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1  Abstract 

 

Eye movements are important to aid vision, and they serve two main functions: to 

stabilize a moving visual target on the retina and to stabilize gaze during own body 

movements. Six types of eye movements have been evolved fulfilling this function: 

saccades, smooth pursuit, vestibulo-ocular reflex, optokinetic response, convergence 

and gaze holding. In all vertebrates the eyes are moved by six pairs of extraocular 

muscles that enable horizontal, vertical and rotatory eye movements. The 

motoneurons of these muscles are located in the oculomotor (nIII), trochlear (nIV) 

and abducens (nVI) nucleus in the brainstem. Motoneurons of the lateral rectus 

muscle (LR) in nVI and of the medial rectus muscle (MR) in nIII provide horizontal 

eye movements, those of inferior oblique (IO) and superior rectus muscle (SR) in nIII 

upward eye movements. Motoneurons of the superior oblique (SO) and the inferior 

rectus muscle (IR) in nIII convey downward eye movements. Recently, it was shown 

that each extraocular muscle is controlled by two motoneuronal groups:  

1. Motoneurons of singly innervated muscle fibers (SIF) that lie within the boundaries 

of motonuclei providing a fast muscle contraction (twitch) and 2. motoneurons of 

multiply innervated muscle fibers (MIF) in the periphery of motonuclei providing a 

tonic muscle contraction (non-twitch). Tract-tracing studies indicate that both 

motoneuronal groups receive premotor inputs from different brainstem areas. A 

current hypothesis suggests that pathways controlling twitch motoneurons serve to 

generate eye movements, whereas the non-twitch system is involved in gaze holding. 

Lesions of inputs to the twitch motoneuron system may lead to supranuclear gaze 

palsies, whereas impairment of the non-twitch motoneuron system may result in gaze 

holding deficits, like nystagmus, or strabismus. Up to date only limited data are 

available about the histochemical characteristics including transmitters to the SIF- 

(twitch) and MIF (non-twitch) motoneurons. 

The present study was undertaken to investigate the histochemical profile of inputs to 

motoneuronal groups of individual eye muscles mediating horizontal and vertical eye 

movements including the inputs to MIF- and SIF motoneurons. The MIF motoneurons 

of the IR and MR are located in the periphery dorsolateral to nIII, close to the 

Edinger-Westphal nucleus (EW), which is known to contain preganglionic cholinergic 

neurons. Other scientists have found that the EW is composed of urocortin-positive 

neurons involved in food intake or stress. In order to delineate these different cell 



                                                                                                                          Abstract 

 

2 
 

populations within the supraoculomotor area dorsal to nIII, a comparative study in 

different mammals was conducted to locate the cholinergic preganglionic neurons 

and urocortin-positive neurons. Only then, it became obvious that the 

cytoarchitecturally defined EW labels different cell populations in different species. In 

rat, ferret and human the cytoarchitecturally defined EW is composed of urocortin-

positive neurons. Only in monkey the EW contains cholinergic preganglionic neurons, 

which lie close to the MIF-motoneurons of MR and IR in the C-group.  

In monkey, I performed a systematic study on the histochemical profile and 

transmitter inputs to the different motoneuron subgroups, including MIF- and SIF 

motoneurons. Brainstem sections containing prelabelled motoneurons were 

immunostained for the calcium-binding protein calretinin (CR), gamma-aminobutyric 

acid (GABA) or glutamate decarboxylase (GAD), glycine transporter 2, glycine 

receptor 1, and the vesicular glutamate transporters (vGlut) 1 and 2. 

The study on the histochemical profile of the motoneuron inputs revealed three main 

results: 1.The inhibitory control of SIF motoneurons for horizontal and vertical eye 

movements differs. Unlike previous studies in the primate a considerable GABAergic 

input was found to all SIF motoneuronal groups, but a glycinergic input was confined 

to motoneurons of the MR mediating horizontal eye movements. 2. The excitatory 

inputs to motoneurons for upgaze and downgaze differ in their histochemistry. A 

striking finding was that CR-positive nerve endings were confined to the motoneurons 

of muscles involved in upgaze, e.g. SR, IO and the levator palpebrae, which elevates 

the upper eyelid and acts in synchrony with the SR. Since double-

immunoflourescence labelling with anti-GAD did not reveal any colocalization of GAD 

and CR, the CR-input to upgaze motoneurons is considered as excitatory. 3. The 

histochemistry of MIF- and SIF motoneurons differs only for vGlut1. Whereas SIF- 

and MIF motoneurons of individual eye muscles do not differ in their GABAergic, 

glycinergic and vGlut2 input, vGlut1 containing terminals were covering the 

supraoculomotor area and targeting only MR MIF motoneurons. It is reasonable to 

assume that the vGlut1 input affects the near response system in the 

supraoculomotor area, which houses the preganglionic neurons in the EW mediating 

pupillary constriction and accommodation and the MR MIF motoneurones involved in 

vergence.  
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The histochemical data in monkey enabled the localization of the corresponding 

motoneuronal subgroups of individual eye muscles in human with the development of 

an updated nIII map.   

Taken together the present work provides new data on the histochemical properties 

of premotor inputs to motoneuronal groups of the twitch- and non-twitch eye muscle 

systems in primates. Especially the selective association of CR in premotor upgaze 

pathways may open the possibility for a targeted research of this system in human 

post-mortem studies of clinical cases with impairment of upward eye movements, 

such as progressive supranuclear palsy (PSP) or Niemann-Pick disease (NPC).  
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1.1  Zusammenfassung 

 

Augenbewegungen sind essenziell um ein ungestörtes Sehen zu garantieren. Dabei 

sind zwei Hauptfunktionen entscheidend: Die Stabilisierung eines sich bewegenden 

Objekts auf der Retina und das Stabilisieren des Blickes während einer Bewegung. 

Zur Erfüllung dieser Aufgaben dienen sechs verschiedene Augenbewegungstypen: 

Sakkaden, smooth pursuit, vestibulookulärer Reflex, optokinetische Augenbe-

wegungen, Konvergenz und Fixation. 

Um die dafür benötigten horizontalen, vertikalen und rotatorischen Bewegungen des 

Auges ausführen zu können, besitzen Vertebraten sechs Augenmuskelpaare. 

Die Motoneurone der Augenmuskeln liegen in drei Kerngebieten des Hirnstamms: im 

Nucleus oculomotorius (nIII), im Nucleus trochlearis (nIV) und im Nucleus abducens 

(nVI). 

Der nIII enthält die Motoneurone des Musculus rectus medialis (MR), des Musculus 

rectus superior (SR), des Musculus inferior obliquus (IO) sowie des Musculus rectus 

inferior (IR). Die Motoneurone des Musculus obliquus superior (SO) liegen im nIV 

und die des Musculus rectus lateralis (LR) im nVI. MR und LR führen gemeinsam 

horizontale Augenbewegungen aus. IO und SR sind in Blickbewegungen nach oben 

involviert, wohingegen SO und IR die Blickbewegungen nach unten steuern. 

Kürzlich wurde gezeigt, dass jeder extraokuläre Muskel durch zwei Gruppen von 

Motoneuronen kontrolliert wird: 1. Durch Motoneurone der einfach innervierten 

Muskelfasern (singly innervated muscle fibers, SIF). Sie antworten auf elektrische 

Stimulierung mit fortgeleiteten Aktionspotentialen und einer schnellen Muskel-

kontraktion (twitch). 2. Durch Motoneurone der multipel-innervierten Muskelfasern 

(multiply innervated muscle fibers, MIF). Diese reagieren auf elektrische Reizung nur 

lokal, ohne fortgeleitete Aktionspotentiale, mit einer langsamen tonischen Kontraktion 

(non-twitch). 

An Primaten konnte gezeigt werden, dass die Motoneurone von SIFs und MIFs 

räumlich voneinander getrennt liegen. MIF Motoneurone liegen außerhalb der 

Motokerne in der Peripherie, während sich SIF Motoneurone innerhalb der 

klassischen Augenmuskelkerne befinden. 

