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Abstract

The 21° century is the century of the cities and of urbanization.

Someday in 2007, the world population reached a historical landmark: for the first time in
human history, more than half of the world's population was urban. A stagnation of this
urbanization process is not in sight, so that by 2050, already 70 percent of humankind is
projected to live in urban settlements. Over the last few decades, enormous migrations from
rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic
growth of the world’s urban population. The speed and the scale of this growth, particularly
in the so called less developed regions, are posing tremendous challenges to the countries
concerned as well as to the world community. Within mega cities the strongest trends and
the most extreme dimensions of the urbanization process can be observed. Their rapid
growth results in uncontrolled processes of fragmentation which is often associated with
pronounced poverty, social inequality, socio-spatial and political fragmentation,
environmental degradation as well as population demands that outstrip environmental
service capacity. For the majority of the mega cities a tremendous increase of informal
structures and processes has to be observed. Consequentially /nformal settlements are
growing, which represent those characteristic municipal areas being subject to particularly
high population density, dynamics as well as marginalization. They have quickly become the

most visible expression of urban poverty in developing world cities.

Due to the extreme dynamics, the high complexity and huge spatial dimension of mega
cities, urban administrations often only have an obsolete or not even existing data basis
available to be at all informed about developments, trends and dimensions of urban growth
and change. The knowledge about the living conditions of the residents is correspondingly
very limited, incomplete and not up to date. Traditional methods such as statistical and
regional analyses or fieldwork are no longer capable to capture such urban process. New

data sources and monitoring methodologies are required in order to provide an up to date
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information basis as well as planning strategies to enable sustainable developments and to

simplify planning processes in complex urban structures.

This research shall seize the described problem and aims to make a contribution to the
requirements of monitoring fast developing mega cities. Against this background a
methodology is developed to compensate the lack of socio-economic data and to deduce
meaningful information on the living conditions of the inhabitants of mega cities. Neither
social science methods alone nor the exclusive analysis of remote sensing data can solve the
problem of the poor quality and outdated data base. Conventional social science methods
cannot cope with the enormous developments and the tremendous growth as they are too
labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline
of remote sensing does not allow for direct conclusions on social parameters out of remote

sensing images.

The prime objective of this research is therefore the development of an integrative
approach — bridging remote sensing and social analysis — in order to derive useful
information about the living conditions in this specific case of the mega city Delhi and its
inhabitants. Hence, this work is established in the overlapping range of the research topics

remote sensing, urban areas and social science.

Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the
second largest city of the world, represents a prime example of a mega city. Since the
second half of the 20" century, Delhi has been transformed from a modest town with mainly
administrative and trade-related functions to a complex metropolis with a steep socio-
economic gradient. The quality and amount of administrative and socio-economic data are
poor and the knowledge about the circumstances of Delhi’s residents is correspondingly
insufficient and outdated. Delhi represents therefore a perfectly suited study area for this

research.

In order to gather information about the living conditions within the different settlement
types a methodology was developed and conducted to analyze the urban environment of the
mega city Delhi. To identify different settlement types within the urban area, regarding the
complex and heterogeneous appearance of the Delhi area, a semi-automated, object-
oriented classification approach, based on segmentation derived image objects, was
implemented. As the complete conceptual framework of this research, the classification
methodology was developed based on a smaller representative training area at first and

applied to larger test sites within Delhi afterwards.

The object-oriented classification of VHR satellite imagery of the QuickBird sensor
allowed for the identification of five different urban land cover classes within the municipal

area of Delhi. In the focus of the image analysis is yet the identification of different
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settlement types and amongst these of informal settlements in particular. The results
presented within this study demonstrate, that, based on density classes, the developed
methodology is suitable to identify different settlement types and to detect informal
settlements which are mega urban risk areas and thus potential residential zones of
vulnerable population groups. The remote sensing derived land cover maps form the
foundation for the integrative analysis concept and deliver therefore the general basis for

the derivation of social attributes out of remote sensing data.

For this purpose settlement characteristics (e.g., area of the settlement, average
building size, and number of houses) are estimated from the classified QuickBird data and
used to derive spatial information about the population distribution. In a next step, the
derived information is combined with in-situ information on socio-economic conditions (e.g.,
family size, mean water consumption per capita/family) extracted from georeferenced
questionnaires conducted during two field trips in Delhi. This combined data is used to
characterize a given settlement type in terms of specific population and water related
variables (e.g., population density, total water consumption). With this integrative
methodology a catalogue can be compiled, comprising the living conditions of Delhi’s
inhabitants living in specific settlement structures — and this in a quick, large-scaled, cost
effective, by random or regularly repeatable way with a relatively small required data
basis.The combined application of remotely sensed imagery and socio-economic data allows
for the mapping, capturing and characterizing the socio-economic structures and dynamics
within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega
city of Delhi or certain areas within the city respectively by remote sensing. The opportunity
to capture the condition of a mega city and to monitor its development in general enables
the persons in charge to identify unbeneficial trends and to intervene accordingly from an
urban planning perspective and to countersteer against a non-adequate supply of the

inhabitants of different urban districts, primarily of those of informal settlements.

This study is understood to be a first step to the development of methods which will
help to identify and understand the different forms, actors and processes of urbanization in
mega cities. It could support a more proactive and sustainable urban planning and land
management — which in turn will increase the importance of urban remote sensing
techniques. In this regard, the most obvious and direct beneficiaries are on the one hand
the governmental agencies and urban planners and on the other hand, and which is possibly
the most important goal, the inhabitants of the affected areas, whose living conditions can
be monitored and improved as required. Only if the urban monitoring is quickly,
inexpensively and easily available, it will be accepted and applied by the authorities, which in

turn enables for the poorest to get the support they need.

All in all, the listed benefits are very convincing and corroborate the combined use of

remotely sensed and socio-economic data in mega city research.



Zusammenfassung

Das 21. Jahrhundert ist das Jahrhundert der Stéddte und der Urbanisierung.

Im Laufe des Jahres 2007 hat die Weltbevilkerung eine historische Marke (berschritten:
zum ersten Mal in der Geschichte der Menschheit lebte mehr als die Halfte der
Weltbevoélkerung in Stadten. Ein Ende dieser Entwicklung ist bis dato nicht in Sicht, so dass
bis zum Jahr 2050 bereits ein urbaner Bevélkerungsanteil von 70% prognostiziert wird. Die
letzten Jahrzehnte wurden von einem dramatischen Bevdlkerungswachstum dominiert,
welches mit einer enormen Landflucht und stetig wachsenden Stadten einherging. Die
Geschwindigkeit und der Umfang des Bevolkerungswachstums, insbesondere in den
Entwicklungs- und Schwellenlandern, stellen nicht nur die betroffenen Lander, sondern auch
die Weltgemeinschaft vor immense Herausforderungen. Die dramatischsten Tendenzen und
extremsten Auspragungen werden dabei in Megastddten verzeichnet. Deren rapides
Wachstum fiihrt zu unkontrollierten Entwicklungsprozessen und Fragmentierung, was
meistens mit ausgepragter Armut, sozialen UngleichmaBigkeiten, sozial-raumlicher sowie
politischer  Zersplitterung und Umweltbelastungen einhergeht. Die resultierenden
Erfordernisse der Bevllkerung Uberfordern zudem schlicht die vorhandenen
Umgebungsbedingungen. In der Mehrheit der Megastddte lasst sich ein drastisches
Wachstum von informellen Strukturen beobachten. In Konsequenz entstehen informelle
Siedlungen (sog. Slums), welche sich durch eine besonders hohe Bevélkerungsdichte,
besonders dynamische Prozesse sowie soziale Ausgrenzung charakterisieren. Informelle
Siedlungen sind schnell zu den offensichtlichsten und dramatischsten Erscheinungsbildern

urbaner Armut geworden.

Aufgrund der hohen Dynamik, der Komplexitédt und der enormen raumlichen Ausdehnung
von Megastadten stehen den stadtischen Verwaltungen oftmals nur unzureichende oder gar
keine Daten zur Verfiigung, um Uber die Tendenz und die Dimension des urbanen
Wachstums und die Veranderung des urbanen Raums ausreichend informiert zu sein. Der

Umfang und die Qualitdt der Informationen Uber die Lebensverhdltnisse der dortigen
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Bevodlkerung sind demzufolge sehr limitiert, unvollsténdig und nicht aktuell. Traditionelle
Methoden wie statistische oder regionale Analysen und Untersuchungen vor Ort sind solchen
Dimensionen der Stadtentwicklung nicht mehr gewachsen. Neue Datenquellen und
Beobachtungsmethoden werden benétigt, um eine aktuelle Datenbasis zu erhalten. Zudem
missen neue stadtplanerische Strategien entworfen werden, um nachhaltige Entwicklungen

zu ermdglichen und Planungsprozesse in komplexen urbanen Raumen zu vereinfachen.

Diese Arbeit soll eben diese Problematik aufgreifen und einen Beitrag zur Entwicklung
adequater Beobachtungsmethoden fiir sich schnell verdandernde megaurbane Raume leisten.
Zu diesem Zweck wird eine Methodik entwickelt, die den Mangel an sozio-6konomischen
Daten kompensieren und verwertbare Informationen Uber die Lebensbedingungen der
Bewohner von Megastddten ableiten soll. Weder sozialwissenschaftliche Methoden alleine,
noch der alleinige Einsatz von Fernerkundung kann das Problem der mangelhaften und
veralteten Datenbasis l6sen. Konventionelle sozial-wissenschaftliche Methoden kénnen mit
der enormen Entwicklungsgeschwindigkeit und dem starken Wachstum nicht Stand halten,
da sie zu arbeits-, zeit- und kostenintensiv sind. Die Fernerkundung wiederum lasst in ihrer
rein physikalischen Auspragung keine direkten Riickschliisse auf sozio-6konomische Daten

ZU.

Das primare Ziel dieser Arbeit ist daher die Entwicklung eines integrativen Ansatzes, der eine
Briicke zwischen Fernerkundung und Sozialwissenschaften schlagt, um verwertbare
Informationen Uber die Lebensbedingungen der Einwohner einer Megastadt, im vorliegenden
Fall der Bewohner Delhis, ableiten zu kdnnen. Diese Dissertation bewegt sich folglich in
einem disziplinibergreifenden Forschungsfeld zwischen Fernerkundung, urbanem Raum und

Sozialwissenschaft.

Indiens rasant wachsende Hauptstadt Delhi, mittlerweile mit 25 Millionen Einwohnern die
zweitgroBte Stadt der Welt, stellt ein Paradebeispiel fiir eine Megastadt dar. Seit der zweiten
Halfte des 20. Jahrhunderts hat sich Delhi von einer bescheidenen Stadt, hauptsachlich
durch Handel und Verwaltungsfunktionen gepragt, zu einer komplexen Metropole mit einem
starken sozialen Gefdlle entwickelt. Auch hier sind die Qualitdt und die Verfligbarkeit von
sozio-Okonomischen Daten mangelhaft und folglich auch die Informationen Uber die
Lebensumstdnde der Einwohner unzureichend und veraltet. Vor diesem Hintergund stellt

Delhi ein ideales Untersuchungsgebiet fir diese Studie dar.

Mit dem Ziel Informationen Uber die Lebensbedingungen in den verschiedenen Siedlungs-
typen innerhalb Delhis abzuleiten, wurde eine Methodik zur Untersuchung des stadtischen
Raums der Metropole entwickelt und getestet. Um die Identifikation verschiedener
Siedlungstypen innerhalb des Stadtgebiets zu ermdglichen, wurde ein semi-automatischer
objekt-orientierter Klassifikationsansatz implementiert. Dem konzeptionellen Rahmen der

Gesamtarbeit treu bleibend, wurde auch die Klassifikationsmethode zundchst auf einer
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kleineren reprasentativen Trainingsflaiche entwickelt und anschlieBend auf groBere

Testgebiete innerhalb Delhis angewandt.

Der objekt-orientierte Klassifikationsansatz der hdchstaufgelésten Satellitendaten des
QuickBird-Sensors ermdglicht die Identifikation verschiedener urbaner Landbedeckungs-
klassen innerhalb des Stadtgebiets von Delhi. Im Fokus der Datenanalyse steht jedoch die
Identifikation von verschiedenen Siedlungstypen und von informellen Siedlungen im
Besonderen. Die Ergebnisse dieser Studie zeigen, dass die entwickelte Methode in der Lage
ist, basierend auf Dichteklassen, verschiedene Siedlungstypen zu identifizieren und
informelle Siedlungen auszuweisen, welche mega-urbane Risikogebiete und somit
Wohngebiete mit potenziell gefahrdeten Bewohnern darstellen. Die aus den Fernerkun-
dungsdaten abgeleiteten Landbedeckungsklassen stellen dabei die Grundlage fiir den
integrativen Analyseansatz dar und formen somit die grundlegende Basis fiir die Ableitung

sozio-6konomischer Attribute aus Fernerkundungsdaten.

Zu diesem Zweck wurden auf Basis der klassifizierten QuickBird-Daten Siedlungseigen-
schaften wie Siedlungsflache, durchschnittliche GebaudegroBe und Anzahl der Hauser
bestimmt und dazu verwendet, raumliche Informationen Uber die Bevolkerungsverteilung
abzuleiten. In einem nachsten Schritt wurden die aus den Satellitenbildern abgeleiteten
Informationen mit sozio-6konomischen In-situ Informationen (z.B. FamiliengréBe, durch-
schnittlicher Wasserverbrauch pro Einwohner/Familie) kombiniert. Diese In-situ Daten
stammen aus georeferenzierten Fragebdgen, die wahrend zweier Befragungen vor Ort in
Delhi erhoben wurden. Die kombinierten Daten ermdglichen schlieBlich die Charakterisierung
eines bestimmten Siedlungstyps hinsichtlich spezifischer bevélkerungs- und wasserrelevanter
Parameter (z.B. Bevolkerungsdichte, Gesamtwasserverbrauch). Mit diesem integrativen
Ansatz kodnnte ein Katalog zusammengestellt werden, der die Lebensbedingungen der
Bewohner Delhi’s in den jeweiligen Siedlungsstrukturen umfasst — und zwar auf schnelle,
groBraumige, kosteneffektive, zufallig oder regelmaBig wiederholbare Weise mit einer relativ
kleinen erforderlichen Datenbasis. Die kombinierte Anwendung von Fernerkundungs- und
sozio-6konomischen Daten ermdglicht somit die Kartierung, Erfassung und Charakterisierung
der sozio-6konomischen Strukturen und Dynamiken innerhalb der Megastadt Delhi. Des
Weiteren wird mittels Fernerkundung eine Basis fiir das Monitoring der Megastadt Delhi oder
ausgewahlter Gebiete innerhalb der Stadt geschaffen. Die Mdglichkeit den Zustand einer
Megastadt zu erfassen und ihre generelle Entwicklung zu Uberwachen, befahigt die
verantwortlichen Personen negative Trends friihzeitig zu erkennen und aus der Perspektive
der Stadtplanung entsprechend intervenieren als auch einer nicht-adequaten Versorgung der
Bewohner unterschiedlicher Stadtviertel, v.a. den Bewohnern der informellen Siedlungen,

entgegensteuern zu kénnen.

Diese Studie soll als ein erster Schritt zur Entwicklung einer Methode verstanden werden, die

die Identifizierung und das Versténdnis unterschiedlicher Ausprédgungen, Akteure und
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Prozesse von Urbanisierung in Megastadten ermdglicht. Die Stadtplanungsbehérden und das
verantwortliche Management kénnen dabei unterstiitzt werden, sich aktiv fiir eine nach-
haltigere Stadtentwicklung einzusetzen, was im Erfolgsfall wiederum den Stellenwert der
urbanen Fernerkundung anwachsen lassen wird. In dieser Hinsicht sind einerseits die
Behorden und Stadtplaner die NutznieBer der entwickelten Methode. Andererseits profitieren
aber auch, was mdglicherweise eigentlich das wichtigere Ziel ist, die Bewohner der
betroffenen Siedlungsgebiete selbst, deren Lebensbedingungen fortan (iberwacht und
folglich auch positiv beeinflusst werden kénnen. Nur wenn das stédtische Monitoring schnell
und kostenglinstig und darliber hinaus leicht zugdnglich ist, wird es von den zustandigen
Behorden akzeptiert und dementsprechend auch angewendet werden. Dies wiederum
ermdoglicht es den Armsten der Gesellschaft, zumindest theoretisch, die Unterstiitzung zu

bekommen die sie dringend benétigen.

Alles in allem sind die aufgefiihrten Vorteile sehr vielversprechend und untermauern das
Potenzial des interdisziplindren Einsatzes von Fernerkungsdaten und sozio-6konomischen

Daten in der Megastadtforschung.
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Chapter 1

Introduction

In contrast to the last century where the majority of people used to live in rural areas, at
present more than half of the world population lives in urban settlements. By 2014, already
3.9 billion people were living in cities. The total amount of urban residents may even reach
70 percent by 2050. In addition to that, the United Nations (UN) estimates that about 90
percent of the future population growth will take place in cities. Future prospects moreover
predict that, as in the last few decades, the majority of this growth will be registered in the
urban areas of the developing countries (KOTTER 2004, PLANETEARTH 2005, UN-HABITAT 2003a
2006 and 2014, TURKSTRA & RAITHELHUBER 2004). The enormous dimension of the urban
growth is a fundamental component of the Global/ Change and turns the urbanization into
one of the crucial future key challenges of the world population. Hence, the 21 century can

be called the century of the cities and of urbanization.

The urbanzitation process has resulted in fundamental changes to the environment and
to the social structure. This process by itself however does not cause a problem yet. In
theory, as well as in popular opinion, cities do offer positive potentials for employment,
education, services and the expectation of sufficient health care. But, in fact, the chances
and risks are distributed in an extremely unbalanced way. There is no other place, where the
contrast between rich and poor is more striking. The chances for prosperity, development
and wealth are only in reach for a minority of the urban population (HEINRICHS 2010). The
urban growth is becoming more and more problematic the less successful this rapid and
today mostly unplanned process can be managed in terms of structural planning, public

infrastructure development and limiting the social, economic and ecologic impact of the
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urbanization to reasonable dimensions (KEINER & ScHMID 2003). Hence, the explosive
dynamic and the dramatic dimension of the urbanization often overstrain sustainable
development strategies for urban areas. This situation is being exacerbated by an almost
complete lack of planning or preparation of urban growth in most parts of the world. Not
least a lack of knowledge about the spatial distribution of the (population) growth impedes
concrete measures and hence involves overflowing, unplanned and therefore uncontrolled
local urban growth (HEINRICHS & KABISCH 2006). This development is often associated with a
rapid increase in social inequality and pronounced poverty, as well as population demands,
socio-spatial and political fragmentation, and environmental degradation that outstrip
environmental service capacity (such as waste disposal and treatment as well as drinking
water and sanitation) (PLANETEARTH 2005, Kraas 2005, UN-HABITAT 2006, UN 2003a). These
severe risks of course predominantly affect the already poorest of the urban population

living in the so called informal settlements.

The everlasting growth of the mega cities is maybe the most obvious indicator for a
global urbanization process (HEINRICHS 2010). In this context, the strongest trends and the
most extreme dimensions of the urbanization process can be observed within mega cities,
with consequences on regional and global scale which can hardly be foreseen by today
(HEINRICHS & KaBISCH 2006). Mega cities are more than just large agglomerations. In rapidly
urbanizing regions they are also foci of global risk and hot spots of demographic and socio-
economic dynamics. Their rapid growth results in uncontrolled processes of fragmentation
which counteracts governance and steering. In most of the mega cities that have grown to
unprecedented size, the pace of urbanization has far exceeded the growth of necessary
infrastructure and services. As a result, for the majority of the mega cities a tremendous
increase of informal structures and processes has to be observed. Hence, an increasing
number of urban dwellers are facing insufficient basic infrastructure, substandard housing,
overcrowding and unhealthy living conditions (KRAFFT ET AL. 2003, TURKSTRA & RAITHELHUBER
2004). Recent research has shown that almost one billion people, or 32 percent of the
world’s urban population, are living in informal settlements, the majority of them in the
developing world. The locus of global poverty is moving to the cities, a process now
recognized as the “urbanization of poverty” (UN-HABITAT 2003b). Hence, the identification,
observation and analysis of such “hot spots” of urban challenges is of special importance in

planning strategy (PLANETEARTH 2005).

Urban decision makers are confronted with a challenging environment. “To be able to
conduct a policy aimed towards sustainable regional development, they require up to date
information, supplied by efficient data-extraction systems that support their decision making
process” (VAN DE VOORDE 2004). Due to the extreme dynamics, the high complexity and huge

spatial dimension of mega cities, urban administrations often only have an obsolete or not
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even existing data basis available to be at all informed about developments, trends and
dimensions of urban growth and change. Against this background, traditional methods such
as statistical and regional analyses or fieldwork are limited to capture the urban process.
New data sources and monitoring methodologies as well as planning strategies are required
in order to provide an up to date information basis and thus to enable sustainable develop-
ments and to simplify planning processes in complex urban structures (KOTTER 2004). In this
regard, remote sensing represents an area-wide und up to date alternative to conventional
data acquisition methods. Using satellite-based earth observation technique it is possible to
derive urban related information with a high spatial and temporal resolution. Especially very
high resolution (VHR) satellites (such as QuickBird, IKONOS or World View-1) can
significantly support the detection and surveillance of urban development and do implicitly
contain a rich source of useful information for urban managers and planners (VAN DE VOORDE
2004).

The relevance of the application of remotely sensed image data within urban areas with
the aim to examine socio-economic questions needs to be particularized though. There are
great differences between urban areas in more developed and less developed countries in
the potential, applicability and need of remote sensing data and the capacity for integration
of remote sensing with socio-economic data (MILLER & SMALL 2003). In the majority of cases
there are almost no or only incomplete datasets available in the less developed countries.
Particularly mega cities in less developed countries like Dhaka, Jakarta, Lagos or Delhi are
data poor environments. In agglomerations like these, hardly any or no profound knowledge
about development and growth of the city is available. Temporal resolution, spatial coverage
and quality of administrative and socio-economic data are insufficient and the knowledge
about the living conditions of the residents is correspondingly very limited, incomplete and
not up to date. In contrast to this, the data basis in the more developed countries is much
better. Mega cities like Tokyo or New York are data rich environments. In the (mega) cities
of Europe (e.g., London) or other more developed regions, the living conditions of its
residents are more or less well known and due to the comparably high living standard, a

surveillance and examination appears not really to be required.

Delhi, as India’s fast growing capital, with an estimated number of inhabitants of almost
25 million in 2014, where a decrease of the population growth is even after 60 years of a
continuous increase in population not expected in the near future, represents a prime
example for a mega city (BRONGER 2004, UN 2014). Since the second half of the 20™ century,
Delhi has been transformed from a modest town with mainly administrative and trade-
related functions to a complex metropolis with a steep socio-economic gradient (KRAFFT
2001). As described above in general, politicians and planners here are as well hardly or not

at all equipped with profound knowledge about development and growth of their city. The
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quality and amount of administrative and socio-economic data are poor and the knowledge
about the living conditions of Delhi’s residents is correspondingly insufficient and out-dated.
With Delhi’s present situation, the extreme and obviously visible contrast between different
settlements within the urban area and the corresponding highly diverging living conditions of

their residents, Delhi appears to be a well suitable test site for this research objective.

This work is established in the overlapping range of the research topics remote sensing,
urban areas and social science. Already this set-up shows a paradigm shift within the science
from isolated research tasks of single disciplines to an interdisciplinary and integrated
approach. This interdisciplinarity represents one of the central aspects of this study itself and

of the research initiative which this work is embedded in.

In the following, the specific research objectives, the corresponding research questions,

as well as the working hypotheses, which will be addressed in this study, are presented.

1.1 Research Objectives

Resuming the above explanations, it can be concluded that due to the high dynamic within
the mega cities of today’s world, their development cannot be captured and monitored
quickly and precisely enough any more with conventional methods. In order to make a
controlled planning process within these complex urban structures possible, new observation
instruments and methods are required, which are capable to deliver relevant and up to date
information. This requires the consideration of appropriate earth observation data together

with the development of new methods and procedures for its analysis and interpretation.

While the specific aim of this thesis is the development of a method to derive socio-
economic information from remotely sensed data in a mega urban area, there is of course a
greater context. With an integrative approach, embedding as well social science as the
physical discipline of remote sensing, a method shall be developed, that allows for supplying
the persons in charge with important and up to date data of the development and conditions
of mega urban areas within their responsibility. This in turn shall put the decision makers
into a position being able to step into action to help the poorest and most heavily affected of

today’s civilization changes.

In order to implement this interdisciplinary approach, first of all one very basic question
needs to be answered. How can these two disciplines — remote sensing and social science —
be combined and which is the linking element that can be used? In other words, where is
the link between the individual living conditions of the inhabitants within the mega city and

remote sensing (images) — where is the link between people and pixels?
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The field of investigation of social scientists regarding urban areas comprises basically
socio-economic variables such as health care, birthrate, water supply or disposal,
educational background etc. (cf. Figure 1-1). These variables, which decisively characterize
and influence the life and the living conditions of the inhabitants, are not directly visible from
outside. From the perspective of social science, the idea of this study is that the individual
living conditions of the inhabitants are reflected in the structure of their settlement within
the mega city. This means that attributes as for example building size and density, quality of
the road network or the fraction of vegetation are in a certain way related to the living

standard of the inhabitants.

Top down

e Health care

Living conditions . Birthrate/morta]ity rate
(Criteria) ‘ . \é\gater supply/disposal
e Educational background
4 ...
1 '
:  Building size
Settlement structure o Building density
(Spatial characteristics) ¢ Road network
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» Land cover class
o Building size/density

e Sealing degree
e Road network
e Vegetation fraction

e Building materials
o Shadow

! !

Bottom up

Figure 1-1: Conceptual framework of the research.

From the perspective of physical science, on the other hand, remote sensing can
provide data for various visible attributes associated with human activity in urban areas —
first and foremost the environmental impacts of diverse social, demographic or economical
processes. Surveillance and monitoring of land cover for example can visualize the
fingermarks of urbanization. Moreover, remote sensing images can provide a number of
further indicators which can be linked with social science studies. For example spatial
parameters such as building size, building density and materials as well as sealing degree or
vegetation fraction can be detected and monitored (cf. Figure 1.1). All these spatial

characteristics are part of the settlement structure or respectively define in their specific
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combination a certain settlement type. This specific settlement type in turn, can as a whole

be visualized by remote sensing.

Considering the described coherences, the settlement structure appears to be the
missing link between remote sensing and social science regarding urban areas. Therefore it
is postulated in this study, that /t is possible to derive information about the living conditions

of the people by analyzing remote sensing images of their urban living environment.

Based on the explanations above the reasearch presented in this dissertation aims to

examine the following working hypotheses:

4

The living conditions of the residents are reflected in the settlement structure
of mega cities.

+ The settlement structures of mega cities are reflected in remote sensing
images.

+ Remote sensing provides the opportunity to detect, observe and assess
complex spatial patterns of urban structures.

+ The settlement structure acts as an interface between remote sensing and
social science in mega city research.

+ It is possible by means of remote sensing data (and by including socio-
economic data) to reveal information about the living conditions of urban
dwellers.

+ Remote sensing has the potential to be used as "“social measuring
instrument”.

To verify the correctness of the hypotheses established above and to corroborate the
validity of the approach, the primary research questions, which have to be answered within

this study therefore, are:

+ How are the inhabitants of the mega cities?
+ How are the living conditions of the residents?

+ Do the living conditions visibly affect the settlement structures within mega
cities?

+ Is it possible to identify settlements within a mega city by analyzing remote
sensing data where the living conditions are particularly poor and where
therefore is direct need for action?
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+ Is remote sensing able to be a “social measuring instrument”?

Out of the context of the investigations additional questions arise that are examined and

discussed within this thesis as well:

+ How can remote sensing improve the current spatial and socio-economic data
basis of mega cities?

+ How big is the potential of remote sensing in the field of mega city research?
What is possible?

+ Where are the limitations of the use of remote sensing data to respond to
socio-economic questions in mega urban areas?

+ What can remote sensing do for social science and especially for urban
studies?

+ And what can social science do for urban remote sensing?

1.2 Thesis Outline

Based on the research questions and hypotheses mentioned above, the basic facts,

concepts, methods, results and evaluations are structured in this research as follows:

Chapter 2 covers the general issue of the global urbanization process. It is the aim to
give an overview over the past developments as well as the specific current processes,
phenomena, impacts and challenges of urbanization. The focus here is put on the one hand
on the structural threats, which arise out of a too dynamic and uncontrolled urbanization
process. On the other hand, this chapter is describing the direct social effects on the
inhabitants and thus on their living conditions. Mega cities are the most extreme phenomena
of the world-wide urbanization process and are therefore hot spots of demographic and

socio-economic dynamics.

An introduction into the current status of research in the field of remote sensing of
urban areas is given in chapter 3. The key attributes of the urban environment are
identified, and the capability of remote sensing technologies to measure these attributes is
specified. In this context, the wide field of application of remote sensing data in urban
environments is outlined. In the following, the technical enhancements of remote sensing
sensors and their characteristics are described together with the methodological

developments and the resulting impacts on urban remote sensing. The chapter illustrates
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moreover the possibility of integrating social science and remote sensing, which is a key
intention of the approach developed within this study. An interim conclusion is closing this

chapter and forms a basis for the objectives and investigations presented in this work.

The study area of this research, the mega city of Delhi, India, is introduced in chapter 4.
Starting with general background information on the urban development, the population
growth and the resulting implications, this chapter explains the selection of suitable test sites

within the urban area of Delhi.

A summary of all the data used in the present work is provided in chapter 5. This
includes on the one hand the remote sensing data processed and analyzed. But also the
required pre-processing of the satellite data is explained here. On the other hand this
chapter introduces the primary data of the household survey conducted in-situ in the mega
city of Delhi. The execution of the sampling is subjected to a short review and is discussed
critically. During the field campaign additional information was gathered through personal
observation techniques, mapping and ground truthing. The corresponding data base

generated is described at the end of this chapter.

Chapter 6 presents an overview of the study workflow and the conceptual framework of
the thesis (cf. Figure 6-1). It is postulated within this study, that the settlement structure
can be considered as the central link between remote sensing and social science in the
urban environment. Hence, starting with the segmentation of the image data and the object-
oriented classification of land cover, this chapter is describing the classification methodology
to identify different settlement types within the research environment in general and of
informal settlements in particular. The developed classification approach is implemented into
the Software eCognition™ (BAATZ ET AL. 2004) and is designed on the one hand to achieve a
high precision and on the other hand to allow for an easy transferability of the (semi-)
automated method to other test sites within Delhi. Within this chapter moreover, an
integrative method to analyze urban areas is developed, which is used to investigate
whether VHR remote sensing data can provide settlement characteristics in order to derive
in combination with socio-economic data information on the living conditions of the urban
residents. Hence one of the key questions of this thesis is examined, whether remote

sensing can be a social measuring tool.

In chapter 7, the results of the object-based image data analysis are presented. This
includes both, the outcome of the segmentation process as well as the deliverables of the
object-oriented classification approach. The classification results represent the information
basis for the determination of urban settlement structures within the complex urban area of

the mega city of Delhi. At the same time the results of the image data analysis form the
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basis for the derivation of physical settlement parameters presented in chapter 8. Hence, the
quality of the land cover classification is already of decisive importance for the following
investigation of the urban environment of Delhi. The section involves therefore a quality
assessment of the classification results. The chapter closes with a summary and a critical

survey of the classification results.

The integrative use of remote sensing derived information and socio-economic data is in
the focus of chapter 8. Based on the classification results of the satellite imagery (chapter
7.2) the different identified settlement types of Delhi, in combination with the questionnaire
data, are characterized and the specific living conditions are evaluated. The investigations of
this chapter aim to deliver answers to the key questions raised in the introduction and the
additional potentials of the developed integrative analysis in comparison to the conventional
methods are elaborated. For this purpose the results of the integrative analysis are being
summarized and evaluated, and are beheld in a greater context, as well as the benefits of
this method are presented. Critical aspects are identified and collected, and are as well
included in the examination and appraisal of the developed integrative analysis method. The
chapter is subdivided into the presentation of the results, a validation part as well as a
summary and appraisal of the combined use of remotely sensed imagery and socio-

economic data.

In chapter 9 a conclusion summarizes the most important results of the study. The
fundamental working hypotheses postulated in the beginning of the study are recapitulated
and their validity is discussed. The potentials of remote sensing for the developed
(integrative) approach in particular as well as for the mapping, capturing and characterizing
of the socio-economic structures and dynamics within a mega city like Delhi in general are
appraised. An outlook on the perspectives of urban remote sensing research and the linking

of remote sensing and social science to be investigated in the future is closing this thesis.



Chapter 2

Urbanization and Mega Cities: The
Challenge of the 21 Century

“The growth of cities will be the single influence on development in the 21% century.”

(Opening words of the UnFPA’s 1996 State of World Population Report)

Over the last five decades, the world experienced a dramatic growth of its urban population.
The speed and the scale of this growth, particularly in the so called /ess developed regions,
are continuing to pose tremendous challenges to the countries concerned as well as to the
world community. “Monitoring these developments and creating sustainable urban

environments remain crucial issues on the international development agenda” (UN 2004).

Especially, mega cities are subject to various

dynamics of Global Change — understood as o
Urbanization

global environmental change as well as global

socio-economic and political change (GOUDIE
1. Increase in the proportion of
2005, JOHNSTON ET AL. 2002). At the same time, T .

a population living in urban areas;
mega cities vice versa affect the Global Change
by their immense development dynamic. Thus, 2 Process by which afarge number
of people becomes permanently

the dynamics and complexity of the processes ettt it el

observed in mega cities as well as their global
economic, social, and spatial effects form one of
the greatest current challenges (KraAS &
NITSCHKE 2006, KRAAS 2007¢). The United Nations
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Environment Programme (UNEP) noted that “managing the urban environment sustainability

will become [...] one of the major challenges for the future” (UNEP 2002).

Against this background, the following chapter shall give an overview over the past
developments as well as the specific current processes, phenomena and problems of the

urbanization.

2.1 Urbanization and Global Change: Current Trends

Urbanization as a social phenomenon and the physical transformation of landscapes is
currently one of the most dramatic global changes. Its speed, scale and global connected-
ness turn the urban habitat, particularly in mega cities and large agglomerations, into both a

space of risk and a space of opportunity (PLANETEARTH 2005).

Between 2007 and 2050, the world “s total population is expected by the UN to increase
by 2.5 billion; passing from 6.7 billion to 9.2 billion (UN 2008b & UN-HABITAT 2013) (cf.
Figure 2-1). At the same time, the population living in urban areas is projected to gain 3.1
billion, passing from 3.3 billion in 2007 to 6.4 billion in 2050 (cf. Figure 2-2 and Table 2-1).
This means that the world’s urban population continues to grow faster than the total

population of the world.

Population [billion]

Figure 2-1: Global population growth: 1950 — 2050 (Data sources: UN World Population Prospects: The 2006
Revision, UN World Urbanization Prospects: The 2007 Revision and UN- HABITAT Global Report on Human
Settlements 2013).

In 1950, only 30 percent of the world s population resided in urban settlements.
Someday in 2007, the world population reached a historical landmark: for the first time in
history the urban population has equalled the rural population of the world and, from then
on, the world will be inhabitated by more urban dwellers than rural ones. By 2030 already
60 percent and by 2050 even 70 percent of humankind is projected to be urban (Figure 2-2
and Table 2-1). The United Nations (UN) estimates that about 90 percent of future
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population growth will take place in cities'! (PLANETEARTH 2005, TURKSTRA & RAITHELHUBER
2004, KOTTER 2004, UN 2004 & 2008a, UN-HABITAT 2013).
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Figure 2-2: Urban and rural populations of the world: 1950 — 2050 (Data sources: UN World Population Prospects:
The 2006 Revision, UN World Urbanization Prospects: The 2007 Revision and UN- HABITAT Global Report on Human
Settlements 2013).

Table 2-1: Total, urban and rural populations by development group, selected periods: 1950 — 2050

Population [billions] Proportion urban [%] Average annual rate of change
Development group 1950 1975 2000 2003 2014 2030 2050 2014 2050 2000 - 2030

Total population

WOrld....oveeeeecceeiis 2.52 4.07 6.07 6.30 7.24 8.13 9.55 54 66 0.97

More developed regions...... 0.81 1.05 1.19 1.20 1.26 1.24 1.30 78 85 0.13

Less developed regions...... 1.71 3.02 4.88 5.10 5.98 6.89 8.25 48 63 1.15
Urban population

0.73 1.52 2.86 3.04 3.88 4.94 6.34 1.83

0.43 0.70 0.88 0.90 0.98 1.01 1.13 0.47

Less developed regions 0.31 0.81 1.97 2.15 2.9 3.93 5.23 2.29
Rural population

World.......ooviiicienn 1.79 2.55 3.21 3.26 3.36 3.19 3.21 -0.03

More developed regions...... 0.39 0.34 0.31 0.31 0.28 0.23 0.19 -1.05

Less developed regions...... 1.40 2.21 2.90 2.95 3.09 2.96 3.02 0.06

Data source: UN - World Urbanization Prospects: The 2003 & 2014 Revision

The urbanization levels of different regions of the world are highly divergent. “The
transformative power of urbanization was felt earlier in today s more developed regions and
they have reached high levels of urbanization” (UN 2008a). In the more developed regions,
in 2007, already 74 percent of the inhabitants lived in cities, whereas in the less developed
regions only 44 percent of the inhabitants were urban (UN 2008a). Nevertheless, the high
global urbanization rate is foremost a consequence of rapid urbanization in the last decades
and especially in the world’s less developed regions (cf. Figure 2-3 and Table 2-1). Also in

the future the majority of the world s total population growth between 2000 and 2030 is

! While in 1950 only 746 million people lived in urban areas, the urban population reached one billion in 1960, two billion in 1985,
and crossed the three billion mark in 2002. It is projected to attain 4 billion in 2017 and 5 billion in 2030. (Un2004).
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expected to be absorbed by the urban areas of the less developed regions. Already by 2017,
the number of urban dwellers will equal the number of rural dwellers in the less developed
regions (cf. Figure 2-3) (TURKSTRA & RAITHELHUBER 2004, KOTTER 2004, UN 2004, 2008b &
2014, UN-HAaBITAT 2003a and 2006). “Migration from rural to urban areas and the
transformation of rural settlements into urban places are important determinants of the high
urban population growth anticipated in the less developed regions” (UN 2004). By 2050, the
proportion of urban dwellers in the more developed regions will have increased to 86
percent and to 67 percent in the less developed regions. All in all, the world population is
expected to be 70 percent urban in 2050 (UN 2008a, UN 2014).
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Figure 2-3: Urban and rural population in more and less developed regions: 1950 — 2050. Almost all of the world’s
total population growth between 2000 and 2030 is expected to be absorbed by the urban areas of the less
developed regions. By 2017, the number of urban dwellers will equal the number of rural dwellers in the less
developed regions. (Data sources: Un World Population Prospects: The 2006 Revision and Un World Urbanization
Prospects: The 2007 Revision).

Urban population growth is not only a phenomenon of the less developed regions; it is a
phenomenon concentrated in Asia and Africa in particular. By 2030, Asia and Africa will each
have more urban inhabitants than any other major area, with Asia alone accounting for
more than half of the urban population of the world. Asia and Africa are urbanizing faster
than any other region of the world and are projected to become 56 and 64 percent urban by
2050. Just three countries — namely India, China and Nigeria — together are expected to
account for 37 percent of the projected growth of the world s urban population between
2014 and 2050. Solely India is projected to add 404 million urban dwellers within this time
frame (UN 2004, 2008a, and 2014).

As mentioned above, the urban areas of the world are expected to absorb all the
population growth expected over the next decades. Since, at the same time, a considerable
amount of people living in rural areas actually will migrate into the cities, the world ’s rural

population is expected to reach its peak just in a few years. The rural population is
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anticipated to decline slightly from 3.3 billion in 2003 to 3.2 billion in 2030 (cf. Figure 2-4).
Africa and Asia are today home to nearly 90 percent of the world’s rural population (UN
2004 & 2008a).
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Figure 2-4: Urban and rural population of the world: 1950 — 2050. In 1950, urban-dwellers represented only 29
percent of the global population. The urban proportion grew to 49 percent in 2005 (3.2 billion people). Current
projections indicate that the 50 percent mark was crossed in 2007 (Data sources: Un World Population Prospects:
The 2006 Revision and UNn World Urbanization Prospects: The 2007 Revision, Un Urban Population, Development
and the Environment 2007 and UN- HABITAT Global Report on Human Settlements 2013).

There is great diversity in the characteristics of the world “s urban environments. To this
effect, today "s 3.9 billion urban dwellers (UN 2013) are distributed unevenly among urban
settlements of different size. In discussing urbanization, the focus often is on large cities,
cities whose populations are larger than those of many countries (UN 2008a). In 2007, 19
urban agglomerations were listed as mega cities with a population of at least 10 million
inhabitants. “Despite their visibility and dynamism, mega cities account for a small though
increasing proportion of the world urban population: nearly 9 percent in 2007 and nearly 10
percent in 2025” (UN 2008a). In contrast to this, at the same time, close to half of the
world s urban population live and will continue to live in relatively small settlements of less
than 500,000 inhabitants (UN 2008a). Whereas several decades ago most of the world s
largest urban agglomerations were found in the more developing regions, today’s large
cities are concentrated in the global South, and the fastest-growing agglomerations are

medium-sized cities with 500,000 to 1 million inhabitants located in Asia and Africa.

Since the investigations of this case study are concentrated on the mega city Delhi and
its inhabitants, the prevalent thesis puts its focus as well on one of the largest cities of the

world. In the following chapter the phenomenon “mega city” will be described in detail.
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2.2 Mega Cities — Definitions and Dimensions

The term “mega city” generally describes the greatest category of urban agglomerations,
whereas several definitions are pointed out in the literature. In quantitative terms, mega
cities are defined to be metropolises with a population of 10 million and more (e.g., UN
2004, MERTINS 1992), more than 8 million (e.g., FUCHS ET AL. 1994, CHEN & HELIGMAN 1994,
UN 1987) or more than 5 million inhabitants (e.g., BRONGER 1996 & 2004, FELDBAUER &
PARNREITER 1997). Moreover, some authors define a minimum population density (> 2,000
inhabitants/km2) and only include cities with a single dominant centre (BRONGER 1996).
Thus, polycentric agglomerations, such as the Rhine-Ruhr area in Germany, for example,
with 12.8 million inhabitants, are excluded whereas in other statistics this polycentric mega-
urban area is included (e.g., UN 2002, 2004). KrAAS (2007b, c¢) found that, for present
purposes, using the population threshold of 5 million inhabitants has the advantage of
including the “emerging mega cities”, especially in the global South and transitional
economies. Many of these agglomerations are growing extremely fast and will become the
mega cities of tomorrow. In conclusion any such setting of thresholds for mega cities is
necessarily subjective and thus open to debate (BRONGER 1994, KrRaAS 2007b, c). Further-
more, there is the difficulty of the reliability of up to date population figures given due to
inconsistent censuses, estimations and projections, as well as of inconsistent spatial
demarcations for administrative regions. All of these criteria are affecting the reliability and
are hampering international statistical comparability of urban agglomerations (BRONGER
1996, KrAAS 2007b). Against these considerations, some authors ask for a more qualitative
perception as well as a more comprehensive understanding of mega cities as in fact

functional mega-urban regions (e.g., KrRAAS 2007b, c).

Large urban agglomerations are not solely a phenomenon of the modern age. There
have already been very large cities, in relation to the territorial total population, in the
antiquity and in the Middle Ages (e.g., Babylon in Mesopotamia). But in the narrow sense
mega cities have only started to develop with the industrialization in the 19" century
(KROHNERT 2003). In 1801, London (with 1.1 million inhabitants) has raised up to the first
metropolis and world city of the modern age at the same time (BRONGER 2004). Around 1900
London (6.5 million, cf. Table 2-2) was still the largest city of the world. While in the 1950s
there were only six (mega) cities (Tokyo, New York, London, Shanghai, Paris and Moscow),
four of six in industrialized countries, with a population greater than 5 million (BRONGER
2004), by 1975 this number rose to already 21 and even to 42 in 2000 (UN 2004) (cf. Table
2-2). In the 20™ century the mega cities of the industrialized countries, with the exception of
Tokyo, were characterized only by minor population growth. In London, for example, the
population decreases since 1940 (KROHNERT 2003 and BRONGER 2004).
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Table 2-2: The most populated cities in the world (1900 — 2000)

1900* 1950* 1975** 2000%*
Urban Reference area  Population Urban Reference area  Population Urban Population Urban Population
Position  agglomeration [km?2] [1,000] agglomeration [km?2] [1,000] agglomeration [1,000] agglomeration [1,000]
1 London 1,579 6,510 Tokyo 13,138 13,051 Tokyo 26,615 Tokyo 34,450
2 Tokyo 13,138 5,248 New York 10,768 12,736 New York? 15,880 Mexico City 18,006
3 New York 10,768 4,936 London 1,579 8,197 Shanghai 11,443 New York? 17,846
4 Paris 2,576 4,187 Shanghai 1,598 6,824 Mexico City 10,690 Sé&o Paulo 17,099
5 Berlin 889 2,712 Paris 2,576 6,684 Osaka-Kobe 9,844 Mumbai® 16,086
6 Osaka-Kobe 2,850 2,025 Moscow 879 5,100 S&o Paulo 9,614 Calcutta 13,058
7 Chicago 4,926 1,897 Osaka-Kobe 2,850 4,982 Buenos Aires 9,143 Shanghai 12,887
8 Vienna 415 1,662 Buenos Aires 3,880 4,727 Los Angeles 8,926 Buenos Aires 12,583
9 Calcutta 897 1,488 Chicago 4,926 4,714 Paris 8,630 Delhi 12,441
10 St. Petersburg 570 1,439 Calcutta 897 4,589 Beijing 8,545 Los Angeles 11,814
11 Philadelphia 1,418 Los Angeles 12,561 4,368 Calcutta 7,888 Osaka-Kobe 11,165
12 Mumbai* 4,355 1,260 Mumbai* 4,355 3,800 Moscow 7,623 Jakarta 11,018
13 Manchester 1,287 1,255 Berlin 889 3,707 Rio de Janeiro 7,557 Rio de Janeiro 10,839
14 Birmingham 899 1,248 Philadelphia 3,548 London 7,546 Beijing 10,803
15 Moscow 879 1,120 Mexico City 4,607 3,348 Mumbai® 7,347 Cairo 10,398

'Bombay, “New York-Newark area
Data sources: *BRONGER 2004, **UN - World Urbanization Prospects: The 2003 Revision

In contrast to this, the population growth has proceeded much more dynamically in the
cities located in the so called 7hird World. Since the end of World War II mega cities have
developed almost exclusively in less developed regions (cf. Table 2-3 and Table 2-4)
(KROHNERT 2003, UN 2004). Currently, most of the world’s mega cities are located in
developing countries (UN 2004, 2014) (cf. Figure 2-5). Coy & KrAAS (2003) speak even about
more than two-thirds of the mega cities which are located in developing countries, most of
them in East and South Asia.

Percentage urban
W 80 or over
W 60 to 80
W 4010 60
2010 40
Less than 20

Urban agglomerations

Megacities of 10 million or more
Large cities of 5 to 10 million
# Medium-sized cities of 1 1o & million
Cities of 500 000 to 1 millien A -

Figure 2-5: Percentage urban and location of urban agglomerations with at least 500,000 inhabitants in 2014
(Source: UNITED NATIONS, World Urbanization Prospects: The 2014 Revision) (For a time series illustrating the
world s urbanization process between 1970 and 2030 please see A.1 in the Appendix).

In 2003, 33 (of the 46) (mega) cities with 5 million inhabitants or more were in less
developed countries, and by 2015, 45 (out of such 61) cities are expected to be from the
more less developed regions (UN 2004). In some mega cities the population figures have
increased dramatically over the last decades of the 20™ century (1975 — 2000).
Representative examples are: Mexico City (10.7 — 18.1 million), Jakarta (4.8 — 11.0 million),
Karachi (4.0 — 10.0 million), Istanbul (3.6 — 8.7 million), Mumbai (Bombay) (7.3 — 16.1
million) or the city of Delhi (4.4 — 12.4 million). In Lagos (1.9 — 8.7 million) and Dhaka (2.2 -
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10.6 million) the population amount has even quintupled within the same period (UN 2004)
(cf. Table 2-2 and Table 2-4).

Table 2-3: Urbanization in the 20" century

> 5 Mio. > 10 Mio. Total
Year IC DC z IC DC z IC DC z
1900 3 - 3 - - - 3 - 3
1920 4 - 4 - - - 4 - 4
1940 2 - 2 2 - 2 4 - 4
1950 4 2 6 2 - 2 6 1 7
1960 6 5 11 2 - 2 8 5 13
1970 6 10 16 2 - 2 8 10 18
1980 6 13 19 3 4 7 9 17 26
1990 7 16 23 4 9 13 11 25 36

IC: Industrialized Countries, DC: Developing Countries
Data source: BRONGER 1996

The highest growth rates, with over five percent annual increase in population,were
recorded in the mega cities of the developing countries during the fifties and sixties of the
last century. Although the population of these cities increases further, the rate of growth
declines slowly since that time. For the future for almost all of these agglomerations a
further decline of the growth rates is predicted (KRGHNERT 2003, UN 2004).

According to the “World Urbanization Prospects” of the UN (2004) the number of (mega)
cities with 5 million inhabitants or more is projected to increase from 46 in 2003 to 61 in
2015 worldwide (cf. Figure 2-5). Hence, approximately 600 million people will be living in
these megalopolises. Among these, the number of urban agglomerations with 10 million
inhabitants or more is projected to increase from 19 in 2007 to 41 in 2030 (UN 2004, UN
2008a).

With 35million inhabitants in 2003, Tokyo is by far the most populous urban
agglomeration in the world. The second largest agglomeration is Mexico City, followed by
New York, Sdo Paulo and Mumbai (Bombay). In 2030, Tokyo is projected to remain the
world “s largest urban agglomeration with 37 million inhabitants, followed by Delhi where the
population grew extremely fast and has reached 25 million inhabitants already in 2014 and
is projected to rise on swiftly to 36 million in 2030 (cf. Table 2-4) (UN 2004 & 2014).

