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Summary 

Legionella pneumophila is an amoeba-resistant, opportunistic pathogen which performs cell–cell 

communication through the α-hydroxyketone (AHK) signalling molecule 3-hydroxypentadecane-4-

one (LAI-1, Legionella autoinducer-1). AHK signalling is mediated by the lqs (Legionella quorum 

sensing) gene cluster encoding the LAI-1 autoinducer synthase LqsA, the cognate sensor kinase 

LqsS and the prototypic response regulator LqsR of unknown output function.  

Here we show that the Lqs system includes an ‘orphan’ homologue of LqsS termed LqsT. 

Compared with wild-type L. pneumophila, strains lacking lqsT or both lqsS and lqsT show 

increased salt resistance, greatly enhanced natural competence for DNA acquisition and impaired 

uptake by phagocytes. Sensitive novel single round growth assays and competition experiments 

using Acanthamoeba castellanii revealed that ∆lqsT and ∆lqsS-∆lqsT, as well as ∆lqsA and other 

lqs mutant strains are impaired for intracellular growth and cannot compete against wild-type 

bacteria upon co-infection. In contrast to the ∆lqsS strain, ∆lqsT does not produce extracellular 

filaments. The phenotypes of the ∆lqsS-∆lqsT strain are partially complemented by reintroducing 

either lqsT or lqsS, but are not reversed by overexpression of lqsA, suggesting that LqsT and LqsS 

are the sole LAI-1-responsive sensor kinases in L. pneumophila. In agreement with the different 

phenotypes of the ∆lqsT and ∆lqsS strains, lqsT and lqsS are differentially expressed in the post-

exponential growth phase. Transcriptome studies indicated that 90% of the genes, which are 

downregulated in absence of lqsT are upregulated in absence of lqsS. Reciprocally regulated 

genes encode either translocated effector proteins implicated in virulence or components of a 

133 kb genomic ‘fitness island’, which also harbours a gene that resembles SinR-family 

transcription factors encompassing a conserved HTH-motif. The characterisation of a 

corresponding deletion mutant demonstrated that sinR in L. pneumophila promotes pathogen-host 

cell interactions (such as efficient phagocytosis and intracellular replication) and biofilm formation, 

while repressing natural transformation. sinR expression is negatively controlled during stationary 

growth by lqsS and to a smaller extent by sinR. In addition to this autoregulation, SinR was shown 

to induce expression of lqsR and lqsA in L. pneumophila. Indeed, in vitro EMSA studies revealed 

that SinR directly interacts with the promoter of sinR and, albeit less efficiently, with the lqsA 

upstream region. Finally, we produced highly diffracting protein crystals of the novel response 

regulator LqsR. The determination of the high resolution X-ray structure from these crystals might 

provide insight into its function in L. pneumophila. 

Together, these data reveal a unique organisation of the L. pneumophila Lqs system comprising 

two partially antagonistic LAI-1-responsive sensor kinases, LqsT and LqsS, which converge on the 

reponse regulator LqsR and regulate distinct pools of genes implicated in pathogen–host cell 

interactions, competence, expression of a genomic island or production of extracellular filaments. 

As a novel component, the transcription factor SinR expands the AHK signalling circuit and 

crosstalks with the stationary phase regulatory network controlling pathogen-phagocyte 

interactions and other features of L. pneumophila. 
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Zusammenfassung 

Legionella pneumophila ist ein amöbenresistentes opportunistisches Pathogen, welches Zell-Zell-

Kommunikation durch das α-Hydroxyketon (AHK) Signalmolekül 3-Hydroxypentadekan-4-on (LAI-

1, Legionella Autoinducer-1) ausübt. Die AHK Signaltransduktion wird durch das lqs (Legionella 

quorum sensing) Gencluster vermittelt, welches für die Autoinducersynthase LqsA, die 

dazugehörige Sensorkinase LqsS, sowie den prototypischen Responsregulator LqsR kodiert.  