Trakt-tracing Studien deuten auch darauf hin, dass diese beiden Motoneuronen-

gruppen prämotorische Eingänge aus unterschiedlichen Hirnstammregionen 

erhalten.  
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Eine derzeitige Hypothese besagt, dass Bahnen, welche die twitch Motoneurone 

kontrollieren für die Generierung der Augenbewegungen verantwortlich sind. Das 

non-twitch System hingegen ist in die Blickstabilisierung involviert. Läsionen des 

twitch-Systems können zu supranukleären Blickparesen führen, Beeinträchtigungen 

des non-twitch Systems wiederum zu Blickstabilisierungsdefiziten, wie Nystagmus 

oder Strabismus. 

Bisher sind nur wenige Daten über die Histochemie, sowie über die 

Transmittereingänge der SIF- (twitch) und MIF (non-twitch) Motoneurone bekannt. 

In der vorliegenden Arbeit wurden die prämotorischen Eingänge auf die 

Motoneurone, die vertikale und horizontale Augenbewegungen vermitteln, 

histochemisch untersucht und verglichen, sowie die prämotorischen Eingänge auf die 

MIF- und SIF Motoneuronen individueller Augenmuskeln. 

Die MIF Motoneurone des IR und MR liegen gemeinsam in der C-Gruppe, peripher, 

dorsolateral zum nIII, nahe des Edinger-Westphal Kerns (EW). Traditionell wird der 

EW als Sitz der cholinergen präganglionären Neurone angesehen, jedoch wurde 

gezeigt, dass der EW auch urocortin-positive Neurone enthält. Urocortin ist ein 

Peptid, das in Verbindung mit Nahrungsaufnahme und Stress steht. 

Dorsal zum nIII liegt das supraokulomotorische Areal (SOA), in dem verschiedene 

Zellgruppen mit unterschiedlichen Funktionen zu finden sind. Um diese 

Zellpopulationen im SOA lokalisieren und gegeneinander abgrenzen zu können, 

wurde eine vergleichende Studie in unterschiedlichen Säugetieren durchgeführt. Hier 

wird deutlich, dass der zytoarchitektonisch definierte EW in verschiedenen Spezies 

unterschiedliche Zellpopulationen enthält: In der Ratte, dem Frettchen und dem 

Menschen enthält der zytoarchitektonisch definierte EW urocortin-positive Neurone. 

Im Affen hingegen finden sich cholinerge präganglionäre Neurone im EW, nahe der 

C-Gruppe, in der die MIF-Motoneurone des MR und IR liegen. 

Auf Grund der räumlichen Nähe wurden im Affen systematisch die histochemischen 

Profile und Transmittereingänge aller unterschiedlichen Motoneuronensubgruppen, 

einschließlich MIF- und SIF Motoneurone individueller Augenmuskeln, untersucht. 

Hierfür wurden Hirnstammschnitte mit vormarkierten Motoneuronen auf folgende 

Marker histochemisch angefärbt: auf das Calcium-bindende Protein Calretinin (CR), 

auf Gamma-Aminobuttersäure (GABA) oder Glutamatdecarboxylase (GAD), auf den 

Glyzintransporter 2, den Glyzinrezeptor 1 sowie auf die vesikulären Glutamat-

transporter (vGlut) 1 und 2. 
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Die Untersuchung der histochemischen Eigenschaften der prämotorischen Eingänge 

auf die unterschiedlichen Motoneuronengruppen zeigten drei wichtige Ergebnisse: 

1. Motoneurone, die bei horizontalen und vertikalen Augenbewegungen involviert 

sind, werden unterschiedlich inhibitorisch kontrolliert. 

2. Motoneurone, die an Blickbewegungen nach oben beteiligt sind, haben andere 

histochemische Eigenschaften im Vergleich zu Motoneuonen, die bei Blickbe-

wegungen nach unten involviert sind. Hierbei war auffällig, dass CR-positive 

Nervenendigungen ausschließlich an Motoneuronen zu finden sind, die an 

Blickbewegungen nach oben beteiligt sind, wie z.B. SR, IO und an Motoneuronen 

des Musculus levator palpebrae, welcher das Augenlid anhebt und synchron mit dem 

SR agiert. Nachdem eine Doppelimmunfluoreszenzfärbung mit anti-GAD keine 

Colokalisation von CR und GAD gezeigt hat, wird davon ausgegangen, dass der CR-

Eingang der Motoneurone für Blickbewegungen nach oben exzitatorisch ist. 

3. Eine unterschiedliche Histochemie der SIF- und MIF Motoneurone zeigt sich 

bisher nur in einem vesikulären Glutamattransporter. Die Ergebnisse zeigen: 1. SIF- 

und MIF Motoneurone individueller Augenmuskeln unterscheiden sich nicht in ihren 

GABAergen, glyzinergen und vGlut2 Eingängen. 2. VGlut1-positive Terminalen findet 

man nur im SOA, wo sie ausschließlich die MIF Motoneurone des MR kontaktieren. 

Man nimmt an, dass die vGlut1 Eingänge auf das Nah-Antwort-Zentrum, das im SOA 

liegt, Einfluss haben. Im SOA liegen auch die im EW lokalisierten präganglionären 

Neurone, die Linsenakkomodation und Pupillenreflex vermitteln, sowie die MIF 

Motoneurone des MR, die bei Vergenzbewegungen beteiligt sind. 

Basierend auf den histochemischen Daten des Affens, ist im Menschen eine 

Lokalisation der korrespondierenden Motoneuronengruppen der einzelnen 

Augenmuskeln und dadurch auch eine Aktualisierung der bestehenden Karte des 

menschlichen nIII möglich. 

Zusammenfassend liefert die vorliegende Arbeit neue Erkenntnisse über die 

histochemischen Eigenschaften der prämotorischen Eingänge der Motoneurone des 

twitch- und non-twitch Augenmuskelsystems im Primaten. 

Für weitere Untersuchungen ist besonders der selektive Zusammenhang von CR mit 

den prämotorischen Bahnen für Blickbewegungen nach oben interessant. Im 

Menschen können anhand von post-mortem Studien gezielt klinische Fälle, die eine 

Beeinträchtigung des Blickaufwärtssystems aufweisen, wie z.B. eine progressive 
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supranukleäre Blickparese (PSP) oder die Niemann-Pick-Krankheit (NPC), 

untersucht werden. 
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2  Introduction 

 

2.1  Eye Movements 

 

The basic requirement for clear and accurate visual perception is to hold images 

steady on the retina and to bring them to the center of the fovea. If we had no eye 

movements, images would move across the retina during head movement and would 

cause blurred and unclear vision. 

In primates it is possible to distinguish six types of eye movements: The vestibulo-

ocular reflex (VOR), the optokinetic response (OKR), smooth pursuit eye movements 

(SPEM), vergence, saccades and visual fixation (Horn and Leigh, 2011).  

The VOR is a slow, compensatory eye movement that stabilizes images during head 

movements by moving the eye in the opposite direction of the head movement. The 

VOR is mainly generated by signals arising in the semicircular canals (Büttner and 

Büttner-Ennever, 2006). Large moving visual fields lead to slow, conjugated eye 

movements, the optokinetic response. It complements the VOR particularly in the low 

frequency range, where its gain is low (Robinson, 1981; Büttner and Büttner-

Ennever, 2006). 

In animals without fovea (e.g. rabbit) eye movements are dominated by the VOR and 

OKR, which are sufficient to stabilize vision. These two types of eye movements are 

phylogenetically old and can be found in all vertebrates investigated so far (Highstein 

and Reisine, 1979; Graf and Baker, 1985; Baker et al., 1998; Fritzsch, 1998; Straka 

and Dieringer, 2004). 

