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Wenn du nicht irrst, kommst du nicht zu Verstand; 

Willst du entstehn, entsteh´ auf eigne Hand! 
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1 INTRODUCTION 

1.1 HIERARCHY AND EMERGENCE: 
ORDER IN NATURE AND SYNTHETIC CHEMISTRY 

1.1.1 Materials and Voids 

Nature uses a number of engineering strategies which have blossomed into some 

remarkable properties, such as the “lotus effect” referring to water–repellant leaves.1 In 

many cases, the origin of these properties may be traced back to the material´s structure and 

morphology (i.e. patterned surfaces and hierarchical organization of the constituting 

components) rather than on its particular composition. In structured systems, each level 

represents the building units for the next higher level thus leading to an overall complex 

architecture. – In philosophy, biology and physics, among other disciplines, hierarchical 

organization is discussed as a “self-organized” process which is associated with the 

development of properties called “emergent”; that is, the properties found at one 

hierarchical level are present only because of the appropriate arrangement and interplay of 

all sub-levels.2 Moreover, emergent properties are argued to be synergistic phenomena 

different from simple results:2,3 For instance, a single letter (a, b, …) is characterized only by 

a particular sound and for being a building unit for the next higher level (a word). The new 

level, however, is now additionally fashioned with an individual meaning (for a specific 

group of humans) which seems to be not simply reducible to the plain linking of some 

letters. Being a central theme for diverse sciences, Aristotle condensed this phenomenon 

into the famous phrase: “The whole is something over and above its parts, and not just the 

sum of them all…”.2 



1 Introduction 

10 
 

In natural matter such as bones, wood and mollusk shells, the hierarchical arrangement is 

believed to allow for controlling mechanical and other properties, depending on the 

interaction of all levels of organization.4-7 For instance, glass is widely used in nature as a 

building material, despite its apparent fragility. To strengthen the toughness of this material, 

nature has evolved effective means such as in the glass sponge Euplectella sp. (Fig. 1): In 

total, seven different hierarchical levels were identified using scanning electron microscopy, 

ranging from the nano- to the macroscale.8 The first level is composed of consolidated silica 

nanospheres (50–200 nm) deposited around a protein filament (Fig. 1i). The low strength 

of SiO2 is balanced at the next structural levels: According to the authors,8 organic 

interlayers in the laminated spicule structure (Figs. 1g and h) are likely to prevent cracking 

events, while the packing of slightly different spicules (Fig. 1f) seems to allow for a larger 

defect tolerance than for the individual fiber. The complexity of the entire skeleton (Fig. 1a) 

shows impressively how inherently poor building materials may be improved through 

hierarchical structuring. Moreover, the seven identified levels of the sponge represent 

fundamental construction strategies such as laminated structures, bundled fibers and 

diagonally reinforced square-grid cells.8 Biological materials and their design principles are 

therefore a constant inspiration source for engineers to fabricate nature-like materials: This 

way, existing engineering concepts may be improved and newly emerging issues may be 

faced, such as the need for adapting to environmental changes.9-14 

 

Figure 1. Hierarchical structuring in nature by the example of the skeletal system of Euplectella sp. 

(a) Photograph of the skeleton. (b) Square-grid lattices in the cage structure with diagonal elements. (c) Strut 

composed of multiple spicules. (d) Single beam with ceramic fiber-composite structure. (e) Junction area with 

laminated silica layers. (f) Cross-section through a spicular strut. (g) Cross-section through a single spicule. 

(h) Fractured spicule revealing an organic interlayer. (i) Consolidated nanospheres. – Scale bars: (a) 1 cm, 

(b) 5 mm, (c) 100 µm, (d) 20 µm, (e) 25 µm, (f) 10 µm, (g) 5 µm, (h) 5 µm, (i) 500 nm.  Reproduced from ref. 8. 

Reprinted with permission from AAAS. 
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Successful translation of bio-inspired ideas into our engineering world requires a careful 

analysis of structure–function relationships in natural tissues.9 Apparently, biological 

materials allow for an enormous functional range including the interaction with the 

environment (e.g. capture of light, metabolism, adaptation to changing conditions), 

movements and growth, or withstanding mechanical forces. Nevertheless, relatively few 

constituent elements are used in nature as basis for either (inorganic) minerals, (organic) 

polymers or composite structures;13,15 these are apparently sufficient for covering all 

required functions. For engineers, by contrast, the range of choice of elements is far greater 

(Fig. 2); while, however, ceramics and polymers are not the first choice of an engineer to 

build strong and robust structures, nature uses them to build skeletons.15 In biological 

designs, a few basic concepts exist from which engineers can learn including growth, 

hierarchical structuring, and adaptation to external conditions (e.g. self-healing).5,9 

A nearly pervasive feature found in natural materials is the complex structuring which 

results from a rather dynamic strategy in material fabrication (Fig. 2): Instead of using a 

fixed design (as in the case for engineering materials), the material is grown according to its 

genetic code, which allows for more flexibility.9 According to ref. 9, this strategy permits, on 

the one hand, adaptation to a function without the need for changing the complete 

fabrication strategy (e.g. a branch can grow in different directions as a response to adverse 

conditions). On the other hand, natural materials are thus capable of withstanding and 

adapting to different environments (bones carry us a whole lifetime!) by retaining its 

strength even in damaged states.7,16 It thus seems plausible that the particular way in which 

the components are arranged in space is much more important than the material itself used 

to build the structure (e.g. calcite, aragonite, apatite or silica as mineral parts in various 

tough materials).4 

In hierarchically structured materials, empty space such as pores, channels and cavities, is 

a common feature and may also serve multiple functions.13 For example, many bird 

skeletons possess hollow bones, thus leading to very low body weights; flying birds, in 

particular, seem to have more hollow bones (i.e. not filled with marrow; see also Fig. 3a) 

than flightless birds (e.g. penguins) or diving birds, where a higher density skeleton may 

help to propel them through water.13 Other biological examples with porous structures are 

wood, diatoms and sponges, honeycombs or lung tissue;5,13 in each case, the emergence of 

porosity enables the material to fulfill characteristic functions (e.g. gas exchange in human 

lungs). – Form–function principles found in nature´s materials have ultimately triggered the 

fabrication of biomimetic replicas: Lightweight driven architectures can be found, for 
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instance, in the design of the Eiffel tower. Artificial inverse opal structures which resemble 

honeycombs (Fig. 3b) are attractive for the development of smart materials with multiple 

functions (e.g. guest accommodation or enhanced transport properties).19 The distribution 

of size, shape and organization of the pores is directly related with the properties of the 

material and its capability of carrying out a specific function. In the special case of inverse 

opals, novel qualities may emerge from its ordered structuring which are unrelated to the 

formerly named ones, that is, for instance: vivid coloration (see chapter 1.2).19 

 

 

Figure 2. Building blocks and fabrication modes that are used by nature to create material (upper left side) in 

comparison to an engineer´s approach (upper right side). Due to the unequal proceedings, different strategies 

have to be pursued to achieve the desired functionality (bottom levels). Adapted from ref. 9. 

 

The key issue for the artificial synthesis of porous structures is how to template the pores, 

and how to order and shape them.20,21 In the fabrication of biomimetic replica, biotemplate-

based strategies may serve as proof-of-principle experiments, as they allow for convenient 

duplication of complex biological structures.22,23 Basically, a biomaterial (e.g. a butterfly 

wing) is used as a sacrificial template, and precursors (vapor, liquid or solid) are deposited 

on or infiltrated into the template. Replica or inverse replica are obtained after removal of 

the template (e.g. by heat treatment).22 Non-biotemplate approaches, by contrast, provide a 

higher controllability and can allow for the generation of structures not seen in nature. Both 

top-down (such as lithography or nanoimprinting) and bottom-up methods can be used, or 
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a combination of both to achieve more complex structures.22,23 Liquid-phase deposition is 

such a commonly used bottom-up technique for the preparation of thin films and 

multilayers.12,24-26 It implies the preparation of a colloidal suspension, followed by film 

patterning through self-assembly,27 and heat treatment for solvent removal. 

 

 

Figure 3. Porosity in a femoral head (a), and in an artificial inverse opal structure (b) serving different functions. 

(a) © 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from ref. 17; 

(b) © 2007 Elsevier Ltd. Reprinted with permission from Elsevier and adapted from ref. 18. 

 

The pores of template-driven structures are characterized by the dimensions of the 

respective template and may range from the nano- to macroscale. Generally, voids are 

classified as either micropores (smaller than 2 nm), mesopores (2–50 nm) or macropores 

(larger than 50 nm).28 Sacrificial templates can be micelle forming agents such as 

surfactants and block copolymers,11,21 or polymeric beads which are available in a broad size 

range.29,30 The general concept of non-biotemplating strategies relies on the preparation of a 

solution containing the inorganic precursors and the templating agents (thus allowing for 

microphase separation); this is then processed in order to define the macroscopic shape of 

the final material (films, powders, monoliths, fibers etc.).31 For films, processing is typically 

achieved via self-assembly through evaporation of the solvent.26,27 Mixed porous structures 

may be obtained, if several strategies are coupled such as the use of both nanocrystals and 

structure-directing polymers in a solvent. During solvent evaporation the particles regularly 

assemble with respect to the polymer micelles, and after thermal processing, ordered 

frameworks are obtained with pores in the meso- to macrorange; the pore walls are built up 

from the particles and thus feature textural microporosity.32 
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Micropores can be intrinsically present in both natural and artificial materials as molecular 

cavities such as in zeolites, which have already found their way into industrial processes, 

and the rather new class of metal-organic frameworks (MOFs). The latter are inorganic-

organic hybrid materials comprised of single metal ions, or metal oxo clusters linked by 

organic ligands through coordination bonds.33-35 As the strength of these bonds is rather 

weak and, hence, their formation reversible, eventually well-defined structures are obtained 

in terms of geometry and crystallographic parameters. During the synthesis of a MOF, 

solvent molecules, excessive building blocks, or auxiliary agents may be trapped in the MOF 

pores: In most cases, such guest species may be removed through simple heat treatment or 

pressure reduction, thus leading to permanent porosity.36 Synthetic zeolites and MOFs have 

thus attracted great attention owing to the presence of these nanocavities and their 

potential applications in gas storage, adsorption, separation, heterogenous catalysis or 

molecular sensing.37,38 In comparison to zeolites, MOFs are synthesized under rather mild 

conditions: Typically, a self-assembly reaction is initiated between a metal source and the 

organic linkers, which often proceeds in a one-step solvothermal reaction, and the cavities 

are usually formed without the need for any auxiliary templates.36 Consequently, MOFs 

represent promising materials in terms of processability, flexibility, structural diversity and 

geometrical control;37 in the following, all of these qualities are discussed in more detail, 

starting with the most characteristic one: structural variability. 

 

1.1.2 Metal-Organic Frameworks 

Beside zeolites, MOFs exhibit one of the highest degrees of structural flexibility. The 

dimensions of the pore system and other structural properties such as surface area, crystal 

density and rigidity of the network are controllable by choosing the “right” metal source and 

ligand (termed “reticular synthesis”). Zeolites, by contrast, are characterized by more rigid 

tetrahedral oxide frames (held through covalent bonds) that are rather difficult to alter, and 

compositionally limited.36 The MOF backbone also allows for facile modification of the pore 

structure, e.g. by introducing functional groups.39,40 

There are currently a few approaches to the synthesis of new MOF structures, according to 

ref. 41: 
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Figure 5. A choice of different MOF classes. (a) Metal oxo cluster and lattice structure of MOF-5 (blue: metal, red: 

oxygen, grey: carbon), which may be built up from a variety of different metal ions.  (b) Schematic illustration of 

selective gas adsorption in a flexible MOF, showing guest-dependent structural changes. (c) Formation of a 

mesostructured MOF assembled from metal ions and organic ligands in the presence of surfactant micelles as 

supramolecular templates. The mesopore walls are constructed from the MOF which itself can feature micro- 

and/or mesopores. (a) Reproduced with permission and adapted from ref. 45 – Published by The Royal Society 

of Chemistry; (b) Reproduced from ref. 36 with permission of The Royal Society of Chemistry; (c) © 2008 Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission and adapted from ref. 37. 

 

1) Introduction of functional ligands, either directly or via post-synthetic modification. For 

the latter, typical examples include the formation of amide and urea linkages via reaction of 

–NH2 with appropriate target molecules (acetic anhydrides, isocyanates);41 

2) Isomorphous structures of a certain crystal structure type (Fig. 5a). This approach is 

based on the integration of either metal ions with the same charge or coordination 

environment, or different ligands with the same denticity, to achieve similar structure types 

(e.g. the MIL-53 or MIL-101 families42); 

3) Isoreticular synthesis. By introducing ligands with the same denticity but different 

lengths of their backbones, the pore dimensions may be varied (e.g. the IRMOF or UIO-66 

families43,44); 

4) Hybridization (or “defect engineering”), meaning the modification of parent host 

structures. Hybridization can include mixing at the atomic scale (i.e. the introduction of 

more than one type of metal/ligand into the host MOF structure, or partial replacement of 

original building blocks45,46), or the formation of two (or more) distinct phases in so-called 
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core-shell heterostructures.47 A third class of hybrid MOF structures accommodates 

functional guests in their pores such as, for instance, enzymes.41 The development of 

hybridization strategies may be rationalized by the observation that some desired 

structures are not accessible by reacting the appropriate building blocks due to steric or 

electronic constraints.41 

MOF structures can be produced also with differing flexibility degrees ranging from rigid 

MOFs which are comparatively robust and feature permanent porosity, to rather dynamic 

ones:36 These are capable of responding to external stimuli (e.g. guest molecules) through 

more or less pronounced structural transformations (Fig. 5b).36,48,49 Such tunable porosity, 

as well as usually large surface areas, and reasonable thermal stability make MOFs potential 

candidates for many different applications including gas storage, separation, and sensing. – 

In industry, for instance, adsorption-based separation processes are important to remove a 

certain gas from a mixture (e.g. CO2 removal for fuel cell technology) or for purification 

purposes.36 Principally, gas separation is controlled by the adsorption capacity and 

selectivity of an adsorbent. In zeolites and rigid MOFs, one or more of the following 

mechanisms are most likely to occur, according to ref. 36: 

1) Size and/or shape exclusion (distinct components are prevented from entering the 

pores, while others are able to pass), termed molecular sieving effect or steric separation; 

2) Different adsorbate–surface or adsorbate packing interactions (preferential 

adsorption), termed thermodynamic equilibrium effect. 

(Besides, other adsorption mechanisms are discussed such as the kinetic and the quantum 

sieving effect.)36 For the former (molecular sieving), the cross-sectional size and the shape of 

the gas molecule determine the separation process. Hence, restricted small pores may favor 

molecular sieving to occur, which can be achieved, for instance, by using rather short or 

bulky ligands.36 (Note that adsorbent selection is apparently a complex problem: While 

larger pores are in favor for allowing guest molecules to be transported to the interior of the 

material, the opposite may be desired to achieve good separation efficiency.37) – In terms of 

preferential adsorption, the interaction strength between adsorbate and adsorbent becomes 

crucial for separation: This is determined by polarizability, magnetic susceptibility, or 

permanent dipole moments, as well as by weak interactions (hydrogen or pi-bonds).36 In 

addition, the presence of uncoordinated nitrogen atoms or metal sites in the MOF pores may 

affect the interaction strength between the MOF and the target molecule.36,50 There are a 
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couple of MOFs known to have only very small pores which, however, may expand when 

exposed to certain gases and/or at specific threshold pressures (dubbed gate opening): This 

way the entrance of a guest molecule to the MOF interior may be facilitated e.g. through a 

favorable adsorbate–surface interaction.36,51 

In many industrial applications, accessible interfaces and specific morphologies play an 

important role for the performance of a material, which on first glance may appear non-

relevant to the desired qualities (e.g. selectivity for sensing purposes). As such, gaining 

control of size, shape and morphology is mandatory in order to fashion MOFs or other 

porous materials according to a desired application. A wide range of different synthesis 

routes render MOFs now accessible within a broad length scale from microsized crystals to 

nanoparticles. For instance, MOFs can be processed in the form of thin films suitable for 

sensing applications: Here, it is found that decreased film thicknesses as well as porous and 

particulate morphologies allow for improved sensing properties as the analyte can infiltrate 

the film more easily, and the surface area and activity are increased.37 Thin films can be 

achieved, for instance, by spin- or dip-coating protocols12,24,52,53 requiring the dispersion of 

uniformly sized nanoparticles in a volatile solvent. Examples for the preparation of MOF 

nanoparticles include solvothermal synthesis, either without54 or with the assistance of 

ultrasound/microwave heating,55,56 or even room temperature synthesis.57 Besides, the use 

of capping agents58 or ligands built in a similar fashion to the linking precursor 

(“coordination modulation”)53,59 has been found to affect both the MOF´s size and 

morphology. 

MOF structures, however, are not solely restricted to the microporous regime: 

Supramolecular template strategies can be used to create mesostructured frameworks 

(Fig. 5c). In the presence of surfactant-directed micelles, a mesoporous structure may form 

upon the self-assembly of the MOF from metal ions and the organic ligand. Nanocrystalline 

domains of the MOF constitute the walls of the mesoporous structure,37 similar to the 

strategy reported earlier for hierarchically porous materials. – Besides defined 

environments for guest adsorption, structuring of MOFs can pave the way to other 

interesting features and applications, such as the emergence of “structural coloration”: Here, 

the particular ordering of the MOF crystals can act as a diffraction grating for visible light 

thus leading to intense reflections. Structural coloration is a common theme in nature´s 

materials, e.g. on the skin and wings of animals, and has already found its way into several 

biomimetic optical devices;12 all of which will be discussed in the next chapter. 
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1.2 BIO-INSPIRATION: 
FROM COLOR TO OPTICAL DEVICES 

1.2.1 Color Generating Principles 

Colors in nature, especially the vivid ones found in peacock feathers or pearlescent mollusk 

shells, are a fascinating subject for both scientists and non-scientists. In the last few 

centuries, researchers began to explore how colors were produced in nature, and what kind 

of role coloration plays among animals. Beside intraspecific communication and sexual 

selection, the coloration may help to avoid predation or serve even non-communicative 

functions such as enhancing vision, or strengthening integumentary tissues (compare also 

with chapter 1.1).60 Colors in animals are typically achieved through pigments or through 

structural coloration, or by a combination of these mechanisms.60 Besides, some animals use 

bioluminescence as light source, which is particularly common among marine organisms in 

the open or deep sea.61 – Pigments interact with light by selectively absorbing certain 

wavelength ranges. For example, natural orange colorations are typically achieved through 

carotenoid pigments which absorb light in the blue part of the electromagnetic spectrum.60 

Nevertheless, carotenes can also come in blue or black if they are bound to proteins. 

Lobsters, for instance, are black when alive, but turn red when they are cooked. This color 

change is attributed to the heat-induced denaturation of the protein part in the pigment, 

leaving visible the red color of the carotene when the lobster is boiled.62 Melanins, by 

contrast, absorb light across the entire visible range, which results in black or brown colors 

(as, for example, in the human skin). 
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Figure 6. Structural coloration in nature and underlying optical principles. (a) The dorsal forewings of Parides 

aeneas bolivar have green-colored areas, which are attributed to the underlying multilayer structure in the scale 

lumen. (b) Hexagonal arrays of melanin rods embedded in a keratin matrix form a 2D photonic crystal which 

causes the green-blueish color of the duck feathers. (c) The color effects of a natural opal are caused by the 

underlying nanostructure which can be described by a fcc lattice. (a) © 2014 Wilts et al.; licensee BioMed Central 

Ltd. Reproduced with permission and adapted from ref. 63; (b) Reproduced and adapted from ref. 64; 

(c) © 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from ref. 65. 

 

In contrast to pigmentary colorations, structural colors are produced when light physically 

interacts with structures on the nanoscale: More specifically, the light is controlled by the 

interfaces between materials that differ in their individual refractive indices (RIs). Here, 

three different processes may occur: a) interference, b) diffraction or c) scattering.60,66 – 

Typical structures for interference-based colors include thin films and multilayer structures 

(Fig. 6a; see Figs. 7a and b for the respective optical mechanisms). The interaction of light 

with a multilayer can be described as follows: A wave propagating in the stack undergoes 

reflection at each interface for a defined wavelength range (Fig. 7b); the observed color is a 

product of the interference of all reflected beams and depends on the periodicity of the 

stack, i.e. the optical thickness of a bilayer. 

Diffraction gratings are regularly ordered surfaces which disperse light in different 

directions (Fig. 7c), depending on the wavelength of light striking the surface and the 

spacing of the grating.60 Examples in our everyday life include the parallel lines in a very fine 

cloth, or the pits and lands on optical storage disks. The processes of interference and 

diffraction can be combined to produce more complex optical effects, such as, for instance, 
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in the multilayered structure of the beetle Chlorophila obscuripennis. Here, the multilayers 

form ridges and pits, which interact differently with incident light and thus generate a mixed 

overall color appearance of the beetle.67 The colors of the butterfly in Fig. 6a are a result of 

both structural and pigmentary coloration, and show angle-dependence of the reflection 

(termed iridescence).63 – Scattering of light represents a different type of color generation, in 

comparison to the processes described above: Here, the color is caused by a rather irregular 

structuring (Fig. 7d).66 The thus produced colors are usually less saturated, more diffuse 

and generally non-iridescent (see the blue color of the sky).60 Scattering is also the main 

optical mechanism for generating whiteness in nature, including the white appearance of 

milk, or the scales of some butterflies, by scattering all visible wavelengths.22  

 

Figure 7. Physical basis of structural colors. (a) Thin film interference; (b) multilayer interference (materials 

with different RIs (n1, n2) are marked by different colors); (c) diffraction grating dividing light into spectra (the 

dispersion is illustrated by blue and red arrows, and less saturated colors for the 2nd order spectrum); 

(d) scattering process. Adapted from ref. 68. 

 

Among color-producing structures, so-called photonic crystals (PCs) are particularly 

attractive materials for controlling the qualities of light.69 Basically, PCs can be regarded as 

crystal-like structures in the sense that they contain building blocks (e.g. thin films) 

arranged in a periodic pattern. Important parameters are the size (or thickness) of the 
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periodic units (i.e. the lattice constants), and the variation in their RI in one, two or three 

dimensions (Fig. 6). The result is a distribution of energy levels with allowed modes and 

forbidden wavelength bands (occurrence of band gaps), similar to electronic 

semiconductors. In the special case of visible light, this phenomenon generates very intense 

colors resulting from the interference of the “forbidden” (and thus reflected) light 

frequencies. A prominent example for exhibiting this structural color effect is the gemstone 

opal (Fig. 6c). Its vivid coloration arises from its three-dimensional nanostructure 

consisting of densely packed, monodisperse silica spheres.65 Here, the relation with 

“crystals” becomes even clearer as the ordering (or packing) of the spheres can be described 

similarly to regular crystal lattice arrangements (e.g. fcc). – A way more simple PC structure 

is a multilayer consisting of alternatingly stacked materials in the form of thin films, and 

with differing RIs (Figs. 6a and 7b). 1D PCs are also referred to as Bragg stacks (BSs), as the 

interaction of the stack with light can be appropriately described through a modified 

version of the Bragg law (i.e. the Bragg-Snell law):70 

mλ = 2d(neff2 – sin2θ)1/2 

Here, m is the diffraction order, λ is the wavelength of the reflected light, d is the physical 

thickness, neff is the mean effective RI and θ is the angle of incident light. If not combined 

with other color-generating processes, PCs typically show iridescent behavior which is 

particularly appealing in 2D and 3D structures. 

Iridescence (i.e. a change in color with an altered viewing angle) is a common feature in 

nature, ranging from minerals to living organisms: Many iridescent colorations are observed 

in arthropods and molluscs – e.g. on the wings, bodies or shells of flies and bees, in 

butterflies and beetles, or for nacre – whereas fewer examples exist among vertebrates.60 In 

some birds, keratin and melanin are appropriately arranged in the feather barbules to 

achieve the interaction with visible light (see also Fig. 6b).64 – Changes in the viewing angle 

can produce drastic changes in hue and intensity. The reflectance spectra can in fact exceed 

100 % reflectance (for an optimal viewing angle) when measured relative to a diffuse white 

standard;71 when the angle is changed, the iridescence can disappear, leaving visible only 

the color produced by underlying pigments (e.g. black melanins).60 This specific feature of 

iridescent coloration could serve animals in a number of ways. For instance, birds may 

direct their display more specifically to an intended receiver (e.g. to attract the attention of a 

female) by showing the bright color,72 while a potential rival might be faced by the less 

brilliant coloration. Another feature of structural colors is that the whole range of visible 
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colors can be produced, even short wavelengths (blue to violet), which are rarely known in 

pigmentary coloration.60 

As mentioned above, the origin of structural colors is related to the (nanoscale) 

dimensions and RIs of a structure. Variations in these characteristics will generally affect the 

final optical appearance; this feature, in turn, might allow an animal to alter its coloration in 

response to changes in its environment. For instance, the reed frog changes its color as a 

consequence of increasing temperatures (e.g. during dry seasons), which seems to help the 

frog for thermoregulation due to a higher overall reflectance.60 – Similarly, one could use 

such strategies to also detect changes in the anthropogenic environment: Indeed, various 

artificial humidity sensors have already been realized inspired by natural role models and 

relying on optical detection. For instance, it was shown that paradise whiptails can change 

the color of stripes on their bodies within seconds under control of the sympathic nervous 

system.22 Physiological experiments, mimicking these processes, achieved swelling and 

shrinking of the spaces between iridosphore plates upon changes in the osmotic pressure, 

which ultimately resulted in strong color shifts. Artificially generated nanostructures based 

on a hydrogel have shown to act in a similar way upon water adsorption.22,73 

 

 

Figure 8. Color changes in natural and synthetic materials as a response to humidity variations. Left: The 

Dynastes Hercules (a) is greenish in a dry atmosphere (b). When exposed to a high level of humidity, the beetle´s 

body turns black (c). (d) SEM image of the cuticle of the beetle. – Right: Photographs of the biomimetic sensor in 

dry state (a) and in wet state (b). Microscope images of the film confirm the change in color from blue-green (c) 

to red (d) with relative humidity. All images reprinted with permission from ref. 75. © 2010, AIP Publishing LLC. 
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While these examples display stimuli-induced changes in the lattice constants of 

nanostructures (i.e. expansion/contraction upon heating or water adsorption), dynamic 

changes in the RI can be likewise imagined (e.g. through solvent or vapor infiltration). For 

instance, the color of the Hercules beetle (Dynastes Hercules) changes from iridescent olive 

green to black with changes in humidity (Fig. 8, left).74 The beetle´s elytra is composed of a 

porous internal structure which, at high humidity levels, is filled with water and thus causes 

the elytra to appear black. – Inspired by the Hercules beetle, biomimetic humidity sensors 

have been fabricated such as the film shown in Fig. 8 (right).75 Here, silica spheres were 

assembled to form a 3D colloidal crystal and infiltrated with a polymer solution; after 

exposure to UV light an inverse replica was obtained similar to the porous structure of the 

beetle´s cuticle. The porous replica shows reflection peak shifts upon water infiltration 

which is attributed to a change in the effective RI.75 

Besides humidity, solvents and gases, a range of other stimuli can be imagined such as 

heat, stress, light, electric or magnetic fields.22 In comparison to conventional humidity 

sensors relying on electrical signals, optical readout schemes offer a convenient and fast 

alternative sensing mechanism as, for instance, no externally wired electronics are needed 

for measurements; besides, they do not afford complicated fabrication processes (compare 

with chapter 1.1).22 Moreover, optical sensors can in principle be adapted to any material 

that can be fashioned into thin films, multilayers and the like. The change in the optical 

properties can then be monitored by UV-Vis spectroscopy as the stimulus induces a shift in 

the position of the reflection spectrum.76 Even more simple, the response can be detected by 

the naked eye (if the color change is significantly large), similar to the principle of indicator 

papers (see Fig. 8, right).75 
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1.2.2 Sensor Performance Parameters 

As in other sensors, the sensing performance of optical devices (e.g. selectivity, sensitivity, 

response time and detection limit) depends on which materials and how they are 

implemented in the sensor, namely their chemical composition and their “structuring” 

(morphology, size of the building blocks, surface area etc.). A range of strategies have been 

developed suitable to control these issues and therefore, to improve the sensor´s output. For 

instance, the selectivity of a sensing system may be greatly enhanced by the introduction of 

inherent functional materials such as the afore mentioned MOF structures (see 

chapter 1.1). In comparison to metal oxides which are commonly used as building blocks 

for thin films and PCs, they provide more possibilities for responding to a distinct chemical 

stimulus, namely size exclusion, tunable host-guest interactions and the option for post-

synthetic modification. 

An alternative strategy to increase the specificity towards certain analytes is the concept of 

combinatorial sensing: Here, the single sensor is replaced by an array of different sensors of 

which each responds to the analyte in a characteristic way. Since we deal with an optical 

readout scheme, digital images can be taken before and after analyte exposure, from which a 

difference profile is generated for each sensor (Fig. 9a). The combined response of all 

sensors provides – in the best case – a unique signal (i.e. a colorimetric fingerprint) which in 

turn can be used to identify a single analyte or to discriminate between similar complex 

mixtures (e.g. coffee aromas, see Fig. 9b).77 Ultimately, principal component analysis (PCA) 

can be used which may allow for predicting whether an unknown sample shows similarities 

to already identified groups or not (Fig. 9c).78 
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Figure 9. The concept of combinatorial sensing. (a) A colorimetric sensing array consisting of 36 different dyes is 

exposed to a gaseous analyte (here: ammonia). Digital images are taken before and after exposure, from which a 

difference map is generated. (b) Color difference profiles can be generated for a range of different analytes (here: 

ten commercial coffee aromas), representing unique colorimetric fingerprints for each investigated analyte. 

(c) Quantitative comparison of the difference maps can be done by principal component analysis (PCA), and can 

help to predict the identity of a sample. If a large separation exists among the sample classes (blue and red circle 

in the top image), it can be inferred that unknown samples either belong to a class (A, within the blue circle), or 

rather not (B, outside the circles). Using a dataset with poor separation (bottom), no unambiguous identification 

is possible. (a) Reproduced from ref. 78 with permission of The Royal Society of Chemistry; (b) Reprinted with 

permission from ref. 77. © 2010 American Chemical Society; (c) Reproduced and adapated from ref. 78 with 

permission of The Royal Society of Chemistry. 

