeconomic status between treatment groups. Individuals in the AS-group are, thus, more 

likely to have a lower socioeconomic status than individuals in the RP-group; out-of-pocket 

payment for ED-treatment might, for example, be affected by this. However, as costs 

relevant for the SHI insured community are considered here and not out-of-pocket 

payments, socioeconomic status is likely to play a minor role in this study.  

And while by including only one insurance fund conclusions on complication rates and per 

capita costs in both treatment strategies might not be representable for the general German 

population, in this study incremental costs are relevant for the model validation, not 

absolute costs of treatment strategies (143). 

A further limitation is that the study period of 4 years allows a follow-up time of only 2.5 

years, which is too short to assess long-term complication rates and costs for individuals 

with PCa-diagnosis. Especially in case of AS, long-term costs are of interest because 

published studies indicate, as described previously, that continuously accumulating costs of 

the surveillance scheme may exceed one-time costs of the RP surgery over time. In addition, 

treatment with EBRT in case of tumor progression under AS causes common complications, 

such as bowel problems; these complications usually develop after a longer period than 

analyzed here and are hence not represented in this analysis. Costs of the AS-strategy are 

likely underestimated when only the first years after treatment initiation are examined. In 
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addition, the relatively short study duration permits a pre-observation period of only 6 

months; baseline co-morbidity may not be determined validly in this short period. In this 

study a trade-off between longer pre-observation period and longer follow-up period is 

necessary, and the longer follow-up is chosen. 

Concerning cohort selection, another limitation of the AOK claims data is that randomization 

of individuals into treatment groups is not possible, as in any other observational study. 

Hence, estimated differences between groups might be attributed to unequal distribution of 

confounding variables. This bias is reduced by matching of individuals in treatment groups 

based on age and regression analysis adjusting for co-morbidity. This bias is, however, not 

fully eliminated in this study, because the number of variables available for confounder 

adjustment is limited in the AOK dataset. Inference of effectiveness outcome of AS and RP 

(e.g. number of complications) is, thus, afflicted by a high degree of uncertainty and 

validation of the effectiveness outcome of the decision model is not undertaken in this 

study.  

Cohort selection is additionally limited by the fact that AS cannot be identified by a specific 

procedure code in the AOK claims dataset. To overcome this limitation AS is defined by a 

combination of procedures and corresponding codes, following the treatment guideline of 

DGU. However, not all of these procedures are specific for the AS scheme, such as PSA 

testing. Especially a distinction between AS and WW is difficult based on generic procedure 

codes. Analysis of coded prostate biopsies shows that only about 7% of men under AS 

receive a biopsy during follow-up. This suggests that only a minority of individuals in the AS-

group actually is under AS according to treatment guidelines in the follow-up period, while 

the remaining men may be under WW. The cohort’s life expectancy, however, is with a 

mean age of 70 years at baseline greater than 10 years and men are recommended to be 

treated with AS – according to treatment guideline; patients might actually be under AS, but 

are not surveyed by regular biopsies according to guideline. One reason for this might be 

that AS is a relatively novel treatment strategy; it may not have been performed regularly in 

Germany during the study period (2008-2011). Another reason might be that current studies 

report adverse effects of serial biopsies on erectile function and infectious complications and 

urologists may, thus, deviate from the recommended treatment protocol (82, 83). In 

consequence, the AS treatment group identified in this study is probably rather a mixture of 
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AS- and WW-patients; it might be more appropriate to refer to ‘conservative management’ 

than AS. The main purpose of this study is the validation of the PCa-model, though, and in 

the model transition probabilities for AS are extracted from a study comparing WW with RP, 

so that a mixture of AS and WW treatment effects is expected in the PCa-model, as well. 

Consequently, AOK data analysis is suitable to estimate outcomes comparable to the PCa-

model, even though it is limited in reporting outcomes of AS. 

