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1 Einleitung 
 

1.1 Tissue Engineering und Regenerative Medizin 

 

Menschliche Gewebe und Organe können sich nach Verletzung oder Krankheit in der Regel nur 

bedingt selbst reparieren. Eine vollständige Regeneration derselben aus sich selbst heraus ist 

meistens praktisch ausgeschlossen. 

Das induzierte Wachstum von neuem Gewebe und neuen Organen ist in der Klinik eine 

zunehmend verwendete therapeutische Strategie, um die biologische Gewebe- und 

Organfunktion wiederherzustellen (Mason et al., 2008). Dieses Konzept hat die neuen, 

interdisziplinären Fachgebiete des Tissue Engineering und der Regenerativen Medizin, oftmals 

insgesamt als TERM abgekürzt, hervorgebracht (Harrison et al., 2014). 

Während Tissue Engineering im Allgemeinen die Entwicklung von neuem Gewebe ex vivo 

umfasst (Abbildung 1), ist die Geweberegeneration in situ der Weg der Regenerativen Medizin.  

 

 
Abbildung 1: Die prinzipielle Idee des Tissue Engineering (modifiziert nach www.nature.com).  
Zellen werden aus dem Körper extrahiert, in Kultur angereichert, auf Zellträger angesät, der entsprechenden 
chemischen, physikalischen und biologischen Umgebung ausgesetzt und dem Patienten wieder reimplantiert. 
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Allerdings überschneiden sich beide Ansätze wesentlich und TERM setzt sich aus mindestens 

vier Schlüsselkomponenten zusammen: 

1. Zellen, die das neue Gewebe bilden. 

2. Biologische Signale, die für ein bestimmtes Zellverhalten sorgen. 

3. Zellträger, die ein Trägergerüst bereitstellen, auf dem das neue Gewebe wächst. 

4. Eine für das erwünschte Gewebe geeignete physikalische Umgebung. 

 

Diese Komponenten überlappen sich teilweise ebenfalls. Die Zellen produzieren oft selbst die 

benötigten biologischen Signale. Hinzu kommt, dass auch Zellträger und physikalische Kräfte 

das Zellverhalten beeinflussen können. 

 

Vorliegendes Forschungsprojekt befasst sich mit Stammzellen für ihre klinische Verwendung im 

interdisziplinären Bereich des TERM. Im Fokus der Untersuchungen steht das Verhalten von 

mesenchymalen Stammzellen (MSC) bei in vitro - Zellkultur und -differenzierung. Hierbei wird 

insbesondere auf die Reaktionen der MSC auf Moleküle, die sie produzieren und ausschütten, 

geschaut. Wie später in vorliegender Arbeit beschrieben, ist dies wichtig, weil die Bewahrung 

der MSC in ihrem undifferenzierten Status während der ex vivo -Manipulationen für das Tissue 

Engineering von besonderer Bedeutung ist.  

 

1.2 Tissue Engineering mit Stammzellen 

 

Charakteristisch für Stammzellen ist ihr Potenzial, sich selbst zu erneuern sowie ihre Fähigkeit, 

verschiedene Zelllinien zu generieren (Loeffler et al., 2002). 

Wie Abbildung 2 aufzeigt, gibt es verschiedene Arten von Stammzellen. 
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Abbildung 2: Stammzellbildung und -differenzierung (modifiziert nach www.bio-rad.com) 
 

Embryonale Stammzellen (ESC) kommen in der Blastozyste vor und sind pluripotent, d.h. sie 

können jeden möglichen Zelltyp im Körper bilden. Sie können auch unbegrenzt kultiviert und 

subkultiviert werden. Diese Fähigkeiten gehen während ihrer Entwicklung verloren; adulte 

Stammzellen sind weniger plastisch und können nur begrenzt in Kultur gezüchtet werden. 

 

ESC sind als Grundlage für TERM-Anwendungen theoretisch attraktiv (Jukes et al., 2010, 

Roobrouck et al., 2011). Sie besitzen jedoch erhebliche Nachteile. Die Gewinnung von ESC 

erfordert die Zerstörung von Embryonen. Dies wirft bis heute ungelöste ethische und moralische 

Fragen auf. Daneben sind ESC schwer zu kultivieren und es ist nicht auszuschließen, dass sie 

potentiell kanzerogen sind (Kuhn et al., 2010, Herberts et al., 2011). Die jüngste Entwicklung 

von induzierten, pluripotenten Stammzellen (iPS) verspricht, auf den Einsatz von ESC 

verzichten zu können (Illich et al., 2011, Wu et al., 2011, Harrison et al., 2014). Jedoch steht ihr 

klinischer Einsatz noch ganz am Anfang. 

 

Vor diesem Hintergrund haben sich adulte Stammzellen, wie MSC, als interessante Kandidaten 

für die Reparatur und Regeneration von mesenchymalem Gewebe, wie zum Beispiel Knochen 

und Knorpel, entwickelt. Ein anderer, praktischer Vorteil der MSC besteht in der Einfachheit 
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ihrer Gewinnung. Sie können durch eine simple Knochenmarkaspiration am Beckenkamm, im 

Bereich der Crista iliaca posterior, entnommen und leicht durch Plastik-Adhärenz isoliert 

werden. Letzteres ist eines von mindestens drei Kriterien, die die International Society for 

Cellular Therapy zur Definition von MSC festgelegt hat (Dominici et al., 2006). 

 

1.3 Mesenchymale Stammzellen (MSC) 

 

Die recht einfache Handhabung ihrer Isolierung und Vermehrung sowie ihr Multilinien-

Differenzierungspotenzial machen die multipotenten MSC zu vielversprechenden Kandidaten in 

der Klinik, um Struktur und Funktion von mesenchymalem Gewebe nach Verletzung oder 

Krankheit wiederherzustellen (Pittenger, 2008). Mehr als tausend PubMed-Publikationen zum 

Einsatz von MSC bei Gewebereparatur und -regeneration unterstreichen das außerordentliche 

medizinische Interesse an diesem Forschungsgebiet. 

 

Arnold Caplan hat das Konzept der MSC entwickelt und prägte ihren Namen „mesenchymale 

Stammzelle“ (Caplan, 1991). Allerdings entdeckte und charakterisierte Friedenstein die Zellen in 

den 1970er Jahren als Erster und beschrieb sie als plastisch haftende Fibroblasten-ähnliche 

Zellen aus dem Knochenmark (Friedenstein et al., 1968, Friedenstein, 1976).  

 

Wenngleich MSC ursprünglich aus Knochenmark isoliert wurden (Pittenger et al., 1999), 

enthalten auch verschiedene andere Gewebe und Organe MSC, u.a. Muskeln (Bosch et al., 

2000), Haut (Young et al., 2001), Synovialmembran (De Bari et al., 2001), spongiöser Knochen 

(Noth et al., 2002). Eine attraktive Quelle stellt zudem Fettgewebe dar, in welchem reichlich 

MSC vorkommen, die relativ einfach durch Liposuktion gewonnen werden können (Zuk et al., 

2001, Gimble et al., 2003). Eine ungelöste Frage in der Biologie der MSC ist, für welchen 

Einsatz welche Quelle die therapeutisch am besten Geeignete ist. Die Frage hierbei ist, ob MSC 

von verschiedenen Geweben äquivalent sind oder ob sie am wirkungsvollsten sind, wenn sie für 

das Gewebe zur Reparatur eingesetzt werden, aus dem sie ursprünglich stammen. Die 

Meinungen gehen in letztere Richtung, jedoch sind hier weitere Forschungsarbeiten notwendig 

(Bianco et al., 2013, Evans, 2013). 

 

Die MSC stellen eine Gruppe adulter Vorläuferzellen dar, die in Kultur in hohem Maße 

proliferieren können. Unter angemessenen Kulturbedingungen können sie als adhärenter 
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Monolayer über mehrere Passagen kultiviert werden, ohne ihre Fähigkeit zur Multilinien-

Differenzierung zu verlieren (Pittenger et al., 1999). Die Fähigkeit zur Multilinien-

Differenzierung wird auch als stemness bezeichnet.  

 

MSC können eine Vielfalt an verschiedenen, differenzierten Zell-Phänotypen bilden, wie zum 

Beispiel Muskel, Knochenmark und andere Gewebe mesenchymalen Ursprungs (Abbildung 3). 

Dies verschafft den Zellen die Möglichkeit, in einen großen Bereich von mesenchymalen 

Geweben an der Regeneration teilzunehmen. 

 

 
Abbildung 3: MSC Selbsterneuerung, Proliferation und Differenzierung (modifiziert nach Caplan et al., 2001). 
Multilinien-Differenzierung der MSC zu Osteoblasten, Chondrozyten und Adipozyten erfordert u.a. Dexamethason. 
 

Viele Forschungsgruppen haben sich intensiv mit dem therapeutischen Nutzen von MSC mit 

dem Ziel befasst, Knochen (Bueno et al., 2009, Noth et al., 2010, Dimitriou et al., 2011, Steinert 

et al., 2012), Knorpel (Noth et al., 2008, Noth et al., 2010, Huey et al., 2012, Gardner et al., 

2013, Wang et al., 2014), Sehnen sowie Bänder zu heilen (Hsu et al., 2010, Kuo et al., 2010, Lui 

et al., 2011). Es gibt viele Beispiele für ihren klinischen Einsatz; trotzdem fehlen bisher große, 
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randomisiert kontrollierte Studien (siehe http://www.clinicaltrials.gov, Register des US National 

Institute of Health (NIH) für klinische Studien, zuletzt besucht am 23.02.2015). Zum aktuellen 

Forschungsstand zum Einsatz von MSC in klinischen Studien existieren detaillierte Reviews 

(Giordano et al., 2007, Malgieri et al., 2010, Tolar et al., 2010, Trounson et al., 2011, Sharma et 

al., 2014). Bisher hat die US Food and Drug Administration (FDA) keine MSC-basierten 

Produkte zugelassen (http://www.fda.gov, zuletzt besucht am 16.03.2015). 

 

Interessant ist, dass MSC auch zu Kardiomyozyten differenzieren können. Sie könnten deshalb 

reizvoll für den Einsatz bei kardialem Remodeling nach Herzinfarkt sein (Shake et al., 2002, 

Pittenger et al., 2004). Mehrere klinische Versuche am Patienten haben hierzu bereits 

stattgefunden (Sheridan, 2013).  

 

Generell können MSC genetisch modifiziert werden, um ihr therapeutisches Potenzial 

möglicherweise zu erhöhen (Evans et al., 1995, Lieberman et al., 1999, Evans et al., 2009, 

Evans, 2011, Evans, 2012).  

 

MSC wurden zudem für die Behandlung von Osteogenesis Imperfecta (OI) untersucht (Horwitz 

et al., 2002, Marino et al., 2008). Hierbei können die Zellen entweder als allogenes Transplantat 

von nicht an OI erkrankten Probanden genutzt werden. Oder körpereigene Zellen werden 

genetisch modifiziert, um den genetischen Defekt zu korrigieren und können dann als autologes 

Transplantat verwendet werden. Eine praktische Schwierigkeit bei diesem Verfahren liegt in der 

mangelhaften Anhaftungsfähigkeit von Spender-MSC bei der Implantationsoperation (Le Blanc 

et al., 2005). Wenn dieses Engraftment-Problem überwunden werden kann, können native oder 

genetisch modifizierte MSC in Betracht gezogen werden, um OI, Osteoporose und andere 

ähnliche Krankheitszustände zu behandeln. 

 

In jüngerer Zeit haben MSC als mögliche Behandlungsmethode bei Osteoarthrose (OA) viel 

Aufmerksamkeit auf sich gezogen (Marino et al., 2008, Centeno et al., 2010). Eine Vielzahl an 

klinischen Studien ist in Durchführung, bei denen autologe MSC in OA-betroffene Gelenke 

gespritzt werden (http://www.clinicaltrials.gov, 22 Studien, davon 18 Studien mit autologen 

MSC aus Knochenmark, 4 Studien mit autologen MSC aus Fettgewebe, Stand 23.02.2015). 

Dieses Verfahren basiert auf der Annahme, dass die Zellen Faktoren sezernieren, die den 

Heilungsprozess positiv beeinflussen und Vorläuferzellen für die Geweberegeneration zur 

Verfügung stellen. ChondrogenTM ist beispielsweise ein MSC-basiertes Produkt, welches in OA-
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betroffene Kniegelenke gespritzt wird; es wird aktuell einer Phase I/II-Studie unterzogen (Osiris 

Therapeutics). 

 

So wie MSC als Quelle von Gewebevorläufern dienen, so werden ihnen auch immunsuppressive 

Eigenschaften zugeschrieben (Jorgensen et al., 2003, Ryan et al., 2007). Die Hämatoonkologen 

Lazarus und Gerson prüften die Fähigkeit der MSC, als Unterstützerzellen während der 

Transplantation von blutbildenden Stammzellen (HSC) zu fungieren (Lazarus et al., 1995). Dies 

führte letztlich zu Versuchen von Le Blanc et al., eine intravenöse Infusion von in vitro 

expandierten MSC als Alternativtherapie bei pädiatrischen Patienten mit steroidresistenter, 

akuter Graft-versus-Host Erkrankung (GVHD) zu testen (Le Blanc et al., 2004, Le Blanc et al., 

2008). Die klinische Anwendung von MSC zur Behandlung der pädiatrischen GVHD wurde in 

Kanada und Neuseeland jüngst zugelassen (Prochymal®; Osiris Therapeutics, 2012).  

Obwohl dies nicht direkt TERM betrifft, demonstrieren diese Studien, dass MSC in Menschen 

sicher sind und, zumindest bei einer Indikation, effektiv wirken. Dieser Nachweis ist sehr 

hilfreich, um die Akzeptanz zu steigern, MSC in menschlichen Zelltherapien zu verwenden.  

 

Eine zusätzliche wichtige Eigenschaft der MSC ist ihre Fähigkeit, nützliche Wachstumsfaktoren 

und Zytokine zu produzieren und auszuschütten. Mögliche Kandidaten sind in Tabelle 1 

aufgelistet.  

 

Neue Forschungsergebnisse legen nahe, dass die Fähigkeit der MSC, die Mikroumgebung eines 

Gewebes via Sekretion von löslichen Faktoren zu ändern, eine signifikante Rolle im Heilen von 

Gewebe spielt (Gnecchi et al., 2008, Djouad et al., 2009, Hocking et al., 2010). In der Tat könnte 

es sein, dass diese sekretorische oder „trophische“ Funktion (Caplan et al., 2006) wichtiger ist 

als ihre Fähigkeit zur Differenzierung (Phinney et al., 2007). Diese löslichen Faktoren sind 

imstande, das Verhalten von benachbarten Zellen (parakrine Aktivität) sowie von der eigenen 

MSC (autokrine Aktivität) zu beeinflussen.  

 

 

Wachstumsfaktor/Zytokin Abkürzung Referenz 

Angiopoetin-1 AGPT-1 (Gnecchi et al., 2008, Siegel et al., 2013) 

α4-Laminin α4-Laminin (Kuhn et al., 2010) 

Bone morphogenetic Protein-2 BMP-2 (Gnecchi et al., 2008) 

Bone morphogenetic Protein-6 BMP-6 (Gnecchi et al., 2008) 



 

 8 

Basaler Fibroblasten-

Wachstumgsfaktor 

bFGF (Siegel et al., 2013) 

Epidermaler Wachstumsfaktor EGF (Eom et al., 2014) 

Fibroblasten-Wachstumsfaktor-2 FGF-2 (Zaragosi et al., 2006, Gnecchi et al., 

2008, Eom et al., 2014) 

Fibroblasten-Wachstumsfaktor-4 FGF-4 (Eom et al., 2014) 

Fibroblasten-Wachstumsfaktor-7 FGF-7 (Gnecchi et al., 2008) 

FMS-like Tyrosinkinase-3-

Ligand 

Flt3l (Majumdar et al., 1998, Reese et al., 

1999, Cheng et al., 2003) 

Granulozyten-Kolonie 

stimulierender Faktor 

G-CSF (Haynesworth et al., 1996) 

Granulozyten-Makrophagen-

Kolonie stimulierender Faktor  

GM-CSF (Guzmán-Morales et al., 2009) 

Hepatozyten-Wachstumsfaktor HGF (Gnecchi et al., 2008, Park et al., 2010, 

Siegel et al., 2013, Eom et al., 2014) 

Insulinähnlicher-

Wachstumsfaktor-1 

IGF-1 (Gnecchi et al., 2008) 

Interleukin-1 IL-1 (Gnecchi et al., 2008, Guzmán-Morales et 

al., 2009) 

Interleukin-3 IL-3 (Reese et al., 1999) 

Interleukin-4 IL-4 (Guzmán-Morales et al., 2009) 

Interleukin-6 IL-6 (Haynesworth et al., 1996, Majumdar et 

al., 1998, Kim et al., 1999, Reese et al., 

1999, Cheng et al., 2003, Gnecchi et al., 

2008, Guzmán-Morales et al., 2009, 

Pricola et al., 2009, Kuhn et al., 2010, 

Park et al., 2010) 

Interleukin-7 IL-7 (Majumdar et al., 1998) 

Interleukin-8 IL-8 (Majumdar et al., 1998, Park et al., 2010) 

Interleukin-10 IL-10 (Guzmán-Morales et al., 2009) 

Interleukin-11 IL-11 (Haynesworth et al., 1996, Majumdar et 

al., 1998, Kim et al., 1999, Cheng et al., 

2003, Gnecchi et al., 2008) 

Interleukin-12 IL-12 (Majumdar et al., 1998) 
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Interleukin-14 IL-14 (Majumdar et al., 1998) 

Interleukin-15 IL-15 (Majumdar et al., 1998) 

Leukämie-Hemmfaktor LIF (Haynesworth et al., 1996, Reese et al., 

1999, Cheng et al., 2003, Gnecchi et al., 

2008, Siegel et al., 2013) 

Makrophagen-Kolonie 

stimulierender Faktor 

M-CSF (Haynesworth et al., 1996, Majumdar et 

al., 1998, Gnecchi et al. 2008) 

Makrophagen-Hemmfaktor MIF (Gnecchi et al., 2008) 

Nervaler Wachstumsfaktor NGF (Siegel et al., 2013) 

Stammzellfaktor SCF (Haynesworth et al., 1996, Majumdar et 

al., 1998, Reese et al., 1999, Cheng et al., 

2003, Gnecchi et al., 2008) 

Transforming Growth Factor-ß TGF-ß (Gnecchi et al., 2008, Park et al., 2010) 

Tumornekrosefaktor-α TNF-α (Gnecchi et al., 2008, Guzmán-Morales et 

al., 2009) 

Vascular Endothelial Growth 

Factor 

VEGF (Gnecchi et al., 2008, Guzmán-Morales et 

al., 2009, Park et al., 2010, Siegel et al., 

2013) 
Tabelle 1: Wachstumsfaktoren und Zytokine, die von hMSC potentiell ausgeschüttet werden  
 

Dementsprechend lautet die Hypothese der vorliegenden Untersuchung, dass diese Faktoren 

daran beteiligt sind, die stemness der Stammzellen während ihrer Vermehrung in in vitro-

Zellkultur aufrechtzuerhalten. Mein Projekt fokussiert hierbei auf die autokrinen sowie 

parakrinen Reaktionen. Dies ist sehr wichtig für das Tissue Engineering, weil die MSC vor ihrer 

klinischen Verwendung in vitro vielfach vermehrt werden müssen, ohne dabei ihren Phänotyp zu 

verlieren. Wie später erläutert, existiert bisher genau zu diesem Thema erstaunlich wenig 

Literatur. 

