Development of a training program for disease modeling and its practical application: morphological characterization of a genetically engineered mouse model for pancreatic cancer

Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

von Susanne Charlotte Haneder
aus Regensburg

München, 2015
Dekan: Univ.-Prof. Dr. Joachim Braun

Berichterstatter: Priv.-Doz. Dr. Nadja Herbach

Korreferent: Priv.-Doz. Dr. Valeri Zakhartchenko

Tag der Promotion: 31.01.2015
Für meine Familie

"Where the hell is the pancreas, anyway? I don't even know what the damn thing does beside give you cancer." -Hawk Hawkins
TABLE OF CONTENT

I. INTRODUCTION

1. Web-based learning platform for comparative histology

1.1. Comparative pathology and comparative medicine

1.2. Lack of experts in animal modeling and pathology

1.3. Advantages of e-learning

1.4. Moodle

1.5. Webmicroscope

1.6. Aim of the project

II. LITERATURE REVIEW

1. Web-based learning platform for comparative histology

1.1. Comparative pathology and comparative medicine

1.2. Lack of experts in animal modeling and pathology

1.3. Advantages of e-learning

1.4. Moodle

1.5. Webmicroscope

1.6. Aim of the project

2. Pancreatic cancer and tenascin-C

2.1. Pancreatic cancer

2.1.1. Epidemiology

2.1.2. Prognosis and therapy

2.1.3. Precursor lesions of PDAC

2.1.4. Genetic alterations

2.1.5. Stromal component and tumor microenvironment

2.1.6. Mouse models of pancreatic cancer

2.2. Tenascin-C

2.2.1. Tenascin-C in development and the adult organism

2.2.2. Tenascin-C and cancer

2.2.3. Distribution and function of tenascin-C in pancreatic cancer

2.2.4. Mouse models of tenascin-C

2.3. Aim of the project

III. MATERIAL AND METHODS

1. Web-based learning platform for comparative histology

1.1. Material

1.2. Methods

1.2.1. Human tissue

1.2.2. Murine tissue

1.2.3. Consortium

1.2.4. Development of a curriculum
Table of content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.4.1. Normal murine tissue</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4.2. Basic lesions</td>
<td>22</td>
</tr>
<tr>
<td>1.2.5. Digitalization</td>
<td>24</td>
</tr>
<tr>
<td>1.2.6. Annotation of slides in the Webmicroscope</td>
<td>25</td>
</tr>
<tr>
<td>1.2.7. Pilot Course</td>
<td>25</td>
</tr>
<tr>
<td>2. Example for phenotyping of a mouse strain: The TNC model</td>
<td>25</td>
</tr>
<tr>
<td>2.1. Material</td>
<td>26</td>
</tr>
<tr>
<td>2.1.1. Antibodies</td>
<td>26</td>
</tr>
<tr>
<td>2.1.2. Primer pairs</td>
<td>27</td>
</tr>
<tr>
<td>2.2. Methods</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1. Animals</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2. DNA extraction from mouse tails</td>
<td>27</td>
</tr>
<tr>
<td>2.2.3. PCR for mouse genotyping</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4. Murine tissue collection</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5. Hematoxylin and eosin stain (H&E)</td>
<td>30</td>
</tr>
<tr>
<td>2.2.6. Masson-Goldner trichrome stain</td>
<td>30</td>
</tr>
<tr>
<td>2.2.7. Alcian Blue-Periodic acid-Schiff reaction (PAS) stain</td>
<td>31</td>
</tr>
<tr>
<td>2.2.8. Movat’s pentachrome stain (Verhoeff)</td>
<td>31</td>
</tr>
<tr>
<td>2.2.9. Immunohistochemistry</td>
<td>31</td>
</tr>
<tr>
<td>2.2.10. Markers for PDAC in humans and mice</td>
<td>33</td>
</tr>
<tr>
<td>2.2.11. Analysis of histo- and immunohistochemical stainings and reactions</td>
<td>35</td>
</tr>
<tr>
<td>2.2.12. Data evaluation and statistical analysis</td>
<td>36</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>37</td>
</tr>
<tr>
<td>1. Web-based learning platform for comparative histology: The PATHPATH project</td>
<td>37</td>
</tr>
<tr>
<td>1.1. Pilot course</td>
<td>37</td>
</tr>
<tr>
<td>1.1.1. Recruitment of students</td>
<td>37</td>
</tr>
<tr>
<td>1.1.2. Content of the course</td>
<td>37</td>
</tr>
<tr>
<td>1.1.2.1. Modules</td>
<td>38</td>
</tr>
<tr>
<td>1.1.2.2. Module 2 and 3</td>
<td>39</td>
</tr>
<tr>
<td>1.1.2.2.1. Content module 2</td>
<td>39</td>
</tr>
<tr>
<td>1.1.2.2.2. Content module 3</td>
<td>41</td>
</tr>
<tr>
<td>1.1.2.2.3. Examination module 2 and 3</td>
<td>43</td>
</tr>
<tr>
<td>1.1.2.3. Module 7</td>
<td>44</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1.2.3.1. Content module 7</td>
<td>44</td>
</tr>
<tr>
<td>1.1.2.3.2. Examination module 7</td>
<td>45</td>
</tr>
<tr>
<td>1.1.3. Final examination</td>
<td>46</td>
</tr>
<tr>
<td>1.1.4. Collection of students’ feedback</td>
<td>47</td>
</tr>
<tr>
<td>1.1.5. Differences between medical or natural science students</td>
<td>50</td>
</tr>
<tr>
<td>1.1.6. Dissemination and exploitation strategy and activities</td>
<td>51</td>
</tr>
<tr>
<td>2. PDAC and TNC</td>
<td>51</td>
</tr>
<tr>
<td>2.1. Practical application of the course: PDAC project</td>
<td>51</td>
</tr>
<tr>
<td>2.2. TNC expression in KC mice</td>
<td>51</td>
</tr>
<tr>
<td>2.3. Architectural distortion and classification of precursor lesions</td>
<td>52</td>
</tr>
<tr>
<td>2.3.1. One month-old mice</td>
<td>54</td>
</tr>
<tr>
<td>2.3.2. Two months-old mice</td>
<td>54</td>
</tr>
<tr>
<td>2.3.3. Three months old mice</td>
<td>54</td>
</tr>
<tr>
<td>2.3.4. Six months-old mice</td>
<td>56</td>
</tr>
<tr>
<td>2.3.5. Nine months-old mice</td>
<td>56</td>
</tr>
<tr>
<td>2.3.6. Twelve to fifteen months-old mice</td>
<td>56</td>
</tr>
<tr>
<td>2.4. Fibrosis in mutant pancreata</td>
<td>57</td>
</tr>
<tr>
<td>2.5. Mucin</td>
<td>61</td>
</tr>
<tr>
<td>2.6. Ductular structures and PanIN</td>
<td>63</td>
</tr>
<tr>
<td>2.7. Proliferation and apoptosis</td>
<td>67</td>
</tr>
<tr>
<td>2.8. Wnt signaling pathway</td>
<td>74</td>
</tr>
<tr>
<td>2.9. NOTCH/HES1 signaling pathway</td>
<td>77</td>
</tr>
<tr>
<td>2.9.1. NOTCH2</td>
<td>77</td>
</tr>
<tr>
<td>V. DISCUSSION</td>
<td>84</td>
</tr>
<tr>
<td>1. The PATHPATH project</td>
<td>84</td>
</tr>
<tr>
<td>1.1. Evaluation of the pilot course</td>
<td>85</td>
</tr>
<tr>
<td>1.2. Discussion of tools used in the course</td>
<td>86</td>
</tr>
<tr>
<td>1.3. Outlook</td>
<td>86</td>
</tr>
<tr>
<td>2. PDAC and TNC</td>
<td>87</td>
</tr>
<tr>
<td>2.1. Influence of TNC on PDAC and its precursor lesions</td>
<td>87</td>
</tr>
<tr>
<td>3. The PDAC project as a practical application of the course</td>
<td>90</td>
</tr>
<tr>
<td>VI. SUMMARY</td>
<td>91</td>
</tr>
<tr>
<td>VII.</td>
<td>ZUSAMMENFASSUNG</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>VIII.</td>
<td>LITERATUR</td>
</tr>
<tr>
<td>IX.</td>
<td>ANNEX</td>
</tr>
<tr>
<td>1.</td>
<td>Web-based learning platform for comparative histology</td>
</tr>
<tr>
<td>1.1.</td>
<td>Material</td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Laboratory equipment</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Software</td>
</tr>
<tr>
<td>2.</td>
<td>Example for phenotyping of a mouse strain: The TNC model</td>
</tr>
<tr>
<td>2.1.</td>
<td>Material</td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Reagents</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Consumables</td>
</tr>
<tr>
<td>2.1.3.</td>
<td>Laboratory equipment</td>
</tr>
<tr>
<td>2.1.4.</td>
<td>Buffer</td>
</tr>
<tr>
<td>2.1.5.</td>
<td>Software</td>
</tr>
<tr>
<td>X.</td>
<td>ACKNOWLEDGEMENTS</td>
</tr>
</tbody>
</table>

Abbreviations

Ab Antibody
ADM Acinar-ductal metaplasia
AFL Pancreatic atypical flat lesion
AS Dako Autostainer
cm Centimeter
DAB 3,3'-diaminobenzidine
DNA Deoxyribonucleic acid
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetic acid
EMT Epithelial-mesenchymal transition
EtBr Ethidium bromide
EtOH Ethanol
FPC Familial pancreatic cancer
GEM Genetically engineered mouse
H2O2 Hydrogen peroxide
HCl Hydrogen chloride
hrs Hours
IPMN Pancreatic intraductal papillary mucinous neoplasm
KC LSL-KRAS^{G12D}+/;Ptf1a^{+/Cre(ex1)}
KC-TNChet LSL-KRAS^{G12D}+/;Ptf1a^{+/Cre(ex1)};TNC⁺−
KC-TNCko LSL-KRAS^{G12D}+/;Ptf1a^{+/Cre(ex1)};TNC[−]−
KO knock-out
mA Milliampere
man Manually
MCN Pancreatic mucinous cystic neoplasm
min Minute
ml Milliliter
NaCl Sodium chloride
ON Overnight
PanIN Pancreatic intraepithelial neoplasia
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PDAC Pancreatic ductal adenocarcinoma
rpm Rounds per minute
RT Room temperature
SCID Severe combined immunodeficient
sec Second
TC Tubular complex
TNC Tenascin-C
μg Microgram
μl Microliter
I. INTRODUCTION

Experimental animal models of human diseases are increasingly used from basic science to preclinical drug development (Barthold and others 2007, Sundberg and others 2012, Valli and others 2007). This implicates an urgent need for experts being in the position to examine these models for pathophysiological and pathohistological changes and therefore programs to train these experts (Cardiff 2009). Despite the rising need for experts, training programs do not exist in Europe. Therefore, an international, web-based disease model training program for students with a higher university degree was developed within the frame of the Erasmus Lifelong Learning Programme (project Nº 517860-LLP-1-2011-1-FI-ERASMUS-FEXI). Specialists in pedagogy, human and veterinary pathology, biochemistry and mouse models of human disease formed the consortium.

As a test run for the training program, morphological phenotyping of a mouse model of pancreatic ductal adenocarcinoma (PDAC) was performed in this thesis using conventional histology, immunohistochemistry and morphometric analysis. For this purpose, a mouse line was generated by crossing the well-characterized mouse line for PDAC, the LSL-KRASG12D/+;Ptf1a+/Cre(ex1) mice (Siveke and others 2007) with mice deficient for the stromal protein Tenascin C (TNC) (Saga and others 1992). Tumor-stroma interactions in PDAC, which is a very lethal disease, play a key role and contribute to the highly aggressive nature of this cancer type (Hwang and others 2008). TNC is overexpressed in the stroma surrounding the precursor lesions of PDAC and in the stroma of PDAC itself. The overexpression of the “large” splice variant of TNC characterizes the invasive and metastatic PDAC (Esposito and others 2006). Exogenous TNC promotes migration and invasion of pancreatic cancer cell lines and a mixed matrix of TNC and fibronectin blocks cell adhesion through activation of the integrin-signaling cascade (Paron and others 2011).

To investigate the functional role of TNC in PDAC progression in vivo, LSL-KRASG12D/+;Ptf1a+/Cre(ex1);TNC+/− (KC-TNChet) mice where compared to LSL-KRASG12D/+;Ptf1a+/Cre(ex1);TNC+/− (KC-TNCko) and LSL-KRASG12D/+;Ptf1a+/Cre(ex1);TNC+/− (KC) mice, focusing on a detailed morphological and histopathological analysis of this newly generated mouse strain. The aim of this
project was to acquire new knowledge of TNC function, in particular in the early phases of PDAC development.
II. LITERATURE REVIEW

1. Web-based learning platform for comparative histology

1.1. Comparative pathology and comparative medicine

The term “comparative pathology” describes the pathology of laboratory animal diseases in comparison to human diseases. The American Heritage Medical Dictionary defines comparative pathology as “the pathology of animal diseases, especially in relation to human pathology” (Dictionaries 2008) meanwhile the Segen's Medical Dictionary offers the description “a field of science which compares specific human pathologies with those seen in natural animal models—e.g., diabetes insipidus in Brattleboro rats, which don’t produce vasopressin.” (Segen 2005). Whilst in former times authors focused on comparing zoonosis in animals and humans, it was not before the 20th century that animal models for human diseases have been developed (Rader 2004). As animals have been increasingly used in research, in 1967 the National Institute of General Medical Sciences started a comparative medicine program to detect more animal diseases resembling human diseases. The members realized the importance of studying these animals to understand the underlying mechanisms of the particular disease and to gain insight in the disease process in humans. This knowledge would help to identify models for pharmacological, toxicological and drug development studies. The core disciplines of this comparative medicine program were pathology, physiology, psychology, anatomy and pharmacology. It was clearly stated that these basic disciplines and all medical professions should be involved to work hand in hand (Gay 1967, Nielsen 1983). Gay pointed out that comparative medicine is an interdisciplinary science and that it is important that medicine and veterinary medicine should exchange. They defined comparative medicine as “the study of phenomena basic to the diseases of all species” (Gay 1967). Nine years later, Bustad and others described the meaning of comparative medicine as “the study of the nature, cause and cure of abnormal structure and function in people, animals and plants for the eventual application, and benefit of all living things” (Bustad and others 1976).

In the United States, education in laboratory animal medicine can be performed as a residency program or a postdoctoral fellowship. The first training program offered
was at the Bowman Grey Medical School, initiated in 1960. Shortly after, other training programs followed at the Tulane University, the Stanford University, the University of Florida, the Johns Hopkins University, the University of Missouri, the Edgewood Arsenal, Maryland and the Brooks Air Force Base, Texas. The Jackson laboratories started to offer a summer school program already in the year 1924 (Fox 1985). Still, education in comparison of laboratory and human medicine and pathology remains elusive (Sundberg and others 2012).

1.2. **Lack of experts in animal modeling and pathology**

Over the past century, the laboratory mouse has become the model animal in many laboratories to mimic human diseases (Valli and others 2007). The mouse harbors many advantages – from cheap, small and easy to handle and to breed to the broad similarity of the murine to the human genome. After the human genome was almost completely revealed, the mouse was the first non-human species whose genome was sequenced. Ninety-nine % of the human genes are conserved in the murine genome (Mouse Genome Sequencing and others 2002). Additionally to these genetic similarities, most physiologic and pathologic characteristics have been shown to harbor similarities in mouse and human, as for instance nervous, cardiovascular, endocrine, immune, musculoskeletal and other organ systems (Rosenthal and Brown 2007). Mice and rats comprise 95% of the animals used in biomedical research. The remaining 5% are covered by several animal species as human- and non-human primates, cows, sheep, swine, dogs, cats, birds, rabbits, guinea pigs, hamsters, fish, frogs, nematodes, fruit flies, even yeasts and pea plans (Simmons 2008).

The histopathological evaluation of animal models is a factor that might cause wrong interpretations if not properly carried out by an expert. Additionally, this histopathological evaluation might be frustrating even in simple cases because of unexpected events as leaky promoters, neomorphic or hypomorphic allelic expression instead of allelic deletion, microbial infections, and genetically differences between murine strains, since all these factors may affect the phenotype (Sellers and Ward 2012). Several mouse strains harbor distinct pathological background lesions, as for example the commonly used BALB/cByJ strain displays hepatic steatosis already in young male animals (Serpi and others 2013). Especially these lesions due to a distinct murine background strain might
cause severe differences in the genetically engineered mice (GEM) and should therefore always be considered to influence the result (Sellers and Ward 2012).

Working with an experienced pathologist, educated in murine and human histopathology, is often undervalued. Cardiff and others published in 2008 a statistic depicting an enormous increase in publications working with GEM, meanwhile the number of pathologists working with GEMs is only slightly increasing. In 2003, the ratio publication dealing with knock-out mice to pathologists involved was about 5000 to 1300; meanwhile in 2006 it was over 7000 to not even 2000 pathologists. (Cardiff and others 2008). Several studies and publications reveal a clear need for experts trained in animal models of human diseases and their distinct histopathology as this field has been expanding in the last 20 years (Barthold and others 2007, Bouley and others 2009, Cardiff and others 2008, Sundberg and others 2012).

An important fact is the knowledge to distinguish normal background lesions of various mouse strains from the lesion of interest. Many mouse strains show abnormalities in their physiology without any pathological impact. This gap of pathological knowledge might cause publications of wrong interpretations. For instance, Fu and coworkers misinterpreted abnormally enlarged preputial glands as a teratoma, not knowing about the existence of these glands. The authors wrote an erratum to indicate this fact (Fu and others 2002). Ince and coworkers called this self-evaluation of slides by non-pathologists without involving an expert in comparative pathology a “do-it-yourself (DIY) pathology” (Ince and others 2008). Robert Cardiff addresses this problem in his paper “How to phenotype a mouse?”: “Without access to comparative pathologists, how can disease models be analyzed with confidence?”. He foresees an aggravation of this problem as e.g. the NIH Knockout Mouse Project (KOMP) generated numerous new mouse models which need to be analyzed histopathologically (Cardiff 2009).

