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Abstract 

The 21st century is the century of the cities and of urbanization.  

Someday in 2007, the world population reached a historical landmark: for the first time in 

human history, more than half of the world´s population was urban. A stagnation of this 

urbanization process is not in sight, so that by 2050, already 70 percent of humankind is 

projected to live in urban settlements. Over the last few decades, enormous migrations from 

rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic 

growth of the world’s urban population. The speed and the scale of this growth, particularly 

in the so called less developed regions, are posing tremendous challenges to the countries 

concerned as well as to the world community. Within mega cities the strongest trends and 

the most extreme dimensions of the urbanization process can be observed. Their rapid 

growth results in uncontrolled processes of fragmentation which is often associated with 

pronounced poverty, social inequality, socio-spatial and political fragmentation, 

environmental degradation as well as population demands that outstrip environmental 

service capacity. For the majority of the mega cities a tremendous increase of informal 

structures and processes has to be observed. Consequentially informal settlements are 

growing, which represent those characteristic municipal areas being subject to particularly 

high population density, dynamics as well as marginalization. They have quickly become the 

most visible expression of urban poverty in developing world cities.  

Due to the extreme dynamics, the high complexity and huge spatial dimension of mega 

cities, urban administrations often only have an obsolete or not even existing data basis 

available to be at all informed about developments, trends and dimensions of urban growth 

and change. The knowledge about the living conditions of the residents is correspondingly 

very limited, incomplete and not up to date. Traditional methods such as statistical and 

regional analyses or fieldwork are no longer capable to capture such urban process. New 

data sources and monitoring methodologies are required in order to provide an up to date 
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information basis as well as planning strategies to enable sustainable developments and to 

simplify planning processes in complex urban structures. 

This research shall seize the described problem and aims to make a contribution to the 

requirements of monitoring fast developing mega cities. Against this background a 

methodology is developed to compensate the lack of socio-economic data and to deduce 

meaningful information on the living conditions of the inhabitants of mega cities. Neither 

social science methods alone nor the exclusive analysis of remote sensing data can solve the 

problem of the poor quality and outdated data base. Conventional social science methods 

cannot cope with the enormous developments and the tremendous growth as they are too 

labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline 

of remote sensing does not allow for direct conclusions on social parameters out of remote 

sensing images. 

The prime objective of this research is therefore the development of an integrative 

approach − bridging remote sensing and social analysis – in order to derive useful 

information about the living conditions in this specific case of the mega city Delhi and its 

inhabitants. Hence, this work is established in the overlapping range of the research topics 

remote sensing, urban areas and social science. 

Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the 

second largest city of the world, represents a prime example of a mega city. Since the 

second half of the 20th century, Delhi has been transformed from a modest town with mainly 

administrative and trade-related functions to a complex metropolis with a steep socio-

economic gradient. The quality and amount of administrative and socio-economic data are 

poor and the knowledge about the circumstances of Delhi’s residents is correspondingly 

insufficient and outdated. Delhi represents therefore a perfectly suited study area for this 

research. 

In order to gather information about the living conditions within the different settlement 

types a methodology was developed and conducted to analyze the urban environment of the 

mega city Delhi. To identify different settlement types within the urban area, regarding the 

complex and heterogeneous appearance of the Delhi area, a semi-automated, object-

oriented classification approach, based on segmentation derived image objects, was 

implemented. As the complete conceptual framework of this research, the classification 

methodology was developed based on a smaller representative training area at first and 

applied to larger test sites within Delhi afterwards.  

The object-oriented classification of VHR satellite imagery of the QuickBird sensor 

allowed for the identification of five different urban land cover classes within the municipal 

area of Delhi. In the focus of the image analysis is yet the identification of different 
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settlement types and amongst these of informal settlements in particular. The results 

presented within this study demonstrate, that, based on density classes, the developed 

methodology is suitable to identify different settlement types and to detect informal 

settlements which are mega urban risk areas and thus potential residential zones of 

vulnerable population groups. The remote sensing derived land cover maps form the 

foundation for the integrative analysis concept and deliver therefore the general basis for 

the derivation of social attributes out of remote sensing data. 

For this purpose settlement characteristics (e.g., area of the settlement, average 

building size, and number of houses) are estimated from the classified QuickBird data and 

used to derive spatial information about the population distribution. In a next step, the 

derived information is combined with in-situ information on socio-economic conditions (e.g., 

family size, mean water consumption per capita/family) extracted from georeferenced 

questionnaires conducted during two field trips in Delhi. This combined data is used to 

characterize a given settlement type in terms of specific population and water related 

variables (e.g., population density, total water consumption). With this integrative 

methodology a catalogue can be compiled, comprising the living conditions of Delhi’s 

inhabitants living in specific settlement structures – and this in a quick, large-scaled, cost 

effective, by random or regularly repeatable way with a relatively small required data 

basis.The combined application of remotely sensed imagery and socio-economic data allows 

for the mapping, capturing and characterizing the socio-economic structures and dynamics 

within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega 

city of Delhi or certain areas within the city respectively by remote sensing. The opportunity 

to capture the condition of a mega city and to monitor its development in general enables 

the persons in charge to identify unbeneficial trends and to intervene accordingly from an 

urban planning perspective and to countersteer against a non-adequate supply of the 

inhabitants of different urban districts, primarily of those of informal settlements. 

This study is understood to be a first step to the development of methods which will 

help to identify and understand the different forms, actors and processes of urbanization in 

mega cities. It could support a more proactive and sustainable urban planning and land 

management – which in turn will increase the importance of urban remote sensing 

techniques. In this regard, the most obvious and direct beneficiaries are on the one hand 

the governmental agencies and urban planners and on the other hand, and which is possibly 

the most important goal, the inhabitants of the affected areas, whose living conditions can 

be monitored and improved as required. Only if the urban monitoring is quickly, 

inexpensively and easily available, it will be accepted and applied by the authorities, which in 

turn enables for the poorest to get the support they need. 

All in all, the listed benefits are very convincing and corroborate the combined use of 

remotely sensed and socio-economic data in mega city research. 



Zusammenfassung 

Das 21. Jahrhundert ist das Jahrhundert der Städte und der Urbanisierung. 

Im Laufe des Jahres 2007 hat die Weltbevölkerung eine historische Marke überschritten: 

zum ersten Mal in der Geschichte der Menschheit lebte mehr als die Hälfte der 

Weltbevölkerung in Städten. Ein Ende dieser Entwicklung ist bis dato nicht in Sicht, so dass 

bis zum Jahr 2050 bereits ein urbaner Bevölkerungsanteil von 70% prognostiziert wird. Die 

letzten Jahrzehnte wurden von einem dramatischen Bevölkerungswachstum dominiert, 

welches mit einer enormen Landflucht und stetig wachsenden Städten einherging. Die 

Geschwindigkeit und der Umfang des Bevölkerungswachstums, insbesondere in den 

Entwicklungs- und Schwellenländern, stellen nicht nur die betroffenen Länder, sondern auch 

die Weltgemeinschaft vor immense Herausforderungen. Die dramatischsten Tendenzen und 

extremsten Ausprägungen werden dabei in Megastädten verzeichnet. Deren rapides 

Wachstum führt zu unkontrollierten Entwicklungsprozessen und Fragmentierung, was 

meistens mit ausgeprägter Armut, sozialen Ungleichmäßigkeiten, sozial-räumlicher sowie 

politischer Zersplitterung und Umweltbelastungen einhergeht. Die resultierenden 

Erfordernisse der Bevölkerung überfordern zudem schlicht die vorhandenen 

Umgebungsbedingungen. In der Mehrheit der Megastädte lässt sich ein drastisches 

Wachstum von informellen Strukturen beobachten. In Konsequenz entstehen informelle 

Siedlungen (sog. Slums), welche sich durch eine besonders hohe Bevölkerungsdichte, 

besonders dynamische Prozesse sowie soziale Ausgrenzung charakterisieren. Informelle 

Siedlungen sind schnell zu den offensichtlichsten und dramatischsten Erscheinungsbildern 

urbaner Armut geworden.   

Aufgrund der hohen Dynamik, der Komplexität und der enormen räumlichen Ausdehnung 

von Megastädten stehen den städtischen Verwaltungen oftmals nur unzureichende oder gar 

keine Daten zur Verfügung, um über die Tendenz und die Dimension des urbanen 

Wachstums und die Veränderung des urbanen Raums ausreichend informiert zu sein. Der 

Umfang und die Qualität der Informationen über die Lebensverhältnisse der dortigen 
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Bevölkerung sind demzufolge sehr limitiert, unvollständig und nicht aktuell. Traditionelle 

Methoden wie statistische oder regionale Analysen und Untersuchungen vor Ort sind solchen 

Dimensionen der Stadtentwicklung nicht mehr gewachsen. Neue Datenquellen und 

Beobachtungsmethoden werden benötigt, um eine aktuelle Datenbasis zu erhalten. Zudem 

müssen neue stadtplanerische Strategien entworfen werden, um nachhaltige Entwicklungen 

zu ermöglichen und Planungsprozesse in komplexen urbanen Räumen zu vereinfachen. 

Diese Arbeit soll eben diese Problematik aufgreifen und einen Beitrag zur Entwicklung 

adequater Beobachtungsmethoden für sich schnell verändernde megaurbane Räume leisten. 

Zu diesem Zweck wird eine Methodik entwickelt, die den Mangel an sozio-ökonomischen 

Daten kompensieren und verwertbare Informationen über die Lebensbedingungen der 

Bewohner von Megastädten ableiten soll. Weder sozialwissenschaftliche Methoden alleine, 

noch der alleinige Einsatz von Fernerkundung kann das Problem der mangelhaften und 

veralteten Datenbasis lösen. Konventionelle sozial-wissenschaftliche Methoden können mit 

der enormen Entwicklungsgeschwindigkeit und dem starken Wachstum nicht Stand halten, 

da sie zu arbeits-, zeit- und kostenintensiv sind. Die Fernerkundung wiederum lässt in ihrer 

rein physikalischen Ausprägung keine direkten Rückschlüsse auf sozio-ökonomische Daten 

zu. 

Das primäre Ziel dieser Arbeit ist daher die Entwicklung eines integrativen Ansatzes, der eine 

Brücke zwischen Fernerkundung und Sozialwissenschaften schlägt, um verwertbare 

Informationen über die Lebensbedingungen der Einwohner einer Megastadt, im vorliegenden 

Fall der Bewohner Delhis, ableiten zu können. Diese Dissertation bewegt sich folglich in 

einem disziplinübergreifenden Forschungsfeld zwischen Fernerkundung, urbanem Raum und 

Sozialwissenschaft. 

Indiens rasant wachsende Hauptstadt Delhi, mittlerweile mit 25 Millionen Einwohnern die 

zweitgrößte Stadt der Welt, stellt ein Paradebeispiel für eine Megastadt dar. Seit der zweiten 

Hälfte des 20. Jahrhunderts hat sich Delhi von einer bescheidenen Stadt, hauptsächlich 

durch Handel und Verwaltungsfunktionen geprägt, zu einer komplexen Metropole mit einem 

starken sozialen Gefälle entwickelt. Auch hier sind die Qualität und die Verfügbarkeit von 

sozio-ökonomischen Daten mangelhaft und folglich auch die Informationen über die 

Lebensumstände der Einwohner unzureichend und veraltet. Vor diesem Hintergund stellt 

Delhi ein ideales Untersuchungsgebiet für diese Studie dar. 

Mit dem Ziel Informationen über die Lebensbedingungen in den verschiedenen Siedlungs-

typen innerhalb Delhis abzuleiten, wurde eine Methodik zur Untersuchung des städtischen 

Raums der Metropole entwickelt und getestet. Um die Identifikation verschiedener 

Siedlungstypen innerhalb des Stadtgebiets zu ermöglichen, wurde ein semi-automatischer 

objekt-orientierter Klassifikationsansatz implementiert. Dem konzeptionellen Rahmen der 

Gesamtarbeit treu bleibend, wurde auch die Klassifikationsmethode zunächst auf einer 
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kleineren repräsentativen Trainingsfläche entwickelt und anschließend auf größere 

Testgebiete innerhalb Delhis angewandt.  

Der objekt-orientierte Klassifikationsansatz der höchstaufgelösten Satellitendaten des 

QuickBird-Sensors ermöglicht die Identifikation verschiedener urbaner Landbedeckungs-

klassen innerhalb des Stadtgebiets von Delhi. Im Fokus der Datenanalyse steht jedoch die 

Identifikation von verschiedenen Siedlungstypen und von informellen Siedlungen im 

Besonderen. Die Ergebnisse dieser Studie zeigen, dass die entwickelte Methode in der Lage 

ist, basierend auf Dichteklassen, verschiedene Siedlungstypen zu identifizieren und 

informelle Siedlungen auszuweisen, welche mega-urbane Risikogebiete und somit 

Wohngebiete mit potenziell gefährdeten Bewohnern darstellen. Die aus den Fernerkun-

dungsdaten abgeleiteten Landbedeckungsklassen stellen dabei die Grundlage für den 

integrativen Analyseansatz dar und formen somit die grundlegende Basis für die Ableitung 

sozio-ökonomischer Attribute aus Fernerkundungsdaten. 

Zu diesem Zweck wurden auf Basis der klassifizierten QuickBird-Daten Siedlungseigen-

schaften wie Siedlungsfläche, durchschnittliche Gebäudegröße und Anzahl der Häuser 

bestimmt und dazu verwendet, räumliche Informationen über die Bevölkerungsverteilung 

abzuleiten. In einem nächsten Schritt wurden die aus den Satellitenbildern abgeleiteten 

Informationen mit sozio-ökonomischen In-situ Informationen (z.B. Familiengröße, durch-

schnittlicher Wasserverbrauch pro Einwohner/Familie) kombiniert. Diese In-situ Daten 

stammen aus georeferenzierten Fragebögen, die während zweier Befragungen vor Ort in 

Delhi erhoben wurden. Die kombinierten Daten ermöglichen schließlich die Charakterisierung 

eines bestimmten Siedlungstyps hinsichtlich spezifischer bevölkerungs- und wasserrelevanter 

Parameter (z.B. Bevölkerungsdichte, Gesamtwasserverbrauch). Mit diesem integrativen 

Ansatz könnte ein Katalog zusammengestellt werden, der die Lebensbedingungen der 

Bewohner Delhi´s in den jeweiligen Siedlungsstrukturen umfasst – und zwar auf schnelle, 

großräumige, kosteneffektive, zufällig oder regelmäßig wiederholbare Weise mit einer relativ 

kleinen erforderlichen Datenbasis. Die kombinierte Anwendung von Fernerkundungs- und 

sozio-ökonomischen Daten ermöglicht somit die Kartierung, Erfassung und Charakterisierung 

der sozio-ökonomischen Strukturen und Dynamiken innerhalb der Megastadt Delhi. Des 

Weiteren wird mittels Fernerkundung eine Basis für das Monitoring der Megastadt Delhi oder 

ausgewählter Gebiete innerhalb der Stadt geschaffen. Die Möglichkeit den Zustand einer 

Megastadt zu erfassen und ihre generelle Entwicklung zu überwachen, befähigt die 

verantwortlichen Personen negative Trends frühzeitig zu erkennen und aus der Perspektive 

der Stadtplanung entsprechend intervenieren als auch einer nicht-adequaten Versorgung der 

Bewohner unterschiedlicher Stadtviertel, v.a. den Bewohnern der informellen Siedlungen, 

entgegensteuern zu können. 

Diese Studie soll als ein erster Schritt zur Entwicklung einer Methode verstanden werden, die 

die Identifizierung und das Verständnis unterschiedlicher Ausprägungen, Akteure und 
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Prozesse von Urbanisierung in Megastädten ermöglicht. Die Stadtplanungsbehörden und das 

verantwortliche Management können dabei unterstützt werden, sich aktiv für eine nach-

haltigere Stadtentwicklung einzusetzen, was im Erfolgsfall wiederum den Stellenwert der 

urbanen Fernerkundung anwachsen lassen wird. In dieser Hinsicht sind einerseits die 

Behörden und Stadtplaner die Nutznießer der entwickelten Methode. Andererseits profitieren 

aber auch, was möglicherweise eigentlich das wichtigere Ziel ist, die Bewohner der 

betroffenen Siedlungsgebiete selbst, deren Lebensbedingungen fortan überwacht und 

folglich auch positiv beeinflusst werden können. Nur wenn das städtische Monitoring schnell 

und kostengünstig und darüber hinaus leicht zugänglich ist, wird es von den zuständigen 

Behörden akzeptiert und dementsprechend auch angewendet werden. Dies wiederum 

ermöglicht es den Ärmsten der Gesellschaft, zumindest theoretisch, die Unterstützung zu 

bekommen die sie dringend benötigen.  

Alles in allem sind die aufgeführten Vorteile sehr vielversprechend und untermauern das 

Potenzial des interdisziplinären Einsatzes von Fernerkungsdaten und sozio-ökonomischen 

Daten in der Megastadtforschung. 
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Chapter 1 

Introduction 

In contrast to the last century where the majority of people used to live in rural areas, at 

present more than half of the world population lives in urban settlements. By 2014, already 

3.9 billion people were living in cities. The total amount of urban residents may even reach 

70 percent by 2050. In addition to that, the United Nations (UN) estimates that about 90 

percent of the future population growth will take place in cities. Future prospects moreover 

predict that, as in the last few decades, the majority of this growth will be registered in the 

urban areas of the developing countries (KÖTTER 2004, PLANETEARTH 2005, UN-HABITAT 2003a 

2006 and 2014, TURKSTRA & RAITHELHUBER 2004). The enormous dimension of the urban 

growth is a fundamental component of the Global Change and turns the urbanization into 

one of the crucial future key challenges of the world population. Hence, the 21st century can 

be called the century of the cities and of urbanization. 

The urbanzitation process has resulted in fundamental changes to the environment and 

to the social structure. This process by itself however does not cause a problem yet. In 

theory, as well as in popular opinion, cities do offer positive potentials for employment, 

education, services and the expectation of sufficient health care. But, in fact, the chances 

and risks are distributed in an extremely unbalanced way. There is no other place, where the 

contrast between rich and poor is more striking. The chances for prosperity, development 

and wealth are only in reach for a minority of the urban population (HEINRICHS 2010). The 

urban growth is becoming more and more problematic the less successful this rapid and 

today mostly unplanned process can be managed in terms of structural planning, public 

infrastructure development and limiting the social, economic and ecologic impact of the 
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urbanization to reasonable dimensions (KEINER & SCHMID 2003). Hence, the explosive 

dynamic and the dramatic dimension of the urbanization often overstrain sustainable 

development strategies for urban areas. This situation is being exacerbated by an almost 

complete lack of planning or preparation of urban growth in most parts of the world. Not 

least a lack of knowledge about the spatial distribution of the (population) growth impedes 

concrete measures and hence involves overflowing, unplanned and therefore uncontrolled 

local urban growth (HEINRICHS & KABISCH 2006). This development is often associated with a 

rapid increase in social inequality and pronounced poverty, as well as population demands, 

socio-spatial and political fragmentation, and environmental degradation that outstrip 

environmental service capacity (such as waste disposal and treatment as well as drinking 

water and sanitation) (PLANETEARTH 2005, Kraas 2005, UN-HABITAT 2006, UN 2003a). These 

severe risks of course predominantly affect the already poorest of the urban population 

living in the so called informal settlements. 

The everlasting growth of the mega cities is maybe the most obvious indicator for a 

global urbanization process (HEINRICHS 2010). In this context, the strongest trends and the 

most extreme dimensions of the urbanization process can be observed within mega cities, 

with consequences on regional and global scale which can hardly be foreseen by today 

(HEINRICHS & KABISCH 2006). Mega cities are more than just large agglomerations. In rapidly 

urbanizing regions they are also foci of global risk and hot spots of demographic and socio-

economic dynamics. Their rapid growth results in uncontrolled processes of fragmentation 

which counteracts governance and steering. In most of the mega cities that have grown to 

unprecedented size, the pace of urbanization has far exceeded the growth of necessary 

infrastructure and services. As a result, for the majority of the mega cities a tremendous 

increase of informal structures and processes has to be observed. Hence, an increasing 

number of urban dwellers are facing insufficient basic infrastructure, substandard housing, 

overcrowding and unhealthy living conditions (KRAFFT ET AL. 2003, TURKSTRA & RAITHELHUBER 

2004). Recent research has shown that almost one billion people, or 32 percent of the 

world’s urban population, are living in informal settlements, the majority of them in the 

developing world. The locus of global poverty is moving to the cities, a process now 

recognized as the “urbanization of poverty” (UN-HABITAT 2003b). Hence, the identification, 

observation and analysis of such “hot spots” of urban challenges is of special importance in 

planning strategy (PLANETEARTH 2005). 

Urban decision makers are confronted with a challenging environment. “To be able to 

conduct a policy aimed towards sustainable regional development, they require up to date 

information, supplied by efficient data-extraction systems that support their decision making 

process” (VAN DE VOORDE 2004). Due to the extreme dynamics, the high complexity and huge 

spatial dimension of mega cities, urban administrations often only have an obsolete or not 
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even existing data basis available to be at all informed about developments, trends and 

dimensions of urban growth and change. Against this background, traditional methods such 

as statistical and regional analyses or fieldwork are limited to capture the urban process. 

New data sources and monitoring methodologies as well as planning strategies are required 

in order to provide an up to date information basis and thus to enable sustainable develop-

ments and to simplify planning processes in complex urban structures (KÖTTER 2004). In this 

regard, remote sensing represents an area-wide und up to date alternative to conventional 

data acquisition methods. Using satellite-based earth observation technique it is possible to 

derive urban related information with a high spatial and temporal resolution. Especially very 

high resolution (VHR) satellites (such as QuickBird, IKONOS or World View-1) can 

significantly support the detection and surveillance of urban development and do implicitly 

contain a rich source of useful information for urban managers and planners (VAN DE VOORDE 

2004). 

The relevance of the application of remotely sensed image data within urban areas with 

the aim to examine socio-economic questions needs to be particularized though. There are 

great differences between urban areas in more developed and less developed countries in 

the potential, applicability and need of remote sensing data and the capacity for integration 

of remote sensing with socio-economic data (MILLER & SMALL 2003). In the majority of cases 

there are almost no or only incomplete datasets available in the less developed countries. 

Particularly mega cities in less developed countries like Dhaka, Jakarta, Lagos or Delhi are 

data poor environments. In agglomerations like these, hardly any or no profound knowledge 

about development and growth of the city is available. Temporal resolution, spatial coverage 

and quality of administrative and socio-economic data are insufficient and the knowledge 

about the living conditions of the residents is correspondingly very limited, incomplete and 

not up to date. In contrast to this, the data basis in the more developed countries is much 

better. Mega cities like Tokyo or New York are data rich environments. In the (mega) cities 

of Europe (e.g., London) or other more developed regions, the living conditions of its 

residents are more or less well known and due to the comparably high living standard, a 

surveillance and examination appears not really to be required.  

Delhi, as India’s fast growing capital, with an estimated number of inhabitants of almost 

25 million in 2014, where a decrease of the population growth is even after 60 years of a 

continuous increase in population not expected in the near future, represents a prime 

example for a mega city (BRONGER 2004, UN 2014). Since the second half of the 20th century, 

Delhi has been transformed from a modest town with mainly administrative and trade-

related functions to a complex metropolis with a steep socio-economic gradient (KRAFFT 

2001). As described above in general, politicians and planners here are as well hardly or not 

at all equipped with profound knowledge about development and growth of their city. The 
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quality and amount of administrative and socio-economic data are poor and the knowledge 

about the living conditions of Delhi’s residents is correspondingly insufficient and out-dated. 

With Delhi’s present situation, the extreme and obviously visible contrast between different 

settlements within the urban area and the corresponding highly diverging living conditions of 

their residents, Delhi appears to be a well suitable test site for this research objective. 

This work is established in the overlapping range of the research topics remote sensing, 

urban areas and social science. Already this set-up shows a paradigm shift within the science 

from isolated research tasks of single disciplines to an interdisciplinary and integrated 

approach. This interdisciplinarity represents one of the central aspects of this study itself and 

of the research initiative which this work is embedded in. 

In the following, the specific research objectives, the corresponding research questions, 

as well as the working hypotheses, which will be addressed in this study, are presented. 

1.1 Research Objectives 

Resuming the above explanations, it can be concluded that due to the high dynamic within 

the mega cities of today’s world, their development cannot be captured and monitored 

quickly and precisely enough any more with conventional methods. In order to make a 

controlled planning process within these complex urban structures possible, new observation 

instruments and methods are required, which are capable to deliver relevant and up to date 

information. This requires the consideration of appropriate earth observation data together 

with the development of new methods and procedures for its analysis and interpretation. 

While the specific aim of this thesis is the development of a method to derive socio-

economic information from remotely sensed data in a mega urban area, there is of course a 

greater context. With an integrative approach, embedding as well social science as the 

physical discipline of remote sensing, a method shall be developed, that allows for supplying 

the persons in charge with important and up to date data of the development and conditions 

of mega urban areas within their responsibility. This in turn shall put the decision makers 

into a position being able to step into action to help the poorest and most heavily affected of 

today’s civilization changes. 

In order to implement this interdisciplinary approach, first of all one very basic question 

needs to be answered. How can these two disciplines – remote sensing and social science − 

be combined and which is the linking element that can be used? In other words, where is 

the link between the individual living conditions of the inhabitants within the mega city and 

remote sensing (images) – where is the link between people and pixels? 
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The field of investigation of social scientists regarding urban areas comprises basically 

socio-economic variables such as health care, birthrate, water supply or disposal, 

educational background etc. (cf. Figure 1-1). These variables, which decisively characterize 

and influence the life and the living conditions of the inhabitants, are not directly visible from 

outside. From the perspective of social science, the idea of this study is that the individual 

living conditions of the inhabitants are reflected in the structure of their settlement within 

the mega city. This means that attributes as for example building size and density, quality of 

the road network or the fraction of vegetation are in a certain way related to the living 

standard of the inhabitants. 

 

Figure 1-1: Conceptual framework of the research. 

From the perspective of physical science, on the other hand, remote sensing can 

provide data for various visible attributes associated with human activity in urban areas — 

first and foremost the environmental impacts of diverse social, demographic or economical 

processes. Surveillance and monitoring of land cover for example can visualize the 

fingermarks of urbanization. Moreover, remote sensing images can provide a number of 

further indicators which can be linked with social science studies. For example spatial 

parameters such as building size, building density and materials as well as sealing degree or 

vegetation fraction can be detected and monitored (cf. Figure 1.1). All these spatial 

characteristics are part of the settlement structure or respectively define in their specific 
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combination a certain settlement type. This specific settlement type in turn, can as a whole 

be visualized by remote sensing. 

Considering the described coherences, the settlement structure appears to be the 

missing link between remote sensing and social science regarding urban areas. Therefore it 

is postulated in this study, that it is possible to derive information about the living conditions 

of the people by analyzing remote sensing images of their urban living environment. 

Based on the explanations above the reasearch presented in this dissertation aims to 

examine the following working hypotheses: 

 The living conditions of the residents are reflected in the settlement structure 

of mega cities.  

 The settlement structures of mega cities are reflected in remote sensing 

images.  

 Remote sensing provides the opportunity to detect, observe and assess 

complex spatial patterns of urban structures.  

 The settlement structure acts as an interface between remote sensing and 

social science in mega city research.  

 It is possible by means of remote sensing data (and by including socio-

economic data) to reveal information about the living conditions of urban 

dwellers. 

 Remote sensing has the potential to be used as “social measuring 

instrument”. 

 

To verify the correctness of the hypotheses established above and to corroborate the 

validity of the approach, the primary research questions, which have to be answered within 

this study therefore, are: 

 How are the inhabitants of the mega cities? 

 How are the living conditions of the residents? 

 Do the living conditions visibly affect the settlement structures within mega 

cities? 

 Is it possible to identify settlements within a mega city by analyzing remote 

sensing data where the living conditions are particularly poor and where 

therefore is direct need for action? 
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 Is remote sensing able to be a “social measuring instrument”? 

 

Out of the context of the investigations additional questions arise that are examined and 

discussed within this thesis as well: 

 How can remote sensing improve the current spatial and socio-economic data 

basis of mega cities? 

 How big is the potential of remote sensing in the field of mega city research? 

What is possible?  

 Where are the limitations of the use of remote sensing data to respond to 

socio-economic questions in mega urban areas?  

 What can remote sensing do for social science and especially for urban 

studies? 

 And what can social science do for urban remote sensing? 

1.2 Thesis Outline 

Based on the research questions and hypotheses mentioned above, the basic facts, 

concepts, methods, results and evaluations are structured in this research as follows: 

Chapter 2 covers the general issue of the global urbanization process. It is the aim to 

give an overview over the past developments as well as the specific current processes, 

phenomena, impacts and challenges of urbanization. The focus here is put on the one hand 

on the structural threats, which arise out of a too dynamic and uncontrolled urbanization 

process. On the other hand, this chapter is describing the direct social effects on the 

inhabitants and thus on their living conditions. Mega cities are the most extreme phenomena 

of the world-wide urbanization process and are therefore hot spots of demographic and 

socio-economic dynamics. 

An introduction into the current status of research in the field of remote sensing of 

urban areas is given in chapter 3. The key attributes of the urban environment are 

identified, and the capability of remote sensing technologies to measure these attributes is 

specified. In this context, the wide field of application of remote sensing data in urban 

environments is outlined. In the following, the technical enhancements of remote sensing 

sensors and their characteristics are described together with the methodological 

developments and the resulting impacts on urban remote sensing. The chapter illustrates 
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moreover the possibility of integrating social science and remote sensing, which is a key 

intention of the approach developed within this study. An interim conclusion is closing this 

chapter and forms a basis for the objectives and investigations presented in this work. 

The study area of this research, the mega city of Delhi, India, is introduced in chapter 4. 

Starting with general background information on the urban development, the population 

growth and the resulting implications, this chapter explains the selection of suitable test sites 

within the urban area of Delhi. 

A summary of all the data used in the present work is provided in chapter 5. This 

includes on the one hand the remote sensing data processed and analyzed. But also the 

required pre-processing of the satellite data is explained here. On the other hand this 

chapter introduces the primary data of the household survey conducted in-situ in the mega 

city of Delhi. The execution of the sampling is subjected to a short review and is discussed 

critically. During the field campaign additional information was gathered through personal 

observation techniques, mapping and ground truthing. The corresponding data base 

generated is described at the end of this chapter. 

Chapter 6 presents an overview of the study workflow and the conceptual framework of 

the thesis (cf. Figure 6-1). It is postulated within this study, that the settlement structure 

can be considered as the central link between remote sensing and social science in the 

urban environment. Hence, starting with the segmentation of the image data and the object-

oriented classification of land cover, this chapter is describing the classification methodology 

to identify different settlement types within the research environment in general and of 

informal settlements in particular. The developed classification approach is implemented into 

the Software eCognitionTM (BAATZ ET AL. 2004) and is designed on the one hand to achieve a 

high precision and on the other hand to allow for an easy transferability of the (semi-) 

automated method to other test sites within Delhi. Within this chapter moreover, an 

integrative method to analyze urban areas is developed, which is used to investigate 

whether VHR remote sensing data can provide settlement characteristics in order to derive 

in combination with socio-economic data information on the living conditions of the urban 

residents. Hence one of the key questions of this thesis is examined, whether remote 

sensing can be a social measuring tool. 

In chapter 7, the results of the object-based image data analysis are presented. This 

includes both, the outcome of the segmentation process as well as the deliverables of the 

object-oriented classification approach. The classification results represent the information 

basis for the determination of urban settlement structures within the complex urban area of 

the mega city of Delhi. At the same time the results of the image data analysis form the 
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basis for the derivation of physical settlement parameters presented in chapter 8. Hence, the 

quality of the land cover classification is already of decisive importance for the following 

investigation of the urban environment of Delhi. The section involves therefore a quality 

assessment of the classification results. The chapter closes with a summary and a critical 

survey of the classification results. 

The integrative use of remote sensing derived information and socio-economic data is in 

the focus of chapter 8. Based on the classification results of the satellite imagery (chapter 

7.2) the different identified settlement types of Delhi, in combination with the questionnaire 

data, are characterized and the specific living conditions are evaluated. The investigations of 

this chapter aim to deliver answers to the key questions raised in the introduction and the 

additional potentials of the developed integrative analysis in comparison to the conventional 

methods are elaborated. For this purpose the results of the integrative analysis are being 

summarized and evaluated, and are beheld in a greater context, as well as the benefits of 

this method are presented. Critical aspects are identified and collected, and are as well 

included in the examination and appraisal of the developed integrative analysis method. The 

chapter is subdivided into the presentation of the results, a validation part as well as a 

summary and appraisal of the combined use of remotely sensed imagery and socio-

economic data. 

In chapter 9 a conclusion summarizes the most important results of the study. The 

fundamental working hypotheses postulated in the beginning of the study are recapitulated 

and their validity is discussed. The potentials of remote sensing for the developed 

(integrative) approach in particular as well as for the mapping, capturing and characterizing 

of the socio-economic structures and dynamics within a mega city like Delhi in general are 

appraised. An outlook on the perspectives of urban remote sensing research and the linking 

of remote sensing and social science to be investigated in the future is closing this thesis. 



Chapter 2 

Urbanization and Mega Cities: The 
Challenge of the 21st Century 

“The growth of cities will be the single influence on development in the 21st century.” 

(Opening words of the UNFPA’s 1996 State of World Population Report) 

Over the last five decades, the world experienced a dramatic growth of its urban population. 

The speed and the scale of this growth, particularly in the so called less developed regions, 

are continuing to pose tremendous challenges to the countries concerned as well as to the 

world community. “Monitoring these developments and creating sustainable urban 

environments remain crucial issues on the international development agenda” (UN 2004). 

Especially, mega cities are subject to various 

dynamics of Global Change — understood as 

global environmental change as well as global 

socio-economic and political change (GOUDIE 

2005, JOHNSTON ET AL. 2002). At the same time, 

mega cities vice versa affect the Global Change 

by their immense development dynamic. Thus, 

the dynamics and complexity of the processes 

observed in mega cities as well as their global 

economic, social, and spatial effects form one of 

the greatest current challenges (KRAAS & 

NITSCHKE 2006, KRAAS 2007c). The United Nations 
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Environment Programme (UNEP) noted that “managing the urban environment sustainability 

will become […] one of the major challenges for the future” (UNEP 2002). 

Against this background, the following chapter shall give an overview over the past 

developments as well as the specific current processes, phenomena and problems of the 

urbanization. 

2.1 Urbanization and Global Change: Current Trends 

Urbanization as a social phenomenon and the physical transformation of landscapes is 

currently one of the most dramatic global changes. Its speed, scale and global connected-

ness turn the urban habitat, particularly in mega cities and large agglomerations, into both a 

space of risk and a space of opportunity (PLANETEARTH 2005).  

Between 2007 and 2050, the world´s total population is expected by the UN to increase 

by 2.5 billion; passing from 6.7 billion to 9.2 billion (UN 2008b & UN-HABITAT 2013) (cf. 

Figure 2-1). At the same time, the population living in urban areas is projected to gain 3.1 

billion, passing from 3.3 billion in 2007 to 6.4 billion in 2050 (cf. Figure 2-2 and Table 2-1). 

This means that the world´s urban population continues to grow faster than the total 

population of the world.  

  

Figure 2-1: Global population growth: 1950 – 2050 (Data sources: UN World Population Prospects: The 2006 
Revision, UN World Urbanization Prospects: The 2007 Revision and UN- HABITAT Global Report on Human 
Settlements 2013). 

In 1950, only 30 percent of the world´s population resided in urban settlements. 

Someday in 2007, the world population reached a historical landmark: for the first time in 

history the urban population has equalled the rural population of the world and, from then 

on, the world will be inhabitated by more urban dwellers than rural ones. By 2030 already 

60 percent and by 2050 even 70 percent of humankind is projected to be urban (Figure 2-2 

and Table 2-1). The United Nations (UN) estimates that about 90 percent of future 
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population growth will take place in cities1 (PLANETEARTH 2005, TURKSTRA & RAITHELHUBER 

2004, KÖTTER 2004, UN 2004 & 2008a, UN-HABITAT 2013). 

 

Figure 2-2: Urban and rural populations of the world: 1950 – 2050 (Data sources: UN World Population Prospects: 
The 2006 Revision, UN World Urbanization Prospects: The 2007 Revision and UN- HABITAT Global Report on Human 
Settlements 2013). 

Table 2-1: Total, urban and rural populations by development group, selected periods: 1950 – 2050 

Development group 1950 1975 2000 2003 2014 2030 2050 2014 2050

Total population

World………………………….. 2.52 4.07 6.07 6.30 7.24 8.13 9.55 54 66

More developed regions…… 0.81 1.05 1.19 1.20 1.26 1.24 1.30 78 85

Less developed regions…… 1.71 3.02 4.88 5.10 5.98 6.89 8.25 48 63

Urban population

World………………………….. 0.73 1.52 2.86 3.04 3.88 4.94 6.34

More developed regions…… 0.43 0.70 0.88 0.90 0.98 1.01 1.13

Less developed regions…… 0.31 0.81 1.97 2.15 2.9 3.93 5.23

Rural population

World………………………….. 1.79 2.55 3.21 3.26 3.36 3.19 3.21

More developed regions…… 0.39 0.34 0.31 0.31 0.28 0.23 0.19

Less developed regions…… 1.40 2.21 2.90 2.95 3.09 2.96 3.02

0.47

Proportion urban [%]

-0.03

-1.05

0.06

Data source: UN - World Urbanization Prospects: The 2003 & 2014 Revision

Population [billions]

2000 - 2030

Average annual rate of change

0.97

2.29

0.13

1.15

1.83

 

The urbanization levels of different regions of the world are highly divergent. “The 

transformative power of urbanization was felt earlier in today´s more developed regions and 

they have reached high levels of urbanization” (UN 2008a). In the more developed regions, 

in 2007, already 74 percent of the inhabitants lived in cities, whereas in the less developed 

regions only 44 percent of the inhabitants were urban (UN 2008a). Nevertheless, the high 

global urbanization rate is foremost a consequence of rapid urbanization in the last decades 

and especially in the world´s less developed regions (cf. Figure 2-3 and Table 2-1). Also in 

the future the majority of the world´s total population growth between 2000 and 2030 is 

                                        

 
1 While in 1950 only 746 million people lived in urban areas, the urban population reached one billion in 1960, two billion in 1985, 

and crossed the three billion mark in 2002. It is projected to attain 4 billion in 2017 and 5 billion in 2030. (UN2004). 
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expected to be absorbed by the urban areas of the less developed regions. Already by 2017, 

the number of urban dwellers will equal the number of rural dwellers in the less developed 

regions (cf. Figure 2-3) (TURKSTRA & RAITHELHUBER 2004, KÖTTER 2004, UN 2004, 2008b & 

2014, UN-HABITAT 2003a and 2006). “Migration from rural to urban areas and the 

transformation of rural settlements into urban places are important determinants of the high 

urban population growth anticipated in the less developed regions” (UN 2004). By 2050, the 

proportion of urban dwellers in the more developed regions will have increased to 86 

percent and to 67 percent in the less developed regions. All in all, the world population is 

expected to be 70 percent urban in 2050 (UN 2008a, UN 2014). 

 

Figure 2-3: Urban and rural population in more and less developed regions: 1950 – 2050. Almost all of the world’s 
total population growth between 2000 and 2030 is expected to be absorbed by the urban areas of the less 
developed regions. By 2017, the number of urban dwellers will equal the number of rural dwellers in the less 
developed regions. (Data sources: UN World Population Prospects: The 2006 Revision and UN World Urbanization 
Prospects: The 2007 Revision). 

Urban population growth is not only a phenomenon of the less developed regions; it is a 

phenomenon concentrated in Asia and Africa in particular. By 2030, Asia and Africa will each 

have more urban inhabitants than any other major area, with Asia alone accounting for 

more than half of the urban population of the world. Asia and Africa are urbanizing faster 

than any other region of the world and are projected to become 56 and 64 percent urban by 

2050. Just three countries – namely India, China and Nigeria – together are expected to 

account for 37 percent of the projected growth of the world´s urban population between 

2014 and 2050. Solely India is projected to add 404 million urban dwellers within this time 

frame (UN 2004, 2008a, and 2014).  

As mentioned above, the urban areas of the world are expected to absorb all the 

population growth expected over the next decades. Since, at the same time, a considerable 

amount of people living in rural areas actually will migrate into the cities, the world´s rural 

population is expected to reach its peak just in a few years. The rural population is 
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anticipated to decline slightly from 3.3 billion in 2003 to 3.2 billion in 2030 (cf. Figure 2-4). 

Africa and Asia are today home to nearly 90 percent of the world´s rural population (UN 

2004 & 2008a). 

  

Figure 2-4: Urban and rural population of the world: 1950 – 2050. In 1950, urban-dwellers represented only 29 
percent of the global population. The urban proportion grew to 49 percent in 2005 (3.2 billion people). Current 
projections indicate that the 50 percent mark was crossed in 2007 (Data sources: UN World Population Prospects: 
The 2006 Revision and UN World Urbanization Prospects: The 2007 Revision, UN Urban Population, Development 
and the Environment 2007 and UN- HABITAT Global Report on Human Settlements 2013). 

There is great diversity in the characteristics of the world´s urban environments. To this 

effect, today´s 3.9 billion urban dwellers (UN 2013) are distributed unevenly among urban 

settlements of different size. In discussing urbanization, the focus often is on large cities, 

cities whose populations are larger than those of many countries (UN 2008a). In 2007, 19 

urban agglomerations were listed as mega cities with a population of at least 10 million 

inhabitants. “Despite their visibility and dynamism, mega cities account for a small though 

increasing proportion of the world urban population: nearly 9 percent in 2007 and nearly 10 

percent in 2025” (UN 2008a). In contrast to this, at the same time, close to half of the 

world´s urban population live and will continue to live in relatively small settlements of less 

than 500,000 inhabitants (UN 2008a). Whereas several decades ago most of the world´s 

largest urban agglomerations were found in the more developing regions, today´s large 

cities are concentrated in the global South, and the fastest-growing agglomerations are 

medium-sized cities with 500,000 to 1 million inhabitants located in Asia and Africa. 

Since the investigations of this case study are concentrated on the mega city Delhi and 

its inhabitants, the prevalent thesis puts its focus as well on one of the largest cities of the 

world.  In the following chapter the phenomenon “mega city” will be described in detail. 
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2.2 Mega Cities – Definitions and Dimensions 

The term “mega city” generally describes the greatest category of urban agglomerations, 

whereas several definitions are pointed out in the literature. In quantitative terms, mega 

cities are defined to be metropolises with a population of 10 million and more (e.g., UN 

2004, MERTINS 1992), more than 8 million (e.g., FUCHS ET AL. 1994, CHEN & HELIGMAN 1994, 

UN 1987) or more than 5 million inhabitants (e.g., BRONGER 1996 & 2004, FELDBAUER & 

PARNREITER 1997). Moreover, some authors define a minimum population density (> 2,000 

inhabitants/km²) and only include cities with a single dominant centre (BRONGER 1996). 

Thus, polycentric agglomerations, such as the Rhine-Ruhr area in Germany, for example, 

with 12.8 million inhabitants, are excluded whereas in other statistics this polycentric mega-

urban area is included (e.g., UN 2002, 2004). KRAAS (2007b, c) found that, for present 

purposes, using the population threshold of 5 million inhabitants has the advantage of 

including the “emerging mega cities”, especially in the global South and transitional 

economies. Many of these agglomerations are growing extremely fast and will become the 

mega cities of tomorrow. In conclusion any such setting of thresholds for mega cities is 

necessarily subjective and thus open to debate (BRONGER 1994, KRAAS 2007b, c). Further-

more, there is the difficulty of the reliability of up to date population figures given due to 

inconsistent censuses, estimations and projections, as well as of inconsistent spatial 

demarcations for administrative regions. All of these criteria are affecting the reliability and 

are hampering international statistical comparability of urban agglomerations (BRONGER 

1996, KRAAS 2007b). Against these considerations, some authors ask for a more qualitative 

perception as well as a more comprehensive understanding of mega cities as in fact 

functional mega-urban regions (e.g., KRAAS 2007b, c). 

Large urban agglomerations are not solely a phenomenon of the modern age. There 

have already been very large cities, in relation to the territorial total population, in the 

antiquity and in the Middle Ages (e.g., Babylon in Mesopotamia). But in the narrow sense 

mega cities have only started to develop with the industrialization in the 19th century 

(KRÖHNERT 2003). In 1801, London (with 1.1 million inhabitants) has raised up to the first 

metropolis and world city of the modern age at the same time (BRONGER 2004). Around 1900 

London (6.5 million, cf. Table 2-2) was still the largest city of the world. While in the 1950s 

there were only six (mega) cities (Tokyo, New York, London, Shanghai, Paris and Moscow), 

four of six in industrialized countries, with a population greater than 5 million (BRONGER 

2004), by 1975 this number rose to already 21 and even to 42 in 2000 (UN 2004) (cf. Table 

2-2). In the 20th century the mega cities of the industrialized countries, with the exception of 

Tokyo, were characterized only by minor population growth. In London, for example, the 

population decreases since 1940 (KRÖHNERT 2003 and BRONGER 2004). 
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Table 2-2: The most populated cities in the world (1900 – 2000) 

Urban Reference area Population Urban Reference area Population Urban Population Urban Population 

Position agglomeration [km²] [1,000] agglomeration [km²] [1,000] agglomeration [1,000] agglomeration [1,000]

1 London 1,579 6,510 Tokyo 13,138 13,051 Tokyo 26,615 Tokyo 34,450

2 Tokyo 13,138 5,248 New York 10,768 12,736 New York
2 15,880 Mexico City 18,006

3 New York 10,768 4,936 London 1,579 8,197 Shanghai 11,443 New York
2 17,846

4 Paris 2,576 4,187 Shanghai 1,598 6,824 Mexico City 10,690 São Paulo 17,099

5 Berlin 889 2,712 Paris 2,576 6,684 Osaka-Kobe 9,844 Mumbai
1 16,086

6 Osaka-Kobe 2,850 2,025 Moscow 879 5,100 São Paulo 9,614 Calcutta 13,058

7 Chicago 4,926 1,897 Osaka-Kobe 2,850 4,982 Buenos Aires 9,143 Shanghai 12,887

8 Vienna 415 1,662 Buenos Aires 3,880 4,727 Los Angeles 8,926 Buenos Aires 12,583

9 Calcutta 897 1,488 Chicago 4,926 4,714 Paris 8,630 Delhi 12,441

10 St. Petersburg 570 1,439 Calcutta 897 4,589 Beijing 8,545 Los Angeles 11,814

11 Philadelphia … 1,418 Los Angeles 12,561 4,368 Calcutta 7,888 Osaka-Kobe 11,165

12 Mumbai
1 4,355 1,260 Mumbai

1 4,355 3,800 Moscow 7,623 Jakarta 11,018

13 Manchester 1,287 1,255 Berlin 889 3,707 Rio de Janeiro 7,557 Rio de Janeiro 10,839

14 Birmingham 899 1,248 Philadelphia … 3,548 London 7,546 Beijing 10,803

15 Moscow 879 1,120 Mexico City 4,607 3,348 Mumbai
1 7,347 Cairo 10,398

1
Bombay, 

2
New York-Newark area

Data sources: *BRONGER 2004, **UN - World Urbanization Prospects: The 2003 Revision

2000**1900* 1950* 1975**

 

In contrast to this, the population growth has proceeded much more dynamically in the 

cities located in the so called Third World. Since the end of World War II mega cities have 

developed almost exclusively in less developed regions (cf. Table 2-3 and Table 2-4) 

(KRÖHNERT 2003, UN 2004). Currently, most of the world’s mega cities are located in 

developing countries (UN 2004, 2014) (cf. Figure 2-5). COY & KRAAS (2003) speak even about 

more than two-thirds of the mega cities which are located in developing countries, most of 

them in East and South Asia.  

 

Figure 2-5: Percentage urban and location of urban agglomerations with at least 500,000 inhabitants in 2014 
(Source: UNITED NATIONS, World Urbanization Prospects: The 2014 Revision) (For a time series illustrating the 
world´s urbanization process between 1970 and 2030 please see A.1 in the Appendix).  

In 2003, 33 (of the 46) (mega) cities with 5 million inhabitants or more were in less 

developed countries, and by 2015, 45 (out of such 61) cities are expected to be from the 

more less developed regions (UN 2004). In some mega cities the population figures have 

increased dramatically over the last decades of the 20th century (1975 – 2000). 

Representative examples are: Mexico City (10.7 – 18.1 million), Jakarta (4.8 – 11.0 million), 

Karachi (4.0 – 10.0 million), Istanbul (3.6 – 8.7 million), Mumbai (Bombay) (7.3 – 16.1 

million) or the city of Delhi (4.4 – 12.4 million). In Lagos (1.9 – 8.7 million) and Dhaka (2.2 – 
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10.6 million) the population amount has even quintupled within the same period (UN 2004) 

(cf. Table 2-2 and Table 2-4).  

Table 2-3: Urbanization in the 20th century 

Year IC DC Σ IC DC Σ IC DC Σ

1900 3 − 3 − − − 3 − 3

1920 4 − 4 − − − 4 − 4

1940 2 − 2 2 − 2 4 − 4

1950 4 2 6 2 − 2 6 1 7

1960 6 5 11 2 − 2 8 5 13

1970 6 10 16 2 − 2 8 10 18

1980 6 13 19 3 4 7 9 17 26

1990 7 16 23 4 9 13 11 25 36

IC: Industrialized Countries, DC: Developing Countries 

Data source: BRONGER 1996

Total> 5 Mio. > 10 Mio.

 

The highest growth rates, with over five percent annual increase in population,were 

recorded in the mega cities of the developing countries during the fifties and sixties of the 

last century. Although the population of these cities increases further, the rate of growth 

declines slowly since that time. For the future for almost all of these agglomerations a 

further decline of the growth rates is predicted (KRÖHNERT 2003, UN 2004). 

According to the “World Urbanization Prospects” of the UN (2004) the number of (mega) 

cities with 5 million inhabitants or more is projected to increase from 46 in 2003 to 61 in 

2015 worldwide (cf. Figure 2-5). Hence, approximately 600 million people will be living in 

these megalopolises. Among these, the number of urban agglomerations with 10 million 

inhabitants or more is projected to increase from 19 in 2007 to 41 in 2030 (UN 2004, UN 

2008a). 

With 35million inhabitants in 2003, Tokyo is by far the most populous urban 

agglomeration in the world. The second largest agglomeration is Mexico City, followed by 

New York, São Paulo and Mumbai (Bombay). In 2030, Tokyo is projected to remain the 

world´s largest urban agglomeration with 37 million inhabitants, followed by Delhi where the 

population grew extremely fast and has reached 25 million inhabitants already in 2014 and 

is projected to rise on swiftly to 36 million in 2030 (cf. Table 2-4) (UN 2004 & 2014).  

In qualitative terms, mega cities are characterized by — in principle with differences 

between such in more developed and developed regions — intensive processes of 

expansion, suburbanization and concentration, functional primacy, infrastructural, social, 

economical and ecological overload the development of polarized and fragmented societies 

as well as the increasing loss of control and governance at growing informality. The next 

paragraph will go into more detail of the qualitative features of mega cities as well as the 

effects and impacts of the urbanization process. 