Diese Arbeit beschreibt ein genomisch isoliertes Homolog der Sensorkinase LqsS, genannt 

LqsT. Verglichen mit Wildtypbakterien wiesen L. pneumophila-Stämme mit lqsT-Deletion oder 

lqsS-lqsT-Doppelmutation eine erhöhte Salzresistenz, gesteigerte natürliche Kompetenz für die 

DNA-Aufnahme, sowie verminderte Aufnahmeeffizienz in Phagozyten auf. Sensitive, neuartige 

Wachstums- und Kompetitionsexperimente mit Acanthamoeba castellanii zeigten für die ∆lqsT und 

der ∆lqsS-∆lqsT Doppelmutante, sowie die ∆lqsA und andere lqs Mutantenstämme, reduziertes 

intrazelluläres Wachstum und einen Kompetitionsnachteil gegen Wildtypbakterien bei Koinfektion. 

Im Gegensatz zu ∆lqsS produzierte ∆lqsT keine extrazellulären Filamente. Die Phänotypen der 

∆lqsS-∆lqsT Mutante wurden teilweise komplementiert entweder durch lqsT oder lqsS, nicht aber 

durch Überproduktion von lqsA. Dies führte zur Annahme, dass LqsT und LqsS die einzigen beiden 

LAI-1-reaktiven Sensorkinasen in L. pneumophila sind. Übereinstimmend mit den verschiedenen 

Phänotypen der ∆lqsT und ∆lqsS Stämme wurden lqsT und lqsS in der post-exponentiellen 

Wachstumsphase unterschiedlich exprimiert. Transkriptionsstudien indizierten, dass 90% der in 

Abwesenheit von lqsT reprimierten Gene in der lqsS-Mutante induziert sind. Reziprok regulierte 

Gene kodieren für  translozierte Virulenz-fördernde Effektorproteine, oder Komponenten einer 133 

kb grossen genomischen „Fitnessinsel“, welche einen SinR-artigen Transkriptionsfaktor mit HTH-

Motiv enthält. Die Charakterisierung einer sinR-Deletionsmutante demonstrierte, dass sinR 

einerseits die Biofilmproduktion und Pathogen-Wirtszelleninteraktionen, wie die Aufnahmeeffizienz 

und die intrazelluläre Replikation förderte, andererseits die natürliche Transformation inhibierte. Die 

Expression von sinR wurde in der stationären Phase durch lqsS und in geringerem Masse durch 

sinR selbst reprimiert. Neben dieser Autoregulation induzierte SinR die Expression von lqsR und 

lqsA in L. pneumophila. Eine direkte Interaktion von SinR mit der Promoterregion von sinR und 

lqsA wurde in vitro in EMSA-Experimenten bestätigt. Darüber hinaus könnte die hochauflösende 

Struktur der hier präsentierten hochdiffraktierenden Proteinkristalle des neuartigen 

Responsregulators LqsR Aufschluss liefern über seine bisher unbekannte Funktion in L. 

pneumophila.  

Zusammenfassend beschreibt diese Doktorarbeit die einzigartige Organisation des 

L. pneumophila Lqs Systems mit den zwei partiell antagonistischen LAI-1-reaktiven Sensorkinasen 

LqsS und LqsT, welche auf den Responseregulator LqsR konvergieren. Die beiden Sensorkinasen 

regulieren unterschiedliche Genpools mit Auswirkung auf Pathogen-Wirtszellinteraktionen, 

Kompetenz, Expression einer genomischen Fitnessinsel, sowie auf die Produktion von 

extrazellulären Filamenten. Als neuartiges Signalelement erweitert der pleiotrope 

Transkriptionsfaktor SinR die AHK Signalkaskade und kommuniziert mit dem Regulationsnetzwerk 
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der stationären Wachstumsphase, welches Pathogen-Wirtszellineraktionen und andere 

Eigenschaften von L. pneumophila kontrolliert  
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1. Introduction 

1.1 Adaptation of Legionella pneumophila to host cells and the environment  

Legionella pneumophila was first identified in 1976 as a Gram-negative opportunistic pathogen 

belonging to the gamma-subgroup of proteobacteria (Fraser et al., 1977). The water-borne bacteria 

ubiquitously persist in aquatic habitats, either as individual planktonic cells or attached to 

biotic/abiotic surfaces as part of multispecies biofilm communities. Moreover, L. pneumophila is a 

facultative intracellular bacterium that infects and replicates within a wide range of hosts. Mostly 

found engulfed by their natural hosts, free-living amoebae such as Acanthamoeba and Hartmanella 

spp., the pathogen also colonises the social soil amoeba and model organism Dictyostelium 

discoideum (Steinert and Heuner, 2005, Solomon et al., 2000, Fields et al., 1996). However, since L. 

pneumophila is also associated with human infection, and thus, the co-evolution of L. pneumophila 

with phagocytic unicellular protozoa most likely preadapted this pathogen for the contact with a new 

host: functionally related human phagocytes (Steinert et al., 2002, Horwitz and Silverstein, 1980). 