5.3.3 Relevant health technologies and costs 

A strength of this study is that the definition of health technologies and corresponding costs 

in claims data analysis (step 3) is set closely to the definition of the decision model. The same 

diagnostic and procedure codes reported in the decision model are used in claims data 

analysis. The use of these codes allows a distinct identification of PCa-relevant health 

technologies and corresponding costs. Thereby, all health states and treatments considered 

in the first part of the PCa-model – simulating treatment of early-stage PCa – are identified 

in claims data analysis. 

A further strength of this study is that 2 different approaches are followed for the model 

validation. For one, all health technologies utilized during follow-up are considered (excess 

approach). Additionally, only PCa-relevant treatment utilization (disease-related approach) is 

analyzed. Comparison of outcomes of both approaches with model outcomes indicates 

whether the less complex excess approach is sufficient to make inferences on the decision 

model’s validity. 

Several limitations are found in the definition of PCa-relevant health technologies. For one, 

utilization of antibiotics after biopsy is not considered in the RP-group, because it is not 

considered in the decision model either. In the AS-group antibiotics are considered; the 

decision model, however, does not report a specific pharmaceutical code (PZN) in this case. 

In claims data analysis, thus, antibiotics are considered that are reported in the literature to 

be predominantly used for antibiotic prophylaxis with prostate biopsies (65, 144). Secondly, 

in outpatient treatment, costs of single EBM codes are considered as defined in the decision 

model. In claims data analysis, utilization of materials is not included in these costs; 

however, this is a relatively small portion of the total outpatient treatment costs. 

Furthermore, the treatment lump sums for GP and specialist visits are considered as disease-
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related costs if a treatment of interest (e.g. PSA or biopsy) is coded in the same quarter, as 

assumed in the PCa-model. Bias is possible in claims data analysis, though, because the 

outpatient visit could be motivated by another cause than PCa-treatment; in claims data no 

attribution of diagnoses to procedures is possible. 

Finally, analysis of PCa-specific health technologies is prone to bias in cases where resource 

use for PCa treatment cannot be specifically circumscribed (e.g. GP visits). As it is the aim of 

this study to validate model outcomes, definition of PCa-specific costs is adapted to the 

model’s definition. Disease-related costs may not represent all costs incurred by the SHI fund 

for the treatment of PCa, but they reflect the costs assumed in the decision model, which is 

of greater importance for this study. 

5.3.4 Statistical methods for claims data analysis 

Another strength of this study, concerning statistical methods of claims data analysis 

described in step 4 of the validation approach, is that matching of individuals by age makes 

treatment groups more comparable and thereby replicates a characteristic of the decision 

model’s cohort, where individuals in the AS- and the RP-group are assumed to be of same 

age. Standard statistical methods, such as regression analysis, are used to adjust for co-

morbidity and thereby further ensure comparability of claims data and model outcomes. 

Additionally, recycled predictions method is employed to estimate absolute values of 

complication rates and costs per treatment strategy; bootstrapping is used to calculate 

variability of estimates via 95% CIs. 

Regarding analysis of claims data, a limitation is that matching of treatment groups by age 

results in a considerable loss of individuals in both treatment groups. Especially in the AS-

group, where 17 patients (about 14%) are lost due to matching, representativeness of this 

treatment group is questionable. However, to ensure comparability between treatment 

groups it is necessary to disregard patients with a differing, usually higher, age in the AS-

group than in the RP-group; according to treatment guideline, patients with a life expectancy 

smaller than 10 years are not eligible for AS treatment. Still, a greater patient heterogeneity 

is found in the claims data cohort than in the model, especially regarding co-morbidity, 

because the variables available for adjustment and matching are very limited in the AOK 

dataset.  
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Additionally, use of CCS for adjustment is limited; when no diagnosis is coded in the pre-

observation period it cannot be differentiated whether the individual is free of disease or an 

existing illness is just not coded in the SHI scheme. Furthermore, in excess costs analysis CCS 

is not able to adjust for co-morbidities with high outpatient and pharmaceutical costs which 

are not related to PCa-treatment, because the Charlson index intends to assess inpatient 

mortality.  