Urbanization and Mega Cities: The Challenge of the 21st Century 

 

18 

Table 2-4: Urban agglomerations with 10 million inhabitants or more in 2000, 2003, 2014 and 2030 

Urban Population Urban Population Urban Population Urban Population 

Position agglomeration [millions] agglomeration [millions] agglomeration [millions] agglomeration [millions]

1 Tokyo, Japan 34.4 Tokyo 35.0 Tokyo 37.8 Tokyo 37.2

2 Mexico City, Mexico 18.1 Mexiko City 18.7 Delhi 25.0 Delhi 36.0

3 New York, USA
1 17.8 New York

1 18.3 Shanghai 23.0 Shanghai 30.8

4 São Paulo, Brazilia 17.1 São Paulo 17.9 Mexiko City 20.8 Mumbai 27.8

5 Mumbai, India 16.1 Mumbai 17.4 São Paulo 20.8 Beijing 27.7

6 Calcutta, India 13.1 Delhi 14.1 Mumbai 20.7 Dhaka 27.4

7 Shanghai, China 12.9 Calcutta 13.8 Osaka 20.1 Karachi 24.8

8 Buenos Aires, Argentina 12.6 Buenos Aires 13.0 Beijing 19.5 Cairo 24.5

9 Delhi, India 12.4 Shanghai 12.8 New York
1 18.6 Lagos 24.2

10 Los Angeles, USA
2 11.8 Jakarta 12.3 Cairo 18.4 Mexiko City 23.9

11 Osaka-Kobe, Japan 11.2 Los Angeles
2 12.0 Dhaka 17.0 São Paulo 23.4

12 Jakarta, Indonesia 11.0 Dhaka 11.6 Karachi 16.1 Kinshasa 20.0

13 Rio de Janeiro, Brazilia 10.8 Osaka-Kobe 11.2 Buenos Aires 15.0 Osaka 19.9

14 Beijing, China 10.8 Rio de Janeiro 11.2 Calcutta 14.8 New York
1 19.9

15 Cairo, Egypt 10.4 Karachi 11.1 Istanbul 14.0 Calcutta 19.1

16 Dhaka, Bangladesh 10.2 Beijing 10.8 Chongqing 12.9 Guangzhou, Guangdong17.8

17 Moscow, Russian Federation 10.1 Cairo 10.8 Rio de Janeiro 12.8 Chongqing 17.4

18 Karachi, Pakistan 10.0 Moscow 10.5 Manila 12.8 Buenos Aires 17.0

19 Metro Manila, Philippines 10.0 Metro Manila 10.4 Lagos 12.6 Manila 16.8

20 Lagos, Nigeria 8.7 Lagos 10.1 Los Angeles
2 12.3 Istanbul 16.7

2
 Refers to the Los Angeles - Long Beach - Santa Ana urbanized area.

Data source: UN - World Urbanization Prospects: The 2003 & 2014 Revision

1 
Refers to the New York - Newark urbanized area.

20302000 2003 2014

 

2.3 Effects, Impacts and Challenges of Urbanization and Mega 

Cities 

The present worldwide trend toward urbanization is intimately connected with economic 

development and leads to profound changes in social organization, land use, and patterns of 

human behavior (BETTENCOURT ET AL. 2007, CRANE & KINZING 2005). Central feature of these 

changes is an unprecedented demographic scale, which will lead to important, but yet poorly 

understood impacts on the global environment. Consequently, a major challenge worldwide 

is to understand and predict how changes resulting from urbanization will impact the inter-

actions between the global environment and the human being (UN 2004 and BETTENCOURT ET 

AL. 2007). 

FUCHS ET AL. (1994) emphasize that, “while it is true that mega city development is 

rooted in its specific country or regional context […] mega cities have more in common with 

each other than with their own hinterlands”. Nevertheless, all things considered, clear 

differences in for instance infrastructure quality, social polarization, the level of economic 

development and transformation or governability and political leadership have to be 

recognized and should not be neglected (PLANETEARTH 2005 and KRAAS 2003, 2005 and 

2007b).  

In a superficial view, mega cities are mainly associated with numerous disadvantages. 

Often, they are solely perceived as sources of diverse problems as well as originators, 

promoters and victims of risks. But they possess likewise several characteristics which can 

be beneficial for a positive development (KRAAS 2007b). Thus, the increasing concentration 
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of people in mega cities presents both opportunities and challenges. Hence, a more 

balanced perception is needed in order to point out both sides of the coin. 

In theory, as well as in popular opinion, mega cities are the incubators of huge growth 

and innovation. They are the focal points of globalization, engines of the economy as well as 

the driving force for development. Mega cities harbor a wide spectrum of human potential 

and skill, creativity and cultural diversity. Moreover, they provide opportunities for education, 

employment, and services as well as an expectation of better health care. Agglomerations of 

this category offer positive potential for global transformation, e.g. minimization of “space 

consumption”, high effectiveness of resources applied as well as efficient disaster prevention 

(BETTENCOURT ET AL. 2007, KÖTTER 2004, KRAAS 2005, MOORE ET AL. 2003 and PLANETEARTH 

2005). 

In fact, mega cities are also foci of global risk. They are increasingly vulnerable systems 

because their rapid and mostly unplanned urban growth is often associated with pronounced 

poverty, social inequality, socio-spatial and political fragmentation (sometimes with extreme 

forms of segregation, disparities and conflicts), environmental degradation and population 

demands that outstrip environmental service capacity (HARDOY ET AL. 2001, MOORE ET AL. 

2003, PLANETEARTH 2005, UN-HABITAT 2006). Mega cities do not only face risks in consequence 

of external events, whether natural or man-made, they likewise contain, produce and 

reinforce hazards (cf. Figure 2-6). Thus, mega cities, affected by the global environmental, 

socio-economic as well as political changes to which they contribute, are both producers and 

victims of risk at the same time (PLANETEARTH 2005, MITCHELL 1999a und 1999b, KRAAS 2007c, 

TRICE 2006). 

 

Figure 2-6: Environmental and man-made hazards — impacts of Global Change (Sources: KRAAS 2003 and 
MITCHELL 1999b, modified). 
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In order to illustrate both sides of the coin, Table 2-5 outlines the problems, risks and 

disadvantages as well as the benefits, chances and advantages accompanying the (mega-) 

urbanization process. This compilation does not make a claim to be complete, but rather 

shall give an impression about the complexity of the possible impacts. 

Table 2-5: Juxtaposition of the impacts of (mega-) urbanization 

▪ Urban expansion, sprawl and fragmented land use pattern ▪ Decreased space consumption (per head)

▪ Pollution of air, water and soil, sewage water problems   partly through high-rise construction

  (insufficient land use planning) ▪ Optimised land use patterns, efficient land use planning

▪ Waste disposal: uncollected, illegal and toxic waste ▪ More efficient use of ressources (water, food, energy etc.)

▪ Expansion in ecologically fragile areas (riversides, coasts, ▪ Sustainable urban agricultural and green space policy

 slopes etc.) arising serious consequences:  ▪ Comprehensive monitoring and management 

 environmental degradation, flooding or land subsidence   of nature-human interactions

▪ Sealing and degradation of fertile soil

▪ Environmental health problems

▪ Insufficient or nonexistent infrastructure ▪ Improvement of infrastructure (water, energy, 

  (water, energy, transport, communication)   transport, communication)

▪ Un- and under-employment ("oversupply of labor") ▪ Increasing income and wealth

▪ Low labor wages and exploitation of labor force ▪ Increasing interaction of all economic sectors

▪ Wide spectrum of informal (uncontrolled, ▪ Growth of productivity

  party illegal) activities ▪ Scientific and technological innovations, growth of creativity

▪ Unaccounted for water and energy flows ▪ Improved welfare systems

▪ Tremendous migration and commuter flows ▪ Less vulnerability, growing resilience and robustness

▪ Human security for all

▪ Loss of social coherence ▪ Growth of community and neighborhood coherence

▪ Reinforcement and spread of socio-economic ▪ Growth of cultural diversity, interaction and exchange

  disparities and social fragmentation ▪ Improved education and health care systems

▪ Decline of access to health system, education ▪ Rising life expectancy

  and security infrastructure ▪ Multi-disaster prepardness

▪ Informal, partly illegal settlements ▪ Growth of social justice

▪ Growing vulnerabiliy in marginalized population groups ▪ Development and strengthening of independent control 

▪ Social injustice, misuse of social power   mechanisms against corruprtion, burbery etc.

▪ Corruption, bribery, conflicts, crime, … ▪ Enhancement of social laws (e.g. housing, labor)

▪ Loss of governability and steering capabilities ▪ Growth of width, depth and availability of information 

▪ Growing informality in decision making processes,   and communication; international connectivity

  self-organization of pubic functions, … ▪ Growth of participation in political decision making processes

▪ Loss of representation of general public ▪ Development and strengthening of civil society institutions

  (e.g. migrants, minorities) ▪ Improvement of governance processes, political coherence 

▪ Incoherent government laws, regulations, rules   and enforcement of laws and regulations

Sources: KRAAS 2007b, KRAAS & NITSCHKE 2006, KÖTTER 2004
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Against this background and with regard to the global socio-economic change, the 

mega cities of the world have to be differentiated in “rich” and “poor” (SCHOLZ 2002). 

Depending on which impacts are predominant, the mega cities can be assigned to the 

respective category. “Rich” mega cities are located in developed and transition countries. As 

examples have to be named for instance Bangalore, Bangkok, Tokyo, Beijing, Shanghai, Los 

Angeles or New York. They are global functional control centers with high-ranking global 

services as well as corporate headquarters which produce for the regional and national, but 

also for the global market. Hence, they profit from the earnings of the international division 

of labor and involvement in global socio-economic and political networks. These mega cities 

can be put on a level with the term “global city”, which have a global cultural, political or 

economic relevance. Thus, many control and command functions of the world system are 
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also located in the richest mega cities (KRAAS 2007c, KRÖHNERT 2003). However, “poor” mega 

cities, as e.g., Dhaka, Lagos or Karachi, can rather completely be assigned to the developing 

countries. Primarily they are the “collecting ponds” for rural migration, with large 

percentages of the population living below the poverty line. In these cities, the production 

and service levels of a wide range of informal activities persist only at regional and national 

scale. Consequently, the mega cities of the developing world play no major role, despite 

their enormous total populations, within the global urban system. It is not becoming 

apparent either at the moment that the mega cities of the developing countries will be able 

to cope better with their economic “peripheral location” and their social problems within the 

next years (KRAAS 2007b and KRÖHNERT 2003). 

Until recently, rural settlements were the epicenter of poverty and human suffering. 

Poverty, however, is today increasing more rapidly in urban than in rural areas but has still 

received far less attention. On this account, the attention in the further course shall be put 

on the development, effects and impacts of this process. Since the assessment of the living 

conditions is in the main focus of this thesis and the same have to be judged as insufficient 

particularly in informal settlements, this topic will be taken up repeatedly in the further 

course of this study. The following section 2.4 will give a description of the increasing 

growth or the spreading of informal settlements as well as the corresponding implications. 

2.4 The Urbanization of Poverty 

“Slum, semi-slum, and superslum…to this has come the evolution of cities.” 

(quoted by Patrick Geddes in MUMFORD 1961) 

According to the UN (2005) an outstanding characteristic of urban population growth in the 

21st century is that it will be composed, to a large extent, of poor people. As a consequence, 

the locus of global poverty is moving to the cities, a process now recognized as the 

“urbanization of poverty” (UN-HABITAT 2003b). 

In most of the mega cities that have grown to unprecedented size, the pace of 

urbanization has far exceeded the growth of necessary infrastructure and services. As a 

consequence, for the majority of the mega cities a tremendous increase of informal 

structures and processes has to be observed (TURKSTRA & RAITHELHUBER 2004). Thus, an 

increasing number of urban dwellers are faced with overcrowding, an insufficient basic 

infrastructure and unhealthy living conditions (KRAFFT ET AL. 2003). The resulting poverty in 

combination with a lack of affordable housing are the driving forces behind the formation of 

informal settlements, which offer solely substandard living conditions to their inhabitants (cf. 

Figure 2-7) (TURKSTRA & RAITHELHUBER 2004). 
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Figure 2-7: Different types of informal housing in Delhi, India (Photographs: S. Smollich, October 2005). 

Recent research has shown that in 2010 almost 830 million people, or about 24 percent 

of the world’s urban population were living in informal settlements (cf. Figure 2-8), the 

majority of them in the developing world (cf. Figure 2-9 and Figure 2-10). If the 

development continues as it is today, the world´s slum population will likely increase by 6 

million annually to reach nearly 900 million by 2020. This figure could easily reach one billion 

by 2030 unless urgent actions are undertaken to improve the living conditions of existing 

slum dwellers and to prevent the formation of new informal settlements (UN-HABITAT 2003b 

and 2012). 

 

Figure 2-8: World’s urban slum population between 1990 and 2020. (Data sources: IEEE Spectrum 2007, UN-
HABITAT 2003b and UN-HABITAT 2012). 
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Figure 2-9: Slum dwellers as a percentage of urban population by region between 1990 and 2012 (Data source: 
UN-HABITAT Global Report on Human Settlements 2003 and UN-HABITAT State of the World´s Cities 2012/2013). 

Informal settlement dwellers of the new millennium are no longer a few thousand in a 

few cities of a rapidly industrializing continent. They include one out of every three city 

dwellers, a sixth of the world’s population (UNFPA 2007, UN-HABITAT 2003a). This figure will 

increase unless persons in charge and development agencies (amongst others) scale up 

their efforts to improve the living conditions of current and future urban dwellers. Until 

today, urban poverty as a topic receives relatively little attention from policy, authorities and 

agencies. However, the recent development shows that this issue attracts public interest and 

therefore, comes more and more into the focus (TURKSTRA & RAITHELHUBER 2004). 

Informal settlements represent those characteristic municipal areas which are subject to 

particularly high dynamics, population density as well as marginalization. They have quickly 

become the most visible expression of urban poverty in developing world cities. The quality 

of dwellings in such settlements varies from the simplest shack to permanent structures, 

while access to water, electricity, sanitation and other basic services and infrastructure is 

usually limited. Nowadays, a variety of equivalent terms for this distinctive type of residential 

area exists, e.g. slum, squatter settlement, low-income community or shanty town. Up to 

the present, there is no internationally accepted definition and all mentioned terms are used 

interchangeably by agencies and authorities. The coverage of settlement types is even more 

complex if the variety of equivalent words in other languages and different geographical 

regions, e.g. favela (Brazil), bustee (India), mabanda (Tanzania), township (South Africa) or 

jhuggi jhompri (India), is considered. Consequently, the problem with measuring informal 

settlements starts with the lack of an agreed definition. Therefore, a first step to identify 

informal settlements and to quantify the population itself is to develop an operational 

definition of the term. 
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According to UN (officially adopted at a meeting in 2002) informal settlements are 

typically addressed as contiguous settlements where the inhabitants are characterized as 

having inadequate housing and basic services. Often they are not recognized and addressed 

by the public authorities as an integral or equal part of the city (UN-HABITAT 2003a). This is 

one of the reasons why the data base of informal settlements and their dwellers is mostly 

insufficient. Moreover, “ […] it is an area which combines to various extents the following 

characteristics: 

 Insecure residential status, 

 Inadequate access to safe water, 

 Inadequate access to sanitation and other infrastructure, 

 Poor structural quality of housing, and 

 Overcrowding” (UN-HABITAT 2003a). 

Other similar definitions are provided in many policy documents, for instance the Cities 

Alliance Action Plan (CITIES ALLIANCE 1999). 

Furthermore, it is important to note, that not all poor people live in slums, and not all 

people who live in areas defined as slums are poor. However, to simplify matters, this study 

equates the urban poor with slum dwellers and the term “informal settlement” and “slum” 

will be used interchangeably and together in this context. 

Currently over 90 percent of slum dwellers are in the developing world, whereas South 

Asia records the largest fraction, followed by Eastern Asia, (Sub-Saharan) Africa and Latin 

America (cf. Figure 2-10). Therefore, Asia dominates the global picture, having about 60 

percent of the total world’s slum dwellers in 2001 (UN-HABITAT 2003a and UNFPA 2007). 

According to the UN-HABITAT Report (2003b) (cf. Figure 2-11), the world’s highest percentage 

of slum dwellers are in Ethiopia (an astonishing 99.4 percent of the urban population), 

followed by Chad (also 99.4 percent), and Afghanistan (98.5 percent). 

India (with ca. 158 millions) and China (with ca. 194 millions) together even hold 37 

percent of the world’s slum inhabitants (cf. Figure 2-11). In Sub-Saharan Africa, 

“urbanization has become virtually synonymous with slum growth” (UNFPA 2007). Figure 2-9 

shows that in this part of the world in 2012 nearly 62 percent of the urban population lives 

under slum conditions, compared to 35 percent in South-central Asia. Mumbai, with 10 to 12 

million slum and pavement dwellers, is the global capital of slum dwelling, followed by 

Mexico City and Dhaka (9 to 10 million each), and then Lagos, Cairo, Kinshasa-Brazzaville, 

São Paulo, Shanghai and Delhi (6 to 8 million each) (DAVIS 2006). 
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Figure 2-10: World distribution of slum dwellers [millions] by region in 2001 (Data source: UN-HABITAT Global 
Report on Human Settlements 2003). 

 

Figure 2-11: Number of slum dwellers by country and the corresponding percentage of slum dwellers of the urban 
population (Data sources: UN-HABITAT Slums of the World 2003 and DAVIS 2006)2. 

A key question of this research is, whether different settlements and informal 

settlements in particular can be identified from remote sensing data. Since the potential of 

remote sensing is restricted to the detection and analysis of “visible” characteristics of the 

urban environment, the 81Houtward 82Happearance (physical entity) is important to identify 

settlement structures. In this regard an informal settlement is defined to be an area that 

combines, to various extents, the following physical characteristics: 

 High building density, 

 Small building size, 

 Complex shape appearance to the outside, high heterogeneity within the settlement, 

                                        

 

2 The data inquiry in slums is generally difficult and the published statistics hence often need to be doubted. Most assessments 

actually underestimate the scale and depth of urban poverty (UNFPA 2007). 

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=outward
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=appearance
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 Irregular patterns, 

 Substandard housing and inadequate building structures (e.g., different poor and non 

permanent building materials), 

 Heterogeneity in the height of the buildings (mostly 1-2 levels), 

 Lack of green space, 

 Lack of proper structures (e.g., irregular and narrow street patterns in a bad condition), 

 Hazardous locations (geologically hazardous zones as e.g., flood areas, housing on or 

close to garbage mountains, proximity to high-industrial pollution areas, housing around 

unprotected high-risk zones like railroads or airports) (SLIUZAS & KUFFER 2008, UN-

HABITAT 2003a). 

Principally, these physical entities of informal settlements, resulting from the social 

circumstances the inhabitants live in, can be detected from remote sensing data. Hence, 

depending on the sensor’s spatial and spectral resolution, it may be possible to classify and 

distinguish these settlement areas from other land use or settlement forms (HOFMANN 

2001a). 

According to the above mentioned definition of informal settlements and what is visible 

in VHR satellite data, an interpretation key was developed to detect informal settlements, 

which uses particularly parameters like small building size, high building density, a complex 

shape as well as irregular and narrow street pattern. It is assumed that the detection of one 

or several of these attributes in the image data can be an indicator for locating an informal 

settlement. For details regarding the identification of informal settlements please see 

chapter 6 and the following. 

  



Chapter 3 

Remote Sensing of Urban Areas:   
Status of Research 

It will be necessary to learn from recent experience and to develop new ideas and 

approaches to address a wide range of concerns in order to move towards sustainable urba-

nization. In this context, remote sensing plays a crucial role. In general there is an increased 

interest today in making scientific progress through using remotely sensed data in social 

science, which makes urban remote sensing a steadily growing field of research (TURKSTRA & 

RAITHELHUBER 2004, RINDFUSS & STERN 1998). Up to date and accurate urban land cover 

information is needed in a variety of applications, as e.g. urban planning and management. 

One of the challenges in the field of remote sensing in this context is to provide the persons 

in charge with appropriate, up to date, city wide information in a very timely manner 

(NIEBERGALL ET AL. 2007, UN-HABITAT 2004). New methodologies and tools, as well as 

techniques and policies are required to monitor urban growth and alteration across the 

mega city and to forecast areas of risk — all within shorter timeframes and larger scale than 

previously accepted (MC LAREN ET AL. 2005, HEROLD ET AL. 2003). This will support a more 

proactive and sustainable urban planning and land management (UN-HABITAT 2004). As long 

as one is depending on traditional surveying tools, e.g. interview statistics, especially in large 

mega cities like Delhi, the provision of such data is both, a time consuming and expensive 

task. This has led to the attempt to analyze remotely sensed data with the aim to extract 

information on urban land cover and dynamics (DARWISH ET AL. 2003). 

This chapter identifies key attributes of the urban environment and specifies the 

capability of remote sensing technology to measure these attributes. Moreover, it 

summarizes the wide field of application of remote sensing data in urban environment (cf. 
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chapter 3.1). Chapter 3.2 focuses on the technical and methodological development and its 

impacts on urban remote sensing. Main emphasis lies hereby on the one hand on the further 

development of remote sensing sensors and their characteristics (cf. chapter 3.2.1), and on 

the other hand on the enhancements of remote sensing methodologies (cf. chapter 3.2.2). 

Chapter 3.3 illustrates the integration of social science and remote sensing as a promising 

agenda in urban research applications. Especially this chapter and the interim conclusion in 

chapter 3.4 form a basis for the objectives and investigations presented in this study. 

3.1 Remote Sensing of Urban Attributes 

“Sensing cities remotely is difficult — very difficult!” 

(MESEV 2003) 

The difference between settlement structures and the natural environment is human being 

and the corresponding manner and dimension of human activity which becomes evident 

everyday and everywhere. People create settlements that are highly spatially dynamic. It is 

also people who make settlements a complex phenomenon which is very difficult to capture. 

However, it is important to be also aware, that it is people as well who make urban 

settlements important enough to move into the focus of remote sensing scientists. The 

consequences of human activity are apparent everywhere, but they are nowhere more 

visible and quantifiable than in mega cities in terms of arrangements of urban physical 

patterns. 

A major challenge in the investigation and the remote sensing of urban areas is the 

heterogeneity of the urban environment in terms of its spatial and spectral properties. The 

urban landscape is typically characterized by a heterogeneous spatial assemblage of very 

different units of land cover types (HEROLD 2004). It is built up with various materials such 

as concrete, asphalt, plastic, shingles, brick and wood. The environment is also partly 

covered with water bodies, different vegetation cover categories (e.g., agricultural land, 

parks or gardens) or bare soil areas and is composed of residential and commercial 

buildings, public space, transportation networks as well as utility lines in order to provide the 

inhabitants with the essentials and to improve as much as possible the quality of life (COWEN 

& JENSEN 1998, MESEV 2003 after DAUREAU ET AL. 1989, LIVERMAN ET AL. 1998, DONNAY 1999, 

HEROLD 2004). Hence, “there is no explicit spectral urban signal” (HEROLD 2004), which can 

be recorded by the remote sensor. 

Airborne remote sensing instruments as well as satellites provide an opportunity to 

observe urban phenomena and to measure attributes of urban environments (COWEN & 

JENSEN 1998). Remotely sensed data, together with data available from ground-based 
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observations, can be used for instance to detect and monitor changes in the urban environ-

ment in space and time, to develop and validate dynamic models of urban development, to 

capture and characterize land cover as well as land use patterns 0F

3, and to forecast sub- and 

intra-urban changes in a significant number of urban attributes (cf. Table 3-1). After COWEN 

& JENSEN (1998) remote sensing data are thus potentially valuable both to social scientists 

and to urban planners and other persons in charge. 

There are potentially many important components of an urban settlement that needed 

to be measured and monitored over time, but only the physical or respectively visible out-

comes of human activity, in opposition to the direct consequences of behavior, can be 

detected. It is only through the analysis of the spatial configuration of physical structures 

using remotely sensed data that enables us to understand the human behavior becoming 

apparent in such spatial patterns (MESEV 2003 after GEOGHEGAN ET AL. 1998). Thus, the 

argument becomes cyclical — knowledge of the physical structure and shape of cities 

“contributes to an understanding of socio-economic functioning and knowledge of socio-

economic characteristics dictates urban layout” (MESEV 2003 after MARTIN & BRACKEN 1993, 

MASSER 2001). 

In this way, using remotely sensed data allows us to measure, with some degree of 

accuracy, the entity and arrangement of urban structures (land cover). It is difficult and 

considerably complex though to determine how these structures are being used by their 

residents and occupants (land use) unless specific, additional information of socio-economic 

and housing attributes from other sources is employed (MESEV 2003).  

Sensors, air- or spaceborne, and depending on the sensor type, “take a picture” of the 

physical built-up environment, and receive the electromagnetic spectrum that is reflected or 

emitted by the surface objects to describe its properties (HEROLD 2004, JENSEN 1996, MESEV 

2003). A remote sensor “sees” a plane layout of features, mostly rooftops or treetops that 

may or may not cover lower features such as roads, lawns, open spaces or water bodies 

(MESEV 2003 after FORSTER 1985, JI & JENSEN 1999). Moreover, a remotely sensed image 

creates a freeze-frame of the spatio-temporal urban patterns and acquires therefore the 

characteristics of many urban phenomena (HEROLD ET AL. 2006). The data or information 

received may be both qualitative and quantitative (COWEN & JENSEN 1998). 

                                        

 
3 At this point it is important to specify the difference between “land cover” and “land use”. The term “land cover” names the 

physical composition of fractions of land, i.e., tracts covered with vegetation (grass, trees), impervious tracts (concrete, asphalt) as 

well as shadowed and open spaces (bare soil etc.). “Land use” is the term for the anthropogenic construct of mixtures of land cover, 

i.e., residential areas and buildings, commercial areas and buildings, gardens and parks, or even agricultural tracts (CAMPBELL 2002, 

MESEV 2003, WYATT ET AL. 1993). While “land cover” can be classified directly from remote sensing data, this is not possible with 

“land use”. Rather it is possible to derive land use from land cover classifications, although this generally requires additional data 

(e.g., socio-economic data) (APLIN 2003). 
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Some of the major urban attributes which are of great importance to understand the 

urban environment are summarized inTable 3-1. To detect, observe and monitor the 

different parameters of the urban environment, it is mandatory to be well grounded in the 

temporal and spatial resolutions required. Compare Table 3-2 for an overview of the 

different sensor systems and their spatial resolutions. 

Table 3-1: Interlinkage between selected urban attributes and the remote sensing resolution required to provide 
corresponding information 

Urban Attributes*

Temporal Spatial Spectral

Land Use / Land Cover
L1 - USGS Level 1** 5 - 10 years 20 - 100 m V-NIR-MIR-Radar
L2 - USGS Level 2*** 5 - 10 years 5 - 20 m V-NIR-MIR-Radar
L3 - USGS Level 3*** 3 - 5 years 1 - 5 m V-NIR-MIR-Pan
L4 - USGS Level 4**** 1 - 3 years 0.3 - 1 m Pan

Building and Property Line Infrastructure
B1 - Building perimeter, area, volume, height 1 - 2 years 0.3 - 0.5 m Pan
B2 - cadastral mapping (property lines) 1 - 6 months 0.3 - 0.5 m Pan

Transportation Infrastructure
T1 - general road centerline 1 - 5 years 1 - 30 m Pan
T2 - precise road width 1 - 2 years 0.3 - 0.5 m Pan
…

Utility Infrastructure
U1 - general utility line mapping and routing 1 - 5 years 1 - 30 m Pan
…

Digital Elevation Model (DEM) Creation
D1 - large scale DEM 5 - 10 years 0.3 - 0.5 m Pan
D2 - large sclae slope map 5 - 10 years 0.3 - 0.5 m Pan

Socio-economic Characteristics
S1 - local population estimation 5 - 7 years 0.3 - 5 m Pan
S2 - regional/national population estimation 5 - 15 years 5 - 20 m V-NIR
S3 - quality of life indicators 5 - 10 years 0.3 - 30 m Pan-NIR

Energy Demand and Conservation
E1 - energy demand and production potential 1 - 5 years 0.3 - 1 m Pan-NIR
E2 - building insulation surveys 1 - 5 years 1 - 5 m TIR

Meteorological Data
M1 - daily weather prediction 30 min - 12 hr 1 - 8 km V-NIR-TIR
M2 - current teperature 30 min - 1 hr 1 - 8 km TIR
M3 - current precipitation 10 - 30 min 4 km Doppler Radar
M4 - immediate severe storm warning 5 - 10 min 4 km Doppler Radar
M5 - monitoring urban heat island effect 12 - 24 hr 5 - 10 m TIR

Critical Environmental Area
C1 - stable sensitive environments 1 - 2 years 1 - 10 m V-NIR-MIR
C2 - dynamic sensitive environments 1 - 6 months 0.3 - 2 m V-NIR-MIR-TIR

Disaster Emergency Response
DE1 - pre-emergency imagery 1 - 5 years 1 - 5 m V-NIR
DE2 - post emergency imagery 12 hr - 2 days 0.3 - 2 m Pan-NIR-Radar
DE3 - damaged housing stock 1 - 2 days 0.3 - 1 m Pan-NIR
DE4 - damaged transportation 1 - 2 days 0.3 - 1 m Pan-NIR
DE5 - damaged utilities 1 - 2 days 0.3 - 1 m Pan-NIR

* This land use / land cover classification system was developed by USGS for use with remote sensing data. Its categories 
are appropriate  for information interpreted from aerial images, and it has a hierarchical structure that lends itself tu use 
with images of differing scales and resolutions (ANDERSON ET AL. 1976, CAMPBELL 2002).
** Level I is tailored for use with broad-scale, low-resolution images (e.g. Landsat MSS, TM, SPOT) (ANDERSON ET AL. 1976).
*** Level II and III are composed of more detailed classes that can be interpreted from large-scale, 
high-medium-resolution images (e.g. SPOT pan, Landsat 7 pan, IRS pan) (CAMPBELL 2002).
**** Level IV classes may best be monitored using very high-spatial-resolution sensors (e.g. QuickBird, IKONOS), 
including aerial photography (COWEN & JENSEN 1998).

Data sources: COWEN & JENSEN (1998) after e.g., ANDERSON ET AL. (1976), BRANCH (1971), FORD (1979) & 

HAACK ET AL. (1997)

Minimum Resolution Requirements

 



Remote Sensing of Urban Areas:   Status of Research 

 

31 

Remote sensing techniques have already shown their value in mapping urban areas 

(e.g., DARWISH ET AL. 2003, GUINDON ET AL. 2004, MARCHESI ET AL. 2006, TATEM ET AL. 2005, 

TAUBENBÖCK & ROTH 2007), and as data sources for the analysis of the urban environment 

(e.g., HAACK ET AL. 1997, JENSEN 1983, MESEV 2003, NETZBAND ET AL. 2010, WENG & QUATTROCHI 

2006, WENG 2012). The beginning in all applications using remotely sensed data is to specify 

the object, surface or phenomena of interest. After MESEV (2003), “in the urban case, this is 

twice as difficult” than in rural or natural environments. As mentioned above, urban areas 

are composed of physical materials — the land cover definition. By contrast, the land use 

definition is defined by the specific combination of the materials to supply the urban popu-

lation. Since remote sensing is a process of physical detection the direct analysis of urban 

land cover is a lot more straightforward than the analysis of land use (DOBSON 1993, MESEV 

2003, WEBSTER 1995), and many remote sensing scientists have concentrated on this subject 

before. 

Remote sensing data and research results have for example been applied to the 

detection and mapping of impervious surface areas and therefore of urban settlements of 

different spatial dimension (e.g., LU & WENG 2008, GAMBA & DELL’ACQUA 2008, KAMPOURAKI ET 

AL. 2006, YUAN & BAUER 2006, ZHANG & MAXWELL 2008, WENG 2012). Recently, mapping and 

particularly monitoring the percentage of sealed areas in urban environments has become of 

great interest as a major indicator of environmental quality and sustainable land use 

(KAMPOURAKI ET AL. 2006, YUAN & BAUER 2006). Impervious surfaces, including for instance 

residential and industrial buildings, roads, sidewalks, and parking lots, are areas where 

water cannot infiltrate. Hence, the amount, duration and intensity of urban storm water 

runoff and the transport of non-point source pollutants as well as water abundance and 

water quality is directly affected  (DOUGHERTY ET AL. 2004, MELESSE & WANG 2008, WENG 2008). 

The spatial extent and occurrence of sealed surfaces may even affect urban climate by 

changing sensible and latent heat fluxes within the urban “atmosphere” and boundary layers 

(WENG 2008, YANG ET AL. 2003). 

Thus, for example, the urban heat island phenomenon results from the replacement of 

natural landscapes with impervious surfaces and is linked to adverse economic and environ-

mental impacts (GLUCH ET AL. 2006). The fraction of impervious cover is widely a well-

accepted indicator of urbanization and urban sprawl (HOFFHINE WILSON ET AL. 2003). Urban 

sprawl and particularly uncontrolled sprawl occurring in large cities of developing countries 

requires intensive and accurate extraction and mapping of various urban features and 

infrastructure properties (NOBREGA ET AL. 2006). Remotely sensed data have already been 

used in this field of application (e.g., GRUEN 2008, HAVERKAMP 2002, HEROLD 2008, MARANGOZ 

ET AL. 2004, NEGRI ET AL. 2006, PÉTERI & RANCHIN 2008, SHAN & SAMPATH 2007, STILLA ET AL. 

2008, SUGUMARAN, GERJEVIC & VOSS 2008, ZHANG ET AL. 2006, ZHOU & KELMELIS 2007, BHASKARAN 

ET AL. 2010, RAHMAN ET AL. 2010, BHATTA 2010). Especially very high-resolution (VHR) sensors 
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are well suited to extract buildings and roads (MARANGOZ ET AL. 2004) (cf. chapter 3.2). 

Remotely sensed impervious surface has also been used more and more often in population 

estimation purposes (LIANG ET AL. 2008, XIAN 2007, AZAR ET AL. 2010) (cf. also chapter 3.3). 

Consequently, accurate measurements and mapping of impervious surfaces are valuable not 

only for environmental management activities, for example, water quality assessment, but 

also provide beneficial input to urban planning, for example, building infrastructure, planned 

development and sustainable urban growth (SCHUELER 1994).  

Some of the most promising and already successfully used applications of remote 

sensing techniques on urban environment include “measurement of physical quantities 

related to environmental conditions” (MILLER & SMALL 2003). For example, using remotely 

sensed data researchers are able to provide broad data of reflectance and surface 

temperature in cities. These observations offer valuable constraints on the physical 

properties that are strong determinants of environmental conditions in the urban 

environment. This synoptic information, which is almost impossible to obtain any other way 

than from remote sensing data, may improve the understanding of urban climate as well as 

the urban heat island (UHI) effect and their direct impact to more than half of the world’s 

population. The urban thermal microclimate affects urban mortality and morbidity as well as 

the quality of life and has become an important contributor for global warming (CHEN ET AL. 

2006, MILLER & SMALL 2003, SMALL 2006). Already in seventies of the last century, RAO (1972) 

and CARLSON ET AL. (1977) have demonstrated that urban areas could be identified through 

the use of thermal infrared satellite data. Past studies showed that there has been an 

increased interest in studies of urban land surface temperatures and urban energy budget 

characteristics using the technology of thermal remote sensing (BALLING & BRAZELL 1988, 

ROTH ET AL. (1989), STREUTKER (2002), KIM (1992), NICHOL (1996), GALLO ET AL. (1993a, 1993b, 

1995), WENG ET AL. (2004), WENG & QUATTROCHI 2006, WENG 2009, OGASHAWARA & DA SILVA 

BRUM BASTOS 2012). In order to better understand the urban microclimate, which is itself 

significant to a range of issues and themes in Earth science, such as global environmental 

change and human-environment interactions, and also important for urban planning and 

management purposes, a greater assessment of the overall urban thermal pattern, including 

an analysis of the thermal properties of individual land covers, is still needed (GLUCH ET AL. 

2006, LO & QUATTROCHI 2003, WENG & QUATTROCHI 2006). 

Remote sensing data have also been used in attempts to mapping, measuring and 

monitoring urban vegetation surfaces (e.g., NICHOL & WONG 2007, NICHOL & LEE 2005, PHINN 

ET AL. 2002, SMALL & MILLER 2000, SMALL 2001, POZZI & SMALL 2002, RASHED & JÜRGENS 2010, 

SONG 2008, ZHU ET AL. 2003, XIE ET AL. 2008, LI ET AL. 2010B). Vegetation is an essential part 

of the urban and suburban environment and therefore an important parameter for the 

assessment of urban environmental quality (NICHOL & WONG 2007b). Variations of vegetation 

abundance and distribution within urban areas may influence environmental conditions “by 
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selective reflection and absorption of solar radiation […] and by modulation of 

evapotranspiration” (SMALL & MILLER 2000). Urban vegetation has a strong influence on 

energy demand and development of urban heat islands, and may affect urban climate and 

urban ground energy fluxes (ABDOLLAHI & NING 2000, AKBARI ET AL. 2001, SMALL & MILLER 

2000). In addition, vegetation within urban areas plays an important role in controlling 

temperatures and air quality (Ji ET AL. 2007), and influences thus human health (WAGROWSKI 

& HITES 1997). Various remote sensing data have proven effective for mapping and 

monitoring urban vegetation abundance. For example, SMALL & MILLER (2000) have 

presented preliminary results of spatiotemporal analysis of urban vegetation distribution in 

New York City using Landsat TM data and discussed implications for environmental 

monitoring of developing urban areas. ZHU ET AL., however, present a method based on 

advanced segmentation techniques and classification for urban vegetation investigation 

extraction. Utilizing satellite data of the ASTER sensor, the authors build a hierarchical multi-

resolution structure in order to reflect the inherent relationship between ground features 

under different levels of scale. Recently, a number of remote sensing scientists have 

explored the relationship between environmental parameters and population characteristics 

in urban areas. POZZI & SMALL (2002), for example, have considered vegetation abundance 

and population density as “principal demographic and physical characteristics” in urban and 

suburban areas of the U.S.A. The authors pointed out, amongst other things, that maximum 

vegetation fraction decreases with increasing population density over the full range of 

densities. Moreover, the percentage of urban vegetation can be linked to different levels of 

quality of life. While a large fraction of vegetation cover is associated with a high quality of 

life, sparse vegetation cover in a settlement is mostly, particularly in developing countries, 

an expression of poor living conditions. Accurate, reliable, and reasonable data of urban 

vegetation cover support decision makers and urban researchers with different 

specializations to achieve their objectives. Hence, urban vegetation research using remotely 

sensed data plays a fundamental role in environmental protection, urban planning and 

quality of life assessment (ZHU ET AL. 2003). 

But with remote sensing, not only the direct measurement of physical quantities is 

possible. Several studies have demonstrated the ability to extract also socio-economic 

parameters, either directly from remotely sensed data or indirectly by means of surrogate 

information derived from images (COWEN & JENSEN 1998) (cf. chapter 3.3). One of the most 

important of these socio-economic parameters is population. Population estimations can be 

derived at local, regional as well as national levels based on different analysis methods (LO 

1995). A general overview of the derivation of population estimates is presented in chapter 

3.3. Some studies have as well shown how quality of life indicators, such as income, 

education, health care or house value, can be calculated by extracting several variables from 

ultra and very high-resolution remote sensing imagery (cf. Table 3-2) (MONIER & GREEN 1953, 

GREEN 1957, TUYAHOV ET AL. 1973, HAACK 1997, JENSEN & COWEN 1999, NICHOL & WONG 2007b, 
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BROWN ET AL. 2014). For example, building size and density, vegetation surface and density, 

unpaved road, road width as well as proximity to work and hospital are examples for 

variables which are visible in remotely sensed images. These variables derived from 

remotely sensed data need to be validated with in-situ observations to compute the quality 

of life indicators and to assess the living conditions of people in different residential areas 

(COWEN & JENSEN 1998). In an early attempt to relate remotely sensed signatures to socio-

economic parameters, FORSTER (1983) developed for instance a classification scheme which 

could be applied to urban areas to provide a residential quality index.  

The mapping of different settlement types within urban areas is therefore closely 

connected with the detection of quality of life indicators. Especially in mega cities the living 

conditions of the residents vary widely, and thus the visible contrasts between different 

settlement types are very strong. To detect and describe the different types of residential 

areas appearing in remote sensing derived images in the most cases the pixels’ spectral 

information solely is insufficient. Different authors, as for example HOFMANN (2001a), are of 

the opinion that other characteristics such as shape, texture or contextual information is re-

quired to map and analyze these areas adequately (cf. chapter 3.2.2). Formal, i.e. legal, 

settlements are mapped and monitored in most cases sufficiently, particularly in cities of 

more developed countries. However, this quantity and quality of information is, if at all, only 

rarely available for informal settlements. Especially the mapping and analysis of those 

residential areas might be one of the most challenging tasks within urban remote sensing 

(HOFMANN 2001a). Informal settlements show typical textural and structural characteristics 

(cf. chapter 2.4) which are mainly an effect of their illegal status and a direct reflection of 

the social circumstances the inhabitants live in (HOFMANN 2001a, TAUBENBÖCK ET AL. 2009). 

Hence, depending on the remote sensor’s spatial and spectral properties, it is possible to 

classify and distinguish these areas from other land use or settlement types. The spatial 

location of informal settlements has already been carried out in different ways using 

remotely sensed data (e.g., HALL ET AL. 2001, HOFMANN 2001a and 2006, JAIN ET AL. 2005, 

LEMMA ET AL. 2006, MASON & FRASER 2003, NETZBAND & RAHMAN 2009, NIEBERGALL ET AL. 2007 

and 2009, RADNAABAZAR ET AL. 2004, SLIUZAS ET AL. 2008a, 2008b, STEWART & KUFFER 2007, 

TURKSTRA & RAITHELHUBER 2004, BAUD ET AL. 2010, KIT & LÜDEKE 2013). In some cases more 

detailed information is necessary, so that, for example, single settlement units are detected 

(LI & RÜTHER 1999, MASON & BALTSAVIAS 1997). For both applications, ultra or very high-

resolution remotely sensed image data is needed. Moreover, additional useful data sources 

such as local knowledge, field observation data, and available local socio-economic data can 

provide valuable information and can therefore support the location and analysis of informal 

settlements (LEMMA ET AL. 2006, NIEBERGALL ET AL. 2007 and 2009, ROGERS ET AL. 2006) (cf. 

chapter 6.2). As explained, several studies have exemplified the possibilities to use remote 

sensing techniques for poverty mapping and obtaining detailed information. Nevertheless, 

with permanently increasing urbanization rates as well as widespread and rapid development 
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of informal settlements, it is important to develop more efficient, either fully or semi-

automated, methodologies and algorithms for the detection and monitoring of informal 

settlements. Since particularly the conjunction of remote sensing data with socio-economic 

data is (still) at the beginning of the development (see chapter 3.3 and 3.4), an 

advancement in this research field is required. In order to carry out the demanding urban 

planning and development tasks necessary to improve the living conditions for the poorest 

worldwide, the research may never stagnate (HOFMANN 2001a, ROGERS ET AL. 2006, SLIUZAS ET 

AL. 2008a). 

In the recent past the potential of remote sensing was also shown in the field of vulne-

rability assessment and disaster management. Since by now more than half of the world’s 

population lives in urban settlements (cf. chapter 2.1), especially in these areas further infor-

mation and spatial data is needed in order to support decision makers in general or in the 

pre-disaster phase as well as for crisis management in the post-disaster phase (TAUBENBÖCK 

ET AL. 2006). An analysis by DEGG (1992) of the world’s 100 most populated cities pointed 

out that about 78 percent were exposed to one out of four major natural hazards (earth-

quakes, volcanoes, tsunamis, and windstorms). In less developed countries alone, 86 

percent faced even more than one natural hazard (cf. chapter 2.3). The value of remote 

sensing in supporting urban vulnerability analysis and disaster management is evidenced by 

a steadily increasing number of published articles on this topic. For examples see 

TAUBENBÖCK ET AL. (2006, 2007, and 2008) as well as GAMBA ET AL. (2007a and 2007b).  

All facts considered, urban areas are and will probably always be characterized by 

heterogeneous, convoluted and unpredictable land patterns. Thus, urban areas are confron-

ting remote sensing scientists as well as planners, engineers, environmentalists, government 

agencies, social scientists, demographers, economists and politicians with a major task 

which will keep the future generation very busy (MESEV 2003 after DAVREAU ET AL. 1989 and 

DONNAY 1999, LIVERMAN ET AL. 1998). 

3.2 Technical and Methodological Development and its Impact 

on Urban Remote Sensing 

As described in chapter 3.1 remote sensing data and research results have been successfully 

applied to map urban features, to capture different land cover types, and to characterize 

land use patterns or urban infrastructure as well as to monitor urban environmental 

problems. From these applications secondary socio-economic parameters and the elements 

of urban infrastructure, which are not directly visible in image data, can be derived (cf. 

chapter 3.3) (COWEN & JENSEN 1998, HEROLD ET AL. 2003, WENG & QUATTROCHI 2007). Hence, 

remotely sensed image data in some applications may even be the only reliable source for a 

sustainable monitoring of urban settlements (MOELLER 2005). However, accurate and 
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operational mapping and modeling of urban features and (intra-urban) processes still 

confront us with some major challenges. One of the difficulties in the investigation and 

remote sensing of urban areas is caused by the heterogeneity most urban features exhibit 

(cf. chapter 3.1). Hence, urban features vary substantially with regard to their object-wise 

spectral variance. “Object size and heterogeneity are often related” (HOSTERT 2007). 

Compared to objects usually found in scenes of rural environments, like forest areas, inland 

waters, or agricultural crop land, objects of urban areas, such as cars, residential buildings 

or streets, are relatively small. Although the mixed-pixel-problem is dependent on the pixel 

size, the problem is still much higher in urban image data. Moreover, the combination of 

natural and anthropogenic materials as well as the problem of shadows and shading in the 

built environment limits the (semi-) automated mapping and modeling of urban environ-

ments. All things considered, essential and predominant are therefore enhanced data quality 

and availability and the need for improved methods and analysis techniques in urban remote 

sensing (HEROLD ET AL. 2003, HOSTERT 2007, and SMALL 2003). 

3.2.1 Spatial, Spectral and Temporal Resolution in Remote Sensing 

of Urban Areas 

Sensors for remote sensing are designed to acquire information about various objects on the 

ground without being in physical contact with them. The sensor captures the electro-

magnetic radiation that is reflected or emitted by the objects to describe its characteristics 

(JENSEN 1996, LILLESAND ET AL. 2004, NAVULUR 2007). In the urban area, imaging using aerial 

photography has been prominent for several decades and has still kept its value for large-

scale urban remote sensing studies (e.g., BALTSAVIAS & GRUEN 2003). By means of visual 

interpretation — the simplest method to extract meaningful information from remotely 

sensed data — comprehensive information about urban patterns and land use characteristics 

may be yield (HEROLD 2004, HURSKAINEN & PELIKKA 2004, MESEV 2003). Precondition for the 

application of this method is broad background knowledge of an experienced interpreter (for 

more details see for example HAACK ET AL. 1997 and the explanation following in chapter 

3.2.2 within this study). Recent years have shown the development from analog (film-based) 

to digital sensors to picture the Earth’s surface (cf. Table 3-2). Using digital remote sensing 

the image analysis became (semi-) automated and suitable for application over much larger 

domains (HEROLD 2004, NAVULUR 2007). 

“From a historical remote sensing perspective, early attempts to acquire the” Earth’s 

surface “from above have traditionally focused on urbanized areas” (HEROLD 2004). In 1858, 

Gasper Felix Tournachon, a French photographer, took over Paris the first known aerial 

photograph from a balloon and therefore also the first aerial “remotely sensed image” 

(BOWDEN ET AL. 1975, HAACK ET AL. 1997). According to contemporary documents it has been 
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found out that single buildings could be clearly seen in these pictures. Several images of 

different urban settlements were captured in the middle of the 19th century “and showed not 

only the first remote sensing images ever, but also the earliest remote sensing of urban 

areas” (HEROLD 2004). A revolution and a new era of Earth’s remote sensing signaled the 

availability of satellite derived remote sensing data and the development of adequate digital 

analysis methodologies in the early 1970’s and the two following decades (cf. Figure 3-1). 

However, in this fact it must be considered that this progress did not or only partly incorpo-

rate urbanized areas. Besides the obvious but mostly top-secret military use and 

development of remote sensing, over the past decades, the majority of commercial remote 

sensing work had been focused on natural environments. Applying remote sensing techno-

logy to urban areas is therefore relatively new. The beginnings of detailed remote sensing of 

urban areas as a scientific or applied field were in the 1990’s and within the last ten to 

twenty years this development is rapidly gaining in interest within the remote sensing 

community. While the continuous worldwide urbanization process came more and more into 

the focus, new promising remote sensing image sources (cf. Figure 3-1) as well as complete 

time series with a large retrospective time frame and more capable techniques (cf. chapter 

3.2.2) became available and provided new capabilities and options in urban mapping and 

monitoring (DONNAY ET AL. 2001, HEROLD 2004, NAVULUR 2007, WENG & QUATTROCHI 2007).  

 

Figure 3-1: Progress of remote sensing spatial scale of civilian Earth observation satellites.  

Driven by societal needs and the described progress in technology, international 

symposia on remote sensing of urban areas (since 1997) and remote sensing and data 

fusion (since 2001) have evoked great interest in urban remote sensing capabilities. 
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Recently, several monographs dedicated to remote sensing of urban areas appeared (e.g., 

BHATTA 2010, DONNAY ET AL. 2001, GAMBA & HEROLD 2009, MESEV 2003, NETZBAND ET AL. 2010, 

RASHED & JUERGENS 2010, YANG 2011, WENG 2014, WENG & QUATTROCHI 2007) and a number of 

journals have published special issues on this topic. 

It is essential that the user of remotely sensed images is proficient in selecting the 

adequate data source in order to apply available data for his purposes effectively. This 

requires a comprehensive knowledge of the spatial, spectral, and temporal dimension of an 

object or process (cf. Table 3-2 and Table 3-3) (NAVULUR 2007). Thus, in the following, the 

mentioned dimensions of remote sensing images are presented. Moreover, the importance 

of each of the data dimensions on information extraction from an image will be discussed. 

The spatial, spectral, and temporal resolution requirements for the urban attributes are 

summarized inTable 3-1. In the best case, “there would always be a remote sensing system 

that could obtain images of the terrain that satisfy the urban attributes’ resolution 

requirements” (JENSEN & COWEN 1999). In reality, though this is not possible at all. 

Table 3-2: Taxonomy of Remote Sensing Systems 

Recording

Platform

Recording

Mode

Recording

Medium

Spectral

Coverage
Microwave

Spectral

Resolution

Superspectral

> 10 Bands

Multispectral

2 - 10 Bands

Panchromatic

1 Band

Radiometric 

Resolution

Low

(< 6 bit)

Spatial Ground

Resolution

Ultra High

< 0.5 m

Very High

> 0.5 - 1 m

High

> 1 - 4 m

Medium

> 4 - 12 m

Low

> 12 - 50 m

Very Low

> 50 - 250 m

Extremely Low

> 250 m

Data sources: Ehlers (2007) and Moeller (2005), modified

            Active

            (Laser, Radar)

                          Stationary

Thermal Infrared

            Analog

            (Camera, Video)

    Digital

    (Whiskbroom, Pushbroom)

Very High

(> 16 bit)

High

(12 - 16 bit)

Medium

(6 - 12 bit)

Ultraspectral

> 250 Bands

Hyperspectral

100 - 250 Bands

             Satellite/Shuttle                     Aircraft

Visible/Ultraviolet Reflected Infrared

   Passive

   (Electrooptical, Thermal Infrared, 

   Thermal Microwave)

 

The spatial dimension of a remote sensing image — often expressed in terms of ground 

sampling distance (GSD) — corresponds in size to the area captured on the ground by a 

single pixel. The ground cell size of one pixel is dependent, for example, on the sensor field 

of view (IFOV) or the sensors flying altitude. In addition, the sensor’s spatial resolution 

varies with the off-nadir viewing angle and the terrain on the Earth’s surface has an effect as 

well. As mentioned before, remote sensing image data can be derived from airborne or 

spaceborne sensors. While aerial sensors are able to acquire image data with varying 

resolutions by flying at different altitudes, satellites are flying in a fixed orbit and are there-

fore characterized by a fixed spatial resolution at nadir. At present, different terms are circu-

lating that refer to types of remote sensing spatial resolution. Table 3-2 and Table 3-3 

generate an overview of the categories of the spatial resolution of remotely sensed image 
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data. Rough numerical guidelines for the definition of spatial resolution used in urban 

remote sensing applications particularly are: (1) low resolution — defined as pixels with GSD 

between 12 m and 50 m, (2) medium resolution — GSD in the range of 4.0 – 12 m, (3) high 

resolution – characterized by an 1.0 – 4.0 m GSD, (4) very high resolution – ground cell 

sizes between 0.5 and 1.0 m, and (5) extremely high resolution – pixel sizes < 0.5 m 

(MOELLER 2005, NAVULUR 2007). 