The infection and growth of Legionella in human alveolar macrophages gives rise to Legionnaires’ 

disease, a severe pneumonia charachterised by multisystem defect (Diederen et al., 2008) or a 

milder, flu-like ailment termed Pontiac-fever. Legionellosis occurs through the inhalation of 

contaminated aerosols (Atlas et al., 1999), and its epidemiology is strongly associated with a variety 

of technical water systems such as showers, cooling towers, or air conditioning systems. In addition 

to sporadic epidemic outbreaks, nosocomial pneumonia due to L. pneumophila is a major issue for 

public health services around the world. Among the more than 50 species of the genus Legionella, 

strain L. pneumophila serogroup 1 accounts for the majority of cases of human Legionnaires’ 

disease (84% worldwide, 95% in Europe). Relevant risk factors include age, sex, smoking, 

immunosuppression as well as underlying diseases like diabetes, cancer or AIDS (Marston et al., 

1994).  

Four genomes of different strains of L. pneumophila have been sequenced and published: L. 

pneumophila strain Philadelphia (Chien et al., 2004), L. pneumophila strains Paris and Lens (Cazalet 

et al., 2004) and L. pneumophila strain Corby (Steinert et al., 2007). The genome size of 3.3 Mb of L. 

pneumophila is relatively large when compared to many other intracellular pathogens such as 

Rickettsia, Bartonella or Chlamydia spp. (Fuxelius et al., 2007, Saenz et al., 2007, Thomson et al., 

2008), and corresponds to a higher number of genes. The genome size reflects the capacity of 

Legionella to adapt to different environmental conditions and hosts. The close association of the 

pathogen with aquatic protozoa most likely generated a pool of virulence traits, which were acquired 

by trans-kingdom horizontal gene transfer (HGT) and allow Legionella to interact with their host cells. 

Indeed, all sequenced Legionella strains encode a high number of eukaryotic-like proteins that may 

functionally mimic host cell proteins and could modulate different stages of the intracellular life cycle 

(Gomez-Valero et al., 2011, Cazalet et al., 2004).  

L. pneumophila cycles between an intracellular, replicative form and an infectious, cytotoxic state, 

which promotes transmission to a new host. Cellular differentiation of L. pneumophila during this 

biphasic life cycle is governed by a complex regulatory system that provides a link between the 
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growth phase and the expression of virulence traits (Swanson et al., 1998). Major regulators 

involved in the adaptation to extracellular and intracellular environments of the bacteria include 

specific sigma factors, two-component systems and small regulatory RNAs (Molofsky et al., 2004). 

For the development of a successful pathogen–host interaction, a complex regulatory system 

modulates a pool of virulence traits. Through these systems, L. pneumophila manipulates host cell 

processes required to enter, survive, replicate and evade amoebae or macrophages. Essential 

contributors to L. pneumophila pathogenicity are specialised secretion systems, designated type I–V 

(Russell et al., 2014, Abdallah et al., 2007, Thanassi and Hultgren, 2000). The Lsp type II secretion 

system (T2SS) is involved in growth within amoeba and macrophages, and secretes a number of 

hydrolytic enzymes including proteases, aminopeptidases and phospholipases (Rossier et al., 2008, 

Rossier and Cianciotto, 2001).  

The Icm/Dot (intracellular multiplication/defective organelle trafficking type IV secretion system 

(T4SS) encoded by 25 different genes is the key virulence factor of L. pneumophila. The 

translocation of a large arsenal of approximately 300 effector proteins (encoded by 10% of the 

bacterial genome) into host cells allows the manipulation of conserved cellular processes such as 

signal transduction, post-translational modifications and vesicle trafficking pathways. Recent studies 

elucidated the functions of T4SS-translocated effectors that subvert small GTPases (Sherwood and 

Roy, 2013, Rothmeier et al., 2013, Itzen and Goody, 2011, Urwyler et al., 2009) phosphoinositide 

lipids (Haneburger and Hilbi, 2013, Weber et al., 2006), the retrograde vesicle trafficking pathway 