With the evolution of foveal vision, it became necessary to change the line of sight 

independently of head movements. This has been achieved by saccadic eye 

movements. Saccades move both eyes rapidly in a conjugate fashion to a new eye 

position - without movement of the head (Büttner and Büttner-Ennever, 2006). In 

primate, saccades last between 15 and 100 ms and their velocity can reach 700o/s 

(Becker, 1989; Büttner and Büttner-Ennever, 2006). They include voluntary and 

involuntary changes in fixation: Voluntary saccades are made purposefully by the 

subject. Often they are made in response to an instruction to direct focus towards an 

object already present in the person's visual environment. An involuntary or reflexive 

saccade is triggered by the appearance of a new stimulus in the subject's 

environment. 
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In afoveal animals, saccades usually occur together with head movements (Leigh 

and Zee, 2006). 

With the evolution of the fovea it became necessary to follow a moving object 

smoothly. This is possible to a limited degree with saccadic movements; however, 

the image of the moving target will slide off eventually, with the consequent decline in 

visual acuity (Leigh and Zee, 2006). The smooth pursuit system however, allows to 

track small moving targets with the fovea in a fixed visual environment. Smooth 

pursuit eye movements (SPEM) are voluntary eye movements requiring motivation 

and attention. Although SPEMs are considered as slow eye movements, they can 

reach velocities above 100o/s (Lisberger et al., 1981; Simons and Büttner, 1985). Not 

only the eyes also the head is involved in tracking moving objects. The VOR normally 

brings the eye to the opposite direction of the head movements, and for this reason 

has to be suppressed under the condition of SPEMs. One suggested possibility is 

that smooth pursuit signals cancel and consequently suppress the VOR (Leigh and 

Zee, 2006; Akao et al, 2007). 

Gaze holding or visual fixation allows to hold a stationary object on the fovea when 

the observer is stationary too, and permits a stable eye position between the eye 

movements (Büttner and Büttner-Ennever, 2006). With the development of frontal 

vision it became possible to keep a target in focus on both foveae simultaneously. 

This requires disconjugated or vergence eye movements. Vergence eye movements 

are generally small (less than 5o) and slow (latency 150-200ms) (Büttner and Büttner-

Ennever, 2006). During natural visual search, vergence eye movements are 

accompanied by saccades (because in our environment most targets differ in 

horizontal and vertical direction and in distance), and are much faster (Leigh and 

Zee, 2006). Vergence eye movements play also an important role in near triad. 

 

 

2.1.1  Near Triad 

 

The near triad consists of three actions of inner and extraocular muscles: lens 

accommodation, pupillary constriction and the concomitant activation of vergence. 

This is helpful to focus on near objects clearer. This action involves the contraction of 

the medial rectus muscle and the relaxation of the lateral rectus muscle. Lens 
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accommodation and pupillary constriction is under control of the Edinger-Westphal 

nucleus (EW). 

In order to meet all these different requirements of eye movements – from fast eye 

movements to accurate visual fixation - it is essential to have eye muscles with a very 

complex architecture.  

 

 

2.2  Extraocular muscles 

 

2.2.1  Arrangement and function 

 

The eye of vertebrates is rotated by six extraocular muscles (EOM), four recti 

(superior-, inferior-, medial- and lateral muscles) and two oblique muscles (superior- 

and inferior muscles). An additional EOM, the levator palpeprae muscle (LP), is 

present only in mammals and elevates the upper eye lid (Spencer and Porter, 2006). 

Among all vertebrate classes, the presence of the four recti and two oblique muscles 

is rather constant, but the EOMs vary in innervation-pattern and arrangement 

(Isomura, 1981; Evinger, 1988; Spencer and Porter, 2006). 

In mammals the eyeball is embedded in orbital fat and connective tissue within the 

bony orbit and is attached by the EOMs. The recti muscles and the superior oblique 

muscles have their origin from the annulus of Zinn, a tendinous ring which surrounds 

the optic foramen and a portion of the superior orbital fissure (Sevel, 1986). The 

inferior oblique muscle (IO) arises from the maxillary bone in the medial wall of the 

orbit, and the LP has its origin at the sphenoid bone above the optic foramen. The 

medial rectus (MR) lies medial to the globe and inserts posterior to the corneoscleral 

junction. The lateral rectus (LR) lies lateral to the globe, inserts on the sclera via a 

long and broad tendon. The two vertical muscles, the superior rectus (SR) and 

inferior rectus (IR), insert dorsally and ventrally on the globe and anterior to the 

equator (Spencer and Porter, 2006). The superior oblique muscle (SO) passes 

through the trochlea, a chondral ring at the upper edge of the medial orbit, turns 

laterally to insert on the superior aspect of the globe. The insertion of this muscle is 

posterolateral to the central point of the globe in frontal-eyed mammals and 

anterolateral in lateral-eyed mammals (Spencer and Porter, 2006). 
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insert on the opposite sides of the globe, and therefore these muscles are functional 

antagonists that serve as the principle adductor (MR) and abductor (LR) of the eye. 

Up to date these two are referred to as the only muscles with no secondary function. 

Recent studies report of compartmentalized innervations of horizontal EOMs. The 

results show that LR and MR motor nerves divide into superior and inferior branches 

of approximately equal size, innervating similar proportioned compartments of EOM 

fibers (Peng et al., 2010; da Silva Costa et al., 2011; Clark and Demer, 2014). Da 

Silva Costa et al. suggest that differential innervations in horizontal rectus EOM 

compartments can potentially mediate previously unrecognized vertical oculorotary 

actions for these EOM (da Silva Costa et al., 2011; Clark and Demer, 2014). 

Since the optic axis of the eye forms an angle of 23° with the vertical recti and 51° 

with the oblique muscles, all other EOMs show different functions depending on their 

actual eye position: Only in 23° abduction the SR and IR function as pure elevator 

and depressor, respectively. The intorsional (SR) and extorsional (IR) component 

increases with adduction for both muscles. Similarly, the primary function of the SO is 

intorsion with contribution to depression and abduction of the globe. The primary 

action of the IO is extorsion with contribution to elevation and abduction (Horn and 

Leigh, 2011). 

 

 

Muscle Primary Function Secondary Function Tertiary Function 
 

Superior oblique intorsion depression abduction 
 

Inferior oblique extorsion elevation abduction 
 

Medial rectus adduction none none 
 

Lateral rectus abduction none none 
 

Superior rectus elevation intorsion adduction 
 

Inferior rectus depression extorsion adduction 
 

 

Tab. 1: The different function of the six extraocular muscles in eye movements. 
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2.2.2  Gross and fine anatomy 

 

The EOMs are among the fastest muscles in mammals, with contraction speeds 

obtained from experiments on cats as fast as about 7.5 ms for MR (twitch contraction 

time: onset to peak force; see Li et al., 2011; Cooper and Eccles, 1930; Denny-

Brown, 1929). However, they also possess slow, non-twitch fibers that are 

characteristic of phylogenetically older avian or amphibian skeletal muscles (Morgan 

and Proske, 1984; Spencer and Porter, 1988; Ruff et al., 1989; Spencer and Porter, 

2006). 

It has long been recognized that EOMs have two distinct layers: an outer orbital and 

an inner global layer (Kato, 1938).The outer orbital layer is adjacent to the periorbita 

and orbital bone and the inner global layer lies close to the optic nerve and eye bulb 

(Spencer and Porter, 1988; Porter et al., 1995; Demer et al., 2000). A thin muscle 

fiber layer external to the orbital layer has been documented in sheep and human, 

and has been termed the peripheral layer (Harker, 1972) and marginal zone, 

respectively (Wasicky et al., 2000).  

The global layer extends through the full muscle length inserting into the sclera via a 

well-defined tendon, whereas the orbital layer ends before the muscle becomes 

tendinous (Spencer and Porter, 2006). Recent studies have shown that this early 

termination of the orbital layer is a consequence of its insertion into the collagenous 

tissue of the pulleys formed by the Tenon’s capsule at approximately the equator of 

the globe (Demer et al., 2000). 

Extraocular muscle fibers can be classified in different ways. Initially the EOM fibers 

were distinguished according to their histological appearance into “Felderstruktur” 

and “Fibrillenstruktur” fibers (Siebeck and Kruger, 1955). Later, the classification was 

based on the content and distribution of mitochondria or it was differentiated between 

“coarse”, “fine” and “granular” fibers (Durston, 1974). 