 

In order to facilitate the transport of molecules to the active components in the photonic 

architecture, films made of randomly oriented particles may be favoured over dense 

structures, as they provide a highly accessible pore system (textural porosity). This way, 

both the response time and sensitivity of the detection platforms could be enhanced (see 

chapter 1.1). – Along with the sensitivity, the limit of detection is linked to not only the 

chemical composition and microstructure of the film, but also the experimental conditions 

i.e. the resolution of the applied instrument and readout scheme. For the latter, the 

introduction of a so-called “defect layer” into the periodic structure has shown to provide an 

effective means to facilitate the detection of even small spectral changes; the defect 

produces a sharp band of allowed states in the photonic band gap which can be utilized for 

the precise determination of the optical response (Fig. 10, principle shown by the example 

of a regular SiO2/TiO2 BS, top images, and a similar stack with a SiO2 defect layer, bottom 

images).79 
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Figure 10. Introduction of defect layers in 1D PCs and solvent sensing. (a) Optical response of a regular 

SiO2/TiO2 BS infiltrated with different solvents (blue: water, green: ethylene glycol, red: Cl-benzene) in 

comparison to air (dotted line). (b) Spectral shifts measured for different solvents. (c-d) Optical response and 

measured spectral shifts for a BS with a sandwiched SiO2 defect layer, infiltrated with the same solvents. 

Reprinted and adapted with permission from ref. 79. © 2008 American Chemical Society. 
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1.3 OBJECTIVES OF THIS THESIS 

In chapters 1.1 and 1.2, the concepts of hierarchy and emergent properties have been 

introduced, namely defined porosity and structural coloration. The materials explored in 

this thesis and its contents are likewise based on a hierarchical order (Fig. 11): Inherently 

(micro)porous and functional MOF nanoparticles (1) are integrated into texturally (micro- 

and meso)porous thin films (2) and multilayers with submicron scale periodicity (3) via 

bottom-up assembly. By using interference-based readout (4), we aim for creating versatile 

detection platforms (5) with enhanced selectivity for different chemical stimuli. In the 

following, the objectives of this thesis and their organization in chapters 2 and 3 are 

described in more detail. 

 

 

Figure 11. Objects of interest in this thesis. MOF nanoparticles (1) are integrated into thin films (2) and 

multilayers (3) via bottom-up assembly. The sensing performance of (3) is investigated by using an interference-

based readout scheme (4). To increase the sensitivity and selectivity, the stack components and/or their order 

were varied (5; left: two defect structures; right: MOF-based BSs with differing MOF structures). 
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The fabrication of sensitive thin MOF films and multilayers requires the availability of 

nanosized MOF structures, and a preferably easy access via generally applicable strategies. 

In chapter 2.1, newly developed synthesis routes are discussed by the example of two 

prototypic MOF structures (HKUST-1, IRMOF-3). Downsizing of the MOFs is achieved by the 

addition of polymers and/or surfactants to the reaction solution thereby suggesting a mild 

and universal approach toward nanoscale MOFs. In addition, the formation of thin MOF 

films is demonstrated using stable colloidal suspensions of the MOFs, and the effective RI is 

determined being an important parameter in the design of photonic multilayers. 

In chapter 3, the synthesis of various MOF-based PCs is demonstrated and the respective 

sensing properties are discussed. As a proof-of-concept, the integration of a MOF thin film 

into photonic multilayers is shown for the first time (ZIF-8/TiO2) and for two different 

synthesis routes (nanoparticulate vs dense ZIF-8 films). The sensing performance of these 

platforms is demonstrated by vapor sorption measurements and in situ monitoring of the 

spectral response (chapter 3.1). – In our next attempt, we aim at enhancing the selectivity 

of nanoparticulate MOF-based BSs by introducing two additional MOF structures (HKUST-1, 

CAU-1) which differ in their individual sorption properties (i.e. polarity, pore sizes etc). The 

MOFs are integrated into the BSs either in single form (TiO2/MOF), in combination with 

another MOF (MOF-1/MOF-2), or as multiple sensors in the form of an array (combinatorial 

sensing; chapter 3.2). – Finally, the introduction of ZIF-8 nanoparticles as a defect layer in 

1D PCs is shown, either on top or sandwiched between regular SiO2/TiO2 BSs. The emerging 

optical properties are discussed for each architecture, and the sensing performance is 

surveyed in dependence on the stacking order (top vs sandwich) and morphology of the 

constituents (dense vs porous; chapter 3.3). 
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2 NOVEL STRATEGIES IN NANOSCALE MOF 

SYNTHESIS 

SUMMARY 

The possibility to cast a material into any suitable form, such as thin films for sensing 

devices, can play a key role in controlling and improving its properties relevant to the 

desired application field. Nanoparticles represent versatile building blocks for the synthesis 

of thin films as they allow for precise adjustment of the film microstructure depending on 

the particle size and shape. Besides surface chemistry, the morphology and the chemical 

composition of the active material ultimately determine the device´s output. As an example, 

parameters related to real-time sensors, such as analyte specificity and fast recovery, 

require the use of materials with inherent selectivity and moderate host–guest interaction 

strength (physisorption). These issues have been addressed recently by the incorporation of 

metal-organic frameworks (MOFs), e.g. into photonic crystal sensors (a detailed report on 

such MOF-based platforms realized in our group is given in chapter 3); these crystalline 

porous network structures are built up from metal ions and bridging organic linkers which 

can bear additional functionality. 

In order to implement any desired MOF structure in the form of nanoparticulate films, 

generally applicable size- and shape-controlled strategies are required. Access to MOF 

nanoparticles has been obtained by a number of methods so far, including ultrasonic or 

microwave assisted heating. The use of chemical additives – such as surfactants or 
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polymers – has also been proven beneficial for nanoscale MOF synthesis due to several 

reasons: The additive can act as a competitor to the ligand, allow for controlling the

particle´s morphology through weak interactions with the particle surface, or help to 

stabilize a distinct size distribution in the colloidal suspension. The combination of two or 

more differently acting auxiliary agents is expected to result in superior control of growth 

mechanisms at the nanoscale.  

In this study presented in chapter 2.1, we report on the preparation of two prototypical 

MOFs via an additive-mediated approach. Fine-tuning of the particle size was achieved by 

adjusting the type and amount of additives, along with 

the temperature. MOF nanoparticles were thus formed 

within 5 minutes under mild conditions. – Besides, the 

formation of optically homogeneous thin MOF films 

was demonstrated. Characteristic properties of the 

films, i.e. layer thickness and refractive index, were 

determined which can ultimately be used in the design 

of (optical) thin film-based devices. 
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Abstract 

A fast synthesis approach toward sub-60 nm sized MOF nanoparticles was developed by 

employing auxiliary additives. Control over the size of HKUST-1 and IRMOF-3 particles was 

gained by adjusting the concentration and type of stabilizers. Colloidal solutions of the MOFs 

were used for the formation of optically homogeneous thin films by spin-coating. 

2.1.1 Introduction 

Metal–organic frameworks (MOFs) represent a class of crystalline porous materials 

featuring intriguing properties such as chemical functionality combined with high porosity, 

which can be tailored for desired applications through the choice of the constituting 

building blocks.1 Possible fields of application range from gas adsorption and storage2 over 

catalysis3 and molecular sieving4 to the use of MOFs as active components in chemical 

sensors.5 Especially in the field of sensing, the possibility to cast the sensing material into a 

suitable form, such as thin films, is a key prerequisite to ensure diffusion throughout the 

entire active material and to keep response times low.6 MOF nanoparticles (NPs) can serve 

as versatile building blocks for thin films, which can be obtained by straightforward, low 

temperature solution processing protocols such as spin- and dip-coating.7 At the same time, 
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the use of nanoparticulate MOFs in principle allows for the precise adjustment of the 

material's properties, such as surface chemistry and shape, which in turn will affect the 

microstructure and, hence, performance of the resulting MOF film; besides, shape-specific 

synthesis strategies could reveal a better insight into MOF crystal growth mechanisms at the 

nanoscale.8 

Among a range of well-studied MOF systems, HKUST-1 (Cu3(BTC)2, BTC = benzene-1,3,5-

tricarboxylate) belongs to the most prominent ones owing to its structural stability on ad- 

and desorption of water molecules, which coordinate to unsaturated Cu(II) sites of the 

framework.9 In addition, such open metal sites are proposed to show increased affinity 

towards H2 molecules resulting in improved hydrogen storage capacity,10 which may be 

even enhanced by tailoring the morphology and size of HKUST-1 crystals on the nanoscale. 

Access to MOF NPs has been obtained by a number of methods so far, upon which ultrasonic 

(US) or microwave (MW) assisted heating have been found to significantly accelerate the 

crystallization of MOFs as compared to traditional electric heating.11–13 However, these 

strategies have shown to lack reproducibility owing to the use of different types of synthesis 

set-ups which may affect the particle properties significantly.14 The need for high 

temperatures for enhanced crystallinity has been circumvented by the development of 

direct mixing approaches,12,15–17 mechanochemical routes,18 freeze–drying approaches19 or 

continuous-flow methods which allow for the high-throughput preparation of MOF crystals 

by rapid mixing of pre-heated solvent streams.20 Such routes suffer, however, in some cases 

from comparatively long reaction times (20 min at least for the synthesis of HKUST-1 based 

on a mechanochemical route18) or a complex synthesis set-up (synthesis in a continuous 

flow reactor20) which hampers their generalization and implementation. Moreover, fine-

tuning of the crystal size below 100 nm remains a challenge for the above mentioned 

synthesis strategies. Another attractive route to the size-controlled MOF synthesis is the use 

of auxiliary additives which can act as competitors to the bridging ligand (“coordination 

modulation”),13,21,22 or the use of surfactants to control the influx of monomers in order to 

stabilize the growing particles and to control the particles' morphology through weak 

interactions of the additive with the particle surface (“surfactant-mediated synthesis”).23–26 

These synthesis schemes have been successfully utilized not only for HKUST-1 with the help 

of PAA (poly(acrylic acid)) salts25 or dodecanoic acid as size modulating agents,13 but also 

for other well-studied MOFs such as isoreticular IRMOF-3 (Zn4O(BDC–NH2)3, BDC–NH2 = 

2-aminoterephthalate). In the case of IRMOF-3, superior control of the crystal size has been 

achieved by the addition of CTAB (hexadecyltrimethylammonium bromide) to slow down 
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nucleation times, and by fine-tuning the synthesis conditions through a four-step strategy.26 

Based on these studies realizing the size-controlled formation of MOFs at ambient rather 

than high-temperature conditions,27–29 the controlled synthesis of nanosized MOFs seems 

feasible. Nevertheless, only a few generally applicable synthetic strategies toward 

nanoMOFs with sizes less than 100 nm have been developed as yet. 

In this study, we report on the preparation of ultrasmall versions of HKUST-1 and 

IRMOF-3, using an additive-mediated synthesis strategy. Our approach involves the use of 

chemical additives (polymers or polymer–surfactant combinations), which are mixed with 

the ligand before being reacted with the respective metal source, upon which MOF NPs form 

within 5 minutes under mild conditions. By altering the synthetic conditions such as 

reaction temperature, concentration, ratio and type of additive, we gain control over the 

particle size of the respective MOF. 

2.1.2 Results and Discussion 

HKUST-1 NPs were successfully prepared by mixing precursor solutions (Cu(OAc)2·H2O and 

trimesic acid (H3BTC) in a water–ethanol–DMF mixture) with PAA at different temperatures 

(0 °C, room temperature (RT), 55 °C). Powder X-ray diffraction (PXRD) patterns of the 

products obtained at 0 °C and at RT, respectively, confirm the structure of the as-

synthesized materials (Fig. 1a), apart from peak broadening, which is attributed to the small 

grain size of the products (29 nm deduced through the Scherrer formula). The morphology 

of the MOF NPs was examined by scanning electron microscopy (SEM), atomic force 

microscopy (AFM) and dynamic light scattering (DLS). SEM images of HKUST-1 synthesized 

at RT and 0 °C, respectively, reveal small particles with diameters between 30 nm and 50 

nm (Fig. 2a), which was confirmed additionally through AFM (see Figs. 2b and S1, SI). DLS 

measurements (Fig. S2, SI) suggest that an increase of the reaction temperature from 0 °C to 

RT leads to a small shift of the mean particle radius from 50 nm to 60 nm (note that DLS 

measures the hydrodynamic radius including a solvating shell, leading to larger particle 

sizes than obtained by direct imaging techniques). This observation is supported by SEM 

images showing a comparatively larger amount of particles with diameters >40 nm for the 

synthesis at RT (see Fig. S3, SI). Heating the reaction mixture to 55 °C, however, leads to a 

more significant increase of the particle radius from 60 nm to 80 nm, as confirmed by DLS 

measurements (Fig. S2, SI). Low temperatures, therefore, seem to be beneficial to slow 

down crystal growth and reduce the particle size of HKUST-1; this tendency is in agreement 
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with other reports where size-control was gained by using rather mild synthesis 

conditions.16 We observed a similar size-controlling effect by varying the polymer 

concentration, i.e. the ratio of H3BTC to PAA, from 1:2 up to 1:15 (corresponding to 0.082 

mmol up to 0.615 mmol of PAA), while keeping the temperature at 0 °C and monitoring the 

change of the particle size with DLS (Fig. S4, SI). We observe that on decreasing the amount 

of PAA, the particle radius decreases from 57 nm (for a ratio of 1:6, 0.246 mmol PAA) to 48 

nm (for a ratio of 1:3, 0.123 mmol PAA) while the size distribution is significantly narrowed 

as indicated by a change of the polydispersity index (PdI) from 0.184 (1:6, 0.246 mmol PAA) 

to 0.091 (1:3, 0.123 mmol PAA).  

However, for an even lower ratio of 1:2 (0.082 mmol PAA), the PdI was found to rise again 

(0.176). While the size distribution is broadened – in general – with increasing amounts of 

PAA, the product yield is decreased, and at the highest PAA concentration (1:15, 0.615 mmol 

PAA) no precipitation was observed at all. We rationalize these findings by invoking the 

observation that HKUST-1 is formed within seconds upon the reaction of the starting 

materials and further growth of the particles seems to be inhibited by the formation of a 

protective PAA shell coordinating to the Cu(II) ions.30 At increasing amounts of PAA (and, 

hence, increasing acidity of the reaction mixture) the network formation (i.e. nucleation) is 

slowed down owing to a comparatively low supply of the network constituting 

deprotonated linker BTC3−, along with a low availability of free copper ions not coordinated 

to PAA.31 On the contrary, at very low PAA concentrations, the amount of stabilizing agent is 

insufficient to slow down monomer addition; thus, size defocusing is observed for both 

particularly low and high amounts of PAA (for a given concentration of H3BTC and copper 

acetate). A ratio of 1:3 (0.123 mmol PAA) turned out to be most suitable to obtain a narrow 

size distribution (PdI = 0.091) and a reasonably high product yield (65–70%). Using these 

synthesis conditions, we observed no significant change of the size of the particles by 

increasing the reaction time from 5 min to 30 min (see Figs. S5 and S6, SI), which we 

attribute to the rapid formation and protection of the particles upon mixing of the starting 

materials with PAA.32 

  



2 Nanoscale MOF Synthesis 

43 
 

Nanosized IRMOF-3 was obtained by mixing Zn(OAc)2·2H2O, 2-aminoterephthalic acid, 

CTAB and polyvinylpyrrolidone (PVP) in DMF at RT, and the formation of IRMOF-3 NPs was 

confirmed by PXRD (a mean diameter of 27 nm was deduced through the Scherrer formula). 

The diffraction pattern of the as-synthesized material matches with the simulated pattern, 

whereas the completely dry product shows an intensity reversion of the peaks at 6.7° and 

9.6° (Fig. 1b). Similar findings for such an intensity change have been rationalized by 

porefilling effects caused by residual guest species from the synthesis solution.33 

 

Figure 1. PXRD patterns of HKUST-1 and IRMOF-3 nanoparticles. (a) Simulated XRD pattern for HKUST-1 

(black) and PXRD patterns of HKUST-1 synthesized at 0 °C (red) and at RT (blue), (b) simulated XRD pattern for 

IRMOF-3 (black) and PXRD patterns of as-synthesized IRMOF-3 (red) and after drying (blue). 

 

The nanoparticulate morphology of IRMOF-3 was confirmed by SEM (Fig. 2c); we deduce a 

mean diameter of 36 nm from the SEM images, whereas AFM measurements suggest 

particle sizes between 12 nm and 45 nm (see Figs. 2d and S7, SI). We successfully achieved 

size control of the particles by varying the concentration of the CTAB–PVP mixture at a 

constant weight ratio of 1:1 between 0.0135 mmol/0.00013 mmol and 0.054 mmol/0.0005 

mmol. DLS measurements suggest that higher amounts of the additives reduce the mean 

particle radius from 80 nm to <30 nm (see Fig. S8, SI). The combination of two differently 

acting stabilizers shows a synergetic effect on the size distribution of IRMOF-3 particles: 

while the use of either CTAB or PVP as size-controlling agent has shown to reduce the 

hydrodynamic radius of IRMOF-3 to around 40 nm with a broad size distribution in 

particular for PVP (nCTAB = 0.027 mmol, and nPVP = 0.00025 mmol, respectively; see Fig. S9, 

SI), the combination of both materials allows for the synthesis of even smaller particles (≈30 

nm in radius for 0.027 mmol/0.00025 mmol of CTAB–PVP). To our knowledge, these sizes 

are among the smallest which have been reported so far for IRMOF-3 NPs and most other 

MOFs.26–28 In order to investigate the effect of the additive combination on the particle size 
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of IRMOF-3 in more detail, we conducted purely PVP-mediated syntheses as well as a direct 

mixing approach without the addition of any auxiliary material. DLS measurements suggest 

that increasing concentrations of PVP lead to a decrease of the particle radius from 280 nm 

down to 40 nm for the highest PVP concentration (0.00125 mmol) (Fig. S10, SI). This 

observation is in agreement with a report about PVP protected Prussian Blue particles 

where an increased content of stabilizing PVP at given concentrations of the starting 

materials led to smaller diameters.34 Besides size-modulating effects, PVP may prevent the 

particles from aggregating in solution.35 The role of CTAB in the additive-mediated synthesis 

of IRMOF-3 may become clear by looking at the synthesis without mediators: in addition to 

small particles in the size range below 50 nm, SEM images reveal the presence of larger 

particles (80–180 nm) exhibiting a cubic morphology, which we did not observe in the 

presence of additives (Fig. S11, SI). According to previously described synthetic routes 

developed for the size- and shape-control of MOF NPs, CTAB has been shown to slow down 

the nucleation and growth of MOFs and, hence, to affect the resulting size distribution.24,36,37 

Here, it seems likely that the addition of CTAB in combination with PVP does not only 

restrict particle growth (for a given concentration of the additives), but also contributes to 

an increased uniformity in size. Interestingly, additional time-dependent experiments 

suggest that further increase of the reaction time from 5 min to 60 min in the presence of 

the additive mixture has little impact on the particle size and crystallinity of the final 

product (Figs. S12 and S13, SI). In contrast to the reaction of the pure starting materials (Zn 

source and H2BDC–NH2), which instantaneously causes turbidity of the reaction solution 

due to particle formation, the reaction speed for the additive-controlled synthesis of IRMOF-

3 is slowed down dramatically such that (visible) crystal formation is delayed for a few 

minutes after combining the starting materials, which emphasizes the importance of CTAB 

and PVP as stabilizers (see Fig. S14, SI). Even after 11 days, the size distribution within the 

reaction mixture has changed only marginally from 30 nm (mean radius) to 48 nm (see Fig. 

S12, SI), suggesting a facile handling of the product and, moreover, the possibility to isolate 

a particular particle size within a narrow size range as a function of time. 
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Figure 2. SEM and AFM images of HKUST-1 and IRMOF-3 particles. (a) SEM image of HKUST-1 synthesized at 

RT, (b) AFM image of HKUST-1 synthesized at 0 °C, (c) SEM image and (d) AFM image of IRMOF-3 synthesized 

with a ratio of CTAB/PVP = 0.027 mmol/0.00025 mmol. 

 

MOF NPs with a uniform size of smaller than ≈100 nm can be used to build up optically 

homogeneous thin films exhibiting minimum scattering of visible light, which can serve as 

building blocks in MOF-based optical sensors.38 MOF NP-based thin films may be deposited 

on a suitable substrate by solution processing, for example by spin- or dip-coating. As the 

layer thickness is affected by the concentration of particles in solution as well as by the 

volatility and wetting properties of the solvent, the use of well-dispersed MOF particles in an 

appropriate solvent is mandatory. Stable colloidal suspensions of HKUST-1 and IRMOF-3 

were obtained by redispersing the particles in DMF, whereas their dispersion in other more 

volatile solvents such as ethanol or methanol was found to be impeded by the sedimentation 

of the particles within minutes. Thin films composed of HKUST-1 or IRMOF-3 particles were 

obtained by spin-coating DMF-based suspensions (conditions see SI) and characterized by 

cross-sectional SEM and ellipsometry. Fig. 3 shows a representative section of the MOF 

layers which exhibit uniform thicknesses (173 nm ± 15 nm for HKUST-1, 147 nm ± 5 nm for 

IRMOF-3) over a large lateral range; this thickness range is supported by ellipsometry 
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(176.2 nm ± 0.6 nm for HKUST-1, 143.1 nm ± 0.2 nm for IRMOF-3). Besides layer 

thicknesses, ellipsometry allows us to determine the effective refractive index (RI) of a 

dielectric material (or composite) fashioned into a reflective thin film. We obtained effective 

RIs of 1.21 and 1.27 for HKUST-1 and IRMOF-3, respectively (note that textural porosity as 

well as possible residues of the respective additives contribute to the experimental value), 

which is slightly smaller than the RI of other MOF films (e.g. ZIF-8: 1.34–1.39).38,39 The film 

assembly based on NPs imparts the MOF layer with textural porosity, which may be 

beneficial for MOF-based sensing devices: interstitial voids guarantee free diffusion 

throughout the entire film, thereby enhancing the sensitivity, whereas the MOF adds 

chemical selectivity to the system.32,38 

 

 

Figure 3. Cross-sectional SEM images of MOF thin films assembled from colloidal solutions of the respective 

MOFs by spin-coating. (a) HKUST-1 film, (b) magnified detail, (c) IRMOF-3 film, (d) magnified detail. 
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2.1.3 Conclusions 

In summary, we have developed a fast solvothermal synthesis approach toward sub-60 nm 

sized MOF NPs (HKUST-1 and IRMOF-3) under mild conditions. Our method allows fine-

tuning of the particle size within a large range (30–300 nm) by adjusting the type and 

amount of polymer (PAA for HKUST-1) or polymer–surfactant combination (PVP–CTAB for 

IRMOF-3), along with the temperature and reaction time. The synergistic action of two 

different additives having characteristic stabilizing properties results in superior control of 

the IRMOF-3 particle size and monodispersity. Opening generally applicable synthetic 

avenues to MOF NPs with diameters smaller than commonly achieved size ranges (≈30 nm) 

is of importance for several fields of applications relying on ultrasmall MOF particles or thin 

films, such as in drug delivery or sensing. Along these lines, we have demonstrated the 

fabrication of optically homogenous HKUST-1 and IRMOF-3 thin films derived from stable 

colloidal MOF suspensions by spin-coating. Such hierarchically porous structures bode well 

for the development of highly accessible and sensitive MOF-based sensing devices. 

 

Acknowledgments 

Financial support by the Max Planck Society, Deutsche Forschungsgemeinschaft (SPP-

1362), the Fond der Chemischen Industrie (FCI), the cluster of excellence “Nanosystems 

Initiative Munich” (NIM), and the Center for NanoScience (CeNS) is gratefully acknowledged. 

We thank Prof. T. Bein for granting access to the ellipsometer and I. Pavlichenko, C. Minke, V. 

Duppel, S. Werner and C. Ziegler for their assistance with the material analysis. 



2 Nanoscale MOF Synthesis 

48 
 

2.1.4 References 

1 (a) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe and O. M. Yaghi, 

Acc. Chem. Res. 2001, 34, 319-330; (b) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. 

Wachter, M. O'Keeffe and O. M. Yaghi, Science 2002, 295, 469-472; (c) C. Janiak and J. 

K. Vieth, New J. Chem. 2010, 34, 2366-2388; (d) W. Xuan, C. Zhu, Y. Liu and Y. Cui, 

Chem. Soc. Rev. 2012, 41, 1677-1695; (e) L. Song, J. Zhang, L. Sun, F. Xu, F. Li, H. 

Zhang, X. Si, C. Jiao, Z. Li, S. Liu, Y. Liu, H. Zhou, D. Sun, Y. Du, Z. Cao and Z. Gabelica, 

Energy Environ. Sci. 2012, 5, 7508-7520; (f) S. M. Cohen, Chem. Rev. 2012, 112, 970-

1000; (g) T. R. Cook, Y. Zheng and P. J. Stang, Chem. Rev. 2013, 113, 734-777. 

2 (a) M. P. Suh, H. J. Park, T. K. Prasad and D. Lim, Chem. Rev. 2012, 112, 782-835; (b) K. 

Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae and J. 

R. Long, Chem. Rev. 2012, 112, 724-781. 

3 (a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. 

Rev. 2009, 38, 1450-1459; (b) M. Ranocchiari and J. A. van Bokhoven, Phys. Chem. 

Chem. Phys. 2011, 13, 6388-6396; (c) P. Valvekens, F. Vermoortele and D. De Vos, 

Catal. Sci. Technol. 2013, 3, 1435-1445. 

4 (a) J. Li, J. Sculley and H. Zhou, Chem. Rev. 2012, 112, 869-932; (b) M. Shah, M. C. 

McCarthy, S. Sachdeva, A. K. Lee and H. Jeong, Ind. Eng. Chem. Res. 2012, 51, 2179-

2199. 

5 (a) B. Chen, S. Xiang and G. Qian, Acc. Chem. Res. 2010, 43, 1115-1124; (b) L. E. Kreno, 

K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem. Rev. 2012, 

112, 1105-1125; (c) Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev. 2012, 112, 1126-

1162. 

6 (a) O. Shekhah, J. Liu, R. A. Fischer and C. Wöll, Chem. Soc. Rev. 2011, 40, 1081-1106; 

(b) D. Bradshaw, A. Garai and J. Huo, Chem. Soc. Rev. 2012, 41, 2344-2381. 

7  (a) P. Horcajada, C. Serre, D. Grosso, C. Boissière, S. Perruchas, C. Sanchez and G. 

Férey, Adv. Mater. 2009, 21, 1931-1935; (b) A. Demessence, P. Horcajada, C. Serre, C. 

Boissière, D. Grosso, C. Sanchez and G. Férey, Chem. Commun. 2009, 7149-7151; (c) 

A. Demessence, C. Boissière, D. Grosso, P. Horcajada, C. Serre, G. Férey, G. J. A. A. 



2 Nanoscale MOF Synthesis 

49 
 

Soler-Illia and C. Sanchez, J. Mater. Chem. 2010, 20, 7676-7681; (d) D. Jiang, A. D. 

Burrows, Y. Xiong and K. J. Edler, J. Mater. Chem. A 2013, 1, 5497-5500. 

8  (a) M. P. Attfield and P. Cubillas, Dalton Trans. 2012, 41, 3869-3878; (b) N. Stock and 

S. Biswas, Chem. Rev. 2012, 112, 933-969; (c) E. A. Flügel, A. Ranft, F. Haase and B. V. 

Lotsch, J. Mater. Chem. 2012, 22, 10119-10133; (d) V. Valtchev and L. Tosheva, Chem. 

Rev. 2013, 113, 6734-6760. 

9  (a) S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science 

1999, 283, 1148-1150; (b) P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J. Flemming 

and K. S. Walton, Ind. Eng. Chem. Res. 2012, 51, 6513-6519. 

10  Q. Yang and C. Zhong, J. Phys. Chem. B 2006, 110, 655-658. 

11  (a) Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang, Z. Wu and X. Jiang, Mater. Lett. 2009, 63, 78-

80; (b) N. A. Khan and S. H. Jhung, Bull. Korean Chem. Soc. 2009, 30, 2921-2926; (c) Z. 

Ni and R. I. Masel, J. Am. Chem. Soc. 2006, 128, 12394-12395; (d) Z. Xiang, D. Cao, X. 

Shao, W. Wang, J. Zhang and W. Wu, Chem. Eng. Sci. 2010, 65, 3140-3146; (e) N. A. 

Khan, E. Haque and S. H. Jhung, Phys. Chem. Chem. Phys. 2010, 12, 2625-2631. 

12  S. Loera-Serna, M. A. Oliver-Tolentino, Ma. de Lourdes López-Núnez, A. Santana-Cruz, 

A. Guzmán-Vargas, R. Cabrera-Sierra, H. I. Beltrán and J. Flores, J. Alloys Compd. 2012, 

540, 113-120. 

13  S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka and S. Kitagawa, Chem. Mater. 

2010, 22, 4531-4538. 

14  (a) M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Microporous 

Mesoporous Mater. 2010, 132, 121-127; (b) J. Klinowski, F. A. Almeida Paz, P. Silva 

and J. Rocha, Dalton Trans. 2011, 40, 321-330. 

15  J. Zhuang, D. Ceglarek, S. Pethuraj and A. Terfort, Adv. Funct. Mater. 2011, 21, 1442-

1447. 

16  G. Majano and J. Pérez-Ramírez, Helv. Chim. Acta 2012, 95, 2278-2286. 

17  L. Brinda, K. S. Rajan and J. B. B. Rayappan, J. Appl. Sci. 2012, 12, 1778-1780. 

18 H. Yang, S. Orefuwa and A. Goudy, Microporous Mesoporous Mater. 2011, 143, 37-45. 



2 Nanoscale MOF Synthesis 

50 
 

19  L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel and J. A. Martens, J. Mater. Chem. 2012, 

22, 13742-13746. 

20  M. Gimeno-Fabra, A. S. Munn, L. A. Stevens, T. C. Drage, D. M. Grant, R. J. Kashtiban, J. 

Sloan, E. Lester and R. I. Walton, Chem. Commun. 2012, 48, 10642-10644. 

21  (a) S. Hermes, T. Witte, T. Hikov, D. Zacher, S. Bahnmüller, G. Langstein, K. Huber and 

R. A. Fischer, J. Am. Chem. Soc. 2007, 129, 5324-5325; (b) J. Cravillon, R. Nayuk, S. 

Springer, A. Feldhoff, K. Huber and M. Wiebcke, Chem. Mater. 2011, 23, 2130-2141; 

(c) M. Pham, G. Vuong, F. Fontaine and T. Do, Cryst. Growth Des. 2012, 12, 3091-3095. 

22  F. Wang, H. Guo, Y. Chai, Y. Li and C. Liu, Microporous Mesoporous Mater. 2013, 173, 

181-188. 

23  K. M. L. Taylor, A. Jin and W. Lin, Angew. Chem. 2008, 120, 7836-7839. 

24 Q. Liu, L. Jin and W. Sun, Chem. Commun. 2012, 48, 8814-8816. 

25 D. Jiang, T. Mallat, F. Krumeich and A. Baiker, Catal. Commun. 2011, 12, 602-605. 

26  M. Ma, D. Zacher, X. Zhang, R. A. Fischer and N. Metzler-Nolte, Cryst. Growth Des. 

2011, 11, 185-189. 