Although in the last years a growing list of resources as books, articles in journals and web pages have been developed to facilitate the pathologic analysis of rodents compared to humans (Bolon and others 2012), this material cannot replace a training course. Inasmuch as there is no specific training program included in the traditionally pathology residency core courses, the only chance to develop skills in this field is to learn by experience, being lucky enough to find a mentor providing the expertise. As these mentors, especially in Europe, are very rare, this might be
tricky. A specialist in comparative pathology not only needs to be trained in basic mouse biology which includes husbandry, pathogens, strain-specific diseases and also in modern biomedical research but also human pathology (Sundberg and others 2012). Modern pathology training programs should include training in differences between mouse strains and their individual background lesions, gender differences, lesion in aging mice and embryonic development (Sellers and Ward 2012). A standardized morphological phenotyping is therefore necessary and it is important to depict differences in murine background strains (Mossbrugger and others 2007). Unfortunately, these requirements are not even completely achieved yet in the training program of veterinarian pathologists. In US, the American College of Veterinary Pathologists (ACVP) offers training in animal models used in biomedical diseases with spontaneous background lesions, and has workshops, which cover the human disease (http://www.acvp.org/). In Europe, the European College of Veterinary Pathologists (ECVP) has only included laboratory animal pathology in their training program, but offers summers schools, symposiums and meetings about comparative pathology (http://www.ecvpath.org/). In Germany, the training program is less defined, but includes laboratory animals (http://www.bltk.de/fileadmin/bltk/user_upload/Dokumente/images/stories/weiterbildung/wb-2003/anlageI/22-0-fta-pathologie.pdf, [date: 01.10.2014]). New technologies as slide scanners and webmicroscopy offer the possibility not only to preserve rare, important material, but also to reach more people over distances and these resources or mentors might be easier to reach (Hamilton and others 2012).

1.3. Advantages of e-learning
The term e-learning describes a form of electronically supported learning and teaching (Kerres 2013) and has gained significant value in biomedical education. Existing learning strategies can be improved by providing new methods to already existing traditional learning techniques (Boeker and Klar 2006, Dev 2006). Different e-learning strategies have been described: passive, facilitated learning, interactive learner-system, learner-teacher and virtual reality learner-system (Maxwell and Mucklow 2012). E-learning offers the opportunity to improve learning with new tools, even though the participants are not in the same room. This includes animations that can be controlled by the user, exercises with self-assessment and feedback, videos and podcasts that can be streamed on demand. Important assets of e-learning for students are the supply of material, which can be
easily accessed, an improved interactivity and the freedom not to follow time
schedules. Web-based learning can be performed any time and in any location with
internet-accesses, well suited to the students’ needs (Maxwell and Mucklow 2012).
Especially in the field of medical education, e-learning offers the opportunity to
create case studies which can be attended by the students, as for instance the
CASUS system in German veterinarian universities (Borchers and others 2010).
The University of Leipzig, Germany, uses Moodle as an e-learning platform to
teach their students, offer courses and show curricula. Advantages for the teachers
include the wide accessibility of material, which is easy to update once it is
established, and the possibility to pursue the students learning activity. Potentially
no time restriction interferes with the offered material and teachers are able to
update the material any time. The disadvantage of e-learning is the time and
personnel needed to set up a course. Nevertheless, e-learning does not exclude the
teacher, a personal interaction is possible when needed and necessary. E-learning
does not center the teacher, therefore students are able to work according their
individual preferences (Salter and others 2014). Even more, e-learning can be
individualized, tailored to the students pace of learning, making it a crucial tool for
student’s education (Masic 2008, Maxwell and Mucklow 2012).

1.4. Moodle
Martin Dougiamas developed the user-friendly open-source course management
system Moodle in 1999 to improve classical learning platforms. It offers a broad
spectrum of tools to work with, for instance wiki, a chatting tool, databases, blogs,
calendars and newswire. Moodle is freely available and simple to handle. The
program is used in approximately 214 countries for more than 4,784,691 courses
with over 45 million students and 1.1 million teachers (Bussieres and others 2012,
Seluakumaran and others 2011). This widely used tool is beneficial for the
provision of courses in universities, curricula, application of courses and
examinations, as well as in the area of medical education to implement case reports,
patient cases and macroscopical and histological pictures (Seluakumaran and others
2011).

1.5. Webmicroscope
Virtual microscopes are increasingly used in medical education, ranging from
dental students to veterinary students in every field of education, as well as
postgraduate programs. By digitalization of histological or histopathological slides, teaching collections can be used for web-based learning (Szymas and Lundin 2011). The usage of virtual slides offers many advantages regarding accessibility, efficiency, pedagogic features and costs. The slide can be accessed from every PC with an internet connection and all students can review the same slide, they do not need to be in the same classroom. Therefore, teachers are able to provide the best slides to all students. A webmicroscope is efficient, as students do not need to adjust the focus, condenser and lightening as with a traditional microscope and can therefore faster access the next slide. Annotations and group discussions offer a broad spectrum for teaching. However, in terms of didactical aspects, it should be considered teaching traditional microscopy as well to train students with the handling of a traditional microscope. Disadvantages of digital microscopy include mainly technical aspects, e.g. less resolution of low magnifications on the PC screen or difficulties in scanning artifacts in tissue (Dee 2009).

1.6. Aim of the project
Aim of this project was to develop a training program for researchers working with animal models and offer an international training course. A combination of animal model pathology and human pathology in this course should help researchers with their future work. To further validate the course system, a deeper morphological phenotyping of a mouse model for PDAC was performed, as described in section 2.

2. Pancreatic cancer and tenascin-C

2.1. Pancreatic cancer
There are many different cancers of the pancreas described, although the term pancreatic cancer is synonymously used for pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90 % of malignant neoplasia of the human pancreas (Bosman 2010, Maitra and Hruban 2008). PDAC is a tumor of the exocrine compartment of the pancreas, originating from cells with a ductal phenotype and accompanied by a dense stromal reaction, called desmoplasia (Maitra and Hruban 2008). This aggressive solid tumor is highly challenging to treat because of its extensive local invasion, early systemic dissemination, most often in liver, lung and peritoneum (Samuel and Hudson 2012). The desmoplastic stromal is reaction linked with a low perfusion rate leading to a reduced
accessibility of intravenously administered therapeutics (Wilson and others 2014).

2.1.1. Epidemiology
PDAC is a lethal disease with a dismal overall prognosis. In the EU and US it has become the fourth leading cancer death in 2013 and the eight leading cause for cancer related death worldwide. In the past 30 years, PDAC has shown little improvement in survival and cancer mortality and cancer predictions underscore this trend: PDAC is the only major cancer site with no predicted improvement of mortality rates (Malvezzi and others 2013, Siegel and others 2013). In the United States 45,220 patients have been newly diagnosed in 2013, which is an increase of 3 % to the year 2012 (Wang and others 2013). The five year survival rate is below 5 %, which accounts for the very aggressive nature of this cancer (Siegel and others 2013). Known risk factors that have been identified are sex, age, race, rare genetic conditions, smoking, obesity, alcohol abuse, chronic and hereditary pancreatitis, diabetes and infectious diseases (Alsamarrai and others 2014, Wormann and Algul 2013, Yadav and Lowenfels 2013). PDAC is predominantly a disease of the elderly; it is very seldom diagnosed in patients younger than 40 years, the mean age of the patients diagnosed is 73 years (Koorstra and others 2008, Maitra and Hruban 2008).

2.1.2. Prognosis and therapy
In addition to the dismal outlook, patients generally have a poor response to radio- and chemotherapy. Most patients are diagnosed in an advanced stage, as the tumor remains silent until it invades in other structures. Abdominal pain is often the first symptom of the disease, but at this time, the tumor is mostly beyond cure (DiMagno 1999). Surgery is the only treatment with a chance for healing, but only a minor part of patients (15-20 %) qualifies for surgical resection (Sultana and others 2012). The median survival ranges from 2.5 months to 24.1 months, depending on the stage, with a median overall survival of less than 12 months (Bilimoria and others 2007, Siegel and others 2012). To date, the standard chemotherapy is gemcitabine, although the gemcitabine-free FOLFIRINOX regimen (5-FU/folfinic acid, irinotecan and oxaliplatin) showed a higher median survival than gemcitabine alone (Heinemann and others 2012). An early detection of the disease might improve the worse prognosis and serum levels of many enzymes and antigens have been tested, but no reliable marker candidate has been detected so far (Hidalgo 2010, Locker and others 2006). Targeting the tumor stroma might be a promising therapy concept
in PDAC as it is characterized by a poor vascularization and a dense desmoplastic stroma which may contribute to impaired drug delivery and therefore resistance to chemotherapy (Neesse and others 2011).

2.1.3. Precursor lesions of PDAC

Different distinct precursor lesions of PDAC are described in the literature, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN). Compared to IPMNs and MCNs, PanIN are the most frequent precursor lesions. In contrast to PanIN lesions, IPMNs and MCNs are already established neoplasms (Maitra and Hruban 2008). More recently, another type of precursor lesion was proposed: atypical flat lesions (AFL) (Aichler and others 2012).

Pancreatic intraepithelial neoplasia (PanIN)

PanIN lesions are clearly defined and classified lesions in the WHO classification as follows. PanIN are non-invasive, microscopic proliferative epithelial lesions arising in smaller pancreatic ducts and ductules and are subdivided into PanIN-1A, PanIN-1B, PanIN-2 and PanIN-3, depending on the degree of cytological and architectural atypia, always with a diameter less than 1 cm. PanIN-1A are flat epithelial lesions with minimal atypia. Characteristically, the cells are tall and columnar, containing abundant mucin with basal orientation and small, round to oval nuclei. The similar PanIN-1B lesions harbor additionally a papillary, micropapillary or basally pseudostratified architecture. PanIN-2 lesions are flat or papillary and show nuclear abnormalities as loss of polarity, nuclear crowding, enlarged nuclei, pseudo-stratification and hyperchromatism. Mitoses are a rare finding. PanIN-3 are papillary or micropapillary, lesions with marked atypia. Seldom, this lesions can be flat. Budding of epithelial cells into the lumen of the lesions and luminal necrosis can be found in these lesions. In addition, loss of nuclear polarity, dystrophic goblet cells, abnormal mitoses, nuclear irregularities and prominent nucleoli are a common finding (Hruban and others 2001, Kern and others 2001). These morphological alterations are accompanied by an accumulation of genetic alterations, summarized in Figure 1.
Figure 1: Progression model of pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) formation: Accumulation of genetic alterations leads to PanIN and finally PDAC formation, modified by author (Hruban and others 2006).

Accordingly, murine PanIN are similarly defined as human PanIN (Hruban and others 2006).

Intraductal papillary mucinous neoplasm (IPMN)

In contrast to PanIN, IPMNs are lesions at least 1 cm in size, arising in the main pancreatic duct or branch ducts. Mucin production and papillary architecture are the histologic features of IPMNs (Furukawa and others 2005). IPMNs are subdivided into main-duct (21-36 %), branch-duct (40-48 %) and mixed duct types (16-38 %); branch-duct IPMNs usually have a foveolar appearance and are therefore called “gastric-type”, meanwhile main-duct IPMNs are histologically divided into the “intestinal-”, “pancreatobiliary-” and “oncocytic-type”, depending on morphological and immunohistochemical features. Progression to invasive PDAC is quite common in main-duct IPMNs (48-64 %) and less frequent in branch-duct IPMNs (10-20 %) (Schlitter and Esposito 2012). The 5-year survival rate is depending on the histological subtype and ranges from 52 % (pancreatobiliary-type) to 84 % (oncocytic-type). PDAC arising in the context of IPMN have a better prognosis (Furukawa and others 2011).

Mucinous cystic neoplasm (MCN)

MCNs are mucin producing, cyst-forming epithelial neoplasms without communication with the pancreatic ducts and surrounded by a distinctive ovarian-
type stroma, immunohistochemically expressing hormone-receptor antigens. These lesions are predominantly detected in women (98%). Histologically, MCNs can display low to high-grade dysplasia. One third of MCNs are resected with an associated invasive carcinoma. The 5-year survival for resected patients with noninvasive MCNs is almost 100 % and about 50 % for patients with invasive cancer (Crippa and others 2008, Hruban and Fukushima 2008).

Atypical flat lesions (AFL)

AFL have only recently been described as another type of potential precursor lesions. Discovered in the KC mice, the presence of this lesion was confirmed in non-tumorous specimen of individuals belonging to familial pancreatic cancer (FPC) kindred. AFL are proliferating, non-mucinous, flat ductal lesions with enlarged and hyperchromatic nuclei and prominent nucleoli surrounded by a fibrous and cell-rich stroma that can have a loose, myxoid appearance. Mitoses are a common finding. These lesions seem to arise from tubular complexes (TC) (Aichler and others 2012, Bockman 1997) in areas of tissue remodeling, so called acinar-ductal metaplasia (ADM), and their frequency increases with the age of mice. Compared to PanIN, murine AFL display a higher proliferation activity (10-80 %), p53 positivity and stromal accumulation of αSMA (Aichler and others 2012). The consideration of AFL as precursor lesions might influence the controversial discussion whether PDAC arises from ductal, acinar or centroacinar cells (Guerra and others 2007, McDonald and others 2012). Figure 2 depicts a possible way of PDAC development from acinar and centroacinar cells.

Figure 2: Possible carcinogenesis from AFL lesions, A: mouse, B: human. Atypical flat lesions (AFL) arise in a setting of acinar-ductal metaplasia (ADM) lesions with tubular complexes (TCs)
and mucinous tubular complexes (MTCs), proposing the flat carcinogenesis model, modified by author (Aichler and others 2012).

2.1.4. Genetic alterations

PDAC develops as a result of successive accumulation of genetic alterations in pre-neoplastic lesions, including mutations in the key driver genes \(\text{KRAS}, \, P16/\text{CDKN2A}, \, \text{TP53} \) and \(\text{SMAD4}/\text{DPC4.5} \) (Hruban and others 2000). The mutation of the oncogene \(\text{KRAS} \) is an early event in the development of PDAC, which can be detected in 92 % of PanIN-1A lesions. More than 95 % of human PDAC contain an activating point mutation in the \(\text{KRAS} \) gene, mainly changing codon 12 from glycine to aspartate or valine in exon 2. Further, mutations in codon 13 and 61 are observed occasionally (Almoguera and others 1988, Biankin and others 2012, Kanda and others 2012). Inactivation of the tumor suppressor gene \(\text{CDKN2A} \) gene is another early event in PDAC. Around 30 % of PanIN-1A lesions harbor a \(\text{CDKN2A} \) mutation, and more than 95 % of PDAC have an inactivated \(\text{CDKN2A} \) gene due to homozygous deletion, inactivation mutation in one allele and loss of heterozygosity or promoter hypermethylation (Ottenhof and others 2011). The subsequent loss of functional p16 protein leads to an increased cell cycle progression (Schutte and others 1997). A late event in the tumorigenesis of PDAC is the inactivation of the \(\text{TP53} \) gene by missense mutation of one allele and subsequent loss of the second allele. It is mutated in about 75 % of PDAC and functional loss of the protein p53 leads to accumulation of further genetic abnormalities through anti-apoptotic effects in the presence of DNA-damage (Bardeesy and others 2006, Rozenblum and others 1997). Similar to \(\text{TP53} \), inactivation of \(\text{SMAD4} \) is found only in high-grade PanIN, indicating another late event in the progression to PDAC. Fifty-five % of PDAC cases harbor a \(\text{SMAD4} \) inactivation (Hruban and others 2000, Tascilar and others 2001).

2.1.5. Stromal component and tumor microenvironment

PDAC harbor a characteristic stromal reaction, called desmoplasia. This desmoplastic stroma is mainly found in PDAC, rarely in other pancreatic primary or secondary tumors of the pancreas and represents for up to 90 % of the tumor volume (Kloppel and others 2004). It is characterized by a deposition of extracellular matrix proteins and a cellular component consisting of stellate cells, activated fibroblasts and myofibroblasts, as well as inflammatory cells. The extracellular matrix proteins are synthesized mainly by pancreatic stellate cells.
(PSC) and in a lower amount by cancer cells (Neesse and others 2011). The stroma acts as a mechanical barrier to the tumor, restricting the vascularity of the tumor and hereby limiting the effect of anti-cancer drugs. Hereby, it plays an important role in the process of tumor formation, progression, invasion and metastasis, protection from apoptosis and cancer stem cell maintenance (Hwang and others 2008, Korc 2007).

Another important key player of the tumor microenvironment is the immune system. Antigens associated to cancer are expressed by PDAC and competent CD4\(^+\) and CD8\(^+\) T cells with specific receptors against cancer antigens are expressed in the bone marrow of patients harboring PDAC (Schmitz-Winnenthal and others 2006). Pancreatic cancer cells are known to be able to evade the immune system and cancer associated inflammation evident in the tumor stroma might serve as a barrier to the surveillance of the immune system (Bayne and others 2012).

2.1.6. Mouse models of pancreatic cancer

Animal models closely mimicking the human disease are helping to understand the pathogenesis of PDAC and to reveal the mechanism leading to invasive cancer. In 2003, Hingorani and others generated a mouse model with a Cre recombinase dependent, endogenous, conditional Kras mutant allele on pancreas specific PDX-1 or p48 promoters (see Figure 3). These mouse models develop low-grade and, to a less extent, high-grade PanIN, as well as ADM, closely resembling the human disease.

![Figure 3: Pancreatic development. Transcription factors that program the early progenitor cells in the developing murine pancreas are indicated. PDX-1 expression starts with embryonic day 8.5 and p48 expression begins with embryonic day 9.5. These progenitor cells develop to all cell lineages of](attachment:image.png)
As in human PDAC, a single \(\text{Kras}\) mutation leads not necessarily to invasive cancer (Hingorani and others 2003). Therefore, further genetic alterations have to be targeted e.g. \(\text{Cdkn2a}\), \(\text{Tp53}\), and \(\text{Smad4}\) on a mutant \(\text{Kras}\) background, leading to fully invasive PDAC with metastases (Aguirre and others 2003, Hingorani and others 2005, Kojima and others 2007). A further breakthrough was the development of a doxycycline dependent, conditionally inducible \(\text{Kras}\) allele in the mouse, showing that the \(\text{Kras}\) mutation is required for the maintenance of ADM, PanIN and PDAC and that the inactivation of \(\text{Kras}\) leads to regression of PDAC (Collins and others 2012a, Collins and others 2012b).

Models other than GEMs used to mimic human disease are heterotopic xenograft models, with subcutaneous implantation of human cancer cells in nude or severe combined immunodeficient (SCID) animals. Another possibility is the orthotopic xenograft model, with tissue grafted in the pancreas. The limiting factor of these two models is that the recipients are immunocompromised animals to avoid rejection of human tissues, so modulation of the tumor growth by the immune systems is lacking. Furthermore, these mice show only a minimal or no stromal reaction (Capella and others 1999, Ding and others 2010).

