
 
 

 

 

 
Aus der Kinderchirurgischen Klinik und Poliklinik 

im Dr. von Haunerschen Kinderspital 
der Ludwig-Maximilians-Universität München 

                         Direktor: Professor Dr. med. Dietrich von Schweinitz 
 

 

Kinderchirurgische Forschung 
Leiter: Prof. Dr. rer. nat. Roland Kappler 

 
 
 

 

 
“The role of NFE2L2 mutations and the epigenetic 

regulator UHRF1 in hepatoblastoma“ 

 
 
 

 
 

Dissertation  
zum Erwerb des Doktorgrades der Naturwissenschaften 

an der Medizinischen Fakultät der  
Ludwig-Maximilians-Universität zu München  

vorgelegt von  
 

 

 

Franziska Katharina Trippel 

aus  

Frankfurt am Main 

2015 

 



TABLE OF CONTENT   I 

 

 

Mit Genehmigung der Medizinischen Fakultät  

der Universität München 

 

 

 

Betreuer:      Prof. Dr. Roland Kappler 

Zweitgutachter:    Prof. Dr. Heiko Hermeking 

 

 

Dekan:      Prof. Dr. med. dent. Reinhard Hickel 

Tag der mündlichen Prüfung:  13.01.2016 

 

 

 

 

 

 

 



TABLE OF CONTENT   I 

 

Eidesstattliche Versicherung 

 

Trippel, Franziska Katharina 

 

Ich erkläre hiermit an Eides statt,  

dass ich die vorliegende Dissertation mit dem Thema,  

 

„The role of NFE2L2 mutations and the epigenetic regulator UHRF1 

in hepatoblastoma“ 

 

Selbstständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und 

alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche 

kenntlich gemacht und nach ihrer Herkunft unter Beziehung der Fundstelle einzeln 

nachgewiesen habe. 

 

Ich erkläre des Weiteren, dass die hier vorliegende Dissertation nicht in gleicher oder in 

ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades 

eingereicht wurde. 

 

 

München, 13.01.2016      Franziska Trippel 



TABLE OF CONTENT      I 

 

Table of Content 

Table of Content............................................................................................................................ I 

List of abbreviations ..................................................................................................................... II 

1 Introduction ......................................................................................................................... 1 

1.1 Hepatoblastoma ...................................................................................................................... 1 

1.1.1 Histology .......................................................................................................................... 1 

1.1.2 Symptoms and Diagnosis................................................................................................. 2 

1.1.3 Staging ............................................................................................................................. 2 

1.1.4 16-Gen signature ............................................................................................................. 3 

1.1.5 Treatment ........................................................................................................................ 4 

1.1.6 Side effects and late effects of treatment ....................................................................... 5 

1.2 Hepatocellular carcinoma ....................................................................................................... 5 

1.3 Transitional liver cell tumors ................................................................................................... 6 

1.4 Genetics and cytogenetics of hepatoblastoma ....................................................................... 6 

1.5 Epigenetics .............................................................................................................................. 9 

1.5.1 Histone modification ..................................................................................................... 10 

1.5.2 DNA Methylation ........................................................................................................... 11 

1.5.3 E3 Ubiquitin-like, containing PHD and RING finger domain, 1 ...................................... 13 

1.6 Signaling pathways implicated in hepatoblastoma ............................................................... 15 

1.6.1 Hedgehog signaling pathway ........................................................................................ 16 

1.6.2 IGF signaling................................................................................................................... 17 

1.6.3 WNT signaling pathway ................................................................................................. 18 

1.7 Aim of the study .................................................................................................................... 19 

2 Material.............................................................................................................................. 20 

2.1 Cell culture............................................................................................................................. 20 

2.1.1 Cell lines ......................................................................................................................... 20 

2.1.2 Cell Culture Reagents .................................................................................................... 20 

2.1.3 Cell Culture Transfection Reagents ............................................................................... 20 

2.1.4 Cell Culture Material ..................................................................................................... 20 

2.1.5 siRNAs ............................................................................................................................ 21 

2.2 Prokaryotic cultures .............................................................................................................. 21 

2.2.1 Bacteria .......................................................................................................................... 21 

2.2.2 Culture media ................................................................................................................ 22 

2.2.3 Antibiotics ...................................................................................................................... 22 



TABLE OF CONTENT   I 

2.2.4 Plasmids ......................................................................................................................... 22 

2.2.5 Antibodies...................................................................................................................... 23 

2.2.6 Pyrosequencing Assay ................................................................................................... 23 

2.3 Chemicals / Reagents ............................................................................................................ 23 

2.4 Buffer and Solutions .............................................................................................................. 25 

2.5 Molecular Size Markers ......................................................................................................... 27 

2.6 Enzymes ................................................................................................................................. 27 

2.6.1 Restriction enzymes ...................................................................................................... 27 

2.7 Kits ......................................................................................................................................... 27 

2.8 Consumables ......................................................................................................................... 28 

2.9 Equipment ............................................................................................................................. 29 

2.10 Software ................................................................................................................................ 30 

3 Methods ............................................................................................................................. 31 

3.1 Patients .................................................................................................................................. 31 

3.2 Sanger sequencing................................................................................................................. 31 

3.3 Generation of NFE2L2 Plasmids ............................................................................................ 32 

3.4 Transformation ...................................................................................................................... 32 

3.5 DNA Purification with Mini/ Midi preparation ...................................................................... 33 

3.6 Restriction enzyme digestion ................................................................................................ 33 

3.7 Eukaryotic cell culture ........................................................................................................... 33 

3.8 Plasmid Transfection ............................................................................................................. 34 

3.9 NQO1-ARE reporter assay ..................................................................................................... 34 

3.10 NFE2L2 localization analyses ................................................................................................. 34 

3.11 Electroporation of hepatoblastoma cell lines ....................................................................... 35 

3.12 RNA Isolation ......................................................................................................................... 35 

3.13 DNase Digestion for RNA cleanup ......................................................................................... 35 

3.14 Reverse Transcription ............................................................................................................ 36 

3.15 Quantitative real time polymerase chain reaction (qRT-PCR) .............................................. 36 

3.16 Whole cell protein lysates for Western Blot analysis ............................................................ 37 

3.17 Cell fractions for Western Blot analysis ................................................................................ 37 

3.18 Determination of protein concentration............................................................................... 38 

3.19 Sodium dodecyl sulfate (SDS)-polyacrylamide-gel electrophoresis ...................................... 38 

3.20 Transfer to membrane .......................................................................................................... 38 

3.21 DNA Extraction from cell culture and tissue ......................................................................... 39 

3.22 DNA Extraction from human blood ....................................................................................... 39 



TABLE OF CONTENT   I 

3.23 In vitro de novo methylation for positive control DNA ......................................................... 39 

3.24 Bisulfite conversion after DNA Extraction ............................................................................. 40 

3.25 Methylation-specific polymerase chain reaction (MSP) ....................................................... 40 

3.26 Pyrosequencing ..................................................................................................................... 41 

3.27 Chromatin immunoprecipitation (ChIP) ................................................................................ 42 

3.28 Cell Viability Assay ................................................................................................................. 43 

3.29 Statistical analyses ................................................................................................................. 43 

4 Results ................................................................................................................................ 44 

4.1 Genetic investigation ............................................................................................................. 44 

4.1.1 Hepatoblastoma harbors only few somatic mutations ................................................. 44 

4.1.2 Gene regulation is frequently impeded in childhood liver cancer ................................ 47 

4.1.3 Activation of Wnt signaling is the key event in liver tumorigenesis ............................. 50 

4.1.4 Recurrent NFE2L2 mutations in hepatoblastoma ......................................................... 50 

4.1.5 Mutations impede KEAP1-mediated degradation of NFE2L2 ....................................... 52 

4.1.6 Knockdown of the NFE2L2 downregulates NQO1 and inhibits proliferation ................ 55 

4.1.7 Upregulation of the NFE2L2 target gene NQO1 is associated with poor outcome ...... 57 

4.2 Epigenetic investigations ....................................................................................................... 59 

4.2.1 UHRF1 binds to promoter regions of HHIP, IGFBP3, and SFRP1 ................................... 59 

4.2.2 UHRF1 is overexpressed in hepatoblastoma ................................................................. 60 

4.2.3 Knockdown of UHRF1 leads to demethylation of tumor suppressor genes ................. 61 

4.2.4 Effects of UHRF1 downregulation on gene expression and proliferation ..................... 63 

4.2.5 UHRF1 knockdown decreases the repressive marks H3K27me3 and H3K9me2 .......... 64 

4.2.6 Clinical relevance of UHRF1 overexpression in hepatoblastoma .................................. 66 

5 Discussion ........................................................................................................................... 67 

5.1 Genetics ................................................................................................................................. 67 

5.2 Epigenetic .............................................................................................................................. 72 

5.3 Perspectives and future plans ............................................................................................... 78 

6 Summary / Zusammenfassung ............................................................................................ 79 

6.1 Summary ............................................................................................................................... 79 

6.2 Zusammenfassung ................................................................................................................. 80 

7 References .......................................................................................................................... 83 

List of Figures and Tables ............................................................................................................. III 

Publications and Conferences ...................................................................................................... IV 

Acknowledgements ...................................................................................................................... V 



LIST OF ABBREVIATIONS   II 

 

List of abbreviations  

ACTB  Beta-actin 
AFP  Alpha-fetoprotein 
AL  Amplicon length 
ALAS1  Delta-aminolevulinate synthase 1 
ALDH2   Aldehyde dehydrogenase 2 
APC  Amyloid P component serum 
APOC4  Apolipoprotein C-IV 
APC  Adenomatous polyposis coli  
AQP9  Aquaporin 9 
ARE   Antioxidant response element  
AT  Annealing temperature 
ATCC  American Type culture collection 
β  Beta 
bp  Base pair 
BSA   Bovine Serum Albumin  
BUB1  Budding uninhibited by benzimidazoles 1 
BWS  Beckwith-Wiedemann syndrome 
°C   Celsius degree  
C1  Cluster 1 
C2  Cluster2  
ChIP  Chromatin Immunoprecipitation 
CK1  Casein kinase 1 
CNV   Copy number variations 
CpG  cytosine-phospho-guanosine  
CO2  Carbon dioxide 

COG   Children´s Oncology Group 
C1S  Complement component 1 

ct  Cycle of threshold 
CT   Computed tomography 
CTNNB1 beta-catenin  
CUL3   Cullin 3  
CYP2E1  Cytochrome p450 2E1 
d  Day 
DAPI  4',6-diamidino-2-phenylindole 
DAVID  Database for Annotation, Visualization and Integrated Discovery  
DHH  Desert hedgehog 
DKK   Dickkopf 
DLG7  Discs large homolog 7 
DMSO  Dimethyl sulfoxide 
DNMT  DNA methyltransferase 
dNTPs   desoxynucleoside triphosphate  
DTT  Dithiothreitol 
DUSP9  Dual specificity phosphatase 9 
DVL  Disheveled 
E2F5  E2F5 transcription factor ( 
E.coli  lat: Escherichia coli  
ECL  Electrochemiluminescence 
EDTA  Ethylendiaminetetraacetic acid 
EpCAM  Epithelial cell adhesion molecule 
EtOH  Ethanol 



LIST OF  ABBREVIATIONS  …..llllllllllllII 

Ex  Exon 
FAP  Familial adenomatous polyposis 
FCS  Fetal Calf Serum 
fw  forward 
FZD  Frizzled 
GADPH  Glyceraldehyde-3-phosphate dehydrogenase 
GCL  Glutamate-cysteine ligase 
GPC3  Glypican 3 gene 
GHR  Growth hormone receptor 
GSK3β  Glycogen synthase kinase 3 beta 
GST  Glutathione S transferase 
HP1  Heterochromatin protein 1 
HPD  4-hydroxyphenylpyruvase dioxygenase 
H2AK5     Lysine 5 of histone H2A 
H3K9ac  Histone 3 lysine 9 acetylation 
H3K4me2 Histone 3 lysine 4 di-methylation 
H3K4me3 Histone 3 lysine 4 tri-methylation 
H3K9me2 Histone 3 lysine 9 di-methylation 
H3K9me3 Histone 3 lysine 9 tri-methylation 
H3K27me2 Histone 3 lysine 27 di-methylation 
H3K27me3 Histone 3 lysine 27 tri-methylation 
h  Hour 
HAT   Histone acetyltransferase 
HCC  Hepatocellular carcinoma 
HDAC  Histone deacetylase 
HMOX1  Heme oxygenase 1  
HHIP  Hedgehog-interacting protein 
HMT  Histone methyltransferase 
HP1  Heterochromatin protein I 
HR  High-risk 
IGF  Insulin-like growth factor 
IGFBP3   Insulin-like growth factor binding protein 3 
IGFR  Insulin-like growth factor receptor 
IgG  Immunoglobulin G 
IHH  Indian hedgehog 
IGSF1  Immunoglobulin superfamily member 1 
indel   Insertion and deletion  
IRS  Insulin receptor substrate 
kDa  Kilo Dalton 
KEAP1  Kelch-like ECH-associated protein 1 
K19  Keratin 19 
L  Liter 
LB   Lysogeny Broth 
Loc  Localization 
LOH  Loss of heterozygosity 
LOI  Loss of imprinting 
LRP  Low density lipoprotein receptor-related protein 
M  Mol 
MeOH  Methanol 
MgCl2  Magnesium chloride 
min  Minute 
mL  Milliliter 
mM   Millimolar 



LIST OF  ABBREVIATIONS  …..llllllllllllII 

MRI  Magnetic resonance imaging 
MSP  Methylation-specific polymerase chain reaction  
µg  Microgram 
µL  Microliter 
µM  Micromolar 
n  Nano 
NaCl  Sodium chloride 
ng  Nanogram 
NFE2L2  Nuclear factor (erythroid-derived 2)-like 2 
NLE1  Notchless homolog 1 
nm  Nanometer 
N-myc  MYCN 
NQO1  NAD(P)H:quinone oxidoreductase 1 
O2  Oxygen 
P  Pico 
PBS  Phosphate buffered saline 
PCR   Polymerase chain reaction 
PHD  Plant Homeo domain 
PRETEXT Pre-treatment extend of disease 
PTCH1  Patched1 
PTEN  Phosphatase and tensin homolog 
qRT-PCR Quantitative real time polymerase chain reaction 
rev  reverse 
RING  Really Interesting New Gene 
RNA  Ribonucleic acid 
rpm  Rounds per minute 
RPL10A  Ribosomal protein L10a 
RPMI  Roswell Park Memorial Institute Medium 
RT  Room temperature 
SAM  S-adenosyl methionine 
SD   Standard deviation 
SDS  Sodium dodecyl sulfate 
sec  Second 
SEM  Standard error of the mean 
SFRP1  Secreted frizzled-related protein 1 
SHH  Sonic hedgehog 
SIOPEL  International Childhood Liver Tumor Strategy Group 
SMO  Smoothened 
SR  Standard-risk 
SRA  Set and Ring associated 
STE  Sodium Chloride-Tris-EDTA 
SUFU  Suppressor of Fused 
TBE  Tris/Borate/EDTA 
TBP   TATA-Box-binding-Protein 
TE  Tris-EDTA Buffer 
TFIID  Transcription factor II D 
TIP60  Tat-Interactive protein 
TLCT  Transitional liver cell tumor 
TSG  Tumor suppressor gene 
TRIS  Tris (hydroxymethyl) amino methane 
TTD  Tandem Tudor domain 
U  Unit 
UBL  Ubiquitin like 



LIST OF  ABBREVIATIONS  …..llllllllllllII 

UDP  Uniparental isodisomy 
UGT2B4 UDP glucuronosyl- transferase 2 family, polypeptide B4 
UHRF1  E3 Ubiquitin-like, containing PHD and RING finger domain 1 
USP7  Ubiquitin-specific-processing protease 7 
UV  Ultraviolet 
V  Volt 
Vol  Volume 
v/v  volume per volume 
w/v  weight per volume 
WIF  WNT inhibitory factor 



INTRODUCTION   1  

 

1 Introduction 

Cancer in children and adolescents is an ever-present disease, and compared to adult cancer, a rare 

disease. In these days about one in every 600 children develop cancer before the age of 15, but still 

relatively little is known about disease causes [2]. Although improvement of treatment options and 

regimes have increased the overall 5-year survival rate up to approximately 80 % [3], cancer is still 

the leading cause of death by disease in children between 5 and 14 years [4].   

Childhood cancer cannot be seen as a single disease – it has numerous subtypes and occurs at 

different sites of the body [5]. The types of cancer that preferably develop in children are different 

from those in adults. Whereas cancer types with high incidence in adult, such as lung, breast and 

colon cancer, are extremely rare among children, other cancer types like lymphoma, neuroblastoma 

and retinoblastoma are almost exclusively found in children [6]. Pediatric cancers are suggested to 

develop due to misregulation of differentiation during embryogenesis, while adult cancers are 

usually associated with mutations acquired over life. In addition, etiologic differences and genomic 

variations within even the same cancer type suggest that childhood and adult cancers may be 

discrete diseases. These observations elucidate the specific interest and focus on pediatric cancers, in 

this study hepatoblastoma. 

 

1.1 Hepatoblastoma 

Hepatoblastoma is a malignant disease of the liver. It accounts for about 1 % of all childhood cancers 

and is the most common malignant liver tumor in infancy with increasing incidence [7, 8]. 

Hepatoblastoma is assumed to arise from immature liver progenitor cells by aberrant activation of 

genes important in embryonic development. The annual incidence is 1.5 per million in children 

younger than 15 years. The median age of manifestation is 6 to 36 months, with 80 % of all cases 

diagnosed before three years of age [9]. The incidence of hepatoblastoma is higher in boys [10-12] 

and is increased in children with low-birth weight and prematurity [13, 14]. 

 

1.1.1 Histology 

Hepatoblastoma exhibits heterogeneity and is characterized by a broad spectrum of disease 

characteristics, comprising the epithelial phenotype (56 %) as well as the mixed epithelial/ 

mesenchymal subtype (44 %) [15]. The epithelial hepatoblastoma type can further be divided into 

pure fetal (31 %), embryonal (19 %), macrotrabecular (3 %) and small-cell undifferentiated (3 %). The 
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most common mesenchymal tissue elements are immature fibrous tissue, spindle cells and osteoid. 

The presence of mesenchymal elements has been associated with improved prognosis in patients 

with advanced disease [16], whereas the pure fetal histology confers a better prognosis in 

completely resected tumors. Furthermore, it has been shown that the more primitive and 

undifferentiated the cells are, the more aggressive the tumors behave. Thus, tumors with a high 

amount of undifferentiated cells are associated with poor prognosis [16]. 

 

1.1.2 Symptoms and Diagnosis 

Most children appear with a suspected abdominal mass or swollen abdomen, accompanied with 

abdominal pain, fever, nausea and weight loss. However, symptoms vary depending on the size of 

the tumor and the presence and location of metastasis.   

For diagnosis, blood tests, including a complete blood count and liver- and kidney function tests are 

performed. Furthermore, alpha-fetoprotein (AFP) is routinely measured. At birth, infants still have 

relatively high levels of AFP, which decrease to normal adult levels within the first year of life. The 

normal level for AFP in children has been reported to be lower than 10 ng/mL  [17, 18]. An AFP level 

higher than 500 ng/mL is a significant indicator of hepatoblastoma and hepatocellular carcinoma. 

However, liver tumor patients with low serum AFP (˂ 100 ng/mL) at diagnosis are classified as a high-

risk subgroup with advanced state of disease at diagnosis, poor response to chemotherapy and a 

poor outcome [19]. Moreover, AFP can also be used as an indicator for treatment response and 

success. If treatment succeeds AFP levels will decrease to normal [20].   

In addition to the physical examination and validation of laboratory parameters, imaging by 

ultrasound, computed tomography (CT) and by magnetic resonance imaging (MRI) is also an 

important diagnostic and prognostic tool and plays a central role in the staging of the tumor. 

 

1.1.3 Staging 

Staging of hepatoblastoma incorporates extend of liver involvement as well as tumor localization and 

the formation of metastasis. Currently, two main staging systems are used for hepatoblastoma. 

Firstly, the pre-treatment extend of disease (PRETEXT) staging system, which is based on imaging of 

the liver before surgery. Secondly, the “Children’s Oncology Group” (COG) staging, a system based on 

liver imaging and additional imaging of other parts of the body. The COG also integrates the results of 

surgery, if surgery was performed at diagnosis. 
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The PRETEXT staging was designed by the International Childhood Liver Tumor Strategy Group 

(SIOPEL). It rates disease progression according to the number of hepatic segments involved by 

imaging. The liver is divided into four segments, the right anterior and posterior segment, left medial 

and lateral segment. If one segment is involved, the hepatoblastoma is considered stage I. If all four 

lobes are involved, the disease is considered stage IV. In addition, PRETEXT includes the evaluation of 

cancer invasion of the portal (P) and hepatic veins (V) as well as the retro hepatic vena cava and hila 

nodal extension (E). It includes the presence of distant metastasis (M) and classifies its patients into 

high-risk (HR) or standard-risk (SR) patients. HR-patients show the presence of hepatoblastoma in all 

four sections and/or distant metastasis, venous involvement or other extra hepatic disease (30 % 

long-term survival), whereas SR-patients have a completely defined hepatoblastoma, involving at the 

most three sections (70 % - 100 % long term survival) [21-23].   

In contrast to the PRETEXT, the COG staging reflects the degree of tumor removal and tumor 

expansion. The COG categorizes hepatoblastoma into four stages. Stage 1 is characterized by a 

localized tumor confined to the area of origin, which can be completely removed by surgery. After 

surgery no cancer cells remain on the edges or margins of the removed tissue and thus stage 1 has a 

very good prognosis with about 90 - 100 % long term survival. Hepatoblastoma of stage 2 is still 

localized, but microscopic residues of cancer cells can be observed after surgery. However, the 

prognosis of long-term survival in stage 2 is about 90 %. Stage 3, with a prognosis of 50 - 75 % long-

term survival, is defined by a big tumor which has grown into or presses on vital tissues in the liver. 

Additionally, some, but not all lymph nodes connected to the tumor show signs of cancer infiltration. 

After surgery residuals of tumor cells remain present. Stage 4 describes dissemination of the tumor 

to abdominal lymph nodes, to the lung, or other organs and is associated with poor prognosis of 

about 30 % long-term survival [24, 25]. 

 

1.1.4  16-Gen signature  

In 2008 colleagues of mine discovered a supportive classification system of hepatoblastoma based on 

two subgroups, named Cluster 1 (C1) and Cluster 2 (C2) [26]. The subclasses resemble distinct phases 

of liver development and are specified through a discriminating 16-gene signature which allows or at 

least contributes to differentiating liver tumors having a good prognosis from tumors with a bad 

prognosis. The 16-gene signature was identified by microarray analysis and consists of eight genes 

for each subgroup, by which it is possible to assign tumors to their corresponding subgroup, either C1 

or C2 based on their gene expression [26].   
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The C1 set comprises aldehyde dehydrogenase 2 (ALDH2), amyloid P component serum (APCS), 

apolipoprotein C-IV (APOC4), aquaporin 9 (AQP9), complement component 1 (C1S), cytochrome 

p450 2E1 (CYP2E1), growth hormone receptor (GHR) and 4-hydroxyphenylpyruvase dioxygenase 

(HPD). However, the C2-group consists of alpha-fetoprotein (AFP), budding uninhibited by 

benzimidazoles 1 (BUB1), discs large homolog 7 (DLG7), dual specificity phosphatase 9 (DUSP9), E2F5 

transcription factor (E2F5), immunoglobulin superfamily member 1 (IGSF1), Notchless homolog 1 

(NLE1) and the ribosomal protein L10a (RPL10A) gene.   

C1 tumors reflect the fetal phenotype of hepatoblastoma, while C2 tumors corresponded to the 

immature, embryonic type, which is highly associated with an advanced tumor stage, vascular 

invasion, extra hepatic metastasis and poor prognosis. This highly proliferating subgroup C2 is also 

typified by gains of chromosomes 8q and 2p [26]. In addition, increased expression levels of the 

Nmyc (MYCN) oncogene, intense nuclear accumulation and decreased membranous localization of 

beta-catenin (CTNNB1) have been observed to be frequent in C2 tumors [26]. Contrarily, C1 tumors 

show enhanced membranous staining and cytoplasmic accumulation of CTNNB1 with occasional 

nuclear localization. Markers for hepatic progenitor cells like AFP, epithelial cell adhesion molecule 

(EpCAM) and keratin 19 (K19), and the proliferation marker Ki67, MYCN and survivin were also 

significantly stronger expressed in the tumors of the C2-group than in the C1 tumors, which strongly 

contributes to the phenotype of poorly differentiated hepatoblastoma [27]. In contrast, markers of 

mature hepatocytes such as ALDH2, delta-aminolevulinate synthase 1 (ALAS1) and UDP glucuronosyl- 

transferase 2 family, polypeptide B4 (UGT2B4) are significantly less expressed in C2 tumors than C1 

tumors. Hence, the expression signature using the 16-genes supports staging by recognizing the 

developmental stage of the liver, in predicting disease outcome and for conducting therapeutic 

regimes. 