Table 3-3: Spatial Resolution of Remotely Sensed Image Data and Application Scale 

Pixel Size Definition Sensor Platform Application Scale

< 0.5 m Extremely high Airborne scanner,

aerial photos, GeoEye-

1 (pan), WorldView-3 

(pan)

1:500 - 1:5,000

> 0.5 - 1.0 m Very high IKONOS (pan), 

QuickBird (pan), 

WorldView-1 & 2 

(pan), QuickBird-2 

(pan) 

1:5,000 - 1:10,000

> 1.0 - 4.0 m High IKONOS (ms),

QuickBird (ms), SPOT 

5 (pan), GeoEye-1 

(ms), WorldView-2 & 

3 (ms)

1:10,000 - 1:15,000

> 4.0 - 12 m Medium IRS (pan), 

SPOT 4 (pan), SPOT 5 

(ms), RapidEye

1:15,000 - 1:25,000

> 12 - 50 m Low ASTER, IRS (ms), 

Landsat-7 ETM & 

Landsat 8 (pan, ms), 

SPOT 4 (ms)

1:25,000 - 1:100,000

> 50 - 250 m Very low Landsat MSS 1:100,000 - 1: 500,000

> 250 m Extremely low NOAA, Envisat > 1:500,000

pan - panchromatic, ms - multispectral
Data source: MOELLER (2005), supplemented and modified  

The spatial resolution plays an important role in the processes and objects that can be 

observed and respectively identified using remotely sensed images. This means that 

different applications require the use of different spatial resolutions. “In any application, 

optimal remote sensing data spatial characteristics are defined by the smallest homogeneous 

object of interest or some spatial ground sampling function” (HEROLD 2004). This fact is 

particularly important in regard to the diversity of available remotely sensed image data. 

Moreover, the steadily increasing number of specialized and application optimized image 

processing algorithms should be considered in this issue. In this context, Herold (2004) 

pointed out that the detection and analysis of real world phenomena at different scales 

requires the investigation of resolution dependent variables and critical spatial resolutions. 

After Davis & Simonett (1991) remotely sensed image data are applied to the following three 

major tasks: (1) detection — determination of the presence of an image object, (2) iden-
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tification — labeling an image object, and (3) analysis — obtainment of detailed information 

about an image object beyond its initial detection and identification. A general spatial 

resolution rule for detecting an urban object in an image is that there need to be a minimum 

of one to four spatial observations, i.e. image pixels. Specified another way, the image 

detection requires a sensor spatial resolution with one-half the diameter of the smallest 

object-of-interest. For example, to detect small residential buildings that have a base area of 

10 m by 10 m, the minimum GSD of imagery without haze or other problems should be ≤ 

5.0 m by 5.0 m. The identification of object features usually needs five or more image 

elements. Another rule of thumb states that for object analysis a 10 times higher effective 

spatial sensor resolution is needed than it is required for the identification and as much as 

30 times as higher resolution as for the detection of image objects (COWEN ET AL. 1995, 

Jensen & Cowen 1999, Herold 2004, Davis & Simonett 1991). Using different remote sensors 

and therefore different spatial resolutions several application problems can appear. For 

example, if the pixels’ spatial resolution is too coarse and fails to correspond to the spatial 

characteristics of the image target the so called “mixed pixel problem” occurs. The mixed 

pixel problem — where several types of land cover/use are contained in one pixel and 

therefore only a generalized and regularized description of the image features is provided — 

decreases the accuracy of remotely sensed image mapping and analysis (for this issue see 

also the section “spectral resolution” below-mentioned within this subchapter) (MATHER 

1999, MELESSE ET AL. 2007, HEROLD 2004). In contrast, limitations using remote sensing data 

become apparent as well if the sensors’ spatial resolution is too fine. In that case, the image 

collects more spatial land surface variation than it is needed for a given analysis and thus an 

“image information overload” can be produced which may decrease image analysis accuracy 

(HEROLD 2004). 

Remote sensing as a data source for urban applications at a super-regional and global 

scale — from 1:100,000 to 1:500,000 and more — requires image data with a spatial 

resolution of minimum 50 m through 250 m and beyond that value (cf. Table 3-3). HEROLD 

ET AL. (2006) even quote a value of minimum 30 m (cf. Table 3-4). Remotely sensed images 

for super-regional and global scale have already been used in many applications. For 

example, optical sensors (MODIS, MERIS, Landsat ETM+ and Landsat 8 etc.) have 

demonstrated their capability in mapping the full dimension of urban areas at the super-

regional scale (e.g., SCHNEIDER ET AL. 2003, POURSANIDIS ET AL. 2015, MERTES ET AL. 2015). 

Moreover, active radar imagery (GREY ET AL. 2003), thermal measurements (HAFNER & KIDDER 

1999), and nighttime remote sensing images have been used for global and continental 

purposes (SUTTON ET AL. 1997). In the latter case, data products of spatial urban extent and 

population density have been yielded. 
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Table 3-4: Observing multi-scale dynamics for mapping and modeling urban objects and processes using remotely 
sensed image data 

Level Unit
Spatial 

resolution

Temporal

resolution

Attributes measured 

by remote sensing
Urban dynamics

Global/regional 

networks 1 km 10 - 50 years

location of (large) settlements 

and their surrounding 

environment

super-regional and global urban 

dynamics:

growth, diffusion, 

urbanization, ... 

Urban/

settlement

systems (regional)

30 m - 1 km 5 - 10 years

number of settlements

with various spatial dimensions, 

utility and transportation 

networks

regional urbanization: 

interactions/polarization

Urban area 5 m - 30 m 2 - 5 years

classification: 

impervious/not impervious 

surface, vegetation, open space, 

…

change detection:

urban shrinking,

urban growth,

sprawl, diffusion, coalescence,

expanding urban land uses 

into rural areas > urbanization

Land use 

region 5 m 2 - 5 years

land use classes/categories:

residential/commercial buildings,

transportation network

land use change:

infill/redevelopment, …

Urban land cover 

objects (settlement, 

district, block)
1 - 5 m 1 - 2 years

transportation network 

components, 

built-up structures 

(medium - large buildings,

building blocks),

parks, gardens,

utility lines

land cover change:

building (re)construction,

demolition of informal settlements, 

…

Image Element/

Pixel
0.5 - 1 m

small buildings,

trees, 

cars,…

material change:

aging/roofing, …

land cover change:

(re)construction of small buildings

Source: after HEROLD ET AL. 2006, modified.

 

For large area applications such as urban growth monitoring and change detection a 

geographic scale of about 1:25,000 – 1:50,000 should answer the purpose (SABINS 1996). 

According to Table 3-3, this application scale is provided by sensors of the second 

generation like ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), 

SPOT (Système Probatoire d’ Observation de la Terre), and Landsat TM (Thematic Mapper) 

as well as Landsat 8 which offer a spatial resolution of 4.0 m to 50 m (medium to low 

dimension) and large swath widths. Image data of this dimension supports urban remote 

sensing of a regional scale, which is often focused on a specific urban area or agglomeration 

or their periphery, and provides according to HEROLD (2004), for example, a spectral 

separation of built-up and non-built-up urban land cover features or according to NAVULUR 

(2007) a large area change detection. For more details of “measurable” urban attributes and 

the corresponding derivable urban dynamics please see Table 3-4 below. Low and medium 

resolution data sources have been used to study a variety of urban phenomena like: eco 

systems, urban climates, urban population, health and disease, urban growth and change 

processes (HEROLD & SCHMULLIUS 2005). 

It is also important to keep in mind that the spatial resolution and swath width are in 

close connection to each other. Usually, the higher the resolution is, the smaller is the size of 

the image. Thus, medium resolution satellite sensors such as Landsat (185 km swath) and 

SPOT (60 km swath) are able to provide wide area coverage necessary to capture an entire 

city with a single record. Hence, the researcher has the ability to use this data for 
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comparative analysis of urban morphology. The sensors provide also the spatial and 

temporal resolution to support a two decade record of urban land cover change. However, 

medium resolution sensors lack the spatial resolution to monitor urban land cover objects 

and infrastructure (NAVULUR 2007, MILLER & SMALL 2003). Hence, medium resolution and 

smaller “have traditionally been seen as one of the major obstacles to precise urban 

mapping using remote sensing data” (MESEV 2003). 

Some regional and a multitude of local urban applications require high-resolution (HR) 

remotely sensed images respectively in order to map urban land use structures and attri-

butes in more detail. According to MOELLER (2005), a geographic scale of about 1:10,000 – 

1:15,000 should be suitable for an accurate spatial representation and analysis of urban land 

cover objects such as different building structures, urban vegetation patches like parks and 

gardens, and transportation network components (cf. Table 3-4). Moreover, based on the 

experience of several remote sensing scientists and qualitative examinations of different 

urban studies, a spatial sensor resolution of 5.0 m and finer was suggested for a detailed 

mapping of urban land cover objects, which corresponds to the above presented geographic 

scale (e.g., JENSEN & COWEN 1999). Also WELCH (1982) carried out a resolution analysis of 

various satellite sensors and demonstrated that a GSD of 0.5 m to 10 m is necessary to 

characterize infrastructure in most urban areas in a detailed way. A number of sensors are 

providing corresponding GSD: IKONOS (ms), GeoEye-1 (ms), QuickBird 1 (ms), WorldView-2 

& 3 (ms) and SPOT 5 (pan) (cf. Table 3.3). Several studies have demonstrated the potential 

of current sources of high spatial resolution data for measuring the physical structure and 

composition of cities. Appropriate examples were introduced by APLIN (2003), MEAILLE & 

WALD (1994) or ROESSNER ET AL. (2001). 

Recent developments in satellite remote sensing offer new opportunities to capture 

small urban features and structures with an improved spatial resolution (cf. Figure 3-1 and 

Figure 3-2). The availability of commercial very high-resolution (VHR) as well as extremely 

high-resolution satellite data at the sub-meter level, for example IKONOS (pan), QuickBird-1 

& 2 (pan)1

4 (cf. chapter 5.1 and Table 5-1), WorldView-1 & 2 (pan)4, and GeoEye-1 (pan), 

enable since the 21st century the chance to identify recent small-scale land use structures 

and dynamics in mega cities at local scale (cf. Table 3-3 and Table 3-4). This is especially 

valuable in data poor environments, which means in developing countries (cf. chapter 3.3) 

                                        

 
4
 DigitalGlobe currently operates the QuickBird satellite, which can collect panchromatic images with 0.61 m resolution at nadir. The 

satellite, launched in October 2001, also collects multispectral images with 2.5 meter resolution. Operated by Digital Globe as well, 

WorldView-1, launched in 2007, is a high-capacity, panchromatic earth imaging system features half-meter resolution imagery and is 

therefore the subsequent operation of QuickBird. Digital Globe´s satellite WorldView-2, launched on October 8th, 2009 has in 

addition the possibility of recording multispectral image data in eight spectral ranges with a spatial resolution of 1.8 m. The data 

flow of VHR data is therefore secured. 

http://www.satimagingcorp.com/satellite-sensors/quickbird.html
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(MESEV 2003, TURKSTRA & RAITHELHUBER 2004). According to ROSSI (2003) “the full commercial 

availability of VHR satellite data has opened up a number of new opportunities for the use of 

Earth observation data” and may be therefore considered as a new era of civilian satellite 

remote sensing, with potential in particular for applications in urban studies (DONNAY 2001, 

HEROLD 2004, MEINEL ET AL. 2001, VOLPE & ROSSI 2003). The further development and 

subsequent operation of the so called “third generation space borne sensors” has attracted 

considerable interest from the remote sensing community (APLIN 2003). Hence, a significant 

number of studies have reported on the benefits of VHR satellite sensors applied to urban 

areas. Several authors have already utilized VHR satellite data to extract land cover as well 

as land use related information. For example, VAN DE VOORDE ET AL. (2004) carried out a 

study on the city of Ghent, Belgium, whereas REGO & KOCH (2003) worked with images of the 

city of Rio de Janeiro, Brazil. VHR remote sensing data are moreover used for urban feature 

extraction and identification of small objects (e.g., QUINTILIANO & SANTA-ROSA 2003, ALKAN ET 

AL. 2008), for mapping of impervious surface and built-up area (e.g., YUAN & BAUER 2006, LI 

ET AL. 2010) as well as for the detection and monitoring of informal settlements (e.g., 

HOFMANN 2001a, LEMMA ET AL. 2006, BAUD ET AL. 2010, KUFFER ET AL. 2013) or disaster and 

vulnerability assessment (e.g., GAMBA ET AL. 2007B, TAUBENBÖCK ET AL. 2007, 2008 & 2011, GEIß 

& TAUBENBÖCK 2013, and MÜCK ET AL. 2013) (cf. chapter 3.1 and 3.3). Moreover, data of VHR 

optical satellite sensors provide a viable alternative to generate digital surface and digital 

terrain models (ALOBEID & JACOBSEN 2008). Hence, various studies have shown that VHR 

image data, primarily because of its panchromatic band, allow for high precision in urban 

mapping and analysis. In turn, this proves that VHR images are representing an alternative 

to aerial photography for detailed applications in the urban environment (BAUER & 

STEINNOCHER 2001). 

 

Figure 3-2: Development of ground sampling distance (GSD) of selected remote sensing satellite sensors (Source: 
NEUBERT 2005, modified). 
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Moreover, it should be recognized that diversity not only is present within but also 

between urban landscapes which makes it impossible to advocate for specific remote 

sensing data or a general classification system. The heterogeneity — in terms of its spatial 

and spectral properties — is not only visible within one city; urban environments also vary 

externally according to their location. For example, the sprawling landscapes of Asian mega 

cities (CHEN ET AL. 2000) are very different to the densely packed cities of Europe (FORSTER 

1983) and the expansive North American urban areas (MASEK ET AL. 2000, SMALL 2003). 

“Spatial resolution requirements for urban areas will vary considerably according to land use 

and location and, as such, any example of urban classification analysis should be considered 

in the context of its study area” (APLIN 2003).  

The usefulness of a given type of remotely sensed imagery for detecting, identifying, 

and analyzing very specific types of urban information should not be judged solely by its 

spatial characteristics. In addition to the geometric elements and therefore the spatial 

resolution of images, the spectral response acquired by the remote sensor should be taken 

into consideration for characterization and analysis of urban land surface objects (JENSEN & 

COWEN 1999, HEROLD 2004). The spectral resolution refers to the number of spectral bands, 

their band widths and locations along the electromagnetic spectrum (EMS) (cf. Appendix, 

A.2). Most of the former and current airborne and satellite based sensors capture in the 

visible and infrared (IR) regions of the EMS. According to the number and location of 

spectral bands, different terms are used for sensors in the remote sensing community. For 

example, the term “multispectral” is commonly used for remote sensing sensors that are 

equipped with up to ten spectral bands (cf. Table 3-2). Each band is sensitive to radiation 

within a narrow wavelength band. The resulting image is a “multilayer” image which covered 

both the brightness and color (spectral) information of the targets being observed. Several 

multispectral systems offer worthwhile capabilities for urban applications. Examples are 

amongst others the optical sensors Landsat TM and ETM+ (Enhanced Thematic Mapper), 

SPOT as well as RapidEye, IKONOS and QuickBird. Although the spatial resolution of the 

multispectral Landsat TM system is too coarse for identification of fine urban infrastructure 

elements, the images are, foremost because of its spectral information, suitable for the 

detection of significant spatial and temporal variations in urban vegetation and surface 

temperature (SMALL 1999, SMALL & MILLER 2000, ANIELLO ET AL. 1995). Moreover, Landsat TM 

data were for instance used for assessing urban land cover changes (MØLLER-JENSEN & 

YANKSON 1994), the detection of pockets of urban poverty (HALL ET AL. 2001) as well as in 

conjunction with census data for quality of life assessment (LO & FABER 1997). Exemplary 

studies using Landsat ETM+ are presented for instance by FORSYTHE (2003), YIN ET AL. 

(2005), TATEM ET AL. (2005), and TAUBENBÖCK ET AL. (2009a). Due to the long lasting history 

of image acquisition of the Landsat sensor series this data is of very high value in terms of 

long term monitoring of urban growth patterns (HOFFHINE WILSON ET AL. 2003, MOELLER 2005) 

and urban change detection monitoring in general (HARTVICH ET AL. 2001). Urban growth is 
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monitored also by means of multitemporal SPOT image data (e.g., KOLEHMAINEN & BAN 2008, 

DE JONG ET AL. 2000). As above mentioned the sensors IKONOS, QuickBird, and WorldView-2 

are first and foremost characterized by very high spatial resolution. Nevertheless their 

multispectral information is very useful for applications in the urban environment. 

Particularly vegetation analyses (SMALL 2007) and studies for the identification of small-scale 

features such as individual roads and buildings in urban environments (SHACKELFORD & DAVIS 

2003) benefit from the spectral properties of these sensors. 

Again, urban environments are heterogeneous, and, because of their variety and 

mixture of urban materials, spectrally very complex. This phenomenon is often contained in 

one image element and produces the already mentioned “mixed pixel problem”. Not only 

(and not in any case) may improved spatial sensor resolution solve this problem. Another 

opportunity to overcome this obstacle can be the application of “hyperspectral” image data. 

Hyperspectral sensors3F

5 acquire images in about a hundred or more contiguous spectral 

bands each with a small bandwidth of 10 nm (cf. Table 3-2). While spaceborne systems such 

as Hyperion (URL 13) and CHRIS Proba (Compact High Resolution Imaging Spectrometer) 

(URL 14) are mostly insufficient in their spatial resolution needed for urban applications, 

airborne systems such as AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) (URL 15) 

and HyMap (COCKS ET AL. 1998) are the most advanced hyperspectral sensors available for 

urban studies (HOSTERT 2007). Using hyperspectral remote sensing data the precise spectral 

information makes it easier to identify and differentiate clearly between urban objects 

surfaces and at least objects themselves and they allow for precise determination of the 

chemical-physical material properties (MOELLER 2005, HEROLD 2004, NAVULUR 2007, JENSEN & 

COWEN 1999, GOETZ ET AL. 1985). In the beginning of urban remote sensing, only few remote 

sensing scientists have dealt with hyperspectral image data in the urban environment (e.g., 

BING ET AL. 1998). Those studies have turned out, that hyperspectral remote sensing systems 

were limited in their quality and application, and are mainly in an experimental stage. But 

recently, there has been an increasing interest in more detailed urban mapping using 

hyperspectral remote sensing. Hence, a growing number of studies have begun to benefit 

from the large amount of spectral information. Case studies which demonstrate that 

hyperspectral approaches expand the range and accuracy of urban studies are given by BEN-

DOR ET AL. 2001, HEPNER & CHEN 2001, ROESSNER ET AL. 2001, BOCHOW ET AL. 2006, JUNG ET AL. 

2007, FAUVEL ET AL. 2009, LULLA 2009 or HEIDEN ET AL. 2001 & 2012. 

In addition to daytime optical remotely sensed data, some other spectral data types 

might be valuable for analysis in the urban environment, which are listed below briefly, each 

with corresponding examples from urban studies:  

                                        

 
5 A hyperspectral imaging system is also known as an “imaging spectrometer”. 
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 Thermal remote sensing data (e.g., WENG & QUATTROCHI 2006, XIAN & CRANE 2006, LO ET 

AL. 1997, OGASHAWARA & DA SILVA BRUM BASTOS 2012), 

 Night-time optical remote sensing data (ELVIDGE ET AL. 2009, SUTTON ET AL. 1997 and 

2007, SUTTON 1997, ANDERSON ET AL. 2010, GAO ET AL. 2015), 

 Active microwave remote sensing data (e.g., HENDERSON & XIA 1997, GAMBA ET AL. 2006, 

ESCH ET AL. 2006, STILLA & SOERGEL 2007, CHANG & XUAN 2012), and 

 LIDAR remote sensing data (e.g., MALLET ET AL. 2008, SECORD & ZAKHOR 2007, STEEL ET AL. 

2001, SHAN & SAMPATH 2007, TIWARI & PANDE 2011). 

More information and examples to these data types and urban applications have already 

been presented in chapter 3.1. 

The temporal resolution is the third dimension of remote sensing image data that 

should be considered, especially when studying the urban environment. Temporal resolution 

is defined by the time frequency with which the same study area is covered by the sensors. 

An ideal sensor system would be able to cover permanently the entire Earth and would 

deliver this image data in real time. Until today, due to technical restrictions, such a “perfect 

system” does not exist and will not be realized in the near future. At present, there are two 

different types of sensors recording remote Earth data: (1) geostationary satellites and (2) 

polar orbiting systems or sun-synchronous satellites. Although images of geostationary 

satellites, such as Meteosat (URL 16), send real time images covering the entire globe from 

the North Pole to the South Pole, they are not useful for urban remote sensing applications 

since they provide very coarse spatial resolutions. Imaging satellites like Landsat or ASTER 

are launched in a sun-synchronous orbit that results in the satellite revisiting a given area of 

interest on the Earth at the same solar time. Typically they offer a revisit time of 16 days. 

Further, SPOT and sensors like IKONOS, QuickBird, and others offer side looking capabilities 

and have therefore the flexibility to record off-nadir, increasing the frequency of the 

repetition cycle up to three days. However, this off-nadir shots do not offer a true nadir 

view, what, in turn, limits the usage in some ways and degree. Another key parameter in 

terms of temporal resolution should be kept in mind. Namely the actual cloud coverage 

affects the quality of an image over a given study site. In tropical regions with a dense cloud 

layer, a clear view to the Earth’s surface is mostly limited. Particularly in this latitude optical 

spaceborne sensors are thus unsuitable, whereas aerial sensors have the advantage of 

collecting data underneath the clouds and sensors with SAR capabilities may “see” through 

the cloud layer (JENSEN & COWEN 1999, NAVULUR 2007, MOELLER 2005). In addition, when 

monitoring urban areas using remotely sensed data, urban phenomena progress through an 

identifiable developmental cycle, for example vegetation progress through a phenological 

cycle, should be considered. This means that an image interpreter must be able to 

understand the “temporal resolution” of these urban phenomena. Finally, JENSEN & COWEN 
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(1999) pointed out that temporal resolution also may refer to how often city planners or 

managers need a specific type of information. For example, urban planners may demand for 

population estimations every five years in addition to the estimations offered by decennial 

censuses. The repetition rates for many important urban purposes required by managers are 

summarized inTable 3-1. 

All in all, urban attributes and phenomena show specific characteristics in different 

spatial, spectral and temporal dimensions and can be identified and observed using diverse 

remote sensing data (HEROLD & SCHMULLIUS 2005). Linking different spatial scales and 

spectral characteristics as well as in-situ observations allows for generating data products 

that support local planning agencies and decision makers. This progress requires on the one 

hand continuity in Earth observations in all these scales and dimensions and on the other 

hand the continuous (further) development of new techniques and analysis methods. The 

following chapter will discuss this topic in more detail. 

3.2.2 Enhancements of Remote Sensing Methodologies 

“To understand the dynamics of patterns and processes and their interactions in heteroge-

neous landscapes such as urban areas, one must be able to quantify accurately the spatial 

pattern of the landscape and its temporal changes” (MELESSE ET AL. 2007 after WU ET AL. 

2000). Preconditions for this are: (1) to have a proper standardized method to define the 

components of the urban surface, (2) to detect, identify, map and analyze these in a 

repetitive and consistent way, so that a (at best a general accepted) model of urban 

morphology may be developed, and monitoring and modeling their changes over time is 

made possible. This requirement itself calls for (3) adequate Earth observation data that 

provides useful information for urban applications (cf. chapter 3.2.1). Another key require-

ment is (4) the integrative use of Earth observation mapping and monitoring products with 

existing socio-economic data and information (MELESSE ET AL. 2007, HEROLD & SCHMULLIUS 

2005) (cf. chapter 3.3 and 3.4, chapter 6.2 and 8).  

As described in the previous chapter 3.2.1 a wealth of advancing remote sensing 

technologies were developed especially in the last fifteen years. Hence, a large amount of 

adequate Earth observation data providing valuable information for urban applications is 

available. But, HOSTERT (2007) has stressed in this context also that new remote sensing 

technologies do not, per se, lead to more advanced image analysis results. HOSTERT (2007) 

emphasized that “sensor improvements need always to be understood in the context of 

matching methodological progress, i.e., innovative data sets need to be adequately explored 

through adapted processing schemes”. In the large majority of cases, but especially in the 

urban context, there is no simple or even generally admitted methodology for analyzing 
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remotely sensed image data effectively and for extracting of useful information (HOSTERT 

2007). 

Today, manifold methods to extract meaningful information from remote sensing image 

data covering urban environments exist. However, to get there was a quite long way of 

technical and methodological developments. Likewise the development of appropriate pre-

processing techniques (for urban applications), the advances achieved in methods of 

information extraction have been considerable during the last ten years (HOSTERT 2007).  

At the beginning of urban remote sensing, detailed and accurate information about 

urban land cover and land use was provided by visual interpretation of aerial photographs 

(cf. chapter 3.2.1). Visual analysis is until today the simplest method to yield meaningful 

information from remotely sensed data (HEROLD 2004, HURSKAINEN & PELIKKA 2004, MESEV 

2003, NEUBERT 2005). After PHILIPSON (1977 quoted in JENSEN 2006) visual interpretation can 

be defined as “the science and art of observing images with the objective of identifying 

different objects and judging their significance”. Although as old a method as interpretation 

of remotely sensed data itself, visual interpretation is still beneficial for all scales of urban 

remote sensing studies, “at least as a method available when all other methods fail or are 

not available for some reason” (HURSKAINEN & PELIKKA 2004). Moreover, this method is used 

for visual validation and evaluation (cf. e.g., chapter 5.3, 6.1.1 and 7.1.1). Precondition for 

the application of this method, and thus for visually interpreting textural, contextual and 

spatial configurations of urban features, of course is broad background knowledge of an 

experienced interpreter (HAACK ET AL. 1997). The interpreter evaluates the following features 

to identify meaningful image components (ALBERTZ 2001, HILDEBRANDT 1996): 

 Color and color saturation (or rather brightness and differences in brightness using 

panchromatic image data), 

 Texture and pattern, 

 Object shape and size, 

 Absolute and relative location, 

 Shadow, 

 Association (in the conjunction with context information, e.g. proximity to objects or 

neighborhood relations), as well as 

 Vestiges of human utilization, cultivation, and planning (cf. Table 3-5). 

The essential advantage of the visual analysis is that not only an isolated spot within the 

image is examined but the context information is considered as well. The simultaneous 

collection of different image object features enables even the recognition of highly complex 
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circumstances and hence a very good and extensive extraction of the information content of 

the image data is achieved. Drawbacks of this method include slowness, and a low 

cost/efficiency ratio (HURSKAINEN & PELIKKA 2004). Although this approach requires only about 

a quarter to a fifth as much time as terrestrial mapping (BUDER 1998), it is much more time 

consuming than computer-based methods. Another disadvantage is the image interpreter’s 

lack of objectiveness. Discrepancies in expert knowledge, visual sensitivity and different 

image interpreters’ ability to judge, result in different outcomes. Detailed information about 

visual interpretation is documented for instance by HAACK ET AL. (1997) or HEROLD (2004). 

Recently, digital image processing techniques have been widely applied in urban land 

cover and land use classification and change detection. Much of the expert knowledge of the 

human image interpreter, continuously derived during remote sensing enhancements, is 

translated into the (semi-) automated digital analysis of satellite imagery. Digital techniques 

can of course go beyond the capabilities of human interpreters, particularly in generation of 

quantitative and consistent indicators and relationships of spatial land cover features. This 

potential may “provide a new level of understanding of urban form and improved mapping 

products” (HEROLD 2004). In digital image interpretation and analysis two main methods are 

available: (1) the statistical approach, based on the image and pixel histogram values 

respectively and (2) the image object-based approach4F

6. In the past decades, the pixel-based 

algorithms are the main image processing means. For pixel-based approaches, usually 

multispectral image data are used for classification, and of course, only the spectral 

information presented within the data for each pixel is used as the numerical basis for 

categorization. The multispectral classification is based on conventional mathematic-

statistical techniques, such as supervised and unsupervised classification (MATINFAR ET AL 

2007, APLIN2003, MOELLER ET AL. 2004, XIAOXIA ET AL. 2005). Both methods are based on the 

assumption that the different spectral classes are distributed in the n-dimensional image 

feature space (n = number of spectral bands).  

Many different types of pixel-based classification analysis have been applied to urban 

environments. Statistical algorithms, such as maximum likelihood (ML), minimum distance 

(MD) or nearest neighbor (NN) have been used widely (e.g., STEFANOV ET AL. 2001, CHAN ET 

AL. 2001), while other classifiers such as neural networks are increasingly being implemented 

(e.g., GAMBA & HOUSHMAND 2001) (cf. Table 3-5). 

                                        

 
6 Today several terms for the analysis of image objects extracted from remote sensing data exist. Some authors use for instance the 

term “segment-based” or “segmentation-based” image analysis (e.g., GREIWE & EHLERS 2004, NEUBERT 2005). Within this study the 

term “object-based” image analysis is preferred and used interchangeably with the term “object-oriented”. 
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Table 3-5: Comparison of different analysis methods of remotely sensed image data 

Visual image

interpretation

Pixel-based 

classification

Per-parcel 

classification

Neural 

networks

Object-based 

classification

Input data required Image data Image data
Image and supple-

mentary data
Image data Image data

Main influence factor 

on the quality

Broad background 

knowledge of an 

experienced interpreter 
Training

Training, quality of 

supplementary data
Training Parameter choice

Utilization of 

neighborhood 

relations

yes no no no yes

Utilization of textures yes possible possible possible possible

Utilization of object 

features (apart from 

spectral signatures)

yes no no no yes

Training effort very high medium medium high medium

Automation level low medium medium medium medium

Applicability for 

VHR image data
good low good medium good

Source: NEUBERT (2005), modified

Classification methods
Comparison 

criteria

 

Pixel-based classification algorithms are widely used, but the limitations are clear and 

widely known. Using this type of so called “hard classification” algorithms too many or not 

well defined land cover/use classes are produced and thus rarely an accuracy of greater 

than 80 percent can be achieved (MELESSE ET AL. 2007 after MATHER 1999, EHLERS ET AL. 

2005). Especially, in the case of classifying complex urban environments with VHR remotely 

sensed data the pixel-based method appears not to be suitable any more. Although the use 

of VHR image data reduces the mixed-pixel-problem and explicitly improves the visual 

interpretability of details on very heterogeneous as well as compact urban areas, the internal 

variability and the noise within land cover/use classes is strongly increased. In turn, this 

effect within a thematic class or object causes other problems so that traditional pixel-based 

classifiers result in “speckled” classifications (so-called “salt and pepper effect”) (CUSHNIE 

1987, KIM ET AL. 2006, MEINEL ET AL. 2002, VAN DE VOORDE ET AL. 2004). HURSKAINEN & PELIKKA 

(2004) mention three factors that limit the application of pixel-by-pixel classifications of 

urban areas: On the one hand, pixel elements do not sample the urban area at the spatial 

scale of the features to be mapped, and buildings are represented by accumulations of 

pixels which should rather be treated as individual image objects. On the other hand, “a 

building produces a wide range of spectral signatures as the pixels will represent different 

facets of the roof” (SMITH & HOFFMANN 2001). This phenomenon appears primarily at the 

classification of informal settlements, where house tops are built up of diverse materials with 

varying texture and color (spectra) (MASON & BALTSAVIAS 1997) (cf. chapter 7.2.1). A similar 

challenge can represent urban road network — especially in deprived settlements of mega 

cities of developing countries —, where different materials alternate within single roads (cf. 

Figure 3-3 (2) and Figure 3-3 (3) and chapter 6.1.1). Spectral signatures of single pixels are 
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therefore only meaningful in a limited way regarding the class affiliation of an image object 

(NEUBERT 2005). Moreover, many surfaces within the urban environment appear spectrally 

very similar (e.g., concrete roofs and asphalt roads, or buildings constructed from brick or 

adobe and unpaved roads or open spaces) and can thus be differentiated only by some 

ancillary context information (cf. Figure 3-3 (1)) (SMITH & HOFFMANN 2001). Shadows of 

buildings and trees (cf. Figure 3-3 (4)) as well as sun glint on roofs and interfering objects, 

such as cars on roads (cf. Figure 3-3 (5), may complicate classification matters even more 

(VAN DE VOORDE ET AL. 2004, NEUBERT 2005) (cf. introduction of chapter 3.2). 

 

Figure 3-3: Examples for factors that limit the application of pixel-by-pixel classifications of urban environment: 1 
— difficult spectral differentiation (spectral similarity of urban buildings and adjacent roads), 2 & 3 — spectral 
variability (urban road network characterized by different materials alternating within single roads, open space with 
different or mixed materials), 4 & 5 — phenomena and objects hampering image analysis (shadows of buildings 
and trees or cars on roads) (Data source: QuickBird test site South s3 and South s2 (4, 3, 2)). 

“In order to derive useful thematic maps from VHR satellite images of urban areas, 

other approaches than the traditional pixel-by-pixel classification is needed” (VAN DE VOORDE 

ET AL. 2004). The digital classification of remote sensing data can for instance be carried out 

using textural image features (texture analysis). “One way to reduce the “salt and pepper 
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effect” in a pixel-based classification is for instance to apply a standard majority filter 

(GURNEY AND TOWNSHEND 1983) or a more sophisticated spatial reclassification technique 

(e.g., BARNSLEY & BARR 1996) within a moving window or kernel of fixed size” (VAN DE VOORDE 

ET AL. 2004). An alternative approach uses a window with varying size as spatial effective 

analysis area (e.g., GONG & HOWARTH 1992, FORSTER 1993). Under consideration of adjacent 

pixels within a moving window or kernel (also called filter matrix or mask), textures are 

computed using different filter approaches from the deviations of the spatially adjacent 

spectral values and are assigned to the respective central pixel. Since a single pixel does not 

have any texture, the calculated values are not object-related textures as they are utilizable 

at a visual interpretation. It rather is a matter of local deviations of grey scale values which 

can be described as spectral texture (NEUBERT 2005, CAMP-VALLS & BRUZZONE 2009). In 

addition, a widely-used example of texture analysis is the computation of a co-occurrence 

matrix, which can be traced back to the work of HARALICK (1979, HARALICK ET AL. 1973) (cf. 

chapter 6.1.2). 

But also the use of kernel-based approaches has a number of disadvantages. For 

instance, especially using a fixed window size, the difficulty of selecting an optimal kernel 

size plays an important role. Moreover, the fact that a rectangular window represents an 

artificial construct that does not refer to real spatial parcels and land units, which tend to 

have irregular shapes and their own distinct spatial boundaries, makes it difficult to achieve 

satisfying classification results (VAN DE VOORDE ET AL. 2004, BARNSLEY & BARR 1997, HEROLD 

2004). “Hence, region-based approaches which use irregularly shaped areas for spatial 

structure characterization are especially useful in applications with homogeneous land use 

structures in discrete defined regions, as is found in most urban land uses” (HEROLD 2004). 

Pixel-based techniques generally examine only one scale and one pixel at a time, 

ignoring neighborhood and concepts hierarchy. To avoid the problems related to the use of 

pixel-based methods an alternative way to look at the image data is required. At the same 

time, increasing spatial sensor resolution and “wider integration of image-derived knowledge 

in policy development and decision making” has increased “the need for information on land 

use as well as natural and anthropogenic processes” (SLIUZAS ET AL. 2008a). Hence, 

knowledge- rather than data-driven questions have to be answered and therefore the 

requirement for fundamentally different analysis techniques than previously available has 

increased strongly. Especially in terms of analysis of heterogeneous urban environments, 

including conceptual or spatial rules and conditions, a concept not supported by “classic” 

pixel-based approaches but identification of geometric primitives and their topology is 

promising and needed. For that reason, the introduction of object-based approaches, inde-

pendent of individual pixel DN values, creating meaningful objects, incorporating shape, 

texture and the contextual properties as well as considering mutual objects’ relationships for 

image classification, has evolved into a veritable alternative for remote sensing image 
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analysis (DARWISH ET AL. 2003, HURSKAINEN & PELIKKA 2004, and SLIUZAS ET AL. 2008a). Table 

3-6 presents the attributes used for classification in the object-oriented versus the pixel-

based classification approaches. 

Table 3-6: Attributes used for pixel-based and object-oriented image classificatiob 

Color/spectral Form/Shape Area/Size Texture Context

Pixel-based √ X X X X

Object-oriented √ √ √ √ √

Source: XIAOXIA ET AL. (2005)

 

In general, an object-based image analysis process can be divided into two main work-

flow steps: (1) the multi-resolution image segmentation of data into rather homogeneous 

and meaningful regions (objects or segments), for example, by means of the spatial and 

spectral characteristics, and (2) the knowledge-based classification of the produced image 

segments (XIAOXIA ET AL. 2005, BAATZ & SCHÄPE 2000). Since an object-oriented image 

analysis approach is used within this study to analyze VHR image data of the mega city 

Delhi, India, a detailed description of image segmentation and subsequent classification 

algorithms is given in the methodological part of this thesis (chapter 6.1.1 and chapter 6.1.2 

respectively).  

However, in order to give the reader a first comparison with “classical” image analysis 

methods and to explain why the OOA approach was chosen for this research, the strengths 

of OOA shall be provided within this chapter. Analyzing image segments instead of single 

pixels has significant and comprehensible advantages (cf. Table 3-5). First, meaningful 

image segments and their mutual relationship represent the important semantic information 

necessary to interpret an image in a more sophisticated way and extent than single pixels do 

(BAATZ & SCHÄPE 2000). SLIUZAS ET AL. (2008a) have underlined that the “real strength of 

OOA, however, lies in a combination of multi-scale segmentation with subsequent contextual 

analysis, whereby the spatial, spectral and contextual properties of extracted segments at 

different spatial scales are used in conjunction with spatial rules in a subsequent 

classification”. This means that the produced image objects of an OOA “come closer to the 

spatial and therefore spectral and textural characteristics of the real world structures” 

(TAUBENBÖCK & ROTH 2007). Moreover, the OOA overcomes the problem of salt-and-pepper 

effects found in classification results from traditional pixel-based approaches (HOSTERT 2007, 

VAN DE VOORDE ET AL. 2004). Hence, several authors are of the opinion that the advantages of 

OOA are very useful for the analysis of heterogeneous urban environments, especially in 

terms of analyzing geometric VHR remote sensing data (e.g., HOSTERT 2007, XIAOXIA ET AL. 

2005). At the same time, SLIUZAS ET AL. (2008a) pointed out that urban environments tend to 

challenge a straightforward application of OOA. For them it originates from the simultaneous 
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excess and scarcity of information, especially in VHR image data. For example, such high 

detail in the image data means that urban objects of interest, such as buildings (i.e. roof 

materials and quality), appear with increasingly large spectral variations, hampering their 

automatic extraction as homogeneous regions. Vice versa, however, using only the multi-

spectral band of VHR image data (e.g., the 2.44 m ms band of the QuickBird sensor, which 

data is applied in this study) it is not possible to detect and map many relevant urban 

features, especially in very dense areas occupied by small, closely packed dwelling units 

(SLIUZAS ET AL. 2008a) (cf. chapter 3.2.1). Here, a resolution merge of the different bands of 

the image data, as mentioned before within this chapter, can be a promising answer to this 

problem (cf. chapter 5.1.2). 

The utility of object-oriented analysis (OOA) has already been demonstrated in many 

research fields, such as vegetation and ecological mapping (e.g., ADDINK ET AL. 2007, 

ATZBERGER 2004, LALIBERTE ET AL. 2004, HESE & SCHMULLIUS 2005, TAPAS ET AL. 2012), 

classification of agricultural areas (e.g., OZDARICI & TURKER 2006), geological and soil 

mapping (e.g., MAVRANTZA & ARGIALAS 2006, ), resource management (MAKELA & PEKKARINEN 

2001) as well as risk and vulnerability research (e.g., EBERT ET AL. 2007, TAUBENBÖCK ET AL. 

2008) and hazard assessment (e.g., SUMER & TURKER 2006). Object-oriented classification 

methods have been also used to study a variety of urban phenomena. KUX ET AL. (2006) 

showed, using the example of São José dos Campos, Brazil, that OOA presents a strong 

potential to classify urban land cover out of VHR satellite images. Also VAN DE VOORDE ET AL. 

(2004) demonstrated that OOA is a useful technique for the extraction of land cover related 

information for urban areas. Several scientists have concentrated on mapping certain land 

cover classes using object-oriented methods. For example, ZHU ET AL. (2003) and YUSOF ET AL. 

(2008) investigated in urban vegetation extraction. YUSOF ET AL. (2008) mapped moreover 

open spaces in the city of Kuala Lumpur, Malaysia. Other authors concentrated on the 

identification and measurement of impervious areas (e.g., KAMPOURAKI ET AL. 2006, YUAN & 

BAUER 2006). The research of ESCH ET AL. (2005) showed the applicability of an OOA for the 

identification of built-up areas. Further, OOA are valuable for feature extraction such as 

buildings or roads (ALKAN ET AL. 2008). However, producing suitable mapping results is 

limited by shadow and neighbored buildings. Especially VHR image data is frequently 

affected by shadows, particularly in urban areas with large variations in surface elevation. 

Generally, it is critical to restore the radiometric response for the shaded zones before 

classification, or differentiate between shaded and non-shaded areas. Since shaded regions 

of certain land cover types show different spectral responses from those that are non-

shaded, ZHOU ET AL (2009) found out that using the same procedure for classification of 

shaded and non-shaded areas may lead, to significant errors in urban land use/cover 

classification. To meet the requirements and reduce the shadow effects in urban classi-

fication, the mentioned scientists compared several methods for classification of shaded 

areas using object-oriented procedures. Their results are useful for users to select 
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appropriate methods. Another application field of OOA is the monitoring of urban growth. 

For example, the analysis of MOELLER (2005) using long term remote sensing imagery from 

several sensor systems shows the capability for in depth monitoring of urban growth 

patterns. The outcome of this study may be a basis for the comparison of different cities 

with the same scheme. The transferability of stable object-oriented classification approaches 

is also supported by the work of TAUBENBÖCK & ROTH (2007) or MOELLER ET AL. (2004). 

The results of several studies have demonstrated moreover that remotely sensed data 

in combination with OOA can be used to detect and discriminate informal settlements from 

other urban land use forms (e.g., HOFMANN 2001a, SLIUZAS ET AL. 2008a, KOHLI ET AL. 2013) 

(cf. chapter 3.1). SLIUZAS ET AL. (2008a) noticed in this regard that object-oriented processing 

has “the ability to integrate context, multi-type data (both image and thematic) and a 

reasoning approach similar to that of an experienced analyst evaluating images visually”. 

Moreover, the authors pointed out that a concept of Human Urban Patches (HUPs) (as 

presented for instance by HEROLD ET AL. 2001) can be applied to map areas of urban poverty 

and deprivation, to asses their spatial evolution, and to derive further quantitative 

parameters. HUPs are areas of similar urban structure showing similar properties according 

to their size, shape and color, and significant variability in their density, spatial patterns and 

fragmentation (HEROLD ET AL. 2001, SLIUZAS ET AL. 2008a). SLIUZAS ET AL. (2008a) concluded 

therefore that, “provided a valid spatial description of a deprived area […], such spatial 

metrics can be used” for: (1) the identification and quantification of deprived/informal 

settlements with similarly physical entity in the same urban environment, and (2) the 

provision of useful information on the actual physical state within the patches, such as 

building area and density, vegetation fraction, or the amount of paved versus unpaved 

roads. Moreover, HUPs can (3) be described with respect to their proximity to public service 

or transport infrastructure, or other environmental parameters, such as risk exposure to 

hazards (cf. chapter 2.3 and Figure 2-6). Based on their changing spatial metrics it is also 

possible to (4) monitor changes within HUPs over time. Several authors used a HUP-related 

approach to describe the urban environment. For example, NOBREGA ET AL. (2006) attempted 

to identify roads in VHR data using an OOA, and used the paved/unpaved ratio to identify 

informal settlements in the mega city of São Paulo, Brazil. The preliminary findings of 

SLIUZAS ET AL. (2008a) show the potential of OOA to provide useful information on aspects of 

the physical state of HUPs. For example, information on pattern, density, and fraction of 

vegetation can be derived from the image data. But they also found out that more 

contextual information needs to be included in order to improve the description of HUPs and 

to relate them with levels of physical deprivation. The present study makes also use of the 

strengths of OOA to map homogeneous urban areas based on their topology and 

characteristically observable parameters (cf. chapter 6 and chapter 7). Within this research 

different settlement types (= different HUPs) in the mega city of Delhi, India are extracted. 

Hereby, since there is particularly need for action, special importance is attached on the 
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identification of informal settlements within the urban environment (cf. chapter 4.1 and 

7.2.1). Recognizing that some parameters relevant to informal settlement characterization 

cannot be extracted from the VHR imagery directly, an integrative data analysis using 

information based on questionnaires is implemented to derive socio-economic information 

such as population and water related parameters (cf. chapter 6.2 and chapter 8). 

A comparison with other, conventional methods is likely the best way to assess the 

ability and quality of object-oriented classification approaches. The work of YUAN & BAUER 

(2006), where object-oriented and pixel-based classifications are explored and compared 

regarding their ability to map impervious surface areas, is a representative example for such 

a comparative study. They found out that the OOA produces more homogeneous land cover 

classes with higher overall accuracy. Since the OOA is based on fuzzy theory, its 

classification results were also more reasonable when dealing with mixed pixels that include 

more than one class. In contrast, for impervious surface mapping, the pixel-based ML 

classification performance seemed to be better for delineating small impervious patterns 

such as a single-family residential building. Since both object-oriented and pixel-based 

algorithms have their pros and cons, sometimes it is worthwhile combining both methods. 

Thus, SHACKELFORD & DAVIS (2003) presented a combined fuzzy pixel-based and object-

oriented approach for classification of urban land cover from VHR multispectral image data. 

Another approach involves the generation of two independent but rudimentary urban land 

cover products, one spectral-based at pixel level and one segment-based. These 

classifications were then merged through a rule-based approach to generate a final product 

with enhanced land use classes and accuracy (GUINDON ET AL. 2004). 

As described in chapter 3.2.1 hyperspectral image data with contiguous and narrow 

bands are needed to differentiate the subtle spectral differences in heterogeneous urban 

environments. The extreme variety and mixture of natural and anthropogenic materials can 

usually not be handled using a “classical” analysis approach of supervised or unsupervised 

image classification. Hence, hyperspectral image analysis tools, such as spectral unmixing, 

spectral feature fitting, or spectral angle mapper, show a great potential for analyses in 

urban environments based on image data providing spectral high-resolution. Detailed 

information on this topic can be found at HOSTERT (2010). 

At the beginning of this chapter it was explained that the integrative use of Earth obser-

vation mapping and monitoring products with socio-economic data and information is a key 

requirement to understand the dynamics of patterns and processes and their interactions in 

heterogeneous urban areas (HEROLD & SCHMULLIUS 2005). Compared to Earth observation 

data, socio-economic data is usually without spatial reference or is spatially aggregated. An 

appropriate conceptual framework for data integration purposes and corresponding drivers 

and factors of urban processes is presented in Figure 3-4. 
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Figure 3-4: Conceptual framework for integration of Earth 
observation data and drivers and factors of urban 
processes (modified after HEROLD & SCHMULLIUS 2005). 

 

Using Earth observation 

techniques urban features are 

measured and recorded in 

“bottom up” direction describing 

the results of various processes 

at work. In other words, Earth 

observation captures the 

different types of urban structure 

and attempts to describe past 

and ongoing urban processes. By 

contrast, “socio-economic drivers 

or specific urban models usually 

follow a “top down” approach by 

studying a pre-specified process 

of urban change and the resulting 

spatio-temporal patterns (from 

process to structure)” (HEROLD & 

SCHMULLIUS 2005). The information derived by linking these two approaches provides an 

appropriate framework for mapping, monitoring, and modeling phenomena in urban 

environments. This information is, on the one hand, required to assess and describe social, 

economic, and ecological impacts of the ongoing urbanization process. On the other hand, 

such information has become indispensable to pre-estimate and predict future changes and 

trends of development in urban environments on global as well as on local scales. Not only 

in opinion of HEROLD & SCHMULLIUS (2005), but also in opinion of other scientists (e.g., 

SLIUZAS ET AL. 2008a, TAUBENBÖCK ET AL. 2009), integrative research work will support building 

the bridge between observation and use and will therefore make a contribution to an 

improved understanding which supports applied urban planning and management (DONNAY 

ET AL. 2001, HEROLD 2004, HEROLD & SCHMULLIUS 2005). Condition precedent for a successful 

integrative use of Earth observation mapping and monitoring products with existing socio-

economic information is that both disciplines, remote sensing and social science, are working 

closer together in the future. The following chapter will explain in more detail why 

integrating social science and remote sensing is a promising and emerging agenda in urban 

research applications. 

3.3 Linking Urban Remote Sensing and Social Science 

In general there is an increased interest today in making scientific progress through using 

remotely sensed images in social science (RINDFUSS & STERN 1998). Urban remote sensing is 

a meeting point for social and physical sciences. Moreover, “social applications of remote 
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sensing can inform the research agenda of the urban remote sensing arena” (RASHED & 

WEEKS 2003). 

However, the interest in this “multidisciplinary and multisectoral urban environmental 

research” (MILLER & SMALL 2003) was not always as big as today (RINDFUSS & STERN 1998). 

Despite the apparent advantages and benefits of remotely sensed data for social applica-

tions, remotely sensed images have not been a popular data source for social science 

research in the past and today are still only rarely taken into consideration. According to 

RINDFUSS & STERN (1998), there are miscellaneous reasons for this development. First, social 

scientists are likely to be skeptical that remote sensing can measure anything considered 

important in their area of research. Visible human artifacts such as buildings, parks or roads 

are less interesting for social scientists than the abstract variables that explain their 

appearance and transformation. Variables, such as government policies, distribution of 

wealth and power or market mechanisms, are more important for them and are, doubtlessly, 

not directly reflected in remote sensing images. Secondly, social scientists are more 

concerned with the question why things happen than where they happen (TURNER 1991, 

1998). Relatively few social scientists, despite the field of geography, value the spatial 

parameter that remote sensing data can provide (FAUST ET AL. 1999, GEOGHEGAN ET AL. 1998, 

RINDFUSS & STERN 1998). Thirdly, many social scientists do not know what a pixel is, what 

represents the electromagnetic spectrum, or why one needs quite often an atmospheric 

correction of remotely sensed images. Vice versa, the majority of remote sensing experts are 

unlikely to be conversant with a wide range of social problems and solutions. They have 

overlapped only a little with social scientists in their backgrounds, theories and methods. 