In qualitative terms, mega cities are characterized by — in principle with differences
between such in more developed and developed regions — intensive processes of
expansion, suburbanization and concentration, functional primacy, infrastructural, social,
economical and ecological overload the development of polarized and fragmented societies
as well as the increasing loss of control and governance at growing informality. The next
paragraph will go into more detail of the qualitative features of mega cities as well as the

effects and impacts of the urbanization process.
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Table 2-4: Urban agglomerations with 10 million inhabitants or more in 2000, 2003, 2014 and 2030

2000 2003 2014 2030
Urban Population Urban Population Urban Population Urban Population
Position agglomeration [millions] agglomeration [millions] agglomeration [millions] agglomeration [millions]
1 Tokyo, Japan 344 Tokyo 35.0 Tokyo 37.8 Tokyo 37.2
2 Mexico City, Mexico 18.1 Mexiko City 18.7 Delhi 25.0 Delhi 36.0
3 New York, USA 17.8 New York" 18.3 Shanghai 23.0 Shanghai 30.8
4 S&o Paulo, Brazilia 17.1 S&o Paulo 17.9 Mexiko City 20.8 Mumbai 27.8
5 Mumbai, India 16.1 Mumbai 17.4 Séo Paulo 20.8 Beijing 27.7
6 Calcutta, India 13.1 Delhi 14.1 Mumbai 20.7 Dhaka 27.4
7 Shanghai, China 129 Calcutta 13.8 Osaka 20.1 Karachi 24.8
8 Buenos Aires, Argentina 12.6 Buenos Aires 13.0 Beijing 19.5 Cairo 24.5
9 Delhi, India 12.4 Shanghai 12.8 New York" 18.6 Lagos 24.2
10 Los Angeles, USA? 11.8 Jakarta 12.3 Cairo 18.4 Mexiko City 23.9
11 Osaka-Kobe, Japan 11.2 Los Angeles’ 12.0 Dhaka 17.0 Séo Paulo 23.4
12 Jakarta, Indonesia 11.0 Dhaka 11.6 Karachi 16.1 Kinshasa 20.0
13 Rio de Janeiro, Brazilia 10.8 Osaka-Kobe 11.2 Buenos Aires 15.0 Osaka 19.9
14 Beijing, China 10.8 Rio de Janeiro 11.2 Calcutta 14.8 New York" 19.9
15 Cairo, Egypt 10.4 Karachi 11.1 Istanbul 14.0 Calcutta 19.1
16 Dhaka, Bangladesh 10.2 Beijing 10.8 Chongging 12.9 Guangzhou, Guar 17.8
17 Moscow, Russian Federation 10.1 Cairo 10.8 Rio de Janeiro 12.8 Chongging 17.4
18 Karachi, Pakistan 10.0 Moscow 10.5 Manila 12.8 Buenos Aires 17.0
19 Metro Manila, Philippines 10.0 Metro Manila 10.4 Lagos 12.6 Manila 16.8
20 Lagos, Nigeria 8.7 Lagos 10.1 Los Angeles’ 12.3 Istanbul 16.7

! Refers to the New York - Newark urbanized area.
2 Refers to the Los Angeles - Long Beach - Santa Ana urbanized area.
Data source: UN - World Urbanization Prospects: The 2003 & 2014 Revision

2.3 Effects, Impacts and Challenges of Urbanization and Mega

Cities

The present worldwide trend toward urbanization is intimately connected with economic
development and leads to profound changes in social organization, land use, and patterns of
human behavior (BETTENCOURT ET AL. 2007, CRANE & KINZING 2005). Central feature of these
changes is an unprecedented demographic scale, which will lead to important, but yet poorly
understood impacts on the global environment. Consequently, a major challenge worldwide
is to understand and predict how changes resulting from urbanization will impact the inter-
actions between the global environment and the human being (UN 2004 and BETTENCOURT ET
AL. 2007).

FucHs ET AL. (1994) emphasize that, “while it is true that mega city development is
rooted in its specific country or regional context [...] mega cities have more in common with
each other than with their own hinterlands”. Nevertheless, all things considered, clear
differences in for instance infrastructure quality, social polarization, the level of economic
development and transformation or governability and political leadership have to be
recognized and should not be neglected (PLANETEARTH 2005 and KRAAS 2003, 2005 and
2007b).

In a superficial view, mega cities are mainly associated with numerous disadvantages.
Often, they are solely perceived as sources of diverse problems as well as originators,
promoters and victims of risks. But they possess likewise several characteristics which can

be beneficial for a positive development (KrRAAS 2007b). Thus, the increasing concentration
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of people in mega cities presents both opportunities and challenges. Hence, a more

balanced perception is needed in order to point out both sides of the coin.

In theory, as well as in popular opinion, mega cities are the incubators of huge growth
and innovation. They are the focal points of globalization, engines of the economy as well as
the driving force for development. Mega cities harbor a wide spectrum of human potential
and skill, creativity and cultural diversity. Moreover, they provide opportunities for education,
employment, and services as well as an expectation of better health care. Agglomerations of
this category offer positive potential for global transformation, e.g. minimization of “space
consumption”, high effectiveness of resources applied as well as efficient disaster prevention
(BETTENCOURT ET AL. 2007, KOTTER 2004, KrRAAS 2005, MOORE ET AL. 2003 and PLANETEARTH
2005).

In fact, mega cities are also foci of global risk. They are increasingly vulnerable systems
because their rapid and mostly unplanned urban growth is often associated with pronounced
poverty, social inequality, socio-spatial and political fragmentation (sometimes with extreme
forms of segregation, disparities and conflicts), environmental degradation and population
demands that outstrip environmental service capacity (HARDOY ET AL. 2001, MOORE ET AL.
2003, PLANETEARTH 2005, UN-HABITAT 2006). Mega cities do not only face risks in consequence
of external events, whether natural or man-made, they likewise contain, produce and
reinforce hazards (cf. Figure 2-6). Thus, mega cities, affected by the global environmental,
socio-economic as well as political changes to which they contribute, are both producers and
victims of risk at the same time (PLANETEARTH 2005, MITCHELL 1999a und 1999b, KrAAS 2007c,
TRICE 2006).

Environmental Hazards Man-made hazards
Earthquakes Air, water and soil pollution
Volcanic eruptions Noise
Tsunamis

Storms (e.g. tropical, hurricanes)
Floods

Landslides

Forest, bush and grassland fires
Droughts, heatwaves

Snowfall, frost, avalanches

Global sea level rise

Global Change

Figure 2-6: Environmental and man-made hazards — impacts of Global Change (Sources: Kraas 2003 and
MrTcHELL 1999b, modified).
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In order to illustrate both sides of the coin, Table 2-5 outlines the problems, risks and
disadvantages as well as the benefits, chances and advantages accompanying the (mega-)

urbanization process. This compilation does not make a claim to be complete, but rather

shall give an impression about the complexity of the possible impacts.

Table 2-5: Juxtaposition of the impacts of (mega-) urbanization

Problems, risks and disadvantages Benefits, chances and advantages

= Urban expansion, sprawl and fragmented land use pattern = Decreased space consumption (per head)
S = Pollution of air, water and soil, sewage water problems partly through high-rise construction
'g (insufficient land use planning) = Optimised land use patterns, efficient land use planning
E - Waste disposal: uncollected, illegal and toxic waste = More efficient use of ressources (water, food, energy etc.)
; = Expansion in ecologically fragile areas (riversides, coasts, = Sustainable urban agricultural and green space policy
g slopes etc.) arising serious consequences: = Comprehensive monitoring and management
€ environmental degradation, flooding or land subsidence of nature-human interactions
O . Sealing and degradation of fertile soil

= Environmental health problems
c Insufficient or nonexistent infrastructure = Improvement of infrastructure (water, energy,
e (water, energy, transport, communication) transport, communication)
& = Un- and under-employment ("oversupply of labor") = Increasing income and wealth
% = Low labor wages and exploitation of labor force = Increasing interaction of all economic sectors
é = Wide spectrum of informal (uncontrolled, = Growth of productivity
e party illegal) activities = Scientific and technological innovations, growth of creativity
“8J = Unaccounted for water and energy flows = Improved welfare systems

= Tremendous migration and commuter flows = Less vulnerability, growing resilience and robustness

= Human security for all

= Loss of social coherence = Growth of community and neighborhood coherence
. Reinforcement and spread of socio-economic = Growth of cultural diversity, interaction and exchange
o disparities and social fragmentation = Improved education and health care systems
$ = Decline of access to health system, education = Rising life expectancy
-.% and security infrastructure = Multi-disaster prepardness
© = Informal, partly illegal settlements = Growth of social justice
(,8, = Growing vulnerabiliy in marginalized population groups = Development and strengthening of independent control

= Social injustice, misuse of social power mechanisms against corruprtion, burbery etc.

= Corruption, bribery, conflicts, crime, ... = Enhancement of social laws (e.g. housing, labor)
.§ = Loss of governability and steering capabilities = Growth of width, depth and availability of information
$ = Growing informality in decision making processes, and communication; international connectivity
g self-organization of pubic functions, ... = Growth of participation in political decision making processes
T rloss of representation of general public = Development and strengthening of civil society institutions
% (e.g. migrants, minorities) = Improvement of governance processes, political coherence
& = Incoherent government laws, regulations, rules and enforcement of laws and regulations

Sources: KRAAS 2007b, KRAAS & NITSCHKE 2006, KOTTER 2004

Against this background and with regard to the global socio-economic change, the
mega cities of the world have to be differentiated in “rich” and “poor” (ScHoLz 2002).
Depending on which impacts are predominant, the mega cities can be assigned to the
respective category. “Rich” mega cities are located in developed and transition countries. As
examples have to be named for instance Bangalore, Bangkok, Tokyo, Beijing, Shanghai, Los
Angeles or New York. They are global functional control centers with high-ranking global
services as well as corporate headquarters which produce for the regional and national, but
also for the global market. Hence, they profit from the earnings of the international division
of labor and involvement in global socio-economic and political networks. These mega cities
can be put on a level with the term “global city”, which have a global cultural, political or

economic relevance. Thus, many control and command functions of the world system are
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also located in the richest mega cities (KrAAS 2007¢, KROHNERT 2003). However, “poor” mega
cities, as e.g., Dhaka, Lagos or Karachi, can rather completely be assigned to the developing
countries. Primarily they are the “collecting ponds” for rural migration, with large
percentages of the population living below the poverty line. In these cities, the production
and service levels of a wide range of informal activities persist only at regional and national
scale. Consequently, the mega cities of the developing world play no major role, despite
their enormous total populations, within the global urban system. It is not becoming
apparent either at the moment that the mega cities of the developing countries will be able
to cope better with their economic “peripheral location” and their social problems within the
next years (KrRAAS 2007b and KROHNERT 2003).

Until recently, rural settlements were the epicenter of poverty and human suffering.
Poverty, however, is today increasing more rapidly in urban than in rural areas but has still
received far less attention. On this account, the attention in the further course shall be put
on the development, effects and impacts of this process. Since the assessment of the living
conditions is in the main focus of this thesis and the same have to be judged as insufficient
particularly in informal settlements, this topic will be taken up repeatedly in the further
course of this study. The following section 2.4 will give a description of the increasing

growth or the spreading of informal settlements as well as the corresponding implications.

24 The Urbanization of Poverty

“Slum, semi-slum, and superslum...to this has come the evolution of cities.”

(quoted by Patrick Geddes in MumMFORD 1961)

According to the UN (2005) an outstanding characteristic of urban population growth in the
21% century is that it will be composed, to a large extent, of poor people. As a consequence,
the locus of global poverty is moving to the cities, a process now recognized as the
“urbanization of poverty” (UN-HABITAT 2003b).

In most of the mega cities that have grown to unprecedented size, the pace of
urbanization has far exceeded the growth of necessary infrastructure and services. As a
consequence, for the majority of the mega cities a tremendous increase of informal
structures and processes has to be observed (TURKSTRA & RAITHELHUBER 2004). Thus, an
increasing number of urban dwellers are faced with overcrowding, an insufficient basic
infrastructure and unhealthy living conditions (KRAFFT ET AL. 2003). The resulting poverty in
combination with a lack of affordable housing are the driving forces behind the formation of
informal settlements, which offer solely substandard living conditions to their inhabitants (cf.

Figure 2-7) (TURKSTRA & RAITHELHUBER 2004).
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Figure 2-7: Different types of informal housing in Delhi, India (Photographs: S. Smollich, October 2005).

Recent research has shown that in 2010 almost 830 million people, or about 24 percent
of the world’s urban population were living in informal settlements (cf. Figure 2-8), the
majority of them in the developing world (cf. Figure 2-9 and Figure 2-10). If the
development continues as it is today, the world s slum population will likely increase by 6
million annually to reach nearly 900 million by 2020. This figure could easily reach one billion
by 2030 unless urgent actions are undertaken to improve the living conditions of existing
slum dwellers and to prevent the formation of new informal settlements (UN-HABITAT 2003b
and 2012).
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Figure 2-8: World’s urban slum population between 1990 and 2020. (Data sources: IEfE Spectrum 2007, Un-
HABITAT 2003b and UN-HABITAT 2012).
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Figure 2-9: Slum dwellers as a percentage of urban population by region between 1990 and 2012 (Data source:
UN-HABITAT Global Report on Human Settlements 2003 and Un-HABITAT State of the World 's Cities 2012/2013).

Informal settlement dwellers of the new millennium are no longer a few thousand in a
few cities of a rapidly industrializing continent. They include one out of every three city
dwellers, a sixth of the world’s population (UNFPA 2007, UN-HABITAT 2003a). This figure will
increase unless persons in charge and development agencies (amongst others) scale up
their efforts to improve the living conditions of current and future urban dwellers. Until
today, urban poverty as a topic receives relatively little attention from policy, authorities and
agencies. However, the recent development shows that this issue attracts public interest and

therefore, comes more and more into the focus (TURKSTRA & RAITHELHUBER 2004).

Informal settlements represent those characteristic municipal areas which are subject to
particularly high dynamics, population density as well as marginalization. They have quickly
become the most visible expression of urban poverty in developing world cities. The quality
of dwellings in such settlements varies from the simplest shack to permanent structures,
while access to water, electricity, sanitation and other basic services and infrastructure is
usually limited. Nowadays, a variety of equivalent terms for this distinctive type of residential
area exists, e.qg. slum, squatter settlement, low-income community or shanty town. Up to
the present, there is no internationally accepted definition and all mentioned terms are used
interchangeably by agencies and authorities. The coverage of settlement types is even more
complex if the variety of equivalent words in other languages and different geographical
regions, e.g. favela (Brazil), bustee (India), mabanda (Tanzania), township (South Africa) or
Jhuggi jhompri (India), is considered. Consequently, the problem with measuring informal
settlements starts with the lack of an agreed definition. Therefore, a first step to identify
informal settlements and to quantify the population itself is to develop an operational

definition of the term.
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According to UN (officially adopted at a meeting in 2002) /informal settlements are
typically addressed as contiguous settlements where the inhabitants are characterized as
having inadequate housing and basic services. Often they are not recognized and addressed
by the public authorities as an integral or equal part of the city (UN-HABITAT 2003a). This is
one of the reasons why the data base of informal settlements and their dwellers is mostly
insufficient. Moreover, ™ [...] it is an area which combines to various extents the following
characteristics:

+ Insecure residential status,

+ Inadequate access to safe water,

+ Inadequate access to sanitation and other infrastructure,
+ Poor structural quality of housing, and

+ Overcrowding” (UN-HABITAT 2003a).

Other similar definitions are provided in many policy documents, for instance the Cities
Alliance Action Plan (CITIES ALLIANCE 1999).

Furthermore, it is important to note, that not all poor people live in slums, and not all
people who live in areas defined as slums are poor. However, to simplify matters, this study
equates the urban poor with slum dwellers and the term “informal settlement” and “slum”

will be used interchangeably and together in this context.

Currently over 90 percent of slum dwellers are in the developing world, whereas South
Asia records the largest fraction, followed by Eastern Asia, (Sub-Saharan) Africa and Latin
America (cf. Figure 2-10). Therefore, Asia dominates the global picture, having about 60
percent of the total world’s slum dwellers in 2001 (UN-HABITAT 2003a and UNFPA 2007).
According to the UN-HABITAT Report (2003b) (cf. Figure 2-11), the world’s highest percentage
of slum dwellers are in Ethiopia (an astonishing 99.4 percent of the urban population),

followed by Chad (also 99.4 percent), and Afghanistan (98.5 percent).

India (with ca. 158 millions) and China (with ca. 194 millions) together even hold 37
percent of the world’s slum inhabitants (cf. Figure 2-11). In Sub-Saharan Africa,
“urbanization has become virtually synonymous with slum growth” (UNFPA 2007). Figure 2-9
shows that in this part of the world in 2012 nearly 62 percent of the urban population lives
under slum conditions, compared to 35 percent in South-central Asia. Mumbai, with 10 to 12
million slum and pavement dwellers, is the global capital of slum dwelling, followed by
Mexico City and Dhaka (9 to 10 million each), and then Lagos, Cairo, Kinshasa-Brazzaville,
Sao Paulo, Shanghai and Delhi (6 to 8 million each) (Davis 2006).
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Figure 2-10: World distribution of slum dwellers [millions] by region in 2001 (Data source: UNn-HABITAT Global
Report on Human Settlements 2003).
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Figure 2-11: Number of slum dwellers by country and the corresponding percentage of slum dwellers of the urban
population (Data sources: UN-HABITAT Slums of the World 2003 and Davis 2006,

A key question of this research is, whether different settlements and informal
settlements in particular can be identified from remote sensing data. Since the potential of
remote sensing is restricted to the detection and analysis of “visible” characteristics of the
urban environment, the outward appearance (physical entity) is important to identify
settlement structures. In this regard an informal settlement is defined to be an area that

combines, to various extents, the following physical characteristics:

+ High building density,
+ Small building size,

+ Complex shape appearance to the outside, high heterogeneity within the settlement,

2 The data inquiry in slums is generally difficult and the published statistics hence often need to be doubted. Most assessments
actually underestimate the scale and depth of urban poverty (UNFPA 2007).


http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=outward
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=appearance
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+ Irregular patterns,

+ Substandard housing and inadequate building structures (e.g., different poor and non
permanent building materials),

+ Heterogeneity in the height of the buildings (mostly 1-2 levels),
+ Lack of green space,
+ Lack of proper structures (e.g., irregular and narrow street patterns in a bad condition),

+ Hazardous locations (geologically hazardous zones as e.g., flood areas, housing on or
close to garbage mountains, proximity to high-industrial pollution areas, housing around
unprotected high-risk zones like railroads or airports) (SLiuzas & Kurrer 2008, UN-
HABITAT 2003a).

Principally, these physical entities of informal settlements, resulting from the social
circumstances the inhabitants live in, can be detected from remote sensing data. Hence,
depending on the sensor’s spatial and spectral resolution, it may be possible to classify and
distinguish these settlement areas from other land use or settlement forms (HOFMANN
2001a).

According to the above mentioned definition of informal settlements and what is visible
in VHR satellite data, an interpretation key was developed to detect informal settlements,
which uses particularly parameters like small building size, high building density, a complex
shape as well as irregular and narrow street pattern. It is assumed that the detection of one
or several of these attributes in the image data can be an indicator for locating an informal
settlement. For details regarding the identification of informal settlements please see

chapter 6 and the following.



Chapter 3

Remote Sensing of Urban Areas:
Status of Research

It will be necessary to learn from recent experience and to develop new ideas and
approaches to address a wide range of concerns in order to move towards sustainable urba-
nization. In this context, remote sensing plays a crucial role. In general there is an increased
interest today in making scientific progress through using remotely sensed data in social
science, which makes urban remote sensing a steadily growing field of research (TURKSTRA &
RAITHELHUBER 2004, RINDFUSS & STERN 1998). Up to date and accurate urban land cover
information is needed in a variety of applications, as e.g. urban planning and management.
One of the challenges in the field of remote sensing in this context is to provide the persons
in charge with appropriate, up to date, city wide information in a very timely manner
(NIEBERGALL ET AL. 2007, UN-HABITAT 2004). New methodologies and tools, as well as
techniques and policies are required to monitor urban growth and alteration across the
mega city and to forecast areas of risk — all within shorter timeframes and larger scale than
previously accepted (Mc LAREN ET AL. 2005, HEROLD ET AL. 2003). This will support a more
proactive and sustainable urban planning and land management (UN-HABITAT 2004). As long
as one is depending on traditional surveying tools, e.g. interview statistics, especially in large
mega cities like Delhi, the provision of such data is both, a time consuming and expensive
task. This has led to the attempt to analyze remotely sensed data with the aim to extract

information on urban land cover and dynamics (DARWISH ET AL. 2003).

This chapter identifies key attributes of the urban environment and specifies the
capability of remote sensing technology to measure these attributes. Moreover, it

summarizes the wide field of application of remote sensing data in urban environment (cf.
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chapter 3.1). Chapter 3.2 focuses on the technical and methodological development and its
impacts on urban remote sensing. Main emphasis lies hereby on the one hand on the further
development of remote sensing sensors and their characteristics (cf. chapter 3.2.1), and on
the other hand on the enhancements of remote sensing methodologies (cf. chapter 3.2.2).
Chapter 3.3 illustrates the integration of social science and remote sensing as a promising
agenda in urban research applications. Especially this chapter and the interim conclusion in

chapter 3.4 form a basis for the objectives and investigations presented in this study.

3.1 Remote Sensing of Urban Attributes

“Sensing cities remotely is difficult — very difficult!”

(MEesev 2003)

The difference between settlement structures and the natural environment is human being
and the corresponding manner and dimension of human activity which becomes evident
everyday and everywhere. People create settlements that are highly spatially dynamic. It is
also people who make settlements a complex phenomenon which is very difficult to capture.
However, it is important to be also aware, that it is people as well who make urban
settlements important enough to move into the focus of remote sensing scientists. The
consequences of human activity are apparent everywhere, but they are nowhere more
visible and quantifiable than in mega cities in terms of arrangements of urban physical

patterns.

A major challenge in the investigation and the remote sensing of urban areas is the
heterogeneity of the urban environment in terms of its spatial and spectral properties. The
urban landscape is typically characterized by a heterogeneous spatial assemblage of very
different units of land cover types (HEROLD 2004). It is built up with various materials such
as concrete, asphalt, plastic, shingles, brick and wood. The environment is also partly
covered with water bodies, different vegetation cover categories (e.g., agricultural land,
parks or gardens) or bare soil areas and is composed of residential and commercial
buildings, public space, transportation networks as well as utility lines in order to provide the
inhabitants with the essentials and to improve as much as possible the quality of life (COWEN
& JENSEN 1998, MESev 2003 after DAUREAU ET AL. 1989, LIVERMAN ET AL. 1998, DONNAY 1999,
HeroLD 2004). Hence, “there is no explicit spectral urban signal” (HEROLD 2004), which can

be recorded by the remote sensor.

Airborne remote sensing instruments as well as satellites provide an opportunity to
observe urban phenomena and to measure attributes of urban environments (COWEN &

JENSEN 1998). Remotely sensed data, together with data available from ground-based



Remote Sensing of Urban Areas: Status of Research 29

observations, can be used for instance to detect and monitor changes in the urban environ-
ment in space and time, to develop and validate dynamic models of urban development, to
capture and characterize land cover as well as land use patterns®, and to forecast sub- and
intra-urban changes in a significant number of urban attributes (cf. Table 3-1). After COWEN
& JENSEN (1998) remote sensing data are thus potentially valuable both to social scientists

and to urban planners and other persons in charge.

There are potentially many important components of an urban settlement that needed
to be measured and monitored over time, but only the physical or respectively visible out-
comes of human activity, in opposition to the direct consequences of behavior, can be
detected. It is only through the analysis of the spatial configuration of physical structures
using remotely sensed data that enables us to understand the human behavior becoming
apparent in such spatial patterns (Mesev 2003 after GEOGHEGAN ET AL. 1998). Thus, the
argument becomes cyclical — knowledge of the physical structure and shape of cities
“contributes to an understanding of socio-economic functioning and knowledge of socio-
economic characteristics dictates urban layout” (Mesev 2003 after MARTIN & BRACKEN 1993,
MASSER 2001).

In this way, using remotely sensed data allows us to measure, with some degree of
accuracy, the entity and arrangement of urban structures (land cover). It is difficult and
considerably complex though to determine how these structures are being used by their
residents and occupants (land use) unless specific, additional information of socio-economic

and housing attributes from other sources is employed (Mesev 2003).

Sensors, air- or spaceborne, and depending on the sensor type, “take a picture” of the
physical built-up environment, and receive the electromagnetic spectrum that is reflected or
emitted by the surface objects to describe its properties (HEROLD 2004, JENSEN 1996, Mesev
2003). A remote sensor “sees” a plane layout of features, mostly rooftops or treetops that
may or may not cover lower features such as roads, lawns, open spaces or water bodies
(Mesev 2003 after FORSTER 1985, J1 & JENSEN 1999). Moreover, a remotely sensed image
creates a freeze-frame of the spatio-temporal urban patterns and acquires therefore the
characteristics of many urban phenomena (HEROLD ET AL. 2006). The data or information

received may be both qualitative and quantitative (COWEN & JENSEN 1998).

3 At this point it is important to specify the difference between “land cover” and “land use”. The term “land cover” names the
physical composition of fractions of land, i.e., tracts covered with vegetation (grass, trees), impervious tracts (concrete, asphalt) as
well as shadowed and open spaces (bare soil etc.). “Land use” is the term for the anthropogenic construct of mixtures of land cover,
i.e., residential areas and buildings, commercial areas and buildings, gardens and parks, or even agricultural tracts (CampBELL 2002,
MEesev 2003, WYATT ET AL. 1993). While “land cover” can be classified directly from remote sensing data, this is not possible with
“land use”. Rather it is possible to derive land use from land cover classifications, although this generally requires additional data

(e.g., socio-economic data) (ApLIN 2003).
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Some of the major urban attributes which are of great importance to understand the
urban environment are summarized inTable 3-1. To detect, observe and monitor the
different parameters of the urban environment, it is mandatory to be well grounded in the
temporal and spatial resolutions required. Compare Table 3-2 for an overview of the

different sensor systems and their spatial resolutions.

Table 3-1: Interlinkage between selected urban attributes and the remote sensing resolution required to provide
corresponding information

Urban Attributes* Minimum Resolution Requirements

Temporal Spatial Spectral

Land Use / Land Cover

L1 - USGS Level 1%* 5 - 10 years 20 - 100 m V-NIR-MIR-Radar
L2 - USGS Level 2*** 5 -10 years 5-20m V-NIR-MIR-Radar
L3 - USGS Level 3*** 3 -5 years 1-5m V-NIR-MIR-Pan
L4 - USGS Level 4**** 1 -3 years 03-1m Pan

Building and Property Line Infrastructure

B1 - Building perimeter, area, volume, height 1 -2 years 0.3-0.5m Pan

B2 - cadastral mapping (property lines) 1 - 6 months 0.3-0.5m Pan
Transportation Infrastructure

T1 - general road centerline 1 -5 years 1-30m Pan

T2 - precise road width 1 -2 years 0.3-0.5m Pan

Utility Infrastructure
U1 - general utility line mapping and routing 1 -5 years 1-30m Pan

Digital Elevation Model (DEM) Creation
D1 - large scale DEM 5-10 years 0.3-0.5m Pan
D2 - large sclae slope map 5-10 years 0.3-0.5m Pan

Socio-economic Characteristics

S1 - local population estimation 5-7 years 0.3-5m Pan

S2 - regional/national population estimation 5 - 15 years 5-20m V-NIR

S3 - quality of life indicators 5-10 years 0.3-30m Pan-NIR
Energy Demand and Conservation

E1 - energy demand and production potential 1 -5 years 03-1m Pan-NIR

E2 - building insulation surveys 1 -5 years 1-5m TIR
Meteorological Data

M1 - daily weather prediction 30 min - 12 hr 1-8km V-NIR-TIR

M2 - current teperature 30 min-1hr 1-8km TIR

M3 - current precipitation 10 - 30 min 4 km Doppler Radar
M4 - immediate severe storm warning 5-10 min 4 km Doppler Radar
M5 - monitoring urban heat island effect 12 -24 hr 5-10m TIR

Critical Environmental Area

C1 - stable sensitive environments 1 -2 years 1-10m V-NIR-MIR

C2 - dynamic sensitive environments 1 - 6 months 03-2m V-NIR-MIR-TIR
Disaster Emergency Response

DE1 - pre-emergency imagery 1 -5 years 1-5m V-NIR

DE2 - post emergency imagery 12 hr - 2 days 0.3-2m Pan-NIR-Radar
DE3 - damaged housing stock 1 -2 days 03-1m Pan-NIR

DE4 - damaged transportation 1 -2 days 03-1m Pan-NIR

DES5 - damaged utilities 1 -2 days 03-1m Pan-NIR

* This land use / land cover classification system was developed by USGS for use with remote sensing data. Its categories

are appropriate for information interpreted from aerial images, and it has a hierarchical structure that lends itself tu use

with images of differing scales and resolutions (ANDERSON ET AL. 1976, CAMPBELL 2002).

** Level I is tailored for use with broad-scale, low-resolution images (e.g. Landsat MSS, TM, SPOT) (ANDERSON ET AL. 1976).
**x | evel IT and III are composed of more detailed classes that can be interpreted from large-scale,

high-medium-resolution images (e.g. SPOT pan, Landsat 7 pan, IRS pan) (CAMPBELL 2002).

**** |evel IV classes may best be monitored using very high-spatial-resolution sensors (e.g. QuickBird, IKONOS),

including aerial photography (COWEN & JENSEN 1998).

Data sources: COWEN & JENSEN (1998) after e.g., ANDERSON ET AL. (1976), BRANCH (1971), FORD (1979) &
HAACK ET AL. (1997)
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Remote sensing techniques have already shown their value in mapping urban areas
(e.g., DARWISH ET AL. 2003, GUINDON ET AL. 2004, MARCHESI ET AL. 2006, TATEM ET AL. 2005,
TAUBENBOCK & ROTH 2007), and as data sources for the analysis of the urban environment
(e.g., HAACK ET AL. 1997, JENSEN 1983, MEeSev 2003, NETZBAND ET AL. 2010, WENG & QUATTROCHI
2006, WENG 2012). The beginning in all applications using remotely sensed data is to specify
the object, surface or phenomena of interest. After Mesev (2003), “in the urban case, this is
twice as difficult” than in rural or natural environments. As mentioned above, urban areas
are composed of physical materials — the land cover definition. By contrast, the land use
definition is defined by the specific combination of the materials to supply the urban popu-
lation. Since remote sensing is a process of physical detection the direct analysis of urban
land cover is a lot more straightforward than the analysis of land use (DoBsSON 1993, MESEV
2003, WEBSTER 1995), and many remote sensing scientists have concentrated on this subject

before.

Remote sensing data and research results have for example been applied to the
detection and mapping of impervious surface areas and therefore of urban settlements of
different spatial dimension (e.g., Lu & WENG 2008, GAMBA & DELL’ACQUA 2008, KAMPOURAKI ET
AL. 2006, YUAN & BAUER 2006, ZHANG & MAXWELL 2008, WENG 2012). Recently, mapping and
particularly monitoring the percentage of sealed areas in urban environments has become of
great interest as a major indicator of environmental quality and sustainable land use
(KAMPOURAKI ET AL. 2006, YUAN & BAUER 2006). Impervious surfaces, including for instance
residential and industrial buildings, roads, sidewalks, and parking lots, are areas where
water cannot infiltrate. Hence, the amount, duration and intensity of urban storm water
runoff and the transport of non-point source pollutants as well as water abundance and
water quality is directly affected (DOUGHERTY ET AL. 2004, MELESSE & WANG 2008, WENG 2008).
The spatial extent and occurrence of sealed surfaces may even affect urban climate by
changing sensible and latent heat fluxes within the urban “atmosphere” and boundary layers
(WENG 2008, YANG ET AL. 2003).

Thus, for example, the urban heat island phenomenon results from the replacement of
natural landscapes with impervious surfaces and is linked to adverse economic and environ-
mental impacts (GLUCH ET AL. 2006). The fraction of impervious cover is widely a well-
accepted indicator of urbanization and urban sprawl (HOFFHINE WILSON ET AL. 2003). Urban
sprawl and particularly uncontrolled sprawl occurring in large cities of developing countries
requires intensive and accurate extraction and mapping of various urban features and
infrastructure properties (NOBREGA ET AL. 2006). Remotely sensed data have already been
used in this field of application (e.g., GRUEN 2008, HAVERKAMP 2002, HEROLD 2008, MARANGOZ
ET AL. 2004, NEGRI ET AL. 2006, PETERT & RANCHIN 2008, SHAN & SAMPATH 2007, STILLA ET AL.
2008, SUGUMARAN, GERIEVIC & V0SS 2008, ZHANG ET AL. 2006, ZHOU & KELMELIS 2007, BHASKARAN
ET AL. 2010, RAHMAN ET AL. 2010, BHATTA 2010). Especially very high-resolution (VHR) sensors
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are well suited to extract buildings and roads (MARANGOzZ ET AL. 2004) (cf. chapter 3.2).
Remotely sensed impervious surface has also been used more and more often in population
estimation purposes (LIANG ET AL. 2008, XIAN 2007, AzAR ET AL. 2010) (cf. also chapter 3.3).
Consequently, accurate measurements and mapping of impervious surfaces are valuable not
only for environmental management activities, for example, water quality assessment, but
also provide beneficial input to urban planning, for example, building infrastructure, planned

development and sustainable urban growth (SCHUELER 1994).

Some of the most promising and already successfully used applications of remote
sensing techniques on urban environment include “measurement of physical quantities
related to environmental conditions” (MILLER & SMALL 2003). For example, using remotely
sensed data researchers are able to provide broad data of reflectance and surface
temperature in cities. These observations offer valuable constraints on the physical
properties that are strong determinants of environmental conditions in the urban
environment. This synoptic information, which is almost impossible to obtain any other way
than from remote sensing data, may improve the understanding of urban climate as well as
the urban heat island (UHI) effect and their direct impact to more than half of the world’s
population. The urban thermal microclimate affects urban mortality and morbidity as well as
the quality of life and has become an important contributor for global warming (CHEN ET AL.
2006, MILLER & SMALL 2003, SMALL 2006). Already in seventies of the last century, RAO (1972)
and CARLSON ET AL. (1977) have demonstrated that urban areas could be identified through
the use of thermal infrared satellite data. Past studies showed that there has been an
increased interest in studies of urban land surface temperatures and urban energy budget
characteristics using the technology of thermal remote sensing (BALLING & BRAZELL 1988,
ROTH ET AL. (1989), STREUTKER (2002), KIM (1992), NICHOL (1996), GALLO ET AL. (1993a, 1993b,
1995), WENG ET AL. (2004), WENG & QUATTROCHI 2006, WENG 2009, OGASHAWARA & DA SILVA
BRUM BAsTOS 2012). In order to better understand the urban microclimate, which is itself
significant to a range of issues and themes in Earth science, such as global environmental
change and human-environment interactions, and also important for urban planning and
management purposes, a greater assessment of the overall urban thermal pattern, including
an analysis of the thermal properties of individual land covers, is still needed (GLUCH ET AL.
2006, Lo & QUATTROCHI 2003, WENG & QUATTROCHI 2006).

Remote sensing data have also been used in attempts to mapping, measuring and
monitoring urban vegetation surfaces (e.g., NicHoL & WONG 2007, NicHoL & LEe 2005, PHINN
ET AL. 2002, SMALL & MILLER 2000, SMALL 2001, Pozzi & SMALL 2002, RASHED & JURGENS 2010,
SONG 2008, ZHU ET AL. 2003, XIE ET AL. 2008, LI ET AL. 20108B). Vegetation is an essential part
of the urban and suburban environment and therefore an important parameter for the
assessment of urban environmental quality (NicHoL & WONG 2007b). Variations of vegetation

abundance and distribution within urban areas may influence environmental conditions “by
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selective reflection and absorption of solar radiation [..] and by modulation of
evapotranspiration” (SMALL & MILLER 2000). Urban vegetation has a strong influence on
energy demand and development of urban heat islands, and may affect urban climate and
urban ground energy fluxes (ABDOLLAHI & NING 2000, AKBARI ET AL. 2001, SMALL & MILLER
2000). In addition, vegetation within urban areas plays an important role in controlling
temperatures and air quality (Ji ET AL. 2007), and influences thus human health (WAGROWSKI
& HiTes 1997). Various remote sensing data have proven effective for mapping and
monitoring urban vegetation abundance. For example, SMALL & MiILLER (2000) have
presented preliminary results of spatiotemporal analysis of urban vegetation distribution in
New York City using Landsat TM data and discussed implications for environmental
monitoring of developing urban areas. ZHU ET AL., however, present a method based on
advanced segmentation techniques and classification for urban vegetation investigation
extraction. Utilizing satellite data of the ASTER sensor, the authors build a hierarchical multi-
resolution structure in order to reflect the inherent relationship between ground features
under different levels of scale. Recently, a number of remote sensing scientists have
explored the relationship between environmental parameters and population characteristics
in urban areas. Pozzi & SMALL (2002), for example, have considered vegetation abundance
and population density as “principal demographic and physical characteristics” in urban and
suburban areas of the U.S.A. The authors pointed out, amongst other things, that maximum
vegetation fraction decreases with increasing population density over the full range of
densities. Moreover, the percentage of urban vegetation can be linked to different levels of
quality of life. While a large fraction of vegetation cover is associated with a high quality of
life, sparse vegetation cover in a settlement is mostly, particularly in developing countries,
an expression of poor living conditions. Accurate, reliable, and reasonable data of urban
vegetation cover support decision makers and urban researchers with different
specializations to achieve their objectives. Hence, urban vegetation research using remotely
sensed data plays a fundamental role in environmental protection, urban planning and

quality of life assessment (ZHU ET AL. 2003).

But with remote sensing, not only the direct measurement of physical quantities is
possible. Several studies have demonstrated the ability to extract also socio-economic
parameters, either directly from remotely sensed data or indirectly by means of surrogate
information derived from images (COWEN & JENSEN 1998) (cf. chapter 3.3). One of the most
important of these socio-economic parameters is population. Population estimations can be
derived at local, regional as well as national levels based on different analysis methods (Lo
1995). A general overview of the derivation of population estimates is presented in chapter
3.3. Some studies have as well shown how quality of life indicators, such as income,
education, health care or house value, can be calculated by extracting several variables from
ultra and very high-resolution remote sensing imagery (cf. Table 3-2) (MONIER & GREEN 1953,
GREEN 1957, TUYAHOV ET AL. 1973, HAACK 1997, JENSEN & COWEN 1999, NicHoL & WONG 2007b,
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BROWN ET AL. 2014). For example, building size and density, vegetation surface and density,
unpaved road, road width as well as proximity to work and hospital are examples for
variables which are visible in remotely sensed images. These variables derived from
remotely sensed data need to be validated with in-situ observations to compute the quality
of life indicators and to assess the living conditions of people in different residential areas
(CoweN & JENSEN 1998). In an early attempt to relate remotely sensed signatures to socio-
economic parameters, FORSTER (1983) developed for instance a classification scheme which

could be applied to urban areas to provide a residential quality index.

The mapping of different settlement types within urban areas is therefore closely
connected with the detection of quality of life indicators. Especially in mega cities the living
conditions of the residents vary widely, and thus the visible contrasts between different
settlement types are very strong. To detect and describe the different types of residential
areas appearing in remote sensing derived images in the most cases the pixels’ spectral
information solely is insufficient. Different authors, as for example HOFMANN (2001a), are of
the opinion that other characteristics such as shape, texture or contextual information is re-
quired to map and analyze these areas adequately (cf. chapter 3.2.2). Formal, i.e. legal,
settlements are mapped and monitored in most cases sufficiently, particularly in cities of
more developed countries. However, this quantity and quality of information is, if at all, only
rarely available for informal settlements. Especially the mapping and analysis of those
residential areas might be one of the most challenging tasks within urban remote sensing
(HorMANN 2001a). Informal settlements show typical textural and structural characteristics
(cf. chapter 2.4) which are mainly an effect of their illegal status and a direct reflection of
the social circumstances the inhabitants live in (HOFMANN 2001a, TAUBENBOCK ET AL. 2009).
Hence, depending on the remote sensor’s spatial and spectral properties, it is possible to
classify and distinguish these areas from other land use or settlement types. The spatial
location of informal settlements has already been carried out in different ways using
remotely sensed data (e.g., HALL ET AL. 2001, HOFMANN 2001a and 2006, JAIN ET AL. 2005,
LEMMA ET AL. 2006, MASON & FRASER 2003, NETZBAND & RAHMAN 2009, NIEBERGALL ET AL. 2007
and 2009, RADNAABAZAR ET AL. 2004, SLiuzas ET AL. 2008a, 2008b, STEWART & KUFFER 2007,
TURKSTRA & RAITHELHUBER 2004, BAUD ET AL. 2010, KiT & LUDEKE 2013). In some cases more
detailed information is necessary, so that, for example, single settlement units are detected
(L1 & RUTHER 1999, MASON & BALTSAviAs 1997). For both applications, ultra or very high-
resolution remotely sensed image data is needed. Moreover, additional useful data sources
such as local knowledge, field observation data, and available local socio-economic data can
provide valuable information and can therefore support the location and analysis of informal
settlements (LEMMA ET AL. 2006, NIEBERGALL ET AL. 2007 and 2009, ROGERS ET AL. 2006) (cf.
chapter 6.2). As explained, several studies have exemplified the possibilities to use remote
sensing techniques for poverty mapping and obtaining detailed information. Nevertheless,

with permanently increasing urbanization rates as well as widespread and rapid development
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of informal settlements, it is important to develop more efficient, either fully or semi-
automated, methodologies and algorithms for the detection and monitoring of informal
settlements. Since particularly the conjunction of remote sensing data with socio-economic
data is (still) at the beginning of the development (see chapter 3.3 and 3.4), an
advancement in this research field is required. In order to carry out the demanding urban
planning and development tasks necessary to improve the living conditions for the poorest
worldwide, the research may never stagnate (HOFMANN 2001a, ROGERS ET AL. 2006, SLIUZAS ET
AL. 2008a).

In the recent past the potential of remote sensing was also shown in the field of vulne-
rability assessment and disaster management. Since by now more than half of the world’s
population lives in urban settlements (cf. chapter 2.1), especially in these areas further infor-
mation and spatial data is needed in order to support decision makers in general or in the
pre-disaster phase as well as for crisis management in the post-disaster phase (TAUBENBOCK
ET AL. 2006). An analysis by DEGG (1992) of the world’s 100 most populated cities pointed
out that about 78 percent were exposed to one out of four major natural hazards (earth-
quakes, volcanoes, tsunamis, and windstorms). In less developed countries alone, 86
percent faced even more than one natural hazard (cf. chapter 2.3). The value of remote
sensing in supporting urban vulnerability analysis and disaster management is evidenced by
a steadily increasing number of published articles on this topic. For examples see
TAUBENBOCK ET AL. (2006, 2007, and 2008) as well as GAMBA ET AL. (2007a and 2007b).

All facts considered, urban areas are and will probably always be characterized by
heterogeneous, convoluted and unpredictable land patterns. Thus, urban areas are confron-
ting remote sensing scientists as well as planners, engineers, environmentalists, government
agencies, social scientists, demographers, economists and politicians with a major task
which will keep the future generation very busy (Mesev 2003 after DAVREAU ET AL. 1989 and

DONNAY 1999, LIVERMAN ET AL. 1998).

3.2 Technical and Methodological Development and its Impact

on Urban Remote Sensing

As described in chapter 3.1 remote sensing data and research results have been successfully
applied to map urban features, to capture different land cover types, and to characterize
land use patterns or urban infrastructure as well as to monitor urban environmental
problems. From these applications secondary socio-economic parameters and the elements
of urban infrastructure, which are not directly visible in image data, can be derived (cf.
chapter 3.3) (COWEN & JENSEN 1998, HEROLD ET AL. 2003, WENG & QUATTROCHI 2007). Hence,
remotely sensed image data in some applications may even be the only reliable source for a

sustainable monitoring of urban settlements (MoELLER 2005). However, accurate and
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operational mapping and modeling of urban features and (intra-urban) processes still
confront us with some major challenges. One of the difficulties in the investigation and
remote sensing of urban areas is caused by the heterogeneity most urban features exhibit
(cf. chapter 3.1). Hence, urban features vary substantially with regard to their object-wise
spectral variance. “Object size and heterogeneity are often related” (HOSTERT 2007).
Compared to objects usually found in scenes of rural environments, like forest areas, inland
waters, or agricultural crop land, objects of urban areas, such as cars, residential buildings
or streets, are relatively small. Although the mixed-pixel-problem is dependent on the pixel
size, the problem is still much higher in urban image data. Moreover, the combination of
natural and anthropogenic materials as well as the problem of shadows and shading in the
built environment limits the (semi-) automated mapping and modeling of urban environ-
ments. All things considered, essential and predominant are therefore enhanced data quality
and availability and the need for improved methods and analysis techniques in urban remote
sensing (HEROLD ET AL. 2003, HOSTERT 2007, and SMALL 2003).

3.2.1 Spatial, Spectral and Temporal Resolution in Remote Sensing
of Urban Areas

Sensors for remote sensing are designed to acquire information about various objects on the
ground without being in physical contact with them. The sensor captures the electro-
magnetic radiation that is reflected or emitted by the objects to describe its characteristics
(JENSEN 1996, LILLESAND ET AL. 2004, NAVULUR 2007). In the urban area, imaging using aerial
photography has been prominent for several decades and has still kept its value for large-
scale urban remote sensing studies (e.g., BALTSAVIAS & GRUEN 2003). By means of visual
interpretation — the simplest method to extract meaningful information from remotely
sensed data — comprehensive information about urban patterns and land use characteristics
may be yield (HEROLD 2004, HURSKAINEN & PELIKKA 2004, MESEv 2003). Precondition for the
application of this method is broad background knowledge of an experienced interpreter (for
more details see for example HAACK ET AL. 1997 and the explanation following in chapter
3.2.2 within this study). Recent years have shown the development from analog (film-based)
to digital sensors to picture the Earth’s surface (cf. Table 3-2). Using digital remote sensing
the image analysis became (semi-) automated and suitable for application over much larger
domains (HEROLD 2004, NAVULUR 2007).

“From a historical remote sensing perspective, early attempts to acquire the” Earth’s
surface “from above have traditionally focused on urbanized areas” (HEROLD 2004). In 1858,
Gasper Felix Tournachon, a French photographer, took over Paris the first known aerial
photograph from a balloon and therefore also the first aerial “remotely sensed image”

(BOWDEN ET AL. 1975, HAACK ET AL. 1997). According to contemporary documents it has been
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found out that single buildings could be clearly seen in these pictures. Several images of
different urban settlements were captured in the middle of the 19" century “and showed not
only the first remote sensing images ever, but also the earliest remote sensing of urban
areas” (HEroLD 2004). A revolution and a new era of Earth’s remote sensing signaled the
availability of satellite derived remote sensing data and the development of adequate digital
analysis methodologies in the early 1970’s and the two following decades (cf. Figure 3-1).
However, in this fact it must be considered that this progress did not or only partly incorpo-
rate urbanized areas. Besides the obvious but mostly top-secret military use and
development of remote sensing, over the past decades, the majority of commercial remote
sensing work had been focused on natural environments. Applying remote sensing techno-
logy to urban areas is therefore relatively new. The beginnings of detailed remote sensing of
urban areas as a scientific or applied field were in the 1990's and within the last ten to
twenty years this development is rapidly gaining in interest within the remote sensing
community. While the continuous worldwide urbanization process came more and more into
the focus, new promising remote sensing image sources (cf. Figure 3-1) as well as complete
time series with a large retrospective time frame and more capable techniques (cf. chapter
3.2.2) became available and provided new capabilities and options in urban mapping and
monitoring (DONNAY ET AL. 2001, HEROLD 2004, NAVULUR 2007, WENG & QUATTROCHI 2007).
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Figure 3-1: Progress of remote sensing spatial scale of civilian Earth observation satellites.

Driven by societal needs and the described progress in technology, international
symposia on remote sensing of urban areas (since 1997) and remote sensing and data

fusion (since 2001) have evoked great interest in urban remote sensing capabilities.
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Recently, several monographs dedicated to remote sensing of urban areas appeared (e.g.,
BHATTA 2010, DONNAY ET AL. 2001, GAMBA & HEROLD 2009, MESEV 2003, NETZBAND ET AL. 2010,
RASHED & JUERGENS 2010, YANG 2011, WENG 2014, WENG & QUATTROCHI 2007) and a number of

journals have published special issues on this topic.

It is essential that the user of remotely sensed images is proficient in selecting the
adequate data source in order to apply available data for his purposes effectively. This
requires a comprehensive knowledge of the spatial, spectral, and temporal dimension of an
object or process (cf. Table 3-2 and Table 3-3) (NAVULUR 2007). Thus, in the following, the
mentioned dimensions of remote sensing images are presented. Moreover, the importance
of each of the data dimensions on information extraction from an image will be discussed.
The spatial, spectral, and temporal resolution requirements for the urban attributes are
summarized inTable 3-1. In the best case, “there would always be a remote sensing system
that could obtain images of the terrain that satisfy the urban attributes’ resolution

requirements” (JENSEN & COWEN 1999). In reality, though this is not possible at all.

Table 3-2: Taxonomy of Remote Sensing Systems

Recording . . .
Platform Satellite/Shuttle Aircraft Stationary
. Passive -

;e((:jordlng (Electrooptical, Thermal Infrared, ?f;:;er Radar)

oo Thermal Microwave) !
Recording Digital Analog
Medium (Whiskbroom, Pushbroom) (Camera, Video)
Spectral Visible/Ultraviolet Reflected Infrared Thermal Infrared Microwave
Coverage
Spectral Ultraspectral Hyperspectral Superspectral  Multispectral Panchromatic
Resolution > 250 Bands 100 - 250 Bands > 10 Bands 2-10Bands 1 Band
Radiometric Very High High Medium Low
Resolution (> 16 bit) (12 - 16 bit) (6 - 12 bit) (< 6 bit)
Spatial Ground Ultra High Very High High Medium Low Very Low Extremely Low
Resolution <0.5m >05-1m >1-4m >4-12m >12-50m >50-250m >250m

Data sources: Ehlers (2007) and Moeller (2005), modified

The spatial dimension of a remote sensing image — often expressed in terms of ground
sampling distance (GSD) — corresponds in size to the area captured on the ground by a
single pixel. The ground cell size of one pixel is dependent, for example, on the sensor field
of view (IFOV) or the sensors flying altitude. In addition, the sensor’s spatial resolution
varies with the off-nadir viewing angle and the terrain on the Earth’s surface has an effect as
well. As mentioned before, remote sensing image data can be derived from airborne or
spaceborne sensors. While aerial sensors are able to acquire image data with varying
resolutions by flying at different altitudes, satellites are flying in a fixed orbit and are there-
fore characterized by a fixed spatial resolution at nadir. At present, different terms are circu-
lating that refer to types of remote sensing spatial resolution. Table 3-2 and Table 3-3

generate an overview of the categories of the spatial resolution of remotely sensed image
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data. Rough numerical guidelines for the definition of spatial resolution used in urban
remote sensing applications particularly are: (1) low resolution — defined as pixels with GSD
between 12 m and 50 m, (2) medium resolution — GSD in the range of 4.0 — 12 m, (3) high
resolution — characterized by an 1.0 — 4.0 m GSD, (4) very high resolution — ground cell
sizes between 0.5 and 1.0 m, and (5) extremely high resolution — pixel sizes < 0.5 m
(MOELLER 2005, NAVULUR 2007).