27  L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao and Y. Yan, Microporous 

Mesoporous Mater. 2003, 58, 105-114. 

28  Z. Gu, J. Jiang and X. Yan, Anal. Chem. 2011, 83, 5093-5100. 

29  J. Cravillon, S. Münzer, S. Lohmeier, A. Feldhoff, K. Huber and M. Wiebcke, Chem. 

Mater. 2009, 21, 1410-1412. 

30  Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki, J. Mater. Chem. 

2000, 10, 2548-2552. 

31 T. Uemura, Y. Hoshino, S. Kitagawa, K. Yoshida and S. Isoda, Chem. Mater. 2006, 18, 

992-995. 

32  D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa, S. Kitagawa and J. Groll, 

Nat. Chem. 2010, 2, 410-416. 



2 Nanoscale MOF Synthesis 

51 
 

33  (a) J. Hafizovic, M. Bjorgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, C. 

Lamberti and K. P. Lillerud, J. Am. Chem. Soc. 2007, 129, 3612-3620; (b) L. Zhang and 

Y. H. Hu, Appl. Surf. Sci. 2011, 257, 3392-3398. 

34  (a) T. Uemura and S. Kitagawa, J. Am. Chem. Soc. 2003, 125, 7814-7815; (b) T. 

Uemura, M. Ohba and S. Kitagawa, Inorg. Chem. 2004, 43, 7339-7345. 

35  Z. Li and Y. Zhang, Angew. Chem. Int. Ed. 2006, 45, 7732-7735. 

36 P. Sarawade, H. Tan and V. Polshettiwar, ACS Sustainable Chem. Eng. 2013, 1, 66-74. 

37  Y. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su and Z. Lai, CrystEngComm 2011, 

13, 6937-6940. 

38  (a) G. Lu and J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 7832-7833; (b) F. M. 

Hinterholzinger, A. Ranft, J. M. Feckl, B. Rühle, T. Bein and B. V. Lotsch, J. Mater. Chem. 

2012, 22, 10356-10362. 

39  S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, 

Chem. Mater. 2013, 25, 27. 





 

53 
 

3 INTERFERENCE-BASED READOUT OF 

SORPTION EVENTS IN MOF MULTILAYER 

SYSTEMS 

SUMMARY 

Nanoparticulate MOFs, primarily those having diameters below 100 nm, lend themselves 

well for the formation of optically homogeneous thin films, as demonstrated in the previous 

chapter (2.1). For the design of multilayered sensors relying on an optical readout (i.e. 

interference), refractive indices (RIs) of the materials and their layer thicknesses (z) 

constitute the most relevant properties: Depending on how these parameters are chosen, 

specific spectral qualities are achieved such as hue and intensity of the reflected color. In 1D 

photonic crystals (PCs), two materials with differing RIs are alternatingly arranged in the 

form of thin films. The resulting color (reflection maximum or Bragg peak) is determined by 

the Bragg-Snell law and changes with respect to variations in the optical thickness (i.e. RI 

and z). These variations can be either static or dynamic: For the former, different synthetic 

conditions or material compositions can lead to altered thicknesses and RIs; the latter is 

characterized by spectral shifts induced, for instance, through the capability of the stack 

constituting materials to adsorb particular guest molecules. This quality can be utilized, in 

turn, to detect changes in the environment such as the presence of toxic gases. 
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Due to their unique structure, MOFs are suitable for adsorbing molecules and, hence, also 

reporting on such events. Here, tunable sorption properties are achieved as a function of the 

buildings blocks constituting the MOF lattice, including size exclusion, polarity effects, and 

specific host–guest interactions (e.g. H-bonds). Besides, MOFs are typically characterized 

through adsorption isotherms showing specific analyte uptake in dependence of the partial 

pressure; it is thus expected that MOF-based photonic architectures are capable of 

specifying even slight variations in analyte concentration. – A particularly appealing 

property of interference-based readout is the fact that no additional labelling of the sensing 

material is required to achieve monitoring of sorption events, as the observed parameter, 

the (effective) RI, is a quality inherent to the investigated material (or a combination of 

different materials/morphologies); hence, in principle, any desired MOF structure could be 

implemented in PC devices, if it can be accessed in nanoscale form or otherwise processed 

into thin films. Moreover, this approach allows for real-time sensing, as the response 

induced by RI variations is expected to occur fast (i.e. on the order of seconds). 

In the following chapters 3.1–3.3, three examples are reported of how MOFs may be 

implemented in 1D PC sensors. Besides structural and optical characteristics, the sensing 

performance of these platforms is discussed in view of different design aspects: tuning of 

the MOF composition, morphology of the layers, and ordering of the stack constituting 

materials; as well as in relation to general sensing characteristics, namely selectivity, 

response time and sensitivity. In order to monitor the RI-induced spectral changes, both the 

reflectance spectra and the color appearance were used for detection. The thus obtained 

data were evaluated through optically encoded isotherms (concentration-dependent 

spectral shifts induced by analyte adsorption), changes in reflectance at a certain 

wavelength (for a time-resolved response toward varying analyte concentrations) or color 

image analysis coupled with principle component analysis (identification and separation of 

single solvents/solvent mixtures with sensor arrays). 
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In chapter 3.1, the integration of a prototypic MOF into 1D PCs is demonstrated for the first 

time. For the realization of the photonic architecture, ZIF-8 and TiO2 were chosen as PC 

components with different RIs. While the latter is used to assure a high RI contrast and, 

hence, good optical quality of 

the stack, ZIF-8 is intended to 

impart molecular selectivity to 

the Bragg stack (BS) as a result 

of its defined pore system and 

pore size. – For the fabrication 

of the BSs, two different 

synthesis approaches were 

used: In the first approach, the 

ZIF-8 layers were grown onto 

the substrate, while the second 

stack was assembled from ZIF-8 nanoparticles; in both cases, TiO2 films with textural 

porosity were used to enable molecular diffusion within the entire stack. – The sensing 

performance of the two different stacks was investigated by exposing them towards 

chemically similar solvent vapors at varying concentrations. By plotting the observed 

spectral shifts as a function of the partial pressure (similar to an isotherm), the differences 

in sensitivity and selectivity were identified for both platforms. 

In chapter 3.2, the integration of three different types of MOFs into photonic multilayers is 

reported. Here, we aimed at achieving different sorption properties of the BSs, including 

enhanced selectivity and 

sensitivity for particular 

analytes; to this end, 

different MOF structures 

were chosen featuring 

characteristic pore sizes 

and environments. – The 

fabrication of the BSs was 

accomplished by assembling MOF nanoparticles in alteration with another component. In 

total, three different synthesis approaches were used: In the first approach, the MOFs were 

stacked with the high RI-material TiO2, similar to the approach reported in chapter 3.1; in 

the second, purely MOF-based BSs were produced, dubbed tandem MOF BSs, in which two of 
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the MOF structures were alternatingly arranged; in the third approach, three of the regular 

TiO2/MOF BSs were organized in a pattern to serve as a colorimetric fingerprint. – The 

sensing performance of all three systems was tested by recording a) the pressure-

dependent adsorption of solvent vapors (for TiO2/MOF BSs and tandem MOF BSs), b) the 

kinetics of TiO2/MOF BSs, and c) the combined response of the array, with respect to 

different solvents and solvent mixtures at a fixed concentration. In summary, these 

experiments reveal a sensing performance of the stacks that allows for both identifying and 

quantifying an analyte; fast response times; and the potential for combinatorial sensing by 

specifying even complex analytes. 

In chapter 3.3, the introduction of a stimuli-responsive ZIF-8 “defect” layer into regular 

SiO2/TiO2 multilayers is shown. With the addition of this dopant layer, we aimed at the 

emergence of an additional narrow band of allowed states in the photonic band gap; the 

sharpness of this band may help to 

provide a more precise means to detect 

even small spectral changes upon analyte 

adsorption. The defect layer has therefore 

been deposited either on top of the metal 

oxide stacks (top defect structures) or 

sandwiched between two regular stacks 

(sandwich defect structures). In addition, 

we tried different TiO2 film morphologies 

(either TiO2 sol or nanoparticles) to 

investigate a potential impact on the 

stack´s sensing properties. – Vapor sorption measurements were conducted as a function of 

the layer morphology, layer sequence and the position of the defect layer in the stack; in 

summary, we identified a “gating” function of the uppermost layers for the sensitivity of the 

overall detection platform. – Besides, the conversion of the ZIF-8 layer into an optically 

homogenous mesoporous film (under defined conditions) was observed, and discussed as a 

generic approach toward hierarchically structured films and multilayers. 
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Abstract 

We present the fabrication of one-dimensional photonic crystals (Bragg stacks) based on a 

microporous metal–organic framework material and mesoporous titanium dioxide. The 

Bragg stack heterostructures were obtained using two complementary synthesis 

approaches utilizing the bottom-up assembly of heterogeneous, i.e. two-component 

photonic crystal multilayer structures. Zeolitic imidazolate framework ZIF-8 and 

mesoporous titanium dioxide were chosen as functional components with different 

refractive indices. While ZIF-8 is intended to impart molecular selectivity, mesoporous TiO2 

is used to ensure high refractive index contrast and to guarantee molecular diffusion within 

the Bragg stack. The combination of micro- and mesoporosity within one scaffold endows 

the 1D-MOF PC with characteristic adsorption properties upon exposure to various organic 

vapors. In this context, the sorption behavior of the photonic material was studied as a 

function of partial pressure of organic vapors. The results show that the multilayered 

photonic heterostructures are sensitive and selective towards a series of chemically similar 

solvent vapors. It is thus anticipated that the concept of multilayer heterogeneous photonic 

structures will provide a versatile platform for future selective, label-free optical sensors. 
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3.1.1 Introduction 

Metal–organic frameworks represent a class of hybrid materials with promising properties 

for various applications.1–5 In particular, the modular tailorability, the rich host–guest 

interactions, and the widely tunable sorption behavior make MOFs attractive candidates for 

chemical sensing.6,7 However, only a few reports are dealing with MOF-based sensors,8,9 in 

which the intrinsic framework luminescence10–14 or the refractive index modulation of 

Fabry–Perot interference peaks have been explored for signal transduction.15 The tunability 

of the effective refractive index (RI) of MOFs via adsorption of guests inspired us to 

correlate these properties with the underlying optics of photonic crystals (PCs), which are 

composed of alternating dielectric layers featuring periodic changes in their effective 

refractive indices.16–18 

One-dimensional assemblies, which represent the structurally simplest form of photonic 

crystals, are also known as Bragg stacks (BS) or Bragg mirrors. 1D-PC multilayer structures 

interacting with visible light require layer thicknesses corresponding to optical 

wavelengths.19 As a consequence of the periodicity in the dielectric function, specific 

wavelengths are efficiently reflected due to diffraction and interference of incident light at 

each interface of the periodically stacked composite.20 Enhanced reflectivity is achieved by 

increasing the number of bilayers or by choosing dielectric materials featuring a high 

refractive index contrast (Scheme 1).21 

Currently, intensive research efforts are focused on the development of tunable optical 

sensors with a label-free operation and compact set-up. There are several approaches 

ranging from plasmonic noble metal nanotubes22 or field effect transistors based on reduced 

graphene23 to Bragg stacks built up from an alternating polymer architecture,24 which deal 

with the implementation of these materials as tunable and label-free sensors. In particular, 

detection platforms based on Bragg stacks can be realized by translating stimuli-induced 

optical thickness changes of the constituent materials into a color change of the multilayer 

photonic structure. So far, several studies are dealing with tailor-made inorganic or hybrid 

materials to implement functionality within one-dimensional photonic crystals.25 While 

there are several examples of versatile SiO2–TiO2 systems,26–28 including both dense and 

porous morphologies as well as nanoparticle-based Bragg stacks,29,30 smart hybrid photonic 

materials with intrinsic functionality are still rare. 



3 Interference-Based Readout 

59 
 

In principle, a Bragg stack offers a versatile platform for the detection of molecular 

interactions and the development of chemical sensors, whereas the realization of chemical 

selectivity in sensors remains a great challenge. 

 

 

Scheme 1. Schematic representation of a multilayered photonic crystal architecture illustrating the structure- 

and angle-dependent reflection of incident light as well as the optical response upon exposure to external 

stimuli. 

 

Very recently, several groups reported a new transduction scheme based on the fabrication 

of MOF-containing ordered 3D photonic structures.31,32 The selectivity issue is addressed by 

integrating metal–organic frameworks into three-dimensional inverse opal structures. 

While Wu et al.32 employed a colloidal crystal templating approach using a polystyrene 

opaline ‘‘mold’’, the group of J. Hupp31 deposited MOF crystals onto a silica template to 

obtain hybrid MOF–silica colloidal crystal (MOF–SCC) films. The authors have shown that 

the introduction of an ordered porous structure imparts useful optical features to HKUST-1 

and ZIF-8. For MOF–SCC an optical signal displayed by distinct stop band shifts upon analyte 

sorption is readily observed. 

Contrary to 3D photonic materials, we introduce herein a one-dimensional photonic 

architecture based on a microporous metal–organic framework and titanium dioxide. Thus, 

an optical transducer system is built, which is used to efficiently convert molecular 

adsorption into an optical response. As a microporous material, the intensively studied 

zeolitic imidazolate framework ZIF-833 was chosen; this is expected to impart size- and 
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chemoselectivity and, thus, functionality to the 1D-MOF PC. Complementary material 

properties in one single platform, such as hydrophobicity/hydrophilicity, dual pore-size 

regimes, and high refractive index contrast, can be additionally integrated by our combined 

assembly approach. 

Ultimately, the presented results are expected to extend the toolbox for designing 

nanoporous and at the same time highly selective photonic crystals, to promote our 

understanding of molecular interactions in porous materials, and to provide novel concepts 

for label-free chemo-optical sensors. 

3.1.2 Experimental 

All chemicals (zinc nitrate hexahydrate, 2-methylimidazole; nitric acid (0.1 M), titanium(IV) 

ethoxide, titanium tetrachloride) as well as solvents are commercially available and were 

used as received. Tert-butyl alcohol was dried over a 4 Å molecular sieve at 28 °C and 

filtered prior to use. 

 

Route A 

Preparation of dense ZIF-8 films 

ZIF-8 thin films were prepared on silicon wafers, similar to the approach reported in refs. 

14 and 15. The substrates were pre-cleaned in Piranha solution (H2SO4/H2O2, 70:30 (v/v)) 

at 70 °C for 30 minutes, rinsed with distilled water and dried under nitrogen flow. 

For ZIF-8 thin film preparation, 500 mL methanolic stock solutions of Zn(NO3)2·6H2O (25 

mM, 99%, Aldrich) as well as of 2-methylimidazole (mIm) (50 mM, 99%, Aldrich) were 

prepared. A ZIF-8 thin film was obtained by immersing the cleaned substrates in a fresh 

mixture of 10 mL Zn(NO3)2 stock solution and 10 mL mIm stock solution for 30 minutes at 

room temperature. For optimization of homogeneity and to enhance surface smoothness, 

two different strategies were employed. The beakers were either put in an ultrasonic bath 

or fixed on a shaker during film growth. The as-prepared ZIF-8 thin film was washed with 

methanol and dried under nitrogen flow. Thicker films could be obtained by simply 

repeating the process with fresh solutions. 
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Synthesis of ultrasmall titanium dioxide nanoparticles and film preparation 

Titanium dioxide nanoparticles were synthesized as described earlier.34 In brief, a 

nonaqueous sol–gel route in tertbutyl alcohol under microwave irradiation was used to 

yield ultrasmall (3 nm), crystalline (anatase), non-agglomerated and highly dispersible 

nanoparticles. 

For all syntheses, titanium tetrachloride (0.7 mL, 6.4 mmol, 99.995%, Aldrich) was dissolved 

in toluene (5 mL) and added to tert-butyl alcohol (15 mL, 160 mmol, Aldrich) under 

continuous stirring. Microwave heating was performed in microwave autoclaves with an 

initial heating power of 1200 W (Synthos 3000, Anton Paar). The solution was heated to 

80 °C within 1 min and then kept at 50 °C for 20 min resulting in a slightly yellow, 

transparent solution of nanoparticles. To obtain the fully crystalline nanoparticles, this 

heating procedure was repeated one more time after a cooling period to room temperature. 

The solution was then colorless and titaniumdioxide could be flocculated by the addition of 

n-heptane (n-heptane:tert-butanol/toluene 2:1 volume ratio; Sigma) and separated by 

centrifugation at 50 000 rcf for 15 min. 

For the preparation of the mesoporous (mp) titania films the nanoparticle pellet (0.4 g) 

was redispersed in ethanol (8.3 mL) and Pluronic F127 (0.1 g, BASF) was added as structure 

directing agent (SDA). 

Fabrication of Bragg stack 1 (BS-1) 

For the fabrication of Bragg stack 1 (BS-1), thoroughly washed and dense ZIF-8 thin films 

were coated with a fresh colloidal suspension of redispersed ultrasmall titanium dioxide 

nanoparticles. The films were deposited by spin-coating using a Laurell WS-400B-6NPP-

Lite-AS spin-coater at a speed of 5000 rpm to give a film thickness of ~50 nm. To remove the 

SDA, the films were first heated to 100 C (3 h ramp, 1 h dwell time) to increase the film 

stability followed by an extraction of the SDA with ethanol under reflux for 1 h. The 

complete removal was confirmed by reflection absorption infrared (RAIR) spectroscopy in 

addition to scanning electron microscopy (SEM) (see SI, Figs. S11 and S12). 

The whole procedure was repeated 3 times to obtain multiple alternating ZIF-8–mp-TiO2 

architectures. 
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Route B 

Synthesis of ZIF-8 nanoparticles 

ZIF-8 nanoparticles were prepared by a modified literature synthesis.35 In a typical 

experiment, Zn(NO3)2·6H2O (1.03 g, 3.45 mmol, 99%, Grüssing) was dissolved in methanol 

(70 mL, puriss, Sigma) and rapidly added to a pre-cooled (0 °C) solution of 2-

methylimidazole (2.27 g, 27.7 mmol, 99%, Aldrich) in methanol (70.0 mL). The mixture was 

stirred and cooled constantly throughout the reaction until the solution slowly turned 

turbid. After 30 min, the nanocrystals were separated from the solvent by centrifugation. 

Colloidal suspensions of ZIF-8 were obtained by redispersing the particles after 

centrifugation in DMF (or methanol) (670 mg ZIF-8/1 mL DMF). 

Synthesis of titania nanoparticles 

Titania nanoparticles were synthesized according to the literature.36 In a typical 

procedure, Ti(OEt)4 (6.25 mL, Aldrich) was slowly added to HNO3 (0.1 M, 37.5 mL, puriss, 

Acros) under stirring and heated to 80 °C for 8 h. After cooling to room temperature, the 

opalescent mixture was sonicated for at least 3 h in order to break up agglomerates. 

Colloidal suspensions of titania in a solvent sufficiently volatile for spin-coating were 

obtained by repeated collection of the particles by centrifugation and redispersion in DMF 

(or methanol) (130 mg TiO2/1 mL DMF). 

Fabrication of Bragg stack 2 (BS-2) 

Silicon wafers were used as substrates for the film deposition by spin-coating. The 

substrates were pre-cleaned with soap and water and subsequently treated with Piranha 

solution (H2SO4/H2O2, 2:1 (v/v)). After thoroughly rinsing with deionized water, the wafers 

were dried under nitrogen flow and stored in ethanol. Before film deposition, the substrates 

were plasma-cleaned and rinsed with ethanol under spinning for 5 s. The preparation of the 

Bragg stack was performed by alternatingly spin-coating colloidal suspensions of ZIF-8 and 

titania onto the substrate at a speed of 4000 rpm (1500 acceleration) for 60 s, starting with 

ZIF-8. The film thickness was adjusted by the particle concentration in the suspensions and 

by multiple coating steps. After each deposition, the film was annealed at 200 °C for 30 min. 
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3.1.3 Characterization 

X-ray diffraction (XRD) measurements of powders and thin films were performed using a 

Bruker D8 (Cu-Kα1 = 1.5406 Å; Cu-Kα2 = 1.5444 Å) in theta–theta geometry. The films were 

measured between 5° and 20° two theta, with a step-size of 0.05° two theta and a scan-

speed of 3°/min. The data of the powder samples were collected between 5° and 45° two 

theta with a stepsize of 0.05° two theta and a scan-speed of 0. 3°/min. 

SEM micrographs of BS-1 were recorded with a JEOL JSM-6500F scanning electron 

microscope (SEM) equipped with an Oxford EDX analysis system; those of BS-2 with a 

Merlin (Zeiss) FE-SEM. Ellipsometry measurements were performed with a Woollam 

M2000D at an angle of 75° in the spectral range of 190–1000 nm. The data were fitted 

between 350 and 1000 nm using a Cauchy-type material as the model layer. Reflectance 

measurements were recorded with the same ellipsometer using s-polarized light at an 

incident angle of 75°. 

The recording of isotherms was performed at ambient temperature using a home-made 

Labview-controlled gas mixer. Digital mass flow controllers (W-101A-110-P, F-201C, 

Bronkhorst High-Tech) ensured the accurate dosing of the carrier gas nitrogen and the 

liquid analyte, which was vaporized in a controlled evaporation and mixing element (W-

101A, Bronkhorst High-Tech). Partial pressures (p) were calculated using the van der Waals 

equation.28,37 The relative pressure p/p0 relates to the saturation pressure p0. 

 

3.1.4 Results and Discussion 

Bragg stack preparation and structural properties 

Two different strategies were employed for the fabrication of 1D-MOF photonic crystals 

consisting of either dense or porous ZIF-8 layers, and differently sized mesoporous titanium 

dioxide nanoparticle derived films. Stability, pore accessibility as well as high optical quality 

multilayer films are key requirements for the fabrication of analyte-responsive transducer 

systems. Those features were addressed by the choice of suitable deposition and post-

treatment parameters. For the mp-TiO2 deposition in BS-1, both a complete removal of the 
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template (see SI, Figs. S11 and S12) as well as minimum etching of the ZIF-8 underlayer had 

to be achieved. In Fig. 1 the X-ray diffraction patterns of both 3-bilayer Bragg stacks 

(photographs shown in Fig. 2) are depicted and compared to simulated data. The mild 

annealing temperatures employed in either case, in addition to the solvent extraction 

carried out under non-acidic conditions (BS-1), retain the crystallinity and stability of the 

ZIF-8 layers. The diffraction patterns of the multilayered ZIF-8–TiO2 composites show 

excellent agreement with the simulated ZIF-8 data, apart from peak broadening, indicating a 

slightly smaller grain size of the ZIF-8 crystals within the BSs. 

In contrast to BS-1, which features dense ZIF-8 layers, BS-2 is composed of ZIF-8 

nanocrystals (approx. 50 nm diameter, see SI, Fig. S2), forming uniform layers, and 

nanoparticle-based TiO2 layers with TiO2 particles around 10–15 nm in diameter. Therefore, 

we expect BS-2 to exhibit a fairly high degree of textural mesoporosity in both layers, in 

addition to the intrinsic microporosity provided by the ZIF-8 crystals. 

 

Figure 1. X-ray diffraction patterns (background corrected) of the 3-bilayer Bragg stack 1 (middle) as well as of 

Bragg stack 2 (top) after temperature treatment and complete removal of the structure-directing agent (F127), 

compared to simulated data (bottom line). 
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Figure 2. Photographs of 3-bilayer Bragg stack 1 (left) and Bragg stack 2 (right) on a 5 × 2.5 cm2 Si substrate in 

air. 

 

The coexistence of both materials embedded in the 1D-MOF PC structure is confirmed by 

scanning electron microscopy (SEM). In Fig. 3 representative 3-bilayer Bragg stacks 

composed of alternating microporous ZIF-8 layers and porous titania layers deposited on a 

silicon substrate are depicted. The differently prepared Bragg stacks exhibit a ZIF-8 layer 

thickness of approximately 70 nm in BS-1 and about 200 nm in BS-2, respectively. TiO2 

layers deposited on each ZIF-8 film have a thickness of about 50 nm in both Bragg stacks. 

The cross-sectional SEM micrographs reveal that both fabrication methods yield fairly 

uniform layer thicknesses throughout the entire architecture. Fig. 3 also demonstrates the 

alteration of both materials seen by the differences in material contrast. While the dark 

layers represent the ZIF-8 material exhibiting a lower electron density, the brighter thin 

films consist of TiO2 nanoparticles. Not only the deposition of ZIF-8 layers on silicon, as 

already shown by several groups,15,38 but also adhesion between ZIF-8 and 

mesoporous/nanoparticle titania layers was achieved using our dual assembly approach. In 

contrast to the deposition of MOF material on inverse opal structures,31,32 no surface 

modification is necessary when preparing ZIF-8-based one-dimensional photonic 

structures. Regarding the stability and crystallinity of the multilayered Bragg stacks, no 

delamination or amorphization upon heating, extraction or adsorption of volatile species is 

observed, which is consistent with the corresponding XRD results (see Fig. 1). In conclusion, 

robust, uniform and high-optical quality multilayered photonic crystals composed of two 

different materials with varying morphologies can reproducibly be fabricated and thus 

provide the basis for chemical sensing studies. 
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Figure 3. Scanning electron micrographs showing cross-sections of both 3-bilayer Bragg stacks with an average 

film thickness of ~50 nm for each titania layer and ~70 nm for each ZIF-8 layer for BS-1 (A and C) as well as for 

BS-2 (DMF, B and D) exhibiting a layer thickness of ~50 nm for each titania layer and ~200 nm for ZIF-8 layers, 

respectively. ZIF-8–TiO2-BSs are depicted for different magnifications (A: ×80 000; B: ×15 000; C: ×100 000; D: 

×60 000). 

 

Vapor adsorption and optical sensing 

The combination of a microporous MOF material with mesoporous metal oxide layers is 

supposed to endow the material with a unique combination of size-selectivity and analyte 

sensitivity. The integration of both morphologies within one photonic structure is expected 

to act as a molecular sieving platform, readily adsorbing analyte molecules with small 

kinetic diameters in both layers, whereas the access of larger guests is exclusively possible 

into the mesoporous titania layers. Essentials such as high specific surface areas, pore 

accessibility, efficient diffusion and molecular sieving abilities are all addressed by our 

highly porous 1D-MOF photonic crystals. 

The optical response of the 1D-MOF PCs to guest adsorption was investigated by 

performing sorption experiments of volatile analyte molecules. According to the optical 

Bragg equation, sorption of volatile species into the porous layers influences the effective 

refractive index of a bilayer by which analyte-induced color changes can be efficiently 

monitored. In Fig. 4 the reflectance spectra of both Bragg stacks are demonstrated. Here, the 



3 Interference-Based Readout 

67 
 

optical response is triggered by the adsorption of ethanol vapor at the highest partial 

pressure (p/p0 ≈ 1.0), which entails pronounced red-shifts of the Fabry–Perot fringe of BS-1 

from λ ≈ 585 to λ ≈ 630 nm as well as of the stop band of BS-2, derived from nanoparticles 

redispersed in DMF, from λ ≈ 740 to λ ≈ 840 nm, respectively. We attribute the significantly 

larger optical shift of BS-2 to the thicker ZIF-8 layers and amplified external surface area 

(and hence accessibility), which underlines the enhanced contribution of the ‘‘active’’ 

component to the observed overall optical shift of the BS.39 Compared to the 3D-MOF 

(HKUST-1) hybrid photonic crystals recently reported by the groups of J. Hupp and G. Li,31,32 

which show optical shifts of 9 nm and 16 nm upon ethanol sorption, respectively, a 

significant increase with respect to the optical response can be monitored in our system. 

However, when infiltrating 30 mm thick polystyrene template films with ZIF-8, Wu et al. 

observed a distinct shift of about 75 nm upon methanol adsorption.32 Compared to the 

inherently smaller absolute shifts observed with BS-1, which are presumed to result from 

the significantly smaller thickness of the ZIF-8 films, an even higher sensitivity upon 

sorption of organic vapors can be deduced from the reflectance spectrum of BS-2 (Figs. 4 

and S21, SI). Note that only a short heating period of 15 minutes at 200 C was applied to 

Bragg stack 2 prior to the sorption experiments compared to the activation procedure 

reported by Wu et al.32 The samples were additionally subjected to a high-rate flow of dry 

nitrogen (Varian Chrompack Gas-clean Moisture Filter CP 17971, outlet concentration <0.1 

ppm), which highlights the facile analyte uptake and release during a series of sorption 

measurements. 

Analyte-induced variations of the optical thickness give rise to distinct optical shifts not 

only for ethanol and methanol but also for other larger analytes such as isobutanol and tert-

pentanol. Adsorption isotherms monitoring the optical shift as a function of relative vapor 

pressure were recorded for BS-2 (Fig. 5c) as well as for the dense and porous ZIF-8 films as 

reference (Figs. 5a and b). The latter show that the smaller alcohols are readily adsorbed by 

this MOF, including analyte molecules with larger kinetic diameters compared to the 

aperture size of ZIF-8 (3.4 Å).33 These results are consistent with literature data, as it was 

previously shown that molecules such as ethanol or isobutanol exhibiting kinetic diameters 

of 4.5 Å (ref. 40) and 5 Å (ref. 41) are readily adsorbed owing to the flexibility of the pore 

apertures in ZIF-8.41,42 Hence, tert-pentanol (2-methyl-1-propanol) was chosen as a 

sterically demanding analyte molecule with a kinetic diameter larger than 5 Å.43 The dense 

ZIF-8 reference film only shows a minute optical shift of 4 nm, which is consistent with the 

almost complete exclusion of tert-pentanol from the ZIF-8 pore system (Fig. 5a). The 
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nanoparticle-based ZIF-8 film shows a larger optical shift of about 30 nm at the highest 

partial pressure (p/p0 ≈ 1.0, Fig. 5b), which is in agreement with the presence of a 

significant degree of textural mesoporosity. 

 

 

Figure 4. Reflectance spectra of Bragg stack 1 (a) and Bragg stack 2 (DMF) (b) illustrating the optical shift upon 

ethanol exposure recorded at the highest partial pressure (p/p0 ≈ 1.0). 

 

In order to probe the host–guest interactions within the comparatively more complex Bragg 

stack environment, optical adsorption isotherms were recorded exemplarily for BS-2, as 

depicted in Fig. 5c. Specifically, the initial stages during adsorption of alcohol vapors and 

the expected pore size-specific adsorption isotherms achieved through the incorporation of 

different porosities are of key interest. 