In summary, transgenic mouse models of precursor lesions and PDAC offer new possibilities to test the validity of early detection methods and of therapeutic strategies and to investigate cellular origins and molecular pathways involved in the development, progression and invasion of PDAC.

2.2. Tenascin-C

Tenascin-C belongs to a family of large oligomeric extracellular matrix proteins, the tenascins (TN), displaying a distinct expression pattern during development, tissue maintenance and disease. TNC was detected by different working groups independently and former names include glioma mesenchymal ECM antigen (GMEM) (Bourdon and others 1983), hexabrachion (Erickson and Inglesias 1984), myotendinous antigen (Chiquet and Fambrough 1984), J1 glycoprotein (Kruse and others 1985) and cytotactin (Grumet and others 1985) until in 1986 Chiquet-Ehrismann and others introduced the name tenascin (Chiquet-Ehrismann and others 1986). TNC was the first tenascin described more in detail before other TNs even have been detected in humans including tenascin-R (TNR, restrictin, janusin), tenascin-X (TNX, gene X) and tenascin-W (TNW, tenascin-N), and additionally
tenascin-Y (TNY) in chicken (Jones and Jones 2000a). Tenascin was chosen as common name as it is a protein enrolled in the adhesion of cells (lat. “tenere”, to hold) (Mackie 1997) and the C in TNC stands for “cytoactin” (Chiquet-Ehrlmann and Tucker 2011).

The human TNC gene is localized on chromosome 9 in band q32-q34 (Rocchi and others 1991). TNC, as all TNs, consists of a common set of structural motifs, including heptad repeats, EGF-like repeats, fibronectin type III (FNIII) domains and a C-terminal globular domain. The disulfide linked oligomer consists of an 180- and an 300-kD subunit, linked together in a central core composing a hexabrachion (Figure 4) (Vaughan and others 1987).

![Structure of TNC](image)

Figure 4: Structure of TNC: Schematic presentation of the hexameric TNC (A), and the TNC oligomer (B). The six oligomers are linked together at the tenascin assembly (TA) domain by coiled-coil interactions in the HEPTAD region. The left arrow represents terminal cysteine residues. Mammalian TNC contains 14 EGFL repeats and 8-17 FNIII domains (black: conserved, white: alternatively spliced variants). The fibrinogen globe represents the C-terminal end, modified by author (Jones and Jones 2000b).

Every arm contains an aminoterminal tenascin assembly (TA) domain in which the TNC polypeptides can be linked together by terminal cysteine residues and 3-4 α-helical heptad repeats (Conway and Parry 1991). The TA domain is followed by 14.5 epidermal growth factor-like (EGFL) repeats, each containing six cysteine residues, which participate in intrachain disulfide bonds. These EGFL repeats are important for the adhesion to fibroblasts and neurons (Fischer and others 1997). In
the carboxy-terminal direction, 8-17 fibronectin-III (FN-III) repeats are present, 8 conserved and up to 9 alternatively spliced FN-III repeats (Pas and others 2006). The domains are arranged in two sheets of seven anti-parallel β-strands (Baron and others 1992) and account for the flexibility of TNC (Carr and others 1997). The FN-III repeats are altered by alternative splicing of TNC mRNA and distinct expression pattern of these slice variants have been described in development and disease, modulating the biological function of TNC (Esposito and others 2006, Jones and Jones 2000a). Interestingly, TNC promotes adhesive and anti-adhesive actions, depending on the binding to different EMC proteins or cell surface receptors. Alternative splicing does influence this binding, as it has been shown for the cell surface receptor annexin II, which binds to the alternatively spliced FN-III region A-D of the large TNC splice variant (Chung and Erickson 1994).

The C-terminal end of TNC is represented by the fibrinogen (FG) globe, which contains polypeptide loops, formed by two disulfide bonds and has an Ca$^{2+}$-binding site (Jones and others 1989). This domain interacts with other proteins of the ECM and cell surface receptors, e.g. collagens, integrins and heparins (Milev and others 1997). These interactions promote TNC dependent activities, like migration, proliferation and regulation of cell adhesions (Orend 2005). Proteins like TNC, that contain binding sites for major structural proteins in the ECM and specific cell surface receptors are called “matricellular” proteins (Roberts 2011). Various effects of TNC on cell behavior are mediated through the existence of specific receptors. Different cell types are able to produce TNC, for instance stromal cells (Oskarsson and Massague 2012). In human brain, e.g. oligodendrocytes and astrocytes express different splice variants of TNC, oligodendrocytes the larger ones, meanwhile astrocytes the smaller ones (Garwood and others 2004).

2.2.1. Tenascin-C in development and the adult organism
TNC is expressed in a restricted pattern during embryogenesis and early postnatal development. It was detected at sides of tissue remodeling, in the mesenchyme around the epithelium undergoing differentiation, for instance in the mammary gland, the tooth bud formation, the early tubulogenesis in the kidney and the urogenital sinus at the sites of formation of prostatic buds and vagina. Organs that express highest levels of TNC are thymus, lung and cerebellum (Saga and others 1991).
In the adult organism, TNC is tightly regulated and restricted to tissues which undergo either mechanical stress, such as tendons, ligaments and smooth muscles or exhibit a high cell turnover as lymphoid organs and hair buds in the skin (Chiquet-Ehrismann and others 2014). Examples for areas of restricted TNC expression in the adult organism are the basement membrane of the skin, mucosa of the colon, ductal salivary glands, vessel walls of various organs, visceral smooth muscle, the mammary gland after lactation and the uterus during estrus cycle and pregnancy (Juuti and others 2004, Saga and others 1992). Reappearance of TNC in adult tissue is triggered by injury and tissue regeneration as well as in healing wounds, arteriosclerosis and cancer (Chiquet-Ehrismann and Tucker 2011). As in vivo, TNC expression of most cultured cells is dependent on certain growth factors and hormones. For instance, TNC expression in cultured fibroblasts is only detectable after incubation with factors associated with inflammation and wound healing, like transforming growth factor-β, basic fibroblast growth factor and interleukin-1 (Chiquet-Ehrismann and others 1995).

2.2.2. **Tenascin-C and cancer**

Strong expression of TNC in the adult organism is found in the tumor microenvironment (Orend 2005). In most epithelial tumors, tumor-associated fibroblasts are the source of TNC, not the epithelial tumor cells themselves. Interestingly, in non-epithelial derived tumors, such as melanoma or glioblastoma, the tumor cells are the source of TNC. In epithelial tumors, immunohistochemistry reveals a fibrous network of TNC immunoreactivity surrounding tumor cell nests. A correlation between elevated expression of TNC and local infiltration of adjacent normal tissue and increased metastasis in many types of cancer was observed (Chiquet-Ehrismann and Tucker 2011). Moreover, TNC expression is upregulated during angiogenesis in inflammatory and neoplastic diseases. TNC concentrations have been linked to tumor recurrence and prognosis, but the findings are contradictory, underscoring the several functions of this protein (Orend and Chiquet-Ehrismann 2006). In breast cancer and colorectal cancer TNC expression is connected with worse prognosis, whereas in cervical and gastric cancer patients have a better prognosis with a TNC immunoreactivity in immunohistochemistry of tumor samples (Juuti and others 2004). TNC expression in breast cancer was investigated intensively. Here, it induces an epithelial-mesenchymal transition (EMT)-like change in breast cancer cells by binding of αvβ1 and αvβ6 integrins.
III. Literature Review

Another interesting feature is the fact, that often the large splice variant of TNC is associated with tumors. Borsi and others found that the extracellular matrix pH influences the splicing of TNC mRNA in normal fibroblasts, meanwhile malignant cells exclusively produce the large TNC mRNA (Borsi and others 1996). Antibodies against these splice variants might therefore play a role in diagnosis and therapy (Chiquet-Ehrismann and Chiquet 2003).

2.2.3. Distribution and function of tenascin-C in pancreatic cancer

Compared to normal tissue, the distribution of extracellular matrix proteins such as TNC differs in PDAC. TNC expression was found to be upregulated in PDAC, mostly in the stroma, surrounding tumor cells (Juuti and others 2004, Linder and others 2001). Juuti and others correlated immunohistochemical TNC detection with patient survival rate. They showed that TNC expression was associated with poorly differentiated tumor grades and patients age. No correlation between the expression of TNC and stage, tumor size, lymph node status, metastasis or tumor location could be detected. Interestingly, in male patients, TNC expression seemed to correlate with a higher survival (Juuti and others 2004). Gong and others detected a correlation between high levels of spliced TNC in sera of patients and gemcitabine resistance (Gong and others 2010). Esposito and others reported in 2006 that PSC are the main source of TNC, not the pancreatic cancer cells themselves. Here, they could show that the expression is induced by tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGF-β) (Esposito and others 2006).

Large TNC splice variants have been found in precursors of PDAC and PDAC as well as in chronic pancreatitis, but not in normal pancreas and the expression intensity increases from low-grade PanIN to invasive PDAC. In normal pancreatic tissue, the distribution of TNC is restricted to the muscular wall of blood vessels and the stroma surrounding interlobular ducts (Esposito and others 2006).

Functional analysis of TNC in vitro showed that TNC increases growth and adhesion of poorly differentiated pancreatic cancer cell lines. Moreover, using TNC as growing substrate the cell lines exhibited higher migration rate. Proliferation of pancreatic tumor cells was enhanced by TNC (Paron and others 2011). The role of TNC on apoptosis is not clear and results are sometimes controversial (Midwood and others 2011). However, these results indicate a possible tumor supportive role.
III. Literature Review

of TNC in PDAC. Unfortunately, little is known about the role of TNC in the pancreas harboring only precursor lesions.

2.2.4. Mouse models of tenascin-C

In 1992, Saga and others succeeded in developing mutant mice lacking TNC. They replaced two-thirds of exon 2 and parts of intron 2 of the TNC gene with a lacZ gene, which induces lacZ expression instead of TNC. To their surprise, the mice developed normally and showed no obvious abnormalities (Saga and others 1992). Finally, in 1996, Forsberg and others independently generated a different mutant mouse model lacking the TNC gene and confirmed previous findings. TNC was deleted by switching the coding region of exon 2 to a neomycin gene (Forsberg and others 1996). However, TNC null mice showed some abnormalities as low body weight and low pregnancy rates. Fukamauchi and others first described abnormal behavior of TNC knockout mice. The mice exhibited a prolonged exploratory behavior in a new surrounding and had problems to habituate to the unknown circumstances (Fukamauchi and others 1996). Further, abnormalities in the central nervous system, development of lung and prostate as well as regenerative processes after injury and stress have been detected (Cifuentes-Diaz and others 2002, de Chevigny and others 2006, El-Karef and others 2007, Garcia and others 2004, Ishii and others 2008, Nakao and others 1998, Roth-Kleiner and others 2004). Moreover, it has been found that the TNC knockout mouse has a reduced inflammatory response (Chiquet-Ehrismann and Tucker 2011). Interestingly, knockout of other genes like Bcl-2, Smad8, Msx2 and MMP-19 seem to influence the expression of TNC and therefore the phenotype (Chiquet-Ehrismann and Tucker 2011), making it important to generate mouse models for special cancer types to elucidate the role of TNC in several cancer sites.

2.3. Aim of the project

Aim of this work was to compare an ablation of TNC in a mouse model of PDAC to a well-established mouse model of PDAC. Hereby, the focus was set to acquire new knowledge of TNC function, in particular in the early phases of PDAC development as this dismal disease has still a worse prognosis.
III. MATERIAL AND METHODS

1. Web-based learning platform for comparative histology

1.1. Material
Material used during the course is listed in the annex.

1.2. Methods

1.2.1. Human tissue
Tissue samples were obtained from the archive of the Institute of Pathology, Technische Universität München, Germany. After surgical removal, tissue samples were fixed in 4 % buffered formalin and embedded in paraffin after 24 hrs in a paraffin embedding machine. For routinely diagnostic purposes, histochemical and, if necessary, immunohistochemical stainings were performed, as described in detail in 2.2.2-2.2.6. The use of human material for this project was approved by the local ethics committee of the Technische Universität München, Germany, and written informed consent was obtained from all patients.

1.2.2. Murine tissue
Murine tissue slides of wild type mice were kindly provided by the mouse platform of the German Mouse Clinic (GMC), Helmholtz Zentrum München, Germany. The mice were housed and bred at the animal facilities of the GMC, in accordance with the German Animal Protection Law with permission from the responsible veterinary authority. Wild type mice were euthanized in a CO₂ chamber, tissues were harvested, fixed in 4 % buffered formalin and embedded in paraffin after 24 hrs. H&E staining of organ tissue sections were performed.

1.2.3. Consortium
The project was financed by ERASMUS Lifelong Learning, 517860-LLP-1-1-FI-ERASMUS-FEXI. A network of universities teaching disease model pathology has been developed through the project. The consortium was composed by the Institute of Pathology, Technische Universität München, Munich, Germany, the Palmenia Centre for Continuing Education, University of Helsinki, Finland, Turku Center for Disease Modeling, University of Turku, Finland and the College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland. The members of
the consortium offered a broad knowledge and included specialists in pedagogy, medical and veterinary pathology and mouse models of human diseases.

1.2.4. Development of a curriculum

A curriculum for the web-based course content was developed. The structure for the overall curriculum was planned together by the members of the consortium using Moodle as an interactive web-based tool. Further discussions were hold by videoconferences and in face-to-face meetings. Quality criteria for a comprehensive learning, the e-learning content, the online tutoring and mentoring, the webinars, and the scanned slides utilized, have been applied in order to ensure that the curriculum was based on the latest research and pedagogical knowledge.

1.2.4.1. Normal murine tissue

Murine tissue slides from the mouse strains BALB/cByJ, C3HeB/FeJ, 129P2OlaHsd, C57BL6/N, FVBNJ and C57BL6/6J were obtained from the mouse platform of the Helmholtz Zentrum München. At least one representative female and male example with strain-specific background lesions was selected. H&E sections included murine brain (cerebrum, cerebellum, brainstem), neck (esophagus, trachea, thyroid, parathyroid), thoracic and abdominal organs (lung, heart, thymus, liver, kidney, spleen), reproductive organs (ovaries with fallopian tube, uterus, vagina, bladder, testes, epididymis, prostate), glands and lymph nodes (adrenal glands, salivary glands, lymph nodes) and gastrointestinal tract with skin (stomach, small intestine, large intestine, pancreas, skin).

1.2.4.2. Basic lesions

To highlight basic pathological lesions, appropriate human tissue sections were screened from the archive of the Institute of Pathology, Technische Universität München, Germany and interesting cases were selected. Tissue sections of animal models fitting to the human tissue sections were used from the mouse tissue archive of Prof. Dr. Esposito. Representative H&E slides as well as histochemical and immunohistochemical stains were used if important to understand the case. In detail, the chosen examples comprised cell adaptation reactions (hypertrophy, hyperplasia, atrophy and metaplasia), cell injury and death (apoptosis, necrosis), inflammation (acute, chronic, granulomatus) and tissue repair. Table 1 contains a detailed description of the murine and human lesions included in the course.
<table>
<thead>
<tr>
<th>Cell reaction</th>
<th>Human example</th>
<th>Murine example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertrophy</td>
<td>Cardiac hypertrophy</td>
<td>Leydig cell hypertrophy (AROM+ mouse model)</td>
</tr>
<tr>
<td>Hypertrophy</td>
<td>Cardiac hypertrophy</td>
<td>Adrenal subcapsular cell hyperplasia (incidental finding in a female Balb/cByJ mouse)</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td>Prostatic hyperplasia</td>
<td>Testis atrophy (incidental finding in normal 129P2OlAlHsd male mouse)</td>
</tr>
<tr>
<td>Atrophy</td>
<td>Testis atrophy</td>
<td>Pancreatic acinar-ductal metaplasia (cerulein induced acute pancreatitis, C57BL6N mouse strain)</td>
</tr>
<tr>
<td>Metaplasia</td>
<td>Gastric intestinal metaplasia</td>
<td>Squamous epithelial metaplasia cervix</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Apoptotic bodies in viral hepatitis</td>
<td>Wilson disease (Atp7b-/- rat model) (Zischka and others 2011)</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Acute liver failure</td>
<td>Acute pancreatitis (cerulein induced acute pancreatitis, C57BL6N mouse strain)</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Acute liver failure</td>
<td>Toxic liver necrosis (C57BL6N mouse strain, unexpected toxicity after experimental drug administration)</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Acute liver failure</td>
<td>Tumor necrosis liver (Wistar rat treated with Diethylnitrosamine to achieve hepatocellular carcinoma)</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Acute inflammation</td>
<td>Acute bronchopneumonia (incidental finding in a normal C57BL6N mouse)</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Acute inflammation</td>
<td>Acute pancreatitis (cerulein induced acute pancreatitis,</td>
</tr>
<tr>
<td>Tissue repair</td>
<td>Fibrosis</td>
<td>Liver cirrhosis</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Table 1: Detailed content of the Webmicroscope module “Basic lesions”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.5. Digitalization

Digital images of appropriate histochemical and immunohistochemical sections for the use in the Webmicroscope were obtained with a five-slide scanner (ScanScope CS, Aperio) at 40X magnification (0.25 µm/pixel resolution). Images were saved in the fastest to process .svs file format with a .jpg compression to minimize the file size. Images were stored on small hard drives and sent to the partners in Finland to upload them in the Webmicroscope.
III. Material and Methods

1.2.6. **Annotation of slides in the Webmicroscope**

Annotation of the slides was performed after uploading to the Webmicroscope server. Four different signs (circle, rectangle, polygon and arrow) and five colors (yellow, red, green, blue and black) were available in the Webmicroscope slide viewer. A new annotation was opened and the lesions were described by using the signs and colors. Normal murine histology of organs and relevant background lesions were highlighted in the common mouse strains BALB/cByJ, C3HeB/FeJ, 129P2OlaHsd, C57BL6/N, FVBNJ and C57BL6/J. In the basic lesions part, important features of the changes seen in the particular organs were highlighted and short introductions towards cases, mouse strains and background information of the underlying diseases were prepared. Additional features were annotated as well.