Table 3-3: Spatial Resolution of Remotely Sensed Image Data and Application Scale

Pixel Size Definition Sensor Platform Application Scale

<05m Extremely high Airborne scanner, 1:500 - 1:5,000
aerial photos, GeoEye-
1 (pan), WorldView-3
(pan)

>05-1.0m Very high IKONOS (pan), 1:5,000 - 1:10,000
QuickBird (pan),
WorldView-1 & 2
(pan), QuickBird-2
(pan)

>1.0-40m High IKONOS (ms), 1:10,000 - 1:15,000
QuickBird (ms), SPOT
5 (pan), GeoEye-1
(ms), WorldView-2 &
3 (ms)

>4.0-12m Medium IRS (pan), 1:15,000 - 1:25,000
SPOT 4 (pan), SPOT 5
(ms), RapidEye

>12-50m Low ASTER, IRS (ms), 1:25,000 - 1:100,000
Landsat-7 ETM &
Landsat 8 (pan, ms),

SPOT 4 (ms)
>50-250m Very low Landsat MSS 1:100,000 - 1: 500,000
>250m Extremely low NOAA, Envisat > 1:500,000

pan - panchromatic, ms - multispectral
Data source: MOELLER (2005), supplemented and modified

The spatial resolution plays an important role in the processes and objects that can be
observed and respectively identified using remotely sensed images. This means that
different applications require the use of different spatial resolutions. “In any application,
optimal remote sensing data spatial characteristics are defined by the smallest homogeneous
object of interest or some spatial ground sampling function” (HEROLD 2004). This fact is
particularly important in regard to the diversity of available remotely sensed image data.
Moreover, the steadily increasing number of specialized and application optimized image
processing algorithms should be considered in this issue. In this context, Herold (2004)
pointed out that the detection and analysis of real world phenomena at different scales
requires the investigation of resolution dependent variables and critical spatial resolutions.
After Davis & Simonett (1991) remotely sensed image data are applied to the following three

major tasks: (1) detection — determination of the presence of an image object, (2) iden-
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tification — labeling an image object, and (3) analysis — obtainment of detailed information
about an image object beyond its initial detection and identification. A general spatial
resolution rule for detecting an urban object in an image is that there need to be a minimum
of one to four spatial observations, i.e. image pixels. Specified another way, the image
detection requires a sensor spatial resolution with one-half the diameter of the smallest
object-of-interest. For example, to detect small residential buildings that have a base area of
10 m by 10 m, the minimum GSD of imagery without haze or other problems should be <
5.0 m by 5.0 m. The identification of object features usually needs five or more image
elements. Another rule of thumb states that for object analysis a 10 times higher effective
spatial sensor resolution is needed than it is required for the identification and as much as
30 times as higher resolution as for the detection of image objects (COWEN ET AL. 1995,
Jensen & Cowen 1999, Herold 2004, Davis & Simonett 1991). Using different remote sensors
and therefore different spatial resolutions several application problems can appear. For
example, if the pixels’ spatial resolution is too coarse and fails to correspond to the spatial
characteristics of the image target the so called “mixed pixel problem” occurs. The mixed
pixel problem — where several types of land cover/use are contained in one pixel and
therefore only a generalized and regularized description of the image features is provided —
decreases the accuracy of remotely sensed image mapping and analysis (for this issue see
also the section “spectral resolution” below-mentioned within this subchapter) (MATHER
1999, MELESSE ET AL. 2007, HEROLD 2004). In contrast, limitations using remote sensing data
become apparent as well if the sensors’ spatial resolution is too fine. In that case, the image
collects more spatial land surface variation than it is needed for a given analysis and thus an
“image information overload” can be produced which may decrease image analysis accuracy
(HErROLD 2004).

Remote sensing as a data source for urban applications at a super-regional and global
scale — from 1:100,000 to 1:500,000 and more — requires image data with a spatial
resolution of minimum 50 m through 250 m and beyond that value (cf. Table 3-3). HEROLD
ET AL. (2006) even quote a value of minimum 30 m (cf. Table 3-4). Remotely sensed images
for super-regional and global scale have already been used in many applications. For
example, optical sensors (MODIS, MERIS, Landsat ETM+ and Landsat 8 etc.) have
demonstrated their capability in mapping the full dimension of urban areas at the super-
regional scale (e.g., SCHNEIDER ET AL. 2003, POURSANIDIS ET AL. 2015, MERTES ET AL. 2015).
Moreover, active radar imagery (GREY ET AL. 2003), thermal measurements (HAFNER & KIDDER
1999), and nighttime remote sensing images have been used for global and continental
purposes (SUTTON ET AL. 1997). In the latter case, data products of spatial urban extent and

population density have been yielded.
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Table 3-4: Observing multi-scale dynamics for mapping and modeling urban objects and processes using remotely

sensed image data

N Spatial Temporal Attributes measured N
Level Unit N N N Urban dynamics
resolution resolution by remote sensing
- s -redi
. ‘. ~ st Global/regional location of (large) settlements super r_eg.lonal and global urban
> ) . dynamics:
- . 1 networks 1 km 10 - 50 years and their surrounding e
. P . growth, diffusion,
‘ environment

Urban/

district, block)

number of settlements
with various spatial dimensions,

urbanization, ...

regional urbanization:

Zegf:::?:e ional) 30m - 1km 5 - 10 years utility and transportation interactions/polarization
L S 9 networks
change detection:
classification: urban shrinking,
Urban area 5m-30m 2-5years impervious/not impervious urban grqwth!
surface, vegetation, open space, sprawl, diffusion, coalescence,
expanding urban land uses
into rural areas > urbanization
Land use land use classes/categories: .
. 3 X N . land use change:
region 5m 2 -5years residential/commercial buildings, infill/redevelopment
transportation network P r
transportation network
Urban land cover Eﬁmp:);esz:j’c tures land cover change:
objects (settlement, 1-5m 1-2 years (medium - large buildings, building (re)construction,

demolition of informal settlements,

building blocks),
parks, gardens,
utility lines

material change:

aging/roofing, ...

land cover change:
(re)construction of small buildings

small buildings,
trees,
cars,...

Image Element/

Pixel 0.5-1m

Source: after HEROLD ET AL. 2006, modified.

For large area applications such as urban growth monitoring and change detection a
geographic scale of about 1:25,000 — 1:50,000 should answer the purpose (SABINS 1996).
According to Table 3-3, this application scale is provided by sensors of the second
generation like ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer),
SPOT (Systéme Probatoire d’ Observation de la Terre), and Landsat TM (Thematic Mapper)
as well as Landsat 8 which offer a spatial resolution of 4.0 m to 50 m (medium to low
dimension) and large swath widths. Image data of this dimension supports urban remote
sensing of a regional scale, which is often focused on a specific urban area or agglomeration
or their periphery, and provides according to HERoLD (2004), for example, a spectral
separation of built-up and non-built-up urban land cover features or according to NAVULUR
(2007) a large area change detection. For more details of “measurable” urban attributes and
the corresponding derivable urban dynamics please see Table 3-4 below. Low and medium
resolution data sources have been used to study a variety of urban phenomena like: eco
systems, urban climates, urban population, health and disease, urban growth and change
processes (HEROLD & SCHMULLIUS 2005).

It is also important to keep in mind that the spatial resolution and swath width are in
close connection to each other. Usually, the higher the resolution is, the smaller is the size of
the image. Thus, medium resolution satellite sensors such as Landsat (185 km swath) and
SPOT (60 km swath) are able to provide wide area coverage necessary to capture an entire

city with a single record. Hence, the researcher has the ability to use this data for
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comparative analysis of urban morphology. The sensors provide also the spatial and
temporal resolution to support a two decade record of urban land cover change. However,
medium resolution sensors lack the spatial resolution to monitor urban land cover objects
and infrastructure (NAVULUR 2007, MILLER & SMALL 2003). Hence, medium resolution and
smaller “have traditionally been seen as one of the major obstacles to precise urban

mapping using remote sensing data” (Mesev 2003).

Some regional and a multitude of local urban applications require high-resolution (HR)
remotely sensed images respectively in order to map urban land use structures and attri-
butes in more detail. According to MOELLER (2005), a geographic scale of about 1:10,000 -
1:15,000 should be suitable for an accurate spatial representation and analysis of urban land
cover objects such as different building structures, urban vegetation patches like parks and
gardens, and transportation network components (cf. Table 3-4). Moreover, based on the
experience of several remote sensing scientists and qualitative examinations of different
urban studies, a spatial sensor resolution of 5.0 m and finer was suggested for a detailed
mapping of urban land cover objects, which corresponds to the above presented geographic
scale (e.g., JENSEN & CoweN 1999). Also WELCH (1982) carried out a resolution analysis of
various satellite sensors and demonstrated that a GSD of 0.5 m to 10 m is necessary to
characterize infrastructure in most urban areas in a detailed way. A number of sensors are
providing corresponding GSD: IKONOS (ms), GeoEye-1 (ms), QuickBird 1 (ms), WorldView-2
& 3 (ms) and SPOT 5 (pan) (cf. Table 3.3). Several studies have demonstrated the potential
of current sources of high spatial resolution data for measuring the physical structure and
composition of cities. Appropriate examples were introduced by ApPLIN (2003), MEAILLE &
WALD (1994) or ROESSNER ET AL. (2001).

Recent developments in satellite remote sensing offer new opportunities to capture
small urban features and structures with an improved spatial resolution (cf. Figure 3-1 and
Figure 3-2). The availability of commercial very high-resolution (VHR) as well as extremely
high-resolution satellite data at the sub-meter level, for example IKONOS (pan), QuickBird-1
& 2 (pan)?® (cf. chapter 5.1 and Table 5-1), WorldView-1 & 2 (pan)*, and GeoEye-1 (pan),
enable since the 21% century the chance to identify recent small-scale land use structures
and dynamics in mega cities at /ocal scale (cf. Table 3-3 and Table 3-4). This is especially

valuable in data poor environments, which means in developing countries (cf. chapter 3.3)

4 DigitalGlobe currently operates the QuickBird satellite, which can collect panchromatic images with 0.61 m resolution at nadir. The
satellite, launched in October 2001, also collects multispectral images with 2.5 meter resolution. Operated by Digital Globe as well,
WorldView-1, launched in 2007, is a high-capacity, panchromatic earth imaging system features half-meter resolution imagery and is
therefore the subsequent operation of QuickBird. Digital Globe’s satellite WorldView-2, launched on October 8%, 2009 has in
addition the possibility of recording multispectral image data in eight spectral ranges with a spatial resolution of 1.8 m. The data

flow of VHR data is therefore secured.


http://www.satimagingcorp.com/satellite-sensors/quickbird.html
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(Mesev 2003, TURKSTRA & RAITHELHUBER 2004). According to Rosst (2003) “the full commercial
availability of VHR satellite data has opened up a number of new opportunities for the use of
Earth observation data” and may be therefore considered as a new era of civilian satellite
remote sensing, with potential in particular for applications in urban studies (DONNAY 2001,
HEROLD 2004, MEINEL ET AL. 2001, VoLpE & Rossi 2003). The further development and
subsequent operation of the so called “third generation space borne sensors” has attracted
considerable interest from the remote sensing community (ApLIN 2003). Hence, a significant
number of studies have reported on the benefits of VHR satellite sensors applied to urban
areas. Several authors have already utilized VHR satellite data to extract land cover as well
as land use related information. For example, VAN DE VOORDE ET AL. (2004) carried out a
study on the city of Ghent, Belgium, whereas REGO & KocH (2003) worked with images of the
city of Rio de Janeiro, Brazil. VHR remote sensing data are moreover used for urban feature
extraction and identification of small objects (e.g., QUINTILIANO & SANTA-ROSA 2003, ALKAN ET
AL. 2008), for mapping of impervious surface and built-up area (e.g., YUAN & BAUER 2006, LI
ET AL. 2010) as well as for the detection and monitoring of informal settlements (e.g.,
HoFMANN 2001a, LEMMA ET AL. 2006, BAUD ET AL. 2010, KUFFER ET AL. 2013) or disaster and
vulnerability assessment (e.g., GAMBA ET AL. 20078, TAUBENBOCK ET AL. 2007, 2008 & 2011, GEIB
& TAUBENBOCK 2013, and MUCK ET AL. 2013) (cf. chapter 3.1 and 3.3). Moreover, data of VHR
optical satellite sensors provide a viable alternative to generate digital surface and digital
terrain models (ALOBEID & JACOBSEN 2008). Hence, various studies have shown that VHR
image data, primarily because of its panchromatic band, allow for high precision in urban
mapping and analysis. In turn, this proves that VHR images are representing an alternative
to aerial photography for detailed applications in the urban environment (BAUER &
STEINNOCHER 2001).

Landsat TM SPOT 4 Sensor
30m 10 m GSD
1982 1986 Available since

Figure 3-2: Development of ground sampling distance (GSD) of selected remote sensing satellite sensors (Source:
NEUBERT 2005, modiified).
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Moreover, it should be recognized that diversity not only is present within but also
between urban landscapes which makes it impossible to advocate for specific remote
sensing data or a general classification system. The heterogeneity — in terms of its spatial
and spectral properties — is not only visible within one city; urban environments also vary
externally according to their location. For example, the sprawling landscapes of Asian mega
cities (CHEN ET AL. 2000) are very different to the densely packed cities of Europe (FORSTER
1983) and the expansive North American urban areas (MASEK ET AL. 2000, SMALL 2003).
“Spatial resolution requirements for urban areas will vary considerably according to land use
and location and, as such, any example of urban classification analysis should be considered
in the context of its study area” (ApLIN 2003).

The usefulness of a given type of remotely sensed imagery for detecting, identifying,
and analyzing very specific types of urban information should not be judged solely by its
spatial characteristics. In addition to the geometric elements and therefore the spatial
resolution of images, the spectral response acquired by the remote sensor should be taken
into consideration for characterization and analysis of urban land surface objects (JENSEN &
CoweN 1999, HeEroLD 2004). The spectral resolution refers to the number of spectral bands,
their band widths and locations along the electromagnetic spectrum (EMS) (cf. Appendix,
A.2). Most of the former and current airborne and satellite based sensors capture in the
visible and infrared (IR) regions of the EMS. According to the number and location of
spectral bands, different terms are used for sensors in the remote sensing community. For

|"

example, the term “multispectral” is commonly used for remote sensing sensors that are
equipped with up to ten spectral bands (cf. Table 3-2). Each band is sensitive to radiation
within a narrow wavelength band. The resulting image is a “multilayer” image which covered
both the brightness and color (spectral) information of the targets being observed. Several
multispectral systems offer worthwhile capabilities for urban applications. Examples are
amongst others the optical sensors Landsat TM and ETM+ (Enhanced Thematic Mapper),
SPOT as well as RapidEye, IKONOS and QuickBird. Although the spatial resolution of the
multispectral Landsat TM system is too coarse for identification of fine urban infrastructure
elements, the images are, foremost because of its spectral information, suitable for the
detection of significant spatial and temporal variations in urban vegetation and surface
temperature (SMALL 1999, SMALL & MILLER 2000, ANIELLO ET AL. 1995). Moreover, Landsat TM
data were for instance used for assessing urban land cover changes (M@LLER-JENSEN &
YANKSON 1994), the detection of pockets of urban poverty (HALL ET AL. 2001) as well as in
conjunction with census data for quality of life assessment (Lo & FABER 1997). Exemplary
studies using Landsat ETM+ are presented for instance by FORSYTHE (2003), YIN ET AL.
(2005), TATEM ET AL. (2005), and TAUBENBOCK ET AL. (2009a). Due to the long lasting history
of image acquisition of the Landsat sensor series this data is of very high value in terms of
long term monitoring of urban growth patterns (HOFFHINE WILSON ET AL. 2003, MOELLER 2005)

and urban change detection monitoring in general (HARTVICH ET AL. 2001). Urban growth is
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monitored also by means of multitemporal SPOT image data (e.g., KOLEHMAINEN & BAN 2008,
DE JONG ET AL. 2000). As above mentioned the sensors IKONOS, QuickBird, and WorldView-2
are first and foremost characterized by very high spatial resolution. Nevertheless their
multispectral information is very useful for applications in the urban environment.
Particularly vegetation analyses (SMALL 2007) and studies for the identification of small-scale
features such as individual roads and buildings in urban environments (SHACKELFORD & DAvIS

2003) benefit from the spectral properties of these sensors.

Again, urban environments are heterogeneous, and, because of their variety and
mixture of urban materials, spectrally very complex. This phenomenon is often contained in
one image element and produces the already mentioned “mixed pixel problem”. Not only
(and not in any case) may improved spatial sensor resolution solve this problem. Another
opportunity to overcome this obstacle can be the application of “hyperspectral” image data.
Hyperspectral sensors® acquire images in about a hundred or more contiguous spectral
bands each with a small bandwidth of 10 nm (cf. Table 3-2). While spaceborne systems such
as Hyperion (URL 13) and CHRIS Proba (Compact High Resolution Imaging Spectrometer)
(URL 14) are mostly insufficient in their spatial resolution needed for urban applications,
airborne systems such as AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) (URL 15)
and HyMap (Cocks ET AL. 1998) are the most advanced hyperspectral sensors available for
urban studies (HOSTERT 2007). Using hyperspectral remote sensing data the precise spectral
information makes it easier to identify and differentiate clearly between urban objects
surfaces and at least objects themselves and they allow for precise determination of the
chemical-physical material properties (MOELLER 2005, HEROLD 2004, NAVULUR 2007, JENSEN &
COWEN 1999, GOETZ ET AL. 1985). In the beginning of urban remote sensing, only few remote
sensing scientists have dealt with hyperspectral image data in the urban environment (e.g.,
BING ET AL. 1998). Those studies have turned out, that hyperspectral remote sensing systems
were limited in their quality and application, and are mainly in an experimental stage. But
recently, there has been an increasing interest in more detailed urban mapping using
hyperspectral remote sensing. Hence, a growing number of studies have begun to benefit
from the large amount of spectral information. Case studies which demonstrate that
hyperspectral approaches expand the range and accuracy of urban studies are given by BEN-
DOR ET AL. 2001, HEPNER & CHEN 2001, ROESSNER ET AL. 2001, BocHOw ET AL. 2006, JUNG ET AL.
2007, FAUVEL ET AL. 2009, LuLLA 2009 or HEIDEN ET AL. 2001 & 2012.

In addition to daytime optical remotely sensed data, some other spectral data types
might be valuable for analysis in the urban environment, which are listed below briefly, each

with corresponding examples from urban studies:

5 A hyperspectral imaging system is also known as an “imaging spectrometer”.



Remote Sensing of Urban Areas: Status of Research 46

+ Thermal remote sensing data (e.g., WENG & QUATTROCHI 2006, XIAN & CRANE 2006, LO ET
AL. 1997, OGASHAWARA & DA SILVA BRUM BAsTOS 2012),

+ Night-time optical remote sensing data (ELVIDGE ET AL. 2009, SUTTON ET AL. 1997 and
2007, SUTTON 1997, ANDERSON ET AL. 2010, GAO ET AL. 2015),

+ Active microwave remote sensing data (e.g., HENDERSON & XIA 1997, GAMBA ET AL. 2006,
EScH ET AL. 2006, STILLA & SOERGEL 2007, CHANG & XUAN 2012), and

+ LIDAR remote sensing data (e.g., MALLET ET AL. 2008, SECORD & ZAKHOR 2007, STEEL ET AL.
2001, SHAN & SAMPATH 2007, TIWARI & PANDE 2011).

More information and examples to these data types and urban applications have already

been presented in chapter 3.1.

The temporal resolution is the third dimension of remote sensing image data that
should be considered, especially when studying the urban environment. Temporal resolution
is defined by the time frequency with which the same study area is covered by the sensors.
An ideal sensor system would be able to cover permanently the entire Earth and would
deliver this image data in real time. Until today, due to technical restrictions, such a “perfect
system” does not exist and will not be realized in the near future. At present, there are two
different types of sensors recording remote Earth data: (1) geostationary satellites and (2)
polar orbiting systems or sun-synchronous satellites. Although images of geostationary
satellites, such as Meteosat (URL 16), send real time images covering the entire globe from
the North Pole to the South Pole, they are not useful for urban remote sensing applications
since they provide very coarse spatial resolutions. Imaging satellites like Landsat or ASTER
are launched in a sun-synchronous orbit that results in the satellite revisiting a given area of
interest on the Earth at the same solar time. Typically they offer a revisit time of 16 days.
Further, SPOT and sensors like IKONOS, QuickBird, and others offer side looking capabilities
and have therefore the flexibility to record off-nadir, increasing the frequency of the
repetition cycle up to three days. However, this off-nadir shots do not offer a true nadir
view, what, in turn, limits the usage in some ways and degree. Another key parameter in
terms of temporal resolution should be kept in mind. Namely the actual cloud coverage
affects the quality of an image over a given study site. In tropical regions with a dense cloud
layer, a clear view to the Earth’s surface is mostly limited. Particularly in this latitude optical
spaceborne sensors are thus unsuitable, whereas aerial sensors have the advantage of
collecting data underneath the clouds and sensors with SAR capabilities may “see” through
the cloud layer (JENSEN & COWEN 1999, NAVULUR 2007, MOELLER 2005). In addition, when
monitoring urban areas using remotely sensed data, urban phenomena progress through an
identifiable developmental cycle, for example vegetation progress through a phenological
cycle, should be considered. This means that an image interpreter must be able to

understand the “temporal resolution” of these urban phenomena. Finally, JENSEN & COWEN
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(1999) pointed out that temporal resolution also may refer to how often city planners or
managers need a specific type of information. For example, urban planners may demand for
population estimations every five years in addition to the estimations offered by decennial
censuses. The repetition rates for many important urban purposes required by managers are

summarized inTable 3-1.

All in all, urban attributes and phenomena show specific characteristics in different
spatial, spectral and temporal dimensions and can be identified and observed using diverse
remote sensing data (HEROLD & ScHMULLIUS 2005). Linking different spatial scales and
spectral characteristics as well as in-situ observations allows for generating data products
that support local planning agencies and decision makers. This progress requires on the one
hand continuity in Earth observations in all these scales and dimensions and on the other
hand the continuous (further) development of new techniques and analysis methods. The

following chapter will discuss this topic in more detail.

3.2.2 Enhancements of Remote Sensing Methodologies

“To understand the dynamics of patterns and processes and their interactions in heteroge-
neous landscapes such as urban areas, one must be able to quantify accurately the spatial
pattern of the landscape and its temporal changes” (MELESSE ET AL. 2007 after Wu ET AL.
2000). Preconditions for this are: (1) to have a proper standardized method to define the
components of the urban surface, (2) to detect, identify, map and analyze these in a
repetitive and consistent way, so that a (at best a general accepted) model of urban
morphology may be developed, and monitoring and modeling their changes over time is
made possible. This requirement itself calls for (3) adequate Earth observation data that
provides useful information for urban applications (cf. chapter 3.2.1). Another key require-
ment is (4) the integrative use of Earth observation mapping and monitoring products with
existing socio-economic data and information (MELESSE ET AL. 2007, HEROLD & SCHMULLIUS
2005) (cf. chapter 3.3 and 3.4, chapter 6.2 and 8).

As described in the previous chapter 3.2.1 a wealth of advancing remote sensing
technologies were developed especially in the last fifteen years. Hence, a large amount of
adequate Earth observation data providing valuable information for urban applications is
available. But, HOSTERT (2007) has stressed in this context also that new remote sensing
technologies do not, per se, lead to more advanced image analysis results. HOSTERT (2007)
emphasized that “sensor improvements need always to be understood in the context of
matching methodological progress, i.e., innovative data sets need to be adequately explored
through adapted processing schemes”. In the large majority of cases, but especially in the

urban context, there is no simple or even generally admitted methodology for analyzing
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remotely sensed image data effectively and for extracting of useful information (HOSTERT
2007).

Today, manifold methods to extract meaningful information from remote sensing image
data covering urban environments exist. However, to get there was a quite long way of
technical and methodological developments. Likewise the development of appropriate pre-
processing techniques (for urban applications), the advances achieved in methods of

information extraction have been considerable during the last ten years (HOSTERT 2007).

At the beginning of urban remote sensing, detailed and accurate information about
urban land cover and land use was provided by visual interpretation of aerial photographs
(cf. chapter 3.2.1). Visual analysis is until today the simplest method to yield meaningful
information from remotely sensed data (HEROLD 2004, HURSKAINEN & PELIKKA 2004, MESEV
2003, NEUBERT 2005). After PHILIPSON (1977 quoted in JENSEN 2006) visual interpretation can
be defined as “the science and art of observing images with the objective of identifying
different objects and judging their significance”. Although as old a method as interpretation
of remotely sensed data itself, visual interpretation is still beneficial for all scales of urban
remote sensing studies, “at least as a method available when all other methods fail or are
not available for some reason” (HURSKAINEN & PELIKKA 2004). Moreover, this method is used
for visual validation and evaluation (cf. e.g., chapter 5.3, 6.1.1 and 7.1.1). Precondition for
the application of this method, and thus for visually interpreting textural, contextual and
spatial configurations of urban features, of course is broad background knowledge of an
experienced interpreter (HAACK ET AL. 1997). The interpreter evaluates the following features

to identify meaningful image components (ALBERTZ 2001, HILDEBRANDT 1996):

+ Color and color saturation (or rather brightness and differences in brightness using
panchromatic image data),

+ Texture and pattern,

+ Object shape and size,

+ Absolute and relative location,
+ Shadow,

+ Association (in the conjunction with context information, e.g. proximity to objects or
neighborhood relations), as well as

+ Vestiges of human utilization, cultivation, and planning (cf. Table 3-5).

The essential advantage of the visual analysis is that not only an isolated spot within the
image is examined but the context information is considered as well. The simultaneous

collection of different image object features enables even the recognition of highly complex
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circumstances and hence a very good and extensive extraction of the information content of
the image data is achieved. Drawbacks of this method include slowness, and a low
cost/efficiency ratio (HURSKAINEN & PELIKKA 2004). Although this approach requires only about
a quarter to a fifth as much time as terrestrial mapping (BUDER 1998), it is much more time
consuming than computer-based methods. Another disadvantage is the image interpreter’s
lack of objectiveness. Discrepancies in expert knowledge, visual sensitivity and different
image interpreters’ ability to judge, result in different outcomes. Detailed information about

visual interpretation is documented for instance by HAACK ET AL. (1997) or HEROLD (2004).

Recently, digital image processing technigues have been widely applied in urban land
cover and land use classification and change detection. Much of the expert knowledge of the
human image interpreter, continuously derived during remote sensing enhancements, is
translated into the (semi-) automated digital analysis of satellite imagery. Digital techniques
can of course go beyond the capabilities of human interpreters, particularly in generation of
quantitative and consistent indicators and relationships of spatial land cover features. This
potential may “provide a new level of understanding of urban form and improved mapping
products” (HEROLD 2004). In digital image interpretation and analysis two main methods are
available: (1) the statistical approach, based on the image and pixel histogram values
respectively and (2) the image object-based approach®. In the past decades, the pixel-based
algorithms are the main image processing means. For pixel-based approaches, usually
multispectral image data are used for classification, and of course, only the spectral
information presented within the data for each pixel is used as the numerical basis for
categorization. The multispectral classification is based on conventional mathematic-
statistical techniques, such as supervised and unsupervised classification (MATINFAR ET AL
2007, APLIN2003, MOELLER ET AL. 2004, XIAOXIA ET AL. 2005). Both methods are based on the
assumption that the different spectral classes are distributed in the n-dimensional image

feature space (n = number of spectral bands).

Many different types of pixel-based classification analysis have been applied to urban
environments. Statistical algorithms, such as maximum likelihood (ML), minimum distance
(MD) or nearest neighbor (NN) have been used widely (e.g., STEFANOV ET AL. 2001, CHAN ET
AL. 2001), while other classifiers such as neural networks are increasingly being implemented
(e.g., GAMBA & HOUsHMAND 2001) (cf. Table 3-5).

6 Today several terms for the analysis of image objects extracted from remote sensing data exist. Some authors use for instance the
term “segment-based” or “segmentation-based” image analysis (e.g., GREIWE & EHLERS 2004, NEUBERT 2005). Within this study the

term “object-based” image analysis is preferred and used interchangeably with the term “object-oriented”.
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Table 3-5: Comparison of different analysis methods of remotely sensed image data

Classification methods

Comparison
criteria Visual image Pixel-based Per-parcel Neural Object-based
interpretation classification classification networks classification

) Image and supple-

Input data required Image data Image data mentary data Image data Image data

Main influence fact Broad background Trainin ity of

:Ith:g uer o acer knowledge of an Training S el égé:'tw It?jl 2 Training Parameter choice

0 quality experienced interpreter upp ary data

Utilization of

neighborhood yes no no no yes

relations

Utilization of textures yes possible possible possible possible

Utilization of object
features (apart from yes no no no yes
spectral signatures)

Training effort very high medium medium high medium
Automation level low medium medium medium medium

Applicability for

VHR image data good low good medium good

Source: NEUBERT (2005), modified

Pixel-based classification algorithms are widely used, but the limitations are clear and
widely known. Using this type of so called “hard classification” algorithms too many or not
well defined land cover/use classes are produced and thus rarely an accuracy of greater
than 80 percent can be achieved (MELESSE ET AL. 2007 after MATHER 1999, EHLERS ET AL.
2005). Especially, in the case of classifying complex urban environments with VHR remotely
sensed data the pixel-based method appears not to be suitable any more. Although the use
of VHR image data reduces the mixed-pixel-problem and explicitly improves the visual
interpretability of details on very heterogeneous as well as compact urban areas, the internal
variability and the noise within land cover/use classes is strongly increased. In turn, this
effect within a thematic class or object causes other problems so that traditional pixel-based
classifiers result in “speckled” classifications (so-called “salt and pepper effect”) (CUSHNIE
1987, KM ET AL. 2006, MEINEL ET AL. 2002, VAN DE VOORDE ET AL. 2004). HURSKAINEN & PELIKKA
(2004) mention three factors that limit the application of pixel-by-pixel classifications of
urban areas: On the one hand, pixel elements do not sample the urban area at the spatial
scale of the features to be mapped, and buildings are represented by accumulations of
pixels which should rather be treated as individual image objects. On the other hand, “a
building produces a wide range of spectral signatures as the pixels will represent different
facets of the roof” (SMITH & HOFFMANN 2001). This phenomenon appears primarily at the
classification of informal settlements, where house tops are built up of diverse materials with
varying texture and color (spectra) (MASON & BALTSAVIAS 1997) (cf. chapter 7.2.1). A similar
challenge can represent urban road network — especially in deprived settlements of mega
cities of developing countries —, where different materials alternate within single roads (cf.

Figure 3-3 (2) and Figure 3-3 (3) and chapter 6.1.1). Spectral signatures of single pixels are
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therefore only meaningful in a limited way regarding the class affiliation of an image object
(NEUBERT 2005). Moreover, many surfaces within the urban environment appear spectrally
very similar (e.g., concrete roofs and asphalt roads, or buildings constructed from brick or
adobe and unpaved roads or open spaces) and can thus be differentiated only by some
ancillary context information (cf. Figure 3-3 (1)) (SMITH & HOFFMANN 2001). Shadows of
buildings and trees (cf. Figure 3-3 (4)) as well as sun glint on roofs and interfering objects,
such as cars on roads (cf. Figure 3-3 (5), may complicate classification matters even more
(VAN DE VOORDE ET AL. 2004, NEUBERT 2005) (cf. introduction of chapter 3.2).

Figure 3-3: Examples for factors that limit the application of pixel-by-pixel classifications of urban environment: 1
— difficult spectral differentiation (spectral similarity of urban buildings and adjacent roads), 2 & 3 — spectral
variability (urban road network characterized by different materials alternating within single roads, open space with
different or mixed materials), 4 & 5 — phenomena and objects hampering image analysis (shadows of buildings
and trees or cars on roads) (Data source: QuickBird test site South s3 and South s2 (4, 3, 2)).

“In order to derive useful thematic maps from VHR satellite images of urban areas,
other approaches than the traditional pixel-by-pixel classification is needed” (VAN DE VOORDE
ET AL. 2004). The digital classification of remote sensing data can for instance be carried out

using textural image features (texture analysis). "One way to reduce the “salt and pepper
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effect” in a pixel-based classification is for instance to apply a standard majority filter
(GURNEY AND TOWNSHEND 1983) or a more sophisticated spatial reclassification technique
(e.g., BARNSLEY & BARR 1996) within a moving window or kernel of fixed size” (VAN DE VOORDE
ET AL. 2004). An alternative approach uses a window with varying size as spatial effective
analysis area (e.g., GONG & HOWARTH 1992, FORSTER 1993). Under consideration of adjacent
pixels within a moving window or kernel (also called filter matrix or mask), textures are
computed using different filter approaches from the deviations of the spatially adjacent
spectral values and are assigned to the respective central pixel. Since a single pixel does not
have any texture, the calculated values are not object-related textures as they are utilizable
at a visual interpretation. It rather is a matter of local deviations of grey scale values which
can be described as spectral texture (NEUBERT 2005, CAMP-VALLS & BRuzzONE 2009). In
addition, a widely-used example of texture analysis is the computation of a co-occurrence
matrix, which can be traced back to the work of HARALICK (1979, HARALICK ET AL. 1973) (cf.
chapter 6.1.2).

But also the use of kernel-based approaches has a number of disadvantages. For
instance, especially using a fixed window size, the difficulty of selecting an optimal kernel
size plays an important role. Moreover, the fact that a rectangular window represents an
artificial construct that does not refer to real spatial parcels and land units, which tend to
have irregular shapes and their own distinct spatial boundaries, makes it difficult to achieve
satisfying classification results (VAN DE VOORDE ET AL. 2004, BARNSLEY & BARR 1997, HEROLD
2004). “Hence, region-based approaches which use irregularly shaped areas for spatial
structure characterization are especially useful in applications with homogeneous land use

structures in discrete defined regions, as is found in most urban land uses” (HEROLD 2004).

Pixel-based techniques generally examine only one scale and one pixel at a time,
ignoring neighborhood and concepts hierarchy. To avoid the problems related to the use of
pixel-based methods an alternative way to look at the image data is required. At the same
time, increasing spatial sensor resolution and “wider integration of image-derived knowledge
in policy development and decision making” has increased “the need for information on land
use as well as natural and anthropogenic processes” (SLIUZAS ET AL. 2008a). Hence,
knowledge- rather than data-driven questions have to be answered and therefore the
requirement for fundamentally different analysis techniques than previously available has
increased strongly. Especially in terms of analysis of heterogeneous urban environments,
including conceptual or spatial rules and conditions, a concept not supported by “classic”
pixel-based approaches but identification of geometric primitives and their topology is
promising and needed. For that reason, the introduction of object-based approaches, inde-
pendent of individual pixel DN values, creating meaningful objects, incorporating shape,
texture and the contextual properties as well as considering mutual objects’ relationships for

image classification, has evolved into a veritable alternative for remote sensing image
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analysis (DARWISH ET AL. 2003, HURSKAINEN & PELIKKA 2004, and SLIuzAs ET AL. 2008a). Table
3-6 presents the attributes used for classification in the object-oriented versus the pixel-

based classification approaches.

Table 3-6: Attributes used for pixel-based and object-oriented image classificatiob

Color/spectral Form/Shape Area/Size Texture Context
Pixel-based v X X X X
Object-oriented v N N N N

Source: XIAOXIA ET AL. (2005)

In general, an object-based image analysis process can be divided into two main work-
flow steps: (1) the multi-resolution image segmentation of data into rather homogeneous
and meaningful regions (objects or segments), for example, by means of the spatial and
spectral characteristics, and (2) the knowledge-based classification of the produced image
segments (XIAOXIA ET AL. 2005, BAATz & ScHAPE 2000). Since an object-oriented image
analysis approach is used within this study to analyze VHR image data of the mega city
Delhi, India, a detailed description of image segmentation and subsequent classification
algorithms is given in the methodological part of this thesis (chapter 6.1.1 and chapter 6.1.2
respectively).

Ill

However, in order to give the reader a first comparison with “classical” image analysis
methods and to explain why the OOA approach was chosen for this research, the strengths
of OOA shall be provided within this chapter. Analyzing image segments instead of single
pixels has significant and comprehensible advantages (cf. Table 3-5). First, meaningful
image segments and their mutual relationship represent the important semantic information
necessary to interpret an image in a more sophisticated way and extent than single pixels do
(BAATZ & ScHAPE 2000). SLIuzAs ET AL. (2008a) have underlined that the “real strength of
OOA, however, lies in a combination of multi-scale segmentation with subsequent contextual
analysis, whereby the spatial, spectral and contextual properties of extracted segments at
different spatial scales are used in conjunction with spatial rules in a subsequent
classification”. This means that the produced image objects of an OOA “come closer to the
spatial and therefore spectral and textural characteristics of the real world structures”
(TAUBENBOCK & ROTH 2007). Moreover, the OOA overcomes the problem of salt-and-pepper
effects found in classification results from traditional pixel-based approaches (HOSTERT 2007,
VAN DE VOORDE ET AL. 2004). Hence, several authors are of the opinion that the advantages of
OOA are very useful for the analysis of heterogeneous urban environments, especially in
terms of analyzing geometric VHR remote sensing data (e.g., HOSTERT 2007, XIAOXIA ET AL.
2005). At the same time, SLIUZAS ET AL. (2008a) pointed out that urban environments tend to

challenge a straightforward application of OOA. For them it originates from the simultaneous
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excess and scarcity of information, especially in VHR image data. For example, such high
detail in the image data means that urban objects of interest, such as buildings (i.e. roof
materials and quality), appear with increasingly large spectral variations, hampering their
automatic extraction as homogeneous regions. Vice versa, however, using only the multi-
spectral band of VHR image data (e.g., the 2.44 m ms band of the QuickBird sensor, which
data is applied in this study) it is not possible to detect and map many relevant urban
features, especially in very dense areas occupied by small, closely packed dwelling units
(SLiuzas ET AL. 2008a) (cf. chapter 3.2.1). Here, a resolution merge of the different bands of
the image data, as mentioned before within this chapter, can be a promising answer to this

problem (cf. chapter 5.1.2).

The utility of object-oriented analysis (OOA) has already been demonstrated in many
research fields, such as vegetation and ecological mapping (e.g., ADDINK ET AL. 2007,
ATZBERGER 2004, LALIBERTE ET AL. 2004, HESE & ScHMULLIUS 2005, TAPAS ET AL. 2012),
classification of agricultural areas (e.g., OzDARICI & TURKER 2006), geological and soil
mapping (e.g., MAVRANTZA & ARGIALAS 2006, ), resource management (MAKELA & PEKKARINEN
2001) as well as risk and vulnerability research (e.g., EBERT ET AL. 2007, TAUBENBOCK ET AL.
2008) and hazard assessment (e.g., SUMER & TURKER 2006). Object-oriented classification
methods have been also used to study a variety of urban phenomena. Kux ET AL. (2006)
showed, using the example of Sdo José dos Campos, Brazil, that OOA presents a strong
potential to classify urban land cover out of VHR satellite images. Also VAN DE VOORDE ET AL.
(2004) demonstrated that OOA is a useful technique for the extraction of land cover related
information for urban areas. Several scientists have concentrated on mapping certain land
cover classes using object-oriented methods. For example, ZHU ET AL. (2003) and YUSOF ET AL.
(2008) investigated in urban vegetation extraction. Yusor ET AL. (2008) mapped moreover
open spaces in the city of Kuala Lumpur, Malaysia. Other authors concentrated on the
identification and measurement of impervious areas (e.g., KAMPOURAKI ET AL. 2006, YUAN &
BAUER 2006). The research of EScH ET AL. (2005) showed the applicability of an OOA for the
identification of built-up areas. Further, OOA are valuable for feature extraction such as
buildings or roads (ALKAN ET AL. 2008). However, producing suitable mapping results is
limited by shadow and neighbored buildings. Especially VHR image data is frequently
affected by shadows, particularly in urban areas with large variations in surface elevation.
Generally, it is critical to restore the radiometric response for the shaded zones before
classification, or differentiate between shaded and non-shaded areas. Since shaded regions
of certain land cover types show different spectral responses from those that are non-
shaded, ZHou ET AL (2009) found out that using the same procedure for classification of
shaded and non-shaded areas may lead, to significant errors in urban land use/cover
classification. To meet the requirements and reduce the shadow effects in urban classi-
fication, the mentioned scientists compared several methods for classification of shaded

areas using object-oriented procedures. Their results are useful for users to select
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appropriate methods. Another application field of OOA is the monitoring of urban growth.
For example, the analysis of MOELLER (2005) using long term remote sensing imagery from
several sensor systems shows the capability for in depth monitoring of urban growth
patterns. The outcome of this study may be a basis for the comparison of different cities
with the same scheme. The transferability of stable object-oriented classification approaches

is also supported by the work of TAUBENBOCK & ROTH (2007) or MOELLER ET AL. (2004).

The results of several studies have demonstrated moreover that remotely sensed data
in combination with OOA can be used to detect and discriminate informal settlements from
other urban land use forms (e.g., HOFMANN 2001a, SLIUZAS ET AL. 2008a, KOHLI ET AL. 2013)
(cf. chapter 3.1). SLIUzAS ET AL. (2008a) noticed in this regard that object-oriented processing
has “the ability to integrate context, multi-type data (both image and thematic) and a
reasoning approach similar to that of an experienced analyst evaluating images visually”.
Moreover, the authors pointed out that a concept of Human Urban Patches (HUPs) (as
presented for instance by HEROLD ET AL. 2001) can be applied to map areas of urban poverty
and deprivation, to asses their spatial evolution, and to derive further quantitative
parameters. HUPs are areas of similar urban structure showing similar properties according
to their size, shape and color, and significant variability in their density, spatial patterns and
fragmentation (HEROLD ET AL. 2001, SLiuzas ET AL. 2008a). SLIuzAS ET AL. (2008a) concluded
therefore that, “provided a valid spatial description of a deprived area [...], such spatial
metrics can be used” for: (1) the identification and quantification of deprived/informal
settlements with similarly physical entity in the same urban environment, and (2) the
provision of useful information on the actual physical state within the patches, such as
building area and density, vegetation fraction, or the amount of paved versus unpaved
roads. Moreover, HUPs can (3) be described with respect to their proximity to public service
or transport infrastructure, or other environmental parameters, such as risk exposure to
hazards (cf. chapter 2.3 and Figure 2-6). Based on their changing spatial metrics it is also
possible to (4) monitor changes within HUPs over time. Several authors used a HUP-related
approach to describe the urban environment. For example, NOBREGA ET AL. (2006) attempted
to identify roads in VHR data using an OOA, and used the paved/unpaved ratio to identify
informal settlements in the mega city of S3o Paulo, Brazil. The preliminary findings of
SLIUZAS ET AL. (2008a) show the potential of OOA to provide useful information on aspects of
the physical state of HUPs. For example, information on pattern, density, and fraction of
vegetation can be derived from the image data. But they also found out that more
contextual information needs to be included in order to improve the description of HUPs and
to relate them with levels of physical deprivation. The present study makes also use of the
strengths of OOA to map homogeneous urban areas based on their topology and
characteristically observable parameters (cf. chapter 6 and chapter 7). Within this research
different settlement types (= different HUPS) in the mega city of Delhi, India are extracted.

Hereby, since there is particularly need for action, special importance is attached on the
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identification of informal settlements within the urban environment (cf. chapter 4.1 and
7.2.1). Recognizing that some parameters relevant to informal settlement characterization
cannot be extracted from the VHR imagery directly, an integrative data analysis using
information based on questionnaires is implemented to derive socio-economic information

such as population and water related parameters (cf. chapter 6.2 and chapter 8).

A comparison with other, conventional methods is likely the best way to assess the
ability and quality of object-oriented classification approaches. The work of YUAN & BAUER
(2006), where object-oriented and pixel-based classifications are explored and compared
regarding their ability to map impervious surface areas, is a representative example for such
a comparative study. They found out that the OOA produces more homogeneous land cover
classes with higher overall accuracy. Since the OOA is based on fuzzy theory, its
classification results were also more reasonable when dealing with mixed pixels that include
more than one class. In contrast, for impervious surface mapping, the pixel-based ML
classification performance seemed to be better for delineating small impervious patterns
such as a single-family residential building. Since both object-oriented and pixel-based
algorithms have their pros and cons, sometimes it is worthwhile combining both methods.
Thus, SHACKELFORD & DAvis (2003) presented a combined fuzzy pixel-based and object-
oriented approach for classification of urban land cover from VHR multispectral image data.
Another approach involves the generation of two independent but rudimentary urban land
cover products, one spectral-based at pixel level and one segment-based. These
classifications were then merged through a rule-based approach to generate a final product

with enhanced land use classes and accuracy (GUINDON ET AL. 2004).

As described in chapter 3.2.1 hyperspectral image data with contiguous and narrow
bands are needed to differentiate the subtle spectral differences in heterogeneous urban
environments. The extreme variety and mixture of natural and anthropogenic materials can

Ill

usually not be handled using a “classical” analysis approach of supervised or unsupervised
image classification. Hence, hyperspectral image analysis tools, such as spectral unmixing,
spectral feature fitting, or spectral angle mapper, show a great potential for analyses in
urban environments based on image data providing spectral high-resolution. Detailed

information on this topic can be found at HOSTERT (2010).

At the beginning of this chapter it was explained that the integrative use of Earth obser-
vation mapping and monitoring products with socio-economic data and information is a key
requirement to understand the dynamics of patterns and processes and their interactions in
heterogeneous urban areas (HEROLD & ScHMULLIUS 2005). Compared to Earth observation
data, socio-economic data is usually without spatial reference or is spatially aggregated. An
appropriate conceptual framework for data integration purposes and corresponding drivers

and factors of urban processes is presented in Figure 3-4.
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process to structure)” (HEROLD &

ScHMULLIUS 2005). The information derived by linking these two approaches provides an
appropriate framework for mapping, monitoring, and modeling phenomena in urban
environments. This information is, on the one hand, required to assess and describe social,
economic, and ecological impacts of the ongoing urbanization process. On the other hand,
such information has become indispensable to pre-estimate and predict future changes and
trends of development in urban environments on global as well as on local scales. Not only
in opinion of HEROLD & ScHMULLIUS (2005), but also in opinion of other scientists (e.g.,
SLIUZAS ET AL. 2008a, TAUBENBOCK ET AL. 2009), integrative research work will support building
the bridge between observation and use and will therefore make a contribution to an
improved understanding which supports applied urban planning and management (DONNAY
ET AL. 2001, HEROLD 2004, HEROLD & ScHMULLIUS 2005). Condition precedent for a successful
integrative use of Earth observation mapping and monitoring products with existing socio-
economic information is that both disciplines, remote sensing and social science, are working
closer together in the future. The following chapter will explain in more detail why
integrating social science and remote sensing is a promising and emerging agenda in urban

research applications.

3.3 Linking Urban Remote Sensing and Social Science

In general there is an increased interest today in making scientific progress through using
remotely sensed images in social science (RINDFUSS & STERN 1998). Urban remote sensing is

a meeting point for social and physical sciences. Moreover, “social applications of remote
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sensing can inform the research agenda of the urban remote sensing arena” (RASHED &
WEEKS 2003).

However, the interest in this “multidisciplinary and multisectoral urban environmental
research” (MILLER & SMALL 2003) was not always as big as today (RINDFUSS & STERN 1998).
Despite the apparent advantages and benefits of remotely sensed data for social applica-
tions, remotely sensed images have not been a popular data source for social science
research in the past and today are still only rarely taken into consideration. According to
RINDFUSS & STERN (1998), there are miscellaneous reasons for this development. First, social
scientists are likely to be skeptical that remote sensing can measure anything considered
important in their area of research. Visible human artifacts such as buildings, parks or roads
are less interesting for social scientists than the abstract variables that explain their
appearance and transformation. Variables, such as government policies, distribution of
wealth and power or market mechanisms, are more important for them and are, doubtlessly,
not directly reflected in remote sensing images. Secondly, social scientists are more
concerned with the question why things happen than where they happen (TURNER 1991,
1998). Relatively few social scientists, despite the field of geography, value the spatial
parameter that remote sensing data can provide (FAUST ET AL. 1999, GEOGHEGAN ET AL. 1998,
RINDFUSS & STERN 1998). Thirdly, many social scientists do not know what a pixel is, what
represents the electromagnetic spectrum, or why one needs quite often an atmospheric
correction of remotely sensed images. Vice versa, the majority of remote sensing experts are
unlikely to be conversant with a wide range of social problems and solutions. They have
overlapped only a little with social scientists in their backgrounds, theories and methods.
Thus, “integrating social science and remote sensing will require the fusion not only of data,
but also of quite different scientific traditions” (RINDFUSS & STERN 1998). Finally, linking
remote sensing and social science undoubtedly entails the risk frequently encountered by

those who do interdisciplinary research.

Regarding this discrepancy of approaches between the two research disciplines, why
should scientists of both sides anyhow try to overcome this gap and bridge social science
and remote sensing? Why it is important to link people and pixels? What can remote sensing
do for social science and especially for urban studies? And what can social science do for
(urban) remote sensing? RINDFUSS & STERN (1998) give an idea of further ways how linking
people and pixels might result in “better” social science. The authors summarize how remote
sensing observations provide uniquely useful information for social research. In addition,
they describe the potential practical value of social science to remote sensing as well as
several kinds of scientific contributions to remote sensing that might come from its

interaction with social science. In the following the topic shall be introduced briefly.
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For social science experts, one crucial reason for using remote sensing images is to
obtain information on the context that evokes social phenomena. The function of context
has become more and more important to the theories and empirical work of numerous social
scientists. The analysis of remote sensing data offers an additional source of contextual data
for multilevel analyses. Contexts can be determined in different ways. Censuses are one
example (WEEks 2001, RINDFUSS & STERN 1998).