 

1.1.5 Treatment 

A complete surgical removal of the tumor is the most important component of successful treatment 

for hepatoblastoma. However, about half of the patients with hepatoblastoma have an unresectable 

tumor at diagnosis. Therefore, chemotherapy is needed to shrink the tumor before surgery, to 

destroy remaining cancer cells after surgery and to exert an antitumor effect on overt or cryptic 

metastasis. The use of neoadjuvant and adjuvant chemotherapy has improved the survival chance, 

by leading to better resectability of hepatoblastoma and decreasing morbidity of surgery. Thus, 

chemotherapy is an essential part of treatment. Currently, SR-patients in countries using the SIOPEL 

protocol receive three courses of preoperative chemotherapy consisting of cisplatin and doxorubicin 
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(PLADO) and at least one additional course of PLADO postoperatively [28]. However, HR-patients do 

not respond to the PLADO treatment satisfactorily. Therefore, intensified chemotherapy is used. 

Cisplatin is given in combination with carboplatin or doxorubicin in a two week interval. Seven blocks 

of treatment are given neoadjuvant and three additional units postoperatively [29]. 

If classic chemotherapy is ineffective for patients, chemoembolization is performed. The 

chemotherapeutic agents are directly administered into the artery supplying the tumor, offering the 

advantage of higher local concentrations with lower systemic exposure. Chemoembolization has 

been explored in several small studies which show good results for hepatoblastoma patients [30-32]. 

Lastly, liver transplantation is a treatment option for patients with large solitary or multifocal 

PRETEXT4 tumors, or even metastatic disease, if the tumors could be cleared with chemotherapy 

[33]. 

 

1.1.6 Side effects and late effects of treatment 

Chemotherapy, for both SR- and HR-hepatoblastoma patient groups, often causes immediate side 

effects such as nausea, hair loss, bruising and bleeding, tiredness, diarrhoea and an increased risk of 

infection. In addition, doxorubicin and cisplatin can also cause severe late side effects which affect 

patients for life. Doxorubicin is associated with cardiac toxicity, whereas cisplatin and carboplatin are 

associated with nephro- and ototoxicity [34]. Furthermore, children treated against childhood cancer 

display an increased risk for secondary cancers, lung damage, infertility, cognitive impairment and 

growth deficits [4], as the treatment may interfere with development. Several studies notice that 

childhood cancer survivors are more likely to have symptoms of depression, learning difficulties and 

problems with social interaction compared to children of the same age [35, 36].   

Accordingly, an improvement in treatment, more effective diagnostic tools as well as therapies are 

required to reduce toxicity, long-term side effects and to increase cure rates.   

 

1.2 Hepatocellular carcinoma  

Hepatocellular carcinoma (HCC) is the second most common malignancy of the liver in children and is 

markedly distinct from hepatoblastoma. It mainly occurs in children older than six years of age and is 

predominantly found in male patients. Children with chronic hepatitis B virus (HBV) infection, 

cirrhosis and/or underlying metabolic diseases are the main high-risk groups for the development of 

HCC in childhood [37, 38]. However, the majority of HCC cases arise de novo without an antecedent 

history of liver disease [39]. Most current available treatment options for HCC are largely inefficient 



INTRODUCTION  …..llllllllllll6 

due to extreme chemoresistance and advanced disease at time of diagnosis. Morbidity and mortality 

directly correlate with surgical resectability of the primary tumor. Therefore, the total resection of 

the tumor is, like in hepatoblastoma, the only chance for complete cure. Overall survival after three 

years remains below 25 %, comparable to stage IV hepatoblastoma [39].   

 

1.3 Transitional liver cell tumors  

There is a distinct group of malignant hepatocellular tumor that differs from both hepatoblastoma 

and HCC with respect to clinical presentation, morphology, immunophenotype and treatment 

response. These tumors are termed as transitional liver cell tumors (TLCT) and arise in an age group 

beyond the hepatoblastoma manifestation period. Thus, they occur in older children and 

adolescents. TLCTs emerge as large tumors with high AFP levels and high CTNNB1 expression. They 

represent an aggressive type of hepatic tumor and are considered a potential progeny of 

hepatoblastoma [40]. TLCT have been suggested to derive from neoplastic continuation along an 

ontogenetic differentiation pathway from hepatoblastoma to HCC. Hence, TLCTs exhibit clinical and 

histopathological features that are reminiscent of both hepatoblastoma and HCC [40].   

 

 

1.4 Genetics and cytogenetics of hepatoblastoma 

It is assumed that hepatoblastoma displays a relatively normal genomic background, based on its 

early manifestation and the low occurrence of obvious cytogenetic and genetic alterations [41]. 

Although most cases are sporadic, a highly elevated incidence of hepatoblastoma has been described 

in patients with genetic syndromes [41]. Familial adenomatous polyposis (FAP), an autosomal 

dominant disease, characterized by massive infestation of the colon with polyps [42] and the 

Beckwith-Wiedemann syndrome (BWS) [43], a genetic overgrowth syndrome are the two most 

common syndromes associated with hepatoblastoma. FAP patients carry germline mutations of the 

adenomatous polyposis coli (APC) tumor suppressor gene, leading to multiple colon polyps with 

universal progression to colon cancer. The risk of hepatoblastoma development in children in FAP 

kindreds is about 0.42 % [44]. BWS patients show at least two of five common features associated 

with abnormal growth including macroglossia, macrosomia, midline abdominal wall defects, ear 

creases/ear pits or neonatal hypoglycemia. All of these features are highly associated with variation 

within a defined region on the short arm of chromosome 11. Patients with chromosome 11p15.5 

uniparental isodisomy (UPD) have an increased risk for developing embryonal tumors, including 

hepatoblastoma. UPD in these patients involves maternal loss of heterozygosity (LOH) and paternal 
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duplication [45]. The relative risk for hepatoblastoma in BWS patients is 2280-fold increased when 

compared to healthy children [46]. Other overgrowth syndromes described in association with the 

development of hepatoblastoma, even to a lesser extent, are the Simpson-Golabi-Behmel syndrome 

[47] and the Sotos syndrome [48, 49]. In Simpson-Golabi-Behmel patients alterations of the glypican 

3 gene (GPC3) on chromosome Xq26 are observed, while in Sotos syndrome patients, deletions or 

mutations of the NDS1 gene could be detected. 

The most common cytogenetic abnormality is trisomy, which can either occur alone or in conjunction 

with other structural changes in the genetic material. Common trisomies affect chromosomes 2, 8 or 

20 [49-51]. Chromosome losses occur much less than chromosome gains. However, the most 

common chromosome loss is chromosome 18. In addition, unbalanced translocations involving a 

breakpoint on the proximal short arm of chromosome 1 are observed, which result in a duplication of 

the long arm of chromosome 1q. The most commonly involved reciprocal chromosomal arm is 4q 

[50]. The first initial recurring translocation described in three hepatoblastoma patients was 

der(4)t(1;4)(q12;q34) [52]. Moreover, it has been reported that hepatoblastoma is characterized by a 

family of chromosome translocations with similar breakpoints on either chromosome 1q12 or 1q21 

[53]. 

Apart from chromosome anomalies, single hepatoblastoma cases are described that exhibit point 

mutations in the 110 kDa catalytic subunit of phosphatidylinositol-3-kinase (PIK3CA) [55], and 

amplifications in either PIK3C2B [56] or the pleomorphic adenoma gene (PLAG1) [57]. The only 

known recurrent alteration found in about two thirds of hepatoblastoma patients are mutations of 

the CTNNB1 gene. CTNNB1 is a key effector molecule of canonical WNT signaling and most mutations 

change exon 3 either by point mutation or deletion [58]. The CTNNB1 gene plays a decisive role in 

cell adhesion, by binding to E-cadherin, as well as cell proliferation, through its regulatory function 

within the WNT signaling pathway [59]. In quiescent cells, CTNNB1 is phosphorylated by glycogen 

synthase kinase 3 beta (GSK3β), which acts within a destruction complex consisting of APC, AXIN, 

GSK3ß and casein kinase 1 (CK1), leading to rapid degradation of CTNNB1 through the ubiquitin 

proteasome pathway [60-62]. However, alterations within the phosphorylation sites of the protein 

lead to the disruption of degradation. Consequently, CTNNB1 stabilizes and translocates into the 

nucleus, and activates transcription of target genes [63, 64] including MYC, cyclin D1 and PITX2 [65, 

67]. Somatic mutations of genes participating in the degradation complex, such as APC, AXIN1 and 

AXIN2, have also been found in hepatoblastoma, although at a very low frequency [68-70]. 

Interestingly, the genetic lesions in CTNNB1, AXIN1, and AXIN2 described to be relevant for 

hepatoblastoma are also observed in adult HCC [69, 71]. This underlines the significance of activated 

WNT signaling in the genesis of liver cancer in all age groups [72]. Interestingly, it has been shown 
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that the introduction of activating mutations of CTNNB1 in a unique population of bipotential fetal 

liver cells is able to give rise to tumors [73]. Nonetheless, this observation is dependent on the cell 

type, as activation of CTNNB1 in hepatocytes is not sufficient to induce tumorigenesis, giving rise only 

to marked hepatomegaly [74, 75]. This suggests that for these cells additional mutations are needed 

for hepatoblastoma development.   

Recently, our group has performed whole-exome sequencing of hepatoblastoma and TLCT samples in 

order to get more information about the genetic basis of childhood liver cancer [1]. We identified 

recurrent mutations in the already mentioned CTNNB1 gene as well as mutations within the 

transcription factor nuclear factor-erythroid-2-related-factor-2 (NFE2L2). Interestingly, whole-exome 

of pediatric HCC tissues also uncovered somatic mutations in these two genes [76], suggesting an 

import role of NFE2L2 in liver cancer development in addition to CTNNB1. 

 

NFE2L2 belongs to the Cap ‘N’ Collar family that contains a conserved basic leucine zipper (bZIP) 

structure. It contains seven functional domains, known as Neh1–Neh7. Of these seven domains, the 

Neh2 domain, which is located in the N terminus of NFE2L2, is the major regulatory domain. Neh2 is 

responsible for ubiquitin conjugation [77] and contains two binding motifs named ETGE and DLG that 

are involved in the regulation of NFE2L2 stability. The main function of NFE2L2 is the activation of the 

cellular antioxidant response by inducing the transcription of several genes that are able to combat 

the harmful effects such as xenobiotics and oxidative stress. NFE2L2 has traditionally been regarded 

as the cell’s main defense mechanism and as a major regulator of cell survival. However, recent 

studies have demonstrated that NFE2L2 promotes the survival not only of normal cells, but also of 

cancer cells. In tumor cells accumulated NFE2L2 creates an environment conducive for cell growth 

and protects against oxidative stress, chemotherapeutic agents [78] and radiotherapy [79].   

NEF2L2 is primarily regulated by Kelch-like erythroid cell-derived protein 1 (KEAP1), a substrate 

adaptor Cullin 3 (CUL3)-dependent E3 ubiquitin ligase complex, that represses NFE2L2 by promoting 

its ubiquitination and subsequent proteasomal degradation. Under basal or unstressed conditions, 

NFE2L2 is primarily localized in a complex with KEAP1 via direct protein-protein interactions between 

the KEAP1-Kelch domain and the ETGE and DLG motifs of NFE2L2. KEAP1 binds CUL3 that represses 

NFE2L2 by promoting its ubiquitination and degradation. Under oxidative stress, NFE2L2 is not 

degraded and translocates to the nucleus. In the nucleus, NFE2L2 heterodimerises with small 

masculoaponeurotic fibro sarcoma (Maf) proteins and binds to the antioxidant response element 

(ARE), a cis-acting sequence found in the 5′-flanking region of many NFE2L2 target genes, involved in 

cytoprotection and metabolism [80-82]. Target genes of NFE2L2 comprise for example the 

NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), glutamate-cysteine ligase 

(GCL) and glutathione S transferases (GSTs).   
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In cancer cells, several studies revealed the “dark” side of NFE2L2. It has been shown that NFE2L2 

and its downstream target genes are overexpressed in cancer cell lines and human cancer tissues, 

giving cancer cells an advantage for survival and growth. Furthermore, it has been observed that 

NFE2L2 is upregulated in resistant cancer cells and is thought to be responsible for acquired 

chemoresistance [83, 84]. Interestingly, NFE2L2 mutations have been described to act as a driver in 

pediatric hepatocellular carcinogenesis [85]. Therefore, it is interesting to further study the role of 

NFE2L2 in hepatoblastoma.   

 

1.5 Epigenetics  

Epigenetics, epi- (Greek: επί- over, above, outer) – genetic (Greek: γενετικός genetikos, "genitive" 

and that from γένεσις genesis, "origin"), refers to mechanisms and consequences of heritable 

chromosomal modifications that are not based on changes in the DNA sequence. The main 

epigenetic modifications are DNA methylation and histone modifications (Figure 1). Both contribute 

to important processes during cell differentiation and development. Furthermore, they are involved 

in transcriptional regulation, protection of chromosomal stability; genomic imprinting, X 

chromosome inactivation as well as DNA repair [86, 87]. Thus, misregulation of DNA methylation and 

histone modifications are closely linked to carcinogenesis. Unlike the genetic abnormalities, which 

are irreversible, epigenetic alterations are relatively malleable and most likely reversible. Therefore, 

enzymes and genes involved in the establishment and maintenance of epigenetic marks have been 

considered as a new class of drug targets for cancer therapy.   

 

Figure 1: Epigenetic modification of DNA and histones. DNA is wrapped around octamers of histones thereby forming 
nucleosomes, the smallest units of chromatin. Histone modifications occur at multiple sites of the N-terminal tail through 
acetylation, methylation and phosphorylation. DNA methylation occurs at the 5-position of cytosine residues in a reaction 
catalyzed by DNA methyltransferases (DNMTs). Histone modifications as well as DNA methylation are the two central 
epigenetic mechanisms that play a role in gene regulation. Figure from [87]. 
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1.5.1 Histone modification 

Post-translational modifications on histones offer a broad range of regulatory mechanisms, especially 

at the N-terminal tail regions. Possible modifications include acetylation, methylation, 

phosphorylation, ubiquitination, SUMOylation as well as poly-(ADP)-ribosylation, with the first three 

being best studied [89]. The constellation of these specific histone modifications form the so-called 

“histone code” and influence the interaction with the DNA backbone, neighboring nucleosomes and 

non-histone chromatin proteins, aiming to mediate a stable chromatin environment. Histone 

modifications influence the compaction of chromatin, affecting the ability of transcription factors, 

polymerases, repair enzymes, and the recombination machinery to access the substrate. More open 

and accessible chromatin is associated with transcriptional activity, while tightly folded, compact 

heterochromatin is associated with gene silencing. The exact effects on transcription and chromatin 

caused by the different modifications are dependent on the type of modification, its position as well 

as its extend.   

For example, acetylation of lysine residues by histone acetyltransferases (HAT) neutralizes the 

lysine's positive charge and thereby reduces the packing tightness of DNA around the histone 

proteins. This, consequently, renders genes more accessible for transcription [90]. Accordingly, 

increased histone deacetylase (HDAC) activity at a certain locus results in deacetylation of histone 

proteins and tightening of the DNA around the histones, resulting in repression of transcription [91]. 

While histone acetylation activates transcription in most cases, the methylation of lysine and arginine 

residues leads, depending on the position in the histone tail and the number of methyl groups 

(mono-, di-, or tri-methyl), to activation or repression.   

A classic example for activation by methylation is tri-methylation of histone 3 lysine 4 (H3K4me3). 

This modification leads to recruitment of the transcription factor II D (TFIID), and thereby contributes 

to the initiation of RNA polymerase II-dependent transcription [92]. Moreover, H3K4me3 is 

recognized by the chromatin remodelling complex nurf (ISWI family) and exerts an influence on the 

chromatin structure by opening up the chromatin [89]. A classic example of the repressing effect of 

histone methylation is the recruitment of the heterochromatin protein 1 (HP1) by H3K9me2/3. HP1 

contributes to the deactivation of active genes by the establishment of condensed tightly packed 

chromatin (heterochromatin) [93]. As mentioned above, the number of attached methyl groups is an 

important factor for regulation. The mono-methylated forms of H3K9, H3K27 and H4K20 induce the 

activation of transcription, whereas the di- and tri-methylated forms lead to repression of 

transcription, due to binding of different effector proteins [94, 95]. The different degrees of 

methylation are generated by different histone methyltransferases (HMTs) and S-adenosyl 

methionine serves as the methyl group donor. Set7/9 for instance catalyzes mono-methylation, 
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whereas the MLL complexes tri-methylates H3K4. G9a is responsible for di-methylation of H3K9 and 

SUV39H1/2 tri-methylates H3K9 [96, 97].   

The di-methylation of arginine is carried out by members of the PRMT family and can either occur 

symmetrical and asymmetrical. Symmetric methylation represses transcription, while asymmetric 

methylation activates transcription [98]. The recognition of methylated lysine and arginine residues is 

conducted by chromo domains [99], Tudor domains, MBT repeats [95], PHD finger motifs [100] and 

WD40-repeat proteins [101]. Demethylation of lysine and arginine residues is performed by different 

histone demethylases (HDMs). Lysine (K)-specific demethylase 1 (LSD1) for example removes the 

methyl groups of H3K4me1/2. Cleavage enzymes from the JHDM family are able to eliminate triple 

methylations, JMJD2A, demethylases H3K9me2/3 and H3K36me3. Jmjd6, for example, a homologue 

of the JHDM family specifically demethylates H3R2me2 and H4R3me2 [96]. 

 

1.5.2 DNA Methylation 

In contrast to the epigenetic mechanism described above, methylation of DNA happens directly on 

the DNA. The marking of DNA by methyl groups is one of the most important regulatory mechanisms 

able to modify gene expression at the epigenetic level. DNA methylation is a post replicative 

modification that exclusively occurs at the C5 position of cytosine residues (5mC) and predominantly 

in the context of cytosine-phospho-guanosine (CpG) dinucleotide. The covalent addition of a methyl 

group to cytosine is mediated by DNA methyltransferases (DNMTs). DNMTs catalytically remove the 

methyl group (CH3) from the methyl doner S-adenosyl methionine (SAM) and transfer it to the 

carbon in the fifth position of the cytosine ring [102, 103], see Figure 2. CpG methylation is a 

relatively stable modification, which can maintain gene silencing over time, when methylation is 

conducted to the newly synthesized strand [104].  

 

 
 

 

Figure 2: Methylation of cytosine. Methylation of cytosine through DNMT uses S-adenosyl methionine (SAM) as methyl 
donor.  
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Currently, there are three known catalytically active DNMTs within the DNMT family; the DNMT1, the 

DNMT3a and the DNMT3b, which play different roles in the methylation process. One the one hand, 

DNMT1, which interacts with the DNA replication clamp proliferating cell nuclear antigen (PCNA), has 

high affinity to hemi methylated DNA. It is responsible for maintaining DNA methylation following 

DNA replication or DNA repair. DNMT1 transmits the existing methylation pattern onto the newly 

replicated DNA strand and associates with replication foci throughout the S phase, whereas a diffuse 

nucleoplasmic distribution is observed during the G1 and G2 phase [105].   

On the other hand, DNMT3a and DNMT3b share significant homology to DNMT1 and play a 

fundamental role in the de novo methylation of previously unmethylated CpGs [86, 93, 106]. In 

contrast to DNMT1, DNMT3a and DNMT3b are not associated with DNA synthesis. However, during 

replication of heterochromatic regions (late S phase), some of the DNMT3a-enriched foci appeared 

to overlap with replication foci [107]. DNMT3b remains diffuse in the nucleus at all cell cycle stages 

[107]. There is evidence for interaction and cooperation between DNMT1, DNMT3a and DNMT3b, 

reflecting a dependency of maintenance and de novo methylation. In addition, DNMT1, DNMT3a and 

DNMT3b interact with some chromatin-associated factors including, methyl-binding proteins (MBD2, 

MeCP2), HDACs, HMTs as well as transcriptional repressors [108, 109]. 

DNMT2 and DNMT3L are DNA methyltransferase homologues and are additional members of the 

DNMT family. Both, DNMT2 and DNMT3L show almost no methyl-transfer activity, thus play no 

further role in the methylation process of DNA [110].   

 

The methylation pattern of CpGs through DNMTs is carefully adjusted, depending on the tissue 

specific differentiation state, through a complex arsenal of enzymes and methyl-DNA-binding 

proteins. About 80 % of the CpG sites within the genome are methylated [111], while the so called 

“CpG islands” usually appear in the unmethylated state. CpG islands are DNA fragments of 0.5-2 kb in 

length within the eukaryotic promoter having a high frequency of CpG sites (over 60 %) [86, 112]. X- 

chromosome inactivation as well as genomic imprinting are two known examples of naturally 

occurring CpG island methylation [86, 93, 113] in contrast to the usually unmodified state of CpG 

islands within the promoters. In cancer cells, a genome wide hypomethylation in combination with a 

site-specific CpG island promoter hypermethylation is observed [114]. Aberrant hypomethylation is 

associated with activation of proto-oncogenes, genomic instability and loss of imprinting (LOI), while 

promoter hypermethylation affects tumor suppressor genes (TSG). This epigenetic misregulation 

observed in cancer cells is associated with aberrant gene expression patterns, genomic instability and 

inactivating of TSG expression. Global DNA hypomethylation and promoter-specific 

hypermethylation are already observed in early stage tumors [114].   
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1.5.3 E3 Ubiquitin-like, containing PHD and RING finger domain, 1  

The E3 Ubiquitin-like, containing PHD and RING finger domain 1 (UHRF1) also known as NP95 in 

mouse and ICBP90 in humans, is a 90 kDA nuclear protein that contains five distinct structural 

domains: the Ubiquitin-like (UBL) domain, a Tandem Tudor (TTD) domain, a Plant Homeo (PHD) 

domain, a Set and Ring associated (SRA) domain and the Really Interesting New Gene (RING) domain 

(Figure 3), which coordinate the inheritance of the epigenetic code 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Structural domains of UHRF1 interact with either DNA or histones. UHRF1 contains five structural domains: the 
Ubiquitin-like (UBL) domain, a Tandem Tudor (TTD) domain, a Plant Homeo (PHD) domain, a Set and Ring associated (SRA) 
domain and the Really Interesting New Gene (RING) domain. UHRF1 interacts with DNMT1, Tip60 via its SRA, UBL and RING 
domain on DNA level, while interaction with histones is mediated via the TDD, PHD and Ring domain. UHRF1 interacts with 
HDAC1 and G9a. Figure from [114].  

 

 

The essential function of UHRF1 in the maintenance of DNA methylation consists of substrate 

recognition and recruitment of DNMT1. The SRA domain of UHRF1 recognizes hemi-methylated DNA 

and recruits DNMT1 [116-119], while the TTD and PHD domain bind the tail of histone H3 in a highly 

methylation sensitive manner. TTD for example specifically binds H3K9me2 or H3K9me3 and likely 

signals to the methyltransferase G9a [117, 120], which methylates histones and induces 

heterochromatin formation, thereby contributing to gene silencing. UHRF1 also co-operates with 

histone deacetylase 1 (HDAC1) via the SRA domain [116, 121], leading to reduced acetylation which 

represses gene transcription. The UBL domain is thought to play a role in the recruitment of DNMT1, 

while the RING domain is responsible for the H3 ubiquitinylation [117]. The Tat-Interactive protein 
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(Tip60), a histone acetyltransferase with specificity towards lysine 5 of histone H2A (H2AK5), has also 

been reported to interact with UHRF1. Thus, UHRF1 guides important enzymes taking part in 

epigenetic programming. 

 

Genetic ablation of UHRF1 leads to remarkable genomic hypomethylation, comparable to the genetic 

ablation of DNTM1 in ESCs [118, 122] and UHRF1-/- null mice already died in midgestation [123]. 