1.2.7. **Pilot Course**

A part of the developed curriculum was carried out in the Pilot Course, which was run from 15.04.2013 to 30.06.2013. Additionally, two final examinations in July and in August were hold. Students were recruited in January 2013. After the Pilot Course, feedback was collected from the students. Each module of the Pilot Course was evaluated separately in terms of quality of the instruction, the course material and the organization of the course modules. Additionally, the students evaluated their own learning progress and improvement and the relevance of the course for their work. Moodle was used as an e-learning environment for the course platform and internal communications of teachers and students. The content of the Pilot Course focused on comparative pathology in mice and humans. This included PowerPoint presentations linked to a virtual microscope (Webmicroscope, hosted by the University of Turku, Finland, prepared by the Technische Universität München), video clips (prepared by the University of Turku and Helsinki), recorded lectures (prepared by every partner, voice over spoken by Prof. VD Janet Patterson-Kane, University of Glasgow, Scotland) and interactive exercises (prepared by every partner in the corresponding module). Information about the Pilot Course was distributed via a public website designed for the project (http://pathpath.eu) by the University of Helsinki, Finland.

2. **Example for phenotyping of a mouse strain: The TNC**
III. Material and Methods

2.1. Material

Material used during the course is listed in the annex and relevant material as follows.

2.1.1. Antibodies

Primary antibodies

<table>
<thead>
<tr>
<th>Product</th>
<th>Application/Dilution</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-claudin-18</td>
<td>IHC (1:1000)</td>
<td>Life Technologies GmbH, Darmstadt</td>
</tr>
<tr>
<td>Anti-cleaved caspase-3</td>
<td>IHC (1:1000)</td>
<td>New England Biolabs, Frankfurt</td>
</tr>
<tr>
<td>Anti-E-cadherin</td>
<td>IHC (1:100)</td>
<td>New England Biolabs, Frankfurt</td>
</tr>
<tr>
<td>Anti-HES1</td>
<td>IHC (1:50)</td>
<td>Biozol Diagnostica Vertrieb GmbH, Eching</td>
</tr>
<tr>
<td>Anti-Ki-67</td>
<td>IHC (1:200)</td>
<td>BD Transduction Laboratories, Heidelberg</td>
</tr>
<tr>
<td>Anti-notch2</td>
<td>IHC (1:10)</td>
<td>DSHB, Iowa (USA)</td>
</tr>
<tr>
<td>Anti-p16</td>
<td>IHC (1:200)</td>
<td>Santa Cruz Biotechnology, Inc., Heidelberg</td>
</tr>
<tr>
<td>Anti-tenascin-C</td>
<td>IHC (1:1000)</td>
<td>Abcam plc., Cambridge (UK)</td>
</tr>
<tr>
<td>Anti-TROMA III</td>
<td>IHC (1:800)</td>
<td>DSHB, Iowa (USA)</td>
</tr>
<tr>
<td>(CK19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-β-catenin</td>
<td>IHC (1:500)</td>
<td>BD Transduction Laboratories, Heidelberg</td>
</tr>
</tbody>
</table>

Secondary antibodies

<table>
<thead>
<tr>
<th>Product</th>
<th>Application/Dilution</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotin-labeled goat anti-mouse IgG</td>
<td>IHC (Ready to use)</td>
<td>KPL, Inc., Gaithersburg (USA)</td>
</tr>
<tr>
<td>Biotin-labeled goat anti-rabbit IgG</td>
<td>IHC (Ready to use)</td>
<td>KPL, Inc., Gaithersburg (USA)</td>
</tr>
<tr>
<td>Dako EnVision+ System-HRP, Labelled Polymer Anti-Mouse</td>
<td>IHC (Ready to use)</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Dako EnVision+ System-HRP, Labelled Polymer Anti-Rabbit</td>
<td>IHC (Ready to use)</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Biotinylated anti-rat IgG (H+L)</td>
<td>IHC (1:300)</td>
<td>Vector Laboratories Inc., Burlingame (USA)</td>
</tr>
</tbody>
</table>
2.1.2. Primer pairs

Primer sequences used for genotyping of mutant mice:

Primer Tenascin-C genotyping

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN-G-1-2 (FW)</td>
<td>5’-GAA GTC ACT AGA AAC TAG TGG ACA ACT C-3’</td>
</tr>
<tr>
<td>TN-150R (−3’TN) (RE)</td>
<td>5’-AAG CTA GAA AGA TGC CTG GC-3’</td>
</tr>
<tr>
<td>TN-lacZ (RE)</td>
<td>5’-CTC CAT GCT TGG AAC AAC GAG CGC AGC-3’</td>
</tr>
</tbody>
</table>

Primer Kras^{G12D} genotyping

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>K004 (FW)</td>
<td>5’-GTC GAC AAG CTC ATG CGG GTG-3’</td>
</tr>
<tr>
<td>K005 (FW)</td>
<td>5’-AGC TAG CCA CCA TGG CTT GAG TAA GTC TGC A-3’</td>
</tr>
<tr>
<td>K006 (RE)</td>
<td>5’-CCT TTA CAA GCG CAC GCA GAC TGT AGA-3’</td>
</tr>
</tbody>
</table>

Primer Cre/Ptf1α genotyping

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C001 (FW)</td>
<td>5’-ACC AGC CAG CTA TCA ACT CG-3’</td>
</tr>
<tr>
<td>C002 (RE)</td>
<td>5’-TTA CAT TGG TCC AGC CAC C-3’</td>
</tr>
<tr>
<td>C003 (FW)</td>
<td>5’-CTA GGC CAC AGA ATT GAA AGA TCT-3’</td>
</tr>
<tr>
<td>C004 (RE)</td>
<td>5’-GTA GGT GGA AAT TCT AGC ATC ATC C-3’</td>
</tr>
</tbody>
</table>

2.2. Methods

2.2.1. Animals

All mice were housed and bred at the animal facilities of the German Mouse Clinic, Helmholtz Zentrum Munich. All work with the mice was carried out in accordance with the German Animal Protection Law with permission from the responsible veterinary authority. TNC^{−/−} animals were bred with <i>LSL-Kras^{G12D}</i>/+ and <i>Ptf1α^{+/Cre(ex1)}</i> mutant mice on a C57BL6N background to obtain triple mutant mice (<i>KC-TNChet</i> and <i>KC-TNcko</i>). <i>LSL-Kras^{G12D}</i>/+ and <i>Ptf1α^{+/Cre(ex1)}</i> mice were bred to obtain double mutant mice (<i>KC</i>). Relevant mice and corresponding littermate controls were euthanized in a CO₂ chamber. Mutant pancreata were harvested after 15, 12, 9, 6, 3, 2 and 1 months.

2.2.2. DNA extraction from mouse tails

At weaning, three weeks old mice were anesthetized with isoflurane for identification with ear punching and tail clipping for DNA analysis. 0.2 - 0.5 cm of the tail were cut and bleeding was stopped with silver nitrate. For evaluation of
mutant mice, each mouse tail was incubated with 250 µl tail lysis buffer (50 mM TRIS-HCL pH 8.0, 100 mM EDTA, 100 mM NaCl, 1 % SDS, 0.5 mg/ml proteinase K) at 55 °C overnight on a gently rocking platform (700rpm). 200 µl of aqua ad inyectabilia and 200 µl phenol-chloroform-isoamyl alcohol were added to the tissue lysate, mixed by repeated inversion and centrifuged for 15 min at 13.000 rpm at RT. The upper aqueous layer was transferred to a new tube and 200 µl chloroform isoamyl alcohol (24:1) was added. The lysate was mixed and centrifuged as described above. The upper aqueous layer was transferred to a new tube. DNA precipitation was performed with 800 µl of cold ethanol 100 %. The precipitated DNA was centrifuged for 15 min at 13.000 rpm at 4 °C and the supernatant discarded. The same step was repeated with 400 µl of ethanol 70 %. After removing the supernatant, DNA was dried at 40 °C and resuspended in 30 µl aqua ad inyectabilia. DNA concentration and quality was measured by reading absorbance at 230, 260 and 280 nm and diluted to 100 ng/µl for further PCR analysis.

2.2.3. PCR for mouse genotyping

Genotyping Master Mix 1.16X
10X buffer (15 mM Mg²⁺) 1.74 mM
dATP 232.56 µM
dCTP 232.56 µM
dGTP 232.56 µM
dTTP 232.56 µM
Cresol Red sodium salt 46.51 µg/ml
Sucrose 6.98 %

For the TNC (wild-type presence) PCR a 25 µl reaction was set as follows:

Genotyping Mastermix 21.5 µl
Primer G1-2 1.0 µl
Primer 3’TN 1.0 µl
Taq polymerase 0.5 µl
DNA 1.0 µl

For the LacZ (TNCko presence) PCR a 25 µl reaction was set as follows:

Genotyping Mastermix 21.5 µl
Primer G1-2 1.0 µl
Primer lacZ 1.0 µl
Taq polymerase 0.5 µl
DNA 1.0 µl

The amplification parameters were set as following:
III. Material and Methods

95 °C 5 min initial denaturation

35 cycles with:

94 °C 1 min denaturation
60 °C 2 min annealing
72 °C 1 min elongation
72 °C 10 min final elongation

For the **wtKras** (*Kras* wild-type presence) PCR a 25 µl reaction was set as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyping Mastermix</td>
<td>21.5 µl</td>
</tr>
<tr>
<td>Primer K004 (FW)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Primer K006 (RE)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1.0 µl</td>
</tr>
</tbody>
</table>

For the **mutKras** (*Kras* \(^{G12D/Lox}\) presence) PCR a 25 µl reaction was set as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyping Mastermix</td>
<td>21.5 µl</td>
</tr>
<tr>
<td>Primer K005 (FW)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Primer K006 (RE)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1.0 µl</td>
</tr>
</tbody>
</table>

The amplification parameters were set as following:

95 °C 5 min initial denaturation

35 cycles with:

95 °C 1 min denaturation
60 °C 1 min annealing
72 °C 1:30 min elongation
72 °C 10 min final elongation

For the **Cre/Ptf1α** (Cre presence and internal PCR control) PCR a 27 µl reaction was set as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyping Mastermix</td>
<td>21.5 µl</td>
</tr>
<tr>
<td>Primer C001 (FW)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Primer C002 (RE)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Primer C003 (FW)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Primer C004 (RE)</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1.0 µl</td>
</tr>
</tbody>
</table>
The amplification parameters were set as following:

95 °C 5 min initial denaturation

35 cycles with:

95 °C 1 min denaturation
60 °C 1 min annealing
72 °C 1:30 min elongation
72 °C 10 min final elongation

Each PCR set included a positive and a negative control. The amplification product was visualized by gel electrophoresis on 1 % agarose gel in TBE containing 0.5 μg/ml ethidium bromide. Gel images were taken with a gel documentation system.

2.2.4. Murine tissue collection

Tissue samples were obtained from mice after euthanasia. After resection, the harvested pancreas was cut parallel to the longitudinal axis of the organ. One half was fixed in 4 % neutral buffered formalin and embedded in paraffin after 24 hrs with a paraffin embedding machine (Medite GmbH, Burgdorf) for subsequent histological and immunohistochemical analysis. The other half was submerged in RNAlater® and stored at -80 °C for future molecular analyses.

2.2.5. Hematoxylin and eosin stain (H&E)

For H&E staining, 3 μm tissue sections were cut on a microtome, mounted on microscope slides and dried overnight. After heating in the oven for 30 min at 65 °C, sections were dewaxed in xylene and rehydrated with ethanol and distilled water. Subsequently, the sections were stained for 5 min with hematoxylin for nuclear staining. The slides were washed with running tap water for 5 min to obtain differentiation. Eosinophilic structures were stained for 5 min with eosin. Finally, the slides were washed in running tap water and dehydrated in alcohol and xylene. To protect the tissue, coverslips were mounted with a drop of mounting medium.

2.2.6. Masson-Goldner trichrome stain

Paraffin fixed tissues were dewaxed and rehydrated as described above. Then the sections were stained for 10 min with Weigert’s iron hematoxylin for nuclear staining. Between each staining the sections were rinsed in distilled water and differentiated in 1 % acetic acid. The slides were stained with Ponceau S dye for
4 min, with phosphotungstic acid hydrate-Orange G for 4 min and with light green for 4 min. Dehydration and tissue protection was performed as described above. Muscle fibers were stained red, fibrin pink, collagens green, nuclei black and erythrocytes red.

2.2.7. Alcian Blue-Periodic acid-Schiff reaction (PAS) stain
Paraffin fixed tissues were dewaxed and rehydrated as described above. Subsequently, the sections were dipped in 3 % acidic acid for 2 min and stained for 5 min with Alcian Blue stain. The slides were rinsed with tap water for 1-2 min and transferred to an automatic stainer. Here, the sections were immersed in sodium-periodate for 5 min and 15 sec in 70 % ethanol before staining them with PAS with for 6 min. Before and after staining with Mayer’s hematoxylin, the slides were rinsed with running tap water. Dehydration and tissue protection was performed as described above. Acidic mucins were stained blue, neutral mucins magenta, mixed mucins blue to purple and nuclei blue.

2.2.8. Movat’s pentachrome stain (Verhoeff)
Paraffin fixed tissues were dewaxed and rehydrated as described above. Subsequently, the sections were pretreated in 3 % acetic acid for 30 sec and stained for 30 min with 1 % Alcian Blue stain. The slides were rinsed with tap water for 2 min and stained for 8 min with Verhoeff solution for nuclear staining. Following this, the slides were differentiated in 1% aqueous ferric chloride for 1 min and rinsed in tap water for 10 min. Subsequently, the slides were stained for 6 min in crocein scarlet-acid fuchsine for cytoplasmic staining, followed by differentiation in 1 % acetic acid. Then the slides were placed in 2 % phosphotonungstic acid, differentiated in 1 % acetic acid for 1 min and treated in 99 % ethanol for 3 and 15 min. Last step was a stain for 15 min in safron du gatinais for staining of fibers. Dehydration and tissue protection was performed as described above. Nuclei and elastic fibers are stained blue-black (in the murine pancreatic tissue nuclei are stained grey-red), collagen fibers and reticular fibers yellow, matrix and mucin blue, elastic fibers and muscle red.

2.2.9. Immunohistochemistry
For immunohistochemistry, 2-3 µm tissue sections were mounted on Superfrost® Plus microscope slides and dried overnight at 37 °C. After heating in the oven for 30 min at 65 °C, sections were dewaxed in xylene and rehydrated in a graded series
of ethanol (2x 100 %, 2x 96 %, 2x 70 %) and distilled water. Heat induced epitope retrieval (HIER) was performed in a pressure cooker with citrate buffer or in a water bath with EDTA buffer for each 20 min (see table 2), slides were then allowed to cool down in the buffer for 30 min. Staining was either performed manually or with the Dako Autostainer Universal Staining System (AS) in a humified chamber. Endogenous peroxidase activity was blocked in 3 % H₂O₂ for 10 min or with Universal Block for 20 min. Non-specific binding sites were blocked by either rabbit serum or goat serum diluted in TBS (manually) or washing buffer (AS) for 30 min according to the host species of the secondary antibody. Primary antibodies with adequate dilution in antibody diluent were applied over night at 4 °C (manually) or for 2 hr at room temperature (RT) (AS), dilution see table 2. Positive and negative controls were used to determine a successful result. Subsequently, the slides were washed three times in TBS/washing buffer and the matching biotinylated secondary antibody was added for 30 min at RT. Slides were washed again three times with TBS/washing buffer before streptavidin-horseradish peroxidase was added, when needed, for 30 min at RT. If a polymer detection system was used, the last two steps were replaced by adding Dako Envision for 30 min at RT. After another washing step colorimetric detection was performed using diaminobenzidine (DAB). The color reaction was observed under the microscope and stopped with distilled water. Counterstaining with hematoxylin for 10 min was performed followed by differentiation under running tap water. Dehydration and tissue protection was achieved as described above.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Type</th>
<th>Dilution</th>
<th>HIER</th>
<th>Serum blocking</th>
<th>Secondary antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-β-catenin</td>
<td>AS</td>
<td>1:100</td>
<td>citrate buffer</td>
<td>3 % goat serum</td>
<td>Envision anti-Mouse</td>
</tr>
<tr>
<td>Anti-claudin-18</td>
<td>AS</td>
<td>1:1000</td>
<td>citrate buffer</td>
<td>3 % goat serum</td>
<td>goat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-cleaved caspase-3</td>
<td>man.</td>
<td>1:800</td>
<td>citrate buffer</td>
<td>3 % goat serum</td>
<td>goat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-E-cadherin</td>
<td>AS</td>
<td>1:200</td>
<td>citrate buffer</td>
<td>3 % goat serum</td>
<td>goat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-HES1</td>
<td>man.</td>
<td>1:50</td>
<td>citrate buffer</td>
<td>10 % rabbit serum</td>
<td>rat-anti-rabbit</td>
</tr>
</tbody>
</table>
III. Material and Methods

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Dilution</th>
<th>Buffer</th>
<th>Serum</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Ki-67</td>
<td>1:200</td>
<td>citrate</td>
<td>3%</td>
<td>goat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-notch2</td>
<td>man. 1:50</td>
<td>citrate</td>
<td>10%</td>
<td>rat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-p16</td>
<td>man. 1:200</td>
<td>citrate</td>
<td>10%</td>
<td>goat-anti-rabbit</td>
</tr>
<tr>
<td>Anti-TROMA III</td>
<td>AS 1:800</td>
<td>EDTA</td>
<td>3%</td>
<td>rat-anti-rabbit</td>
</tr>
<tr>
<td>(CK19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Primary antibodies used for murine tissue sections

2.2.10. Markers for PDAC in humans and mice

p16

P16 can be seen as a connection between the control of cell cycle and cancer development (Serrano 1997). In physiological conditions, p16 controls the G1-S check-point of the cell cycle by inhibiting the kinase activity of the CDK4/6, thus preventing the phosphorylation of Rb. The expression of p16 is increased by different factors, including aging, exposure to DNA-damaging agents, and oncogenes and it is an important regulator of senescence (Rayess and others 2012). In PDAC and in its precursor lesions genetic and epigenetic events inactivate the p16 tumor suppressor, thereby overcoming the induction of cell senescence (Ottenhof and others 2011).

Ki67

Ki67 is a nuclear antigen. The protein is absent in quiescent cells in G0, but universally expressed in cells that proliferate. Therefore, Ki67 serves as a proliferation marker (Pathmanathan and Balleine 2013). The evaluation of proliferation in mice has to be performed carefully, taking into account that the rate of cell division in pancreatic mice parenchyma reaches its maximum between 15 and 30 days after birth. In this period of rapid growth, centroacinar, ductal and acinar cells exhibit similar mitotic indices (Dore and others 1981).