Moreover, remote sensing can provide data for various dependent attributes associated
with human activity. First and foremost the environmental impacts of numerous social,
demographic or economic processes. Surveillance and monitoring of land cover may present
the fingermarks of road development, desertification, and deforestation as well as of course
urbanization. As another example, “the observation of new building construction may be
linked to the effects of local policies on land use and property taxation” (RINDFUSS & STERN
1998) as well as to the impacts of insufficient management and planning as a result of rural
exodus and migration into the cities. Methods that link results of remote sensing observation
with ground-based social data have the capability to improve the understanding of the
parameters of different land use changes and therefore of developments in the urban
environment. COWEN & JENSEN (1998) give an example for such method development in
which residential development is the parameter being predicted. Thus, using remotely

sensed data makes it possible to measure social phenomena and their effects.

Remote sensing can provide a number of further indicators for social science studies.
These indicators can complete indicators acquired on ground. For example, urbanization can
be monitored by counting buildings permits, sampling settlement blocks or remotely sensing
the proportion of impervious and not impervious land (COWEN & JENSEN 1998) (cf. chapter
3.1). All data sources have their drawbacks and limitations, but the combination of various
sources with different imperfections might provide a better or even complete picture of the
social phenomenon (RINDFUSS & STERN 1998).

Another advantage of remote sensing images is the higher temporal and greater spatial
resolution than data from other sources have. This quality can be used for instance during
intercensal periods to update the census reports or to make census data generally available.
In more developed countries census data are mostly very accurate, but they are collected
infrequently. Sometimes, particularly in less developed countries, census data are reported
inaccurately for several geopolitical or cultural reasons, or are not available at all. As a cost-
effective data acquisition technology, remote sensing has been more and more used for
population estimation. The early roots of research in population estimation go back to the
1950s and gained increasingly in importance since the 1970s (LIANG ET AL. 2008). COWEN &
JENSEN (1998) exemplify the ability in this research field on correlations between remotely
sensed indicators of dwelling units and actual census. Lo (1986), CHEN (2002), HARVEY
(2002a, 2002b and 2003), HOFSTEE & IsLAM (2004), Souza ET AL. (2002), Liu & CLARKE (2007),
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QIU ET AL. (2003), WU & MURRAY 2007, LIANG ET AL. (2008), Lu ET AL. (2006) or Liu & HEROLD
(2007) as well as DOBSON ET AL. (2000), WANG & Wu (2010) and KANJIR ET AL. (2012) give
other examples for population estimation using different satellite data and methods. Thus,
research has proved that remotely sensed data are efficient and effective in estimating
population of urban areas. However, RINDFUSS & STERN (1998) also draw one’s attention to
the limitations in the use of remote sensing for population estimates. Thus, it is e.g. not
possible to discriminate clearly between residential buildings and others or to sense the
amount of people per housing unit or housing units per building. The latter is a subject this
study also is dealing with. In order to sort out this inability, in-situ studies (household
survey, cf. chapter 5.2 and ancillary field data, cf. chapter 5.3) are necessary to determine
how the number of people per dwelling unit varies with the living conditions and thus with
the socio-economic and physical characteristics of different settlement types. In the opinion
of RINDFUSS & STERN (1998) remote sensing might help to improve population estimates, if
the difference is sufficiently systematic. Whether and to which extent this is possible will
show the present analysis that uses remotely sensed data of very high spatial resolution and
survey data of Delhi (cf. chapter 8). Nevertheless, a number of methodological studies are

necessary, before a routine use becomes possible.

Remote sensing images have been used also to obtain other significantly socio-
economic parameters, especially in urban contexts. For example, traffic patterns and road
conditions (DELL’AQUA ET AL. 2003, DAMM ET AL. 2005, HAVERKAMP 2002, NOBREGA ET AL. 2006,
SHACKELFORD & DAvis 2003, ZHANG & COULOIGNER 2006) (cf. chapter 3.1) as well as physical
features of buildings (e.g., area or height) (CENTENO & Miqueles 2004, TupiN 2003) are
investigated by the remote sensing community. Moreover, residential energy demand is
determined or prediction models of urban expansion (CHENG 2003, CHENG & MASSER 2003,
CLaPHAM 2001, GLUCH 2002, HEROLD ET AL. 2005, SILVA & CLARKE 2002) or shrinkage (BANZHAF
ET AL. 2007) respectively are developed using remote sensing observation techniques. Some
of these approaches and methodologies are in advanced stages, but some are still in its
infancy. Hence, "more experience is necessary to determine how well they work across a
variety of social and geographic conditions and over longer periods of time” (RINDFUSS &
STERN 1998). These determinations “may provide important advantages in cost or temporal
resolution over conventional measures of the same” features, and “may make it possible to
improve the quality of modeling used for planning urban infrastructure needs and

forecasting the need for utilities or other public services” (RINDFUSS & STERN 1998).

“Making connections across levels of analysis” is another aspect which speaks for the
cooperation of social and remote sensing scientists. Images of space- or airborne sensors
though are composed of individual pixels with different spatial resolution, but they can be
combined to enable analysis at any level or scale coarser than the pixel size. Thus, remote

sensing data have the ability to provide the possibility for encouraging social scientists to
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communicate across levels of analysis and to develop theories and methodologies that link
these levels (RINDFUSS & STERN 1998).

In addition to that, more attention should be paid to the growing interdisciplinary
community interested in sustainable development as well as global environmental change
and related issues of human-environment interaction. This interdisciplinary community has
to compare data on social and environmental aspects at the same spatial and temporal
resolutions. It comprises both social as well as physical researchers. Merging social and

remote sensing data should therefore be an interesting approach (RINDFUSS & STERN 1998).

From the perspective of remote sensing experts, a mandatory answer is “social utility”
(RINDFUSS & STERN 1998). In order to justify the application of remote sensing it is in general
adjuvant to depict the potential of this discipline of physical science for social sciences.
Hence, the argument of “social utility” means an increase in reputation of remote sensing as
a consequence of social scientists recognizing the advantages of applying this technology for
their purposes. In this context efforts should be made to identify and bridge still existing
gaps between these scientific disciplines. Furthermore, the participation of social scientists
makes it possible for remote sensing experts to see the landscape from a different angle and
to “discover” features in the image data not previously apparent. For the validation of
remote sensing observation results ground truth data is essential. A large percentage of the
required data, for instance spectral measurements of different land cover types, is collected
by the remote sensing specialists itself. But there are, however, different kinds of ground
truthing “that involve classifying remote observations into more obviously social categories,
and thus depend on social science input” (RINDFUSS & STERN 1998). Important examples are
land use classification and differentiation of land tenure. Social scientists have access to a
large set of most different social data. These data can also be used for validation purposes,

but in particular they can directly be linked with remotely sensed data.

Even if the linking of remote sensing and social science may bear difficulties and still is
at the beginning of its development, it has been and continues to be done. There are several
examples for the potential of interdisciplinary and multisectoral research evidenced by the
following case studies. For example, GEOGHEGAN ET AL. (1998) show, that there are a number
of opportunities to pursue some of the core social science research fields more closely
through remote sensing and GIS. The authors take issues like gender, demography, (under)
development, and decision making, as they relate to resource use and environmental
change, as examples. For this purpose, their paper explicates various themes under
development by the International Geosphere-Biosphere Programme (IGBP) — International
Human Dimensions Programme on Global Environmental Change (IHDP) core project on
Land Use/Cover Change (LUCC) (TURNER II 1997). The agenda of the LUCC project comprise
making remotely sensed images more relevant to the social, political, and economic

problems pertinent to land cover and land use change. They draw the conclusion that the
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III

LUCC project and initiatives within the project that involve “socializing the pixel” and

III

“pixelizing the social” offer the potential to achieve the integration, cooperation and
collaboration among the natural, social, and remote sensing/GIS science. Another example
for the integration of remote sensing and social science present TAUBENBOCK ET AL. (2009).
This study places emphasis on the analysis, whether the physical urban morphology of the
city Padang (Indonesia) correlates with socio-economic parameters of its residents. Income
and value of poverty are the example indicators of the approach. The authors explore on the
capabilities of high-resolution optical IKONOS data to classify patterns of urban morphology
based on physical parameters. Moreover, a household survey was conducted in order to
investigate on the cities socio-economic morphology. MILLER & SMALL (2003) mentioned a
number of further possibilities how data integration permits causal inferences to be made
about the underlying dynamics of change in urban environments. For example, by using
remote sensing data in conjunction with population and industrial data, the parameter
surface temperature can be linked with population density, building type, and urban land
use across an urban sector (cf. chapter 3.1). In addition, public health data, e.g. morbidity
or hospital admissions, can demonstrate the coherence between remotely sensed urban
environmental parameters and various types of environmentally related disease. Last but not
least, some disparities in environmental conditions by settlement or section of the urban
area can be observed to understand different patterns of vulnerability and environmental

stresses.

“If remote sensing data are integrated or used in conjunction with other sources of
socio-economic data [...] their potential applicability to both research and policy

understanding of the urban environment increases significantly” (MILLER & SMALL 2003).

Here, as elsewhere, are great differences between urban areas in more developed and
less developed countries in the potential, applicability and need of remote sensing data and
the capacity for integration of remote sensing with socio-economic data (MILLER & SMALL
2003). In the majority of cases there are almost no or only incomplete datasets available in
the less developed countries. Particularly mega cities in less developed countries like Delhi,
Calcutta, Dhaka, Lagos or Cairo (cf. chapter 2.2) are data poor environments. Temporal
resolution, coverage and quality of administrative and socio-economic data are insufficient
and the knowledge about the living conditions of the residents is correspondingly very

limited, incomplete and not up to date.

In contrast to this, the data basis in the more developed countries is much better. Mega
cities like Tokyo, New York or Los Angeles are data rich environments, where the integration
of remote sensing with other data types is comparably easy to realize and likely to be most
fruitful (MILLER & SMALL 2003). In the mega cities of Europe or other more developed
regions, the living conditions of its residents are well known. The intra-urban development

processes usually take place in a controlled way and are implicated in the urban planning
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and management. In addition, reliable socio-economic data are collected regularly. For more
developed countries already a multitude of examples exist how to link remotely sensed data
with socio-economic data. As mentioned above, applications in environmental stresses such
as changes in vegetation, air quality and surface temperature as well as traffic monitoring,
management and planning can be quoted as examples (MILLER & SMALL 2003, SMALL 2006).
The potential for the integration of remote sensing data with socio-economic data in more

developed countries lies therefore in advanced disciplines and specific urban applications.

These fields of application theoretically take an important position in less developed
countries as well. At the moment, however, the realization is not yet possible since the
necessary basis of administrative and other socio-economic data is missing. The
prerequisites are completely different in the mega cities of the less developed countries (cf.
chapter 2). The processes there usually are uncontrolled and take on an unknown temporal
and spatial dimension, so that urban planners are not able to keep the overview. The
circumstances are fundamentally more difficult and more complex. Under these conditions it
is considerably challenging as well as extensive in terms of costs, time and personnel to
conduct a survey or appraisal at regular intervals. Exactly because of this lack of data the
potential of remote sensing in developing countries is rather in the derivation of the socio-

economic data itself than in the integrative use.

With the task to derive socio-economic data from remote sensing data and thus drawing
conclusions on the living conditions in the mega cities of this world, like it is done in this
study, the question needs to be answered who will benefit of these investigations and where

the demand for such innovative methods will be the greatest.

In mega cities like Delhi, a method of indirect data assessment regarding the living
conditions of the inhabitants, which can be applied in a time and cost saving way, is most
beneficial. It is for example essential to know about the where and how fast informal
structures are developing, in order to determine the place and level of effort to be put into
improving the infrastructure to guarantee a sufficient supply of the inhabitants with water,
electricity and health services. By means of remote sensing data and with the integration of
few socio-economic data a catalogue can be compiled, comprising the living conditions of
the inhabitants — and this in a quick, large-scaled, cost effective, by random or regularly
repeatable way with a small required data basis. Hence, the lack of in-situ collected socio-
economic data can be compensated. In this regard, the most obvious and direct
beneficiaries are on the one hand the governmental agencies and urban planners and on the
other hand the inhabitants of the affected areas, whose living conditions can be monitored
and improved as required. The added value of such a methodology is under the current

circumstances of course much greater in less developed than in more developed countries.
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3.4 Urban Remote Sensing Today — Interim Conclusion

In summary of the explanation and review of previous as well as current research and
development in urban remote sensing, the following conclusions and assumptions can be

made for prospective enhancements in this field.

Recent developments in remote sensing in general have an effect on the research,
enhancements and application of remote sensing techniques in the analysis of urban
environments in special. With the advent of full commercial very high-resolution satellite
data, such as QuickBird or IKONOS, new opportunities to capture and map the urban
environment become available. Using this data provides the chance to identify recent small-
scale land use structures and dynamics at local scale and enables therefore a more detailed
characterization of urban areas. Besides an increased amount and quality of remote sensing
image data with higher spectral resolution (hyperspectral data) there is as well LIDAR which
are together improving the remote investigation of urban environments (HEROLD 2004) (cf.
chapter 3.2.1).

But advancing remote sensing technologies do not, per se, lead to improved image
analysis results. Sensor improvements and innovative image data need rather to be adequa-
tely explored through adapted image analysis approaches. Hence, the progress in Earth
observation data was accompanied by the development of new and innovative image
analysis methods at the same time which today are also of particular importance for the
research of urban areas (HOSTERT 2007). Several approved remote sensing techniques have
already shown their value in mapping urban areas and have been successfully used as data
sources for the analysis and modeling of urban growth and land use change. Nevertheless,
there is still a need for improved methods and the consideration of new concepts. Especially,
in the case of classifying complex urban environments with VHR remote sensing data, the
“classic” pixel-based approach is not suitable any more. Hence, in order to obtain more
accurate and detailed remote sensing products, the introduction of concepts in object-based
analysis of spatial pattern and structures, providing second order image information, has
evolved into a veritable alternative (DARWISH ET AL. 2003, HEROLD 2004, HURSKAINEN & PELIKKA
2004 and SLIUZAS ET AL. 2008a) (cf. chapter 3.2.2).

One of the most important findings of the above review is that the contribution of
remote sensing to urban planning and management goes beyond mapping the objects of the
built environment alone (SLiuzas 2008). Remote sensing scientists are rather for instance
able to monitor and forecast urban residential expansion, to describe urban change, and to
provide uniquely useful information for social research (RINDFUSS & STERN 1998). The
physical appearance in urban environments is a reflection of human activity. An isolated

examination of social questions detached from geospatial questions does neither meet the
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requirements of social science nor the requirements of remote sensing. Thus, urban remote
sensing has the potential to be an important meeting point for social and physical scientists
(cf. chapter 3.3). Today, the urban remote sensing community is just at the beginning of

integrative work, the researchers are here in the early stages of development.

Recent investigations make use of well established, classic methods and algorithms
which were originally applied to environmental applications such as vegetation mapping or
mapping of impervious surface. But using these methods will not suffice to do justice to the
demands and requirements of urban questions. Hence, primarily considering recent global
developments and urbanization processes, progress in further development of analysis
methods is absolutely required and essential. Improved methodologies and innovations in
this research field will arouse public interest and even produce interest by skeptical social
scientists and urban managers. For instance, in the field of disaster management and
prediction this has already happened. Only by the availability of robust and fully developed
methods social scientist, but also urban planners and managers, will make use of remote

sensing derived products in their day-to-day business.

Since we have not reached this phase yet, research in this field of remote sensing
applications still needs to consolidate user’s interest. This describes the current status which
forms at the same time the baseline for the objectives and investigations presented in this
thesis. The major task within this research is now the combined application of remotely
sensed imagery and socio-economic data for mapping, capturing and characterizing the

socio-economic structures and dynamics within the mega city of Delhi.



Chapter 4

The Study Area Delhi, India

The rapid urbanization process experienced by the majority of developing countries during
the last few decades — described in chapter 2 — has also reached India. Since the country’s
independence from Great Britain in 1947 the present urbanization process in India has
developed at an enormous pace (KRAFFT ET AL. 2003). While in 1951 about 17 percent of
India’s inhabitants where living in urban agglomerations, in 1981 about 23 percent and
already in 2013, about 32 percent were city dwellers (cf. Figure 4-1) (CENSUS OPERATIONS
2001, WORLD BANK 2015/URL 23).
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Figure 4-1: Population growth in India: 1950 — 2050. The total population of India results from the sum of the
urban and rural population amount (Data sources.: HAus 2002, UN World Population Prospects: The 2006, 2007
and 2014 Revision).

As shown in Table 4-1, for the year 2005, 29 percent or about 326 million people were
registered in urban settlements of India. It is expected that in the year 2040 almost 50

percent of the Indian people will be counted among the urban population (cf. Figure 4-1).
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ZERAH (2000) already predicts this event for 2020. Comparative data from other countries
as well as from the categories of more developed and less developed regions can be found
in Table 4-1. Nevertheless, the Indian subcontinent is still strongly affected by rural

structures.

Table 4-1: Population data of India and selective comparative data

Urban population

Total Urban Number of  As percentage Average annual Density Percentage Percentage with Percentage with
population Land area settlements  urban dwellers of total growth rate [per km2 of living in access to access to
[thousands] [km?2] [% of land areal  [thousands] population [%] urban extent] slums improved sanitation improved water source

Country 2005 2005 2000 2005 2005 2000-2005 2005 2005
World 6514751 129 830 789 2.7 3 164 635 49 21 902 80 95
More developed regions * 1215636 49 068 852 38 899 848 74 0.6 482 98 100
Less developed regions ° 5299 115 80 761 937 2.0 2264 787 43 2.7 1381 37 73 92
INDIA 1134403 2973190 6.9 325563 29 2.4 1592 35 59 95
Selective comparative data
Angola 16 095 1246 700 0.1 8 684 54 4.8 8469 86 56 75
Egypt 72 850 995 450 2.4 31062 43 1.8 1298 17 86 99
Nigeria 141 356 910 770 1.6 65 270 46 4.1 4390 66 53 67
China 1312979 9 326 410 29 530 659 40 31 1936 38 69 93
Bangladesh 153 281 130 170 7.8 39 351 26 3.6 3863 71 51 82
Philippines 84 566 298 170 29 53032 63 3.5 6170 44 80 87
Turkey 72970 769 630 57 49 097 67 2.1 1119 16 96 98
Russian Federation 143 953 16 381 390 11 104 985 73 -0.6 563 100 100
Germany 82 652 348770 17.3 60 630 73 0.2 1006 100 100
Sweden 9038 410 330 8.7 7621 84 0.5 212 100 100
Portugal 10 528 91 500 14.0 6 066 58 17 473 -
Brazil 186 831 8459 420 22 157 369 84 2.1 835 29 83 96
Mexico 104 266 1908 690 53 79 564 76 1.3 780 18 91 100
Haiti 929 27 560 17 3974 43 53 8501 57 52
United States of America 299 846 9161 920 8.2 242 236 81 1.4 321 100 100
New Zealand 4097 267 990 3.0 3532 86 1.3 437 100

*More developed regions comprise all regions of Europe, Northern America, Australia/New Zealand and japan. The term "developed countries" is used to designate countries in the more developed regions.
®Less developed regions comprise all regions of Africa, Asia (excluding japan), Latin America and the Caribbean plus Melanesia, Micronesia and Polynesia. The term "developing countries" is used to designate countries
in the less developed regions. The group of least developed countries is included in the less developed regions.

Data source: UN Urban Population, Development and the Environment 2007

Altogether, more than 1.13 billion people are residents of the second most populous
country of the World. At the same time, India is with 381.54 Pop./km2 (2005, cf. Table 4-1,
after UN 2008a) one of the most densely populated states of the world, whereas the density
varies regionally very strongly (from metropolitan areas with partly > 6,000 Pop./km2 to the
peripheral mountain and desert regions with < 100 Pop./km2). In comparison with this,

Germany has a population density of 230.35 Pop./km2 (URL 8).

As of the beginning of the 21% century, India has 35 cities with more than one million
people are living in (KRAFFT ET AL. 2003). Thereof, three mega cities — Mumbai, Kolkata and
Delhi — have a population size that has even exceeded the 10 million threshold (cf. Table
2-2 in chapter 2) (AHUJA 2006). Together, about 40 million people are living in these mega
cities, which is comparable with half of Germany’s total population. Moreover, these mega
cities are ranking under the top ten of the most populous cities of the world (cf. Table 2-2,
UNITED NATIONS 2004). Consequently, in a global comparison, India is leading the statistics.
According to that, the growth of the large urban agglomerations in India proceeds by a
multiple more quickly than the growth of the small towns and medium-sized towns. Hence,
metropolises are subject to the major proportion of urbanization dynamics and are therefore
particularly affected by the resulting infrastructural problems (see also chapter 2). Mean-
while, between a third and the half of the inhabitants of India’s mega cities are living in

informal settlements (KRAFFT 1996).
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Despite the considerable migration from rural to urban areas, one cannot talk about an
extensive rural exodus in India. Well-known push- and pull-factors play an important role,
but even more the city-internal natural increase in population is responsible for the rapid
growth of the large urban agglomerations. This development is evoked by a decreasing
mortality rate combined with a constantly high birth rate as described for numerous
countries of the developing and newly industrializing countries (KRAFFT 1996 & SELBACH
2009).

In order to comprehend Delhi’s present situation and the corresponding living conditions
of its residents, the following chapter 4.1 overviews the urban development, the population
growth as well as the resulting implications. In chapter 4.2 the chosen test sites within Delhi

are presented and the motivation for their selection is explained.

4.1 Introduction into the Study Area: Urban Development,

Population Growth in Delhi and Resulting Implications

The city of Delhi looks back on a changeful history of more than three millenniums (KRAFFT
1996, MANN 2006, Peck 2005, STROBEL 1997 & SELBACH 2009). “Changing dynasties and ever
new ruling elites have over the centuries attempted to demonstrate their leadership by
restructuring and rebuilding the city in its outlay and architecture” (KRAFFT 1996). Starting as
the residence town of the Moghal, then developed to a provincial town in the colonial empire
British-India and was constituted to be the imperial residence, and finally Delhi became the
capital city of the Indian Union. Thus, Delhi was subjected to a permanent process of
change accompanied by dramatic deformations (GUPTA 2006, MANN 2006 & STROBEL 1997).
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Figure 4-2: Population growth of the urban agglomeration Delhi, India: 1901 — 2030 (Data sources: UN World
Population Prospects: The 2006, 2007 & 2014 Revision and HAUB 2002).

In 1901 Delhi was a town with only 0.4 million inhabitants. Delhi’s population started

increasing after it was named as the capital of British India in 1911 (BATRA 2005, STROBEL
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1997). The decisive phase for the development of today’s dimension of the urban population
in the history of Delhi was the time after India’s declaration of independence in 1947.
Directly after the country’s independence from Great Britain, the city of Delhi underwent an
extensive change (cf. Figure 4-2). Between 1950 and 1955 Delhi recorded an annually
population growth of about 5.26 percent. Until the end of the 1990ies the growth rate
continued on a high level between 3.9 and 4.5 percent annually (cf. Table 4-2) (UN 2007).

Already in the 1970ies about four million

people were living in the city of Delhi. In the end S

of the 1980ies the number of inhabitants passed
«» National Capitol Region (NCR) of Delhi covers

the eight million threshold, and in 2005, only 60 an area of about 33,578 km?;
. - « NCR surrounds and includes the city/state of
years after the independency, over 15 million Delhi, formally known as the National Capitol
Territory (NCT) of Delhi, it also covers parts
people were surveyed over an area of 1,483 km2, of the neighboring states;
. . , » NCT is situated on 28°30'N latitudes and
makll’lg |t one Of the WOI’|d S mOSt densely pOpU- 77°00'E |ongitude’ maximum |ength is almost
. . 52 km, greatest width is about 48.5 km,
lated cities (cf. Figure 4-2) (SLIuzAS ET AL. 2008a & covers an area of 1,483 km?, altitude between
213 and 305 m;
UN 2007). The population density in the Delhi area « Yamuna river and terminal part of the Aravali

hill range are the main geographical features;

averages 9,500 [Pop./km2], but can reach as high « NCR accommodated a population of more than

37 million people (2001), of which about

as 150,000 [Pop./km2] locally (SLIUZAS ET AL.
2008a). This study shows in chapter 8.1 that even
a population density of 250,000 [Pop./km2] and
more can be observed in Delhi’'s informal
settlements. Within only few decades, Delhi could
therefore increase its population tenfold, an increase that took, for comparison, in New York
more than 150 years (KROHNERT 2003). Today, Delhi is a steadily growing mega city.
According to UN-HABITAT (2003a) the growth rate was predicted to drop to a relatively
moderate rate below two percent per annum until 2010 whereas in contradiction to the
forecast the growth rate rose to 3.17 percent in 2014 already (UN 2014) (cf. Table 4-2). For
2030, a tremendous growth to 36 million inhabitants (UN 2014) is expected (cf. Table 2-4 in
chapter 2.2).

Not only Delhi’s population has increased exponentially, but also Delhi’s area has grown
in a similar extent since India’s independence. The municipal area outreaches today far
beyond the borders of Old and New Delhi. The number of inhabitants refers therefore since
1961 to the area of the former province Delhi, which was converted to the National Capital
Territory (NCT) in 1992 and holds since then the status of a federal state. Within the NCT
the urbanized areas captured approximately 60 percent of the area of the federal state in
the beginning of the 21% century, while 40 percent were still classified as rural areas. The
urbanized area increased fivefold within half a century (1941-2001) and fifteen fold since the
appointment as capital (KOBERLEIN 2003, MISTELBACHER 2005 & SELBACH 2009) (cf. blue box on

this page). With the rapid speed of urbanization the rural area of Delhi has shrunk
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simultaneously. The number of rural villages has declined from more than 300 in the
beginning of the 20™ century to 165 in 2001. Hence, the percentage of rural population of
Delhi has decreased from about 47 percent in 1901 to merely 7 percent in 2001 (BATRA 2005
& URL 9). According to that, about 90 percent of the population of the NCT is nowadays
living in the Urban Agglomeration of Delhi.

Table 4-2: Delhi’s annual growth rate between 1950 and 2030

Time period Average annual rate of change [%]
1950 -1955 5.26
1955 - 1960 4.96
1960 - 1965 4.40
1965 - 1970 4.32
1970 - 1975 4.52
1975 - 1980 4.56
1980 - 1985 5.52
1985 - 1990 5.67
1990 - 1995 4.87
1995 - 2000 4.75
2000 - 2005 3.42
2005 - 2010 3.22
2010 - 2015 3.17
2015 - 2020 2.65%
2020 - 2025 2.18*
2025 - 2030 1.94%

*forecast data
Data sources: UN World Urbanization Prospects: The 2014 Revision

Numerous causes can be listed for the rapid growth of Delhi. As described for Indian
mega cities in general, several push- and pull-factors play an important role (see
introduction of chapter 4). On the one hand, the high population pressure and the poor
living conditions in the rural areas surrounding Delhi (e.g., in the federal states of Haryana,
Rajasthan and the most populous state Uttar Pradesh) drive people to move into the city
(DuPONT 2000). On the other hand, Delhi is the seat of government and, with vibrant trade
and excellent employment opportunities, the industrial center of Northern India. Both are
decisive reasons, why Delhi used to be so attractive for immigrants in the past and today
still is (BATRA 2005, MANN 2006 & SELBACH 2009). In addition to that, there is a significantly

natural increase in population, which is mainly generated by a higher life expectancy.

The continuous stream of immigrants and even the rapid growth of population in itself
have increased the pressure on the existing infrastructure. Hence, the rapid growth of the
urban agglomeration posed great difficulties to the urban planning and management, which
used to be generally well organized till 1947. The extensive effect on the development within

the NCT is explained in more detail in the following.

The creation of new settlements did basically not happen with a profound urbanistic
development concept. “"On the spot decisions” were rather predominant compared to
systematic planning (GupTA 2006). Only in the year 1955, when the government was obliged
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to put an end to the unplanned growth of the city, because of a severe cholera epidemic,
the Delhi Development Act was passed. In the following (1957) the Delhi Development
Authority (DDA) was founded with the task to design an urban development strategy (Delhi
Master Plan) for the coming decades (GupTA 2000 and 2006, MANN 2006 & STROBEL 1997).
Subsequently, the DDA has become the central and most important development authority
of the city of Delhi (SELBACH 2009). For more details concerning the DDA and its functions as
well as the contents of the different master plans generated over the years, see KOBERLEIN
(2003).

The concept of the DDA could however only be implemented partially because the
imposed objectives could not bear the continuously high population growth. The urban
resettlement and residential construction programs failed since the DDA was not able to
close the supply gap on the municipal residential market. Therefore, the deficit of living
space could never be covered sufficiently. Primarily for the low-income population sufficient
living space could not be provided. One of the major problems concerning the effective
realization of the urbanistic concepts and development plans is the fact, that decision-
makers generally have not been in the past and today still are no city planners but politicians
(KOBERLEIN 2003 & SELBACH 2009). “...this has resulted in rapid expansion of constructed
areas at a very fast pace almost beyond the control of the authorities entrusted with
planning and development actions and regulation of the city workers” (SARMA ET AL. 2003).
Quoting KOBERLEIN (2003) the situation of Delhi’s urban development can even be called a
dilemma, for which “scheming politicians and money grabbing racketeers” have to take the

responsibility.

The politicization and bureaucratization of the city planning has led to an unbalanced
development within the urbanistic planning zones of Delhi and hence to the development
and establishment of a diversity of settlement structures. That means, besides the
exponential growth of the population and the size of the urban area, the governmental
planning authorities are also responsible for the high level of heterogeneity in the city
structure (MANN 2006 & SELBACH 2009).

Hence, due to this enormous growth, Delhi is affected by a high degree of
fragmentation between planned urban upper class quarters and informal settlements (Jhuggi
Jhompri clusters) within nearby quarters. Besides the historic quarters of Old Delhi (the
oriental Old Town) (EHLERS ET AL. 1993) and New Delhi (the colonial New Town), several
different settlement types have developed and established in Delhi’s municipal area over the
past 60 years. All these types vary in their status of legality as well as in the socio-economic
situation of their residents. In the following, the different settlement types that can be

distinguished in Delhi are listed:

+ Gated Communities,
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+ Government Quarters,

+ Resettlement Colonies,
+ Unauthorized Colonies 7,
+ J1%Colonies as well as

+ Urban villages.

To get a general idea, Table 4-3 comprehends some explanations according to the
development of the settlement types, their main characteristics and the socio-economic
circumstances of their dwellers.

Compared to this list of settlement types, BATRA (2005) described a total of nine
different settlement types for Delhi. He distinguishes the following types: (1) planned/
approved colonies, (2) regularized unauthorized colonies, (3) resettlements/relocated
colonies, (4) urban villages, (5) unauthorized colonies, (6) notified slums, (7) 1] clusters, (8)
rural villages and (9) pavement dwellers. Most of these settlement types (no. 2 and 4-9) are
considered as informal. The author also gives population estimates, whereas in 2001 almost
five million people (approximately 35 percent of Delhi’s population) were living in notified
slums, 1] clusters and on pavements. In this study, these three types are not listed
separately, but are summarized in the term “JJ-Colonies” (cf. Table 4-3). Since the JJ-
Colonies are the slums of the city of Delhi, in turn, as described in chapter 2.4, this
perception will be used interchangeably and together in this context with the term “informal
settlements”.

It is important to note, that not only the slums of Delhi developed informally. Also the
unauthorized colonies were built without permission and they are partly not connected to
technical and social infrastructure (cf. Table 4-3). However, in this methodology the
unauthorized colonies (e.g., Tughlakabad Extension, Sainik Farms) are not assigned to the
category “informal settlement” since the structures are mostly planned and the living
conditions are better or even much better than in the slum areas of Delhi. The majority of
the inhabitants belong to the upper class and lower middle-class. Only a small percentage
belongs to the upper lower class. In comparison to BATRA (2005), in this paper also the
settlement type “urban village” is not classified as informal. In fact, urban villages score high
in the deprivation index and they are vulnerable residential areas, but the majority of the
residents can be numbered to the middle and upper middle class of Delhi. This classification

also corresponds with the local expert knowledge as well as with interview data of local

7 There are very different expressions of this settlement type. Details of the development and growth of Delhi’s
unauthorized colonies can be found in Bose (1980).

8 In India slum related residential areas are characterized as JJ-colonies. JJ stand for Jhuggi Jhompri and means in
Hindi “hut dwelling” (MANN 2006).
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inhabitants conducted in the respective areas (cf. chapter 5.2). These examples point up
that in a city itself different possibilities of categorization, assignment and definition of
settlement types appear. A direct comparison of these studies (and numbers) is therefore
relatively difficult and can, (if at all), be carried out only after an exact sighting of the

respective definitions.

These examples clarify that there are different possibilities of the categorization,
assignment and definition of settlement types even within a single city. Therefore, a direct
comparison of these studies is relatively difficult and can, if at all, be carried out only after
an exact analysis of the respective definitions and numbers. Nevertheless, both
categorizations show, even if they are partly different, that the settlement structure in Delhi

is very heterogeneous and an allocation can be difficult.

Summarizing one can say that besides the intended functional separation of living,
working, supplying and traffic constituted in the master plan, in particular the internal, socio-
economic differentiation of the residential areas has evoked a heterogeneous development
within the urban agglomeration of the NCT (SeLBACH 2009). Primarily the South of Delhi is
largely inhabited by the middle and upper class, while the northern and eastern areas are
populated by the poorer sections of the population. Hence, in Delhi a significant socio-
economic gap from South to North is observed (MiSTELBACHER 2005) (cf. Figure 4-3).

The disparities on the “total-municipal” level of Delhi are also existing on a small scale,
this means at a local level. Planned and unplanned, wealthy and poor as well as formal and
informal quarters are located very closely at a small scale and they partly merge seemingly
seamlessly (SELBACH 2009). Thus, this very heterogeneous and highly complex urban
structure in itself gives a clear indication of the very different infrastructural supply of the
inhabitants. This also concerns primarily the water supply and disposal of waste water,
which is examined particularly in this study (PARAI ET AL. 1994).

Especially in the JJ-Colonies, which, besides the unauthorized colonies, strongly shape
and dominate Delhi’s cityscape, the situation of the population is very difficult and the
preconditions for an improved workaday life are bad. Because of this, this settlement type

was included in the examinations and became a focal point of this study.
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Table 4-3: Summary of the different settlement types in Delhi: development, characteristics, legal status and the
socio-economic status of their inhabitants

Settlement type

Development

Characteristics

Residents

Gated Communities

e.g. Greater Kailash 1II,
Vasundara Enclave

e (a) In the 1970 and 1980ies by private builders
individually constructed residential areas (e.g. Greater
Kailash II),

e (b) Since the 1990ies constructed by housing
societies or sometimes by the DDA (e.g. Vasundara
Enclave ),

e Dominate primarily in southern Delhi,

® Authorized

e (@) mostly single-story to three-story bungalows, but
also (b) compact apartment buildings within bigger
housing estates in the urban outskirts (block by block
buildings),

o Individual blocks are fenced off in many cases or are
open to the public only during the day,

e For Indian conditions
constriicted residential areas

generous,  individually

e Quarters of the upper middle
class and upper class

Government Quarters

eg. Kakaji DDA flats,
Narmada Apartments

e Municipal house building by the DDA,

e Construction of the housing estates was carried out
very generously and always around a park located in
the middle,

e Complexes built fast and economically,

® Authorized

e At first in two-story style, four- to six-story later on,
yellow painted,

e depending on the size of the individual accomodation
units (2, 3 or 4 rooms) one distinguishes apartment
buildings in Type II, III, IV Government or DDA flat,

e Simple design,

e Apartment buildings often are in structural bad
condition; neglected basic structure of buildings

e Housing space for the
employees in the public service

Resettlement Colonies

e.g. Trilokpuri,
Madangir Camp;

Dakshinpuri,

© Planned and built by the Indian state,

 Enforced clearance/relocation of the intra-urban JJ-
Colonies?,

e Peak of development: s/um clearances®,

e Usually located at the periphery of the city

e Single properties are situated in rows right next to
each other

e Planned, but also very dense building density

e Since the base area of the individual plots is very
small, the owners of the houses built up one or more
additinnal ctan illanalh

e Poor housing conditions, overcrowding and are mostly
unattractive due to the distance to nossible imlovment

e Very different living conditions
can be observed: from slum
similar conditions up to
infrastructural circumstances of
the lower and middle middle-class

Unauthorized Colonies

e.g. Sainik Farms?
Tughlakabad Extension

® Settlements developed informally,

e Inhabitants purchase parcel of land by landowners
or by clandastine colonisers (illegality of the
subdivision). The plot holders cannot get a permission
to build. Thus, the construction are carried out without
the compliance of the design specifications

® Mostly planned structures (column- respectively block-
parcelling), but not connected to technical and social
infrastructure,

e Structure of the quarters varies with the socio-
economic status of their residents from very dense and
multi-storied in structurally acceptable, partly luxury
conditions over dense and in simple style up to
settlements which externally are not different

o Infrastructural environment of the colonies varies
accordina to the sacio-economic status

e Cover the complete socio-
economic spectrum: vary from the
upper class® to the lower middle-
class and upper lower class

JJ-Colonies

e.g. Bhomiheen Camp

o Settlements developed informally,

e The acquisition of land is spontaneously and without
payment (= illegal occupation of land, the inhabitants
do not have any tenure)

o Are located along the tracks, river banks, open drains
and on the outskirts, but also on pavements (in the
middle of the city),
e Spread out over the whole municipal area in larger
and smaller units,

e Strong variance in the settlement size: smallest JJs
comprehend only a few huts (slum pockets), but they
can, as marginal quarters, comprehend about 10,000
accommodation units,

e They are built in the simplest style (temporary shelters
out of corrugated metal sheet or plastic tarpaulins) up to
houses built from clay bricks in the marginal quarters,

 Very high housing density,

e As a result of the status without rights a supply with
technical or social infrastructure is not existent, informal
channels of supply are practiced,

e Very bad living conditions, lack of basic services (e.g.
water. sanitation)

e Are the slums of the city of
Delhi,

® Lower class

Urban villages

e.g. Mehrauli

e Urbanized villages, which were enclosed as a result
of the urban growth,

o Verv different develobment’.

o Legal exceptional position: independent settlements,
which are not subject to the building laws and
construction specifications of the DDA

o Irregular, from dense up to very dense structure with
a complex road and path network

* Middle to lower class

Sources: BANERJEE 2002, BOSE 1980, DUPONT 2000, GI & GNCT 2001, MANN 2006, MEHRA 2005, MENON 2000, SELBACH 2009, SONI 2000, TARLO 2000

! The development of the resettlement colonies took place in several phases: The governmental relocation of a large number of people started in the 1960ies with the
resettiement of the refugee camps and the slum quarters. Many new settlements in the outskirts were built and extended. The clearing of the slum areas
culminated in the “slum clearance” actions from 1975 to 1977 where approximately 700,000 slum dwellers were resettled by force (MANN 2006).

2 Sainik Farms farm houses: Members of the upper class quarters live illegally in luxury villas in the “farm belt” outside the densely populated areas of Delhi. The villas are
surrounded by big parks and gardens, and are protected by high walls or fences. Although the residents are no more farmers, they are allowed, due to their status, to produce

aroundwater.

3Since 1911, 135 of the 150 urban villages within the new founded province of Delhi have been swallowed by the steadily growing city (GNCT 2008). The development of the
urban villages in Delhi took place in very different ways: On the one hand, numerous villages have suffered and are today still suffering of an economical and in the following
as well of a social degradation process, evoked by the loss of the economic basis, which is traditional agriculture and allied occupations. These villages hence are on a
social decline, drifting towards the informal sector. On the other hand, some villages (c.f. Mehrauli) are of interest from a historical point of view. Here a gentrification
process and hence a positive trend can be observed (MEHRA 2005).
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Already in the middle of the 1990ies about 35 to 50 percent of Delhi’s population lived
in slums or slum similar settlements (JAIN 1990, KRAFFT 1996, STROBEL 1997). In the
literature very different information on the actual number of slum residents in Delhi exists.
The numbers vary from 1.6 million (DuPONT 2006) to three million (HAIDER 2000) and four
million (AsHA 2008) up to almost five million (BATRA 2005). After SINGH ET AL. (2007) even
“about 50 percent of the population is living in informal settlements” and is plagued with
inadequate infrastructural facilities and a number of water and waste water related problems
(NIEBERGALL ET AL. 2009). This number includes as well a part of the inhabitants of the
unauthorized and resettlement colonies and in addition to that partly inhabitants of the
urban villages, which show slum similar conditions due to their disadvantageous
development. Quoting DUPONT (2000) the number of individual Jhuggi Jhompri clusters has
increased from approximately 100,000 to 500,000 between 1981 and 1994. Although there
are no more governmental resettlement programs today, the slum dwellers are threatened
by eviction and displacement every day since they are deprived of all rights (SELBACH 2009).

As described for informal settlements in general (cf. chapter 2.4), the JJ-Colonies and
some other slum similar areas in Delhi also combine various negative features. They are
characterized by an insecure residential status, insufficient access to safe water and
sanitation as well as an inadequate or even inexistent infrastructure of power, traffic, health
and education. Moreover, poor structural quality of housing and overcrowding is observed.
The situation of water supply in the informal settlements and other settlement types of Delhi
is described in detail by SELBACH (2009), while the disposal of waste water is specified well
by SINGH (2008).

All these slum characteristics become directly and indirectly apparent within the
settlement structure of the city. The same applies as well to almost all other settlement
types of Delhi. Also their features are reflected in the settlement structure and therefore
they can be distinguished on the basis of their different physical entity. Vice versa, the
potential of remote sensing is restricted to the detection and analysis of “visible”
characteristics of the urban environment. Hence, the outward appearance is important to
identify different settlement types and therefore different living conditions using remote

sensing data and analysis methods.

A more detailed specification of the physical parameter values of the different

settlement types can be seen in Appendix A.6.


http://dict.leo.org/ende?lp=ende&p=thMx..&search=disadvantageous
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=outward
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=appearance
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Figure 4-3: Socio-economic disparities within the municipal area of Delhi, India (Source: SeLBACH 2009 after CENSUS

OF INDIA 2001/URL 9, DuponT 2000, EICHER 2006 & MISTELBACHER 2005).
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4.2 The Selection of Useful Test Sites within Delhi

Within the NCT of Delhi based on prior knowledge of the local conditions, a comprehensive
literature review and the support of pre-studies carried out by R. Singh and T. Krafft on
Delhi several test areas with different locational, social and settlement structures were
selected. To best capture the heterogeneous nature of Delhi three different test areas are
used to cover different parts of the urban agglomeration. The locations of the test areas
within Delhi are shown in Map 4-1 (see introduction of chapter 4). The specific pre-selection

of the test areas is based on the following arguments:

+ Central Delhi (C) represents complex urban development evident in its mixed land use,
co-existence of high rise and JJ-Colonies at very close quarters. The historical centre of
Delhi is an important and interesting area for investigation, since it is on the one hand
the oldest preserved part of the city (walled city O/d Delhi) ailing with ageing structural
and infrastructural problems (downgrading process) since many years. On the other
hand, Central Delhi shows with the government quarter probably the best supplied
district of the city.

+ The south of Delhi (South Delhi — S) is of special interest since this area has developed
extremely heterogeneously and shows great differences with respect to infrastructural
conditions within nearby quarters. This fact is particularly of importance for the
evaluation of remote sensing data and therefore for this study. Moreover, South Delhi is
more disadvantageous in terms of water availability due to its location at the tail end of
the water provision system. This area represents the fringe of the city, dotted with
urban villages also experiencing ground water depletion and contamination problems.

+ The eastern part of Delhi ( 7rans-Yamuna area) has just like the southern part developed
very heterogeneously and hence great infrastructural differences become apparent. The
Trans-Yamuna area is experiencing mushrooming of lower and lower middle class
housing complexes. This part of Delhi is, moreover, the district with the strongest
sewage problems.

Following the pre-selection of the three test areas and thus of the QuickBird images (a
detailed description of the acquired satellite data and the QuickBird sensor is given in
chapter 5.1), the final selection of common test sites was performed. A finer respectively a
more focused selection was necessary, since an investigation of all three test areas (in total
almost 170 km2) and in particular of all inhabitants of these areas was not applicable by

reason of limited human and financial resources and the high expenditure of time required.

The unplanned rapid expansion and the emerging spatial fragmentation in Delhi result
in increasing “social gradients”, so that not only the social differences are continuously
getting stronger but also the visible contrasts of the urban structure (NIEBERGALL ET AL.

2009). Since the appearance of different urban structures on-site as well as in the satellite
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images is a key issue of this thesis, especially this fact was taken into consideration during

the selection of the test sites.

Metropolitan area of Delhi, India and acquired QuickBird scenes
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Map 4-1: Area of investigation: Metropolitan area of Delhi, India and acquired QuickBird scenes.

Against this background a total of seven single test sites were chosen. The selection
was following a gradient approach, i.e. selection of particularly those areas, in which
structurally highly different residential areas are situated in direct vicinity, while specific care
was taken to include various types and gradients of residential areas (cf. chapter 4.1).
During the selection specific attention was also paid to further factors, such as the geo-
location of water- and waste water-related infrastructure such as canals, water and sewer
pipes, open drains, etc. Moreover, all settlement types occurring in Delhi (cf. Table 4-3) shall
be covered by the selection of the test sites. Hence, the test sites show a high socio-

economic gradient and large visible contrasts within short distances.

Primarily in two of the seven test sites — in test site s3 and s2 (cf. Map 4-2, Map 4-3,
and Map 4-4) — elaborate remote sensing image processing was done. As described in the
determination of the pre-selection of the three test areas (see chapter 4.2), South Delhi has
developed extremely heterogeneously and shows great differences with respect to
infrastructural conditions within nearby quarters. Especially within test site s2 and s3 the
visible as well as social contrasts are strongly pronounced. Besides that, taking both test

sites together, all settlement types are represented which forms a good basis for this
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investigation. Moreover, South Delhi represents an area, disadvantageous in terms of water

availability and water quality, which is a main concern of the research initiative.

Delhi, India - Metropolitan area, acquired QuickBird scenes and chosen test sites

®
Delhi

India

Acquired QuickBird scenes

P TM, Zone: 43 N, Datum & Sphe
Do Digital Globe
e

Map 4-2: Acquired QuickBird scene South (s) and chosen test sites s1, s2 and s3 (for an enlarged map
cf. Appendix, A.3).

Within test site s3, moreover, a training area was selected in order to test the data
analysis steps at a first stage at this area (cf. Map 4-3). The developed methodology was
then transferred to the whole test site s3 and the transfer site s2 correspondingly (cf. Map
4-4), Like both test sites, the chosen training area also shows several forms of settlement
structures. Besides middle class residential districts like the Alaknanda apartment complexes
and the Kalkaji DDA filats, unauthorized colonies of the lower middle class and upper lower
class like Tughlakabad Extension as well as settlements of the poorer lower class like the JJ-
Colony Bhomiheen Camp are situated within this area (cf. Appendix, A.6). A similar approach
chose Lo (1995) and HARVEY (2002a, b), who tested population models in another study area
but within the same remotely sensed image. As in the work being available here, in their
studies, an image is divided into two parts: one part for model development and the other
part for model validation (Wu & MURRAY 2007).

In comparison to the remote sensing image processing, a household survey selecting
samples from various kinds of residential areas, including respondents from various socio-
economic groups, was carried out in all seven test sites (cf. chapter 5.2). Moreover, a

comprehensive field survey was conducted in the same areas (cf. chapter 5.3).
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Map 4-3: Overview of test site South s3 and detailed view of the settlement types occurring within
this area. Within the map moreover the training area is included as 4/3/2 composite (for an enlarged
map cf. Appendix, A.4).
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Map 4-4: Test site South s2 and corresponding details of the settlement types occurring within this
area (for an enlarged map cf. Appendix, A.5).



Chapter 5

Data Used

This chapter provides a summary of all the data used in the present study. In the first
section (chapter 5.1), the remote sensing data processed and analyzed is presented. Also

the required pre-processing of the satellite images is given here. The second section

Primary data base

Household survey (N=696)

Quantitative data

m Economic strata

m Educational qualification N

m Age-sex structure

m Family size*®

m Hinterland of in-migration

m Duration of stay

m Source of water supply

n Expenditure on water

m Duration of supply

m Level of water consumption*

m Frequency of water crisis

m Accessibility to sanitation
infrastructure

m Physical contact

m Frequency of sanitation problem

m Magnitude of sanitation problem

Qualitative data

m Kind of water problems

m Kind of sanitation problems
m Health profile

u Perception * Data processed and analyzed within this research approach

m Adaptation strategies/responses

Layout & Graphics: S. Smollich

Figure 5-1: Overview of the primary data base using in the research initiative.
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(chapter 5.2) introduces the primary data of the household survey collected during field
campaigns in the Delhi study sites. Apart from the questionnaires, additional information
was gathered through personal observation techniques, digital photograph documentation
and GPS measurements. The data base generated with the aforementioned methods (is
mainly used for validation purposes and) is described in chapter 5.3. An overview of the

primary data base used in this research is shown in Figure 5-1.

5.1 Remote Sensing Data

The analysis of heterogeneous, high-fragmented and dynamic urban environments requires
the application of very high-resolution (VHR) satellite data. The specification VHR is com-
monly used for spatial resolution with a ground sampling distance (GSD) of < 1 m (MOELLER
2005) (cf. Table 3-3). A number of panchromatic and multispectral sensors operating as VHR

systems are available. For detailed information on current VHR sensors see chapter 3.2.1.