Furthermore, dependency of data due to matching is not accounted for by using conditional 

regression analysis. Dependency of data is very low, though, as matching is only performed 

for age; also no longitudinal analysis of single individuals is intended. 

Outcomes of excess cost analysis are limited in their informative value because absolute 

costs do not reflect PCa treatment-specific costs. By adjusting for co-morbidity, differences 

in costs can be attributed to the initial treatment strategy, though. Disease-related cost 

analysis overcomes this limitation, despite its own pitfalls. The most severe limitation of 

disease-related cost analysis is the small number of observations which limits the validity of 

single cost estimates, especially in cases where technologies are utilized by only 1 or 2 

individuals, such as surgical procedures for ED and IC. As a result, calculation of costs for 

single procedures may not be representative for certain health technologies in this study. To 

mitigate this limitation health technologies are combined in cost groups so that observation 

numbers increase. 

Another limitation, which is common in the analysis of health care utilization, is that 

resource utilization is skewed; a small number of individuals utilizes health technologies and 

incurs substantial costs, whereas the remaining cohort has no utilization. In this case, 

unadjusted means and STDs have no informative value. To account for this problem, two-

part regression models are employed in this study.  

5.3.5 Changes to the decision model 

A further strength of this study is that access to the originally published Markov model in 

Treeage is possible to conduct changes described in step 5. Thus, information is available for 

the model validation which is not reported in the publication of the PCa-model, for example 

codes defining PCa-related treatment. By the use of this information, outcomes estimated in 

claims data analysis are more comparable to outcomes of model simulation than without 

this additional information. The additional information also allows adapting the claims data 
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cohort as closely as possible – given available variables – to the model’s cohort 

characteristics. 

Access to the decision model also makes it possible to conduct additional analyses in the 

model assessing resource use and costs of single treatments, which are not reported in the 

original publication of Koerber et al. (2014); cost differences in specific treatments explain 

overall cost difference between treatment strategies. The total cost difference between AS 

and RP, for example, is almost exclusively determined by the cost difference found in RP 

surgery. The structure of the model itself is not changed in this analysis, which allows a 

validation of the originally published model.   

Generally, a thorough understanding of model structure and assumptions facilitates the 

explanation of differences between AOK and model estimates, which is only possible when 

the original model can be retraced. 

Furthermore, it is a strength of this study that in Treeage simulated model data are analyzed 

in SAS software. This way it is possible to calculate measures of uncertainty, such as CIs for 

incremental costs, which are not available in Treeage. Graphical presentation of model 

outcomes in form of bar charts and histograms is possible, too. Import of model data in SAS 

also allows formatting of data in a layout which makes calculation of differences between 

AOK and PCa-model outcomes as well as statistical hypothesis testing possible. 

A limitation in the model analysis concerns the age distribution assumed in the model. As 

described previously the age distribution in the decision model needs to be adapted to the 

claims data cohort for a valid comparison of outcomes. Thus, it is assumed that all men in 

the model start treatment at the age of 70 years which is the mean age of the AOK cohort. 

This is, however, a simplification of the age distribution found in claims data; to be more 

precise the exact age structure of the AOK cohort should be represented in the model. The 

model by Koerber et al. does not allow incorporation of an age distribution at treatment 

initiation, though, and to change this assumption the model structure would have to be 

changed fundamentally. To estimate the impact of this limitation on outcomes, sensitivity 

analyses varying age at treatment initiation are conducted, as described previously. Results 

of the sensitivity analyses show that the overall agreement between AOK and model 

estimates is not affected by age at treatment initiation. 