Thus, “integrating social science and remote sensing will require the fusion not only of data, 

but also of quite different scientific traditions” (RINDFUSS & STERN 1998). Finally, linking 

remote sensing and social science undoubtedly entails the risk frequently encountered by 

those who do interdisciplinary research. 

Regarding this discrepancy of approaches between the two research disciplines, why 

should scientists of both sides anyhow try to overcome this gap and bridge social science 

and remote sensing? Why it is important to link people and pixels? What can remote sensing 

do for social science and especially for urban studies? And what can social science do for 

(urban) remote sensing? RINDFUSS & STERN (1998) give an idea of further ways how linking 

people and pixels might result in “better” social science. The authors summarize how remote 

sensing observations provide uniquely useful information for social research. In addition, 

they describe the potential practical value of social science to remote sensing as well as 

several kinds of scientific contributions to remote sensing that might come from its 

interaction with social science. In the following the topic shall be introduced briefly. 
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For social science experts, one crucial reason for using remote sensing images is to 

obtain information on the context that evokes social phenomena. The function of context 

has become more and more important to the theories and empirical work of numerous social 

scientists. The analysis of remote sensing data offers an additional source of contextual data 

for multilevel analyses. Contexts can be determined in different ways. Censuses are one 

example (WEEKS 2001, RINDFUSS & STERN 1998). 

Moreover, remote sensing can provide data for various dependent attributes associated 

with human activity. First and foremost the environmental impacts of numerous social, 

demographic or economic processes. Surveillance and monitoring of land cover may present 

the fingermarks of road development, desertification, and deforestation as well as of course 

urbanization. As another example, “the observation of new building construction may be 

linked to the effects of local policies on land use and property taxation” (RINDFUSS & STERN 

1998) as well as to the impacts of insufficient management and planning as a result of rural 

exodus and migration into the cities. Methods that link results of remote sensing observation 

with ground-based social data have the capability to improve the understanding of the 

parameters of different land use changes and therefore of developments in the urban 

environment. COWEN & JENSEN (1998) give an example for such method development in 

which residential development is the parameter being predicted. Thus, using remotely 

sensed data makes it possible to measure social phenomena and their effects.  

Remote sensing can provide a number of further indicators for social science studies. 

These indicators can complete indicators acquired on ground. For example, urbanization can 

be monitored by counting buildings permits, sampling settlement blocks or remotely sensing 

the proportion of impervious and not impervious land (COWEN & JENSEN 1998) (cf. chapter 

3.1). All data sources have their drawbacks and limitations, but the combination of various 

sources with different imperfections might provide a better or even complete picture of the 

social phenomenon (RINDFUSS & STERN 1998). 

Another advantage of remote sensing images is the higher temporal and greater spatial 

resolution than data from other sources have. This quality can be used for instance during 

intercensal periods to update the census reports or to make census data generally available. 

In more developed countries census data are mostly very accurate, but they are collected 

infrequently. Sometimes, particularly in less developed countries, census data are reported 

inaccurately for several geopolitical or cultural reasons, or are not available at all. As a cost-

effective data acquisition technology, remote sensing has been more and more used for 

population estimation. The early roots of research in population estimation go back to the 

1950s and gained increasingly in importance since the 1970s (LIANG ET AL. 2008). COWEN & 

JENSEN (1998) exemplify the ability in this research field on correlations between remotely 

sensed indicators of dwelling units and actual census. LO (1986), CHEN (2002), HARVEY 

(2002a, 2002b and 2003), HOFSTEE & ISLAM (2004), SOUZA ET AL. (2002), LIU & CLARKE (2007), 
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QIU ET AL. (2003), WU & MURRAY 2007, LIANG ET AL. (2008), LU ET AL. (2006) or LIU & HEROLD 

(2007) as well as DOBSON ET AL. (2000), WANG & WU (2010) and KANJIR ET AL. (2012) give 

other examples for population estimation using different satellite data and methods. Thus, 

research has proved that remotely sensed data are efficient and effective in estimating 

population of urban areas. However, RINDFUSS & STERN (1998) also draw one’s attention to 

the limitations in the use of remote sensing for population estimates. Thus, it is e.g. not 

possible to discriminate clearly between residential buildings and others or to sense the 

amount of people per housing unit or housing units per building. The latter is a subject this 

study also is dealing with. In order to sort out this inability, in-situ studies (household 

survey, cf. chapter 5.2 and ancillary field data, cf. chapter 5.3) are necessary to determine 

how the number of people per dwelling unit varies with the living conditions and thus with 

the socio-economic and physical characteristics of different settlement types. In the opinion 

of RINDFUSS & STERN (1998) remote sensing might help to improve population estimates, if 

the difference is sufficiently systematic. Whether and to which extent this is possible will 

show the present analysis that uses remotely sensed data of very high spatial resolution and 

survey data of Delhi (cf. chapter 8). Nevertheless, a number of methodological studies are 

necessary, before a routine use becomes possible.  

Remote sensing images have been used also to obtain other significantly socio-

economic parameters, especially in urban contexts. For example, traffic patterns and road 

conditions (DELL’AQUA ET AL. 2003, DAMM ET AL. 2005, HAVERKAMP 2002, NOBREGA ET AL. 2006, 

SHACKELFORD & DAVIS 2003, ZHANG & COULOIGNER 2006) (cf. chapter 3.1) as well as physical 

features of buildings (e.g., area or height) (CENTENO & MIQUELES 2004, TUPIN 2003) are 

investigated by the remote sensing community. Moreover, residential energy demand is 

determined or prediction models of urban expansion (CHENG 2003, CHENG & MASSER 2003, 

CLAPHAM 2001, GLUCH 2002, HEROLD ET AL. 2005, SILVA & CLARKE 2002) or shrinkage (BANZHAF 

ET AL. 2007) respectively are developed using remote sensing observation techniques. Some 

of these approaches and methodologies are in advanced stages, but some are still in its 

infancy. Hence, “more experience is necessary to determine how well they work across a 

variety of social and geographic conditions and over longer periods of time” (RINDFUSS & 

STERN 1998). These determinations “may provide important advantages in cost or temporal 

resolution over conventional measures of the same” features, and “may make it possible to 

improve the quality of modeling used for planning urban infrastructure needs and 

forecasting the need for utilities or other public services” (RINDFUSS & STERN 1998). 

“Making connections across levels of analysis” is another aspect which speaks for the 

cooperation of social and remote sensing scientists. Images of space- or airborne sensors 

though are composed of individual pixels with different spatial resolution, but they can be 

combined to enable analysis at any level or scale coarser than the pixel size. Thus, remote 

sensing data have the ability to provide the possibility for encouraging social scientists to 
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communicate across levels of analysis and to develop theories and methodologies that link 

these levels (RINDFUSS & STERN 1998). 

In addition to that, more attention should be paid to the growing interdisciplinary 

community interested in sustainable development as well as global environmental change 

and related issues of human-environment interaction. This interdisciplinary community has 

to compare data on social and environmental aspects at the same spatial and temporal 

resolutions. It comprises both social as well as physical researchers. Merging social and 

remote sensing data should therefore be an interesting approach (RINDFUSS & STERN 1998). 

From the perspective of remote sensing experts, a mandatory answer is “social utility” 

(RINDFUSS & STERN 1998). In order to justify the application of remote sensing it is in general 

adjuvant to depict the potential of this discipline of physical science for social sciences. 

Hence, the argument of “social utility” means an increase in reputation of remote sensing as 

a consequence of social scientists recognizing the advantages of applying this technology for 

their purposes. In this context efforts should be made to identify and bridge still existing 

gaps between these scientific disciplines. Furthermore, the participation of social scientists 

makes it possible for remote sensing experts to see the landscape from a different angle and 

to “discover” features in the image data not previously apparent. For the validation of 

remote sensing observation results ground truth data is essential. A large percentage of the 

required data, for instance spectral measurements of different land cover types, is collected 

by the remote sensing specialists itself. But there are, however, different kinds of ground 

truthing “that involve classifying remote observations into more obviously social categories, 

and thus depend on social science input” (RINDFUSS & STERN 1998). Important examples are 

land use classification and differentiation of land tenure. Social scientists have access to a 

large set of most different social data. These data can also be used for validation purposes, 

but in particular they can directly be linked with remotely sensed data.  

Even if the linking of remote sensing and social science may bear difficulties and still is 

at the beginning of its development, it has been and continues to be done. There are several 

examples for the potential of interdisciplinary and multisectoral research evidenced by the 

following case studies. For example, GEOGHEGAN ET AL. (1998) show, that there are a number 

of opportunities to pursue some of the core social science research fields more closely 

through remote sensing and GIS. The authors take issues like gender, demography, (under) 

development, and decision making, as they relate to resource use and environmental 

change, as examples. For this purpose, their paper explicates various themes under 

development by the International Geosphere-Biosphere Programme (IGBP) – International 

Human Dimensions Programme on Global Environmental Change (IHDP) core project on 

Land Use/Cover Change (LUCC) (TURNER II 1997). The agenda of the LUCC project comprise 

making remotely sensed images more relevant to the social, political, and economic 

problems pertinent to land cover and land use change. They draw the conclusion that the 
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LUCC project and initiatives within the project that involve “socializing the pixel” and 

“pixelizing the social” offer the potential to achieve the integration, cooperation and 

collaboration among the natural, social, and remote sensing/GIS science. Another example 

for the integration of remote sensing and social science present TAUBENBÖCK ET AL. (2009). 

This study places emphasis on the analysis, whether the physical urban morphology of the 

city Padang (Indonesia) correlates with socio-economic parameters of its residents. Income 

and value of poverty are the example indicators of the approach. The authors explore on the 

capabilities of high-resolution optical IKONOS data to classify patterns of urban morphology 

based on physical parameters. Moreover, a household survey was conducted in order to 

investigate on the cities socio-economic morphology. MILLER & SMALL (2003) mentioned a 

number of further possibilities how data integration permits causal inferences to be made 

about the underlying dynamics of change in urban environments. For example, by using 

remote sensing data in conjunction with population and industrial data, the parameter 

surface temperature can be linked with population density, building type, and urban land 

use across an urban sector (cf. chapter 3.1). In addition, public health data, e.g. morbidity 

or hospital admissions, can demonstrate the coherence between remotely sensed urban 

environmental parameters and various types of environmentally related disease. Last but not 

least, some disparities in environmental conditions by settlement or section of the urban 

area can be observed to understand different patterns of vulnerability and environmental 

stresses. 

“If remote sensing data are integrated or used in conjunction with other sources of 

socio-economic data […] their potential applicability to both research and policy 

understanding of the urban environment increases significantly” (MILLER & SMALL 2003). 

Here, as elsewhere, are great differences between urban areas in more developed and 

less developed countries in the potential, applicability and need of remote sensing data and 

the capacity for integration of remote sensing with socio-economic data (MILLER & SMALL 

2003). In the majority of cases there are almost no or only incomplete datasets available in 

the less developed countries. Particularly mega cities in less developed countries like Delhi, 

Calcutta, Dhaka, Lagos or Cairo (cf. chapter 2.2) are data poor environments. Temporal 

resolution, coverage and quality of administrative and socio-economic data are insufficient 

and the knowledge about the living conditions of the residents is correspondingly very 

limited, incomplete and not up to date.  

In contrast to this, the data basis in the more developed countries is much better. Mega 

cities like Tokyo, New York or Los Angeles are data rich environments, where the integration 

of remote sensing with other data types is comparably easy to realize and likely to be most 

fruitful (MILLER & SMALL 2003). In the mega cities of Europe or other more developed 

regions, the living conditions of its residents are well known. The intra-urban development 

processes usually take place in a controlled way and are implicated in the urban planning 
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and management. In addition, reliable socio-economic data are collected regularly. For more 

developed countries already a multitude of examples exist how to link remotely sensed data 

with socio-economic data. As mentioned above, applications in environmental stresses such 

as changes in vegetation, air quality and surface temperature as well as traffic monitoring, 

management and planning can be quoted as examples (MILLER & SMALL 2003, SMALL 2006). 

The potential for the integration of remote sensing data with socio-economic data in more 

developed countries lies therefore in advanced disciplines and specific urban applications. 

These fields of application theoretically take an important position in less developed 

countries as well. At the moment, however, the realization is not yet possible since the 

necessary basis of administrative and other socio-economic data is missing. The 

prerequisites are completely different in the mega cities of the less developed countries (cf. 

chapter 2). The processes there usually are uncontrolled and take on an unknown temporal 

and spatial dimension, so that urban planners are not able to keep the overview. The 

circumstances are fundamentally more difficult and more complex. Under these conditions it 

is considerably challenging as well as extensive in terms of costs, time and personnel to 

conduct a survey or appraisal at regular intervals. Exactly because of this lack of data the 

potential of remote sensing in developing countries is rather in the derivation of the socio-

economic data itself than in the integrative use. 

With the task to derive socio-economic data from remote sensing data and thus drawing 

conclusions on the living conditions in the mega cities of this world, like it is done in this 

study, the question needs to be answered who will benefit of these investigations and where 

the demand for such innovative methods will be the greatest.  

In mega cities like Delhi, a method of indirect data assessment regarding the living 

conditions of the inhabitants, which can be applied in a time and cost saving way, is most 

beneficial. It is for example essential to know about the where and how fast informal 

structures are developing, in order to determine the place and level of effort to be put into 

improving the infrastructure to guarantee a sufficient supply of the inhabitants with water, 

electricity and health services. By means of remote sensing data and with the integration of 

few socio-economic data a catalogue can be compiled, comprising the living conditions of 

the inhabitants – and this in a quick, large-scaled, cost effective, by random or regularly 

repeatable way with a small required data basis. Hence, the lack of in-situ collected socio-

economic data can be compensated. In this regard, the most obvious and direct 

beneficiaries are on the one hand the governmental agencies and urban planners and on the 

other hand the inhabitants of the affected areas, whose living conditions can be monitored 

and improved as required. The added value of such a methodology is under the current 

circumstances of course much greater in less developed than in more developed countries. 
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3.4 Urban Remote Sensing Today — Interim Conclusion 

In summary of the explanation and review of previous as well as current research and 

development in urban remote sensing, the following conclusions and assumptions can be 

made for prospective enhancements in this field.  

Recent developments in remote sensing in general have an effect on the research, 

enhancements and application of remote sensing techniques in the analysis of urban 

environments in special. With the advent of full commercial very high-resolution satellite 

data, such as QuickBird or IKONOS, new opportunities to capture and map the urban 

environment become available. Using this data provides the chance to identify recent small-

scale land use structures and dynamics at local scale and enables therefore a more detailed 

characterization of urban areas. Besides an increased amount and quality of remote sensing 

image data with higher spectral resolution (hyperspectral data) there is as well LIDAR which 

are together improving the remote investigation of urban environments (HEROLD 2004) (cf. 

chapter 3.2.1).  

But advancing remote sensing technologies do not, per se, lead to improved image 

analysis results. Sensor improvements and innovative image data need rather to be adequa-

tely explored through adapted image analysis approaches. Hence, the progress in Earth 

observation data was accompanied by the development of new and innovative image 

analysis methods at the same time which today are also of particular importance for the 

research of urban areas (HOSTERT 2007). Several approved remote sensing techniques have 

already shown their value in mapping urban areas and have been successfully used as data 

sources for the analysis and modeling of urban growth and land use change. Nevertheless, 

there is still a need for improved methods and the consideration of new concepts. Especially, 

in the case of classifying complex urban environments with VHR remote sensing data, the 

“classic” pixel-based approach is not suitable any more. Hence, in order to obtain more 

accurate and detailed remote sensing products, the introduction of concepts in object-based 

analysis of spatial pattern and structures, providing second order image information, has 

evolved into a veritable alternative (DARWISH ET AL. 2003, HEROLD 2004, HURSKAINEN & PELIKKA 

2004 and SLIUZAS ET AL. 2008a) (cf. chapter 3.2.2). 

One of the most important findings of the above review is that the contribution of 

remote sensing to urban planning and management goes beyond mapping the objects of the 

built environment alone (SLIUZAS 2008). Remote sensing scientists are rather for instance 

able to monitor and forecast urban residential expansion, to describe urban change, and to 

provide uniquely useful information for social research (RINDFUSS & STERN 1998). The 

physical appearance in urban environments is a reflection of human activity. An isolated 

examination of social questions detached from geospatial questions does neither meet the 
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requirements of social science nor the requirements of remote sensing. Thus, urban remote 

sensing has the potential to be an important meeting point for social and physical scientists 

(cf. chapter 3.3). Today, the urban remote sensing community is just at the beginning of 

integrative work, the researchers are here in the early stages of development. 

Recent investigations make use of well established, classic methods and algorithms 

which were originally applied to environmental applications such as vegetation mapping or 

mapping of impervious surface. But using these methods will not suffice to do justice to the 

demands and requirements of urban questions. Hence, primarily considering recent global 

developments and urbanization processes, progress in further development of analysis 

methods is absolutely required and essential. Improved methodologies and innovations in 

this research field will arouse public interest and even produce interest by skeptical social 

scientists and urban managers. For instance, in the field of disaster management and 

prediction this has already happened. Only by the availability of robust and fully developed 

methods social scientist, but also urban planners and managers, will make use of remote 

sensing derived products in their day-to-day business. 

Since we have not reached this phase yet, research in this field of remote sensing 

applications still needs to consolidate user’s interest. This describes the current status which 

forms at the same time the baseline for the objectives and investigations presented in this 

thesis. The major task within this research is now the combined application of remotely 

sensed imagery and socio-economic data for mapping, capturing and characterizing the 

socio-economic structures and dynamics within the mega city of Delhi. 

 

 



Chapter 4 

The Study Area Delhi, India 

The rapid urbanization process experienced by the majority of developing countries during 

the last few decades — described in chapter 2 — has also reached India. Since the country’s 

independence from Great Britain in 1947 the present urbanization process in India has 

developed at an enormous pace (KRAFFT ET AL. 2003). While in 1951 about 17 percent of 

India’s inhabitants where living in urban agglomerations, in 1981 about 23 percent and 

already in 2013, about 32 percent were city dwellers (cf. Figure 4-1) (CENSUS OPERATIONS 

2001, WORLD BANK 2015/URL 23). 

 

Figure 4-1: Population growth in India: 1950 – 2050. The total population of India results from the sum of the 
urban and rural population amount (Data sources: HAUB 2002, UN World Population Prospects: The 2006, 2007 
and 2014 Revision). 

As shown in Table 4-1, for the year 2005, 29 percent or about 326 million people were 

registered in urban settlements of India. It is expected that in the year 2040 almost 50 

percent of the Indian people will be counted among the urban population (cf. Figure 4-1). 
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ZERAH (2000) already predicts this event for 2020. Comparative data from other countries 

as well as from the categories of more developed and less developed regions can be found 

in Table 4-1. Nevertheless, the Indian subcontinent is still strongly affected by rural 

structures. 

Table 4-1: Population data of India and selective comparative data 

Total Urban Number of As percentage Average annual Density Percentage Percentage with Percentage with

population Land area settlements urban dwellers of total growth rate [per km² of living in access to access to

[thousands] [km²] [% of land area] [thousands] population [%] urban extent] slums improved sanitation improved water source
Country 2005 2005 2000 2005 2005 2000-2005 2005 2005 2004 2004

World 6 514 751 129 830 789 2.7 3 164 635 49 2.1 902 … 80 95

More developed regions 
a

1 215 636 49 068 852 3.8 899 848 74 0.6 482 … 98 100

Less developed regions 
b

5 299 115 80 761 937 2.0 2 264 787 43 2.7 1 381 37 73 92

INDIA 1 134 403 2 973 190 6.9 325 563 29 2.4 1 592 35 59 95

Selective comparative data

Angola 16 095 1 246 700 0.1 8 684 54 4.8 8 469 86 56 75
Egypt 72 850 995 450 2.4 31 062 43 1.8 1 298 17 86 99
Nigeria 141 356 910 770 1.6 65 270 46 4.1 4 390 66 53 67
China 1 312 979 9 326 410 2.9 530 659 40 3.1 1 936 38 69 93
Bangladesh 153 281 130 170 7.8 39 351 26 3.6 3 863 71 51 82
Philippines 84 566 298 170 2.9 53 032 63 3.5 6 170 44 80 87
Turkey 72 970 769 630 5.7 49 097 67 2.1 1 119 16 96 98
Russian Federation 143 953 16 381 390 1.1 104 985 73 -0.6 563 … 100 100
Germany 82 652 348 770 17.3 60 630 73 0.2 1 006 … 100 100
Sweden 9 038 410 330 8.7 7 621 84 0.5 212 … 100 100
Portugal 10 528 91 500 14.0 6 066 58 1.7 473 … … …
Brazil 186 831 8 459 420 2.2 157 369 84 2.1 835 29 83 96
Mexico 104 266 1 908 690 5.3 79 564 76 1.3 780 18 91 100
Haiti 9 296 27 560 1.7 3 974 43 5.3 8 501 … 57 52
United States of America 299 846 9 161 920 8.2 242 236 81 1.4 321 … 100 100
New Zealand 4 097 267 990 3.0 3 532 86 1.3 437 … … 100

a
More developed regions comprise all regions of Europe, Northern America, Australia/New Zealand and japan. The term "developed countries" is used to designate countries in the more developed regions.

b
Less developed regions comprise all regions of Africa, Asia (excluding japan), Latin America and the Caribbean plus Melanesia, Micronesia and Polynesia. The term "developing countries" is used to designate countries 

in the less developed regions. The group of least developed countries is included in the less developed regions.

Data source: UN Urban Population, Development and the Environment 2007

Urban population

 

Altogether, more than 1.13 billion people are residents of the second most populous 

country of the World. At the same time, India is with 381.54 Pop./km² (2005, cf. Table 4-1, 

after UN 2008a) one of the most densely populated states of the world, whereas the density 

varies regionally very strongly (from metropolitan areas with partly > 6,000 Pop./km² to the 

peripheral mountain and desert regions with < 100 Pop./km²). In comparison with this, 

Germany has a population density of 230.35 Pop./km² (URL 8).  

As of the beginning of the 21st century, India has 35 cities with more than one million 

people are living in (KRAFFT ET AL. 2003). Thereof, three mega cities — Mumbai, Kolkata and 

Delhi — have a population size that has even exceeded the 10 million threshold (cf. Table 

2-2 in chapter 2) (AHUJA 2006). Together, about 40 million people are living in these mega 

cities, which is comparable with half of Germany’s total population. Moreover, these mega 

cities are ranking under the top ten of the most populous cities of the world (cf. Table 2-2, 

UNITED NATIONS 2004). Consequently, in a global comparison, India is leading the statistics. 

According to that, the growth of the large urban agglomerations in India proceeds by a 

multiple more quickly than the growth of the small towns and medium-sized towns. Hence, 

metropolises are subject to the major proportion of urbanization dynamics and are therefore 

particularly affected by the resulting infrastructural problems (see also chapter 2). Mean-

while, between a third and the half of the inhabitants of India’s mega cities are living in 

informal settlements (KRAFFT 1996). 
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Despite the considerable migration from rural to urban areas, one cannot talk about an 

extensive rural exodus in India. Well-known push- and pull-factors play an important role, 

but even more the city-internal natural increase in population is responsible for the rapid 

growth of the large urban agglomerations. This development is evoked by a decreasing 

mortality rate combined with a constantly high birth rate as described for numerous 

countries of the developing and newly industrializing countries (KRAFFT 1996 & SELBACH 

2009). 

In order to comprehend Delhi’s present situation and the corresponding living conditions 

of its residents, the following chapter 4.1 overviews the urban development, the population 

growth as well as the resulting implications. In chapter 4.2 the chosen test sites within Delhi 

are presented and the motivation for their selection is explained. 

4.1 Introduction into the Study Area: Urban Development, 

Population Growth in Delhi and Resulting Implications 

The city of Delhi looks back on a changeful history of more than three millenniums (KRAFFT 

1996, MANN 2006, PECK 2005, STROBEL 1997 & SELBACH 2009). “Changing dynasties and ever 

new ruling elites have over the centuries attempted to demonstrate their leadership by 

restructuring and rebuilding the city in its outlay and architecture” (KRAFFT 1996). Starting as 

the residence town of the Moghal, then developed to a provincial town in the colonial empire 

British-India and was constituted to be the imperial residence, and finally Delhi became the 

capital city of the Indian Union. Thus, Delhi was subjected to a permanent process of 

change accompanied by dramatic deformations (GUPTA 2006, MANN 2006 & STROBEL 1997). 

 

Figure 4-2: Population growth of the urban agglomeration Delhi, India: 1901 – 2030 (Data sources: UN World 
Population Prospects: The 2006, 2007 & 2014 Revision and HAUB 2002). 

In 1901 Delhi was a town with only 0.4 million inhabitants. Delhi’s population started 

increasing after it was named as the capital of British India in 1911 (BATRA 2005, STROBEL 
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1997). The decisive phase for the development of today’s dimension of the urban population 

in the history of Delhi was the time after India’s declaration of independence in 1947. 

Directly after the country’s independence from Great Britain, the city of Delhi underwent an 

extensive change (cf. Figure 4-2). Between 1950 and 1955 Delhi recorded an annually 

population growth of about 5.26 percent. Until the end of the 1990ies the growth rate 

continued on a high level between 3.9 and 4.5 percent annually (cf. Table 4-2) (UN 2007). 

Already in the 1970ies about four million 

people were living in the city of Delhi. In the end 

of the 1980ies the number of inhabitants passed 

the eight million threshold, and in 2005, only 60 

years after the independency, over 15 million 

people were surveyed over an area of 1,483 km², 

making it one of the world’s most densely popu-

lated cities (cf. Figure 4-2) (SLIUZAS ET AL. 2008a & 

UN 2007). The population density in the Delhi area 

averages 9,500 [Pop./km²], but can reach as high 

as 150,000 [Pop./km²] locally (SLIUZAS ET AL. 

2008a). This study shows in chapter 8.1 that even 

a population density of 250,000 [Pop./km²] and 

more can be observed in Delhi’s informal 

settlements. Within only few decades, Delhi could 

therefore increase its population tenfold, an increase that took, for comparison, in New York 

more than 150 years (KRÖHNERT 2003). Today, Delhi is a steadily growing mega city. 

According to UN-HABITAT (2003a) the growth rate was predicted to drop to a relatively 

moderate rate below two percent per annum until 2010 whereas in contradiction to the 

forecast the growth rate rose to 3.17 percent in 2014 already (UN 2014) (cf. Table 4-2). For 

2030, a tremendous growth to 36 million inhabitants (UN 2014) is expected (cf. Table 2-4 in 

chapter 2.2). 

Not only Delhi’s population has increased exponentially, but also Delhi’s area has grown 

in a similar extent since India’s independence. The municipal area outreaches today far 

beyond the borders of Old and New Delhi. The number of inhabitants refers therefore since 

1961 to the area of the former province Delhi, which was converted to the National Capital 

Territory (NCT) in 1992 and holds since then the status of a federal state. Within the NCT 

the urbanized areas captured approximately 60 percent of the area of the federal state in 

the beginning of the 21st century, while 40 percent were still classified as rural areas. The 

urbanized area increased fivefold within half a century (1941-2001) and fifteen fold since the 

appointment as capital (KÖBERLEIN 2003, MISTELBACHER 2005 & SELBACH 2009) (cf. blue box on 

this page). With the rapid speed of urbanization the rural area of Delhi has shrunk 
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simultaneously. The number of rural villages has declined from more than 300 in the 

beginning of the 20th century to 165 in 2001. Hence, the percentage of rural population of 

Delhi has decreased from about 47 percent in 1901 to merely 7 percent in 2001 (BATRA 2005 

& URL 9). According to that, about 90 percent of the population of the NCT is nowadays 

living in the Urban Agglomeration of Delhi. 

Table 4-2: Delhi’s annual growth rate between 1950 and 2030 

Time period Average annual rate of change [%]

1950 -1955 5.26

1955 - 1960 4.96

1960 - 1965 4.40

1965 - 1970 4.32

1970 - 1975 4.52

1975 - 1980 4.56

1980 - 1985 5.52

1985 - 1990 5.67

1990 - 1995 4.87

1995 - 2000 4.75

2000 - 2005 3.42

2005 - 2010 3.22

2010 - 2015 3.17

2015 - 2020 2.65*

2020 - 2025 2.18*

2025 - 2030 1.94*

*forecast data

Data sources:  UN World Urbanization Prospects: The 2014 Revision  

Numerous causes can be listed for the rapid growth of Delhi. As described for Indian 

mega cities in general, several push- and pull-factors play an important role (see 

introduction of chapter 4). On the one hand, the high population pressure and the poor 

living conditions in the rural areas surrounding Delhi (e.g., in the federal states of Haryana, 

Rajasthan and the most populous state Uttar Pradesh) drive people to move into the city 

(DUPONT 2000). On the other hand, Delhi is the seat of government and, with vibrant trade 

and excellent employment opportunities, the industrial center of Northern India. Both are 

decisive reasons, why Delhi used to be so attractive for immigrants in the past and today 

still is (BATRA 2005, MANN 2006 & SELBACH 2009). In addition to that, there is a significantly 

natural increase in population, which is mainly generated by a higher life expectancy. 

The continuous stream of immigrants and even the rapid growth of population in itself 

have increased the pressure on the existing infrastructure. Hence, the rapid growth of the 

urban agglomeration posed great difficulties to the urban planning and management, which 

used to be generally well organized till 1947. The extensive effect on the development within 

the NCT is explained in more detail in the following. 

The creation of new settlements did basically not happen with a profound urbanistic 

development concept. “On the spot decisions” were rather predominant compared to 

systematic planning (GUPTA 2006). Only in the year 1955, when the government was obliged 
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to put an end to the unplanned growth of the city, because of a severe cholera epidemic, 

the Delhi Development Act was passed. In the following (1957) the Delhi Development 

Authority (DDA) was founded with the task to design an urban development strategy (Delhi 

Master Plan) for the coming decades (GUPTA 2000 and 2006, MANN 2006 & STROBEL 1997). 

Subsequently, the DDA has become the central and most important development authority 

of the city of Delhi (SELBACH 2009). For more details concerning the DDA and its functions as 

well as the contents of the different master plans generated over the years, see KÖBERLEIN 

(2003). 

The concept of the DDA could however only be implemented partially because the 

imposed objectives could not bear the continuously high population growth. The urban 

resettlement and residential construction programs failed since the DDA was not able to 

close the supply gap on the municipal residential market. Therefore, the deficit of living 

space could never be covered sufficiently. Primarily for the low-income population sufficient 

living space could not be provided. One of the major problems concerning the effective 

realization of the urbanistic concepts and development plans is the fact, that decision-

makers generally have not been in the past and today still are no city planners but politicians 

(KÖBERLEIN 2003 & SELBACH 2009). “…this has resulted in rapid expansion of constructed 

areas at a very fast pace almost beyond the control of the authorities entrusted with 

planning and development actions and regulation of the city workers” (SARMA ET AL. 2003). 

Quoting KÖBERLEIN (2003) the situation of Delhi’s urban development can even be called a 

dilemma, for which “scheming politicians and money grabbing racketeers” have to take the 

responsibility. 

The politicization and bureaucratization of the city planning has led to an unbalanced 

development within the urbanistic planning zones of Delhi and hence to the development 

and establishment of a diversity of settlement structures. That means, besides the 

exponential growth of the population and the size of the urban area, the governmental 

planning authorities are also responsible for the high level of heterogeneity in the city 

structure (MANN 2006 & SELBACH 2009). 

Hence, due to this enormous growth, Delhi is affected by a high degree of 

fragmentation between planned urban upper class quarters and informal settlements (Jhuggi 

Jhompri clusters) within nearby quarters. Besides the historic quarters of Old Delhi (the 

oriental Old Town) (EHLERS ET AL. 1993) and New Delhi (the colonial New Town), several 

different settlement types have developed and established in Delhi’s municipal area over the 

past 60 years. All these types vary in their status of legality as well as in the socio-economic 

situation of their residents. In the following, the different settlement types that can be 

distinguished in Delhi are listed: 

 Gated Communities, 
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 Government Quarters, 

 Resettlement Colonies, 

 Unauthorized Colonies 5F

7, 

 JJ6F

8-Colonies as well as 

 Urban villages. 

To get a general idea, Table 4-3 comprehends some explanations according to the 

development of the settlement types, their main characteristics and the socio-economic 

circumstances of their dwellers. 

Compared to this list of settlement types, BATRA (2005) described a total of nine 

different settlement types for Delhi. He distinguishes the following types: (1) planned/ 

approved colonies, (2) regularized unauthorized colonies, (3) resettlements/relocated 

colonies, (4) urban villages, (5) unauthorized colonies, (6) notified slums, (7) JJ clusters, (8) 

rural villages and (9) pavement dwellers. Most of these settlement types (no. 2 and 4-9) are 

considered as informal. The author also gives population estimates, whereas in 2001 almost 

five million people (approximately 35 percent of Delhi’s population) were living in notified 

slums, JJ clusters and on pavements. In this study, these three types are not listed 

separately, but are summarized in the term “JJ-Colonies” (cf. Table 4-3). Since the JJ-

Colonies are the slums of the city of Delhi, in turn, as described in chapter 2.4, this 

perception will be used interchangeably and together in this context with the term “informal 

settlements”. 

It is important to note, that not only the slums of Delhi developed informally. Also the 

unauthorized colonies were built without permission and they are partly not connected to 

technical and social infrastructure (cf. Table 4-3). However, in this methodology the 

unauthorized colonies (e.g., Tughlakabad Extension, Sainik Farms) are not assigned to the 

category “informal settlement” since the structures are mostly planned and the living 

conditions are better or even much better than in the slum areas of Delhi. The majority of 

the inhabitants belong to the upper class and lower middle-class. Only a small percentage 

belongs to the upper lower class. In comparison to BATRA (2005), in this paper also the 

settlement type “urban village” is not classified as informal. In fact, urban villages score high 

in the deprivation index and they are vulnerable residential areas, but the majority of the 

residents can be numbered to the middle and upper middle class of Delhi. This classification 

also corresponds with the local expert knowledge as well as with interview data of local 

                                        

 
7 There are very different expressions of this settlement type. Details of the development and growth of Delhi’s 

unauthorized colonies can be found in BOSE (1980). 

8 In India slum related residential areas are characterized as JJ-colonies. JJ stand for Jhuggi Jhompri and means in 

Hindi “hut dwelling” (MANN 2006). 
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inhabitants conducted in the respective areas (cf. chapter 5.2). These examples point up 

that in a city itself different possibilities of categorization, assignment and definition of 

settlement types appear. A direct comparison of these studies (and numbers) is therefore 

relatively difficult and can, (if at all), be carried out only after an exact sighting of the 

respective definitions. 

These examples clarify that there are different possibilities of the categorization, 

assignment and definition of settlement types even within a single city. Therefore, a direct 

comparison of these studies is relatively difficult and can, if at all, be carried out only after 

an exact analysis of the respective definitions and numbers. Nevertheless, both 

categorizations show, even if they are partly different, that the settlement structure in Delhi 

is very heterogeneous and an allocation can be difficult. 

Summarizing one can say that besides the intended functional separation of living, 

working, supplying and traffic constituted in the master plan, in particular the internal, socio-

economic differentiation of the residential areas has evoked a heterogeneous development 

within the urban agglomeration of the NCT (SELBACH 2009). Primarily the South of Delhi is 

largely inhabited by the middle and upper class, while the northern and eastern areas are 

populated by the poorer sections of the population. Hence, in Delhi a significant socio-

economic gap from South to North is observed (MISTELBACHER 2005) (cf. Figure 4-3).  

The disparities on the “total-municipal” level of Delhi are also existing on a small scale, 

this means at a local level. Planned and unplanned, wealthy and poor as well as formal and 

informal quarters are located very closely at a small scale and they partly merge seemingly 

seamlessly (SELBACH 2009). Thus, this very heterogeneous and highly complex urban 

structure in itself gives a clear indication of the very different infrastructural supply of the 

inhabitants. This also concerns primarily the water supply and disposal of waste water, 

which is examined particularly in this study (PARAI ET AL. 1994). 

Especially in the JJ-Colonies, which, besides the unauthorized colonies, strongly shape 

and dominate Delhi’s cityscape, the situation of the population is very difficult and the 

preconditions for an improved workaday life are bad. Because of this, this settlement type 

was included in the examinations and became a focal point of this study. 
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Table 4-3: Summary of the different settlement types in Delhi: development, characteristics, legal status and the 
socio-economic status of their inhabitants 

Settlement type Development Characteristics Residents

Gated Communities  ● (a) In the 1970 and 1980ies by private builders

individually constructed residential areas (e.g. Greater

Kailash II),

● (a) mostly single-story to three-story bungalows, but

also (b) compact apartment buildings within bigger

housing estates in the urban outskirts (block by block

buildings),

● Quarters of the upper middle

class and upper class

e.g. Greater Kailash II,

Vasundara Enclave

● (b) Since the 1990ies constructed by housing

societies or sometimes by the DDA (e.g. Vasundara

Enclave ),

● Individual blocks are fenced off in many cases or are

open to the public only during the day,

● Dominate primarily in southern Delhi, ● For Indian conditions generous, individually

constructed residential areas 
● Authorized

Government Quarters ● Municipal house building by the DDA, ● At first in two-story style, four- to six-story later on,

yellow painted,

● Housing space for the

employees in the public service    

e.g. Kalkaji DDA flats,

Narmada Apartments

● Construction of the housing estates was carried out

very generously and always around a park located in

the middle,

● depending on the size of the individual accomodation

units (2, 3 or 4 rooms) one distinguishes apartment

buildings in Type II, III, IV Government or DDA flat,

● Complexes built fast and economically, ● Simple design,

● Authorized ● Apartment buildings often are in structural bad

condition; neglected basic structure of buildings

Resettlement Colonies ● Planned and built by the Indian state, ● Single properties are situated in rows right next to

each other

● Very different living conditions

can be observed: from slum

similar conditions up to

infrastructural circumstances of

the lower and middle middle-class

e.g. Trilokpuri, Dakshinpuri,

Madangir Camp;

● Enforced clearance/relocation of the intra-urban JJ-

Colonies
1
,

● Planned, but also very dense building density

●  Peak of development: slum clearances 1
, ● Since the base area of the individual plots is very

small, the owners of the houses built up one or more

additional story illegally
●  Usually located at the periphery of the city ● Poor housing conditions, overcrowding and are mostly

unattractive due to the distance to possible imloyment

Unauthorized  Colonies ● Settlements developed informally, ● Mostly planned structures (column- respectively block-

parcelling), but not connected to technical and social

infrastructure,

● Cover the complete socio-

economic spectrum: vary from the

upper class
2

to the lower middle-

class and upper lower class

e.g. Sainik Farms
2, 

Tughlakabad Extension

● Inhabitants purchase parcel of land by landowners

or by clandastine colonisers (illegality of the

subdivision). The plot holders cannot get a permission

to build. Thus, the construction are carried out without 

the compliance of the design specifications

● Structure of the quarters varies with the socio-

economic status of their residents from very dense and

multi-storied in structurally acceptable, partly luxury

conditions over dense and in simple style up to

settlements which externally are not different

● Infrastructural environment of the colonies varies

according to the socio-economic status

JJ-Colonies ● Settlements developed informally, ● Are located along the tracks, river banks, open drains

and on the outskirts, but also on pavements (in the

middle of the city),

● Are the slums of the city of

Delhi, 

e.g. Bhomiheen Camp ● The acquisition of land is spontaneously and without

payment (= illegal occupation of land, the inhabitants

do not have any tenure)

● Spread out over the whole municipal area in larger

and smaller units,

● Lower class

● Strong variance in the settlement size: smallest JJs

comprehend only a few huts (slum pockets), but they

can, as marginal quarters, comprehend about 10,000

accommodation units,

● They are built in the simplest style (temporary shelters

out of corrugated metal sheet or plastic tarpaulins) up to

houses built from clay bricks in the marginal quarters,

● Very high housing density,
● As a result of the status without rights a supply with

technical or social infrastructure is not existent, informal

channels of supply are practiced,

● Very bad living conditions, lack of basic services (e.g.

water, sanitation)

Urban villages ● Urbanized villages, which were enclosed as a result

of the urban growth,

● Irregular, from dense up to very dense structure with

a complex road and path network

● Middle to lower class

e.g. Mehrauli ● Very different development
3
, 

● Legal exceptional position: independent settlements,

which are not subject to the building laws and

construction specifications of the DDA

groundwater.

 urban villages in Delhi took place in very different ways: On the one hand, numerous villages have suffered and are today still suffering of an economical and in the following 

as well of a social degradation process, evoked by the loss of the economic basis, which is traditional agriculture and allied occupations. These villages hence are on a 

social decline, drifting towards the informal sector.  On the other hand, some villages (c.f. Mehrauli) are of interest from a historical point of view. Here a gentrification 

process and hence a positive trend can be observed (MEHRA 2005).

3
Since 1911, 135 of the 150 urban villages within the new founded province of Delhi have been swallowed by the steadily growing city (GNCT 2008).  The development of the

2
 Sainik Farms  farm houses: Members of the upper class quarters live illegally in luxury villas in the “farm belt” outside the densely populated areas of Delhi. The villas are 

surrounded by big parks and gardens, and are protected by high walls or fences. Although the residents are no more farmers, they are allowed, due to their status, to produce 

Sources: BANERJEE 2002, BOSE 1980, DUPONT 2000, GI & GNCT 2001, MANN 2006, MEHRA 2005, MENON 2000, SELBACH 2009, SONI 2000, TARLO 2000

1
 The development of the resettlement colonies took place in several phases: The governmental relocation of a large number of people started in the 1960ies with the 

resettlement of the refugee camps and the slum quarters. Many new settlements in the outskirts were built and extended. The clearing of the slum areas 

culminated in the “slum clearance” actions from 1975 to 1977 where approximately 700,000 slum dwellers were resettled by force (MANN 2006).
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Already in the middle of the 1990ies about 35 to 50 percent of Delhi’s population lived 

in slums or slum similar settlements (JAIN 1990, KRAFFT 1996, STROBEL 1997). In the 

literature very different information on the actual number of slum residents in Delhi exists. 

The numbers vary from 1.6 million (DUPONT 2006) to three million (HAIDER 2000) and four 

million (ASHA 2008) up to almost five million (BATRA 2005). After SINGH ET AL. (2007) even 

“about 50 percent of the population is living in informal settlements” and is plagued with 

inadequate infrastructural facilities and a number of water and waste water related problems 

(NIEBERGALL ET AL. 2009). This number includes as well a part of the inhabitants of the 

unauthorized and resettlement colonies and in addition to that partly inhabitants of the 

urban villages, which show slum similar conditions due to their 83Hdisadvantageous 

development. Quoting DUPONT (2000) the number of individual Jhuggi Jhompri clusters has 

increased from approximately 100,000 to 500,000 between 1981 and 1994. Although there 

are no more governmental resettlement programs today, the slum dwellers are threatened 

by eviction and displacement every day since they are deprived of all rights (SELBACH 2009). 

As described for informal settlements in general (cf. chapter 2.4), the JJ-Colonies and 

some other slum similar areas in Delhi also combine various negative features. They are 

characterized by an insecure residential status, insufficient access to safe water and 

sanitation as well as an inadequate or even inexistent infrastructure of power, traffic, health 

and education. Moreover, poor structural quality of housing and overcrowding is observed. 

The situation of water supply in the informal settlements and other settlement types of Delhi 

is described in detail by SELBACH (2009), while the disposal of waste water is specified well 

by SINGH (2008). 

All these slum characteristics become directly and indirectly apparent within the 

settlement structure of the city. The same applies as well to almost all other settlement 

types of Delhi. Also their features are reflected in the settlement structure and therefore 

they can be distinguished on the basis of their different physical entity. Vice versa, the 

potential of remote sensing is restricted to the detection and analysis of “visible” 

characteristics of the urban environment. Hence, the 84Houtward 85Happearance is important to 

identify different settlement types and therefore different living conditions using remote 

sensing data and analysis methods. 

A more detailed specification of the physical parameter values of the different 

settlement types can be seen in Appendix A.6. 

 

 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=disadvantageous
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=outward
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=appearance
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Figure 4-3: Socio-economic disparities within the municipal area of Delhi, India (Source: SELBACH 2009 after CENSUS 

OF INDIA 2001/URL 9, DUPONT 2000, EICHER 2006 & MISTELBACHER 2005). 
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4.2 The Selection of Useful Test Sites within Delhi 

Within the NCT of Delhi based on prior knowledge of the local conditions, a comprehensive 

literature review and the support of pre-studies carried out by R. Singh and T. Krafft on 

Delhi several test areas with different locational, social and settlement structures were 

selected. To best capture the heterogeneous nature of Delhi three different test areas are 

used to cover different parts of the urban agglomeration. The locations of the test areas 

within Delhi are shown in Map 4-1 (see introduction of chapter 4). The specific pre-selection 

of the test areas is based on the following arguments: 

 Central Delhi (C) represents complex urban development evident in its mixed land use, 

co-existence of high rise and JJ-Colonies at very close quarters. The historical centre of 

Delhi is an important and interesting area for investigation, since it is on the one hand 

the oldest preserved part of the city (walled city Old Delhi) ailing with ageing structural 

and infrastructural problems (downgrading process) since many years. On the other 

hand, Central Delhi shows with the government quarter probably the best supplied 

district of the city. 

 The south of Delhi (South Delhi — S) is of special interest since this area has developed 

extremely heterogeneously and shows great differences with respect to infrastructural 

conditions within nearby quarters. This fact is particularly of importance for the 

evaluation of remote sensing data and therefore for this study. Moreover, South Delhi is 

more disadvantageous in terms of water availability due to its location at the tail end of 

the water provision system. This area represents the fringe of the city, dotted with 

urban villages also experiencing ground water depletion and contamination problems. 

 The eastern part of Delhi (Trans-Yamuna area) has just like the southern part developed 

very heterogeneously and hence great infrastructural differences become apparent. The 

Trans-Yamuna area is experiencing mushrooming of lower and lower middle class 

housing complexes. This part of Delhi is, moreover, the district with the strongest 

sewage problems. 

Following the pre-selection of the three test areas and thus of the QuickBird images (a 

detailed description of the acquired satellite data and the QuickBird sensor is given in 

chapter 5.1), the final selection of common test sites was performed. A finer respectively a 

more focused selection was necessary, since an investigation of all three test areas (in total 

almost 170 km²) and in particular of all inhabitants of these areas was not applicable by 

reason of limited human and financial resources and the high expenditure of time required. 

The unplanned rapid expansion and the emerging spatial fragmentation in Delhi result 

in increasing “social gradients”, so that not only the social differences are continuously 

getting stronger but also the visible contrasts of the urban structure (NIEBERGALL ET AL. 

2009). Since the appearance of different urban structures on-site as well as in the satellite 
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images is a key issue of this thesis, especially this fact was taken into consideration during 

the selection of the test sites. 

 

Map 4-1: Area of investigation: Metropolitan area of Delhi, India and acquired QuickBird scenes. 

Against this background a total of seven single test sites were chosen. The selection 

was following a gradient approach, i.e. selection of particularly those areas, in which 

structurally highly different residential areas are situated in direct vicinity, while specific care 

was taken to include various types and gradients of residential areas (cf. chapter 4.1). 

During the selection specific attention was also paid to further factors, such as the geo-

location of water- and waste water-related infrastructure such as canals, water and sewer 

pipes, open drains, etc. Moreover, all settlement types occurring in Delhi (cf. Table 4-3) shall 

be covered by the selection of the test sites. Hence, the test sites show a high socio-

economic gradient and large visible contrasts within short distances. 

Primarily in two of the seven test sites — in test site s3 and s2 (cf. Map 4-2, Map 4-3, 

and Map 4-4) — elaborate remote sensing image processing was done. As described in the 

determination of the pre-selection of the three test areas (see chapter 4.2), South Delhi has 

developed extremely heterogeneously and shows great differences with respect to 

infrastructural conditions within nearby quarters. Especially within test site s2 and s3 the 

visible as well as social contrasts are strongly pronounced. Besides that, taking both test 

sites together, all settlement types are represented which forms a good basis for this 
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investigation. Moreover, South Delhi represents an area, disadvantageous in terms of water 

availability and water quality, which is a main concern of the research initiative. 

 

Map 4-2: Acquired QuickBird scene South (s) and chosen test sites s1, s2 and s3 (for an enlarged map 
cf. Appendix, A.3). 

Within test site s3, moreover, a training area was selected in order to test the data 

analysis steps at a first stage at this area (cf. Map 4-3). The developed methodology was 

then transferred to the whole test site s3 and the transfer site s2 correspondingly (cf. Map 

4-4). Like both test sites, the chosen training area also shows several forms of settlement 

structures. Besides middle class residential districts like the Alaknanda apartment complexes 

and the Kalkaji DDA flats, unauthorized colonies of the lower middle class and upper lower 

class like Tughlakabad Extension as well as settlements of the poorer lower class like the JJ-

Colony Bhomiheen Camp are situated within this area (cf. Appendix, A.6). A similar approach 

chose LO (1995) and HARVEY (2002a, b), who tested population models in another study area 

but within the same remotely sensed image. As in the work being available here, in their 

studies, an image is divided into two parts: one part for model development and the other 

part for model validation (WU & MURRAY 2007). 

In comparison to the remote sensing image processing, a household survey selecting 

samples from various kinds of residential areas, including respondents from various socio-

economic groups, was carried out in all seven test sites (cf. chapter 5.2). Moreover, a 

comprehensive field survey was conducted in the same areas (cf. chapter 5.3).  
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Map 4-3: Overview of test site South s3 and detailed view of the settlement types occurring within 
this area. Within the map moreover the training area is included as 4/3/2 composite (for an enlarged 
map cf. Appendix, A.4). 

 

Map 4-4: Test site South s2 and corresponding details of the settlement types occurring within this 
area (for an enlarged map cf. Appendix, A.5).



Chapter 5 

Data Used 

This chapter provides a summary of all the data used in the present study. In the first 

section (chapter 5.1), the remote sensing data processed and analyzed is presented. Also 

the required pre-processing of the satellite images is given here. The second section  

 

Figure 5-1: Overview of the primary data base using in the research initiative. 
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(chapter 5.2) introduces the primary data of the household survey collected during field 

campaigns in the Delhi study sites. Apart from the questionnaires, additional information 

was gathered through personal observation techniques, digital photograph documentation 

and GPS measurements. The data base generated with the aforementioned methods (is 

mainly used for validation purposes and) is described in chapter 5.3. An overview of the 

primary data base used in this research is shown in Figure 5-1. 

5.1 Remote Sensing Data 

The analysis of heterogeneous, high-fragmented and dynamic urban environments requires 

the application of very high-resolution (VHR) satellite data. The specification VHR is com-

monly used for spatial resolution with a ground sampling distance (GSD) of < 1 m (MOELLER 

2005) (cf. Table 3-3). A number of panchromatic and multispectral sensors operating as VHR 

systems are available. For detailed information on current VHR sensors see chapter 3.2.1. 