Further studies in tissue cultures cells demonstrate that UHRF1 depletion causes cell cycle arrest 

[124-126], hypersensitivity to DNA damage and chemotherapeutic agents [123, 127], or apoptosis 

[126, 128]. There is evidence that UHRF1 is an important factor in carcinogenesis and thereby might 

be a potential anti-cancer target. The expression of UHRF1 depends on tissue type. It is highly 

expressed in proliferating tissue, while in differentiated tissue no expression is observed [129]. In 

normal cells UHRF1 expression fluctuates with cell cycle [130]. Its expression peaks at late G1 phase 

and continues during G2 and M phases of the cell cycle. UHRF1 plays an important role in the G1/S 

transition during the cell cycle by regulating topoisomerase II alpha [129, 130] and retinoblastoma 

gene expression [131]. Moreover, UHRF1 functions in the p53-dependent DNA damage checkpoint. 

UHRF1 is overexpressed in various cancer types such as bladder [132], breast [116, 121], pancreatic 

[133], colon [134] and hepatocellular carcinoma [135]. Furthermore, it serves as a diagnostic marker 

for cancer state and aggressiveness [132, 136]. UHRF1 also has been suggested to be a biomarker for 

low-grade and high-grade cervical cancer lesions [137]. Previous studies demonstrated that elevated 

levels of UHRF1 keep cells in a proliferation state and prevent their differentiation [129, 138], which 

is also a common feature found in blastomas. Downregulation of UHRF1 in cancer cells leads to cell 

growth inhibition [139] and caspase 8 dependent apoptosis [118]. Furthermore, it was reported that 

UHRF1 binds, together with HDAC1 and DNMT1, to methylated promoters of a number of TSGs that 

play a role in cancer development. These include p16INK4A, p14ARF, BRCA1, CDKN2A and RASSF1 

[116, 121, 140], suggesting that UHRF1 is involved in the gene silencing of tumor suppressor genes.   

 

Recently, colleagues of mine identified a complex comprising DNMT1, Ubiquitin-specific-processing 

protease 7 (USP7) and UHRF1 [141], see Figure 4. The complex formation is mediated through 

protein domain interaction of the three involved proteins. UHRF1 associated via its SRA domain with 

the TRAF domain (amino acid 1-215, U-1) of USP7, whereas the TS domain of DNMT1 is bound by 

domain 3 of USP7 (amino acid 516-916, U3). The interaction between DNMT1 and UHRF1 takes place 

between the TS and SRA domain, respectively (Figure 4). 



INTRODUCTION  …..llllllllllll15 

 

Figure 4: Trimeric complex of DNMT1, USP7 and UHRF1. USP7 and UHRF1 form a complex via interaction of corresponding 
protein domains. DNMT1 associates with USP7 via its TS domain. The TRAF domain of USP7 binds UHRF1 via the SRA 
domain. DNMT1 and UHRF1 interact through the TS and SRA domain. The complex binds on DNA during the methylation 
process and affects histone modifications. 
 

 

While the main function of DNMT1 is methylation of hemi-methylated DNA to maintain methylation 

patterns [110, 142, 143] and USP7 stimulates DNMT1 activity and acts as a complex stabilizer [141, 

144], UHRF1 acts as a key epigenetic regulator by controlling both, DNA methylation as well as 

histone modification through interaction with all three DNMTs, different HDACs and HMTs to 

mediate the chromatin state. However, binding of the trimeric complex at the Hedgehog-interacting 

protein (HHIP), Insulin-like growth factor-binding protein 3 (IGFBP3) and Secreted frizzled-related 

protein 1 (SFRP1) genes in HCT-116 cells was explored [141], TSGs that play an important role in 

embryogenesis and are relevant in hepatoblastoma. This finding directed us to the assumption that 

the complex might also be involved in hepatoblastoma development or progression.     

 

1.6  Signaling pathways implicated in hepatoblastoma 

Developmental disorders such as childhood tumors are known to be driven by proliferation and 

differentiation promoting pathways that govern normal development [145]. Misregulation or defects 

in relevant pathways that are involved in these processes may promote transformation and make 

these developing cells prone to tumorigenesis. For development of hepatoblastoma there are three 

main pathways described: the hedgehog, the IGF and the WNT signaling pathway. The three signaling 

pathways are inter alia regulated by their pathway inhibitors HHIP, IGFBP3 and SFRP1, respectively. 

HHIP, IGFBP3 and SFRP1 belong to the group of TSG, which have been described to protect cells from 

undergoing malignant transformation by regulation of the cell cycle, by induction of apoptosis, by 

inhibition of cellular migration and metastasis and by protection from mutagenic events [146]. A 

deregulation or complete silencing of TSG through deletions, loss of function mutations or promoter 
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hypermethylation is a common molecular mechanism that is observed in cancer cells. Since 

colleagues of mine have shown that the promoter regions of HHIP, IGFBP3 and SFRP1 are heavily 

methylated [147, 148], it is worth to speculate that this might be one of the reasons for misregulated 

pathway activation, leading to hepatoblastoma development. 

 

 

1.6.1 Hedgehog signaling pathway 

Hedgehog signaling plays a crucial role in the formation of the neural tube, the axial skeleton, limbs, 

the skin, hair and teeth during embryonic development [149-153]. Additionally, it has been shown 

that hedgehog signaling significantly contributes to embryonic liver development and liver 

regeneration after injury in adults [154-157].   

So far, in vertebrates there are three homologues identified, Sonic- (SHH), Desert- (DHH) and Indian 

hedgehog (IHH), of which SHH is best studied. The different homologues are responsible for 

induction of signaling in different tissues and can act either in autocrine and paracrine fashion. SHH is 

involved in the development of large parts of the central nervous system, limbs, lung, intestines, 

liver, teeth and hair follicles [149-153, 158], whereas, DHH and IHH, are primarily involved in the 

development of the germ line and skeleton [159-161]. Hedgehog signaling is initiated by 

autocatalytic processing of the Hedgehog ligand [162], generating an N-terminal signaling domain 

which binds to the 12-transmembrane protein receptor Patched 1 (PTCH1) [163-165]. In the 

unactivated state, PTCH1 acts as an inhibitor of Smoothened (SMO), a 7-transmembrane protein 

related to the Frizzled family of WNT receptors. Once SHH, IHH or DHH form a complex with PTCH1, 

conformational changes abolish the inhibiting effect on SMO, leading to increased signaling [164, 

166, 167]. Another theory suggests that PTCH1 acts as a sterol pump and regulates SMO activity by 

removing oxysterols either directly or indirectly from its environment [168, 169]. As a result the 

PTCH1/SMO interaction signal cascade gets activated and induces expression of target genes. This is 

mediated by transcription factors of the Glioblastoma (GLI) family. Target genes include genes that 

are associated with proliferation, like MYCN [170], IGF2 [171] and cyclin D1 [172]. Hedgehog signals 

are regulated through a positive feedback of the GLI1 expression or the ligand SHH, IHH and DHH, 

and negative feedback via PTCH1. HHIP is an additional regulator of the hedgehog pathway. It 

attenuates signaling by binding of all three family members, SHH, IHH and DHH [173] and thereby 

prevents complex formation with PTCH1.   

During embryogenesis ligand expression and activation of the signaling pathway is strictly regulated 

in the liver. It has been shown that continuous activation of Hedgehog signaling is deleterious for 

differentiation of hepatoblasts to hepatocytes and consequently, needs to be shut off for proper 
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hepatic differentiation of hepatoblasts [174]. Deregulated and active signaling is often associated 

with formation of multiple types of solid tumors, including cholangiocarcinoma, hepatocellular 

carcinoma and hepatoblastoma [147, 175-177]. Mechanisms that have been described to be 

responsible for persistent hedgehog activation in hepatoblastoma are the overexpression of many 

signaling molecules such as SHH, PTCH1, SMO and GLI1 [147, 178] as well as the silencing of the 

pathway inhibitor HHIP by promoter hypermethylation [147]. These findings underscore the 

involvement of this pathway in the oncogenesis of hepatoblastoma and suggest the interference of 

signal transduction via, for instance, reactivation of gene expression of the pathway inhibitor HHIP as 

a promising approach for hepatoblastoma therapy.   

 

1.6.2 IGF signaling 

The insulin-like growth factor (IGF) signaling pathway is another important pathway involved in the 

regulation of normal development and growth in the liver. But, it is also described to play a role in 

tumor development, since increased expression of insulin-like growth factor 2 (IGF2) leads to 

constant activation of the IGF pathway [179], which then leads to activation of proliferation. IGF2 

binds to the Insulin-like growth factor 1 receptor (IGF1R) receptor resulting in autophosphorylation 

of the tyrosine residues of the receptor. This leads to the recruitment of the adaptor proteins insulin 

receptor substrate (IRS) and Scr homology 2 domain containing (SHC) to the intracellular receptor 

βsubunits. This process activates signaling cascades through the PI3K-AKT and the RAS/RAF/MEK/ERK 

pathways, resulting in stimulation of transcription and cell cycle progression, increased proliferation 

and growth, as well as inhibition of apoptosis. IGFBP3 is multifunctional protein predominantly 

produced by the liver and inhibitor of the IGF signaling. IGFBP3 directly binds IGF2 and reduces its 

availability. Moreover, it has been shown that IGFBP3 is capable to induce an IGF-independent 

pathway of apoptosis and consequently prevents cell growth [180].   

Recent studies suggested a critical role of the IGF axis in hepatoblastomagenesis, since it has been 

shown that the fetal growth factor IGF2 is transcriptionally upregulated in hepatoblastoma [181, 

182]. Processes that may take part in IGF pathway activation include overexpression of IGF2, either 

as a consequence of LOH or loss of imprinting (LOI) at the IGF2/H19 locus [183] and/or amplification 

and subsequent upregulation of the transcriptional IGF2 activator pleomorphic adenoma gene 1 

(PLAG1) [57], which are described for several hepatoblastoma cases. The activation of the 

downstream serine/threonine kinase and survival factor AKT by phosphorylation [55] and 

methylation of the IGFBP3 promoter is a phenomenon that is also described in hepatoblastoma cells 

[148]. Moreover, by studying the promoter hypermethylation of IGFBP3 in hepatocellular carcinoma, 
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Hanafusa and colleagues identified binding sites of the tumor suppressor p53. Consequently, 

methylation of this region within the IGFBP3 promoter also prevents the p53 mediated growth 

suppression of tumor cells [184], an additional mechanism that supports tumor formation. Thus, an 

active IGF pathway is characteristic for the molecular pathogenesis of liver cancer.   

 

1.6.3 WNT signaling pathway 

The WNT/β-catenin pathway is a pathway that has proven to be essential in organogenesis and 

normal cellular processes such as cell proliferation, differentiation, survival, apoptosis and cell 

motility [185]. It plays an important role in liver development and is also involved in liver 

regeneration, liver metabolism and the maintenance of normal function in the adult liver.    

There are three WNT signaling pathways that have been characterized: the canonical WNT pathway, 

which is CTNNB1 dependent, the non-canonical planar cell polarity pathway and the non-canonical 

WNT/calcium pathway. The latter two pathways are CTNNB1 independent [185]. The canonical WNT 

pathway is involved in the regulation of gene transcription, whereas the non-canonical planar cell 

polarity pathway is responsible for the organization of the cytoskeleton of the cell and the non-

canonical WNT/calcium pathway regulates the calcium homeostasis within the cell. Of these three 

pathways, the canonical, CTNNB1 dependent pathway is most interesting for hepatoblastoma 

development. CTNNB1 is a crucial effector of WNT signaling that plays important roles in intercellular 

adhesion and in cell growth, survival and differentiation. In normal epithelial cells, CTNNB1 is 

localized at the plasma membrane and forms a complex with E-cadherin and α-catenin at the sites of 

adherent junctions. Excess of CTNNB1 is phosphorylated at four N-terminal serine-threonine residues 

by GSK3β and CK1 which act within a cytoplasmic destruction complex including APC and AXIN. The 

phosphorylation of CTNNB1 leads to rapid degradation of CTNNB1 by the ubiquitin-proteasome 

pathway. WNT signaling gets activated through WNT binding to the 7 transmembrane receptor 

Frizzled (FZD). This induces association with a co-receptor, either LRP5 or LRP6 (low density 

lipoprotein receptor-related protein), and leads to activation of Disheveled (DVL) [186]. DVL inhibits 

the ability of GSK3β to phosphorylate CTNNB1 and thereby prevents its proteasomal degradation. 

Subsequently, CTNNB1 accumulates in the cytoplasm, translocates into nucleus, binds the TCF/LEF 

family and induces transcription of specific target genes of the WNT signaling pathway such as c-Myc 

and cyclin D1 [63, 64, 186]. Inhibitors of the WNT pathway are secreted frizzled related proteins 

(SFRP), the WNT inhibitory factor 1 (WIF1) and the Dickkopf protein (DKK). While SFRP1 and WIF1 

directly bind to WNT or form a non-active complex with the receptor FZD, DKK mediates the 

inactivation of the WNT signaling pathway by binding to LRP [187].   
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Aberrant activation of CTNNB1 has also been implicated in the pathogenesis of hepatobiliary 

neoplasia, ranging from benign lesions to liver cancer. As already mentioned in section 1.4 abnormal 

WNT signaling plays a key role in hepatoblastoma development. In particular, the finding of high-rate 

mutations in the CTNNB1 gene has implicated aberrant activation of WNT signaling as a hallmark of 

hepatoblastoma. Besides mutations in key players of the WNT pathway such as CTNNB1, APC and 

AXIN, a variety of mechanisms, including microRNAs and epigenetic events have been reported to 

modulate WNT signal activity. It already has been described that DNA methylation within the 

promoter region is responsible for the reduced expression of the WNT pathway inhibitors SFRP1, 

WIF1 and DKK1 in cancerous cells, resulting in active signaling [188-190]. Since the deregulation of 

this pathway is common in hepatic cancers, the restoration of functional regulatory components 

might therefore be an attractive target for potential therapies.    

 

1.7 Aim of the study 

The cause of hepatoblastoma is still largely unknown. However, the development and progression of 

hepatoblastoma is associated with CTNNB1 mutations, genetic syndromes and/or deregulation of 

embryonic pathways such as the WNT, the IGF or hedgehog signaling pathway through inhibition of 

their regulatory components via DNA methylation. We therefore set out to expand the knowledge on 

the genetic basis of hepatoblastoma development and progression. Based on the whole-exome 

sequencing data, recently acquired in our laboratory [1], we first aimed to perform targeted 

sequencing of additional hepatoblastoma samples, cell lines and TLCTs referring to CTNNB1 and 

NFE2L2. Furthermore, we wanted to perform functional analysis of NFE2L2-mutations regarding 

KEAP1-mediated degradation and target gene activation. Additionally, we wanted to study the role of 

NFE2L2 in cell proliferation. This included the depletion of NFE2L2 via siRNA and analysis of target 

gene expression and hepatoblastoma cell viability. Moreover, we wanted to define the clinical 

relevance NFE2L2 activity concerning prognosis and outcome.  

Furthermore, we wanted to investigate the mechanisms of hypermethylation of TSGs in reference to 

UHRF1, since it cooperates with two key regulatory modules of the epigenetic machinery and since it 

has been shown to bind to HHIP, IGFBP3 and SFRP1, three TSGs hypermethylated in cancer cells. We 

therefore wanted to determine the consequences of a UHRF1 knockdown on demethylation of the 

HHIP, IGFBP3 and SFRP1 promoter regions, on re-expression of these TSGs and on cell proliferation. 

Additionally, we wanted to examine the role for UHRF1 as a prognostic marker in hepatoblastoma. 
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2 Material 

2.1 Cell culture 

2.1.1 Cell lines 

HepT1 Homo sapiens (human), liver, hepatoblastoma   (Pietsch et al., 1996, [191])  

HepG2 Homo sapiens (human), liver, hepatoblastoma, [192]  (ATCC, Manassas, USA)   
(Product number:  ATCC-HB6065)  

HUH6 Homo sapiens (human), liver, hepatoblastoma   (JCRB, Osaka, Japan)     
(Product number: JCRB0401) 

HEK293T Homo sapiens (human), embryonic kidney    (ATCC, Manassas, USA) 
(Product number: ATCC-CRL-3216) 

 

2.1.2 Cell Culture Reagents 

Dimethyl sulfoxide (DMSO), sterile   Merck, Darmstadt, Germany  

Dulbecco`s Modified Eagle Medium (DMEM)   Invitrogen, Karlsruhe, Germany 

Dulbecco's Phosphate-Buffered Saline (DPBS)  Invitrogen, Karlsruhe, Germany 

Fetal Calf Serum (FCS), sterile    Sigma- Aldrich, Taufkirchen, Germany  

Penicillin-Streptomycin (10 x)    Invitrogen, Karlsruhe, Germany               
(10.000 U/mL Penicillin; 10.000 µg/mL Streptomycin)  

Roswell Park Memorial Institute Medium (RPMI) Invitrogen, Karlsruhe, Germany 

Trypsin - EDTA 0.05 %      Invitrogen, Karlsruhe, Germany 

 

2.1.3 Cell Culture Transfection Reagents  

HiPerFECT, 1 mL     Qiagen, Hilden, Germany  

X-tremeGENE HP Transfection Reagent   Roche Diagnostic, Penzberg, Germany  

 

2.1.4 Cell Culture Material 

Biosphere® Filtertips 1-10 μL, sterile    Sarstedt AG & Co., Nümbrecht, Germany 

Biosphere® Filtertips 1-100 μL, sterile    Sarstedt AG & Co., Nümbrecht, Germany 

Biosphere® Filtertips 100-1000 μL, sterile  Sarstedt AG & Co., Nümbrecht, Germany 

Cell scraper      Sarstedt AG & Co., Nümbrecht, Germany 
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Costar® Stripette® Serologic Pipettes 5 mL, sterile  Corning GmbH, Wiesbaden, Germany 

Costar® Stripette® Serologic Pipettes 10 mL, sterile Corning GmbH, Wiesbaden, Germany 

Costar® Stripette® Serologic Pipettes 25mL, sterile Corning GmbH, Wiesbaden, Germany 

EasyFlasksTM, Cell culture flasks, 25 cm2,  NUNC, Langenselbold, Germany                 
Non-pyrogenic DNase und RNase free  

EasyFlasksTM, Cell culture flasks, 75 cm2,  NUNC, Langenselbold, Germany       
Non-pyrogenic, DNase und RNase free    

Plastic tubes, 15 mL, sterile     greiner bio-one, Frickenhausen, Germany  

Plastic tubes, 50 mL, sterile    greiner bio-one, Frickenhausen, Germany  

Petri dishes 100 x 20 mm, non-pyrogenic, sterile  NUNC, Langenselbold, Germany 

6-Well Plates, non-pyrogenic, sterile BD   NUNC, Langenselbold, Germany 

12-Well Plates, non-pyrogenic, sterile BD     NUNC, Langenselbold, Germany  

24-Well Plates, non-pyrogenic, sterile BD     NUNC, Langenselbold, Germany  

96-Well Plates, non-pyrogenic, sterile BD   NUNC, Langenselbold, Germany 

 

2.1.5 siRNAs 

siGENOME Non-Targeting siRNA #1   Thermo Scientific, Schwerte, Germany           
(D-001210-01-20; Sequence N/A) 

Pre-designed Silencer Select_UHRF1 siRNA   Applied Biosystems, Carlsbad, USA              
(s26553; 5´-ACAGTCTTGTGATCAGAAA-3´) 

Flexi tube siRNA Hs_NFE2L2_7     Qiagen, Hilden, Germany            
(SI03246950, 5´-CCCATTGATGTTTCTGATCTA-3´) 

 

2.2 Prokaryotic cultures 

2.2.1 Bacteria  

One Shot® TOP10 Chemically Competent E. coli  Invitrogen, Karlsruhe, Germany 

Genotyp:F-mcrA Δ(mrr-hsdRMS-mcrBC) φ80lac 

ZΔM15 ΔlacΧ74 recA1 araD139 Δ(ara-leu) 7697  

galU galK rpsL (StrR) endA1 nupG λ-  
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Escherichia coli DH5α      Invitrogen, Karlsruhe, Germany 

Genotype: F- φ80lacZΔM15 Δ(lacZYA-argF)U169  

recA1 endA1 hsdR17(rk-,mk+) phoAsupE44 thi-1  

gyrA96 relA1 λ-  

 

2.2.2 Culture media 

 
 Lysogeny Broth (LB) Medium: (V = 1 L); pH: 7.0  Roth, Karlsruhe, Germany 

 

 10 g/L Tryptone  

 5 g/L Yeast extract  

 10 g/L NaCl  
 
 

LB-Agar for plates: (V = 1 L); pH: 7.0    Roth, Karlsruhe, Germany 

 10 g/L Tryptone  

 5 g/L Yeast extract  

 10 g/L NaCl  

 15 g Agar  
 

Super Optimal Broth Medium with glucose (S.O.C)  Invitrogen, Karlsruhe, Germany 

 

2.2.3 Antibiotics 

Kanamycin (50 µg /mL)     Sigma, Steinheim, Germany  

Ampicillin (100 µg /mL)     Sigma, Steinheim, Germany  

 

2.2.4 Plasmids 

pEGFP-N1       ClonTech, Mountain View, CA, USA 
(Kanamycin Resistance) 

pRL-CMV Dual-Glo
® 

Luciferase Assay System  Promega, Mannheim, Germany goat 
(Ampicillin Resistance) 

pKEAP1       provided by Dr. Ben Major (University of 
(Ampicillin Resistance)      North Carolina, USA)     

pNQO1-ARE luciferase reporter    provided by Dr. Masayuki Yamamoto (Tohoku 
(Ampicillin-Resistance)     University, Japan)  
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pUC19 control DNA     Invitrogen, Karlsruhe, Germany        
(Ampicillin-Resistance)  

 

2.2.5 Antibodies 

Mouse anti-human UHRF1 kindly provided by C. Bronner (Strasbourg 
University France, [128])    

Rabbit anti-human β-actin, (# 4970)   Cell signaling technology, Danvers, USA 

Horseradish peroxidise-conjugated    DakoCytomotion, Hamburg, Germany       
goat anti-mouse immunoglobulin G,(P0260) 

Horseradish peroxidise-conjugated    DakoCytomotion, Hamburg, Germany       
goat anti-rabbit immunoglobulin G (P0488)   

Rabbit anti-human NFE2L2, (sc-722)   Santa Cruz Technology, Heidelberg, Germany 

Goat anti-rabbit-Alexa 488, (A-11034)   Invitrogen, Karlsruhe, Germany  

Histone H3 dimethyl Lys 4 antibody (39679)  Active Motif, La Hulpe, Belgium 

Histone H3 dimethyl Lys 9 antibody (39683)  Active Motif, La Hulpe, Belgium 

Histone H3 trimethyl Lys27 antibody (61017)  Active Motif, La Hulpe, Belgium 

RNA pol II antibody (39097)    Active Motif, La Hulpe, Belgium 

Normal mouse IgG antibody (sc-2025)   Santa Cruz Technology, Heidelberg, Germany 

 

2.2.6 Pyrosequencing Assay 

PyroMark® Q24 CpG LINE-1 (accession no. X58075) QIAGEN GmbH, Hilden, Germany 

 

2.3 Chemicals / Reagents 

6x DNA Loading Dye     Fermentas GmbH, St. Leon-Rot, Germany 

Acetic Acid      Carl Roth, Karlsruhe, Germany 

Agaroses       PeQLab, Erlangen, Germany  

Albumin Fraction V (BSA)    Carl Roth, Karlsruhe, Germany 

β-Mercaptoethanol     Sigma-Aldrich, Steinheim, Germany  

Bio Rad Protein Assay     Bio-Rad, Munich, Germany 

Boric acid      Carl Roth, Karlsruhe, Germany 

Bovine Serum Albumin (BSA) (100 X)   Fermentas GmbH, St. Leon-Rot, Germany 

Bromophenolblue      SERVA, Heidelberg, Germany  
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Chloroform      Carl Roth, Karlsruhe, Germany 

cOmplete Protease Inhibitor Cocktail Tablets (PI) Roche, Mannheim, Germany 

ddH20        Invitrogen, Karlsruhe, Germany 

dNTPs       Roche, Mannheim, Germany   

Dimethyl sulfoxide (DMSO)    Merck, Darmstadt, Germany  

Disodium hydrogen phosphate    Merck, Darmstadt, Germany   

Dithiothreitol (DTT) (0.1 M)    Invitrogen, Karlsruhe, Germany  

Ethylenediaminetetraacetic acid (EDTA)  Carl Roth, Karlsruhe, Germany  

Ethanol, absolut     Merck, Darmstadt, Germany 

Ethidium bromide (EtBr), 10 mg /mL   Sigma, Steinheim, Germany 

Formaldehyde 37 %      Merck, Darmstadt, Germany  

Glycerol       Applichem, Darmstadt, Germany  

Glycine       GERBU Biotechnik, Gaiberg, Germany  

Isopropyl alcohol     Sigma-Aldrich, Steinheim, Germany  

Igepal CA-630      Sigma-Aldrich, Steinheim, Germany 

Loading Dye Solution (6 x)    MBI Fermentas, St. Leon-Rot, Germany 

Magnesium chloride     Carl Roth, Karlsruhe, Germany  

Methanol      Merck, Darmstadt, Germany 

NEB Cut Smart Buffer     New England Biolabs, Frankfurt, Germany  

NuPAGE® MOPS SDS Running Buffer (20X)  Invitrogen, Karlsruhe, Germany 

Paraformaldehyde     Carl Roth, Karlsruhe, Germany  

Phenol        Carl Roth, Karlsruhe, Germany 

Phosphate buffered saline (PBS)    Invitrogen, Karlsruhe, Germany                        
(-CaCl2 und MgCl2, 1 x) 

Potassium chloride     Merck, Darmstadt, Germany  

Potassium dihydrogen orthophosphate   Merck, Darmstadt, Germany  

Powdered milk      Carl Roth, Karlsruhe, Germany 

Propidium iodide      Sigma-Aldrich, Steinheim, Germany 

PyroMark Annealing Buffer    QIAGEN GmbH, Hilden, Germany 

PyroMark Binding Buffer    QIAGEN GmbH, Hilden, Germany 

PyroMark Denaturation Buffer    QIAGEN GmbH, Hilden, Germany 
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PyroMark Wash Buffer     QIAGEN GmbH, Hilden, Germany 

PyroMark Gold Q24 Reagents    QIAGEN GmbH, Hilden, Germany 

Sodium acetat       Carl Roth, Karlsruhe, Germany 

Sodium chloride,     Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfat (SDS)    Biomedicals, Eschwege, Germany  

Streptavidin coated sepharose beads    GE Healthcare, Frankfurt, Germany 

TE-Buffer       Upstate, Billerica, USA  

TRI Reagent® RNA Isolation Reagent   Sigma-Aldrich, Steinheim, Germany 

Tris (hydroxymethyl)-aminomethane (TRIS)  Carl Roth, Karlsruhe, Germany  

Triton X-100       Sigma-Aldrich, Steinheim, Germany 

Tween 20      Sigma-Aldrich, Steinheim, Germany 

Ultra Pure TM DNase/RNase-Free Distilled water Invitrogen, Karlsruhe, Germany 

Vectashield® Mounting Medium with DAPI  Vector Laboratories Inc., Burlingame, USA 

X-Ray Roentoroll solution     Tetental AG, Schützenwall, Germany 

X-Ray Superfix 25 Solution    Tetental AG, Schützenwall, Germany  

 

2.4 Buffer and Solutions 

Buffers and Solutions were prepared in dH20 and autoclaved if needed and pH adjusted with NaOH 

or HCl. 