110  Discussion 

 

 

Another limitation in the model analysis is that the microsimulation cannot simulate 

different observation numbers for treatment strategies as in the claims data analysis where 

the RP-group includes twice as many individuals as the AS-group. The microsimulation is 

consequently simulated with 321 individuals in each treatment group; the AS-group in the 

microsimulation is thus 3 times larger than the AS-group in the claims dataset and the RP-

group 1.5 times larger, respectively. In addition, the number of observations in 

microsimulation is so low that not every pathway through the model can be simulated and 

results between cost groups may vary because of differences in pathways and not 

differences in costs. To take this limitation into account Monte Carlo simulation is performed 

which evaluates the magnitude of the parameter uncertainty. 

5.3.6 Comparison between model and claims data 

One of the strengths in the comparison of claims data and model, described in step 6 of the 

validation approach in this study, is that graphical presentations as well as statistical 

methods are used to quantify the agreement between AOK and model outcomes. Simulated 

(bootstrapped) AOK samples and PCa-model samples are merged to calculate cost 

differences. Incremental costs of treatment strategies are compared between AOK data and 

model which is of most relevance for a decision-maker.  

Furthermore, comparison of cost estimates is based on 2 different approaches; disease-

related as well as excess costs are estimated in claims data analysis. Disease-related cost 

analysis allows the validation of costs of single treatments simulated in the model with 

outcomes of claims data analysis. In disease-related analysis, resource use of treated 

individuals and unit costs of PCa-relevant health technologies estimated in claims data 

analysis are compared with input parameters incorporated in the model. This validation of 

input parameters helps explain differences in per capita costs. 

Additionally, sensitivity analyses are employed to assess the impact of claims data cohort’s 

characteristics (newly diagnosed PCa-cases) and model cohort’s assumptions (age at 

treatment initiation) on agreement between AOK and PCa-model outcomes.  

A limitation, on the other hand, is that the explanatory power of the comparison between 

AOK data and PCa-model might be limited by greater patient heterogeneity in the claims 

data cohort than in the model, especially regarding co-morbidity. Additionally, the 
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reproduction of treatment strategies as defined in the model is limited in claims data which 

also infringes the informative value of the comparison. 

Outcomes of the comparison are also affected by the way mortality is accounted for. In 

claims data analysis all resource use and costs accumulated until death are considered. In 

model simulation, on the other hand, costs of individuals dying during follow-up are not 

added to costs of the cohort. As mortality rates are small, this limitation minimally affects 

outcomes of the comparison between claims data and decision model, though. 

Another limitation, regarding the sensitivity analysis where inclusion criteria for the claims 

data cohort are changed, becomes apparent: incidence of PCa-diagnosis is established in the 

pre-observation period; this period might be too short to ensure that PCa has not been 

diagnosed before study initiation, though. As overall agreement between AOK data and 

model outcome does not change, this limitation seems to have no notable influence on 

results. 

Furthermore, quantitative comparison is limited to per capita costs in this study. Difference 

in utilization probability between model and claims data is not tested statistically because 

the simulation of the data needed for the quantitative comparison is extremely complex in 

the model by Koerber et al. (2014). 
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5.4 Practical implications 

5.4.1 Generalizability of validation approach 

The approach to claims data based validation described in chapter 3.1 can be applied for a 

variety of model validations. The strengths and limitations of claims data based validation 

discussed in chapter 5.3 may, however, not apply in every case. Generalizability of the 

approach to model validation based on claims data is assessed exemplarily for 2 cases: first, 

the validation of models comparing treatment for indications other than PCa and, second, 

validation based on administrative data sources other than German SHI data.  

Examples of an adaptation of the validation approach to a variety of indications are 

highlighted in the following. 