 

Die vorliegende Studie prüft die drei am häufigsten untersuchten, mesenchymalen Zelllinien: 

Die Differenzierung zu Knochenzellen (Caplan, 1991, Haynesworth et al., 1992), Knorpelzellen 

(Johnstone et al., 1998, Mackay et al., 1998, Yoo et al., 1998) und Fettzellen (Pittenger et al., 

1999). Das Potenzial der Dreilinien-Differenzierung zu Osteoblasten, Chondrozyten und 

Adipozyten stellt außerdem das zweite von den mindestens drei Kriterien für die Definition von 

MSC durch die International Society for Cellular Therapy dar (Dominici et al., 2006). 
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1.4 Die Rolle Dexamethasons bei der MSC-Differenzierung und dessen 

Relation zur stemness 

 

Wie bereits oben dargelegt, ist das Multilinien-Differenzierungspotenzial ein Charakteristikum 

der MSC. Dies wurde bereits sehr intensiv unter in vitro - Bedingungen untersucht. Dabei 

wurden auch die entsprechenden Stimuli definiert, die für die Differenzierung zu ganz 

spezifischen Zelllinien in vitro erforderlich sind.  

 

Das Hinzufügen von Dexamethason ist nötig, um die MSC in vitro dahingehend zu stimulieren, 

einen jeweils mehr osteogenen, chondrogenen oder adipogenen Phänotyp anzunehmen (Pittenger 

et al., 1999). Das synthetische Glukokortikoid besitzt sehr starke anti-inflammatorische und 

immunsuppressive Eigenschaften. Bisher ist völlig ungeklärt, warum Dexamethason zur 

Einleitung der Differenzierung der MSC erforderlich ist. Es ist sonderbar, dass für dieses 

Phänomen experimentelle Beobachtungen fehlen. 

 

Im Fall der Osteogenese scheinen allein physiologische Konzentrationen an Dexamethason 

auszureichen, um die Schlüsselelemente des osteoblastischen Phänotyps in vitro zu induzieren 

(Kim et al., 1999, Guzmán-Morales et al., 2009) und die osteogene Differenzierung zu fördern 

(Miller et al., 2011). Dies gilt, obwohl hoch dosiertes oder längerfristig gegebenes 

Dexamethason Knochenverlust fördern und das Osteoporoserisiko steigern kann, wie man es 

beim Cushing-Syndrom beobachtet (Cheng et al., 1996). Dexamethasonsupplementierung ist in 

Forschungslaboren eine etablierte Methode, um die Differenzierung von MSC in Osteoblasten in 

vitro zu induzieren. 

 

Um die Differenzierung zu Chondrozyten einzuleiten, müssen MSC in eine rundliche 

Morphologie überführt werden und sich verdichten. In der Praxis geschieht dies durch 

Zentrifugieren der MSC zu einem Pellet. Hierbei ist zudem die Ergänzung eines 

Wachstumsfaktors wie Transforming Growth Factor-ß (TGF-ß) als Zusatz zu Dexamethason 

nötig (Johnstone et al., 1998). 

 

Für die Adipogenese ist es neben Dexamethason unerlässlich, Isobutylmethylxanthin, 

Indomethazin und Insulin hinzuzufügen (Pittenger et al., 1999). 
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Alle drei Zelllinien sind unterschiedlich und benötigen verschiedene Differenzierungsstimuli 

(Abbildung 3). Es ist erstaunlich, dass in allen Fällen Dexamethason hinzugefügt werden muss, 

um die MSC-Differenzierung zu stimulieren.  

 

1.5 Fragestellung 

 

Eine große Herausforderung bei der klinischen Verwendung von MSC im Bereich des TERM ist 

ihre kontrollierte Differenzierung zu ihren spezifischen Phänotypen.  

Dabei ist auch der Frage nachzugehen, ob und wie die MSC ihre Fähigkeit zur Multilinien-

Differenzierung während der multiplen Zellteilungen aufrechterhalten. Letzteres ist die 

notwendige Voraussetzung, um eine ausreichende Anzahl an Zellen für den klinischen Einsatz 

zu gewinnen.  

 

Wie bereits erwähnt, behaupten einige Studien aus der Literatur, dass lösliche Faktoren, welche 

von den MSC gebildet und ausgeschüttet werden, die Zellen in ihrem undifferenzierten Status 

bewahren. Eine Möglichkeit, die Eigenschaften dieser Faktoren zu untersuchen, stellt die 

Bestimmung ihrer Aktivität in CM dar. 

 

Konkret befasst sich die vorliegende Studie mit der Frage, welchen Effekt CM auf das 

Zellüberleben und auf Dexamethason-induzierte Osteogenese, Chondrogenese und Adipogenese 

der hBMSC in in vitro - Langzeitkultur hat.  

Das Ziel hierbei ist, die Hypothese zu testen, dass MSC einen/mehrere lösliche Faktoren 

produzieren, die die Differenzierung zu Osteoblasten, Chondrozyten und Adipozyten hemmen 

(Abbildung 4) und dadurch die stemness während der multiplen, für das Tissue Engineering 

nötigen Zellpassagen bewahren. 

 

Das vorliegende Projekt beschäftigt sich auch mit der Frage, warum in allen Fällen 

Dexamethason verwendet werden muss, um die MSC-Differenzierung zu induzieren.  

Eine Stärke der Hypothese ist, dass sie eine mögliche Erklärung für den Effekt von 

Dexamethason liefert – nämlich, dass Dexamethason die Synthese dieser möglichen stemness-

Faktoren hemmt (Abbildung 4).  
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Abbildung 4: Hypothese der hier vorliegenden Studie: MSC produzieren und schütten lösliche Faktoren aus, die die 
Zellen in ihrem undifferenzierten Status bewahren. Subhypothese: Dexamethason hemmt diese 
Differenzierungsinhibitoren und ermöglicht dadurch die Differenzierung der MSC. 
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2 Methoden 
 

Alle Experimente wurden im Labor von Prof. Christopher H. Evans im „Center for Advanced 

Orthopaedic Studies“ am Beth Israel Deaconess Medical Center der Harvard Medical School in 

Boston, USA durchgeführt. Meine Betreuerin in Boston war Elisabeth Ferreira PhD. 

 

Für die Experimente wurden als Erstes hBMSC in verschiedenen Konzentrationen in Kultur 

gesät und kultiviert. Auf diese Weise wurde in vitro das erwünschte CM, in dem sich die 

potentiellen autokrinen und parakrinen Faktoren befinden, gewonnen. 

Parallel hierzu wurden neue Kulturen mit hBMSC durch einen sich wiederholenden Kreislauf 

aus Saat, Proliferation, Trypsinierung und Wiederaussaat in einer ausreichenden Menge für die 

Experimente gewonnen.  

Diesen neuen Kulturen wurde dann das gewonnene CM der verschiedenen Zellsaatdichten 

hinzugefügt.  

Schließlich wurden diese Empfängerzellen auf ihre Fähigkeit zur Differenzierung zu 

Osteoblasten, Chondrozyten oder Adipozyten hin untersucht.  

 

2.1 Zellbiologische Methoden 

 

Für alle Experimente wurden humane MSC (hMSC) verwendet. Alle Arbeiten mit vitalen Zellen 

wurden stets an einer Sicherheitswerkbank unter sterilen Bedingungen durchgeführt.  

Die angewandten zellbiologischen Techniken umfassen die Isolierung und Kultivierung von 

Zellen, die Zellpassage, die Bestimmung der Zellzahl und das Einfrieren sowie das Auftauen von 

Kulturzellen. Grundlegender Bestandteil der Arbeit war die Konzentrierung konditionierten 

Zellmediums und die Dreilinien-Differenzierung der MSC zu Osteoblasten, Chondrozyten und 

Adipozyten. 

Wenn nicht anders angegeben, wurden alle verwendeten Medien und Lösungen vor Gebrauch im 

Wasserbad bei 37°C zeitnah zum Experiment erwärmt.  
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2.1.1 MSC Isolierung aus humanem Knochenmark (hBMSC) 

Hauptbezugsquelle der hMSC ist das menschliche Knochenmark. Die Zellen werden dann als 

human bone marrow-derived mesenchymal stem cells bezeichnet (hBMSC). In der vorliegenden 

Arbeit wurde es drei anonymisierten Patienten (Tabelle 2) während einer  

Hemiendoprothesenoperation der Hüfte (HEP) im Massachusetts General Hospital oder Brigham 

and Women's Hospital (Boston, MA, USA) mit der Erlaubnis des lokalen Institutional Review 

Boards (IRB) entnommen. HBMSC von mindestens 2 dieser Patienten wurden für jeden 

Versuch verwendet. 

 

Alter (Jahre) Geschlecht Indikation der HEP 

81  männlich Dislozierte Hüfte 
51 weiblich Posttraumatische Arthritis 

bei Z.n. Azetabulumfraktur  
37 männlich Posttraumatische Arthritis 

bei Z.n. Azetabulumfraktur  
Tabelle 2: Patienteninformation 
 
 
HBMSC-Kulturen wurden mithilfe der von Porter et al. beschriebenen Methoden (Porter et al., 

2009) etabliert. Knochenmarksmaterial wurde aseptisch mit einem Reamer-Irrigator-Aspirator 

(RIA) gewonnen. Die Knochenpartikel wurden mit einem In-line Biomed Redi-Flow® open 

pore- Filter entfernt. Der Durchfluss mit den zellkernhaltigen Markzellen wurde in einem 

sterilen Behälter aufgefangen. Daraufhin wurden die Zellen mittels einer 30-minütigen 

Dichtegradientenzentrifugation bei 400 G und 4°C isoliert. 

Anschließend wurden die mononuklearen Zellen in Zellkulturflaschen (175 cm2) mit einer 

Konzentration von 1,8x105 zellkernhaltigen Zellen/cm2 in Standardmedium kultiviert, welches 

DMEM-low glucose (DMEM-LG mit 1 mM Pyruvat, Mediatech), 10% fetales Rinderserum 

(FBS, Thermo Scientific) und 1% Antibiotika-Antimykotika (AbAm, Invitrogen) enthielt. 

Nach Primärkultur wurde ein Teil der Zellen zur Lagerung eingefroren. Ein anderer Teil wurde 

expandiert, bis für alle vorgesehenen Experimente eine ausreichende Anzahl von Zellen und eine 

ausreichende Menge von konditioniertem Medium (CM) vorhanden war. CM beschreibt ein 

Medium, in welchem die Zellen für eine Zeitperiode kultiviert werden und in welches sie 

verschiedene Substanzen, wie Metabolite, Wachstumsfaktoren und extrazelluläre Matrixproteine 

ausschütten. 

Die Plastizität der Stammzellen und ihr Multilinien-Differenzierungspotenzial in Richtung 

verschiedener mesenchymaler Zelllinien wurden im Vorfeld im Labor getestet (Porter et al., 
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2009, Wehling et al., 2009); auch wurden sie als CD 44+, CD 90+, CD 105+ und CD 45- 

identifiziert (Porter et al., 2009) . 

 

2.1.2 Zellkultur 

Alle Zellen wurden in vitro in Zellkulturflaschen (175 cm² Adhärenzfläche) in einem Inkubator 

in einer mit Wasserdampf gesättigten Atmosphäre bei 37°C und 5% CO2-Begasung gehalten und 

gezüchtet. Die Zellen wurden in Standardmedium, welches DMEM-LG, 10% FBS und 1% 

AbAm enthielt, kultiviert. 

 

Alle 3 Tage wurde das Medium gewechselt. Bei einer Konfluenz von ca. 80% wurden die in der 

Primärkultur liegenden hBMSC subkultiviert, um schädliche Effekte einer anhaltend hohen 

Zelldichte zu vermeiden. Hierzu wurden die adhärenten Zellen mit einer Mischung aus 0,05% 

Trypsin (Invitrogen) und 1 mM EDTA (Invitrogen) von der Oberfläche gelöst.  

Dafür wurden die Zellen vorerst mit Phosphat-gepufferter Salzlösung (PBS, Mediatech) 

gewaschen, um jegliche Spuren von Serumproteinen zu entfernen, die die Aktionen von Trypsin 

inhibieren. Anschließend folgte eine ca. 5-minütige Inkubation mit Trypsin-EDTA. Nach 

erfolgreicher Lösung der Zellen vom Plastik, welche durch häufiges Mikroskopieren überwacht 

wurde, wurde frisches Standardmedium hinzugefügt; die im FBS enthaltenen 

Proteinaseinhibitoren sind dabei dafür verantwortlich, die Reaktion zu stoppen und auf diese 

Weise Schäden an den Zellen zu verhindern.  

Nach Bestimmung der Zellzahl, wie unter 2.1.4 beschrieben, wurden die Tochterzellen mit einer 

Konzentration von 5.000 Zellen/cm2 in 175 cm2 Zellkulturflaschen in 25 ml Standardmedium 

überführt.  

Dieser Kreis aus Zellsaat, Proliferation, Passage bei ca. 80%-iger Konfluenz und Aussaat der 

Tochterkultur erlaubte die Vermehrung der Stammzellen. Diese Schritte wurden wiederholt, bis 

eine ausreichende Menge an hBMSC für die geplanten Versuche vorhanden war. Bis zu maximal 

7 Passagen durften die Zellen hierbei durchlaufen.   

 

Weil die Retention der stemness durch die Zellsaatdichte beeinflusst wird (Colter et al., 2000, 

Sekiya et al., 2002), wurden die hBMSC-Spenderkulturen für die Gewinnung von CM in 

unterschiedlichen Dichten von 1.000, 5.000 und 10.000 Zellen/cm2 in 175 cm2 

Zellkulturflaschen in Standardmedium gesät. Dieses Vorgehen ergab Zellkulturen, deren Zellen 

sich in verschiedenen Raten teilten und die verschiedene Zell-zu-Zell-Kontaktgrade aufwiesen. 

So war es möglich, den Einfluss der Zellteilung und des Zell-zu-Zell-Kontaktes auf die 
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Produktion von möglichen Faktoren zu untersuchen.  

Alle 3 Tage wurde das konditionierte Medium von diesen unterschiedlich angesäten Kulturen 

gesammelt. Zugleich wurden die Zellen trypsiniert, gezählt und in ihrer Originaldichte erneut 

ausgesät. Hierbei wurden Zellen mit einer Zellsaatdichte von 5.000 und 10.000 Zellen/cm2 bei 

einer ca. 80%igen Konfluenz, dagegen Zellen mit einer Zellsaatdichte von 1.000 Zellen/cm2 bei 

einer Konfluenz von 50% trypsiniert. Dadurch blieb das Maß der Zellteilung und des 

Zellkontaktes weitgehend konstant. 

Eine zusätzliche Kontrollgruppe enthielt Zellen, die mit einer Dichte von 1.000 Zellen/cm2 

beimpft waren und die bis zu einer 90%igen Konfluenz ohne Zellpassage expandieren durften 

(„upc“ in folgenden Abbildungen). Das Medium wurde auch hier alle 3 Tage gesammelt. 

Diese Schritte wurden wiederholt, bis ausreichend CM für die geplanten Versuche gewonnen 

war. Dies dauerte im Durchschnitt 30 Tage.  

 

2.1.3 Konzentrierung und partielle Reinigung des konditionierten Mediums  

Zur Konzentrierung und partiellen Reinigung der im CM sezernierten Faktoren wurden 

zentrifugale Filter (Centricon® Plus-70, Millipore) gemäß den Vorschriften des Herstellers 

verwendet (Abbildung 5). 

Die Columns hatten einen Cutoff bei einem Molekulargewicht (MW) von 10.000 Dalton. Dies 

erlaubte die Gewinnung von Proteinen und anderen Molekülen, die größer als 10.000 Dalton 

sind. Kleinere Moleküle wurden entfernt. 

Ein Filter reinigte und konzentrierte 70 ml gesammeltes CM auf eine Restsuspension von 450 µl 

herunter. Dieses Konzentrat wurde für die Untersuchung der Osteo- und Adipogenese wiederum 

in 45 ml DMEM-LG, 10% FBS und 1% AbAm gelöst. Zur Untersuchung der Chondrogenese 

wurde das Konzentrat in 45 ml DMEM-high glucose (4,5 g/l) (DMEM-HG, Mediatech), 1% ITS 

+ Premix (BD Biosciences) und 1% AbAm resuspendiert.  

Letztendlich resultierte 70 ml CM in der Rückgewinnung von 45 ml frischem Medium, das 

Komponenten vom originalen CM enthielt; ohne Moleküle, die kleiner als 10 KDa groß waren 

und ca. 1,6-fach konzentriert. Dieses Medium wird konzentriertes CM (cCM) genannt. 