Cleaved caspase-3

Cleaved caspase-3 can be used as a marker of apoptosis. Sequential activation of caspases is a central step in both pathways of the apoptotic process. Caspase-3 is an apoptosis related cystein-aspartic acid protease and an effector caspase. After
cleavage through initiator caspases, caspase-3 activates downstream targets. Antibodies against cleaved caspase-3 detect cells that undergo apoptosis (Kuribayashi and others 2006).

CK19

Cytokeratin 19 belongs to the keratin family, and is an important marker for immunohistochemical evaluation of tumors. Under normal conditions, CK19 is expressed in normal ductal epithelium. PanIN lesions, MTCs and PDAC express CK19 (Jain and others 2010). PanIN lesions are defined as ductular lesion with a size less than 1 mm, arising of pancreatic ducts in a setting of unaffected acinar parenchyma (Hruban and others 2006).

Claudin-18 and other adhesion molecules

Claudin-18 (CLN-18), a tight-junction protein, is under physiological conditions only expressed in human body in the gastric epithelial cells and lung. The splice version 2, CLN-18.2 was described as a novel, specific marker for precursor lesions of PanIN and PDAC. Normal human acinar parenchyma, ductal cells and islet cells show no membranous immunoreactivity for CLN-18 (Tanaka and others 2011, Woll and others 2014). The Wnt signaling pathway components E-Cadherin and β-catenin are important for epithelial-to-mesenchymal transition (EMT). EMT acts as an important factor in fibrosis of tissue and in development of cancer (Tian and others 2011).

Notch signaling

In cancerous tissue, the embryonic signaling pathway Notch is reactivated and leads to progression of the tumor growth and promotes insensitivity towards chemotherapy. Wörmann and Algül showed that in PDAC Notch ligands and receptors are upregulated when compared to normal pancreatic tissue. The Notch components seem to promote development of PanINs and PDAC (Wörmann and Algül, 2013). Although the *Notch* signaling pathway is apparently necessary in the early development of the pancreas, it is suppressed in the adult organ (Jensen and others 2000). The transcription factor *Hes1* is a downstream target gene of the *Notch* pathway. It is nuclear expressed by an activation of *Notch* pathway. Hingorani and others described the PanIN lesions of their mutant mice to be strongly positive for nuclear und weakly positive for cytoplasmic *Hes1* expression, but not in the normal
pancreas except in centroacinar cells (Hingorani and others 2003, Miyamoto and others 2003).

2.2.11. **Analysis of histo- and immunohistochemical stainings and reactions**

Stainings and immunoreactions were analyzed either semi-quantitatively or quantitatively, as described below.

Masson-Goldner-Trichrome

Analysis of Masson stain was performed in collaboration with Raisa Serpi, PhD, Biocenter Oulu, Finland. In detail, slides were scanned at 20X magnification, computer aided analysis was performed by discrimination of stained pixels and percentage of architectural distorted areas (stained green) to whole tissue area (stained red and green) was calculated.

Alcian Blue-PAS

Analysis of Alcian Blue-PAS stain was done in collaboration with Jussi Kupari, MSc, Institute of Biomedicine, University of Helsinki, Finland. In detail, digital images were captured from five random areas filled with ductular lesions at 10X magnification from three different slides per animal to achieve a total number of 15 images/animal. ImageJ with the “color deconvolution”-plugin (http://www.mecourse.com/landing/software/cdeconv/cdeconv.html) was used to analyze the slides, as this plugin can discriminate between different histochemical stains. Vectors for Alcian Blue (AB) and hematoxylin (H) and PAS and H were used to analyze the AB and PAS staining on the sections (Ruifrok and Johnston 2001). The images were transformed to grayscale (8-bit) and opened with the “color deconvolution”-plugin. The analysis was first performed on AB and H and then repeated for PAS and H. The information received for hematoxylin was not used. The threshold was set on the level where minimum nonspecific signal was seen. The area covered by AB and PAS was then measured and the full tissue area of the image was calculated. The ratio of mucin covered (PAS, AB) area/total tissue area was calculated for all images.

Movat pentachrome stain

Movat pentachrome stain was analyzed in collaboration with Dr. rer. nat. Annette Feuchtinger, Helmholtz Zentrum München, Germany. Slides were scanned at 20X magnification and Definiens software (Tissue Studio, Definiens) was used to
discern colors of different stained areas. Normal ductular structures and vessels were excluded from the analysis. Architectural distorted areas with fibrosis were calculated and set in percentage to the completely analyzed area. Figure 5 shows an example of the color deconvolution.

Figure 5: Mutant pancreata of a KC animal, stained with Movat stain, 10x, B: Color deconvolution to calculate fibrotic areas, 2x

Anti-TROMA III (CK19), Anti-claudin-18, anti-E-cadherin, anti-β-catenin

These proteins showed a membranous staining pattern and had therefore been selected for computer based analysis. Slides were scanned at a 20X magnification with the Aperio CS System and evaluated with Aperio’s Area Quantification Color Deconvolution Software (Spectrum, Aperio). Percentage of stained area to whole area was measured. Anti-TROMA III (CK19) analysis was performed in collaboration with Raisa Serpi.

Anti-Ki-67, anti-cleaved caspase-3, anti-p16, anti-notch2, anti-HES1

The expression of these markers was evaluated focusing on regions of interest. In detail, five random areas of architectural distortion or precursor lesions were selected and at least 100 cells were counted. The percentage of positive cells was then assessed.

2.2.12. **Data evaluation and statistical analysis**

Results are expressed as arithmetic mean ± standard error of the mean. Statistical analysis was performed in cooperation with Dr. Alexander Hapfelmeier, Institut für Medizinische Statistik und Epidemiologie, TUM, using the software IBM SPSS Statistics 21 for Windows and Microsoft Excel software. Normality was tested and two-way analysis of variance student’s t-test was used to determine the significance and p-values < 0.05 were considered significant. Graphs were generated using Microsoft Excel software.
IV. RESULTS

Aim of this project was to develop a web-based online course for disease model pathology, which is reported in section 1. With the knowledge gained during development and hosting of the course, a subsequent characterization of a tumor model for pancreatic cancer was performed. The results of this characterization are presented in section two.

1. Web-based learning platform for comparative histology: The PATHPATH project

1.1. Pilot course

1.1.1. Recruitment of students
In February 2013, 36 postgraduate students with at least masters’ degree in the medical or natural science field were enrolled from the partner universities. Eight students came from Germany, 11 from Finland, 16 from UK and 1 from Denmark. Their countries of origin were Denmark, Finland, Germany, Greece, Poland, Sweden, England, Scotland, Brazil, China, India, Iran and Pakistan. Twenty-four students had a natural science background (M.Sc., biochemistry or biology) and eight students had a medical background (MD). 32 students started the course. As the students’ backgrounds varied from medical to biochemical, they had high differences in background knowledge. Medical students were more comfortable in histology, but less in biomedical aspects as creation of genetically engineered mice and vice versa for biochemical students. Students had to fill in a questionnaire and wrote a short letter of motivation about their reasons for participating in the course. The motivation of most students’ was to deepen their knowledge about murine histology and background lesions of different mouse strains, as they were working on mouse projects.

1.1.2. Content of the course
The course content offered a composition of basic knowledge in mouse and human biology, biochemistry and histology, important for everyone working with mouse models of human diseases and in particular disease model pathologists. The content of the modules is displayed below. An examination at the end of each module tested
the learned knowledge of the students.

1.1.2.1. Modules

The pilot course was divided into the following specific modules:

Module 1: Basics in experimental animals and how to create genetically engineered mice
Module 2: Basic histology of different mouse strains: Webmicroscopy-self studying
Module 3: Basic histology of different mouse strains: exercises
Module 4: Mouse necropsy and sample collection
Module 5: Processing and staining of histological samples
Module 6: Description of the gross pathology
Module 7: Basic pathological lesions
Module 8: Histological description of neoplasms

Final examination

The collected material presented in the Moodle platform, included Webmicroscope slides, recorded lectures with voice-over technology including video clips, recorded interactive live lectures, discussion forums, learning exercises and material of the final examination. Figure 6 shows the timeline of the pilot course, outlining the time frames given to the students to complete each module and to finish the examination. Module 1 was prepared by the group of the University of Turku and covers principals of the creation of GEM. The group of the Technische Universität München (TUM) developed module 2 and 3. In particular, they cover the basic histology and histopathology of the commonly used mouse strains C57BL/6N and C57BL/6J (module 2) and BALB/cByJ, C3HeB/FeJ, 129P2/OLA Hsd and FVB/NJ (module 3). These modules are described in detail under 1.1.2.2. Module 4 was covered by the group of the University of Glasgow and includes general guidelines for necropsy, sample collection and preparation of mice. Module 5 was developed by the groups of the Universities of Turku and Helsinki and covers the basic handling of histological samples. This includes tissue processing, embedding and histochemical and immunohistochemical stainings. The group of the University of Glasgow took care of module 6, which deals with gross pathology. Module 7 was prepared by TUM and deals with basic lesions in human and murine histopathology, described in detail under point 1.1.2.3. The group of the University of Glasgow
developed module 8; it covers principles in murine neoplasia. A final examination completed the course, which was held in July and August. Figure 6 gives a detail overview of the time table of the pilot course.

![Time table of the pilot course](image-url)

Figure 6: Time bar with recruitment of the students and a timetable of the pilot course. WM (Webmicroscope).

1.1.2.2. Module 2 and 3

In module 2, histological descriptions and slides of the commonly used C57BL/6N and C57BL/6J mouse strains were available for self-studying. In module 3, the mouse strains BALB/cByJ, C3HeB/FeJ, 129P2/OlaHsd and FVB/NJ were introduced. The contents of module 2 and 3 could be used to complete the examination. Students accessed the link to the Webmicroscope via Moodle.

1.1.2.2.1. Content module 2

Here, students were able to examine extensively annotated histological slides stained with H&E from a male and female mouse. Each strain contains slides listed below. Aim of this module was to get all students familiar with the basic histology of a murine model and learn basic histologic expressions. Furthermore, physiologic correlations were explained and presented in the particular context.

Brain

Brain slides contain a section of the cerebrum, approximately at the high of diencephalon to mesencephalon and a section of the cerebellum or brain stem.

Reproductive organs
IV. Results

Slides of female reproductive organs include the ovaries, fallopian tube, uterus, cervix, vagina with fornices, ureter and urinary bladder. Slides of male mice include testis, epididymis, vas deferens, prostate, seminal vesicle, urethra and urinary bladder.

Neck

The sections of the neck contain trachea, esophagus, thyroid gland and parathyroid.

Thoracic and abdominal organs

This slide shows heart, lung, thymus, liver, spleen and kidney.

Glands and lymph nodes

This slide contains sections of the salivary glands, the adrenal glands and a lymph node.

Gastrointestinal tract and skin

This section contains the forestomach with limiting ridge and the glandular stomach, sections of small and large intestine, pancreas and skin.

In general, relevant structures of these sections were annotated, as well as artifacts and pathological abnormalities. Figure 7 indicates an example of an annotation of normal histology.
IV. Results

Figure 7: Tissue slide with annotations A: Complete slide with annotations on the right side, B: Annotation of normal liver tissue.

1.1.2.2. Content module 3

In this module, in addition to the mouse strains of module 2, BALB/cByJ, C3HeB/FeJ, 129P2/OlaHsd and FVB/NJ mouse strains are presented. The focus of this module was to point out differences in background lesions between the different mouse strains as well as differences between female and male mice and the similarities and differences to human histology. Furthermore, physiologic correlations were presented and discussed. Whenever possible, age-related lesions were included. Figure 8 show annotated examples of different background lesions...
IV. Results

in the mouse strains; Table 3 gives an overview of background lesions.

Figure 8: A: Annotation of dystrophic cardiac calcification in a female BALB/cByJ mouse, B: Annotation of accessory cortical node and subcapsular cell hyperplasia in a female C57BL/N mouse.
Table 3: Background lesions and gender differences in strains presented in modules 2 and 3 (Serpi and others 2013).

1.1.2.2.3. Examination module 2 and 3

For evaluation of the student’s learning progress, short tests had been prepared. They included 19 questions, which had to be answered by annotating a picture taken by the students themselves (part I, questions 1-19) and four open questions (part II, questions 20-23). In part I, students had to recapitulate their learned knowledge about normal histological structures of organs, physiological context, background lesions in mice and gender differences in mouse strains. The didactic goal was to make them familiar with histological and pathohistological structures. Part II challenged the students to utilize their new knowledge use-oriented. For instance, they had to discuss why they should use a certain background strain for a clearly defined project and avoid other strains. Figure 9 shows an example of each type of
IV. Results

44

question. Students were allowed to use the course material to answer the questions. Detailed solution to the questions were provided afterwards. Additionally, students received a personal feedback about their positive results and explanation of their mistakes.

<table>
<thead>
<tr>
<th>Question No.2 – Female reproductive organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• These two female mice display different stages of the estrus cycle. Take a picture of the organ that better shows the typical morphological changes, briefly describe them and indicate the stage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Answer No.2 – Vagina in metestrus</th>
</tr>
</thead>
<tbody>
<tr>
<td>The vaginal epithelium during metestrus is about 12 cell layers thick, the stromal epithelium is covered by scattered leukocytes. Leucocytes are not present in estrus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question No.20 – Mouse model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A colleague of yours is planning to design a mouse model for non-alcoholic fatty liver disease (NAFLD), a disease that is characterized by fat deposition and necroinflammatory foci in the liver. He/She would like to use Balb/cByJ mice as a background strain. What would you tell him/her? Justify your answer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Answer No.20 – Mouse model</th>
</tr>
</thead>
<tbody>
<tr>
<td>In our experience about 75% of young, unchallenged male BALB/c mice displayed hepatic steatosis. You should advise your colleague against the usage of a BAALB/c strain as a background strain for designing a model for fatty liver disease. This apparently spontaneous finding might influence the study’s outcome and interpretation.</td>
</tr>
</tbody>
</table>

Figure 9: Examples for questions to module 2 and 3. The examination tests the knowledge of the students in terms of murine basic histology and histopathology, differences between mouse strains and differences to human histology. Answers were provided after the deadline.

1.1.2.3. Module 7

Module 7 covers basic pathological lesions in humans and mice. Before assessing the Webmicroscope slides, students had to listen to a module related lecture consisting of PowerPoint-presentations with voice-over. To facilitate this module, the content was split in two parts, as indicated below, ending with an examination.

1.1.2.3.1. Content module 7

The content of module 7 covered the following topics: Cell adaptations, cell injury and death, as well as inflammation and tissue repair. The module started with a
lecture about cell adaptations and cell injury with corresponding virtual human and murine tissue sections. The questions for the examination were released two days later. The second lecture about inflammation and tissue repair was opened one week later and virtual slides were provided. The second part of the questions was available two days after opening of the lecture.

Figure 10 depicts an example of comparative lesions in mouse and human.

Figure 10: Example of murine (A) and human (B) acute pancreatitis. The murine pancreatitis can be classified as interstitial, meanwhile the human pancreatitis is a necrotizing pancreatitis.

1.1.2.3.2. Examination module 7

For every subtopic of the module, three question were prepared. The first questions covered theoretical knowledge about general pathology, e.g. a definition of
metaplasia. The second and third question were covering human and murine pathohistology. As in the previous pathohistology modules, students had to annotate slides and compared the lesions seen in human and murine tissue.

1.1.3. Final examination
The final test was held twice 3 and 4 months after the beginning of the pilot course. Questions about histology topics were similar to questions prepared in modules 2, 3 and 7. The test included eight interactive questions, one question per module. A maximum of 24 points was reachable and most students performed very well. Out of 21 participating students, 20 passed the exam, one student needed a second try. Figure 11 shows an example of the final examination.
IV. Results

1.1.4. Collection of students’ feedback

The Pilot Course was advertised and started with 32 students of whom 21 finished the course successfully. After completion of the course, students were asked to fill in a feedback-sheet, which 18 students completed. Feedback was collected as points, ranging from 0 to 5.0 points, with 5.0 points being the highest score. This grading schema was used, as it was already successfully implemented at the University of Helsinki, Finland (http://www.helsinki.fi/law/studies/general/credits_grading.html) [date: 01.10.2014].
Generally, the students rated the course in average with 4.2 points, and with 4.5 points as the course being useful for their work. In addition, there was a significant improvement of students’ knowledge in murine pathology (32 %); students rated themselves before the course in average with 2.3 points and after the course with 3.9 points. Figure 12 shows a part of the students’ feedback questionnaire.

![Course results](image)

Concerning module 2 and 3, the average of points was > 4.0 points, except for the time given to finish module 3 (3.7 points). Importantly, the students gave high points for quality of the content (4.5 and 4.3 points) and usefulness of exercises (4.3 and 4.6 points), see Figure 13.
Figure 13: Students’ evaluation of module 2 and 3

As in modules 2 and 3, students’ rating of module 7 was > 4.0 points, with the exception of the allocated time (3.6 points). Here, as well the quality of the content (4.2 points) and the usefulness (4.4 points) was rated high, indicated in Figure 14.

Figure 14: Students’ evaluation of module 7

Asked for their interest in participating in a comparative, human-mouse organ-specific course out of 18 students 17 answered with positively (94 %).

An open text form was also provided in the feedback catalogue, asking the students for the most relevant issue concerning the course, many students answered that the
IV. Results

histology part was most useful for them. Examples for students’ comments were:

“Basic histology as well as pathological lesions and their description were most relevant to me. The other modules also added some new information to my preexisting knowledge.”

“I learned a lot about microscopical structure of different organs, and that there are differences between mouse strains. Also, the description of the neoplasms I found very useful.”

“For me it was most important to learn about mouse histology and the analysis of histological samples to help me with my future analysis of my models. This course has covered this in great detail and has very much helped me to improve my approach of histological analysis from start (organ collection) to finish (staining and analysis) as it covers every aspect during this process as well as the initial development of mouse models.”

As already seen in the general evaluation, the biggest issue students had with the course, was the time allocated with the different modules:

“The only issue for me was the time allotted for each module”

1.1.5. Differences between medical or natural science students

As previously reported, students had differences in background and therefore not the same basic knowledge about pathohistology. After the final examination, students were grouped into natural science background and medical background. Even though natural science students performed very well in the pathohistology part (mean of correct answers: 87 %), the medical students showed in significantly average higher points (mean of correct answers: 97 %, p-value < 0.05). Additionally, medical students had more often full marks. In general, medical students showed more consistent results, meanwhile students with a natural science background differed in the group itself. Figure 15 shows the differences in marks between medical and natural science students.
IV. Results

51

Figure 15: Differences in background between natural science students and medical students. A: Medical students achieved higher points in the pathohistology part of the final examination. The maximum of points was 12. B: Medical students reached more often full marks than natural science students did.