During the first two dosing steps the 1D-MOF Bragg stack rapidly responds to all analyte 

molecules, indicated by varying red-shifts ranging from 5 to 15 nm (Fig. 5c). At a partial 

pressure of p/p0 = 0.1 and p/p0 = 0.2, respectively, a steep increase in the methanol and 

ethanol isotherms is observed. However, a larger optical shift is recorded for ethanol, which 

is attributed to more beneficial interactions between ethanol and ZIF-8 owing to the larger 

hydrophobicity of ethanol compared to that of methanol. At the respective threshold 

pressures, pronounced optical shifts of about 50–60 nm are recorded, which gradually 

increase up to saturation pressure. The S-shaped isotherms upon methanol and ethanol 

adsorption recorded for both the single ZIF-8 films and for BS-2 are in good agreement with 

the results obtained by Remi et al.44 The authors attribute the S-shaped isotherms to 
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changes in the framework triggered by interactions with guest-molecules, which was 

additionally confirmed and described elsewhere.42 In contrast to the distinct S-shaped 

isotherms, isobutanol sorption experiments yield an almost linearly increasing adsorption 

behavior with an absolute shift of about 100 nm at the highest partial pressure. In contrast, 

the adsorption isotherm of tert-pentanol exhibits a convex shape featuring the highest 

uptake during the first dosing steps, which we attribute to the textural porosity of both ZIF-

8 and titania layers arising from the nanoparticle architecture, as seen also for the porous 

ZIF-8 film (Fig. 5b). However, this analyte exhibits the smallest overall uptake, which is 

consistent with the exclusion of tert-pentanol from the ZIF-8 pores, as demonstrated also for 

the individual ZIF-8 films. In contrast, the smaller analytes (methanol, ethanol, isobutanol) 

are more readily adsorbed owing to their smaller kinetic diameters. 

 

Figure 5. Optical vapor sorption isotherms demonstrating the adsorption performance of (a) dense and (b) 

nanoparticulate ZIF-8 reference samples as well as of (c) BS-2 (DMF) during exposure to a series of alcohol 

vapors. 
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As discussed above, an important finding is the fact that distinctly shaped isotherms are 

obtained for each of the four analytes over the entire relative pressure range, as additionally 

demonstrated by reproduced sorption experiments using Bragg stacks derived from two 

different synthesis batches (see SI, Fig. S22). The characteristic sorption behavior indicates 

a high degree of chemical selectivity inherent to the MOF-BS, which is especially noticeable 

at low relative pressures. Comparison of the shapes of the isotherms for the BS and the 

individual ZIF-8 thin films (Fig. 5) confirms that the optical response is dominated by ZIF-8. 

3.1.5 Conclusions 

In summary, a one-dimensional MOF-based photonic crystal heterostructure with 

embedded micro- and mesoporosity is presented. The fabrication of the 1D-MOF PC was 

achieved via two different inexpensive bottom-up synthesis approaches. The strategy of 

combining a microporous MOF material with mesoporous titanium dioxide layers provides 

the basis for a highly sensitive signal transduction scheme with an amplified overall optical 

response, while maintaining high chemical specificity. Hence, molecular recognition is 

translated into a readable optical signal without the use of any reporter systems. 

The concept of MOF-based one-dimensional photonic crystal structures extends the scope 

of chemoselective optical signal transducer systems. We anticipate a generalization of the 

assembly of 1D photonic materials in terms of the large variety and tunability of MOFs or 

related materials. Thus, we believe that the above proof-of-concept experiments provide a 

basis for the design of highly sensitive and chemically selective optical sensors. 
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Abstract 

Owing to their structural variability, metal−organic frameworks (MOFs) lend themselves 

well as chemical sensing materials by providing both high sensitivity and selectivity. Here, 

we integrate different types of MOFs (ZIF-8, HKUST-1, CAU-1-NH2) into photonic multilayers 

referred to as Bragg stacks (BSs), which report on adsorption events through changes in 

their effective refractive index (RI). The fabrication of photonic multilayers is accomplished 

by spin-coating colloidal suspensions of MOF nanoparticles and/or the high RI-material 

TiO2. While their incorporation in BSs allows for the label-free readout of host−guest 

interactions, the choice of particular types of MOFs determines the sensing properties of the 

BS. Here, we present MOF-based BSs with enhanced specificity toward molecular analytes 

by combining two different MOFs in a single platform. The sensing performance of our BSs 

is demonstrated by a combined spectroscopic and principal component analysis of their 

vapor response. Time-dependent measurements reveal fast response times and good 

recoverability of the multilayers. Moreover, we demonstrate that combinatorial sensing is 

feasible by arranging different MOF BSs in a basic color pattern, which highlights the 

potential of MOF-based multilayers in arrayed sensor devices. 
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3.2.1 Introduction 

Metal−organic frameworks (MOFs) constitute a class of permanently porous materials 

featuring high surface areas combined with chemical functionality. Tuning the framework 

through the choice of the constituting building blocks1−4 as well as through the introduction 

of functional groups by either direct or postsynthetic approaches5−7 allows the size and 

chemistry of the pores to be modified and, hence, the host−guest interactions between the 

MOF and analyte being adsorbed in the MOF structure to be controlled. Owing to their 

structural variability and the possibility to control their sorption properties, MOFs lend 

themselves well for applications where analyte-specific interactions are key to their 

functionality. Potential fields of application range from catalysis8,9 and molecular sieving or 

separation10,11 to sensing devices.12,13 Along with the possibility to downsize MOFs to the 

nanoscale and fashion them into various shapes and sizes matching the application that is 

sought,14−16 the inherent functionality of MOFs can be amplified by increasing their external 

surface area, which may help to improve the sensitivity of sensors or the like.17 To develop 

highly selective sensors, decoding MOF−analyte interactions on a molecular level is of 

particular importance to understand and control possible signal transduction pathways. 

Suitable techniques for monitoring sorption events in MOFs rely on an optical readout such 

as luminescence quenching18 or solvatochromism,19 on gravimetric20 or mechanical 

transduction schemes,21 or X-ray diffraction22 and NMR spectroscopy23 used as probes to 

monitor sorptive-induced structural changes in the framework. Despite the availability of 

numerous properties that can be used for signal detection, identification of appropriate 

transduction pathways constitutes one of the key challenges in the design of MOF sensors.13 

For example, quartz crystal microbalance (QCM) has recently been explored as a promising 

transduction scheme.24−27 Here, the event of molecular adsorption is monitored by guest-

dependent mass changes, which can be used, for instance, to determine diffusion constants 

of small molecules within MOFs.27 

Some MOF structures show photoluminescent behavior that can be modulated through 

molecular adsorption.18 However, such turn-off sensors often lack sufficient chemical 

selectivity and may undergo signal losses caused by phenomena other than analyte 

adsorption.13 In addition, optical transduction schemes based on interferometry have been 

successfully implemented into MOF-based sensing platforms, which are capable of readily 

detecting adsorption events in the MOF pores.28−34 Interference-based schemes benefit from 
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providing a label-free transduction pathway that is independent of the investigated sensing 

material, and they offer real-time decoding of host−guest interactions. Consequently, this 

route has been extended to photonic multilayer systems,30,31 christened 1D photonic crystals 

(PCs) or Bragg stacks (BSs), as well as to 3D opal structures and films,32−34 harnessing the 

change in the effective refractive index (RI) as a result of analyte adsorption in the porous 

MOF structure. We recently demonstrated the adsorption performance of multilayer stacks 

composed of alternating ZIF-8 layers and the high-RI material TiO2 toward a range of 

organic vapors using spectrophotometric ellipsometry.30 

Besides signal transduction, the integration of MOFs into sensing devices through thin film 

growth techniques and the design of MOFs with desirable properties are considered to be 

central tasks for the development of MOF-based chemical sensors.13 Sensing performance is 

generally associated with surface properties and the microstructure of the sensing material, 

i.e., surface area, porosity, and film thickness. Consequently, thin layers with thicknesses up 

to a few hundred nanometers are commonly preferred because they permit rapid analyte 

uptake. Along with the detection limit and sensitivity, the response time may further be 

improved by using porous and particulate morphologies.17 Toward this end, a number of 

different growth techniques have been developed for the fabrication of thin MOF films that 

differ in their focus: thickness , microstructure, or crystallite or ientation.14−16,24−29,35−37 

These techniques include direct or secondary growth methods,24 gel-layer deposition,36 

layer-by-layer (LbL) techniques,26 or the use of colloidal suspensions for film deposition by 

spin- or dip-coating protocols.28,35,37 Some of these methods require pretreatment of the 

substrate with anchor molecules that provide a suitable interface or linkage to the growing 

MOF crystal.24,26,36 In contrast to sequential growth methods, the fabrication of thin films 

from colloidal suspensions offers the advantages of fast deposition and facile thickness 

adjustment through the choice of particle concentration and deposition speed.37 In addition, 

such low-temperature solution processing methods are adaptive to any MOF structure that 

can be stabilized as a colloidal suspension and are, therefore, a generalizable route toward 

thin MOF films. 

Besides film fabrication and choosing an appropriate transduction scheme, the rational 

choice of the MOF used for detection represents a key element in the fabrication of selective 

sensing systems. According to the application that is sought, the sorption properties of the 

device can be tailored by choosing a MOF with appropriate characteristic sensing features, 

such as hydrophilic HKUST-1 for water sensing applications.24,38 In this context, the 

challenge to specifically detect one out of a mixture of interfering analytes may be addressed 
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by integrating MOFs in the sensing device that show low cross-responsiveness to other 

analytes or through “fingerprint” approaches39−43 utilizing an array of different MOF sensors. 

Immobilized metalloporphyrin dyes, for instance, have been used to create unique color 

profiles that allow for the identification of chemically similar vapors by ligation of open 

coordination metal sites.40 While the concept of combinatorial sensing has already been 

well-established in the field of metal oxides42 and porous silicon-based PCs,43 to our 

knowledge, it has not been extended to optically encoded MOF sensors so far. In comparison 

to these materials, MOFs could offer both inherent chemo- and size-selectivity as well as 

enhanced chemical stability, circumventing the need for additional functionalization. 

Here, we present a generic analyte detection platform based on MOF nanoparticle 

multilayer systems that allows for the specific and label-free detection of molecular 

adsorption events in real time. This strategy takes advantage of the inherent sorption 

properties of the MOFs and translates them into an analyte-specific optical readout. To 

demonstrate the feasibility of our approach, we selected ZIF-8, HKUST-1, and CAU-1-NH2 as 

prototypic, well-investigated MOF structures with different framework polarities, which are 

available in nanoparticulate form. 

To obtain a high level of specificity, we have integrated multiple MOF species into a single 

sensing platform (christened tandem MOF BS), which thus simultaneously encodes different 

types of host−guest interactions. In addition, we have developed an array-based platform 

utilizing the combinatorial response of multiple MOF films for analyte detection. We 

demonstrate the arrangement of TiO2/MOF BSs and their response to different vapors, 

yielding specific color patterns that can be correlated to changes in the respective reflection 

spectra. Using color image analysis and principal component analysis (PCA), we show that 

the stacks are capable of discriminating between both single solvents and solvent mixtures. 

3.2.2 Experimental Section 

Chemicals 

All chemicals were obtained from commercial sources and were used without further 

purification. Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) and aluminum chloride 

hexahydrate (AlCl3·6H2O, ≥99%) were purchased from Grüssing. 2-Methylimidazole 

(C4H6N2, 99%), poly(acrylic acid) (PAA, MW = 1,800), and titanium(IV) ethoxide (Ti(OEt)4) 

were purchased from Sigma-Aldrich. Benzene-1,3,5-tricarboxylic acid (H3BTC, 98%), N,N-
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dimethylformamide (DMF, p.a.), copper acetate monohydrate (Cu(OAc)2·H2O, 98+%), and 

nitric acid (HNO3, puriss) were purchased from Acros. Ethanol (99%) was purchased from 

BfB. 2-Aminoterephthalic acid (H2BDC-NH2, ≥98%) was purchased from ABCR. Methanol 

was purchased from either Sigma-Aldrich (puriss) or BASF (purum). 

Syntheses 

Preparation of ZIF-8 nanoparticles 

ZIF-8 particles were synthesized by a modified literature synthesis method.44 

Zn(NO3)2·6H2O (0.73 g, 2.44 mmol) was dissolved in methanol (50 mL) and rapidly added to 

a solution of C4H6N2 (1.62 g, 19.6 mmol) in 50 mL of methanol. The mixture was stirred 

constantly throughout the reaction until the solution turned turbid. After 1 h, the product 

was separated from the reaction mixture by centrifugation and washed in methanol three 

times. Stable colloidal suspensions of ZIF-8 were obtained by redispersing the washed 

product in methanol using ultrasound (Elmasonic S100H ultrasonic bath, 550 W). 

Preparation of HKUST-1 nanoparticles 

HKUST-1 particles were synthesized similarly to that in the literature.45 H3BTC (0.738 g, 

3.44 mmol) was dissolved in ethanol (14 mL) and DMF (42 mL) and combined with PAA 

(2.21 g, 1.23 mmol). To this mixture was added a solution of Cu(OAc)2·H2O (0.7 g, 3.44 

mmol) in 28 mL of deionized water under vigorous stirring, which rapidly induced the 

formation of a blue precipitate. After 30 min, the product was separated from the reaction 

mixture by centrifugation and washed in DMF at least three times. Stable colloidal 

suspensions of HKUST-1 were obtained by redispersing the washed product in DMF using 

ultrasound. 

Preparation of CAU-1-NH2 nanoparticles 

CAU-1-NH2 particles were synthesized by a modified literature protocol.46 A mixture of 

H2BDC-NH2 (0.087 g, 0.468 mmol) and AlCl3·6H2O (0.348 g, 1.44 mmol) was suspended in 

3.175 mL of methanol in a microwave tube (Biotage, 2−5 mL glass reactor) and sealed with 

a septum. After a prestirring time of 10 s, the reaction mixture was heated under stirring in 

a microwave oven (Biotage Injector) for 6 min at 145 °C. The reaction mixture was then 

rapidly cooled to ambient temperature using a forced air cooler, yielding a milky yellow 

dispersion. The product was separated from the reaction mixture by centrifugation and 
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washed in methanol five times. Stable colloidal suspensions of CAU-1-NH2 were obtained by 

redispersing the washed product in methanol using ultrasound. 

Preparation of TiO2 nanoparticles 

TiO2 particles were synthesized according to the literature.47 Ti(OEt)4 (6.25 mL) was 

slowly added to HNO3 (0.1 M, 37.5 mL) under stirring and heated at 80 °C for 8 h. After 

cooling to room temperature, the opalescent mixture was sonicated for at least 3 h. Stable 

colloidal suspensions of TiO2 were obtained by repeated collection of the product by 

centrifugation, washing, and finally redispersing in methanol using ultrasound. 

Fabrication of TiO2/MOF Bragg stacks 

Multilayer stacks consisting of thin MOF (MOF = ZIF-8, HKUST-1, CAU-1-NH2) and TiO2 

layers were obtained in an analogous manner to that in the literature30 by spin-coating the 

respective colloidal suspensions alternatingly on silicon substrates, beginning with either 

TiO2 (referred to as TiO2/MOF BS) or a MOF layer (referred to as MOF/TiO2 BS). Prior to film 

deposition, silicon substrates (1×1 cm2) were treated with piranha acid (96% H2SO4/30% 

H2O2, 2:1 (v/v)) for 1 h, rinsed intensively with water, dried under a nitrogen stream, and 

plasma-cleaned (Femto plasma cleaner, Diener Electronic GmbH, air, 100 W) for 5 min. A 

rotational speed of 3000−4000 rpm for 30−60 s was used for the deposition of the layers, 

and the acceleration speed was fixed to 1500 rpm/s. The film thickness was adjusted by the 

particle concentration in the suspensions and by multiple coating steps. After each 

deposition, the film was annealed at 40 °C (for BSs containing CAU-1-NH2) or 200 °C (all 

other BSs) for 15 min. 

Fabrication of tandem MOF Bragg stacks 

Multilayer stacks consisting of thin layers of two different MOFs (christened ZIF-8/HKUST-

1 BS and ZIF-8/CAU-1-NH2 BS) were obtained by spin-coating the respective colloidal 

suspensions alternatingly on silicon substrates, beginning with ZIF-8. The cleaning process 

of the substrates and the fabrication of the Tandem MOF BSs were conducted similarly to 

that for the fabrication of TiO2/MOF BSs. 
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Characterization 

XRD patterns of powders were collected using either a Huber G670 diffractometer in 

Guinier geometry or a Stoe Stadi P diffractometer with an image plate detector system in 

transmission with Ge(111)-monochromated Cu-Kα1 radiation (λ = 1.54051 Å). Data were 

collected between 5° and 45°. IR spectroscopy for the bulk material was carried out with the 

help of either a PerkinElmer Spektrum BX II spectrometer including an attenuated total 

reflectance (ATR) unit or a Bruker ALPHA-P FT-IR spectrometer in the spectral range of 

4000−650 cm−1. IR spectra of BSs were detected with a Nicolet iN10 IR microscope (Thermo 

Scientific) in the spectral range of 4000−675 cm−1. Scanning electron (SE) micrographs were 

recorded either with a Merlin (Zeiss) FE-SEM or a JEOL JSM-6500F SEM equipped with an 

Oxford EDX analysis system. EDX analysis was performed using either the Oxford EDX 

system or a Philips ESEM XL 30 with an EDAX NEW XL-30 detection unit. Argon (nitrogen) 

adsorption/desorption isotherms of the bulk material were recorded at 87 K (77 K) with 

either an Autosorb iQ instrument (Quantachrome Instruments, Boynton Beach, FL, USA) or 

with a BELSORP-max apparatus (BEL Japan Inc.). Samples were outgassed in vacuo at 100 

°C for 12 h (ZIF-8, HKUST-1, TiO2) or at 130 °C for 3 h (CAU-1-NH2). Apparent specific 

surface areas were calculated by using the BET method as described in the literature.48 

Micropore volumes were calculated from the adsorption branch at p/p0 = 0.5. For liquid 

state 1H-NMR investigations, the samples were dissolved in a solution of 5% NaOD in D2O. 

The NMR spectra were recorded on a Bruker DRX500 NMR spectrometer operating at 500 

MHz. Elemental analysis was carried out on an Eurovektor EuroEA elemental analyzer. 

Ellipsometric measurements were carried out using a Woollam M2000D at angles of 65°, 

70°, and 75° in the spectral range of 190−1000 nm. The data were fitted between 300 and 

1000 nm. Further fitting details are provided in the SI. Sorption reflectance measurements 

were recorded with the same instrument using s-polarized light at an incident angle of 75°, 

whereas a fiber optic spectrometer (USB2000+, Ocean Optics) interfaced with an optical 

light microscope (DM2500 M, Leica) was used for time-dependent reflection measurements. 

Further sorption measurement details are provided in the SI. Color image analysis was 

performed using the program FIJI. PCA analysis was carried out with the help of the 

program XLSTAT. Further analytical details are provided in the SI. 
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3.2.3 Results and Discussion 

Characterization of TiO2/MOF Bragg stacks and tandem MOF Bragg 

stacks 

The fabrication of MOF-based BSs was pursued by alternatingly spin-coating colloidal 

suspensions of the MOFs ZIF-8, HKUST-1, and CAU-1-NH2 and/or the high-RI material TiO2, 

yielding either BSs consisting of a single MOF species periodically stacked with TiO2 or 

purely MOF-based BSs composed of two different types of MOFs (denoted tandem MOF BSs 

in the following). For the fabrication of the tandem MOF BSs, we used the combinations ZIF-

8/HKUST-1 and ZIF-8/CAU-1-NH2, each starting with ZIF-8 as the first layer. XRD patterns 

of the MOF particles gained before film deposition are depicted in Figs. 1a−c. Apart from 

peak broadening, which we attribute to the small particle size of the MOFs, the patterns 

show good agreement with the respective simulated patterns of the MOFs. 

 

 

Figure 1. Powder XRD patterns of (a) ZIF-8 nanoparticles (red), (b) HKUST-1 nanoparticles (blue), (c) CAU-1-

NH2 nanoparticles (green), and respective simulated XRD patterns (black). (d) IR spectra of CAU-1-NH2 after 

different thermal treatments. IR bands corresponding to C−H and C−O stretching vibrations of methoxy groups 

are marked by † and ‡, respectively. 
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Figure 2. Cross-sectional SEM images of TiO2/MOF BSs and top views of MOF nanoparticles on silicon 

substrates: (a) TiO2/ZIF-8, (b) ZIF-8, (c) TiO2/HKUST-1, (d) HKUST-1, (e) TiO2/CAU-1-NH2, and (f) CAU-1-NH2. 

 

The BSs were annealed at 200 °C, except for CAU-1-NH2-based BSs, in order to remove 

residual solvent molecules from the porous structures as well as to enhance their 

mechanical stability. In contrast to HKUST-1- and ZIF-8-containing BSs, the respective CAU-

1-NH2 multilayers were dried at 40 °C to retain their composition, as CAU-1-NH2 was shown 

to undergo a postsynthetic transformation from [Al4(OH)2(OCH3)4(BDC-NH2)3] to 

[Al4(OH)6(BDC-NH2)3] in air at elevated temperatures.46 We observed the reported 

postsynthetic exchange of methoxy by hydroxy groups upon heating at 200 °C, as evidenced 

by the reduction of the IR bands for the aliphatic C−H stretching vibrations at 2950 and 

2840 cm−1 as well as for the C−O stretching vibration at 1080 cm−1 (Fig. 1d). The respective 

IR spectra for ZIF-8 and HKUST-1, confirming the retention of these structures after heating 

at 200 °C, are shown in Fig. S2 (SI). Besides IR spectroscopy, argon and nitrogen sorption 

experiments were conducted for further characterization of the bulk material (MOFs and 

TiO2). The respective isotherms and derived specific surface areas and micropore volumes 

are provided in the SI (Fig. S3 and Table S1). Bulk CAU-1-NH2 was also characterized by 
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CHNS and EDX analysis as well as NMR spectroscopy to obtain the actual composition of the 

material. As-obtained CAU-1-NH2 was washed in methanol instead of water to keep the 

dispersion stable for the spin-coating process. Therefore, some of the amino groups are still 

protonated, with Cl− acting as a counterion.46 According to the analytical data, the precise 

sum formula of the product washed in methanol and dried in air is 

[Al4(OH)2.34(CH3O)3.66(BDC-NH2)1.68(BDC-NH3)1.19(BDC-NHCH3)0.13]·1.19Cl−·H2O. Despite the 

large counterions, the pores are still accessible, which was demonstrated by the nitrogen 

sorption experiments. The results of NMR spectroscopic measurements, elemental analysis, 

and EDX analysis are presented in the SI (Fig. S4, Tables S2 and S3). 

 

 

Figure 3. Cross-sectional SEM images of a ZIF-8/HKUST-1 BS (a, b) and a ZIF-8/CAU-1-NH2 BS (c, d) on silicon 

substrates. 

 

The realization of the multilayered structures is illustrated by cross-sectional SEM. 

Representative three-bilayer stacks for each investigated TiO2/MOF combination as well as 

top-view images of MOF single layers are shown in Fig. 2, whereas the respective tandem 

MOF BSs are presented in Fig. 3. The successful integration of the different MOF species is 

demonstrated by the particulate appearance of the films, reflecting the characteristic 

morphology of the MOF nanoparticles. For the ZIF-8/HKUST-1 BS, the discrimination of the 

individual layers is impeded, as both types of MOF nanoparticles exhibit similar sizes and 

the scattering contrast is low due to only marginal differences in electron density of the 

building blocks involved. To confirm the presence of all MOFs, we used EDX analysis and 
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recorded IR spectra for all BSs on silicon substrates, which ascertain the successful 

integration and retention of the MOF structures (Table S4 and Fig. S5, SI). Besides, we 

determined the effective RI of single MOF layers (1.20, 1.25, and 1.30 for ZIF-8, HKUST-1, 

and CAU-1-NH2, respectively; see also Table S5, SI) and their thickness using spectroscopic 

ellipsometry. From the SEM images shown in Fig. 2, we deduce average thickness values of 

71, 77, and 133 nm for ZIF-8, HKUST-1, and CAU-1-NH2 layers, respectively, although lateral 

thickness variations in the stacks are observed. More SEM images showing larger details as 

well as photographic images of the stacks are provided in the SI (Fig. S6). 

 

Vapor sorption and optical sensing with MOF-based Bragg stacks 

The combination of high- and low-RI materials in a multilayer, such as TiO2 and a MOF, 

creates a periodic lattice in one dimension that strongly scatters photons with wavelengths 

commensurate with the lattice period. The periodic potential thus gives rise to the 

formation of a photonic bandgap that prevents light with particular frequencies from 

traveling through the BS. According to the Bragg−Snell law for normal incidence, the 

position of the diffraction maximum λmax can be modulated by varying the optical thickness 

of the layers, i.e., the product of the effective RI (n) and the physical thickness h of the layers, 

in response to external stimuli such as adsorption of analytes, according to49 

mλmax = 2(nLhL + nHhH) 

Here, the parameters for the low- and high-RI-material are marked with L and H, 

respectively, and m is the diffraction order. Due to a change in the RI contrast caused by 

infiltration with an analyte, the response to a stimulus can be detected by changes in the 

reflectance spectrum or even by the naked eye through a color change of the BS. 

In order to evaluate whether our hybrid structures are suitable as sensing systems 

combining both sensitivity and selectivity, we exposed our TiO2/MOF BSs to different 

organic vapors and monitored the response with the help of spectrophotometric 

ellipsometry. In Fig. 4a, exemplary reflectance spectra of a TiO2/CAU-1-NH2 BS show a 

significant optical shift (44 nm) upon exposure to ethanol at saturation pressure (p/p0 ≈ 1). 

The respective spectra of TiO2/ZIF-8 and TiO2/HKUST-1 BSs as well as the response of all 

TiO2/MOF BSs to methanol at p/p0 ≈ 1 are presented in Figs. S7 and S8 (SI). The structures 

show pronounced shifts upon exposure to both ethanol (42 and 32 nm for ZIF-8- and 
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HKUST-1-based BSs, respectively) and methanol (36, 35, and 50 nm for ZIF-8, HKUST-1, and 

CAU-1-NH2 BSs, respectively), which illustrates the sensitivity of all three BSs toward the 

investigated analytes. It should be noted that the wavelength shift of a Bragg maximum 

positioned at higher wavelengths (which may, for example, be due to a larger physical 

thickness of the layers) is generally larger compared to Bragg maxima at lower wavelengths. 

Hence, besides the adsorption capacity being unique for every MOF type, the response 

magnitude of a specific multilayer structure will also be affected by the thickness of its 

layers, at least to a certain extent. In addition, the apparent thickness variations in each 

multilayer (see Figs. 2 and 3) will lead to slight differences in the respective Bragg maxima 

for different spots on the film. A more detailed discussion concerning the validity of the 

shifts in terms of sample quality and experimental limitations is provided in the SI 

(Characterization Details). To make the results for different TiO2/MOF BSs more 

comparable, we thus calculated the shifts (λn − λ0 = Δλ) normalized with respect to the 

wavelength of the maxima λn (for calculation details, see SI, Characterization Details). 

 

 

Figure 4. (a) Reflectance spectra for a TiO2/CAU-1-NH2 BS kept in dry nitrogen (black line) and after exposure to 

ethanol (green line) at the highest partial pressure (p/p0 ≈ 1). Optical adsorption isotherms for TiO2/MOF BSs 

for ethanol (b) and methanol vapor (c). (d) Normalized peak shifts for three TiO2/MOF BSs after adsorption of 

ethanol and methanol at three different pressure ranges. 
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By plotting the (normalized) peak shift of TiO2/MOF BSs as a function of vapor pressure, 

optical vapor adsorption isotherms are obtained that demonstrate the adsorption 

performance of the different MOF BSs in the presence of ethanol (Fig. 4b) and methanol 

(Fig. 4c) at different concentrations. The ZIF-8-based BS shows an S-type isotherm at low 

pressures (p/p0 ≤ 0.1 for ethanol adsorption), which is in agreement with our previously 

reported results30 as well as with other ZIF-8 adsorption studies.50,51 This particular shape is 

often associated with a certain flexibility of the framework induced by the interaction with 

analytes (gate opening), which may result in the uptake of molecules with even larger 

kinetic diameters than the pore entrances of ZIF-8.52 According to Zhang et al.50 and Cousin 

Saint Remi et al.,51 the adsorption isotherms of various alcohols are shifted for ZIF-8 to 

lower pressures with increasing chain length and, hence, hydrophobicity. Here, the uptake 

for ethanol is shifted to p/p0 ≈ 0.1. For methanol, despite its smaller diameter, the step in the 

isotherm is observed at p/p0 ≈ 0.2, which may originate from the larger polarity in 

comparison to ethanol and, hence, the less beneficial analyte−framework interaction.50 The 

slow but continuous increase of the curve at even higher partial pressures is attributed to 

the textural porosity of both TiO2 and ZIF-8 layers.30 In contrast to TiO2/ZIF-8, HKUST-1- 

and CAU-1-NH2-based BSs show a steep increase at very low vapor pressures associated 

with the instant uptake of the analytes in the micropores and in agreement with the rather 

hydrophilic nature of both MOF structures. Compared to the HKUST-1 BS, the CAU-1-NH2 BS 

shows a significantly larger shift at low vapor pressures for both sorptives. The shape of the 

ethanol sorption isotherm for TiO2/CAU-1-NH2 is in good agreement with the isotherm of 

CAU-1 thin films on QCM gold electrodes,53 which is indicative of a MOF-dominated sensing 

performance of the BS. Both isotherms for TiO2/CAU-1-NH2 and TiO2/HKUST-1 exhibit 

continuously increasing curves at p/p0 > 0.1, consistent with the presence of a 

comparatively high fraction of textural porosity. The sorption isotherms presented here 

suggest a lower adsorption capacity of HKUST-1 in comparison to that of the other MOFs, 

ZIF-8 and CAU-1-NH2, which is in line with the sorption data of the bulk material (see Table 

S1, SI). 

To evaluate the sensing performance, i.e., adsorption capacity and selectivity of the 

individual MOFs, the normalized shifts for each MOF BS are compared (Fig. 4d) by the 

example of three different analyte concentrations (p/p0 ≈ 0.02, 0.2, and 1.0). According to 

this chart, TiO2/CAU-1-NH2 shows superior sensitivity at low vapor pressures (p/p0 ≈ 0.02) 

toward both analytes in comparison to that for the other BSs. The high sensitivity of the 

CAU-1-NH2 BS toward the investigated alcohols is in good agreement with the response 
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demonstrated for CAU-1-coated QCM electrodes.53,54 For HKUST-1- and ZIF-8-based BSs, a 

somewhat opposite sensing behavior is observed at low partial pressures: While the ZIF-8 

BS shows only marginal shifts for both analytes at p/p0 ≈ 0.02 in comparison to 

TiO2/HKUST-1, a pronouncedly higher shift for ethanol is observed at p/p0 ≈ 0.2 for 

TiO2/ZIF-8. For methanol vapor (p/p0 ≈ 0.2), we found rather similar uptakes for both 

TiO2/HKUST-1 and TiO2/ZIF-8 BSs. At high vapor pressures (p/p0 ≈ 1), the largest 

sensitivity for ethanol and methanol is shown by TiO2/ZIF-8 and TiO2/CAU-1-NH2 BSs, 

respectively, whereas a general lower adsorption capacity for the HKUST-1 BS is observed 

in comparison to that for the other BSs. This finding complies with the results published by 

Wu et al.,33 which state the significantly lower sensitivity of HKUST-1 opals as compared to 

that of ZIF-8-based structures. However, such observations have to be treated with care, as 

the precise comparison is possible only under similar experimental conditions (such as 

analyte concentration and measurement setup) as well as comparable sample properties 

(e.g., thickness of the investigated films, textural porosity, accessibility of the pores). In this 

context, the potential presence of residual water content during the sensing experiments 

constitutes another important parameter in evaluating the performance of HKUST-1 

sensors, as the degree of humidity has been shown to greatly influence its sorption capacity 

toward other analytes.55,56 Aside from these general considerations, the chemoselective 

behaviour of our MOF multilayer systems is clearly demonstrated by the different optical 

shifts at various partial pressures. 