Um Variationen zwischen verschiedenen Chargen zu vermeiden, wurde jedes Mal ausreichend 

cCM für die Ausführung einer kompletten Serie an Experimenten produziert. 

 

Um einen potentiell dosisabhängigen Effekt festzustellen, wurden verschiedene Verdünnungen 

des cCM untersucht: 

- keine Verdünnung = 100% konditioniertes Medium (+ 0% Standardmedium) 
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- 1,5-fache Verdünnung = 66,6% konditioniertes Medium (+33,3% Standardmedium) 

- 2-fache Verdünnung = 50% konditioniertes Medium (+ 50% Standardmedium) 

- 4-fache Verdünnung = 25% konditioniertes Medium (+ 75% Standardmedium) 

- 10-fache Verdünnung = 10% konditioniertes Medium (+90% Standardmedium) 

 

 
Abbildung 5: Methode zur Produktion eines konzentrierten, konditionierten Mediums (cCM). (upc) bedeutet, die 
Zellen durften bis zu einer Konfluenz von ca. 90% ohne Zellpassage proliferieren. 
 

2.1.4 Bestimmung der Zellzahl 

Die Zellzahl wurde mithilfe einer Neubauer Zählkammer bestimmt (HC, Reichert). Für ein 

akkurates Ergebnis wurden jeweils 10 µl Proben an trypsinierter Zellsuspension in 2 

Hämatozytometer transferiert und die Zellen in allen 9 Großquadraten unter einem 10X Objektiv 

im Mikroskop gezählt (HC#1 und HC#2). 
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Die Zellzahl pro ml Lösung kann mit folgender Formel berechnet werden:  

 

2.1.5 Einfrieren und Auftauen der Zellen 

Nach Isolierung und Proliferation der hBMSC wurden überschüssige Zellen zur weiteren 

Verwendung eingefroren. 

Hierzu wurden die Zellen bei einer ca. 80%-igen Konfluenz von den Zellkulturplatten mit 

Trypsin-EDTA (Life Technologies) abgelöst und die Zellzahl bestimmt.  

Die Zellsuspension wurde bei 400 G und Raumtemperatur für 5 Minuten zu Pelletzellen 

zentrifugiert. Der Zellüberstand wurde verworfen. Anschließend wurden die Zellen mit einer 

Konzentration von 1x106 Zellen/ml in einem 4°C kalten Gefriermedium mit 10% 

Dimethylsulfoxid (DMSO; RecoveryTM Cell Culture Freezing Medium, Life Technologies) 

resuspendiert und in 1 ml Aliquots in Kryogefäßen für eine Stunde im Kühlschrank (4°C) 

inkubiert. Die Zellen wurden sequentiell eingefroren, erst bei -20°C für eine Stunde, 

anschließend bei -80°C für eine Stunde und letztlich in flüssigem Stickstoff bei -180°C für 

Langzeitlagerung.  

 

Vor Beginn eines neuen Versuchs wurden die kryokonservierten Zellen aus dem Stickstofftank 

unmittelbar zum Auftauen in ein 37°C warmes Wasserbad überführt. Nach Verflüssigung des 

Mediums erfolgte umgehend eine Verdünnung mit Standardmedium. Daraufhin wurden die 

Zellen bei 400 G und 4°C für 10 Minuten zentrifugiert, in eine Zellkulturflasche (75 cm2 

Adhärenzfläche) transferiert und kultiviert. 

Ein Tag später war es notwendig, das Medium zu wechseln, um die Konzentration des im 

Gefriermedium enthaltenen DMSO zu reduzieren, sowie die toten oder nicht-adhärenten Zellen, 

die unerwünschte Faktoren produzieren könnten, zu eliminieren.  

 

2.1.6 Zelldifferenzierung 

2.1.6.1 Osteogene Linie 

Osteogene Differenzierung erfolgte nach allgemein anerkanntem Verfahren (Jaiswal et al., 

1997). 

 

 

 

 

 

   

   Zellen pro ml = 
          (Zellen HC #1 + Zellen HC #2)  

    
9 x 2 

     x  Verdünnungsfaktor  x 104 
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Passage 4 und 6 hBMSC wurden mit einer Dichte von 5.000 Zellen/cm2 in dreifacher 

Ausführung in 24-well Zellkulturplatten in 0,4 ml/well DMEM-LG, 10% FBS und 1% AbAm 

gesät. 24 Stunden später wurde den Zellen das cCM von Kulturen, die, wie vorher beschrieben 

wurde, in unterschiedlichen Dichten gesät wurden, hinzugefügt.  

Dem Medium wurde 50 µg/ml Ascorbinsäure (Sigma) in An- oder Abwesenheit von 10-7 M 

Dexamethason (Sigma-Aldrich) als osteogener Induktor supplementiert. Am 9. Tag nach cCM-

Exposition wurde 10 mM ß-Glycerolphosphat (Sigma-Aldrich) als Phosphatquelle zur 

Mineralablagerung dem Medium hinzugefügt.  

Zwei Kulturgruppen wurden etabliert. Das Medium der Kontrollgruppe beinhaltete frisches 

Standardmedium oder cCM mit 50 µg/ml Ascorbinsäure und 10 mM ß-Glycerolphosphat. Das 

Medium der anderen Gruppe wurde mit 10-7 M Dexamethason supplementiert. 

 

Die Medien wurden alle 3 Tage für 3 Wochen gewechselt.  

Der osteoblastische Phänotyp wurde, wie später im Detail beschrieben, mittels Quantifizierung 

der Alkalischen Phosphatase (AP) am 10. Tag und der Kalziumablagerung der mineralisierenden 

Zellen am 21. Tag bestimmt. Außerdem wurde die Kalziumdeposition durch Alizarinrot-Färbung 

am 21. Tag histologisch beurteilt. 

Zellüberleben und -proliferation wurden durch Messung des DNA-Gehaltes der Zellmonolayer 

am 10. und 21. Tag nach cCM-Addition evaluiert.  

Der Effekt des cCM von Kulturen mit der höchsten Zellsaatdichte (10.000 Zellen/cm2) auf die 

Expression von Knochenmarkergenen wurde anhand einer quantitativen Polymerase-

Kettenreaktion (qPCR) bewertet. Zu diesem Zweck wurden die Zellen vorerst in einer Dichte 

von 5.000 Zellen/cm2 in dreifacher Ausführung auf 6-well Zellkulturplatten in 0,8 ml/well 

Standardmedium gesät, cCM hinzugefügt und Osteogenese induziert. Die Isolierung der RNA 

für die Reverse Transkription und qPCR wurde an Tag 10 und 21 nach cCM-Exposition 

durchgeführt.  

 

2.1.6.2 Chondrogene Linie 

Die Chondrogenese der hBMSC erfolgte gemäß Standardmethoden unter Gebrauch von Pellet-

Kulturen (Yoo et al., 1998, Penick et al., 2005).  

HBMSC wurden mittels Trypsinierung und Zentrifugieren für 10 Minuten bei 400 G und 4°C 

gewonnen. Die Zellen wurden in einer Lösung mit serumfreien DMEM-high glucose (DMEM-

HG mit 1 mM Pyruvat, Mediatech) und 1% AbAm gemischt, um eine finale Zellkonzentration 

von 1x106 Zellen/ml zu erreichen. Diese Zellsuspension wurde möglichst homogen in 200 µl 
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große Aliquots jeweils in eine Kavität der 96-Mikrotiterplatten (Corning) mit einer 

Konzentration von 200.000 Zellen/well verteilt. 

Im Unterschied zu den für Zellkultur verwendeten Polystyrenplatten bestanden die Platten für 

Pelletkultur aus Polypropylen, damit die Zellen am Plastik nicht haften blieben. Dies half, die 

Integrität der Pellets aufrechtzuerhalten.  

Die Platten wurden bei 400 G und 4°C 8 Minuten lang zentrifugiert. Dies gewährleistete die 

Bildung eines Zellpellets am Boden der Kavität, welche für nachfolgende Chondrogenese 

notwendig war. 

Der Überstand wurde vorsichtig aspiriert und mit 0,2 ml/well serumfreien DMEM-HG, 1% 

AbAm und 1% ITS+Premix (BD Biosciences) ersetzt. Die Zellen wurden bei 37°C und 5% CO2 

inkubiert. 

24 Stunden später wurde das Medium durch ein chondrogenes Wachstumsmedium mit oder ohne 

cCM ersetzt. Dieses bestand aus DMEM-HG, 1% AbAm, 1% ITS+Premix, 40 µg/ml Prolin 

(Sigma-Aldrich) und 50 µg/ml Ascorbinsäure-2-Phosphat (Sigma). Je nach Studiengruppe 

wurden zusätzlich 10-7 M Dexamethason und/oder 10 ng/ml rekombinantes humanes 

Transforming Growth Factor-β1 (TGF-ß1; Pepro Tech) (Johnstone et al., 1998) supplementiert. 

TGF-β1 fungierte hier als Wachstums- und Differenzierungsfaktor und verbesserte die 

Chondrogenese der hBMSC in diesem Setting (Hanada et al., 2001). 

 

Die Pellets bildeten frei schwimmende Zellaggregate innerhalb der ersten 24 Stunden. Das 

Medium wurde alle 2 bis 3 Tage für 4 Wochen gewechselt. Die Zellaggregate wurden am 28. 

Tag geerntet und für knorpelspezifische Tests herangezogen.  

 

2.1.6.3 Adipogene Linie 

Für die Dexamethason-induzierte Adipogenese wurden hBMSC mit einer Dichte von 5.000 

Zellen/cm2 in dreifacher Ausführung in 24-well Zellkulturplatten in 0,4 ml/well DMEM-LG, 

10% FBS und 1% AbAm gesät. 24 Stunden später folgte der Zusatz von cCM zu den Zellen und 

adipogenes Wachstumsmedium wurde hinzugefügt, welches 5 µg/ml Insulin (Sigma), 0,5 mM 

IBMX (3-Isobutyl-1-Methylxanthin, Sigma-Aldrich), 60 µM Indomethazin (Sigma) und 10-7 M 

Dexamethason (Sigma-Aldrich) enthielt (Pittenger et al., 1999). Letzteres fehlte in den 

Kontrollkulturen.  

Das Medium wurde alle 3 Tage für 3 Wochen gewechselt. Die adipogene Differenzierung wurde 

histologisch mittels Oil Red O-Färbung, welche Lipidvakuolen aufdeckt, an Tag 21 nach cCM-

Exposition beurteilt. 
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2.2 Analysemethoden 

 

Folgende Methoden zur Untersuchung der Proliferation und Differenzierung der hBMSC wurden 

angewandt.  

 

2.2.1 Messung des DNA-Gehaltes der hBMSC-Monolayerkulturen 

Zellviabilität und -proliferation wurden durch Bestimmung des DNA-Gehaltes der 

Zellmonolayerkulturen an Tag 10 und 21 nach cCM-Zugabe evaluiert.  

In einem ersten Schritt wurden die Zellen durch 400 µl Trypsin/well trypsiniert. Nach einer 20-

minütigen Inkubationszeit bei 37°C wurde diesen 400 µl/well 2X TNE Puffer hinzugefügt. Es 

folgten 3 Zyklen, bei denen die Zellen im Wechsel jeweils für 18 Minuten bei -80°C eingefroren 

und bei 37°C aufgetaut wurden. Dadurch wurde die DNA freigesetzt. 

 

Zur Quantifizierung des Gehalts an doppelsträngiger DNA (dsDNA) wurde das Quant-iTTM 

PicoGreen® dsDNA Assay Kit (Invitrogen) verwendet. Das Kit enthält ein ultra-sensitives, 

fluoreszentes Anfärbereagens, welches an dsDNA bindet und diese dadurch detektiert. 

Die Methode wurde nach Herstellerangaben durchgeführt.  

 

Zusammenfassend wurde 100 µl Zelllysesuspension jeder Versuchsreihe jeweils in zweifacher 

Ausführung in wells einer schwarzen, lichtundurchlässigen 96-well Zellkulturplatte transferiert. 

100 µl/well 1X TE Puffer, der das fluoreszente Anfärbereagens enthält, wurde den Zellen 

hinzugefügt. Die Zellkulturplatten wurden vor Licht geschützt und bei Raumtemperatur für 5 

Minuten inkubiert.  

Die Fluoreszenz als Maß für den DNA-Gehalt wurde schließlich mittels eines 

Mikroplattenlesegerätes (SynergyMx, BioTek Instruments) bei einer Exzitationswellenlänge von 

485 nm und einer Emissionswellenlänge von 538 nm gemessen. Die DNA-Konzentration wurde 

anschließend mithilfe einer Standardkurve berechnet. 

 

Im Falle der chondrogenen Zellpellets wurden Proben für das Dimethylmethylenblau (DMMB) 

Dye Binding Assay (Farndale et al., 1986), welches unter 2.2.3. beschrieben wird, vorbereitet. 

Die Pellets wurden 5 Mal verdünnt und dann wurde 5 µl der Probe mit 20 µl 1X TE Puffer 

vermischt. Für das Quant-iTTM PicoGreen® dsDNA Assay wurde 100 µl 1X TE 

Puffer/Picogreen® Anfärbereagens zu den 25 µl Proben hinzugefügt. Die Fluoreszenz wurde bei 
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einer Exzitationswellenlänge von 485 nm und einer Emissionswellenlänge von 538 nm 

gemessen.  

 

2.2.2 Analyse der Osteogenese  

2.2.2.1 Bestimmung der alkalischen Phosphataseaktivität 

Die Bestimmung der alkalischen Phosphataseaktivität ist ein etablierter, früher Marker der 

Osteogenese. Die alkalische Phosphatase (AP) dient dazu, Phosphat von passenden Substraten 

zur Bildung von Hydroxylapatit zu lösen. 

Unter den experimentellen Bedingungen einer Zellkultur hydrolysiert die AP das Phosphat vom 

ß-Glycerolphosphat. Das nun freie Phosphation präzipitiert mit Kalzium, um eine mineralisierte 

Matrix zu bilden, das Kalziumhydroxylapatit.  

In der vorliegenden Arbeit wurde die AP-Aktivität nach Standardmethoden gemessen (Porter et 

al., 2009). Die Zellen wurden zweimal mit 1X PBS gewaschen. 250 µl/well synthetisches 

Phosphatasesubstrat, d.h. p-Nitrophenolphosphat (PNPP, Sigma-Aldrich), wurde den Zellen 

hinzugefügt. Nach einer 10-minütigen Inkubation bei 37°C wurde die Reaktion gestoppt, indem 

die Proben in Eppendorfröhrchen überführt wurden, die 250 µl 1 M Natriumhydroxid (NaOH) 

enthielten. Die Hydrolyse von PNPP und somit die Freisetzung von p-Nitrophenol (PNP, Sigma-

Aldrich) wurde als Wechsel in der optischen Dichte bei 410 nm durch Verwendung eines 

Mikroplattenlesegerätes (SynergyMx, BioTek Instruments) erfasst. Die resultierende AP-

Aktivität wurde zum DNA-Gehalt jeder Probe normalisiert und als nmol pnp/min/ng DNA 

ausgedrückt. 

 

2.2.2.2 Bestimmung der Kalziumablagerung 

Ausgefälltes Kalzium ist ein Indikator für den Mineralisierungsgrad von differenzierten Zellen 

und fungiert als später Marker der Osteogenese. In der vorliegenden Arbeit wurde zum 

Monitoring der Kalziumablagerung das QuantiChromTM Calcium Assay Kit (BioAssay Systems) 

verwendet. 

Durch vorsichtiges Aspirieren des Mediums, zweifaches Waschen der Zellen mit 1X PBS 

(Mediatech) und anschließendes Hinzufügen von 0,4 ml/well 4% Paraformaldehyd (pH 7,4; 

Sigma-Aldrich) für 30 Minuten bei Raumtemperatur wurden die Zellkulturen fixiert. Nach 

Entfernung des Paraformaldehyds wurden die Zellen zweimal mit kaltem, entionisiertem Wasser 
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gewaschen. Das Paraformaldehyd zu entfernen war wichtig, um dessen Reaktion mit 

Hydrogenchlorid (HCl) im Kalziumassay zu verhindern. 

Nach 20-minütigem Trocknen an der Luft wurde den Zellen 0,5 ml/well 0,6 N HCl hinzugefügt, 

um das gefällte Kalzium zu lösen. Über Nacht wurden die Platten auf einem Horizontalschüttler 

bei Raumtemperatur inkubiert, um eine vollständige Lösung des Kalziums zu gewährleisten.  

Am folgenden Tag wurden die Kalziumkonzentrationen gemäß Herstellerempfehlungen 

gemessen. Ohne jegliche Vorbehandlung wurden 5 µl verdünnte Kalziumchloridstandards und -

proben in zweifacher Ausführung in die Kavitäten einer durchsichtigen 96-well Platte 

transferiert. 0,2 ml Arbeitsreagens wurde jeder Kavität hinzugefügt und die Platte wurde dann 

für 3 Minuten bei Raumtemperatur inkubiert. Das Kalzium der Proben erzeugte bei der Reaktion 

mit Phenolsulphonephthalein (Bestandteil des Kit) ein farbiges Reaktionsprodukt. Die 

Konzentration dieses Produktes wurde als optische Dichte bei 550 nm mittels 

Mikroplattenlesegerätes (SynergyMx, BioTek Instruments) gemessen. Die 

Kalziumkonzentration in jeder Probe wurde anhand einer Standardkurve berechnet.  

 

2.2.2.3 Histologie (Alizarinrot-Färbung)  

Das Anthrachinonderivat Alizarinrot S kann dazu verwendet werden, metallische Ionen, wie 

zum Beispiel Kalziumionen, durch Komplexbildung eines Alizarinrot S-Kalziumchelats zu 

detektieren. Die hier angewandte Methode folgt dem Protokoll von Gregory et al. (Gregory et 

al., 2004). 