QuickBird data is used in the present study to examine the potential of satellite images 

to identify informal settlements and other settlement types by their visible spatial structures 

and dynamics. Since the successful launch of Digital Globe´sTM QuickBird satellite in October 

2001 and the availability of the data, QuickBird imagery has quickly become a popular choice 

for large-scale mapping using VHR satellites. QuickBird has a 97.2° sun-synchronous near 

polar orbit at 450 km altitude (URL 7). The QuickBird sensor is one of the first commercial 

satellites that provides sub-meter resolution imagery (KLEINSCHMIT ET AL. 2007). According to 

that, QuickBird collects multispectral and panchromatic imagery concurrently, at resolutions 

of 2.44 – 2.88 m and 0.61 – 0.72 m at nadir respectively (CHENG et al. 2003 & URL 7). A total 

of five bands are acquired, whereas the panchromatic band is ranging from 0.45 - 0.9 μm 

and the multispectral bands (blue, green, red and near Infrared) are ranging also from 0.45 

- 0.9 μm (URL 7). Thus, by using data fusion techniques, the multispectral bands can be 

easily merged with the panchromatic (POHL & VAN GENDEREN 1998, ROSSI 2003). QuickBird 

panchromatic imagery is collected in 11-bit format (2048 gray levels). A big advantage of 

the 11-bit resolution is the possibility to differentiate further details for instance in urban 

shadowed areas. QuickBird has along-track and/or across-track stereo capability, which 

allows for a high revisit frequency of one to 3.5 days, depending on the latitude (TOUTIN & 

CHENG 2002, ROSSI 2003 & URL 7). The sensor’s nominal swath is 16.5 km (at nadir) (CHENG 

ET AL. 2003 & URL 7). A summary in Table 5-1 briefly introduces the technical features of the 

QuickBird sensor. The combination of very high-resolution, high-revisit frequency and large 

area coverage is certainly it´s major advantage over the use of aerial photos or (usual) 

multispectral satellite data. For more detailed information on the QuickBird sensor 

characteristics and different products see TOUTIN & CHENG (2002) as well as URL 7.  



Data Used 

 

83 

Table 5-1: Technical features of the QuickBird sensor 

Orbit information Altitude 450 km

Inclination 97.2° (sun-synchronous)

Equator crossing time 10:30 AM

Nominal swath width 16.5 km (at nadir)

Revisit time 1-3.5 days

Max. view angle 30°

Dynamic range 11 bits per pixel

Geometrical resolution Panchromatic 0.61m (nadir) - 0.72m (25° off-nadir)

Multispectral 2.44m (nadir) - 2.88m (25° off-nadir)

Spectral coverage Panchromatic 450 – 900 nm

Multi-spectral

Blue 450 – 520 nm
Green 520 – 600 nm
Red 630 – 690 nm
NIR 760 – 900 nm

Spatial coverage Area mode 16.5 x 16.5 km

Strip mode 16.5 x 165 km (single pass)

Data source: URL 7  

5.1.1 Acquired Image Data 

To best capture the heterogeneous nature of Delhi three different QuickBird images are 

used to cover different parts of the urban agglomeration (cf. Map 4.1 in chapter 4.2). All 

three scenes are so-called Standard Imagery Bundles. Users of QuickBird´s Standard 

Imagery products usually possess sufficient knowledge to manipulate and exploit the 

imagery for a wide variety of applications. Thus, Standard Imagery products are designed 

for users acquainted with remote sensing applications and image processing tools that 

require data of modest absolute geometric accuracy and/or small area coverage. Each 

Standard Imagery product is radiometrically calibrated, sensor corrected, geometrically 

corrected, and mapped to a cartographic projection. It has an absolute geometric accuracy 

in the desired map projection of up to 14 meters (RMSE), excluding any topographic 

displacement (TOUTIN & CHENG 2002, URL 7). For more information on the radiometric and 

geometric corrections applied by Digital Globe see URL 7. 

The data for the Delhi study area was acquired on April 20th 2002 (Central ’02), on 

September 19th 2002 (East) and December 12th 2002 (South), respectively. The central 

image of Delhi covers an area of almost 42 km², the eastern image about 57 km², while the 

image situated in the South covers an area of about 69 km² (cf. Map 4-1). For all 

acquisitions a nadir-mode was requested granting minimal viewing angles. Table 5-2 gives a 

detailed overview of the QuickBird scenes processed and analyzed in the framework of this 

thesis. 
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Table 5-2: Meta data of the QuickBird scenes processed and analyzed 

Internal name Collecting Sensor ID Product type Area Off-nadir Cloud cover

date Latitude Longitude Latitude Longitude [km²] [%]

Central ´02 (C02) 04/20/2002 QB02 OR Standard* 28.6759204 77.19226817 28.60521292 77.24499576 41.92 13.1° 0

East (E) 09/19/2002 QB02 OR Standard 28.61834169 77.28517664 28.53330788 77.34591498 57.48 13.0° 0

South (S) 12/18/2002 QB02 OR Standard 28.55962427 77.15809839 28.50041436 77.26492684 69.20 13.3° 0

Central ´06 (C06) 05/29/2006 QB02 OR Standard 28.67125439 77.19208271 28.62706533 77.2449132 26.12 11.0° 0

* Standard Imagery products are radiometrically corrected, sensor corrected, geometrically corrected, and mapped to a cartographic projection.

Map projection / map zone, hemisphere: UTM, WGS 84 / 43 N 

Data source: Digital Globe

NW corner SE corner

 

The test areas were selected based on prior local knowledge of the city. Within the test 

areas, a total of seven single test sites have been chosen. The test sites show a high socio-

economic gradient and large visible contrasts within short distances. Moreover, a training 

area inside test site s3 was selected (cf. Map 4-3 and A.4) The chosen training area shows 

several forms of settlement structures beneath middle class residential districts and informal 

settlements. More information regarding the selection of useful test sites within Delhi and 

their features can be found in chapter 4.2 and chapter 5.3. At a first stage the data analysis 

steps were tested at this area. The developed methodology was then transferred to the 

whole test site and other areas correspondingly. 

5.1.2 Pre-processing of the Satellite Data 

Prior to the classification and analysis of the satellite data some pre-processing was 

necessary. In order to benefit from panchromatic high spatial resolution (0.6 m) simul-

taneously with multispectral information, a resolution merge was performed before analyzing 

the images. Since the panchromatic and multispectral image bands fit well due to a 

parallaxis correction undertaken by the data provider they can easily be fused to integrate 

the high spatial information content of the panchromatic band into the multispectral bands. 

In this study, the primary objective of the fusion is defined to preserve the spectral infor-

mation, while enhancing the spatial variability. Therefore, additive pan sharpening algo-

rithms, such as the Brovey transformation were not considered here (KLEINSCHMIT ET AL. 2007 

& VRABEL 1996). Instead of that, some tests with other standard algorithms provided by 

commercial image analysis software packages were carried out, e.g. the Multiplicative 

method and the Principal Component Analysis (PCA) combined with Nearest Neighbor, 

Bilinear Interpolation as well as Cubic Convolution as resampling technique. Moreover, a 

Wavelet PCA and a Wavelet Intensity-Hue-Saturation (IHS) were performed to test the 

quality of the information fusion. Finally, the PCA pan sharpening method with cubic 

convolution yielded the best results with respect to the radiometric and geometric 

characteristics of the original images and proved therefore to be the most successful in pan 

sharpening the present QuickBird images (cf. Figure 5-2) (EHLERS 2005, HOFMANN 2001a, POHL 
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& VAN GENDEREN 1998). Thus, all of the analyses carried out in this work and their results are 

based on the merged QuickBird data.  

 

Figure 5-2: Results of the Principal Component Analysis (PCA) pan sharpening of the QuickBird data, subset of the 
scene South (S): (a) 2.4 m multispectral (3/2/1), (b) 0.6 m panchromatic, and (c) 0.6 m fused image (3/2/1). 

5.2 Household Survey 

“One of the chief practical obstacles to the development of social inquiry is the existing division of 

social phenomena into a number of compartmentalized and supposedly independent non-integrating 

fields.”  

(John Dewey 1938 in JOHN GERRING 2001) 

In association with the research initiative an intense field campaign was conducted in 2005 

and 2006 to sample in-situ information. Primary household data were collected through 

personal observation and household surveys within the selected test sites (cf. Map 4-2). In 

order to get an additional perspective of the living conditions and supply situation of the 

different settlement types of Delhi, meetings with responsible local and state officials were 

arranged and several expert interviews were conducted within this research initiative (cf. 

Figure 5-1). These respondents included key informants and leaders of Resident Welfare 

Associations (RWA), persons in charge of the municipal water board (DJB - Delhi Jal Board) 

as well as engineers for water and sanitation of the distinct localities. Since the remote 

sensing approach is following a quantitative approach, the results of these interviews were 

hardly taken into consideration within this study. These are of higher importance for the two 



Data Used 

 

86 

other research approaches which include the expert interviews in their analysis (cf. SELBACH 

2009 & SINGH 2008). Details of the questionnaire design, the empirical phase and the 

evaluation of the household survey as well as their critical appraisal are described in the 

following subchapters. 

5.2.1 Questionnaire Design 

To get a broad overview of the heterogeneous living conditions and the very complex supply 

situation of Delhi’s inhabitants, a standardized and structured questionnaire was developed. 

This questionnaire was designed to extract quantitative and qualitative information about (a) 

the socio-economic background and (b) the water availability and consumption pattern of 

the people (which is deemed to be necessary in order to anticipate the quantities of water 

demand as well as wastewater generated, as well as its disposal mechanism and routes of 

exposure). A part of the questionnaire was also devoted to a basic health survey (c). 

Moreover, it included sections to cover people’s perception and response to existing water 

and sewage situation and preferred solutions (d) (NIEBERGALL ET AL. 2009). 

The questionnaire contains primarily closed-ended questions. In a closed-ended 

question the response categories are provided, and the respondent just chooses between 

the clearly phrased answers. The main advantages of this question type are: (1) quick to 

answer, (2) easy to code, (3) no difference between articulate and inarticulate respondents, 

and (4) easy to replicate study. However, closed-ended questions can draw misleading 

conclusions because of limited range of options or can force respondents into simple 

responses (URL 10 & 11). In connection with this, also open-ended questions were included 

in the questionnaire (SELBACH 2009). In an open-ended question no standard answers to 

choose from are provided. The main advantages of open-ended questions are: e.g., (1) 

greater freedom of expression, (2) no bias due to limited response ranges, and (3) 

respondent can qualify and clarify their answers (URL 10 & 11). Since the coding is very time 

consuming and the interviewer may misinterpret (and therefore misclassify) a response, this 

type of questions can affect the household survey adversely.  

To cope with all three research approaches quantitative and qualitative, open-ended as 

well as closed-ended questions were included in the interview. Comparable to the selection 

of the test sites earlier, the following basic assumptions were here also taken into account: 

on the one hand, the high morphological, structural fragmentation of the spatial units, 

relevant out of the remote sensing perspective, and on the other hand the differentiation of 

the settlement types, which are important from a social and urban geographical view (cf. 

chapter 4.2). Furthermore, the questionnaire included narrative parts, which answers were 
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recorded for later references. In this study, however, only closed-ended, quantitative 

questions are taken into account in the evaluation.  

Based on a common questionnaire 

design process (cf. Figure 5-3) the 

questionnaire was drafted jointly by all three 

PhD candidates during the preliminary 

phase, with the prerequisite to obtain an 

identical interview situation for all 

respondents. With this standardization, 

different possibilities of interpretation of 

identical questions, due to different 

phrasing, should be avoided. The respective 

interesting questions for all three different 

research approaches were implicated in the 

survey, resulting in the compilation of an 

“integrative questionnaire”. 

The questionnaire, which is attached in 

original in the Appendix (cf. A.15), 

comprises questions of different categories 

including “knowledge questions”, “action or 

behavior questions” as well as “opinion or 

attitude questions” (MEIER KRUKER & RAUH 

2005, SELBACH 2009). Within this study, first 

and foremost “knowledge questions” are 

relevant for the further analysis since they 

usually refer to the personal and 

demographic characteristics. By means of 

these questions, information about the 

personal background (e.g., age, education 

and caste, size of household, income or 

settlement type) and the supply situation 

(e.g., water supply) was collected. With this information, statements concerning the socio-

economic situation of the questioned households could be derived. In turn, this information 

is important for the investigation of the coherence between settlement structure and 

derivation of living conditions. More details about the questionnaire design can be found in 

SELBACH (2009) and SINGH (2008), respectively. 

Figure 5-3: Questionnaire design process (Source: 
BRADBURN 2004 & STAHEL 2002). 
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5.2.2 Empirical Phase of the Household Survey 

During the first field campaign between September and October 2005 the preselection of the 

study areas in which the survey should be carried out was verified. At the same time, the 

questionnaire was tested on its applicability. Prior to the actual household survey, the 

questionnaire was pre-tested in order to check whether it yielded comprehensible and 

relevant responses, and adjustments were made accordingly. After revision, the first 

acquisition phase of primary data in three of the seven test sites was carried out from 

October to November 2005. This survey and the following were conducted by the PhD 

candidates Veronika Selbach and Reena Singh, with the support of students of the Delhi 

University who were carefully trained to administer the designed household questionnaire 

(KRAAS ET AL. 2007d). Each household interview took 45 minutes on average. 

Stratified purposive-random sampling techniques 7F

9 (STAHEL 2002) were applied to choose 

the respondent household from various kinds of settlements, including JJ-clusters 

(equivalent to informal settlements), resettlement areas, gated communities, government 

quarters and different types of unauthorized colonies as well as urban villages (cf. chapter 

4.1, Table 4-3). Hence, the affiliation to a certain social class (from upper to lower class) and 

an adequate representation of all socio-economic hierarchies were kept in view comparably. 

Moreover, the location of the households within the different morphological structures 

displayed in the satellite data, combined with the structure densities of the settlements, was 

taken into consideration regarding the choice of the households. 

A total survey of all households in the respective areas under investigation would be 

statistically absolutely correct. This is, however, generally unfeasible and also in this special 

case impossible for reasons of economy, time and practicability. Primarily due to the difficult 

conditions on the spot, e.g., skepticism and rejection by the respondents, cultural 

circumstances or sometimes the impreciseness of the interviewer, a real random sampling 

was not feasible in the study areas of Delhi. In this regard, the tremendous amount of 

dwellers within the test sites has to be mentioned and, thus needs to be included in the 

group of reasons. Also the execution of a cluster sample 8F

10 would statistically be correct 

(STAHEL 2002), but was not realizable for the reasons mentioned. Under these constraints 

the above described statistical approach appeared to be the most suitable to generate a 

                                        

 
9 “Stratified … random sampling is a variation of simple random sampling in which the population is partitioned into relatively 

homogeneous groups called strata and a simple random sample is selected from each stratum. The results from the strata are then 

aggregated to make inferences about the population. A side benefit of this method is that inferences about the subpopulation 

represented by each stratum can also be made” (URL 12). 

10 A cluster sampling is a sampling technique where the entire population is divided into groups or clusters, and a random sample of 

these clusters is selected. All observations in the selected clusters are included in the sample (GERRING 2001 & STAHEL 2002). 



Data Used 

 

89 

valuable data basis and was consequently chosen for this study (cf. SELBACH 2009 & SINGH 

2008). 

The completion of the data collection in the remaining four test sites using the stan-

dardized questionnaire was carried out from February to April 2006. Key informants of the 

households were interviewed, including both female and male household members. For con-

clusions regarding the understanding of gender based differences in the perception of the 

respondents a relationship of 50:50 was striven (cf. Figure 5-5). The questionnaire was pre-

pared both in English and in Hindi, to make the questions as understandable as possible for 

the respondents. 

After the survey, the questionnaire data collected was analyzed in different ways 

according to its statistical features. The evaluation is described in more detail in the 

following subchapter. Further results, e.g., average family size or average water amount per 

family in different settlements, are presented in chapter 6.2. 

5.2.3 Evaluation of the Survey Data 

In total 696 households were interviewed, covering a population of 4,358 persons residing in 

different types of settlement (cf. Figure 5-4). According to WEEKS (2001) demographic 

research that employs spatial analysis obviously requires data that are georeferenced. If 

data are not assigned to a certain location, then spatial analysis is not feasible. Therefore, all 

questionnaires were georeferenced and embedded in a GIS environment (cf. Map 5-1 and 

Map 5-2). Within test site South s3 96 interviews were carried out, 148 households were 

surveyed in the transfer site South s2 (cf. Figure 5-5). 

In a first step, the collected data was transferred in a data matrix in which each house-

hold represents a subject of investigation. The open-ended questions and other quoted 

remarks were transferred in their original text form. The variables collected continuously 

were as well taken in their original expression (e.g., age, number of household members). 

In contrast to that, the discrete variables (e.g., income, level of education) were transferred 

using a coding key (cf. Appendix III in SELBACH 2009). 

In a second step, these discrete variables were classified, respectively partly new 

variables, which could be generated from the responses of the households, were generated. 

Within this process a suitable class number, class width and class limit could not always be 

found and fixed for the data. Aiming at receiving a maximum of information with a minimum 

of classes, a decision which is subjective and adapted to the data was taken for the 

generation of suitable class numbers (MEIER KRUKER & RAUH 2005, SELBACH 2009). 
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Figure 5-4: Total population of the surveyed households within chosen test sites in Delhi (N=696) (Data source: 
household survey 2005-2006). 

The categorization of the data was made by an intuitive procedure considering 

“meaning thresholds”. The reasons for this decision are described in detail by SELBACH 

(2009). The “meaning thresholds” can on the one hand be justified by external official 

guidelines (e.g., incomes, required water quantity per person per day). On the other hand, 

they can be derived from findings, which are logically comprehensible and which were 

gained during the data survey or during the evaluation process (e.g., number of people per 

household, age). This means, that the evaluation of the survey data is partly characterized 

by a subjective point of view. The classes are accordingly not always equally represented, 

which must be taken into account while interpreting the results. 

In this study, the following analysis was carried out by means of common practice 

statistical methods (cf. also chapter 6.2). In order to improve the assessment of the 

individual analysis results, which are described in the following chapters, it is important to 

get firstly a general overview of the data and of the people interviewed accordingly. 

Particularly, the family or household level is at the base of any socio-economic process a 

region is undergoing. Outlining the characteristics of the population covered is therefore a 

prerequisite to understand the situation, processes and developments occurring there (KRAAS 

ET AL. 2007d).  
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Map 5-1: Georeferenced questionnaires within test site South s3 (top) and the chosen training area 
(bottom) (for enlarged maps cf. Appendix, A.7.1 and 7.2). 
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Map 5-2: Georeferenced questionnaires within the transfer test site South s2 (for an enlarged map cf. 
Appendix, A.7.3). 

In this regard, at the beginning of the evaluation the demographic, economic and 

educational data of the surveyed households were processed to give general background 

information about the surveyed population. The information which was extracted from the 

surveyed questionnaire and then processed is graphically represented below in Figure 5-5 

and Figure 5-6. 

 

Figure 5-5: Total number of household male and female respondents interviewed within chosen test sites in Delhi 
(Data source: household survey 2005-2006). 

As can be seen in Figure 5-6, there are clear demographic differences regarding the 

distribution of the surveyed households by family size between the individual selected test 
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sites. These strong contrasts within the test sites become as well apparent during the 

evaluation of the questionnaires. Thus, the proportion of the families with five to eight 

members within test site South s2 is considerably larger than that one of the remaining 

categories. The proportion of families with nine to 12 or more than 12 persons respectively 

is also comparatively large in test site South s2. These conditions indicate a large proportion 

of residents of the lower class. In contrast to this, the number of households interviewed 

with two to four members in test site South s3 is almost equal as the number of households 

with five to eight members. 

 

Figure 5-6: Distribution of the surveyed households by family size (N=696) (Data source: household survey 2005-
2006). 

The categories with more than eight members per family are occupied very weakly. This 

speaks for a large number of detached houses, what, in turn, is a sign of a large proportion 

of middle and upper class inhabitants. Interpreting this data it is important to consider that 

the conduction of interviews with members of the upper class during the survey was very 

difficult (cf. chapter 5.2.4). An interview in this social class was often declined, while the 

members of the lower class have, due to their bad living conditions, usually agreed to an 

interview very willingly. Hence, the proportion of families with two to four persons of the 

total population is slightly underrepresented in the respective test site. However, a trend for 

the social structure of the population can certainly be derived. 

Additional figures for the estimation of socio-economic structure and supply of basic 

infrastructure of surveyed households and different settlement types, respectively (e.g., 

distribution of households by monthly income, educational qualifications of the respondents, 

percentage of sample households connected to sewer system, estimated wastewater 

generation in different settlement types etc.) as well as the corresponding descriptions can 

be found at KRAAS ET AL. (2007d), SINGH & KRAFFT (2007) and SINGH (2008). 
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Further analysis of the questionnaire data were conducted with direct response to this 

study (i.e. the remote sensing part of the research initiative) and the implemented 

integrative analysis (cf. chapter 6.2 and 8). To describe this briefly, the integrative analysis 

is used to determine different socio-economic attributes (e.g., population amount or 

population density) and to evaluate the water demand within a certain settlement area. For 

this purpose various settlement characteristics like house size or number of houses are 

estimated from the satellite data and are used to derive spatial information about the 

population distribution. In addition to that, the integrative approach makes use of the 

georeferenced questionnaires in order to characterize a given settlement type in terms of 

specific population and water related variables. Hence, for instance the family size or the 

mean water consumption per capita in different residential areas and settlement types 

respectively are calculated and considered in this analysis (cf. Figure 5-7 and Figure 5-8). 

 

Figure 5-7: Family size in different settlement types within test site South s2 and South s3 in Delhi (Data source: 
household survey 2005-2006). 

Primarily informal settlements are subject to high dynamics, population density as well 

as marginalization. In regard to the living conditions of the dwellers and the corresponding 

need for action in these colonies, the evaluation of the interview data of informal 

settlements is of special importance (cf. Figure 5-9 and Figure 5-10). 

 

Figure 5-8: Water consumption per capita per day in different settlement types within the selected test sites South 
s2 and s3 in Delhi (Data source: household survey 2005-2006). 
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Figure 5-9: Family size in different informal settlements for selected test sites in Delhi (s2, s3): A — Bhomiheen 
Camp (training area), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan 
Camp. Settlement A – C are situated within test site South s3, settlement D is situated within test site South s2 

(Data source: household survey 2005-2006). 

 

Figure 5-10: Water consumption per capita per day in different informal settlements for selected test sites in Delhi 
(s2, s3): A — Bhomiheen Camp (training area), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, 
D — Banjara and Harijan Camp. Settlement A – C are situated within test site South s3, settlement D is situated 

within the transfer test site South s2 (Data source: household survey 2005-2006). 

5.2.4 Appraisal of the Survey Data 

In the following chapter the execution of the survey is subjected to a short review and is 

discussed critically. Some facts are pointed out, which are necessary to be included in the 

examination and assessment of the following integrative analyses. Table 5-3 shows a 

general overview of the potential causes for the bias of responses during an interview. 

The questionnaire proved to be very comprehensive, so that partly a shortening of the 

interview or a lower depth of detail in the replies had to be accepted due to the restricted 

time frame of the interview partners. In rare cases the interviewed persons even terminated 

the interview. The reason for this was not only the limited time factor but sometimes also a 
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fundamental mistrust of the interviewees. For this study, however, this circumstance is 

negligible since here solely quantitative questions, which could be answered briefly, were 

included in the evaluation. If the respondents did not answer ingenuous, the interview was 

also stopped in rare cases on the part of the interviewer. Sometimes the assumption arose 

during the interview or at the evaluation of the questionnaires that the given answers do not 

correspond to reality. This was partly caused, depending on the situation, by the presence of 

third persons (extenuation or dramatization of the living conditions). For this reason single 

questionnaires were sorted out from the sampling afterwards. 

Table 5-3: Bias of answers running a survey 

Characteristics of the respondents

Social desirability of the responses Return of socially desirable responses

Non-Opinion Return of a "don't know" or "cannot remember" - 
response, e.g. in case of unpleasant topics

Non-Response (unwillingness) Refusial to give a response to a certain question 
or to the complete questionnaire 

Non-Attitudes Giving a response, although no opinion 
on the asked topic or object is developed

Presence of a third person Reactions to the presence of a third person 
during the interview

Effects of the interviewer

Characteristics of the interviewer Reactions to characteristics and behaviours of the

interviewer (e.g. suggestive influence, pushing)

Fake of interviews

Question features

Halo- Effect The positioning of questions in different parts of the 

questionnaire may lead to different responses

due to the "emission" of previous questions 

Source: SELBACH 2009 after MEYER KRUKER & RAUH 2005, modified; supplemented by STAHEL 2002  

Again and again, ignorance or a poor educational background of the respondents resul-

ted in all question areas in answers which in principle must be doubted. Consequently a cer-

tain error ratio should be also taken into account for the quantitative information (e.g., 

water consumption) which is used in this study. During the evaluation of the interview data, 

in particular the responses of the residents of lower class settlements showed outliers in the 

samples (cf. chapter 8). Moreover, the intended homogeneity of the sampling within the test 

sites proved to be unrealizable. While the population of the comparatively poor settlements 

of the lower class was generally available for an interview willingly, it was almost impossible 

to interview residents of the Gated Communities or other quarters of the higher middle class 

and upper class to collect a numerically equivalent amount of data in the respective 

settlement types. Therefore, the results related to the settlement types, particularly those of 

the upper middle and upper class are to be interpreted as a tendency and not as universally 

valid, quantitative representative probabilities. 
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Furthermore, the simplified assumption that every household represents a sampling unit 

finally turned out to be problematic during the evaluation of the interview data. That means, 

a house cannot always be equated with a household. Although, within the settlements of the 

lower class as well as the medium to higher upper class the assumption, that one family 

occupies one house, is applicable. Within the quarters of the middle class and lower upper 

class, however, in the majority of cases several families occupy one building. These are 

multiple-family dwellings or complete blocks of apartment buildings where normally each flat 

is occupied by one family. Statistics to the number of families per building were, however, 

not collected correspondingly. General assumptions must therefore be carried out during the 

evaluation of the data affected, which is in settlements with several accommodation units 

per building (e.g., DDA flats). For further studies this lack of information shows a potential 

for improvement. 

Nevertheless, here, in the overall context the chosen approach has figured out to be 

successful. Only by using such an extensive sample a comprehensive overview of the living 

conditions as well as the complex problem of water supply and wastewater disposal could be 

generated in the respective settlement types of Delhi. From the knowledge-, action- and 

opinion-questions valuable results could be generated for all three research approaches. It is 

primarily the quantitative information which allows statements concerning the assessment of 

the living conditions and therefore builds a good basis for the consequent integrated analysis 

within this study. 

5.3 Ancillary Field Data: Observations, Mapping and Ground 

Truthing 

An intense field campaign was conducted in October 2005 to sample in-situ information. 

Apart from the questionnaire and guided interviews, thus, additional information was 

gathered through personal observation techniques, mapping and ground truthing (cf. Figure 

5-1). 

The field campaign in Delhi aimed at the identification of remarkable objects detected in 

the QuickBird data (verification or detection itself), the mapping and observation of different 

settlement types and structures, water related structures, as well as distinctive features or 

interesting points. Moreover, to link them with specific structures or features in the satellite 

images, digital photographs were taken in parallel to the ground mapping. As a whole the 

collected ground mapping and field data represent a good data base for the substantiation 

and validation of the results of this thesis. 

During the household survey, the locations of the surveyed households were recorded 

using GPS measurements. Subsequent to the campaign, the respective coordinates were 
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transferred into a GIS environment and corresponding maps were produced (cf. Map 5-1 

and Map 5-2). Furthermore, using GPS measurements, the coordinates of remarkable 

objects, such as water towers or overhead water tanks, were collected and registered. 

Following the field work, a basic evaluation of the field data and a visual interpretation 

of the QuickBird images were carried out. As shown in Figure 5-11, photographs of different 

settlement types were taken during the field campaign and afterwards compared with 

different settlement structures visible in the satellite data. 

 

Figure 5-11: Test site South s3 (QuickBird scene South 12/18/2002) characterized by different settlement 
structures and corresponding photographs of different settlement types, taken during the field campaign in 
October 2005 in Delhi, India: 1 – Gated Community Greater Kailash II (authorized, planned, private colony), 2 – 
Government Quarter Narmada apartment houses (authorized, planned), 3 – Unauthorized Colony Tughlakabad 
Extension (unplanned), 4 – Jhuggi Jhompri cluster Bhomiheen Camp (unauthorized, informal), 5 – Resettlement 
Colony Harijan Colony (authorized, planned), 6 – Illegal quonset huts on the pavement close to Tughlakabad 
Extension (Data source: Digital Globe, draft and photographs: Susan Smollich). 

In addition to that, based on the results of the ground mapping and local knowledge, in 

combination with a visible interpretation of the QuickBird images, density maps of the test 

sites were generated (cf. Figure 5-12 and Figure 5-13). These maps allow for a first general 

overview of the categories and features of settlement densities and their distribution in 

Delhi. In turn, these density maps can again be compared with the settlement types, which 

have developed in Delhi (cf. Table 4-3), with a special focus on their spatial characteristics 

as well as their living conditions. Moreover, the density maps are used for qualitative 

validation purposes of the classification results (cf. chapter 7). 

Within this study, it could be proven that, at least as far as Delhi is concerned, the 

settlement density mostly correlates with the settlement type. Thus, the settlement density 

was included as a key parameter for the identification of Delhi’s informal settlements (JJ 

clusters) in special and other settlement types in general (cf. chapter 6.1.2). On the basis of 

the obtained findings, combined with the satellite data for all chosen test sites in Delhi, 

altogether four density classes were defined: (1) very dense urban, (2) dense urban, (3) 
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medium dense urban as well as (4) sparse urban areas. All other areas, which are not 

covered with buildings at all (e.g., areas covered with vegetation, not impervious areas) or 

which are not covered with residential buildings (e.g., industrial areas) are assigned to the 

class (5) not inhabited area. The defined density classes are characterized by the following 

physical parameters: (i) fraction of the impervious area (coverage of built-up area), (ii) 

fraction of vegetation surface and (iii) building size, and as a consequence, (iv) the amount 

of buildings per total settlement area (building density). 

 

Figure 5-12: Density map of test site South s3 in the southern part of Delhi based on QuickBird scene South 
(12/18/2002) (Data source: Digital Globe, draft: Susan Smollich). 

These parameters represent features that can be observed and received with the naked 

eye, on examination of the satellite images as well as by the on-site observation. Our ability 

to see the observed in a bigger context enables us to draw according logic consequences. 

This is known as an “intuitive process”. This means, in this special case, that it is possible to 

define different density classes and to record them in a map. 

Object-oriented analysis methods of satellite data also make use of these object 

features and the possibility to combine these characteristics. With the difference, that the 

fragmentation of the area and the classification of the respective objects are not carried out 

manually or completely visually but (semi-) automatically by means of a certain 
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segmentation algorithm and a developed classification scheme and in an as objective way as 

possible. 

 

Figure 5-13: Density map of test site South s2 in the southern part of Delhi based on QuickBird scene South 
(12/18/2002) (Data source: Digital Globe, draft: Susan Smollich). 

Combining the density maps (cf. Figure 5-12 and Figure 5-13) with the in-situ 

information (photographs etc., cf. Figure 5-11) and some first findings resulting from the 

household interviews, the following points can be stated: 

1. Different settlement types show diverse spatial features — amongst others settlement 

density and settlement structure. 

2. These settlement types can be assigned to different social classes, from the upper class 

over the middle-class to the lower class of residents. 

3. The living conditions in the developed settlement types in Delhi vary very strongly. 

Everything could be observed from very poor to, for Indian conditions, very good living 

conditions. The living conditions are directly mirrored in the visible features of the 

settlements (e.g., building materials, mode of construction, and connection to 

infrastructure). 



Data Used 

 

101 

These general statements bear out the first basic assumption, which was made at the 

beginning of this thesis (cf. chapter 1.1), that the living conditions become apparent visually 

in the settlement structure. Up to this state of the study the satellite images were only used 

for purely visual interpretation. Based on this visual interpretation the conclusion was proved 

to be true that it is possible to suggest from the socio-economic data of a certain settlement 

area to its structure. The second and third working hypothesis (cf. chapter 1.1), which quote 

that different settlement structures are reflected and can therefore be identified and 

observed in the remote sensing data, will be examined in detail in the following chapters 6.1 

and 7. Hence, the QuickBird data is subjected to a systematic image data analysis. 

 



Chapter 6 

Methodology and Conceptual 
Framework 

This chapter presents an overview of the study workflow, starting with the segmentation of 

the QuickBird image data via the object-oriented classification of land cover, leading to the 

identification of informal settlements and other settlement types within the urban environ-

ment of Delhi and the derivation of information on population and water related parameters 

using an integrative data analysis. Focal point of this study is the integrative approach, 

which is used to investigate whether VHR remote sensing data can provide settlement 

characteristics (e.g., number of houses) in order to obtain — in combination with socio-

economic data — different socio-economic attributes such as population amount, population 

density or water consumption. The conceptual framework of this study is shown in Figure 

6-1. 

6.1 Object-based Image Data Analysis 

Very high-resolution (VHR) satellite images offer a great potential for the extraction of 

land cover and land use related information for urban areas. The available techniques are 

manifold (cf. chapter 3.2.2). In the past and until today the most common procedure to 

derive useful information from remotely sensed imagery has been pixel by pixel 

classification. An alternative way to look at image data is to divide the image into meaningful 

regions of similar pixels and to assign these so-called segments to land cover classes by any 

classifier. The conceptual idea of this promising and complementary approach is that each of 

these segments corresponds exactly to one and only one object class. This technique is 
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named object-based image data analysis. After HAY & CASTILLA (2006) object-based image 

analysis (OBIA) is not only a technique to analyze remote sensing data, but also a sub-

discipline of GIScience devoted to partitioning remote sensing imagery into meaningful 

image segments, and assessing their characteristics through spatial, spectral and temporal 

scale. OBIA requires, at its most fundamental level, image segmentation, attribution, 

classification and the ability to query and link individual segments in space and time. 

 

Figure 6-1: The conceptual framework of the study. 

Mainly advances in computer technology and GIScience as well as a dramatic increase 

in commercially available high and very high-resolution remote sensing imagery in the first 

decade of the new century have led to the emerging field of OBIA (LANG & BLASCHKE 2006). 

The OBIA “movement” is also a response to increasingly affordable, available and powerful 

computing tools and a further development of object-oriented programming. Moreover, the 

recognition of limitations with pixel-based image approaches9F

11 (see also chapter 3.2.2) 

operates as a driver for an increasing use and further development of object-based 

classification techniques. Little by little the users are becoming more aware of the fact that 

                                        

 
11 First and foremost, traditional pixel-based classifiers are disadvantageous due to the fact that pixels are not true geographical 

objects, the pixel topology is limited, and current remote sensing image analysis techniques mostly neglect texture, context and 

shape features. In addition, an increased variability implicit within VHR image data “confuses” pixel-by-pixel classifiers resulting in 

lower classification accuracies (HAY & CASTILLA 2006). 
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object-based techniques can make better use of neglected spatial information contained in 

remote sensing images, and provide greater integration with vector based GIS. Beyond that, 

analysts recognize that object-based methods are especially suited for multi-scale 

approaches in the monitoring, modeling and management of our environment, which, in 

turn, makes OBIA to a well established discipline.  

Especially in terms of analyzing heterogeneous urban environments, including 

conceptual or spatial rules and conditions, a concept supported by object-based approaches 

is promising and needed. For that reason and because of the above mentioned drivers, also 

within this study an object-based image data analysis approach is applied in order to identify 

informal settlements and other settlement types within the urban environment of Delhi.  

The objective of the following chapter is to provide an introduction into the subject 

object-based image data analysis. For that purpose, subchapter 6.1.1 describes the 

underlying concept of image segmentation. Within subchapter 6.1.2 the general principle of 

object-based classification is summarized. 

Within this study, the software eCognitionTM (Professional 4.0), developed by the 

Definiens company (URL 18), is used for both image segmentation and classification. “The 

concept behind eCognition is that important semantic information necessary to interpret an 

image is not represented in single pixels, but in meaningful image objects and their mutual 

relationship” (BAATZ ET AL. 2003). The basic difference compared to pixel-based analysis 

techniques is that the software classifies image objects instead of single pixels. The image 

objects are extracted in a previous image segmentation procedure which uses a heuristic 

algorithm. To realize object-oriented classification, the eCognition technology includes 

moreover usual algorithms for image classification. The individual components and the 

analysis options of the software are explained in more detail and in a use-oriented way 

within the following chapters 6.1.1 and 6.1.2.  

6.1.1 Creating Objects Using Image Segmentation 

Performing object-oriented image data analysis in a common sense means to analyze the 

content of an image by analyzing image objects consisting of many pixels that have been 

grouped together by segmentation (ESCH ET AL. 2003, HAY & CASTILLA 2006). Segmentation 

represents the complete partitioning of an image into meaningful, non-overlapping regions 

(segments) based on one or more criteria of homogeneity10F

12 in one or more dimensions of a 

feature space or on the differentiation to neighboring regions (heterogeneity), respectively 

                                        

 
12 Homogeneity criteria for image segmentation are for instance texture, spectral signature or shape. 
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(HARALICK & SHAPIRO 1992, SCHIEWE 2002, LANG & BLASCHKE 2006). “Thus, segmentation 

methods follow the two strongly correlated principles of neighborhood and value similarity” 

(SCHIEWE 2002) and integrate therefore important features for image recognition, which are 

also of great importance in visual image interpretation (cf. chapter 3.2.2). This circumstance 

is expressed by TOBLER (1970) as first law of geography: “Everything is related to everything 

else, but near things are more related than distant things”.  

Image segmentation, which builds the basis of this classification approach, has been 

introduced already in the 1970ies and the 1980ies (HARALICK ET AL. 1973, HARALICK & SHAPIRO 

1985, PAL & PAL 1993). The development of an image segmentation concept was mainly 

influenced by the work of HARALICK ET AL. (1973), where textural features based on gray-

value spatial dependencies were used to classify images “on a block of contiguous resolution 

cells” (HURSKAINEN & PELLIKKA 2004). Image segmentation has been, and still is, an important 

research field within Pattern Recognition and Computer Vision and a multitude of segmen-

tation algorithms have been developed during the past decades (HARALICK & SHAPIRO 1992).  

Common segmentation methods are based on the following basic strategies for 

partitioning an image into meaningful regions, namely (1) point-based (e.g., grey-level 

thresholding), (2) edge-based (e.g., edge detection techniques), (3) region-based (e.g., 

region merging or growing and region splitting), and (4) combined (FU & MUI 1981, 

HURSKAINEN & PELLIKKA 2004, SCHIEWE 2002). Detailed explanations as well as mathematical 

basic principles and surveys of these algorithms can be found by HARALICK & SHAPIRO (1985, 

1992), PAL & PAL (1993) as well as by MOREL & SOLIMINI (1995), GONZALEZ & WOODS (1993) 

and FREIXENET ET AL. (2002). However, SCHIEWE (2002) briefly describes the general concepts 

of image segmentation methods mentioned and emphasizes the particularities for the 

analysis of remotely sensed data. 

Respective segmentation algorithms have been developed with successful and 

promising applications in various specific disciplines such as medicine or telecommunication 

engineering (SCHIEWE 2002, NEUBERT 2005). Except for the early research work of KETTIG & 

LANDGREBE (1976)11F

13, image segmentation was established rather late in remote sensing 

applications. The decelerated utilization of segmentation techniques in the field of remote 

sensing has been caused, amongst other things, by the complexity of the underlying object 

models and the heterogeneity of the sensor data in use. The application of these methods 

on spatially low- and medium-resolution remotely sensed data as well as on aerial photo-

graphs was limited to special purpose implementations only and has therefore not provided 

                                        

 
13 KETTIG & LANDGREBE (1976) developed the system ECHO (Extraction and Classification of Homogeneous Objects), which is quoted 

in the literature as the first segmentation technique for the analysis of remotely sensed image data (SCHOWENGERDT 1997, NEUBERT 

2005, NEUBERT ET AL. 2006).  
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significant improvements in image analysis. Moreover, the former poor development status 

of the methods as well as the limited computer technology were crucial obstacles for a 

general application of segmentation algorithms in the fields of remote sensing and 

photogrammetry (SCHIEWE 2002, NEUBERT & MEINEL 2003, NEUBERT 2005). Only recently and 

especially since the availability of VHR image data (cf. chapter 3.2.1) as well as due to the 

easier access to multi-source data sources, image segmentation techniques have been 

further and further developed and are nowadays increasingly used for remote sensing and 

thus for Earth observation applications. At last, significant progress in terms of user 

awareness was achieved with the advent of the first commercial and operational software 

product eCognitionTM in the year 2000 (SCHIEWE 2002, BAATZ & SCHÄPE 2000). Thenceforward, 

the interest in the remote sensing community has increased steadily and the number of 

segmentation-based image processing applications has grown considerably. In turn, this 

reorientation resulted in a permanent growing variety of implemented segmentation 

algorithms using very different concepts. Meanwhile a multitude of implemented 

segmentation algorithms in different software packages (e.g., ENVI, ERDAS) exist, which 

allow for an (semi-) automatic partitioning of remotely sensed image data. However, all 

segmentation algorithms have in common that they are providing the building blocks for any 

further object-based image analysis (HOFMANN ET AL. 2008). Altogether, this development is 

leading to a new object-oriented paradigm (NAVULUR 2007). 

An application-oriented comparison as well as an assessment considering recently 

commercially distributed or for scientific use freely available segmentation algorithms based 

on real remote sensing image data is given in NEUBERT & MEINEL (2003), MEINEL & NEUBERT 

(2004), and NEUBERT ET AL. (2006) as well as in NEUBERT ET AL. (2008) and NEUBERT & HEROLD 

(2008) . In these studies, the partly very different characteristics of the available segmen-

tation programmes are shown and diverse capabilities are presented. 

Image segmentation represents the interface between image pre-processing and classi-

fication. Thus, “image segmentation is a crucial step within the object-oriented remote 

sensing information retrieval process” (NEUBERT & MEINEL 2008). Since the classification 

process is based on the segment properties generated (e.g., spectral mean, shape etc.), a 

substandard segmentation quality has an adverse effect on the classification quality. Hence, 

the success of object-oriented image classification approaches, i.e. the assignment of the 

generated image segments to classes which are described by rule bases depending on the 

segments’ properties, is directly affected by the quality of the segmentation results. As a 

rough rule of thumb it can be stated that, the better the generated segments are capable to 

represent the imaged objects in the image data, the better the quality of the segmentation 

process and consequently the classification results are. (HOFMANN ET AL. 2008). The quality 

assessment of image segmentation results is therefore “of fundamental significance for the 

recognition process as well as for choosing the appropriate approach and parameters for a 
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Figure 6-2: Representation of a real-world object in 
image data of different spatial resolution (Source: 
modified after HOFMANN ET AL. 2008). 

 

given segmentation task” (NEUBERT & MEINEL 2008). In order to perform a quality assessment 

of segmentation results using different algorithms and modified parameters, NEUBERT & 

MEINEL (e.g., 2008) proposed for instance to compare segmented objects with reference 

objects using formal characteristics only. 

Image segmentation has to generate 

meaningful objects (e.g., streets, buildings), 

which represent real world objects of interest. 

In this regard, it is evident that the ability of 

the segments to represent real world objects 

in image data is on the one hand strongly 

dependent on the properties and quality of 

the image data used. Thereby, the ability 

mainly depends on the spatial resolution of 

the image data (cf. Figure 6-2). Disturbing 

factors can be fuzziness, absence of contrast, 

atmospheric effects, shadows, too far off-

nadir viewing angles or overlap (cf. chapter 

3.2.2). Imprecise representation of the real 

world objects may originate on the other 

hand from the selected segmentation 

approach itself. Thereby, the used 

segmentation method as well as the used 

homogeneity value and its parameterization are primarily of importance. Moreover, the 

transferability of the segmentation methods as well as the accurate repeatability of the 

segmentation process is a crucial precondition. A further aspect that needs to be taken into 

account is the independency of the segmentation results of the chosen starting points 

(HOFMANN ET AL. 2008, NEUBERT 2005). A detailed survey of the requirements on a successful 

segmentation is provided for instance by GORTE (1999) and HALLE (1999). 

As previously stated, in this study a so called multi-resolution segmentation (MRS), im-

plemented in the eCognitionTM software (BAATZ ET AL. 2003), has been applied for object 

delineation. This segmentation algorithm is based on a region-growing approach where 

pixels are iteratively grouped into objects based on predefined similarity criteria. Since 

recently, region-growing methods have most commonly been applied to the analysis of 

remote sensing data. More examples of region-growing approaches can be found by EVANS 

ET AL. (2002) and TILTON (1998). The MRS procedure detects local contrasts and was espe-

cially developed to work even on highly textured data, such as VHR imagery. Furthermore it 

allows the segmentation of an image into a network of homogeneous image objects at any 
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chosen resolution (fine or coarse structures). The object’s attributes can then be used for 

subsequent classification (BAATZ ET AL. 2003). 

The MRS technique extracts image objects at modifiable 

 Homogeneity criterion, which is represented by the two parameters color (spectral 

properties) and shape (spatial properties) (cf. Equation 6-1). In this context 

homogeneity is used as a synonym for minimized heterogeneity. With the color/shape 

weighting factor the influence of color vs. shape homogeneity on the object generation 

can be adjusted. The color parameter defines the overall contribution of spectral values 

in regard to homogeneity. Thereby, the sum of the standard deviations of spectral 

values in each layer weighted with the weights for each layer is used (cf. Equation 6-2). 

The lower the color criterion is, the less spectral values of the image layers contribute to 

the entire homogeneity criterion and thus to the object generation. The shape criterion 

(cf. Equation 6-3) is defined by two sub-parameters: smoothness and compactness. The 

smoothness factor describes the ratio of the de facto border length of an object to the 

shortest possible border length given by the rectangle along the grid which contains the 

object (cf. Equation 6-4). The compactness factor describes the ratio of the de facto 

border length and the square root of the number of pixels forming this image segment 

(cf. Equation 6-5). The smoothness factor can be used to optimize image objects for 

smoother boarders, whereas the compactness factor especially helps to avoid a 

fragmented shaping of objects. The shape criterion in general helps to avoid a fractal 

shaping of objects. This fact applies primarily to strongly textured data, such as radar 

images (HOFMANN 2001a, HOFMANN ET AL. 2008, BAATZ ET AL. 2003, NAVULUR 2007, DE KOK 

2001, FRAUMAN & WOLFF 2005). Figure 6-3 shows the segmentation dialog window in 

which the parameter input is carried out manually. 

 

  shapecolor hwhwf  1  

Equation 6-1 

f = homogeneity criterion 

w = user defined weighting factor for color (against shape) with 0 ≤ w ≤ 1 

hcolor = homogeneity of color 

hshape = homogeneity of shape 

 

 



n

c

ccwhcolor

1

  

Equation 6-2 

hcolor = homogeneity of color 

wc = weighting of layer c of an image 

σc = standard deviation of layer c of the pixels of a segment 
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  smoothcompactcompactcompactshape hwhwh  1  

Equation 6-3 

hshape = homogeneity of shape 

wcompact = weighting with 0 ≤ w ≤ 1 

hcompact = homogeneity of compactness 

hsmooth = homogeneity of smoothness 
 

blhsmooth   

Equation 6-4 

hsmooth = homogeneity of smoothness 

l = length of the borderline of a segment/ object perimeter 

b = length of the borderline of the minimum surrounding rectangle of segment 

 

slhcompact   

Equation 6-5 

hcompact = homogeneity of compactness 

l = length of the borderline of a segment / object perimeter 

s = size of a segment measured in number of pixels 

 

 Scale parameter, which indirectly influences the average object size. The scale 

parameter operates as a boundary value within the segmentation process representing 

the maximum allowed value of the homogeneity criterion during the fusion of two pixels 

or segments respectively (cf. Equation 6-6). In fact, this parameter determines at the 

same time the maximum allowed heterogeneity of the resulting object. Thereby, it 

represents the termination criterion of the segmentation process. “For a given scale 

parameter, heterogeneous regions in an image will result in a fewer number of objects 

as compared to homogeneous regions” (NAVULUR 2007). The size of image objects can 

thus be varied by modifying the scale parameter value. Hence, a larger scale parameter 

value leads to bigger objects and vice versa.  

fSP   

Equation 6-6 

SP = scale parameter 

f = homogeneity criterion 
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 Level, whereas this criterion controls whether a newly generated image level will either 

overwrite a current level or whether the generated objects shall become sub- or super-

objects of a still existing level. The order of generating the levels affects the shape of 

the objects (top-down vs. bottom-up segmentation). 

 Single layer weight, which can be used to more or less weight the impact of the 

channels on the object generation. 

Further parameters can additionally be selected in the segmentation dialog window, 

such as the segmentation mode (normal, sub-object line analysis or spectral difference) or 

the utilization of the geometry of thematically ancillary data as well as the provision for 

diagonal pixel neighborhood (cf. Figure 6-3). 

 

Figure 6-3: Dialog window for manual input of the segmentation parameters in eCognitionTM 4.0. Further 
explanations are included in the text. 

Understanding the effects of each of these criteria is necessary to segment an image 

and create homogeneous objects at any chosen resolution for a given application (NAVULUR 

2007). Please see the eCognition User Guide (BAATZ ET AL. 2003) for further information on 

the science behind the single criteria. In the following section and in chapter 7.1, where the 

segmentation results are presented, the effects of combining and modifying these four 

parameters on creating varying image primitives will be shown. 

As mentioned before, the image objects created by the initial segmentation should best 

suit the image analysis purposes, i.e. the image segmentation should provide image objects 

which best suit the ontology of the desired classes (JAIN ET AL. 2005). Finding the appropriate 

parameter settings to obtain a satisfactory segmentation result depends on both the nature 
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of the imagery (spatial resolution, spectral properties, number of image channels etc.) and 

the nature and complexity of the objects to be detected (YUSOF ET AL. 2008). For this reason 

a universally valid statement concerning the parameter selection is not possible. Before the 

segmentation process is executed, it is therefore essential that the user is aware of the 

character and size of the required image objects primitives. The decisions taken at this stage 

are fundamental and will always have influence on the final result. It is common practice 

that people individually adopt the segmentation parameters in order to obtain the best 

possible object delineation for each land cover class. The correct settings are therefore 

usually determined experimentally, by a process of trial and error based on visual obser-

vation or estimated values. This procedure is very time-consuming and a transfer to other 

test sites or images is difficult or even impossible (YUSOF ET AL. 2008, DE KOK 2001). How 

much the generated segments can differ from each other using different parameter settings 

is illustrated in Figure 6-4 and Figure 6.5.  

 

Figure 6-4: Effect of different scale parameter settings: 1 — basis data, 2 — scale 50, 3 — scale 100, 4 — scale 

125; constant parameters: shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]. Blue lines delineate 

the image objects. The yellow marked object represents the reference object. The QuickBird image (basis data) is 
displayed as false color composite 4/3/2. Further explanations are included in the text. 

Figure 6-4 illustrates the direct influence of the scale parameter upon the segment size 

and the analyzing possibilities accordingly. With a smaller scale parameter (Figure 6-4 [2]) 

the green space (yellow marked segment) is clearly separated from the surrounding, without 

comprising other land cover classes. This means that the scale value would be particularly 

applicable for the classification of vegetation areas. Applying a higher scale value (Figure 6-4 

[3]) other classes may already be comprised in the segmented object (under segmentation). 

The segmentation results of this run would only be useable for a subsequent qualitatively 

exact classification with intensive manual efforts. Within Figure 6-4 [4] a complete block of 

buildings (yellow marked object) is segmented out of an image which comprises a multitude 

of different classes (e.g., vegetation, impervious, shadow). Hence, this segmentation level 

would be particularly applicable for a classification where the major task is the identification 

of different settlement types. 