Besides selectivity and sensitivity, a key issue of sensing devices is the recoverability of 

such systems, including the ease of sorptive removal within a reasonable amount of time as 

well as preferably low response times toward small concentration changes. To probe the 

response time of our platforms, we exposed TiO2/MOF BSs to different ethanol 

concentrations that were varied within short time intervals and monitored the change in 

reflectivity in situ at certain wavelength positions (Fig. 5). According to the measurements 

presented in Fig. 5, the reflectivity of all BSs changes within seconds when the 

concentration is altered in increments of ≥10% and occurs reversibly with no apparent 

delay after concentration change. Depending on the MOF type, it takes a few seconds to 

reach at least 90% of the final response, as can be deduced from the graphs. For instance, 

upon a change from 0 to 25% ethanol vapor in the nitrogen stream, we calculated response 

times of about 4.5, 7.7, and 10.1 s for TiO2/ZIF-8, TiO2/HKUST-1, and TiO2/CAU-1-NH2, 

respectively (see also Fig. S9, SI), which is comparable to that of other MOF sensors.28,33 The 

initial response of our BSs upon small concentration changes is, hence, fast and produces 
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clearly distinguishable signals. For an estimation of the detection limit of our BSs, see the SI 

(Characterization Details). 

 

 

Figure 5. Reflectance spectra of TiO2/MOF BSs and time-dependent responses of the BSs upon exposure to 

varying concentrations of ethanol vapor: (a, b) TiO2/ZIF-8, (c, d) TiO2/HKUST-1, and (e, f) TiO2/CAU-1-NH2. The 

response was monitored by recording the change in reflection at distinct wavelength positions (marked in the 

respective spectra). Close-up views of the graph positions used for calculating the response time are provided in 

the SI (Fig. S9). 

 

The presented results demonstrating both high sensitivity and selectivity of TiO2/MOF BSs 

as well as fast response times suggest their utility for the analyte-specific detection in 

arrayed sensing devices. To obtain a high level of specificity, we pursued two different 

strategies, both taking advantage of the combination of the characteristic sorption 

properties of the individual MOFs: In our first approach, we integrated two MOF species into 

a single sensing platform, whereas in the second approach, all three TiO2/MOF BSs are 
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assembled in a basic color pattern (optical fingerprint). Both methods are envisaged to 

allow for the simultaneous encoding of different types of host−guest interactions. In our first 

approach, we evaluated the sensing performance of the tandem MOF BSs (i.e., the 

combination of ZIF-8 layers with either HKUST-1 or CAU-1-NH2) by conducting similar 

sorption measurements as those for the TiO2/MOF BSs (see Figs. S10−S13 for reflectance 

spectra, SI). In Fig. 6, the ethanol and methanol sorption isotherms of TiO2/MOF BSs (MOF = 

ZIF-8, HKUST-1) are presented in comparison to ZIF-8/HKUST-1. The ethanol sorption 

isotherm (Fig. 6a) for the tandem MOF BS shows characteristic features of the isotherms for 

the TiO2/ZIF-8 BS: At p/p0 ≈ 0.1, an increase in the isotherm is observed that is comparable 

to the isotherm obtained for TiO2/ZIF-8. This similarity can be also found in the methanol 

sorption isotherm of the tandem MOF BS (Fig. 6d): Here, a shift of the step from p/p0 ≈ 0.1 

to p/p0 ≈ 0.2 in comparison to the ethanol sorption isotherm is observed, which matches 

well with the sorption data obtained for TiO2/ZIF-8. In addition, we observe another step at 

p/p0 < 0.1 in both the ethanol and methanol isotherms, matching the response of 

TiO2/HKUST-1 toward methanol at very low partial pressures. The signal height, however, 

turns out to be rather small in comparison to the clearly visible step at p/p0 ≈ 0.1 (0.2) for 

ethanol (methanol). We rationalize this finding with the different adsorption capacities of 

the MOFs: By taking into account the low adsorption capacity of HKUST-1, which we deduce 

from the sorption data of the bulk material (Fig. S3 and Table S1, SI), and the sorption 

measurements of TiO2/HKUST-1 (Figs. 4b and c), the signal for the uptake in the pores of 

HKUST-1 is likely overlapped by the comparatively larger signal caused by the interaction of 

the sorptive with ZIF-8. By increasing the thickness of HKUST-1 layers, which can be facilely 

done through multiple spin-coating steps, the magnitude of the HKUST-1 response may 

increase as well. In order to test this assumption, we prepared a series of tandem MOF BSs 

with different relative layer thicknesses of the individual MOFs and repeated the adsorption 

experiments. The integration of differing amounts of MOFs is confirmed by EDX analysis 

(Table S4, SI). In Fig. 6b, we depict exemplarily the adsorption performance of three 

ZIF-8/HKUST-1 BSs toward ethanol vapor with gradually increasing layer thicknesses of 

HKUST-1. At high ZIF-8 content, two clearly distinguishable steps (p/p0 < 0.1 and p/p0 ≈ 0.1) 

in the ethanol sorption isotherm are observed. When the thickness of the HKUST-1 layers is 

increased, the step height at p/p0 < 0.1 seems to increase as well, which is consistent with 

the larger amount of available HKUST-1 micropores. We observed a similar trend when 

subjecting the BSs to methanol vapor (Fig. 6e). 
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Figure 6. (a) Ethanol and (d) methanol sorption isotherms of a ZIF-8/HKUST-1 BS in comparison to the 

respective isotherms of TiO2/HKUST-1 and TiO2/ZIF-8 BSs. (b) Ethanol and (e) methanol sorption isotherms of 

three ZIF-8/HKUST-1 BSs with different layer thicknesses. The thickness of the ZIF-8 layers is increased from top 

to bottom (highlighted by underlines), whereas the HKUST-1 content is decreased. (c) Ethanol and (f) methanol 

sorption isotherms of a ZIF-8/CAU-1-NH2 BS in comparison to the respective isotherms of TiO2/CAU-1-NH2 and 

TiO2/ZIF-8 BSs. 

 

In order to probe the versatility of our tandem MOF multilayers, we conducted similar 

adsorption experiments with another heterostructure (ZIF-8/CAU-1-NH2) and compared 

them to the adsorption isotherms measured for TiO2/ZIF-8 and TiO2/CAU-1-NH2 (Figs. 6c 

and f). The isotherms for ZIF-8/CAU-1-NH2 show clear, yet somewhat less pronounced, 

characteristic features of the respective single-component BSs compared to ZIF-8/HKUST-1. 

This finding may be explained by a mutual influence arising from the presence of direct 

interfaces between the two MOFs, which, along with the sequence of the multilayer, may 

affect the individual sorption behavior of the MOFs. Such effects have been already 

described for oxide bilayers exhibiting different (textural) porosities57 or binary Janus MOF 
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coatings58 and may also occur in our tandem MOF BSs, leading to a somewhat synergistic 

sensing behavior. Tuning the layer thicknesses of either ZIF-8 or CAU-1-NH2 (see Fig. S14, 

SI, for the isotherms) leads to no apparent enhancement of one or the other MOF signature 

in contrast to the case of ZIF-8/HKUST-1. While the response of ZIF-8/HKUST-1 toward the 

investigated analytes seems to be characterized by the sorption properties of the individual 

BS components, the ZIF-8/CAU-1-NH2 BS shows a more complex response that may be 

mediated by the mutual interactions between its layers. Despite these differences in the 

sensing behavior of the two tandem MOF BSs, the versatility of such multilayers is 

demonstrated by tailoring the sorption properties toward a particular analyte through the 

judicious choice of the constituting MOF structures as well as by fine-tuning the dimensions 

of the individual layers. The impact of these parameters and their tailoring toward a specific 

sorption profile is currently being investigated in our group. 

 

 

Figure 7. Photographic images of an array assembled from ZIF-8/TiO2, TiO2/HKUST-1, and TiO2/CAU-1-NH2 BSs, 

illustrating the color change of the array upon exposure to ethanol vapor (lower row) in comparison to pure 

nitrogen (upper row). 

 

In our second approach toward enhanced analyte specificity, we pursued the fabrication of 

an arrayed setup assembled from multiple MOF-based multilayers. In general, arrayed 

sensing devices are built up of different sensing films arranged in a specific pattern. 

Depending on the transduction scheme, the sensor−analyte interaction generates a unique 

signature with enhanced analyte specificity in comparison to that of the individual sensors, 

owing to the combinatorial response. As a first step toward such an array derived from 
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photonic MOF multilayer structures, we arranged all three MOF-based BSs on a glass 

substrate in a home-built chamber (see Fig. S15, SI, for images of the setup and the array). 

In this chamber, a stream of nitrogen saturated with the analyte was injected, and the 

evolution of the color upon analyte uptake was monitored in situ with a camera attached to 

the microscope. 

As illustrated in Fig. 7, showing optical images of the individual films, the PC array exposed 

to ethanol vapor shows a clearly visible color change in comparison to the array subjected to 

pure nitrogen. The response, i.e., color signature of a similar arrayed setup to a range of 

different analytes including ethanol, water, 2-propanol, and 1-hexanol, is shown in Fig. S16 

(SI). We confirmed these changes by simultaneously recording the evolution of the 

reflection spectra for each BS (Figs. S17−S19, SI) and determined the respective spectral 

shifts for each sorptive after 5 min exposure. By assigning these values to the respective 

TiO2/MOF BSs, we obtain unique numerical codes that are specific for each investigated 

analyte (Table 1; see Table S6, SI, for normalized values). According to Table 1, HKUST-1- 

and CAU-1-NH2-based BSs show comparatively high sensitivity to water, which agrees well 

with the hydrophilic nature of both MOF structures. A moderate shift is observed for the 

TiO2/ZIF-8 BS upon exposure to water due to the hydrophobicity of ZIF-8, which is 

somewhat counterbalanced by adsorption of water in the TiO2 nanoparticulate layers. For 

all TiO2/MOF BSs, we observe a reduced uptake of 1-hexanol, which may be related to its 

bulkiness in comparison to that of the other analytes. 

 

Table 1. Peak shifts for an array assembled from three TiO2/MOF BSs upon exposure to different sorptives. 

 Peak shifts (nm)a 

Sorptive TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Water 5.4 8.0 9.3 

Ethanol 18.0 11.9 7.5 

2-Propanol 15.9 13.4 10.0 

1-Hexanol 3.9 2.5 1.1 

aValues derived from the respective reflection spectra shown in Figs. S17−S19 (SI). 
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To interpret and classify the individual sorption characteristics of the stacks, we have 

recorded photographic images of the samples before and after exposure to the vapors and 

extracted the respective RGB values by image analysis. Such approaches based on color 

image analysis rather than on spectroscopic shifts have already been successfully 

implemented in the analysis of colorimetric combinatorial platforms.42 Here, we exposed 

our samples to an alternate stream of either pure nitrogen or nitrogen saturated with a 

solvent and recorded images for specific spots on the samples under constant light 

conditions. The analysis of the images was performed using a code developed with the 

program FIJI that involves alignment of the images, area selection, and calculation of the 

mean RGB intensities (see SI for a more detailed description of the experimental setup and 

image processing). In Fig. 8a, the extracted mean RGB values and channel images are 

exemplarily shown as unique patterns for all three BS samples upon exposure to nitrogen 

(left side) in comparison to ethanol adsorption (right side). The as-obtained values were 

then used to determine the differences ΔR, ΔG, and ΔB for each BS sample (Fig. 8b, 

calculated for ethanol) and each investigated analyte (Fig. 8c, values represented by gray X’s 

in the matrix). Note that the values represent mean values derived from three 

measurements per solvent and BS sample (see Tables S7−S9, SI, for complete lists of all 

extracted and calculated intensities). The reproducibility of the measurements is 

demonstrated by the reversibility of the respective RGB intensities upon switching from 

pure nitrogen to the solvent or solvent mixture (Figs. S20 and S21, SI). 

The extracted values can then be used to analyze the individual capability of the BSs to 

discriminate between different analyte vapors. To this end, we performed principal 

component analysis (PCA) based on the characteristic RGB codes for each stack. The thus-

obtained PCA plots are depicted in Figs. 9a−c for TiO2/ZIF-8, TiO2/HKUST-1, and TiO2/CAU-

1-NH2 BSs, respectively. Each plot shows a 2D projection of the factor scores calculated for 

each observation (i.e., solvent), whereas the first component, F1, and the second, F2, account 

for the largest variance of the measurements. From Fig. 9a, we can see that TiO2/ZIF-8 BS 

shows a rather poor discrimination capability for methanol, ethanol, and 2-propanol, as 

these points cluster in similar regions, whereas the points for water and 1-hexanol are 

clearly separated from the former solvents. The first two principal components (F1 and F2) 

account for 93.25% of the variance. For TiO2/HKUST-1 BS (Fig. 9b), we observe a 

separation of methanol from the groups 2-propanol/ethanol and 1-hexanol/water (F1 + F2: 

99.89%). The CAU-1-NH2 BS shows a comparatively better distribution and, hence, 

discrimination of the analytes (Fig. 9c), indicated by a clear separation of all five points (F1 
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+ F2: 100%). The three MOF BSs hence show clearly different degrees of discrimination 

between the investigated analytes, which could be useful in a combinatorial response for 

analyzing, for instance, mixtures of vapors. 

 

 

Figure 8. Scheme illustrating the basic steps of color image analysis and determination of analyte-specific 

numerical codes. (a) Photographic images of an array assembled from TiO2/ZIF-8, TiO2/HKUST-1, and 

TiO2/CAU-1-NH2 BSs are recorded for the exposure to nitrogen and a sorptive, respectively (exemplarily shown 

for ethanol). After alignment and area selection, the images are split in the respective color channels, and the 

mean RGB intensities are extracted. (b) On the basis of average RGB intensities obtained for three 

measurements, the differences ΔR (G, B) = Rsorptive (G, B) − RN2 (G, B) are calculated. (c) Image processing and 

calculation of ΔR (G, B) are performed for all investigated analytes, yielding a 9 × 9 matrix. 

 

As a proof of concept, we used the extracted data for four solvent mixtures (ethanol with 

methanol, 2-propanol, water, or 1-hexanol in volume ratios of 1:1) to perform PCA with all 

nine variables (i.e., ΔR (TZ, TH, TC) and so forth) which allows us to evaluate the 

combinatorial capability of the stacks for analyte discrimination. According to Fig. 9d, the 

array shows a clear separation and, hence, discrimination of all analytes (F1 + F2: 91.64%). 

If we calculate individual plots for each of the RGB channels (see Fig. S22, SI), then the best 
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separation result is obtained when monitoring the B channel (F1 + F2: 86.73%). In this case, 

already the extraction of the B intensities would be sufficient to allow the solvent mixtures 

to be discriminated. If the PCA is performed as a function of the individual BS samples (i.e., 

only the RGB values for TiO2/ZIF-8 are considered and so forth), then both TiO2/ZIF-8 and 

TiO2/CAU-1-NH2 BSs show a comparatively high degree of separation for three of the four 

solvents (Fig. S23, SI; F1 + F2: 92.07 and 99.32%, respectively), which may be the reason for 

the good discrimination capability of the complete array. 

Our BS array hence shows clearly visible color changes upon analyte exposure and allows 

for the instantaneous detection of different guest species by monitoring both the color 

profile and the respective reflectance spectra. Evaluating these coupled detection routes 

(i.e., color signature and reflection spectra) thus provides an efficient tool to monitor 

adsorption events at low concentrations, and the precision of the generated analyte 

signatures is enhanced owing to the dual readout. 

 

 

Figure 9. PCA plots for (a) TiO2/ZIF-8, (b) TiO2/HKUST-1, and (c) TiO2/CAU-1-NH2 BSs, illustrating the 

individual discrimination capability of each BS toward pure solvent vapors (ethanol, methanol, 2-propanol, 

water, and 1-hexanol). (d) PCA plot for an array assembled from TiO2/ZIF-8, TiO2/HKUST-1, and TiO2/CAU-1-

NH2 BSs, illustrating the combinatorial capability for discriminating between solvent mixtures (ethanol with 

methanol, 2-propanol, water, and 1-hexanol). 
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3.2.4 Conclusions 

In summary, we have presented the fabrication of photonic multilayers based on three 

prototypic MOFs (ZIF-8, HKUST-1, CAU-1-NH2), which allow for the macroscopic optical 

detection of analyte-selective host−guest interactions occurring on the molecular level. The 

sensing performance of our systems was analyzed by vapor sorption experiments under 

ambient conditions, which allow for both identifying and quantifying the analyte. Our 

results thus demonstrate, in accordance with other transduction methods such as surface 

acoustic wave sensors38 or workfunction-based detection,56 that MOF coatings possess 

excellent sensitivity. The shapes of the optical adsorption isotherms of TiO2/MOF BSs show 

the signature of the active MOF species, pointing to a MOF-dominated response. Moreover, 

along with the large variety of MOF structures, the use of MOFs as active components in PC 

sensors provides a convenient means to discriminate between mutually interfering analytes. 

We show that cross-responsivity can be minimized by using specific types of MOFs with 

different polarities combined with principal component analysis of their color-coded optical 

response. 

The isotherms of tandem MOF BSs show enhanced complexity and increased analyte 

specificity. By simultaneously encoding multiple host−guest interactions in a single BS, we 

demonstrate the potential for MOF-based analyte detection via multiplexing schemes. We 

hypothesize that the interfaces between two MOFs as well as the sequence of the MOF layers 

in a BS influence their individual sorption behavior and may lead to synergistic behavior or 

a slowing of analyte uptake. This possibility will be explored further. Furthermore, we have 

developed a MOF-based BS array to enhance the analyte-specific readout, similar to the 

color-coding principles used in a biochip. The color pattern obtained after analyte exposure 

can ultimately be used as an analyte-specific fingerprint, which we demonstrated through 

principal component analysis. Important performance parameters of our MOF-based 

sensors were investigated, revealing good recoverability and response times on the order of 

5−10 s. 
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Abstract 

Stimuli-responsive 1D photonic crystals, referred to as Bragg stacks, are capable of 

translating environmental changes into a color read-out through changes in the effective 

refractive index (RI) of the multilayer system upon infiltration with an analyte. The 

sensitivity and versatility of prototypic SiO2/TiO2 multilayers can be greatly enhanced by 

the use of nanoparticulate or mesoporous building blocks, or inherently microporous 

structures such as metal-organic frameworks (MOFs). Here, we introduce a stimuli-

responsive ZIF-8 “defect” layer into SiO2/TiO2 multilayers in order to combine the high 

optical quality of a Bragg stack with the characteristic sorption properties of the MOF. The 

addition of a planar defect layer, either embedded in or deposited on top of the Bragg stack 

acts as a “dopant” and introduces a narrow band of allowed states in the photonic band gap, 

which can be utilized for the precise determination of the optical response of the Bragg 

stack. We demonstrate the impact of layer morphology, layer sequence and the position of 

the defect on the optical and vapor sorption properties of the photonic architectures. 

Moreover, a facile process is presented which allows for the clean inversion of the acid-

sensitive ZIF-8 defect layer into a mesoporous layer in a one-step fashion, while the layer 

structure and optical quality of the stack architecture is preserved. 
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3.3.1 Introduction 

Periodic multilayer structures built up from dielectric materials with different refractive 

indices have recently been developed into versatile sensing platforms based on color-

tunable, analyte-specific optical readout.1–7 The capability of these structures, referred to as 

1D photonic crystals (PCs) or Bragg stacks (BSs), to translate subtle changes in their 

chemical environment or internal hosteguest interactions into a color read-out has been 

demonstrated, for instance, by the exposure to gaseous and liquid analytes.4–8 The presence 

of guest molecules in the textural pores of the multilayer constituents induces a change in 

the effective refractive index (RI) and, hence, the structural color of the infiltrated photonic 

architecture. SiO2 and TiO2 layers derived from low-cost solegel processing routes are 

typically used as building blocks in 1D PCs,9,10 as they allow for a high RI contrast and well-

defined Bragg reflection peaks with only a few bilayers (BLs) in the stack. A variety of 

modification schemes have been explored to enhance the response toward environmental 

changes including the variation of the morphology of the constituting layers such as 

porosity, size or shape of the building blocks.5,6,11,12 The sensitivity of sol-gel derived 

architectures could thus be improved by the use of mesoporous oxides.7,13 Another 

possibility is the fabrication of cavity structures whose symmetry is disrupted by a defect 

layer deposited either inside or on top of a regular BS (referred to as “sandwich” and “top” 

defect structure, respectively).6,9,10,14 The addition of such a layer leads to a narrow band 

range of allowed frequencies within the photonic stop band, and the well-defined spectral 

position of the narrow defect mode can be employed as a precise measure for gradually 

differing analyte concentrations.10 Finally, the implementation of inherently microporous, 

chemically functional materials such as metal-organic frameworks (MOFs) may help to 

improve the selectivity of 1D PCs towards molecular-scale analytes. Owing to the modular 

construction principle of these porous networks built up from metal ions joint by bridging 

organic linkers, the selectivity and specificity may be greatly enhanced in comparison to 

conventional metal oxide-based PCs by means of size or shape exclusion and specific 

hosteguest interactions.15,16 Compared to mesostructured metal oxides, MOFs benefit from 

well-defined pore systems thus allowing for enhanced analyte specificity as a function of the 

kinetic diameter of the analyte. Moreover, as a result of the structural variability of MOFs, 

the affinity toward particular analytes can be fine-tuned from hydrophobic to polar 

sorptives without the need for additional post-synthetic functionalization steps. The 

possibility to fabricate MOFs with dimensions reduced down to the nanoscale allows for 
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their integration into thin film devices,17–20 which has recently been demonstrated for ZIF-8 

as a component in various multilayer structures.21,22 

In this work, we demonstrate the fabrication of MOF-based defect structures for the first 

time by depositing ZIF-8 layers on top of regular periodic multilayers, thus breaking their 

symmetry, as well as by embedding the MOF between two BSs. We show that via both 

approaches clean defect structures are obtained, which are characterized by well-defined 

Bragg reflection peaks and high reflectivity values. By using different TiO2 layers derived 

from either a colloidal dispersion or a sol, we can fine-tune the morphology of the defect 

architectures which allows for enhanced control of their porosity, while the chemical 

composition of the PC building blocks remains unchanged. Moreover, we show that the 

nanoparticulate MOF defect slab can be converted into a mesoporous layer via a simple one-

step synthesis, alluding to the way in which inverse opal structures are synthesized. The 

transformation into the reversed pore structure takes place without destroying the original 

photonic architecture, and the spectral characteristics of the defect structure are preserved, 

rendering this strategy beneficial for smart defect engineering. Besides the optical quality, 

we investigated the sensing capability of our samples by exposing them to ethanol vapor at 

various relative pressures and monitoring in situ the spectral shift upon analyte adsorption. 

3.3.2 Experimental Section 

Syntheses 

All chemicals used in the syntheses are commercially available and were used without 

further purification. 2-Methylimidazole (C4H6N2, 99%), titanium isopropoxide (Ti(OiPr)4, 

97%), 2-propanol (pure) and methanol (puriss) were purchased from SigmaeAldrich. 

Tetramethylammonium hydroxide (N(CH3)4OH·5H2O, 99%) and nitric acid (HNO3, puriss) 

were purchased from Acros. Ethanol (absolute) was purchased from BfB, hydrochloric acid 

(HCl, puriss) was purchased from Brenntag, tetraethoxysilane (Si(OEt)4, 99%) was 

purchased from Merck and zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) was purchased 

from Grüssing. 

SiO2 sol was prepared according to ref. 14. Si(OEt)4 (1.0 g, 4.8 mmol) and absolute ethanol 

(8.5 mL) were stirred for 5 min. To this solution, deionized water (0.43 mL) and 0.5 M HCl 

(0.02 mL) were added consecutively under stirring and the clear mixture was kept stirring 

at RT until further use. In an alternative route, the SiO2 sol suspension was obtained by 
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mixing Si(OEt)4, ethanol and 0.1 M HCl (without the addition of water) in volume ratios of 

1:10:1 or 2:10:2. 

TiO2 sol was prepared in an analogous fashion to a literature protocol.14 Ti(OiPr)4 (0.81 g, 

2.8 mmol) and 2-propanol (8.3 mL) were stirred for 5 min. To this solution, deionized water 

(0.026 mL) and 0.1 M HNO3 (0.02 mL) were added consecutively under stirring and the 

turbid mixture was kept stirring at RT until further use. 

TiO2 particles were synthesized according to ref. 23. Ti(OiPr)4 (19.2 g, 65.5 mmol, 20 mL) 

was added dropwise to deionized water (36 mL) under vigorous stirring. After stirring for 1 

h, the resultant white solid was filtered with a 1.2 mm glass microfibers filter (VWR) and 

washed with deionized water. The solid was mixed with 0.6 M N(CH3)4OH·5H2O (7.13 g, 39 

mmol, 3.9 mL) and transferred to a Teflon autoclave reactor. The mixture was heated at 120 

°C for 3 h and subsequently centrifuged at 14,000 rpm for 10 min to remove potential 

agglomerates from the suspension. The remainder was redispersed in methanol, and before 

each spin-coating process an appropriate amount of the diluted and sonicated mixture was 

filtrated with a 0.45 mm syringe filter (VWR) which allowed for enhanced homogeneity of 

the deposited film. 

ZIF-8 nanoparticles were prepared according to a literature synthesis.24 In a typical 

experiment, Zn(NO3)2·6H2O (0.73 g, 2.44 mmol) was dissolved in methanol (50 mL) and 

rapidly added to a solution of C4H6N2 (1.62 g, 19.6 mmol) in 50 mL methanol. The mixture 

was stirred constantly throughout the reaction until the solution turned turbid. After 1 h, 

the nanocrystals were separated from the solvent by centrifugation and washed 3 times 

with fresh methanol. Stable colloidal suspensions of ZIF-8 were obtained by redispersing 

the particles after centrifugation in methanol, and repeated sonication. 

SiO2/TiO2 multilayers were obtained by spin-coating SiO2 sol and TiO2 nanoparticles or sol 

alternatingly on silicon substrates until the desired number of BLs (3–4) was obtained. For 

depositing the layers within 30–60 s, a rotational speed of 4000 rpm was used at an 

acceleration speed of 4000 rpm s-1 (WS-650SZ-6NPP/LITE, Laurell Technologies 

Corporation). Different thicknesses of the individual layers were achieved by using either 

multiple coating steps or by adjusting the material concentration in the respective solvents. 

After each coating step, the stack was calcined on a hot plate (PZ 28-3TD, Harry Gestigkeit 

GmbH) at 200 °C for 10–15 min to suppress further thickness changes of the freshly 

deposited layer. Before the deposition of TiO2 on top of a SiO2 layer, the samples were 
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plasma-cleaned for 1 min (Femto plasma-cleaner, Diener Electronic GmbH, air, power: 50%) 

which significantly improved the adhesion to the SiO2 surface. 

Defect structures were prepared by spin-coating the MOF suspension on a SiO2/TiO2 

multilayer, using similar spin-coating conditions (4000 rpm at 4000 rpm s-1). The thickness 

of the MOF layer was adjusted by the number of the deposition steps. After heating at 200 °C 

for 10–15 min, the stacks were either directly used for characterization and vapor sorption 

experiments or employed as substrate for sandwich defect structures by coating additional 

TiO2/SiO2 BLs (1–4) on top of the MOF layer. Similarly to the regular SiO2/TiO2 BSs, the films 

were heated after every coating step. 

 

Characterization 

Scanning electron (SE) micrographs and EDX measurements were recorded either with a 

JEOL JSM-6500F SEM equipped with an Oxford EDX analysis system or with a Merlin (Zeiss) 

FE-SEM. Additional EDX measurements (for investigating sample F where the surface was 

partially removed by sputtering with Ga ions) were performed with a Crossbeam 1540 EsB 

workstation (Zeiss). IR spectra were recorded with a JASCO FT/IR-4100 spectrometer. 