 

Nach Fixierung der Zellen mit Paraformaldehyd-Lösung, wie unter 2.2.2.2 beschrieben, und 

zweimaliger Reinigung mit kaltem, entionisiertem Wasser wurden die Zellen zweimal mit 0,1 M 

Borinsäure (pH 4; Sigma) gewaschen. Anschließend wurde den Zellen 40 mM Alizarinrot-

Lösung (Sigma) hinzugefügt. 

Die Zellkulturplatten wurden bei Raumtemperatur für 10 Minuten mit leichtem Schütteln auf 

einem Horizontalschüttler inkubiert. Das nicht gebundene Färbemittel wurde aspiriert und die 

Zellen wurden zweimal mit 0,1 M Borinsäure und zweimal mit destilliertem Wasser gewaschen.  

Die gefärbten Monolayers wurden mittels Phasenkontrastmikroskopie (Leica Microsystems) 

beurteilt. Die korrespondierenden Photos hierzu wurden mittels Kamera (Olympus TH4-100), 

Mikroskop (Olympus IX71) und dem Bildverarbeitungssystem Qcapture (Qimaging) kreiert.  
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2.2.2.4 RNA Isolierung und semi-quantitative RT-PCR  

Eine semi-quantitative Polymerase-Kettenreaktion (qPCR) wurde verwendet, um die Expression 

von Osteoblasten-zugehörigen Genen unter die Lupe zu nehmen. Hierbei wurden die Alkalische 

Phosphatase (AP), Runt-related Transkriptionsfaktor 2 (RunX2) und der Zinkfinger-beinhaltende 

Transkriptionsfaktor Osterix als frühe Knochenmarkergene an Tag 10 nach cCM-Exposition 

analysiert. Als späte Osteoblasten-spezifische Transkripte wurden die Expressionslevels des 

Osteopontins, Osteokalzins und des Bone Sialoproteins (BSP) am 21. Tag nach ‚Behandlung’ 

gemessen. 

Für alle Schritte war es wichtig, die Proben vor Nukleasen zu schützen. Hierfür benutzte man 

stets Nuklease-freie Geräte und Lösungen sowie trug immer Handschuhe.  

 

RNA-Extraktion aus den MSC und die Reinigung dieser durch Zentrifugieren wurde mittels SV 

Total RNA Isolation System (Promega Corporation) nach Herstellerangaben durchgeführt. Der 

Gehalt und die Qualität der totalen RNA wurden mithilfe des Nanodrop 1000 

Spektrophotometers (Thermo Scientific) bei 260 nm gemessen. 

Die anschließende Reverse Transkription (RT) der RNA in die komplementäre DNA (cDNA) 

wurde mithilfe des GoScriptTM Reverse Transcription Systems (Promega Corporation) laut deren 

Protokoll durchgeführt. Dabei wurde 1 µg totale RNA in jeder Gruppe mit „Random Primern“ 

(Promega) und der GoScriptTM Reverse Transcriptase (Promega) in cDNA umgeschrieben. 

Für die PCR wurden die cDNA-Proben vorerst mindestens 5-fach in Nuklease-freiem Wasser 

verdünnt. Das qPCR-Reaktionsgemisch beinhaltete 30 ng cDNA in 5 µl cDNA und 7 µl 

Nuklease-freies Wasser, welches mit 0,2 µM Primer vorwärts, 0,2 µM Primer rückwärts und 

12,5 µl 2X SYBR Green PCR Master Mix buffer (Applied Biosystems) zu einem finalen 

Volumen von 25 µl vermischt wurde. Die hier verwendeten PCR Primer sind in Tabelle 3 

aufgelistet und wurden bei Life Technologies erworben.  

 

Die qPCR lief in einem Thermozykler (Labrepco) mittels Stratagene Mx3000P QPCR System 

(SABiosciencesTM, Qiagen) ab. Vorerst wurde die cDNA-Probe auf 95°C für 10 Minuten 

erhitzt und dadurch denaturiert. 40 Amplifikationszyklen folgten. Jeder Zyklus enthielt drei 

Schritte: 95°C für 30 Sekunden, 55°C für 60 Sekunden, 72°C für 30 Sekunden. 

Schmelzkurvenanalysen wurden am Ende jeden Amplifikationsschrittes durchgeführt. 

 

Um unerwünschte Nebeneffekte zu reduzieren, die durch verschiedene, initiale RNA-

Konzentrationen oder eventuelle Ungleichmäßigkeiten innerhalb der Proben hervorgerufen 
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werden konnten, wurden alle hier genannten Gene zur 18S-rRNA als Referenz-Hauskeeping-

Gen normalisiert. Die mRNA-Expressionslevels wurden als relative Werte dargestellt, die 

mittels 2-delta-CT-Methode (ΔΔCT) (Livak et al., 2001) im Vergleich zu den Werten der 

Kontrollzellen ermittelt wurden. 
 
Gene Zugangs-

nummer 
Primersequenz 5’-3’ Produkt-

größe 
(bp) 

Primer-
effizienz 

AP NM 
000478 

F : CGTGGCTAAGAATGTCATCATGTT 
R: CGTGGCTAAGAATGTCATCATGTT 

90 97% 

RunX2 NM 
001024630 

F: GCCTTCAAGGTGGTAGCCC 
R: CGTTACCCGCCATGACAGTA 

67 96% 

Osterix NM 
152860 

F : TGCCCAGTGTCTACACCTCTC 
R : AGTGTCCCTTGCAGCCCATC 

181 100% 

Osteopontin NM 
001040058 

F: CCAAGTAAGTCCAACGAAAG 
R : GGTGATGTCCTCGTCTGTA 

348 91% 

Bone 
Sialoprotein 

NM 
004967 

F: GGCCTGTGCTTTCTCAATGAA 
R : GCCTGTACTTAAAGACCCCATTTTC 

83 87% 

Osteokalzin NM 
199173 

F : GTAGTGAAGAGACCCAGGCG 
R : ATTGAGCTCACACACCTCCC 

99 97% 

18S-RNA NR 003286 F : CGGCTACCACATCCAAGGAA 
R : CGGCTACCACATCCAAGGAA 

187 98% 

Tabelle 3: Liste und Sequenzen der Primer, die für die Analyse der mRNA-Expression verwendet wurden. Alle 
Sequenzen gelten für humane Gene. Primer vorwärts (F). Primer rückwärts (R). (Ferreira et al., 2013) 
 

2.2.3 Analyse der Chondrogenese  

2.2.3.1 Quantifizierung der Glykosaminoglykane  

Um die Entwicklung eines chondrogenen Phänotyps quantitativ zu beurteilen, wurde der 

Glykosaminoglykangehalt (GAG) am 28. Tag nach cCM-Exposition bestimmt.  

Hierfür wurden die Pellets zweifach mit PBS gewaschen und in 200 µl große Proben mit Papain 

(Sigma-Aldrich) enthaltenem Digestionspuffer transferiert. Über Nacht wurden die Proben bei 

60°C inkubiert. Zur Quantifizierung der GAG-Konzentration wurde das DMMB Dye Binding 

Assay (Farndale et al., 1986) herangezogen. Die dahinter liegende Therorie beruht auf einem 

Wechsel des Absorptionsspektrums des DMMB Dye bei Komplexbildung mit GAG.  

30 µl der Proben wurden hierfür mit 200 µl DMMB Lösung (Sigma-Aldrich) vermischt, für 5 

Minuten bei Raumtemperatur inkubiert und die optische Dichte wurde mittels 

Mikroplattenlesegerätes (SynergyMx, BioTek Instruments) bei 525nm gemessen. Mithilfe einer 

Standardkurve von Chondroitinsulfat (Herkunft: Haifischflossenknorpel; Sigma-Aldrich) wurde 

die GAG-Konzentration errechnet und mit dem jeweiligen DNA-Gehalt einer Probe 

normalisiert. 
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2.2.3.2 Histologie (Toluidinblau-Färbung) 

Zellaggregate wurden für 30 Minuten bei 4°C in 4% Paraformaldehyd fixiert, für eine bessere 

Handhabung in 0,5% Agarosegel gegossen, in Paraffin eingebettet und schließlich in 5 µm dicke 

Präparate mittels Kryostaten geschnitten.  

Die Schnittpräparate wurden auf Objektträger aufgezogen, mittels 3 Xylol-Waschvorgängen für 

jeweils 5 Minuten entparaffinisiert und in abgestuften Ethanollösungen rehydriert. 

 

Um die Matrixproteoglykane in den chondrogenen Pellets aufzudecken, wurden repräsentative 

Schnitte mit 1% Toluidinblau (pH 3,0; Sigma-Aldrich) angefärbt. Die Färbezeit betrug 30 

Minuten. Die Objektträger wurden in entionisiertem Wasser gewaschen, in abgestuften 

Ethanollösungen dehydriert und wieder 3 Mal mit Xylol gereinigt. Schließlich wurden die 

Schnittpräparate mit CytosealTM XYL mounting medium überzogen (Thermo Fisher Scientific). 

 

Die gefärbten Schnitte wurden mittels Phasenkontrastmikroskopie (Leica Microsystems) 

beurteilt. Repräsentative Photos wurden, wie unter 2.2.2.3 beschrieben, hergestellt. 

 

2.2.4 Analyse der Adipogenese 

2.2.4.1 Histologie (Oil Red O-Färbung) 

Zur Analyse einer adipogenen Differenzierung der hBMSC wurden die Kulturen mittels 

etablierten Protokollen mit Oil Red O angefärbt und histologisch beurteilt (Dennis et al., Cells 

Tissues Organs 2002).  

Die Zellen wurden zweimal mit 1X PBS gewaschen und anschließend mit 400 µl/well 4% 

Paraformaldehyd (pH 7,4; Sigma-Aldrich) beimpft. Nach 30-minütiger Inkubation bei 

Raumtemperatur wurden die Zellen dreimal mit 500 µl/well destilliertem Wasser gewaschen. 

Eine 5-minütige Inkubation in 400 µl/well 60% Isopropanol bei Raumtemperatur folgte. 

Schließlich wurde den Zellen 400 µl/well Oil Red O Lösung (Sigma) hinzugefügt. Nach 5-

minütiger Inkubation bei Raumtemperatur wurden die Zellen mit 500 µl/well destilliertem 

Wasser gewaschen. Die gefärbten Monolayers wurden mittels Phasenkontrastmikroskopie 

visualisiert.  
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2.3 Statistik 

 

Wenn nicht anders erwähnt, wurden alle Experimente mit hBMSC-Isolaten von mindestens 2 der 

3 verschiedenen Spendern (Tabelle 2) in dreifacher Ausführung durchgeführt. Repräsentative 

Datensätze der Versuchsergebnisse werden gezeigt.  

Alle quantitativen Ergebnisse sind als Mittelwerte +/- Standardabweichung dargestellt. Innerhalb 

eines einzelnen Versuches wurden statistische Signifikanzen zwischen den Behandlungsgruppen 

unter Verwendung eines zweiseitigen, ungepaarten Student-T-Tests berechnet. Dabei galten p-

Werte <0,05 als statistisch signifkant. 
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3 Ergebnisse 
 

Das Hauptaugenmerk der vorliegenden Studie liegt auf der Ermittlung des Effekts des aus MSC-

Kulturen gesammelten CM auf die MSC-Differenzierung zu Knochen-, Knorpel- und Fettzellen 

in vitro. Die Differenzierung entlang jeder von diesen Zellreihen erfordert u.a. den Zusatz von 

Dexamethason.  

Ziel war es, durch geeignete Experimente herauszufinden, ob und wie die im CM vorhandenen 

autokrinen sowie parakrinen Faktoren die Differenzierung beeinflussen.  

 

3.1 Vorversuche 

3.1.1  Der Effekt unbearbeiteten, konditionierten Mediums auf Dexamethason-induzierte 

Osteogenese der hBMSC 

Initial wurde unverändertes CM für die Experimente verwendet. Dieses CM, einschließlich 

verschiedener Verdünnungsreihen, wurde den hBMSC-Empfängerkulturen hinzugefügt, um die 

Effekte auf das Überleben der Zellen und auf die Dexamethason-induzierte Osteogenese zu 

untersuchen (Abbildung 6).  

Die Quantifizierung der DNA als Maß für das Überleben der am Plastik adhärenten Zellen ist 

wichtig, um sicherzustellen, dass jeglicher, inhibitorisch auftretender Effekt des CM auf die 

Differenzierung der hBMSC nicht aufgrund von Toxizität oder Wachstumshemmung erfolgte.  

Der Vorversuch zeigte allerdings, dass erhöhte Konzentrationen an CM den DNA-Gehalt/well 

reduzierten (Abbildung 7A). Mit anderen Worten hemmte das CM die Vermehrung der hBMSC 

während der 3-wöchigen Zellkultur. Ein Mangel an Nährstoffen und Serum sowie eine 

Übersäuerung des Zellkulturmediums als ein Ergebnis von Stoffwechselvorgängen (und 

erhöhtem Kohlendioxid Partialdruck) waren hierfür vermutlich ursächlich.  

Obwohl das CM die Zellproliferation minimierte, hatte es interessanterweise keine Auswirkung 

auf die Fähigkeit dieser Zellen, AP und eine mineralisierte Matrix als Reaktion auf die 

Dexamethason-Behandlung zu bilden (Abbildung 7B, Abbildung 7C).  
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Abbildung 6: Experimentelles Design, um den Effekt unbearbeiteten CM auf Dexamethason-induzierte 
Osteoblastendifferenzierung der hBMSC zu testen 
 

 
Abbildung 7: (A) Der Effekt des CM auf den DNA-Gehalt der hBMSC-Monolayerkulturen unter osteoblastischen 
Kulturbedingungen. (B) Der Effekt des CM auf Dexamethason-induzierte Aktivität der AP der hBMSC. (C) Der 
Effekt des CM auf Dexamethason-induzierte in vitro Mineralisierung der hBMSC. 
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3.1.2 Der Effekt konzentrierten, konditionierten Mediums auf das Zellüberleben der 

hBMSC unter osteoblastischen Kulturbedingungen 

Aufgrund des nachteiligen Effekts des unverarbeiteten CM auf die Zellproliferation der hBMSC 

war ein anderer Ansatz notwendig, um den Effekt von ausgeschütteten Faktoren auf die 

Dexamethason-induzierte Osteogenese zu untersuchen. Vermutlich waren ein Mangel an 

Nährstoffen und die Ansammlung von kleinen, säurehaltigen Zwischenprodukten des 

Stoffwechsels innerhalb des CM für die Wachstumshemmung verantwortlich.  

Zur Entfernung der kleinen Metabolite wurde das CM konzentriert, wie unter 2.1.3 beschrieben. 

Das Konzentrat wurde dann mit frischem Medium gemischt, um ihm erneut Nährstoffe und 

frisches Serum zuzufügen. 

Der Effekt des cCM auf das Überleben der hBMSC während Dexamethason-induzierter 

Osteogenese wurde daraufhin untersucht (Abbildung 8). 

Es stellte sich heraus, dass das cCM die Zellproliferation in An- oder Abwesenheit von 

Dexamethason nicht beeinträchtigte (Abbildung 9). Dieses Ergebnis erlaubte es, dass die 

folgenden Versuche ohne Einschränkung mit cCM durchgeführt werden konnten.  

 

 
Abbildung 8: Experimentelles Design, um den Effekt des cCM auf das Zellüberleben der hBMSC unter 
osteoblastischen Kulturbedingungen zu testen 
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Abbildung 9: Der Effekt des cCM auf den DNA-Gehalt der hBMSC-Monolayerkulturen unter osteoblastischen 
Kulturbedingungen  
 

3.2 Der Effekt konzentrierten, konditionierten Mediums auf Dexamethason-

induzierte Dreilinien-Differenzierung der hBMSC 

 

Die Ergebnisse der Abbildung 9 bestätigen, dass die neue Methode, cCM anstelle von CM zu 

verwenden, die Zellproliferation nicht negativ beeinflusste. Im Folgenden wurden die Effekte 

des cCM auf die osteoblastische, chondrozytische und adipozytische Differenzierung der 

hBMSC untersucht.  
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3.2.1 Der Effekt konzentrierten, konditionierten Mediums auf Dexamethason-induzierte 

Osteogenese der hBMSC 

 
Abbildung 10: Experimentelles Design zur osteogenen Differenzierung der hBMSC. (upc) heißt, die Zellen durften 
bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren. 
 

Der Effekt des cCM auf Dexamethason-induzierte Osteogenese der hBMSC wurde untersucht 

(Abbildung 10). 

 

Die Induktion der AP, deren Aktivität am 10. Tag nach Dexamethason-Behandlung gemessen 

wurde, ist ein früher Marker der osteoblastären Differenzierung.  

Wie erwartet, erhöhten Dexamethason-behandelte Zellen im Vergleich zu den Kontrollen die 

AP-Aktivität um das 4 bis 9-fache (Abbildung 11). In einer dosisabhängigen Weise erhöhte cCM 

die Induktion der AP als Reaktion auf die Zugabe von Dexamethason. Je geringer das cCM 

verdünnt war, desto höher war die Aktivität der AP. Dieser synergistische Effekt trat bei jeder 

untersuchten Zellsaatdichte auf. Der stärkste Effekt wurde in der Versuchsgruppe mit der 

niedrigsten Dichte (1.000 Zellen/cm2) deutlich. Das cCM von Zellen, die bis zu einer Konfluenz 

von ca. 90% ohne Zellpassage proliferieren konnten, hatte allerdings nur eine geringe 

Auswirkung auf die Induktion der AP (Abbildung 11). 

Der Effekt des cCM auf Dexamethason-induzierte in vitro Mineralisierung wurde an Tag 21 

nach Dexamethason-Zugabe gemessen. Die Auswirkungen des cCM waren interessanterweise 

abhängig von der Dichte, in der die Spender-MSC initial gesät worden waren (Abbildung 12).  
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Das cCM von Zellen mit der niedrigsten Zellsaatdichte (1.000 Zellen/cm2) hemmte die 

Mineralablagerung stark. Auch bei 10-facher Verdünnung inhibierte dieses cCM die 

Mineralisierung bis über 90%. Das cCM von Zellen mit einer initialen Zellsaatdichte von 5.000 

Zellen/cm2 hemmte die Kalziumablagerung ebenfalls, jedoch weniger stark als zuvor: Maximale 

Hemmung war hier bei ca. 50% erreicht. Im Gegenzug dazu steigerte das von Zellen mit der 

höchsten Zellaatdichte (10.000 Zellen/cm2) gewonnene cCM markant die Ablagerung von 

Kalzium. Ein ca. 4-facher Anstieg war bei unverdünnter cCM-Konzentration zu beobachten.  