Cell lysis Buffer: 

 -  0.5 % (v/v) Triton X-100 
 -  1 mM Sodium orthovanadate in PBS 
 -  Protease inhibitor (1 x) 
 
Cell fraction lysis Buffer 
 
 -  10 mM Hepes; pH 7.9 
 -  10 mM KCl 
 -  1 mM DTT 
 -  0.1 mM EDTA 
 -  1 x PI 
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Extraction Buffer 
 
 -  20 mM Hepes; pH 7.9 
 -  420 mM NaCl 
 -  1.5 mM MgCl2 
 -  0.1 mM EDTA 
 -  25 % (v/v) Glycerol  
 -  1 mM DTT 
 -  1 x PI   
 
PBST 

 -  1 X PBS, 500 mL 
 -  Tween 20, 500 µL 
 
Running Buffer 

 -  50 mL 10 X MOPS-SDS-Running Buffer 
 -  450 mL dH20 
 
5 x SDS-Buffer: 

 -  2 % (w/v) SDS 
 -  5 % (v/v) β-Mercaptoethanol 
 -  10 % (w/v) Glycerine 
 -  1 mM EDTA 
 -  0.005 % Bromphenolblue  
 -  62.5 mM TRIS-HCl (pH 6.8) 
  
STE-Buffer, pH 8.0:  

 -  10 mM Tris base 
 -  0.1 M NaCl 
 -  1 mM EDTA 
 -  1 %  (w/v) SDS 
 
Stripping-Buffer, pH 2.0: 

 -  25 mM Glycine-HCl 
 -  1 % (w/v) SDS 
 
TAE, pH 8.0  

 -  Tris base 
 -  0.5 M Na2EDTA  
 -  Acetic acid  
  
TBE-Buffer, pH 8.0:  

 -  89 mM Tris base 
 -  2 mM EDTA 
 -  89 mM Boric acid 
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TE-Buffer, pH 8.0: 

 -  10 mM TRIS-HCl 
 -  1 M EDTA 
  
Transfer-Buffer 

 -  48 mM Tris base 
 -  39 mM Glycine 
  
Wash-Buffer: 

 -  0.1 % (v/v) Tween 20 in PBS 
 

2.5 Molecular Size Markers 

Gene RulerTM 100 bp DNA Ladder    Fermentas GmbH, St. Leon-Rot, Germany 

Gene RulerTM 1 kb DNA Ladder     Fermentas GmbH, St. Leon-Rot, Germany 

 

2.6 Enzymes  

High Fidelity Taq polymerase     Thermo Scientific, Schwerte, Germany 

Maxima Hot Start Taq DNA - Polymerase   Fermentas, St. Leon-Rot, Germany  

Q5 Hot Start High-Fidelity DNA - Polymerase  New England BioLabs, Frankfurt, Germany 

Proteinase K, 10 mg/mL     Sigma-Aldrich, Steinheim, Germany  

RNase H       Roche Diagnostics, Penzberg, Germany 

Super Script
TM 

ІІ Reverse Transcriptase    Invitrogen, Karlsruhe, Germany 

T4 DNA Ligase       Fermentas, St. Leon-Rot, Germany 

iTaq SYBR Green Supermix with ROX    Bio-Rad, Munich, Germany  

 

2.6.1 Restriction enzymes  

SacI-HF 2000 Units     New England BioLabs, Frankfurt, Germany  

NheI-HF 2000 Units     New England BioLabs, Frankfurt, Germany 

 

2.7 Kits 

ChiP-IT Express Enzymatic     Active Motif, La Hulpe, Belgium  

DNeasy blood and tissue Kit     QIAGEN GmbH, Hilden, Germany 
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Dual-Glo Luciferase Assay System    Promega, Mannheim, Germany 

EpiTect Bisulfite Kit      QIAGEN GmbH, Hilden, Germany 

ECL Plus Western Blotting Detection Reagents  Amersham, Buckinghamshire, UK 

Mycoplasma PCR ELISA     Roche Diagnostics, Penzberg, Germany  

PureLink
TM 

Genomic DNA Purification Kit   Invitrogen, Karlsruhe, Germany  

QIAquick PCR Purification Kit     QIAGEN GmbH, Hilden, Germany 

QIAquick Gel Extraction Kit     QIAGEN GmbH, Hilden, Germany 

QIAprep Spin Miniprep Kit     QIAGEN GmbH, Hilden, Germany 

QIAGEN Plasmid Midi Kit     QIAGEN GmbH, Hilden, Germany 

RNase-Free DNase Set      QIAGEN GmbH, Hilden, Germany 

RNeasy Mini Kit      QIAGEN GmbH, Hilden, Germany 

 

2.8 Consumables 

BD FalconTM Round-Bottom Tubes   BD, Heidelberg, Germany 

Biosphere® Filtertips     Sarstedt AG & Co., Nümbrecht, Germany 

Coverglas      Menzel-Gläser, Braunschweig, Germany 

Electroporation cuvettes     PeQLab, Erlangen, Germany   

Hybond-C extra Nitrocellulose membran  Amersham, Buckinghamshire, UK 

HyperfilmTMMP      Amersham, Buckinghamshire, UK 

Microwell Plates      NUNC, Langenselbold, Germany 

Multidishes NunclonTM     NUNC, Langenselbold, Germany 

Nalgene®  Cyrotube     Schubert&Weiss, Iphofen, Germany  

Nunc™ F96 MicroWell™ White Polystyrene Plate  NUNC, Langenselbold, Germany 

Object slide      Menzel-Gläser, Braunschweig, Germany 

Pipette tips (10 µL, 100 μL, 1000 μL)    Sarstedt, Nümbrecht, Germany   

PyroMark Q24 Plate     QIAGEN GmbH, Hilden, Germany 

8-Well PCR stripes     Eppendorf, Hamburg, Germany 

PCR 96 Well Plates     PeQLab, Erlangen, Germany 

Quarz cuvette QS 10.00 mm    Hellma, Müllheim, Germany 

8 - 12 % Tris-Glycine Gels    Invitrogen, Karlsruhe, Germany 
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Whatman paper     Whatman, Maidstone, UK 

Safe-lock Eppendorf tube (1.5 mL, 2 mL)  Eppendorf, Hamburg, Germany 

 

2.9 Equipment  

Agarose gel electrophoreses apparatus   Bio-Rad, Munich, Germany 

Biofuge fresco, Heraeus    Kendro, Langenselbold, Germany  

Biofuge pico, Heraeus     Kendro, Langenselbold, Germany 

Bio Photometer     Eppendorf, Hamburg, Germany 

Camera AxioCam MRm     Zeiss, Jena, Germany 

Camera Power Shot G6      Canon, Krefeld, Germany 

Cell screen Olympus IX50    Innovatis, Bielefeld, Germany 

Centrifuge 5702     Eppendorf, Hamburg, Germany 

Centrifuge J2-21     Beckman Coulter, Krefeld, Germany 

Centrifuge LMC-3000      G. Kisker, Steinfurt, Germany 

CO2-Incubator MCO-20AIC    Sanyo, Tokio, Japan 

Dounce homogenizer      Kimble, Meinigen, Germany 

Excella E24 Incubator Shaker Series   New Brunswick Scientific, Enfield, USA 

Heat block MR 3001      Heidolph, Kehlheim, Germany 

Heatblock „Thermomixer comfort“    Eppendorf, Hamburg, Germany  

GelJet Imager Version 2004    Intas, Göttigen, Germany 

GENios Microplatereader    Tecan, Crailsheim, Germany  

Mastercycler RealPlex2     Eppendorf, Hamburg, Germany 

Mastercycler personal     Eppendorf, Hamburg, Germany 

Microlitercentrifuge MZ014    G. Kisker, Steinfurt, Germany 

Microscope Axiovert 40 CFL    Zeiss, Jena, Germany 

Microscope Axiovert 135    Zeiss, Jena, Germany 

Microtom Leica SM 2000R    Leica, Solms, Germany 

Micro scales Te1245      Sartorius, Göttingen, Germany 

Microwave      Panasonic, Hamburg, Germany 

Mini®-Sub Cell GT     Biorad, Munich, Germany 
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NanoDrop 1000 instrument     Thermo Scientific, Wilmington, USA  

Incubator       Memmert, Schwabach, Germany 

pH-Meter inoLab pH720    WTW, Weilheim, Germany 

Pipette Accu-Jet     Brand, Wertheim, Germany 

PowerPac BasicTM     Bio-Rad, Munich, Germany 

Pulse Generator EPI 2500    Dr. L. Fischer, Heidelberg 

PyroMark Q24 system      QIAGEN GmbH, Hilden, Germany 

PyroMark Q24 Vacuum Workstation   QIAGEN GmbH, Hilden, Germany 

Scales Vic-5101      Acculab, Edgewood, USA 

Shaker,  Rock-N-Roller     G. Kisker, Steinfurt, Germany 

Shaker, Unimax 1010     Heidolph, Schwabach, Germany 

Suctionsystem „EcoVac“    Schütt, Labortechnik, Göttingen, Germany  

Thermal Printer DPU-414    Seiko Instruments, Neu-Isenburg, Germany 

Thermomixer Compact     Eppendorf, Hamburg, Germany 

Vortexer „Genie2“      Scientific Industries, NY, USA 

Water bath GFL 1083     GFL, Wien, Austria 

Western-Blot Detectionsystem „CP1000“  AGFA, Köln, Germany  

Work flow, Hera Safe     Kendro, Hanau, Germany 

XCell IITM Blot Module     Invitrogen, Karlsruhe, Germany 

XCell SureLockTM Electrophoresis Cell   Invitrogen, Karlsruhe, Germany 

 

 

2.10  Software 

CHROMAS v1.45 software     Griffith University, Queensland, Australia 

GraphPad Prism 5.0     GraphPad Software, La Jolla, USA 

Methyl Primer Express® Software v1.0   Applied Biosystems, Darmstadt, Germany 

PyroMark Q24 Advanced Software   QIAGEN GmbH, Hilden, Germany 

Realplex      Eppendorf, Hamburg, Germany 
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3 Methods 

3.1 Patients 

Hepatoblastoma specimens as well as corresponding normal liver tissue were obtained from 

pediatric patients undergoing surgical resection in the department of pediatric surgery of the Dr. von 

Hauner Children´s Hospital in Munich. Written informed consent was obtained from each patient and 

the study protocol was approved by the Committee of Ethics of the Ludwig-Maximilian-University of 

Munich (Approval number: 431-11). 

 

3.2 Sanger sequencing 

Sequence verification was carried out by PCR amplification of candidate exons using High Fidelity Taq 

polymerase (Thermo Scientific) and subsequent Sanger sequencing of ExoSap-IT (Affymetrix) purified 

amplicons. PCR conditions for detecting mutations in exon 2 of the NFE2L2 gene (primers NRF2-EX2-F 

and NRF2-EX2-R), mutations (primers BCAT-1 and BCAT-2) or deletions (primers BCAT-3 and BCAT-4) 

in exon 3 of the CTNNB1 gene have been described previously [57, 193]. Sequencing was done with 

primers (see, Table 1) on an ABI 3730 capillary sequencer in the LMU Sequencing Facility using the 

ABI BigDye Terminator kit. Sequence analysis was performed using the CHROMAS v1.45 software.  

 

 
Table 1: List of primers used for Sanger Sequencing: 
 

Primer Sequence 5´3´ 

NRF2-EX2_F ACCATCAACAGTGGCATAATGTG 

NRF2-EX2_R GGCAAAGCTGGAACTCAAATCCAG 

BCAT-1 GATTTGATGGAGTTGGACATGG 

BCAT-2 TGTTCTTGAGTGAAGGACTGAG 

BCAT-3 AAAATCCAGCGTGGACAATGG 

BCAT-4 TGTGGCAAGTTCTGCATCATC 
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3.3 Generation of NFE2L2 Plasmids 

Human NFE2L2 cDNAs (wild-type and mutant forms) were sub-cloned into the pEGFP-N1 vector. To 

amplify the NEFEL2 coding DNA sequence, PCR reaction was performed with Q5 Hot Start High-

Fidelity DNA Polymerase at the Mastercycler personal using the following conditions:  

 

Hot start    3 min at 98 °C 
Denaturation  10 sec at 98 °C 

Annealing  30 sec at 66 °C      35 cycles 

Extension  30 sec at 72 °C 

Final Extension  5 min at 72 °C 

Hold   4 °C 

 

PCR product was subjected to a restrictions enzyme digest using the enzymes NehI-HF and Sac1-HF 

(for detailed protocol see below) to create sticky ends. 1 % agarose gel electrophoresis was 

performed for separation and visualization of fragments. Bands of right size were cut and subjected 

to a DNA clean-up step using the QIAquick Gel Extraction Kit according to the manufacturer´s 

protocol. Ligation reaction was performed using a total volume of 20 µL including 2 µL 10 X T4 DNA 

Ligase Buffer, a molar ratio of 1:3 vector to insert, X µL dH20 and lastly 1 µL of T4 ligase. The reaction 

was mixed, spun down and incubation for 16 h at 4 °C. 

 

3.4 Transformation 

For transformation 1 µL of the ligation reaction was added to One Shot TOP10 or DH5 alpha 

chemically competent E.coli cells and incubated for 30 min on ice. Bacteria were heat shocked for 45 

sec at 42 °C in a water bath and immediately transferred back on ice for about 2 min. 250 µL S.O.C 

medium was added and cells were incubated for 1 h at 37 °C while shaking horizontally. Aliquots of 

transformation reactions (50 - 150 µL) were platted on pre-warmed selective LB-agar plates 

containing the appropriate antibiotic ampicillin (100 µg/mL) or kanamycin (50 µg/mL). Plates were 

incubated top down over night at 37 °C. For further investigation five to eight antibiotic-resistant 

colonies were picked and cultured overnight in 5 mL LB-medium containing the appropriate 

antibiotic ampicillin (100 µg/mL) or kanamycin (50 µg/mL).  

 



MATERIAL AND METHODS  …..llllllllllll33 

 
 
 
 

3.5 DNA Purification with Mini/ Midi preparation 

To isolate plasmid DNA the QIAprep MINIprep Kit protocol (Qiagen) and QIAprep MIDIprep Kit 

protocol were used. For elution of plasmid DNA 50 µL H2O for the MINIPrep and 250 µL H20 for the 

MIDIprep were used. 

 

3.6 Restriction enzyme digestion 

Plasmid DNA from clones of transformed cells was digested using the enzymes Neh1-HF and Sac1-HF. 

To prepare digestion reactions, DNA, 1/10 volume 10 x buffer, 1/10 volume BSA (10 x) were mixed 

with 1 µL of the restriction enzymes Neh1-HF and Sac1-HF. Reactions were incubated at 37 °C for at 

least 1 h followed by 20 min at 65 °C for enzyme inactivation. Afterwards, DNA samples were mixed 

with 6 x loading buffer and resolved on a 0.8 % - 1.5 % agarose gel at 100 V. Bands were subjected to 

a DNA clean-up step using the QIAquick Gel Extraction Kit. Positive plasmid clones were mixed with 

specific sequencing primers to check for correctness of sequence and insertion (Table 2). Samples 

were sent to the LMU Sequencing Facility and sequencing was performed on the ABI 3730 capillary 

sequencer using the ABI BigDye Terminator kit. Sequence analysis was performed using the 

CHROMAS v1.45 software. 

 

Table 2: List of primers used for sequence validation of constructed plasmids: 
 

Primer Sequence 5´3´ 

NRF2_Seq_1 CAAAATCAACGGGACTTTCC 

NRF2_Seq_1 CCCTGTTGATTTAGACGG 

EGFP-rev TGCCGGTGGTGCAGATG 

 

3.7 Eukaryotic cell culture 

The human hepatoblastoma cell lines HepT1, HepG2 and HUH6 as well as the human embryonic 

kidney cell line HEK293T were cultured under standard conditions, in Roswell Park Memorial Institute 

Medium (RPMI 1640) Medium (1 x), liquid - with GlutaMAXTM I containing 10 % (v/v) fetal calf serum 

(FCS) and 1 % Penicillin/Strepomycin at 37 °C in a 5 % CO2 incubator. Every 2-3 days cells (80 % 

confluence) were split using Trypsin-EDTA-Solution (0.05 %). Mycoplasma contamination tests were 

performed every now and then and results have always been negative. 
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3.8 Plasmid Transfection 

Plasmid transfection was performed using X-tremeGENE HP DNA Transfection Reagent; following the 

manufactures instructions applying a 3:1 (HEK293T) or 1:1 (HepT1, HepG2 and HUH6) ratio of 

microliter (µL) X-tremeGENE HP DNA Transfection Reagent to microgram (µg) of DNA. Reagent was 

warmed to room temperature (RT) and vortexed before use. 500 ng to 2 µg of DNA were incubated 

in serum-free medium. 0.5 µL to 6 µL of X-tremeGENE HP was added and incubated for 30 min at RT 

to allow complex formation. X-tremeGENE HP Reagent: DNA-complex was added drop-wise and 

incubated until the time point of interest.  

 

3.9 NQO1-ARE reporter assay 

5 x 105 cells were seeded in 12-well plates the day before transfection, respectively. Cells were then 

transfected with 300 ng of the reporter plasmid pNQO1-ARE-Luc, 300 ng of expression constructs 

(pEGFP-N1, pEGFP-WT, pEGFP-L30P, pEGFP-R34P, pEGFP-R34G, or pEGFP-T80A), 300 ng of pFLAG-

KEAP1, and 10 ng of the reference plasmid pRL-CMV using XtremeGENE HP transfection reagent 

described above. 48 h after transfection reporter gene activity was determined using the Dual-Glo 

Luciferase Reporter Assay System. Cell culture medium was removed and 100 µL of fresh medium 

was applied. 100 µL of Dual-Glo
TM 

Luciferase Reagent equal to the volume of culture medium was 

added. Reaction was mixed and incubated for 10 min at RT to allow cell lysis. After incubation 180 µL 

of cell suspension was transferred into a white 96-well plate and measurement for firefly 

luminescence was performed using the GENios microplate reader. 100 µL of Dual-Glo
TM 

Stop & Glo
® 

Reagent was added to inhibit the Firefly-Luciferase and incubated for additional 10 min to measure 

Renilla luminescence using the GENios microplate reader. Firefly luciferase activity was normalized to 

Renilla luciferase activity.  

 

3.10 NFE2L2 localization analyses 

Cells were seeded onto 18 mm Ø cover slips the day before transfection. Cells were then transfected 

with 1 µg of the expression constructs (pEGFP-N1, pEGFP-WT, pEGFP-L30P, pEGFP-R34P, pEGFP-

R34G, or pEGFP-T80A) using XtremeGENE HP transfection reagent as recommended. After 48 h, cells 

were washed with PBS and fixed with 3 % paraformaldehyde for 15 min. Nuclei were stained with 

Vectashield® containing 4, 6-diamidino-2-pheylindole (DAPI) and mounted onto glass slides. Images 

were acquired using the Zeiss Axiovert 135 Microscope. 
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3.11 Electroporation of hepatoblastoma cell lines 

Cells were passaged one day before electroporation so that they were in their logarithmic growth 

phase on the day of electroporation. Prior to electroporation, cells were washed with PBS, counted, 

and resuspended in normal growth media to a cell density of 1 × 107 cells/ mL. 200 µL of cell 

suspension was gently mixed and transferred into electroporation cuvettes. SiRNA targeting UHRF1 

(siUHRF1), siRNA targeting NFE2L2 (siNEFEL2) or appropriate non-targeting control siRNA 

(siGENOMEN Non-targeting siRNA #1, siNTC) were added to the cell suspension to a final 

concentration of 80 pmol. The cuvette was connected to the PowerPac BasicTM and cells subjected to 

an electric pulse of 350 V (HepT1, HUH6) or 250 V (HepG2) for 10 ms. Cells were allowed to recover 

briefly before placement in normal growth media. RNA, DNA and protein were isolated at time points 

of interest. 

 

3.12 RNA Isolation  

Total RNA was isolated from HEK293T, HUH6, HepT1 and HepG2 cells and tumor or normal liver 

tissue. Tumor and normal liver tissue were homogenized with 1,000 µL TriReagent and incubated for 

5 min at RT. For cells, medium was discarded and cells washed with PBS. 1,000 µL TriReagent was 

added directly onto the cells. The Cell/TriReagent mix was transferred into Eppendorf tubes and 

incubated for 5 min at RT. After addition of 200 µL chloroform tissue and cell samples were vortexed 

for 15 sec and centrifuged for 15 min at 12,000 rpm (4 °C) for phase separation. The upper, aqueous 

phase was transferred into a new Eppendorf tube, mixed with 1 Vol. isopropanol and incubated for 

10 min at RT. The incubated mixture was centrifuged for 15 min at 12,000 rpm (4 °C). The 

supernatant was discarded and the RNA pellet washed twice with 1.5 mL 70 % ice cold ethanol and 

centrifuged at 7500 rpm for an additional 15 min (4 °C). The pellet was air dried for 10-15 min at RT, 

dissolved in 20-50 μL DNase/RNase free water and incubated for 15 min at 55 °C. RNA concentration 

was measured using the NanoDrop 1000 instrument. 