QuickBird data is used in the present study to examine the potential of satellite images
to identify informal settlements and other settlement types by their visible spatial structures
and dynamics. Since the successful launch of Digital Globe 's™ QuickBird satellite in October
2001 and the availability of the data, QuickBird imagery has quickly become a popular choice
for large-scale mapping using VHR satellites. QuickBird has a 97.2° sun-synchronous near
polar orbit at 450 km altitude (URL 7). The QuickBird sensor is one of the first commercial
satellites that provides sub-meter resolution imagery (KLEINSCHMIT ET AL. 2007). According to
that, QuickBird collects multispectral and panchromatic imagery concurrently, at resolutions
of 2.44 —2.88 m and 0.61 — 0.72 m at nadir respectively (CHENG et al. 2003 & URL 7). A total
of five bands are acquired, whereas the panchromatic band is ranging from 0.45 - 0.9 uym
and the multispectral bands (blue, green, red and near Infrared) are ranging also from 0.45
- 0.9 ym (URL 7). Thus, by using data fusion techniques, the multispectral bands can be
easily merged with the panchromatic (PoHL & VAN GENDEREN 1998, RossI 2003). QuickBird
panchromatic imagery is collected in 11-bit format (2048 gray levels). A big advantage of
the 11-bit resolution is the possibility to differentiate further details for instance in urban
shadowed areas. QuickBird has along-track and/or across-track stereo capability, which
allows for a high revisit frequency of one to 3.5 days, depending on the latitude (ToOUTIN &
CHENG 2002, RossI 2003 & URL 7). The sensor’s nominal swath is 16.5 km (at nadir) (CHENG
ET AL. 2003 & URL 7). A summary in Table 5-1 briefly introduces the technical features of the
QuickBird sensor. The combination of very high-resolution, high-revisit frequency and large
area coverage is certainly it’s major advantage over the use of aerial photos or (usual)
multispectral satellite data. For more detailed information on the QuickBird sensor
characteristics and different products see TOUTIN & CHENG (2002) as well as URL 7.
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Table 5-1: Technical features of the QuickBird sensor

Altitude 450 km

Inclination 97.2° (sun-synchronous)
Equator crossing time 10:30 AM

Nominal swath width 16.5 km (at nadir)
Revisit time 1-3.5 days

Max. view angle 30°

Panchromatic
Multispectral

Panchromatic

Multi-spectral

11 bits per pixel

0.61m (nadir) - 0.72m (25° off-nadir)
2.44m (nadir) - 2.88m (25° off-nadir)

450 — 900 nm

Blue 450 — 520 nm

Green 520 — 600 nm

Red 630 — 690 nm

NIR 760 — 900 nm

Area mode 16.5 x 16.5 km

Strip mode 16.5 x 165 km (single pass)

Data source: URL 7
5.1.1 Acquired Image Data

To best capture the heterogeneous nature of Delhi three different QuickBird images are
used to cover different parts of the urban agglomeration (cf. Map 4.1 in chapter 4.2). All
three scenes are so-called Standard Imagery Bundles. Users of QuickBird s Standard
Imagery products usually possess sufficient knowledge to manipulate and exploit the
imagery for a wide variety of applications. Thus, Standard Imagery products are designed
for users acquainted with remote sensing applications and image processing tools that
require data of modest absolute geometric accuracy and/or small area coverage. Each
Standard Imagery product is radiometrically calibrated, sensor corrected, geometrically
corrected, and mapped to a cartographic projection. It has an absolute geometric accuracy
in the desired map projection of up to 14 meters (RMSE), excluding any topographic
displacement (TouTIN & CHENG 2002, URL 7). For more information on the radiometric and

geometric corrections applied by Digital Globe see URL 7.

The data for the Delhi study area was acquired on April 20" 2002 (Central '02), on
September 19" 2002 (East) and December 12" 2002 (South), respectively. The central
image of Delhi covers an area of almost 42 km?, the eastern image about 57 km2, while the
image situated in the South covers an area of about 69 km2 (cf. Map 4-1). For all
acquisitions a nadir-mode was requested granting minimal viewing angles. Table 5-2 gives a
detailed overview of the QuickBird scenes processed and analyzed in the framework of this

thesis.
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Table 5-2: Meta data of the QuickBird scenes processed and analyzed

Internal name Collecting  Sensor ID  Product type NW corner SE corner Area  Off-nadir Cloud cover
date Latitude Longitude Latitude Longitude [km2] [%]
Central ‘02 (C02)  04/20/2002 QB02 OR Standard* 28.6759204 77.19226817 28.60521292 77.24499576 41.92 13.1° 0
East (E) 09/19/2002 QB02 OR Standard 28.61834169 77.28517664 28.53330788 77.34591498 57.48 13.0° 0
South (S) 12/18/2002 QB02 OR Standard 28.55962427 77.15809839 28.50041436 77.26492684  69.20 13.3° 0
0

Central 06 (C06)  05/29/2006 QB02 OR Standard 28.67125439 77.19208271 28.62706533 77.2449132 26.12 11.0°

* Standard Imagery products are radiometrically corrected, sensor corrected, geometrically corrected, and mapped to a cartographic projection.
Map projection / map zone, hemisphere: UTM, WGS 84 / 43 N
Data source: Digital Globe

The test areas were selected based on prior local knowledge of the city. Within the test
areas, a total of seven single test sites have been chosen. The test sites show a high socio-
economic gradient and large visible contrasts within short distances. Moreover, a training
area inside test site s3 was selected (cf. Map 4-3 and A.4) The chosen training area shows
several forms of settlement structures beneath middle class residential districts and informal
settlements. More information regarding the selection of useful test sites within Delhi and
their features can be found in chapter 4.2 and chapter 5.3. At a first stage the data analysis
steps were tested at this area. The developed methodology was then transferred to the

whole test site and other areas correspondingly.

5.1.2 Pre-processing of the Satellite Data

Prior to the classification and analysis of the satellite data some pre-processing was
necessary. In order to benefit from panchromatic high spatial resolution (0.6 m) simul-
taneously with multispectral information, a resolution merge was performed before analyzing
the images. Since the panchromatic and multispectral image bands fit well due to a
parallaxis correction undertaken by the data provider they can easily be fused to integrate
the high spatial information content of the panchromatic band into the multispectral bands.
In this study, the primary objective of the fusion is defined to preserve the spectral infor-
mation, while enhancing the spatial variability. Therefore, additive pan sharpening algo-
rithms, such as the Brovey transformation were not considered here (KLEINSCHMIT ET AL. 2007
& VRABEL 1996). Instead of that, some tests with other standard algorithms provided by
commercial image analysis software packages were carried out, e.g. the Multiplicative
method and the Principal Component Analysis (PCA) combined with Nearest Neighbor,
Bilinear Interpolation as well as Cubic Convolution as resampling technique. Moreover, a
Wavelet PCA and a Wavelet Intensity-Hue-Saturation (IHS) were performed to test the
quality of the information fusion. Finally, the PCA pan sharpening method with cubic
convolution vyielded the best results with respect to the radiometric and geometric
characteristics of the original images and proved therefore to be the most successful in pan
sharpening the present QuickBird images (cf. Figure 5-2) (EHLERS 2005, HOFMANN 2001a, POHL
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& VAN GENDEREN 1998). Thus, all of the analyses carried out in this work and their results are

based on the merged QuickBird data.

Figure 5-2: Results of the Principal Component Analysis (PCA) pan sharpening of the QuickBird data, subset of the
scene South (S): (a) 2.4 m multispectral (3/2/1), (b) 0.6 m panchromatic, and (c) 0.6 m fused image (3/2/1).

5.2 Household Survey

“One of the chief practical obstacles to the development of social inquiry is the existing division of
social phenomena into a number of compartmentalized and supposedly independent non-integrating
fields.”

(John Dewey 1938 in JOHN GERRING 2001)

In association with the research initiative an intense field campaign was conducted in 2005
and 2006 to sample in-situ information. Primary household data were collected through
personal observation and household surveys within the selected test sites (cf. Map 4-2). In
order to get an additional perspective of the living conditions and supply situation of the
different settlement types of Delhi, meetings with responsible local and state officials were
arranged and several expert interviews were conducted within this research initiative (cf.
Figure 5-1). These respondents included key informants and leaders of Resident Welfare
Associations (RWA), persons in charge of the municipal water board (DJB - Delhi Jal Board)
as well as engineers for water and sanitation of the distinct localities. Since the remote
sensing approach is following a quantitative approach, the results of these interviews were

hardly taken into consideration within this study. These are of higher importance for the two
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other research approaches which include the expert interviews in their analysis (cf. SELBACH
2009 & SINGH 2008). Details of the questionnaire design, the empirical phase and the
evaluation of the household survey as well as their critical appraisal are described in the

following subchapters.

5.2.1 Questionnaire Design

To get a broad overview of the heterogeneous living conditions and the very complex supply
situation of Delhi’s inhabitants, a standardized and structured questionnaire was developed.
This questionnaire was designed to extract quantitative and qualitative information about (a)
the socio-economic background and (b) the water availability and consumption pattern of
the people (which is deemed to be necessary in order to anticipate the quantities of water
demand as well as wastewater generated, as well as its disposal mechanism and routes of
exposure). A part of the questionnaire was also devoted to a basic health survey (c).
Moreover, it included sections to cover people’s perception and response to existing water

and sewage situation and preferred solutions (d) (NIEBERGALL ET AL. 2009).

The questionnaire contains primarily closed-ended questions. In a closed-ended
question the response categories are provided, and the respondent just chooses between
the clearly phrased answers. The main advantages of this question type are: (1) quick to
answer, (2) easy to code, (3) no difference between articulate and inarticulate respondents,
and (4) easy to replicate study. However, closed-ended questions can draw misleading
conclusions because of limited range of options or can force respondents into simple
responses (URL 10 & 11). In connection with this, also open-ended questions were included
in the questionnaire (SELBACH 2009). In an open-ended question no standard answers to
choose from are provided. The main advantages of open-ended questions are: e.g., (1)
greater freedom of expression, (2) no bias due to limited response ranges, and (3)
respondent can qualify and clarify their answers (URL 10 & 11). Since the coding is very time
consuming and the interviewer may misinterpret (and therefore misclassify) a response, this

type of questions can affect the household survey adversely.

To cope with all three research approaches quantitative and qualitative, open-ended as
well as closed-ended questions were included in the interview. Comparable to the selection
of the test sites earlier, the following basic assumptions were here also taken into account:
on the one hand, the high morphological, structural fragmentation of the spatial units,
relevant out of the remote sensing perspective, and on the other hand the differentiation of
the settlement types, which are important from a social and urban geographical view (cf.

chapter 4.2). Furthermore, the questionnaire included narrative parts, which answers were
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recorded for later references. In this study, however, only closed-ended, quantitative

questions are taken into account in the evaluation.

Based on a common questionnaire
design process (cf. Figure 5-3) the
questionnaire was drafted jointly by all three
PhD candidates during the preliminary
phase, with the prerequisite to obtain an
identical  interview situation for all
respondents. With this standardization,
different possibilities of interpretation of
identical questions, due to different
phrasing, should be avoided. The respective
interesting questions for all three different
research approaches were implicated in the
survey, resulting in the compilation of an

“integrative questionnaire”.

The questionnaire, which is attached in
original in the Appendix (cf. A.15),
comprises questions of different categories
including “knowledge questions”, “action or
behavior questions” as well as “opinion or
attitude questions” (MEIER KRUKER & RAUH
2005, SELBACH 2009). Within this study, first
and foremost “knowledge questions” are
relevant for the further analysis since they
usually refer to the personal and
demographic characteristics. By means of
these questions, information about the
personal background (e.g., age, education
and caste, size of household, income or

settlement type) and the supply situation

‘ Defining the objectives of the survey ‘

v

‘ Determine the sampling group ‘
v

[ Specify the information needed ‘
v

‘ Specify the type of interviewing method ‘

-

‘ Determine the content of individual questions ‘

v

Design the question to overcome the respon-
dent’s inability and unwillingness to answer

v

‘ Decide on the question structure ‘

v

‘ Determine the question wording ‘

v

‘ Arrange the questions in proper order ‘

-

‘ Identify the form and layout ‘

v

‘ Reproduce the questionnaire ‘

v

Eliminate bugs by pre-testing

-

Figure 5-3: Questionnaire design process (Source:
BRADBURN 2004 & STAHEL 2002).

(e.g., water supply) was collected. With this information, statements concerning the socio-

economic situation of the questioned households could be derived. In turn, this information

is important for the investigation of the coherence between settlement structure and

derivation of living conditions. More details about the questionnaire design can be found in

SELBACH (2009) and SINGH (2008), respectively.
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5.2.2 Empirical Phase of the Household Survey

During the first field campaign between September and October 2005 the preselection of the
study areas in which the survey should be carried out was verified. At the same time, the
questionnaire was tested on its applicability. Prior to the actual household survey, the
guestionnaire was pre-tested in order to check whether it yielded comprehensible and
relevant responses, and adjustments were made accordingly. After revision, the first
acquisition phase of primary data in three of the seven test sites was carried out from
October to November 2005. This survey and the following were conducted by the PhD
candidates Veronika Selbach and Reena Singh, with the support of students of the Delh/
University who were carefully trained to administer the designed household questionnaire

(KRAAS ET AL. 2007d). Each household interview took 45 minutes on average.

Stratified purposive-random sampling techniques® (STAHEL 2002) were applied to choose
the respondent household from various kinds of settlements, including JJ-clusters
(equivalent to informal settlements), resettlement areas, gated communities, government
quarters and different types of unauthorized colonies as well as urban villages (cf. chapter
4.1, Table 4-3). Hence, the affiliation to a certain social class (from upper to lower class) and
an adequate representation of all socio-economic hierarchies were kept in view comparably.
Moreover, the location of the households within the different morphological structures
displayed in the satellite data, combined with the structure densities of the settlements, was

taken into consideration regarding the choice of the households.

A total survey of all households in the respective areas under investigation would be
statistically absolutely correct. This is, however, generally unfeasible and also in this special
case impossible for reasons of economy, time and practicability. Primarily due to the difficult
conditions on the spot, e.g., skepticism and rejection by the respondents, -cultural
circumstances or sometimes the impreciseness of the interviewer, a real random sampling
was not feasible in the study areas of Delhi. In this regard, the tremendous amount of
dwellers within the test sites has to be mentioned and, thus needs to be included in the
group of reasons. Also the execution of a cluster sample!® would statistically be correct
(STAHEL 2002), but was not realizable for the reasons mentioned. Under these constraints

the above described statistical approach appeared to be the most suitable to generate a

9 “Stratified ... random sampling is a variation of simple random sampling in which the population is partitioned into relatively
homogeneous groups called strata and a simple random sample is selected from each stratum. The results from the strata are then
aggregated to make inferences about the population. A side benefit of this method is that inferences about the subpopulation
represented by each stratum can also be made” (UrL 12).

10 A cluster sampling is a sampling technique where the entire population is divided into groups or clusters, and a random sample of

these clusters is selected. All observations in the selected clusters are included in the sample (GERRING 2001 & STAHEL 2002).
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valuable data basis and was consequently chosen for this study (cf. SELBACH 2009 & SINGH
2008).

The completion of the data collection in the remaining four test sites using the stan-
dardized questionnaire was carried out from February to April 2006. Key informants of the
households were interviewed, including both female and male household members. For con-
clusions regarding the understanding of gender based differences in the perception of the
respondents a relationship of 50:50 was striven (cf. Figure 5-5). The questionnaire was pre-
pared both in English and in Hindi, to make the questions as understandable as possible for

the respondents.

After the survey, the questionnaire data collected was analyzed in different ways
according to its statistical features. The evaluation is described in more detail in the
following subchapter. Further results, e.g., average family size or average water amount per

family in different settlements, are presented in chapter 6.2.

5.2.3 Evaluation of the Survey Data

In total 696 households were interviewed, covering a population of 4,358 persons residing in
different types of settlement (cf. Figure 5-4). According to WEEks (2001) demographic
research that employs spatial analysis obviously requires data that are georeferenced. If
data are not assigned to a certain location, then spatial analysis is not feasible. Therefore, all
questionnaires were georeferenced and embedded in a GIS environment (cf. Map 5-1 and
Map 5-2). Within test site South s3 96 interviews were carried out, 148 households were

surveyed in the transfer site South s2 (cf. Figure 5-5).

In a first step, the collected data was transferred in a data matrix in which each house-
hold represents a subject of investigation. The open-ended questions and other quoted
remarks were transferred in their original text form. The variables collected continuously
were as well taken in their original expression (e.g., age, number of household members).
In contrast to that, the discrete variables (e.g., income, level of education) were transferred

using a coding key (cf. Appendix III in SELBACH 2009).

In a second step, these discrete variables were classified, respectively partly new
variables, which could be generated from the responses of the households, were generated.
Within this process a suitable class number, class width and class limit could not always be
found and fixed for the data. Aiming at receiving a maximum of information with a minimum
of classes, a decision which is subjective and adapted to the data was taken for the

generation of suitable class numbers (MEIER KRUKER & RAUH 2005, SELBACH 2009).
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Figure 5-4: Total population of the surveyed households within chosen test sites in Delhi (N=696) (Data source:
household survey 2005-2006).

The categorization of the data was made by an intuitive procedure considering
“meaning thresholds”. The reasons for this decision are described in detail by SELBACH
(2009). The “meaning thresholds” can on the one hand be justified by external official
guidelines (e.g., incomes, required water quantity per person per day). On the other hand,
they can be derived from findings, which are logically comprehensible and which were
gained during the data survey or during the evaluation process (e.g., number of people per
household, age). This means, that the evaluation of the survey data is partly characterized
by a subjective point of view. The classes are accordingly not always equally represented,

which must be taken into account while interpreting the results.

In this study, the following analysis was carried out by means of common practice
statistical methods (cf. also chapter 6.2). In order to improve the assessment of the
individual analysis results, which are described in the following chapters, it is important to
get firstly a general overview of the data and of the people interviewed accordingly.
Particularly, the family or household level is at the base of any socio-economic process a
region is undergoing. Outlining the characteristics of the population covered is therefore a
prerequisite to understand the situation, processes and developments occurring there (KRAAS
ET AL. 2007d).
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Map 5-1: Georeferenced questionnaires within test site South s3 (top) and the chosen training area
(bottom) (for enlarged maps cf. Appendix, A.7.1 and 7.2).
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Map 5-2: Georeferenced questionnaires within the transfer test site South s2 (for an enlarged map cf.

Appendix, A.7.3).

In this regard, at the beginning of the evaluation the demographic, economic and

educational data of the surveyed households were processed to give general background

information about the surveyed population. The information which was extracted from the

surveyed questionnaire and then processed is graphically represented below in Figure 5-5

and Figure 5-6.
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Figure 5-5: Total number of household male and female respondents interviewed within chosen test sites in Delhi

(Data source: household survey 2005-2006).

As can be seen in Figure 5-6, there are clear demographic differences regarding the
distribution of the surveyed households by family size between the individual selected test
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sites. These strong contrasts within the test sites become as well apparent during the
evaluation of the questionnaires. Thus, the proportion of the families with five to eight
members within test site South s2 is considerably larger than that one of the remaining
categories. The proportion of families with nine to 12 or more than 12 persons respectively
is also comparatively large in test site South s2. These conditions indicate a large proportion
of residents of the lower class. In contrast to this, the number of households interviewed
with two to four members in test site South s3 is almost equal as the number of households

with five to eight members.
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Test sites

No. of households

Figure 5-6: Distribution of the surveyed households by family size (N=696) (Data source: household survey 2005-
2006).

The categories with more than eight members per family are occupied very weakly. This
speaks for a large number of detached houses, what, in turn, is a sign of a large proportion
of middle and upper class inhabitants. Interpreting this data it is important to consider that
the conduction of interviews with members of the upper class during the survey was very
difficult (cf. chapter 5.2.4). An interview in this social class was often declined, while the
members of the lower class have, due to their bad living conditions, usually agreed to an
interview very willingly. Hence, the proportion of families with two to four persons of the
total population is slightly underrepresented in the respective test site. However, a trend for

the social structure of the population can certainly be derived.

Additional figures for the estimation of socio-economic structure and supply of basic
infrastructure of surveyed households and different settlement types, respectively (e.g.,
distribution of households by monthly income, educational qualifications of the respondents,
percentage of sample households connected to sewer system, estimated wastewater
generation in different settlement types etc.) as well as the corresponding descriptions can
be found at KRAAS ET AL. (2007d), SINGH & KRAFFT (2007) and SINGH (2008).
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Further analysis of the questionnaire data were conducted with direct response to this
study (i.e. the remote sensing part of the research initiative) and the implemented
integrative analysis (cf. chapter 6.2 and 8). To describe this briefly, the integrative analysis
is used to determine different socio-economic attributes (e.g., population amount or
population density) and to evaluate the water demand within a certain settlement area. For
this purpose various settlement characteristics like house size or number of houses are
estimated from the satellite data and are used to derive spatial information about the
population distribution. In addition to that, the integrative approach makes use of the
georeferenced questionnaires in order to characterize a given settlement type in terms of
specific population and water related variables. Hence, for instance the family size or the
mean water consumption per capita in different residential areas and settlement types

respectively are calculated and considered in this analysis (cf. Figure 5-7 and Figure 5-8).

8.13

BInformal Settlement
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Harijan Camp Extension Camp Flats Kailash 1T

Settlements

Figure 5-7: Family size in different settlement types within test site South s2 and South s3 in Delhi (Data source:
household survey 2005-2006).

Primarily informal settlements are subject to high dynamics, population density as well
as marginalization. In regard to the living conditions of the dwellers and the corresponding
need for action in these colonies, the evaluation of the interview data of informal

settlements is of special importance (cf. Figure 5-9 and Figure 5-10).
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Figure 5-8: Water consumption per capita per day in different settlement types within the selected test sites South
s2 and s3 in Delhi (Data source: household survey 2005-2006).
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Figure 5-9: Family size in different informal settlements for selected test sites in Delhi (s2, s3): A — Bhomiheen
Camp (training area), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan
Camp. Settlement A — C are situated within test site South s3, settlement D is situated within test site South s2
(Data source: household survey 2005-2006).
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Figure 5-10: Water consumption per capita per day in different informal settlements for selected test sites in Delhi
(s2, s3): A — Bhomiheen Camp (training area), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp,
D — Banjara and Harijan Camp. Settlement A — C are situated within test site South s3, settlement D is situated
within the transfer test site South s2 (Data source: household survey 2005-2006).

5.2.4 Appraisal of the Survey Data

In the following chapter the execution of the survey is subjected to a short review and is
discussed critically. Some facts are pointed out, which are necessary to be included in the
examination and assessment of the following integrative analyses. Table 5-3 shows a

general overview of the potential causes for the bias of responses during an interview.

The questionnaire proved to be very comprehensive, so that partly a shortening of the
interview or a lower depth of detail in the replies had to be accepted due to the restricted
time frame of the interview partners. In rare cases the interviewed persons even terminated

the interview. The reason for this was not only the limited time factor but sometimes also a
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fundamental mistrust of the interviewees. For this study, however, this circumstance is
negligible since here solely quantitative questions, which could be answered briefly, were
included in the evaluation. If the respondents did not answer ingenuous, the interview was
also stopped in rare cases on the part of the interviewer. Sometimes the assumption arose
during the interview or at the evaluation of the questionnaires that the given answers do not
correspond to reality. This was partly caused, depending on the situation, by the presence of
third persons (extenuation or dramatization of the living conditions). For this reason single

questionnaires were sorted out from the sampling afterwards.

Table 5-3: Bias of answers running a survey

Characteristics of the respondents

Social desirability of the responses Return of socially desirable responses
Non-Opinion Return of a "don't know" or "cannot remember" -
response, e.g. in case of unpleasant topics
Non-Response (unwillingness) Refusial to give a response to a certain question
or to the complete questionnaire
Non-Attitudes Giving a response, although no opinion
on the asked topic or object is developed
Presence of a third person Reactions to the presence of a third person

during the interview
Effects of the interviewer

Characteristics of the interviewer Reactions to characteristics and behaviours of the
interviewer (e.g. suggestive influence, pushing)

Fake of interviews
Question features

Halo- Effect The positioning of questions in different parts of the
questionnaire may lead to different responses
due to the "emission" of previous questions

Source: SELBACH 2009 after MEYER KRUKER & RAUH 2005, modified; supplemented by STAHEL 2002

Again and again, ignorance or a poor educational background of the respondents resul-
ted in all question areas in answers which in principle must be doubted. Consequently a cer-
tain error ratio should be also taken into account for the quantitative information (e.g.,
water consumption) which is used in this study. During the evaluation of the interview data,
in particular the responses of the residents of lower class settlements showed outliers in the
samples (cf. chapter 8). Moreover, the intended homogeneity of the sampling within the test
sites proved to be unrealizable. While the population of the comparatively poor settlements
of the lower class was generally available for an interview willingly, it was almost impossible
to interview residents of the Gated Communities or other quarters of the higher middle class
and upper class to collect a numerically equivalent amount of data in the respective
settlement types. Therefore, the results related to the settlement types, particularly those of
the upper middle and upper class are to be interpreted as a tendency and not as universally

valid, quantitative representative probabilities.
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Furthermore, the simplified assumption that every household represents a sampling unit
finally turned out to be problematic during the evaluation of the interview data. That means,
a house cannot always be equated with a household. Although, within the settlements of the
lower class as well as the medium to higher upper class the assumption, that one family
occupies one house, is applicable. Within the quarters of the middle class and lower upper
class, however, in the majority of cases several families occupy one building. These are
multiple-family dwellings or complete blocks of apartment buildings where normally each flat
is occupied by one family. Statistics to the number of families per building were, however,
not collected correspondingly. General assumptions must therefore be carried out during the
evaluation of the data affected, which is in settlements with several accommodation units
per building (e.g., DDA flats). For further studies this lack of information shows a potential

for improvement.

Nevertheless, here, in the overall context the chosen approach has figured out to be
successful. Only by using such an extensive sample a comprehensive overview of the living
conditions as well as the complex problem of water supply and wastewater disposal could be
generated in the respective settlement types of Delhi. From the knowledge-, action- and
opinion-questions valuable results could be generated for all three research approaches. It is
primarily the quantitative information which allows statements concerning the assessment of
the living conditions and therefore builds a good basis for the consequent integrated analysis

within this study.

53 Ancillary Field Data: Observations, Mapping and Ground
Truthing

An intense field campaign was conducted in October 2005 to sample in-situ information.
Apart from the questionnaire and quided interviews, thus, additional information was
gathered through personal observation techniques, mapping and ground truthing (cf. Figure
5-1).

The field campaign in Delhi aimed at the identification of remarkable objects detected in
the QuickBird data (verification or detection itself), the mapping and observation of different
settlement types and structures, water related structures, as well as distinctive features or
interesting points. Moreover, to link them with specific structures or features in the satellite
images, digital photographs were taken in parallel to the ground mapping. As a whole the
collected ground mapping and field data represent a good data base for the substantiation

and validation of the results of this thesis.

During the household survey, the locations of the surveyed households were recorded

using GPS measurements. Subsequent to the campaign, the respective coordinates were
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transferred into a GIS environment and corresponding maps were produced (cf. Map 5-1
and Map 5-2). Furthermore, using GPS measurements, the coordinates of remarkable

objects, such as water towers or overhead water tanks, were collected and registered.

Following the field work, a basic evaluation of the field data and a visual interpretation
of the QuickBird images were carried out. As shown in Figure 5-11, photographs of different
settlement types were taken during the field campaign and afterwards compared with

different settlement structures visible in the satellite data.

Figure 5-11: Test site South s3 (QuickBird scene South 12/18/2002) characterized by different settlement
structures and corresponding photographs of different settlement types, taken during the field campaign in
October 2005 in Delhi, India: 1 — Gated Community Greater Kailash II (authorized, planned, private colony), 2 —
Government Quarter Narmada apartment houses (authorized, planned), 3 — Unauthorized Colony 7ughlakabad
Extension (unplanned), 4 — Jhuggi Jhompri cluster Bhomiheen Camp (unauthorized, informal), 5 — Resettlement
Colony Harijan Colony (authorized, planned), 6 — Illegal quonset huts on the pavement close to Tughlakabad
Extension (Data source: Digital Globe, draft and photographs. Susan Smollich).

In addition to that, based on the results of the ground mapping and local knowledge, in
combination with a visible interpretation of the QuickBird images, density maps of the test
sites were generated (cf. Figure 5-12 and Figure 5-13). These maps allow for a first general
overview of the categories and features of settlement densities and their distribution in
Delhi. In turn, these density maps can again be compared with the settlement types, which
have developed in Delhi (cf. Table 4-3), with a special focus on their spatial characteristics
as well as their living conditions. Moreover, the density maps are used for qualitative

validation purposes of the classification results (cf. chapter 7).

Within this study, it could be proven that, at least as far as Delhi is concerned, the
settlement density mostly correlates with the settlement type. Thus, the settlement density
was included as a key parameter for the identification of Delhi’s informal settlements (J]
clusters) in special and other settlement types in general (cf. chapter 6.1.2). On the basis of
the obtained findings, combined with the satellite data for all chosen test sites in Delhi,

altogether four density classes were defined: (1) very dense urban, (2) dense urban, (3)



Data Used 99

medium dense urban as well as (4) sparse urban areas. All other areas, which are not
covered with buildings at all (e.g., areas covered with vegetation, not impervious areas) or
which are not covered with residential buildings (e.g., industrial areas) are assigned to the
class (5) not inhabited area. The defined density classes are characterized by the following
physical parameters: (i) fraction of the impervious area (coverage of built-up area), (ii)
fraction of vegetation surface and (iii) building size, and as a consequence, (iv) the amount

of buildings per total settlement area (building density).

[0 very dense urban []dense urban || medium dense urban [ | sparse urban not inhabited areas

Figure 5-12: Density map of test site South s3 in the southern part of Delhi based on QuickBird scene South
(12/18/2002) (Data source: Digital Globe, draft: Susan Smollich).

These parameters represent features that can be observed and received with the naked
eye, on examination of the satellite images as well as by the on-site observation. Our ability
to see the observed in a bigger context enables us to draw according logic consequences.
This is known as an “intuitive process”. This means, in this special case, that it is possible to

define different density classes and to record them in a map.

Object-oriented analysis methods of satellite data also make use of these object
features and the possibility to combine these characteristics. With the difference, that the
fragmentation of the area and the classification of the respective objects are not carried out

manually or completely visually but (semi-) automatically by means of a certain
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segmentation algorithm and a developed classification scheme and in an as objective way as
possible.

[ very dense urban [ dense urban [ | medium dense urban [ ] sparse urban not inhabited areas

Figure 5-13: Density map of test site South s2 in the southern part of Delhi based on QuickBird scene South
(12/18/2002) (Data source: Digital Globe, draft: Susan Smollich).

Combining the density maps (cf. Figure 5-12 and Figure 5-13) with the in-situ
information (photographs etc., cf. Figure 5-11) and some first findings resulting from the
household interviews, the following points can be stated:

1. Different settlement types show diverse spatial features — amongst others settlement

density and settlement structure.

2. These settlement types can be assigned to different social classes, from the upper class

over the middle-class to the lower class of residents.

3. The living conditions in the developed settlement types in Delhi vary very strongly.
Everything could be observed from very poor to, for Indian conditions, very good living
conditions. The living conditions are directly mirrored in the visible features of the
settlements (e.g., building materials, mode of construction, and connection to
infrastructure).
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These general statements bear out the first basic assumption, which was made at the
beginning of this thesis (cf. chapter 1.1), that the living conditions become apparent visually
in the settlement structure. Up to this state of the study the satellite images were only used
for purely visual interpretation. Based on this visual interpretation the conclusion was proved
to be true that it is possible to suggest from the socio-economic data of a certain settlement
area to its structure. The second and third working hypothesis (cf. chapter 1.1), which quote
that different settlement structures are reflected and can therefore be identified and
observed in the remote sensing data, will be examined in detail in the following chapters 6.1

and 7. Hence, the QuickBird data is subjected to a systematic image data analysis.



Chapter 6

Methodology and Conceptual
Framework

This chapter presents an overview of the study workflow, starting with the segmentation of
the QuickBird image data via the object-oriented classification of land cover, leading to the
identification of informal settlements and other settlement types within the urban environ-
ment of Delhi and the derivation of information on population and water related parameters
using an integrative data analysis. Focal point of this study is the integrative approach,
which is used to investigate whether VHR remote sensing data can provide settlement
characteristics (e.g., number of houses) in order to obtain — in combination with socio-
economic data — different socio-economic attributes such as population amount, population
density or water consumption. The conceptual framework of this study is shown in Figure
6-1.

6.1 Object-based Image Data Analysis

Very high-resolution (VHR) satellite images offer a great potential for the extraction of
land cover and land use related information for urban areas. The available techniques are
manifold (cf. chapter 3.2.2). In the past and until today the most common procedure to
derive useful information from remotely sensed imagery has been pixel by pixel
classification. An alternative way to look at image data is to divide the image into meaningful
regions of similar pixels and to assign these so-called segments to land cover classes by any
classifier. The conceptual idea of this promising and complementary approach is that each of

these segments corresponds exactly to one and only one object class. This technique is
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named object-based image data analysis. After HAY & CasTILLA (2006) object-based image
analysis (OBIA) is not only a technique to analyze remote sensing data, but also a sub-
discipline of GIScience devoted to partitioning remote sensing imagery into meaningful
image segments, and assessing their characteristics through spatial, spectral and temporal
scale. OBIA requires, at its most fundamental level, image segmentation, attribution,

classification and the ability to query and link individual segments in space and time.
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Figure 6-1: The conceptual framework of the study.

Mainly advances in computer technology and GIScience as well as a dramatic increase
in commercially available high and very high-resolution remote sensing imagery in the first
decade of the new century have led to the emerging field of OBIA (LANG & BLASCHKE 2006).
The OBIA “movement” is also a response to increasingly affordable, available and powerful
computing tools and a further development of object-oriented programming. Moreover, the
recognition of limitations with pixel-based image approaches!! (see also chapter 3.2.2)
operates as a driver for an increasing use and further development of object-based

classification techniques. Little by little the users are becoming more aware of the fact that

11 First and foremost, traditional pixel-based classifiers are disadvantageous due to the fact that pixels are not true geographical
objects, the pixel topology is limited, and current remote sensing image analysis techniques mostly neglect texture, context and
shape features. In addition, an increased variability implicit within VHR image data “confuses” pixel-by-pixel classifiers resulting in

lower classification accuracies (HAY & CASTILLA 2006).
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object-based techniques can make better use of neglected spatial information contained in
remote sensing images, and provide greater integration with vector based GIS. Beyond that,
analysts recognize that object-based methods are especially suited for multi-scale
approaches in the monitoring, modeling and management of our environment, which, in

turn, makes OBIA to a well established discipline.

Especially in terms of analyzing heterogeneous urban environments, including
conceptual or spatial rules and conditions, a concept supported by object-based approaches
is promising and needed. For that reason and because of the above mentioned drivers, also
within this study an object-based image data analysis approach is applied in order to identify

informal settlements and other settlement types within the urban environment of Delhi.

The objective of the following chapter is to provide an introduction into the subject
object-based image data analysis. For that purpose, subchapter 6.1.1 describes the
underlying concept of image segmentation. Within subchapter 6.1.2 the general principle of

object-based classification is summarized.

Within this study, the software eCognition™ (Professional 4.0), developed by the
Definiens company (URL 18), is used for both image segmentation and classification. “The
concept behind eCognition is that important semantic information necessary to interpret an
image is not represented in single pixels, but in meaningful image objects and their mutual
relationship” (BAATz ET AL. 2003). The basic difference compared to pixel-based analysis
techniques is that the software classifies image objects instead of single pixels. The image
objects are extracted in a previous image segmentation procedure which uses a heuristic
algorithm. To realize object-oriented classification, the eCognition technology includes
moreover usual algorithms for image classification. The individual components and the
analysis options of the software are explained in more detail and in a use-oriented way

within the following chapters 6.1.1 and 6.1.2.

6.1.1 Creating Objects Using Image Segmentation

Performing object-oriented image data analysis in a common sense means to analyze the
content of an image by analyzing image objects consisting of many pixels that have been
grouped together by segmentation (EScH ET AL. 2003, HAY & CAsTILLA 2006). Segmentation
represents the complete partitioning of an image into meaningful, non-overlapping regions
(segments) based on one or more criteria of homogeneity *? in one or more dimensions of a

feature space or on the differentiation to neighboring regions (heterogeneity), respectively

12 Homogeneity criteria for image segmentation are for instance texture, spectral signature or shape.
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(HARALICK & SHAPIRO 1992, ScHIEWE 2002, LANG & BLASCHKE 2006). “Thus, segmentation
methods follow the two strongly correlated principles of neighborhood and value similarity”
(ScHIEwE 2002) and integrate therefore important features for image recognition, which are
also of great importance in visual image interpretation (cf. chapter 3.2.2). This circumstance
is expressed by TOBLER (1970) as first law of geography: “Everything is related to everything

else, but near things are more related than distant things”.

Image segmentation, which builds the basis of this classification approach, has been
introduced already in the 1970ies and the 1980ies (HARALICK ET AL. 1973, HARALICK & SHAPIRO
1985, PAL & PAL 1993). The development of an image segmentation concept was mainly
influenced by the work of HARALICK ET AL. (1973), where textural features based on gray-
value spatial dependencies were used to classify images “on a block of contiguous resolution
cells” (HURSKAINEN & PELLIKKA 2004). Image segmentation has been, and still is, an important
research field within Pattern Recognition and Computer Vision and a multitude of segmen-

tation algorithms have been developed during the past decades (HARALICK & SHAPIRO 1992).

Common segmentation methods are based on the following basic strategies for
partitioning an image into meaningful regions, namely (1) point-based (e.g., grey-level
thresholding), (2) edge-based (e.g., edge detection techniques), (3) region-based (e.g.,
region merging or growing and region splitting), and (4) combined (FU & Mur 1981,
HURSKAINEN & PELLIKKA 2004, ScHIEWE 2002). Detailed explanations as well as mathematical
basic principles and surveys of these algorithms can be found by HARALICK & SHAPIRO (1985,
1992), PAL & PAL (1993) as well as by MOREL & SOLIMINI (1995), GONzALEZ & WooDs (1993)
and FREIXENET ET AL. (2002). However, ScHIEWE (2002) briefly describes the general concepts
of image segmentation methods mentioned and emphasizes the particularities for the

analysis of remotely sensed data.

Respective segmentation algorithms have been developed with successful and
promising applications in various specific disciplines such as medicine or telecommunication
engineering (ScHIEWE 2002, NEUBERT 2005). Except for the early research work of KETTIG &
LANDGREBE (1976) 3, image segmentation was established rather late in remote sensing
applications. The decelerated utilization of segmentation techniques in the field of remote
sensing has been caused, amongst other things, by the complexity of the underlying object
models and the heterogeneity of the sensor data in use. The application of these methods
on spatially low- and medium-resolution remotely sensed data as well as on aerial photo-

graphs was limited to special purpose implementations only and has therefore not provided

13 KeTTiG & LANDGREBE (1976) developed the system ECHO (Extraction and Classification of Homogeneous Objects), which is quoted
in the literature as the first segmentation technique for the analysis of remotely sensed image data (SCHOWENGERDT 1997, NEUBERT
2005, NEUBERT ET AL. 2006).
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significant improvements in image analysis. Moreover, the former poor development status
of the methods as well as the limited computer technology were crucial obstacles for a
general application of segmentation algorithms in the fields of remote sensing and
photogrammetry (ScHIEwe 2002, NEUBERT & MEINEL 2003, NEUBERT 2005). Only recently and
especially since the availability of VHR image data (cf. chapter 3.2.1) as well as due to the
easier access to multi-source data sources, image segmentation techniques have been
further and further developed and are nowadays increasingly used for remote sensing and
thus for Earth observation applications. At last, significant progress in terms of user
awareness was achieved with the advent of the first commercial and operational software
product eCognition™ in the year 2000 (ScHIEWE 2002, BAATZ & ScHAPE 2000). Thenceforward,
the interest in the remote sensing community has increased steadily and the number of
segmentation-based image processing applications has grown considerably. In turn, this
reorientation resulted in a permanent growing variety of implemented segmentation
algorithms using very different concepts. Meanwhile a multitude of implemented
segmentation algorithms in different software packages (e.g., ENVI, ERDAS) exist, which
allow for an (semi-) automatic partitioning of remotely sensed image data. However, all
segmentation algorithms have in common that they are providing the building blocks for any
further object-based image analysis (HOFMANN ET AL. 2008). Altogether, this development is

leading to a new object-oriented paradigm (NAVULUR 2007).

An application-oriented comparison as well as an assessment considering recently
commercially distributed or for scientific use freely available segmentation algorithms based
on real remote sensing image data is given in NEUBERT & MEINEL (2003), MEINEL & NEUBERT
(2004), and NEUBERT ET AL. (2006) as well as in NEUBERT ET AL. (2008) and NEUBERT & HEROLD
(2008) . In these studies, the partly very different characteristics of the available segmen-

tation programmes are shown and diverse capabilities are presented.

Image segmentation represents the interface between image pre-processing and classi-
fication. Thus, “image segmentation is a crucial step within the object-oriented remote
sensing information retrieval process” (NEUBERT & MEINEL 2008). Since the classification
process is based on the segment properties generated (e.g., spectral mean, shape etc.), a
substandard segmentation quality has an adverse effect on the classification quality. Hence,
the success of object-oriented image classification approaches, i.e. the assignment of the
generated image segments to classes which are described by rule bases depending on the
segments’ properties, is directly affected by the quality of the segmentation results. As a
rough rule of thumb it can be stated that, the better the generated segments are capable to
represent the imaged objects in the image data, the better the quality of the segmentation
process and consequently the classification results are. (HOFMANN ET AL. 2008). The quality
assessment of image segmentation results is therefore “of fundamental significance for the

recognition process as well as for choosing the appropriate approach and parameters for a
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given segmentation task” (NEUBERT & MEINEL 2008). In order to perform a quality assessment
of segmentation results using different algorithms and modified parameters, NEUBERT &
MEINEL (e.g., 2008) proposed for instance to compare segmented objects with reference
objects using formal characteristics only.

Image segmentation has to generate ] h

meaningful objects (e.g., streets, buildings),

which represent real world objects of interest.
In this regard, it is evident that the ability of

the segments to represent real world objects

in image data is on the one hand strongly

dependent on the properties and quality of

the image data used. Thereby, the ability

mainly depends on the spatial resolution of

the image data (cf. Figure 6-2). Disturbing [T [ 1

factors can be fuzziness, absence of contrast, . , . o
epresentation in coarse-resolution grid
atmospheric effects, shadows, too far off-
D Reprasentation in high-resolution grid
nadir viewing angles or overlap (cf. chapter
. . ' Real-world abject

3.2.2). Imprecise representation of the real

world objects may originate on the other

hand from the selected segmentation Figure 6-2: Representation of a real-world object in
. image data of different spatial resolution (Source:
approach  itself. ~ Thereby, the used modified after HOFMANN ET AL. 2008).

segmentation method as well as the used

homogeneity value and its parameterization are primarily of importance. Moreover, the
transferability of the segmentation methods as well as the accurate repeatability of the
segmentation process is a crucial precondition. A further aspect that needs to be taken into
account is the independency of the segmentation results of the chosen starting points
(HOFMANN ET AL. 2008, NEUBERT 2005). A detailed survey of the requirements on a successful

segmentation is provided for instance by GORTE (1999) and HALLE (1999).

As previously stated, in this study a so called multi-resolution segmentation (MRS), im-
plemented in the eCognition™ software (BAATz ET AL. 2003), has been applied for object
delineation. This segmentation algorithm is based on a region-growing approach where
pixels are iteratively grouped into objects based on predefined similarity criteria. Since
recently, region-growing methods have most commonly been applied to the analysis of
remote sensing data. More examples of region-growing approaches can be found by EVANS
ET AL. (2002) and TILTON (1998). The MRS procedure detects local contrasts and was espe-
cially developed to work even on highly textured data, such as VHR imagery. Furthermore it

allows the segmentation of an image into a network of homogeneous image objects at any
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chosen resolution (fine or coarse structures). The object’s attributes can then be used for

subsequent classification (BAATZ ET AL. 2003).

b4

The MRS technique extracts image objects at modifiable

Homogeneity criterion, which is represented by the two parameters color (spectral
properties) and shape (spatial properties) (cf. Equation 6-1). In this context
homogeneity is used as a synonym for minimized heterogeneity. With the color/shape
weighting factor the influence of color vs. shape homogeneity on the object generation
can be adjusted. The color parameter defines the overall contribution of spectral values
in regard to homogeneity. Thereby, the sum of the standard deviations of spectral
values in each layer weighted with the weights for each layer is used (cf. Equation 6-2).
The lower the color criterion is, the less spectral values of the image layers contribute to
the entire homogeneity criterion and thus to the object generation. The shape criterion
(cf. Equation 6-3) is defined by two sub-parameters: smoothness and compactness. The
smoothness factor describes the ratio of the de facto border length of an object to the
shortest possible border length given by the rectangle along the grid which contains the
object (cf. Equation 6-4). The compactness factor describes the ratio of the de facto
border length and the square root of the number of pixels forming this image segment
(cf. Equation 6-5). The smoothness factor can be used to optimize image objects for
smoother boarders, whereas the compactness factor especially helps to avoid a
fragmented shaping of objects. The shape criterion in general helps to avoid a fractal
shaping of objects. This fact applies primarily to strongly textured data, such as radar
images (HOFMANN 2001a, HOFMANN ET AL. 2008, BAATZ ET AL. 2003, NAVULUR 2007, DE Kok
2001, FrRAUMAN & WOLFF 2005). Figure 6-3 shows the segmentation dialog window in
which the parameter input is carried out manually.

f=w-hg, +(L—w)-h

shape

Equation 6-1

f = homogeneity criterion

w = user defined weighting factor for color (against shape) with 0 <w <1
heolor = homogeneity of color

hshape = homogeneity of shape

n

N = 3300,

c=1

Equation 6-2

heoior = homogeneity of color
w, = weighting of layer c of an image
o. = standard deviation of layer c of the pixels of a segment
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b4

hshape = Wcompact : hcompact + (1_ Wcompact)' hsmooth

Equation 6-3
hshape = homogeneity of shape
Weompact = Welghtlng with0<w<1
heompact = homogeneity of compactness
hsmooth = homogeneity of smoothness

hsmooth = I/ b
Equation 6-4

hsmooth = homogeneity of smoothness
| = length of the borderline of a segment/ object perimeter
b = length of the borderline of the minimum surrounding rectangle of segment

hcompact = I/\/E

Equation 6-5

heompact = homogeneity of compactness
| = length of the borderline of a segment / object perimeter
s = size of a segment measured in number of pixels

Scale parameter, which indirectly influences the average object size. The scale
parameter operates as a boundary value within the segmentation process representing
the maximum allowed value of the homogeneity criterion during the fusion of two pixels
or segments respectively (cf. Equation 6-6). In fact, this parameter determines at the
same time the maximum allowed heterogeneity of the resulting object. Thereby, it
represents the termination criterion of the segmentation process. “For a given scale
parameter, heterogeneous regions in an image will result in a fewer number of objects
as compared to homogeneous regions” (NAVULUR 2007). The size of image objects can
thus be varied by modifying the scale parameter value. Hence, a larger scale parameter
value leads to bigger objects and vice versa.

SP>.[f

Equation 6-6

SP = scale parameter
f = homogeneity criterion
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+ Level, whereas this criterion controls whether a newly generated image level will either
overwrite a current level or whether the generated objects shall become sub- or super-
objects of a still existing level. The order of generating the levels affects the shape of
the objects (top-down vs. bottom-up segmentation).

+ Single layer weight, which can be used to more or less weight the impact of the
channels on the object generation.

Further parameters can additionally be selected in the segmentation dialog window,
such as the segmentation mode (normal, sub-object line analysis or spectral difference) or
the utilization of the geometry of thematically ancillary data as well as the provision for

diagonal pixel neighborhood (cf. Figure 6-3).

Multiresolution Segmentation |Ml
Edit layer weights Lewvel
Layer name | Layer stddew. | W eight ~level 8- .
gb_south_s3 mergel_subsetl.img [1] [Alias ... [23.9] 1.0 new level
gb_south_s3_merge_subsetl.img [2] [Alias ... [53.7] 1.0 level T -
qb_zouth_s3_mergel_subset] img [3) [Aliaz .. [58.4] 1.0 e level
qb_zouth_s3_mergel_subzet].img (4] [aliaz .. [78.1] 1.0
street_network_detailed =3 subzetl_polpgo... [39.6] 1.0
qb_zouth_s3_subset]_mergel_ndvi [gliaz n.. [0.1] 1.0 new level
~level 5 |E
e lewvel
~level 4 -
) e level i
Image lapers r Edit weights:|1 e lanral 2.
Scale parameter Composition of homogeneity criterion:
50
Shape Factor I 0.5
Segmentation mode
0z i 0.3
Mormal h Compactness Smoothneszs
Ovenwite existing level I
r - £
. i
Usze obzolete [V2.1) segmentation [
Start Cancel

Figure 6-3: Dialog window for manual input of the segmentation parameters in eCognition™ 4.0. Further
explanations are included in the text.

Understanding the effects of each of these criteria is necessary to segment an image
and create homogeneous objects at any chosen resolution for a given application (NAVULUR
2007). Please see the eCognition User Guide (BAATZ ET AL. 2003) for further information on
the science behind the single criteria. In the following section and in chapter 7.1, where the
segmentation results are presented, the effects of combining and modifying these four

parameters on creating varying image primitives will be shown.

As mentioned before, the image objects created by the initial segmentation should best
suit the image analysis purposes, i.e. the image segmentation should provide image objects
which best suit the ontology of the desired classes (JAIN ET AL. 2005). Finding the appropriate

parameter settings to obtain a satisfactory segmentation result depends on both the nature
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of the imagery (spatial resolution, spectral properties, number of image channels etc.) and
the nature and complexity of the objects to be detected (Yusor ET AL. 2008). For this reason
a universally valid statement concerning the parameter selection is not possible. Before the
segmentation process is executed, it is therefore essential that the user is aware of the
character and size of the required image objects primitives. The decisions taken at this stage
are fundamental and will always have influence on the final result. It is common practice
that people individually adopt the segmentation parameters in order to obtain the best
possible object delineation for each land cover class. The correct settings are therefore
usually determined experimentally, by a process of trial and error based on visual obser-
vation or estimated values. This procedure is very time-consuming and a transfer to other
test sites or images is difficult or even impossible (Yusor ET AL. 2008, DE Kok 2001). How
much the generated segments can differ from each other using different parameter settings

is illustrated in Figure 6-4 and Figure 6.5.

Figure 6-4: Effect of different scale parameter settings: 1 — basis data, 2 — scale 50, 3 — scale 100, 4 — scale
125; constant parameters: shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]. Blue lines delineate
the image objects. The yellow marked object represents the reference object. The QuickBird image (basis data) is
displayed as false color composite 4/3/2. Further explanations are included in the text.