 

Die Alizarinrot-Färbung bestätigte ebenfalls, dass das cCM von Zellen mit niedriger Saatdichte 

die Kalziumablagerung stärker inhibierte als das cCM von Zellen mit höherer Saatdichte (Detail 

nicht gezeigt).  

 

Die hier beschriebenen inhibitorischen Effekte des cCM von Zellen mit einer niedrigen 

Ursprungszelldichte (1.000 und 5.000 Zellen/cm2) auf die die Mineralisierung lassen sich für die 

Aktivität der AP (Abbildung 11, Abbildung 12) nicht darstellen. Dies spricht dafür, dass eher ein 

spezifischer Inhibitor der Mineralisierung als ein Inhibitor der Differenzierung im cCM 

vorhanden ist.  

 

Um diesem Phänomen nachzugehen, wurde der Effekt des cCM von Zellen mit der höchsten 

Beimpfungsrate (10.000 Zellen/cm2) auf die Expression von Dexamethason-induzierten 

Markergenen der osteoblastären Differenzierung an Tag 10 und 21 mittels qPCR geprüft. Die 

Expressionslevel der AP, des RunX2 und des Osterix wurden an Tag 10, die des Osteokalzins, 

Osteopontins und Bone Sialoproteins  an Tag 21 nach Dexamethason-Behandlung determiniert.  

 

In vielen Laboren wird Dexamethason dazu verwendet, die in vitro-Differenzierung der MSC zu 

Osteoblasten zu induzieren. Jedoch zeigen unsere PCR-Daten, dass Dexamethason keine 

Osteogenese im eigentlichen Sinn bewirkt. Der Level der mRNA zeigte einen starken Anstieg 

für die Transkripte der AP und einen moderaten Anstieg für die des RunX2. Allerdings war nur 

eine minimale Induktion anderer Osteogenesemarkergene zu beobachten, dies galt auch für 

Osterix, Osteopontin, Osteokalzin und Bone Sialoprotein (Abbildung 13).  

 

Insgesamt hatte das cCM geringe Auswirkungen auf die Menge an mRNA-Transkripten. Dies 

lässt vermuten, dass die Effekte des cCM auf die AP-Aktivität und Mineralisierung eher auf 
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spezifischen Wirkzusammenhängen bei diesen Prozessen als auf direkten 

Differenzierungseffekten basiert. 

 

 
Abbildung 11: Der Effekt des cCM auf Dexamethason-induzierte AP-Aktivität der hBMSC. 
Die Graphen repräsentieren für jede einzelne cCM-Verdünnung die x-fache Induktion der AP in Dexamethason-
behandelten Zellen mit cCM im Vergleich zu den entsprechenden Kontrollen in Abwesenheit von Dexamethason. 
(upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
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Abbildung 12: Der Effekt des cCM auf Dexamethason-induzierte in vitro-Mineralisierung der hBMSC. 
Die Graphen repräsentieren für jede einzelne cCM-Verdünnung die x-fache Induktion der AP in Dexamethason-
behandelten Zellen mit cCM im Vergleich zu den entsprechenden Kontrollen in Abwesenheit von Dexamethason. 
(upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 
 

 
Abbildung 13: Der Effekt des cCM aus dicht gesäten Kulturen (10.000 Zellen/cm2) auf Dexamethason-induzierte 
Knochenmarkergenexpression der hbMSC an Tag 10 (obere Reihe) und Tag 21 (untere Reihe), verglichen zu den 
entsprechenden Kontrollen ohne Dexamethasonzugabe. 
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3.2.2 Der Effekt konzentrierten, konditionierten Mediums auf Dexamethason-induzierte 

Chondrogenese der hBMSC 

 
Abbildung 14: Experimentelles Design zur chondrogenen Differenzierung der hBMSC. (upc) heißt, die Zellen 
durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren. 
 

Der Effekt des cCM auf die Chondrogenese wurde durch Quantifizierung des Gehalts an 

Glykosaminoglykanen (GAG) in den Zellpellets an Tag 28 nach Inkubation mit  Dexamethason 

oder TGF-ß1 oder einer Kombination von Dexamethason und TGF-ß1 überprüft (Abbildung 14). 

Der DNA-Gehalt der Pellets war unter allen drei Versuchsgruppen unbeeinflusst (Abbildung 15). 

Wie erwartet zeigt Abbildung 16, dass Dexamethason und TGF-ß1 zusammen für eine 

vollständige Chondrogenese notwendig sind; die Kombination von Dexamethason und TGF-ß1 

erhöhte die Konzentration an GAG in den Pellets um das 30-fache. Es zeigte sich außerdem, 

dass TGF-ß1 alleine ein gering höheres Potenzial als Differenzierungsinduktor hatte als 

Dexamethason alleine. Die mit Toluidinblau gefärbten Proben veranschaulichen dies.  

Abbildung 17 verdeutlicht, dass cCM den GAG-Gehalt von Dexamethason- und TGF-ß1-

stimulierten Zellen in einer dosisabhängigen Weise stark vermindert. Das cCM der 

Versuchsgruppe mit der ursprünglich höchsten Zellsaatdichte (10.000 Zellen/cm2) wies den 

stärksten Abfall des GAG-Gehalts auf. Unverdünntes cCM führte hierbei zu einer ca. 5-fach 

geringeren GAG-Konzentration als frisches Zellmedium.  

Zusammengefasst legen die Ergebnisse nahe, dass cCM unabhängig von der ausgehenden 

Zellsaatdichte einen konstant inhibitorischen Effekt auf die Dexamethason- und TGF-ß1-

inuzierte Chondrogenese hatte.  
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Abbildung 15: Der Effekt des cCM auf den DNA-Gehalt der hBMSC-Pellets unter chondrogenen 
Kulturbedingungen. (upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage 
proliferieren. 
 

                       
Abbildung 16: GAG-Konzentration der hBMSC-Pellets, normalisiert zum DNA-Gehalt, in An- oder Abwesenheit 
von Dexamethason und TGF-ß1. Die untere Reihe zeigt die entsprechenden Toluidinblau gefärbten 
Schnittpräparate. 
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Abbildung 17: Der Effekt des cCM auf Dexamethason- und TGF-ß1-induzierte Chondrogenese der hBMSC. (upc) 
heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 

3.2.3 Der Effekt konzentrierten, konditionierten Mediums auf Dexamethason-induzierte 

Adipogenese der hBMSC 

 
Abbildung 18: Experimentelles Design zur adipogenen Differenzierung der hBMSC. (upc) heißt, die Zellen durften 
bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
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Um die Effekte des cCM auf Dexamethason-induzierte Adipogenese zu untersuchen, wurden die 

humanen Stammzellen in adipogenem Wachstumsmedium einschließlich Dexamethason 

(Positivkontrolle) oder ohne Dexamethason (Negativkontrolle) kultiviert. Zu den 

Positivkontrollen wurde unverdünntes cCM, 2-, 4-, oder 10-fach verdünntes cCM hinzugefügt 

(Abbildung 18). 

 

Abbildung 19 zeigt repräsentative Bilder von hBMSC, die unter diesen Bedingungen kultiviert 

wurden. Die Bilder betonen die Fettvakuolen, die durch die Dexamethason-abhängige 

Adipogenese entstanden und zur histologischen Beurteilung mittels Oil Red O-Lösung rot 

angefärbt wurden. 

 

In adipogenem Wachstumsmedium ohne Dexamethason bildeten die Stammzellen keine 

Fettvakuolen. Die Anwesenheit Dexamethasons in frischem Zellmedium induzierte einen starken 

Anstieg in der Fettvakuolen-Bildung. Das cCM hingegen übte einen dosisabhängigen, 

inhibitorischen Effekt auf die Adipogenese aus (Abbildung 19). Je höher die Konzentration des 

cCM war, desto stärker war die Hemmung der Bildung von Lipidvakuolen. Ähnliche Ergebnisse 

erhielten wir mit jeder der 4 getesteten Zellsaatdichtegruppen. 
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Abbildung 19: Der Effekt des cCM auf Dexamethason-induzierte Adipogenese der hBMSC, mittels Oil Red O-
Färbung dargestellt 
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3.2.4 Zusammenfassung der Ergebnisse 

Die Daten zeigen, dass die Faktoren, die von den humanen MSC gebildet und ausgeschüttet 

werden, die Chondrogenese und Adipogenese unter allen Kulturbedingungen inhibierten. Diese 

Ergebnisse sind kohärent mit der Hypothese.  

Im Fall der Osteogenese stellt sich die Lage nicht so klar dar, die Ergebnisse waren 

uneinheitlicher als zuvor. Die Effekte des cCM auf den Grad der Mineralisierung waren von der 

initialen Zellsaatdichte der Spender-hBMSC-Kulturen abhängig. Die Zugabe von cCM steigerte 

die Dexamethason-induzierte Enzymaktivität der AP. Der cCM-Zusatz beeinflusste auf mRNA-

Level die Dexamethason-stimulierte Induktion der AP allerdings kaum. Dexamethason hatte, 

abgesehen von einem geringen Anstieg in der Induktion des RunX2-Transkripts, keinen 

wesentlichen Effekt auf die Expression anderer Osteogenesemarker. Die cCM-Zugabe änderte 

dies nicht.  

Die vorliegende Arbeit identifiziert limitierte Effekte des Dexamethasons. Das Glukokortikoid 

war nicht in der Lage, einen komplett osteoblastischen Phänotyp zu induzieren, obwohl es einen 

starken Induktor der AP und der Mineralisierung darstellt.  
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4 Diskussion 

4.1 Die Bildung und Ausschüttung autokriner und parakriner stemness-
Faktoren durch hBMSC  

 

Die vorliegende Arbeit beschäftigt sich mit der Hypothese, dass humane MSC aus dem 

Knochenmark ihre Differenzierung in andere Zelltypen hemmen und sich somit selbst als 

multipotente Stammzellen halten können, indem sie bestimmte lösliche Faktoren produzieren 

und ausschütten. Dies könnte unser Verständnis über die biologischen Eigenschaften der MSC 

erhöhen und Informationen mit hoher Relevanz für klinische Protokolle im Bereich des Tissue 

Engineering liefern. Für die klinische Anwendung ist es unabdingbar notwendig, in vitro eine 

große Anzahl an MSC zu gewinnen und diese anschließend in die gewünschte Richtung zu 

differenzieren.  

Diese Konzepte sind nicht neu. 2010 schrieben Kuhn et al. in ihrem Review Paper (Kuhn et al., 

2010): 

 

“Identification of the intrinsic and extrinsic regulatory factors that maintain their “stemness” 

properties is desirable, not only to understand MSC biology in vivo, but also for their practical 

purposes of producing sufficient quantities of MSCs for their therapeutic applications”. 

 

Trotz der zentralen klinischen Bedeutung dieser Konzepte existieren erstaunlich wenige Arbeiten 

in diesem Bereich. Insbesondere verwundert es, dass bisher Publikationen zu vergleichbaren 

Untersuchungen wie in der vorliegenden Arbeit fehlen. 

 

Die hier präsentierten Daten zeigen überzeugend, dass hBMSC-Kulturen lösliche Faktoren 

bilden, die, entsprechend der Hypothese, die Differenzierung anderer hBMSC zu Chondrozyten 

und Adipozyten hemmen. Dies trat unter allen getesteten Zellsaatdichten der Spender-hBMSC 

auf.  

 

Die Experimente zur Untersuchung der Effekte des hBMSC-CM auf die Osteogenese verliefen 

allerdings unerwartet negativ, weil Dexamethason alleine die Ausbildung des vollständigen, 

osteogenen Phänotyps nicht induzieren konnte. Dies ist deshalb besonders erstaunlich, da 

Dexamethason als Trigger der osteogenen Differenzierung in MSC-Kulturen fast universell 

verwendet wird. Auch in einem bedeutenden, wissenschaftlichen Grundlagenaufsatz von 
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Pittenger et al. im Jahre 1999, welcher die Stammzelleigenschaften von MSC bestätigt, wird das 

Glukokortikoid als notwendiger Induktor der osteogenen Differenzierung beschrieben (Pittenger 

et al., 1999). 

Dieser Artikel verwendet, ähnlich wie viele andere, den Nachweis der Induktion der Alkalischen 

Phosphatase und der Kalziumablagerung als Hauptindikator für eine beginnende Osteogenese. 

Auch wenn meine Ergebnisse bestätigen, dass Dexamethason die Expression der AP und die 

Ablagerung von Kalzium fördert, gelang es mit qPCR nicht, die Induktion der anderen 

Osteogenesemarker, insbesondere der Transkriptionsfaktoren RunX2 und Osterix und der 

Matrixproteine Osteopontin, Osteokalzin und Bone Sialoprotein, zu identifizieren. 

Nichtsdestotrotz bestätigen die qPCR-Versuche eine starke Induktion der AP, welche die 

Funktionalität der qPCR-Assaybedingungen bestätigt. Aufgrund dieser Widersprüche initiierte 

das Center for Advanced Orthopaedic Studies in Harvard eine weitere detailliertere Analyse 

dieses Problems. Dabei bestätigte Ferreira die hier vorgelegten Ergebnisse (Ferreira et al., 2013).  

 

Diese unklare Datenlage ließ es nicht zu, einen klaren Effekt des cCM auf die osteogene 

Differenzierung der hBMSC zu bestimmen. Vermutlich existieren zusätzliche, bisher noch 

unbekannte Regulierungsmechanismen. 

Im Besonderen besteht keine direkte Korrelation zwischen den Effekten des cCM-Zusatzes auf 

die Aktivität der AP und die Kalziumablagerung. Dies ist erstaunlich, weil allgemein anerkannt 

ist, dass Kalzium extrazellulär ausfällt, wenn die AP das Phosphat des im Medium präsenten ß-

Glycerophosphats abspaltet. Die wohl wahrscheinlichste Erklärung dieser Diskrepanz ist die 

Bildung und Ausschüttung von löslichen Faktoren durch die hBMSC, die eher die Chemie der 

Mineralisierung als die Differenzierung dieser Zellen beeinflusst.  

Die Produktion dieser möglichen Faktoren ist stark von den Zellkulturbedingungen abhängig. 

Die Kalziumablagerung wurde durch das cCM von Kulturen mit geringerer Zellsaatdichte (1.000 

und 5.000 Zellen/cm2) gehemmt. Merkwürdig ist, dass diese Hemmung bei cCM-Zusatz von 

Kulturen mit der höchsten Zellsaatdichte (10.000 Zellen/cm2) nicht sichtbar, sondern - im 

Gegenteil - die Mineralisierung deutlich erhöht war. Aus biologischer Sicht wäre dies jedoch 

kein Widerspruch, da so die lokale Zelldichte ein wirksamer Regulator der gerichteten 

Mineralisierung wäre und ungewollte Mineralisierung an unerwünschter Stelle alleine durch die 

Verringerung der Zelldichte verhindert werden könnte. 

Gerade deshalb ist es notwendig die Mechanismen, die hinter diesen scheinbar 

widersprüchlichen Effekten stecken, zu untersuchen, insbesondere dann, wenn MSC klinisch für 

die Bildung von neuem Knochen verwendet werden sollen.  
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4.2 Die Identität der stemness-Faktoren der hBMSC  
 

Es ist sehr wahrscheinlich, dass es sich bei den stemness-Faktoren letztlich um Moleküle aus der 

Gruppe der Zytokine handelt.  

In Zuge der hier beschriebenen  Experimente konnten verschiedene mögliche Moleküle bereits 

ausgeschlossen werden. Durch die Methode der Aufreinigung des CM entfallen alle Moleküle 

mit einem Molekulargewicht kleiner als 10 kDa (siehe 2.1.3). Durch das Einfrieren des cCM und 

der Zellen werden damit auch solche Faktoren ausgeschlossen, die beim Einfrieren nicht stabil 

bleiben. Ausgeschieden sind dadurch beispielsweise Prostaglandine, Stickstoffmonoxid, 

Nukleotide und Metallionen.  

Übrig bleiben somit Moleküle, die größer als 10 kDa sind und durch das Einfrieren nicht 

beeinträchtigt werden. 

In Übereinstimmung mit den Erkenntnissen in der Zellbiologie von Stammzellen kommen somit 

in erster Linie Moleküle aus der Gruppe der Zytokine als stemness-Faktoren der hBMSC in 

Betracht. 

 

Wie bereits in der Einleitung erwähnt, bilden hBMSC eine große Anzahl von verschiedenen 

Zytokinen (Tabelle 1). Es gibt allerdings nur wenige Studien, die die Beeinflussung der stemness 

durch Zytokine beschreiben.  

Die erste Arbeit hierzu wurde von der Gruppe um Tuan am NIH durchgeführt. Mitglieder seiner 

Gruppe verwendeten Microarray-Analysen, um MSC-Transkriptome mit MSC-Populationen zu 

vergleichen, die zu Osteoblasten, Chondrozyten und Adipozyten differenzierten, mit denjenigen, 

die in der Folge zurück zu MSC de-differenzierten (Song et al., 2006). Dies brachte eine Anzahl 

an möglichen stemness-Genen hervor, von denen IL-6 später als führender Kandidat identifiziert 

wurde (Pricola et al., 2009).  

Allerdings fand ein anderes Mitglied aus der Arbeitsgruppe in Boston heraus, dass IL-6 die 

Chondrogenese der hBMSC steigert, was dieses Zytokin als stemness-Faktor eliminiert  (Porter, 

persönliche Kommunikation). 