Grazing incidence XRD measurements were conducted with an Empyrean diffractometer 

(PANanalytical). Ellipsometric measurements were carried out using a Woollam M2000D at 

angles of 65°, 70° and 75° in the spectral range of 190–1000 nm. The data were fitted 

between 300 and 1000 nm using a Cauchy-type material as the model layer for MOF thin 

films, and the respective metal oxide models for SiO2 and TiO2 layers. Reflectance spectra for 

regular BSs and defect structures were simulated using a MATLAB code.25 In the first step, 

experimentally obtained thicknesses (derived from SEM images and/or ellipsometric data) 

and RI values (derived from ellipsometric simulations at 530 nm by definition) were used as 

starting points and then fitted to the experimental spectra in an iterative approach (see SI, 

Tables S2 and S3, for experimental and simulated values). To facilitate the simulation 

process, equal thicknesses were assumed for each material in samples A–E. However, for the 

fourth TiO2 layer in sample F (i.e. the one adjacent to the defect slab), a considerably lower 

thickness was assumed in order to account for the apparent shrinking of this layer as 

compared to all other TiO2 layers. Spectrophotometric measurements were recorded with 

the same ellipsometer using s-polarized light at an incident angle of 75°. Vapor sorption 

measurements were recorded at ambient temperature using gas mixing systems and the 
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ellipsometer. Relative pressures p/p0 ranging from 0 to 1 (step sizes: 0.02 for 0 ≤ p/p0 ≤ 0.1, 

0.05 for 0.1 ≤ p/p0 ≤ 0.5 and 0.1 for 0.5 ≤ p/p0 ≤ 1) were achieved in our measurements by 

mixing a nitrogen stream at a fixed flow rate with the liquid sorptive (i.e. ethanol in our 

case) at different concentrations (0–100% saturation). Both the flow rate of the nitrogen 

stream and the flow of the liquid analyte were controlled by the percentage of valve opening 

of the respective mass flow controllers (for the gas and the liquid; W-101A-110-P, F-201C, 

Bronkhorst High-Tech), before they were mixed and evaporated in a so-called “controlled 

evaporation and mixing” (CEM) element (W-101A, Bronkhorst High-Tech). For each target 

partial pressure p the sorptive volume (in L/min) was calculated using the van der Waals 

equation and by taking into account the respective room temperature and atmospheric 

pressure of the measurement day. With the help of the online software FLUIDAT, the liquid 

conversion factor (in g/h) and the saturation pressure p0 were calculated as a function of 

the employed controlling elements, at room temperature and atmospheric pressure. For the 

vapor sorption experiments, the samples were placed in a chamber with two openings: One 

for the tube connecting the gas mixing system with the chamber and transporting the vapor, 

and another one designed as outlet for the excessive vapor stream. In a typical 

measurement, the samples were exposed to a specific vapor concentration for 1–5 min and 

the optical response was measured via spectrophotometry before switching to the next 

analyte concentration. We used exposure times as low as 1 min as at least 90% of the final 

response of the stacks occurs within seconds as deduced from kinetic reflectance 

measurements that we have recently shown for various MOF-based multilayers.26 

Time-dependent measurements were recorded with a fiber optic spectrometer 

(USB2000+, Ocean Optics) integrated with an optical microscope (DM2500 M, Leica). The 

sample was therefore placed in a home-made chamber which was assembled as described 

elsewhere.27 The chamber was pierced three times to create an outlet and two separate 

inlets: The first one for the connection to a constant nitrogen stream, the second one for 

connecting to the carrier gas saturated with ethanol vapor at a constant analyte 

concentration. The saturation of the carrier gas was achieved by bubbling nitrogen through 

a washing bottle filled with ethanol at a constant velocity. The response of the sample was 

monitored by recording the change in reflectance at a specific wavelength of the spectrum, 

and the sample was alternatingly exposed to the nitrogen/ethanol mixture and pure 

nitrogen with an approximate delay of 2 min. 
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3.3.3 Results and Discussion 

Structuring of the ZIF-8 defect 1D photonic crystals 

For the fabrication of the BSs, either a combination of SiO2 sol and TiO2 sol or TiO2 

nanoparticles were used, leading to BS architectures with gradually differing textural 

porosities and, hence, analyte accessibility. In Scheme 1, an overview is given on the 

architectures examined in this work. The stacks are classified as either a member of hybrid 

1D PCs based on SiO2 sol and TiO2 nanoparticles (np in the scheme; samples A–C), or 1D 

photonic structures built entirely from rather dense and, hence, less sensitive SiO2/TiO2 sol-

based multilayers (samples D–F). 

 

 

Scheme 1. Schematic drawings of the multilayer structures described in this work. Besides illustrating the 

periodic layer sequence, the differences in the individual RIs and morphologies are stressed by using specific 

colors for each material (SiO2: blue, TiO2-np: bright green, TiO2-sol: dark green, ZIF-8 nanoparticles: red, inverted 

ZIF-8 layer: pink). 

 

Periodic SiO2/TiO2 multilayers were obtained by spin-coating and annealing alternatingly a 

SiO2 sol and TiO2 suspensions on silicon substrates until the desired number of BLs was 

achieved. For the deposition of TiO2 thin films, either colloidal TiO2 suspensions or a TiO2 sol 

was used to produce mixed-porous or purely sol-based architectures denoted as SiO2/TiO2-

np (sample A) and SiO2/TiO2-sol (sample D) BSs, respectively. We observed that a number of 



3 Interference-Based Readout 

110 
 

three to five BLs was sufficient to yield BSs with a high optical quality indicated by the 

formation of a pronounced stop-band with high reflectivity of >90% (see Fig. 3 and the 

respective paragraph for a more detailed discussion of the optical quality). In Figs. 1a and d, 

cross-sectional SE micrographs are shown for A and D, respectively, which were built up 

from three BLs in each case. The alternate assembly of SiO2 and TiO2 layers is confirmed by 

the periodic array of darker and brighter slabs in the SE micrographs, which is attributed to 

the different electron densities and, hence, scattering contrast of the metal oxides. 

 

 

Figure 1. Cross-sectional SEM images of hybrid 1D PCs (a–c: samples A, B and C) and dense multilayer structures 

(d–f: samples D, E and F). The individual layers are highlighted with the respective colors introduced for the 

schematically drawn stacks (SiO2: blue, TiO2-np: bright green, TiO2-sol: dark green, ZIF-8 nanoparticles: red, 

inverted ZIF-8 layer: pink). Note that the stack shown in (f) has inhomogenously peeled off the surface of the 

silicon substrate. 

 

The fabrication of defect MOF-based structures was accomplished by using the SiO2/TiO2 

multilayers prepared in the first step as substrate, and depositing a layer of ZIF-8 

nanoparticles on top. In Figs. 1b and e, the formation of a smooth particulate layer on top of 

three-bilayered BSs is shown, indicating the successful deposition of ZIF-8 particles on the 

surface of both the particulate and the dense TiO2 layer (samples B and E, respectively). The 

cross-section images of exemplary defect sandwich structures, with 3 additional BLs on top, 

are shown in Figs. 1c and f for the mixed-porous (C) and the sol-based (F) BSs, respectively. 

In C, the retention of the particles in the defect layer is confirmed by the particulate 

appearance of the middle slab. For F, however, the morphology of the defect seems to be 
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significantly changed as compared to the original uncovered ZIF-8 layer (see Fig. 1e). In 

place of the nanoparticles with textural porosity between the particles an inverted structure 

is observed which appears as mesoporous replica of ZIF-8 with voids in the size range of the 

original particles (~50 nm). This observation alludes to the way in which inverse opal 

structures are typically synthesized, although the process used here is intriguingly simple: 

In opal fabrication a template – SiO2 or polymer microparticles – are either co-assembled 

with a void-filling material such as TiO2 sol or infiltrated with the sol subsequent to the 

assembly process.28 In the next step, the template spheres are removed by thermal 

treatment or solvent extraction. We assume that a similar templating process takes place in 

our samples, albeit in a one-step fashion: The ZIF-8 particles act as a template layer, which is 

inverted through the application of TiO2 sol (Scheme 2). To explore the conditions required 

to induce the one-step formation of the porous layer and its composition, we firstly 

deposited 1–3 TiO2/SiO2 BLs on a ZIF-8 top-coated BS, while in a second experiment a BL 

with reversed stacking order (SiO2/TiO2) was used, and monitored the resulting 

morphology of the defect layer with crosssectional SEM. In all cases, formation of the porous 

structure was observed, demonstrating the reproducibility of this phenomenon on the one 

hand; on the other hand, it appears sufficient to use only 1 BL to create the reverse pore 

system. In Figs. S1a and b (SI), this observation is illustrated by SEM images of a sandwich 

structure with one overhead TiO2/SiO2 BL (Fig. S1a) in comparison to a structure with one 

BL with reversed order (SiO2/TiO2) on top (Fig. S1b). Although it is difficult to distinguish 

the individual oxide layers due to issues that we discuss further below, the porous nature of 

the underlying inverted “ZIF-8” layer is clearly visible in the SEM images. In fact, we 

observed that already the deposition of either TiO2 or SiO2 sol onto ZIF-8 entails the 

formation of the porous structure (Fig. 2a for TiO2; see SI, Fig. S1c, for SiO2), which we 

attribute to the low pH of the sol layers (synthesized in 0.5 M HCl/0.1 M HNO3, respectively, 

for SiO2/TiO2) likely entailing the dissolution of the acid-sensitive ZIF-8. When the colloidal 

(basic) TiO2 suspension was used, however, the morphology of the ZIF-8 particles remained 

unchanged (SI, Fig. S1d). A similar templating process, yet proceeding in a two-step 

synthesis, has been described for carbonate nanoparticles which were incorporated in a 

polymer film,29 and by utilizing the acid lability of the particles porous polymer membranes 

were formed. Complete infiltration of the defect layer and, hence, inversion is supported by 

the observation of various dips and cavities penetrating the entire height of the defect layer 

(Fig. 2b, green arrows), which act as reservoirs from which the sol spreads out and reaches 

the interparticle voids. 
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Scheme 2. Schematic illustration of the reverse pore engineering as observed in the fabrication of purely sol-

based sandwich defect structures. Upon contact with TiO2 sol (represented as green drop), the ZIF-8 layer (red 

spheres) is transformed into a mesoporous inverted layer (pink mesh). 

 

According to Figs. 1f and 2c, the fourth TiO2 layer (i.e. the one following the inverted MOF 

film) and the adjacent SiO2 layer turn out thinner as compared to the other layers, 

additionally suggesting the leakage of the sols into the subjacent layer. The thickness change 

of the SiO2 layer is, however, less pronounced than for TiO2 and has not been observed for 

all our samples.We thus assume that the probability of SiO2 sol leaking into the defect slab is 

controlled by the “density” of the remaining fourth TiO2 layer and therefore varies with its 

thickness. As can be seen in Fig. 2d, the newly formed inverted layer shows a high scattering 

contrast similar to the TiO2 slabs, and is less sensitive to the electron beam than the original 

ZIF-8 defect, which indicates the transformation into a mesoporous oxide layer. As EDX 

measurements suggest that Zn is still present in the inverted layer (SI, Table S1 and Fig. 

S2b), partial conversion from ZIF-8 to ZnO also seems plausible. To clarify whether the 

original ZIF-8 layer is completely dissolved or at least partially still intact, we conducted 

further analytical measurements including XRD and IR spectroscopy. According to Figs. S2c 

and d (SI), the presence of ZIF-8 or a Zn containing product can be concluded in both the top 

defect (E) and the sandwich structure (F). Hence, we assume that after the conversion 

process residual Zn and N are still present in the inverted slab aside from Si and Ti 

suggesting that no pure sol layer has formed. Additional evidence for the conversion is 

obtained from sorption experiments which we conducted with a sandwich defect structure 

built up from rather porous TiO2 sol layers. The recorded optical response no longer shows 
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the prominent adsorption steps characteristic for ZIF-8 (see SI, Fig. S3, and the 

corresponding paragraph for a more detailed discussion of the sorption experiments). We 

thus assume that the formation process of the porous layers takes place in a similar way to 

that used in the fabrication of inverse opal structures or porous polymers,30 i.e. via a 

templating process. With regards to costs, ease of handling and synthesis time, this process 

therefore has the potential to outperform the conventional fabrication strategy, as the 

formation of the porous structure (i.e. infiltration and template removal) is executed in one 

single step. 

 

 

Figure 2. Cross-sectional SEM images of (a) a single ZIF-8 layer coated with TiO2 sol, and three exemplary dense 

sandwich structures, (b) illustrating the leakage of overhead layers into the defect layer, (c) demonstrating the 

comparatively lower thickness of the TiO2 layer following the inverted MOF film in comparison to the other TiO2 

slabs, and (d) recorded in backscattering mode, visualizing the high scattering contrast of the inverted layer. The 

reversed ZIF-8 layer in (a) is highlighted in pink, while TiO2 slabs in (a) and (c) are shown in dark green. 

 

We investigated the optical characteristics and quality of our structures by measuring their 

reflection spectra at normal incidence by means of a fiber optic spectrometer interfaced 

with an optical microscope, and by comparing the experimentally obtained data with 

simulated spectra. In general, the stop-band position of the BSs (λmax) depends on the optical 
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thickness (i.e. physical thickness d times refractive index n) of the constituent building 

blocks, which can be modulated by changing the deposition conditions such as the spinning 

speed, or the solution concentration:1 

mλmax = 2(nLhL + nHhH) 

Here, m is the diffraction order and L and H denote the thickness d and RI n of the low- and 

high-RI materials, respectively, at normal incidence. 

 

 

Figure 3. Experimentally obtained (top row) and simulated (bottom row) reflection spectra of hybrid 1D PCs (a, 

c: samples A, B and C) and dense multilayer structures (b, d: samples D, E and F). Gray lines represent SiO2/TiO2 

BSs without defect, top defect structures are shown in dark cyan and sandwich defect structures in blue. 

 

In the corresponding UV–vis spectra of the top defect structures (dark cyan lines in Figs. 3a 

and b), a slight decrease in reflectivity is observed in comparison to the original BSs (gray 

lines). This observation is in accordance with top defect BSs coated with mesoporous TiO2,10 

where sizeable effects on the spectrum by localization of defect modes in the stop band are 

only seen for very thick top layers, while embedded layers give rise to pronounced 
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reflectance dips, irrespective of their thickness. Indeed, by adding more BLs to our 

heterostructures, we also observe the appearance of a reflectance dip in the stop band (blue 

lines in Figs. 3a and b, at ca. 2.46 eV/504 nm and 2.06 eV/602 nm, respectively). Compared 

with the top defect structure, the reflectivity of sample C is considerably reduced (≈ 65%), 

while the sol–sol-based sandwich structure F maintains its high optical quality (≈ 90%). 

This finding may be rationalized by the comparatively large particles of the colloidal TiO2 

suspension (10–20 nm) leading to enhanced diffuse scattering losses and, hence, lower 

optical quality with increasing numbers of BLs in comparison to sol-based multilayers 

having a higher homogeneity (see SI, Fig. S4, for the spectral evolution with each BL 

deposition). 

In order to evaluate the quality and validity of the experimentally obtained data, we 

calculated simulated spectra of the stacks on the basis of ellipsometric measurements for 

single oxide and MOF films, respectively, and SE micrographs of the final BS architectures. 

Based on average thicknesses determined from SEM data and spectroscopic ellipsometry, 

and the respective RIs of the individual oxide layers (see SI, Tables S2 and S3, for a 

complete list of all experimental and simulated thickness values and RIs), we calculated 

Bragg maxima of 2.61 eV (475 nm) and 2.34 eV (530 nm) for A and D (Figs. 3c and d, gray 

lines), which is comparable to the experimentally measured ones (2.64 eV/470 nm and 2.36 

eV/526 nm for A and D, respectively, gray lines in Figs. 3a and b). Similarly to the recorded 

spectra, the simulations for top defect stacks B and E (Figs. 3c and d, dark cyan lines) show 

a slight reduction in reflectivity compared to the original multilayer structures. The 

calculated maxima of both stacks coated with ZIF-8 (2.68 eV/463 nm and 2.37 eV/524 nm 

for B and E, respectively) are in the same range as the measured ones (2.63 eV/472 nm and 

2.40 eV/517 nm). In contrast to the experimental spectrum recorded for sandwich defect 

structure C, the simulated spectrum shows a comparatively higher reflectivity which is in 

the same range as for the SiO2/TiO2 BS and the top-coated stack, and a better resolved 

reflectance dip (Fig. 3c, blue line). Nevertheless, the shape of both spectra in the range 

below 2.4 eV are in good agreement, and the dips in the maxima are at equal positions (2.46 

eV/504 nm in both cases) suggesting the plausibility of the assumed optical thickness values 

for C. The experimental spectrum of F is in good agreement with the simulated one (Fig. 3d, 

blue line), indicated by a similar shape of the Bragg maximum, reflectivity and similar dip 

positions (2.06 eV/602 nm for the recorded data and 2.16 eV/574 nm for the calculated 

spectrum). For the calculation, we assumed an average RI of 1.60 for the defect layer, which 

is in between those for a nanoparticulate ZIF-8 layer (1.21) and TiO2 sol (1.93) (see also 
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Fig. S5, SI). According to the prominent dip in both the experimental and the calculated 

spectrum of F, the inversion of the original ZIF-8 film into a mesoporous layer, hence, does 

not prevent the formation of a clean defect structure. Nevertheless, its sensitivity and 

selectivity to analytes is of course expected to change with respect to the samples with an 

intact MOF layer. 

 

Sorption experiments with ZIF-8 defect 1D photonic crystals 

To test the sensitivity of our defect structures to molecular analytes, vapor sorption 

measurements were conducted at room temperature using mass flow controllers and 

spectrophotometry at a viewing angle of 75° to monitor spectral changes at different analyte 

concentrations (0–100%, corresponding to relative pressures of 0 ≤ p/p0 ≤ 1). To this end, 

the sample was placed in a measurement chamber with two openings such that the sample 

was exposed to a constant stream of flowing gas/vapor mixture for 1–5 min. We used 

exposure times as low as 1 min as we observed that the full response of the stack toward the 

analyte is achieved within the first minute and remains constant upon further exposure (see 

ref. 26 and Fig. S6, SI). In the first run, we investigated in situ the response of the two top 

defect structures (samples B and E) toward ethanol vapor while gradually increasing the 

analyte concentration. The spectra shown in Figs. 4a and c illustrate the change of the 

optical properties of each stack upon exposure to ethanol vapor at the highest analyte 

concentration in comparison to pure nitrogen. For both structures, a pronounced red-shift 

of the respective spectra is observed (66 nm/0.18 eV for B and 61 nm/0.13 eV for E, 

determined at 1.9 eV/16% reflectivity and 1.7 eV/40% reflectivity, respectively). By 

comparing a range of top defect samples with differing ZIF-8 layer thicknesses, we observed 

that stacks with a large thickness of the top defect layer show a comparatively higher 

response in comparison to thinner ones, which is consistent with the larger total pore 

volume available for the uptake of guest molecules (see SI, Fig. S7, for the comparison of 

two top defect structures based on colloidal TiO2). By using a distinct position in the 

spectrum to determine the shift for each stack at various analyte concentrations, we obtain 

optically encoded isotherms revealing the individual sorption behavior of the structures as a 

consequence of their differing porosities. For both top defect samples, we observe a similar 

behavior with increasing analyte concentration in the nitrogen stream (Figs. 4b and d): At 

p/p0 ≈ 0.1, the spectrum strongly red-shifts, while at both lower and higher ethanol 

concentrations less pronounced changes are observed. This finding indicates pore size or 
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chemo-specific analyte uptake at a certain threshold pressure, as typically found for 

adsorption in ordered pore systems. Indeed, delayed ethanol adsorption into the 

micropores of bulk ZIF-8 around p/p0 = 0.1 is associated with a polarity-driven gate opening 

effect31 and was likewise reported for ZIF-8/TiO2 BSs.21 Thus, the adsorption behavior of 

both top defect structures seems to be dominated by the structural pores of ZIF-8, which is 

rationalized by the larger layer thickness in comparison to the subjacent multilayer. Besides 

the sensitivity of the individual materials (i.e. TiO2, SiO2 and ZIF-8), the response may also be 

influenced by the assembly order of the stack: As the top ZIF-8 layer is most exposed to the 

infiltrating analyte vapor and hence most accessible, the optical response may be dominated 

by ZIF-8 rather than by the underlying, less accessible oxide layers. 

We also tested the response of the two sandwich defect structures toward ethanol vapor 

(Figs. 4e–h). The reflection spectrum of C (Fig. 4e) shifts to higher wavelengths upon 

ethanol adsorption similarly to its counterpart without the overlying additional BLs. The 

magnitude of the shift, however, is reduced suggesting that the response of the stacks is, 

amongst others, mediated by the stacking architecture. In the vapor adsorption isotherm 

(Fig. 4f), we observe two major steps at p/p0 ≤ 0.02 and p/p0 ≈ 0.1. As the adsorption in 

micropores is typically accompanied by a strong signal increase at very low relative 

pressures, we attribute the first pronounced shift to the analyte uptake in the textural 

micropores of the overhead BS (with an average particle size of 10–20 nm for TiO2-np, up to 

25% porosity can be expected32). To confirm this assumption, we conducted similar vapor 

sorption experiments with a regular hybrid multilayer (SI, Fig. S8) which indeed shows 

strong uptake of alcohol molecules at low relative pressures, similarly to the observations 

reported in ref. 5. The second signal increase is again attributed to the adsorption event 

taking place in the structural pores of ZIF-8. Apparently, the signal height for sample C is 

drastically reduced as compared to the shift observed for sample B (Fig. 4b), indicating a 

relatively weaker interaction with the analyte vapor for C. This observation agrees well with 

the results obtained for a defect sandwich structure with only 1 instead of 3 overhead BLs 

(SI, Fig. S9): While the overall response is in between that of B and C, the ZIF-8 response (i.e. 

the step at p/p0 ≈ 0.1) turns out to be higher relative to the defect structure C with 3 BLs. 
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Figure 4. Reflection spectra and optical vapor sorption isotherms of hybrid 1D PCs (a, b: sample B; e, f: sample C) 

and dense multilayer structures (c, d: sample E; g: sample F) illustrating the change of the optical properties after 

adsorption of ethanol vapor. Note that the spectra look different from those shown in Fig. 3 as they are recorded 

at 75. In the reflection spectra, the respective spectral shift upon exposure to the highest analyte concentration 

(100%, p/p0 ≈ 1) is shown in comparison to pure nitrogen, while the respective isotherms illustrate the 

individual sorption behaviors of the stacks at various relative pressures. The time-dependent response of F (h) 

was recorded by switching back and forth from pure nitrogen to nitrogen/ethanol and monitoring the 

reflectivity at a distinct wavelength of the spectrum. Dark cyan lines represent top defect structures and 

sandwich defect structures are shown in blue. 

 

In contrast to the hybrid structures, sol–sol-based sample F shows no response at all upon 

analyte exposure (Fig. 4g), which is illustrated in Fig. 4h by a time-dependent monitoring of 

the reflectivity at 2.26 eV (550 nm). Although the defect layer possesses a considerable 



3 Interference-Based Readout 

119 
 

degree of textural porosity, as we deduce from the SEM images (Fig. 1f), no response and, 

hence, no ethanol adsorption is observed in the sol-based defect BS. Apparently, the 

overhead BS hampers the infiltration of analyte vapor into the underlying layers, which 

suggests that the stack–analyte interaction is mediated by both the BS architecture (i.e. top 

vs internal defect, number of BLs) and the type and morphology (i.e. structural and/or 

textural porosity) of the layers directly exposed to the incoming vapor. Similar phenomena 

have been described for metal oxide based BLs and multilayers with differing porosities, 

where the shape of the isotherms showed a dependency on the stacking order of the 

layers.25 The low sensitivity of sol-based multilayers is reported in ref. 32 and additionally 

demonstrated through vapor sorption measurements with a regular SiO2/TiO2-sol BS 

sample (SI, Fig. S10). 

We thus hypothesize that the vapor penetrates the stack in a successive way by entering 

from the top side of the sample, and that the ultimate sensing behavior of the stack is 

controlled by the upmost layers. To further corroborate this assumption, we performed two 

additional sensing experiments with a porous SiO2/TiO2 BS sample: In the first run, we 

covered the four edges of the stack with adhesive tape to prevent potential analyte 

adsorption leaving only the surface available to the vapor atmosphere, while in the second 

run the top side was covered. In each case, the sample was exposed to ethanol vapor at a 

constant concentration while monitoring the spectrum and the change in reflectivity (at 

normal incidence). From Fig. S11 (SI) showing the respective spectra and kinetic 

measurements for both scenarios, it can be clearly seen that the sample with blocked edges 

readily responds to the analyte stream by showing a pronounced spectral shift (Fig. S11a) 

and a prompt increase in reflectivity (Fig. S11b). In comparison, no signal is observed for 

the stack with the covered surface upon analyte exposure (Figs. S11c, d) suggesting that the 

analyte transport through the BS indeed starts from the top layer only. 

In summary, the sorption behavior of both top defect structures seems to be 

predominantly governed by the response of ZIF-8, while the vapor sorption isotherms of the 

sandwich structures are determined by the constituents of the respective uppermost layers. 

Using colloidal TiO2 layers, partial accessibility to the underlying layers is granted, whereas 

the deposition of purely sol–sol-based multilayers strongly hampers the analyte transfer to 

the rest of the stack. For both types of sandwich structures, the pore accessibility shows a 

dependency on the number of overhead BLs, which especially affects the sensitivity of the 

dense defect structures. 
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3.3.4 Conclusion 

We have demonstrated the successful integration of MOFs into 1D photonic defect 

multilayers using two different approaches, namely by depositing thin ZIF-8 layers either on 

top of a regular PC built up from SiO2 and TiO2 as low- and high-refractive index materials, 

or embedded between two multilayers. The conversion of a ZIF-8 layer into an optically 

homogenous mesoporous film upon sol contact occurs via a templating process in a simple 

one-step procedure with retention of the original stack architecture. This method is generic 

and lends itself well for the fabrication of complex photonic cavity structures or membranes 

with different porosities from only three basic building blocks. Vapor sorption experiments 

reveal a pronounced higher sensitivity and selectivity for top defect structures in 

comparison to stacks with embedded MOFs, which we attribute to the larger exposed 

surface area of the external ZIF-8 layer resulting in superior stack–analyte interactions. 

Despite the porosity of the inverted defect layer the purely sol-based sandwich structure 

showed no response upon analyte contact, thus stressing the “gating” function of the 

uppermost layers for the sensitivity of the overall detection platform. Further experiments 

exploring the sorption properties of different MOF-based defect structures are currently 

underway to tailor the selectivity of the stacks toward specific host–guest interactions. 
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4 SUMMARY AND OUTLOOK 

4.1 METAL-ORGANIC FRAMEWORKS AS OPTICAL SENSOR 

MATERIALS? 

In this thesis, we have demonstrated that nanosized versions of MOFs can serve as versatile 

building blocks for optically homogenous thin films (chapter 2) and multilayers 

(chapter 3). For the latter, the integration of nanoMOFs into several light-guiding patterns 

has been shown, ranging from single MOF BSs (in combination with TiO2; chapter 3.1), to 

tandem MOF BSs and arrayed platforms (chapter 3.2), to photonic defect structures 

(chapter 3.3). The optical features of these materials (i.e. interference color) have been 

used for sensing molecular events in the porous layers; by monitoring in situ the response 

toward particular solvent vapors (water, alcohols, and other organic vapors; see also refs. 1 

and 2), the sensitivity and chemical selectivity of the stacks have been demonstrated. 

Besides, the response toward the investigated analytes has shown to occur reversibly on the 

scale of a few seconds, and may be correlated with prevalent analyte concentrations 

(measured in partial pressures). Changes in the structural colors have been monitored 

through UV-vis reflectance spectroscopy, and by recording optical photographs which allow 

for complex color image analysis. –Besides, new routes for controlling morphologies have 

been found on the one hand by the inversion of a particulate film into an optically 

homogenous mesoporous layer (chapter 3.3), and on the other hand by the additive-

mediated size control of two prototypic MOFs (chapter 2). 
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The particularly short response times of our photonic MOF sensors, their strong capability 

for sensing alcohols and the overall easy handling (no external wires needed for signal 

indication!) suggest that MOF based platforms are promising candidates for environmental 

sensing; this could be in the form of breathalyzers, e.g. for estimating blood alcohol contents 

via the breath. However, there are some issues to be considered for real-life applications, 

which partially relate to experiences that we have made with MOF thin films during this 

thesis: 

1) sensitivity,  2) cross-responsivity,  3) iridescence,  4) stability. 

The following sections specify these particular issues and suggest ideas how they could be 

overcome. 

Starting with the sensitivity, MOF thin films are in general highly responsive toward 

molecular analytes which has been demonstrated, for instance, through quartz crystal 

microbalance (QCM) sensing and workfunction-based readout.1,2 Briefly, the latter reveals 

host–guest interactions in MOFs by visualizing changes in the electronic structure of the 

sensing layer (i.e. work function), while for the former the event of molecular adsorption is 

monitored by changes in the oscillation frequency of the sensor. These changes are in turn 

proportional to the mass loading resulting from the adsorption of the analyte. Both readout 

strategies allow for the detection of even very low analyte concentrations (2–50 ppm).1 – 

The capability of detecting molecules at such low levels is mandatory for a potential sensory 

material. These are, however, not attainable by the MOF platforms discussed in this thesis: 

In fact, the lowest concentration that has been investigated with the interference-based 

readout was p/p0 ≈ 0.02 (ca. 20000 ppm or 20‰). This is attributed to the comparatively 

low resolutions of the applied optical set-ups, which permit the detection of sub-nm shifts, 

and the moderate spectral shifts induced through RI variation alone (see chapter 5.3 for a 

discussion of the detection limit). Effective changes in the lattice constants (i.e. through 

shrinking or swelling) could have a much higher impact on the optical properties than RI 

variations.3 On the other hand, RI variations are usually much faster detected by the 

observer when induced through vapor adsorption, than swelling processes by diffusion. – 

Signal enhancement may thus eventually be achieved by counterbalancing the (dis-

)advantages of both methods through one or more of the following possibilities: 
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a) Increased layer thicknesses (while maintaining the accessibility of the active MOF 

component for the desired analyte); 

b) Implementation of even more sensitive MOF structures, or dynamic MOFs which 

respond through transformational changes, such as “breathing”;4 

c) Embedding in elastic materials that are capable of swelling or shrinking;5 here, the 

analyte should be adsorbed in the MOF pores only, and the MOF response may act as a 

switch to induce a lattice change in the soft stretchable material. 

Beside the general sensitivity, the selectivity of a certain MOF type will ultimately 

determine the performance of a sensor, such as its capability for discriminating between 

several analytes. Cross-responsivity induced by molecules other than ethanol in one´s 

breath (e.g. water droplets) may be bypassed by arrayed platforms such as the ones 

presented in this work (tandem MOFs BSs or BS arrays; see chapter 3.2); i.e. a combination 

of different MOFs having characteristic sorption capabilities can serve for indicating 

complex breath mixtures. Here, the implementation of more “structured” MOFs, e.g. 

SURMOFS (surface-mounted metal-organic frameworks),6 heterostructured “Janus” 

materials7 or core-shell structures8 could be useful: Only target molecules would be allowed 

to enter the active core (a MOF or another functional material) and thus to concentrate in 

the pores, while the outer MOF shell acts as a protecting molecular sieve; this way, the 

sensing signal may be less prone to “broadband” detection. – In a more general approach, 

specific MOF structures may be chosen, such as the rather hydrophobic ZIF-8, which thus 

hamper the free diffusion of water molecules inside the sensing platform. 

Furthermore, structural colorations generated through multilayers are typically 

characterized by interference (i.e. change in hue and intensity for different viewing angles). 

For an optical breathalyzer, however, precise color definitions for specific ethanol 

concentrations are necessary to guarantee a correct result. Even if an optimal viewing angle 

could be found to achieve maximal intensity and defined hue, it would not be practicable to 

use breathalyzers at only one specific angle. Here, the color generating principle in Morpho 

butterflies can serve as an inspiration source for achieving a specific color at given 

conditions and for a broad angle region.9 

  



4 Summary and Outlook 

126 
 

Concerning the stability, we have experienced (in accordance with the literature) that MOF 

coatings are not particularly stable against chemicals such as acids,10 or high temperatures 

(e.g. max. 200 °C for ZIF-8)11, and mechanical forces (if deposited via spin-coating). 