Figure 6-4 illustrates the direct influence of the scale parameter upon the segment size
and the analyzing possibilities accordingly. With a smaller scale parameter (Figure 6-4 [2])
the green space (yellow marked segment) is clearly separated from the surrounding, without
comprising other land cover classes. This means that the scale value would be particularly
applicable for the classification of vegetation areas. Applying a higher scale value (Figure 6-4
[3]) other classes may already be comprised in the segmented object (under segmentation).
The segmentation results of this run would only be useable for a subsequent qualitatively
exact classification with intensive manual efforts. Within Figure 6-4 [4] a complete block of
buildings (yellow marked object) is segmented out of an image which comprises a multitude
of different classes (e.g., vegetation, impervious, shadow). Hence, this segmentation level
would be particularly applicable for a classification where the major task is the identification

of different settlement types.

Figure 6-5 shows firstly the results of a segmentation, where only the spectral infor-
mation (color = 0.9, shape = 0.1) is considered and secondly the results of a segmentation

where only the shape parameter (color = 0.1, shape = 0.9) is considered to demonstrate
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the influence of these two parameters regarding the segmentation results. The upper
illustrations (Figure 6-5 [2] to [4]) show the results of the segmentation with maximum
weighting of the color parameter, whereas the lower illustrations (Figure 6-5 [5] to [7])
show the results of the segmentation with maximum weighting on the shape parameter
(with constant values for compactness and smoothness in both cases). The illustrations
show a well visible discrepancy within the segmentation outcomes. The solely utilization of
the color parameter leads to homogeneous areas in terms of color, but the areas are
oversegmented (e.g., Figure 6-5 [2]). The maximum weighting of the shape parameter on
the other hand delivers an undersegmentation that is mostly unusable for further

classification purposes as the color information of the objects is ignored.

Figure 6-5: Composition of homogeneity criterion: varied weighting of shape and color parameters: 1 — basis
data, 2 — color [0.9], scale 25; 3 — color [0.9], scale 100; 4 — color [0.9], scale 150; 5 — color [0.1], scale 25; 6 —
color [0.1], scale 100; 7 — color [0.1], scale 150; constant segmentation parameters: smoothness [0.5], and
compactness [0.5]. Blue lines delineate the image objects. The QuickBird image (basis data) is displayed as false
color composite 4/3/2. Further explanations are included in the text.

Hence, for the selection of adequate segmentation parameters only relatively general
rules of thumb can be established. In order to generate meaningful objects for the question
of interest, the segment dimensions should be chosen neither too large (undersegmentation)
nor too small (oversegmentation). Moreover, an as low as possible number of the image
objects should be composed of not more than one of the classes of interest (endmember).
The segment size is mostly smaller than the one of the region of interest. If necessary, too

small objects can be remerged using the function classification-based segmentation .

4 The function classification-based segmentation was not applied within this study because of the desired transferability and
automation of the developed approach.
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In this research a sensitivity study for searching suitable segmentation parameters was
as well carried out manually. After examining numerous segmentations with different scale
parameters and homogeneity criteria (shape and color) and visually comparing these with
the original QuickBird image, the segmentation parameters were chosen based on how
clearly and accurately the segments delineated the boundaries of the small (single resi-
dential buildings) and large objects (e.g., green and open spaces as well as settlements
itself) visible in the image. In the following, these parameters were fixed and were applied
for each test site. The shape and color parameters were weighted equally, whereas the
compactness was prioritized instead of smoothness. Finally, the scale parameter was
changed systematically, while the residual homogeneity parameters and the layer weights
remained constant (cf. Table 6-1). This strategy makes the approach itself as well as a

subsequent transfer faster, transparent and more robust.

Table 6-1: Segmentation parameter settings

Level Scale Color Shape Shape settings

Smoothness  Compactness

1 5 0.5 0.5 0.3 0.7
2 10 0.5 0.5 0.3 0.7
3 15 0.5 0.5 0.3 0.7
4 20 0.5 0.5 0.3 0.7
5 25 0.5 0.5 0.3 0.7
6 50 0.5 0.5 0.3 0.7
7 75 0.5 0.5 0.3 0.7
8 100 0.5 0.5 0.3 0.7
9 125 0.5 0.5 0.3 0.7
10 150 0.5 0.5 0.3 0.7
11 175 0.5 0.5 0.3 0.7
12 200 0.5 0.5 0.3 0.7

After the determination of appropriate values, the parameters should be selected within
the first segmentation step in a way that the smallest segments required are generated.
Within a subsequent segmentation process on a higher level not the computationally
intensive pixel level is used, but only the directly underlying segmentation level is
considered. As the segmentation process is a very time consuming procedure, which
requires an extensive computation capacity, it is generally recommendable to initially apply

test runs to image subsets which are representative for the whole scene (cf. chapter 5.1).

The image segments have to be calculated on several hierarchical levels following an
iterative process (YUAN & BAUER 2006). As an “ideal” object scale does not exist — because of
the heterogeneity within the images —, objects of different levels of segmentation (spatial)

and of different meanings (thematic) have to be combined.
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In this regard, streets often form a natural boundary between different settlements.
Therefore an extraction of the main roads is useful to separate different settlements. As the
road surfaces in Delhi are very inhomogeneous, which means that different materials alter-
nate within single roads, the creation of a manually generated street layer based on the
QuickBird data was necessary (cf. Figure 6-6 [3]). It could be found out by examination that
a segmentation embedding a street layer provides better results for the separation of
adjacent settlements of different types. Alternatively digital street maps of the
representative city area could use here. Moreover, the NDVI (Normalized Difference
Vegetation Index) (MYNENI ET AL. 1995) was included as an additional band for both image
segmentation and classification (cf. Figure 6-6 [2]). On the basis of the NDVI a separation of
vegetation covered and vegetation less areas as well as a masking of the vegetation within
the image is easier. These additional data, in turn, enable an optimization of the

segmentation and therefore of the image classification.

Figure 6-6: Raw data for multi-resolution image segmentation: 1 — training area test site South s3 (channels 4, 3,
2), 2 — NDVI image, and 3 — street layer (manually generated).

The processing within the eCognition™ software is structured strictly hierarchically. The
ability to segment on different levels allows for the generation of different object sizes within
one and the same segmentation process (cf. Figure 6-7). This, in turn, provides the oppor-
tunity — comparable to the human ability of recognition — to identify different object sizes
simultaneously. The pixels of the lowest level are merged to segments within the next higher
level. Hence, the first segmentation step provides homogeneous object primitives according
to the homogeneity criterion. With subsequent segmentation steps within the next higher
levels these object primitives can be amalgamated to bigger objects — given the fact that
they are no sub-objects of different super-objects (bottom-up approach). A top-down ™
segmentation and an integration of levels between already existing levels is possible as well

if the above mentioned preconditions are fulfilled. Hereby, the border lines of the segments

15 A top-down segmentation requires a significantly longer computation time, because the segmentation of each level is computed

considering pixel values.
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are congruent. In case the analyst has assigned features to the image objects, these will
always be bequeathed to next higher object level (NEUBERT 2005, HOFMANN 2001b).

As informal settlements are the main issue of this research, the segmentation procedure
was developed with the focus on a classification of this specific settlement structure. Due to
the ambition to classify other settlement structures subsequently as well, these were kept in

mind during the development of the segmentation process.
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Figure 6-7: Hierarchical network of image objects — result of multi-resolution image segmentation: “bottom-up”
approach (abstract illustration) (Source.: BAATZ ET AL. 2003, modified).

For the detection of different settlement types textural information is essential.
Particularly for informal settlements the image texture is highly variable at different scales
(HorMANN 2001a). Thus, in this study a bottom-up approach with very fine segmentation on
the base level (level 1, very small objects) and a coarse segmentation on the top level (level
12, large objects) was applied (cf. Figure 6-7 and Table 6-1). That means that altogether 12
levels were calculated where level 1 represents the smallest objects and level 12 represents
the biggest objects of the segmentation. To take advantage of the textural information,
objects on the top level outline more or less different settlement areas and other objects of
comparable size (e.g., industrial areas, large unimproved areas). Intermediary segmentation
levels are necessary for the identification of medium scale objects (smaller settlement areas,
large buildings, open and green spaces etc.). The base level (1) holds image objects which
coincide with the smallest residential buildings, as well as with small road segments and
small vegetation areas. In principle, this makes it possible to describe later on spatial
relationships between e.g., settlement areas and small residential buildings as well as

neighborhood relations reflecting aspects of segregation (JAIN ET AL. 2005).

Hence, the segmentation results in a hierarchical network of image objects (cf. Figure
6-7), whereas each segment is connected to its vertical and horizontal neighbors (ESCH ET AL.

2003). This means that each segment “knows"” its context, its neighborhood as well as its
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sub- and super-object respectively. These object relations and context information
respectively are explicitly utilizable for the classification process. The hierarchical network of
image segments provides possibilities for innovative data analysis. Thus, structures of
different scales can be on the one hand represented simultaneously and therefore classified
in relation to each other. One the other hand, different hierarchical levels can be segmented
based on different underlying data (layer). In addition, the shape of image objects can be
corrected based on a regrouping of sub-objects. The analysis of image objects based on
sub-objects is a powerful tool, which offers the possibility to realize texture analyses.
Attributes for the classification of all sub-objects of an image object can be for instance
contrast or shape. Another possible application of the hierarchical network of image objects
is the classification of image objects in relation to their respective super-objects (BAATZ ET AL.
2003, BAATZ & MIMLER 2002).

6.1.2 Object-oriented Image Classification Approach

Usually classifying means assigning a number of pixels or objects to a certain land cover or
land use class according to the description of the typical properties the classes of interest
have. The pixels and objects then become assigned whether they do or do not satisfy these
properties. A class definition always contains uncertainties and can never be absolute. In
general, classifiers in remote sensing are therefore subdivided in Aard and soft (also known
as fuzzy) classifiers. While hard classifiers (e.g., maximume-likelihood, minimum-distance)
assign a membership of 1 (“yes”) or 0 ("no”) to the objects, expressing whether an object
belongs to a certain class or not, soft classifiers use a contiguous range of membership to
express an object’s assignment to a class. Thereby the membership value usually lies bet-
ween 1.0 and 0.0, where 1.0 means a complete assignment (“exactly yes”) and 0.0 means
absolute improbability (“exactly no”). In other words, all values between 0 and 1 represent a
more or less certain state of “yes” and “no”. The degree of membership depends on the
degree to which the objects fulfill the class-describing properties (BAATZ ET AL. 2003, NEUBERT
2005). With respect to image understanding, classification results based on soft methods are
“more capable of expressing uncertain human knowledge about the world and thus lead to
classification results which are closer to” (BAATZ ET AL. 2003) human visual interpretation.
Moreover, an advantage of soft classifiers lies in their possibility to express each object’s
membership in more than just one class as well as to express uncertainties about the
classes’ descriptions. The most powerful soft classifiers are fuzzy systems. Three main work
steps comprise a fuzzy system, namely (1) the fuzzification of input variables, which results
in fuzzy sets, (2) the fuzzy rule base and (3) the defuzzification. For a detailed description of
these terms and fuzzy logic in general see for instance BOTHE (1993), BENz ET AL. (2004),
BAATZ ET AL. (2003), YAGER ET AL. (1987) or ZADEH (1965 and 1973).
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In this study, starting with the segments generated as explained above, a classification
method was developed and conducted to detect and differentiate settlement types within
the urban area of Delhi. A multi-level fuzzy logic rule base to classify image objects was used
(BAATZ ET AL. 2003) which combines intrinsic features (physical properties of objects like
color, texture and form), topological features (geometric relationships between the objects
or the whole scene) as well as contextual features (features which describe the semantic
relationships of objects) on different levels. For this purpose, two basic classification algo-
rithms are implemented in eCognition™: (1) a traditional nearest neighbor (NN) classifier
and (2) a fuzzy membership function approach. Both serve as class descriptors and can be
used in combination. Using a NN classifier the analyst interactively collects sample objects
for each class of interest from the image to train the classifier. In contrast, fuzzy
membership functions describe the intervals of feature characteristics wherein the objects do
belong to a certain class or not by a certain degree (see section above) (DARWISH ET AL.
2003, HURSKAINEN & PELIKKA 2001, HOFMANN 2001a, YUSOF ET AL. 2008). Both classifiers are
based on the so called class hierarchy — a framework that comprehends all the classes of
the classification scheme and allows for a hierarchical organization of the image objects. A
class hierarchy in eCognition™ can be moreover understood as a rule base wherein the
analyst determines physical and semantic properties typical for the objects of a certain class
(cf. Figure 6-10) (HoFMANN 2001a, YUSOF ET AL. 2008).

While analyzing the different characteristics of the objects obtained by the segmen-
tation, such as reflectance, texture, shape or size, the user has the ability to determine
which features and which range of their values shall be used to amalgamate objects into the
same class or otherwise to allocate them into separate classes (YUSOF ET AL. 2008). Thus, the
user has to be aware of disjunctive properties for each class of interest, which in certain
cases might require appropriate a-priori and/or in-situ information respectively (HOFMANN
2001b). A key issue of the rule base development is therefore the selection and subsequent
use of robust features for the class description. The eCognition™ software provides a large
amount of features which can be used by means of fuzzy logic to build class descriptions.
The software distinguishes in total three groups with more than 70 features which can be
used for classification: object features, class-related features as well as terms (cf. BAATZ ET
AL. 2003). Dealing with image objects instead of single pixels, the group of object features
includes, besides spectral statistics (e.g., mean, standard deviation, ratio), shape and neigh-
borhood information usable in the classification process, which are not available in the pixel-
based fuzzy classifier (SHACKELFORD & DaAvis 2003). In addition, amongst others, textural

features such as Haralick parameters (HARALICK ET AL. 1973) in each object can be calculated.

The crux of this classification therefore lies in the selection of the above mentioned
features and the determination of the appropriate settings, which make it possible to

differentiate between different settlement structures as well as land cover classes. Thus,
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feature recognition is a complex and decisive part of object-oriented, rule-based image
analysis. Given the enormous number of possible features for object description, it is
necessary to identify the characteristic, significant and robust features for object classes of
interest. Therefore, a comprehensive feature selection methodology is the precondition for
successful processing of image objects. After NussBaUM & MENz (2008) a good feature
analysis is a consistent technique that “should be able to analyze a large number of features,
it should identify the characteristic features for any number of object classes and it should,
moreover, determine the thresholds for the feature intensity which achieves optimum
separation from the other object classes”. In addition, the methodology should also allow a
comparison of their suitability (NussBAuM ET AL. 2006). Recently there exists a large variety of
feature selection algorithms (e.g., CARLEER & WOLFF 2006, NussBAUM & MENz 2008). Feature
selection in general is a process commonly used in machine learning. Machine learning
refers to algorithms which analyze the information, recognize patterns, and improve pre-
diction accuracy through repeated learning from a set of representative training instances
(DE FRIES & CHEUNG-WAI CHAN 2000, CANTY 2006, and BisHop 2006). Broadly speaking,
machine learning involves tasks for which there is no known direct method to compute a
desired output from a set of inputs. Both supervised as well as unsupervised classification

algorithms for remote sensing imagery belong to machine learning techniques (CANTY 2006).

In the present study an automatic

feature extraction methodology, called Probabiity
SEaTH (SEparability and THresholds)
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are involved as representatives of each Figure 6-8: Examples of probability distributions
. (Source: NUSSBAUM ET AL. 2006).

land cover class of interest. The analyst

has to select representative image objects for each of the classes of interest by visual
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examination of the image data (CANTY 2006). Thus, the chosen training objects represent a
small number out of the total amount of generated image objects. The identification of the
significant features is “a problem of probability density estimation” (NussBaum ET AL. 2006).
In SEaTH, on the basis of the representative training objects for each land cover class, the
probability distribution for each class is therefore estimated and used to calculate the
separability between two land cover classes (cf. Figure 6-8). Hence, the statistical measure
for determining the representative features of each object class is the mutual separability of
the object classes. Suitable measures for separability are for instance the Bhattacharyya
distance (BHATTACHARYYA 1943, FUKUNAGA 1990) or the Jeffries-Matusita distance (NUSSBAUM
ET AL. 2006), whereas the last one is a more useful measure for separation in classification
contexts since it has a finite dynamic range. After determining adequate features, separating
the object classes in an optimal way, the decision-threshold for maximum separability has to
be calculated. “The knowledge of the optimum threshold is necessary for the assembly of a
ruled-based classification model” (NussBauM ET AL. 2006). SEaTH provides a Gaussian
probability mixture model for the calculation of an ideal threshold. An example probability
distribution of two classes can be observed inFigure 6-9. Subsequently, SEaTH calculates
those thresholds which allow the maximum separability in the selected features depending
on the respective segmentation level. Thresholds obtained in this manner are then used to
separate different classes in the image classification process. Finally, the results of SEaTH
are presented in tables, where an interpretation of the results allows a quick preparation of
a classification model, with statistically optimized features and thresholds (NUSSBAUM ET AL.
2006). Detailed explanations, mathematical basics as well as validation results of the SEaTH
methodology can be found at NussBauM ET AL. (2006), NussBaUM & MENz (2008), and MARPU
ET AL. (2006).
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Figure 6-9: Threshold identification used within the automatic feature extraction methodology SEaTH (Source:
NUSSBAUM ET AL. 2006).
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A further aspect that has to be taken into account at this stage is the transferability of
the analysis methods used. The development of a rule base requires not negligible efforts. A
rule base is the more transferable, the less it needs to be manually adapted to the specific
image characteristics. Therefore, during the development of a rule base, it should be avoi-
ded to formulate rules, which are too dependent on the image data, which in term would
diminish the transferability. A rule base should be designed in a way that it depends only on
image independent object features at a first stage and at a second stage on features, which
can easily be adapted to differing imaging conditions (HOFMANN ET AL. 2008). Moreover, given
the premise of transferability, properties with attributes which are as stable as possible in
terms of time and space should be considered. This aspect has as well been taken into
account during the development of the present method. In general, different settlement
types differ mainly in building size and their density or sealing degree respectively, as well as
in used building materials, visible structure and fraction of vegetation (cf. chapter 4.1 and
4.2). This means that both spectral and textural properties as well as contextual features are
suitable to describe and identify different settlement types. Textural and contextual
properties are, however, because of their robustness and transferability, better suited to
describe different settlement types than spectral properties (HOFMANN 2001b, EScH & ROTH
2004) — at least if the analyst wishes to classify settlement types with similarly observable
characteristics in different areas or based on different image data. In the opinion of some
authors (e.g., HOFMANN 2001b, HOFMANN ET AL. 2008, EscH & ROTH 2004) spectral features are
too susceptible to describe settlement areas or urban areas (in general) respectively, unless
one is dealing with very constant parameters such as the NDVI, which can be easily adapted

to differing imaging conditions.

Since informal settlements represent, in general as well as in the city of Delhi in parti-
cular, the most visible expression of urban poverty, the main emphasis of this analysis is put
on the identification and analysis of this settlement type. Accordingly the classification
procedure of this settlement type is described here in more detail. The features “high buil-
ding density” and “small building size” as well as “complex shape appearance to the outside
and high heterogeneity within the settlement” were found to be the most important
characteristics to identify informal settlements from the VHR image data (cf. chapter 2.4 and
4.2). Basically, these features are implemented in the classification algorithm in terms of
texture parameters. All features concerning texture are based on sub-object analysis.
Therefore, the object class “informal settlement” is not classified in the level in which it is
entirely included, but in a smaller level with corresponding sub-objects (cf. next section). In
general the textural features are divided into two groups: texture concerning the spectral
information of the sub-objects and texture concerning the form of the sub-objects. In case
of the identification of informal settlements the spectral information is determining. For
instance HOFMANN (2001b) uses spectral texture properties as well as prime criteria for

informal settlement detection. Thus, applying the SEaTH methodology, the texture
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parameters after Haralick *® (HARALICK 1979 and HARALICK ET AL. 1973) could be determined as
valuable features and could be afterwards applied successfully in eCognition™ for the identi-
fication of informal settlements. Particularly the parameters GLCM - Angular Second
Moment'” and GLCM — Entropy'® were implemented in this analysis (cf. Figure 6-10 and
Table 6-2). Since not all very dense areas in Delhi are informal settlements, the term “very
dense urban area” was chosen for demonstration purposes of that settlement type. The
impervious surfaces, situated outside of the objects declared as “very dense urban”, were
identified applying the textural parameter GLCM — Contrast’. For the extraction of the
remaining land cover classes, spectral layer value features were applied. Whereas, as
expected, the mean of the accessory NDVI band operates as most useful feature for the
identification of vegetation areas (cf. Figure 6-10), the features mean difference to
neighbors and mean are used for shadow classification. The class “streets” is simply
described by mean, ratio and relative border to brighter neighbors in the self generated
street layer (cf. Table 6-2). The residual objects are assigned to the class “background”

automatically, which is synonymous with the land cover class “not impervious”.

Another challenge of the approach is based on the fact that the different classes and
structures need to be classified in different segmentation levels since each level provides,
due to different object sizes, disparate information about spectral and textural content.
While a bottom-up approach — from the smallest unit pixel to the largest segments in level
x — forms the basis of the segmentation process, an exactly contrary principle — a fop-
down approach — is implemented for the present classification procedure (cf. Figure 6-11).
Consequently, the image segments are classified contrarily to their segmentation sequence,
this means from the coarse, individually defined level x to the fine levels (e.g., level x-i with
i=1, ..., X). All generated segmentation levels down to the base level are available for the
thematic classification process. The object-oriented, hierarchical classification procedure is

thus based on x levels resulting from the segmentation process (TAUBENBOCK 2007). Hereby

16 HARALICK ET AL. are using a so-called Grey-Level Co-occurrence Matrix (GLCM) for derivation of statistics of second order in digital
images. A GLCM is a matrix derived from the grey level image, which shows the joint-probability of distribution of a pair of grey
levels, separated at a certain distance and a certain orientation (ZHANG ET AL. 2003). A GLCM is the appraisal of the probability of the
transition from grey scale level i to grey scale level j of two neighboring picture elements, whereas the neighborhood is defined by a
transition vector. Second order statistical parameters with the application of GLCMs are considering as well the spectral as the
spatial distribution of the grey scale values. So-called textural features are being derived from GLCMs, which represent the
characterization of the GLCM within a single value (HARALICK ET AL. 1973, STEINNOCHER 1997). HARALICK ET AL. (1973) are mentioning
14 of these textural features, some of which are as well implemented in eCognition™ as classification features.

Y7 The GLCM - Angular Second Moment (ASM) corresponds to the sum of squares of the occupied elements of the GLCM and is
therefore a measure of homogeneity. It effectively measures the number of transitions from one grey level to another and is high
for few transitions. Thus, low values indicate heterogeneity (STEINNOCHER 1997, MATHER 2004).

8 The GLCM - Entropy (ENT) measures disorder of the image (ZHANG ET AL. 2003).

19 The Haralick feature GLCM — Contrast (CON) gives non-linearly increasing weight to transitions from low to high grey scale values.
The weight is the square of the difference in grey level. Its value is a function of the number of high/low or low/high transitions in

grey level. CON measures local spatial frequency (MATHER 2004, ZHANG ET AL. 2003).
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it is the user’s decision which classes are considered suitable within the respective levels of

the classification.
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Figure 6-10: Class hierarchy of the QuickBird training area of test site South s3 (Delhi, India) and descriptions of
the classes “very dense urban” (level 7) and “vegetation” level 5. The development of the class hierarchy is
comparably simple, as the differentiation is merely made between different land cover classes only and not

simultaneously between land use classes.

Table 6-2: Criteria and corresponding threshold values used in the rule-based classification in eCognition™ —
identification of very dense urban areas (informal settlements) within the training area of test site South s3.

Land cover class Level Type of criteria Criteria** Threshold**
Streets 8 Spectral* Mean (street layer) <=124
Ratio (street layer) <=0.01
Relative border to brighter neighbors (street layer) >=0.55
Very dense urban 7 Texture GLCM - Angular Second Moment (all dir.) (1) <= 0.00079
GLCM - Entropy (all dir.) (1) 753.335
Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >=422.465
Vegetation 4 Spectral* Mean (NDVI) >=0.07
Shadow 1 Spectral* Mean difference to neighbors (abs) (NDVI) >=0.0327
Mean (3) <=124

*Layer values

**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.
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With the purpose to classify informal settlements, medium scale objects (level 8) were
classified first. In this level it is distinguished merely between the classes “streets” and
“background”. Sequentially in level 7 (sub-objects of level 8) the class “very dense urban” is
extracted and taken to the next smaller level. This hierarchical approach is used step by step
to those levels in which the appropriate classes can be classified well (“impervious” — level
6, “vegetation” — level 4). This way, all land cover classes are classified gradually and each
class is bequeathed to the smaller levels within the class hierarchy. The fine segments of the
lowest level (1) are classified to characterize small scale urban structures of shadows.
Finally, all extracted classes are merged to one land cover classification in the smallest
object level (1). The remaining levels (2-3, 5, and 9-12) are not required further in this
application. The intermediate levels (2-3 and 5) were solely important for the inheritance of
the land cover classes. As they will be used in further analysis for the classification of more
settlement types (dense urban, medium dense urban etc.) they have all been retained

unchanged. Figure 6-11 represents the complete workflow of the applied classification.
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Figure 6-11: Modular framework for object-oriented urban land cover classification — identification of informal
settlements (very dense urban areas) using a top-down approach.

One of the aims during the development of the classification approach is a robust
spatial transferability. Within this study, particularly the identification of informal settlements
within the urban area of Delhi is of major interest. The conceptual framework together with
its classification approach was developed based on a training area within the test site South
s3 (cf. chapter 4.2). A first test of the transferability of the classification method is carried
out by application on the complete test site South s3. To prove the transferability of this

concept further, a second test is carried out on a completely different “transfer site” (test
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site South s2) within the urban area of Delhi. The criteria set up for the development of the
respective rule bases and their corresponding thresholds are provided in Appendix A.8. The

results of the transfers are presented in chapter 7.2.1 and 7.2.2.

Not only the informal settlements within Delhi but also the other, on-site self defined
and during the field campaign mapped settlement types (cf. chapter 5.3) shall be identified.
For this purpose the developed method was adapted accordingly. The features and
thresholds crucial for the separation of the classes were as well determined by SEaTH and
subsequently implemented in eCognition™. Firstly the research was focused on the
identification of “sparse urban” settlement areas. As this settlement type can, like informal
settlements, be considered as a type with “extreme features”, i.e. the settlement type can
due to its characteristics clearly be separated from the surrounding settlement areas, the
methodology could comparably easily be transferred. Sparse urban areas are characterized,
in contrast to informal settlements, by a very low building density, i.e. the fraction of
impervious area is very low. At the same time vegetation covers a large fraction of the total
area, which are mainly gardens surrounding private homes. The size of the residential
buildings is in the mid-range. Consequently, completely different textural and spectral
properties are distinctive, so that the classification features of this settlement type need to
be newly determined by SEaTH. The considered features and their respective thresholds are
listed in the Appendix in Table A.8.2. As another test site South s2 needed to be chosen for
this classification, not exactly the identical levels could be used for the identification of the

respective classes. The choice of the classification levels has hence slightly been modified.

The transfer of the methodology on the remaining settlement types “dense urban” and
“medium dense urban” figured out to be not trivial though. Difficulties occurred at the
determination of significant features for optimal class separation and the corresponding
thresholds, as the attributes of the selected sets of training data in parts hardly differed. The
procedure was repeated several times, in order to except that the selection of the set of the
training data for the determination of the features is the root cause of the problem. Looking
at the sub-objects, one can easily recognize why a clear separation of the settlement
structures is difficult — even by a visual assessment the differences can hardly be identified
(cf. Figure 6-12 and Figure 6-13).

However, in order to enhance the quality of the classification results, an approach was
adopted, which was already used by other authors for the evaluation of VHR remote sensing
data within urban areas — to combine both object-oriented and pixel-based algorithms and
thus to take advantages of their respective pros and cons (cf. chapter 3.2.2). Considering
this, an ancillary layer as input data for the development of the rule base was added. This
layer is resulting of a supervised pixel-based classification, which was performed
simultaneously to the object-oriented classification (cf. Appendix A.9). As the data base for

this classification is completely different here, the class hierarchy developed for the
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identification of the previous settlement types could not be transferred directly. Hence, not
only the thresholds needed to be determined newly with the SEaTH methodology, but as
well the criteria needed to be re-evaluated and implemented into the rule base in
eCognition™. Again the textural features were the decisive parameters for the classification
of the settlement structures. In addition to that, the selection of the levels of the class
hierarchy, in which the corresponding classes were identified, was adjusted to the new

approach (cf. Appendix, Table A.8.3).

Figure 6-12: Merged QuickBird training area in 4/3/2
composite (top). The sub-objects (segmentation level
7) show that a clear separation of the settlement types
“dense urban” (red object) and “medium dense urban”
(green object) is difficult — even by a visual
assessment the differences can hardly be identified
(bottom).

Figure 6-13: Result of pixel-based image classification
displayed in grey scale values based on merged
QuickBird training area (top). The sub-objects
(segmentation level 8) show that a clear separation of
the settlement types “dense urban” (green object) and
“medium dense urban” (red object) is difficult — even
by a visual assessment the differences can hardly be
identified (bottom).

Based on the image analysis conducted using the eCognition™ software the following

strenghts of the object-oriented technique (in general and using the eCogntion software in

particular) can be summarized:

+ The good suitability as well for multi-resolution segmentation as for the image analysis
to the spatial and radiometric information of the real world objects,

+ The availability of an immense amount of criteria to characterize and define the desired

classes,

+ The possibility to optimize the methodology by implementing ancillary thematic
information, such as a GIS layer or NDVI image,
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The potential, in principle?, to instantly transfer the developed classification scheme to
another test site or image with similar land cover (protocol function), as well as

The classification results can be exported in form of thematic vector layers, which
enables close connection to GIS and for instance further integrative data analyses.

Nevertheless, disadvantages of the applied object-oriented approach and the software

eCognition™ with respect to a successful and operational application have to be mentioned.

Ing

hum

eneral an image analysis using this tool is involved with a significant expenditure of

an labor, requires significantly higher skills, is more complex and time consuming than

the conventional methods (EscH ET AL. 2003). In detail the following facts are crucial:

The identification of appropriate parameters out of the immense range available and the
determination of respective thresholds towards the segmentation and classification
usually mainly bases on estimations or experiences of the analyst. Hence, the
development and performance of the object-based image analysis can easily become
very complex. (With regard to this research this fact could be kept in check using the
SEaTH algorithm.)

The great variety of usable features and sub-procedures leads on the one hand to a
high variability of the approach but aggravates on the other hand the comprehensibility
of the methods and structural dependencies for new users.

The effort and time exposure can hardly be estimated in advance.

Working with various levels and/or large images (in respect of spatial resolution as well
as spatial dimension) can increase the processing time exponentially (ESCH ET AL. 2003,
KAMPOURAKI ET AL. 2006).

eCognition™, in fact, cannot interpret an image as intelligently as a manual interpreter

would, but the results turned out satisfactory in that manner that it is possible to pass on

substantial information (in respect of content) or to carry out continuative analyses.

6.2

The results of the object-oriented classification are presented in chapter 7.2.

Integrative Use of Remote Sensing Derived Information

and Socio-economic Data

According to the explanations in chapter 3.3 one of the limitations within the exclusive use

of remotely sensed data is based in the fact that no socio-economic information can be

20 once the user finds the appropriate parameters and thresholds for a satisfactory segmentation and classification
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provided directly and therefore also no direct characterization of the living conditions within
a certain settlement area is possible. It is for instance impossible to sense the amount of
residents per housing unit without the application of ancillary in-situ information. At the
same time, in the majority of cases, there are almost no or only incomplete datasets
available in less developed countries. Particularly mega cities like Delhi are data poor
environments. Temporal resolution, coverage and quality of administrative and socio-
economic data are insufficient and the knowledge about the living conditions of the residents
is correspondingly very limited, incomplete and not up to date. Due to logistical reasons, as
well as the high time and cost intensity of the acquisition of in-situ data this circumstance
will not approve within the near future. Therefore, within the following chapter a
methodology is developed to compensate the lack of in-situ collected socio-economic data
by means of remote sensing imagery as well as with the integration of questionnaire data in
order to allow an indirect assessment of the living conditions of Delhi’s inhabitants. The
combined application of remotely sensed imagery and socio-economic data for mapping,
capturing and characterizing the socio-economic structures and dynamics within the mega

city of Delhi is the major task within this research.

In order to examine whether high-resolution remote sensing data is suitable to provide
indicators to identify socio-economic structures and dynamics, the classification results [1]
were embedded in a GIS analysis concept [2]. This concept is used to determine different
socio-economic attributes, such as the population amount or the population density, and to
evaluate the water demand within a certain settlement area. The framework to this

approach is presented in Figure 6-14.

According to CoweN & JENSEN (1998) the derivation of socio-economic attributes using
remotely sensed data usually requires the fulfilling of several preconditions. In order to
estimate population attributes, which is one of the tasks within this study, it is necessary to
(1) have access to imagery with sufficient spatial resolution to allow the identification of
individual structures and to determine whether buildings are residential or not. In addition,
(2) some estimates of the average number of persons per dwelling unit must be available
and (3) it must be assumed that all dwelling units are occupied, and only one family lives in
each unit. Otherwise, the analyst needs more detailed information on the living conditions of
the residents (e.g., number of families per house, housing units per building, and stories).
Since VHR QuickBird data is used within this study, the requirement for imagery with
sufficient spatial resolution is conformed. The second precondition is fulfilled as well, as,
based on the questionnaire data (cf. chapter 5.2), adequate information on the average
family size is available. For the investigation of informal settlements or other one-family
dwelling settlements, such as the upper middle class settlement Greater Kailash II or the
upper lower/lower middle class settlement T7ughlakabad Extension, also the third require-

ment is conformed. For the analysis of the remaining settlement types examined in this
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research (e.g., Kalkaji DDA Fiats) ancillary information, namely the average number of

stories, is applied to estimate the number of inhabitants.
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Figure 6-14: Detailed framework of the work steps implemented in the integrative data analysis. Further
explanations are included in the text.

Within this study, the settlement characteristics (e.g., area, house size, and number of
houses) are estimated from the classified QuickBird data and used to derive spatial infor-
mation about the population distribution [2+3]. In order to obtain these characteristics the

following approach was implemented:

4. Export of the settlement image objects after classification, which are characterized by
shape features (e.g., object size) only or additionally by class information (i.e. an object

is assigned to a certain land cover class),

5. Determination of the impervious fraction of a certain object (settlement) using the results

of object-oriented image classification in combination with GIS queries,

6. Determination of the mean building size (Ay) within the settlement area by means of
mapping randomly sampled buildings within a GIS environment and their automatically

statistical calculation using arithmetic mean (cf. Appendix, Map A.10),
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7. Evaluation of the total number of houses (N) within the settlement by dividing the

impervious area (A;) by the mean building size (Ay).

This approach is tested in two ways: (1) the settlement is represented by one image
object only (e.g., level x), and (2) two or more image objects together build up one settle-
ment (e.g., level x-1). The results of this examination show that both methods enable the
estimation of various settlement characteristics in the same way. Therefore, it is not
necessary to extract the settlement to be examined with one fitting object — the settlement
can consist of more segments. In turn, this makes the methodology more independent of

the results of the segmentation process.

In addition, the integrative approach makes use of the primary database [4]
(georeferenced questionnaires, cf. chapter 5.2). These are used to characterize a given
settlement type in terms of specific population and water related variables (e.g., family size,
mean water consumption per family member and per capita in a certain settlement). The

parameter “family size” was calculated using the arithmetic mean:

Equation 6-7

F = average family size per settlement,
n = number of interviewed households,
X = number of family members per household.

In contrast to the given information on the family size per household, the interview
information on the water consumption was often doubtful (cf. chapter 5.2.3). Hence,
extreme outliers, which could definitely be considered as unrealistic data, were eliminated
accordingly. Afterwards the “mean water consumption per capita” within a settlement was

determined using the arithmetic mean as well:

Equation 6-8

W¢ = mean water consumption per capita [I/d] within a settlement,
w = mean water consumption per family member per interviewed household
n = number of interviewed households.
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By combining the remote sensing derived data with the questionnaire information, it is
possible to characterize a given settlement type (e.g., informal settlement) in terms of
specific population and water related parameters, such as “total population”, “population
density” and “total water consumption” [5]. For instance, the total population amount of a

certain settlement was established by the following approach:

Equation 6-9

P = total population of the settlement,

N = total number of houses within the settlement extracted from satellite
image,

F = average number of persons per household (family size) extracted from
questionnaire data (family size = 1 family per house; calculated using
arithmetic mean).

In the following, the population density of a settlement area was calculated as:

D=P/A

Equation 6-10

D = population density [Pop./km2] of the settlement,
P = total population of the settlement,
As = settlement area (estimated from multi-resolution segmentation) [kmz2].

The total water consumption of all inhabitants living in a certain settlement is calculated

using the correlation:

Equation 6-11

W = total water consumption [I/d] of the settlement,

W¢ = mean water consumption per capita [I/d] within the settlement
(extracted from questionnaire data, cf. formula 6-8),

P = total population of the settlement.



Methodology and Conceptual Framework 131

In order to compare the remote sensing derived data (assumptions) with the
questionnaire data, a realistic amount for “water consumption per capita” [l/d] was
estimated. In this case for informal settlements in Delhi an empirical value of 25 [l/d] was

determined.

It is important to note that the remote sensing and primary data has been strictly
divided into two parts: one part for the methodology development and the other for the vali-
dation of the approach. To transfer the approach to unknown areas, where no primary data
has been collected, assumptions have to be made for certain variables (e.g., family size,

water consumption), which might result in uncertainties in the estimated variables.

The results of the integrative analysis are all presented in chapter 8.



Chapter 7

Identification of Urban Structures
Using VHR Remote Sensing Data

In this section, the results of the object-based image data analysis are presented. At first,
the deliverables of the segmentation process are presented (cf. chapter 7.1). In chapter 7.2
then, the deliverables of the object-oriented classification approach are demonstrated. This
includes the identification of informal settlements and other settlement types within the
urban area of Delhi (cf. chapter 7.2.1 and 7.2.2). The quality of the land cover classification
is of decisive importance for the following investigation of the urban environment of Delhi.
In order to estimate the achieved accuracy of this process, hence the mapping results were
evaluated both in qualitative and in a quantitative way (cf. chapter 7.2.3). The section is
completed with a summary and a critical survey of the classification results (cf. chapter
7.2.4).

7.1 Deliverables of the Segmentation Process

In the next two sub-chapters initially the outcome of the segmentation process is shown (cf.
chapter 7.1.1). Subsequently, since the image objects extracted here are crucial for the
image classification following, the results and the segmentation method itself are appraised

within this chapter as well (cf. chapter 7.1.2).
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7.1.1 Results of the Multi-Resolution Image Segmentation

As explained in detail in chapter 6.1.1 in this research a bottom-up approach with very
fine segmentation on the base level (level 1) and coarse segmentation on the top level (level
12) was applied in order to facilitate the retrieval of meaningful objects for the classification
of different land cover classes and different settlement types. This means that altogether 12
levels were calculated where level 1 represents the smallest objects and level 12 represents
the biggest objects of the segmentation process (cf. Table 6-1 in chapter 6.1.1). Using this
approach the primary aim was to prove the assumption that it is the textural information of
the image data, which is in particular essential for the detection of different settlement

types. This is especially true for the detection of informal settlements.

As can be observed in Figure 7-1 and Figure 7-2 multi-resolution segmentation was
successfully applied to the acquired QuickBird image data of the city of Delhi. Figure 7-1
shows a sequence of segmentation levels which was produced from the analysis of the
chosen training area of this study whereas the segment sizes are optimized in terms of best
fitting representation of the real world structures. To take advantage of the textural
information, objects on the top level (here level 9-12) outline more or less different
settlement areas, large parts of settlement areas and other objects of comparable size (e.g.,
industrial areas, large unimproved areas, or large green corridors). Clearly visible is for
example in level 9 of the simplified illustration in Figure 7-2 that the settlement area with the
highest building density in the middle-northern part of the training area is being delimited as
a segment. This area comprises a part of the informal settlement Bhomiheen Camp (cf.
chapter 7.2.1 and Figure 7-5). Intermediary segmentation levels (here level 5-8) are
necessary for the identification of medium scale objects (smaller settlement areas, large and
medium sized buildings, open and green spaces etc.). Segments on the bottom level (here
level 1-4) outline the smallest image contents. The base level (1) and the three next higher
level hold for instance image objects which coincide with the smallest residential buildings,
as well as with small road segments, small vegetation areas, and small areas of shadow.
Hence, the requirement that the parameters should be selected within the first segmentation
step in a way that the smallest segments required for the subsequent analysis are generated

(cf. chapter 6.1.1), is met.

The segmentation parameters were chosen based on the accuracy of the segments
delineating the boundaries of the small (single residential buildings) and large objects (e.g.,

green and open spaces as well as settlements itself) visible in the image.

The resulting segmentation needed to be reproducible and universal to permit
application to the largest variety of data possible. Hence, after testing the multi-resolution
image segmentation on the selected training area, the developed segmentation approach

was firstly transferred to the whole test site South s3 and secondly to the transfer site South
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s2 correspondingly. As during the segmentation of the training area fixed parameter settings

were applied here as well and the scale parameter was changed systematically like before.

Figure 7-1: Results of multi-resolution image segmentation based on the training area. The scale parameter was
changed systematically, while the residual homogeneity parameters and the layer weights remained constant
(shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]). The images are humbered according to their
segmentation level: 1 — scale 5, 2 — scale 10, ..., 12 — scale 200.



Identification of Urban Structures Using VHR Remote Sensing Data 135

L

® ®

Figure 7-2: Simplified illustration of the results of multi-resolution image segmentation with varying scale
parameter of training area of test site South s3: 1 — scale 5 (levell), 2 — scale 25 (level 5), 3 — scale 125 (level 9),
4 — scale 200 (level 12). The blue highlighted segment in level 9 demarcates the area with the highest building
density, which is a part of the informal settlement Bhomiheen Camp.

The transfer results shall here exemplarily be illustrated on the basis of test site South
s2. The segmentation results of test site South s3 are not presented in detail here. The
detailed results can be found in the appendix (cf. A.11). Figure 7-3 illustrates the results of

the multi-resolution image segmentation based on the transfer site South s2.

The developed segmentation procedure and therefore the fixed parameter settings and
the defined scale parameters were subsequently applied to the transfer site South s3.
Consequentely, the area under investigation was segmented on 12 levels as well. It is visible
in the segmentation results of the test site, that very small items such as the smallest
residential buildings were demarcated at the fine-scale level (level 1-5). Larger buildings and
smaller settlement areas for instance were segmented at the medium-scale level (level 6-8)
whilst at the coarse scale-level (level 9-12) large entities such as whole settlement areas or

large unimproved areas were demarcated.

The transfer of the defined segmentation process to a completely different test site
South s2 was, thus, accomplished successfully, too. As shown in Figure 7-4 in detail this
way, for instance, again in level 9 the settlement area with the highest building density — the
informal settlements Banjara and Harijan Camp —, located at the main road, was clearly

visible delimited as one image object (cf. chapter 7.2.1 and Figure 7-8).
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Figure 7-3: Results of multi-resolution image segmentation based on the transfer site South s2. The scale
parameter was changed systematically, while the residual homogeneity parameters and the layer weights
remained constant (shape [0.5], color [0.5], smoothness [0.3], and compactness [0.7]). The images are numbered
according to their segmentation level: 1 — scale 5, 2 — scale 10, ... , 12 — scale 200.
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Figure 7-4: Result of multi-resolution image segmentation based on the transfer site South s2: segmentation level
9 with scale parameter 125. The yellow highlighted object delimits clearly the area with the highest building
density within this test site. The delineation is consistent with the settlement boundaries of the merging informal
settlement areas of Banjara and Harijan Camp.

Since the classification process is based on the segment properties generated, a
substandard segmentation quality has an adverse effect on the classification quality. Hence,

in the following chapter 7.1.2 the segmentation method itself and the results are appraised.

7.1.2 Appraisal of the Segmentation Results and Method

Since the quality of image classification is directly affected by the segmentation quality, the
segmentation process and the image objects produced are of high importance for the
subsequent analysis (cf. chapter 6.1.2 and 7.2). “As a rough rule of thumb it can be stated
that, the better the generated segments are capable to represent the imaged objects in the
image data, the better the quality of the segmentation process and consequently the
classification results are” (HOFMANN ET AL. 2008). Thus, the segmentation is the Achilles heel

of the object-oriented remote sensing information retrieval process.

According to this, it is important to answer the question ‘How good is the applied
segmentation algorithm?’. Methods for the evaluation of segmentation results are discussed
for example by NEUBERT ET AL. (2006), ZHANG ET AL. (2004), MEZARIS ET AL. (2003), LETOURNEL
ET AL. 2002 or LEVINE & NAzIF (1985). However, it has been established that at present the
most reliable evaluation method is still “a visual interpretation that has to consider the exact
geometrical position of the segment borders as well as the membership of one and only one
object class to a single region” (ScHIEWE 2002). Logically this means that the homogeneity

features and parameters and the generalization level are subjectively determined. Within this
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research too, solely a visual interpretation and assessment of the generated image objects
was applied. A quantitative evaluation of the segmentation results was resigned due to the
disproportionately high efforts necessary. The image segmentation performed in the context
of an object-oriented classification approach provided for both the training area and the
complete test sites South s2 and s3 meaningful spatial units. Moreover, the image
segmentation leads, compared to pixel-based image analysis, to a better outlining of real
world structures and objects, for example single residential buildings or complete urban
settlement areas. This means that the resulting segments come closer to the spatial and
therefore spectral and textural characteristics of the individual and complex urban structures
in @ mega city environment. Furthermore diverse shape- or context-related attributes were
provided. The possibility to produce a discretionary number of segmentation levels was
achieved while the segment sizes were optimized in order to best represent the real world
structures. All in all, it can be stated, that regarding the complex and heterogeneous
structures of the different settlement types within Delhi, eCognition’s multi-resolution

segmentation is well suited to generate meaningful image objects.

Nevertheless, already during the sensitivity study (cf. chapter 6.1.1) it turned out that
the process of the applied software eCognition™ and the included image segmentation
implicates significant difficulties. With respect to an operational application, on the one hand,
the determination of the optimum number of levels and the corresponding segmentation

parameters was very complex and therefore very time-consuming.

This disadvantage was encountered actively though within this study by a fixation of the
parameter settings based on the sensitivity study, in contrast to a case by case
determination for each new test site. Doing so, it was accepted that the generated image
objects do not always perfectly match the real world structures. Aiming to develop an

operational, i.e. global approach, one has to accept to do without such a refinement.

In any case, the prevalent studies have proven that the different test sites could be
segmented with a sufficient quality and that the generated segments together with their
properties form a very good basis for the subsequent classification process. The
segmentation process using the eCognition™ software is in itself a very time-consuming
procedure though, which requires an extensive computation capacity. Therefore it is
generally recommendable to initially apply test runs to smaller image subsets which are
representative for the whole scene. Since eCognition™ with the release of version 3.0 uses a
segmentation algorithm which allows for the generation of image size independent results,
this line of action is not critical in terms of reproducibility of the segments and therefore not

either for the following classification.
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7.2 Deliverables of the Object-oriented Classification Approach

Based on the segmentation derived building blocks and on the developed class hierarchy a
land cover classification of selected sites within the urban area of Delhi was performed.
Within this study, it is postulated that the structure of a settlement is mirroring the living
conditions of its inhabitants. In order to prove this thesis, during the classification process
the identification of different settlement types — regarding especially their building size and

density — was put into the focus.

In this process, priority was given to the identification of informal structures, i.e.
informal settlements. These informal settlements are the most visible expression of urban
poverty in the mega city of Delhi. Their physical entity is a result of the inadequate social
circumstances the inhabitants are living in. In order to carry out the urban planning and
development tasks necessary to improve the living conditions for the poorest residents of
the mega city, the identification of such “hot spots” of urban challenges is a basic

precondition.

Beyond that, the on-site defined and during the field campaign mapped settlement
types (cf. Figure 5-12 and Figure 5-13 in chapter 5.3) should be identified using the
developed classification methodology. The diverse living conditions of these inhabitants
should be, according to the working thesis, directly visible in these settlement structures as

well.

Comparable to the execution of the segmentation process, at first, the classification
methodology was developed and tested based on the chosen training area within test site
South s3. Then the approach was applied to the whole test site South s3. In order to explore
the transferability the developed classification methodology was carried out afterwards on a

completely different test area within the mega city of Delhi, namely South s2.

The following subchapters provide the results of the object-oriented classification

approach.

7.2.1 Identification of Informal Settlements within the Urban

Environment of Delhi

The final outcome of the object-oriented classification approach is presented in the urban
land cover classification in Figure 7-5. All in all, six land cover classes — impervious, not
impervious, vegetation, roads, shadow and very dense urban — could be identified. Their
spatial distribution, which represents a relatively up to date and spatially comprehensive

piece of information, therefore gives an answer on the “what is where” within the complex



Identification of Urban Structures Using VHR Remote Sensing Data 140

and heterogeneous urban morphology of the examined district within Delhi. Of particular
importance hereby is, that the area with the smallest buildings and highest building density
— represented by the class “very dense urban” — can be clearly separated from the
remaining impervious areas. This area is a part of an informal settlement (Jhuggi Jhompri
cluster) which is called Bhomiheen Camp. The Bhomiheen Camp represents an illegal
residential area tolerated by the Indian government, which is characterized in general by an
inadequate supply situation and in particular by a considerably insufficient water supply and
waste water disposal system (cf. chapter 8.1). The mostly one or two storied houses here

are constructed in a very simple, improvised style (cf. Figure 7-6).

- Very dense urban - Impervious surface | Not impervious surface - Vegetation

’ ‘ Roads - Shadow

Figure 7-5: Training area of the fused QuickBird test site South s3 (4, 3, 2) versus the result of object-oriented
image classification: In the classified image subset “very dense urban” areas could be successfully identified. The
mapped very dense area is part of the informal settlement Bhomiheen Camp. Further explanations are included in
the text (enlarged Map cf. Appendix, A.12.1).

The remaining impervious areas comprise different kinds of settlements. Areas of the
middle and the upper lower class are represented here next to the informal settlement.
These settlement types are as well characterized by various structures, which implicate e.g.,
different building sizes or building densities. Also the relations between the buildings (sub-
objects) within the various settlements (super-objects) are varying and are different
amongst each other. In order to make these facts usable and to prove whether this
approach is generally applicable, it is an objective of this study to differentiate these
settlement types, too. The results of the respective investigations are summarized in the

following chapter 7.2.2.
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Figure 7-6: Impression of the informal settlement Bhomiheen Camp located within the training area of test site
South s3 (Photographs: S. Smollich, October 2005).