Mayr and collegues were the first, who described six fiber types in rat, characterized 

on the basis of their location in the orbital or global layer, muscle fiber diameter, 

innervation pattern, histochemical features and ultrastructure (Mayr et al., 1975). 

Further investigations of EOMs in different mammals confirmed the concept of six 

EOM fiber types (Spencer and Porter, 1988). A categorization of the human EOM is 

based on histochemical properties and expression of different myosin heavy-chain 

isoforms (Kjiellgren et al., 2003; Spencer and Porter, 2006). 
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Accordingly, all EOM consist of at least 6 different muscle fiber types, which can be 

divided into two main categories based on their innervation (Spencer and Porter, 

2006). The singly innervated muscle fibers (SIF) correspond to the twitch fibers (type 

IIA) of a mammalian skeletal muscle. This fiber type responds with an “all-or-nothing” 

potential to electrical stimulation (Lennerstrand, 1974; Chiarandini and Stefani, 1979; 

Nelson et al., 1986; Jacoby et al., 1989; Lynch et al., 1994). 

The multiply innervated muscle fibers (MIF) are rare in vertebrate, besides the EOMs 

they are found in the tensor tympani muscle of the middle ear and in the laryngeal 

muscles (Fernand and Hess, 1969; Mascarello et al., 1982; Veggetti et al., 1982; Han 

et al., 1999). The two types of MIFs in the EOMs resemble the multiply innervated 

fibers found in avian skeletal muscles (correspond to orbital layer MIFs) and in 

amphibian skeletal muscles (correspond to global layer MIFs) (Morgan and Proske, 

1984). After electrical stimulation they respond with local potentials resulting in a slow 

tonic contraction (Lennerstrand, 1974; Chiarandini and Stefani, 1979) and are called 

non-twitch muscle fibers (Siebeck and Kruger, 1955). Physiological studies identified 

two types of MIFs in the EOM: the MIFs of the orbital layer are contacted by an 

additional “en plaque” ending at the middle of the muscle fiber, which is reflected in 

their capability to propagate action potentials, whereas global MIFs lack these 

additional “en plaque” endings (Hess and Pilar, 1963; Bach-y-Rita and Ito, 1966; Pilar 

and Hess, 1966; Pilar, 1967). 

The orbital layer consists of two fiber types, one MIF type and one SIF type, the 

global layer consists of one MIF type and three SIF types. This arrangement is a 

common pattern seen across different species (Spencer and Porter, 2006).  

 

 

Orbital layer: 

80 % of muscle fibers in the orbital layer represent SIFs. The orbital SIFs contain 

small myofibrils (myofibril volume is low (60 %)) in comparison to skeletal muscles 

(70-85 %), have a high percentage of mitochondria (20 % volume of the orbital SIFs), 

and accordingly a high oxidative enzyme content (Hoppeler and Fluck, 2002). 

These qualities implicate, that orbital SIFs are fast-twitch and fatigue resistant 

muscles, with the capacity for anaerobic metabolism (Spencer and Porter, 1988). 

SIFs of the orbital layer show an unique expression of the myosin gene, only seen in 

EOMs and laryngeal muscle and a developmental myosin isoform (associated with 
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developing skeletal muscles) (Wieczorek et al., 1985; Jacoby et al., 1990; Brueckner 

et al., 1996). The isoforms are specialized to provide specific contractile force/velocity 

at a specific energy cost. The unique myosin expression profile suggests a highly 

specialized role in eye movements (Spencer and Porter, 2006). 

 

Orbital MIFs make up 20 % of the fibers. Their myofibrils are larger than those of the 

orbital SIFs and multiple nerve terminals are distributed along the myofiber length. In 

contrast to the SIFs, orbital MIFs express an embryonic myosin (Rubinstein and Hoh, 

2000; Briggs and Schachat, 2002) and a neonatal myosin heavy chain isoform 

(Wieczorek et al., 1985; McLoon et al., 1999). The heterogeneous features of this 

fiber type are unlike anything that had been described for a skeletal muscles before 

and, it is difficult to draw a conclusion regarding the function (Spencer and Porter, 

2006). 

 

 

Global layer: 

The global layer contains three different types of SIFs, red-, intermediate- and white 

SIFs, all of them with characteristics of fast twitch muscle fibers. 

Global red SIFs represent about one-third of the fibers, predominantly in the 

intermediate zone between orbital and global layers. The global red SIFs have a high 

mitochondrial volume (< 20 %) and a very low myofibril volume (55 %) (Spencer and 

Porter, 2006). They are suggested to be highly fatigue resistant and furthermore they 

express the type IIA myosin isoform (Brueckner et al., 1996; Rubinstein and Hoh, 

2000). 

 

Global intermediate SIFs comprise one-fourth of the global fibers. Numerous 

medium-sized mitochondria are distributed singly or in small clusters, myofibrillar size 

is between the other two types of global SIFs and the myosin isoform content is likely 

type IIX (Rubinstein and Hoh, 2000). With their intermediate contraction speed and 

intermediate fatigue resistance, global intermediate SIFs are classified into red and 

the white global SIFs (Spencer and Porter, 2006). 

The global white SIFs incorporate one-third of the fibers of the global layer. They 

have few small mitochondria that are singly arranged between the myofibrils and this 

fiber type likely express type IIB myosin heavy chain (Rubinstein and Hoh, 2000). 
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The fiber profile is consistent with a fast-twitch and low fatigue resistance fiber 

(Spencer and Porter, 1988). 

 

MIFs constitute the remaining 10 % of the global fibers. These fibers contain very few 

small mitochondria arranged singly between the very large myofibrils. The ultra-

structural profile is similar to slow, tonic muscle fibers of amphibian. This fiber type 

exhibits a slow graded, local contraction with non-propagated response to an 

electrical stimulation (Chiarandini and Stefani, 1979). The finding of a phylo-

genetically primitive muscle fiber type in one of the fastest skeletal muscle is difficult 

to reconstruct. One assumption is that they play a potential role in either very fine 

foveating movements of the eye or they are part of a specialized proprioceptive 

apparatus (Ruskell, 1978). 

 

 

2.2.3  Neuromuscular junction 

 

The twitch fibers, or SIFs, respond to electrical excitation with an “all-or-nothing” 

contraction that propagates along the whole length of the fiber. They are innervated 

by relatively large nerves (7-11 µm), which terminate as large “en plaque” motor 

endplates in an endplate zone in the middle of the fiber (Namba et al., 1968; Spencer 

and Porter, 2006). The neuromuscular junction of twitch fibers in orbital and global 

layer is morphologically identical, but only the “en plaque” terminals of the 

intermediate SIFs of the global layer show clusters of large nerve endings (Spencer 

and Porter, 1988). 

The non-twitch fibers, or MIFs, are multiply innervated by a myelinated and fine (3-5 

µm) nerve fiber. These fibers respond to electrical stimulation with a slow tonic 

contraction, which is not propagated along the muscle fiber (Bondi and Chiarandini, 

1983). The motor endplates “en grappe” endings are typically small and distributed 

along the length of the muscle fiber but have a higher density in the distal half of the 

muscle (Porter et al., 1985; Spencer and Porter, 1988) (Fig. 2). 
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It has been proposed that the presence of antibodies to fetal AChR expressed in 

EOM causes their weakness (Oda, 1993; MacLennan et al., 1997). 

 

 

2.2.5  Palisade endings (specialty of global MIFs) 

 

The global layer possesses an unusual feature, unique to eye muscles, it has 

palisade endings (PE) at the myotendinous junction (Dogiel, 1906; Cilimbaris, 1910; 

Ruskell, 1999). PEs have been found in almost all species that have been 

investigated (Eberhorn et al., 2005b). PEs form a cuff of nerve branches around the 

muscle fiber tip. They contact only one type of muscle fiber, the MIFs of the global 

layer (Mayr, 1977; Alvarado-Mallart and Pincon Raymond, 1979; Richmond et al., 

1984; Ruskell, 1999). The palisade terminals arise from nerve fibers that enter the 

tendon from the central nerve entry zone, then turn back 180o, to contact the tip of 

the muscle fibers. PEs may function as proprioceptors and are unique to eye muscles 

(Dogiel, 1906). 