Concerning the decision on the validation level, effectiveness measures may be validated as 

well if outcome is replicable in claims data – contrary to the validation of the PCa-model 

where effectiveness outcome is measured in QALYs. Outcome measures concerning the 

utilization of health technologies can generally be reproduced validly in claims data. Health 

care utilization is, for example, an important measure of effectiveness in the treatment of 

cartilage defects in the knee, where the aim of novel treatment options, such as autologous 

chondrocyte implantation, is the prevention of joint replacement (145). Effectiveness 

measured as the number of replacement surgeries is, thus, an outcome which can be validly 

analyzed in SHI claims data.  

Concerning cohort selection and study design, validation based on claims data is only useful 

if the indication of interest is validly coded in the dataset. The example of ED diagnosis 

shows that diseases whose treatment is not or only partially covered by SHI may not be 

coded validly in SHI data. Furthermore, severity of disease is not coded in SHI data and may 

only be deduced from diagnoses of co-morbidity – as in this study where advanced PCa is 

defined by diagnosis of metastases – or coding of relevant procedures. Diabetes is, for 

example, an indication where severity of disease can only be inferred from the intake of 

insulin and the co-morbidity status (146). The same applies to parameters describing patient 

characteristics which are essential to replicate the model’s cohort; an example is smoking 

status which is not coded in SHI data, but is of paramount importance in studies on lung 

diseases (147). Furthermore, when indications are evaluated in a decision model where the 
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cost and effectiveness outcome can only be determined in a lifetime perspective, SHI claims 

data usually cannot provide valid estimates; due to technical and data protection issues it is 

generally not possible to analyze individual patient data with a lifetime perspective. An 

example where a long time of follow-up is necessary to assess differences between 

treatment groups, is the treatment of cartilage defects in the knee avoiding joint 

replacement mentioned above; replacement surgery usually becomes necessary 10 to 20 

years after the initial therapy (145). 

Regarding the definition of disease-relevant health states and technologies, adaptations of 

the validation approach presented for the PCa-model to the indication of interest might also 

be necessary. On the one hand, the validity of the claims data estimate of technology 

utilization depends on how detailed the definition of disease-related health technologies is 

reported in the decision model. If no information on codes for health technologies is 

provided in the model, it is difficult to accurately replicate the analysis of resource use and 

costs in claims data analysis. On the other hand, treatment of the indication of interest 

might not have any specific codes in the SHI scheme or it is not covered and thus not coded 

by SHI at all; again the example of ED treatment is applicable here. 

Statistical methods for analysis of SHI claims data must be adapted to the indication of 

interest. Matching techniques might, as shown in this study, result in a loss of cases; when 

indications with a low number of observations, for example rare diseases, are studied, 

adjusting for confounding in regression analysis might be the better option (28). 

Changes to the model structure and additional analysis conducted with the decision model 

might be necessary, depending on the cohort characteristics and the study design chosen for 

the validation. Apart from adaptation of age, as in this study, this might include change of 

gender distribution in the decision model or change of the model’s perspective from a 

societal to a SHI insured population perspective. 

Adaptation of the validation approach to administrative data sources other than the German 

SHI scheme is highlighted in the following, using the examples of the US Medicare/ Medicaid 

claims database and the UK General Practitioners Research Database. The UK GP Research 

Database includes medical information from inpatient and outpatient care as well as 

pharmaceutical prescriptions which converge at the GP in the UK national health service 

system (148). US Medicare covers inpatient, outpatient, and pharmaceutical claims of 
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individuals 65 years of age and older, whereas Medicaid covers disabled individuals; dual 

eligibility is possible (149). 

The extent of clinical information included in the claims dataset has a particularly strong 

influence on the practicality of claims data for the validation of effectiveness measures. In 

the GP research database, for example, laboratory values are available and access to original 

medical records is possible (148), which would allow classifying PCa tumor stage based on 

PSA value and Gleason score, in contrast to SHI claims data. 