The detail view in Map A.12.1 (cf. Appendix) reveals the potential of this method to
partially capture single houses with high precision, and hence to map the physical
characteristics of the urban landscape true-to-detail. But, it becomes also evident that an
identification of single buildings within the informal settlement is very difficult. The reason
for this is on the one hand the very high building density of this settlement type. The houses
are mostly attached to each other, which means that no or hardly any gaps are visible.
Hence shadows, which would make the delineation/classification easier, are not or hardly
existent. On the other hand, in a large part the houses have been constructed from the
same building material. Therefore no spectral discrepancies exist between different buil-
dings, which would enable a differentiation by means of satellite data. Which makes it even
more difficult is the fact that surface material of the little walkways between the houses —
the mapping of which would facilitate the differatiation — is spectrally speaking very similar
or even equal to the building material of the houses. A fully automatic extraction of resi-
dential buildings in informal settlements in Delhi using only remote sensing is therefore not
offhand possible with the applied method and this defines at the same time the boarderlines

of the approach and the used data.

The classification result in Figure 7-5 shows furthermore that the residual land cover
classes — vegetation, not impervious surface, roads and shadow — can be identified
successfully. The quality of the land cover classification is examined in more detail in chapter
7.2.3.

As mentioned before, the methodology developed for the training area was tested on its
transferability and general validity. Therefore the whole test site South s3, characterized by
similar settlement structures, was analyzed initially (cf. Figure 7-7). It is well visible that the
identification of “very dense urban” areas is also possible within this site. The informal

settlement Bhomiheen Camp could be extracted completely as well as the NehAru and
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Navjeewan Camp, which are located adjacent in the North. The remaining classes also
represent the reality correctly. The detail views in Figure 7-7 and the enlarged Map A.12.2
(cf. Appendix) enable a more precise visual interpretation of the classification accuracy and
quality.

- Very dense urban - Impervious surface E Not impervious surface

D Roads - Shadow

Figure 7-7: Fused QuickBird test site South s3 (4, 3, 2) versus the result of object-oriented image classification:
Identification of “very dense urban” is possible. The informal settlements Bhomiheen Camp as well as Nehru and
Navjeewan Camp could be extracted completely (enlarged Map cf. Appendix, A.12.2).

The transfer of the developed classification approach to a completely different test area
South s2 was accomplished successfully, too (cf. Figure 7-8). The Banjara and Harijan
Camp, located at the main road, were identified clearly as “very dense urban” area. As the
informal settlements mentioned before, these camps represent illegal residential areas which
are characterized by a lack of basic infrastructure services (cf. Figure 7-9). One additional
district was identified as “very dense urban”. This area (lower right corner) is in fact very
dense, but it does not represent an informal settlement. Instead it is an urban village — a
characteristic of Delhi —, namely Deolj, with mostly similar physical attributes (cf. Figure
7-10).
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Figure 7-8: Fused QuickBird transfer site South s2 (4, 3, 2) versus the results of object-oriented image
classification: Application of the developed classification approach to a completely different test area. The Banjara
and Harijan Camp located at the main road — both informal settlements— were identified as “very dense urban”
area (enlarged Map cf. Appendix, A.12.3).

In contrast to the JJ-colonies, urban villages are not assigned to informal settlements on
the one side because of their judical status. On the other side, they are not assigned to this
class because the quality of the living conditions of the inhabitants, despite being very poor
and showing slum similar conditions due to their disadvategeous development, are still in
average higher than they are in informal settlements. This example shows that there are still
some limits of the application of VHR remote sensing data. Without additional socio-
economic data or on-site information, a differentiation of settlement types with a physically
very similar characteristic is not possible. All in all, the results still show that the areas with
the supposedly worst living conditions and the poorest supply situation can be clearly

identified (semi-) automatically.
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Figure 7-9: Impression of the informal settlement Banjara and Harijan Camp located within test site South s2.
These camps represent an illegal residential area which is characterized by a lack of basic infrastructure services
(Photographs: S. Smollich, October 2005 and R. Singh, March 2006).

Figure 7-10: Impression of the urban village Deoli located in the southeast of test site South s2. Due to their
disadvantageous development urban villages in Delhi show a slum similar structure. But the quality of living
conditions of the residents here is in average still higher than of those living in the JJ-colonies (Photograph. S.
Smollich, October 2005).

7.2.2 Identification of Further Settlement Types within Delhi

One important goal of the object-oriented classification approach is the transferability to
different settlement types within the mega city of Delhi. Thus, using the developed classi-
fication methodology, the remaining on-site defined and during the field campaign mapped
settlement types should be identified as well. Figure 7-11 presents a first transfer result of
the object-oriented classification scheme. As expected, the approach could successfully be
applied to the identification of the settlement type “sparse urban”. This settlement type can,
as well as “very dense urban” areas, be considered as a settlement with “extreme
attributes”, i.e. the settlement type could, due to its characteristic outward appearance,
clearly be separated from the surrounding settlement areas or land cover classes,

respectively.
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Figure 7-11: Identification of further settlement types within the fused QuickBird test site South s2 (4, 3, 2). Within
the classified test site “sparse urban” areas could be identified successfully. The unauthorized colony Sainik Farms,
located in the southwest of the test site, could be clearly separated from the surrounding areas. The residents of
the sparse urban area belong to Delhi’s upper class (enlarged Map cf. Appendix, A.12.4).

The sparse urban settlement located in the southwest of the test site is known as the
unauthorized colony Sainik Farms. Sainik Farms is one of the so called farm house quarters
of Delhi, the residents of which belong to the upper class of the city. Being former agricul-
tural areas, these quarters are holding special rights regarding the utalization of water —
e.g., deep water drillings are allowed in order to extract ground water (ZERAH 2000). This
means that the inhabitants have a more than sufficient water supply, despite the
settlements are not attached to the municipal water supply due to their informal status, and
despite the fact that the southern districts are generally disadvantached due to the water
works being mainly situated in the northern districts. At times, when the wells do not deliver
enough water, the inhabitants cover their high demands, which is mainly driven by the
watering of their private gardens (cf. Figure 7-12), by bying additional water out of tank
trucks. According to TREVEDI ET AL. (2001) this inadequate withdrawal of ground water is
enforcing the continuous drop of the ground water level of the whole mega city in general
but in special of the southern districts. The per-capita consumption of 382 Ipcd as mentioned
by ZEraH (2000) confirms that particular sections of the population are consuming
inadequately high amounts of water, while at the same time the major percentage of the

population of southern Delhi is suffering of an insufficient water supply (cf. chapter 8.1).
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Figure 7-13: Combined classification map of both settlement types — “sparse urban” and “very dense urban” —
identified within the fused QuickBird test site South s2 (4/3/2).

As can be observed in Figure 7-13 of course a combined classification map including
both identified settlement types — “sparse urban” and “very dense urban” — can be provided

as well,

In comparison to the good results of the already successfully classified settlement types,
the transfer of the methodology on the remaining on-site defined and during the field
campaign mapped settlements “dense urban” and “medium dense urban” figured out to be
more complex. Figure 7-14 shows that it is well possible to identify settlement types of these
density classes too. For example the “dense urban” settlement Tughlakabad Extension,
located north and south of the main road, could be separated completely. On the other side
it becomes as well apparent, that the quality of the land cover map is slightly lower due to

some misclassifications. Difficulties occurred especially in cases where the physical attributes
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of the sub-objects of two settlement types were very similar (cf. Figure 6-12). For example,
a part of the government quarter Kalkajii DDA Flats was by mistake classified as “dense
urban” this way (west of the north-south-heading main road), even though it should have
been classified as “medium dense urban” like the remaining part of the settlement was. A
clear and precise separation of the determined settlement types was in this regard hardly
possible — not even with an additional adaption of the method, namely the combination of
both object-oriented and pixel-based algorithms. It becomes apparent as well that a very
detailed street pattern can have an effect on the classification and lead to misassignments

(e.g., within the eastern and north-eastern area of the training site).

Il very dense urban - Dense urban - Medium dense urban | Not impervious surface

- Roads

Figure 7-14: Identification of the settlement types “very dense urban”, “dense urban” and “medium dense urban”
within the training area included in QuickBird test site South s3 (4, 3, 2). An assignment of the remaining land
cover classes was not carried out at this stage in order to be able to better evaluate the quality of the identification
of different settlement types.

Misclassifications of course impede the further use of the classification results for
subsequent investigations. Therefore the results were in parts manually corrected with in-

situ information in order to be usable for the following integrative analysis.

Despite the described problems, all in all, this land cover classification can be regarded
as a successful attempt to identify urban settlement structures with very similar physical
attributes by means of a (semi-) automatic classification using remote sensing data. This
result gives a promising basis for the further enhancements of the methodology developed
within this study and for the analysis of remote sensing data in the mega-urban

environment.
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7.2.3 Quality Assessment of the Classification Results

»The value of the map is clearly a function of the accuracy of the classification.”

(Foopy 2002)

Any land cover classification or in general thematic map is, according to their geometrical
resolution, basically a generalization of the reality. Such generalization, in turn, evokes some
loss of information and so a certain level of incompleteness. That means any mapping
process will naturally contain flaws (e.g., Foopy 2002, MALING 1989, and SMITS ET AL. 1999). It
is indispensable, consequentially, “that the quality of thematic maps derived from remotely
sensed data” need to “be assessed and expressed in a meaningful way” (Fooby 2002).
‘Quality’ is in this context the equivalent of ‘accuracy’. In thematic mapping of remotely
sensed data the term accuracy is according to Foopy (2002) “used typically to express the
degree of ‘correctness’ of a map or classification”. In essence, classification accuracy
determines the degree to which the derived land cover classification conforms to the reality
(JANSSEN & VAN DER WEL 1994, MALING 1989, and SMITS ET AL. 1999).

Evaluating the quality of land cover classifications (derived from remotely sensed data)
is a very important step in the application, processing and management of remote sensing
data. It “has been recognized as a valuable tool in judging the fitness of these data for a
particular application” (JANSSEN & VAN DER WEL 1994) and “gives evidence of how well the
generated or used classifier is capable of extracting the desired objects from the image”
(BAATZ ET AL. 2004). Also an integrated processing of classification data and other types of
geodata, as conducted within this study, can only be performed in a responsible way if the
quality of the data is known. Hence, the accuracy assessment of the generated land cover
classification is also of decisive importance for the continuative analysis of the urban
environment of Delhi. Thus, however, accuracy determines at the same time as well the
specific value of the resulting image classification to a particular user, i.e. the information

value (JANSSEN & VAN DER WEL 1994).

To allow a judgment about the accuracy, land cover maps are in general checked
against some ground truth or other reference data (Fooby 2002). Disagreements between
the two data sets are generally interpreted as errors in the classification result derived from
the remotely sensed data (CONGALTON 1991).

During the last three decades, a large number of papers have been published on
accuracy assessment of land cover classification derived from remotely sensed data (cf.
ARONOFF 1985, CONGALTON 1991, CONGALTON & GREEN 1999, FooDy 2002, and JANSSEN & VAN
DER WEL 1994, ROSENFIELD & FITZPATRICK-LINS 1986). Very different approaches for validation

have been presented and discussed in the literature, usually with a particular application in
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mind for the data in hand (JANSSEN & VAN DER WEL 1994). Within this study, the land cover

classification shall be validated both, in a qualitative and quantitative way.

To verify the results of the classification or settlement differentiation in a qualitative
way, the outcomes were checked primarily on the basis of on-site knowledge and
photographs taken during the field campaign. As shown in Figure 7-15 the image
classification results of a subset of test site South s3 were compared with georeferenced

photographs of the respective settlement areas.

- Vegetation

- Very dense urban - Impervious surface | ‘ Not impervious surface
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Figure 7-15: Qualitative validation of the classification results using photographs taken during the field campaign
2005 (subset of test site South s3): 1 — Jhuggi Jhompri cluster NeAru and Navjeewan Camp (informal settlement);
2 — Harijan Colony (upper lower class to lower middle class) (Photographs: S. Smollich, October 2005).

Comparing the photographs with the satellite data and their classification it can be
proven that the settlements right and left of the street are strongly different in their
appearance. While the houses in the NehAru and Navjeewan Camp (1) are of very simple
style, constructed of different poor and non permanent building materials, the houses in the
Harijan Colony (2) are already of a more solid construction. Furthermore the settlements are
different in their house size or number of stories. The Nehru and Navjeewan Camp is a

representative settlement for substandard housing and inadequate building structures.
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Therefore, as the classification result indicates, it is assigned to the informal settlement type.
In contrast, the Harijan Colony is assigned to the authorized settlement type (resettlement

colony) where the residents of the upper lower class and lower middle class live.

In essence, for a first evaluation, this observation can be used to assess the plausibility
of the classification result — it supports both, the separation into two different settlement
types as well as the localization of informal settlements. But this validation approach is
obviously partially subjective and the results can therefore hardly be quantified or even be
capable of representing comparable values (BAATZ ET AL. 2004). This method is for example
inappropriate if not only the position of different settlement types shall be determined but as
well the measurement of the surface coverage is of interest. For a continuative analysis of
the urban environment of Delhi, as it is carried out in chapter 8, or for operational
applications of the data a visual appraisal of the derived classification results therefore does

not fulfil the requirements.

As outlined above, a large number of standard methods are commonly used and recom-
mended in the research literature to quantify the accuracy of thematic land cover data
derived from remotely sensed imagery. At present, however, the most widely used methods
are based on a confusion or error matrixé. A confusion matrix is a comparison or simple
cross-tabulation of the derived (land cover) class label against the one observed in the
reference data for a selected number of cases at specified locations (reference points). A
confusion matrix contains all the information about relation between classification and
reference data and provides therefore an obvious basis for accuracy assessment (BAATZ ET
AL. 2004, CANTERS 1997, and Fooby 2002). This basis, in turn, allows for both the
characterization of the accuracy of a thematic classification and its errors, which, again,
facilitates refining the classification result or estimates derived from it (Fooby 2002).
Moreover, different thematic classifications may be compared in terms of their accuracy.
There are different measures and statistics that can be derived from the values in a
confusion matrix (Fooby 2002, STEHMAN 1997). One of the most popular accuracy measures
is the overall accuracy — the proportion of all reference pixels which are allocated correctly
to the total amount of pixels (in the sense that the class assignment of the classification
result and of the reference data coincide) (BAATZ ET AL. 2004, Fooby 2002). Overall accuracy
is a measure of the classification as a whole. It contains no information about the
classification quality of individual classes (JANSSEN & VAN DER WEL 1994). If attention focuses

on the accuracy of individual land cover classes, then user’s®® and producer’s accuracy”® as

21 Within this study, the term ‘confusion matrix’ is used to indicate the summarized sample results.
22 The ‘user’s accuracy’ provides the user information about the quality of the land cover data. The measure is calculated by the
number of correctly classified samples divided by the row total (JANNSEN & VAN DER WEL 1994).
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well as errors of omission and commission can be calculated (STORY & CONGALTON 1986,
JANSSEN & VAN DER WEL 1994). The calculation of these measures, and some other major
indices, is given and illustrated by e.g., BAATZ ET AL. 2004, FooDyY (2002), JANSSEN & VAN DER
WEL (1994) or STORY & CONGALTON (1986). Within this study, using the confusion matrix
overall accuracy as well as the producer’s and user’s accuracy were determined as means of
accuracy measures and established for the quality assessment of all classification results (cf.
Table 7-1, Table 7-2, as well as Table 7-3 and Table 7-4).

In order to gain more information content out of the confusion matrix than the basic
percentage of correctly allocated cases, moreover, Cohen’s Kappa Index of Agreement (KIA)
is determined within this study to express the accuracy of the generated land cover
classification (e.g., SMITS ET AL. 1999) (cf. Table 7-1 - Table 7-4). KIA “expresses the
proportionate reduction in error generated by a classifier compared with the error of a
completely random classification” (MasHEE 2009). Using KIA it is assumed that both land
cover classification and reference data are independent class assignments of equal reliability
— here the conformity level between the two data sets is what is being measured (BAATZ ET
AL. 2004). KIA is often used to compare different classification results in a statistical way
and, therefore, to test the effectiveness of different classification methods (that are based
on the same data) or the ancillary data applied. Moreover, KIA has the quality to
accommodate for the effects of chance agreement and is capable to correct the same
(CONGALTON ET AL. 1983, CAMPBELL 1987, BAATZ ET AL. 2004 and Fooby 2002). The calculation
of KIA is based on a complete confusion matrix, including information concerning errors of
omission and commission (JANSSEN & VAN DER WEL 1994, HupsoN & RAMM 1987). Some
authors, such as ROSENFIELD & FITZPATRICK-LINS (1986), “suggest using KIA as a sort of
standard measure of accuracy for thematic classifications as a whole” (JANSSEN & VAN DER WEL
1994).

Prior to the description of the realization and the results achieved within this study, a
short excursus on sample selection is necessary: Appropriate sample selection, including
sampling design and size, is a very important aspect to consider for assessing the accuracy
of a land cover classification (Fooby 2002, MASHEE 2009 and NAVULUR 2007). The sampling
designs most often used are ‘random sampling’, ‘interval or systematic sampling’, ‘stratified
sampling’, ‘cluster sampling’ as well as ‘multistage sampling’ (MASHEE 2009 and NAVULUR
2007). Conducting a sample selection some aspects have to be taken into account. For
example, a big time gap between the basis data for the reference classification and the data

for the classification that shall be evaluated should be avoided. At the same time it is

2 The ‘producer’s accuracy’ is calculated dividing the number of correctly classified samples by the column total. “It indicates the

percentage of samples of a certain (reference) class, that were correctly classified” (JANSSEN & VAN DER WEL 1994).
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essential that the reference classification and the classification that shall be evaluated carry
comparable information, which means that they need to have similar classes or at least
classes that can be assigned to each other. In addition to that, the pixels need to have the

same location and spatial extent on the ground (BAATZ ET AL. 2004).

In the present study, accuracy assessment was calculated using the eCognition soft-

ware. eCognition™ provides different methods to perform accuracy assessment?*

. Here, the
method ‘error matrix based on samples’ was implemented. This method uses test areas
instead of e.g., a complete thematic map as reference data for quality assessment®. As test
areas samples (i.e. objects, not pixels) derived from manual sample units are considered. It
is obvious that it make no sense to use the same sample objects for accuracy assessment as
they were already used as training data for the classification process (automatic feature
extraction methodology — SEaTH, cf. chapter 6.1.2), as they were assigned to the right
class anyway (BAATZ ET AL. 2004). Thus, new sample objects for the calculation of the error
matrix have to be created. For this purpose, based on the QuickBird data, an independent
interpreter has generated randomly an adequate number of samples for every land cover
class. That means, for all derived land cover classification maps one (independent) reference
data set is provided to calculate the appropriate accuracy values. Moreover, it is important to
say, that in the validation process only segmented QuickBird images with level 1 (scale

parameter 5) and classified images as well with level 1 were used.

To deliver a judgment about the quality of the developed (semi-) automated classi-
fication method, a confusion matrix for each produced land cover classification map was
calculated. First of all, the results for the training area within test site South s3, which was
consulted for the development of the approach, is presented in the confusion matrix in Table
7-1. The first column of the table shows the land cover classes that have to be evaluated. In
the following columns the number of objects covered by the reference classification (random
samples) for each class is displayed. The penultimate column contains the total number of
samples for each land cover class assigned by the classification. The sum for each class in
the reference classification is given next to last row of the matrix. Moreover, producer’s and
user’s accuracy are shown in the last column or row respectively. Looking at the values in
the confusion matrix a quality assessment of the generated land cover classification

compared to the reference classification appears to be feasible (BAATZ ET AL. 2004).

24 eCognition™ offers the following four methods for performing accuracy assessment: ‘classification stability’, *best classification
result’, “error matrix based on TTA mask’ as well as ‘error matrix based on samples’ (BAATZ ET AL. 2004, NAVULUR 2007).

5 One of the specific problems of mega cities like Delhi is the lack of data for urban planning. This lack of data impedes on the other
hand of course the accuracy assessment in these areas as well as no reference data set or thematic GIS map of the respective

urban area with suiting or comparable land cover classes is available.
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Table 7-1: The confusion matrix for the object-oriented image classification of the training area of test site South s3

Reference classification

T s ) e Not L:\:::;ious Roads | Vegetation Vel;yr :::se Irr;zlefr;/icoeus Shadow |  Total Producer** [%]

Not impervious surface 86 11 5 0 50 10 162 53.09
_E Roads 11 180 1 0 2 4 198 90.91
[}
:é Vegetation 24 1 296 0 0 6 327 90.52
g Very dense urban 0 0 0 135 0 0 135 100.00
§ Impervious surface 34 6 4 0 483 22 549 87.98
E Shadow 0 0 14 0 0 209 223 93.72
§ |unclassified 0 0 0 0 0 0 0

Total 155 198 320 135 535 251

User* [%] 55.48 90.91 92.50 100.00 90.28 83.27 OA  87.149%***

KIA 0.837****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class / in the reference classification is correctly classified
** User Accuracy: gives information about the probability that a sample or pixel classified as class / is actually of class /
*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

*¥xk KIA — Kappa Index of Agreement: k = 1 means perfect agreement between land cover classification and reference data

The comprised accuracy values reveal that the urban landscape of this part of Delhi can
be covered with an overall accuracy of around 87 percent. Thus, the overall accuracy of the
classification is higher than the commonly recommended 85 percent target. Moreover,
typically it is required that in addition to the minimum level of overall accuracy no single
class shall be of a lower accuracy than 70 percent (Fooby 2002 and THOMLINSON ET AL. 1999).
This benchmark is fulfilled by five out of the total six identified land cover classes. With a
producer’s and user’s accuracy of 100 percent the class “very dense urban” (vdu) and thus
informal settlements could be mapped very well within the training area. Hence, the user
can rely on the very high probability that a sample classified as “vdu” is in fact “vdu”. The
situation is different when the remaining classes are considered. Regarding the class
“impervious surface” there are 549 samples covered by the impervious samples of the
reference classification. 483 of those were classified as “impervious”, 50 samples have been
assigned to the class “not impervious surface”, two samples to the class “roads”. This results
in a producer’s accuracy of 87.98 percent. In contrast, 535 samples were classified in total
as “impervious surface”, whereof 483 samples were assigned to “impervious surface” as well
within the reference classification. The remaining 55 samples were classified as “not
impervious” and “shadow”. The outcome of this is a user’s accuracy of 90.28 percent. This
example is well suitable to demonstrate the differences between the appropriate accuracies.
While the producer’s accuracy tells the interpreter “how well the classification agrees with
the reference classification”, the user’s accuracy gives “information about the probability that
a pixel classified as class /is actually of class /" (BAATZ ET AL. 2004). The classes “roads”,
“vegetation” as well as “shadow” were classified with comparably high user’s accuracies
between 83.27 and 92.50 and producer’s accuracies between 90.52 and 93.72. Solely the
class “not impervious surface”, showing a user’s and producer’s accuracy of 55.48 and 53.09

percent respectively does not fulfill the common requirements for single class accuracy
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values. Here, only slightly more than 50 percent of the “not impervious” samples of the
reference classification are found by the land cover classification. The low user value
implicates, in turn, that the user cannot really rely on the classification; as such an object is
in almost half of all cases confused with the other classes. Here, not correctly classified
objects are mainly misclassified as “impervious surface”. Contrawise, as described above,
most of the misclassifications of impervious areas are confused as “not impervious”. This
phenomenon arises from a noticeable speficific criterion of the urban landscape of Delhi —
the spectral similiarity of roads, open spaces (not impervious surfaces) as well as many

rooftops and other impervious areas.

In order to compensate for the different interests of users and interpreters of the
classification result, the Kappa coefficient is added as accuracy value. The KIA for the
statistical output in Table 7-1 results in a value of 0.837. This implies that the accuracy of
the classification result is around 84 percent better than the accuracy that would result from
a random assignment (JANSSEN & VAN DER WEL 1994). According to NAVULUR's (2007)
interpretation rules of Kappa values for thematic accuracy assessment this indicates an
‘almost perfect’ classification result. Nevertheless, the evaluation shows that there is some
room for improvement by the classification procedure as well as by repeating the validation

process with declaring new or additional reference samples.

The results of the quality assessment for test site South s3 are presented in Table 7-2.
The accuracy values within the presented confusion matrix show that using the developed
classification approach also a larger urban area of Delhi can be mapped in detail. The overall
accuracy value amounts almost 86 percent, and reaches, thus, nearly the value of the
training area. Moreover, the target level of 85 percent is exceeded and no single land cover
class reveals lower classification accuracy than the required 70 percent. Especially the class
“very dense urban” is, again, characterized by high classification accuracy. The KIA value for

this test site amounts 0.825.

The transfer of the developed classification methodology to another urban district of
Delhi, namely South s2, reaches similar classification accuracies. The accuracy statistics for
this test site are shown in Table 7-3. The overall accuracy calculated from the confusion
matrix is comparable high or even higher than the values of the previously presented land
cover classifications, which implies that the 85 percent target is exceeded. In the transfer
classification, moreover, producer’s and user’s accuracy for all classes were equally high.
Regarding the class “very dense urban”, being in the focus of the study, producer’s and
user’s accuracies higher than 95 percent are estimated. Only the accuracy values for the
class “not impervious surface” are, again, considerably lower than the other classes and the
producer’s accuracy does not reach the required 70 percent level. Here, the problem is a
misclassification with the class “impervious” as previously explained. The Kappa coefficient

for the classification of test site South s2 results in a value of 0.87.
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Table 7-2: The confusion matrix for the object-oriented image classification of test site South s3

Reference classification

e e e Not LT;ae:éious In;szr;/(i:c;us Roads Vegetation Vela/r s::se Shadow Total Producer®* [%]

Not impervious surface 579 102 39 57 3 43 823 70.35
_§ Impervious surface 45 856 77 39 2 60 1079 79.33
!g Roads 18 2 922 44 0 41 1027 89.78
é Vegetation 65 2 0 1768 0 19 1854 95.36
§ Very dense urban 0 0 0 10 619 1 630 98.25
E Shadow 0 2 38 168 4 637 849 75.03
c
8 |Unclassified 0 0 0 0 0 0

Total 707 964 1076 2086 628 801

User* [%] 81.90 88.80 85.69 84.76 98.57 79.53 OA 85.93%***

KIA  0.825%%**

*Producer Accuracy: estimates the probability that a sample or pixel which is of c/ass 7 in the reference classification is correctly classified
** User Accuracy: gives information about the probability that a sample or pixel classified as class / is actually of class /
*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

*xkk KIA — Kappa Index of Agreement: k = 1 means perfect agreement between land cover classification and reference data

Applying the developed classification methodology apart from very dense urban areas
the settlement type “sparse urban” could successfully be identified within Delhi. According to
the confusion matrix in Table 7-4 promising accuracy values could be assessed. In
comparison to the previous classifications, producer’s and user’s accuracy show equally high
values for all land cover classes. For example, for the class “sparse urban” a user’s accuracy
of 87.80 percent and a producer’s accuracy of 91.27 percent could be achieved. The target
level of 70 percent could thus be reached for this settlement type as well. Hence, it can be
stated, that the mapping of this settlement type in Delhi can successfully be performed.
However, some loss of quality of the assessment of the class “roads” was noted. Looking at
this class there are 309 objects that were classified in total as “roads”, whereof 164 samples
were also assigned to “roads” in the reference classification. The lion’s share (125 samples)
of the remaining objects was wrongly assigned to the class “shadow”. Obviously the classes
“roads” and “shadow” are difficult to separate from each other. This is resulting from the
spectral similiarity of both land cover classes in this part of Delhi. This grave misclassification

results in a considerably low user’s accuracy of only 53.07 percent.

In contrast, for all other land cover classes accuracy values higher than the required 70
percent target were achieved. Hence, the overall accuracy reaches 86.29 percent and the
KIA amounts a value of 0.82. This implies that the urban landscape within this area of Delhi
can be mapped in detail as well and the land cover map represents an ‘almost perfect’
classification result (NAVULUR 2007).
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Table 7-3: The confusion matrix for the object-oriented image classification of test site South s2 including very

dense urban areas

Reference classification

I el Not isrzrynf(:::\gous In;z(:fr;/(i:c;us Vegetation VeLyr tc’i::se Shadow Total Producer** [%]
= |Not impervious surface 521 194 98 5 3 821 63.46%
"g Impervious surface 106 2278 29 18 2 2433 93.63%
!E Vegetation 58 5 828 0 2 893 92.72%
TE Very dense urban 0 3 9 536 0 548 97.81%
% Shadow 0 20 9 1 1022 1052 97.15%
'E Unclassified 0 0 0 0 0 0
. Total 685 2500 973 560 1029

User* [%] 76.06 91.12 85.10 95.71 99.32 OA 90.22%***

KIA 0.87 ****

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i in the reference classification is correctly classified

** User Accuracy: gives information about the probability that a sample or pixel classified as class i is actually of class i
*** OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly
*¥xx KIA — Kappa Index of Agreement: k = 1 means perfect agreement between land cover classification and reference data

(Source: BAATZ ET AL. 2004)

A quantitative assessment of the training area with the simultaneous classification of

three settlement types (cf. Figure 7-14) was not attempted due to the not yet sufficient

quality or respectively some obvious misclassifications. Some further improvement of the

classification methodology appears to be necessary here in order to enable a meaningful

quantitative validation.

Table 7-4: The confusion matrix for the object-oriented image classification of test site South s2 including sparse

urban areas

Reference classification
Tl ) e Not impervious | Impervious | Vegetation | Sparse Shadow | Roads Total  |producer** [%]
surface surface urban

Not impervious surface 581 113 118 2 2 7 823 70.59
-§ Impervious surface 92 1391 11 37 3 13 1547 89.92
E Vegetation 10 2 731 6 0 0 749 97.6
g Sparse urban 0 9 22 324 0 0 355 91.27
E Shadow 1 23 9 0 617 125 775 79.61
.‘E Roads 0 0 0 0 0 164 164 100
c
8 |Unclassified 0 0 0 0 0 0 0

Total 684 1538 891 369 622 309

User* [%] 84.94 90.44 82.04 87.80 99.20 53.07 OA 86.29%***

KIA 0.82 *F¥*

*Producer Accuracy: estimates the probability that a sample or pixel which is of class i in the reference classification is correctly classified
** User Accuracy: gives information about the probability that a sample or pixel classified as class i is actually of class i

*¥* OA — Overall Accuracy: the proportion of all reference pixels which are classified correctly

**¥k KIA — Kappa Index of Agreement: k = 1 means perfect agreement between land cover classification and reference data

(Source: BAATZ ET AL. 2004)

A summary and final judgment of the classification results is presented in the following

chapter.
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7.24 Appraisal of the Classification Results and Summary

Within this study, a classification methodology was developed and conducted to analyze the
urban environment of the mega city Delhi. Regarding the complex and heterogeneous
appearance of the Delhi area, a semi-automated, object-oriented classification approach,
based on segmentation derived image objects, was implemented. The classification process
is based on a multi-level fuzzy logic rule base which allows for the integration of a bundle of
different object features such as spectral values, shape or texture on different levels. As the
complete conceptual framework of this research, the classification methodology was
developed based on a smaller representative training area at first and applied to larger test

sites within Delhi afterwards.

The object-oriented classification of VHR satellite imagery of the QuickBird sensor
allowed for the identification of five urban land cover classes within the municipal area of
Delhi: impervious and not impervious areas, vegetation, streets and shadow. In the focus of
the image analysis was yet the identification of different settlement types and amongst
these the informal settlements in particular. The results presented within this chapter
demonstrate, that the developed methodology is suitable to identify different settlement
types. Based on density classes the following types could be separated: very dense, dense,
medium dense and sparse urban. The developed method appeared to be particularly well
suitable for the classification of settlement types with extreme physical attributes. For
instance, areas with an extremely high building density and very small building size (very
dense urban areas — within this study the equivalent of informal settlements) could be
separated out of their environments with a high accuracy within the training site as well as
they could clearly be identified within the transfer sites. High accuracy values between

around 95 to 100 percent were achieved here.

The classification itself is actually controlled by the selection of the class-dependent
criteria and the corresponding thresholds. The quality of the selection of parameters and
their thresholds finally influences as well the quality of the classification result and therefore
bares certain insecurity, independent of the systematic. Within the present study SEaTH
appeared to be a very usefool tool in the context of automatic feature recognition. Using
SEaTH, one is able to evaluate statistically any number of given features for the object
classes of interest. SEaTH calculates moreover the corresponding, optimum thresholds which

allow the maximum separability in the chosen features.

The features identified with the SEaTH tool produce, on the one hand, a very good
classification result for the training area and, on the other hand, even a valuable outcome
for the transfer sites within the urban area of Delhi. In the given case study for all land
cover maps overall accuracies of more than 85 percent could be achieved, which

corresponds to the specified target level of 85 percent. Also the accuracy with which the
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individual land cover classes are mapped ranges mostly above the 70 percent threshold
(THOMLINSON ET AL. 1999). All in all, the implemented analyzing tool SEaTH allows for an
optimized object-oriented classification which minimizes the misclassified rate and shows

promising results in the field of feature recognition for megacity related purposes.

Textural features have turned out within this research to be the decisive image para-
meter for the identification of the different settlement types and the mapping of the imper-
vious surface areas, whereas mainly spectral parameters act as distinguishing features for
land cover mapping of the remaining classes (e.g., vegetation, shadow and street). Hence,
the approach takes advantage of both, the extremely high spatial resolution and in addition

as well the spectral potential of the used satellite data.

It is a general consensus, that given the premise of transferability, properties with
attributes which are as stable as possible in terms of time and space should be considered.
Textural features are therefore (in general) better suited to describe different settlement
types than spectral properties — at least if the analyst wishes to classify settlement types
with similarly observable characteristics in different areas or based on different image data.
Spectral attributes show decisively bigger differences between different data sets, and
especially between captures of different sensors, than spatial attributes of urban areas.
Therefore the question remains open, to which extent the spectral criteria chosen will be
stable, once applied to QuickBird data of other mega cities with comparable structural
features or to image data of other satellites. The application of the textural parameters on
other mega cities is, based on the present experiences, very promising regarding their trans-

ferability. In this context further investigations are required (cf. chapter 9).

Despite the convincing results, there are still some limits in the application of VHR
remote sensing data regarding the identification of informal settlements. In this research, it
was shown that areas with very similar physical attributes, but which are not representing
an informal settlement, like urban villages, were assigned to the “very dense urban” land
cover class as well. Here, even a visual interpretation of the satellite data will often lead to
misclassifications. This means that only the settlement structure itself cannot deliver a
reliable classification result. In such cases, in-situ information will always be required to be
able to classify such settlements correctly. For the further investigations of this study, as
well as for the tasks of urban planners, it is though of decisive interest that all informal
settlements are being identified (rather than identifying one settlement too much) and that

hence the mapping of this settlement type can be regarded as complete.

Comparable qualitatively valuable results could be achieved as well during the
identification of “sparse urban” areas. As informal settlements these areas are characterized
as a settlement type with an extreme physical appearance, but in contrast to informal settle-

ments they are characterized by a very low building density, mid-range building size and a
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large fraction of vegetation. Especially because of their high fraction of vegetation the
settlements of the upper class could be separated from their environment very exactly and

mapped with high accuracy values (87.8 and 91.3 percent respectively).

Consequentially a limitation of the applied methodology can be observed in the identi-
fication of settlement types characterized by missing extreme attributes and by a high level
of physical similiarity amongst each other. This is for instance noticeable regarding the
results of the transfer of the methodology on the remaining settlement types “dense urban”
and “medium dense urban”. Here problems occurred mainly since the determination of
significant features for optimal class separation and the corresponding thresholds, even with
the SEaTH tool, turned out to be difficult. For these settlement types an additional,
advanced approach, which combines both object-oriented and pixel-based algorithms,
turned out to be more suitable. The classification results indicate that with a combination of
both approaches even the identification of “intermediate” settlement types is possible.
However, still some enhancements of this methodology seem to be necessary in order to
improve the quality of the results, so that the same can be further processed and used for
subsequent analysis, without manual adjustments. Nonetheless the results are already now
representing a promising basis for the further refinement of the method developed within

this study and the analysis of remote sensing image data in the mega-urban environment.

Some further room for improvement can be found regarding the classification of imper-
vious and not impervious surfaces. Referring to the related quality assessment (cf. chapter
7.2.3) various misclassifications between these two classes occured. As these land cover
classes are spectrally very similar to each other within Delhi, for an improved future mapping
process other spectrally independent characteristics need to be determined and included into
the investigations. The limits of this methodology and of the QuickBird data are furthermore
reached when single residential buildings within informal settlements shall be delineated.
The building density within this settlement type is so high that detecting individual buildings
becomes hardly feasible or even unfeasible. For the purpose of this study this deficiency is
rather of minor importance though, since the main interest is on general patterns. In fact,
the number of residential buildings within a settlement is required for the subsequent
integrative analysis, but this information will be derived with another approach which is
suitable to compensate this deficit (cf. chapter 8). An improvement in the detectability of
single buildings could be achieved by either refining the classification methodology or by the

use of other remote sensing data e.g., with higher spatial and/or spectral resolution.

One of the major objectives during the development of the classification methodology
(for VHR urban satellite data) was a robust spatial transferability. This means, the approach
was meant to be transferred not only to different settlement types within Delhi. But further
than this, the rule base was meant to be transferable quickly and easily without many

systematic adjustments and with a high classification accuracy to other test sites within the
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mega city of Delhi. The results within the subchapters above reveal that the developed
methodology is fulfilling the requirement of a robust transferability. In general, a rule base is
the more transferable, the less it needs to be manually adapted to the specific image
characteristics. Within this study, the rule base was transferred successfully and with only
little adaptions (mostly adjustment of the threshold values solely) firstly from the training
area to another larger test site and then to an additional independent transfer site within the
urban area of Delhi. In fact, the classification results of the transfer sites do not reach as
high accuracy levels as those of the training site, but they still constantly reach classification
accuracies higher than 85 percent. At the same time, the transfer results show that a
widespread analysis of urban structures is possible using the applied method. Nevertheless
there is still some need for action as until now only a part of the available data and, hence,
only a subset of the total urban area was analyzed. The application of the method on the

complete set of QuickBird data will be an important objective for future investigations.

All in all, with regard to the results of this research, it can be summarized that the
developed object-oriented classification approach represents an effective and flexible
approach to analyze VHR QuickBird data. It was shown that even a complex task such as
land cover analysis and the identification of different settlement types within a mega urban
area can be handled with an appropriate accuracy. The classification results provide
therefore an up to date information basis, to examine the potentials and capabilities of

remote sensing of urban areas.

It can be further stated that the classification method is able to extract informal
settlements from a mega urban environment, as well as to differentiate between different
settlement types. Informal settlements represent the most visible expression of urban

poverty and are therefore very important for planning strategy.

The outcome of these classifications hence represents a valuable, spatial data basis for
further investigations of the heterogeneous urban area of the Indian mega city Delhi. The
derived land cover maps form the foundation for the integrative analysis and deliver there-
fore the possibility to deduce criteria for the evaluation of the living conditions within

different settlement types.

The results of the combined application of the remote sensing derived land cover

products and socio-economic data is presented in the following chapter.
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Chapter 8

Bridging Remote Sensing and
Socio-economic Data

The combined application of remotely sensed imagery and socio-economic data for mapping,
capturing and characterizing the socio-economic structures and dynamics within the mega
city of Delhi is the primary concern of this study. Within the following chapter the results of
the integrative use of remote sensing derived data and socio-economic data are presented
(cf. chapter 8.1) and the quality of the results is appraised and critically discussed (cf.
chapter 8.2).

8.1 Results of the Integrative Data Analysis

In order to derive socio-economic information and thus to characterize the residents’ living
conditions within certain settlement areas of the mega city of Delhi, first of all several
settlement characteristics were estimated from the classified QuickBird data. According to
the in chapter 6.2 explained approach, the settlement characteristics “area”, “impervious
area” as well as “average building size” and “number of houses” were ascertained. The
results of the estimation from the classified QuickBird data are presented in Table 8-1. These
values are the precondition for the performance of the integrative analysis and therefore for
the provision of socio-economic information. Thus, the quality of the calculated values is
fundamental for the determination of the population and water related parameters. In order
to be able to evaluate the quality of the approach and the results of the subsequent integra-
tive analysis, some validation was carried out. Since no adequate field data for comparative

validation is available, a visual counting of houses based on the QuickBird data was under-
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taken by an independent analyst. This way it is possible to compare the number of counted
houses with the number derived from the remote sensing data analysis. Table 8-1 shows
that there are only minor deviations in the statistics. The number of houses determined by

the remote sensing analysis was overrated for informal settlements by 10 to 19 percent.

Table 8-1: Results of the image data analysis and validation outcomes for selected informal settlements in the mega
city of Delhi

Average House Size

Name of colony Area (As) [m2] Impervious Area (A;) [m2] (A [m?] Number of Houses (N)
RS RS RS RS VvC RS/VC [%]
A Bhomiheen Camp (subset) 14374.08 10360.80 15 691 608 114
B Bhomiheen Camp (total) 26925.48 19077.48 15 1272 1130 113
C  Nehru and Navjeewan Camp 84047.04 59153.76 17 3480 2923 119
D  Banjara and Harijan Camp 14749.59 8887.68 19 468 424 110

RS - Analysis of Remote Sensing Data, VC - Visual Counting

(Data source: calculated using remotely sensed QuickBird data)

a

' Q' /\ Visual counted buildings

Figure 8-1: Subset of the fused QuickBird test site South s3 (4, 3, 2) versus example for the visual counting
process of the buildings within the informal settlement Bhomiheen Camp. Primarily the occurrence of shadow and
different building materials indicated the differentiation of the buildings.

In order to enhance the plausibility of the accuracy assessment Figure 8-1 is inserted
showing an example of the visual counting process of the settlement buildings. Primarily the
occurrence of shadow and different construction materials of adjacent buildings indicates the
differentiation of the buildings. On closer examination of Figure 8-1 it becomes evident that
even a reliable determination of single buildings by visual interpretation of the VHR remote
sensing data within this settlement type is very difficult — not to mention a fully automatic
extraction using only remote sensing analysis. The buildings are often attached to other
buildings, were constructed using a wide variety of materials, and often constructions on the
rooftops are covering parts of the roof of single buildings. Moreover a regular street network
does not exist, which would evoke some regularity in the building patterns and hence make
the extraction of single buildings a lot easier. Accordingly, the fraction of impervious area
within the settlement and the mean building size, as reliable parameters, were utilized to

determine the total number of houses. With this approach, realistic results of the image data
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analysis could be provided for the subsequent integrative analysis and therefore for the

determination of socio-economic attributes.

Hence, based on the remote sensing derived settlement characteristics an integrative
approach by means of ancillary socio-economic in-situ information was developed. The
results of the integrative analysis are shown in Table 8-2 as well as in Figure 8-2 and Figure
8-3. Table 8-2 comprises both the final results and the parameters necessary for their
derivation. The “Questionnaire” columns (Q) are representing data, where the family size
and the water consumption per capita for the different study sites were directly taken from
the questionnaires. By means of remote sensing derived settlement parameters, the socio-
economic main parameters of interest, “population density” and “total water consumption”
could subsequently be calculated. Whereas the columns “Assumption” (As) are reflecting the
data which were derived from the representative training area (A) and transferred to the
remaining test sites (B, C and D). The remote sensing derived settlement parameters were

applied the same way in order to calculate the socio-economic parameters.

Table 8-2: Results of the integrative data analysis for selected informal settlements in the mega city of Delhi

Population density Water consumption Total water
Name of colony Family size (F)* Total population (P) § .
(D) [Pop./km?] per capita (Wc) [I/d]* consumption (Wr) [I/d]
As Q As Q As Q As Q As Q As/Q [%]
A Bhomiheen Camp (subset) 5.43 5.43 3752.13 3752.13 261034.45 261034.45 25 25 93803.25  93803.25 100
B Bhomiheen Camp (total) 5.43 4.76 6906.96 6054.72 256521.33  224869.53 25 24 172674 145313.28 119
C  Nehru and Navjeewan Camp 5.43 5.45 18896.40 18966.00  224831.24 225659.35 25 16 472410 303456 156
D Banjara and Harijan Camp 5.43 6.79 2541.24 3177.72 172292.25 215444.63 25 32 63531 101687.04 62

As - Assumption, Q - Questionnaire * Arithmetic Mean

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)

The diagrams in Figure 8-2 and Figure 8-3 show a comparison between “population
density” and “total water consumption” estimated from the questionnaires (right bars) as
well as from the remote sensing data (left bars) for selected areas which represent potential
informal settlements. It could be shown that it is generally possible to derive socio-economic
data for a larger area, or a comparable second settlement respectively, by a relatively small

amount of data collected from a representative training site.

The evaluation of the “population density” results shows that the analysis based on the
remote sensing data provides realistic values which correspond not only to the questionnaire
data but also to information in the appropriate literature (BRONGER 2004). The informal
settlements evaluated in this study are characterized by population density values between
172.000 and 261.000 [Pop./km2]. In Mumbai, population densities higher than 300.000
[Pop./km2] were reported for informal settlements where the living conditions are expected

to be even worse than in Delhi (BRONGER 2004).
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Figure 8-2: Results of the integrative data analysis — population density for four test sites (potential informal
settlements) estimated from the questionnaires (right bars) and remote sensing data (left bars): A — Bhomiheen
Camp (subset), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp
(Data source: calculated using data from household survey 2005-2006).

Comparing the values of the average population density for the informal settlements
with the average population density of whole Delhi or even with the value of Munich for
instance (cf. Figure 8-3), it is easily comprehensible that one is talking about settlements
with extreme living conditions. The population density of the JJ-colony Bhoomiheen Camp
for example is 25 times as high as the average of whole Delhi and even almost 60 times as
high as the average value of Munich — which is denoted to be the major city with the

highest population density in Germany.
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Figure 8-3: Comparison of the population density within different settlements of Delhi, entire Delhi and the city of
Munich, Germany: B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan
Camp, F — Tughlakabad Extension (total), H — Kalkaji DDA Flats (total), J — Greater Kailash 1) (Data source:
calculated using data from household survey 2005-2006).

For the “total water consumption” realistic data could also successfully be derived by

means of the integrative data analysis (cf. Figure 8-4). Only the values for the NVehAru and
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Navjeewan Camp (C) show bigger discrepancies. The reason for these discrepancies is on
the one hand imprecise information from the interviewed people. As mentioned above,
especially the information on the water consumption was often doubtful. An accurate
declaration of the inhabitants regarding their water consumption, especially in areas with
sporadic water supply, like in the informal settlements, will be difficult to obtain. As these
settlements, or single households within the settlements respectively, are not connected to
public water supply, the water is provided mostly by public water pumps at irregular
intervals. An access to reliable data, based for instance on measurements of water flow
meters, is therefore not possible (cf. chapter 2.4 and 5.2.4). This data gap, in turn, shall be
closed with the present approach, delivering data for a whole settlement derived from a
relatively small amount of in-situ collected information. As it can be seen in Table 8-2,
despite the elimination of extreme outliers, the differences between assumption and the
questionnaire data were still not negligible. On the other hand, certain deviations resulting
from the image classification are possible. And finally the third critical aspect regarding the
impreciseness in the data is the determination of the empirical value of 25 [l/d] of mean
water consumption per capita derived from the training area. The question here is, whether
the selected training area does really deliver representative data as a basis for the
calculation of the remaining test sites. In this study the quality of the interview data is the

decisive factor for the discrepancies.
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Figure 8-4: Results of the integrative data analysis — total water consumption for four test sites (potential informal
settlements) estimated from the questionnaires (right bars) and remote sensing data (left bars): A — Bhomiheen
Camp (subset), B — Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp
(Data source: calculated using data from household survey 2005-2006).

The error bars in the remote sensing values in Figure 8-4 indicate the uncertainties
related to the assumptions being made in the data processing (e.g., for number of houses).
In order to display the standard deviation, a Monte Carlo simulation was performed

(MeTropPOLIS & ULAM 1949). The Monte Carlo simulation is just one of many methods for ana-
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lyzing uncertainty propagation, where the objective is to determine how random variation,
lack of knowledge, or error affects the sensitivity, performance, or reliability of the system
that is being modeled. A Monte Carlo simulation is categorized as a sampling method
because the inputs are randomly generated from probability distributions to simulate the
process of sampling from the actual population (METROPOLIS & ULAM 1949). The error bars in
the questionnaire data result from outliers (extreme values) in the interview statistics (e.g.,
for family size or water consumption per family). They are represented within the standard

deviation as well.

The deviations between the questionnaire data (Q) and the assumption data (As)
regarding the water consumption can be relativized by a comparison with the values for the
minimum water supply required as specified by the World Health Organization (WHO) (cf.
Figure 8-5). The WHo (2003) and other organizations, such as the National Commission on
Urbanization (1988) or the Swedish International Water Institute (FALKENMARK & WIDSTRAND
1992), recommended that a per capita water supply of 80-100 litres per day is required to
meet the basic domestic needs, and emphasised that this level of water supply should be
ensured to all citizens (RAMACHANDRAIAH 2001). After the Bureau of Indian Standards
minimum water supply of even 200 litres per capita per day [Ipcd] should be provided for
domestic consumption in cities (Mobr 1998). Considering the fact that various agencies
recommend different quantities of requirement of water for domestic use, within this study
100 [Ipcd] consumption (here an indication of availability, as consumption is determined by
the availability in the case of general shortage) of water is taken as benchmark for
identifying water deficient households in the mega city of Delhi. It should be noted here that
the selected 100 litres value is no strict requirement level, but it is some kind of average

minimum requirement for living with a minimum health and hygiene standard.

It is obvious from Figure 8-5 that in all informal settlements observed in this study, the
consumption — as an indication of availability — of water per capita is much lower than
what is recommended by the above mentioned organizations. Comparing the results of the
integrative analysis with the minimum requirement of 100 [Ipcd], the deviation between the
assumption and the questionnaire data appears to be almost negligible. In any case a major
deficit between the really available and the actually required amount of water can be
observed. Regarding the value of 200 [Ipcd] announced by the Bureau of Indian Standards
this deficit is even multiplied. These deductions might not be considerable as absolute but in
any case they highlight a tendency which can be taken as a recommendation towards the
respective supply organizations (e.g., DIB) and the urban planners. Especially for the supply
and development of informal settlements, which are considered as mega urban risk areas
and thus potential residential zones of vulnerable population groups, this kind of “support”

can be of great help.
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Figure 8-5: Comparison of de-facto water consumption vs. WHO minimum requirement, indicating the deficit in
water supply, within different informal settlements in the mega city of Delhi: A — Bhomiheen Camp (subset), B —
Bhomiheen Camp (total), C — Nehru and Navjeewan Camp, D — Banjara and Harijan Camp (Data source:
calculated using data from household survey 2005-2006, WHo 2003).