 

3.13 DNase Digestion for RNA cleanup 

Sample volume of RNA was adjusted to a volume of 100 µL with RNase-free water. 350 µL RLT Buffer 

supplemented with β-mercaptoethanol was added to RNA and mixed. Total RNA was purified using 

the Qiagen RNeasy Mini Kit protocol with an additional DNase on column digestion step (RNase-Free 

DNase Set) and stored at -80 °C. RNA concentration was quantitatively measured using the 

NanoDrop 1000 instrument. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628074/#b6-jbt-05-328#b6-jbt-05-328
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3.14 Reverse Transcription 

500 ng to 2 µg of RNA was transcribed to cDNA using SuperScriptII RT reagents. RNA, 5 µL random 

hexamer primer and DNase/RNase free water (total volume 12 µL) were mixed and incubated at 70 

°C for 10 min. Reaction mix containing 4 µL 5 x reaction buffer, 2 µL 0.1 M Dithiothreitol (DTT, 

Invitrogen) and 1 µL 10 mM dNTP mix, (total volume 7µL) was added to the RNA-Primer mix, 

incubated for 10 min at RT and for 2 min at 42 °C. 1 µL SuperScriptII (reverse transcriptase) was 

added and incubated for 1 h at 42 °C. Afterwards, samples were incubated at 70 °C for 10 min. 1 µL 

RNase H (1 U/ µL) was added to cleave remaining RNA and samples were incubated at 37 °C for 20 

min. cDNA was stored at -20 °C.  

 

3.15 Quantitative real time polymerase chain reaction (qRT-PCR) 

A SYBR Green-based protocol, the Master cycler RealPlex2 and the software “realplex” were used for 

detecting mRNA abundance. For reaction iTaq-SYBR Green-Supermix, 500 nM forward primer, 500 

nM reverse primer, DNase/RNase free water (dH20) and cDNA corresponding to 40 µg RNA of sample 

(20 µL in total) were used. The following protocol was run at the Mastercycler personal:  

Initial Denaturation  2 min at 95 °C 
Denaturation   15 sec at 95 °C 

Annealing   15 sec at 55 °C    40 cycles 

Extension   20 sec at 68 °C 

Melting curve   15 sec at 60 °C 

    20 min from 60 °C – 95 °C 

    15 sec at 95 °C   

Hold    4 °C 

 

Primers, which were used for qRT-PCR are shown in Table 3. Melting curve analysis was performed 

to assess primer specificity. Data were normalized to the expression level of the TATA-Box-binding-

Protein (TBP, housekeeping gene). For calculation of the relative mRNA expression level the ∆∆CT 

method [194] was used and expressed as fold change relative to the corresponding control sample.  
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Table 3: List of qRT-PCR primers used in this study: 
 

Gene Primer fw 5´3´ Primer rev 5´3´ AL AT Loc 

HHIP TGTACATCATTCTTGGTGATGGG AGCCGTAGCACTGAGCCTGT 91 55 Ex6/7 

IGFBP3 GTCCAAGCGGGAGACAGAATAT CCTGGGACTCAGCACATTGA 91 55 Ex2/3 

SFRP1 CATGACGCCGCCCAAT GATGGCCTCAGATTTCAACTCG 91 55 Ex1/2 

GAPDH GGCACCGTCAAGGCTGAG CCCACTTGATTTTGGAGGGAT 91 55 Ex4/5 

ACTB CCTGAACCCCAAGGCCA CACAGCCTGGATAGCAACGTAC 91 55 Ex3/4 

NFE2L2 CGGTATGCAACAGGACATTGAG  GGCTTCTGGACTTGGAACCAT 101 55 Ex4/5 

NQO1 GCTGCCATGTATGACAAAGGAC CCGGTGGATCCCTTGCAGA 101 55 Ex4/5 

KEAP1 ATTGGCTGTGTGGAGTTGCA TGGCAGTGGGACAGGTTGA 101 55 Ex2/3 

TBP GCCCGAAACGCCGAATAT CCGTGGTTCGTGGCTCTCT 72 55 Ex4/5 

Amplicon length in base pairs (AL), annealing temperature in °C (AT) and primer localization (Loc) , indicating the exons (Ex) 

covered by PCR assay.  

 

3.16 Whole cell protein lysates for Western Blot analysis 

Cells were seeded at a density of 1 x 106 / 10 cm dish and cultured for 48 h, and then harvested. The 

medium was completely removed and cells were washed with 1 mL ice cold PBS. 200 µL of lysis-

buffer, containing proteinase inhibitor cocktail, was added. Cell lysates were collected with a cell 

scraper and transferred into a reaction tube. The cell lysate was incubated on ice for 30 min and 

centrifuged at 13,000 rpm (4 °C) for 30 min. Supernatant was transferred in a new reaction tube and 

stored at -20 °C (long term storage -80 °C). 

 

3.17 Cell fractions for Western Blot analysis 

Nuclear protein extracts were prepared from transfected cells cultured for 48 h in 10 cm dishes. All 

nuclear extraction procedures were performed on ice with ice cold reagents. Cells were washed with 

phosphate-buffered saline (PBS) and harvested by scraping with 400 µL of lysis buffer and incubated 

for 25 min. Then, 25 µL of 20 % Igepal (Sigma) was added and vortexed for 15 sec. After 

centrifugation at 13,000 rpm for 1 min at 4 °C the supernatant, containing the cytoplasm, was 

collected (cell lysate). Nuclei pellets were resuspended in 75 µL of extraction buffer and incubated on 

ice for 15 min with occasional vortexing. Debris was pelleted by centrifugation at 13,000 rpm for 10 
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min at 4 °C. The supernatant was collected (= nuclear extract) and the protein concentration of cell 

lysates and nuclear extracts were determined using the Bradford Protein Assay Kit. 

 

3.18 Determination of protein concentration 

To determine the protein concentration the 1x Bradford Protein Assay solution was used. To 

establish a standard curve the bovine serum albumin (BSA) standard was diluted in concentrations of 

1,200 µg/mL to 0 µg/mL. The standard dilutions as well as the undiluted samples and sample 

dilutions of 1:2 and 1:10 in PBS were transferred in a 96 well plate (duplicates). The final volume of 

the samples was 10 µL. 200 µL of the 1 X Bradford reagent (1:5 diluted) was pipetted to each well 

and the plate was incubated for 15 min at RT. After measuring absorbance at 595 nm, concentrations 

were calculated and volume of protein lysate needed for Western Blot analysis was determined.  

 

3.19 Sodium dodecyl sulfate (SDS)-polyacrylamide-gel electrophoresis 

SDS-Polyacrylamide gel electrophoresis was carried out using the commercially available NuPAGE 

electrophoresis system. 10-40 µg protein lysate diluted to a volume of 20 µL with PBS was mixed 

with 5 µL of 5 x SDS-sample buffer (see section 2.4), incubated at 99 °C for 10 min and centrifuged for 

10 min at 13,000 rpm. Pre-stained protein ladder and protein samples were loaded onto 8-12 % 

gradient Tris-Glycine SDS gels and run in MOPS SDS-running buffer (see section: 2.4) at a constant 

voltage of 100 V for 60 min. 

 

3.20 Transfer to membrane 

After separation of proteins by SDS-PAGE and in order to make the proteins accessible to antibody 

detection, proteins were transferred using the X-Cell II Blot System onto a nitrocellulose membrane. 

The transfer was carried out at a voltage of 25 V for 1.5 h in transfer buffer (see section 2.4). 

Afterwards, membranes were placed into 5 % non-fat dry milk to block non-specific binding for at 

least 2 h at RT. Membranes were incubated overnight with the primary antibodies mouse anti-

human UHRF1 (1:1,000 or rabbit anti-human ß-actin (1:2,000) at 4 °C. Before and after incubation 

with the corresponding secondary antibodies membranes were washed three times for 10 min with 

PBS containing 0.1 % Tween 20 (PBST). Incubation with secondary antibodies was performed at RT 

for 1 h using horseradish peroxidiase-conjugated goat anti-mouse or goat anti-rabbit 

immunoglobulin G secondary antibodies (1:2,000). For chemiluminescent detection of specific 
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protein bands, the ECL Plus Western detection kit was used. 1 mL of solutions A and 25 µL of solution 

B were mixed together, applied directly to the membranes, and incubated for 1 min to fully percolate 

the membranes. Signals were detected by autoradiography using high performance autoradiography 

films, HyperfilmTMMP. 

 

3.21 DNA Extraction from cell culture and tissue 

Genomic DNA was extracted by phenol/chloroform after proteinase K treatment. Therefore, 1000 µL 

STE Buffer (see section 2.4) and 50 µL Proteinase A were added to the cell pellet and placed at 55 °C 

overnight. 1 Vol. Phenol was added to the cells and mixed by inversion for 5 min. The mixture was 

centrifuged for 10 min at 8,000 rpm (4 °C). The upper phase was transferred into a new Eppendorf 

tube, 1 Vol. chloroform was added, again mixed by inversion for 5 min and centrifuged for 10 min at 

8,000 rpm (4 °C). The upper aqueous phase, containing nucleic acids, was transferred to a new tube, 

and DNA precipitated by addition of 2.5 Vol. of 100 % ethanol. The threadlike precipitate was 

collected and transferred into a new tube. Precipitate was washed twice with 70 % ethanol and 

centrifuged at 12,000 rpm for 5 min. The resulting DNA pellet was dried, dissolved in 30-100 µL 

DNase/RNase free water and incubated for 10 min at 60 °C. DNA concentration was measured using 

the NanoDrop 1000 instrument. 

 

3.22 DNA Extraction from human blood 

Genomic DNA was extracted from 14 mL blood from a healthy control subjects using the Flexi gene 

DNA isolation kit according to the manufacturer’s protocol. DNA concentration was measured using 

the NanoDrop 1000 instrument. 

 

3.23 In vitro de novo methylation for positive control DNA 

Complete methylation of all CpG dinucleotides was ensured by treatment of the genomic DNA with 

CpG methyltransferase (M. SssI) to produce a reference for complete DNA methylation.  

10 μg DNA in DNase/RNase free water  

1/10 Vol. NEB Buffer 2 (10x) 

1/10 Vol. SAM (1:20) 

40 U M.SssI (4 U/μl) 
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Components were added in the listed order, mixed gently and incubated for 4 h at 37 °C, followed by 

incubation for 20 min at 65 °C for inactivation of the enzyme. DNA was precipitated at -20 °C with 50 

µL of 3 M sodium acetate and 750 mL 100 % ethanol, overnight. At the next day the DNA was 

centrifuged for 10 min at 13,000 rpm. The pellet was washed with 500 µL 70 % ethanol, centrifuged 

for 10 min at 13,000 rpm, and air dried for 5 - 10 min. The DNA pellet was resuspended in 20 µL of 

DNase/RNase free water and used immediately or stored at -20 °C. 

 

3.24 Bisulfite conversion after DNA Extraction  

DNA was used for bisulfite-mediated conversion of unmethylated cytosine by using the Epitec 

Bisulfite Kit as recommended by the manufacturer. 

 

3.25 Methylation-specific polymerase chain reaction (MSP) 

For methylation-specific polymerase chain reaction (MSP), bisulfite-treated DNA was amplified with 

primers specific for the methylated and unmethylated promoter region of the HHIP, IGFBP3, SFRP1 

or ACTB gene. Therefore, 500 nM reverse primer (methylated (M) or unmethylated (U)), 500 nM 

forward primer (methylated (M) or unmethylated (U)), 1 x Hot start Taq-Buffer, 2 mM dNTPs, 1.5 

mM MgCl2, Hot start Taq Polymerase (1 U), dH20 and 1 µL bisulfite DNA were mixed. MSP primer 

design was accomplished using Methyl Primer Express using the following criteria: CpG percentage > 

55 %; observed/expected CpG > 65 %; CpG length > 300 bp. Reaction was carried out at the 

Mastercycler personal using the following conditions:  

Hot start    4 min at 95 °C 
Denaturation  30 sec at 95 °C 

Annealing  30 sec at X °C       38 cycles 

Extension  45 sec at 72 °C 

Final Extension  10 min at 72 °C 

Hold   4 °C 

 

20 µL of MSP reaction were mixed with 6 x loading buffer and resolved on an 1.0 % - 1.5 % agarose 

gel containing ethidium bromide at 110 V. Bands were detected by ethidium bromide fluorescence 

and their size was estimated by comparison with a DNA size standard (100 bp ladder). Primer 

sequences and annealing temperatures for PCR are listed in Table 4. 
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Table 4: List of MSP-primers: 
 

Gene  Primer fw 5´3´ Primer rev 5´3´ AL AT Loc 

HHIP U TTGTAGTAGTTGGGTAGTTTTGGAATTTTT AAACCTTAAAACCAACCTCAAAA 144 53.5 +230 

 M AGTAGTCGGGTATGTTCGGAATTTTC GAACCTTCGAAACCAACCTCG 143 53.5 +231 

IGFBP3 U TTGGGTGAGTTTTGAGTTGTATGTTTTT AAACACACCAACCACTATATAAAAACCAAA 167 61 +180 

 M GCGAGTTTCGAGTTGTACGTTTTC GCCGACCGCTATATAAAAACCG 167 61 +180 

SFRP1 U TTTTGTAGTTTTTGGAGTTAGTGTTGTGTG CAATAACAACCCTCAACCTACAATCAA 145 58 -36 

 M TTTGTAGTTTTCGGAGTTAGTGTCGC CGACCCTCGACCTACGATCG 138 58 -36 

ACTB U GGGTTGAATTGGGTATTGTTTAGT AAACAACTTTCAAAACAACACACAC 243 55 +195 

 M TCGAATCGGGTATTGTTTAGC ACAACTTTCGAAACGACGC 243 55 +195 

Methylated (M), unmethylated (U) primer set, amplicon length in base pairs (AL), annealing temperature in °C (AT), primer 

localization (Loc), (+) base pairs upstream and (-) and base pairs downstream of transcriptional start site. 

 

3.26 Pyrosequencing 

For pyrosequencing, the region of interest was amplified from 1 µL bisulfite treated DNA, using 

primer sets for HHIP, IGFBP3, SFRP1 and LINE1 (see, Table 5). PCR reactions containing 500 nM 

reverse primer, 500 nM forward primer, 1 x Hot start Taq-Buffer, 2 mM dNTPs, 1.5 mM MgCl2,, Hot 

start Taq Polymerase (1U), DNase/RNase free water (total 20 µL) were run at the following 

temperatures at the Mastercycler personal: 

 

Hot start    4 min at 95 °C 
Denaturation  20 sec at 95 °C 

Annealing  20 sec at x °C       40 cycles 

Extension  30 sec at 72 °C 

Final Extension  5 min at 72 °C 

Hold   4 °C 

 

3 µL of PCR product were used for 0.8 % agarose gel electrophoresis to check for presence and size of 

the amplified product. The remaining 17 µL of PCR product were mixed with 4 µL streptavidin coated 

sepharose beads, 40 µL binding buffer and 19 µL DNase/RNase free water (total volume 80 µL). 

Prepared mixture was added to a 24-well PCR plate. PCR plate was constantly agitated for at least 5 

min. While shaking the 24-well plate, sequencing primer was diluted to 0.3 μM in Annealing Buffer. 

25 μL of the solution was added to each well of the PyroMark Q24 Plate. After 5 min the PCR product 

mix was applied to the PyroMark Q24 Vacuum Workstation including a denaturation step using 
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Denaturation Buffer. The resulting biotinylated single strand was added to the PyroMark Q24 Plate 

containing the corresponding sequencing primers HHIP_Seq, IGFBP3_Seq, SFRP1_Seq and LINE1. 

PyroMark Q24 Plate and PyroMark Gold Q24 Reagents were prepared as recommended by the 

manufacturer and subjected to pyrosequencing in the PyroMark Q24 system.  

 

 

Table 5: Primers used for pyrosequencing: 
 

Gene  Primer fw 5´3´ Primer rev 5´3´ AL AT 

HHIP PCR GGGAGGAGAGAGGAGTTT BIO-AACCAACCTCCAAAATACTAAACC 169 55  

 Seq TTTAGGATTGAGTTTTTGTTTTAAG    

IGFBP3 PCR TGGTTTTTTGAGATTTAAATGTAAGTTAGA BIO-ATCACCCCAATCACTCCTA 229 57.4  

 Seq TTGGGTTATTTAGGTTTTATATAG    

SFRP1 PCR GGAGTTAGAGATTAGTTTGGTTAATATGG BIO-AAAAACCTAAATCATACTTACAAACC 264 54.6 

 Seq GGTAAGAGGTTGTAATTTTAGTTAT    

LINE1 PCR accession no. X58075  accession no. X58075  146 55 

 Seq accession no. X58075     

Forward primer (primer fw), 5'-biotinylated (BIO) reverse primer (primer rev) for PCR reaction (PCR), specific primer for 

pyrosequencing (Seq), amplicon lengths in base pairs (AL) as well as annealing temperatures in °C (AT). 

 

3.27 Chromatin immunoprecipitation (ChIP) 

2.5 x 107 HUH6 cells were transfected with siUHRF1 or siNTC. After 48 h, the protein-DNA complexes 

were crosslinked with 1 % formaldehyde for 10 min at RT. The crosslinking reaction was quenched 

with 10 mL Glycine Stop-Fix Solution (ChIP-IT Kit) for 5 min and cells were washed twice for 5 min 

with ice cold 1 X PBS. Cell lysis, enzymatic digest and chromatin immunoprecipitation for tri-

methylated H3K27 (H3K27me3), di-methylated H3K4 (H3K4me2), di-methylated H3K9 (H3Kme2), 

RNA polymerase II (RNA Pol II) and normal control IgG were performed according to the 

manufacturer`s protocol. 2 µg of antibody against H3K27me3, H3K4me2, H3K9me2, RNA Pol II and 

IgG, were mixed with sheared chromatin and magnetic beads and incubated for 4 h at 4 °C. Following 

the final eluation, crosslink reversal and proteinase K digestion of the immunoprecipitated chromatin 

was carried out. Chromatin samples were subjected to a DNA clean-up step using the QIAquick PCR 

Purification KIT. qRT-PCR was performed on purified DNA from each of the ChIP reactions using 

primer pairs (see, Table 6) for loci within promoter region of the HHIP, IGFBP3, the SFRP1, GAPDH 

and ACTB gene. 
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Table 6: Primers used for chromatin immunoprecipitation: 
 

Gene Primer fw 5´3´ Primer rev 5´3´ AL AT 

HHIP TTCCCACCTCCTACGGCC TCCTCTCTCCTCCCCGCTT 101 55 

IGFBP3 GCTCCCTGAGACCCAAATGTAA GCTCGGCATTCGTGTGTACC 101 55 

SFRP1 ACGCCGTGATCCATTCCC CGGCTCAACACCCCTTAAAAA 101 55 

GAPDH GAGAGAGCCGCTGGTGCAC GAGGTTTCTGCACGGAAGGTC 101 55 

ACTB GCCAACGCCAAAACTCTCC CAGTGCAGCATTTTTTTACCCC 101 55 

Forward primer (primer fw), reverse primer (primer rev), amplicon length in base pairs (AL) and annealing temperature in °C 

(AT). 

 

3.28 Cell Viability Assay  

To asses cell proliferation, a cell viability assay was performed. Directly after electroporation, cells 

were seeded at a density of 5000 cells per well in a 96 well format (NUNC) in 100 µL RPMI medium. 

10 µL of the MTT labeling agent (5mg/mL in PBS) was added to each well and incubated at 37 °C for 4 

h. Media-containing wells without cells were used for background estimation. For cell lysis, 100 µL of 

the SDS-HCl solution (10 % SDS / 0.01M HCl) was added to each well and mix thoroughly using the 

pipette. The plate was incubated over night at 37 °C. The absorbance of the colored solution was 

quantified on the GENios reader by measuring at a wavelength of 595 nm. 

 

3.29 Statistical analyses 

Data were expressed as means + standard deviation (SD) or standard error of the mean (SEM) and 

statistically subjected to Student’s unpaired t-test and Spearman rank correlation test. Kaplan-Meier 

estimates of overall survival time in the various groups were compared using the log-rank Mantel-

Cox test. A level of P<0.05 was considered to be significant, P < 0.01 highly significant. Functional 

annotation of mutated genes was performed using the DAVID Bioinformatics Resources v6.7 

(National Cancer Institute, Frederick, MD) by computing gene-ontology statistics against the whole 

human genome database. 
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4 Results 

4.1 Genetic investigation 

4.1.1 Hepatoblastoma harbors only few somatic mutations 

To better understand the genetic basis of childhood liver cancer, our group has performed whole 

exome sequencing of 15 hepatoblastoma and three transitional liver cell tumor (TLCT) samples, along 

with corresponding normal liver tissues, in cooperation with PD Dr. Tim Strom of the Institute of 

Human Genetics of the Technical University of Munich [1]. Collectively, a total of 125 somatic 

mutations were identified (Figure. 5). However, the over-all frequency mutation rate in 

hepatoblastoma was low, with 2.9 variants per tumor genome (range 1 to 7), while in TLCTs, the 

mean sequence variation rate was 27.3 (range 11 to 48) per tumor genome. Recurrent mutations 

within the beta-catenin (CTNNB1) gene were found in about 80 % of the sequenced samples, a 

frequency which has also been described earlier [58]. Besides the CTNNB1 mutations, we identified 

missense mutations in the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) gene as another 

recurrent event, which was affected in two hepatoblastoma cases (Figure 5).   
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Figure 5: Mutations and copy number variations in pediatric liver tumors. Ring plots of (A) hepatoblastoma and (B) TLCT 
cases with chromosomes arranged end to end in the outer-most ring and mutated genes depicted outside of each diagram 
(recurrent mutations are highlighted through circles, the known germ line APC mutation in hepatoblastoma-794 in red 
font). The inside ring shows somatic copy number gains (red), losses (black), and copy-neutral allelic imbalances (blue). Data 
from Eichenmüller et al. 2014 [190]. 
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4.1.2 Gene regulation is frequently impeded in childhood liver cancer 

In order to identify functional pathways that are frequently hit by mutation in childhood liver cancer, 

we performed functional annotation of mutated genes using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID). The main biological processes, which were 

associated with the 30 different detected mutated genes identified in our hepatoblastoma samples 

were transcription (30 % of mutated genes), chromatin organization (20 %), chromosome 

organization (20 %) as well as chromatin modification (16.6 %), (Table 7). Accordingly, the top scoring 

cellular component with 13.3 % was the nucleoplasm (Table 8).   

The most prominent candidate genes which were found to be mutated in hepatoblastoma were 

CTNNB1, NFE2L2, histone H3.1 (HIST1H3C), the histone deacetylase 4 (HDAC4), the lysine-specific 

demethylase 5C (KDM5C) and the lysine-specific methyltransferase 2C (KMT2C). Moreover, two 

corepressors interacting with histone deacetylases, the CBF1 Interacting Co-repressor (CIR1) and the 

BCL6 Co-repressor-Like 1 (BCORL1) and one co-repressor binding to the polycomb repressive 

complex 2 (PRC2), ASXL2 (additional sex combs like transcriptional regulator 2) were identified. 

Additionally, the E3 ubiquitin protein ligase (MYCBP2) was detected. Interestingly, most of these 

genes code for epigenetic modifiers, playing an important role in the regulation of different 

epigenetic processes. HDAC4, KDM5C and KMT2C for instance are directly responsible for the 

deacetylation and (de)methylation of histones, respectively, while CIR1 and BCORL1 indirectly 

regulate the deacetylation of histones. However, ASXL2 is involved in the regulation and recruitment 

of the PRC2 and trithorax-group (trxG) activator complex and thereby indirectly regulates in histone 

methylation. Hence, our findings support the assumption that not only genetic changes, but also 

misregulation of epigenetic processes, through different mechanisms, contribute to the development 

of hepatoblastoma.   
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Table 7: Functional annotation of mutated genes in hepatoblastomas for relevant biological 
processes: 
 

Mutated genes were sorted by their putative biological function using DAVID. Only groups with a frequency of > 5 % of all 
genes are presented.  
 

 

Table 8: Functional annotation of mutated genes in hepatoblastomas for relevant cellular 
components: 
 

Mutated genes were sorted by their putative biological function using DAVID. Only groups with a frequency of > 5 % of all 

genes are presented.  
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By examining the TLCT candidate genes using DAVID, we detected transcription and its regulation 

being the main biological processes impaired by mutations (Table 9). The top-scoring cellular 

component in TLCTs was the nuclear lumen (14.3 %) followed by the nucleoplasm (10 %), (Table 10). 