Since their first description (Huber, 1900; Dogiel, 1906) the location, histochemistry, 

structure, and connectivity of PEs have been well studied, but their function is much 

discussed (Ruskell, 1999; Donaldson, 2000). Some of their properties are typical of 

sensory endings, for example terminals in the collagen tendon, and other properties 

are typical of motor structures, for example their cholinergic transmitter and the 

location of their somata. 

Recent studies in monkeys indicated that the cell bodies of PEs are located within the 

peripheral groups around the motonuclei of EOM (Lienbacher et al., 2011; 

Zimmermann et al., 2011). From these findings two hypothesis are suggested for the 

function of the peripheral cell groups: In the first hypothesis one homogenous neuron 

population gives rise to multiple nerve endings supplying non-twitch MIFs that 

terminate as PEs at the myotendinous junction. In the second hypothesis, the 

peripheral motoneurons around the oculomotor nucleus may consist of two different 

neuron populations: Sensory neurons giving rise to PEs and motoneurons providing 

the multiple innervation of non-twitch muscle fibers (Lienbacher and Horn, 2012) (Fig. 

3). 
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al., 1986) and provide the neuroanatomical basis for conjugate horizontal eye 

movements (Glicksman, 1980; Evinger et al., 1987; Straka and Dieringer, 1991). 

The trochlear nucleus (nIV) is located in the mesencephalic tegmentum and 

adjoins the oculomotor nucleus caudally. It contains mainly motoneurons innervating 

the contralateral SO via the trochlear nerve (NIV). Only a few project to the ipsilateral 

SO muscle (Porter et al., 1983; Miyazaki, 1985a; Evinger et al., 1987). 

The nIII is located in the tegmentum of the midbrain, ventral to the aqueduct and 

dorsal to the fibers of the medial longitudinal fascicle (MLF). This compact paired 

nucleus contains the motoneurons of the ipsilateral MR, IR and IO and the 

motoneurons of the contralateral SR (Büttner-Ennever, 2006). 

The first systematic study of individual motoneuron subgroups of the nIII was 

performed at the end of the 19th century using neuroanatomical and 

electrophysiological methods and clinical observations (Edinger, 1885; Bernheimer, 

1897; Brouwer, 1918). In 1953 Warwick established the presently accepted 

topographical map of nIII by retrograde degeneration techniques in non-human 

primates (Warwick, 1953). 

After introduction and development of retrograde tract-tracing methods with 

horseradish peroxidase (HRP) more detailed information about the organization of 

the motoneuons in the nIII was obtained in different species including primates (cat: 

Gacek, 1977; Miyazaki, 1985b; cat and rabbit: Akagi, 1978, rabbit: Murphy et al., 

1986; rat: Glicksman, 1980; monkey: Büttner-Ennever et al., 2001).  

The motoneuron subgroups within nIII show a topographical arrangement. From 

rostral to caudal, the motoneuron subgroups in all investigated vertebrate species 

follow an IR, MR, IO and SR sequence. In mammals, nIII also includes motoneurons 

which innervate the levator palpeprae muscle (LP). In rodents the LP motoneurons 

primarily occupied the caudal aspects of the contralateral oculomotor nucleus 

(Evinger et al., 1987), whereas in cat and primates the motoneurons lie in an 

unpaired separate group caudal to nIII, called the central caudal nucleus (CCN) 

(Evinger, 1988). 

One main difference in the organization of the nIII between primate and non-primate 

is the existence of two subpopulations of the MR motoneurons in primates (Büttner-

Ennever and Akert, 1981). The A-group contains the main part of MR motoneurons 

and lies at the ventral portion of nIII. The B-group is located dorsolateral within nIII 

and forms a circular group. A third additional MR-subgroup in the so-called C-group 



            

 

 

at the d

describ

(Fig. 5)

 

 

 

Fig. 5: Fr

(A) and 

contralat

boundari

located i

located i

SR - sup

muscle 

With pe

afferents

 

 

2

 

Tracer 

reveale

EOM, 

(Büttne

                 

dorsomedia

bed in figur

). 

rontal section

rat (B). All 

terally. Moto

ies of the cla

in the periph

n the C-grou

perior rectus 

rmission fro

s. Evinger C. 

2.3.2  Twit

injection i

ed that MIF

which form

er-Ennever

                

al peripher

re 6 C and

n illustrating 

muscles are

oneurons of 

assical nIII, w

hery of nIII. T

p and S-grou

muscle; IR - 

om Elsevier. 

Rev Oculomo

tch- and no

nto the be

F motoneu

med the b

r et al., 200

                

ral border o

d D (Büttne

the location 

e innervated 

singly inne

hereas the m

This is most 

up (A). 

inferior rectu

Modified fr

ot Res, Vol 2,

on-twitch m

elly or dist

urons lie s

basis for a

01; Büttner

                

of nIII belo

er-Enneve

 

of motoneur

ipsilaterally

ervated musc

motoneurons 

clearly foun

us muscle; M

rom: Extraoc

, 81-117. © 19

motoneuron

tal myoten

separately 

a new con

r-Ennever 

                

ongs to a s

r and Aker

rons in the oc

, except the

cle fibers (S

of multiply in

d in primate

MR - medial r

culomotor n

988, Elsevier.

ns 

dinous jun

from the S

ncept of a

and Horn, 

                

separate se

rt, 1981; P

culomotor nu

e SR, the mo

SIFs) are fo

nnervated mu

, where the 

ectus muscle

uclei: locati

nctions of 

SIF moton

a dual inn

2002). 

         Intro

et of moton

Porter et al

 

ucleus (nIII) in

otoneurons 

ound only w

uscle fibers (

MIF motoneu

e; IO - inferio

ion, morpho

EOMs in m

neurons fo

nervation o

oduction 

22 

neurons 

., 1983) 

n monkey 

of SR lie 

within the 

(MIFs) are 

urons are 

or oblique 

logy and 

monkey 

r all six 

of EOM 



                                                                                                                     Introduction 

 

23 
 

A distal tracer injection, enclosing exclusively the endplates of the MIFs, results in 

retrograde labelling of only the motoneurons in the periphery around the motonuclei 

(a belly injection labels both, motoneurons of MIFs and SIFs). These peripheral 

motoneurons tend to be smaller in diameter and are considered to be the 

motoneurons of tonic MIFs, whereas the “classical” motoneurons within the 

boundaries of the motonuclei are considered to be SIF motoneurons (for review: 

Büttner-Ennever, 2006). 

 

 

2.3.3  C-group and S-group 

 

The MIF motoneurons of individual EOMs are organized in the following way: The 

MIF motoneurons of MR and IR form a group at the dorsomedial border of nIII termed 

C-group (Büttner-Ennever and Akert, 1981; Büttner-Ennever et al., 2001). Recent 

studies have shown that both motoneuronal groups are separated from each other, 

with the IR MIF motoneurons adjacent to the dorsal nIII and the MR MIF 

motoneurons more medially reaching up to the Edinger-Westphal nucleus (Tang et 

al., 2015). The MIF motoneurons of SR and IO are located at the midline, 

sandwiched between the two nIII, in the so called S-group. MIF motoneurons of the 

SO lay as a cap dorsal to the nIV. LR MIF motoneurons are found in a shell around 

the medial borders of nVI, intermingled between the fascicles of the NVI, or located 

around the facial genu (Büttner-Ennever et al., 2001) (Fig. 6). 
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2.3.4  Delineation from other perioculomotor nuclei: Edinger-Westphal nucleus 

 

The Edinger-Westphal nucleus (EW) is located in the midbrain dorsal to the nIII, 

mediating lens accommodation and pupillary constriction (Edinger, 1885; Westphal, 

1887) via their projection to the ciliary ganglion. 