Not only for informal settlements within Delhi but also for the remaining settlement
types an integrative analysis was performed in order to derive the required socio-economic
information and to be able to characterize the living conditions of the inhabitants. Hence,
based on the remote sensing derived settlement characteristics (cf. Appendix, Table A.13.1
and A.13.3) and by means of questionnaire derived socio-economic data, like for the infor-
mal settlements, the parameters “population density” and “total water consumption” were
determined. For a test of the transferability of the methodology, the settlements or test sites
indicated as Tughlakabad Extension and Kalkaji DDA Flats within Map A.14 (cf. Appendix)
were selected. These are areas identified as both dense and medium dense urban within the
classification process (cf. Figure 7-11). Tughlakabad Extension is a partly unauthorised,
partly authorised colony of the upper lower and lower middle class characterized by mostly
one-family houses. Sometimes small apartments are sublet in order to earn some extra
money. In contrast, Kalkaji DDA Flats is an authorized middle class residential district
(governmental quarter) which is characterized by multi-story dwellings with one apartment
per storey. This means that generally one family occupies one storey. Thus, the average
number of stories has been considered during the calculation of the “total population” of this
settlement (cf. Table A.13.2). For Tughlakabad Extension though, one family per building
was assumed. For a more detailed characteristic of these settlements please see chapter 4.1
and 4.2.

The diagrams in Figure 8-6 and Figure 8-7 again show a comparison between
“population density” and “total water consumption” estimated from the questionnaires (right
bars) as well as from the remote sensing data (left bars). It could be shown that it is
generally possible to derive socio-economic data for a complete settlement from a relatively

small amount of basis data collected in a representative training area.
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Figure 8-6: Results of the integrative data analysis — population density for dense and medium dense urban test
sites estimated from the questionnaires (right bars) and remote sensing data (left bars): E — Tughlakabad
Extension (subset), F — Tughlakabad Extension (total), G — Kalkaji DDA Flats (subset), H — Kalkaji DDA Flats
(total) (Data source: calculated using data from household survey 2005-2006).
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Figure 8-7: Results of the integrative data analysis — total water consumption for dense and medium dense urban
test sites estimated from the questionnaires (right bars) and remote sensing data (left bars): E — Tughlakabad
Extension (subset), F — Tughlakabad Extension (total), G — Kalkaji DDA Flats (subset), H — Kalkaji DDA Flats
(total) (Data source: calculated using data from household survey 2005-2006).

In order to compare the housing and supply conditions within the settlements of the
lower and middle class with those of the upper class of Delhi, the settlement Greater Kailash
II situated in test site South s3, was additionally considered in the investigations®® (cf.
Appendix, Map A.14, as well as Table A.13.3 and A.13.4). Greater Kailash II is an
authorized, gated community where residents of the lower upper class are living. Since only

a relatively small amount of questionnaire data for this settlement is available, the analysis

% The settlement Sainik Farms identified as “sparse urban” area could not be included in the analysis as no questionnaire data was
available for this area. It was almost impossible to interview residents of the Gated Communities or other quarters of the upper

middle class and upper class to collect a numerically equivalent amount of data in the respective settlement types (cf. chapter 5.2).
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could not be carried out like for the other settlements by calculating the data for the
complete settlement based on data collected for a training area. Instead the methodology
was applied directly on the complete settlement. Figure 8-3 shows that the population
density within this settlement is with 11,678 [Pop./km2] only slightly higher than the
average of Delhi and hence by far lower than the population density within the other
investigated areas. The derived value for the “total water consumption” is comparably high.
Looking at Figure 8-8, it is obvious that the supply situation, in terms of availability, within
this region is by far better than in any of the other examined settlements and even exceeds
the average of Delhi. In terms of international comparison, the inhabitants of Greater Kailash
II even consume more water than the average inhabitant of Munich and hence the
availability here definitely exceeds the 100 [Ipcd] minimum requirement for domestic use.
This information matches the in-situ observations as well as the questionnaire data. The
water supply here is provided by private water connections. As the supply is not guaranteed
24 hours a day, partially additional water is purchased in order to cover the daily demands
and to irrigate the front yards. The temporal availability of water is a parameter, however,
that cannot be analyzed with the present approach. For this purpose, further investigations
as well as a qualitative analysis of the living conditions of the inhabitants is necessary, as
carried out for the different settlement types of Delhi by SELBACH (2009).
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Figure 8-8: Determination of water supply deficit: Comparison of the effective consumption of different settlements
in the mega city Delhi (B-J) vs. mean water consumption of Delhi in total, other cities and the minimum
requirement of the WHO (Data source: calculated using data from household survey 2005-2006, Down TO EARTH
2005, WHo 2003).

This comparison shows on the other side as well that in the majority of the examined
settlements of Delhi the conditions appear to be critical, especially in the informal
settlements and unplanned unauthorized areas (e.qg., 7ughlakabad Extension). In this
context, it is surprising to find Delhi’s average water consumption to be so low, when at the

same time the Delhi Jal Board (DJB) claims supplying, on average, 211 [Ipcd]. Solely in the
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residential areas of the upper middle and lower upper class the water availability is adequate
and achieves the required benchmark of 100 [Ipcd]. Comparable studies within Delhi point
out that about 72 percent of the households consume less than 100 [Ipcd] and almost 30

percent even have less than 50 [Ipcd] available (SHABAN 2008).

8.2 Summary and Appraisal of the Combined Use of Remotely

Sensed Imagery and Socio-economic Data

Since the physical appearance in urban environments is a reflection of human activity, an
isolated examination of social questions without considering geospatial questions does
neither meet the requirements of social science nor the requirements of remote sensing.
Hence, urban remote sensing has the potential to represent a valuable interdisciplinary
platform for social and physical science (cf. chapter 3.3 and 3.4). Against this background,
the linking of remote sensing and social science shall be pushed forward in the course of this
research study. A methodology was developed to compensate the lack of in-situ collected
socio-economic data by means of remote sensing imagery together with the integration of
few questionnaire data in order to allow an indirect assessment of the living conditions of
the inhabitants in different settlement types in the mega city of Delhi (cf. chapter 6.2).

In the following, the results of this integrative analysis are summarized and the quality

of the developed approach as well as the benefit of the derived information is examined.

The remote sensing derived land cover maps (cf. chapter 7.2) form the basis for the
integrative method and were therefore embedded in the analysis concept (cf. chater 6.2).
The following settlement characteristics were successfully estimated from the classified
QuickBird data and used to derive spatial information about the population distribution (cf.
chapter 8.1):

+ Area of the settlement,

+ Impervious area,

+ Fraction of impervious area (sealing degree),
+ Average building size, and

+ Number of houses.

In addition to the remote sensing derived data, the integrative approach makes use of
socio-economic data derived from georeferenced questionnaires (conducted during two field
trips in Delhi, cf. chapter 5.2). This was used to characterize a given settlement type in
terms of specific population and water related variables. Here, the following parameters,

necessary for the integrative assessment, could be achieved (cf. chapter 8.1):
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+ Family size,
+ Mean water consumption per capita, and
+ Mean water consumption per family.

Finally, the remote sensing derived data were combined with the questionnaire derived
information in order to achieve criteria for the evaluation of the living conditions within
different settlement types. The evaluation of the results showed that it is possible to
characterize a given settlement type — in this case, an informal settlement — in terms of

specific population and water related parameters (cf. chapter 8.1):

+ Total population,
+ Population density, as well as
+ Total water consumption.

In turn, these outcomes, if compared for example with the population average data of
the whole city or with the water consumption values specified by the WHO, enable an
identification of living quarters of vulnerable population and, therefore of potential risk areas
within the mega city of Delhi.

In order to compare the housing and supply conditions of the inhabitants living in the
different settlement types appearing in Delhi, the developed integrative analysis approach
was transferred from the informal settlements (very dense urban areas) to the remaining
settlement types (dense and medium dense urban) within the mega city. The performance
has demonstrated that it is also possible to characterize the living quarters of the middle and
upper class within the mega city of Delhi, and, hence, to assess and classify the living

conditions of the local inhabitants.

Solely regarding the settlement type “sparse urban” the integrative analysis could not
be applied, because for these areas the required questionnaire data was not available. In
light of the experiences of this study, a transfer of the method to this settlement type would
as well be promising though. In such cases — where the inhabitants of the respective
settlement type being reluctant to answer questionnaires or household surveys being
generally impossible due to different reasons — an analysis without questionnaire data
would be a possible alternative. Here estimations based on general or experiental knowledge
could be used in order to substitute the survey data. As generally no absolute quantitative
information can be derived with this method, but rather tendencies and trends shall be

determined, such an approach could well be taken into account.

Since the settlement type “sparse urban” represents residential areas of the upper class
of Delhi were the living conditions and the economic status are comparably high, no real
need for action is required here anyway. Urban planners and other persons in charge are not

necessarily depending on additional socio-economic information, which is the reason why
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the missing integrative analysis of this settlement type does not negatively affect the quality
of this study.

Considering the methodology of indirect data assessment developed within this study
and its results, (out of the perspective of governmental agencies, urban planners or other
persons in charge) the following benefits in comparison to a non-integrative analysis (i.e.

conventional approach) can be summarized:

+ One of the most obvious and direct benefits of the developed methodology is the
transferability. The possibility to transfer the method from one settlement type to
another as well as the transfer of the method itself from one test site within the
megacity to another was successfully demonstrated within this research.

+ In comparson to the conventional mapping and data ascertainment procedures in mega
urban areas, the developed integrative analysis can be applied in a time and cost saving
way. In contrast to highly elaborate and costly total in-situ ascertainments, using this
approach only a relatively small amount of socio-economic data in form of collected
questionnaires is required. Hence, on the one hand much fewer man power is needed
which leads to drastically less labor costs?’. Even with the purchasing of the satellite
data taken into account, the cost factor could considerably be reduced. On the other
hand, a spatially comprehensive in-situ data assessment is highly time consuming and
can even taken some years for such complex areas as a mega city. The acquisition of
the questionnaire data required for the development of the integrative method could be
completed within approximately two months, which is significantly quicker than any
conventional method. Contingently it could be considered to even completely abstain
from a partial data acquisition as carried out within this study. It is theoretically possible
to solely refer to experience information for the deriving of the socio-economic data,
which would in turn speed up the whole process even more.

+ Regarding a repeated application of the integrative method after a certain time, the
time benefit of this method becomes out of above explained reasons even more
relevant in comparison to a repetition of a total in-situ data assessment. Once the
method is robust (in terms of its reliability), it can be applied in a randomly or regularly
repeated way. For such a repeated application of the integrative method, some minor
adaptations of the classification parameters and their thresholds may be necessary. The
reason for this are rather the image specific attributes of the new remote sensing data
than difficulties occurring during the systematic adaptation process. The process of the
integrative analysis itself remains unchanged. A regular repeatability of the method
finally enables even the monitoring of a certain district or of the complete urban area
which would be impossible with in-situ data acquisition. By this means, the persons in
charge can be significantly and scientifically supported in their strategical planning and
resulting measures.

2 Whereas this criterion cannot be considered as the decisive factor due to low wages in developing and threshold countries.
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+ An additional advantage, which is directly linked with the quick and repeatable
application, can be seen in the timeliness, with which certain questions can be handled
using the developed methodology. Diverse remote sensing sensors can deliver very up
to date images of a specific area of investigation. The acquired remote sensing data can
theoretically be delivered to the customer within only few days after the date of its
acquisition. In addition to that, as already mentioned, only few in-situ data is required,
which can be collected within a relatively short period of time. This leads to an all in all
very low response time for the derivation of socio-economic data within urban areas,
whereas a conventional data acquisition cannot at all satisfy this requirement of
actuality. Taken to extremes this could mean, that the results of a conservative in-situ
acquisition will not be available before they are already out-dated. This is even the more
valid, when dealing with a complex and highly dynamic urban area as the mega city
Delhi. Due to the repeatability of the developed method, the actuality of a respective
analysis can even be kept up to date (cf. previous paragraph).

+ The integrative aproach using remotely sensed data arises furthermore the potential to
analyze wide areas in one application. By means of remote sensing data, especially
satellite-based imagery, large-scale analysis are possible capturing enormous areas like
for example large parts or even the complete urban area of mega cities like Delhi.
Within this study, the approach was developed for one training site and then transferred
to two complete test sites successfully.

All in all, the listed benefits are very convincing and corroborate the combined use of
remotely sensed and socio-economic data in mega city research. It is important to once
again mention that the developed method does not call for absolute quanitative correctness

but rather shows up tendencies in the urban development of a mega city.

In the following the developed approach and its results shall be discussed critically.
Some facts are pointed out, which have to be included in the examination and appraisal of
the developed integrative analysis method. The derivation of socio-economic information out
of structural attributes of the urban morphology is generally transferable to all examined test
sites within Delhi. The accuracy of the results is depending on the one hand on the quality of
the physical parameters determined from the remote sensing data, and consequentially of
the quality of the derived land cover maps (cf. chapter 7.2.3 and 7.2.4). On the other hand,
the accuracy of the results is depending on the quality of the household survey and the

quantity of questionnaire data for the respective settlements.

Appraising the quality of the physical parameters derived from the remote sensing data,
especially one aspect needs to be discussed critically. A fully automatic determination of the
average building sizes per settlement type would naturally be more independent of the
image interpreter and therefore of course be preferable to a semi-automatic method. Still
this will only be possible, when all single buildings can be separated by the classification

process. Here, especially for the analysis of very dense urban areas, as the informal
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settlements in Delhi, the interpretation of remote sensing data today still reaches its limits
(cf. chapter 7.2.4).

Regarding the quality of the household survey, for example the missing homogeneity of
the sampling within the test sites, i.e. the differing quantitiy of questionnaires per
settlement, needs to be discussed critically. Moreover, the correctness and plausibility of a
certain fraction of the answers of the respondents (of all question types and in all
settlements) need to be doubted out of different reasons. Consequently a certain error ratio
was taken into account. While the information regarding the family size can generally be
regarded as reliable, the answers concerning the water consumption need to be scrutinized
(cf. chapter 5.2.4). Here it is mainly the poor educational background of the respondents as
well as a lack of water meters?®, which resulted partially in answers that must be doubted in
principle. Because this problem of partially unreliable data occurs in the same way for any
complete survey or census, this fact cannot be seen as a disadvantage of the developed
integrative method. It is important to mention here, that due to this problem the results
regarding the water consumption related to the residents of the different settlements are to
be interpreted as a tendency and not as universally valid, quantitative representative data.
Uncertainties in the remote sensing derived data as well as in the questionnaire data were
represented within the standard deviation indicated using error bars. A detailed evaluation
and discussion of the quality of the household survey and the collected quantitative socio-
economic information is already included in a previous chapter of this work, please refer to
chapter 5.2.4.

Besides the amount of available water one needs to analyze some additional criteria, if
the water supply of specific inhabitants shall be evaluated. Of high importance for the
affected persons are the quality and the times of availability as well as the reliability of the
supply. All these factors can of course not be considered in the developed quantitative and
on remote sensing data based method, but rather have to be examined separately with a

qualitative approach (cf. SELBACH 2009).

These facts considered, it can be stated as an interim conclusion that remote sensing
data together with an integrative approach are more suitable to derive population

parameters of a mega city than information regarding the water consumption.

2 Informal settlements generally are not attached to the municipal water supply system. Because no tab water is available, of

course no water meters are present either.



Chapter 9

Final Conclusions and Outlook

This closing chapter summarizes the results, achievements and constraints of this study. It
aims to evaluate the validity of the working hypotheses and to answer and appraise the
crucial questions raised in the introduction (cf. chapter 1). Moreover, it examines the
outcome of this work in a wider context leading to an outlook on future potentials of remote
sensing in urban areas in general and on the here developed integrative approach in

particular.

9.1 What has been achieved? — Conclusion

With regard to the working hypotheses and the corresponding research questions raised in
the introducing chapter of this thesis (cf. chapter 1.1), some major conclusions can be

drawn:

- The living conditions of the residents are reflected in the settlement
structure of the mega cities.

Already during the on-site inspection and the selection of the test sites as well as during
the extensive in-situ data collection and the household survey it could be noticed that
different settlement types have developed within Delhi, where in direct neighborhood most
heterogeneous living conditions can be observed. This observation was confirmed by the
evaluation of the questionnaire data (cf. chapter 5.2), which collected quantitative and
qualitative information about the socio-economic background. Socio-economic variables,
such as family size, water supply and disposal or health care — which decisively characterize

and influence the life and the living conditions of the inhabitants — were inquired and
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analyzed in order to investigate how the inhabitants of the different settlement types in Delhi
in fact really are. It could clearly be determined that a direct correlation exists between the
settlement type and the living conditions of the inhabitants. This correlation was in some
degree expected and is not really surprizing. Thinking of informal settlements for instance, it
is quite easy to imagine that the inhabitants here are faced with overcrowding, insufficient
basic infrastructure and a lack of health care. The living conditions themselves and the
corresponding attributes, which were questioned in order to evaluate the same, are not
directly measurable from outside though. Yet, it was shown within this work that they are in
direct correlation to physical attributes as for example building size and density or the
fraction of vegetation. This correlation at the same time corroborates the thesis that the
individual living conditions of the residents visibly affect the structure of their settlement
within the mega city of Delhi. This, in turn, implies that it is in deed possible to assess by a
visual observation of a settlement from outside how the people living inside the settlement
are. This approach benefits from the fact that the heterogeneity of the living conditions is
extreme, the development within direct neighborhood can be contrary, and hence the visible
contrasts within the settlement structure are strongly pronounced which is a typical

characteristic of mega cities especially in developing countries (cf. chapter 2.3).

In order to further follow the developed approach, the second working hypothesis

needed to be investigated:

- The settlement structure of mega cities is reflected in remote sensing
images.

Following to the definition of the test sites and the in-situ assessment of the socio-
geographic general conditions, the potentials of remote sensing in the mega urban environ-
ment in general and for Delhi in particular were examined. A review of previous and current
research and developments in urban remote sensing was carried out (cf. chapter 3) and in
particular already existing remote sensing data was analyzed for one concrete example. In
the course of this study, a classification methodology was developed and conducted to
analyze the urban landscape of the mega city Delhi. Regarding the complex and
heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classi-
fication approach, based on segmentation derived image objects, was implemented (cf.
chapter 7). Like the complete conceptual framework of this research, the classification
methodology was developed based on a smaller representative training area at first and

applied to larger test sites within Delhi afterwards.

Already during the visual examination of the sattelite data it became obvious that the
on-site observed physical parameters, that were discribed above, and therewith the
settlement structures are clearly reflected in the remote sensing data. This, in turn, showed

great promise for the development of an adequate classification algorithm.
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The classification of very high resolution satellite data enables a prompt and up to date
analysis of mega urban structures. The potential of this type of data first and foremost can
be seen in the derivation of physical parameters and their spatial distribution. The results of
this study and their critical discussion emphasize the capabilities of QuickBird data and of the
VHR remote sensing data in general for (mega) urban environments. QuickBird data is
especially well suitable for the mapping of urban land use, as it particularly fulfills the small-
scale requirements demanded by the highly structured urban landscape due to its very high
spatial resolution. The object-oriented classification methodology developed within this
research allowed for the identification of five urban land cover classes within the municipal
area of Delhi. For all land cover maps overall accuracies of more than 85 percent could be
achieved (cf. chapter 7.2.3). The achieved results show with a high level of accuracy the
correct class, their spatial distribution and number of occurrences within the overall land
cover. Even if the derived maps from a city planer’s point of view do not deliver data,
qualitatively sufficient for cadastral land register, they do deliver from a remote sensing
point of view data of a high to very high level of precision representing a reliable and

profound basis for further analysis.

The postulated hypothesis that the settlement structures are reflected in remote sensing

data can hence be considered as proven.

After the validity of the above described approach had been veryfied, the different
settlement types appearing within Delhi were moved into the focus of this study (cf. chapter
1.1):

+ It is possible to identify settlements within a mega city by analyzing
remote sensing data where the living conditions are particularly poor and
where therefore is direct need for action.

While analyzing the image data the identification of different settlement types in
general, and amongst these of informal settlements in particular was in the focus. The
results presented within this work demonstrate, that the developed methodology is generally
capable to identify different settlement types. In total, four different settlement types could
be identified. The developed method appeared to be particularly well suitable for the
classification of settlement types with extreme physical attributes. On the basis of their
building density, building size, and fraction of vegetation (i.e., their physical parameters),
especially “very dense urban” areas — within this study the equivalent of informal
settlements — and “sparse urban” areas (living quarters of the upper middle class and the
upper class) could be separated out of their environments with a very high accuracy (cf.
chapter 7.2.3). Whereas the identification of settlement types characterized by missing
extreme visible attributes and by a high level of physical similarity amongst each other

showed less accurate results. A clear and precise separation of the remaining on-site defined
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settlements “dense urban” and “medium dense urban” was in fact hardly possible. An
adaption of the classification method, namely the combination of both object-oriented and
pixel-based algorithms, delivered more precise results, which nonetheless could not reach

the level of accuracy of the other results.

Despite the described problems, the general results of the land cover classification can
be regarded as a successful attempt to map and differentiate between different settlement
types within a mega urban environment by means of a (semi-) automated assignment using
remote sensing data. This result opens a promising perspective for further enhancements of
the methodology developed within this research and for the analysis of remote sensing data

in the mega-urban landscape.

Especially the identification of informal structures where the living conditions are
particularly poor and where therefore is direct need for action are very important and useful
for planning strategy. Informal settlements are the most visible expression of urban poverty
in developing world cities (cf. chapter 2.4). Since dwellers here are exposed to a high degree
of many sorts of risk, a reaction of urban management appears to be more than necessary
especially for these areas. Often such areas are not recognized and addressed by the public
authorities as an integral or equal part of the city, which is one of the reasons why the data
base of informal settlements and their dwellers is mostly insufficient. However, especially the
physical entities of informal settlements can, as a result of the social circumstances the
inhabitants live in, be detected from remote sensing data quite clearly and can thus be
extracted from a mega urban environment with comparably low efforts. Hence the
developed approach has the potential to support the authorities to react and step into

action, where their intervention is most urgently needed.

+ Remote sensing provides the opportunity to detect, observe and assess
complex spatial patterns of urban structures.

All in all, with regard to the results of this research, it can be summarized that the
developed object-oriented classification approach represents an effective and flexible
method to analyze VHR QuickBird data. But how big is the potential of remote sensing in the
specific field of mega city research? It was shown that even a complex task such as land
cover analysis and the identification of different settlement types within a mega urban area
can be handled with an appropriate accuracy. The remote sensing derived land cover maps
(cf. chapter 7.2) form the basis for the integrative method and were therefore embedded in
the analysis concept (cf. chapter 6.2). The classification is capable to provide an up to date
information basis, to examine the potentials and capabilities of remote sensing of urban

areas.
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Besides the classification itself, remote sensing can provide data for various dependent
attributes associated with human activity — first and foremost the environmental impacts of
numerous social, demographic or economic processes (cf. chapter 3.3). Hence, the
surveillance and monitoring of land cover may visualize the fingermarks of urbanization.
Moreover, the derivation of other specific physical parameters is possible, like: “area of the
settlement”, “impervious area” and “fraction of impervious area”, “average building size”,
and “number of houses”. These settlement characteristics were successfully assessed from
the classified QuickBird data and used to derive information about the spatial distribution of

the population (cf. chapter 8.1).

The quality of the land cover classification hence is of crucial importance for this
approach as misclassifications directly influence the subsequent calculations and
consequently distort the aforementioned parameters. The semi-automated classification
method provides the derivation of objective, and thus mostly from visual interpretation
independant results. The potential of remote sensing can hence be fully utilized, which is
advantageous in many aspects in comparison to an interpretation by the human eye. All in
all, with the help of VHR satellite data, a more cost-effective, area-wide and up to date
information basis was generated for the permanently dynamically changing environment of
Delhi.

- The settlement structure acts as an interface between remote sensing and
social science in mega city research.

The physical appearance of urban landscapes is a reflection of human activity. An
isolated examination of social questions detached from geospatial questions does therefore
neither meet the requirements of social science nor the requirements of remote sensing.
Thus, urban remote sensing has the potential to be an important meeting point for social
and physical scientists (cf. chapter 3.3). Today, the urban remote sensing community is still
at the beginning of integrative work, the researchers are here still in the early stages of
development. Even if the linking of remote sensing and social science may bear difficulties
and still is in the early stages of its development, it has already gained in importance and
still continues to expand its field of application. This thesis jumps here on the moving train
and aims to push the potential of remote sening for social and physical scientists working
together. Against this background, a joint approach linking social science and remote
sensing was the keystone for this research study. In order to compensate the lack of in-situ
collected socio-economic data by means of remote sensing imagery together with the
integration of few questionnaire data a methodology was developed allowing an indirect
assessment of the living conditions of the inhabitants in different settlement types in the
mega city of Delhi (cf. chapter 6.2).
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Between the two disciplines, the settlement structure was identified as the bridging
element that on the one hand is visible in the remote sensing data and on the other hand is

directly correlated to the living conditions of the inhabitants.

- It is possible by means of remote sensing data (and by including socio-
economic data) to reveal information about the living conditions of urban
dwellers.

Based on the land cover derived settlement characteristics (physical attributes) and the
socio-economic data derived from georeferenced questionnaires the integrative approach
allows for an assessment of socio-economic parameters like: “total population amount”,

“population density”, and “total water consumption”.

It was shown, that it is possible with a relatively small amount of questionnaire data for
a representative training area, to derive sufficiently exact socio-economic information for
(significantly) larger areas and for all mapped settlement types in the investigation areas of
Delhi. The methodology could moreover successfully be transferred to all examined test sites
within Delhi, whereas the accuracy of the derived information was of course depending on
the quality of both, the physical parameters defined from the remote sensing data, and
consequentially of the derived land cover maps, and on the other hand on the quality of the

questionnaires processed.

Still even in cases where the required questionnaire data is of insufficient quality or is
even not available due to different reasons, in light of the experiences of this research, an
analysis without questionnaire data at all appears to be possible. Accepting a certain loss of
accuracy, it may be an option in future to abstain from questionnaire data in order to avoid
the often difficult and time- and labour-intensive data acqusition in-situ. However, the
participation of social scientists will still be essential as here once again there expertise and

their specific knowledge about the region of interest will be of decisive importance.

All in all, the developed integrative analysis method enables the derivation of up to
date, large-areas-covering and in their dimension correct socio-economic information for the
highly dynamic urban area of the mega city of Delhi. The derived information, together with
the results of the land cover mapping, form a profound and promising basis for the actual
estimation of the living conditions of the inhabitants of the different settlements within this
mega city. Thus, the methodology developed presents a promising alternative or a
reasonable supplement to the elaborate and time-consuming surveys and mapping

campaigns on site.

This conclusion already anticipates the answer to the last hypothesis of this work:
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- Remote sensing has the potential to be used as a “social measuring
instrument”.

One of the most important findings of the performed integrative analysis (cf. chapter 8)
and of this thesis in general is that the contribution of remote sensing to urban planning and
management goes beyond mapping the objects of the built environment alone. Interpreting
and evaluating remotely sensed imagery rather enables scientists to provide uniquely useful

information for social research.

Methods that link results of remote sensing observation with ground-based social data
have the capability to improve the understanding of the parameters of different land use
changes and therefore of developments in the urban environment. Thus, the using of

remotely sensed data has the potential to measure social phenomena and their effects.

Additional, up to date information about the living space and the living conditions of the
inhabitants do not only educate the public awareness but can as well support the decision
makers and urban planners in mega cities with a highly dynamic of urban growth to develop
suitable strategies, effective measures or preventive actions for a healthy urban

development.

In this regard, the most obvious and direct beneficiaries are on the one hand the
governmental agencies and urban planners and on the other hand, and which is possibly the
most important aspect, the inhabitants of the affected areas, whose living conditions can be
monitored and improved as required. Only if the urban monitoring is quickly, inexpensively
and easily available, it will be accepted and applied by the authorities, which in turn enables

for the poorest to get the support they need.

9.2 What remains to be done? — Outlook

This study introduced a number of new and relevant findings that both promote the existing
knowledge of mega city research in general and that supplements the current state of
research in the field of urban remote sensing in particular. Looking from far away on the
Earth 's surface down to the household level, this thesis has introduced certain new insights
regarding the satellite based investigation of the living conditions of slum dwellers and their

neighbors living side by side in a mega city like Delhi.

The present study presents, on the one hand, a semi-automated object-oriented
classification approach which allows for, using VHR remote sensing data alone, the
identification and distinction of different settlement types within the complex urban area of
Delhi, India. Since informal settlements represent those characteristic municipal areas which

are subject to particularly high dynamics, population density as well as marginalization, the
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research was focused on this settlement type. In combination with socio-economic data, on
the other hand, the mapping results were successfully embedded in an integrative analysis
concept in order to provide indicators to identify socio-economic structures and their
dynamics. In this context, primarily information on population and water related parameters
were successfully derived. However, this research needs to be understood as a first step to
the development of a new transferable methodology for the identification and analysis of

urban structures within mega cities like Delhi.

Consequentially based on the results of this research and the findings derived in this
study regarding the limiting factors as well as the derived answers to the key questions of
this thesis (cf. Chapter 9.1) a wide field of potentials regarding the further development
opens up regarding on the one hand the developed mapping method as well as on the other

hand the integrative, i.e. the cross-disciplinary research work.

The results of this investigation show clearly that a large-scale analysis of urban
structures is possible applying the developed method. One of the most interesting future
challenges lies now in the transferability of the developed methodology. Until now only a
part of the available satellite (as well as socio-economic) data and, hence, only a subset of
the total urban area of Delhi was analyzed. In order to substantiate the robustness of the
developed methodology the application on the remaining test sites (cf. chapter 5.1) (and
therefore on other urban areas and settlement types) or even on the complete set of
available QuickBird data would be an important objective for further investigations.?® Based
on the knowledge, gained within this study, a transfer on other Indian mega cities, e.g.
Mumbai or Calcutta, seems to be very promising as well. In addition, the transfer of the
developed methodology to other mega cities in developing countries with similar physical
structures would be very interesting and promising. In growing Asian mega cities as Dhaka
(Bangladesh) or Jakarta (Indonesia) both the robustness of the mapping method and the
interdisciplinary approach could with the utmost probability be tested and could most likely
make a contribution to previous and current investigations within these mega cities (e.g.,
GRUBNER 2011).

Based on the developed integrative analysis method up to date, large-areas-covering
and in their dimension correct socio-economic information for the highly dynamic urban area
of the mega city of Delhi could be derived. Socio-economic parameters like “total population

amount”, “population density”, and “total water consumption” could be assessed with high

2 While considering the transfer of the method to wider test areas in Delhi or even to complete QuickBird scenes the processing
time must not be disregarded. Not least due to the high computing time for the segmentation relatively small test sites had been
selected. By upscaling these to a multiple, the computing time of the data sets will despite of the fixed parameter settings multiple

too, even up to several days.
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precision. In order to upgrade the amount of investigated socio-economic information and
thus of the assessment of the living conditions of the people living in mega cities a transfer
of the integrative approach to other socio-economic parameters would be desirable.
Relatively easily conceivable would be a transfer to personal and water related parameters
already imposed by the survey within the framework of this research project like “income”
(per capita/family), “level of education” , “number of diseases” (per capita/family per year)
or “amount of wastewater” (per capita/family). Of course, this would be a very valuable
contribution to the information already available. Naturally a transfer to diverse other socio-
economic parameters, not imposed within this project is imaginable as well. At best, the
required information can be delivered by the urban decision makers, so that a time-

consuming and cost-intensive survey is not required.

Appraising the quality of the physical parameters derived from the remote sensing data,
especially one aspect was discussed critically (cf. chapter 8.2). A fully automatic
determination of the average building sizes per settlement type would naturally be more
independent of the image interpreter and therefore of course be preferable to a semi-
automatic method. However, this will only be possible, when all single buildings can be
separated by the classification process. Here, especially for the analysis of very dense urban
areas, as the informal settlements in Delhi, the interpretation of remote sensing data today
still reaches its limits. Hence, a reliable detection of single residential buildings within
informal settlements is a crucial step in order to reach a next level of automation of the
approach. Concerning this matter it will be necessary to either improve the current
classification approach or other remote sensing data will be required. In this context, the
major potential of further development appears to be in alternative, new VHR remote
sensing data. The latest and current developments show both, a geometric and spectral
optimization in comparison to the QuickBird data used in this research. For instance, satellite
systems like the 2007 launched Geo-Eye-1 (URL 19) implement with a spatial resolution of
41 cm for the panchromatic band a higher precision of geometric resolution. Especially the
2009 launched sensor WorldView-2 (URL 20) with a spatial resolution of 50 cm panchromatic
and an extension of the spectral range in the medium and thermal infrared to now 8 bands
(1.85m ms resolution) raises expectations of new potentials in the precision of (semi-)
automated extraction of information. The same applies for WorldView-3 (URL 20) — the first
multi-payload, super-spectral, high-resolution commercial satellite. Launched in 2014,
WorldView-3 provides 31 cm panchromatic resolution, 1.24 m multispectral resolution, and

3.7 m short-wave infrared resolution (cf. Figure 3-1).

Besides the optical data, as well radar data show capabilities in the analysis of urban
areas (SOERGEL 2010). Radar remote sensing has in contrast to optical remote sensing the
advantage to be independent of weather and daylight. Satellite missions like the German

TerraSar-X or the Canadian Radarsat-2 deliver today a comparable geometric resolution to
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optical systems (e.g., ESCH ET AL. 2013, TAUBENBOCK ET AL. 2012). Still, until today radar
sensors are not yet really capable to deliver relevant data for urban structure analyses.
Besides the optical sensors, they might as well become more important data sources for
urban remote sensing in the future though and hence their introduction into this field might

become an additional potential of improvement within nearer future.

The diversity of available data and the steadily ongoing technical progress are
generating more and more options and potentials how to further develop the approach
presented within this thesis. Another interesting field of investigation to be mentioned here
are time series. Using satellite data with proceeding acquisition date, change detection
analysis is possible. Such analysis can for example derive information about the permanent
change and development of certain districts of interest of the mega city of Delhi. Especially
for this thesis time series of spatial information about informal settlements would be of
interest, for instance to which extent the settlements have grown, become smaller or even

disappeared.

As mentioned before, the classification of informal settlements was particularly well
possible with the developed method. Informal settlements could be separated out of their
environments with a very high accuracy within the training site as well as they could clearly
be identified within the transfer sites. Generally the classification method delivered good
results for settlement types with extreme physical attributes, which are not only informal
settlements but for instance as well areas of the category “sparse urban”. In contrast a
limitation of the applied methodology was observed in the identification of settlement types
characterized by missing extreme attributes and by a high level of physical similarity
amongst each other. This was for instance noticeable regarding the results of the transfer of
the methodology on the remaining settlement types “dense urban” and “medium dense
urban”. Even though the classification results delivered by an additional, advanced approach,
which combines both object-oriented and pixel-based algorithms, turned out to be more
suitable, still some enhancements of this methodology seem to be necessary in order to
improve the quality of the results, so that the same can be further processed and used for
subsequent analysis, without manual adjustments. Hence, the direct transfer of the
developed methodology on the remaining “intermediate” settlement types figured out to be
less successful. An aim of further investigations should therefore be the simplification of the
determination and structure of the classification parameters in order to easily and quickly
enable the application to other settlement types as well as to other test sites or other mega
cities (with comparable structures) respectively or even to other satellite data. In the first
instance the method of combined object- and pixel based approach should be refined. This
approach is still in its early stage of development but delivers very promising results. During
such refinement especially the exploitation of the spectral capabilities should be optimized,

which in turn describes a link to the already mentioned new VHR sensors with optimized
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spectral and geometric attributes. A transfer of the method to these data logically seems to

be promising.

However neither the good transferability (robustness), nor further enhancements of the
method nor the diversity and quality of new generation remote sensing data will be of great
benefit, if the access to the required data for the analysis of interest is not given. Of great
importance for applied research scientists in this field is an as easy as possible and
continuous access to already available and up to date satellite data. A rethinking in the data
policy would be eligible in order to relieve the access to up to date data and to reduce the
cost for its acquisition. The European program Copernicus, previously known as GMES
(Global Monitoring for Environment and Security) (URL 21) makes a big step in the right
direction. Copernicus stands for the establishment of a European capacity for Earth
Observation and the Copernicus space component aims to ensure comprehensive and

sustainable supply of data from space-based Earth observation.

While discussing the access and quality of data one should especially against the
background of the here developed integrative approach not only focus on the remote
sensing data. As the appraisal of the survey data in this integrative study showed, the
quality and quantity of the socio-economic data are as well decisive factors for the results of
such interdisciplinary analysis. For the approach applied in this research no free of charge
accessible data were available, so that an elaborate field survey had to be conducted. The
cooperation with persons in charge as urban planners or managers plays an important role
and has great potential for comparable studies, as they are often the only source of up to
date and reliable data which can be used as supplementary data or in terms of validation of
the analysis results. Due to the fact that the results of such analysis are primarily useful for
their planning, the cooperation with the urban planners and managers is generally eligible.
Good results again convince the decision makers of the value of the applied method, which

will in turn lead to a mutual acceptance and willing cooperation.

The developed method delivers the basis for the monitoring of the mega city of Delhi or
certain areas within the city respectively by remote sensing. The opportunity to capture the
condition of a mega city and to monitor its development in general enables the persons in
charge to identify unbeneficial trends and to intervene accordingly from an urban planning
perspective and to countersteer against a non-adequate supply of the inhabitants of

different urban districts, primarily of those of informal settlements.

Should the responsible managers succeed in reducing the proportion of slum inhabitants
or non-adequately supplied dwellers, by giving them the possibility to live self-reliantly and
to earn their income themselves instead of creating cost for the municipal authorities, the

city itself and therewith the whole urban population of the mega city will develop positively.
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The enormous opportunities of the global urbanization process for a sustainable
development can only be realized, if the economic integration organized in an ecologically
compatible and socially fair way (HEINRICHS 2010). In this spirit, the words of the anonymous
slum inhabitant of Delhi, which was cited at the very beginning of this thesis, is not only true
for himself as an affected person but becomes valid for the whole community and the city in
principle. Without meaning it, he made a statement which is true for himself, his own mega

city Delhi and possibly even any other mega city in this world: “It's expensive to be poor”!
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Appendix

World “s Urbanization Process: Percentage of urban population and location of urban

agglomerations 1970 - 2030.
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A.2:  Electromagnetic spectrum (EM).
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acquired QuickBird scenes and chosen test sites.
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Metropolitan area of Delhi, Ind
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Overview of test site South s3 and detailed view of the settlement types occurring

within this area
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Test site South s2 and corresponding details of the settlement types occurring within

this area
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A.6:

Characteristics & description of various settlement types in selected areas in Delhi,
India. The description is based on the evaluation of the satellite data and is completed
by field photographs.

Description of
QuickBird data settlement structures . Settlement
(4732 composite) based on visual Field photograph type
P interpretation of remote P
sensing data

= very small buildings (no
clearly identifiable
buildings),

. = very high density/sealing

2 degree (more than 90
percent of roof coverage),

= no structure visible,
irregular patterns

= small shadows,

= no or very little vege-
tation fraction

JJ-colony

= small & medium building
size,

= high density/sealing
degree (more than 80
percent of roof coverage),

= structure: irregular
patterns,

= medium large shadows

= very little vegetation
fraction

Unauthorized

colony

= mixed building sizes,

= dense/high sealing
degree,

= structure visible, regular
patterns, clearly identi-
fiable road network,

= mixed shadow size,

= little vegetation
fraction (partly planned
public green space)

Resettlement

colony

Trilokpuri

= large building sizes,

= medium building density/
sealing degree,

= structure visible, grouped
buildings, regular
patterns,

= large shadow size,

= medium vegetation
fraction

Government

quarters

Narmada Apartments
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» medium building density/
sealing degree,

. = structure visible, grouped

buildings, regular

patterns,

' - large shadow size,

» medium vegetation
fraction

Vasundara Enclave

Gated

community

&* = medium building sizes,

~ = medium building density/

y sealing degree,

= structure visible, regular
patterns

» medium shadow size,

» medium vegetation
fraction (public and
private green space)

Gated

community

|

| = small buildings,

» very high — high
density/sealing degree,

* no structure visible,
irregular patterns,

» mixed shadow size,

= no or very little
vegetation fraction

Mehrauli

Urban village

» medium building sizes,

* low building density/
sealing degree,

= structure visible, separate
buildings,

» medium shadow size,

» very high vegetation
fraction

Sainik Farms

Unauthorized

farm houses

(Own draft, Photographs: S. Smollich, October 2005)
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Ires

Georeferenced questionna

A7

Georeferenced questionnaires within test site South s3
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A.7.2: Georeferenced questionnaires within the training area of test site South s3.
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A.7.3: Georeferenced questionnaires within test site South s2.
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A.8: Criteria and corresponding thresholds used in the rule-based classification

A.8.1: Criteria and corresponding threshold values used in the rule-based classification in eCognition™ —
identification of very dense urban areas (informal settlements) within QuickBird test site South s3.

Land cover class Level Type of criteria Criteria** Threshold**
Streets 9 Spectral* Mean (street layer) <=124
Ratio (street layer) <=0.01
Relative border to brighter neighbors (street layer) >=0.55
Very dense urban 8 Texture GLCM - Angular Second Moment (all dir.) (3) <=0.000123
GLCM - Entropy (all dir.) (3) <= 931.984
Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >=422.465
Spectral* Standard deviation (1) <=981.482
Vegetation 5 Spectral* Mean (NDVI) >=0.145
Shadow 1 Spectral* Mean difference to neighbors (abs) (NDVI) >=0.0327
Mean (3) <= 124

*Layer values
**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.

A.8.2: Criteria and corresponding threshold values used in the rule-based classification in eCognition™ —
identification of sparse urban areas within QuickBird test site South s2.

Land cover class Level Type of criteria Criteria** Threshold**
Streets 9 Spectral* Mean (street layer) <=100
Ratio (street layer) <=0.01
Sparse urban 9 Spectral* Ratio to super-object (street layer) >=0.9954
Sandard deviation (NDVI) >=0.1373
Standard deviation to neighbor pixels (NDVI) >=0.138
Impervious 6 Texture GLCM - Contrast (all dir.) (NDVI) >=477.422
GLCM - Correlation (all dir.) (NDVI) <=0.9299
Vegetation 5 Spectral* Mean (NDVI) >=0.13
Shadow 1 Spectral* Mean (4) <=126.13

*Layer values
**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.
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A.8.3: Criteria and corresponding threshold values used in the rule-based classification in eCognition™ —
identification of various settlement types within the training area of QuickBird test site South s3.

Land cover class

Type of criteria

Criteria**

Threshold**

Dense urban Spectral* Ratio (supervised pixel-based classification) <=0.1079
Ratio (street layer) >=0.8
Streets Spectral* Mean (street layer) <=124
Ratio (street layer) <=0.01
Relative border to brighter neighbors (street layer) >=0.55
Medium dense Texture GLCM - Correlation >=0.874
urban (supervised pixel-based classification)
Spectral* Mean Brightness >=23.8768
Very dense urban Texture GLCM - Angular Second Moment (all dir.) (1) <= 0.00079
GLCM - Entropy (all dir.) (1) 753.335
Vegetation Spectral* Mean (NDVI) >=0.02
Minimum pixel value >=17
(supervised pixel-based classification)
Shadow Spectral* Mean difference to neighbors (abs) (NDVI) >=0.0327
Mean (3) <=124

*Layer values

**All criteria (features) and corresponding thresholds were determined using the SEaTH methodology.
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Supervised pixel-based classification of the training area within test site s3.

A.9
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A.10: Random mapping of buildings for the determination of the mean building size of

different settlement areas (training area within test site s3).
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A.11: Results of multi-resolution image segmentation based on the test site South s3. The
scale parameter was changed systematically, while the residual homogeneity
parameters and the layer weights remained constant (shape [0.5], color [0.5],
smoothness [0.3], and compactness [0.7]). The images are numbered according to
their segmentation level: 1 — scale 5, 2 — scale 10, ..., 12 — scale 200.
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oriented approach

fication results of the object-

Classi

A.12:

A.12.1: Result of object-oriented image classification based on the training area of the fused QuickBird

fication of “very dense urban” areas.
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A.12.2: Result of object-oriented image classification based on the fused QuickBird test site South s3
(4, 3, 2) — identification of “very dense urban” areas.

Identification of informal settlements using an object-oriented classification approach

‘ ...................... Legend -----eeeciiiiiiiiaaa
B \Very dense urban [l Impervious
Bl Vegetation B shadow
[ Notimpervious | ] Streets

Details

The was tested on its

and general vakday. Therefore the whole test ste South 53,
characterized by similar settiement structures as the training
ares, was analyzed initially. The identification of “very dense
urban® areas is also possible within this site. The informal
settiement Bhomibeen Camp could be extracted completely
&5 well as the Nehru and Navjeewan Camp.

Projection: UTM, Zone: 43 N,
Datum & Spheroid: WGS 84

Acquisition date of the QuickBird scene: 12/18/2002
Data source: Digital Globe

‘:I Detail A

Cartography & Layout: Susan Niebergall
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A.12.3: Result of object-oriented image classification based on the fused QuickBird test site South s2

identification of “very dense urban” areas.

4.3,2)

J1eb1agalN uesns :3noke » Aydesboje;

/\ 11e13a D

39019 [23i6Iq :321n0s &ec
2002/8T/2T :2usds pAHIIND 343 JO 33ep Uoisinb

¥8 SOM :plosayds 18 wmec
‘N €b :9U0Z “WLN :uodafol

'seInqUR
[eshyd sejiuis Apsow L - IYRQ J0 suapRIRYD - 3bejjn ueqin u
S1 Y PESISU] "JUIWIRISS [RULIOUI UR USRI 30U SIO0P 31 ING ‘9L
Asan ey ul 51 (J2WI00 JYBU 12MO|) B3R S| *,URqIN BSUAP AJBA, S
PRYISSEP SI B3IR JBYINY Y “SIIAISS ININASRLUI 1SR JO YR @ A
PazUBPRIRD SI LPIYM BRI [RQUIPISAS [eDa|) ue Juasaidas sdue
asay| "ease ueqin asuap Asaa, se Apeap paynuapl ase ‘peos urt
2 3 Pa3eo0] ‘dwe) ueliel pue eiefueg 3y "eale 353) Ay

e 0} Yoeasdde L aup Jo uoneoydd
........................ UORAUIEAQ -
snoiuadwiioN [ ]

uoneyaban [ mopeys [l

snonsadwy [l veqin asusp Aoy [

sjieq

ZS UINoS S 1531

yoeoidde uonediisse]d pajualio-303[qo ue Huisn SJUBWS|IIAS [_ULIOJUI JO UOIIRIIIUIPT




Appendix 232

A.12.4: Result of object-oriented image classification based on the fused QuickBird test site South s2.
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Identification of sparsely populated settlements using an object-oriented classification approach
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A.13: Results of image data analysis and integrative analysis

A.13.1: Results of the image data analysis and validation outcomes for selected settlements in the mega
city of Delhi.

Fraction of Average House Size
Name of colony Settlement Type Area (Ag[m?] Impervious Area (A ) [m?] Numberof Houses (N)
impervious area [%] (Ay) [m?)
RS RS RS RS RS ve RSIVC [%]

E | Tughlakabad Extension (subset) dense urban 116565.48 64975.32 55.74 a3 1551 1291 120
F  |Tughlakabad Extension (total) dense urban 328594.32 182700.00 55.6 a4 4152 3582 16
G |Kalkaji DDA Flats (subset) medium dense urban 56037.6 22706.28 4052 37 614 569 108
H |KalkajiDDA Flats (total) medium dense urban 233704.8 88854.48 3802 a1 2167 1986 109

RS - Analysis of Remote Sensing Data, VC - Visual Counting
(Data source: calculated using remotely sensed QuickBird data)

A.13.2: Results of the integrative data analysis for selected settlements in the mega city of Delhi.

P opulation density Water consumption Total water
Name of colony Family size (M )* Total population (P)
(D) [Pop./km?] per capita (W) [l/d]* consumption (Wy) [I/d]
As Q As Q As Q As Q As Q ASIQ [%]

E Tughlakabad Extension (subset) 6.29 6.29 9504.19 9504.19 81535.20 81535.20 72 72 68430168 | 68430168 100
F Tughlakabd Extension (to tal) 6.29 6 26116.08 24912 79478.18 75813.85 72 71 1880357.76 | 1764752 07
G KalkajiDDA Flats (subset) 45 45 6603.57* 6603.57* 1784177 1784177 64 64 422628.48 422628.48 100
H Kalkaji DDA Flats (total) 45 4.44 23306.09* 2299534+ 99724.48 98394.81 64 85 1491589.76 | 1954603.9 76

As - Assumption, Q - Questionnaire, *Arithmetic M ean, * calculated with coefficient 2.39 (2 storeys)

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)

A.13.3: Results of the image data analysis and validation outcomes for the upper class settlement
Greater Kailash II within the mega city of Delhi.

Fraction of Average House Size
Name of colony Settlement Type Area (Ao [m?] Impervious Area (A ) [m?2] NumberofHouses (N)
impervious area [%] (Ay) [m2]
RS RS RS RS RS vc RS/VC [%]
J Greater Kailash Il medium dense urban 407530.44 119479.68 29.32 103 159 1043 m

RS - Analysis of Remote Sensing Data, VC - Visual Counting

(Data source: calculated using remotely sensed QuickBird data)

A.13.4: Results of the integrative data analysis for the upper class settlement Greater Kailash II within
mega city of Delhi.

P opulation density Water consumption Total water
Name of colony Family size (M )* Total population (P)
(D)[Pop./km?] per capita (W) [I/d]* consumption (W) [I/d]
Q Q Q Q Q
J Greater Kailash Il 4.1 4763 11687.38 146 695398

Q - Questionnaire, *Arithmetic M ean

(Data source: calculated using remotely sensed QuickBird data and data from household survey 2005-2006)
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ithin the mega city of Delhi.
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Questionnaire.
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