 

FGF-2 ist ebenfalls als stemness-Faktor von großem Interesse. Zaragosi et al., welche humane 

MSC aus Fettgewebe verwendeten, identifizierten FGF-2 als wichtigen autokrinen Faktor, der 

die Teilungsfähigkeit und das Differenzierungspotenzial der MSC aufrechterhält (Zaragosi et al., 

2006). In diesen Studien blieb FGF-2 MSC-assoziiert. 
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Auf der anderen Seite berichteten Sanchez et al. darüber, dass die stemness von humanen ESC 

durch exogenes FGF-2 aus humanen MSC-Kulturen aus Fettgewebe aufrechterhalten werden 

kann. In dieser Studie wurde also das FGF-2 von MSC produziert, aber für die Bewahrung der 

stemness der ESC verwendet (Sanchez et al., 2012).  

Crisostomo et al. berichteten, dass hBMSC selbst kein FGF-2 in Kultur ausschütten, sondern 

dies nur dann tun, wenn die hBMSC mit TNF-α, Lipopolysacchariden oder durch Hypoxie 

stimuliert wurden (Crisostomo et al., 2008). Interessanterweise wird FGF-2 oft zu Kulturen von 

humanen MSC hinzugefügt, um ihre Wachstumseigenschaften zu verbessern, speziell im 

Kontext der Chondrogenese (Hagmann et al., 2013). Unklar ist jedoch, ob dieses Wachstum 

durch FGF-2 qualitativ zu einem hohen chondrogenen Potenzial führt (Bianchi et al., 2003) oder 

nur die MSC zur Chondrogenese vorbereitet (Handorf et al., 2011). 

 

In einem vor kurzem veröffentlichten Bericht von Eom et al. wurden FGF-2, IL-6 und eine 

Anzahl an weiteren Wachstumsfaktoren als mögliche autokrine stemness-Faktoren untersucht 

(Eom et al., 2014). Die stemness der hBMSC-Kulturen scheint mit steigender Anzahl von 

Zellpassagen abzufallen. Allerdings blieb während der Zellpassagen die Bildung von FGF-2, IL-

6, IGF-2, TGF-ß1 und VEGF unverändert. Dies lässt vermuten, dass diese Faktoren nicht 

unbedingt für die stemness verantwortlich sind. Andererseits nahm parallel zum Verlust der 

stemness während der Zellpassagen die Expression von EGF, FGF-2 und HGF ab. Schließlich 

zeigte jedoch, dass nur das Hinzufügen von HGF, im Gegensatz zu den anderen zwei Faktoren, 

die stemness während der Zellpassagen nicht beeinträchtigte.  

 

Zusammenfassend zeigt sich, dass die drei Wachstumsfaktoren, nämlich IL-6, FGF-2 und HGF, 

als potentielle stemness-Kandidaten beschrieben sind. Allerdings ist die Literatur hierzu sehr 

widersprüchlich, sodass weitergehende Forschung notwendig ist, um die stemness-Faktoren 

eindeutig zu identifizieren. 

 

4.3 Die Effekte des Dexamethasons 
 

Wie in der Einleitung beschrieben, ist die Zugabe des Dexamethasons zu hMSC-Kulturen für die 

Dreilinien-Differenzierung der MSC obligat (siehe 1.4). Bis heute ist ungeklärt, warum dies so 

ist.  

Die Subhypothese der vorliegenden Arbeit postuliert, dass Dexamethason die Produktion von 

möglichen stemness-Faktoren hemmt und dadurch die Differenzierung erst ermöglicht. Dies 
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widerspricht der bisherigen weitverbreiteten Annahme, dass der Zusatz Dexamethasons die 

Differenzierung direkt induziert.  

Auch Haynesworth fand heraus, dass Dexamethason indirekt die Differenzierung induziert, 

indem es die Synthese von IL-6 hemmt (Haynesworth et al., 1996). 

 

Zum Zeitpunkt der Experimente war es ein unerwartetes Resultat, dass Dexamethason unfähig 

ist, einen vollständig osteoblastischen Phänotyp zu induzieren, obwohl es ein potenter Induktor 

der AP und der Mineralisierung ist. Diese Ergebnisse wurden allerdings später im gleichen 

Labor durch Ferreira mit anderen Experimenten bestätigt und um weitere Erkenntnisse erweitert 

(Ferreira et al., 2013). 

 

Insgesamt muss man festhalten, dass die Rolle Dexamethasons bisher nicht vollständig 

verstanden wurde. Folgeversuche sollten dieser Fragestellung nachgehen. 

 

4.4 Klinische Relevanz 
 

Unabhängig davon, ob MSC als Progenitorzellen von differenzierten, mesenchymalen Zellen im 

Tissue Engineering oder ob MSC als Quelle für trophische Faktoren zur Stimulierung endogener 

Regeneration verwendet werden, ist essentiell, dass die Zellen ihre stemness und somit ihre 

Fähigkeit, neues Gewebe zu generieren, bewahren.  

Für die meisten, wenn nicht alle praktisch Anwendungen ist es notwendig, die MSC zu 

kultivieren, um eine ausreichende Anzahl an Zellen für klinische Zwecke zur Verfügung zu 

haben. Während des Proliferationsprozesses ist es essentiell, dass die MSC ihre fundamentalen 

multipotenten Eigenschaften behalten, um eine erfolgreiche klinische Anwendung zu 

ermöglichen. 

 

Die in der vorliegenden Arbeit beschriebenen Zusammenhänge leisten einen Beitrag zum 

Verständnis der Frage, wie MSC ihre stemness - Eigenschaft in Monolayerkulturen bewahren. 

Mit Hilfe der vorgelegten Befunde sollte es möglich sein, optimale Kulturbedingungen zu 

definieren, unter denen sich die MSC in vitro besser als bisher für eine spätere klinische 

Verwendung vermehren lassen.  
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4.5 Zukünftige Forschung 
 

Die vorliegende Arbeit legt mehrere zukünftige Forschungsansätze nahe.  

 

Die erste, zu vertiefende Analyse sollte darauf abzielen, den Faktor oder die Faktoren innerhalb 

der hBMSC zu identifizieren, der oder die für die stemness verantwortlich ist oder sind. Es sind 

mehrere Ansätze zur Identifizierung dieser Faktoren denkbar.  

 

Eine Möglichkeit wäre der “Zytokin-Ansatz”. Bei diesem werden einzelne Zytokine vom cCM 

zum Beispiel durch Addition von Antikörpern neutralisiert, um die Hemmung der 

Differenzierung ohne den Einfluss dieses Zytokins zu untersuchen. Alternativ könnte die 

Synthese einzelner Zytokine durch siRNA von Spender-hBMSC-Kulturen verhindert werden. 

Der Vorteil dieses Ansatzes ist seine Einfachheit. Der Nachteil besteht darin, dass es schwierig 

wird, wenn mehr als ein Zytokin daran beteiligt ist, die stemness aufrechtzuerhalten, oder aber 

auch, wenn der stemness-Faktor nicht aus der Zytokingruppe stammt und damit neuartig wäre. 

 

Ein zweiter Ansatz wäre der Versuch, die stemness-Faktoren des cCM durch traditionelle, 

biochemische Reinigungsmethoden zu isolieren. MSC können sich leicht vermehren, und ich 

habe gezeigt, dass der mögliche Faktor ziemlich stabil ist, sodass dieser Ansatz brauchbar 

erscheint. Wenn die stemness nämlich mehrere Faktoren benötigt, die miteinander in Beziehung 

stehen, wird dies durch einen plötzlichen Aktivitätsverlust bei einem Reinigungsschritt, welche 

die Faktoren trennt, signalisiert. Dies könnte dann die Voraussetzung dafür schaffen, die 

relevanten Komponenten zu identifizieren.  

 

Ein zusätzlicher Ansatz könnte darin liegen, die Wirkungen von Dexamethason auf die Synthese 

von identifizierten stemness-Faktoren zu prüfen. Standardtechniken der Genexpression könnten 

die Stelle auf der DNA, an der Dexamethason regulär wirksam wird, bestimmen. 

 

Ein weiterer methodischer Ansatz zukünftiger Forschung könnte sich an meinen Daten zur 

osteoblastischen Differenzierung orientieren. Die Daten legen nämlich nahe, dass der Bereich 

der in vitro-Differenzierung der hBMSC zu Osteoblasten überprüft wird, um ein System zu 

entwickeln, bei dem die MSC zu einem “richtigen” Osteoblasten heranwachsen. Eine solche 

Qualität bedeutet in diesem Falle, dass die Zellen nicht nur AP exprimieren und Kalzium 

ablagern, sondern auch einen vollständigen, osteoblastischen Phänotypen bilden.  
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Schließlich zeigen die hier präsentierten Daten, dass hBMSC unter geeigneten 

Kulturbedingungen sehr starke Inhibitoren der Kalziumablagerung ausschütten. Wenn diese 

Inhibitoren identifiziert und entsprechend manipuliert würden, könnten daraus 

Behandlungsstrategien für Krankheiten entwickelt werden, bei denen eine exzessive und 

ungewollte Kalziumablagerung vorkommt. 
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5 Zusammenfassung 
 

Eine Möglichkeit für Zell- und Gentherapie ist die Verwendung von mesenchymalen 

Stammzellen (MSC) aus adultem Knochenmark. MSC sind aufgrund der Einfachheit ihrer 

Isolierung, ihrer Expansionsfähigkeit und ihres Multilinien-Differenzierungspotenzials attraktive 

Kandidaten zur therapeutischen Anwendung in TERM. 

 

Seit mehr als 3 Jahrzehnten stehen MSC im Fokus des internationalen wissenschftlichen 

Interesses. Jedoch sind sie, was viele ihrer Eigenschaften betrifft, bis heute unvollständig 

definiert und charakterisiert. Die spezifischen Mechanismen der MSC-stemness und -

differenzierung sind bisher kaum verstanden.  

 

Die vorliegende Arbeit untersucht den Effekt autokriner Faktoren, die von hMSC produziert und 

ausgeschüttet werden, auf Dexamethason-induzierte Dreilinien-Differenzierung. 

Die Ergebnisse legen nahe und unterstützen die Hypothese, dass hMSC Faktoren ausschütten, 

die die multipotenten Zellen in ihrem undifferenzierten Status bewahren, d.h. jegliche 

Differenzierung inhibieren. Dies gilt generell für die Chondrogenese und Adipogenese unter 

jeder einzelnen Zellkulturbedingung in der hier präsentierten Studie.  

Für die Osteogenese stellt sich das Bild jedoch differenzierter dar. Alle Kulturbedingungen 

waren stimulierend im Hinblick auf die Expression der AP. Außerdem lagerten die am dichtesten 

gesäten Zellkulturen signifikant mehr Kalzium ab. Dennoch hatte das cCM nur einen geringen 

Effekt auf die Menge an osteogenen mRNA-Transkripten. Diese Beobachtungen lassen 

vermuten, dass die im cCM präsenten autokrinen Faktoren nicht direkt die Differenzierung, 

jedoch aber die Manifestation des primären Stammzellphänotyps beeinflussen.  

 

Die Rolle des Glukokortikoids Dexamethason bei der Differenzierung von MSC bleibt unklar. 

Auch wenn Dexamethason oft in Kulturmedien verwendet wird und als 

Differenzierungsinduktor weltweit etabliert ist, kann es alleine nicht den vollständigen 

osteoblastischen Phänotyp induzieren.  

 

Zusätzliche in vitro- und in vivo-Studien sind notwendig, um die autokrinen und parakrinen 

Faktoren, die für die schrittweise Entwicklung von einer unreifen Stammzelle bis zu einem 
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reifen Phänotyp wie Knochen, Knorpel, Fett zuständig sind, besser zu charakterisieren und zu 

identifizieren.  

Eine sicherlich große Herausforderung ist dabei die Anfertigung eines Protokolls, das 

sicherstellt, dass sich MSC unter klinisch anwendbaren Kulturbedingungen zur Verwendung in 

neuen Zell- und Gentherapien effizient und kontrolliert vermehren und differenzieren. 
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6 Material 

6.1 Geräte und Verbrauchsmaterialien 

 

Agarosegel Sigma-Aldrich, St. Louis, MO, USA 

Analysewaage Denver Instrument Co., Denver, Co, USA 

Analysewaage Sartorius Corporation, Edgewood, NY, USA 

Bildverarbeitungssystem (QCapture) Qimaging, Surrey, BC, Canada 

Brutschrank (Isotemp Plus; 37°C, 5% CO2) Thermo Fisher Scientific, Pittsburgh, PA, 

USA 

Dispenseraufsätze Thermo Fisher Scientific 

Gefrierschrank -20°C Sears Holdings Corporation, Hoffman 

Estates, IL, USA 

Gefrierschrank -80°C Thermo Fisher Scientific 

Handschuhe Thermo Fisher Scientific 

Heizblock Thermolyne, Dubuque, IA, USA  

Hochdrucksterilisator (Tuttnauer Brinkmann 

3850 M Autoclave) 

Tuttnauer USA Co. Ltd., Hauppauge, NY, 

USA 

Horizontalschüttler Thermo Fisher Scientific 

Kryobehälter (NALGENE Cryo 1°C 

Freezing Container) 

Thermo Fisher Scientific 

Kühlschrank -4°C Sears Holdings Corporation 

Mehrkanalpipette Thermo Fisher Scientific 

Mikroplattenlesegerät (Multi-Mode, Synergy 

MX ) 

BioTek Instruments, Winooski, VT, USA 

Mikroskop (LEICA DMI) Leica Microsystems, Wetzlar, Germany 

Mikroskop (Olympus IX71) Olympus, Center Valley, PA, USA 

Neubauer Zählkammer (HC) Reichert, Depew, NY, USA 

Nuklease-freie Röhrchen  Eppendorf North America, Hauppauge, NY, 

USA 

Objektträger Thermo Fisher Scientific 

Paraffin Thermo Fisher Scientific 
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PCR-Gerät (Stratagene Mx3000P QPCR 

System) 

SABiosciencesTM, Qiagen, Valencia, CA, 

USA 

Photoapparat (Olympus TH4-100) Olympus 

Pipetten (1ml, 5ml, 10ml, 25ml, 50ml) BD Biosciences, San Jose, CA, USA 

Pipettenspitzen (0,1-2,5 µl; 0-10 µl; 0-20 µl; 

20-200 µl; 200-1000 µl) 

Thermo Fisher Scientific 

Pipettenspitzen (sterile Fisherbrand low 

retention 1000 µl) 

Thermo Fisher Scientific 

Pipettierhilfe  Thermo Fisher Scientific 

Pipettierhilfe (elektrisch) Thermo Fisher Scientific 

Reamer Irrigator Aspirator (RIA) Synthesis, Paoli, PA, USA 

Spektrophotometer (Nanodrop 1000) Thermo Fisher Scientific 

Sterile Sicherheitswerkbank Thermo Fisher Scientific 

Stickstofftank  Thermo Fisher Scientific 

Thermozykler (Biometra T3000) LABREPCO, Horsham, PA, USA 

Vortexer  Thermo Fisher Scientific 

Wasserbad Thermo Fisher Scientific 

Zellkulturflaschen (75 cm2, 175 cm2) BD Biosciences 

Zellkulturplatten (6-, 24-, 96-well; klar, 

weiß, schwarz opaq) 

Thermo Fisher Scientific 

Zellkulturplatten (96-well, Polypropylen) Corning Inc., Corning, NY, USA 

Zentrifugale Filter (Centricon® Plus-70 

Protein Columns) 

Millipore Corporation, Billeria, MA, USA 

Zentrifuge (Sorvall Legend Micro 21 R)  Thermo Fisher Scientific 

Zentrifuge (Sorvall Legend RT+) Thermo Fisher Scientific 

Zentrifugentuben (15 ml, 50 ml) BD Biosciences 

 

6.2 Chemikalien, Reagenzien und Puffer 

AbAm  Invitrogen, Carlsbad, CA, USA 

Alizarinrot-Lösung  Sigma-Aldrich 

Ascorbinsäure (L-Ascorbinsäure-2-

Phosphat) 

Sigma-Aldrich 
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Borinsäure (pH 4,0) Sigma-Aldrich 

Chondroitinsulfat (Spezies: Haifischflossen-

knorpel) 

Sigma 

CytosealTM XYL mounting medium Thermo Fisher Scientific 

Dexamethason Sigma-Aldrich 

DMEM Zellkulturmedium mit 1 mM 

Pyruvat 

- low glucose (1g/l) 

- high glucose (4,5g/l) 

Mediatech Inc., Manassas, VA, USA 

(heutzutage zugehörig zu Thermo Fisher 

Scientific) 

DMMB Sigma-Aldrich 

Ethanol Thermo Fisher Scientific 

FBS Hyclone (Thermo Scientific), Logan, Utah, 

USA 

Gefriermedium (RecoveryTM Freezing 

Medium mit 10% DMSO) 

Life Technologies, Grand Island, NY, USA 

ß-Glycerolphosphat Sigma-Aldrich 

HCl Thermo Fisher Scientific 

IBMX Sigma-Aldrich 

Indomethazin Sigma-Aldrich 

Insulin (aus Rinderpankreas) Sigma-Aldrich 

Isopropanol (2-Propanol) Sigma-Aldrich 

NaOH  Thermo Fisher Scientific 

Oil Red O-Lösung Sigma-Aldrich 

Papain (von Papaya Latex) Sigma-Aldrich 

Paraformaldehyd  Sigma-Aldrich 

PBS (ohne Kalzium und Magnesium) 
- 8g NaCl 

- 0,2g KCl 

- 1,15g Na2HPO4 

- 0,2g KH2PO4 

- 1l dH20 

Mediatech Inc. 