The EW sends preganglionic axons along the oculomotor nerve (NIII) to the 

ipsilateral ciliary ganglion. The ciliary ganglion sends postganglionic parasympathetic 

fibers either to the sphincter pupillae muscle or the ciliary muscle. Activation of the 

sphincter pupillae muscles of the iris results in pupil constriction. Contractiion of the 

ciliaris muscle releases the tension on the Zonular fibers, making the lens more 

convex, known as accommodation. In all vertebrates, including human, the EW forms 

a circumscribed cell group, with primarily small basophil neurons, located 

dorsomedial to the nIII. Traditionally the EW is considered as the location for the 

parasympathetic preganglionic neurons of the ciliary ganglion controlling the lens and 

the sphincter pupillae muscle (Edinger, 1885; Westphal, 1887). However, tract-

tracing studies revealed a considerable variation in the location of the preganglionic 

neurons across species in particular to the location to the cytoarchitecturally defined 

EW (Büttner-Ennever, 2006). Only in monkey and bird, the preganglionic neurons are 

located in the EW (Akert et al., 1980; Gamlin and Reiner, 1991; Sun and May, 1993), 

in all other species studied so far, the preganglionic neurons are located around the 

EW or at the medial borders of nIII (mouse: Vann and Atherton, 1991, hamster: 

Pickard et al., 2002). Recently, an additional group containing the neuropeptide 

urocortin 1 has been associated with the EW in several species (Vaughan et al., 

1995; Yamamoto et al., 1998; Ryabinin et al., 2005; May et al., 2008). 

In conclusion the EW is the location of the preganglionic neurons in some species or 

contains the neuropeptide urocortin and not the preganglionic neurons (Fig. 7). 
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1000 Hz) (Henn and Hepp, 1984; Morris and Henderson, 2000; Horn et al., 2003), 

whereas slow modulatory neurons – like serotoninergic neurons in the raphe nuclei - 

lack perineuronal nets (Brückner et al., 1994; Hobohm et al., 1998). Labelling for NP-

NF was specifically found in SIF motoneurons, and was not detected in any other cell 

type in the ocular motor nuclei. NP-NF labelling was reported as a reliable marker for 

motoneurons, but that it is not restricted to this cell type (Tsang et al., 2000). 

These results demonstrated that MIF motoneurons differ in their histochemical 

properties from those of SIF motoneurons and are different in functions and 

physiology. 

 

 

2.4.1  Different premotor inputs to MIF- and SIF motoneurons 

 

Experiments applying different transsynaptic tracers in monkeys revealed that SIF- 

and MIF motoneurons receive different inputs serving different functions. SIF 

motoneurons are targeted by premotor afferents involved in generation of eye 

movements, e.g. saccadic burst neurons, secondary vestibulo-ocular neurons, 

whereas the peripheral MIF motoneurons are targeted only by afferents from 

premotor sources involved in gaze holding, e.g. the prepositus hypglossus nucleus 

(Wasicky et al., 2004; Büttner-Ennever, 2006; Ugolini et al., 2006). 

It is well known, that in monkey motoneurons providing horizontal and vertical eye 

movements are controlled by inhibitory inputs mediated by different transmitters. 

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter utilized by 

premotor neurons involved in vertical eye movements, glycine is used by premotor 

neurons associated with horizontal eye movements (Spencer et al., 1989; Spencer 

and Baker, 1992). There are specific disorders for the vertical eye movement system 

that affect only one direction, e.g. isolated upgaze or downgaze palsy or upbeat or 

downbeat nystagmus, which indicate that up- and downgaze pathways are organized 

in a different way (Leigh and Zee, 2006). There may be other characteristics specific 

to the vertical gaze system. The calcium-binding protein calretinin (CR) has been 

identified in several brainstem regions known to contain premotor neurons involved in 

vertical eye movements (Horn et al., 2003; Baizer and Baker, 2006).  

The abducens internuclear neurons (INT) and the ascending tract of Deiters (ATD) 

pathways are the principle excitatory inputs to MR motoneurons, which carry eye 
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position and eye velocity signals (Fuchs et al., 1988) or head velocity signals (Reisine 

and Highstein, 1979), respectively. The abducens INTs terminate predominantly on 

the contralateral MR motoneurons and utilize aspartate and glutamate as excitatory 

neurotransmitter. ATD neurons are located in the ventral portion of the lateral 

vestibular nucleus and their axons project ipsilaterally to MR motoneurons and utilize 

glutamate as neurotransmitter (Spencer and Wang, 1996; Nguyen and Spencer, 

1999). Other transmitter-related inputs to motoneurons of extraocular muscles 

involve orexin-A positive afferents that specifically target LP motoneurons in CCN, 

the motoneurons of multiply innervated non-twitch muscle fibers in the C- and S-

group of nIII and the preganglionic neurons of the ciliary ganglion (Schreyer et al., 

2009). Orexin-A is synthesized by neurons of the hypothalamus and helps to 

maintain wakefulness through excitatory projections to nuclei involved in arousal 

(Sakurai, 2007). There may be other characteristics specific to the vertical gaze 

system. Apart from the description of the orexin input and a preliminary report on 

GABA-related markers associated with MIF motoneurons in the C-group (Ying et al., 

2008). There is no systematic study on transmitter-related markers associated with 

either SIF- or MIF motoneurons. 

 

The present work addresses questions on the organization of premotor inputs to 

different functional cell groups of the oculomotor nucleus complex and its vicinity. 

Thereby, the histochemistry of inputs to different motoneuron groups was studied 

with emphasis on those participating in vergence. This involved – after the 

delineation of preganglionic neurons of the ciliary ganglion in the supraoculomotor 

area – the inputs to peripheral motoneurons in the C- and S-group of the oculomotor 

nucleus. Another focus was the investigation of differential inputs to motoneurons 

involved in upgaze versus those involved in downgaze. 
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2.5  Aim of the study 

 
1. Traditionally the Edinger-Westphal nucleus (EW) is considered to be the 

location of the parasympathetic cholinergic preganglionic neurons mediating 

pupillary constriction and lens accommodation. In all vertebrates the EW forms 

a cytoarchitecturally defined nucleus dorsomedial to the nIII. Tracing studies 

revealed a considerable variation in the location of the preganglionic neurons 

across species in relation to the EW. The neuropeptide urocortin (UCN) has 

been associated with the EW in several species including man. In a 

comparative study in rat, ferret, monkey and human, the location of cholinergic 

neurons within and around the nIII, which includes motoneurons of the 

extraocular muscles and the preganglionic neurons of the ciliary ganglion, was 

compared to the location of UCN-positive neurons and their location related to 

the EW. 

The results are described and discussed in paper 1, pp 32-37. 

 

2. There are specific disorders for the vertical eye movement system, e.g. 

isolated upgaze or downgaze palsies, and selective upbeat or downbeat 

nystagmus, which indicates that up- and downgaze pathways have separate 

organizations. In monkey, it has been shown that the motoneurons providing 

horizontal and vertical eye movements are controlled by inhibitory inputs 

mediated by different transmitters. There may be other characteristics specific 

to the vertical gaze system. The calcium-binding protein calretinin (CR) has 

been identified in several brainstem regions known to contain premotor 

neurons involved in vertical eye movements. To further explore this point, we 

investigated the motonuclei of extraocular muscles for the presence of CR-

positive terminal profiles, with specific emphasis on determining their 

relationship to the motoneuron populations activated for upgaze, those 

activated in downgaze and those used in lateral gaze.   

The results are described and discussed in paper 2, pp 38-50. 