Figure 6-5 shows firstly the results of a segmentation, where only the spectral infor-

mation (color = 0.9, shape = 0.1) is considered and secondly the results of a segmentation 

where only the shape parameter (color = 0.1, shape = 0.9) is considered to demonstrate 
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the influence of these two parameters regarding the segmentation results. The upper 

illustrations (Figure 6-5 [2] to [4]) show the results of the segmentation with maximum 

weighting of the color parameter, whereas the lower illustrations (Figure 6-5 [5] to [7]) 

show the results of the segmentation with maximum weighting on the shape parameter 

(with constant values for compactness and smoothness in both cases). The illustrations 

show a well visible discrepancy within the segmentation outcomes. The solely utilization of 

the color parameter leads to homogeneous areas in terms of color, but the areas are 

oversegmented (e.g., Figure 6-5 [2]). The maximum weighting of the shape parameter on 

the other hand delivers an undersegmentation that is mostly unusable for further 

classification purposes as the color information of the objects is ignored. 

 

Figure 6-5: Composition of homogeneity criterion: varied weighting of shape and color parameters: 1 — basis 
data, 2 — color [0.9], scale 25; 3 — color [0.9], scale 100; 4 — color [0.9], scale 150; 5 — color [0.1], scale 25; 6 — 

color [0.1], scale 100; 7 — color [0.1], scale 150; constant segmentation parameters: smoothness [0.5], and 

compactness [0.5]. Blue lines delineate the image objects. The QuickBird image (basis data) is displayed as false 
color composite 4/3/2. Further explanations are included in the text. 

Hence, for the selection of adequate segmentation parameters only relatively general 

rules of thumb can be established. In order to generate meaningful objects for the question 

of interest, the segment dimensions should be chosen neither too large (undersegmentation) 

nor too small (oversegmentation). Moreover, an as low as possible number of the image 

objects should be composed of not more than one of the classes of interest (endmember). 

The segment size is mostly smaller than the one of the region of interest. If necessary, too 

small objects can be remerged using the function classification-based segmentation12F

14. 

                                        

 
14 The function classification-based segmentation was not applied within this study because of the desired transferability and 

automation of the developed approach. 
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In this research a sensitivity study for searching suitable segmentation parameters was 

as well carried out manually. After examining numerous segmentations with different scale 

parameters and homogeneity criteria (shape and color) and visually comparing these with 

the original QuickBird image, the segmentation parameters were chosen based on how 

clearly and accurately the segments delineated the boundaries of the small (single resi-

dential buildings) and large objects (e.g., green and open spaces as well as settlements 

itself) visible in the image. In the following, these parameters were fixed and were applied 

for each test site. The shape and color parameters were weighted equally, whereas the 

compactness was prioritized instead of smoothness. Finally, the scale parameter was 

changed systematically, while the residual homogeneity parameters and the layer weights 

remained constant (cf. Table 6-1). This strategy makes the approach itself as well as a 

subsequent transfer faster, transparent and more robust. 

Table 6-1: Segmentation parameter settings 

Smoothness Compactness

1 5 0.5 0.5 0.3 0.7

2 10 0.5 0.5 0.3 0.7

3 15 0.5 0.5 0.3 0.7

4 20 0.5 0.5 0.3 0.7

5 25 0.5 0.5 0.3 0.7

6 50 0.5 0.5 0.3 0.7

7 75 0.5 0.5 0.3 0.7

8 100 0.5 0.5 0.3 0.7

9 125 0.5 0.5 0.3 0.7

10 150 0.5 0.5 0.3 0.7

11 175 0.5 0.5 0.3 0.7

12 200 0.5 0.5 0.3 0.7

Shape settingsLevel Scale Color Shape

 

After the determination of appropriate values, the parameters should be selected within 

the first segmentation step in a way that the smallest segments required are generated. 

Within a subsequent segmentation process on a higher level not the computationally 

intensive pixel level is used, but only the directly underlying segmentation level is 

considered. As the segmentation process is a very time consuming procedure, which 

requires an extensive computation capacity, it is generally recommendable to initially apply 

test runs to image subsets which are representative for the whole scene (cf. chapter 5.1). 

The image segments have to be calculated on several hierarchical levels following an 

iterative process (YUAN & BAUER 2006). As an “ideal” object scale does not exist – because of 

the heterogeneity within the images −, objects of different levels of segmentation (spatial) 

and of different meanings (thematic) have to be combined. 
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In this regard, streets often form a natural boundary between different settlements. 

Therefore an extraction of the main roads is useful to separate different settlements. As the 

road surfaces in Delhi are very inhomogeneous, which means that different materials alter-

nate within single roads, the creation of a manually generated street layer based on the 

QuickBird data was necessary (cf. Figure 6-6 [3]). It could be found out by examination that 

a segmentation embedding a street layer provides better results for the separation of 

adjacent settlements of different types. Alternatively digital street maps of the 

representative city area could use here. Moreover, the NDVI (Normalized Difference 

Vegetation Index) (MYNENI ET AL. 1995) was included as an additional band for both image 

segmentation and classification (cf. Figure 6-6 [2]). On the basis of the NDVI a separation of 

vegetation covered and vegetation less areas as well as a masking of the vegetation within 

the image is easier. These additional data, in turn, enable an optimization of the 

segmentation and therefore of the image classification. 

 

Figure 6-6: Raw data for multi-resolution image segmentation: 1 — training area test site South s3 (channels 4, 3, 
2), 2 — NDVI image, and 3 — street layer (manually generated). 

The processing within the eCognitionTM software is structured strictly hierarchically. The 

ability to segment on different levels allows for the generation of different object sizes within 

one and the same segmentation process (cf. Figure 6-7). This, in turn, provides the oppor-

tunity — comparable to the human ability of recognition — to identify different object sizes 

simultaneously. The pixels of the lowest level are merged to segments within the next higher 

level. Hence, the first segmentation step provides homogeneous object primitives according 

to the homogeneity criterion. With subsequent segmentation steps within the next higher 

levels these object primitives can be amalgamated to bigger objects — given the fact that 

they are no sub-objects of different super-objects (bottom-up approach). A top-down13F

15 

segmentation and an integration of levels between already existing levels is possible as well 

if the above mentioned preconditions are fulfilled. Hereby, the border lines of the segments 

                                        

 
15 A top-down segmentation requires a significantly longer computation time, because the segmentation of each level is computed 

considering pixel values. 
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are congruent. In case the analyst has assigned features to the image objects, these will 

always be bequeathed to next higher object level (NEUBERT 2005, HOFMANN 2001b). 

As informal settlements are the main issue of this research, the segmentation procedure 

was developed with the focus on a classification of this specific settlement structure. Due to 

the ambition to classify other settlement structures subsequently as well, these were kept in 

mind during the development of the segmentation process. 

 

Figure 6-7: Hierarchical network of image objects — result of multi-resolution image segmentation: “bottom-up” 

approach (abstract illustration) (Source: BAATZ ET AL. 2003, modified). 

For the detection of different settlement types textural information is essential. 

Particularly for informal settlements the image texture is highly variable at different scales 

(HOFMANN 2001a). Thus, in this study a bottom-up approach with very fine segmentation on 

the base level (level 1, very small objects) and a coarse segmentation on the top level (level 

12, large objects) was applied (cf. Figure 6-7 and Table 6-1). That means that altogether 12 

levels were calculated where level 1 represents the smallest objects and level 12 represents 

the biggest objects of the segmentation. To take advantage of the textural information, 

objects on the top level outline more or less different settlement areas and other objects of 

comparable size (e.g., industrial areas, large unimproved areas). Intermediary segmentation 

levels are necessary for the identification of medium scale objects (smaller settlement areas, 

large buildings, open and green spaces etc.). The base level (1) holds image objects which 

coincide with the smallest residential buildings, as well as with small road segments and 

small vegetation areas. In principle, this makes it possible to describe later on spatial 

relationships between e.g., settlement areas and small residential buildings as well as 

neighborhood relations reflecting aspects of segregation (JAIN ET AL. 2005). 

Hence, the segmentation results in a hierarchical network of image objects (cf. Figure 

6-7), whereas each segment is connected to its vertical and horizontal neighbors (ESCH ET AL. 

2003). This means that each segment “knows” its context, its neighborhood as well as its 



Methodology and Conceptual Framework 

 

116 

sub- and super-object respectively. These object relations and context information 

respectively are explicitly utilizable for the classification process. The hierarchical network of 

image segments provides possibilities for innovative data analysis. Thus, structures of 

different scales can be on the one hand represented simultaneously and therefore classified 

in relation to each other. One the other hand, different hierarchical levels can be segmented 

based on different underlying data (layer). In addition, the shape of image objects can be 

corrected based on a regrouping of sub-objects. The analysis of image objects based on 

sub-objects is a powerful tool, which offers the possibility to realize texture analyses. 

Attributes for the classification of all sub-objects of an image object can be for instance 

contrast or shape. Another possible application of the hierarchical network of image objects 

is the classification of image objects in relation to their respective super-objects (BAATZ ET AL. 

2003, BAATZ & MIMLER 2002). 

6.1.2 Object-oriented Image Classification Approach 

Usually classifying means assigning a number of pixels or objects to a certain land cover or 

land use class according to the description of the typical properties the classes of interest 

have. The pixels and objects then become assigned whether they do or do not satisfy these 

properties. A class definition always contains uncertainties and can never be absolute. In 

general, classifiers in remote sensing are therefore subdivided in hard and soft (also known 

as fuzzy) classifiers. While hard classifiers (e.g., maximum-likelihood, minimum-distance) 

assign a membership of 1 (“yes”) or 0 (“no”) to the objects, expressing whether an object 

belongs to a certain class or not, soft classifiers use a contiguous range of membership to 

express an object’s assignment to a class. Thereby the membership value usually lies bet-

ween 1.0 and 0.0, where 1.0 means a complete assignment (“exactly yes”) and 0.0 means 

absolute improbability (“exactly no”). In other words, all values between 0 and 1 represent a 

more or less certain state of “yes” and ”no”. The degree of membership depends on the 

degree to which the objects fulfill the class-describing properties (BAATZ ET AL. 2003, NEUBERT 

2005). With respect to image understanding, classification results based on soft methods are 

“more capable of expressing uncertain human knowledge about the world and thus lead to 

classification results which are closer to” (BAATZ ET AL. 2003) human visual interpretation. 

Moreover, an advantage of soft classifiers lies in their possibility to express each object’s 

membership in more than just one class as well as to express uncertainties about the 

classes’ descriptions. The most powerful soft classifiers are fuzzy systems. Three main work 

steps comprise a fuzzy system, namely (1) the fuzzification of input variables, which results 

in fuzzy sets, (2) the fuzzy rule base and (3) the defuzzification. For a detailed description of 

these terms and fuzzy logic in general see for instance BOTHE (1993), BENZ ET AL. (2004), 

BAATZ ET AL. (2003), YAGER ET AL. (1987) or ZADEH (1965 and 1973). 
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In this study, starting with the segments generated as explained above, a classification 

method was developed and conducted to detect and differentiate settlement types within 

the urban area of Delhi. A multi-level fuzzy logic rule base to classify image objects was used 

(BAATZ ET AL. 2003) which combines intrinsic features (physical properties of objects like 

color, texture and form), topological features (geometric relationships between the objects 

or the whole scene) as well as contextual features (features which describe the semantic 

relationships of objects) on different levels. For this purpose, two basic classification algo-

rithms are implemented in eCognitionTM: (1) a traditional nearest neighbor (NN) classifier 

and (2) a fuzzy membership function approach. Both serve as class descriptors and can be 

used in combination. Using a NN classifier the analyst interactively collects sample objects 

for each class of interest from the image to train the classifier. In contrast, fuzzy 

membership functions describe the intervals of feature characteristics wherein the objects do 

belong to a certain class or not by a certain degree (see section above) (DARWISH ET AL. 

2003, HURSKAINEN & PELIKKA 2001, HOFMANN 2001a, YUSOF ET AL. 2008). Both classifiers are 

based on the so called class hierarchy — a framework that comprehends all the classes of 

the classification scheme and allows for a hierarchical organization of the image objects. A 

class hierarchy in eCognitionTM can be moreover understood as a rule base wherein the 

analyst determines physical and semantic properties typical for the objects of a certain class 

(cf. Figure 6-10) (HOFMANN 2001a, YUSOF ET AL. 2008). 

While analyzing the different characteristics of the objects obtained by the segmen-

tation, such as reflectance, texture, shape or size, the user has the ability to determine 

which features and which range of their values shall be used to amalgamate objects into the 

same class or otherwise to allocate them into separate classes (YUSOF ET AL. 2008). Thus, the 

user has to be aware of disjunctive properties for each class of interest, which in certain 

cases might require appropriate a-priori and/or in-situ information respectively (HOFMANN 

2001b). A key issue of the rule base development is therefore the selection and subsequent 

use of robust features for the class description. The eCognitionTM software provides a large 

amount of features which can be used by means of fuzzy logic to build class descriptions. 

The software distinguishes in total three groups with more than 70 features which can be 

used for classification: object features, class-related features as well as terms (cf. BAATZ ET 

AL. 2003). Dealing with image objects instead of single pixels, the group of object features 

includes, besides spectral statistics (e.g., mean, standard deviation, ratio), shape and neigh-

borhood information usable in the classification process, which are not available in the pixel-

based fuzzy classifier (SHACKELFORD & DAVIS 2003). In addition, amongst others, textural 

features such as Haralick parameters (HARALICK ET AL. 1973) in each object can be calculated.  

The crux of this classification therefore lies in the selection of the above mentioned 

features and the determination of the appropriate settings, which make it possible to 

differentiate between different settlement structures as well as land cover classes. Thus, 
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Figure 6-8: Examples of probability distributions 
(Source: NUSSBAUM ET AL. 2006). 

 

feature recognition is a complex and decisive part of object-oriented, rule-based image 

analysis. Given the enormous number of possible features for object description, it is 

necessary to identify the characteristic, significant and robust features for object classes of 

interest. Therefore, a comprehensive feature selection methodology is the precondition for 

successful processing of image objects. After NUSSBAUM & MENZ (2008) a good feature 

analysis is a consistent technique that “should be able to analyze a large number of features, 

it should identify the characteristic features for any number of object classes and it should, 

moreover, determine the thresholds for the feature intensity which achieves optimum 

separation from the other object classes”. In addition, the methodology should also allow a 

comparison of their suitability (NUSSBAUM ET AL. 2006). Recently there exists a large variety of 

feature selection algorithms (e.g., CARLEER & WOLFF 2006, NUSSBAUM & MENZ 2008). Feature 

selection in general is a process commonly used in machine learning. Machine learning 

refers to algorithms which analyze the information, recognize patterns, and improve pre-

diction accuracy through repeated learning from a set of representative training instances 

(DE FRIES & CHEUNG-WAI CHAN 2000, CANTY 2006, and BISHOP 2006). Broadly speaking, 

machine learning involves tasks for which there is no known direct method to compute a 

desired output from a set of inputs. Both supervised as well as unsupervised classification 

algorithms for remote sensing imagery belong to machine learning techniques (CANTY 2006). 

In the present study an automatic 

feature extraction methodology, called 

SEaTH (SEparability and THresholds) 

(NUSSBAUM ET AL. 2005, 2006, and 

NUSSBAUM & MENZ 2008), is used for 

seeking significant features for optimal 

class separation. SEaTH calculates the 

separability and the corresponding 

thresholds for every object class and 

object class combination as well as for 

any number of given features with a 

statistical approach based on a set of 

training data. The choice of training data 

in SEaTH is similar to the selection of 

training areas for supervised classification 

of remote sensing imagery. But instead of 

a training data set consisting of labeled 

pixels, groups of pixels (image objects) 

are involved as representatives of each 

land cover class of interest. The analyst 

has to select representative image objects for each of the classes of interest by visual 
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examination of the image data (CANTY 2006). Thus, the chosen training objects represent a 

small number out of the total amount of generated image objects. The identification of the 

significant features is “a problem of probability density estimation” (NUSSBAUM ET AL. 2006). 

In SEaTH, on the basis of the representative training objects for each land cover class, the 

probability distribution for each class is therefore estimated and used to calculate the 

separability between two land cover classes (cf. Figure 6-8). Hence, the statistical measure 

for determining the representative features of each object class is the mutual separability of 

the object classes. Suitable measures for separability are for instance the Bhattacharyya 

distance (BHATTACHARYYA 1943, FUKUNAGA 1990) or the Jeffries-Matusita distance (NUSSBAUM 

ET AL. 2006), whereas the last one is a more useful measure for separation in classification 

contexts since it has a finite dynamic range. After determining adequate features, separating 

the object classes in an optimal way, the decision-threshold for maximum separability has to 

be calculated. “The knowledge of the optimum threshold is necessary for the assembly of a 

ruled-based classification model” (NUSSBAUM ET AL. 2006). SEaTH provides a Gaussian 

probability mixture model for the calculation of an ideal threshold. An example probability 

distribution of two classes can be observed inFigure 6-9. Subsequently, SEaTH calculates 

those thresholds which allow the maximum separability in the selected features depending 

on the respective segmentation level. Thresholds obtained in this manner are then used to 

separate different classes in the image classification process. Finally, the results of SEaTH 

are presented in tables, where an interpretation of the results allows a quick preparation of 

a classification model, with statistically optimized features and thresholds (NUSSBAUM ET AL. 

2006). Detailed explanations, mathematical basics as well as validation results of the SEaTH 

methodology can be found at NUSSBAUM ET AL. (2006), NUSSBAUM & MENZ (2008), and MARPU 

ET AL. (2006). 

 

Figure 6-9: Threshold identification used within the automatic feature extraction methodology SEaTH (Source: 
NUSSBAUM ET AL. 2006). 
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A further aspect that has to be taken into account at this stage is the transferability of 

the analysis methods used. The development of a rule base requires not negligible efforts. A 

rule base is the more transferable, the less it needs to be manually adapted to the specific 

image characteristics. Therefore, during the development of a rule base, it should be avoi-

ded to formulate rules, which are too dependent on the image data, which in term would 

diminish the transferability. A rule base should be designed in a way that it depends only on 

image independent object features at a first stage and at a second stage on features, which 

can easily be adapted to differing imaging conditions (HOFMANN ET AL. 2008). Moreover, given 

the premise of transferability, properties with attributes which are as stable as possible in 

terms of time and space should be considered. This aspect has as well been taken into 

account during the development of the present method. In general, different settlement 

types differ mainly in building size and their density or sealing degree respectively, as well as 

in used building materials, visible structure and fraction of vegetation (cf. chapter 4.1 and 

4.2). This means that both spectral and textural properties as well as contextual features are 

suitable to describe and identify different settlement types. Textural and contextual 

properties are, however, because of their robustness and transferability, better suited to 

describe different settlement types than spectral properties (HOFMANN 2001b, ESCH & ROTH 

2004) — at least if the analyst wishes to classify settlement types with similarly observable 

characteristics in different areas or based on different image data. In the opinion of some 

authors (e.g., HOFMANN 2001b, HOFMANN ET AL. 2008, ESCH & ROTH 2004) spectral features are 

too susceptible to describe settlement areas or urban areas (in general) respectively, unless 

one is dealing with very constant parameters such as the NDVI, which can be easily adapted 

to differing imaging conditions. 

Since informal settlements represent, in general as well as in the city of Delhi in parti-

cular, the most visible expression of urban poverty, the main emphasis of this analysis is put 

on the identification and analysis of this settlement type. Accordingly the classification 

procedure of this settlement type is described here in more detail. The features “high buil-

ding density” and “small building size” as well as “complex shape appearance to the outside 

and high heterogeneity within the settlement” were found to be the most important 

characteristics to identify informal settlements from the VHR image data (cf. chapter 2.4 and 

4.2). Basically, these features are implemented in the classification algorithm in terms of 

texture parameters. All features concerning texture are based on sub-object analysis. 

Therefore, the object class “informal settlement” is not classified in the level in which it is 

entirely included, but in a smaller level with corresponding sub-objects (cf. next section). In 

general the textural features are divided into two groups: texture concerning the spectral 

information of the sub-objects and texture concerning the form of the sub-objects. In case 

of the identification of informal settlements the spectral information is determining. For 

instance HOFMANN (2001b) uses spectral texture properties as well as prime criteria for 

informal settlement detection. Thus, applying the SEaTH methodology, the texture 
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parameters after Haralick14F

16
 (HARALICK 1979 and HARALICK ET AL. 1973) could be determined as 

valuable features and could be afterwards applied successfully in eCognitionTM for the identi-

fication of informal settlements. Particularly the parameters GLCM - Angular Second 

Moment15F

17 and GLCM – Entropy16F

18 were implemented in this analysis (cf. Figure 6-10 and 

Table 6-2). Since not all very dense areas in Delhi are informal settlements, the term “very 

dense urban area” was chosen for demonstration purposes of that settlement type. The 

impervious surfaces, situated outside of the objects declared as “very dense urban”, were 

identified applying the textural parameter GLCM – Contrast17F

19. For the extraction of the 

remaining land cover classes, spectral layer value features were applied. Whereas, as 

expected, the mean of the accessory NDVI band operates as most useful feature for the 

identification of vegetation areas (cf. Figure 6-10), the features mean difference to 

neighbors and mean are used for shadow classification. The class “streets” is simply 

described by mean, ratio and relative border to brighter neighbors in the self generated 

street layer (cf. Table 6-2). The residual objects are assigned to the class “background” 

automatically, which is synonymous with the land cover class “not impervious”. 

Another challenge of the approach is based on the fact that the different classes and 

structures need to be classified in different segmentation levels since each level provides, 

due to different object sizes, disparate information about spectral and textural content. 

While a bottom-up approach — from the smallest unit pixel to the largest segments in level 

x — forms the basis of the segmentation process, an exactly contrary principle — a top-

down approach — is implemented for the present classification procedure (cf. Figure 6-11). 

Consequently, the image segments are classified contrarily to their segmentation sequence, 

this means from the coarse, individually defined level x to the fine levels (e.g., level x-i with 

i=1, …, x). All generated segmentation levels down to the base level are available for the 

thematic classification process. The object-oriented, hierarchical classification procedure is 

thus based on x levels resulting from the segmentation process (TAUBENBÖCK 2007). Hereby 

                                        

 
16 HARALICK ET AL. are using a so-called Grey-Level Co-occurrence Matrix (GLCM) for derivation of statistics of second order in digital 

images. A GLCM is a matrix derived from the grey level image, which shows the joint-probability of distribution of a pair of grey 

levels, separated at a certain distance and a certain orientation (ZHANG ET AL. 2003). A GLCM is the appraisal of the probability of the 

transition from grey scale level i to grey scale level j of two neighboring picture elements, whereas the neighborhood is defined by a 

transition vector. Second order statistical parameters with the application of GLCMs are considering as well the spectral as the 

spatial distribution of the grey scale values. So-called textural features are being derived from GLCMs, which represent the 

characterization of the GLCM within a single value (HARALICK ET AL. 1973, STEINNOCHER 1997). HARALICK ET AL. (1973) are mentioning 

14 of these textural features, some of which are as well implemented in eCognitionTM as classification features. 

17 The GLCM - Angular Second Moment (ASM) corresponds to the sum of squares of the occupied elements of the GLCM and is 

therefore a measure of homogeneity. It effectively measures the number of transitions from one grey level to another and is high 

for few transitions. Thus, low values indicate heterogeneity (STEINNOCHER 1997, MATHER 2004). 

18 The GLCM – Entropy (ENT) measures disorder of the image (ZHANG ET AL. 2003). 

19 The Haralick feature GLCM – Contrast (CON) gives non-linearly increasing weight to transitions from low to high grey scale values. 

The weight is the square of the difference in grey level. Its value is a function of the number of high/low or low/high transitions in 

grey level. CON measures local spatial frequency (MATHER 2004, ZHANG ET AL. 2003). 
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it is the user’s decision which classes are considered suitable within the respective levels of 

the classification. 

 

Figure 6-10: Class hierarchy of the QuickBird training area of test site South s3 (Delhi, India) and descriptions of 

the classes “very dense urban” (level 7) and “vegetation” level 5. The development of the class hierarchy is 
comparably simple, as the differentiation is merely made between different land cover classes only and not 
simultaneously between land use classes. 

Table 6-2: Criteria and corresponding threshold values used in the rule-based classification in eCognitionTM — 

identification of very dense urban areas (informal settlements) within the training area of test site South s3. 

Level

Streets 8 Spectral* Mean (street layer) <=124

Ratio (street layer) <= 0.01

Relative border to brighter neighbors (street layer) >= 0.55

Very dense urban 7 Texture GLCM - Angular Second Moment (all dir.) (1) <= 0.00079

GLCM - Entropy (all dir.) (1) 753.335

Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >= 422.465

Vegetation 4 Spectral* Mean (NDVI) >= 0.07

Shadow 1 Spectral* Mean difference to neighbors (abs) (NDVI) >= 0.0327

Mean (3) <= 124

*Layer values
**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.

Land cover class Type of criteria Criteria** Threshold**
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With the purpose to classify informal settlements, medium scale objects (level 8) were 

classified first. In this level it is distinguished merely between the classes “streets” and 

“background”. Sequentially in level 7 (sub-objects of level 8) the class “very dense urban” is 

extracted and taken to the next smaller level. This hierarchical approach is used step by step 

to those levels in which the appropriate classes can be classified well (“impervious” — level 

6, “vegetation” — level 4). This way, all land cover classes are classified gradually and each 

class is bequeathed to the smaller levels within the class hierarchy. The fine segments of the 

lowest level (1) are classified to characterize small scale urban structures of shadows. 

Finally, all extracted classes are merged to one land cover classification in the smallest 

object level (1). The remaining levels (2-3, 5, and 9-12) are not required further in this 

application. The intermediate levels (2-3 and 5) were solely important for the inheritance of 

the land cover classes. As they will be used in further analysis for the classification of more 

settlement types (dense urban, medium dense urban etc.) they have all been retained 

unchanged. Figure 6-11 represents the complete workflow of the applied classification. 

 

Figure 6-11: Modular framework for object-oriented urban land cover classification — identification of informal 

settlements (very dense urban areas) using a top-down approach. 

One of the aims during the development of the classification approach is a robust 

spatial transferability. Within this study, particularly the identification of informal settlements 

within the urban area of Delhi is of major interest. The conceptual framework together with 

its classification approach was developed based on a training area within the test site South 

s3 (cf. chapter 4.2). A first test of the transferability of the classification method is carried 

out by application on the complete test site South s3. To prove the transferability of this 

concept further, a second test is carried out on a completely different “transfer site” (test 
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site South s2) within the urban area of Delhi. The criteria set up for the development of the 

respective rule bases and their corresponding thresholds are provided in Appendix A.8. The 

results of the transfers are presented in chapter 7.2.1 and 7.2.2. 

Not only the informal settlements within Delhi but also the other, on-site self defined 

and during the field campaign mapped settlement types (cf. chapter 5.3) shall be identified. 

For this purpose the developed method was adapted accordingly. The features and 

thresholds crucial for the separation of the classes were as well determined by SEaTH and 

subsequently implemented in eCognitionTM. Firstly the research was focused on the 

identification of “sparse urban” settlement areas. As this settlement type can, like informal 

settlements, be considered as a type with “extreme features”, i.e. the settlement type can 

due to its characteristics clearly be separated from the surrounding settlement areas, the 

methodology could comparably easily be transferred. Sparse urban areas are characterized, 

in contrast to informal settlements, by a very low building density, i.e. the fraction of 

impervious area is very low. At the same time vegetation covers a large fraction of the total 

area, which are mainly gardens surrounding private homes. The size of the residential 

buildings is in the mid-range. Consequently, completely different textural and spectral 

properties are distinctive, so that the classification features of this settlement type need to 

be newly determined by SEaTH. The considered features and their respective thresholds are 

listed in the Appendix in Table A.8.2. As another test site South s2 needed to be chosen for 

this classification, not exactly the identical levels could be used for the identification of the 

respective classes. The choice of the classification levels has hence slightly been modified. 

The transfer of the methodology on the remaining settlement types “dense urban” and 

“medium dense urban” figured out to be not trivial though. Difficulties occurred at the 

determination of significant features for optimal class separation and the corresponding 

thresholds, as the attributes of the selected sets of training data in parts hardly differed. The 

procedure was repeated several times, in order to except that the selection of the set of the 

training data for the determination of the features is the root cause of the problem. Looking 

at the sub-objects, one can easily recognize why a clear separation of the settlement 

structures is difficult — even by a visual assessment the differences can hardly be identified 

(cf. Figure 6-12 and Figure 6-13). 

However, in order to enhance the quality of the classification results, an approach was 

adopted, which was already used by other authors for the evaluation of VHR remote sensing 

data within urban areas — to combine both object-oriented and pixel-based algorithms and 

thus to take advantages of their respective pros and cons (cf. chapter 3.2.2). Considering 

this, an ancillary layer as input data for the development of the rule base was added. This 

layer is resulting of a supervised pixel-based classification, which was performed 

simultaneously to the object-oriented classification (cf. Appendix A.9). As the data base for 

this classification is completely different here, the class hierarchy developed for the 
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identification of the previous settlement types could not be transferred directly. Hence, not 

only the thresholds needed to be determined newly with the SEaTH methodology, but as 

well the criteria needed to be re-evaluated and implemented into the rule base in 

eCognitionTM. Again the textural features were the decisive parameters for the classification 

of the settlement structures. In addition to that, the selection of the levels of the class 

hierarchy, in which the corresponding classes were identified, was adjusted to the new 

approach (cf. Appendix, Table A.8.3). 

 

Figure 6-12: Merged QuickBird training area in 4/3/2 
composite (top). The sub-objects (segmentation level 
7) show that a clear separation of the settlement types 
“dense urban” (red object) and “medium dense urban” 
(green object) is difficult — even by a visual 
assessment the differences can hardly be identified 
(bottom). 

 

Figure 6-13: Result of pixel-based image classification 
displayed in grey scale values based on merged 
QuickBird training area (top). The sub-objects 
(segmentation level 8) show that a clear separation of 
the settlement types “dense urban” (green object) and 
“medium dense urban” (red object) is difficult — even 

by a visual assessment the differences can hardly be 
identified (bottom). 

Based on the image analysis conducted using the eCognitionTM software the following 

strenghts of the object-oriented technique (in general and using the eCogntion software in 

particular) can be summarized: 

 The good suitability as well for multi-resolution segmentation as for the image analysis 

to the spatial and radiometric information of the real world objects, 

 The availability of an immense amount of criteria to characterize and define the desired 

classes, 

 The possibility to optimize the methodology by implementing ancillary thematic 

information, such as a GIS layer or NDVI image, 
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 The potential, in principle20, to instantly transfer the developed classification scheme to 

another test site or image with similar land cover (protocol function), as well as 

 The classification results can be exported in form of thematic vector layers, which 

enables close connection to GIS and for instance further integrative data analyses. 

Nevertheless, disadvantages of the applied object-oriented approach and the software 

eCognitionTM with respect to a successful and operational application have to be mentioned. 

In general an image analysis using this tool is involved with a significant expenditure of 

human labor, requires significantly higher skills, is more complex and time consuming than 

the conventional methods (ESCH ET AL. 2003). In detail the following facts are crucial: 

 The identification of appropriate parameters out of the immense range available and the 

determination of respective thresholds towards the segmentation and classification 

usually mainly bases on estimations or experiences of the analyst. Hence, the 

development and performance of the object-based image analysis can easily become 

very complex. (With regard to this research this fact could be kept in check using the 

SEaTH algorithm.) 

 The great variety of usable features and sub-procedures leads on the one hand to a 

high variability of the approach but aggravates on the other hand the comprehensibility 

of the methods and structural dependencies for new users. 

 The effort and time exposure can hardly be estimated in advance. 

 Working with various levels and/or large images (in respect of spatial resolution as well 

as spatial dimension) can increase the processing time exponentially (ESCH ET AL. 2003, 

KAMPOURAKI ET AL. 2006). 

eCognitionTM, in fact, cannot interpret an image as intelligently as a manual interpreter 

would, but the results turned out satisfactory in that manner that it is possible to pass on 

substantial information (in respect of content) or to carry out continuative analyses. 

The results of the object-oriented classification are presented in chapter 7.2. 

6.2 Integrative Use of Remote Sensing Derived Information 

and Socio-economic Data 

According to the explanations in chapter 3.3 one of the limitations within the exclusive use 

of remotely sensed data is based in the fact that no socio-economic information can be 

                                        

 
20 once the user finds the appropriate parameters and thresholds for a satisfactory segmentation and classification 



Methodology and Conceptual Framework 

 

127 

provided directly and therefore also no direct characterization of the living conditions within 

a certain settlement area is possible. It is for instance impossible to sense the amount of 

residents per housing unit without the application of ancillary in-situ information. At the 

same time, in the majority of cases, there are almost no or only incomplete datasets 

available in less developed countries. Particularly mega cities like Delhi are data poor 

environments. Temporal resolution, coverage and quality of administrative and socio-

economic data are insufficient and the knowledge about the living conditions of the residents 

is correspondingly very limited, incomplete and not up to date. Due to logistical reasons, as 

well as the high time and cost intensity of the acquisition of in-situ data this circumstance 

will not approve within the near future. Therefore, within the following chapter a 

methodology is developed to compensate the lack of in-situ collected socio-economic data 

by means of remote sensing imagery as well as with the integration of questionnaire data in 

order to allow an indirect assessment of the living conditions of Delhi’s inhabitants. The 

combined application of remotely sensed imagery and socio-economic data for mapping, 

capturing and characterizing the socio-economic structures and dynamics within the mega 

city of Delhi is the major task within this research. 

In order to examine whether high-resolution remote sensing data is suitable to provide 

indicators to identify socio-economic structures and dynamics, the classification results [1] 

were embedded in a GIS analysis concept [2]. This concept is used to determine different 

socio-economic attributes, such as the population amount or the population density, and to 

evaluate the water demand within a certain settlement area. The framework to this 

approach is presented in Figure 6-14. 

According to COWEN & JENSEN (1998) the derivation of socio-economic attributes using 

remotely sensed data usually requires the fulfilling of several preconditions. In order to 

estimate population attributes, which is one of the tasks within this study, it is necessary to 

(1) have access to imagery with sufficient spatial resolution to allow the identification of 

individual structures and to determine whether buildings are residential or not. In addition, 

(2) some estimates of the average number of persons per dwelling unit must be available 

and (3) it must be assumed that all dwelling units are occupied, and only one family lives in 

each unit. Otherwise, the analyst needs more detailed information on the living conditions of 

the residents (e.g., number of families per house, housing units per building, and stories). 

Since VHR QuickBird data is used within this study, the requirement for imagery with 

sufficient spatial resolution is conformed. The second precondition is fulfilled as well, as, 

based on the questionnaire data (cf. chapter 5.2), adequate information on the average 

family size is available. For the investigation of informal settlements or other one-family 

dwelling settlements, such as the upper middle class settlement Greater Kailash II or the 

upper lower/lower middle class settlement Tughlakabad Extension, also the third require-

ment is conformed. For the analysis of the remaining settlement types examined in this 
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research (e.g., Kalkaji DDA Flats) ancillary information, namely the average number of 

stories, is applied to estimate the number of inhabitants. 

 

Figure 6-14: Detailed framework of the work steps implemented in the integrative data analysis. Further 
explanations are included in the text. 

Within this study, the settlement characteristics (e.g., area, house size, and number of 

houses) are estimated from the classified QuickBird data and used to derive spatial infor-

mation about the population distribution [2+3]. In order to obtain these characteristics the 

following approach was implemented: 

4. Export of the settlement image objects after classification, which are characterized by 

shape features (e.g., object size) only or additionally by class information (i.e. an object 

is assigned to a certain land cover class),  

5. Determination of the impervious fraction of a certain object (settlement) using the results 

of object-oriented image classification in combination with GIS queries,  

6. Determination of the mean building size (AH) within the settlement area by means of 

mapping randomly sampled buildings within a GIS environment and their automatically 

statistical calculation using arithmetic mean (cf. Appendix, Map A.10), 
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7. Evaluation of the total number of houses (N) within the settlement by dividing the 

impervious area (AI) by the mean building size (AH). 

This approach is tested in two ways: (1) the settlement is represented by one image 

object only (e.g., level x), and (2) two or more image objects together build up one settle-

ment (e.g., level x-1). The results of this examination show that both methods enable the 

estimation of various settlement characteristics in the same way. Therefore, it is not 

necessary to extract the settlement to be examined with one fitting object — the settlement 

can consist of more segments. In turn, this makes the methodology more independent of 

the results of the segmentation process. 

In addition, the integrative approach makes use of the primary database [4] 

(georeferenced questionnaires, cf. chapter 5.2). These are used to characterize a given 

settlement type in terms of specific population and water related variables (e.g., family size, 

mean water consumption per family member and per capita in a certain settlement). The 

parameter “family size” was calculated using the arithmetic mean: 
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Equation 6-7 

F = average family size per settlement,  

n = number of interviewed households, 

x = number of family members per household. 

 

 In contrast to the given information on the family size per household, the interview 

information on the water consumption was often doubtful (cf. chapter 5.2.3). Hence, 

extreme outliers, which could definitely be considered as unrealistic data, were eliminated 

accordingly. Afterwards the “mean water consumption per capita” within a settlement was 

determined using the arithmetic mean as well: 
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Equation 6-8 

 

WC = mean water consumption per capita [l/d] within a settlement, 

w = mean water consumption per family member per interviewed household 

n = number of interviewed households. 
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By combining the remote sensing derived data with the questionnaire information, it is 

possible to characterize a given settlement type (e.g., informal settlement) in terms of 

specific population and water related parameters, such as “total population”, “population 

density” and “total water consumption” [5]. For instance, the total population amount of a 

certain settlement was established by the following approach: 

 

FNP   

Equation 6-9 

P = total population of the settlement, 

N = total number of houses within the settlement extracted from satellite  

 image, 

F = average number of persons per household (family size) extracted from  

 questionnaire data (family size = 1 family per house; calculated using  

 arithmetic mean). 

 

In the following, the population density of a settlement area was calculated as: 

 

SAPD /  

Equation 6-10 

D = population density [Pop./km²] of the settlement, 

P = total population of the settlement, 

AS = settlement area (estimated from multi-resolution segmentation) [km²]. 

 

The total water consumption of all inhabitants living in a certain settlement is calculated 

using the correlation: 

PWW PT   

Equation 6-11 

WT = total water consumption [l/d] of the settlement, 

WC = mean water consumption per capita [l/d] within the settlement  

 (extracted from questionnaire data, cf. formula 6-8), 

 

P = total population of the settlement. 
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In order to compare the remote sensing derived data (assumptions) with the 

questionnaire data, a realistic amount for “water consumption per capita” [l/d] was 

estimated. In this case for informal settlements in Delhi an empirical value of 25 [l/d] was 

determined. 

It is important to note that the remote sensing and primary data has been strictly 

divided into two parts: one part for the methodology development and the other for the vali-

dation of the approach. To transfer the approach to unknown areas, where no primary data 

has been collected, assumptions have to be made for certain variables (e.g., family size, 

water consumption), which might result in uncertainties in the estimated variables. 

The results of the integrative analysis are all presented in chapter 8. 

 



Chapter 7 

Identification of Urban Structures 
Using VHR Remote Sensing Data 

In this section, the results of the object-based image data analysis are presented. At first, 

the deliverables of the segmentation process are presented (cf. chapter 7.1). In chapter 7.2 

then, the deliverables of the object-oriented classification approach are demonstrated. This 

includes the identification of informal settlements and other settlement types within the 

urban area of Delhi (cf. chapter 7.2.1 and 7.2.2). The quality of the land cover classification 

is of decisive importance for the following investigation of the urban environment of Delhi. 

In order to estimate the achieved accuracy of this process, hence the mapping results were 

evaluated both in qualitative and in a quantitative way (cf. chapter 7.2.3). The section is 

completed with a summary and a critical survey of the classification results (cf. chapter 

7.2.4). 

7.1 Deliverables of the Segmentation Process 

In the next two sub-chapters initially the outcome of the segmentation process is shown (cf. 

chapter 7.1.1). Subsequently, since the image objects extracted here are crucial for the 

image classification following, the results and the segmentation method itself are appraised 

within this chapter as well (cf. chapter 7.1.2). 
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7.1.1 Results of the Multi-Resolution Image Segmentation 

As explained in detail in chapter 6.1.1 in this research a bottom-up approach with very 

fine segmentation on the base level (level 1) and coarse segmentation on the top level (level 

12) was applied in order to facilitate the retrieval of meaningful objects for the classification 

of different land cover classes and different settlement types. This means that altogether 12 

levels were calculated where level 1 represents the smallest objects and level 12 represents 

the biggest objects of the segmentation process (cf. Table 6-1 in chapter 6.1.1). Using this 

approach the primary aim was to prove the assumption that it is the textural information of 

the image data, which is in particular essential for the detection of different settlement 

types. This is especially true for the detection of informal settlements. 

As can be observed in Figure 7-1 and Figure 7-2 multi-resolution segmentation was 

successfully applied to the acquired QuickBird image data of the city of Delhi. Figure 7-1 

shows a sequence of segmentation levels which was produced from the analysis of the 

chosen training area of this study whereas the segment sizes are optimized in terms of best 

fitting representation of the real world structures. To take advantage of the textural 

information, objects on the top level (here level 9-12) outline more or less different 

settlement areas, large parts of settlement areas and other objects of comparable size (e.g., 

industrial areas, large unimproved areas, or large green corridors). Clearly visible is for 

example in level 9 of the simplified illustration in Figure 7-2 that the settlement area with the 

highest building density in the middle-northern part of the training area is being delimited as 

a segment. This area comprises a part of the informal settlement Bhomiheen Camp (cf. 

chapter 7.2.1 and Figure 7-5). Intermediary segmentation levels (here level 5-8) are 

necessary for the identification of medium scale objects (smaller settlement areas, large and 

medium sized buildings, open and green spaces etc.). Segments on the bottom level (here 

level 1-4) outline the smallest image contents. The base level (1) and the three next higher 

level hold for instance image objects which coincide with the smallest residential buildings, 

as well as with small road segments, small vegetation areas, and small areas of shadow. 

Hence, the requirement that the parameters should be selected within the first segmentation 

step in a way that the smallest segments required for the subsequent analysis are generated 

(cf. chapter 6.1.1), is met. 

The segmentation parameters were chosen based on the accuracy of the segments 

delineating the boundaries of the small (single residential buildings) and large objects (e.g., 

green and open spaces as well as settlements itself) visible in the image. 

The resulting segmentation needed to be reproducible and universal to permit 

application to the largest variety of data possible. Hence, after testing the multi-resolution 

image segmentation on the selected training area, the developed segmentation approach 

was firstly transferred to the whole test site South s3 and secondly to the transfer site South 
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s2 correspondingly. As during the segmentation of the training area fixed parameter settings 

were applied here as well and the scale parameter was changed systematically like before. 

 

Figure 7-1: Results of multi-resolution image segmentation based on the training area. The scale parameter was 
changed systematically, while the residual homogeneity parameters and the layer weights remained constant 
(shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]). The images are numbered according to their 
segmentation level: 1 — scale 5, 2 — scale 10, …, 12 — scale 200. 
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Figure 7-2: Simplified illustration of the results of multi-resolution image segmentation with varying scale 
parameter of training area of test site South s3: 1 – scale 5 (level1), 2 – scale 25 (level 5), 3 – scale 125 (level 9), 
4 – scale 200 (level 12). The blue highlighted segment in level 9 demarcates the area with the highest building 
density, which is a part of the informal settlement Bhomiheen Camp. 

The transfer results shall here exemplarily be illustrated on the basis of test site South 

s2. The segmentation results of test site South s3 are not presented in detail here. The 

detailed results can be found in the appendix (cf. A.11). Figure 7-3 illustrates the results of 

the multi-resolution image segmentation based on the transfer site South s2. 

The developed segmentation procedure and therefore the fixed parameter settings and 

the defined scale parameters were subsequently applied to the transfer site South s3. 

Consequentely, the area under investigation was segmented on 12 levels as well. It is visible 

in the segmentation results of the test site, that very small items such as the smallest 

residential buildings were demarcated at the fine-scale level (level 1-5). Larger buildings and 

smaller settlement areas for instance were segmented at the medium-scale level (level 6-8) 

whilst at the coarse scale-level (level 9-12) large entities such as whole settlement areas or 

large unimproved areas were demarcated. 

The transfer of the defined segmentation process to a completely different test site 

South s2 was, thus, accomplished successfully, too. As shown in Figure 7-4 in detail this 

way, for instance, again in level 9 the settlement area with the highest building density – the 

informal settlements Banjara and Harijan Camp −, located at the main road, was clearly 

visible delimited as one image object (cf. chapter 7.2.1 and Figure 7-8).  
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Figure 7-3: Results of multi-resolution image segmentation based on the transfer site South s2. The scale 
parameter was changed systematically, while the residual homogeneity parameters and the layer weights 
remained constant (shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]). The images are numbered 
according to their segmentation level: 1 — scale 5, 2 — scale 10, … , 12 — scale 200.  
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Figure 7-4: Result of multi-resolution image segmentation based on the transfer site South s2: segmentation level 
9 with scale parameter 125. The yellow highlighted object delimits clearly the area with the highest building 
density within this test site. The delineation is consistent with the settlement boundaries of the merging informal 
settlement areas of Banjara and Harijan Camp. 

Since the classification process is based on the segment properties generated, a 

substandard segmentation quality has an adverse effect on the classification quality. Hence, 

in the following chapter 7.1.2 the segmentation method itself and the results are appraised. 

7.1.2 Appraisal of the Segmentation Results and Method 

Since the quality of image classification is directly affected by the segmentation quality, the 

segmentation process and the image objects produced are of high importance for the 

subsequent analysis (cf. chapter 6.1.2 and 7.2). “As a rough rule of thumb it can be stated 

that, the better the generated segments are capable to represent the imaged objects in the 

image data, the better the quality of the segmentation process and consequently the 

classification results are” (HOFMANN ET AL. 2008). Thus, the segmentation is the Achilles heel 

of the object-oriented remote sensing information retrieval process. 

According to this, it is important to answer the question ‘How good is the applied 

segmentation algorithm?’. Methods for the evaluation of segmentation results are discussed 

for example by NEUBERT ET AL. (2006), ZHANG ET AL. (2004), MEZARIS ET AL. (2003), LETOURNEL 

ET AL. 2002 or LEVINE & NAZIF (1985). However, it has been established that at present the 

most reliable evaluation method is still “a visual interpretation that has to consider the exact 

geometrical position of the segment borders as well as the membership of one and only one 

object class to a single region” (SCHIEWE 2002). Logically this means that the homogeneity 

features and parameters and the generalization level are subjectively determined. Within this 
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research too, solely a visual interpretation and assessment of the generated image objects 

was applied. A quantitative evaluation of the segmentation results was resigned due to the 

disproportionately high efforts necessary. The image segmentation performed in the context 

of an object-oriented classification approach provided for both the training area and the 

complete test sites South s2 and s3 meaningful spatial units. Moreover, the image 

segmentation leads, compared to pixel-based image analysis, to a better outlining of real 

world structures and objects, for example single residential buildings or complete urban 

settlement areas. This means that the resulting segments come closer to the spatial and 

therefore spectral and textural characteristics of the individual and complex urban structures 

in a mega city environment. Furthermore diverse shape- or context-related attributes were 

provided. The possibility to produce a discretionary number of segmentation levels was 

achieved while the segment sizes were optimized in order to best represent the real world 

structures. All in all, it can be stated, that regarding the complex and heterogeneous 

structures of the different settlement types within Delhi, eCognition´s multi-resolution 

segmentation is well suited to generate meaningful image objects.  

Nevertheless, already during the sensitivity study (cf. chapter 6.1.1) it turned out that 

the process of the applied software eCognitionTM and the included image segmentation 

implicates significant difficulties. With respect to an operational application, on the one hand, 

the determination of the optimum number of levels and the corresponding segmentation 

parameters was very complex and therefore very time-consuming.  

This disadvantage was encountered actively though within this study by a fixation of the 

parameter settings based on the sensitivity study, in contrast to a case by case 

determination for each new test site. Doing so, it was accepted that the generated image 

objects do not always perfectly match the real world structures. Aiming to develop an 

operational, i.e. global approach, one has to accept to do without such a refinement.  

In any case, the prevalent studies have proven that the different test sites could be 

segmented with a sufficient quality and that the generated segments together with their 

properties form a very good basis for the subsequent classification process. The 

segmentation process using the eCognitionTM software is in itself a very time-consuming 

procedure though, which requires an extensive computation capacity. Therefore it is 

generally recommendable to initially apply test runs to smaller image subsets which are 

representative for the whole scene. Since eCognitionTM with the release of version 3.0 uses a 

segmentation algorithm which allows for the generation of image size independent results, 

this line of action is not critical in terms of reproducibility of the segments and therefore not 

either for the following classification. 
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7.2 Deliverables of the Object-oriented Classification Approach 

Based on the segmentation derived building blocks and on the developed class hierarchy a 

land cover classification of selected sites within the urban area of Delhi was performed. 

Within this study, it is postulated that the structure of a settlement is mirroring the living 

conditions of its inhabitants. In order to prove this thesis, during the classification process 

the identification of different settlement types — regarding especially their building size and 

density — was put into the focus. 

In this process, priority was given to the identification of informal structures, i.e. 

informal settlements. These informal settlements are the most visible expression of urban 

poverty in the mega city of Delhi. Their physical entity is a result of the inadequate social 

circumstances the inhabitants are living in. In order to carry out the urban planning and 

development tasks necessary to improve the living conditions for the poorest residents of 

the mega city, the identification of such “hot spots” of urban challenges is a basic 

precondition. 

Beyond that, the on-site defined and during the field campaign mapped settlement 

types (cf. Figure 5-12 and Figure 5-13 in chapter 5.3) should be identified using the 

developed classification methodology. The diverse living conditions of these inhabitants 

should be, according to the working thesis, directly visible in these settlement structures as 

well. 

Comparable to the execution of the segmentation process, at first, the classification 

methodology was developed and tested based on the chosen training area within test site 

South s3. Then the approach was applied to the whole test site South s3. In order to explore 

the transferability the developed classification methodology was carried out afterwards on a 

completely different test area within the mega city of Delhi, namely South s2.  

The following subchapters provide the results of the object-oriented classification 

approach. 

7.2.1 Identification of Informal Settlements within the Urban 

Environment of Delhi 

The final outcome of the object-oriented classification approach is presented in the urban 

land cover classification in Figure 7-5. All in all, six land cover classes — impervious, not 

impervious, vegetation, roads, shadow and very dense urban — could be identified. Their 

spatial distribution, which represents a relatively up to date and spatially comprehensive 

piece of information, therefore gives an answer on the “what is where” within the complex 
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and heterogeneous urban morphology of the examined district within Delhi. Of particular 

importance hereby is, that the area with the smallest buildings and highest building density 

— represented by the class “very dense urban” — can be clearly separated from the 

remaining impervious areas. This area is a part of an informal settlement (Jhuggi Jhompri 

cluster) which is called Bhomiheen Camp. The Bhomiheen Camp represents an illegal 

residential area tolerated by the Indian government, which is characterized in general by an 

inadequate supply situation and in particular by a considerably insufficient water supply and 

waste water disposal system (cf. chapter 8.1). The mostly one or two storied houses here 

are constructed in a very simple, improvised style (cf. Figure 7-6). 

 

Figure 7-5: Training area of the fused QuickBird test site South s3 (4, 3, 2) versus the result of object-oriented 
image classification: In the classified image subset “very dense urban” areas could be successfully identified. The 
mapped very dense area is part of the informal settlement Bhomiheen Camp. Further explanations are included in 
the text (enlarged Map cf. Appendix, A.12.1). 

The remaining impervious areas comprise different kinds of settlements. Areas of the 

middle and the upper lower class are represented here next to the informal settlement. 