(heutzutage zugehörig zu Thermo Fisher 

Scientific) 

PNP Standardlösung Sigma-Aldrich 

PNPP Puder Sigma-Aldrich 

Prolin Sigma-Aldrich 
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SYBR Green PCR Master Mix (2X) Applied Biosystems, Forster City, CA, USA 

TNE Puffer (10X, pH 7,4)  
- 100 mM Tris 

- 10 mM EDTA 

- 2 M NaCl 

Vorbereitet im Labor 

Toluidinblau (pH 3,0) Sigma-Aldrich 

Trypsin-EDTA (0,05% Trypsin, 1 mM 

EDTA) 

 

Xylol VWR International, West Chester, PA, USA 

1% ITS + Premix (BD ITS Premix) 
humanes rekombinantes Insulin 12,5mg 

humanes natürliches Transferrin 12,5mg 

Selensäure 12,5mg 

Linolsäure 10,7mg 

Bovines Serumalbumin (BSA) 2,5g 

BD Biosciences 

 

 

6.3 Fertigkombinationen von Biochemikalien 

QuantiChromTM Calcium Assay Kit BioAssay Systems, Hayward, CA, USA 

Quant-iTTM PicoGreen® dsDNA Assay Kit Invitrogen 

SV Total RNA Isolation System Promega Corporation, Madison, WI, USA 

GoScriptTM Reverse Transcription System Promega Corporation 

 

6.4 Rekombinante Faktoren 

TGF-ß1  Pepro Tech, Rocky Hill, NJ, USA 

 

6.5 Primer 

Primer (siehe Tabelle 3)  Life Technologies 

Random primer  Promega 

 

6.6 Zelllinien 

hBMSC Patientenmaterial (siehe Tabelle 1) 
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6.7 Medien 

Standardmedium DMEM - low glucose + 10% FBS + 1% 

AbAm 

Osteogenes Kulturmedium Standardmedium + 10 mM ß-

Glycerolphosphat + 50 µg/ml Ascorbinsäure 

+/- 10-7 M Dexamethason 

Chondrogenes Kulturmedium  DMEM - high glucose + 1% ITS + 1% 

AbAm + 40 µg/ml Prolin + 50 µg/ml 

Ascorbinsäure +/- 10-7 M Dexamethason +/- 

TGF-ß1 

Adipogenes Kulturmedium Standardmedium + 5 µg/ml Insulin + 0,5 

mM IBMX + 60 µM Indomethazin +/- 10-7 

M Dexamethason 
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7 Abbildungs- und Tabellenverzeichnis 

7.1 Abbildungen 

Abbildung 1: Die prinzipielle Idee des Tissue Engineering (modifiziert nach www.nature.com).  
Zellen werden aus dem Körper extrahiert, in Kultur angereichert, auf Zellträger angesät, der entsprechenden 
chemischen, physikalischen und biologischen Umgebung ausgesetzt und dem Patienten wieder reimplantiert. 
 
Abbildung 2: Stammzellbildung und -differenzierung (modifiziert nach www.bio-rad.com) 
 
Abbildung 3: MSC Selbsterneuerung, Proliferation und Differenzierung (modifiziert nach Caplan et al., 2001). 
Multilinien-Differenzierung der MSC zu Osteoblasten, Chondrozyten und Adipozyten erfordert u.a. Dexamethason. 
 
Abbildung 4: Hypothese der hier vorliegenden Studie: MSC produzieren und schütten lösliche Faktoren aus, die die 
Zellen in ihrem undifferenzierten Status bewahren. Subhypothese: Dexamethason hemmt diese 
Differenzierungsinhibitoren und ermöglicht dadurch die Differenzierung der MSC. 
 
Abbildung 5: Methode zur Produktion eines konzentrierten, konditionierten Mediums (cCM). (upc) bedeutet, die 
Zellen durften bis zu einer Konfluenz von ca. 90% ohne Zellpassage proliferieren. 
 
Abbildung 6: Experimentelles Design, um den Effekt unverarbeiteten CMs auf Dexamethason-induzierte 
Osteoblastendifferenzierung der hBMSC zu testen 
 
Abbildung 7: (A) Der Effekt des CM auf den DNA-Gehalt der hBMSC-Monolayerkulturen unter osteoblastischen 
Kulturbedingungen. (B) Der Effekt des CM auf Dexamethason-induzierte Aktivität der AP der hBMSC. (C) Der 
Effekt des CM auf Dexamethason-induzierte in vitro Mineralisierung der hBMSC. 
 
Abbildung 8: Experimentelles Design, um den Effekt konzentrierten CMs (cCM) auf das Zellüberleben der 
hBMSC unter osteoblastischen Kulturbedingungen zu testen 
 
Abbildung 9: Der Effekt des cCM auf den DNA-Gehalt der hBMSC-Monolayerkulturen unter osteoblastischen 
Kulturbedingungen 
 
Abbildung 10: Experimentelles Design zur osteogenen Differenzierung der hBMSC. (upc) heißt, die Zellen durften 
bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren. 
 
Abbildung 11: Der Effekt des cCM auf Dexamethason-induzierte AP-Aktivität der hBMSC. 
Die Graphen repräsentieren für jede einzelne cCM-Verdünnung die x-fache Induktion der AP in Dexamethason-
behandelten Zellen mit cCM im Vergleich zu den entsprechenden Kontrollen in Abwesenheit von Dexamethason. 
(upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 
Abbildung 12: Der Effekt des cCM auf Dexamethason-induzierte in vitro Mineralisierung der hBMSC. 
Die Graphen repräsentieren für jede einzelne cCM-Verdünnung die x-fache Induktion der AP in Dexamethason-
behandelten Zellen mit cCM im Vergleich zu den entsprechenden Kontrollen in Abwesenheit von Dexamethason. 
(upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 
Abbildung 13: Der Effekt des cCM aus dicht gesäten Kulturen (10.000 Zellen/cm2) auf Dexamethason-induzierte 
Knochenmarkergenexpression der hbMSC an Tag 10 (obere Reihe) und Tag 21 (untere Reihe), verglichen zu den 
entsprechenden Kontrollen ohne Dexamethasonzugabe. 
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Abbildung 14: Experimentelles Design zur chondrogenen Differenzierung der hBMSC. (upc) heißt, die Zellen 
durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren. 
 
Abbildung 15: Der Effekt des cCM auf den DNA-Gehalt der hBMSC-Pellets unter chondrogenen 
Kulturbedingungen. (upc) heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage 
proliferieren. 
 
Abbildung 16: GAG-Konzentration der hBMSC-Pellets, normalisiert zum DNA-Gehalt, in An- oder Abwesenheit 
von Dexamethason und TGF-ß1. Die untere Reihe zeigt die entsprechenden Toluidinblau-gefärbten 
Schnittpräparate. 
 
Abbildung 17: Der Effekt des cCM auf Dexamethason- und TGF-ß1-induzierte Chondrogenese der hBMSC. (upc) 
heißt, die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 
Abbildung 18: Experimentelles Design zur adipogenen Differenzierung der hBMSC. (upc) heißt, die Zellen durften 
bis zu einer Zellkonfluenz von ca. 90% ohne Zellpassage proliferieren.  
 
Abbildung 19: Der Effekt des cCM auf Dexamethason-induzierte Adipogenese der hBMSC, mittels Oil Red O-
Färbung dargestellt 
 

7.2 Tabellen 

Tabelle 1: Wachstumsfaktoren und Zytokine, die von hMSC potentiell ausgeschüttet werden  
 
Tabelle 2: Patienteninformation 
 
Tabelle 3: Liste und Sequenzen der Primer, die für die Analyse der mRNA-Expression verwendet wurden. Alle 
Sequenzen gelten für humane Gene. Primer vorwärts (F). Primer rückwärts (R). (Ferreira et al., 2013) 
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8 Abkürzungsverzeichnis 
 

AbAm  Antibiotika + Antimykotika 

AGPT-1 Angiopoetin-1 

AP  Alkalische Phosphatase 

BMP  Bone morphogenetic Protein 

BSP  Bone Sialoprotein 

cCM  Konzentriertes, konditioniertes Zellkulturmedium 

cDNA  Komplementär-DNA 

CM  Konditioniertes Zellkulturmedium 

DMEM Dulbecco's Modification of Eagle's Medium 

DMMB Dimethylenblau 

DMSO  Dimethylsulfoxid 

DNA  Desoxyribonukleinsäure 

ds-DNA Doppelstrang-DNA 

EDTA  Ethylendiamintetraessigsäure Dinatriumsalzdihydrat 

EGF  Epidermaler Wachstumsfaktor 

ESC  Embryonale Stammzelle 

FBS  Fetales Rinderserum 

FDA  Food and Drug Administration 

FGF  Fibroblasten-Wachstumsfaktor 

Flt3l  FMS-like Tyrosinkinase-3-Ligand 

GAG  Glykosaminoglykan 

G-CSF  Granulozyten-Kolonie stimulierender Faktor 

GM-CSF Granulozyten-Makrophagen-Kolonie stimulierender Faktor 

GVHD  Graft-versus-Host-Erkrankung 

hBMSC Mesenchymale Stammzellen aus humanem Knochenmark 

HC  Hämatozytometer (Neubauer Zählkammer) 

HCl  Hydrogenchlorid 

HGF  Leberwachstumsfaktor 

HSC  Hämatopoetische Stammzelle 

IBMX  3-Isobutyl-1-Methylxanthin 

IGF-1  Insulinähnlicher-Wachstumsfaktor-1 
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IL  Interleukin 

iPS  Induzierte, pluripotente Stammzellen 

IRB  Institutional Review Board (Ethikkomission) 

KDa  Kilo Dalton 

LIF  Leukämie-Hemmfaktor 

mRNA  Messenger-RNA 

M-CSF Makrophagen-Kolonie stimulierender Faktor 

MIF  Makrophagen-Hemmfaktor 

MSC  Mesenchymale Stammzelle 

MW  Molekulargewicht 

NaOH  Natriumhydroxid 

NaCl  Natriumchlorid 

NGF  Nervaler Wachstumsfaktor 

NIH  National Institute of Health 

OA  Osteoarthrose 

OI  Osteogenesis imperfecta 

PBS  Phosphatgepufferte Salzlösung 

PCR  Polymerase-Kettenreaktion 

PNP  P-Nitrophenol 

PNPP  P-Nitrophenolphosphat 

RIA  Reamer-Irrigator-Aspirator 

RNA  Ribonukleinsäure 

RT  Reverse Transkription 

RunX2  Runt-related Transkriptionsfaktor 2  

SCF  Stammzellfaktor 

siRNA  small interfering-RNA 

TERM  Tissue Engineering und Regenerative Medizin 

TGF-ß1 Transforming Growth Factor-ß1 

TNF-α  Tumornekrosefaktor-α 

(upc) unpassaged cells (Die Zellen durften bis zu einer Zellkonfluenz von ca. 90% ohne 

Zellpassage proliferieren) 

VEGF  Vascular Endothelial Growth Factor  



 

 60 

9 Referenzen 
 

Aubin, J. E. (1999). "Osteoprogenitor cell frequency in rat bone marrow stromal populations: 
role for heterotypic cell-cell interactions in osteoblast differentiation." J Cell Biochem 72(3): 
396-410. 

Baddoo, M., K. Hill, R. Wilkinson, D. Gaupp, C. Hughes, G. C. Kopen and D. G. Phinney 
(2003). "Characterization of mesenchymal stem cells isolated from murine bone marrow by 
negative selection." J Cell Biochem 89(6): 1235-1249. 

Baksh, D., L. Song and R. S. Tuan (2004). "Adult mesenchymal stem cells: characterization, 
differentiation, and application in cell and gene therapy." J Cell Mol Med 8(3): 301-316. 

Bianchi, G., A. Banfi, M. Mastrogiacomo, R. Notaro, L. Luzzatto, R. Cancedda and R. Quarto 
(2003). "Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2." 
Exp Cell Res 287(1): 98-105. 

Bosch, P., D. S. Musgrave, J. Y. Lee, J. Cummins, T. Shuler, T. C. Ghivizzani, T. Evans, T. D. 
Robbins and Huard (2000). "Osteoprogenitor cells within skeletal muscle." J Orthop Res 18(6): 
933-944. 

Bueno, E. M. and J. Glowacki (2009). "Cell-free and cell-based approaches for bone 
regeneration." Nat Rev Rheumatol 5(12): 685-697. 

Caplan, A. I. (1991). "Mesenchymal stem cells." J Orthop Res 9(5): 641-650. 

Caplan, A. I. and J. E. Dennis (2006). "Mesenchymal stem cells as trophic mediators." J Cell 
Biochem 98(5): 1076-1084. 

Centeno, C. J., J. R. Schultz, M. Cheever, B. Robinson, M. Freeman and W. Marasco (2010). 
"Safety and complications reporting on the re-implantation of culture-expanded mesenchymal 
stem cells using autologous platelet lysate technique." Curr Stem Cell Res Ther 5(1): 81-93. 

Cheng, L., H. Hammond, Z. Ye, X. Zhan and G. Dravid (2003). "Human adult marrow cells 
support prolonged expansion of human embryonic stem cells in culture." Stem Cells 21(2): 131-
142. 

Cheng, S.-L. and L. V. Avioli (1996). "Expression of Bone Matrix Proteins during 
Dexamethasone-Induced Mineralization of Human Bone Marrow Stromal Cells." Jounal of 
Cellular Biochemistry 61: 182-193. 

Colter, D. C., R. Class, C. M. DiGirolamo and D. J. Prockop (2000). "Rapid expansion of 
recycling stem cells in cultures of plastic-adherent cells from human bone marrow." Proc Natl 
Acad Sci U S A 97(7): 3213-3218. 

De Bari, C., F. Dell'Accio, P. Tylzanowski and F. P. Luyten (2001). "Multipotent mesenchymal 
stem cells from adult human synovial membrane." Arthritis Rheum 44(8): 1928-1942. 

Digirolamo, C. M., D. Stokes, D. Colter, D. G. Phinney, R. Class and D. J. Prockop (1999). 
"Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming 



 

 61 

assay identifies samples with the greatest potential to propagate and differentiate." Br J 
Haematol 107(2): 275-281. 

Dimitriou, R., E. Jones, D. McGonagle and P. V. Giannoudis (2011). "Bone regeneration: 
current concepts and future directions." BMC Med 9: 66. 

Djouad, F., C. Bouffi, S. Ghannam, D. Noel and C. Jorgensen (2009). "Mesenchymal stem cells: 
innovative therapeutic tools for rheumatic diseases." Nat Rev Rheumatol 5(7): 392-399. 

Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. 
Keating, D. Prockop and E. Horwitz (2006). "Minimal criteria for defining multipotent 
mesenchymal stromal cells. The International Society for Cellular Therapy position statement." 
Cytotherapy 8(4): 315-317. 

Doorn, J., G. Moll, K. Le Blanc, C. van Blitterswijk and J. de Boer (2012). "Therapeutic 
applications of mesenchymal stromal cells: paracrine effects and potential improvements." 
Tissue Eng Part B Rev 18(2): 101-115. 

Drago, D., C. Cossetti, N. Iraci, E. Gaude, G. Musco, A. Bachi and S. Pluchino (2013). "The 
stem cell secretome and its role in brain repair." Biochimie 95(12): 2271-2285. 

Evans, C. (2011). "Gene therapy for the regeneration of bone." Injury 42(6): 599-604. 

Evans, C. H. (2012). "Gene delivery to bone." Adv Drug Deliv Rev 64(12): 1331-1340. 

Evans, C. H. and P. D. Robbins (1995). "Possible orthopaedic applications of gene therapy." J 
Bone Joint Surg Am 77(7): 1103-1114. 

Evans, C. H. and M. Vrahas (2009). "Use of genetically modified muscle and fat grafts to repair 
defects in bone and cartilage." European Cells and Materials 18: 96-111. 

Ferreira, E., R. M. Porter, N. Wehling, R. P. O'Sullivan, F. Liu, A. Boskey, D. M. Estok, M. B. 
Harris, M. S. Vrahas, C. H. Evans and J. W. Wells (2013). "Inflammatory cytokines induce a 
unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow." J 
Biol Chem 288(41): 29494-29505. 

Friedenstein, A. J. (1976). "Precursor cells of mechanocytes." Int Rev Cytol 47: 327-359. 

Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova and G. P. Frolova (1968). "Heterotopic of 
bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues." 
Transplantation 6(2): 230-247. 

Gardner, O. F., C. W. Archer, M. Alini and M. J. Stoddart (2013). "Chondrogenesis of 
mesenchymal stem cells for cartilage tissue engineering." Histol Histopathol 28(1): 23-42. 

Gimble, J. and F. Guilak (2003). "Adipose-derived adult stem cells: isolation, characterization, 
and differentiation potential." Cytotherapy 5(5): 362-369. 

Giordano, A., U. Galderisi and I. R. Marino (2007). "From the laboratory bench to the patient's 
bedside: an update on clinical trials with mesenchymal stem cells." J Cell Physiol 211(1): 27-35. 

Gnecchi, M., Z. Zhang, A. Ni and V. J. Dzau (2008). "Paracrine mechanisms in adult stem cell 
signaling and therapy." Circ Res 103(11): 1204-1219. 



 

 62 

Gregory, C. A., W. G. Gunn, A. Peister and D. J. Prockop (2004). "An Alizarin red-based assay 
of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride 
extraction." Anal Biochem 329(1): 77-84. 

Gregory, C. A., J. Ylostalo and D. J. Prockop (2005). "Adult bone marrow stem/progenitor cells 
(MSCs) are preconditioned by microenvironmental "niches" in culture: a two-stage hypothesis 
for regulation of MSC fate." Sci STKE 2005(294): pe37. 

Guzmán-Morales, J., H. El-Gabalawy, M. H. Pham, N. Tran-Khanh, M. D. McKee, W. Wu, M. 
Centola and C. D. Hoemann (2009). "Effect of chitosan particles and dexamethasone on human 
bone marrow stromal cell osteogenesis and angiogenic factor secretion☆." Bone 45(4): 617-626. 

Hagmann, S., B. Moradi, S. Frank, T. Dreher, P. W. Kammerer, W. Richter and T. Gotterbarm 
(2013). "FGF-2 addition during expansion of human bone marrow-derived stromal cells alters 
MSC surface marker distribution and chondrogenic differentiation potential." Cell Prolif 46(4): 
396-407. 

Hamidouche, Z., O. Fromigué, U. Nuber, P. Vaudin, J.-C. Pages, R. Ebert, F. Jakob, H. Miraoui 
and P. J. Marie (2010). "Autocrine fibroblast growth factor 18 mediates dexamethasone-induced 
osteogenic differentiation of murine mesenchymal stem cells." Journal of Cellular Physiology 
224(2): 509-515. 