1.1.6. Dissemination and exploitation strategy and activities

Information about the course was available on a public website, which had been created for the project (http://pathpath.eu/). The course content was advertised during a poster and various talks in international congresses (Haneder and others 2013, Haneder and others 2014, J.C. Patterson-Kane and others 2013, Strauss and others 2013).

2. PDAC and TNC

2.1. Practical application of the course: PDAC project

Together with the feedback collected from the students, the PDAC project was used to evaluate the course content. After the successful run of the pilot course, the morphological characterization of a genetically engineered mouse model for pancreatic cancer with a depletion of the stromal protein TNC was conducted. The results are presented and the usefulness of the course for the mouse project is discussed below.

2.2. TNC expression in KC mice

In human PDAC tissue, immunohistochemistry reveals a selective stromal accumulation of TNC (Esposito and others 2006). To validate whether the same is true for murine precursors of PDAC and murine PDAC, pancreata of KC mice were stained for expression of TNC. A moderate to intense accumulation of stromal TNC can be observed around ductal lesions in areas of ADM, murine PanIN lesions (Figure 16) as well as in the invasive front of murine PDAC, thus confirming the selective expression of the Tnc gene in the mouse model.
IV. Results

Figure 16: A: A KC mouse mimicking human precursor lesion of PDAC. Areas of ADM (arrows) and murine PanIN-1 lesions (arrowhead) are present next to unaffected acinar areas (asterisk), 5x, HE. B: Immunohistochemistry with an antibody against TNC on pancreatic tissue of a KC mouse. Pronounced expression of TNC (brown DAB stain, arrows) around ductular lesions in areas of ADM, 10x.

2.3. Architectural distortion and classification of precursor lesions

To assess the influence of an absence of TNC protein on the development of murine pancreatic precursor lesions, triple mutant mice lacking TNC were generated. This was performed by crossbreeding TNC null mice with KC mice, both on a C57BL6N background, to achieve KC-TNChet and KC-TNcko mice. KC-TNChet and KC-TNcko mice were smaller than their TNC bearing littermates and more prone to biting by their siblings, as seen on their fur and adnexa and were found more often dead in their cages. HE stained serial sections of pancreata of KC, KC-TNChet and KC-TNcko mice were evaluated semi-quantitatively in different age groups, ranging from one to 15 months (1 month, 2 months, 3 months, 6 months, 9 months and 12-15 months), including appropriate controls. At least four animals per group were analyzed. KC mice alone develop the complete spectrum of precursor lesions as well as invasive PDAC (Hingorani and others 2003). Diseased pancreata of TNC knockouts and KC mice were compared and architectural distortion of pancreata as well as the number and type of precursor lesions and frequency, histological subtype and grading of PDACs was calculated. In addition, murine AFL were counted (Aichler and others 2012). Figure 17 shows precursor lesions of PDAC that develop in KC mice, but also TNC mutant mice. Control animals did not show any phenotype in their pancreatic sections.
Altogether, 106 mutant mice with the following genotypes

\[KC-TNCko \quad n=28 \]
\[KC-TNChet \quad n=46 \]
\[KC \quad n=32 \]

were used for histopathological evaluation.

Figure 17: A: Murine PanIN-1 lesion, with basally oriented nuclei and mucinous cytoplasm (arrows)
IV. Results

next to an unaffected duct (asterisk) in a KC-TNCKo mouse, 20x; B: murine PanIN-2 lesion, with nuclear stratification (arrow) in a KC-TNCKo mouse, 20x; C: murine PanIN-3 lesions, with marked nuclear atypia, loss of basal orientation of nuclei (arrow) and budding of cells in the lumen (asterisk) in a KC-TNCKo mouse, 20x; D: area of ADM with TCs (arrow) and MTCs (asterisk) in a KC-TNCKo mouse, 10x; E: murine AFL with flat cells (arrow), a ductal-like morphology and the typical onion shaped stroma surrounding the lesion (asterisk) in a KC-TNCKo mouse, 40x

2.3.1. One month-old mice

Mutant pancreata belonging to the group of one month-old mice showed beginning areas with acinar-ductal metaplasia and invasion of inflammatory cells, mainly lymphocytes and plasma cells. In small tissue areas, the acinar cells formed luminal spaces and changed their morphology to a more ductal like phenotype with cuboidal cells. Mucinous tubular complexes, ductal lesions with mucin containing columnar cells were distributed within areas of ADM. These lesions are morphologically not distinguishable from PanIN-1 lesions. PanIN-1 lesions were a rare finding, and were not connected to a specific phenotype. Single AFL lesions were already present in some mice at the age of one month. No differences of number of AFL between all phenotypes could be observed. All mice exhibited only few lesions, which accounted for less than 5% of the pancreatic tissue. Control animals did not show any morphological alteration in pancreatic tissue (Figure 18 at 2.2.3.).

2.3.2. Two months-old mice

Compared to the group of one month, pancreata show a more pronounced architectural distortion (ranging von 10% to 20%) with formation of ADM areas containing TCs and MTCs, a distinct inflammatory reaction and fibrosis. PanIN-1 lesions also increased in number. Animals belonging to group KC-TNChet and KC-TNCKo showed a slightly higher percentage of architectural distortion compared to KC mice, even if not significant (Figure 18 at 2.2.3.).

2.3.3. Three months old mice

Here, distinct differences between genotypes were readily apparent. This age group was therefore chosen for further analyses.

Mutant pancreata showed a pronounced architectural distortion with AFL and PanIN-1 as well as PanIN-2 formation. One animal belonging to the KC-TNCKo displayed a PanIN-3 lesion. As in two months-old animals, mice belonging to group
KC-TNChet and *KC-TNCKo* showed a slightly higher mean percentage of architectural distortion compared to *KC* mice (Figure 18).

Figure 18: A: Mutant pancreata of three months old mice, A, D: Representative pancreas of a *KC* mouse, B, E: *KC-TNChet*, C, F: *KC-TNCKo*. Murine pancreata show loss of acinar parenchyma and architectural distortion (asterisks), PanIN (arrowheads) and AFL (arrows) formation. Architectural distortion is more pronounced in *KC-TNChet* and *KC-TNCKo* mice; A-C: 2x, D-F: 5x; G:
IV. Results

Architectural distortion of pancreatic of young animals bearing precursor lesions of PDAC. Compared to KC mice, KC-TNChet and KC-TNCko mice display a higher architectural distortion. H: Comparison of mutant animals of age group three months.

2.3.4. Six months-old mice
Mice of all genotypes exhibit around 70% architectural distorted tissue with extended areas of ADM containing AFL, TCs and MTs and a lymphoplasmacellular inflammatory cell infiltrate. Many PanIN-1 and PanIN-2 were detectable in all genotypes, as well as one PanIN-3 lesion in an animal belonging to the KC-TNCko group. At this time point, there was a high degree of architectural distortion in all groups and no difference could be identified.

2.3.5. Nine months-old mice
Similar to 6 months old mice, all mutant mice displayed an architectural distortion of about 95% of the tissue with fibrosis, PanIN-1 and PanIN-2 and AFL. PanIN-3 were detected in mice of the KC-TNChet and KC-TNCko group and one mouse of the KC-TNChet group developed PDAC with invasion in the stomach and liver metastases. The tumor consists of densely packed, moderately differentiated glandular structures surrounded by a desmoplastic stromal reaction. The tumor showed a central necrotic area with infiltration of neutrophil granulocytes.

2.3.6. Twelve to fifteen months-old mice
As in nine months-old mice, all mutant mice displayed an architectural distortion of at least 95% with fibrosis, PanIN-1 and PanIN-2 and AFL. PanIN-3 were observed in all groups and some animals developed metastatic PDAC. PDAC was twice as frequent in KC-TNChet and KC-TNCko as in KC mice at the age of 12 months, as shown in Figure 19.

Figure 19: PDAC in mutant mice. At the age of 12 months, more KC-TNChet and KC-TNCko mice
IV. Results

harbor PDAC than KC mice.

2.4. Fibrosis in mutant pancreata

Additionally to the progression of precursor lesions, an increasing fibrosis accompanied tumor development. To validate and further characterize the observations, Masson Goldner trichrome and Movat stains were performed in 3 months-old mice and quantified as described in Methods. In the Masson Goldner stain, the pattern of fibrotic deposition was similar in all groups and mostly displayed a perilobular and perilesional (i.e. around ADM/precursor lesions) distribution. Mice of the KC-TNChet and KC-TNCko groups showed a higher percentage of fibrosis (17.4 % and 18.2 %, respectively) when compared with the KC group (12.7 %). The difference between the KC and KC-TNChet group at the age of three months was significant (p-values KC-TNCko to WT < 0.01, KC-TNChet to WT < 0.01, KC to WT < 0.01; KC-TNCko to KC 1.45 and KC-TNChet to KC < 0.05 respectively). Figure 20 shows representative pictures of mice at the age of three months.
IV. Results

[Image A: Histopathological section showing fibrotic tissue in various conditions.]

[Image B: Higher magnification of fibrotic tissue in different conditions.]

[Image C: Overall view of fibrotic tissue across different experimental groups.]

[Graph D: Bar chart showing fibrotic tissue percentage for WT, KC, KCTNChet, and KCTNCko conditions.]

* Statistical significance indicated for certain comparisons.
IV. Results

Figure 20: Masson Goldner stain of mutant mice at the age of three months, A: KC mouse with red stained residual acinar tissue and islets and green fibrotic area, 5x, B KC-TNChet mouse with perilobular and perilesional accumulation of fibrotic tissue, 5x C: KC-TNCKo mouse with widely remodeled tissue, 5x, D: Calculation of fibrotic areas in pancreata of wild type and mutant mice at the age of three months. KC mice show less fibrotic areas when compared to KC-TNChet and KC-TNCKo mice.

With the Movat pentachrome stain immature connective tissue stains blue due to the high content in mucopolysaccharides, whereas older fibrotic lesions, containing mature collagens, are stained yellow (Doello 2014). In general, in beginning ADM lesions, a blue colored layer of mucopolysaccharides containing extracellular matrix encircled remodeled acinar parenchyma, and more advanced lesions with TCs, MTCs and AFL are surrounded by mature collagen. This could be observed in animals of all genotypes. Interestingly, in KC-TNChet and KC-TNCKo mice, an earlier switch to the mature fibrotic tissue could be observed, as depicted in Figure 21. As already seen in the Masson Goldner stain, Movat’s stain underscored the tendency of animals lacking TNC towards a more fibrous phenotype.
IV. Results

[Image of histological sections and a bar graph showing statistical results]
Figure 21: A: Mutant pancreata of a \textit{KC} animal, stained with Movat stain, 10x, B: Mutant pancreata of a \textit{KC-TNChet} animal, stained with Movat stain, 10x, C: Mutant pancreata of a \textit{KC-TNcko} animal, stained with Movat stain, 10x, white arrow pointing to blue colored layer of mucopolysaccharides, black arrow shows mature collagens with a yellow color; D: Result of Movat stained mutant pancreata compared to control animals at the age of three months, results as mean values and SEM. All mutant mice show a clearly higher percentage of fibrotic tissue when compared to \textit{WT} animals. As in Masson Goldner stain, there is a tendency towards a higher percentage of fibrosis in \textit{KC-TNChet} and \textit{KC-TNcko} animals.

\subsection{2.5. Mucin}

As the previous stains revealed an influence of TNC on the architectural distortion of mutant pancreata, further stains were used to assess the lack of TNC on precancerous lesion development. In order to check the influence of the prevalence or absence of TNC on the development and character of mucinous lesion, mucin staining was used. Cytoplasmic mucin content of PanINs and MTCs can be highlighted by Alcian blue stain and PAS reaction (Muller-Decker and others 2006). The apical mucinous cytoplasm within the lesions stains violet to blue, depending on the pH of the containing mucin. Computer aided analysis was used to calculate mucin content, and results are stated as percentage of mucin to completely pancreatic tissue area. In comparison to \textit{KC} mice, \textit{KC-TNChet} and \textit{KC-TNcko} mice show a slightly higher percentage of mucinous containing structures (Figure 22). The staining pattern was comparable in all groups.
Figure 22: Computer aided calculation of mucin containing lesions, mice at the age of three months. A: KC mouse, 5x; B: KC-TNChet mouse, 5x; C: KC-TNCko mouse, 5x; D: KC-TNChet and KC-TNCko mice show a higher content of mucinous lesions compared to KC mice.

2.6. Ductular structures and PanIN

The impact of TNC on the development of tubular structures, independently from the mucin content, was further assessed by CK19 staining. Normal ducts, PanIN, TCs, MTCs and AFL were all positive for CK19, as expected; acinar cells and islets were negative (Aichler and others 2012). In comparison to KC mice, KC-TNChet and KC-TNCko mice showed a significantly higher percentage of ductular structures, as depicted in Figure 23 (p-values KC-TNCko to WT < 0.01, KC-TNChet to WT < 0.01, KC to WT < 0.01; KC-TNCko to KC 0.03 and KC-TNChet to KC 0.05 respectively).
Figure 23: Ductular structures, assessed by CK19 stain, mice at the age of three months. A: KC mouse 5x; B: KC-TNChet, 5x; C: KC-TNCko, 5x, all diseased (arrows) and normal (arrowheads) ductular structures are detected by CK19 staining; C: Compared to KC mice, KC-TNChet and KC-TNCko mice show a higher percentage of ductular structures.

MTC and PanIN were further assessed by Claudin18 (CLN-18) immunoreactivity. All murine PanIN-1 to PanIN-3 and MTCs showed strong membranous staining for CLN-18, as expected. Here, the KC-TNCko group showed a higher rate of PanIN when compared to the KC-TNChet and KC groups at the age of three months, as shown in Figure 24 (p-values KC-TNCko to KC 0.13 and KC-TNChet to KC < 0.01 respectively).
IV. Results

A - C: Images showing different sections of tissue with indicated positive structures.

D: Graph showing CLN-18 positive structures [%] for different conditions: KC, KC-TNChet, and KC-TNCko.
IV. Results

Figure 24: Assessment of ductular structures with CLN-18 staining in the age group of three months. A: KC mouse with membranous CLN-18 positivity (arrows), 5x; B: KC-TNChet, 5x; C: KC-TNcko, 5x; D: KC-TNChet animals show slightly more CLN-18 expression, meanwhile KC-TNcko animals exhibit significantly more diseased structures than KC animals at the age of three months.

2.7. Proliferation and apoptosis

In order to assess if the described differences in the frequency of ductular structures and precursor lesions was related to differences in cell proliferation or apoptosis/senescence, staining for Ki67, cleaved caspase-3 and p16 were performed and semi-quantitatively assessed.

In general, areas of ADM showed an increased number of Ki67-positive cells when compared to normal acinar parenchyma. AFL lesions could be easily detected by their high expression of Ki67-antigen, underscoring their highly proliferative nature. In contrast, PanIN-1 lesions exhibited only few Ki67 positive cells (see Figure 25). Interestingly, in areas of ADM, mice belonging to the KC-TNcko and KC-TNChet groups showed significantly higher proliferative indices than those of the KC group (p-values KC-TNcko to KC < 0.01 and KC-TNChet to KC 0.01 respectively). In AFL, PanIN-1 and PanIN-2 lesions, no differences between the genotypes could be detected.

Only a small number of apoptotic cells were detected by cleaved-caspase 3 stain. In areas of ADM, few apoptotic cells were present with high differences between mice of the single groups so that no differences in genotypes were found. AFL and PanIN-1 lesion contained hardly any apoptotic cells; therefore, no differences in genotypes could be observed (Figure 26).
IV. Results

Figure 25: Calculation of proliferation of lesions in areas of ADM, mice at the age of three months, A: KC mouse with proliferating cells in areas of ADM (arrow), a low proliferation index in PanIN-1 lesions (arrowhead) and high proliferation in AFL (asterisks), 5x, inset with nuclear details in areas of ADM, 20x; B: KC-TNChet mouse with highly proliferating cells in an area of ADM (arrows) and low proliferation in PanIN-1s (arrowhead), 5x, inset with nuclear details in areas of ADM, 20x; C: KC-TNCKo mouse with highly proliferating cells in ADMs (arrows) and AFL (asterisk), low proliferation in PanIN-1s (arrowhead), 5x, inset with nuclear details in areas of ADM, 20x; D: Compared to KC mice, KC-TNChet and KC-TNCKo mice at the age of three months exhibit a
significantly higher proliferation activity.
Figure 26: Representative pictures of mutant pancreata with apoptotic cells, pancreata of mice at the age of three months A: KC, B: KC-TNChet, C: KC-TNCko mice, 20x, arrows pointing to apoptotic cells in areas of ADM adjacent to not affected acinar parenchyma.

All genotypes showed an accumulation of p16 protein in nuclei of epithelia in ADM areas and PanIN lesions, indicating an upregulation of Cdkn2a, most likely related to increased proliferation. AFL lesions showed a reduced intensity of the nuclear staining, and a slight cytoplasmic staining, as previously observed. Taken together, when compared to each other, no obvious differences in the genotypes could be detected at the age of three months (Figure 27).
Figure 27: Representative pictures of mutant pancreata with p16 accumulating cells, pancreata of mice at the age of three months, A: KC, B: KC-TNChet, C: KC-TNcko mice, 5x, insets with 20x, D: AFL in a KC-TNcko mouse with light nuclear positivity.

2.8. **Wnt signaling pathway**

Since TNC and proteins of the Wnt signaling pathway are known to interact during developmental processes and cancer (Hendaoui and others 2014, Saupe and others 2013), the expression of E-cadherin and β-catenin was investigated. In all genotypes, all normal and diseased structures display a membranous staining of E-cadherin and β-catenin with the exception of PDAC. Here a loss of E-cadherin and β-catenin was observed in some of the cancer cells. However, the absence of TNC did not influence the expression of these proteins (Figure 28).
IV. Results
IV. Results

Figure 28: Absence of TNC does not influence the expression of β-catenin and E-Cadherin in mice at the age of three months. A: membranous expression of β-catenin and D: E-Cadherin in a KC mouse, B, E: in a KC-TNChet mouse, C, F: in a KC-TNoko mouse, all 5x, G: partial loss and lower staining intensity of E-Cadherin expression in mouse bearing PDAC, 10x.