 
3.  The oculomotor nucleus (nIII) contains the motoneurons of singly innervated 

(SIF) twitch- and multiply innervated (MIF) non-twitch muscles fibers of medial 

rectus (MR), inferior rectus (IR), inferior oblique (IO) and superior rectus (SR) 
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muscle – the trochlear nucleus (nIV) those of the superior oblique muscle. As 

described earlier the gamma-aminobutyric acid (GABA) is the major inhibitory 

neurotransmitter utilized by premotor neurons involved in vertical eye 

movements, glycine is used by premotor neurons related to horizontal eye 

movements. Here we studied the histochemical profile and transmitter inputs 

to the different motoneuron subgroups including MIF- and SIF motoneurons in 

nIII and nIV of monkey. Prelabelled motoneurons were immunostained for 

different transmitters or transmitter-related proteins: Gamma-aminobutyric acid 

(GABA), glutamate decarboxylase, glycine transporter 2, GABA-receptors, 

vesicular glutamate transporter 1 and 2. The different histochemical profile of 

the subgroups of nIII and nIV provides a basis for anatomical identification and 

the interpretation of physiological data. 

The results are described and discussed in paper 3, pp 51-69. 

 

4. Motoneuron groups of individual eye muscles in human were identified. This 

was based on a comparison with the localization of motoneurons derived from 

tract-tracing experiments in monkey and on the cytoarchitecture and 

differential histochemical inputs to motoneuron subgroups revealed by 

immunohistochemical staining for different markers: non-phosphorylated 

neurofilaments, glutamate decarboxylase, calretinin and glycine receptor. 

Seven subgroups in the oculomotor nucleus of human have been identified 

and present a new map of the human oculomotor subgroups.  

The results are described and discussed in paper 4, pp 70-86. 
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3  Results 

 

3.1   Paper 1, pp 32-37: 

The Edinger-Westphal nucleus represents different functional cell groups in 

different species.  

 

 

3.2  Paper 2, pp 38-50: 

Calretinin inputs are confined to motoneurons for upward eye movements in 

Monkey.  

  

 

3.3  Paper 3, pp 51-69: 

Transmitter input to different motoneuron subgroups in the oculomotor and 

trochlear nucleus in monkey. 

 

 

3.4  Paper 4, pp 70-86: 

Delineation of motoneuron subgroups supplying individual eye muscles in the 

human oculomotor nucleus. 
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4  Discussion 

 

The performed studies on the histochemical profile of motoneuron inputs provide a 

new insight in the different inhibitory control of motoneurons of horizontally and 

vertically pulling eye muscles, the different calcium control mechanism of up- and 

downgaze motoneurons as well as the different transmitter input to MIF- and SIF 

motoneurons of individual eye muscles. 

Furthermore, the present work provides new data on the histochemical properties of 

premotor inputs to motoneuronal groups of the twitch- and non-twitch eye muscle 

systems in primates. Especially the different calcium control mechanisms in upgaze 

pathways may provide the possibility for a targeted analysis of this system in human 

post-mortem studies of clinical cases with impairment of upward eye movements. 

 

 

4.1  Different inhibitory transmitter input to motoneurons for horizontal    

       and vertical eyemovements 

 

Inhibition in horizontal eye movements is provided by glycine, while GABA is the 

major inhibitory transmitter of vertical eye movements (Spencer and Baker, 1992). 

But there are contradictory results about a strong GABAergic input to MR 

motoneurons mediating horizontal eye movements. No obvious difference is noticed 

in the density of GABAergic terminals between the different subgroups of nIII in cat, 

rabbit and monkey (De la Cruz et al., 1992; Wentzel et al., 1996; Zeeh et al., 2015). 

In human a strong GABAergic input is found to presumed MR motoneurons, which is 

not seen in monkey. Here the number of GABAergic terminals contacting putative 

MR subgroups exceeded even that of motoneuron groups involved in vertical gaze. 

This may indicate an evolvement of inputs related to vergence, which is particularly 

prominent in human (Che-Ngwa et al., 2014). 

The inhibition of motoneurons involved in horizontal eye movements seems to be a 

more constant feature in primates (Waitzman et al., 1996). In both primate species a 

glycinergic input is almost exclusively seen to motoneurons of MR (Spencer et al., 

1989; Che-Ngwa et al., 2014; Zeeh et al., 2015). In contrast, glycinergic terminals 

appear to be distributed to all motoneuron subgroups except the MR subdivision in 

cats (Spencer et al., 1989; Spencer and Baker, 1992). In rabbit glycine-
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immunoreactive boutons are distributed through all subdivisions of nIII including MR 

region (Wentzel et al., 1996), but may colocalize with GABA (Wentzel et al., 1993). 

An overview of possible GABAergic and glycinergic sources projecting to 

motoneurons mediating horizontal and vertical eye movements is seen in Fig.8 and in 

Tab.2. 

 

 

4.2  Up- and downgaze pathways differ in their calcium-binding proteins 
 

The calcium-binding protein calretinin (CR) has been identified in several brainstem 

regions known to contain premotor neurons involved in vertical eye movements (Horn 

et al., 2003; Baizer and Baker, 2006). In the vertical system CR is exclusively 

associated with upgaze pathways in primates (Zeeh et al., 2013). Although 

motoneurons of up- and downgaze pathways exhibit similar firing characteristics 

(Vilis et al., 1989; Moschovakis et al., 1991a; Moschovakis et al., 1991b), which may 

be reflected by the expression of the calcium-binding protein parvalbumin (PV), 

motoneurons involved in upgaze contain an additional calcium-binding protein CR. 

Until now the functional significance of CR in upgaze connection is unclear. Whereas 

PV is present in many fast-firing or highly active neurons, for example in the saccadic 

burst neurons in the rostral interstitial nucleus of the medial longitudinal fascicle 

(RIMLF) and interstitial nucleus of Cajal (INC) (Horn and Büttner-Ennever, 1998), no 

obvious association of CR with specific properties is known. Generally calcium-

binding proteins serve as Ca2+ buffers, controlling the duration and spread of Ca2+ 

signals, as well as Ca2+ sensors, translating changes of Ca2+ concentration into 

intracellular signals (Brini et al., 2014). The suggested functions of CR involve a role 

in neuroprotection, development and regulation of neuronal excitability (for review: 

Schwaller, 2014). The specific presence of CR in addition to PV in premotor up-burst 

neurons of the INC and RIMLF may reflect different calcium control mechanism for 

upgaze neurons compared to downgaze neurons (Horn et al., 2003). 

Up- and downward saccades can be affected in a different manner in several clinical 

conditions. For example structural lesions induced by infarcts or tumors can affect the 

efferent pathways of premotor burst neurons selectively (Büttner-Ennever et al., 

1982; Pierrot-Deseilligny et al., 1982; Partsalis et al., 1994). The down-burst neurons 

in RIMLF project ipsilaterally to IR and SO motoneurons, whereas the up-burst 
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neurons project bilaterally to SR and IO motoneurons in both nIII. The crossing fibers 

travel through the posterior commissure, a lesion of which results in an upgaze palsy 

(Partsalis et al., 1994; Zeeh et al., 2013). 

There are also neurodegenerative diseases characterized by paresis of vertical 

saccades, often affecting only one direction, for example Niemann-Pick disease type 

C (NPC) and progressive supranuclear palsy (PSP) (Chen et al., 2010; Strupp et al., 

2014). A disturbance of the Ca2+ signaling could be a possible mechanism for the 

degeneration of only one pathway. With CR as a marker for excitatory premotor up-

burst neurons in RIMLF and INC, these populations can be specifically identified for 

analysis in post-mortem analysis of cases with for example NPC (Ahlfeld et al., 

2011).  

Fig. 8 and Tab. 2 show sources of CR positive neuronal population projecting to 

upgaze motoneurons in nIII. 