Hanada, K., L. A. Solchaga, A. I. Caplan, T. M. Hering, V. M. Goldberg, J. U. Yoo and B. 
Johnstone (2001). "BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell 
chondrogenesis." J Cell Biochem 81(2): 284-294. 

Handorf, A. M. and W. J. Li (2011). "Fibroblast growth factor-2 primes human mesenchymal 
stem cells for enhanced chondrogenesis." PLoS One 6(7): e22887. 

Harrison, R. H., J. P. St-Pierre and M. M. Stevens (2014). "Tissue engineering and regenerative 
medicine: a year in review." Tissue Eng Part B Rev 20(1): 1-16. 

Haynesworth, S. E., M. A. Baber and A. I. Caplan (1992). "Cell surface antigens on human 
marrow-derived mesenchymal cells are detected by monoclonal antibodies." Bone 13(1): 69-80. 

Haynesworth, S. E. and A. I. Caplan (1996). "Cytokine Expression by Human Marrow-Derived 
Mesenchymal Progenitor Cells in vitro: Effects of Dexamethasone and IL-1a." Journal of 
Cellular Physiology 166: 585-592. 

Herberts, C. A., M. S. Kwa and H. P. Hermsen (2011). "Risk factors in the development of stem 
cell therapy." J Transl Med 9: 29. 

Hocking, A. M. and N. S. Gibran (2010). "Mesenchymal stem cells: paracrine signaling and 
differentiation during cutaneous wound repair." Exp Cell Res 316(14): 2213-2219. 

Horwitz, E. M., P. L. Gordon, W. K. Koo, J. C. Marx, M. D. Neel, R. Y. McNall, L. Muul and T. 
Hofmann (2002). "Isolated allogeneic bone marrow-derived mesenchymal cells engraft and 
stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of 
bone." Proc Natl Acad Sci U S A 99(13): 8932-8937. 

Hsu, S. L., R. Liang and S. L. Woo (2010). "Functional tissue engineering of ligament healing." 
Sports Med Arthrosc Rehabil Ther Technol 2: 12. 



 

 63 

Huey, D. J., J. C. Hu and K. A. Athanasiou (2012). "Unlike bone, cartilage regeneration remains 
elusive." Science 338(6109): 917-921. 

Illich, D. J., N. Demir, M. Stojkovic, M. Scheer, D. Rothamel, J. Neugebauer, J. Hescheler and J. 
E. Zoller (2011). "Concise review: induced pluripotent stem cells and lineage reprogramming: 
prospects for bone regeneration." Stem Cells 29(4): 555-563. 

Jaiswal, N., S. E. Haynesworth, A. I. Caplan and S. P. Bruder (1997). "Osteogenic differentiation 
of purified, culture-expanded human mesenchymal stem cells in vitro." J Cell Biochem 64(2): 
295-312. 

Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg and J. U. Yoo (1998). "In vitro 
chondrogenesis of bone marrow-derived mesenchymal progenitor cells." Exp Cell Res 238(1): 
265-272. 

Jorgensen, C., F. Djouad, F. Apparailly and D. Noel (2003). "Engineering mesenchymal stem 
cells for immunotherapy." Gene Ther 10(10): 928-931. 

Jukes, J. M., C. A. van Blitterswijk and J. de Boer (2010). "Skeletal tissue engineering using 
embryonic stem cells." J Tissue Eng Regen Med 4(3): 165-180. 

Kim, C.-H. and G. S. Kim (1999). "Effects of dexamethasone on proliferation, activity, and 
cytokine secretion of normal human bone marrow stromal cells: possible mechanisms of 
glucocorticoid-induced bone loss." Journal of Endocrinology 162: 371-379. 

Kim, K., D. Dean, A. G. Mikos and J. P. Fisher (2009). "Effect of initial cell seeding density on 
early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked 
poly(propylene fumarate) disks." Biomacromolecules 10(7): 1810-1817. 

Kuhn, N. Z. and R. S. Tuan (2010). "Regulation of stemness and stem cell niche of 
mesenchymal stem cells: Implications in tumorigenesis and metastasis." Journal of Cellular 
Physiology 222(2): 268-277. 

Kuo, C. K., J. E. Marturano and R. S. Tuan (2010). "Novel strategies in tendon and ligament 
tissue engineering: Advanced biomaterials and regeneration motifs." Sports Med Arthrosc 
Rehabil Ther Technol 2: 20. 

Lazarus, H. M., S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal and A. I. Caplan (1995). "Ex 
vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells 
(mesenchymal progenitor cells): implications for therapeutic use." Bone Marrow Transplant 
16(4): 557-564. 

Le Blanc, K., F. Frassoni, L. Ball, F. Locatelli, H. Roelofs, I. Lewis, E. Lanino, B. Sundberg, M. 
E. Bernardo, M. Remberger, G. Dini, R. M. Egeler, A. Bacigalupo, W. Fibbe, O. Ringden, B. 
Developmental Committee of the European Group for and T. Marrow (2008). "Mesenchymal 
stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II 
study." Lancet 371(9624): 1579-1586. 

Le Blanc, K. and M. Pittenger (2005). "Mesenchymal stem cells: progress toward promise." 
Cytotherapy 7(1): 36-45. 



 

 64 

Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel and O. 
Ringden (2004). "Treatment of severe acute graft-versus-host disease with third party 
haploidentical mesenchymal stem cells." Lancet 363(9419): 1439-1441. 

Lieberman, J. R., A. Daluiski, S. Stevenson, L. Wu, P. McAllister, Y. P. Lee, J. M. Kabo, G. A. 
Finerman, A. J. Berk and O. N. Witte (1999). "The effect of regional gene therapy with bone 
morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral 
defects in rats." J Bone Joint Surg Am 81(7): 905-917. 

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method." Methods 25(4): 402-408. 

Loeffler, M. and I. Roeder (2002). "Tissue stem cells: definition, plasticity, heterogeneity, self-
organization and models--a conceptual approach." Cells Tissues Organs 171(1): 8-26. 

Lui, P. P., Y. F. Rui, M. Ni and K. M. Chan (2011). "Tenogenic differentiation of stem cells for 
tendon repair-what is the current evidence?" J Tissue Eng Regen Med 5(8): e144-163. 

Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester and M. F. Pittenger 
(1998). "Chondrogenic differentiation of cultured human mesenchymal stem cells from 
marrow." Tissue Eng 4(4): 415-428. 

Majumdar, M. K., M. A. Thiede, J. D. Mosca, M. Moorman and S. L. Gerson (1998). 
"Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells 
(MSCs) and stromal cells." J Cell Physiol 176(1): 57-66. 

Malgieri, A., E. Kantzari, M. P. Patrizi and S. Gambardella (2010). "Bone marrow and umbilical 
cord blood human mesenchymal stem cells: state of the art." Int J Clin Exp Med 3(4): 248-269. 

Marino, R., C. Martinez, K. Boyd, M. Dominici, T. J. Hofmann and E. M. Horwitz (2008). 
"Transplantable marrow osteoprogenitors engraft in discrete saturable sites in the marrow 
microenvironment." Exp Hematol 36(3): 360-368. 

Mason, C. and P. Dunnill (2008). "A brief definition of regenerative medicine." Regen Med 3(1): 
1-5. 

Miller, M. A., A. Ivkovic, R. Porter, M. B. Harris, D. M. Estok, 2nd, R. M. Smith, C. H. Evans 
and M. S. Vrahas (2011). "Autologous bone grafting on steroids: preliminary clinical results. A 
novel treatment for nonunions and segmental bone defects." Int Orthop 35(4): 599-605. 

Neuhuber, B., S. A. Swanger, L. Howard, A. Mackay and I. Fischer (2008). "Effects of plating 
density and culture time on bone marrow stromal cell characteristics." Exp Hematol 36(9): 1176-
1185. 

Noth, U., A. M. Osyczka, R. Tuli, N. J. Hickok, K. G. Danielson and R. S. Tuan (2002). 
"Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells." J 
Orthop Res 20(5): 1060-1069. 

Noth, U., L. Rackwitz, A. F. Steinert and R. S. Tuan (2010). "Cell delivery therapeutics for 
musculoskeletal regeneration." Adv Drug Deliv Rev 62(7-8): 765-783. 

Noth, U., A. F. Steinert and R. S. Tuan (2008). "Technology insight: adult mesenchymal stem 
cells for osteoarthritis therapy." Nat Clin Pract Rheumatol 4(7): 371-380. 



 

 65 

Park, K. S., Y. S. Kim, J. H. Kim, B. Choi, S. H. Kim, A. H. Tan, M. S. Lee, M. K. Lee, C. H. 
Kwon, J. W. Joh, S. J. Kim and K. W. Kim (2010). "Trophic molecules derived from human 
mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after 
transplantation." Transplantation 89(5): 509-517. 

Penick, K. J., L. A. Solchaga and J. F. Welter (2005). "High-throughput aggregate culture system 
to assess the chondrogenic potential of mesenchymal stem cells." Biotechniques 39(5): 687-691. 

Phinney, D. G. and D. J. Prockop (2007). "Concise review: mesenchymal stem/multipotent 
stromal cells: the state of transdifferentiation and modes of tissue repair--current views." Stem 
Cells 25(11): 2896-2902. 

Pittenger, M. F. (2008). "Mesenchymal stem cells from adult bone marrow." Methods Mol Biol 
449: 27-44. 

Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. 
Moorman, D. W. Simonetti, S. Craig and D. R. Marshak (1999). "Multilineage potential of adult 
human mesenchymal stem cells." Science 284(5411): 143-147. 

Pittenger, M. F. and B. J. Martin (2004). "Mesenchymal stem cells and their potential as cardiac 
therapeutics." Circ Res 95(1): 9-20. 

Porter, R. M., F. Liu, C. Pilapil, O. B. Betz, M. S. Vrahas, M. B. Harris and C. H. Evans (2009). 
"Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients 
undergoing hip arthroplasty." Journal of Orthopaedic Research 27(1): 42-49. 

Pricola, K. L., N. Z. Kuhn, H. Haleem-Smith, Y. Song and R. S. Tuan (2009). "Interleukin-6 
maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent 
mechanism." Journal of Cellular Biochemistry 108(3): 577-588. 

Reese, J. S., O. N. Koc and S. L. Gerson (1999). "Human mesenchymal stem cells provide 
stromal support for efficient CD34+ transduction." J Hematother Stem Cell Res 8(5): 515-523. 

Reger, R. L., A. H. Tucker and M. R. Wolfe (2008). "Differentiation and characterization of 
human MSCs." Methods Mol Biol 449: 93-107. 

Roobrouck, V. D., K. Vanuytsel and C. M. Verfaillie (2011). "Concise review: culture mediated 
changes in fate and/or potency of stem cells." Stem Cells 29(4): 583-589. 

Ryan, J. M., F. Barry, J. M. Murphy and B. P. Mahon (2007). "Interferon-gamma does not break, 
but promotes the immunosuppressive capacity of adult human mesenchymal stem cells." Clin 
Exp Immunol 149(2): 353-363. 

Sanchez, L., I. Gutierrez-Aranda, G. Ligero, M. Martin, V. Ayllon, P. J. Real, V. Ramos-Mejia, 
C. Bueno and P. Menendez (2012). "Maintenance of human embryonic stem cells in media 
conditioned by human mesenchymal stem cells obviates the requirement of exogenous basic 
fibroblast growth factor supplementation." Tissue Eng Part C Methods 18(5): 387-396. 

Sekiya, I., B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui and D. J. Prockop (2002). 
"Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the 
yields of early progenitors and evaluate their quality." Stem Cells 20(6): 530-541. 



 

 66 

Shake, J. G., P. J. Gruber, W. A. Baumgartner, G. Senechal, J. Meyers, J. M. Redmond, M. F. 
Pittenger and B. J. Martin (2002). "Mesenchymal stem cell implantation in a swine myocardial 
infarct model: engraftment and functional effects." Ann Thorac Surg 73(6): 1919-1925; 
discussion 1926. 

Sharma, R. R., K. Pollock, A. Hubel and D. McKenna (2014). "Mesenchymal stem or stromal 
cells: a review of clinical applications and manufacturing practices." Transfusion 54(5): 1418-
1437. 

Sheridan, C. (2013). "Cardiac stem cell therapies inch toward clinical litmus test." Nat 
Biotechnol 31(1): 5-6. 

Siegel, G., T. Kluba, U. Hermanutz-Klein, K. Bieback, H. Northoff and R. Schafer (2013). 
"Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal 
stromal cells." BMC Med 11: 146. 

Song, L., N. E. Webb, Y. Song and R. S. Tuan (2006). "Identification and Functional Analysis of 
Candidate Genes Regulating Mesenchymal Stem Cell Self-Renewal and Multipotency." Stem 
Cells 24(7): 1707-1718. 

Steinert, A. F., L. Rackwitz, F. Gilbert, U. Noth and R. S. Tuan (2012). "Concise review: the 
clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status 
and perspectives." Stem Cells Transl Med 1(3): 237-247. 

Tolar, J., K. Le Blanc, A. Keating and B. R. Blazar (2010). "Concise review: hitting the right 
spot with mesenchymal stromal cells." Stem Cells 28(8): 1446-1455. 

Trounson, A., R. G. Thakar, G. Lomax and D. Gibbons (2011). "Clinical trials for stem cell 
therapies." BMC Med 9: 52. 

Wang, Y., M. Yuan, Q. Y. Guo, S. B. Lu and J. Peng (2014). "Mesenchymal stem cells for 
treating articular cartilage defects and osteoarthritis." Cell Transplant. 

Wehling, N., G. D. Palmer, C. Pilapil, F. Liu, J. W. Wells, P. E. Müller, C. H. Evans and R. M. 
Porter (2009). "Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human 
mesenchymal stem cells through NF-κB-dependent pathways." Arthritis & Rheumatism 60(3): 
801-812. 

Wei, H., G. Shen, X. Deng, D. Lou, B. Sun, H. Wu, L. Long, T. Ding and J. Zhao (2013). "The 
role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and 
chondrogenesis." Cell Tissue Bank 14(4): 699-706. 

Whyte, J. L., S. G. Ball, C. A. Shuttleworth, K. Brennan and C. M. Kielty (2011). "Density of 
human bone marrow stromal cells regulates commitment to vascular lineages." Stem Cell Res 
6(3): 238-250. 

Wu, S. M. and K. Hochedlinger (2011). "Harnessing the potential of induced pluripotent stem 
cells for regenerative medicine." Nat Cell Biol 13(5): 497-505. 

Yoo, J. U., T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan, V. M. Goldberg and B. 
Johnstone (1998). "The chondrogenic potential of human bone-marrow-derived mesenchymal 
progenitor cells." J Bone Joint Surg Am 80(12): 1745-1757. 



 

 67 

Young, H. E., T. A. Steele, R. A. Bray, J. Hudson, J. A. Floyd, K. Hawkins, K. Thomas, T. 
Austin, C. Edwards, J. Cuzzourt, M. Duenzl, P. A. Lucas and A. C. Black, Jr. (2001). "Human 
reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal 
muscle and dermis derived from fetal, adult, and geriatric donors." Anat Rec 264(1): 51-62. 

Zaragosi, L.-E., G. Ailhaud and C. Dani (2006). "Autocrine Fibroblast Growth Factor 2 
Signaling Is Critical for Self-Renewal of Human Multipotent Adipose-Derived Stem Cells." 
Stem Cells 24(11): 2412-2419. 

Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz 
and M. H. Hedrick (2001). "Multilineage cells from human adipose tissue: implications for cell-
based therapies." Tissue Eng 7(2): 211-228. 
 

 



 

 68 

10 Danksagung 
 

Mein besonderer Dank gilt Prof. Chris Evans und Elisabeth Ferreira für die Ermöglichung dieses 

Projektes. Ihr Wissen, ihre Begeisterung für das Thema und ihre Geduld haben in einem ganz 

erheblichen Maß zum Gelingen dieser Arbeit beigetragen. Elisabeth, merci pour les six mois 

dans et en dehors du laboratoire, ta patience tout au long des jours. Chris, thank you for your 

indefatigable support! 

 

Des Weiteren danke ich dem gesamten Team des „Center for Advanced Orthopaedic Studies” 

am Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA. Sie alle 

waren mir eine große Unterstützung in der Versuchsdurchführung, der Datenanalyse sowie bei 

Fragen im Laboralltag.  

 

Außerdem möchte ich mich ganz herzlich für die hervorragende und immer zuverlässige 

Betreuung bei meinem Doktorvater, Prof. Dr. med. Stefan Milz, bedanken. Ohne ihn wäre der 

erfolgreiche Abschluss dieses Projektes nicht möglich geworden.  

 

Anna Speroni, Leonardo Rozenthal und Satya Chandrashekar danke ich für die immer passende 

Ablenkung in Boston und Alexander Poszler für sein stets offenes Ohr in dieser Zeit.  

 

Ein großer Dank gilt auch meinen Mädels in München, die mir immer mit Tat und Rat zur Seite 

standen und das Studium zur besten Zeit überhaupt gemacht haben.  

 

Der größte Dank gilt meinen Eltern und meiner Schwester. Ohne ihre ausdauernde und 

vielseitige Unterstützung wäre die Umsetzung meiner Promotion und meines Studiums nicht 

möglich gewesen. 

 



Eidesstattliche Versicherung  Stand: 31.01.2013 

 
Eidesstattliche Versicherung 

 
 

 

Name, Vorname 

 
 
 
Ich erkläre hiermit an Eides statt,  
  
dass ich die vorliegende Dissertation mit dem Thema  
 
 
 
 
 
 
selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und 
alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als 
solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle 
einzeln nachgewiesen habe.  
 
Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in 
ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades 
eingereicht wurde. 
 
 
 
 
 
 
   

Ort, Datum  Unterschrift Doktorandin/Doktorand 

 
 
 
 
 
 
 
 
 
 
 

Wehling, Carola

Die Ausschüttung autokriner und parakriner stemness-Faktoren durch humane 
mesenchymale Stammzellen