Noteworthy, mutated genes code for the co-repressor GON4L, two co-activators (PRIC285, 

CCDC101), another E3 ubiquitin protein ligase (HUWE1), as well as several transcription factors (MYC, 

GATA6, HOXD11, PRDM10, NFX1). Hence, the hepatoblastoma and TLCT data suggest that 

deregulation of the transcription regulatory machinery is an important step in liver cancer 

development. 

 

Table 9: Functional annotation of mutated genes in TLCTs for biological processes: 
 

Mutated genes were sorted by their putative biological function using DAVID. Only groups with a frequency of > 5 % of all 
genes are presented.  
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Table 10: Functional annotation of mutated genes in TLCTs for cellular components: 
 

Mutated genes were sorted by their putative biological function using DAVID. Only groups with a frequency of > 5 % of all 
genes are presented.  

 

 

4.1.3 Activation of Wnt signaling is the key event in liver tumorigenesis  

Sequencing tumor samples revealed that mutations within the CTNNB1 gene were the main 

recurrent mutations [1], which has also been described earlier [58]. Based on this finding, we further 

investigated additional hepatoblastoma samples, one TLCT and four hepatoblastoma cell lines and 

reanalyzed the three TLCTs and the 15 hepatoblastoma samples out of the sequencing cohort using 

Sanger sequencing, in order to determine the status of the CTNNB1 gene. For CTNNB1 we detected 

29 out of 43 hepatoblastoma samples to be mutated within the CTNNB1 gene, including the 

sequenced samples (Figure 6). All of the four hepatoblastoma cell lines showed mutated CTNNB1 

(Figure 6). We also detected a mutation of CTNNB1 in the TLCT sample, which was not analyzed 

earlier, and confirmed the mutations in the three TLCTs, already detected via whole exome-

sequencing (Figure 6). Additionally, we confirmed the inherited c.3809_3810insC frame-shift 

mutation in the APC gene in the one hepatoblastoma sample which was already known from [1] 

(Figure 6). APC mutations are described to increased CTNNB1 activity and have also been detected in 

some hepatoblastomas [68]. Moreover, an increased risk for hepatoblastoma is associated with 

Familial adenomatous polyposis (FAP) which is characterized by defects in the APC gene [195]. These 

data clearly indicate that activation of the WNT pathway is the key driver of tumorigenesis in the 

liver. However, since there are hepatoblastoma samples that do not show mutations in any of the 

WNT-associated genes (Figure 6), other molecular mechanism must exist. Since, it has been shown 

that epigenetic deregulation has an impact on activated WNT signaling, epigenetic changes within 

the WNT pathway may also be of great relevance in hepatoblastoma development.   

 

4.1.4 Recurrent NFE2L2 mutations in hepatoblastoma 

Besides the CTNNB1 mutations, missense mutations in the NFE2L2 gene was another recurrent event 

detected using the whole-exome sequencing technology [1]. In this study, we therefore performed 
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targeted sequencing of our validation cohort (43 hepatoblastoma cases, four TLCT tumors and four 

hepatoblastoma cell lines) for NFE2L2 mutations using conventional Sanger sequencing, also 

including the sequenced hepatoblastoma samples (Figure 6). In addition to the two already detected 

NFE2L2 mutations we identified missense mutations in two other hepatoblastoma cases and the 

hepatoblastoma cell line HepT1 cell line (Figure 6), altogether in 9.8 % of all cases.   

 

 
Figure 6: Sanger sequencing of pediatric liver tumors. A cohort of 43 hepatoblastoma samples (HB), four TLCT tumors and 
four hepatoblastoma cell lines was investigated for genetic alterations in the candidate genes CTNNB1, NFE2L2 and APC by 
Sanger sequencing. Blue quarters represent tumors carrying missense mutation within the CTNNB1 gene; green quarters 
indicate mutations within the APC gene and red quarters represent tumors carrying missense mutations within NFE2L2. 
Grey quarters show the tumor samples not analyzed for APC germ line mutations. 
 

 

Interestingly, all mutations lead to amino acid substitutions at the N-terminus of the NFE2L2 protein, 

with missense mutations at base position 89, 100, 101, and two cases at 138 (Figure 7). 

 

 

 

Figure 7: Mutations found in hepatoblastoma. Mutations 
of the NFE2L2 gene within the hepatoblastoma cases 7, 
13, 253 and 577 as well as the hepatoblastoma cell line 
HepT1, detected by Sanger sequencing.  
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4.1.5 Mutations impede KEAP1-mediated degradation of NFE2L2 

NFE2L2 is known to not only play a role in the cellular defense against oxidative stress, but also in 

tumorigenesis, by the induction of anti-apoptotic and detoxification processes [196]. The five 

detected NFE2L2 mutations were found in cases harboring CTNNB1 mutations (72.5 % of all cases), a 

coincidence already described for adult [197, 198] and pediatric HCC [76]. Interestingly, the five 

NFE2L2 mutations found in hepatoblastoma are located either in or adjacent to the DLG and ETGE 

motifs (Figure 8), which have been described to be essential for binding of the KEAP1/CUL3 complex 

that mediates ubiquitination and proteasomal degradation of NFE2L2 [193].   

 

 

 

 
Figure 8: Mutational variations of NFE2L2 in hepatoblastoma. Schematic illustration of the NFE2L2 degradation complex, 
consisting out of two KEAP1 and two CUL3 subunits. The complex binds to the DLG and ETGE motifs of the NFE2L2 protein 
thereby inducing ubiquitination of lysine residues (K) and proteasomal degradation. The location of NFE2L2 mutations are 
indicated by arrows.  
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In order to determine whether the identified NFE2L2 mutations lead to NFE2L2 transcriptional 

activity that is insensitive to KEAP1-mediated degradation, we fused the wild-type and the four 

mutated forms of NFE2L2 (L30P, R34P, R34G, and T80A) to GFP. GFP constructs were ectopically 

expressed in the presence or absence of KEAP1 in HEK293T cells known to exhibit low basal levels of 

NFE2L2-dependent transactivation [199] and (Figure 9), along with a firefly luciferase reporter 

plasmid containing NFE2L2-responsive ARE binding sites and pRL-CMV as a control.   
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Figure 9: Relative gene expression of NFE2L2 in HepT1, HepG2, HUH6 and HEK293T. The mRNA abundance of NFE2L2 was 
revealed using qRT-PCR. 
 

 

Using the dual-luciferase assay, we were able to monitor the activity of our NFE2L2 mutants. We 

found that both wild-type and mutant NFE2L2 strongly increased reporter activity, which was more 

pronounced for the mutant forms (Figure 10A). Co-transfection of KEAP1 resulted in a significant 

decrease in reporter activity in wild-type NFE2L2 and R34P transfected cells, whereas in cells 

transfected with the mutated forms L30P, R34G, and T80A, this reduction was completely prevented. 

In line with this, the latter three accumulated exclusively in the nucleus, which is indicative for 

transcriptional activity, while the R34P mutant was found in the cytoplasm and the nucleus, 

comparable to wild-type NFE2L2 (Figure 10A). Strikingly, the same set of experiments performed in 

the hepatoblastoma cell line HUH6, showed identical results (Figure 10B). Measurements in HepG2 

cells, which already have a high relative gene expression NFE2L2 (Figure 9), followed the same trend, 

but without reaching statistical significance (Figure 10C). These data clearly demonstrate that NFE2L2 

mutations found in hepatoblastoma result in a high NFE2L2 transcriptional activity by interfering with 

KEAP1-mediated degradation. 
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Figure 10: Functional relevance of NFE2L2 in hepatoblastoma. Reporter assay experiments of HEK293T (A), HUH6 (B) and HepG2 (C) cells transiently transfected with the pEGFP vector (empty), 
pEGFP containing wild-type (WT) or the four mutated forms of NFE2L2 in the presence or absence of KEAP1. The activity of the NFE2L2-responsive ARE luciferase reporter was measured after 48 h 
and normalized to the activity of Renilla luciferase. Mean ± SEM of our reporter assay experiments in duplicates are shown. Exclusive nuclear accumulation of the GFP-tagged mutant NFE2L2 
proteins L30P, R34G, and T80A (green) after transfection into cells, counterstained with DAPI (blue). The R34P mutant as well as the wild-type NFE2L2 were located both in the cytoplasm and the 
nucleus. 
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4.1.6 Knockdown of the NFE2L2 downregulates NQO1 and inhibits proliferation 

To better understand the role of NFE2L2 in proliferation of hepatoblastoma, we employed transient 

siRNA knockdown of NFE2L2 in hepatoblastoma cells (HepT1, HepG2 and HUH6) to specifically 

modulate this pathway. As shown in Figure 11A-C, significant knockdown (> 80 %) of NFE2L2 mRNA 

was achieved in all three hepatoblastoma cell lines, as measured by qRT-PCR. To ensure that 

knockdown of NFE2L2 resulted in a significant modulation of NFE2L2 regulated target genes we 

analyzed the transcript level of the classical ARE-regulated NFE2L2 target gene NQO1, 48 h post 

transfection by qRT-PCR. NFE2L2 knockdown resulted in a significant decrease in the basal expression 

of NQO1 (Figure 11A-C) showing that basal activity of NFE2L2 is required for the expression of this 

gene. To assess whether reduced levels of NFE2L2 would impact cell proliferation, we generated cell 

growth curves over a time course of 96 h for NFE2L2 diminished and control cells using the MTT 

proliferation assay. Knockdown of NFE2L2 resulted in decreased cell proliferation, being significant 

for HepG2 (Figure 11B) and partly for HUH6 (Figure 11C). NFE2L2 suppressed HepT1 cells led to a 

slightly impaired growth rate compared to control transfected cell lines (Figure 11A).   
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Figure 11: Knockdown of NFE2L2 decreases target gene expression and inhibits cell proliferation. HepT1 (A), HepG2 (B) 
and HUH6 (C) were transfected using siRNA against NFE2L2 or non-targeting siRNA. 48 h after transfection, cells were 
harvested. NFE2L2 and NQO1 mRNA levels were quantified by quantitative real-time PCR analysis. mRNA abundance of 
siNTC was set to 1. The values illustrate gene expression in relation to the house-keeping gene TATA-Box-binding-Protein 
(TBP). The viability of HepT1 (A), HepG2 (B) and HUH6 (C) cells after transfection with siRNA against NFE2L2 or non-
targeting siRNA was assessed at the time points indicated using MTT assays and optical density (OD) measurements. The 
values given represent the mean ratio of control siRNA transfected vs. siRNA against NFE2L2 transfected cells from triplicate 
measurements ±SD. *P < 0.05 vs. control siRNA, (unpaired Student's t-test). 
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4.1.7 Upregulation of the NFE2L2 target gene NQO1 is associated with poor outcome 

In order to see whether transcriptional deregulation of genes involved in NFE2L2 signaling is a 

common phenomenon in pediatric liver cancers, we determined the mRNA abundance of NFE2L2, 

KEAP1, and the NFE2L2 prototypical target gene NQO1 in our cohort of 43 hepatoblastomas and four 

TLCT primary tumors. NQO1 catalyzes the reduction and detoxification of highly reactive quinones 

that can cause redox cycling and oxidative stress [200]. We found a highly significant downregulation 

of NFE2L2 and a striking upregulation of NQO1 in the tumor tissues compared to normal livers. In 

contrast, KEAP1 expression was unchanged between both tissues (Figure 12A-C). Interestingly, the 

three tumors with the highest NQO1 expression harbored NFE2L2 mutations. In order to identify the 

reason for the high NQO1 expression of two other tumors that lack NFE2L2 mutation, we performed 

Sanger sequencing of the genes KEAP1 and CUL3, which have been described to be alternatively 

mutated in NFE2L2-activated cancers [199, 201]. Both genes were wild-type in both cases (data not 

shown), thereby suggesting alternative genetic and/or epigenetic mechanisms that drive activation 

of NFE2L2 signaling in pediatric liver cancers.  

 
 
Figure 12: Clinical relevance of NFE2L2 activity in pediatric liver tumors. (A) mRNA abundance of the genes NFE2L2, KEAP1, 
and NQO1 relative to levels of the housekeeping gene TBP in 11 normal liver (blue diamonds), 43 hepatoblastoma and four 
TLCT tissues (red diamonds). (B) Correlation of the relative NQO1 expression of the tumor samples with the clinical 
parameters metastasis, vascular invasion, and the 16-gene signature [10]. (A+B) The mean expression values (black lines) 
and statistical significances from the unpaired Student’s t-test are given. (C) Overall survival was calculated as time from 
diagnosis to death of disease and is plotted for 32 hepatoblastoma/TLCT patients with low (blue line) and 15 with high (red 
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line) NQO1 expression (defined as >5-fold increased expression than the mean of 11 normal liver tissues) over a period of 
84 months. Statistical significance was calculated using Mantel-Cox test. 

 

 

In a next step we analyzed whether NFE2L2 activation in tumors predominantly occurs in a defined 

subset of pediatric liver tumors. We summarized all clinical data of each patient (Figure 13) and 

correlated the NQO1 expression with clinicopathological features such as age, gender, onset of 

disease, histology, multifocal growth, outcome, and the high-risk characteristics vascular invasion 

(portal vein or three hepatic veins), intra-abdominal extra hepatic extension, high PRETEXT stage, 

metastatic disease, alpha-fetoprotein at diagnosis less than 100 ng/mL, or tumor in all liver sections 

[29]. We found that NQO1 was significantly increased in metastatic tumors and tumors with vascular 

invasion (Figure 12B). Interestingly, the C2 subtype of the 16-gene signature, predicting poor 

prognosis in hepatoblastoma [26], was also significantly associated with high NQO1 expression 

(Figure 12B). In line with this, overall survival of patients with high NQO1 expression was significantly 

worse compared to low expressers (Figure 12C). These data suggest that NFE2L2 activation, 

especially increased NQO1 expression might be of prognostic significance for hepatoblastoma 

patients.   

 
 

Figure 13: Summary of clinical characteristics in pediatric liver tumors. Clinicopathological characteristics are color-coded 
and depicted in rows for each tumor (in columns) of our cohort of 43 hepatoblastoma and four TLCT patients as well as four 
hepatoblastoma cell lines. 
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4.2 Epigenetic investigations 

4.2.1 UHRF1 binds to promoter regions of HHIP, IGFBP3, and SFRP1  

As shown in section 4.1, the development of childhood liver cancers cannot be explained by genetic 

alterations alone. Instead, aberrant epigenetic modifications seem to play a prominent role at a very 

early stage in neoplastic development. In hepatoblastoma, sustained activation of three main 

pathways of embryogenesis, including the hedgehog signaling pathway, the IGF signaling pathway 

and the WNT signaling pathway, through heavy promoter methylation of their inhibitors HHIP, 

IGFBP3 and SFRP1 have been reported [146, 147]. Since UHRF1 plays a key role in the regulation of 

DNA methylation, we wanted to investigate the role of UHFR1 in methylation of the three tumor 

suppressor genes (TSGs) HHIP, IGFBP3 and SFRP1 in hepatoblastoma.  

In 2011, Felle and colleagues [140] reported that UHRF1 binds together with DNMT1 and USP7 on 

the promoter regions of HHIP, IGFBP3 and SFRP1 in HCT 116 cells. On this basis we wanted to verify 

the binding of the complex in the hepatoblastoma cell line HUH6. We observed an enrichment of 

UHRF1 at the HHIP, IGFBP3, SFRP1 loci together with DNMT1 and USP7, whereas the presence of 

RNA Polymerase II was hardly detectable (Figure 14). Relative enrichment of the trimeric complex 

was highest on the SFRP1 locus, followed by IGFBP3 and HHIP, respectively. An enrichment of RNA 

Polymerase II was detected at the ACTB locus, while weak binding of UHRF1 was observed. The 

DNMT1 binding level was low in ACTB and USP7 showed a comparable binding level to HHIP, IGFBP3, 

SFRP1. This suggests that the trimeric complex might also be of relevance for TSG gene silencing in 

hepatoblastoma. 

 

Figure 14: UHRF1 complex binds on the promoter regions of HHIP, IGFBP3, and SFRP1. Chromatin immunoprecipitation 
(ChIP) was performed with HUH6 cells and antibodies for DNTM1, UHRF1, USP7 and RNAP II. The mean +/- standard 
deviation of three independent ChIP experiments is shown. Genes of interest and used antibodies for ChIP are indicated. 



RESULTS  …..llllllllllll60 

 

The enrichment of specific binding versus IgG background is plotted. The active ACTB gene shows high levels of RNAP II and 
low binding levels of UHRF1 complex members. Experiments were performed and kindly provided by Max Felle. 

 

4.2.2 UHRF1 is overexpressed in hepatoblastoma 

Expression profile analysis of the complex partners was carried out in our hepatoblastoma samples 

using qRT-PCR, in order to examine differences of gene expression between tumor and normal liver 

samples for DNMT1, USP7 as well as UHRF1. We demonstrated increased abundance of UHRF1 

transcripts in the tumor samples in comparison to the mean of seven normal liver tissue samples 

(Figure 15). The established hepatoblastoma cell lines, HUH6, HepT1, and HepG2, also displayed a 

high abundance of UHRF1 (Figure 15). However, no significant differences in the relative gene 

expression of USP7 or DNMT1 could be identified (Figure 15), neither in the tumors nor in the 

hepatoblastoma cell lines. 

 

Figure 15: Expression of DNMT1, UHRF1 and USP7 in hepatoblastoma. mRNA abundance of DNMT1, UHRF1 and USP7 in 
tumor samples and the three hepatoblastoma cell lines (in red) compared to the mean of 7 normal liver tissues are given. 
 

 

Promoter methylation has been described as a molecular mechanism that suppresses the gene 

expression of negative regulators of tumor growth [202]. Since the gene expression of HHIP, IGFBP3, 

and SFRP1, TSGs relevant in hepatoblastoma, have been described to be downregulated in a variety 

of other cancers we performed MSP analysis in order to determine the extent of the promoter 

methylation of the three TSGs; HHIP, IGFBP3, and SFRP1 in the hepatoblastoma cell lines HepT1, 

 

HUH  HepT1 

Hep 2 
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HepG2 and HUH6. A strong methylation within the promoter region of HHIP, IGFBP3 and SFRP1 in all 

three cell lines was identified, whereas no methylation within the ACTB promoter could be observed 

(Figure 16A). Because promoter methylation has a strong impact on the transcriptional activity, we 

next wanted to determine the gene expression profiles of HHIP, IGFBP3 and SFRP1 in the 

hepatoblastoma cell lines. As expected, the promoter methylation of the TSGs was inversely 

correlated with gene expression of our three candidate genes and expression of ACTB (Figure 16B).   

 

Figure 16: Methylation state and mRNA abundance of target genes of hepatoblastoma cell lines. (A) Representative MSP 
analyses of HHIP, IGFBP3 and SFRP1 and ACTB in the HUH6, HEPT1 and HepG2 cell line are presented. Genes were analyzed 
for methylated (M) and unmethylated (U) CpG sites within the promoter region. (B) Relative mRNA abundance of HHIP, 
IGFBP3, SFRP1 and ACTB in HUH6, HEPT1 and HepG2 cells were measured by qRT-PCR. The values represent gene 
expression in relation to the house-keeping gene TBP. Color scale illustrates the relative expression level of mRNAs (log10 
expression): Blue color represents a high expression level; red color represents a low expression level. 

 

 

4.2.3 Knockdown of UHRF1 leads to demethylation of tumor suppressor genes  

To establish the role of UHRF1 on methylation and gene expression, we first evaluated the 

consequence of UHRF1 knockdown in the three hepatoblastoma cell lines HUH6, HepT1 and HepG2. 

Transient knockdown of UHRF1 resulted in significant reduction of UHRF1 expression up to 85 % 

after 48 h compared to cells transiently transfected with non-targeting control (NTC) siRNA (Figure 

17A). Knockdown on RNA level was most efficient in HepG2 and least in HepT1. Next, we confirmed 
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the knockdown of UHRF1 on protein level. UHRF1 protein levels were monitored by Western blot 

analysis 48 h after transfection. We detected a significant reduction of the UHRF1 protein in all three 

hepatoblastoma cells lines, being the strongest in HUH6 cells (Figure 17B). For further experiments 

we worked with HUH6 cells due to the strongest UHRF1 downregulation on protein level.   

As promoter methylation is in strong inverse correlation with transcriptional activity, we investigated 

whether knockdown of UHRF1 affects the methylation status of the HHIP, IGFBP3 and SFPR1 

promoter regions and re-establishes their expression in HUH6 cells. 48 h after UHRF1 knockdown 

MSP analysis was performed. We detected a reduced HHIP, IGFBP3 and SFPR1 promoter methylation 

level in UHRF1 depleted in comparison to control transfected HUH6 cells (Figure 17). To support this 

finding pyrosequencing was performed, which enables quantification of DNA methylation [203]. 

Comparably to MSP analysis, pyrosequencing revealed a significantly decreased methylation rate 

within the promoter of HHIP, IGFBP3, SFRP1, showing the strongest reduction for the HHIP promoter, 

followed by IGFBP3 and SFRP1, respectively (Figure 17D). We also analyzed the genome-wide 

methylation level, which can be estimated using the methylation level of the CpG sites of the long 

interspersed nuclear element-1 (LINE-1), since LINE-1 methylation correlates with global DNA 

methylation status [204]. In this study we observed a general hypomethylation of the promoter 

region of LINE-1 in HUH6 cells compared to genomic DNA and Sss1 treated HUH6 cells, which showed 

high methylation levels. The downregulation of UHRF1 led to a slight decrease of methylation in 

HUH6 cells in comparison to siNTC transfected HUH6 cells (Figure 17D). Collectively, this data 

indicate that UHRF1 controls DNA methylation at the promoters of the three TSGs and LINE-1 

repeats. 
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Figure 17: Demethylation of the HHIP, IGFBP3 and SFRP1 promoter region after UHRF1 knockdown. HepT1, HepG2 and 
HUH6 cells were either transfected with siRNA against UHRF1 (siUHRF1) or transfected with non-targeting control siRNA 
(siNTC), which has no known vertebrate target gene. Cells were harvested 48 h after transfection. (A) Relative gene 
expression was reduced in cells transfected with siRNA against UHRF1 compared to negative control. Data represent mean 
+/- standard deviation, standardized to control and normalized to TBP (housekeeping genes) of at least three biological 
replicates. (B) Western blot analysis of HepT1, HepG2 and HUH6 cells after UHRF1 knockdown. A clear decrease of protein 
levels was detected in all three cell lines. Immunodetection of beta-actin served as a standard for equal protein loading. (C) 
Promoter region of the HHIP, IGFBP3 and SFRP1 genes were analyzed for methylated (M) and unmethylated (U) CpG sites 
by MSP in presence or absence of UHRF1. Representative images of MSP experiments are given. Genomic DNA as well as in 
vitro methylated DNA (Sss1) were used as negative and positive controls, respectively. (D) Pyrosequencing of HUH6 cells 
after UHRF1 knockdown on promoter regions of the HHIP, IGFBP3, SFRP1 and LINE-1 repeats. Pyrosequencing analysis was 
performed with bisulfite-treated DNA from HUH6 cells 48 h after knockdown. Data represent mean +/- standard deviation 
of at least three biological replicates. Statistically significant difference versus siNTC transfected cells: *p < 0.05 (unpaired 
Student´s t-test). 
 

 

4.2.4 Effects of UHRF1 downregulation on gene expression and proliferation 

To directly address the role of UHRF1 in silencing of TSGs, we knocked down UHRF1 for 48 h in HUH6 

cells. Surprisingly, although UHRF1 knockdown led to a demethylation of promoters, the strong 

depletion of UHRF1 did not lead to re-established gene expression of our three silenced candidate 

genes HHIP, IGFBP3 and SFRP1 (Figure 18A). ACTB expression was either not affected after UHRF1 

knockdown. However, we additionally analyzed the effect of UHRF1 downregulation on proliferation, 
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since UHRF1 expression is correlated with cell proliferation [137, 205]. HUH6 cells were transiently 

transfected and MTT assays were performed. In line with the gene expression data, UHRF1 

knockdown did not have an effect on cell viability in a time range of 168 h (Figure 18B). Cells 

transfected with control siRNA showed the same proliferation curve than HUH6 cells transfected 

with siRNA targeting UHRF1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: UHRF1 knockdown does not influence expression of target genes and cell proliferation. (A) The mRNA 
abundance of HHIP, IGFBP3 and SFRP1 was revealed after two days of UHRF1 knockdown in the HUH6 cell line by 
quantitative real-time PCR. Gene expression of HHIP, IGFBP3 and SFRP1 and ACTB was not notably changed after UHRF1 
knockdown. Data represent mean +/- SEM, standardized to control and normalized to TBP (housekeeping genes) of eight 
biological replicates. (B) Growth properties of UHRF1 depleted HUH6 cells. The cell viability of UHRF1 transfected cells was 
assessed at the indicated time points using MTT assays and optical density measurements. The values given represent the 
mean of four biological replicates +/- SD.  