2.9. NOTCH/HES1 signaling pathway

2.9.1. NOTCH2
Finally, due to the known role of the Notch pathway in ADM and given the significant differences observed in the extension of ductular structures between the groups, the expression of NOTCH2 and its downstream protein HES1 were investigated. For NOTCH2 staining, normal ductal epithelium and centroacinar cells served as an internal control. Unaffected acini and islets were negative for NOTCH2 staining. In all genotypes, in areas of ADM more than 50% of nuclei were positive for NOTCH2 protein. Similar results could be observed for PanIN-1 lesions. Interestingly, AFL lesions showed a weaker nuclear staining with less positive cells. No differences in NOTCH2 expression between the genotypes could be observed (Figure 29).
IV. Results

A

B

C
IV. Results
IV. Results

Figure 29: Nuclear and cytoplasmic NOTCH2 expression of PanIN, ADM, AFL lesions and centroacinar cells in mice at the age of three months, A: KC mouse, 5x, B: KC-TNChet, 5, C: KC-TNChet, 5x, D: KC-TNChet mouse with unaffected acinar parenchyma, arrows pointing to small, nuclear NOTCH2 positive ducts, arrowheads indicating nuclear positivity in centroacinar cells, 20x, E: KC-TNChet mouse with nuclear NOTCH2 positive duct with arising PanIN-1 (asterisk), 20x, F: KC-TNChet mouse with NOTCH2 positive nuclei in areas of ADM (white arrow) and weak nuclear positivity in AFL (black arrow), 20x.

Centroacinar cells served as an internal control for HES1 staining. Ductular cells, acini and islets were negative for HES1. In all genotypes at the age of three months, in areas of ADM more than 50% of nuclei were positive for HES1 protein. Similar results could be observed for PanIN-1 lesions. Interestingly, AFL lesions showed a weaker nuclear staining with less positive cells. In concordance to NOTCH2 expression, no differences between genotypes can be observed in the expression of HES1 (Figure 30).
IV. Results

[Image D, E, F showing histological sections with annotations and arrows]
Figure 30: Nuclear HES1 expression of PanIN, ADM, AFL lesions and centroacinar cells in mice at the age of three months, A: KC mouse, 5x, B: KC-TNChet, 5x, C: KC-TNcko, 5x, D: KC-TNcko mouse with unaffected acinar parenchyma, arrows pointing to small, HES1 negative ducts, arrowheads indicating nuclear positivity in centroacinar cells, which served as internal positive control 20x, E: KC-TNcko mouse with nuclear HES1 positive PanIN-1 cells (asterisk), 20x, F: KC-TNcko mouse with HES1 positive nuclei in areas of ADM (white arrow) and weak nuclear positivity in AFL (black arrow), 20x.
V. Discussion

1. The PATHPATH project

This project was conducted since several studies revealed a great need of trained researchers in the area of comparative pathology (Barthold and others 2007, Cardiff and others 2008, Sundberg and others 2012). The great interest in the training course underscores the need for a training that educates specialists in histopathology of animal models as well as in human pathology. In addition to the development of the training course, the project aimed also to strengthen the collaboration at the European level in the field of disease model pathology, and thereby enhanced the quality of education and possibilities for student exchange.

A web-course offers the possibility to reach many students all over the world, although in this project the pilot course was restricted to a European level due to the rather tight time frame. Our training program has clearly shown that e-learning is an optimal setting for the distribution of knowledge over wide distances and to a large number of students at the same time. This is consistent with previously reported experiences (Ruf and others 2008). Interestingly, Ruf and others identified the lack of a prompt availability of other students and teachers as a disadvantage of the e-learning (Ruf and others 2008). However, this was not identified as a problem in the present project. By using live lectures, chat functions, discussion forums and availability of teachers per mail, a good level of interaction was achieved. Moreover, as students had the possibility to upload descriptions or questions about their own mouse models and get feed-back both from the teachers and from other students, a team-spirit was created. Many students used the possibility to ask questions per mail or discussed their problems in the chat function. Actually, this indirect interaction offers the students the chance to think over their questions and better reflect their problems. However, a rapid communication between teachers and students is necessary in order to promptly solve problems and constructive feed-back of the students' performance should be also delivered fast (McKimm and others 2003). A commitment of the teachers to be reachable and available at least at defined time points and, on the other side, the self-discipline of the students are fundamental elements for the success of a web-based learning environment. The traditional learning is usually pre-structured, but the web-based learning improves
the capability of self-organizing in students (Masic 2008). Web-based learning can be therefore offered as the solely learning platform to more experienced, post-graduate students, meanwhile it could integrate traditional learning methods for pre-graduate students (Masic 2008). Since only post-graduate students were included in our course, we can confirm the suitability of web-based learning for this type of audience.

An important issue in a web-based program is the need for broadband access and the associated costs (Parisky and Boulay 2013). Slow internet connection impairs e-learning, as long downloading-times are frustrating (Masic 2008). Many students claimed that they had only limited time to complete the course while working and time-consuming internet problems would have been a major problem. Costs are another negative factor, as all students need a computer that is able to process the images uploaded in the Webmicroscope. As technology is continuously and rapidly advancing in many countries, it seems likely that these problems can be overcome.

1.1. Evaluation of the pilot course
As shown by the students’ feedback, the pilot course ran very successfully. The rating system of the different parts of the feedback forms was very helpful to assess specific aspects; the anonymous free text evaluation was also very helpful, since students freely wrote their subjective positive and negative opinions about the course.

Nevertheless, several issues were identified during the pilot course. An important aspect, which was underscored both by students and by teachers was the differences in education and training of the students. In particular, students with medical background need less guidance and support in histopathology than student with biochemical background. There is therefore the necessity to clearly define the scopes of the course, but also the pre-requisites to attend it. In order to achieve a larger audience, a possibility would be to split the course in two levels (gene-modified topics plus modeling and normal histology), depending on the education level and background of the students. At the beginning of the course, students had to fill in a questionnaire and write a motivation letter. The data gained from this approach offer a good possibility to structure the course more appropriately according to the background and training level of applicants.

Another general complaint was the time dedicated to each module. This aspect
certainly depends on the work pace of the single student, as well as on the individual knowledge. Nevertheless, more time should be considered in a regular course, as many students choose e-learning platforms so that they can attend them along with normal work.

1.2. Discussion of tools used in the course

Several didactical tools have been used in the pilot course. A major advantage of this course was the use of the Webmicroscope, as students could examine slides using tools normally present in a standard microscope, which is by far more informative than a static picture in a book. Szymas and others could observe similar findings in five years of dental education with a Webmicroscope (Szymas and Lundin 2011). As discussed before, live lectures, chat functions, discussion forms and availability of teachers per mail were the tools to create an environment similar to traditional teaching. In this respect, two observations could be made: students did not like to discuss when they had to (that is, within the frame of pre-programmed discussion forums) and rather engaged in spontaneous chats to solve specific problems. For instance, they discussed the solutions of the gross morphology module, as some students were less experienced in this topic than others. Therefore, the possibility to discuss via a chat function is highly recommended in a web-based course. Furthermore, it is important that a teacher is leading the conversation in the background and is available when needed. Another interesting point was that students preferred voice-overed lectures, which were always available, to live-lectures, where they had the possibility to ask questions and get live answers through direct interaction with the teacher. The most likely explanation is that students preferred to organize the learning process according to their own schedule and have the possibility to reflect on questions, which were then asked via email. Therefore, in our experience, a live lecture is not a mandatory tool in a web-based training course.

1.3. Outlook

The implementation of this course in the routine education of scientific researchers working with mice should be achieved. A possible setting would be the participation of other universities in order to create a European or even global network for training in disease modeling.

Such a training program can improve the quality of translational medicine and
achieve a more efficient and ethical use of experimental animals.

2. **PDAC and TNC**

In the second part of the project I aimed at showing an example of practical application of the knowledge gained by attending the course in disease modeling. Here I focused on the role of TNC, a stromal glycoprotein, in the development of precursor lesions and subsequent desmoplasia in pancreatic carcinogenesis. TNC is upregulated in PanIN progression to invasive PDAC, indicating a central role of this protein in cancer development (Paron and others 2011). The deposition of extracellular TNC in KC mice was found to be similar to the previous described human situation (Esposito and others 2006).

2.1. **Influence of TNC on PDAC and its precursor lesions.**

To assess the influence of an ablation of TNC on the development of precancerous lesions, TNC mutant mice on a C57BL6/N background were used. The focus of this study was set on young mice at the age of three months, as these mice show low-grade precursor lesions, which then progress to higher advanced lesions. As previously stated, the role of the stromal reaction in PDAC is still being controversial discussed (Gore and Korc 2014) and no data are available about the relevance of the stromal reaction at the preinvasive stage.

The higher percentage of architectural distortion and more pronounced development of PanIN lesions found in KC-TNChet and KC-TNCko mice compared to KC mice seem to suggest a protective role of TNC for KRAS^{G12D}-targeted epithelial cells. The known interactions between TNC and epithelial cells via indirect pathways activation of transmembrane receptor proteins (e.g. integrins) or via the cytoskeleton (Brellier and Chiquet-Ehrismann 2012) could represent the basis for this function of TNC. In addition, this apparent tumor-preventing role of stromal TNC in early precursor lesions indicates that the stroma reaction itself cannot be seen only as tumor promoting, as suggested by others. For example, it has been recently shown that by knocking out the sonic hedgehog pathway in a mouse model of PDAC and thereby targeting the desmoplastic stroma, a higher rate of ADM areas and PanIN lesions is observed in Shh^{fl/fl};Pdx1-Cre;Kras<sup>LSL-G12D/+;p53<sup>fl/+;Rosa26^{LSL-YFP} (ShhPKCY) mice when compared to control animals (Rhim and others 2014). These results raise the question if one underestimates the several functions of the desmoplastic stromal components - seemingly not only in
tumor support but tumor prevention (Rhim and others 2014). Özdemir and others observed a similar phenomenon, as conditionally abrogated α-SMA induced comparable effects, favoring the hypothesis that the desmoplastic stroma protects against rather than accelerates PDAC development (Ozdemir and others 2014).

Taken together, these results support the concept that the tumor stroma with its extracellular components might not only be the driver of tumorigenesis in PDAC, but it also seems to exert a different, tumor suppressive role under different conditions. One should consider a role of TNC on epithelial regeneration, in particular the regeneration of acinar cells, as these cells differentiate to a ductal phenotype upon injury (Houbracken and others 2011). The molecular mechanisms underlying the effects of TNC on regeneration of acinar cells do not seem to be related to the Notch- or Wnt-pathways according to our expression data, but this aspect needs more detailed molecular investigation. Interestingly, the function of TNC seems to differ in already developed cancer.

Paron and others could show that pancreatic cancer lines grown on a TNC substrate tend to proliferate and migrate more. This might play a role in the invasion and metastasis in patients (Paron and others 2011). PDAC was detected in only a subgroup of twelve months-old mice in this study. In this age group, 66.7 % of KC-TNChet and 66.0 % KC-TNCKo mice developed invasive, metastatic PDAC, meanwhile in the KC (TNC wt) group only 33.3 % mice had invasive, metastatic PDAC. Interestingly, in many cancer types as prostate and breast, TNC expression is linked with a poor prognosis (Emoto and others 2001, Ioachim and others 2002). In breast cancer, TNC seems to promote metastasis development (Oskarsson and others 2011). On the other hand, it was shown that in gliomas TNC has a role in tumor initiation, but not in tumor progression (Midwood and others 2011), which is more in line with the results of this study. In PDAC, no correlation between expression levels of TNC and prognosis could be found (Juuti and others 2004). Therefore, TNC might protect epithelia during stress but exert different functions once the tumor is evolved. Another explanation for these contradicting findings might be that the functions of TNC are not only context-dependent but also organ-dependent. Finally, a down-regulation of TNC expression within advanced carcinomas may explain why TNC negative tumors have a worse prognosis in breast cancer and colorectal cancer (Chiquet-Ehrismann and others 2014).

TNC might influence proliferation, even though there are contradictory findings (Midwood and Orend 2009). Therefore, when comparing the proliferation rates of
cells in ADM areas, PanIN and AFL between KC and KC-TNChet and KC-TNCko mice it could be shown that an absence or reduction of TNC protein does not only influence the architectural distortion but also enhances proliferation activity in areas of ADM. The fact that PanIN-1 lesions did not show any difference in proliferation compared to KC mice might be due to the small amount of cells that proliferate in PanIN-1 lesions (Aichler and others 2012). A possible way by which TNC could induce proliferation in epithelial cells is through its known function as an anti-adhesive protein to promote wound healing in Kras challenged epithelial cells, hereby exerting similar function as described in wound healing (Sible and others 1995). Adhesion modulation is a key feature to influence cell proliferation, migration and differentiation. More specifically, TNC is able to influence cell spreading and proliferation by interactions with fibronectin (Chiquet-Ehrismann and Tucker 2011). Moreover, large splice variants of TNC regulate the proliferation of for instance neural stem cells through the modulation of the expression level of epidermal growth factor (EGF) receptor (Brellier and Chiquet-Ehrismann 2012).

TNC might influence apoptosis, even though the mechanisms are unclear (Midwood and Orend 2009). Further, apoptosis is an important feature in PDAC (Ruckert and others 2010). Therefore, the influence of absent TNC on apoptosis in early precursor lesions of PDAC was investigated. The small amount of apoptotic cells found here is in accordance with previously reported data in a mouse model of pancreatic β-cell carcinogenesis with a TNC ablation compared to the TNC wild-type model. Interestingly, the TNC overexpressing model exhibited less apoptotic cells (Saupe and others 2013). This underlines the several and ambiguous functions of this protein and that a deregulated expression of TNC might influence tumor cell survival.

As for apoptosis, no significant difference could be seen concerning the expression of p16, which is consistent with the complexity of mechanisms regulating the expression of this protein. All together these data show that the complex functions of TNC are still not completely understood and future work is needed to highlight the several function of this highly preserved protein (Chiquet-Ehrismann and others 1986, Matei and others 2011).

In TNC knockout mice, TNC is ablated in the complete organism and it is likely that other proteins are differentially regulated to compensate for the loss of TNC as for instance other members of the TN family (Chiquet-Ehrismann and Tucker
2011). An organ-specific ablation of TNC in the pancreas would give further insights in the role of TNC in pancreatic regeneration and, by crossing with PDAC-mouse models, in pancreatic carcinogenesis. Furthermore, mouse models with a complete abrogation of the TN family or an overexpression of different splice variants of TNC could further help to clarify these points.

3. **The PDAC project as a practical application of the course**

After the successful completion of the web-based training course, students should have the basic knowledge to perform their own experiments with laboratory animals. To test this, this work serves as a test run for a student finishing the course and performing own mouse experiments afterwards. Together with the feedback collected from the students, this test system may serve as a quality control of the course. Several aspects learned during the preparation of the course could be used in the mouse experiments. For example, the C57BL6N background was chosen to generate the triple mutant animals, as this strains has no reported background lesions in the unchallenged pancreas and it is known for its secure expression of many mutations and exhibits a low spontaneous tumor incidence (Serpi and others 2013). Furthermore, knowledge of necropsy and sampling techniques and of murine pancreatic histology was extremely useful for detection of early changes in pancreatic parenchyma. On the other side, the course was focused on basic aspects and detailed histopathological examination and immunohistochemical characterization of the specific model was achieved by working with the supervisor. Sundberg and others underscored that the training of a researcher investigating histopathological changes should be beyond the basics offered by this kind of courses and that it is very important to find a mentor (Sundberg and others 2012).
VI. **Summary**

Development of a training program for disease modeling and its practical application: morphological characterization of a genetically engineered mouse model for pancreatic cancer

Animal models of human disease are increasingly used from basic science to preclinical drug development. This implies a clear need for experts in histopathology of mouse models for human diseases and of specific programs to train these experts. The aim of this project was to develop an international, web-based disease model training program for students with a higher university degree. Already existing national training programs from a consortium consisting of experts from Finland, Germany and Scotland were merged and included specialist in pedagogy, human and veterinary pathology, biochemistry and mouse models of human disease.

The course comprised of a wide range of spontaneous background lesions in mouse strains (e.g. 129P2OlaHsd or C57BL6J), their gender and age differences, and physiological correlations. Similarities as well as differences with human pathology were highlighted. Moreover, the course included examples of basic lesions like cell adaptation, cell injury and cell death to the presentation of mouse models of human disease like the ductal adenocarcinoma of the pancreas (PDAC). By hosting a Pilot Course in spring 2013, the program was tested and feedback from student had been collected. Comparison of natural science students and medical students revealed a need for a tailored program depending on the basic education of the students.

Based on this training program, a phenotyping of a mouse model of PDAC was performed using immunohistochemistry and morphometric analysis. This analysis was also used as a test run to evaluate the web-based training program. Tumor-stroma interactions in PDAC, which is a very lethal disease, plays a key role and contributes to the highly aggressive nature of this cancer type. Tenascin-C (TNC), a protein of the extracellular matrix (EMC), is already overexpressed surrounding precursor lesions of PDAC. To investigate the impact of TNC on precursor lesions of PDAC and PDAC development *in vivo*, $\text{LSL-KRAS}^{G12D/+;Ptfx1a^+/Cre(ex1);TNC}^{-/-}$ (KC-TNCko) and $\text{LSL-KRAS}^{G12D/+;Ptfx1a^+/Cre(ex1); TNC}^{+/+}$ (KC-TNChet) mice where compared to $\text{LSL-KRAS}^{G12D/+;Ptfx1a^+/Cre(ex1)}$ (KC) mice at the age groups 1, 2, 3, 6, 9, 12 and 15 months. An earlier architectural distortion of pancreatic tissue
with fibrosis and inflammation was found in the KC-TN\textit{C}ko and KC-TN\textit{C}het mice. To investigate the impact of TNC on precursor lesions, the focus of the investigation was set on young animals at the age of three months. The phenotype of precursor lesions and carcinomas were not influenced by the absence of TNC, but a higher frequency of PanIN lesions and carcinomas could be observed in KC-TN\textit{C}ko and KC-TN\textit{C}het mice. Moreover, proliferation was elevated in KC-TN\textit{C}het and KC-TN\textit{C}ko animals in areas of acinar-ductal metaplasia; meanwhile no differences in apoptosis could be detected between the genotypes. These results implicate that of TNC might influence tumors cells only in later stages; meanwhile in early carcinogenesis it might be tempting to suspect an influence of TNC on epithelial regeneration.
VII. ZUSAMMENFASSUNG

Entwicklung eines Trainingsprogrammes für Tiermodellpathologie und dessen praktische Anwendung: morphologische Charakterisierung eines genetisch veränderten Mausmodelles des Pankreaskarzinoms

Das Konsortium besteht aus Experten aus Finnland, Deutschland und Schottland mit Expertise in Pädagogik, humaner und Tierpathologie, Biochemie und Tiermodellen für humane Erkrankungen.