These settlement types are as well characterized by various structures, which implicate e.g., 

different building sizes or building densities. Also the relations between the buildings (sub-

objects) within the various settlements (super-objects) are varying and are different 

amongst each other. In order to make these facts usable and to prove whether this 

approach is generally applicable, it is an objective of this study to differentiate these 

settlement types, too. The results of the respective investigations are summarized in the 

following chapter 7.2.2. 
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Figure 7-6: Impression of the informal settlement Bhomiheen Camp located within the training area of test site 
South s3 (Photographs: S. Smollich, October 2005). 

The detail view in Map A.12.1 (cf. Appendix) reveals the potential of this method to 

partially capture single houses with high precision, and hence to map the physical 

characteristics of the urban landscape true-to-detail. But, it becomes also evident that an 

identification of single buildings within the informal settlement is very difficult. The reason 

for this is on the one hand the very high building density of this settlement type. The houses 

are mostly attached to each other, which means that no or hardly any gaps are visible. 

Hence shadows, which would make the delineation/classification easier, are not or hardly 

existent. On the other hand, in a large part the houses have been constructed from the 

same building material. Therefore no spectral discrepancies exist between different buil-

dings, which would enable a differentiation by means of satellite data. Which makes it even 

more difficult is the fact that surface material of the little walkways between the houses — 

the mapping of which would facilitate the differatiation — is spectrally speaking very similar 

or even equal to the building material of the houses. A fully automatic extraction of resi-

dential buildings in informal settlements in Delhi using only remote sensing is therefore not 

offhand possible with the applied method and this defines at the same time the boarderlines 

of the approach and the used data. 

The classification result in Figure 7-5 shows furthermore that the residual land cover 

classes — vegetation, not impervious surface, roads and shadow — can be identified 

successfully. The quality of the land cover classification is examined in more detail in chapter 

7.2.3. 

As mentioned before, the methodology developed for the training area was tested on its 

transferability and general validity. Therefore the whole test site South s3, characterized by 

similar settlement structures, was analyzed initially (cf. Figure 7-7). It is well visible that the 

identification of “very dense urban” areas is also possible within this site. The informal 

settlement Bhomiheen Camp could be extracted completely as well as the Nehru and 
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Navjeewan Camp, which are located adjacent in the North. The remaining classes also 

represent the reality correctly. The detail views in Figure 7-7 and the enlarged Map A.12.2 

(cf. Appendix) enable a more precise visual interpretation of the classification accuracy and 

quality. 

 

Figure 7-7: Fused QuickBird test site South s3 (4, 3, 2) versus the result of object-oriented image classification: 
Identification of “very dense urban” is possible. The informal settlements Bhomiheen Camp as well as Nehru and 
Navjeewan Camp could be extracted completely (enlarged Map cf. Appendix, A.12.2). 

The transfer of the developed classification approach to a completely different test area 

South s2 was accomplished successfully, too (cf. Figure 7-8). The Banjara and Harijan 

Camp, located at the main road, were identified clearly as “very dense urban” area. As the 

informal settlements mentioned before, these camps represent illegal residential areas which 

are characterized by a lack of basic infrastructure services (cf. Figure 7-9). One additional 

district was identified as “very dense urban”. This area (lower right corner) is in fact very 

dense, but it does not represent an informal settlement. Instead it is an urban village — a 

characteristic of Delhi —, namely Deoli, with mostly similar physical attributes (cf. Figure 

7-10).  



Identification of Urban Structures Using VHR Remote Sensing Data 

 

143 

 

Figure 7-8: Fused QuickBird transfer site South s2 (4, 3, 2) versus the results of object-oriented image 
classification: Application of the developed classification approach to a completely different test area. The Banjara 
and Harijan Camp located at the main road — both informal settlements— were identified as “very dense urban” 

area (enlarged Map cf. Appendix, A.12.3). 

In contrast to the JJ-colonies, urban villages are not assigned to informal settlements on 

the one side because of their judical status. On the other side, they are not assigned to this 

class because the quality of the living conditions of the inhabitants, despite being very poor 

and showing slum similar conditions due to their disadvategeous development, are still in 

average higher than they are in informal settlements. This example shows that there are still 

some limits of the application of VHR remote sensing data. Without additional socio-

economic data or on-site information, a differentiation of settlement types with a physically 

very similar characteristic is not possible. All in all, the results still show that the areas with 

the supposedly worst living conditions and the poorest supply situation can be clearly 

identified (semi-) automatically. 
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Figure 7-9: Impression of the informal settlement Banjara and Harijan Camp located within test site South s2. 
These camps represent an illegal residential area which is characterized by a lack of basic infrastructure services 
(Photographs: S. Smollich, October 2005 and R. Singh, March 2006). 

 

Figure 7-10: Impression of the urban village Deoli located in the southeast of test site South s2. Due to their 
disadvantageous development urban villages in Delhi show a slum similar structure. But the quality of living 
conditions of the residents here is in average still higher than of those living in the JJ-colonies (Photograph: S. 
Smollich, October 2005). 

7.2.2 Identification of Further Settlement Types within Delhi 

One important goal of the object-oriented classification approach is the transferability to 

different settlement types within the mega city of Delhi. Thus, using the developed classi-

fication methodology, the remaining on-site defined and during the field campaign mapped 

settlement types should be identified as well. Figure 7-11 presents a first transfer result of 

the object-oriented classification scheme. As expected, the approach could successfully be 

applied to the identification of the settlement type “sparse urban”. This settlement type can, 

as well as “very dense urban” areas, be considered as a settlement with “extreme 

attributes”, i.e. the settlement type could, due to its characteristic outward appearance, 

clearly be separated from the surrounding settlement areas or land cover classes, 

respectively. 
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Figure 7-11: Identification of further settlement types within the fused QuickBird test site South s2 (4, 3, 2). Within 
the classified test site “sparse urban” areas could be identified successfully. The unauthorized colony Sainik Farms, 
located in the southwest of the test site, could be clearly separated from the surrounding areas. The residents of 
the sparse urban area belong to Delhi’s upper class (enlarged Map cf. Appendix, A.12.4). 

The sparse urban settlement located in the southwest of the test site is known as the 

unauthorized colony Sainik Farms. Sainik Farms is one of the so called farm house quarters 

of Delhi, the residents of which belong to the upper class of the city. Being former agricul-

tural areas, these quarters are holding special rights regarding the utalization of water — 

e.g., deep water drillings are allowed in order to extract ground water (ZERAH 2000). This 

means that the inhabitants have a more than sufficient water supply, despite the 

settlements are not attached to the municipal water supply due to their informal status, and 

despite the fact that the southern districts are generally disadvantached due to the water 

works being mainly situated in the northern districts. At times, when the wells do not deliver 

enough water, the inhabitants cover their high demands, which is mainly driven by the 

watering of their private gardens (cf. Figure 7-12), by bying additional water out of tank 

trucks. According to TREVEDI ET AL. (2001) this inadequate withdrawal of ground water is 

enforcing the continuous drop of the ground water level of the whole mega city in general 

but in special of the southern districts. The per-capita consumption of 382 lpcd as mentioned 

by ZERAH (2000) confirms that particular sections of the population are consuming 

inadequately high amounts of water, while at the same time the major percentage of the 

population of southern Delhi is suffering of an insufficient water supply (cf. chapter 8.1). 



Identification of Urban Structures Using VHR Remote Sensing Data 

 

146 

 

Figure 7-12: Upper class colony Sainik Farms, located in the South of Delhi (Photographs: S.Smollich, Oct. 2005). 

 

Figure 7-13: Combined classification map of both settlement types – “sparse urban” and “very dense urban” – 
identified within the fused QuickBird test site South s2 (4/3/2).  

As can be observed in Figure 7-13 of course a combined classification map including 

both identified settlement types – “sparse urban” and “very dense urban” – can be provided 

as well. 

In comparison to the good results of the already successfully classified settlement types, 

the transfer of the methodology on the remaining on-site defined and during the field 

campaign mapped settlements “dense urban” and “medium dense urban” figured out to be 

more complex. Figure 7-14 shows that it is well possible to identify settlement types of these 

density classes too. For example the “dense urban” settlement Tughlakabad Extension, 

located north and south of the main road, could be separated completely. On the other side 

it becomes as well apparent, that the quality of the land cover map is slightly lower due to 

some misclassifications. Difficulties occurred especially in cases where the physical attributes 
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of the sub-objects of two settlement types were very similar (cf. Figure 6-12). For example, 

a part of the government quarter Kalkajii DDA Flats was by mistake classified as “dense 

urban” this way (west of the north-south-heading main road), even though it should have 

been classified as “medium dense urban” like the remaining part of the settlement was. A 

clear and precise separation of the determined settlement types was in this regard hardly 

possible — not even with an additional adaption of the method, namely the combination of 

both object-oriented and pixel-based algorithms. It becomes apparent as well that a very 

detailed street pattern can have an effect on the classification and lead to misassignments 

(e.g., within the eastern and north-eastern area of the training site).  

 

Figure 7-14: Identification of the settlement types “very dense urban”, “dense urban” and “medium dense urban” 
within the training area included in QuickBird test site South s3 (4, 3, 2). An assignment of the remaining land 
cover classes was not carried out at this stage in order to be able to better evaluate the quality of the identification 
of different settlement types. 

Misclassifications of course impede the further use of the classification results for 

subsequent investigations. Therefore the results were in parts manually corrected with in-

situ information in order to be usable for the following integrative analysis. 

Despite the described problems, all in all, this land cover classification can be regarded 

as a successful attempt to identify urban settlement structures with very similar physical 

attributes by means of a (semi-) automatic classification using remote sensing data. This 

result gives a promising basis for the further enhancements of the methodology developed 

within this study and for the analysis of remote sensing data in the mega-urban 

environment. 



Identification of Urban Structures Using VHR Remote Sensing Data 

 

148 

7.2.3 Quality Assessment of the Classification Results 

„The value of the map is clearly a function of the accuracy of the classification.” 

(FOODY 2002) 

Any land cover classification or in general thematic map is, according to their geometrical 

resolution, basically a generalization of the reality. Such generalization, in turn, evokes some 

loss of information and so a certain level of incompleteness. That means any mapping 

process will naturally contain flaws (e.g., FOODY 2002, MALING 1989, and SMITS ET AL. 1999). It 

is indispensable, consequentially, “that the quality of thematic maps derived from remotely 

sensed data” need to “be assessed and expressed in a meaningful way” (FOODY 2002). 

‘Quality’ is in this context the equivalent of ‘accuracy’. In thematic mapping of remotely 

sensed data the term accuracy is according to FOODY (2002) “used typically to express the 

degree of ‘correctness’ of a map or classification”. In essence, classification accuracy 

determines the degree to which the derived land cover classification conforms to the reality 

(JANSSEN & VAN DER WEL 1994, MALING 1989, and SMITS ET AL. 1999). 

Evaluating the quality of land cover classifications (derived from remotely sensed data) 

is a very important step in the application, processing and management of remote sensing 

data. It “has been recognized as a valuable tool in judging the fitness of these data for a 

particular application” (JANSSEN & VAN DER WEL 1994) and “gives evidence of how well the 

generated or used classifier is capable of extracting the desired objects from the image” 

(BAATZ ET AL. 2004). Also an integrated processing of classification data and other types of 

geodata, as conducted within this study, can only be performed in a responsible way if the 

quality of the data is known. Hence, the accuracy assessment of the generated land cover 

classification is also of decisive importance for the continuative analysis of the urban 

environment of Delhi. Thus, however, accuracy determines at the same time as well the 

specific value of the resulting image classification to a particular user, i.e. the information 

value (JANSSEN & VAN DER WEL 1994). 

To allow a judgment about the accuracy, land cover maps are in general checked 

against some ground truth or other reference data (FOODY 2002). Disagreements between 

the two data sets are generally interpreted as errors in the classification result derived from 

the remotely sensed data (CONGALTON 1991). 

During the last three decades, a large number of papers have been published on 

accuracy assessment of land cover classification derived from remotely sensed data (cf. 

ARONOFF 1985, CONGALTON 1991, CONGALTON & GREEN 1999, FOODY 2002, and JANSSEN & VAN 

DER WEL 1994, ROSENFIELD & FITZPATRICK-LINS 1986). Very different approaches for validation 

have been presented and discussed in the literature, usually with a particular application in 
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mind for the data in hand (JANSSEN & VAN DER WEL 1994). Within this study, the land cover 

classification shall be validated both, in a qualitative and quantitative way. 

To verify the results of the classification or settlement differentiation in a qualitative 

way, the outcomes were checked primarily on the basis of on-site knowledge and 

photographs taken during the field campaign. As shown in Figure 7-15 the image 

classification results of a subset of test site South s3 were compared with georeferenced 

photographs of the respective settlement areas.  

 

Figure 7-15: Qualitative validation of the classification results using photographs taken during the field campaign 
2005 (subset of test site South s3): 1 — Jhuggi Jhompri cluster Nehru and Navjeewan Camp (informal settlement); 
2 — Harijan Colony (upper lower class to lower middle class) (Photographs: S. Smollich, October 2005). 

Comparing the photographs with the satellite data and their classification it can be 

proven that the settlements right and left of the street are strongly different in their 

appearance. While the houses in the Nehru and Navjeewan Camp (1) are of very simple 

style, constructed of different poor and non permanent building materials, the houses in the 

Harijan Colony (2) are already of a more solid construction. Furthermore the settlements are 

different in their house size or number of stories. The Nehru and Navjeewan Camp is a 

representative settlement for substandard housing and inadequate building structures. 
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Therefore, as the classification result indicates, it is assigned to the informal settlement type. 

In contrast, the Harijan Colony is assigned to the authorized settlement type (resettlement 

colony) where the residents of the upper lower class and lower middle class live. 

In essence, for a first evaluation, this observation can be used to assess the plausibility 

of the classification result — it supports both, the separation into two different settlement 

types as well as the localization of informal settlements. But this validation approach is 

obviously partially subjective and the results can therefore hardly be quantified or even be 

capable of representing comparable values (BAATZ ET AL. 2004). This method is for example 

inappropriate if not only the position of different settlement types shall be determined but as 

well the measurement of the surface coverage is of interest. For a continuative analysis of 

the urban environment of Delhi, as it is carried out in chapter 8, or for operational 

applications of the data a visual appraisal of the derived classification results therefore does 

not fulfil the requirements. 

As outlined above, a large number of standard methods are commonly used and recom-

mended in the research literature to quantify the accuracy of thematic land cover data 

derived from remotely sensed imagery. At present, however, the most widely used methods 

are based on a confusion or error matrix21. A confusion matrix is a comparison or simple 

cross-tabulation of the derived (land cover) class label against the one observed in the 

reference data for a selected number of cases at specified locations (reference points). A 

confusion matrix contains all the information about relation between classification and 

reference data and provides therefore an obvious basis for accuracy assessment (BAATZ ET 

AL. 2004, CANTERS 1997, and FOODY 2002). This basis, in turn, allows for both the 

characterization of the accuracy of a thematic classification and its errors, which, again, 

facilitates refining the classification result or estimates derived from it (FOODY 2002). 

Moreover, different thematic classifications may be compared in terms of their accuracy. 

There are different measures and statistics that can be derived from the values in a 

confusion matrix (FOODY 2002, STEHMAN 1997). One of the most popular accuracy measures 

is the overall accuracy — the proportion of all reference pixels which are allocated correctly 

to the total amount of pixels (in the sense that the class assignment of the classification 

result and of the reference data coincide) (BAATZ ET AL. 2004, FOODY 2002). Overall accuracy 

is a measure of the classification as a whole. It contains no information about the 

classification quality of individual classes (JANSSEN & VAN DER WEL 1994). If attention focuses 

on the accuracy of individual land cover classes, then user’s22 and producer’s accuracy23 as 

                                        

 
21 Within this study, the term ‘confusion matrix’ is used to indicate the summarized sample results. 

22 The ‘user’s accuracy’ provides the user information about the quality of the land cover data. The measure is calculated by the 

number of correctly classified samples divided by the row total (JANNSEN & VAN DER WEL 1994).  
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well as errors of omission and commission can be calculated (STORY & CONGALTON 1986, 

JANSSEN & VAN DER WEL 1994). The calculation of these measures, and some other major 

indices, is given and illustrated by e.g., BAATZ ET AL. 2004, FOODY (2002), JANSSEN & VAN DER 

WEL (1994) or STORY & CONGALTON (1986). Within this study, using the confusion matrix 

overall accuracy as well as the producer’s and user’s accuracy were determined as means of 

accuracy measures and established for the quality assessment of all classification results (cf. 

Table 7-1, Table 7-2, as well as Table 7-3 and Table 7-4). 

In order to gain more information content out of the confusion matrix than the basic 

percentage of correctly allocated cases, moreover, Cohen’s Kappa Index of Agreement (KIA) 

is determined within this study to express the accuracy of the generated land cover 

classification (e.g., SMITS ET AL. 1999) (cf. Table 7-1 - Table 7-4). KIA “expresses the 

proportionate reduction in error generated by a classifier compared with the error of a 

completely random classification” (MASHEE 2009). Using KIA it is assumed that both land 

cover classification and reference data are independent class assignments of equal reliability 

— here the conformity level between the two data sets is what is being measured (BAATZ ET 

AL. 2004). KIA is often used to compare different classification results in a statistical way 

and, therefore, to test the effectiveness of different classification methods (that are based 

on the same data) or the ancillary data applied. Moreover, KIA has the quality to 

accommodate for the effects of chance agreement and is capable to correct the same 

(CONGALTON ET AL. 1983, CAMPBELL 1987, BAATZ ET AL. 2004 and FOODY 2002). The calculation 

of KIA is based on a complete confusion matrix, including information concerning errors of 

omission and commission (JANSSEN & VAN DER WEL 1994, HUDSON & RAMM 1987). Some 

authors, such as ROSENFIELD & FITZPATRICK-LINS (1986), “suggest using KIA as a sort of 

standard measure of accuracy for thematic classifications as a whole” (JANSSEN & VAN DER WEL 

1994). 

Prior to the description of the realization and the results achieved within this study, a 

short excursus on sample selection is necessary: Appropriate sample selection, including 

sampling design and size, is a very important aspect to consider for assessing the accuracy 

of a land cover classification (FOODY 2002, MASHEE 2009 and NAVULUR 2007). The sampling 

designs most often used are ‘random sampling’, ‘interval or systematic sampling’, ‘stratified 

sampling’, ‘cluster sampling’ as well as ‘multistage sampling’ (MASHEE 2009 and NAVULUR 

2007). Conducting a sample selection some aspects have to be taken into account. For 

example, a big time gap between the basis data for the reference classification and the data 

for the classification that shall be evaluated should be avoided. At the same time it is 

                                                                                                                

 
23 The ‘producer’s accuracy’ is calculated dividing the number of correctly classified samples by the column total. “It indicates the 

percentage of samples of a certain (reference) class, that were correctly classified” (JANSSEN & VAN DER WEL 1994). 
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essential that the reference classification and the classification that shall be evaluated carry 

comparable information, which means that they need to have similar classes or at least 

classes that can be assigned to each other. In addition to that, the pixels need to have the 

same location and spatial extent on the ground (BAATZ ET AL. 2004). 

In the present study, accuracy assessment was calculated using the eCognition soft-

ware. eCognitionTM provides different methods to perform accuracy assessment24. Here, the 

method ‘error matrix based on samples’ was implemented. This method uses test areas 

instead of e.g., a complete thematic map as reference data for quality assessment25. As test 

areas samples (i.e. objects, not pixels) derived from manual sample units are considered. It 

is obvious that it make no sense to use the same sample objects for accuracy assessment as 

they were already used as training data for the classification process (automatic feature 

extraction methodology — SEaTH, cf. chapter 6.1.2), as they were assigned to the right 

class anyway (BAATZ ET AL. 2004). Thus, new sample objects for the calculation of the error 

matrix have to be created. For this purpose, based on the QuickBird data, an independent 

interpreter has generated randomly an adequate number of samples for every land cover 

class. That means, for all derived land cover classification maps one (independent) reference 

data set is provided to calculate the appropriate accuracy values. Moreover, it is important to 

say, that in the validation process only segmented QuickBird images with level 1 (scale 

parameter 5) and classified images as well with level 1 were used. 

To deliver a judgment about the quality of the developed (semi-) automated classi-

fication method, a confusion matrix for each produced land cover classification map was 

calculated. First of all, the results for the training area within test site South s3, which was 

consulted for the development of the approach, is presented in the confusion matrix in Table 

7-1. The first column of the table shows the land cover classes that have to be evaluated. In 

the following columns the number of objects covered by the reference classification (random 

samples) for each class is displayed. The penultimate column contains the total number of 

samples for each land cover class assigned by the classification. The sum for each class in 

the reference classification is given next to last row of the matrix. Moreover, producer´s and 

user’s accuracy are shown in the last column or row respectively. Looking at the values in 

the confusion matrix a quality assessment of the generated land cover classification 

compared to the reference classification appears to be feasible (BAATZ ET AL. 2004). 

                                        

 
24 eCognitionTM offers the following four methods for performing accuracy assessment: ‘classification stability’, ‘best classification 

result’, ‘error matrix based on TTA mask’ as well as ‘error matrix based on samples’ (BAATZ ET AL. 2004, NAVULUR 2007). 

25 One of the specific problems of mega cities like Delhi is the lack of data for urban planning. This lack of data impedes on the other 

hand of course the accuracy assessment in these areas as well as no reference data set or thematic GIS map of the respective 

urban area with suiting or comparable land cover classes is available. 
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Table 7-1: The confusion matrix for the object-oriented image classification of the training area of test site South s3 

Not impervious Roads Vegetation Very dense Impervious Shadow Total

surface urban surface

Not impervious surface 86 11 5 0 50 10 162 53.09

Roads 11 180 1 0 2 4 198 90.91

Vegetation 24 1 296 0 0 6 327 90.52

Very dense urban 0 0 0 135 0 0 135 100.00

Impervious surface 34 6 4 0 483 22 549 87.98

Shadow 0 0 14 0 0 209 223 93.72

Unclassified 0 0 0 0 0 0 0

Total 155 198 320 135 535 251

User* [%] 55.48 90.91 92.50 100.00 90.28 83.27 OA 87.14%***

KIA 0.837****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i  in the reference classification is correctly classified

** User Accuracy: gives information about the probability that a sample or pixel classified as class i  is actually of class i

*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

**** KIA — Kappa Index of Agreement: к = 1 means perfect agreement between land cover classification and reference data
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The comprised accuracy values reveal that the urban landscape of this part of Delhi can 

be covered with an overall accuracy of around 87 percent. Thus, the overall accuracy of the 

classification is higher than the commonly recommended 85 percent target. Moreover, 

typically it is required that in addition to the minimum level of overall accuracy no single 

class shall be of a lower accuracy than 70 percent (FOODY 2002 and THOMLINSON ET AL. 1999). 

This benchmark is fulfilled by five out of the total six identified land cover classes. With a 

producer’s and user’s accuracy of 100 percent the class “very dense urban” (vdu) and thus 

informal settlements could be mapped very well within the training area. Hence, the user 

can rely on the very high probability that a sample classified as “vdu” is in fact “vdu”. The 

situation is different when the remaining classes are considered. Regarding the class 

“impervious surface” there are 549 samples covered by the impervious samples of the 

reference classification. 483 of those were classified as “impervious”, 50 samples have been 

assigned to the class “not impervious surface”, two samples to the class “roads”. This results 

in a producer’s accuracy of 87.98 percent. In contrast, 535 samples were classified in total 

as “impervious surface”, whereof 483 samples were assigned to “impervious surface” as well 

within the reference classification. The remaining 55 samples were classified as “not 

impervious” and “shadow”. The outcome of this is a user’s accuracy of 90.28 percent. This 

example is well suitable to demonstrate the differences between the appropriate accuracies. 

While the producer’s accuracy tells the interpreter “how well the classification agrees with 

the reference classification”, the user’s accuracy gives “information about the probability that 

a pixel classified as class i is actually of class i ” (BAATZ ET AL. 2004). The classes “roads”, 

“vegetation” as well as “shadow” were classified with comparably high user’s accuracies 

between 83.27 and 92.50 and producer’s accuracies between 90.52 and 93.72. Solely the 

class “not impervious surface”, showing a user’s and producer’s accuracy of 55.48 and 53.09 

percent respectively does not fulfill the common requirements for single class accuracy 
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values. Here, only slightly more than 50 percent of the “not impervious” samples of the 

reference classification are found by the land cover classification. The low user value 

implicates, in turn, that the user cannot really rely on the classification; as such an object is 

in almost half of all cases confused with the other classes. Here, not correctly classified 

objects are mainly misclassified as “impervious surface”. Contrawise, as described above, 

most of the misclassifications of impervious areas are confused as “not impervious”. This 

phenomenon arises from a noticeable speficific criterion of the urban landscape of Delhi — 

the spectral similiarity of roads, open spaces (not impervious surfaces) as well as many 

rooftops and other impervious areas. 

In order to compensate for the different interests of users and interpreters of the 

classification result, the Kappa coefficient is added as accuracy value. The KIA for the 

statistical output in Table 7-1 results in a value of 0.837. This implies that the accuracy of 

the classification result is around 84 percent better than the accuracy that would result from 

a random assignment (JANSSEN & VAN DER WEL 1994). According to NAVULUR’s (2007) 

interpretation rules of Kappa values for thematic accuracy assessment this indicates an 

‘almost perfect’ classification result. Nevertheless, the evaluation shows that there is some 

room for improvement by the classification procedure as well as by repeating the validation 

process with declaring new or additional reference samples. 

The results of the quality assessment for test site South s3 are presented in Table 7-2. 

The accuracy values within the presented confusion matrix show that using the developed 

classification approach also a larger urban area of Delhi can be mapped in detail. The overall 

accuracy value amounts almost 86 percent, and reaches, thus, nearly the value of the 

training area. Moreover, the target level of 85 percent is exceeded and no single land cover 

class reveals lower classification accuracy than the required 70 percent. Especially the class 

“very dense urban” is, again, characterized by high classification accuracy. The KIA value for 

this test site amounts 0.825. 

The transfer of the developed classification methodology to another urban district of 

Delhi, namely South s2, reaches similar classification accuracies. The accuracy statistics for 

this test site are shown in Table 7-3. The overall accuracy calculated from the confusion 

matrix is comparable high or even higher than the values of the previously presented land 

cover classifications, which implies that the 85 percent target is exceeded. In the transfer 

classification, moreover, producer’s and user’s accuracy for all classes were equally high. 

Regarding the class “very dense urban”, being in the focus of the study, producer’s and 

user’s accuracies higher than 95 percent are estimated. Only the accuracy values for the 

class “not impervious surface” are, again, considerably lower than the other classes and the 

producer’s accuracy does not reach the required 70 percent level. Here, the problem is a 

misclassification with the class “impervious” as previously explained. The Kappa coefficient 

for the classification of test site South s2 results in a value of 0.87. 
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Table 7-2: The confusion matrix for the object-oriented image classification of test site South s3  

Not impervious Impervious Roads Vegetation Very dense Shadow Total

surface surface urban

Not impervious surface 579 102 39 57 3 43 823 70.35

Impervious surface 45 856 77 39 2 60 1079 79.33

Roads 18 2 922 44 0 41 1027 89.78

Vegetation 65 2 0 1768 0 19 1854 95.36

Very dense urban 0 0 0 10 619 1 630 98.25

Shadow 0 2 38 168 4 637 849 75.03

Unclassified 0 0 0 0 0 0

Total 707 964 1076 2086 628 801

User* [%] 81.90 88.80 85.69 84.76 98.57 79.53 OA 85.93%***

KIA 0.825****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i  in the reference classification is correctly classified

** User Accuracy: gives information about the probability that a sample or pixel classified as class i  is actually of class i

*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

**** KIA — Kappa Index of Agreement: к = 1 means perfect agreement between land cover classification and reference data
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Applying the developed classification methodology apart from very dense urban areas 

the settlement type “sparse urban” could successfully be identified within Delhi. According to 

the confusion matrix in Table 7-4 promising accuracy values could be assessed. In 

comparison to the previous classifications, producer’s and user’s accuracy show equally high 

values for all land cover classes. For example, for the class “sparse urban” a user’s accuracy 

of 87.80 percent and a producer’s accuracy of 91.27 percent could be achieved. The target 

level of 70 percent could thus be reached for this settlement type as well. Hence, it can be 

stated, that the mapping of this settlement type in Delhi can successfully be performed. 

However, some loss of quality of the assessment of the class “roads” was noted. Looking at 

this class there are 309 objects that were classified in total as “roads”, whereof 164 samples 

were also assigned to “roads” in the reference classification. The lion’s share (125 samples) 

of the remaining objects was wrongly assigned to the class “shadow”. Obviously the classes 

“roads” and “shadow” are difficult to separate from each other. This is resulting from the 

spectral similiarity of both land cover classes in this part of Delhi. This grave misclassification 

results in a considerably low user’s accuracy of only 53.07 percent.  

In contrast, for all other land cover classes accuracy values higher than the required 70 

percent target were achieved. Hence, the overall accuracy reaches 86.29 percent and the 

KIA amounts a value of 0.82. This implies that the urban landscape within this area of Delhi 

can be mapped in detail as well and the land cover map represents an ‘almost perfect’ 

classification result (NAVULUR 2007). 
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Table 7-3: The confusion matrix for the object-oriented image classification of test site South s2 including very 
dense urban areas 

Not impervious Impervious Vegetation Very dense Shadow Total

surface surface urban

Not impervious surface 521 194 98 5 3 821 63.46%

Impervious surface 106 2278 29 18 2 2433 93.63%

Vegetation 58 5 828 0 2 893 92.72%

Very dense urban 0 3 9 536 0 548 97.81%

Shadow 0 20 9 1 1022 1052 97.15%

Unclassified 0 0 0 0 0 0

Total 685 2500 973 560 1029

User* [%] 76.06 91.12 85.10 95.71 99.32 OA 90.22%***

KIA 0.87 ****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i in the reference classification is correctly classified

** User Accuracy: gives information about the probability that a sample or pixel classified as class i is actually of class i

*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

**** KIA — Kappa Index of Agreement: к = 1 means perfect agreement between land cover classification and reference data

(Source: BAATZ ET AL. 2004)
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A quantitative assessment of the training area with the simultaneous classification of 

three settlement types (cf. Figure 7-14) was not attempted due to the not yet sufficient 

quality or respectively some obvious misclassifications. Some further improvement of the 

classification methodology appears to be necessary here in order to enable a meaningful 

quantitative validation. 

Table 7-4: The confusion matrix for the object-oriented image classification of test site South s2 including sparse 
urban areas 

Not impervious Impervious Vegetation Sparse Shadow Roads Total

surface surface urban

Not impervious surface 581 113 118 2 2 7 823 70.59

Impervious surface 92 1391 11 37 3 13 1547 89.92

Vegetation 10 2 731 6 0 0 749 97.6

Sparse urban 0 9 22 324 0 0 355 91.27

Shadow 1 23 9 0 617 125 775 79.61

Roads 0 0 0 0 0 164 164 100

Unclassified 0 0 0 0 0 0 0

Total 684 1538 891 369 622 309

User* [%] 84.94 90.44 82.04 87.80 99.20 53.07 OA 86.29%***
KIA 0.82 ****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i in the reference classification is correctly classified

** User Accuracy: gives information about the probability that a sample or pixel classified as class i is actually of class i

*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

**** KIA — Kappa Index of Agreement: к = 1 means perfect agreement between land cover classification and reference data

(Source: BAATZ ET AL. 2004)
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A summary and final judgment of the classification results is presented in the following 

chapter. 
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7.2.4 Appraisal of the Classification Results and Summary 

Within this study, a classification methodology was developed and conducted to analyze the 

urban environment of the mega city Delhi. Regarding the complex and heterogeneous 

appearance of the Delhi area, a semi-automated, object-oriented classification approach, 

based on segmentation derived image objects, was implemented. The classification process 

is based on a multi-level fuzzy logic rule base which allows for the integration of a bundle of 

different object features such as spectral values, shape or texture on different levels. As the 

complete conceptual framework of this research, the classification methodology was 

developed based on a smaller representative training area at first and applied to larger test 

sites within Delhi afterwards.  

The object-oriented classification of VHR satellite imagery of the QuickBird sensor 

allowed for the identification of five urban land cover classes within the municipal area of 

Delhi: impervious and not impervious areas, vegetation, streets and shadow. In the focus of 

the image analysis was yet the identification of different settlement types and amongst 

these the informal settlements in particular. The results presented within this chapter 

demonstrate, that the developed methodology is suitable to identify different settlement 

types. Based on density classes the following types could be separated: very dense, dense, 

medium dense and sparse urban. The developed method appeared to be particularly well 

suitable for the classification of settlement types with extreme physical attributes. For 

instance, areas with an extremely high building density and very small building size (very 

dense urban areas — within this study the equivalent of informal settlements) could be 

separated out of their environments with a high accuracy within the training site as well as 

they could clearly be identified within the transfer sites. High accuracy values between 

around 95 to 100 percent were achieved here.  

The classification itself is actually controlled by the selection of the class-dependent 

criteria and the corresponding thresholds. The quality of the selection of parameters and 

their thresholds finally influences as well the quality of the classification result and therefore 

bares certain insecurity, independent of the systematic. Within the present study SEaTH 

appeared to be a very usefool tool in the context of automatic feature recognition. Using 

SEaTH, one is able to evaluate statistically any number of given features for the object 

classes of interest. SEaTH calculates moreover the corresponding, optimum thresholds which 

allow the maximum separability in the chosen features. 

The features identified with the SEaTH tool produce, on the one hand, a very good 

classification result for the training area and, on the other hand, even a valuable outcome 

for the transfer sites within the urban area of Delhi. In the given case study for all land 

cover maps overall accuracies of more than 85 percent could be achieved, which 

corresponds to the specified target level of 85 percent. Also the accuracy with which the 
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individual land cover classes are mapped ranges mostly above the 70 percent threshold 

(THOMLINSON ET AL. 1999). All in all, the implemented analyzing tool SEaTH allows for an 

optimized object-oriented classification which minimizes the misclassified rate and shows 

promising results in the field of feature recognition for megacity related purposes. 

Textural features have turned out within this research to be the decisive image para-

meter for the identification of the different settlement types and the mapping of the imper-

vious surface areas, whereas mainly spectral parameters act as distinguishing features for 

land cover mapping of the remaining classes (e.g., vegetation, shadow and street). Hence, 

the approach takes advantage of both, the extremely high spatial resolution and in addition 

as well the spectral potential of the used satellite data. 

It is a general consensus, that given the premise of transferability, properties with 

attributes which are as stable as possible in terms of time and space should be considered. 

Textural features are therefore (in general) better suited to describe different settlement 

types than spectral properties — at least if the analyst wishes to classify settlement types 

with similarly observable characteristics in different areas or based on different image data. 

Spectral attributes show decisively bigger differences between different data sets, and 

especially between captures of different sensors, than spatial attributes of urban areas. 

Therefore the question remains open, to which extent the spectral criteria chosen will be 

stable, once applied to QuickBird data of other mega cities with comparable structural 

features or to image data of other satellites. The application of the textural parameters on 

other mega cities is, based on the present experiences, very promising regarding their trans-

ferability. In this context further investigations are required (cf. chapter 9). 

Despite the convincing results, there are still some limits in the application of VHR 

remote sensing data regarding the identification of informal settlements. In this research, it 

was shown that areas with very similar physical attributes, but which are not representing 

an informal settlement, like urban villages, were assigned to the “very dense urban” land 

cover class as well. Here, even a visual interpretation of the satellite data will often lead to 

misclassifications. This means that only the settlement structure itself cannot deliver a 

reliable classification result. In such cases, in-situ information will always be required to be 

able to classify such settlements correctly. For the further investigations of this study, as 

well as for the tasks of urban planners, it is though of decisive interest that all informal 

settlements are being identified (rather than identifying one settlement too much) and that 

hence the mapping of this settlement type can be regarded as complete. 

Comparable qualitatively valuable results could be achieved as well during the 

identification of “sparse urban” areas. As informal settlements these areas are characterized 

as a settlement type with an extreme physical appearance, but in contrast to informal settle-

ments they are characterized by a very low building density, mid-range building size and a 
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large fraction of vegetation. Especially because of their high fraction of vegetation the 

settlements of the upper class could be separated from their environment very exactly and 

mapped with high accuracy values (87.8 and 91.3 percent respectively). 

Consequentially a limitation of the applied methodology can be observed in the identi-

fication of settlement types characterized by missing extreme attributes and by a high level 

of physical similiarity amongst each other. This is for instance noticeable regarding the 

results of the transfer of the methodology on the remaining settlement types “dense urban” 

and “medium dense urban”. Here problems occurred mainly since the determination of 

significant features for optimal class separation and the corresponding thresholds, even with 

the SEaTH tool, turned out to be difficult. For these settlement types an additional, 

advanced approach, which combines both object-oriented and pixel-based algorithms, 

turned out to be more suitable. The classification results indicate that with a combination of 

both approaches even the identification of “intermediate” settlement types is possible. 

However, still some enhancements of this methodology seem to be necessary in order to 

improve the quality of the results, so that the same can be further processed and used for 

subsequent analysis, without manual adjustments. Nonetheless the results are already now 

representing a promising basis for the further refinement of the method developed within 

this study and the analysis of remote sensing image data in the mega-urban environment. 

Some further room for improvement can be found regarding the classification of imper-

vious and not impervious surfaces. Referring to the related quality assessment (cf. chapter 

7.2.3) various misclassifications between these two classes occured. As these land cover 

classes are spectrally very similar to each other within Delhi, for an improved future mapping 

process other spectrally independent characteristics need to be determined and included into 

the investigations. The limits of this methodology and of the QuickBird data are furthermore 

reached when single residential buildings within informal settlements shall be delineated. 

The building density within this settlement type is so high that detecting individual buildings 

becomes hardly feasible or even unfeasible. For the purpose of this study this deficiency is 

rather of minor importance though, since the main interest is on general patterns. In fact, 

the number of residential buildings within a settlement is required for the subsequent 

integrative analysis, but this information will be derived with another approach which is 

suitable to compensate this deficit (cf. chapter 8). An improvement in the detectability of 

single buildings could be achieved by either refining the classification methodology or by the 

use of other remote sensing data e.g., with higher spatial and/or spectral resolution. 

One of the major objectives during the development of the classification methodology 

(for VHR urban satellite data) was a robust spatial transferability. This means, the approach 

was meant to be transferred not only to different settlement types within Delhi. But further 

than this, the rule base was meant to be transferable quickly and easily without many 

systematic adjustments and with a high classification accuracy to other test sites within the 
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mega city of Delhi. The results within the subchapters above reveal that the developed 

methodology is fulfilling the requirement of a robust transferability. In general, a rule base is 

the more transferable, the less it needs to be manually adapted to the specific image 

characteristics. Within this study, the rule base was transferred successfully and with only 

little adaptions (mostly adjustment of the threshold values solely) firstly from the training 

area to another larger test site and then to an additional independent transfer site within the 

urban area of Delhi. In fact, the classification results of the transfer sites do not reach as 

high accuracy levels as those of the training site, but they still constantly reach classification 

accuracies higher than 85 percent. At the same time, the transfer results show that a 

widespread analysis of urban structures is possible using the applied method. Nevertheless 

there is still some need for action as until now only a part of the available data and, hence, 

only a subset of the total urban area was analyzed. The application of the method on the 

complete set of QuickBird data will be an important objective for future investigations. 

All in all, with regard to the results of this research, it can be summarized that the 

developed object-oriented classification approach represents an effective and flexible 

approach to analyze VHR QuickBird data. It was shown that even a complex task such as 

land cover analysis and the identification of different settlement types within a mega urban 

area can be handled with an appropriate accuracy. The classification results provide 

therefore an up to date information basis, to examine the potentials and capabilities of 

remote sensing of urban areas. 

It can be further stated that the classification method is able to extract informal 

settlements from a mega urban environment, as well as to differentiate between different 

settlement types. Informal settlements represent the most visible expression of urban 

poverty and are therefore very important for planning strategy. 

The outcome of these classifications hence represents a valuable, spatial data basis for 

further investigations of the heterogeneous urban area of the Indian mega city Delhi. The 

derived land cover maps form the foundation for the integrative analysis and deliver there-

fore the possibility to deduce criteria for the evaluation of the living conditions within 

different settlement types. 

The results of the combined application of the remote sensing derived land cover 

products and socio-economic data is presented in the following chapter. 
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Chapter 8  

Bridging Remote Sensing and 
Socio-economic Data 

The combined application of remotely sensed imagery and socio-economic data for mapping, 

capturing and characterizing the socio-economic structures and dynamics within the mega 

city of Delhi is the primary concern of this study. Within the following chapter the results of 

the integrative use of remote sensing derived data and socio-economic data are presented 

(cf. chapter 8.1) and the quality of the results is appraised and critically discussed (cf. 

chapter 8.2). 

8.1 Results of the Integrative Data Analysis 

In order to derive socio-economic information and thus to characterize the residents’ living 

conditions within certain settlement areas of the mega city of Delhi, first of all several 

settlement characteristics were estimated from the classified QuickBird data. According to 

the in chapter 6.2 explained approach, the settlement characteristics “area”, “impervious 

area” as well as “average building size” and “number of houses” were ascertained. The 

results of the estimation from the classified QuickBird data are presented in Table 8-1. These 

values are the precondition for the performance of the integrative analysis and therefore for 

the provision of socio-economic information. Thus, the quality of the calculated values is 

fundamental for the determination of the population and water related parameters. In order 

to be able to evaluate the quality of the approach and the results of the subsequent integra-

tive analysis, some validation was carried out. Since no adequate field data for comparative 

validation is available, a visual counting of houses based on the QuickBird data was under-
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taken by an independent analyst. This way it is possible to compare the number of counted 

houses with the number derived from the remote sensing data analysis. Table 8-1 shows 

that there are only minor deviations in the statistics. The number of houses determined by 

the remote sensing analysis was overrated for informal settlements by 10 to 19 percent. 

Table 8-1: Results of the image data analysis and validation outcomes for selected informal settlements in the mega 
city of Delhi 

RS VC RS/VC [%]

A Bhomiheen Camp (subset) 691 608 114

B Bhomiheen Camp (total) 1272 1130 113

C Nehru and Navjeewan Camp 3480 2923 119

D Banjara and Harijan Camp 468 424 110

                      RS - Analysis of Remote Sensing Data, VC - Visual Counting

(Data source: calculated using remotely sensed QuickBird data)

14749.59

(AH) [m²]
Name of colony Area (AS) [m²] Impervious Area (AI) [m²]

Average House Size

RS

10360.80

19077.48

59153.76

14374.08

26925.48

84047.04

Number of Houses (N)

8887.68

15

15

17

19

RSRS

 

 

Figure 8-1: Subset of the fused QuickBird test site South s3 (4, 3, 2) versus example for the visual counting 
process of the buildings within the informal settlement Bhomiheen Camp. Primarily the occurrence of shadow and 
different building materials indicated the differentiation of the buildings. 

In order to enhance the plausibility of the accuracy assessment Figure 8-1 is inserted 

showing an example of the visual counting process of the settlement buildings. Primarily the 

occurrence of shadow and different construction materials of adjacent buildings indicates the 

differentiation of the buildings. On closer examination of Figure 8-1 it becomes evident that 

even a reliable determination of single buildings by visual interpretation of the VHR remote 

sensing data within this settlement type is very difficult — not to mention a fully automatic 

extraction using only remote sensing analysis. The buildings are often attached to other 

buildings, were constructed using a wide variety of materials, and often constructions on the 

rooftops are covering parts of the roof of single buildings. Moreover a regular street network 

does not exist, which would evoke some regularity in the building patterns and hence make 

the extraction of single buildings a lot easier. Accordingly, the fraction of impervious area 

within the settlement and the mean building size, as reliable parameters, were utilized to 

determine the total number of houses. With this approach, realistic results of the image data 
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analysis could be provided for the subsequent integrative analysis and therefore for the 

determination of socio-economic attributes. 

Hence, based on the remote sensing derived settlement characteristics an integrative 

approach by means of ancillary socio-economic in-situ information was developed. The 

results of the integrative analysis are shown in Table 8-2 as well as in Figure 8-2 and Figure 

8-3. Table 8-2 comprises both the final results and the parameters necessary for their 

derivation. The “Questionnaire” columns (Q) are representing data, where the family size 

and the water consumption per capita for the different study sites were directly taken from 

the questionnaires. By means of remote sensing derived settlement parameters, the socio-

economic main parameters of interest, “population density” and “total water consumption” 

could subsequently be calculated. Whereas the columns “Assumption” (As) are reflecting the 

data which were derived from the representative training area (A) and transferred to the 

remaining test sites (B, C and D). The remote sensing derived settlement parameters were 

applied the same way in order to calculate the socio-economic parameters. 

Table 8-2: Results of the integrative data analysis for selected informal settlements in the mega city of Delhi 

As Q As Q As Q As Q As Q As/Q [%]

A Bhomiheen Camp (subset) 5.43 5.43 3752.13 3752.13 261034.45 261034.45 25 25 93803.25 93803.25 100

B Bhomiheen Camp (total) 5.43 4.76 6906.96 6054.72 256521.33 224869.53 25 24 172674 145313.28 119

C Nehru and Navjeewan Camp 5.43 5.45 18896.40 18966.00 224831.24 225659.35 25 16 472410 303456 156

D Banjara and Harijan Camp 5.43 6.79 2541.24 3177.72 172292.25 215444.63 25 32 63531 101687.04 62

                                                      As - Assumption, Q - Questionnaire        * Arithmetic Mean

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)

Water consumption

per capita (WC) [l/d]*

Total water

consumption (WT) [l/d]
Name of colony

Population density 

(D) [Pop./km²]
Family size (F)* Total population (P)

 

The diagrams in Figure 8-2 and Figure 8-3 show a comparison between “population 

density” and “total water consumption” estimated from the questionnaires (right bars) as 

well as from the remote sensing data (left bars) for selected areas which represent potential 

informal settlements. It could be shown that it is generally possible to derive socio-economic 

data for a larger area, or a comparable second settlement respectively, by a relatively small 

amount of data collected from a representative training site.  

The evaluation of the “population density” results shows that the analysis based on the 

remote sensing data provides realistic values which correspond not only to the questionnaire 

data but also to information in the appropriate literature (BRONGER 2004). The informal 

settlements evaluated in this study are characterized by population density values between 

172.000 and 261.000 [Pop./km²]. In Mumbai, population densities higher than 300.000 

[Pop./km²] were reported for informal settlements where the living conditions are expected 

to be even worse than in Delhi (BRONGER 2004).  
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Figure 8-2: Results of the integrative data analysis — population density for four test sites (potential informal 
settlements) estimated from the questionnaires (right bars) and remote sensing data (left bars): A — Bhomiheen 
Camp (subset), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp 

(Data source: calculated using data from household survey 2005-2006). 

Comparing the values of the average population density for the informal settlements 

with the average population density of whole Delhi or even with the value of Munich for 

instance (cf. Figure 8-3), it is easily comprehensible that one is talking about settlements 

with extreme living conditions. The population density of the JJ-colony Bhoomiheen Camp 

for example is 25 times as high as the average of whole Delhi and even almost 60 times as 

high as the average value of Munich — which is denoted to be the major city with the 

highest population density in Germany. 

 

Figure 8-3: Comparison of the population density within different settlements of Delhi, entire Delhi and the city of 
Munich, Germany: B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan 

Camp, F — Tughlakabad Extension (total), H — Kalkaji DDA Flats (total), J — Greater Kailash II) (Data source: 
calculated using data from household survey 2005-2006). 

For the “total water consumption” realistic data could also successfully be derived by 

means of the integrative data analysis (cf. Figure 8-4). Only the values for the Nehru and 
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Navjeewan Camp (C) show bigger discrepancies. The reason for these discrepancies is on 

the one hand imprecise information from the interviewed people. As mentioned above, 

especially the information on the water consumption was often doubtful. An accurate 

declaration of the inhabitants regarding their water consumption, especially in areas with 

sporadic water supply, like in the informal settlements, will be difficult to obtain. As these 

settlements, or single households within the settlements respectively, are not connected to 

public water supply, the water is provided mostly by public water pumps at irregular 

intervals. An access to reliable data, based for instance on measurements of water flow 

meters, is therefore not possible (cf. chapter 2.4 and 5.2.4). This data gap, in turn, shall be 

closed with the present approach, delivering data for a whole settlement derived from a 

relatively small amount of in-situ collected information. As it can be seen in Table 8-2, 

despite the elimination of extreme outliers, the differences between assumption and the 

questionnaire data were still not negligible. On the other hand, certain deviations resulting 

from the image classification are possible. And finally the third critical aspect regarding the 

impreciseness in the data is the determination of the empirical value of 25 [l/d] of mean 

water consumption per capita derived from the training area. The question here is, whether 

the selected training area does really deliver representative data as a basis for the 

calculation of the remaining test sites. In this study the quality of the interview data is the 

decisive factor for the discrepancies.  

 

Figure 8-4: Results of the integrative data analysis — total water consumption for four test sites (potential informal 
settlements) estimated from the questionnaires (right bars) and remote sensing data (left bars): A — Bhomiheen 
Camp (subset), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp 

(Data source: calculated using data from household survey 2005-2006). 

The error bars in the remote sensing values in Figure 8-4 indicate the uncertainties 

related to the assumptions being made in the data processing (e.g., for number of houses). 

In order to display the standard deviation, a Monte Carlo simulation was performed 

(METROPOLIS & ULAM 1949). The Monte Carlo simulation is just one of many methods for ana-
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lyzing uncertainty propagation, where the objective is to determine how random variation, 

lack of knowledge, or error affects the sensitivity, performance, or reliability of the system 

that is being modeled. A Monte Carlo simulation is categorized as a sampling method 

because the inputs are randomly generated from probability distributions to simulate the 

process of sampling from the actual population (METROPOLIS & ULAM 1949). The error bars in 

the questionnaire data result from outliers (extreme values) in the interview statistics (e.g., 

for family size or water consumption per family). They are represented within the standard 

deviation as well. 

The deviations between the questionnaire data (Q) and the assumption data (As) 

regarding the water consumption can be relativized by a comparison with the values for the 

minimum water supply required as specified by the World Health Organization (WHO) (cf. 

Figure 8-5). The WHO (2003) and other organizations, such as the National Commission on 

Urbanization (1988) or the Swedish International Water Institute (FALKENMARK & WIDSTRAND 

1992), recommended that a per capita water supply of 80-100 litres per day is required to 

meet the basic domestic needs, and emphasised that this level of water supply should be 

ensured to all citizens (RAMACHANDRAIAH 2001). After the Bureau of Indian Standards 

minimum water supply of even 200 litres per capita per day [lpcd] should be provided for 

domestic consumption in cities (MODI 1998). Considering the fact that various agencies 

recommend different quantities of requirement of water for domestic use, within this study 

100 [lpcd] consumption (here an indication of availability, as consumption is determined by 

the availability in the case of general shortage) of water is taken as benchmark for 

identifying water deficient households in the mega city of Delhi. It should be noted here that 

the selected 100 litres value is no strict requirement level, but it is some kind of average 

minimum requirement for living with a minimum health and hygiene standard. 