 

 

4.2.5 UHRF1 knockdown decreases the repressive marks H3K27me3 and H3K9me2 

Since demethylation alone was not sufficient to induce re-expression of our TSGs and UHRF1 is able 

to influence both, DNA methylation as well as histone modification, we wanted to investigate the 

effect of UHRF1 knockdown on activating and repressive histone marks. We performed ChIP analysis 

48 h after UHRF1 knockdown to evaluate the histone mark setting within the promoter region of our 

TSGs HHIP, IGFBP3 and SFRP1. The use of antibodies against, RNA Pol II, H3K4me2, H3K27me3 and 
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H3K9me2 revealed that UHRF1 knockdown in HUH6 cells reduced H3K9 di-methylation and H3K27 

tri-methylation on the HHIP promoter. However, UHRF1 downregulation neither changed the low 

RNA Pol II occupancy, nor methylation status of the activating H3K4 histone mark. This is in 

accordance with the still existing transcriptional repression observed after UHRF1 knockdown (Figure 

19A). The histone modification profile within the IGFBP3 and SFRP1 promoters after knockdown was 

similar to the HHIP promoter regions (Figure 19B; 19C). For ACTB an increase for RNA Pol II 

occupancy and H3K4 di-methylation was observed. The repressive mark H3K27me3 was hardly 

detectable and H3K9me2 methylation was slightly decreased after UHRF1 knockdown (Figure 19D). 

This data underscore the role of UHRF1 in maintenance of the repressive chromatin state in silenced 

genes, but also shows that UHRF1 knockdown alone is not sufficient to change histones to an active 

chromatin state. 

 

Figure 19: Chromatin immunoprecipitation of HUH6 cells after UHRF1 knockdown. HUH6 cells were transfected with 
siRNA targeting UHRF1 or control siRNA and ChIP was performed after 48 h. Alterations of histone modification within the 
promoter regions of the TSGs HHIP (A), IGFBP3 (B), SFRP1 (C) as well as ACTB (D) were measured. The locations of the ChIP 
primer sets within the promoter regions are shown. Boxes emphasize exons of the respective genes with black parts 
highlighting the translated proportion. ChIP was performed using antibodies against RNA Pol II, H3K27me3, H3K4me2, 
H3K9me2 and mouse IgG as negative control. Precipitated DNA was analyzed by qRT-PCR and results are shown as 
percentages of total input. One representative experiment of three biological replicates is given.  
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4.2.6 Clinical relevance of UHRF1 overexpression in hepatoblastoma 

To assess the clinical relevance of UHRF1 we evaluated whether UHRF1 overexpression 

predominantly occurs in a defined subset of tumors. By correlating UHRF1 expression with the 

16gene signature, we found that UHRF1 was significantly increased in the C2 subtype of the 16-gene 

signature [26], which is associated with poor prognosis in hepatoblastoma (Figure 20A). In line with 

this, the overall survival of patients with high UHRF1 expression was significantly worse (about 60 %) 

compared to patients with low UHRF1 expression, which was about 90 % (Figure 20B). These data 

suggest that UHRF1 activation might be more relevant as a prognostic marker than as a direct 

anticancer target in hepatoblastoma patients. 

 

 

Figure 21: Clinical relevance of UHRF1 overexpression in hepatoblastoma. (A) Correlation of the relative UHRF1 expression 
in the tumor samples with the subtypes C1 and C2 of the 16-gene signature [25]. The mean expression values (black lines) 
and statistical significances from the unpaired Student’s t-test are given. (B) Overall survival was calculated as time from 
diagnosis to death of disease and is plotted for 13 patients with low (black line) and 20 with high (grey line) UHRF1 
expression (defined as >5-fold increased expression than the mean of 6 normal liver tissues) over a period of 84 months. 
Statistical significance was calculated using Mantel-Cox test.  

Figure 20: Chromatin immunoprecipitation 
of HUH6 cells after UHRF1 knockdown. 
HUH6 cells were transfected with siRNA 
targeting UHRF1 or control siRNA and ChIP 
was performed after 48 h. Alterations of 
histone modification within the promoter 
regions of the TSGs HHIP (A), IGFBP3 (B), 
SFRP1 (C) as well as ACTB (D) were 
measured. The locations of the ChIP primer 
sets within the promoter regions are shown. 
Boxes emphasize exons of the respective 
genes with black parts highlighting the 
translated proportion. ChIP was performed 
using antibodies against RNA Pol II, 
H3K27me3, H3K4me2, H3K9me2 and mouse 
IgG as negative control. Precipitated DNA 
was analyzed by qRT-PCR and results are 
shown as percentages of total input. One 
representative experiment of three biological 
replicates is given.  
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5 Discussion 

To date, the development and progression of hepatoblastoma is associated with mutations, genetic 

syndromes and/or deregulation of embryonic pathways such as the WNT-, the IGF- or hedgehog 

signaling pathway through downregulation of their inhibitory components via DNA methylation. The 

misregulation of methylation already suggests that epigenetic mechanisms in addition to genetic 

alterations play a crucial role in the development of hepatoblastoma. In this study we were able to 

gain more information about the genetics in hepatoblastoma by the identification of recurrent beta 

catenin (CTNNB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) mutations within our 

tumor cohort. We got a first impression of NFE2L2s role in hepatoblastoma proliferation as well as its 

relevance in the clinical setting. Furthermore, we recognized the ubiquitin-like with PHD and ring 

finger domains 1 (UHRF1) as a regulator of DNA methylation in hepatoblastoma and as a potential 

prognostic marker.   

 

5.1 Genetics  

The importance of genetic factors in the development of cancer has been very well demonstrated in 

the last decades. The onco-genetics is a subject of comprehensive research. The medical database 

system PubMed using the search term "cancer genetics" displayed a total of over 300,000 scientific 

publications (effective date: 18.03.2015). This high number of publications is impressive and 

underlines the fundamental importance of genetic mechanisms. Genetic changes drive the 

pathogenesis of tumors in both adults and children. These changes can be inherited and are, 

therefore, found in every cell, but more often, they are somatically acquired and restricted to tumor 

cells. Investigations of childhood cancer genetics have identified that pediatric cancers contain fewer 

somatic mutations and many of the mutations found in childhood cancers aren’t found in adult 

cancers. In addition, it was found that genes that encode proteins involved in the epigenetic 

regulation are mutated at a high frequency in a subset of childhood cancers [206] in comparison to 

tumors arising in adults where epigenetic regulation is less dominant.   

Interestingly, our whole-exome study on hepatoblastoma samples showed that the majority of 

mutated genes are epigenetic regulatory proteins that affect transcription, chromatin and 

chromosome organization as well as chromatin modification. As mentioned the predominance of 

mutation within epigenetic regulators is consistent with findings in other childhood tumors [206]. 

Sequencing of 21 different pediatric cancer subtypes, including leukemia, brain tumors and different 

solid malignancies in about 1000 pediatric cancer samples has identified H3F3A, PHF6, ATRX, KDM6A, 

SMARCA4, ASXL2, CREBBP, EZH2, MLL2, USP7, SETD2, ASXL1, NSD2, SMC1A and ZMYM3, to be 



DISCUSSION  …..llllllllllll68 

 

mutated. These genes are responsible or involved in the regulation of different epigenetic processes, 

such as regulation of transcription, chromatin modification/remodeling through histone 

(de)acetylation and (de)methylation as well as DNA modifications [206]. Comparably, the genes 

found in our study, are involved in the same epigenetic processes. HDAC4, KDM5C and KMT2C are 

directly responsible for the deacetylation and (de)methylation of histones, respectively, while CIR1, 

BCORL1 indirectly regulate the deacetylation of histones. Genes controlling histone (de)methylation 

have become increasingly recognized as a common feature of different human cancers. Inactivating 

mutations, for example, of UTX, which demethylates histone H3K27 have been observed in multiple 

myelomas, esophageal cancers and renal cell cancers [207]. Additionally, some renal cell cancers 

contain mutations in the histone methyltransferase gene SETD2 and the histone demethylase gene 

JARID1C [208]. The histone methyltransferase gene EZH2 has been discovered to be mutated in 

nonHodgkin’s lymphomas [209] and recently, frequent mutations of the chromatin remodeling gene 

ARID1A have been observed in ovarian clear cell carcinomas [210, 211]. These results clearly 

demonstrate that alterations of the epigenetic machinery occupy an important role in cancer 

development since these mutations have the potential to deregulate hundreds of targeted genes, 

genome wide.   

In this context, it is important to elaborate how disrupted epigenetic regulators identified in our 

study cooperate with changes in known signaling pathways that contribute to hepatoblastoma 

development. Since hepatoblastoma develops early in life, hepatoblastoma is likely to be driven by 

only few genetic changes, therefore, it is reasonable to further study the genes mutated in our 

hepatoblastoma samples in order to distinguish the so-called “driver” mutations, with the ability to 

promote or “drive” neoplastic processes, from the non-contributing “passenger” mutations, that 

have no direct or indirect effect on the selective growth advantage of the cell [212, 213]. The 

identification of such genes is important for understanding pathways and gene functions in normal 

and cancer tissues. Since HDAC4 and KDM5C are already described to act as driver mutations in 

breast cancer [214] and kidney cancer cells [215], respectively, they might also represent a driver 

mutation in our hepatoblastoma samples. However, the high rates of mutation in epigenetic 

regulatory genes, strongly underlies the big role of epigenetics in hepatoblastoma development, but 

simultaneously suggest that the majority of the mutations in hepatoblastoma might be passenger 

rather than driver mutations based on variety and high number.   

A potential non-epigenetic driving force for hepatoblastoma development which we have also 

described in our study, might be the CTNNB1 mutations and consequently activation of WNT 

signaling. As found earlier, we identified recurrent mutations of CTNNB1 in our hepatoblastoma 

samples, a gene, playing a central and critical role in the WNT signaling pathway. In our cohort about 
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70 %, of all cases carried a CTNNB1 mutation. However, it has been shown that the introduction of 

activating CTNNB1 mutations in hepatocytes was not sufficient to drive tumorigenesis [38, 39], since 

CTNNB1 mutations alone only cause immediate proliferation leading to marked hepatomegaly [38, 

39]. Recently, Mokapatti et al., refute years of assuming that a CTNNB1 mutation itself is not 

sufficient to induce HCC or hepatoblastoma. The study demonstrates that the activation of the WNT 

pathway in a unique population of bipotential fetal liver cells is able to give rise to endogenous HCCs, 

hepatoblastomas and lung metastasis in adult mice [73]. This is in striking contrast to the absence of 

tumors when CTNNB1 is stabilized in adult hepatocytes using a Cre-expressing adenovirus or an 

adolase B promoter–driven transgene expressing stable mutant CTNNB1 protein [75]. Interestingly, 

the HCCs and hepatoblastomas which developed out of fetal liver cell showed an increase in both 

canonical (c-Myc, cyclin D1 and AXIN2) and non-canonical WNT targets (GS, GLT1, OAT and LECT2). 

Such induction of canonical WNT targets was not observed in the prior model in which CTNNB1 was 

stabilized and no tumor development took place [75]. These differences suggest that the ability of 

WNT pathway activation which results in HCCs or hepatoblastoma critically depend on the activation 

of canonical WNT targets. Additionally, this result shows that tumor development is also highly 

dependent on the cell type wherein a mutation of CTNNB1 arises. Although CTNNB1 seems to be a 

key driver in liver development and is frequently hit by mutations there are cases that do not lead to 

tumor development, underscoring the impact on the presence of other mutations. Therefore, the 

data from Mokapatti et al., might also explain the development of wild type CTNNB1 tumors (about 

20 % of our cases) by suggesting other gene mutations within the canonical WNT pathway, such as 

the APC and AXIN. However, transcriptional WNT pathway activation might also be responsible for 

tumor development.                        

The finding of mutations within NFE2L2 and more importantly activation of the NFE2L2-KEAP1 

pathway might present an additional or alternative mechanism that may contribute to 

hepatoblastoma development and progression, based on their recurrency in our samples. 

Intriguingly, comparable alterations have been detected in HCC in adults, showing either NFE2L2 or 

KEAP1 mutations in altogether 7.2 % [197], 8.0 % [198], and 8.9 % [216] of all patients, thereby 

suggesting a broader role of the NFE2L2-KEAP1 pathway in liver cancers. The KEAP1-NFE2L2 pathway 

is the major regulator of cytoprotective responses to oxidative and electrophilic stress [196, 217]. In 

normal and premalignant tissues, NFE2L2 regulated downstream pathways prevent cancer initiation 

and progression while in malignant cells NFE2L2 activity provides growth advantage and mediates 

chemoresistance [78, 83]. The activation of NFE2L2 is regulated by KEAP1 (Kelch like-ECH associating 

protein 1), which binds to NFE2L2 and promotes its degradation by the ubiquitin proteasome 

pathway.  
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The mutations observed in this study are located either in or adjacent to the DLG and ETGE motifs 

which have been described to be essential for binding of the KEAP1/CUL3 complex that mediates 

ubiquitination and proteasomal degradation [193]. The mutations specifically alter amino acids in the 

motifs, which results in aberrant cellular accumulation of NFE2L2 and insensitivity to degradation, 

leading to constitutive activation of the pathway. Similar mutations in the NFE2L2 gene have also 

been observed in other cancers, including lung, head and neck, and esophageal carcinoma [193, 218, 

219]. Comparably, in these cancers mutations of NFE2L2 also change the amino acids within the DLG 

motif or within the ETGE motif [193], resulting in aberrant cellular accumulation of NFE2L2 and 

constant activation. However, we found half of the tumor cases showing pathway activation without 

NFE2L2 mutations, thereby suggesting that other yet unidentified activating mechanisms must exist. 

Transcriptional downregulation of KEAP1 might be one possibility, however we and others have 

failed to detect significant differences between normal liver and liver tumor samples, although a 

trend for decreased KEAP1 expression in tumors with KEAP1 mutations has been reported [198]. 

Accordingly, promoter methylation of KEAP1 as shown for lung cancer [220, 221] prostate [222], 

malignant glioma [221] and colorectal cancers [223] can be dismissed, too.     

Recent studies have shown that NFE2L2 regulates the proliferation of human lung cancer cells, 

pancreatic cancer and glioblastoma [84, 224-226]. These findings suggest that activation of NFE2L2 in 

cancer cells provides advantages for the cell proliferation. Based on these results we performed 

transient NFE2L2 knockdown experiments in our hepatoblastoma cell lines. NFE2L2 siRNA 

knockdown profoundly inhibited the cellular proliferation of the HepG2 and HUH6 cells, however, a 

clear inhibitory effect for HepT1 cell proliferation was not observed. This result might reflect the fact 

that HepG2 cells express high endogenous NFE2L2 and are therefore more sensitive to alterations in 

NFE2L2 expression. Similar findings were observed in a lung cancer study, where depletion of NFE2L2 

resulted in a decrease in cellular proliferation in A549 and H460 cancer cells [227]. Ji and colleagues 

also observed an inhibition of cell proliferation, an increasing cell apoptosis and inhibition 

angiogenesis in mouse xenograft model for glioblastoma [228].   

The inhibitory effect on cell proliferation and apoptosis in consequence of NFE2L2 depletion may be 

based on changed regulation of downstream target genes, which include stress response genes, 

xenobiotics-metabolizing genes, genes involved in the ubiquitin-mediated proteasomal degradation 

system, cell growth controlling genes and genes important for apoptosis [196, 226, 229].  

However, as the NFE2L2 mutated cases were concomitantly mutated in CTNNB1, as described before 

for adult HCC [197], we hypothesize that activated WNT signaling and activated NFE2L2-KEAP1 

signaling might cooperate in liver tumorigenesis. As NFE2L2-KEAP1 signaling is known to prevent 

apoptosis and promote cell survival [196] and constitutive activation of NFE2L2-KEAP1 signaling in 
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KEAP1 knockout mice is not sufficient to drive tumor development [230], it is tempting to speculate 

that NFE2L2 may not initiate tumorigenesis, but rather confers a high survival capacity and thereby 

positively selects for already WNT-activated premalignant cells, a presumption which was already 

described in pediatric HCC. Clonality analysis of pediatric HCC predicted that the CTNNB1 mutation 

was clonal and occurred earlier during carcinogenesis, whereas the NFE2L2 mutation was acquired 

later [85]. Nevertheless, further genome-wide approaches deciphering genetic and epigenetic 

alterations on a larger cohort of patients are warranted and will hopefully shed light onto the cause 

for the widespread activation of the NFE2L2-KEAP1 pathway and a possible crosstalk between WNT 

and NFE2L2-KEAP1 signaling in liver cancers.   

Because, the establishment of molecular markers to aid risk stratification of cancer patients is an 

ongoing endeavour in pediatric oncology, we investigated the NFE2L2 activation in relation to clinical 

parameters. Here, we provide evidence that determining the activity of the NFE2L2-KEAP1 pathway 

might help to identify patients at risk for worse outcome. Accordingly, the high expression of NQO1, 

which is a target gene of NFE2L2, was associated with two clinical high-risk features, namely 

metastatic spread and invasive growth into vessels. Consistent with this observation we found a 

significantly poorer outcome of high expressing patients. In line with this, the C2 subtype of the 

16gene signature that has been validated to predict poor prognosis in hepatoblastoma [26] was also 

significantly associated with high NQO1 expression. Interestingly, NQO1 expression has been 

described to be commonly elevated in other types of human cancers, including pancreatic, breast 

and thyroid cancer and is already suggested as a prognostic marker for different cancers [231-233]. In 

small cell lung cancer for instance, a high level of NQO1 expression was significantly correlated with 

lower disease-free survival and 5-year survival rates [231]. Similar findings were obtained in gastric 

adenocarcinoma where NQO1 expression is positively correlated with tumor size, serosal invasion, 

tumor stage, and both disease-free survival and 5-year survival rates [232]. Based on our data we 

advocate the measurement of NQO1 expression to be included into the upcoming international 

treatment protocol for the pre-therapeutic risk assessment of hepatoblastoma patients in order to 

aid risk-adapted therapy. Collectively, our data indicate that activation of WNT signaling in concert 

with activation of the NFE2L2-KEAP1 pathway might be the driving force in the development of liver 

cancers, both in children and adults, thereby offering a new therapeutic target for the treatment of 

these devastating diseases. Strikingly, a first promising NFE2L2 inhibitor has recently been described, 

which reduces the protein level of NFE2L2 regardless of the status of KEAP1 or NFE2L2 being wild 

type or mutated [234].   

Although the genetic origin of cancer is widely accepted, recent studies demonstrate that cancer cells 

harbor global epigenetic abnormalities and that these epigenetic changes may be the key initiating 
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events in some forms of cancer [87, 235, 236] especially in those having a relatively normal genomic 

background. Since we identified hepatoblastoma as a genetically very simple tumor and mutations of 

epigenetic regulators in the first part of this work we started to decipher the impact of the epigenetic 

factor UHRF1 in hepatoblastoma development and/or progression. 

 

5.2 Epigenetic 

Epigenetic mechanisms contribute to the development and progression of different tumor species by 

being involved in transcriptional repression of tumor suppressor genes (TSGs), epigenetic activation 

of proto-oncogenes and imprinting. Recently, UHRF1 emerged as a key regulator of these events by 

controlling both DNA methylation as well as histone modification. UHRF1 is an essential cofactor for 

the maintenance of DNA methylation [118, 122] by binding to hemi-methylated DNA, by interaction 

and co-localization with DNMT1 [116]. The strong methylation within the promoter region of various 

genes, mediated by DNMT1 involved complexes, is a common phenomenon in tumor development 

[114, 237]. Due to the hypermethylation of CpG islands decommissioning of gene expression takes 

place. TSGs but even so genes involved in signaling pathways are the genes mainly affected [238]. 

Their usual involvement in the regulation the cell cycle and of cell proliferation causes a growth 

advantage and cell survival for neoplastic cells.  

 

In this work we identified the hepatoblastoma derived cell lines HepT1, HepG2 and HUH6 to possess 

a strong CpG promoter methylation in inhibitory components of WNT-, IGF- and Hedgehog signaling 

pathway, namely, Hedgehog-interacting protein (HHIP), Insulin-like growth factor-binding protein 3 

(IGFBP3) and Secreted frizzled-related protein 1 (SFRP1). Methylation analysis of these genes and 

subsequent analysis of gene expression revealed a strong relationship between methylation and 

expression, resulting in a strong suppression of gene transcription. Comparative methylation profiles 

of these genes have been obtained in other tumor identities [141], suggesting an important role for 

SFRP1, IGFBP3 or HHIP silencing in carcinogenesis. SFRP1 for example, has been identified to be 

transcriptional silenced in gastric tumors [239], breast cancer [240], colorectal tumors [241], in HCC 

[242] and even so in systemic sclerosis [243]. IGFBP3 is epigenetically regulated by methylation in 

renal tumors, HCC, breast cancer, gastric and colon carcinomas [244-246]. A deregulation of 

methylation within the promoter of HHIP was identified in medulloblastoma [247], gastric [248], 

hepatic [147, 249] and pancreatic cancer [250]. For SFRP1 it is noteworthy, that an increased SFRP1 

expression or re-expression of SFRP1 inhibits the growth of tumor cells independent of the CTNNB1 

status of the canonical WNT signaling pathway, which was first described by Suzuki and colleagues 

[251] in colorectal carcinoma. The overexpression of SFRP1, SFRP2 and SFRP5 reduced the CTNNB1 
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protein level in both the mutant variant as well as the wild-type form [251]. This observation is of 

great interest in CTNNB1 mutated hepatoblastoma cases, since the re-activation through SFRP1 

promoter demethylation would serve as an approach to deal with the misregulated WNT pathway 

based on CTNNB1 mutations.  

 

In this context, several studies have shown that treatment with the demethylating agent 5-Aza-dC 

leads to reactivation of gene expression in the corresponding cell lines [147, 148, 243]. This suggests 

that changes to any component of the methylation apparatus, might be able to influence 

methylation and consequently, render gene expression of silenced genes. Since UHRF1 is closely 

linked with the DNA methylation and histone methylation, we wanted to validate UHRF1 binding as 

well as changes of methylation levels in the promoter regions in the hepatoblastoma relevant TSGs 

after UHRF1 downregulation.  

 

Colleagues of mine identified a trimeric complex comprising DNMT1, Ubiquitin-specific-processing 

protease 7 (USP7) and UHRF1 [141], occupying an import role in the methylation process of DNA 

[141]. The complex was described to bind on the promoter region of the silenced TSGs HHIP, IGFBP3 

and SFRP1 in the colon carcinoma cell line HCT-116 [141]. In this work, we were able to confirm the 

results of Felle and colleagues that UHRF1 binds together with DNMT1 and USP7 on the promoters of 

the silenced TSGs in the hepatoblastoma cell line HUH6. Moreover, we were able to show that the 

UHRF1 expression is markedly increased in our hepatoblastoma cohort, a phenomenon already 

known for cancer in bladder [132], breast [116, 121], pancreatic [133], colon [134] and HCC [135]. 

The expression profile of USP7 and DNMT1 was comparable to normal liver tissue. Furthermore, the 

UHRF1 overexpression has been identified to correlate with increased DNA methylation in lung 

cancer [130, 136, 140]. Thus, UHRF1 activity seems to be quite important in maintaining the 

hypermethylation of certain TSGs. This is also supported by findings in breast tumors, where UHRF1 

overexpression was correlated with BRCA1 promoter hypermethylation [121]. Therefore, enhanced 

UHRF1 expression in cancer cells is considered to be associated with TSG silencing and cellular 

proliferation. These results suggest UHRF1 as a promising therapeutic target, especially as its 

expression is only detectable in proliferating cells including tumor tissues and different types of 

primary cancers [129, 132, 252]. Thus, we suggest that UHRF1 inhibition is of high selectivity for 

tumor cells.  