Regarding the selection of a patient cohort reflecting the model’s cohort, the UK GP research 

database includes a population-based dataset which is representative of the UK population 

and contains a large number of individuals (about 3 million) (148); based on the UK GP 

database, selection of a cohort validly reflecting model assumptions is very likely. US 

Medicare/ Medicaid, on the other hand, covers a population which is not representative of 

the general US population due to eligibility criteria; it might, thus, be more difficult to select 

a cohort equivalent to model assumptions (150). Information on socioeconomic status is not 

included in the UK GP research database, which biases cohort selection according to model 

assumptions. 

To identify relevant health states and health technologies in the administrative data source, 

it is necessary that these can be uniquely identified. This is possible in both the UK GP 

research database and US Medicare/ Medicaid database, as diseases and procedures are 

identified with unique codes, similar to German SHI data (148, 150). In the UK GP research 

database, however, no information on health technology utilization outside the GPs’ 

responsibility is included in the dataset, which leads to similar bias as in this study, where 

not all health care utilization is covered and, thus, not coded by SHI. 

Other aspects of claims data discussed previously, for example confounding and data 

protection issues as well as disease-specific difference in validity of claims data, are 

applicable to all insurance systems.  

5.4.2 Implications for model validation 

For the validation of decision models this study generally implicates that access to the 

validated decision model is necessary, especially, if model assumptions, such as age 

distribution and run time, have to be adapted to the external data source to generate 
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comparable outcomes. Often additional analyses of the decision model are necessary to 

produce data in a format comparable to data of the claims data source. 

Furthermore, it would facilitate validation of decision models based on claims data, if 

resource utilization and costs relevant for the SHI or SHI scheme insured community 

perspective are distinctly displayed in decision models, so that a calculation of the SHI 

perspective, in addition to the societal perspective, is simplified. 

It is shown in this study that the relatively less time-consuming excess approach is able to 

validate total incremental costs of the decision model by itself; the results are comparable to 

the more complex disease-related approach where health technologies are defined 

according to the model’s definition of disease-related technology utilization. If in a validation 

based on claims data the concordance of claims data cohort and model cohort can be 

ensured and statistical techniques are employed to make treatment strategies comparable 

(matching, regression analysis), an excess cost approach might be sufficient to validate total 

costs. This study, however, shows that even if agreement between estimates of total costs is 

sufficient to assume that the model simulates real-world costs, this might not be the case for 

costs of individual treatments considered in the model. The disease-related approach is 

useful in this case to validate incremental costs of single treatments. If in a model validation 

resource utilization and costs of individual health technologies are not relevant, the less 

complex excess approach may be suitable. 

Concerning the results of the validation, it is apparent that results are subject to 

interpretation. Graphical and statistical presentation can only indicate an agreement 

between outcome simulated in the model and outcome observed in the external data 

source. In addition, the agreement between model and claims data has to be interpreted in 

light of the uncertainty afflicting the individual parameters.  

Whether this agreement is sufficient to infer that the model simulates real-world outcomes 

validly depends greatly on the limitations of the external data source, most of all limitations 

of the claims data analysis in replicating the model’s structure and cohort assumptions. SHI 

data may be the gold standard for real-world resource use and costs, if however the study 

design (e.g. length of follow-up) and cohort (e.g. patient characteristics and treatment 

groups) of the decision model cannot be replicated in the claims data, the estimates of 
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resource use and costs, in turn, are not comparable to the model outcomes and, thus, not 

suitable for validation. 

5.4.3 Implications for industry 

A potential application of the validation of decision models based on claims data is described 

exemplarily in the context of the integration of novel health technologies in the SHI system’s 

benefit catalogue. 

The clinical effectiveness and costs – key components of a new medical technology’s value – 

are usually uncertain at the point of coverage decision-making by a health care payer. This is 

in part due to the fact that market-approval agencies ask for evidence regarding safety and 

efficacy, while coverage decision makers are predominantly interested in effectiveness and 

real-world costs. Decision models may be employed, in this context, to incorporate available 

evidence and predict real-world effectiveness and costs; these predictions of effectiveness 

and costs are, however, still subject to high variability due to the uncertainty in the 

underlying evidence (151). 