It is obvious from Figure 8-5 that in all informal settlements observed in this study, the 

consumption — as an indication of availability — of water per capita is much lower than 

what is recommended by the above mentioned organizations. Comparing the results of the 

integrative analysis with the minimum requirement of 100 [lpcd], the deviation between the 

assumption and the questionnaire data appears to be almost negligible. In any case a major 

deficit between the really available and the actually required amount of water can be 

observed. Regarding the value of 200 [lpcd] announced by the Bureau of Indian Standards 

this deficit is even multiplied. These deductions might not be considerable as absolute but in 

any case they highlight a tendency which can be taken as a recommendation towards the 

respective supply organizations (e.g., DJB) and the urban planners. Especially for the supply 

and development of informal settlements, which are considered as mega urban risk areas 

and thus potential residential zones of vulnerable population groups, this kind of “support” 

can be of great help. 
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Figure 8-5: Comparison of de-facto water consumption vs. WHO minimum requirement, indicating the deficit in 
water supply, within different informal settlements in the mega city of Delhi: A — Bhomiheen Camp (subset), B — 

Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp (Data source: 
calculated using data from household survey 2005-2006, WHO 2003). 

Not only for informal settlements within Delhi but also for the remaining settlement 

types an integrative analysis was performed in order to derive the required socio-economic 

information and to be able to characterize the living conditions of the inhabitants. Hence, 

based on the remote sensing derived settlement characteristics (cf. Appendix, Table A.13.1 

and A.13.3) and by means of questionnaire derived socio-economic data, like for the infor-

mal settlements, the parameters “population density” and “total water consumption” were 

determined. For a test of the transferability of the methodology, the settlements or test sites 

indicated as Tughlakabad Extension and Kalkaji DDA Flats within Map A.14 (cf. Appendix) 

were selected. These are areas identified as both dense and medium dense urban within the 

classification process (cf. Figure 7-11). Tughlakabad Extension is a partly unauthorised, 

partly authorised colony of the upper lower and lower middle class characterized by mostly 

one-family houses. Sometimes small apartments are sublet in order to earn some extra 

money. In contrast, Kalkaji DDA Flats is an authorized middle class residential district 

(governmental quarter) which is characterized by multi-story dwellings with one apartment 

per storey. This means that generally one family occupies one storey. Thus, the average 

number of stories has been considered during the calculation of the “total population” of this 

settlement (cf. Table A.13.2). For Tughlakabad Extension though, one family per building 

was assumed. For a more detailed characteristic of these settlements please see chapter 4.1 

and 4.2. 

The diagrams in Figure 8-6 and Figure 8-7 again show a comparison between 

“population density” and “total water consumption” estimated from the questionnaires (right 

bars) as well as from the remote sensing data (left bars). It could be shown that it is 

generally possible to derive socio-economic data for a complete settlement from a relatively 

small amount of basis data collected in a representative training area.  
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Figure 8-6: Results of the integrative data analysis — population density for dense and medium dense urban test 
sites estimated from the questionnaires (right bars) and remote sensing data (left bars): E — Tughlakabad 
Extension (subset), F — Tughlakabad Extension (total), G — Kalkaji DDA Flats (subset), H — Kalkaji DDA Flats 

(total) (Data source: calculated using data from household survey 2005-2006). 

 

Figure 8-7: Results of the integrative data analysis — total water consumption for dense and medium dense urban 
test sites estimated from the questionnaires (right bars) and remote sensing data (left bars): E — Tughlakabad 
Extension (subset), F — Tughlakabad Extension (total), G — Kalkaji DDA Flats (subset), H — Kalkaji DDA Flats 

(total) (Data source: calculated using data from household survey 2005-2006). 

In order to compare the housing and supply conditions within the settlements of the 

lower and middle class with those of the upper class of Delhi, the settlement Greater Kailash 

II, situated in test site South s3, was additionally considered in the investigations 18F

26 (cf. 

Appendix, Map A.14, as well as Table A.13.3 and A.13.4). Greater Kailash II is an 

authorized, gated community where residents of the lower upper class are living. Since only 

a relatively small amount of questionnaire data for this settlement is available, the analysis 

                                        

 
26 The settlement Sainik Farms identified as “sparse urban” area could not be included in the analysis as no questionnaire data was 

available for this area. It was almost impossible to interview residents of the Gated Communities or other quarters of the upper 

middle class and upper class to collect a numerically equivalent amount of data in the respective settlement types (cf. chapter 5.2). 
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could not be carried out like for the other settlements by calculating the data for the 

complete settlement based on data collected for a training area. Instead the methodology 

was applied directly on the complete settlement. Figure 8-3 shows that the population 

density within this settlement is with 11,678 [Pop./km²] only slightly higher than the 

average of Delhi and hence by far lower than the population density within the other 

investigated areas. The derived value for the “total water consumption” is comparably high. 

Looking at Figure 8-8, it is obvious that the supply situation, in terms of availability, within 

this region is by far better than in any of the other examined settlements and even exceeds 

the average of Delhi. In terms of international comparison, the inhabitants of Greater Kailash 

II even consume more water than the average inhabitant of Munich and hence the 

availability here definitely exceeds the 100 [lpcd] minimum requirement for domestic use. 

This information matches the in-situ observations as well as the questionnaire data. The 

water supply here is provided by private water connections. As the supply is not guaranteed 

24 hours a day, partially additional water is purchased in order to cover the daily demands 

and to irrigate the front yards. The temporal availability of water is a parameter, however, 

that cannot be analyzed with the present approach. For this purpose, further investigations 

as well as a qualitative analysis of the living conditions of the inhabitants is necessary, as 

carried out for the different settlement types of Delhi by SELBACH (2009).  

 

Figure 8-8: Determination of water supply deficit: Comparison of the effective consumption of different settlements 
in the mega city Delhi (B-J) vs. mean water consumption of Delhi in total, other cities and the minimum 
requirement of the WHO (Data source: calculated using data from household survey 2005-2006, DOWN TO EARTH 

2005, WHO 2003). 

This comparison shows on the other side as well that in the majority of the examined 

settlements of Delhi the conditions appear to be critical, especially in the informal 

settlements and unplanned unauthorized areas (e.g., Tughlakabad Extension). In this 

context, it is surprising to find Delhi’s average water consumption to be so low, when at the 

same time the Delhi Jal Board (DJB) claims supplying, on average, 211 [lpcd]. Solely in the 
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residential areas of the upper middle and lower upper class the water availability is adequate 

and achieves the required benchmark of 100 [lpcd]. Comparable studies within Delhi point 

out that about 72 percent of the households consume less than 100 [lpcd] and almost 30 

percent even have less than 50 [lpcd] available (SHABAN 2008). 

8.2 Summary and Appraisal of the Combined Use of Remotely 

Sensed Imagery and Socio-economic Data 

Since the physical appearance in urban environments is a reflection of human activity, an 

isolated examination of social questions without considering geospatial questions does 

neither meet the requirements of social science nor the requirements of remote sensing. 

Hence, urban remote sensing has the potential to represent a valuable interdisciplinary 

platform for social and physical science (cf. chapter 3.3 and 3.4). Against this background, 

the linking of remote sensing and social science shall be pushed forward in the course of this 

research study. A methodology was developed to compensate the lack of in-situ collected 

socio-economic data by means of remote sensing imagery together with the integration of 

few questionnaire data in order to allow an indirect assessment of the living conditions of 

the inhabitants in different settlement types in the mega city of Delhi (cf. chapter 6.2). 

In the following, the results of this integrative analysis are summarized and the quality 

of the developed approach as well as the benefit of the derived information is examined.  

The remote sensing derived land cover maps (cf. chapter 7.2) form the basis for the 

integrative method and were therefore embedded in the analysis concept (cf. chater 6.2). 

The following settlement characteristics were successfully estimated from the classified 

QuickBird data and used to derive spatial information about the population distribution (cf. 

chapter 8.1): 

 Area of the settlement, 

 Impervious area, 

 Fraction of impervious area (sealing degree), 

 Average building size, and 

 Number of houses. 

In addition to the remote sensing derived data, the integrative approach makes use of 

socio-economic data derived from georeferenced questionnaires (conducted during two field 

trips in Delhi, cf. chapter 5.2). This was used to characterize a given settlement type in 

terms of specific population and water related variables. Here, the following parameters, 

necessary for the integrative assessment, could be achieved (cf. chapter 8.1): 

 



Bridging Remote Sensing and Socio-economic Data 

 

171 

 Family size, 

 Mean water consumption per capita, and 

 Mean water consumption per family. 

Finally, the remote sensing derived data were combined with the questionnaire derived 

information in order to achieve criteria for the evaluation of the living conditions within 

different settlement types. The evaluation of the results showed that it is possible to 

characterize a given settlement type – in this case, an informal settlement – in terms of 

specific population and water related parameters (cf. chapter 8.1): 

 Total population, 

 Population density, as well as 

 Total water consumption. 

In turn, these outcomes, if compared for example with the population average data of 

the whole city or with the water consumption values specified by the WHO, enable an 

identification of living quarters of vulnerable population and, therefore of potential risk areas 

within the mega city of Delhi. 

In order to compare the housing and supply conditions of the inhabitants living in the 

different settlement types appearing in Delhi, the developed integrative analysis approach 

was transferred from the informal settlements (very dense urban areas) to the remaining 

settlement types (dense and medium dense urban) within the mega city. The performance 

has demonstrated that it is also possible to characterize the living quarters of the middle and 

upper class within the mega city of Delhi, and, hence, to assess and classify the living 

conditions of the local inhabitants. 

Solely regarding the settlement type “sparse urban” the integrative analysis could not 

be applied, because for these areas the required questionnaire data was not available. In 

light of the experiences of this study, a transfer of the method to this settlement type would 

as well be promising though. In such cases — where the inhabitants of the respective 

settlement type being reluctant to answer questionnaires or household surveys being 

generally impossible due to different reasons — an analysis without questionnaire data 

would be a possible alternative. Here estimations based on general or experiental knowledge 

could be used in order to substitute the survey data. As generally no absolute quantitative 

information can be derived with this method, but rather tendencies and trends shall be 

determined, such an approach could well be taken into account. 

Since the settlement type “sparse urban” represents residential areas of the upper class 

of Delhi were the living conditions and the economic status are comparably high, no real 

need for action is required here anyway. Urban planners and other persons in charge are not 

necessarily depending on additional socio-economic information, which is the reason why 
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the missing integrative analysis of this settlement type does not negatively affect the quality 

of this study.  

Considering the methodology of indirect data assessment developed within this study 

and its results, (out of the perspective of governmental agencies, urban planners or other 

persons in charge) the following benefits in comparison to a non-integrative analysis (i.e. 

conventional approach) can be summarized: 

 One of the most obvious and direct benefits of the developed methodology is the 

transferability. The possibility to transfer the method from one settlement type to 

another as well as the transfer of the method itself from one test site within the 

megacity to another was successfully demonstrated within this research.  

 In comparson to the conventional mapping and data ascertainment procedures in mega 

urban areas, the developed integrative analysis can be applied in a time and cost saving 

way. In contrast to highly elaborate and costly total in-situ ascertainments, using this 

approach only a relatively small amount of socio-economic data in form of collected 

questionnaires is required. Hence, on the one hand much fewer man power is needed 

which leads to drastically less labor costs27. Even with the purchasing of the satellite 

data taken into account, the cost factor could considerably be reduced. On the other 

hand, a spatially comprehensive in-situ data assessment is highly time consuming and 

can even taken some years for such complex areas as a mega city. The acquisition of 

the questionnaire data required for the development of the integrative method could be 

completed within approximately two months, which is significantly quicker than any 

conventional method. Contingently it could be considered to even completely abstain 

from a partial data acquisition as carried out within this study. It is theoretically possible 

to solely refer to experience information for the deriving of the socio-economic data, 

which would in turn speed up the whole process even more.  

 Regarding a repeated application of the integrative method after a certain time, the 

time benefit of this method becomes out of above explained reasons even more 

relevant in comparison to a repetition of a total in-situ data assessment. Once the 

method is robust (in terms of its reliability), it can be applied in a randomly or regularly 

repeated way. For such a repeated application of the integrative method, some minor 

adaptations of the classification parameters and their thresholds may be necessary. The 

reason for this are rather the image specific attributes of the new remote sensing data 

than difficulties occurring during the systematic adaptation process. The process of the 

integrative analysis itself remains unchanged. A regular repeatability of the method 

finally enables even the monitoring of a certain district or of the complete urban area 

which would be impossible with in-situ data acquisition. By this means, the persons in 

charge can be significantly and scientifically supported in their strategical planning and 

resulting measures. 

                                        

 
27 Whereas this criterion cannot be considered as the decisive factor due to low wages in developing and threshold countries. 
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 An additional advantage, which is directly linked with the quick and repeatable 

application, can be seen in the timeliness, with which certain questions can be handled 

using the developed methodology. Diverse remote sensing sensors can deliver very up 

to date images of a specific area of investigation. The acquired remote sensing data can 

theoretically be delivered to the customer within only few days after the date of its 

acquisition. In addition to that, as already mentioned, only few in-situ data is required, 

which can be collected within a relatively short period of time. This leads to an all in all 

very low response time for the derivation of socio-economic data within urban areas, 

whereas a conventional data acquisition cannot at all satisfy this requirement of 

actuality. Taken to extremes this could mean, that the results of a conservative in-situ 

acquisition will not be available before they are already out-dated. This is even the more 

valid, when dealing with a complex and highly dynamic urban area as the mega city 

Delhi. Due to the repeatability of the developed method, the actuality of a respective 

analysis can even be kept up to date (cf. previous paragraph). 

 The integrative aproach using remotely sensed data arises furthermore the potential to 

analyze wide areas in one application. By means of remote sensing data, especially 

satellite-based imagery, large-scale analysis are possible capturing enormous areas like 

for example large parts or even the complete urban area of mega cities like Delhi. 

Within this study, the approach was developed for one training site and then transferred 

to two complete test sites successfully.  

All in all, the listed benefits are very convincing and corroborate the combined use of 

remotely sensed and socio-economic data in mega city research. It is important to once 

again mention that the developed method does not call for absolute quanitative correctness 

but rather shows up tendencies in the urban development of a mega city. 

In the following the developed approach and its results shall be discussed critically. 

Some facts are pointed out, which have to be included in the examination and appraisal of 

the developed integrative analysis method. The derivation of socio-economic information out 

of structural attributes of the urban morphology is generally transferable to all examined test 

sites within Delhi. The accuracy of the results is depending on the one hand on the quality of 

the physical parameters determined from the remote sensing data, and consequentially of 

the quality of the derived land cover maps (cf. chapter 7.2.3 and 7.2.4). On the other hand, 

the accuracy of the results is depending on the quality of the household survey and the 

quantity of questionnaire data for the respective settlements. 

Appraising the quality of the physical parameters derived from the remote sensing data, 

especially one aspect needs to be discussed critically. A fully automatic determination of the 

average building sizes per settlement type would naturally be more independent of the 

image interpreter and therefore of course be preferable to a semi-automatic method. Still 

this will only be possible, when all single buildings can be separated by the classification 

process. Here, especially for the analysis of very dense urban areas, as the informal 
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settlements in Delhi, the interpretation of remote sensing data today still reaches its limits 

(cf. chapter 7.2.4). 

Regarding the quality of the household survey, for example the missing homogeneity of 

the sampling within the test sites, i.e. the differing quantitiy of questionnaires per 

settlement, needs to be discussed critically. Moreover, the correctness and plausibility of a 

certain fraction of the answers of the respondents (of all question types and in all 

settlements) need to be doubted out of different reasons. Consequently a certain error ratio 

was taken into account. While the information regarding the family size can generally be 

regarded as reliable, the answers concerning the water consumption need to be scrutinized 

(cf. chapter 5.2.4). Here it is mainly the poor educational background of the respondents as 

well as a lack of water meters28, which resulted partially in answers that must be doubted in 

principle. Because this problem of partially unreliable data occurs in the same way for any 

complete survey or census, this fact cannot be seen as a disadvantage of the developed 

integrative method. It is important to mention here, that due to this problem the results 

regarding the water consumption related to the residents of the different settlements are to 

be interpreted as a tendency and not as universally valid, quantitative representative data. 

Uncertainties in the remote sensing derived data as well as in the questionnaire data were 

represented within the standard deviation indicated using error bars. A detailed evaluation 

and discussion of the quality of the household survey and the collected quantitative socio-

economic information is already included in a previous chapter of this work, please refer to 

chapter 5.2.4. 

Besides the amount of available water one needs to analyze some additional criteria, if 

the water supply of specific inhabitants shall be evaluated. Of high importance for the 

affected persons are the quality and the times of availability as well as the reliability of the 

supply. All these factors can of course not be considered in the developed quantitative and 

on remote sensing data based method, but rather have to be examined separately with a 

qualitative approach (cf. SELBACH 2009). 

These facts considered, it can be stated as an interim conclusion that remote sensing 

data together with an integrative approach are more suitable to derive population 

parameters of a mega city than information regarding the water consumption. 

                                        

 
28 Informal settlements generally are not attached to the municipal water supply system. Because no tab water is available, of 

course no water meters are present either. 



Chapter 9 

Final Conclusions and Outlook 

This closing chapter summarizes the results, achievements and constraints of this study. It 

aims to evaluate the validity of the working hypotheses and to answer and appraise the 

crucial questions raised in the introduction (cf. chapter 1). Moreover, it examines the 

outcome of this work in a wider context leading to an outlook on future potentials of remote 

sensing in urban areas in general and on the here developed integrative approach in 

particular. 

9.1 What has been achieved? − Conclusion 

With regard to the working hypotheses and the corresponding research questions raised in 

the introducing chapter of this thesis (cf. chapter 1.1), some major conclusions can be 

drawn: 

 The living conditions of the residents are reflected in the settlement 

structure of the mega cities. 

Already during the on-site inspection and the selection of the test sites as well as during 

the extensive in-situ data collection and the household survey it could be noticed that 

different settlement types have developed within Delhi, where in direct neighborhood most 

heterogeneous living conditions can be observed. This observation was confirmed by the 

evaluation of the questionnaire data (cf. chapter 5.2), which collected quantitative and 

qualitative information about the socio-economic background. Socio-economic variables, 

such as family size, water supply and disposal or health care — which decisively characterize 

and influence the life and the living conditions of the inhabitants — were inquired and 
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analyzed in order to investigate how the inhabitants of the different settlement types in Delhi 

in fact really are. It could clearly be determined that a direct correlation exists between the 

settlement type and the living conditions of the inhabitants. This correlation was in some 

degree expected and is not really surprizing. Thinking of informal settlements for instance, it 

is quite easy to imagine that the inhabitants here are faced with overcrowding, insufficient 

basic infrastructure and a lack of health care. The living conditions themselves and the 

corresponding attributes, which were questioned in order to evaluate the same, are not 

directly measurable from outside though. Yet, it was shown within this work that they are in 

direct correlation to physical attributes as for example building size and density or the 

fraction of vegetation. This correlation at the same time corroborates the thesis that the 

individual living conditions of the residents visibly affect the structure of their settlement 

within the mega city of Delhi. This, in turn, implies that it is in deed possible to assess by a 

visual observation of a settlement from outside how the people living inside the settlement 

are. This approach benefits from the fact that the heterogeneity of the living conditions is 

extreme, the development within direct neighborhood can be contrary, and hence the visible 

contrasts within the settlement structure are strongly pronounced which is a typical 

characteristic of mega cities especially in developing countries (cf. chapter 2.3). 

In order to further follow the developed approach, the second working hypothesis 

needed to be investigated: 

 The settlement structure of mega cities is reflected in remote sensing 

images. 

Following to the definition of the test sites and the in-situ assessment of the socio-

geographic general conditions, the potentials of remote sensing in the mega urban environ-

ment in general and for Delhi in particular were examined. A review of previous and current 

research and developments in urban remote sensing was carried out (cf. chapter 3) and in 

particular already existing remote sensing data was analyzed for one concrete example. In 

the course of this study, a classification methodology was developed and conducted to 

analyze the urban landscape of the mega city Delhi. Regarding the complex and 

heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classi-

fication approach, based on segmentation derived image objects, was implemented (cf. 

chapter 7). Like the complete conceptual framework of this research, the classification 

methodology was developed based on a smaller representative training area at first and 

applied to larger test sites within Delhi afterwards. 

Already during the visual examination of the sattelite data it became obvious that the 

on-site observed physical parameters, that were discribed above, and therewith the 

settlement structures are clearly reflected in the remote sensing data. This, in turn, showed 

great promise for the development of an adequate classification algorithm. 
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The classification of very high resolution satellite data enables a prompt and up to date 

analysis of mega urban structures. The potential of this type of data first and foremost can 

be seen in the derivation of physical parameters and their spatial distribution. The results of 

this study and their critical discussion emphasize the capabilities of QuickBird data and of the 

VHR remote sensing data in general for (mega) urban environments. QuickBird data is 

especially well suitable for the mapping of urban land use, as it particularly fulfills the small-

scale requirements demanded by the highly structured urban landscape due to its very high 

spatial resolution. The object-oriented classification methodology developed within this 

research allowed for the identification of five urban land cover classes within the municipal 

area of Delhi. For all land cover maps overall accuracies of more than 85 percent could be 

achieved (cf. chapter 7.2.3). The achieved results show with a high level of accuracy the 

correct class, their spatial distribution and number of occurrences within the overall land 

cover. Even if the derived maps from a city planer’s point of view do not deliver data, 

qualitatively sufficient for cadastral land register, they do deliver from a remote sensing 

point of view data of a high to very high level of precision representing a reliable and 

profound basis for further analysis.  

The postulated hypothesis that the settlement structures are reflected in remote sensing 

data can hence be considered as proven. 

After the validity of the above described approach had been veryfied, the different 

settlement types appearing within Delhi were moved into the focus of this study (cf. chapter 

1.1): 

 It is possible to identify settlements within a mega city by analyzing 

remote sensing data where the living conditions are particularly poor and 

where therefore is direct need for action. 

While analyzing the image data the identification of different settlement types in 

general, and amongst these of informal settlements in particular was in the focus. The 

results presented within this work demonstrate, that the developed methodology is generally 

capable to identify different settlement types. In total, four different settlement types could 

be identified. The developed method appeared to be particularly well suitable for the 

classification of settlement types with extreme physical attributes. On the basis of their 

building density, building size, and fraction of vegetation (i.e., their physical parameters), 

especially “very dense urban” areas — within this study the equivalent of informal 

settlements — and “sparse urban” areas (living quarters of the upper middle class and the 

upper class) could be separated out of their environments with a very high accuracy (cf. 

chapter 7.2.3). Whereas the identification of settlement types characterized by missing 

extreme visible attributes and by a high level of physical similarity amongst each other 

showed less accurate results. A clear and precise separation of the remaining on-site defined 
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settlements “dense urban” and “medium dense urban” was in fact hardly possible. An 

adaption of the classification method, namely the combination of both object-oriented and 

pixel-based algorithms, delivered more precise results, which nonetheless could not reach 

the level of accuracy of the other results. 

Despite the described problems, the general results of the land cover classification can 

be regarded as a successful attempt to map and differentiate between different settlement 

types within a mega urban environment by means of a (semi-) automated assignment using 

remote sensing data. This result opens a promising perspective for further enhancements of 

the methodology developed within this research and for the analysis of remote sensing data 

in the mega-urban landscape.  

Especially the identification of informal structures where the living conditions are 

particularly poor and where therefore is direct need for action are very important and useful 

for planning strategy. Informal settlements are the most visible expression of urban poverty 

in developing world cities (cf. chapter 2.4). Since dwellers here are exposed to a high degree 

of many sorts of risk, a reaction of urban management appears to be more than necessary 

especially for these areas. Often such areas are not recognized and addressed by the public 

authorities as an integral or equal part of the city, which is one of the reasons why the data 

base of informal settlements and their dwellers is mostly insufficient. However, especially the 

physical entities of informal settlements can, as a result of the social circumstances the 

inhabitants live in, be detected from remote sensing data quite clearly and can thus be 

extracted from a mega urban environment with comparably low efforts. Hence the 

developed approach has the potential to support the authorities to react and step into 

action, where their intervention is most urgently needed. 

 Remote sensing provides the opportunity to detect, observe and assess 

complex spatial patterns of urban structures. 

All in all, with regard to the results of this research, it can be summarized that the 

developed object-oriented classification approach represents an effective and flexible 

method to analyze VHR QuickBird data. But how big is the potential of remote sensing in the 

specific field of mega city research? It was shown that even a complex task such as land 

cover analysis and the identification of different settlement types within a mega urban area 

can be handled with an appropriate accuracy. The remote sensing derived land cover maps 

(cf. chapter 7.2) form the basis for the integrative method and were therefore embedded in 

the analysis concept (cf. chapter 6.2). The classification is capable to provide an up to date 

information basis, to examine the potentials and capabilities of remote sensing of urban 

areas. 
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Besides the classification itself, remote sensing can provide data for various dependent 

attributes associated with human activity – first and foremost the environmental impacts of 

numerous social, demographic or economic processes (cf. chapter 3.3). Hence, the 

surveillance and monitoring of land cover may visualize the fingermarks of urbanization. 

Moreover, the derivation of other specific physical parameters is possible, like: “area of the 

settlement”, “impervious area” and “fraction of impervious area”, “average building size”, 

and “number of houses”. These settlement characteristics were successfully assessed from 

the classified QuickBird data and used to derive information about the spatial distribution of 

the population (cf. chapter 8.1). 

The quality of the land cover classification hence is of crucial importance for this 

approach as misclassifications directly influence the subsequent calculations and 

consequently distort the aforementioned parameters. The semi-automated classification 

method provides the derivation of objective, and thus mostly from visual interpretation 

independant results. The potential of remote sensing can hence be fully utilized, which is 

advantageous in many aspects in comparison to an interpretation by the human eye. All in 

all, with the help of VHR satellite data, a more cost-effective, area-wide and up to date 

information basis was generated for the permanently dynamically changing environment of 

Delhi. 

 The settlement structure acts as an interface between remote sensing and 

social science in mega city research. 

The physical appearance of urban landscapes is a reflection of human activity. An 

isolated examination of social questions detached from geospatial questions does therefore 

neither meet the requirements of social science nor the requirements of remote sensing. 

Thus, urban remote sensing has the potential to be an important meeting point for social 

and physical scientists (cf. chapter 3.3). Today, the urban remote sensing community is still 

at the beginning of integrative work, the researchers are here still in the early stages of 

development. Even if the linking of remote sensing and social science may bear difficulties 

and still is in the early stages of its development, it has already gained in importance and 

still continues to expand its field of application. This thesis jumps here on the moving train 

and aims to push the potential of remote sening for social and physical scientists working 

together. Against this background, a joint approach linking social science and remote 

sensing was the keystone for this research study. In order to compensate the lack of in-situ 

collected socio-economic data by means of remote sensing imagery together with the 

integration of few questionnaire data a methodology was developed allowing an indirect 

assessment of the living conditions of the inhabitants in different settlement types in the 

mega city of Delhi (cf. chapter 6.2). 



Final Conclusions and Outlook 

 

180 

Between the two disciplines, the settlement structure was identified as the bridging 

element that on the one hand is visible in the remote sensing data and on the other hand is 

directly correlated to the living conditions of the inhabitants. 

 

 It is possible by means of remote sensing data (and by including socio-

economic data) to reveal information about the living conditions of urban 

dwellers. 

Based on the land cover derived settlement characteristics (physical attributes) and the 

socio-economic data derived from georeferenced questionnaires the integrative approach 

allows for an assessment of socio-economic parameters like: “total population amount”, 

“population density”, and “total water consumption”. 

It was shown, that it is possible with a relatively small amount of questionnaire data for 

a representative training area, to derive sufficiently exact socio-economic information for 

(significantly) larger areas and for all mapped settlement types in the investigation areas of 

Delhi. The methodology could moreover successfully be transferred to all examined test sites 

within Delhi, whereas the accuracy of the derived information was of course depending on 

the quality of both, the physical parameters defined from the remote sensing data, and 

consequentially of the derived land cover maps, and on the other hand on the quality of the 

questionnaires processed. 

Still even in cases where the required questionnaire data is of insufficient quality or is 

even not available due to different reasons, in light of the experiences of this research, an 

analysis without questionnaire data at all appears to be possible. Accepting a certain loss of 

accuracy, it may be an option in future to abstain from questionnaire data in order to avoid 

the often difficult and time- and labour-intensive data acqusition in-situ. However, the 

participation of social scientists will still be essential as here once again there expertise and 

their specific knowledge about the region of interest will be of decisive importance. 

All in all, the developed integrative analysis method enables the derivation of up to 

date, large-areas-covering and in their dimension correct socio-economic information for the 

highly dynamic urban area of the mega city of Delhi. The derived information, together with 

the results of the land cover mapping, form a profound and promising basis for the actual 

estimation of the living conditions of the inhabitants of the different settlements within this 

mega city. Thus, the methodology developed presents a promising alternative or a 

reasonable supplement to the elaborate and time-consuming surveys and mapping 

campaigns on site. 

This conclusion already anticipates the answer to the last hypothesis of this work: 
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 Remote sensing has the potential to be used as a “social measuring 

instrument”. 

One of the most important findings of the performed integrative analysis (cf. chapter 8) 

and of this thesis in general is that the contribution of remote sensing to urban planning and 

management goes beyond mapping the objects of the built environment alone. Interpreting 

and evaluating remotely sensed imagery rather enables scientists to provide uniquely useful 

information for social research. 

Methods that link results of remote sensing observation with ground-based social data 

have the capability to improve the understanding of the parameters of different land use 

changes and therefore of developments in the urban environment. Thus, the using of 

remotely sensed data has the potential to measure social phenomena and their effects. 

Additional, up to date information about the living space and the living conditions of the 

inhabitants do not only educate the public awareness but can as well support the decision 

makers and urban planners in mega cities with a highly dynamic of urban growth to develop 

suitable strategies, effective measures or preventive actions for a healthy urban 

development. 

In this regard, the most obvious and direct beneficiaries are on the one hand the 

governmental agencies and urban planners and on the other hand, and which is possibly the 

most important aspect, the inhabitants of the affected areas, whose living conditions can be 

monitored and improved as required. Only if the urban monitoring is quickly, inexpensively 

and easily available, it will be accepted and applied by the authorities, which in turn enables 

for the poorest to get the support they need. 

9.2 What remains to be done? – Outlook 

This study introduced a number of new and relevant findings that both promote the existing 

knowledge of mega city research in general and that supplements the current state of 

research in the field of urban remote sensing in particular. Looking from far away on the 

Earth´s surface down to the household level, this thesis has introduced certain new insights 

regarding the satellite based investigation of the living conditions of slum dwellers and their 

neighbors living side by side in a mega city like Delhi. 

The present study presents, on the one hand, a semi-automated object-oriented 

classification approach which allows for, using VHR remote sensing data alone, the 

identification and distinction of different settlement types within the complex urban area of 

Delhi, India. Since informal settlements represent those characteristic municipal areas which 

are subject to particularly high dynamics, population density as well as marginalization, the 
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research was focused on this settlement type. In combination with socio-economic data, on 

the other hand, the mapping results were successfully embedded in an integrative analysis 

concept in order to provide indicators to identify socio-economic structures and their 

dynamics. In this context, primarily information on population and water related parameters 

were successfully derived. However, this research needs to be understood as a first step to 

the development of a new transferable methodology for the identification and analysis of 

urban structures within mega cities like Delhi. 

Consequentially based on the results of this research and the findings derived in this 

study regarding the limiting factors as well as the derived answers to the key questions of 

this thesis (cf. Chapter 9.1) a wide field of potentials regarding the further development 

opens up regarding on the one hand the developed mapping method as well as on the other 

hand the integrative, i.e. the cross-disciplinary research work. 

The results of this investigation show clearly that a large-scale analysis of urban 

structures is possible applying the developed method. One of the most interesting future 

challenges lies now in the transferability of the developed methodology. Until now only a 

part of the available satellite (as well as socio-economic) data and, hence, only a subset of 

the total urban area of Delhi was analyzed. In order to substantiate the robustness of the 

developed methodology the application on the remaining test sites (cf. chapter 5.1) (and 

therefore on other urban areas and settlement types) or even on the complete set of 

available QuickBird data would be an important objective for further investigations.29 Based 

on the knowledge, gained within this study, a transfer on other Indian mega cities, e.g. 

Mumbai or Calcutta, seems to be very promising as well. In addition, the transfer of the 

developed methodology to other mega cities in developing countries with similar physical 

structures would be very interesting and promising. In growing Asian mega cities as Dhaka 

(Bangladesh) or Jakarta (Indonesia) both the robustness of the mapping method and the 

interdisciplinary approach could with the utmost probability be tested and could most likely 

make a contribution to previous and current investigations within these mega cities (e.g., 

GRÜBNER 2011). 

Based on the developed integrative analysis method up to date, large-areas-covering 

and in their dimension correct socio-economic information for the highly dynamic urban area 

of the mega city of Delhi could be derived. Socio-economic parameters like “total population 

amount”, “population density”, and “total water consumption” could be assessed with high 

                                        

 
29 While considering the transfer of the method to wider test areas in Delhi or even to complete QuickBird scenes the processing 

time must not be disregarded. Not least due to the high computing time for the segmentation relatively small test sites had been 

selected. By upscaling these to a multiple, the computing time of the data sets will despite of the fixed parameter settings multiple 

too, even up to several days. 
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precision. In order to upgrade the amount of investigated socio-economic information and 

thus of the assessment of the living conditions of the people living in mega cities a transfer 

of the integrative approach to other socio-economic parameters would be desirable. 

Relatively easily conceivable would be a transfer to personal and water related parameters 

already imposed by the survey within the framework of this research project  like “income” 

(per capita/family), “level of education” , “number of diseases” (per capita/family per year) 

or “amount of wastewater” (per capita/family). Of course, this would be a very valuable 

contribution to the information already available. Naturally a transfer to diverse other socio-

economic parameters, not imposed within this project is imaginable as well. At best, the 

required information can be delivered by the urban decision makers, so that a time-

consuming and cost-intensive survey is not required. 

Appraising the quality of the physical parameters derived from the remote sensing data, 

especially one aspect was discussed critically (cf. chapter 8.2). A fully automatic 

determination of the average building sizes per settlement type would naturally be more 

independent of the image interpreter and therefore of course be preferable to a semi-

automatic method. However, this will only be possible, when all single buildings can be 

separated by the classification process. Here, especially for the analysis of very dense urban 

areas, as the informal settlements in Delhi, the interpretation of remote sensing data today 

still reaches its limits. Hence, a reliable detection of single residential buildings within 

informal settlements is a crucial step in order to reach a next level of automation of the 

approach. Concerning this matter it will be necessary to either improve the current 

classification approach or other remote sensing data will be required. In this context, the 

major potential of further development appears to be in alternative, new VHR remote 

sensing data. The latest and current developments show both, a geometric and spectral 

optimization in comparison to the QuickBird data used in this research. For instance, satellite 

systems like the 2007 launched Geo-Eye-1 (URL 19) implement with a spatial resolution of 

41 cm for the panchromatic band a higher precision of geometric resolution. Especially the 

2009 launched sensor WorldView-2 (URL 20) with a spatial resolution of 50 cm panchromatic 

and an extension of the spectral range in the medium and thermal infrared to now 8 bands 

(1.85m ms resolution) raises expectations of new potentials in the precision of (semi-) 

automated extraction of information. The same applies for WorldView-3 (URL 20) − the first 

multi-payload, super-spectral, high-resolution commercial satellite. Launched in 2014, 

WorldView-3 provides 31 cm panchromatic resolution, 1.24 m multispectral resolution, and 

3.7 m short-wave infrared resolution (cf. Figure 3-1). 

Besides the optical data, as well radar data show capabilities in the analysis of urban 

areas (SOERGEL 2010). Radar remote sensing has in contrast to optical remote sensing the 

advantage to be independent of weather and daylight. Satellite missions like the German 

TerraSar-X or the Canadian Radarsat-2 deliver today a comparable geometric resolution to 
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optical systems (e.g., ESCH ET AL. 2013, TAUBENBÖCK ET AL. 2012). Still, until today radar 

sensors are not yet really capable to deliver relevant data for urban structure analyses. 

Besides the optical sensors, they might as well become more important data sources for 

urban remote sensing in the future though and hence their introduction into this field might 

become an additional potential of improvement within nearer future. 

The diversity of available data and the steadily ongoing technical progress are 

generating more and more options and potentials how to further develop the approach 

presented within this thesis. Another interesting field of investigation to be mentioned here 

are time series. Using satellite data with proceeding acquisition date, change detection 

analysis is possible. Such analysis can for example derive information about the permanent 

change and development of certain districts of interest of the mega city of Delhi. Especially 

for this thesis time series of spatial information about informal settlements would be of 

interest, for instance to which extent the settlements have grown, become smaller or even 

disappeared. 

As mentioned before, the classification of informal settlements was particularly well 

possible with the developed method. Informal settlements could be separated out of their 

environments with a very high accuracy within the training site as well as they could clearly 

be identified within the transfer sites. Generally the classification method delivered good 

results for settlement types with extreme physical attributes, which are not only informal 

settlements but for instance as well areas of the category “sparse urban”. In contrast a 

limitation of the applied methodology was observed in the identification of settlement types 

characterized by missing extreme attributes and by a high level of physical similarity 

amongst each other. This was for instance noticeable regarding the results of the transfer of 

the methodology on the remaining settlement types “dense urban” and “medium dense 

urban”. Even though the classification results delivered by an additional, advanced approach, 

which combines both object-oriented and pixel-based algorithms, turned out to be more 

suitable, still some enhancements of this methodology seem to be necessary in order to 

improve the quality of the results, so that the same can be further processed and used for 

subsequent analysis, without manual adjustments. Hence, the direct transfer of the 

developed methodology on the remaining “intermediate” settlement types figured out to be 

less successful. An aim of further investigations should therefore be the simplification of the 

determination and structure of the classification parameters in order to easily and quickly 

enable the application to other settlement types as well as to other test sites or other mega 

cities (with comparable structures) respectively or even to other satellite data. In the first 

instance the method of combined object- and pixel based approach should be refined. This 

approach is still in its early stage of development but delivers very promising results. During 

such refinement especially the exploitation of the spectral capabilities should be optimized, 

which in turn describes a link to the already mentioned new VHR sensors with optimized 
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spectral and geometric attributes. A transfer of the method to these data logically seems to 

be promising.  

However neither the good transferability (robustness), nor further enhancements of the 

method nor the diversity and quality of new generation remote sensing data will be of great 

benefit, if the access to the required data for the analysis of interest is not given. Of great 

importance for applied research scientists in this field is an as easy as possible and 

continuous access to already available and up to date satellite data. A rethinking in the data 

policy would be eligible in order to relieve the access to up to date data and to reduce the 

cost for its acquisition. The European program Copernicus, previously known as GMES 

(Global Monitoring for Environment and Security) (URL 21) makes a big step in the right 

direction. Copernicus stands for the establishment of a European capacity for Earth 

Observation and the Copernicus space component aims to ensure comprehensive and 

sustainable supply of data from space-based Earth observation. 

While discussing the access and quality of data one should especially against the 

background of the here developed integrative approach not only focus on the remote 

sensing data. As the appraisal of the survey data in this integrative study showed, the 

quality and quantity of the socio-economic data are as well decisive factors for the results of 

such interdisciplinary analysis. For the approach applied in this research no free of charge 

accessible data were available, so that an elaborate field survey had to be conducted. The 

cooperation with persons in charge as urban planners or managers plays an important role 

and has great potential for comparable studies, as they are often the only source of up to 

date and reliable data which can be used as supplementary data or in terms of validation of 

the analysis results. Due to the fact that the results of such analysis are primarily useful for 

their planning, the cooperation with the urban planners and managers is generally eligible. 

Good results again convince the decision makers of the value of the applied method, which 

will in turn lead to a mutual acceptance and willing cooperation. 

The developed method delivers the basis for the monitoring of the mega city of Delhi or 

certain areas within the city respectively by remote sensing. The opportunity to capture the 

condition of a mega city and to monitor its development in general enables the persons in 

charge to identify unbeneficial trends and to intervene accordingly from an urban planning 

perspective and to countersteer against a non-adequate supply of the inhabitants of 

different urban districts, primarily of those of informal settlements. 

Should the responsible managers succeed in reducing the proportion of slum inhabitants 

or non-adequately supplied dwellers, by giving them the possibility to live self-reliantly and 

to earn their income themselves instead of creating cost for the municipal authorities, the 

city itself and therewith the whole urban population of the mega city will develop positively. 
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The enormous opportunities of the global urbanization process for a sustainable 

development can only be realized, if the economic integration organized in an ecologically 

compatible and socially fair way (HEINRICHS 2010). In this spirit, the words of the anonymous 

slum inhabitant of Delhi, which was cited at the very beginning of this thesis, is not only true 

for himself as an affected person but becomes valid for the whole community and the city in 

principle. Without meaning it, he made a statement which is true for himself, his own mega 

city Delhi and possibly even any other mega city in this world: “It’s expensive to be poor”! 
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A.1: World´s Urbanization Process: Percentage of urban population and location of urban 

agglomerations 1970 - 2030. 

 

 

Source: United Nations, World Urbanization Prospects: The 2014 Revision (URL 22). 
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A.2: Electromagnetic spectrum (EM). 

 

Source: modified after URL 14. 
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A.3: Metropolitan area of Delhi, India: acquired QuickBird scenes and chosen test sites. 



Appendix 

 

217 

 

A.4: Overview of test site South s3 and detailed view of the settlement types occurring 

within this area. 
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A.5: Test site South s2 and corresponding details of the settlement types occurring within 

this area. 
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A.6: Characteristics & description of various settlement types in selected areas in Delhi, 
India. The description is based on the evaluation of the satellite data and is completed 

by field photographs. 

 

QuickBird data 

(4/3/2 composite) 

Description of 
settlement structures 
based on visual 
interpretation of remote 
sensing data 

Field photograph 
Settlement 

type 

    

 

▪ very small buildings (no 
clearly identifiable 
buildings), 

▪ very high density/sealing 
  degree (more than 90  
  percent of roof coverage),  
▪ no structure visible, 
  irregular patterns 
▪ small shadows, 
▪ no or very little vege- 
  tation fraction 

 

JJ-colony 

 

  Bhomiheen Camp  

    

 

▪ small & medium building 
  size, 
▪ high density/sealing 
  degree (more than 80  
  percent of roof coverage),  
▪ structure: irregular  
  patterns, 
▪ medium large shadows 
▪ very little vegetation  
  fraction 

 

Unauthorized 

colony 

 

  Tughlakabad Extension  

    

 

▪ mixed building sizes, 
▪ dense/high sealing 
  degree,  
▪ structure visible, regular  
  patterns, clearly identi- 
  fiable road network, 
▪ mixed shadow size, 
▪ little vegetation  
  fraction (partly planned  
  public green space) 

 

Resettlement 

colony 

 

  Trilokpuri  

    

 

▪ large building sizes, 
▪ medium building density/ 
  sealing degree,  
▪ structure visible, grouped 
  buildings, regular  
  patterns, 
▪ large shadow size, 
▪ medium vegetation  
  fraction  

Government 

quarters 

  Narmada Apartments  
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▪ large building sizes, 
▪ medium building density/  
  sealing degree,  
▪ structure visible, grouped 

  buildings, regular  
  patterns, 
▪ large shadow size, 
▪ medium vegetation 

  fraction  

Gated 

community 

 

  Vasundara Enclave  

    

 

▪ medium building sizes, 
▪ medium building density/  
  sealing degree,  
▪ structure visible, regular  

  patterns 
▪ medium shadow size, 
▪ medium vegetation 
  fraction (public and  

  private green space) 
 

Gated 

community 

 

  Greater Kailash II  

    

 

▪ small buildings, 

▪ very high – high 
  density/sealing degree,  
▪ no structure visible,  
  irregular patterns, 

▪ mixed shadow size, 
▪ no or very little  
  vegetation fraction  

Urban village 

 

  Mehrauli  

    

 

▪ medium building sizes, 
▪ low building density/  
  sealing degree,  

▪ structure visible, separate 
   buildings, 
▪ medium shadow size, 

▪ very high vegetation  

  fraction  

Unauthorized 

farm houses 

 

      Sainik Farms  

 

(Own draft, Photographs: S. Niebergall, October 2005) 

 
  

 

  (Own draft, Photographs: S. Smollich, October 2005) 
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A.7: Georeferenced questionnaires 

A.7.1: Georeferenced questionnaires within test site South s3.  
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A.7.2: Georeferenced questionnaires within the training area of test site South s3. 
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A.7.3: Georeferenced questionnaires within test site South s2.  
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A.8: Criteria and corresponding thresholds used in the rule-based classification 

A.8.1: Criteria and corresponding threshold values used in the rule-based classification in eCognitionTM — 

identification of very dense urban areas (informal settlements) within QuickBird test site South s3. 

Streets 9 Spectral* Mean (street layer) <=124

Ratio (street layer) <= 0.01

Relative border to brighter neighbors (street layer) >= 0.55

Very dense urban 8 Texture GLCM - Angular Second Moment (all dir.) (3) <= 0.000123

GLCM - Entropy (all dir.) (3) <= 931.984

Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >= 422.465

Spectral* Standard deviation (1) <= 981.482

Vegetation 5 Spectral* Mean (NDVI) >= 0.145

Shadow 1 Spectral* Mean difference to neighbors (abs) (NDVI) >= 0.0327

Mean (3) <= 124

*Layer values

**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.

Land cover class Type of criteria Criteria** Threshold**Level

 

A.8.2: Criteria and corresponding threshold values used in the rule-based classification in eCognitionTM — 
identification of sparse urban areas within QuickBird test site South s2. 

Streets 9 Spectral* Mean (street layer) <=100

Ratio (street layer) <= 0.01

Sparse urban 9 Spectral* Ratio to super-object (street layer) >= 0.9954

Sandard deviation (NDVI) >= 0.1373

Standard deviation to neighbor pixels (NDVI) >= 0.138

Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >= 477.422

GLCM - Correlation (all dir.) (NDVI) <= 0.9299

Vegetation 5 Spectral* Mean (NDVI) >= 0.13

Shadow 1 Spectral* Mean (4) <= 126.13

*Layer values

**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.

Land cover class Type of criteria Criteria** Threshold**Level
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A.8.3: Criteria and corresponding threshold values used in the rule-based classification in eCognitionTM — 

identification of various settlement types within the training area of QuickBird test site South s3. 

Dense urban 8 Spectral* Ratio (supervised pixel-based classification) <= 0.1079

Ratio (street layer) >=0.8

Streets 7 Spectral* Mean (street layer) <=124

Ratio (street layer) <= 0.01

Relative border to brighter neighbors (street layer) >= 0.55

Medium dense 7 Texture GLCM - Correlation >= 0.874

urban (supervised pixel-based classification)

Spectral* Mean Brightness >= 23.8768

Very dense urban 7 Texture GLCM - Angular Second Moment (all dir.) (1) <= 0.00079

GLCM - Entropy (all dir.) (1) 753.335

Vegetation 1 Spectral* Mean (NDVI) >= 0.02

Minimum pixel value >= 17

(supervised pixel-based classification)

Shadow 1 Spectral* Mean difference to neighbors (abs) (NDVI) >= 0.0327

Mean (3) <= 124

*Layer values

**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.

Threshold**Land cover class Level Type of criteria Criteria**
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A.9: Supervised pixel-based classification of the training area within test site s3.  
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A.10: Random mapping of buildings for the determination of the mean building size of 

different settlement areas (training area within test site s3). 
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A.11: Results of multi-resolution image segmentation based on the test site South s3. The 

scale parameter was changed systematically, while the residual homogeneity 
parameters and the layer weights remained constant (shape [0.5], color [0.5], 

smoothness [0.3], and compactness [0.7]). The images are numbered according to 
their segmentation level: 1 — scale 5, 2 — scale 10, …, 12 — scale 200. 
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A.12: Classification results of the object-oriented approach 

A.12.1: Result of object-oriented image classification based on the training area of the fused QuickBird 
test site South s3 (4, 3, 2) — identification of “very dense urban” areas. 
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A.12.2: Result of object-oriented image classification based on the fused QuickBird test site South s3  
(4, 3, 2) — identification of “very dense urban” areas. 
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A.12.3: Result of object-oriented image classification based on the fused QuickBird test site South s2  
 (4, 3, 2) — identification of “very dense urban” areas. 
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A.12.4: Result of object-oriented image classification based on the fused QuickBird test site South s2.  

 

 

 



Appendix 

 

233 

  

A.13: Results of image data analysis and integrative analysis 

A.13.1: Results of the image data analysis and validation outcomes for selected settlements in the mega 
city of Delhi. 

Frac t io n o f

im perv io us  area [%]

R S R S VC R S/VC  [%]

E Tughlakabad Extens io n (subset) dense urban 55.74 1551 1291 120

F Tughlakabad Extens io n (to tal) dense urban 55.6 4152 3582 116

G Kalkaji D D A  F lats  (subset) m edium  dense urban 40.52 614 569 108

H Kalkaji D D A  F lats  (to tal) m edium  dense urban 38.02 2167 1986 109

                                                                                 R S - A nalys is  o f R em o te Sens ing D ata, VC  - Visual C o unting

(Data source: calculated using remotely sensed QuickBird data)

22706.28 37

R S R S R S

233704.8 88854.48 41

43

328594.32 182700.00 44

116565.48 64975.32

56037.6

N um ber o f H o uses (N )
(A H) [m ²]

N am e o f co lo ny A rea (A S) [m ²] Im perv io us  A rea (A I) [m ²]
A verage H o use Size

Sett lem ent Type

 

A.13.2: Results of the integrative data analysis for selected settlements in the mega city of Delhi. 

A s Q A s Q A s Q A s Q A s Q A s/Q [%]

E Tughlakabad Extens io n (subset) 6.29 6.29 9504.19 9504.19 81535.20 81535.20 72 72 684301.68 684301.68 100

F Tughlakabd Extens io n (to tal) 6.29 6 26116.08 24912 79478.18 75813.85 72 71 1880357.76 1764752 107

G Kalkaji D D A  F lats  (subset) 4.5 4.5 6603.57** 6603.57** 117841.77 117841.77 64 64 422628.48 422628.48 100

H Kalkaji D D A  F lats  (to tal) 4.5 4.44 23306.09** 22995.34** 99724.48 98394.81 64 85 1491589.76 1954603.9 76

 A s  - A ssum ptio n,  Q - Ques t io nnaire,    * A rithm etic  M ean,    ** calculated with co eff ic ient 2.39 (Ø s to reys)

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)

N am e o f co lo ny Fam ily s ize (M )* To tal po pulat io n (P )
P o pulat io n dens ity Water co nsum ptio n To tal water

(D ) [P o p./km ²] per capita (WC) [ l/d]* co nsum ptio n (WT ) [ l/d]

 

A.13.3: Results of the image data analysis and validation outcomes for the upper class settlement 
Greater Kailash II within the mega city of Delhi. 

Frac t io n o f

im perv io us  area [%]

R S R S VC R S/VC  [%]

J Greater Kailash II m edium  dense urban 29.32 1159 1043 111

                                                               R S - A nalys is  o f R em o te Sens ing D ata, VC  - Visual C o unting

(Data source: calculated using remotely sensed QuickBird data)

N am e o f co lo ny Sett lem ent Type A rea (A S) [m ²] Im perv io us  A rea (A I) [m ²] N um ber o f H o uses (N )
(A H) [m ²]

R S R S R S

407530.44 119479.68 103

A verage H o use Size

 

A.13.4: Results of the integrative data analysis for the upper class settlement Greater Kailash II within 
mega city of Delhi. 

J Greater Kailash II

                                                                                                Q - Questio nnaire,    * A rithm etic  M ean

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)

Q

695398

Q

11687.38

Q

146

Q

4.11

Q

4763

Water co nsum ptio n To tal water

(D ) [P o p./km ²] per capita (WC) [ l/d]* co nsum ptio n (WT ) [ l/d]
N am e o f co lo ny Fam ily s ize (M )* To tal po pulat io n (P )

P o pulat io n dens ity 
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A.14: Chosen study sites for the integrative analysis within the mega city of Delhi. 
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A.15: Questionnaire. 
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