Moreover, the MOF platforms investigated as part of this thesis have shown to lose their 

sensitivity toward vapors after prolonged exposure times (see also ref. 1); hence, it is to be 

doubted that they may be used for long-time purposes or much less sensing liquids. – 

Nevertheless, the life-time of MOF sensors may be probably significantly enhanced by using 

SAMs (self-assembled monolayers of organic molecules) or SURMOFS which covalently 

attach the MOF structure to the substrate;6,12 this way, the structures may be less prone to 

mechanical strength and be sufficiently stable in solutions than when being deposited via 

spin-coating. In addition, the MOF particles could be embedded in polymers or other 

suitable materials, or the stack may be fashioned with a polymeric top layer as a robust 

shield; however, it must be guaranteed that the underlying MOF component is still 

accessible to the analyte which most likely enters through the top site (see chapter 3.3). 

Another option would be to regenerate MOF structures after they have been used for a 

certain time period: This could be done, for instance, through exposure to specific solvents13 

or through soaking in the respective precursor solution. The latter has been shown for the 

(partially) reversible substitution of metal nodes or linkers in a given framework 

structure.14 

Along with these lines, it will be increasingly important to have the possibility to post-

synthetically modify given stacks to adapt or enhance their functionality. This possibility 

resembles the way in which nature fabricates its materials: Instead of fabricating specific 

materials for specific functions, a few basic building units are appropriately assembled, and 

subsequently modified with respect to actual and/or local needs. This approach may also 

allow for a more environmentally friendly and efficient fabrication of devices as a lower 

variety of building units and, hence, chemicals are needed, and the MOF may be also 

recycled if necessary. – Modification of MOF-based sensing platforms can be achieved either 

through post-synthetic modification of the organic linkers,15 or hybridization approaches 

(e.g. metathesis reactions involving partial linker/metal substitution;14,16,17 Fig. 1a): This can 

be done, for instance, by soaking the parent MOF structure in the respective precursor 

solution. For both modification routes, it is expected that the sorption properties of the new 

MOF can thus be optimized for a desired sensing reaction (e.g. through strengthening 

desired host–guest interaction forces). At the same time, if the MOF is implemented in a 

photonic device, such substitution reactions could be monitored with great ease (and in 
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situ!) as the introduction of other building blocks (functional groups, metal or linker) into 

the MOF structure is expected to induce changes in the effective RI and, hence, optical 

appearance (Fig. 1b). 

Along with the implementation of ZIF-8 as a defect layer in regular SiO2/TiO2 BSs 

(chapter 3.3), we have shown that the ZIF-8 defect layer may be inverted into a mesoporous 

layer by simply depositing metal oxide sols onto the MOF slab; the stack architecture (i.e. 

ordering of the individual layers) thereby remained unaltered during the transformation. 

Such one-step inversion processes may be used as an alternative route for hybridization 

with MOFs: For example, the inverted pores may be fashioned with functionality by either 

grafting desired molecules to the pore walls,18 or by accommodating active guests in the 

mesopores, such as gold nanoparticles or dyes.16 The pores could also be filled with a 

precursor material and thus used as templates for opal-like structures;19 likewise the pores 

can serve as confined reaction containers, e.g. in order to yield polymers with properties 

strictly dictated by pore size, geometry and pore chemistry of the host lattice.17 Epitaxial 

growth of different MOF phases on the pore walls in a layer-by-layer fashion, e.g. for the 

synthesis of core-shell structures or tandem MOF PCs, seems also feasible. 

 

 

Figure 1. Metathesis reactions with MOFs. (a) Post-synthetic strategies (here: replacement of metal nodes and 

organic linkers; routes on the left and right, respectively) allow for altering the composition of a MOF structure 

at specific positions, while maintaining its overall topology. (b) The process and the outcome of such exchange 

reactions may be monitored in situ by implementing the desired MOF type into a photonic multilayer (colored 

squares). Upon soaking into an appropriate reaction solution (e.g. with another metal source), the PC´s color is 

expected to change depending on the exchange rate (visualized with the color bar). This reaction may occur 

reversibly, thus allowing for the regeneration of the parent MOF structure. 
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Another interesting research field would be to experiment with the material´s porosity: 

Here, the fabrication of the mesoporous layer may be studied as a function of different MOF 

nanoparticles having characteristic particle diameters and shapes, or as a function of the 

particle ordering in the thin film (Fig. 2). In this context, the co-assembly of MOF particles, 

differing either in size, shape or composition, may lead to well-defined hierarchical pore 

systems. As MOFs possess different stabilities with respect to temperature, solvents and 

chemicals (owing to their structural diversity), both the pore topology and functionality 

could be thus tailored toward a desired sensing performance (e.g. molecular sieving or 

preferential adsorption).20,21 

 

 

Figure 2. Pore engineering with MOF nanoparticles (blue) as templates for meso-/macroporous films. The 

transformation into the inverted layer through a stimulus (e.g. an infiltrating sol, as shown above in pink) may be 

studied as a function of particle size, shape, composition or ordering, to achieve either uniform or hierarchical 

pore systems. 

 

To conclude, the performance of optical MOF detection platforms may be improved by 

several approaches related to hierarchically controlled structuring (structural 

microporosity, nanoparticulate layers, mesoporous opaline assemblies, building block 

replacement, SURMOFs etc.), or the directed mixing of color generating principles 

(diffraction gratings and multilayer interference for iridescenceless colors); using both 

approaches, the realization of novel “emerging” properties seems feasible which have not 

yet been (fore)seen. In particular, the concepts of 1) metathesis reactions, 2) controlled pore 

engineering, and 3) embedding in soft materials for enhanced spectral changes may render 

a powerful tool toward the fabrication of smart optical sensing devices based on MOFs. 
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5 APPENDIX 
Supporting information for chapters 2.1, 3.1, 3.2 and 3.3 is provided in this section, 

followed by a list of all publications and presentations. 
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5.1 SUPPORTING INFORMATION FOR CHAPTER 2.1 

 

adapted from A. Ranft, S. B. Betzler, F. Haase and B. V. Lotsch, „Additive-mediated size control of 

MOF nanoparticles”, CrystEngComm 2013, 15, 9296-9300. 

 

Cover imagea 

 

aImage designed by Christoph Hohmann (NIM), reproduced by permission of the authors from The Royal Society 

of Chemistry. 
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Materials and methods 

Chemicals 

Benzene-1,3,5-tricarboxylic acid (H3BTC, 98%), N,N-dimethylformamide (DMF, p.a.) and 

copper acetate monohydrate (Cu(OAc)2 · H2O, 98+%) were purchased from Acros. 

Poly(acrylic acid) (PAA, MW = 1,800), 2-aminoterephthalic acid (H2BDC-NH2, 99+%) and 

polyvinylpyrrolidone (PVP, MW = 40,000) were purchased from Sigma-Aldrich. Zinc acetate 

dihydrate (Zn(OAc)2 · 2H2O, p. a.) was purchased from ACS. Hexadecyltrimethylammonium 

bromide (CTAB, 98%) was purchased from Alfa Aesar. Ethanol (99%) was purchased from 

BfB. All chemicals were used as received without further purification. 

Synthesis of HKUST-1 

In a typical synthesis, H3BTC (73.8 mg, 0.344 mmol) was dissolved in ethanol (1.4 mL) and 

DMF (4.2 mL) under stirring and combined with PAA (221 mg, 0.123 mmol). To this 

mixture, a solution of Cu(OAc)2 · H2O (70 mg, 0.344 mmol) in 2.8 mL deionized water was 

added under vigorous stirring, which rapidly induced the formation of a blue precipitate. 

The product was separated from the reaction mixture by centrifugation and washed in DMF, 

ethanol and water for at least 3 times. Stable colloidal suspensions were obtained by 

redispersing the washed product in DMF using ultrasound (Elmasonic S100H ultrasonic 

bath, 550 W). 

For further experiments, the reaction conditions were varied, including reaction time (5 

min, 30 min), reaction temperature (0 °C, room temperature (RT), 55 °C) and amount of 

PAA (depending on the weight ratio of H3BTC:PAA = 1:2, 1:3, 1:4, 1:5, 1:6, 1:15, 

corresponding to 0.082 mmol, 0.123 mmol, 0.164 mmol, 0.205 mmol, 0.246 mmol, 0.615 

mmol of PAA). 

Synthesis of IRMOF-3 

In a typical synthesis, Zn(OAc)2 · 2H2O (35.12 mg, 0.160 mmol) was dissolved in DMF (2 

mL) and rapidly added to a solution of H2BDC-NH2 (10.86 mg, 0.059 mmol), CTAB (10 mg, 

0.027 mmol) and PVP (10 mg, 0.00025 mmol) in 3 mL DMF under stirring. The reaction 

mixture turned turbid within the first minute and was stirred additionally for at least 5 min. 

The product was separated by centrifugation and washed in DMF and ethanol for at least 3 

times. Stable colloidal suspensions were obtained by redispersing the washed product in 

DMF using ultrasound (Elmasonic S100H ultrasonic bath, 550 W). 
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For further experiments, the reaction conditions were varied, including reaction time 

(5 min, 30 min, 60 min, 3 d, 11 d) and amount of additive (0.0135 mmol/0.00013 mmol, 

0.027 mmol/0.00025 mmol, 0.054 mmol/0.0005 mmol of CTAB/PVP; 0.00013 mmol, 

0.00025 mmol, 0.0005 mmol, 0.00125 mmol of PVP). 

Thin film deposition 

Thin films consisting of HKUST-1 and IRMOF-3 nanoparticles, respectively, were obtained 

by spin-coating the respective colloidal suspensions on pre-cleaned silicon substrates. Prior 

to film deposition, silicon substrates (1x1 cm2) were treated with piranha acid (96% 

H2SO4/30% H2O2, 2:1) for 1 h, rinsed intensively with water, dried under nitrogen stream 

and plasma-cleaned (Femto plasma cleaner, Diener Electronic GmbH, air, 100 W) for 5 min. 

A rotational speed of 4000 rpm for 1 min was used for the deposition of the layers, while the 

acceleration speed was fixed to 1500 rpm/s. Thicker films were obtained by multiple 

coating steps. 

Characterization 

Powder X-ray diffraction (XRD) measurements were carried out on a Huber G670 

diffractometer in Guinier geometry or on a Stadi P type diffractometer (Stoe & Cie) in 

transmission using Ge(111)-monochromated Cu-Kα1 radiation (λ = 1.54051 Å). Data were 

collected between 5° and 50°. 

Dynamic light scattering (DLS) measurements were carried out with a Nano ZS Zetasizer 

with a 4 mW HeNe laser (λ = 633 nm). The scattered light was detected in back-scattering 

geometry at an angle of 173°. 

Infrared (IR) spectroscopy was carried out with the help of a Perkin Elmer Spektrum BX II 

spectrometer with an attenuated total reflectance unit. 

Scanning electron (SE) micrographs were recorded either with a JEOL JSM-6500F SEM 

equipped with an Oxford EDX analysis system or with a Merlin (Zeiss) FE-SEM. 

Atomic force microscopy (AFM) measurements were performed on a MFP-3D Stand alone 

AFM (Asylum Research, Santa Barbara). Tapping-mode was applied using OMCL-AC160TS-

R3 (Olympus, Tokio) cantilevers with a resonant frequency of 300 kHz. 

Ellipsometric measurements were carried out using a Woollam M2000D at angles of 65°, 

70° and 75° in the spectral range of 190-1000 nm. The data were fitted between 300 and 
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1000 nm using a Cauchy-type material as the model layer to determine the effective 

refractive index (RI) and the thickness of the investigated layers (using average values 

deduced by SEM images as starting values). The effective RI of the MOF layer is made up of 

RI contributions from textural porosity (RIpor = 1), the MOF itself, and possible residues of 

the additives (RIres > 1). 

 

Additional analytical data 

 

 

Figure S1. AFM measurements (a, b) and height profile (c) of HKUST-1 particles synthesized at 0 °C. 
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Figure S2. DLS measurements of HKUST-1 particles synthesized at different temperatures (black: 0 °C, red: RT, 

blue: 55 °C) after centrifugation and redispersion in DMF. 

 

 

Figure S3. SEM images of HKUST-1 particles synthesized at different temperatures: a) 0 °C, b) RT. 
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Figure S4. DLS measurements (shown as a) intensity distribution and c) volume distribution) of HKUST-1 

particles synthesized at 0 °C with different ratios of H3BTC:PAA (black: 1:6 / 0.246 mmol PAA, red: 1:5 / 0.205 

mmol PAA, blue: 1:4 / 0.164 mmol PAA, green: 1:3 / 0.123 mmol PAA, orange: 1:2 / 0.082 mmol PAA) after 

centrifugation and redispersion in DMF; b) evolution of the size (red) and the polydispersity index (PdI) (black), 

with the PAA concentration. 

 

 

Figure S5. SEM images of HKUST-1 particles synthesized at RT after different reaction times: a) 5 min, b) 30 min. 
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Figure S6. PXRD patterns (a) and IR spectra (b) of HKUST-1 particles synthesized at RT after different reaction 

times (black: 5 min, red: 30 min). c) IR spectra of HKUST-1 (black, synthesized without additives), H3BTC (red) 

and PAA (blue), showing good agreement between the products synthesized with and without PAA (note that 

PAA and H3BTC have similar IR bands, in particular around 1700 cm-1 corresponding to C=O vibrations of 

carboxylic acid groups). 
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Figure S7. AFM measurements (a, b) and height profile (c) of IRMOF-3 particles. 

 

 

Figure S8. DLS measurements of IRMOF-3 particles synthesized with different total amounts of CTAB/PVP at 

weight ratios of 1:1 (black: 0.054 mmol/0.0005 mmol, red: 0.027 mmol/0.00025 mmol, blue: 

0.0135 mmol/0.00013 mmol) after centrifugation and redispersion in DMF. 
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Figure S9. DLS measurements (shown as a) intensity distribution and c) volume distribution) of IRMOF-3 

particles synthesized with different amounts of CTAB and/or PVP (black: weight ratio 1:1 of CTAB/PVP 

(0.027 mmol/0.00025 mmol), red: 0.027 mmol of CTAB, blue: 0.00025 mmol of PVP, green: no additives) after 5 

min reaction time; b) evolution of the mean radius and the PdI with the amount of additives (0: no additives, 1: 

0.027 mmol of CTAB, 2: 0.00025 mmol of PVP, 3: 0.027 mmol/0.00025 mmol of CTAB/PVP). 

 

 

Figure S10. DLS measurements (shown as a) intensity distribution and c) volume distribution) of IRMOF-3 

particles synthesized with different amounts of PVP (black: 0.00125 mmol, red: 0.0005 mmol, blue: 0.00025 

mmol, green: 0.00013 mmol) after centrifugation and redispersion in DMF; b) evolution of the size (red) and the 

PdI (black) with the amount of PVP. 



5 Appendix 

142 
 

 

Figure S11. SEM images of IRMOF-3 particles synthesized a) with CTAB/PVP (0.027 mmol/0.00025 mmol) and 

b) without additives; c) corresponding PXRD patterns of IRMOF-3 particles synthesized with additives (black) 

and without additives (red). 

 

 

Figure S12. DLS measurements of IRMOF-3 particles as a function of time: a) evolution of the size distribution of 

the reaction mixture (black: 5 min, red: 30 min, blue: 60 min, green: 3 d, orange: 11 d); b) evolution of the mean 

radius. 
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Figure S13. PXRD patterns (a) and IR spectra (b) of IRMOF-3 particles synthesized at different reaction times 

(black: 5 min, red: 30 min). c) IR spectra of IRMOF-3 (black, synthesized without additives), H2BDC-NH2 (red), 

PVP (blue) and CTAB (green), demonstrating the good agreement of the IR spectra of the products synthesized 

with and without CTAB/PVP as well as the absence of major residues from the additive mixture. 

 

  

Figure S14. Photographs of suspensions of IRMOF-3 particles synthesized with additives (vessel on the left) and 

without additives (vessel on the right) after a) 30 min and b) 1 day. 
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5.2 SUPPORTING INFORMATION FOR CHAPTER 3.1 

 

adapted from F. M. Hinterholzinger, A. Ranft, J. M. Feckl, B. Rühle, T. Bein and B. V. Lotsch, „One-

dimensional metal-organic framework photonic crystals used as platforms for vapor 

sorption”, J. Mater. Chem. 2012, 22, 10356-10362. 

 

Additional analytical data 

 

 

Figure S1. X-ray diffraction patterns (background corrected) of as-synthesized bulk ZIF-8 material (left) as well 

as of ZIF-8 nanoparticles (right) compared to simulated data. 

 

 

Figure S2. Scanning electron microscopy (SEM) images showing a bulk ZIF-8 powder sample obtained from the 

mixture solution used for the fabrication of BS-1 (left) as well as ZIF-8 nanoparticles used for the preparation of 

BS-2 (right). 
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Figure S3. Transmission electron microscopy (TEM) micrographs showing as-synthesized ZIF-8 nanocrystals 

isolated from a powder sample obtained from the reaction solution used for dense ZIF-8 film growth. 

 

 

Figure S4. IR spectra of bulk ZIF-8 (left) as well as of ZIF-8 nanoparticles (right). 

 

 

Figure S5. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and differential thermal 

analysis (DTA) of bulk ZIF-8 (left) and ZIF-8 nanoparticles (right), respectively, illustrating a one-step weight 

loss as well as the decomposition of bulk ZIF-8. 
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Figure S6. Physisorption measurement performed with nitrogen at 77 K for bulk ZIF-8 showing a type I 

isotherm, the specific surface area (BET/Langmuir) and the pore volume. 

 

Figure S7. Physisorption measurement at 77 K performed on a titania nanoparticle sample synthesized without 

structure-directing agent (F127) showing a type I isotherm, the specific surface area (BET/Langmuir) and the 

pore volume. 

 

 

Figure S8. X-ray diffraction patterns (background corrected) of ZIF-8 thin films after different growing cycles 

compared to simulated data. 

 



5 Appendix 

148 
 

 

Figure S9. SEM micrographs showing a 10-cycled ZIF-8 thin film (magnification: x4.000 (top, left); x10.000 (top, 

right); x10.000 (bottom, left); x20.000 (bottom, right)). 

 

 

Figure S10. SEM micrographs showing ZIF-8 thin films grown in a crystallization solution while shaking (top) as 

well as under ultrasonic irradiation (bottom) (magnification: x5.000 (top, left); x30.000 (top, right); x15.000 

(bottom, left); x15.000 (bottom, right)). 
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Figure S11. RAIR spectra of a TiO2 thin film before and after the ethanol extraction procedure. 

 

 

Figure S12. SEM micrographs demonstrating the mesoporous structure of a thin TiO2 film after ethanol 

extraction (magnification: x100.000 (left); x250.000 (right)). 

 

 

Figure S13. SEM micrographs showing bilayered BS-1 with an average film thickness of ~ 50 nm for each titania 

layer and ~ 200 nm for each ZIF-8 layer, respectively. The ZIF-8/mp-TiO2 Bragg stack is depicted for different 

magnifications (x45.000 (left); x75.000 (right)). 
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Figure S14. SEM micrographs showing the two-bilayered BS-1 with an average film thickness of ~ 50 nm for 

each titania layer and ~ 70 nm for each ZIF-8 layer, respectively. The ZIF-8/mp-TiO2 Bragg stack is depicted for 

different magnifications (x40.000 (left); x90.000 (right)). 

 

 

Figure S15. SEM micrographs showing the three-bilayered BS-1 with an average film thickness of ~ 50 nm for 

each titania layer and ~ 70 nm for each ZIF-8 layer, respectively. ZIF-8/mp-TiO2 Bragg stack is depicted for 

different magnifications (x15.000 (top, left); x80.000 (top, right); x100.000 (bottom, left); x170.000 (bottom, 

right)). 
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Figure S16. SEM micrographs showing the three-bilayered BS-2 with an average film thickness of ~ 50 nm for 

each titania layer and ~ 200 nm for each ZIF-8 layer, respectively. ZIF-8/TiO2-BS is depicted for different 

magnifications (x30.000 (top); x60.000 (bottom)). 

 

 

Figure S17. Reflectance spectra of a dense 200 nm single-layered ZIF-8 reference sample showing the 

pronounced optical shift monitored at saturation pressure upon exposure to methanol (top, left), ethanol (top, 

right) and isobutanol (bottom, left), respectively, as well as no optical response upon tert-pentanol (bottom, 

right) sorption. 
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Figure S18. Reflectance spectra of the three-bilayered BS-1 showing the pronounced optical shift monitored at 

saturation pressure upon exposure to methanol (top, left), ethanol (top, right) and isobutanol (bottom, left) as 

well as upon tert-pentanol (bottom, right) sorption. 

 

 

Figure S19. Optical vapor sorption isotherms demonstrating the adsorption performance of BS-1 during 

exposure to a series of alcohol vapors. 
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Figure S20. Reflectance spectra of a porous 400 nm single-layered ZIF-8 reference sample showing the 

pronounced optical shift monitored at saturation pressure upon exposure to methanol (top, left), ethanol (top, 

right) and tert-pentanol (bottom). 

 

 

Figure S21. Reflectance spectra of the three-bilayered BS-2 (DMF) showing the pronounced optical shift 

monitored at saturation pressure upon exposure to methanol (top, left), ethanol (top, right), isobutanol (bottom, 

left) and tert-pentanol (bottom, right). 
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Figure S22. Reproduced optical vapor sorption isotherms demonstrating the adsorption of methanol, ethanol 

and tert-pentanol performed with BS-2 which was fabricated by redispersing the ZIF-8 nanoparticles in 

methanol (BS-2 (MeOH), see Experimental Section) as well as the adsorption of isobutanol into BS-2 prepared 

with nanoparticles redispersed in DMF (BS-2 (DMF)). Owing to the different fabrication methods and the 

resulting differences in the ZIF-8 layer thicknesses, less pronounced absolute shifts of about 50 nm are recorded 

using the BS-2 (MeOH) as compared to BS-2 (DMF) used in Fig. 5c and for isobutanol adsorption (Fig. S22). 

Therefore, the optical shift for isobutanol agrees well with the results obtained with BS-2 (DMF) shown in Fig. 5c, 

whereas the absolute shifts for the other solvent vapors are smaller. Nevertheless, note that the shapes of all four 

optical isotherms are in good agreement with the isotherms shown in Fig. 5c, indicating the same host-guest 

interactions as in BS-2 and thus, the same analyte selectivity to operate. 
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5.3 SUPPORTING INFORMATION FOR CHAPTER 3.2 

 

adapted from A. Ranft, F. Niekiel, I. Pavlichenko, N. Stock and B. V. Lotsch, „Tandem MOF-Based 

Photonic Crystals for Enhanced Analyte-Specific Optical Detection”, Chem. Mater. 

2015, 27, 1961-1970. 

 

Characterization details 

Sorption measurements 

Sorption reflectance measurements were carried out with a Woollam M2000D 

ellipsometer using s-polarized light at an incident angle of 75°. Sorption isotherms were 

recorded at ambient temperature using home-made Labview-controlled gas mixing systems. 

Digital mass flow controllers (W-101A-110-P, F-201C, Bronkhorst High-Tech) were used to 

control the dosing of the carrier gas nitrogen and the liquid analyte, which was vaporized in 

a controlled evaporation and mixing element (CEM, W-101A, Bronkhorst High-Tech). For 

the sorption measurements, partial pressures p were calculated using the van der Waals 

equation. The relative pressure p/p0 relates to the saturation pressure p0. 

Time-dependent reflectance measurements were conducted using a fiber optic 

spectrometer (USB2000+, Ocean Optics) integrated with an optical light microscope 

(DM2500 M, Leica). The measurements were recorded at ambient temperature using gas 

mixing systems. Digital mass flow controllers (L-01RAD, F-201CV, Bronkhorst High-Tech) 

were used to control the dosing of the carrier gas nitrogen and the liquid analyte which was 

vaporized in a CEM element (W-101A, Bronkhorst High-Tech). The analyte concentration 

was calculated using the software FLUIDAT (Bronkhorst High-Tech) in the section “CEM 

calculation”. The calculation is based on the respective values for the atmospheric pressure, 

temperature and pressure of the individual components to determine the relative humidity 

degree.
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The response of the MOF-based BS array toward different solvent vapors (ethanol, 

methanol, 2-propanol, water, 1-hexanol, ethanol/methanol, ethanol/2-propanol, 

ethanol/water and ethanol/1-hexanol at volume ratios of 1:1) was measured using the same 

setup (spectrometer, microscope and camera attached to the microscope). Instead of the gas 

mixing system, a washing bottle filled with the respective solvent(s) was used, and the 

vapor was transported to the array by bubbling nitrogen through the solvent. 

The home-made chamber used for the time-dependent measurements and recording of the 

response of the array was assembled from two object slides and a 2.5x2.5 cm2 square piece 

of PDMS (for a more detailed description of the fabrication of the PDMS mold refer to 1). In 

this PDMS piece, a window of 2x2 cm2 was cut out. The PDMS chamber was pierced three 

times to create an outlet and two separate inlets on the neighbouring sides. The first inlet 

was used for connecting the chamber to a constant nitrogen stream, the second one for the 

connection to the carrier gas saturated with the solvent vapor. For sorption measurements, 

the chamber was sandwiched between the two object slides and fixed with clamps to ensure 

a tight contact (see Fig. S15 for photographic images of the setup). To achieve constant light 

conditions, the microscope was shielded from external light sources by using a box and 

black cloths. 

Determination of the thickness and RI from ellipsometric data 

Ellipsometric measurements were carried out using a Woollam M2000D ellipsometer at 

incident angles of 65°, 70° and 75° in the spectral range of 190 nm – 1000 nm. The data 

were fitted between 300 nm and 1000 nm. To determine the effective RI and the thickness 

of the individual layers, a Cauchy-type material was used as the model layer for MOFs. The 

effective RI is made up of RI contributions from textural porosity (RIpor = 1), the material 

itself and possible residues of the solvent (RIres > 1). RI values presented in the SI are 

measured at λ = 589 nm. For fitting, average thickness values were used as starting values 

deduced from fitting thin layers prepared similarly. 

Calculation of normalized values of Bragg diffraction peak shifts 

In order to compensate for the inherent non-linearity of wavelength based reflectance 

spectra (as opposed to the energy scale), leading to apparent larger shifts for diffraction 

peaks at high wavelengths (and hence, for thicker BSs), we calculated normalized values of 

the Bragg diffraction peak shifts. In our approach, normalized values were obtained by 

dividing each peak shift λn - λ0 (= Δλ) by the wavelength position λn of a distinct maximum at 
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a given partial pressure (see Fig. S1). For BSs with layer thicknesses corresponding to an 

ideal “quarter wave stack” (i.e. λm/n1 = 4d1 and λm/n2 = 4d2 where λm is the mid-gap 

wavelength) the normalized wavelength shifts should be independent of the stop band 

position. To prove that the validity of this approach also roughly holds for non-quarter wave 

stack BS compositions, we calculated the normalized values for two exemplary TiO2/ZIF-8 

BSs consisting of 10 bilayers with different thicknesses of the ZIF-8 layers (150 nm and 200 

nm, respectively). The spectra shown in Fig. S1 were simulated by using the respective RI 

values obtained for single films in dry nitrogen (ZIF-8: 1.188, TiO2: 1.718) and after 

adsorption of ethanol at p/p0 ≈ 1 (ZIF-8: 1.244, TiO2: 1.75), respectively. Based on the 

spectra of these “hypothetical” BSs, we calculated normalized values of 0.038 

(corresponding to a shift of 20 nm) for the first BS (Fig. S1a, ZIF-8: 150 nm), and 0.040 

(corresponding to a shift of 26 nm) for the second BS (Fig. S1b, ZIF-8: 200 nm). For 

calculations based on our experimentally obtained spectra, we used fitted values of the 

maxima shown in Figs. S7, S8 and S10-13 (for vapor adsorption isotherms) and Figs. S17-

19 (for Table S6 in the SI), respectively. 

Determination of the response time 

To estimate general response times of TiO2/MOF BSs, we used the spectra shown in Fig. 5 

(main article) and determined exemplary values at the transition from 0% to 25% ethanol 

vapor. The response time values presented in the article are derived from evaluating the 

baselines for 0% and 25% uptake (see Fig. S9 for details). By aligning the measured curve, a 

right triangle is formed from which the response time (= opposite leg) can be determined. 

 

 

Figure S1. Simulated reflectance spectra for exemplary TiO2/ZIF-8 BSs with different layer thicknesses in dry 

nitrogen and upon the adsorption of ethanol (p/p0 ≈ 1): a) TiO2: 50 nm, ZIF-8: 150 nm, b) TiO2: 50 nm, ZIF-8: 200 

nm. The insets show a magnification of the range that was used for the calculation of normalized peak shift 

values. 
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Precision of spectral shifts 

The precision of the spectral shifts shown in this work mainly depends on two parameters, 

i.e. sample quality and experimental limitations, which are discussed in the following in 

more detail. 

Based on the SEM images shown in the main text (Figs. 2 and 3) we need to assume 

apparent thickness variations in our multilayers which can result in small red- or blue-shifts 

of the respective Bragg maxima depending on the spot that is investigated in a BS. This 

effect (i.e. a shift being induced by another factor besides analyte adsorption) can be 

excluded by choosing a distinct spot on the film, which is then maintained for all sorption 

measurements. To ensure that the same spot is used in every experiment, we took 

photographic images of the films with the help of a camera attached to the sensing setup. 

After finding the right spot the sample was fixed in this position to exclude sample 

movement, and the spectral changes upon adsorption were monitored in situ by tracing the 

change in reflectivity and recording optical images. 

Thickness variations within different samples also result in different positions of the Bragg 

maximum and can lead to apparently larger shifts for thicker layers as we also mentioned in 

the main text. We faced this phenomenon by normalizing each shift (λn – λ0 = Δλ) to the 

wavelength position (λn) to make the results for different BSs more comparable (see also 

section above). Although thickness variations and lateral inhomogeneities can affect the 

optical quality of photonic crystals, the spectral properties of our multilayers are sufficiently 

robust and pronounced (i.e. characterized by distinct Bragg peaks) as can be seen, for 

instance, in Fig. 4a (main text). Even more importantly, despite structural imperfections of 

the stacks the sensing properties of our systems are maintained as they predominantly arise 

from the inherent structural properties of the MOFs. 

Besides the sensing material, the measurement settings (resolution of the optical 

fiber/ellipsometer, flow setup) have to be taken into account to assess the validity of the 

observed shifts. We therefore estimated the smallest concentration change (i.e. the limit of 

detection) that can be detected with our instrumental setup. For the time-dependent 

measurements shown in Fig. 5 (main text), well-detectable shifts of 3.2 nm for both 

TiO2/ZIF-8 and TiO2/HKUST-1 BSs, and 7.2 nm for TiO2/CAU-1-NH2, respectively, were 

observed applying the lowest possible flow of 0.1 g/h (at 200 mln/min) at 10% ethanol 

dosage (p/p0 = 0.1). For the sorption measurements shown in Figs. 4b-d (main text), shifts 
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of at least 1.9 nm were detected for an increase of the relative pressure from 0 to 0.02. 