Under such uncertainty the decision maker may reject coverage and thus deny patients 

access to potentially beneficial technologies. A positive coverage decision, on the other 

hand, may lead to reimbursement of potentially clinically or cost ineffective medical 

technologies and strain already tight budgets (152). To address this uncertainty, market 

entry can be accompanied by arrangements where further evidence regarding the 

performance and utilization of the technology is collected alongside use; new evidence can 

either be incorporated in the decision model or used to validate the predictions of the 

original model. That way the final coverage decision can be delayed until sufficient evidence 

is available, while enabling early patient access to novel technologies (45). These schemes 

are usually referred to as “managed entry agreements” (MEA) (Figure 5-1) (153). In 

Germany, since the introduction of the Healthcare Provision Act (GKV-

Versorgungsstrukturgesetz) in 2011, novel examination and treatment methods can be 

covered by SHI on the condition that clinical data are gathered alongside use in clinical 

practice (51).  
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Figure 5-1: Typology of managed entry agreements 

As MEA rely on the collection of information, the question arises where to find suitable 

evidence to validate the predicted outcomes of the model. Original data collected within 

randomized controlled trials are seen as the gold standard for evidence development. 

However, they inhibit limitations regarding evidence on effectiveness and cost-effectiveness 

in clinical practice, which is of primary interest for decision makers (38, 39). Original data 

collected within registries may overcome some of these problems, but have their own 

distinct limitations (42, 154). In both cases, data collection is likely to incur high costs to 

manufacturers or health care payers. Given the already high costs of clinical research in the 

development of medical innovations (155), there is a risk that the costs of evidence-

collection exceed the potential value associated with the additional evidence. A valid option 

for the validation of decision models in line with a MEA are, consequently, claims data (156). 

Especially, when MEA are formed between a manufacturer of a novel technology and a SHI 

fund, it is of interest for the SHI fund to validate the models predictions with a patient cohort 

reflecting the funds insured community; the SHI funds own claims are obviously the most 

valid data source to achieve this. Use of claims data is useful for the validation of decision 

models conducted in line with MEAs which concern not only one insurance fund but the 

whole SHI insurance system, too. The relevant patient cohort, in this case, is the SHI scheme 

insured community. 
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The suitability of claims data is especially high for agreements that concern utilization or cost 

outcomes of a novel technology. In agreements where the level of reimbursement is 

dependent on utilization and cost outcomes – so called risk-sharing agreements – validation 

of these outcomes based on claims data is useful.  
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6 Conclusion 

To answer the research question ‘Are claims data of health insurance funds suitable to 

externally validate decision-analytic models?’ this study proposes a step-wise validation 

approach. Applicability of the validation approach is assessed on the exemplary validation of 

a Markov model comparing treatment of localized PCa based on claims data of a large 

German SHI fund. Strengths and limitations of claims data based validation is discussed for 

each validation step. Generalizability and implications of claims data based model validation 

are presented. 

Concerning the medical point of view, the analysis indicates that in the first years after 

treatment initiation costs of AS are significantly lower than the costs of radical therapy with 

RP for early-stage PCa – predominantly due to the high initial costs of the RP surgery. 

Treatment of complications following initial therapy has a very small impact on costs, albeit 

ED and IC have a substantial impact on patients’ quality of life. These results are consistent 

in the 2 different cost analysis approaches presented in claims data analysis – excess cost 

and disease-related cost analysis – and are predicted by the decision model, as well. 

Concerning the validation of the decision model, a degree of an overall agreement between 

the AOK data and PCa-model outcome is found which is sufficient to assume that the model 

simulates short-term real-world resource use and costs of AS compared to RP validly. The 

outcomes of excess cost analysis alone are able to validate total incremental costs in this 

study, which would make the more extensive disease-related analysis unnecessary; disease-

related analysis is, however, useful to validate incremental costs of individual treatments of 

PCa. Validation of individual treatments shows that resource use and costs simulated in the 

decision model are most valid for inpatient care, whereas outpatient care differs significantly 

from observed outcomes in claims data. 