 

 

4.3  Different transmitter input to MIF motoneurons and SIF motoneurons 
 

The current concept of a dual control of eye muscles – activation of SIFs for 

generation of eye movements and activation of MIFs for gaze holding – was initially 

suggested to be regulated by different premotor pathways (Büttner-Ennever and 

Horn, 2002). Motoneurons in and around nIII activating MIFs and SIFs do not receive 

identical afferent inputs. Some afferents are known to target both, such as the 

abducens area, Y-group or parvocelluar medial vestibular nucleus, whereas others 

innervate either one or the other (Wasicky et al., 2004). A major input to MIF 

motoneurons of nIII is the pretectum, the central mesencephalic formation (cMRF) 

and supraoculomotor area (SOA) (Zhang et al., 1991; Büttner-Ennever et al., 1996; 

Büttner-Ennever et al., 2002; Graf et al., 2002). In comparison to SIF motoneurons, 

MIF motoneurons do not receive direct afferents from premotor saccadic regions, for 

example the paramedian pontine reticular formation (PPRF), the region of inhibitory 

burst neurons and also not from oculomotor internuclear neurons (Ugolini et al., 

2001; Büttner-Ennever et al., 2002; Wasicky et al., 2004). 

An overview of afferent inputs to nIII is shown in Fig. 8 and Tab. 2. 
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The current study extends these findings by demonstrating differences in transmitter 

inputs to SIF- and MIF motoneurons of individual eye muscles. SIF- and MIF 

motoneurons do not differ in their GABAergic, glycinergic and vesicular glutamate 

transporter (vGlut) 2 input, whereas vGlut1 containing terminals covering the 

supraoculomotor area target only MR MIF motoneurons (Zeeh et al., 2015). Unlike 

vGlut1, a considerable supply of vGlut2-positive afferents is seen to nIII that are 

evenly distributed across all subgroups. In general, vGlut1 is densely expressed in 

regions where the synapses have lower releasing probabilities, while vGlut2 is 

enriched in areas where synapses have a relatively high release probability (Weston 

et al., 2011). This corresponds to the findings that SIFs respond to an electrical 

stimulation with a fast twitch, whereas MIFs respond with a slow tonic contraction 

(Lennerstrand, 1974; Chiarandini and Stefani, 1979). SIF- and MIF motoneurons of 

individual eye muscles also differ in their α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor and N-methyl-D-aspartate (NMDA) receptor 

immunoreactivity. NMDA receptors (NMDAR1) and AMPA receptors (Glu4 subunit) 

are only expressed in SIF motoneurons in monkey (Ying et al., 2008), this may 

suggest that SIF motoneurons participate in the fast and slow components of 

postsynaptic response to glutamate. The phasic-tonic firing of larger motoneurons, 

like SIF mototneurons, is reinforced by glutamate and may provide a strong muscle 

contraction for eye movements (Torres-Torrelo et al., 2012). 

In addition, SIF- and MIF motoneurons display histochemical differences, which may 

reflect their different physiological properties. SIF motoneurons possess perineuronal 

nets and contain non-phosphorylated neurofilaments (NP-NF), whereas MIF 

motoneurons lack both (Eberhorn et al., 2005a; Eberhorn et al., 2006). 

Possible sources of GABA, glycine and vGlut1/2 are summarised in Fig. 8 and Tab. 

2. 

 

 

4.3.1  Supraoculomotor area (SOA) as a center for near response 

 

The SOA is located dorsal to nIII in the ventral portion of the periaqueductal gray and 

was first described by Edwards and Henkel in 1978 (Edwards and Henkel, 1978) and 

may function as an integration center for near response. The “near response” or 

“near triad” is defined by the simultaneous activation of vergence, lens 
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accommodation and pupillary constriction (Myers et al., 1990). Several functional cell 

groups involved in near response are found within the SOA. 

 

 

4.3.1.1  Cell groups in SOA 

 

MIF motoneurons of medial rectus: 

MIF motoneurons in the C-group form two independent populations (Büttner-Ennever 

et al., 2001; Tang et al., 2015). IR MIF motoneurons lie adjacent to the dorsomedial 

border of the oculomotor nucleus and MR motoneurons are located more medially 

(Tang et al., 2015). One noticeable feature of the C-group is the different pattern of 

dendrite distribution of MR and IR motoneurons. Dendrites of IR motoneurons spread 

out into the SOA bilaterally, whereas dendrites of MR motoneurons are restricted to 

the ipsilateral side. Furthermore, the dendrites of MR MIF motoneurons extend 

dorsally to the preganglionic neurons of the Edinger-Westphal nucleus (Büttner-

Ennever et al., 2001; Lienbacher et al., 2011; Tang et al., 2015). Thereby the C-

group motoneurons may receive a synaptic input from the same sources as the 

preganglionic motoneurons in EW (Erichsen et al., 2014). Since vGlut1 containing 

terminals densely cover the SOA and target MR MIF motoneurons (Zeeh et al., 

2015), it is possible that the vGlut1 input affects the near response system. 

 

 

Edinger-Westphal nucleus (EW): 

Further cell groups of the SOA are represented by the EW, which consists of two 

separate populations with different projection targets and function: 1. EWpg contains 

the cholinergic preganglionic neurons of the ciliary ganglion mediating pupillary 

constriction and lens accommodation and 2. EWcp, a centrally projecting division 

containing the neuropeptide urocortin 1 (UCN). UCN is considered to play a role in 

stress modulation and in food and fluid intake (Kozicz et al., 1998; Gaszner and 

Kozicz, 2003; Vasconcelos et al., 2003; Kübler et al., 2014). There has been some 

confusion, because the term ‘Edinger-Westphal nucleus’ has been used to describe 

two different cell groups, which display different arrangements in different species. 

Kozicz and colleagues introduced a new terminology, EWcp and EWpg, to clarify the 

population being addressed in a study independent of the location (Kozicz et al., 
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2011). In general, either the preganglionic neurons are located in the 

cytoarchitecturally defined EW, as in monkey and bird, and the UCN-positive cells 

are distributed around them, or the UCN-positive cells are located in the 

cytoarchitecturally defined EWcp and the preganglionic neurons are scattered around 

them (Horn et al., 2009). The latter arrangement is found in most species including 

rat, cat, ferret, and human (Horn et al., 2008; May et al., 2008; Horn et al., 2009). 

 

Near response cells: 

An additional group of neurons is located in the SOA dorsolateral to nIII termed “near 

response cells”. These cells change their firing rate with disjunctive eye movements, 

but show no change in activity for conjugate gaze shift (Zhang et al., 1992). Another 

study showed that the activity of most near response cells is proportional to the angle 

of convergence of the eyes (Mays, 1984).  

 

 

4.3.2  The central mesencephalic reticular formation (cMRF) as possible   

          premotor source for near response 

 

Only recently, an area in the mesencephalic reticular formation has drawn 

researchers´ attention because of a possible involvement in control of the near 

response. A distinct population of neurons within the central mesencephalic reticular 

formation (cMRF) was shown to project to the SOA including preganglionic neurons 

of the ciliary ganglion in primates (Bohlen et al, 2015; May et al., 2015). Originally, 

the cMRF was considered to be a center for saccades, since electrical stimulation of 

the cMRF produces horizontal saccades (Cohen and Büttner-Ennever, 1984; 

Waitzman et al., 1996; Zhou et al., 2008; Wang et al., 2010). The new finding of the 

specific projection targets of the cMRF suggests that at least a subgroup may be 

involved in the control of the near triad (Bohlen et al., 2015). A monosynaptic input 

from cMRF to the MR C-group neurons as well as to preganglionic neurons has been 

identified in monkey. GABA staining and ultrastructural analysis indicates that 

projections from cMRF to C-group and preganglionic neurons contain inhibitory and 

excitatory elements (Horn et al., 2012, May et al, 2011). Thereby these afferents may 

correspond to vGlut1 and GABA inputs found in the present study (Zeeh et al., 2015). 

It remains a yet unanswered question, whether it is a coincidence that the modulatory 
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cell group of EWcp involved in stress reaction and in food intake is located close to 

neurons responsible for near response. A recent study in monkey demonstrated that 

a weak input is also found to UCN-positive neurons in the EWcp in addition to those 

to the EWpg from the cMRF (May et al., 2015). Changes in gaze direction and 

attention is also necessary in food supply and dangerous situations, when the eyes 

are turned towards the source of danger (Kübler et al., 2014), which may explain the 

close spatial relationship of both neuronal groups.  

The targets of cMRF projections are summarized in Fig. 8 and Tab. 2. 
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