Beside the sorption setup, the spectral detection system determines the detection limit, 

which is 0.38 nm for the optical fiber and 1.6 nm for the ellipsometer, as well as the 

goodness of the fitting to determine the peak shift. By using gas mixing systems and 

spectrometers with a higher resolution, it is thus expected that our MOF BSs are capable of 

detecting even lower analyte concentrations. 

Evaluation of image-based sorption measurements 

In a general procedure, the BSs were alternatingly exposed to nitrogen and the nitrogen 

stream saturated with one of the investigated solvents or solvent mixtures for 2 min each, 

and the respective color changes were monitored by recording images of specific spots on 

the samples with a camera attached to the microscope. The measurements were repeated 

three times to evaluate the reproducibility of the changes. In some cases, prolonged terms of 

flooding with nitrogen were used to enhance sorptive removal (up to 10 min). Data analysis 

was performed equally for each BS by conducting preprocessing steps in the first place, and 

subsequently calculating numerical codes for each analyte. For simultaneous processing of 

the images, we ran two macros which we developed with the program FIJI2. The processing 

includes alignment of the images, area selection, cropping, splitting in color channels and 

measuring the mean intensities for each image. We determined average values from three 

measurements (Raverage (G, B) for all BSs) and calculated the differences between images 

recorded upon exposure to pure nitrogen and the sorptive (ΔR (G, B) = Rsorptive (G, B) – RN2 

(G, B) for each BS). By repeating these steps for all investigated analytes and all color 

channels, a 9 x 9 matrix is obtained (9 sorptives, 9 variables) representing the unique 

numerical codes for each solvent or solvent mixture. The thus determined values were used 

for principal component analysis (PCA) using the program XLSTAT3. Complete lists of the 

measured RGB intensities and calculated values are provided in Tables S7-S9. 

Reproducibility of image-based sorption measurements 

To test the reproducibility of the observed color changes, the measurements were 

repeated three times for each solvent and each stack. The intensity values extracted from 

the images for each cycle (N2 vs sorptive/N2) alternate evenly for each color channel (see 

Figs. S20 and S21 for single solvents and solvent mixtures, respectively) except for a few 

cases for which we observed slight intensity changes with each cycle (compare with Table 

S7-S9 for standard deviations). As the images were aligned before extraction of the color 



5 Appendix 

160 
 

intensities, a shift of the spot position eventually leading to differing intensity values can be 

excluded. It is therefore assumed that the slight changes are caused by a comparatively high 

affinity of the BSs toward different sorptives, or hampering of transport events due to the 

rather small pore sizes of the stack constituents leading to partially blocked pores after a 

sorption measurement. In both cases, complete recovery of the samples requires more 

exhaustive flooding with nitrogen (> 10 min) or more rigorous methods to remove the 

analyte from the sample (e.g. evacuation or heat). 

 

1 A. T. Exner, I. Pavlichenko, D. Baierl, M. Schmidt, G. Derondeau, B. V. Lotsch, P. Lugli, and G. Scarpa, Laser 

Photon. Rev. 2014, 8, 726-733. 

2 ImageJ 1.49m, Wayne Rasband, National Institutes of Health, USA, Java 1.8.0_25 (32-bit), 

http://imagej.nih.gov/ij. 

3 XLSTAT Version 2014.5.03 (64-bit), Copyright Addinsoft 1995-2014, Microsoft Excel 14.0 7140 (7) (64-bit), 

http://www.xlstat.com. 

 

 

Additional analytical data 

 

 

Figure S2. IR spectra of nanoparticle powder of MOFs prior to and after thermal treatment: (a) ZIF-8 and (b) 

HKUST-1. 
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Figure S3. Sorption isotherms of nanoparticle powder of MOFs and TiO2: (a) ZIF-8 (argon), (b) HKUST-1 (argon), 

(c) CAU-1-NH2 (nitrogen) and (d) TiO2 (argon). 

 

Table S1. Sorption data of bulk MOFs and TiO2. The values derive from the sorption isotherms shown in Fig. S3. 

Compound as,BET / m2g-1 Vmikro / cm3g-1 

ZIF-8 1352 0.48 

HKUST-1 675 0.30 

CAU-1-NH2 1482 0.61 

TiO2 278 0.07 
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Figure S4. NMR data of bulk CAU-1-NH2. Left: 1H-NMR spectrum of bulk CAU-1-NH2. Signals corresponding to 

BDC-NHCH32- are marked in red. Right: Proton labeling of BDC-NH22- and BDC-NHCH32-. 1H-NMR (500 MHz, 

NaOD/D2O): δ = 7.48 (d, 3J = 8.3 Hz, 0.04 H, H4), 7.45 (d, 3J = 8.1 Hz, 1 H, H1), 7.01 (d, 4J = 1.7 Hz, 1 H, H3), 7.00 (d, 
4J = 1.8 Hz, 0.04 H, H6), 6.94 (dd, 3J = 8.1 Hz, 4J = 1.6 Hz, 1H, H2), 6.90 (dd, 3J = 7.9 Hz, 4J = 1.4 Hz, 0.04 H, H4), 3.06 

(s, 3.67 H, OCH3), 2.61 (s, 0.13 H, NH-CH3) ppm. 

 

Table S2. Elemental analysis of bulk CAU-1-NH2. Calculated values refer to [Al4(OH)2.34(CH3O)3.66(BDC-

NH2)1.68(BDC-NH3)1.19(BDC-NHCH3)0.13]∙1.19Cl-∙H2O. 

 C / % H / % N / % 

Found 39.5 3.53 5.00 

Calculated 38.5 3.82 4.88 

 

Table S3. EDX analysis of bulk CAU-1-NH2. 

 Al Cl 

Found 67.3 % 75.4 % 21.6 % 20.9 % 

Averaged 71.4 % 21.3 % 

Normalized to 4 Al3+ 4 1.19 
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Table S4. EDX analysis of TiO2/MOF BSs and tandem MOF BSs on Si substrates. 

 Zn / % Cu / % Al / % Ti / % 

TiO2/ZIF-8 0.22   1.62 

TiO2/HKUST-1  0.24  2.16 

TiO2/CAU-1-NH2   0.53 2.43 

ZIF-8/HKUST-1 0.61 0.43   

ZIF-8/HKUST-1 0.31 0.80   

ZIF-8/CAU-1-NH2 0.87  0.58  

ZIF-8/CAU-1-NH2 0.35  0.44  

 

 

Figure S5. IR spectra of tandem MOF and TiO2/MOF BSs on Si substrates: (a) ZIF-8/HKUST-1 in comparison to 

ZIF-8/TiO2 and TiO2/HKUST-1, (b) ZIF-8/CAU-1-NH2 in comparison to ZIF-8/TiO2 and TiO2/CAU-1-NH2. 

 

Table S5. Simulated thicknesses and refractive indices (RI) derived from ellipsometric data of thin MOF films on 

Si substrates. 

Material Thickness RI 

ZIF-8 153 nm 1.20 

HKUST-1 110 nm 1.25 

CAU-1-NH2 236 nm 1.30 

 



5 Appendix 

164 
 

 

Figure S6. SEM images of (a) TiO2/ZIF-8 BS, (b) TiO2/HKUST-1 BS, (c) TiO2/CAU-1-NH2 BS and a photographic 

image (d) of five representative BS samples (from left to right, top: TiO2/ZIF-8, TiO2/HKUST-1, TiO2/CAU-1-NH2, 

bottom: ZIF-8/HKUST-1, ZIF-8/CAU-1-NH2). 

 

 

Figure S7. Reflectance spectra of (a) TiO2/ZIF-8 BS and (b) TiO2/HKUST-1 BS kept in dry nitrogen and after 

adsorption of ethanol at the highest partial pressure (p/p0 ≈ 1). 
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Figure S8. Reflectance spectra of (a) TiO2/ZIF-8 BS, (b) TiO2/HKUST-1 BS and (c) TiO2/CAU-1-NH2 BS kept in 

dry nitrogen and upon the adsorption of methanol at the highest partial pressure (p/p0 ≈ 1). 

 

 

Figure S9. Determination of the response time using details of the time-dependent measurements shown in Fig. 

5 (main article). The response time of each BS (a) TiO2/ZIF-8, (b) TiO2/HKUST-1, (c) TiO2/CAU-1-NH2 was 

determined exemplarily for the exposure to 0 % to 25 % ethanol vapor. 
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Figure S10. Reflectance spectra of ZIF-8/HKUST-1 BSs with different layer thicknesses kept in dry nitrogen and 

upon the adsorption of ethanol at the highest partial pressure (p/p0 ≈ 1). The thickness of the ZIF-8 layers is 

increased from (a) to (c) (highlighted by underlines), while the HKUST-1 content is decreased. 

 

Figure S11. Reflectance spectra of ZIF-8/HKUST-1 BSs with different layer thicknesses kept in dry nitrogen and 

upon the adsorption of ethanol at the highest partial pressure (p/p0 ≈ 1). The thickness of the ZIF-8 layers is 

increased from (a) to (c) (highlighted by underlines), while the HKUST-1 content is decreased. 
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Figure S12. Reflectance spectra of ZIF-8/CAU-1-NH2 BSs with different layer thicknesses kept in dry nitrogen 

and upon the adsorption of ethanol at the highest partial pressure (p/p0 ≈ 1). The thickness of the ZIF-8 layers is 

increased from (a) to (c) (highlighted by underlines), while the CAU-1-NH2 content is decreased. 

 

 

Figure S13. Reflectance spectra of ZIF-8/CAU-1-NH2 BSs with different layer thicknesses kept in dry nitrogen 

and upon the adsorption of methanol at the highest partial pressure (p/p0 ≈ 1). The thickness of the ZIF-8 layers 

is increased from (a) to (b) (highlighted by underlines), while the CAU-1-NH2 content is decreased. 
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Figure S14. Sorption isotherms of ZIF-8/CAU-1-NH2 BSs with different layer thicknesses for (a) ethanol and 

(b) methanol. The thickness of the ZIF-8 layers is increased from top to bottom (highlighted by underlines), 

while the CAU-1-NH2 content is decreased. The graphs show normalized peak shifts which were calculated by 

fitting the maximum of each spectrum obtained at different partial pressures (exemplarily shown in Fig. S12 

(S13) for 0% and 100% ethanol (methanol), respectively; see also subsection “Characterization details” (SI) for 

the calculation). For a better comparison of the isotherms, all axes of ordinates are arranged such that the same 

range is shown. 

 

 

Figure S15. Photographic images of an array assembled from three TiO2/MOF BSs (bottom-right: ZIF-8/TiO2, 

left: TiO2/HKUST-1, top-right: TiO2/CAU-1-NH2) arranged in a home-built chamber. The response of the BSs 

upon exposure to a specific ethanol concentration is illustrated by the change in color of each BS. 
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Figure S16. Photographic images of TiO2/MOF BSs illustrating the color change upon exposure to a nitrogen 

stream saturated with a single sorptive (water, ethanol, 2-propanol or 1-hexanol) in comparison to pure 

nitrogen. The BSs were exposed one by one to the stream and the color change was recorded in situ with a 

camera attached to the microscope. 
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Figure S17. Reflectance spectra of a TiO2/ZIF-8 BS exposed to a nitrogen stream saturated with (a) water, (b) 

ethanol, (c) 2-propanol and (d) 1-hexanol. The spectra were monitored simultaneously with the photographic 

images shown in Fig. S16 for TiO2/ZIF-8. 

 

 

Figure S18. Reflectance spectra of a TiO2/HKUST-1 BS exposed to a nitrogen stream saturated with (a) water, 

(b) ethanol, (c) 2-propanol and (d) 1-hexanol. The spectra were monitored simultaneously with the 

photographic images shown in Fig. S16 for TiO2/HKUST-1. 
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Figure S19. Reflectance spectra of a TiO2/CAU-1-NH2 BS exposed to a nitrogen stream saturated with (a) water, 

(b) ethanol, (c) 2-propanol and (d) 1-hexanol. The spectra were monitored simultaneously with the 

photographic images shown in Fig. S16 for TiO2/CAU-1-NH2. 

 

Table S6. Normalized peak shifts for the array assembled from TiO2/MOF BSs shown in Fig. S16 upon exposure 

to different sorptives. The values derive from the respective reflection spectra shown in Figs. S17-S19. 

 Normalized peak shifts 

 TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Water 0.012 0.017 0.017 

Ethanol 0.040 0.025 0.014 

2-Propanol 0.035 0.028 0.018 

1-Hexanol 0.009 0.005 0.002 
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Table S7a. Measured intensities (R channel) derived from photographic images and calculated ΔR values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and single solvents. 

  R 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Ethanol 1 253.35 253.00 -0.34 179.79 206.31 23.48 164.83 122.73 -39.16 

 2 253.37 253.08  185.09 207.76  159.76 121.77  

 3 253.46 253.09  186.71 207.95  158.47 121.10  

stand. dev. 0.06 0.05 0.04 3.62 0.90 2.73 3.36 0.82 2.57 

Methanol 1 253.28 252.95 -0.34 184.07 203.60 17.99 161.09 123.12 -33.50 

 2 253.36 253.02  184.82 203.15  161.30 127.96  

 3 253.45 253.11  185.27 201.39  160.34 131.16  

stand. dev. 0.09 0.08 0.00 0.61 1.17 1.73 0.51 4.04 4.40 

2-Propanol 1 252.74 252.28 -0.36 187.02 207.90 20.04 159.52 117.03 -40.07 

 2 252.66 252.34  189.27 209.07  155.50 116.16  

 3 252.72 252.41  190.03 209.48  154.18 115.80  

stand. dev. 0.04 0.07 0.08 1.57 0.82 0.75 2.78 0.63 2.15 

Water 1 252.78 252.49 -0.15 185.93 192.98 5.06 154.82 133.12 -14.28 

 2 252.85 252.72  188.93 193.11  143.58 132.64  

 3 252.94 252.90  189.25 193.20  142.56 132.35  

stand. dev. 0.08 0.20 0.12 1.83 0.11 1.73 6.81 0.39 6.44 

1-Hexanol 1 252.63 252.13 -0.50 196.15 201.35 6.63 143.39 125.42 -15.97 

 2 252.69 252.23  198.89 205.03  137.05 121.36  

 3 252.74 252.21  203.78 212.34  133.19 118.96  

stand. dev. 0.05 0.06 0.04 3.87 5.59 1.73 5.15 3.27 1.88 
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Table S7b. Measured intensities (R channel) derived from photographic images and calculated ΔR values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and solvent mixtures. 

  R 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Eth/meth 1 253.32 252.99 -0.34 190.21 201.88 14.16 149.08 117.91 -33.18 

 2 253.33 252.98  186.92 202.84  153.12 117.55  

 3 253.32 252.99  187.94 202.82  152.95 120.14  

stand. dev. 0.00 0.01 0.01 1.68 0.55 2.21 2.28 1.41 2.22 

Eth/2-pro 1 253.14 252.73 -0.34 191.35 205.38 14.22 148.03 116.73 -32.60 

 2 253.13 252.81  191.54 205.99  148.32 115.64  

 3 253.15 252.85  192.20 206.37  149.05 115.22  

stand. dev. 0.01 0.06 0.05 0.44 0.50 0.21 0.53 0.77 1.26 

Eth/water 1 253.31 253.13 -0.24 189.23 200.31 11.43 142.10 123.02 -27.45 

 2 253.45 253.18  189.35 201.27  154.55 122.66  

 3 253.50 253.22  190.42 201.72  153.69 122.31  

stand. dev. 0.10 0.05 0.05 0.65 0.72 0.43 6.96 0.36 7.26 

Eth/1-hex 1 252.50 252.11 -0.42 192.45 205.14 9.65 150.91 124.07 -24.05 

 2 252.53 252.10  192.37 201.83  148.59 125.06  

 3 252.55 252.10  194.92 201.72  147.08 125.29  

stand. dev. 0.02 0.01 0.03 1.45 1.95 2.95 1.93 0.65 1.88 
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Table S8a. Measured intensities (G channel) derived from photographic images and calculated ΔG values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and single solvents. 

  G 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Ethanol 1 249.15 229.88 -20.36 249.13 248.73 -0.13 73.83 103.03 28.63 

 2 249.06 228.55  248.80 248.82  75.55 103.83  

 3 249.09 227.79  248.91 248.89  75.60 104.01  

stand. dev. 0.04 1.06 1.02 0.17 0.08 0.23 1.01 0.52 0.50 

Methanol 1 248.57 223.00 -23.61 248.42 247.97 -0.64 74.03 100.99 22.09 

 2 248.89 225.11  248.49 247.83  74.16 95.63  

 3 249.29 227.81  248.50 247.69  73.86 91.69  

stand. dev. 0.36 2.41 2.05 0.04 0.14 0.18 0.15 4.67 4.60 

2-Propanol 1 249.00 222.08 -27.12 248.80 248.41 -0.14 73.25 105.58 32.03 

 2 246.98 220.21  248.62 248.57  74.85 106.70  

 3 246.63 218.96  248.63 248.66  75.22 107.12  

stand. dev. 1.28 1.57 0.48 0.10 0.13 0.22 1.05 0.79 0.27 

Water 1 247.97 237.93 -5.42 247.99 247.05 -0.70 74.85 86.16 7.51 

 2 247.73 243.50  247.74 247.12  80.99 86.74  

 3 248.29 246.29  247.66 247.14  81.51 86.97  

stand. dev. 0.28 4.26 4.15 0.17 0.05 0.22 3.71 0.42 3.30 

1-Hexanol 1 248.06 230.02 -18.26 247.41 246.60 -0.63 77.78 89.10 10.41 

 2 247.65 230.34  246.93 246.55  81.86 92.11  

 3 247.42 227.98  246.79 246.09  84.07 93.74  

stand. dev. 0.32 1.28 1.09 0.32 0.28 0.22 3.19 2.35 0.84 
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Table S8b. Measured intensities (G channel) derived from photographic images and calculated ΔG values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and solvent mixtures. 

  G 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Eth/meth 1 250.00 237.02 -13.91 247.59 246.96 -0.83 74.43 98.20 24.27 

 2 249.81 235.60  247.90 246.95  72.78 98.68  

 3 249.67 235.12  247.86 246.95  72.85 95.99  

stand. dev. 0.16 0.99 0.83 0.17 0.01 0.17 0.93 1.43 1.44 

Eth/2-pro 1 249.36 230.74 -19.06 247.87 246.96 -0.82 74.81 98.59 25.25 

 2 248.51 229.76  247.78 246.97  74.36 100.02  

 3 248.25 228.45  247.73 247.00  74.21 100.54  

stand. dev. 0.58 1.15 0.65 0.07 0.02 0.09 0.31 1.01 1.32 

Eth/water 1 249.03 235.96 -11.90 248.12 247.39 -0.70 81.05 93.56 17.26 

 2 249.86 237.99  248.08 247.38  73.81 93.62  

 3 250.11 239.36  248.07 247.39  73.61 93.07  

stand. dev. 0.56 1.71 1.16 0.03 0.01 0.03 4.23 0.30 4.11 

Eth/1-hex 1 248.25 230.49 -17.64 247.54 246.76 -0.98 74.05 91.60 16.09 

 2 247.84 230.43  247.55 246.40  74.61 90.50  

 3 247.77 230.02  247.38 246.36  75.37 90.21  

stand. dev. 0.26 0.26 0.20 0.09 0.22 0.19 0.66 0.74 1.37 
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Table S9a. Measured intensities (B channel) derived from photographic images and calculated ΔB values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and single solvents. 

  B 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Ethanol 1 146.36 33.47 -110.30 210.97 204.37 -3.74 200.90 202.13 0.26 

 2 141.82 31.37  206.00 203.87  201.13 200.93  

 3 137.37 29.81  205.41 202.92  200.21 199.95  

stand. dev. 4.49 1.84 2.66 3.05 0.74 2.48 0.48 1.09 0.85 

Methanol 1 128.89 27.61 -105.60 205.03 199.35 -7.03 198.10 199.02 1.65 

 2 132.47 27.82  205.43 198.25  197.97 199.45  

 3 139.91 29.02  205.46 197.24  197.06 199.60  

stand. dev. 5.62 0.76 4.88 0.24 1.06 1.28 0.57 0.30 0.82 

2-Propanol 1 145.64 30.01 -89.04 205.24 199.30 -3.58 195.07 194.50 -1.53 

 2 107.13 28.89  202.78 199.94  195.60 193.79  

 3 101.32 28.08  201.94 199.99  195.48 193.28  

stand. dev. 24.09 0.97 23.17 1.72 0.39 2.10 0.28 0.61 0.85 

Water 1 123.11 44.02 -52.42 200.06 192.70 -5.30 194.51 196.52 0.81 

 2 117.76 70.37  197.63 193.10  195.93 196.17  

 3 127.69 96.91  197.35 193.34  195.80 195.99  

stand. dev. 4.97 26.44 24.54 1.49 0.32 1.80 0.78 0.27 1.04 

1-Hexanol 1 129.42 32.42 -91.67 195.72 189.87 -4.74 191.08 191.60 -0.46 

 2 123.26 34.20  192.71 190.24  191.81 191.13  

 3 120.38 31.42  192.84 186.94  191.82 190.61  

stand. dev. 4.62 1.41 4.61 1.70 1.80 1.96 0.43 0.49 0.89 
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Table S9b. Measured intensities (B channel) derived from photographic images and calculated ΔB values for the 

TiO2/MOF BS array upon exposure to pure nitrogen and solvent mixtures. 

  B 

  TiO2/ZIF-8 TiO2/HKUST-1 TiO2/CAU-1-NH2 

Sorptive No. N2 Sorptive Δ N2 Sorptive Δ N2 Sorptive Δ 

Eth/meth 1 171.13 46.70 -121.60 198.84 193.29 -7.16 191.37 190.88 -0.08 

 2 164.62 42.57  201.40 193.41  190.59 190.47  

 3 159.44 41.12  201.20 193.24  190.57 190.95  

stand. dev. 5.85 2.89 3.08 1.42 0.08 1.40 0.45 0.26 0.43 

Eth/2-pro 1 155.74 35.15 -103.14 199.51 191.52 -7.32 190.34 189.58 -1.11 

 2 130.59 33.00  198.72 191.48  190.32 189.13  

 3 122.17 30.93  198.22 191.51  190.24 188.86  

stand. dev. 17.47 2.11 15.45 0.65 0.02 0.64 0.05 0.36 0.32 

Eth/water 1 133.46 40.21 -107.09 198.61 192.51 -6.26 195.08 194.42 0.62 

 2 157.68 45.33  199.28 192.81  192.97 194.27  

 3 165.37 49.69  199.50 193.29  192.21 193.43  

stand. dev. 16.65 4.74 12.10 0.46 0.39 0.19 1.49 0.53 1.11 

Eth/1-hex 1 129.33 33.06 -92.47 197.61 190.67 -7.26 190.65 191.59 0.97 

 2 123.19 32.85  197.11 189.10  190.85 192.05  

 3 123.23 32.42  195.64 188.82  191.14 191.93  

stand. dev. 3.53 0.33 3.30 1.02 1.00 0.66 0.24 0.24 0.21 
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Figure S20. Evolution of the R, G and B channels of photographic images for TiO2/MOF BSs alternatingly 

exposed to pure nitrogen (N) in comparison to the nitrogen stream saturated with a single sorptive (ethanol (E), 

methanol (M), 2-propanol (P), water (W) or 1-hexanol (H)). The images were recorded in situ with a camera 

attached to the microscope, and subsequently processed to extract the average R, G and B values which were 

then used in this Fig. to illustrate the reversible sorption behavior of the stacks. 
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Figure S21. Evolution of the R, G and B channels of photographic images for TiO2/MOF BSs alternatingly 

exposed to pure nitrogen (N) in comparison to the nitrogen stream saturated with a solvent mixture (ethanol 

with either methanol (EM), 2-propanol (EP), water (EW) or 1-hexanol (EH) using a volume ratio of 1:1). The 

images were recorded in situ with a camera attached to the microscope, and subsequently processed to extract 

the average R, G and B values which were then used in this Fig. to illustrate the reversible sorption behavior of 

the stacks. 

 



5 Appendix 

180 
 

 

Figure S22. PCA plots for (a) R, (b) G and (c) B channels, illustrating the different correlations of the channels for 

the investigated solvent mixtures. 

 

Figure S23. PCA plots for (a) TiO2/ZIF-8 BS, (b) TiO2/HKUST-1 BS and (c) TiO2/CAU-1-NH2 BS, illustrating the 

different response correlations of the stacks for the investigated solvent mixtures. 
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5.4 SUPPORTING INFORMATION FOR CHAPTER 3.3 

 

adapted from A. Ranft, I. Pavlichenko, K. Szendrei, P. M. Zehetmaier, Y. Hu, A. von Mankowski, B. V. 

Lotsch, „1D photonic defect structures based on colloidal porous frameworks: Reverse 

pore engineering and vapor sorption”, Microporous Mesoporous Mater. 2015, 86, 

6948-6958. 

 

Additional analytical data 

 

 

Figure S1. Cross-sectional SEM images of (a) a dense sandwich structure with 1 overhead TiO2/SiO2 BL, (b) a 

similar structure with 1 overhead SiO2/TiO2 BL, (c) a single ZIF-8 layer coated with SiO2-sol and (d) a single ZIF-

8 film coated with TiO2-np. 
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Table S1. EDX measurements gained from cross-sectional SEM images of defect structures on silicon substrates 

(samples E and F). 

 Si / % Ti / % Zn / % 

E 33.6 1.59 2.24 

F 30.2 2.65 1.52 

 

 

Figure S2. (a) Top-view SEM image of sample F showing the spot that has been investigated with EDX (b). Note 

that the measured spot has been treated with Ga ions to remove the upper BS from the sample thereby 

suggesting the presence of Ga in the sample. (c) XRD patterns and (d) IR spectra for samples D, E, F and ZIF-8 

layers coated with either SiO2 or TiO2 sol in comparison to ZIF-8 powder. 

 

 

Figure S3. Reflection spectrum (a) and optical vapor sorption isotherm (b) of a porous sol-based sandwich 

structure, illustrating the change of the optical properties upon adsorption of ethanol vapor. In the reflection 

spectrum, the spectral shift upon exposure to the highest analyte concentration (100%, p/p0 ≈ 1) is shown in 

comparison to pure nitrogen, while the isotherm illustrates the sorption behavior of the stack at various relative 

pressures. 
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Figure S4. Spectral evolution of a hybrid 1D PC (a) and a dense multilayer structure (b) after the deposition of 

ZIF-8 and with each following BL deposition. 

 

Table S2. Experimental layer thicknesses (“exp.”) deduced from cross-sectional SEM images of defect structures 

and ellipsometric measurements with single films on silicon substrates, and simulated thickness values (“sim.”) 

obtained from model fits to the respective spectra of samples A-F. 

 

d (SiO2) / nm d (TiO2) / nm d (defect layer) / nm 

exp. sim. exp. sim. exp. sim. 

A 89 82 54 65 - - 

B 85 85 58 62 603 550 

C 79 68 61 65 456 466 

D 88 93 67 70 - - 

E 98a 92 67a 66 293a 250 

F 86 92 62 66+30b 259 260 

a Values derived solely from ellipsometric measurements 

b First value simulated for all TiO2 layers except for the one adjacent to the defect slab (fourth layer), second 

value simulated for the fourth TiO2 layer 
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Table S3. Experimental RIs (“exp.”) determined from ellipsometric measurements with single films on silicon 

substrates, and simulated RIs (“sim.”) obtained from model fits to the respective spectra of samples A-F. 

 n (SiO2) @ 530 nm n (TiO2) @ 530 nm n (defect layer) @ 530 nm 

exp. sim. exp. sim. exp. sim. 

A 1.41 1.40 1.87 1.88 1.21 - 

B 1.42 1.86 1.21 

C 1.41 1.85 1.21 

D 1.41 1.93 1.93 - 

E 1.42 1.93 1.21 

F 1.41 1.93 - 1.60 

 

 

Figure S5. Simulated reflection spectra of sample F obtained for different refractive indices of the defect slab 

(black line: 1.21, blue line: 1.60). Thickness values and refractive indices simulated for SiO2 and TiO2 layers, 

respectively, are listed in Tables S2 and S3. 
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Figure S6. Reflection spectra of sample E recorded after different exposure times toward various ethanol vapor 

concentrations. After exposing the sample to 10%, the concentration was changed to 15% and spectra were 

recorded every 60 s for 5 min. The figure illustrates that the response toward the analyte is completed within the 

first minute. 

 

 

Figure S7. Cross-sectional SEM images (a, b) and reflection spectra (c, d) of two hybrid top defect structures 

with different ZIF-8 layer thicknesses. In the reflection spectrum, the spectral shift upon exposure to the highest 

analyte concentration (100%, p/p0 ≈ 1) is shown in comparison to pure nitrogen. The image and spectrum on 

the right side (b, d) were recorded for the stack with the larger ZIF-8 thickness (sample II). 
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Figure S8. Reflection spectrum (a) and optical vapor sorption isotherm (b) of a regular hybrid 1D PC illustrating 

the change of the optical properties upon the adsorption of ethanol vapor. In the reflection spectrum, the 

spectral shift upon exposure to the highest analyte concentration (100%, p/p0 ≈ 1) is shown in comparison to 

pure nitrogen, while the isotherm illustrates the sorption behavior of the stack at various relative pressures. 

 

 

Figure S9. Reflection spectrum (a) and optical vapor sorption isotherm (b) of a hybrid sandwich structure with 

1 overhead BL, illustrating the change of the optical properties upon the adsorption of ethanol vapor. In the 

reflection spectrum, the spectral shift upon exposure to the highest analyte concentration (100%, p/p0 ≈ 1) is 

shown in comparison to pure nitrogen, while the isotherm illustrates the sorption behavior of the stack at 

various relative pressures. 

 

 

Figure S10. Reflection spectrum (a) and time-dependent response (b) of a regular dense 1D PC illustrating the 

sorption behavior upon exposure to ethanol vapor. In the reflection spectrum, the spectral shift upon exposure 

to a nitrogen stream saturated with ethanol (denoted as “100%”) is shown in comparison to pure nitrogen. The 

time-dependent response was recorded by switching back and forth from pure nitrogen to nitrogen/ethanol and 

monitoring the reflectivity at a distinct wavelength (550 nm ≈ 2.26 eV) of the spectrum. 
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Figure S11. Reflection spectra and time-dependent response of (a, b) a regular porous SiO2/TiO2 BS with 

covered edges; (c, d) the same stack with covered surface and free edges. In the reflection spectra, the spectral 

shift upon exposure to a nitrogen stream saturated with ethanol (denoted as “100%”) is shown in comparison to 

pure nitrogen. The time-dependent responses were recorded by switching back and forth from pure nitrogen to 

nitrogen/ethanol and monitoring the reflectivity at a distinct wavelength of the spectrum. The observed changes 

in the spectra and the reflectivity suggest that infiltration of the stack occurs from the top layer only. 
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