 

The high expression of UHRF1 in tumor cells and its strong role in proliferation propose UHRF1 

depletion as an anti-tumor action. First depletion experiments in several types of cancer have shown 

that UHRF1 mediates antitumor activities. We therefore performed UHRF1 knockdown in our 
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hepatoblastoma cell line HUH6. The knockdown of UHRF1 strongly decreased the methylation level 

of the promoter regions of HHIP, IGFBP3 and SFRP1. Interestingly, comparable results were obtained 

in RASSF1, CYGB, and CDH13 promoters in A549 lung adenocarcinoma cells [140]. The methylation 

status of all three promoters was consistently reduced after UHRF1 knockdown. Moreover, it has 

been shown that downregulation of UHRF1 resulted in a robust demethylation at the SFRP1, IGFBP3 

and HHIP promoters in the human colon adenocarcinoma cells HCT-116 [141], underscoring the 

impact of UHRF1 in the methylation process of different TSGs. We also analyzed the genome-wide 

methylation level, represented by LINE-1 methylation, since several studies have demonstrated 

cancer associated hypomethylation of LINE-1 [253-255]. LINE-1 sequences are highly repeated 

human retrotransposon sequences and constitute about 17 % of the human genome [256]. The 

genome-wide loss of methylation in core CpG sites of the promoter is regarded as a common 

epigenetic event in malignancies and is suggested to a play a crucial role in genomic instability [257] 

and in carcinogenesis [258, 259]. Interestingly, we observed a hypomethylation of LINE-1 in our 

hepatoblastoma cell line HUH6 a phenomena, which has already been described in other cancers. 

LINE-1 hypomethylation was observed in urinary bladder carcinomas [260], in chronic lymphocytic 

leukemia in comparison to normal mononuclear blood cells [261], hepatocellular carcinomas [255], 

and prostate carcinomas compared to normal prostate tissue [262]. The consequences of LINE-1 

hypomethylation are genomic instability and alteration of gene expression. Interestingly, UHRF1 is 

described to be involved in the methylation of the LINE-1 promoter and that the inhibition or the 

dysfunction of the DNA methylation machinery promotes further DNA hypomethylation on DNA 

repeat elements, such as LINE-1 [263]. This is in line with our observed data, that the downregulation 

of UHRF1 decreases the methylation level of the already hypomethylated LINE-1.   

 

Unfortunately, we could not observe or confirm the results of other groups where UHRF1 knockdown 

led to a reactivation of silenced TSGs. HHIP, IGFBP3 and SFRP1 gene expression remained silenced 

after UHRF1 knockdown in our hepatoblastoma cell line HUH6. In contrast to our results, Sabatino 

and colleagues observed a reactivation of PPARG after UHRF1 knockdown in colorectal cancer, 

accompanied by histone mark changes and DNA demethylation [264]. Interestingly, first studies with 

the methylated genes HHIP and IGBFP3 in hepatoblastoma showed that the 5-Aza-dC treatment 

alone is sufficient to induce reactivation of gene expression, respectively [147, 148]. The DNA 

demethylating agent 5-aza 2´-deoxycytidine (5-Aza-dC) incorporates into DNA, where it induces an 

irreversible inactivation of DNA methyltransferases [265] and is widely used for studying the role of 

DNA methylation in biological processes and is already used as a clinical treatment for certain 

leukemia’s [266]. Both, 5-Aza-dC treatment and UHRF1 knockdown induce demethylation of DNA, 

while in consequence only 5-Aza-dC treatment results in gene reactivation, suggesting that additional 
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mechanisms others than demethylation must exist that influence the activation of silenced genes. 

The effect on different histone tail modifications or histone replacement by 5-Aza-dC treatment 

might be one possibility. Most studies describe that 5-Aza-dC treatment is closely and consistently 

linked with demethylation of DNA and significantly decreases histone H3 lysine 9 di-methylation 

(H3K9me2) on promoters, a phenomenon also observed for UHRF1 knockdown in this study. 

However, Kondo et al. have reported that 5-Aza-dC treatment slightly increases lysine-9 acetylation 

(K9ac) and moderately increases histone H3 lysine 4 di-methylation (H3K4me2) in addition to a 

reduction of histone H3 Lys-9 di/tri-methylation [267, 268]. An increase in histone H3K4me2 as well 

as an increase K9ac is associated with gene re-expression. Furthermore, there have been reports 

revealing that 5Aza-dC treatment influences histone H3 methylation and acetylation even at genes 

that are not subject to CpG methylation, since these genes are already expressed [268, 269]. Thus, 

these authors also found that 5-Aza-dC alters the patterns and levels of histone modifications in local 

regions independent of CpG methylation status or transcriptional activity. Therefore, 5-Aza-dC might 

directly influence, in contrast to UHRF1 knockdown, acetylation of histones, even though the 

mechanism is not fully understood yet.  

 

Even if, no reactivation of our three TSGs takes place, we wanted to investigate the effect of UHRF1 

knockdown on tumor cell proliferation. As mentioned above, UHRF1 has been reported to be 

essential for cell proliferation and UHRF1 knockdown may regulate other genes that mediate an 

antitumor effect. Depletion of UHRF1 has been shown to reduce the growth rates of several cell 

types. Transient knockdown of UHRF1 was carried out to examine proliferation of the tumor cell line 

HUH6 over a timeframe of 168 h. We failed to detect a significant difference in cell viability between 

control transfected and UHRF1 siRNA transfected cells. This result is in marked contrast to already 

published studies in breast, gallbladder and colon cancer. In here, a remarkable decrease in 

proliferation in the human breast cancer cell lines MDA-MB-231 and MCF-7 after UHRF1-shRNA 

treatment was observed [139]. In addition, UHRF1 depletion in gallbladder cancer cells markedly 

inhibited proliferation, migration in vitro and the ability of these cells to form tumors in vivo [270]. 

Knockdown of UHRF1 expression suppressed cellular growth in colon cancer cell lines, HCT-116 and 

SW620 [134]. Interestingly, there are studies showing that UHRF1 expression is downregulated in 

apoptosis-induced cells and that UHRF1 promotes the proliferation of breast cancer cells by 

apoptosis inhibition, G1 phase shortage and promotion of tumor vessel formation [128]. However, it 

has previously been noted that the consequences of UHRF1 depletion for cell proliferation are rather 

variable depending on the cell model used [271], which may explain the discrepancies of other tumor 

cells to our cell line.  
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Because alterations of chromatin organization are a common mechanism of oncogenesis and several 

studies have identified a role for UHRF1 in the maintenance of heterochromatin [272], we 

investigated the influence of UHRF1 knockdown on histone modifications responsible for the 

condensed chromatin state. Chromatin immunoprecipitation revealed a strong enrichment of 

H3K27me3 and H3K9me2 on the promoter loci of our three TSGs, histone marks indicative for a 

suppressed transcriptional state, as observed for our TSGs. The presence of H3K4me2 (activating 

histone mark) and RNA Poll were hardly detectable. Although UHRF1 knockdown did not reactivate 

gene expression of our silenced genes HHIP, IGFBP3 and SFRP1, changes in histone marks after 

knockdown were observed. Downregulation of UHRF1 resulted in significant reduction of repressive 

histone marks H3K9me2 and H3K27me3 on the promoter regions, while no difference in H3K4me2 

has been observed. Consistent with our findings, previous studies demonstrated a decrease of 

H3K9me2 after UHRF1 depletion which was explained by the disruption of UHRF1/G9a interaction in 

consequence of decreased UHRF1 levels [273, 274]. UHRF1 has been described to read H3K9me2/3 

and to be responsible for the recruitment of the histone lysine methyltransferase G9a, which than 

performs H3K9 di- and tri-methylation [274]. Thus, the recruitment of G9a, and consequently 

dimethylation of H3K9, is disturbed, since H3K9me2 decreases after UHRF1 knockdown. This 

observation emphasizes that UHRF1 acts as an in important interface for mediating methylation of 

H3K9me2 and to ensure the action and functionality of G9a. Interestingly, there are recent reports 

that have shown that G9a is also involved in H1 and H3K27 methylation in vivo [275-277]. Our data 

suggest that the interaction of G9a and UHRF1 might also take part in vitro, since H3K27 methylation 

decreases after UHRF1 knockdown in our study.   

 

However, a parallel and convergent pathway might also explain the strong enrichment and reduction 

of H3K27 methylation observed in our study. The Enhancer of zeste 2 (EZH2), a methyltransferase 

and component of the polycomb repressive complex 2 (PRC2), plays an essential role in the 

epigenetic maintenance of the H3K27me3 repressive chromatin mark [278], which prevents initiation 

of transcription. There have been studies showing a strong mechanistic link between EZH2, its 

associated histone mark, H3K27me3 and DNA methylation [279, 280] an interaction important to 

ensure a stable repressive state. Interestingly, H3K27me3 and DNA methylation are compatible and 

overlapping throughout most of the genome, except at CpG islands, where these two marks are 

mutually exclusive [281]. It has been shown that binding of DNMTs to EZH2-repressed genes depends 

on the presence of EZH2 and bisulfite genomic sequencing clearly showed that EZH2 is required for 

DNA methylation of EZH2-target promoters [279]. A remarkable reduction of DNA was observed by 

depletion of EZH2, methylation at a number of CpG sites within the MYT1 and WNT1 promoters, 

suggesting that EZH2 directly controls DNA methylation [279, 282, 283] or at least serves as a 
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recruitment platform for DNA methyltransferases [279]. However, it is not completely understood, 

which molecular mechanisms link these two systems. The results of our study suggest that UHRF1 

plays an important part in this interaction, since UHRF1 strongly interacts with the DNMTs and the 

depletion of UHRF1 effects both DNA methylation and H3K27me3. Our observation also shows that 

there is no one-sided dependency of the mechanism since reduction of UHRF1 spans both the DNA 

methylation and the H3K27me3 methylation. In this context, it would be interesting to further study, 

the interaction of EZH2 with UHRF1 and in this setting whether UHRF1 depletion directly or indirectly 

influence histone H3 tri-methylation at lysine 27.   

 

Taking together, our data show that the depletion of UHRF1 alone influences histone modifications 

and DNA methylation, which are important regulating mechanisms for gene silencing in tumor cells. 

Nonetheless, the depletion of UHRF1 is not sufficient to reactivate the TSGs HHIP, IGFBP3 and SFRP1 

in our hepatoblastoma cells.   

 

Although our study did not show the expected therapeutic potential of UHRF1 regulation on tumor 

cell growth and we identified a diagnostic and prognostic value of UHRF1 in our tumor set, since we 

observed a significant overexpression of UHRF1 in hepatoblastoma tissue compared to normal liver 

tissue. By investigating parameters relevant for the clinic we were able to show that high levels of 

UHRF1 are associated with a more advanced tumor state in our hepatoblastoma patients, a 

phenomenon which has already been shown for lung, bladder and prostate cancers [132, 136, 273]. 

The high UHRF1 expression observed correlates on the one hand with the C2 signature, predictive for 

poor prognosis in hepatoblastoma and on the other hand with the lower survival rate, suggesting 

that a high UHRF1 expression might be used as a marker for worse outcome. Comparably, breast 

cancer studies have identified powerful associations between clinical parameters and outcome [284]. 

Breast cancer patients with advanced disease stage, with lymph node metastasis and ERBB2 positive 

status show significantly high UHRF1 levels in both plasma and tissue. Thus, the expression data are 

closely related to advanced disease state and prognosis. Additionally, there are similar results for 

kidney tumors and bladder cancers showing a correlation of UHRF1 expression levels and with a low 

5-year survival rate [132]. So far, UHRF1 is suggested to act as prognostic marker in bladder cancer 

and the cervical cancer. Based on our obtained data we propose UHRF1 as a potential prognostic 

factor for hepatoblastoma, although further UHRF1 based investigations and analysis need to be 

performed to confirm and validate UHRF1s possible use as a diagnostic marker for hepatoblastoma.  
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5.3 Perspectives and future plans 

The KEAP1-NFE2L2 pathway is the major regulator of cytoprotective responses to endogenous and 

exogenous stresses caused by reactive oxygen species (ROS) and electrophiles, and therefore 

provides an interesting research target for studying chemoresistance. In line with this assumption, 

studies have shown that ectopic expression of NFE2L2 in cancer cell lines that have low basal levels 

of NFE2L2 renders these cells to be more resistant to a variety of anti-cancer agents, whereas siRNA 

mediated inhibition of NFE2L2 in cells with high levels of NFE2L2 has been shown to reverse drug 

resistance [84, 199, 220, 224, 285]. In addition, human cancer cells that have adopted 

chemotherapeutic resistance have also been shown to express high levels of NFE2L2. For instance, 

human ovarian cancer cells selected for doxorubicin resistance show elevated NFE2L2 levels in 

comparison to wild-type cells. A depletion of NFE2L2 restores drug sensitivity in these resistant cells. 

Thus, it would be highly interesting to stably overexpress NFE2L2 in hepatoblastoma cells in order to 

study the effect on cell proliferation, survival as well as the response to chemotherapeutic agents. 

Moreover, it is important to mimic the NFE2L2 mutations observed in our study in order to transfect 

the NFE2L2 mutations in hepatoblastoma cells to get more information about their roles for 

proliferation, migration, invasion and their potential to induce chemoresistance. The knockdown of 

NFE2L2 is another interesting approach for this research to study the susceptibility of cells 

transfected with NFE2L2 siRNA or control siRNA to chemotherapeutic drugs. It allows investigation of 

the therapeutic potential of NFE2L2 interference. The effect of NFE2L2 depletion on tumor cells can 

be validated for further approaches such as the drug development of NFE2L2 inhibitors in cell culture 

to decrease proliferation and to increase efficiency of chemotherapeutic drugs in hepatoblastoma 

treatment. The insights that will be gained with these experiments may be of relevance to other solid 

childhood as well as adult tumors.   

Since, the establishment of molecular markers to aid risk stratification of cancer patients is an 

ongoing endeavor in pediatric oncology; it would be interesting to further study the role of UHRF1 as 

a prognostic and diagnostic marker for hepatoblastoma patients as it is already suggested in other 

cancers. As UHRF1 is overexpressed in hepatoblastoma and its expression is associated with a poor 

prognosis in hepatoblastoma patients, it is important to study more clinicopathological parameters in 

relation to UHRF1 in order to validate the prognostic significance for UHRF1. 
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6 Summary / Zusammenfassung 

 

6.1 Summary 

Hepatoblastoma is a malignant disease of the liver. It accounts for about 1 % of all childhood cancers 

and is the most common malignant liver tumor in infancy. Hepatoblastoma is assumed to arise from 

immature liver progenitor cells by aberrant activation of genes important in the embryonic 

development. Based on its early manifestation it is generally assumed that hepatoblastoma displays a 

relatively normal genomic background.   

 

Whole-exome sequencing performed in our group identified hepatoblastoma as one of the 

genetically simplest tumors ever described, with recurrent mutations in beta-catenin (CTNNB1) and 

nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Based on this finding we performed targeted 

genotyping of a large cohort of primary hepatoblastomas, hepatoblastoma cell lines and transitional 

liver cell tumors and identified CTNNB1 and NFE2L2 to be mutated in 72.5 % and 9.8 % of cases, 

respectively. CTNNB1 is a key effector molecule of canonical WNT signaling pathway, a pathway that 

is essential in organogenesis and cellular processes such as cell proliferation, differentiation, survival 

and apoptosis. However, NFE2L2 is involved in the activation of the cellular antioxidant response to 

combat the harmful effects such as xenobiotics and oxidative stress. Interestingly, all NFE2L2 

mutations were located in or adjacent to the DLG and ETGE motifs of the NFE2L2 protein that are 

needed to get recognized by the KEAP1/CUL3 complex for proteasomal degradation. Functional 

analysis showed that cells transfected with mutant NFE2L2 were insensitive to KEAP1-mediated 

downregulation of NFE2L2 signaling and that depletion of the NFE2L2 via siRNA downregulates the 

NAD(P)H dehydrogenase (quinine) 1 (NQO1), a target gene of NFE2L2, and inhibits proliferation. In 

the clinical setting, NQO1 overexpression in tumors was significantly associated with metastasis, 

vascular invasion, the adverse prognostic C2 gene signature as well as poor outcome.    

 

RNA sequencing in our group identified the ubiquitin-like with PHD and ring finger domains 1 

(UHRF1), a protein known to preferentially bind to hemi-methylated DNA, to be highly overexpressed 

in hepatoblastoma tumors. UHRF1 is as a key regulator in the epigenetic crosstalk, by controlling DNA 

methylation and histone modification. Using immunoprecipitation, we were able to show that UHRF1 

binds in concert with DNA methyltransferase 1 (DNMT1) and ubiquitin specific peptidase 7 (USP7) as 

a trimeric complex to promoter regions of tumor suppressor genes (TSG) relevant in hepatoblastoma, 

such as hedgehog interacting protein (HHIP), insulin-like growth factor binding protein 3 (IGFBP3), 

and secreted frizzled-related protein 1 (SFRP1). These genes are epigenetically silenced in 
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hepatoblastoma, as evidenced by heavy DNA methylation and enrichment of the repressive 

H3K27me3 and H3K9me2 chromatin mark. Interestingly, knockdown of UHRF1 expression via RNA 

interference resulted in promoter demethylation, but no reactivation of TSG gene expression. 

Additionally, no effect on tumor cell proliferation was observed after UHRF1 knockdown. Chromatin 

immunoprecipitation experiments revealed a decrease of the repressive chromatin marks H3K27me3 

and H3K9me2 after UHRF1 depletion, but neither a clear shift towards the active H3K4me2 

chromatin mark nor enrichment of RNA Polymerase at the TSG loci was observed. Statistical analyses 

revealed that a high expression of UHRF1 was associated with advanced disease state and a worse 

overall survival.  

 

Taken together our study demonstrates that activation of WNT signaling in concert with activation of 

the NFE2L2-KEAP1 pathway might be the driving force in the development of liver cancers. Moreover, 

we defined aberrant NQO1 expression as a marker for adverse course of disease and poor outcome. 

In addition, we showed that an aberrant expression of the epigenetic regulator UHRF1 and its 

excessive binding on promoter regions results in methylation of TSGs. This may represent an 

important mechanism in the initial phases of embryonal tumorigenesis. However, UHRF1 depletion 

alone was not sufficient to re-induce TSG expression. Therefore, UHRF1 might be more useful as a 

biomarker for the prognosis of hepatoblastoma than a direct anti-cancer target for hepatoblastoma 

therapy.  

  

6.2 Zusammenfassung  

Das Hepatoblastom ist der häufigste maligne Lebertumor im Kindesalter und nimmt ca. 1 % aller 

malignen Tumoren des Kindesalters ein. Die auffallend frühe Manifestation lässt vermuten, dass 

vergleichsweise wenige genetische Schritte bis zum malignen Phänotyp notwendig sind und es 

dadurch einen relativ normalen genomischen Hintergrund aufweist. Da neben genetischen 

Veränderungen auch epigenetische Veränderungen zur Tumorentstehung beitragen können, war es 

Ziel dieser Arbeit, bereits bekannte Mutationen in unserer Tumorkohorte zu überprüfen und/oder 

epigenetischen Veränderungen im Hepatoblastom zu identifizieren, die bei  der Tumorentstehung 

und Progression eine Rolle spielen könnten.  

 

Mit Hilfe der Exom-Sequenzierungs Technologie konnte das Hepatoblastom als genetisch einfacher 

Tumor identifiziert werden. Wiederkehrende Mutationen fanden sich im beta-catenin (CTNNB1) Gen  

und im Transkriptionsfaktor Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Auf Grundlage der 
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erwähnten Studie, wurde in dieser Arbeit eine gezielte Genotypisierung einer großen Kohorte an  

Hepatoblastomen, transitionalen Leberzelltumoren sowie von Hepatoblastom-Zelllinien 

durchgeführt. Hierbei konnte gezeigt werden, dass 72,5 % aller untersuchten Fälle eine CTNNB1 

Mutation und 9,8 % aller Fälle eine NFE2L2 Mutation tragen. CTNNB1 ist ein Schlüssel 

Effektormolekül des WNT-Signalwegs, der im wesentlich an der Organogenese und zellulären 

Prozessen, wie Zellproliferation, Differenzierung und Apoptose beteiligt ist. NFE2L2 hingegen ist bei 

der Aktivierung der zellulären Antioxidationsprozesse beteiligt, die der Bekämpfung von oxidativen 

Stress aber auch der Eliminierung von schädlichen Stoffen dienen. Interessanterweise lagen die 

NFE2L2 Mutationen in oder benachbart zum DLG- oder ETGE-Motiv des NFE2L2 Proteins, die als 

Erkennungssequenz für den proteasomalen Abbau dienen. Die identifizierten NFE2L2 Mutationen 

wurden im Laufe dieser Arbeit kloniert und in unterschiedliche Zelllinien eingebracht. Transfizierte 

Zellen, die das mutierte NFE2L2 tragen, zeigten sich unempfindlicher gegenüber dem KEAP1 

vermittelte Abbau. Darüber hinaus konnte gezeigt werden, dass die Überexpression der NAD(P)H 

dehydrogenase (quinine) 1 (NQO1), einem Zielgen von NFE2L2, verstärkt in Fällen mit NFE2L2 

Mutation auftritt und stark mit der Metastasierung, der Gefäßinvasion, der Gen-Signatur C2 und 

schlechter Prognose assoziiert ist. Der Knockdown von NFE2L2 bewirkt eine verminderte Expression 

von NQO1 sowie eine verminderter Zellproliferation.  

 

In dieser Arbeit konnte außerdem eine stark erhöhte Expression des UHRF1-Gens in 

Hepatoblastomen beobachtet werden. UHRF1, ist ein Protein, das bevorzugt an hemi-methylierte 

DNA bindet und die DNA Methyltransferase 1 (DNMT1) rekrutiert. UHRF1 nimmt eine Schlüsselrolle 

in der epigenetischen Regulation ein, da es sowohl die DNA-Methylierung als auch bestimmte 

Histonmodifikationen vermittelt. UHRF1 bindet zusammen mit DNMT1 und der Ubiquitin-

spezifischen Peptidase 7 (USP7) an die Promoterregionen des Hedgehog interacting Proteins (HHIP), 

des Insulin-like growth factor-binding Proteins 3 (IGFBP3) und des Secreted frizzled-related Proteins 1 

(SFRP1), Tumorsuppressorgene (TSG), die eine relevante Rolle in der Hepatoblastomentstehung und 

Progression spielen. Die starke DNA-Methylierung sowie die Anreicherung der reprimierenden 

Histonmarks H3K27me3 und H3K9me2 im Promoterbereich führen zum epigenetischen Stilllegen 

ihrer Genaktivität. Ein gezielter Knockdown von UHRF1 bedingt eine Demethylierung der Promotoren, 

jedoch keine Reaktivierung der TSG Expression. Auch im Wachstum der Tumorzellen konnte keine 

Veränderung beobachtet werden. Die näherer Betrachtung der Chromatinstruktur nach UHRF1 

Knockdown zeigte eine Verminderung der repressiven Chromatinmarks H3K27me3 und H3K9me2, 

jedoch weder Verschiebung in Richtung des aktivierenden H3K4me2 Histonmarks noch eine 

Anreicherung der RNA-Polymerase. Darüber hinaus konnte gezeigt werden, dass eine hohe 
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Expression von UHRF1 im Zusammenhang mit einem fortgeschrittenen Krankheitszustand 

(aggressiver Tumortyp) und einer schlechteren Gesamtüberlebensrate steht.  

 

Zusammenfassend lässt sich sagen, dass die Aktivierung der WNT Signalwegs in Kombination mit der  

Aktivierung des NFE2L2-KEAP1 Signalwegs als eine der treibenden Kräfte in der Leberkrebs- 

entwicklung angesehen werden kann. Darüber hinaus waren wir in der Lage, die veränderte 

Expression von NQO1 als Marker für einen ungünstigen Krankheitsverlauf und schlechte Prognose zu 

identifizieren. In dieser Arbeit konnte außerdem gezeigt werden, dass UHRF1 stark an der 

Methylierung von TSG beteiligt ist, einem Prozess der zur Stilllegung der Genaktivität führt und als 

wichtiger Mechanismus in den ersten Phasen der embryonalen Tumorentstehung betrachtet wird. 

Der Knockdown von UHRF1 allein ist allerdings nicht ausreichend, um die Genexpression zu 

reaktivieren, welches die Annahme zulässt, dass neben der Methylierung, andere Prozesse eine 

wichtige Rolle in der Stilllegung von TSG spielen. Aus klinischer Sicht stellt sich UHRF1 jedoch als 

nützlicher Biomarker für die Prognose von Hepatoblastomen dar. 
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