Basierend auf diesem Kurs erfolgte eine tiefgehende immunhistochemische und morphometrische Phänotypisierung eines Mausmodells für das duktale Pankreaskarzinom. Diese Charakterisierung wurde zudem auch als ein Testlauf zur Kontrolle des web-basierten Trainingsprogrammes genutzt. Im Pankreaskarzinom,
welches immer noch eine tödlich verlaufende Krankheit darstellt, spielen Interaktionen zwischen Tumorzellen und stromalen Zellen eine Schlüsselrolle und tragen somit zu der höchst aggressiven Natur dieses Tumors bei. Tenascin-C (TNC), ein Glykoprotein der extrazellulären Matrix, ist bereits im Stroma, welches Vorläuferläsionen das Pankreaskarzinoms umgibt, exprimiert.

Um die Rolle von TNC auf die Vorläufer und die Entstehung des Pankreaskarzinoms in vivo zu untersuchen, wurden LSL-KRASG12D/+;Ptf1a+/Cre(ex1);TNC-/- (KC-TNko) und LSL-KRASG12D/+;Ptf1a+/Cre(ex1);TNC+/- (KC-TNChet) Mäuse mit LSL-KRASG12D/+;Ptf1a+/Cre(ex1) (KC) Mäusen in den Altersgruppen 1, 2, 3, 6, 9, 12 und 15 Monaten verglichen.

Diese Ergebnisse implizieren, dass TNC die Tumorzellen erst in späteren Stadien beeinflusst, in der frühen Karzinogenese des Pankreaskarzinoms kann jedoch ein Einfluss von TNC auf die epitheliale Regeneration angenommen werden.
VIII. LITERATUR

Cancer Staging System: report from the National Cancer Database. *Cancer* 110, 738-744

Chiquet-Ehrismann, R., Orend, G., Chiquet, M., Tucker, R. P. & Midwood, K. S.

Furukawa, T., Hatori, T., Fujita, I., Yamamoto, M., Kobayashi, M., Ohike, N., Morohoshi, T., Egawa, S., Unno, M., Takao, S., Osako, M., Yonezawa, S., Mino-

Ince, T. A., Ward, J. M., Valli, V. E., Sgroi, D., Nikitin, A. Y., Loda, M., Griffo,

Muller-Decker, K., Furstenberger, G., Annan, N., Kucher, D., Pohl-Arnold, A.,
Steinbauer, B., Esposito, I., Chiblak, S., Friess, H., Schirmacher, P. & Berger, I.

promotes healing of Habu-snake venom-induced glomerulonephritis: studies in
knockout congenic mice and in culture. *Am J Pathol* **152**, 1237-1245

Neesse, A., Michl, P., Frese, K. K., Feig, C., Cook, N., Jacobetz, M. A., Lolkema,

Biochem Cell Biol* **37**, 1066-1083

Oskarsson, T., Acharyya, S., Zhang, X. H., Vanharanta, S., Tavazoie, S. F., Morris,
P. G., Downey, R. J., Manova-Todorova, K., Brogi, E. & Massague, J. (2011)
Breast cancer cells produce tenascin C as a metastatic niche component to colonize
the lungs. *Nat Med* **17**, 867-874

niches. *EMBO J* **31**, 254-256

Ottenhof, N. A., de Wilde, R. F., Maitra, A., Hruban, R. H. & Offerhaus, G. J.
Res Int* **2011**, 620601

Siveke, J. T., Einwachter, H., Sipos, B., Lubeseder-Martellato, C., Kloppel, G. & Schmid, R. M. (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfα results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12,

extramural funding involves animal-related research. *Vet Pathol* **44**, 962-963, author reply 963-964

IX. ANNEX

1. Web-based learning platform for comparative histology

1.1. Material

1.1.1. Laboratory equipment
Unless indicated the companies or distributors were located in Germany.

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axioskop 20</td>
<td>Carl Zeiss AG, Jena</td>
</tr>
<tr>
<td>Aperio ScanScope CS</td>
<td>Aperio, Vista (USA)</td>
</tr>
<tr>
<td>Iomega LDHD UP external storage</td>
<td>Lenovo GmbH, Stuttgart</td>
</tr>
<tr>
<td>Intenso 8GB USB stick</td>
<td>Intenso GmbH, Vechta</td>
</tr>
</tbody>
</table>

1.1.2. Software

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Acrobat 9 Pro</td>
<td>Adobe Systems GmbH, Munich</td>
</tr>
<tr>
<td>Adobe® Connect™</td>
<td>Adobe Systems GmbH, Munich</td>
</tr>
<tr>
<td>Adobe Photoshop Elements 5.0</td>
<td>Adobe Systems GmbH, Munich</td>
</tr>
<tr>
<td>Aperio ImageScope</td>
<td>Aperio, Vista (USA)</td>
</tr>
<tr>
<td>Doodle</td>
<td>Doodle AG, Zurich (CH)</td>
</tr>
<tr>
<td>Moodle 2.5.1</td>
<td>eLeDia - E-Learning im Dialog GmbH, Berlin</td>
</tr>
<tr>
<td>Skype 6.13</td>
<td>Microsoft, Redmond (USA)</td>
</tr>
<tr>
<td>WebMicroscope</td>
<td>University of Helsinki, Helsinki (FI)</td>
</tr>
</tbody>
</table>

2. Example for phenotyping of a mouse strain: The TNC
2.1. Material

2.1.1. Reagents

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,3’-Diaminobenzidin</td>
<td>Medac GmbH, Wedel</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Acid Fuchsin</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Agarose LE for gel electrophoresis</td>
<td>Biozym Scientific GmbH, Hessisch Oldendorf</td>
</tr>
<tr>
<td>Alcian Blue 8GX powder</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Alcin Blue 1 %</td>
<td>MORPHISTO® Evolutionsforschung und Anwendung GmbH, Frankfurt am Main</td>
</tr>
<tr>
<td>Antibody diluent Dako REAL™</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Basic Fuchsin</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Crocein scarlet-acid fuchsin</td>
<td>MORPHISTO® Evolutionsforschung und Anwendung GmbH, Frankfurt am Main</td>
</tr>
<tr>
<td>Dako Pen</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Dimethylsulfoxid</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Discovery® MoMap™ Kit</td>
<td>Roche Diagnostics, Mannheim,</td>
</tr>
<tr>
<td>DNA-Loading dye 6X</td>
<td>Thermo Fisher Scientific, Schwerte</td>
</tr>
<tr>
<td>dNTP Set, 100 mM Solutions</td>
<td>Life Technologies GmbH, Darmstadt</td>
</tr>
<tr>
<td>Eosin</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>Amresco, Solon (USA)</td>
</tr>
<tr>
<td>Ferric chlorid</td>
<td>MORPHISTO® Evolutionsforschung und Anwendung GmbH, Frankfurt am Main</td>
</tr>
<tr>
<td>Forene Isofluran</td>
<td>Abbott GmbH & Co. KG, Wiesbaden</td>
</tr>
<tr>
<td>Formalin</td>
<td>Staub & Co. GmbH, Munich</td>
</tr>
<tr>
<td>Generuler 100 bp DNA-Ladder ready to use</td>
<td>Thermo Fisher Scientific, Schwerte</td>
</tr>
<tr>
<td>Goat serum</td>
<td>Abcam plc, Cambridge, (UK)</td>
</tr>
<tr>
<td>Hemalm</td>
<td>AppliChem GmbH, Darmstadt</td>
</tr>
<tr>
<td>Hematoxylin Solution, Mayer’s</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Chemical</td>
<td>Supplier</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>HistoMark Biotin-Streptavidin Peroxidase Kit</td>
<td>KPL, Inc., Gaithersburg (USA)</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>neoLab, Heidelberg</td>
</tr>
<tr>
<td>Hydrogen peroxide 30 %</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Isoamyl alcohol</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Light green SF yellowish</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Nuclear fast red-aluminum sulfate solution 0.1 %</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Orange G</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Peroxidase-labeled Streptavidin</td>
<td>KPL, Inc., Gaithersburg (USA)</td>
</tr>
<tr>
<td>Pertex mounting medium</td>
<td>Medite GmbH, Burgdorf</td>
</tr>
<tr>
<td>Phosphotungstic acid hydrate</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Picric acid</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Ponceau Xylidine</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Roche Diagnostics, Mannheim</td>
</tr>
<tr>
<td>Rabbit Serum (10 %)</td>
<td>KPL, Inc., Gaithersburg (USA)</td>
</tr>
<tr>
<td>RNAlater®</td>
<td>Life Technologies GmbH, Darmstadt</td>
</tr>
<tr>
<td>Safron du Gatinais</td>
<td>MORPHISTO® Evolutionsforschung und Anwendung GmbH, Frankfurt am Main</td>
</tr>
<tr>
<td>Schiff's reagent</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate 20 % (w/v) solution</td>
<td>AppliChem GmbH, Darmstadt</td>
</tr>
<tr>
<td>Sodium periodate</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Taq DNA Polymerase BioTherm™</td>
<td>Ares Bioscience GmbH, Köln</td>
</tr>
<tr>
<td>Trizma® base</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Verhoeff stock solution A, B, C</td>
<td>MORPHISTO® Evolutionsforschung und Anwendung GmbH, Frankfurt am Main</td>
</tr>
<tr>
<td>Wash Buffer 10x</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Water, Aqua ad injectabilia</td>
<td>AlleMan Pharma GmbH, Rimbach</td>
</tr>
<tr>
<td>Weigert's iron hematoxylin kit</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Xylene</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
</tbody>
</table>
2.1.2. **Consumables**

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corning® DeckWorks® Pipette tips, 10 μl</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Corning® DeckWorks® Pipette tips, 1000 μl</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Corning® DeckWorks® Pipette tips, 20 μl</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Corning® DeckWorks® Pipette tips, 200 μl</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Coverslips</td>
<td>Carl Roth GmbH & Co.KG, Karlsruhe</td>
</tr>
<tr>
<td>Cryotubes</td>
<td>A. Hartenstein, Würzburg</td>
</tr>
<tr>
<td>Dako Tube with cap</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Embedding cassettes</td>
<td>A. Hartenstein, Würzburg</td>
</tr>
<tr>
<td>Microscope Slides</td>
<td>Gerhard Menzel GmbH, Braunschweig</td>
</tr>
<tr>
<td>Injekt™ 2 mL LL Syringe</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Injekt™ 5 mL LL Syringe</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>SuperFrost® Microscope Slides</td>
<td>Gerhard Menzel GmbH, Braunschweig</td>
</tr>
<tr>
<td>PCR tube strips 0.2 ml</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>PowerPac Basic Power Supply</td>
<td>Bio-Rad Laboratories GmbH, Munich</td>
</tr>
<tr>
<td>Reaction tubes 1.5 ml</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Reaction tubes 2 ml</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Reaction tubes Falcon™ Blue Max 15 ml</td>
<td>BD Bioscience, Heidelberg</td>
</tr>
<tr>
<td>Reaction tubes Falcon™ Blue Max 50 ml</td>
<td>BD Bioscience, Heidelberg</td>
</tr>
<tr>
<td>Safe seal microtubes</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Slide Storage Box</td>
<td>A. Hartenstein, Würzburg</td>
</tr>
<tr>
<td>Sterican® Hypodermic needle, 20G x 1 ½”</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Sterile Surgical Blade figure 26</td>
<td>C. Bruno Bayha GmbH, Tuttlingen</td>
</tr>
</tbody>
</table>

2.1.3. **Laboratory equipment**

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperio ScanScope CS</td>
<td>Aperio, Vista (USA)</td>
</tr>
<tr>
<td>Axioskop 20</td>
<td>Carl Zeiss AG, Jena</td>
</tr>
<tr>
<td>Centrifuge 5415D</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Centrifuge 5417R</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Equipment</td>
<td>Manufacturer/Supplier</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dako Autostainer Universal Staining System</td>
<td>Dako Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>Dissecting set type Ratisbon</td>
<td>Medax-lithomed, Schweinfurt</td>
</tr>
<tr>
<td>Eppendorf Mastercycler gradient</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Eppendorf research pipettes</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Gel documentation system</td>
<td>Vilber Lourmat, Eberhardzell</td>
</tr>
<tr>
<td>Glass coverslipper Promounter RCM2000</td>
<td>Medite GmbH, Burgdorf</td>
</tr>
<tr>
<td>Heating block Thermomixer® comfort 1.5 ml</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Heating block ThermoStat plus 1.5 ml</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Heating oven type BE400</td>
<td>Memmert, Schwabach</td>
</tr>
<tr>
<td>Heating plate HP 30 digital IKATHERM</td>
<td>IKA®-Werke GmbH & Co. KG, Staufen</td>
</tr>
<tr>
<td>Hotplate stirrer IKAMAG® RCT</td>
<td>IKA® Werke GmbH und Co.KG, Staufen</td>
</tr>
<tr>
<td>IKA® MS1 Minishaker</td>
<td>IKA® Werke GmbH und Co.KG, Staufen</td>
</tr>
<tr>
<td>Ikamage® RCT magnetic stirrer</td>
<td>IKA® Werke GmbH und Co.KG, Staufen</td>
</tr>
<tr>
<td>Incubator shaker Model G25</td>
<td>New Brunswick Sci., Edison (NJ, USA)</td>
</tr>
<tr>
<td>Lab centrifuge 4K15</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Laboratory balance BP 310 S</td>
<td>Sartorius AG, Göttingen</td>
</tr>
<tr>
<td>Magnetic stir bars, various sizes</td>
<td>NeoLab, Heidelberg</td>
</tr>
<tr>
<td>Magnetic stirrer MR2000</td>
<td>Heidolph Instruments, Schwabach</td>
</tr>
<tr>
<td>Microm HM 335 E</td>
<td>Thermo Fisher Scientific, Schwerte</td>
</tr>
<tr>
<td>Microtome blade</td>
<td>Pfm medical AG, Köln</td>
</tr>
<tr>
<td>Microwave Privileg 1034HGD</td>
<td>Otto, Hamburg</td>
</tr>
<tr>
<td>Mitsubishi P95 printer</td>
<td>Mitsubishi Electric, Ratingen</td>
</tr>
<tr>
<td>Nanodrop ND 2000c</td>
<td>Peqlab Biotechnology GmbH, Erlangen</td>
</tr>
<tr>
<td>Paraffin Embedding System Medite TBS 88</td>
<td>Medite GmbH, Burgdorf</td>
</tr>
<tr>
<td>pH-Meter (pH 211)</td>
<td>HANNA Instruments GmbH, Kehl am Rhein</td>
</tr>
<tr>
<td>Pressure cooker</td>
<td>WMF, Geislingen/Steige</td>
</tr>
<tr>
<td>Rocker table Rocky®</td>
<td>Fröbel Labortechnik, Lindau</td>
</tr>
<tr>
<td>Scales Sartorius universal</td>
<td>Sartorius AG, Göttingen</td>
</tr>
<tr>
<td>Shandon Excelsior ES</td>
<td>Thermo Fisher Scientific, Schwerte</td>
</tr>
<tr>
<td>Spectrophotometer NanoDrop® ND-1000</td>
<td>Thermo Fisher Scientific, Schwerte</td>
</tr>
<tr>
<td>Spectrophotometer UV/VIS Novaspec II</td>
<td>Pharmacia LKB, Uppsala (S)</td>
</tr>
<tr>
<td>Stuart Scientific SD Rocking Platform STR</td>
<td>Keison products, Chelmsford (GB)</td>
</tr>
</tbody>
</table>
2.1.4. **Buffer**

Citrate buffer for IHC

- Citric acid: 10 mM
- pH 6

Lysis buffer for DNA extraction

- TRIS-HCL, pH 8.0: 50 mM
- NaCl: 100 mM
- EDTA: 100 mM
- SDS: 1 %
- Proteinase K: 0.5 mg/ml

EDTA buffer for IHC

- EDTA: 1 mM
- pH 8.0

TBS 10X for IHC

- TRIS base: 250 mM
- NaCl: 1400 mM
- pH 7.5

2.1.5. **Software**

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Acrobat 9 Pro</td>
<td>Adobe Systems GmbH, Munich</td>
</tr>
<tr>
<td>Adobe Photoshop Elements 5.0</td>
<td>Adobe Systems GmbH, Munich</td>
</tr>
<tr>
<td>Aperio ImageScope</td>
<td>Aperio, Vista (USA)</td>
</tr>
<tr>
<td>Aperio Spectrum™ Plus</td>
<td>Aperio, Vista (USA)</td>
</tr>
<tr>
<td>Definiens Developer XD</td>
<td>Definiens AG, Munich</td>
</tr>
<tr>
<td>Definiens TissueStudio</td>
<td>Definiens AG, Munich</td>
</tr>
<tr>
<td>Software</td>
<td>Location</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Endnote X6</td>
<td>Endnote, Carlsbad (USA)</td>
</tr>
<tr>
<td>IBM SPSS Statistics 21</td>
<td>IBM Deutschland GmbH, Ehningen</td>
</tr>
<tr>
<td>Image J</td>
<td>National Institutes of Health, Bethesda (USA)</td>
</tr>
<tr>
<td>Microsoft Office 2010</td>
<td>Microsoft, Redmond (USA)</td>
</tr>
</tbody>
</table>
XI. Acknowledgements

X. ACKNOWLEDGEMENTS

First, I will like to thank my supervisor, Prof Dr. Irene Esposito, for her continuous support, encouragement and patience. I would like to offer my special thanks to Prof. Dr. Walter Hermanns and PD Dr. Nadja Herbach for their support.

In these years, I have also benefited a lot from the extensive knowledge and experience of Dr. Katja Steiger and Dr. Melissa Schlitter. Moreover, I would like to thank my cooperation partners.

My colleagues Sonja Berchtold and Sandra Hiltensberger have made the working environment so enjoyable. Thank you for all the support during these years! Furthermore, I would like to thank all my PhD colleagues Lena, Angi, Ralph and Ann-Christine and my colleagues Björn, Lukas, Simone and Theresa for our afternoon discussions. Their help on various occasions is gratefully acknowledged.

My special thanks are extended to my friends Susi, Christoph, Johanna, Claudia, Marius and Alina, Tesa, Conny and Andre, Nik and Jule for their support and distraction.

Finally, but most importantly, I will like to thank my family for their constant support over all these years.