The exemplary model validation reveals strengths and limitations of claims data for model 

validation, which are characteristic for claims data based model validation in general.  

Claims data are able to provide evidence on real-world resource utilization and, with 

limitations regarding clinical information, effectiveness of a wide range of indications and 

treatments in a large patient cohort. Validation based on claims data is especially suitable 
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when the decision maker, interested in the validity of the model in question, is the insurance 

fund providing access to the claims data; the claims data cohort is representative of the 

insured population of the insurance fund. Claims data may be regarded as the gold standard 

for real-world evidence on resource utilization and costs in this case. Furthermore, use of 

claims data for the validation of decision models is less costly and time consuming than 

collection of primary evidence in RCTs.  

Suitability of claims data based validation is, however, limited concerning the replication of 

the decision model’s structure and cohort assumptions. For one, the identification of distinct 

health states is limited, because clinical information, such as laboratory values or tumor 

stage, is not included in SHI claims data. Also, due to non-randomization and a restricted 

number of variables available to adjust for confounding, comparability of treatment groups 

is limited in SHI claims data analysis; claims data analysis may not reflect model analysis 

which is usually based on randomized trials. Furthermore, distinct identification of health 

technology utilization and corresponding costs is not possible, if the technology of interest is 

not specifically coded. Claims data are, generally, collected for billing purposes; diagnoses 

and technology utilization are only coded if they are relevant for reimbursement, which 

biases outcomes of model validation in cases where treatment is not covered by the 

insurance fund. 

The suitability of claims data for the validation of the decision model of interest eventually 

depends on the ability of the claims data source to reflect the model’s patient cohort and 

outcome measures. If study design and cohort assumptions of the decision model cannot be 

replicated in the claims data, the estimates of resource use and costs, in turn, are not 

comparable to the model outcomes and, thus, not suitable for validation.  

Weighing up of strengths against limitations of claims data based validation has to be made 

for each case independently. The proposed validation approach indicates critical aspects in 

the validation based on claims data, which may support researchers and decision makers in 

their decision on the suitability of claims data.   

Further research is necessary to assess the applicability of the validation approach in models 

with indications other than PCa and validation based on other external data sources, for 

example registry data.  
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Methodological aspects of the comparison of claims data and model outcomes, such as 

statistical techniques that test difference between estimates, need to be refined. As seen in 

this study, the validity of statistical methods, for example, depends on the presence of 

paired observations in the two data sources. A systematic assessment of various statistical 

methods for different types of external model validation would be a useful guidance for 

model validation.   

It is also interesting to assess the practical implication of claims data based validation for 

industry. For example, the practicality of claims data based model validation for the 

management of novel health technologies in the SHI benefit catalogue should be assessed in 

further research. 

Finally, further research is needed to assess whether claims data are suitable for model 

validation apart from external parameter validation. This study indicates that validation of 

model structure is possible based on claims data. Studies on the suitability of claims data to 

assess predictive validity of decision models might be interesting, as well.  
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IC     Monitoring after RP 

   
Figure A-1: Distribution of disease-related costs in cost groups (€), by treatment strategy and 
data source 
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Figure A-1: Distribution of disease-related costs in cost groups (€), by treatment strategy and 
data source (continued) 
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Figure A-1: Distribution of disease-related costs in cost groups (€), by treatment strategy and 
data source (continued) 
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Figure A-2: Histogram of simulated, disease-related incremental costs (€), by cost group and 

data source 
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Figure A-2: Histogram of simulated, disease-related incremental costs (€), by data source 

(continued) 
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Figure A-2: Histogram of simulated, disease-related incremental costs (€), by data source 

(continued) 
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