(Finsel et al., 2013) as well as ubiquitinylation and apoptosis factors (Roy, 2014, Rolando and 

Buchrieser, 2012). Ultimately, L. pneumophila phagosome trafficking is redirected, leading to its 

conversion into an ER-derived organelle permissive for intracellular bacterial replication (Rolando 

and Buchrieser, 2012, Shin and Roy, 2008). The pathogens organelle is termed the Legionella-

containing vacuole (LCV) (Zhu et al., 2011, Isberg et al., 2009, Shohdy et al., 2005). LCVs 

communicate with the endocytic, secretory and retrograde vesicle trafficking pathways and 

eventually fuse with the endoplasmic reticulum (Hilbi and Haas, 2012). The molecular mechanisms 

of several L. pneumophila effectors acting along the sequential pathogen-host interactions have 

been elucidated (Section 1.2) and will be further highlighted in their regulatory context (Section 1.3).  
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1.2 Interactions of phagocytic host cells with L. pneumophila  

During the first step of the infectious cycle (Figure 1), L. pneumophila attaches to and enters its host 

cell by the use of factors including RtxA, LadC, EnhC, the long pilus PilEL and the major outer 

membrane protein (MOMP). Furthermore, the flagellar sigma factor FliA, heat shock protein Hsp60 

and LpnE contribute to host cell entry (Newton et al., 2007, Molofsky et al., 2005, Cirillo et al., 2000). 

Although the uptake of the pathogen and the subsequent phagosome formation occurs mainly by 

host-driven actin-dependent phagocytosis, the Icm/Dot T4SS was shown to be a key factor for the 

enhancement of endocytic events in host cells (Hilbi et al., 2001, Khelef et al., 2001). Among the few 

described Icm/Dot effectors acting very early in infection, two (LaiA and SdeA) have been suggested 

to play a role in adherence and uptake by macrophages (Chang et al, 2005). VipA was discovered 

as actin nucleator that directly polymerises microfilaments associated with early endosomes, 

supportive for its role in organelle trafficking (Franco et al., 2012, Shohdy et al., 2005).  

Immediately after phagocytosis of L. pneumophila by a host cell the bacterium defines its own 

intracellular compartment, evading the endocytic pathway by preventing phagosome-lysosome 

fusion. L. pneumophila targets and subverts cellular trafficking processes mainly via the wide range 

of Icm/Dot-translocated effector proteins (Derré and Isberg 2004, Horwitz and Maxfield, 1984, 

Horwitz, 1983). The establishment of a modified organelle that permits intracellular replication of the 

pathogenic bacteria is mediated by the host secretory pathway (Tilney et al., 2001). Moreover, initial 

remodeling of the LCV membrane includes the recruitment of mitochondria and the interaction with 

early secretory vesicles derived from the smooth endoplasmiatic reticulum (ER) (Tilney et al., 2001) 

as shown by colocalisation with KDEL-GFP as a marker of ER/Golgi (Kagan and Roy, 2002). 

Vacuolar ATPases and hydrolases are a prerequisite for the creation of an acidic phagolysosomal 

microenvironment for the degradation of bacteria (Kornfeld and Mellman, 1989). The translocated 

effector protein SidK has been identified to target the host V-ATPase subunit VatA, thus inhibiting 

ATP hydrolysis, proton translocation and subsequently vacuole acidification (Xu et al., 2010). 

Besides the effector-dependent evasion of lysosomal fusion, lipopolysaccharide (LPS) molecules on 

the L. pneumophila surface were shown to delay fusion of late endosomal vacuoles with lysosomes 

(Fernandez-Moreira et al., 2006).  

 

 

 

 



  INTRODUCTION 

17 

Another level of spatial and temporal regulation of LCV formation is associated with 

phosphoinositide (PI) metabolism, as L. pneumophila exploits the signalling properties of PI lipids 

during the establishment of the replicative vacuole. PI molecules act by anchoring host regulatory 

proteins. This involves the recruitment and activation of multiple small GTPases that modulate 

endosomal trafficking and remodel the actin cytoskeleton (Thi and Reiner, 2012). Similarly, the 

pathogen perturbs the PI lipid profile during the establishment of the replicative vacuole to anchor 

Icm/Dot substrates to the LCV (Hilbi et al., 2011). Recently, Hsu et al. reported that the L. 

pneumophila translocated effector SidF functions as a phosphoinositide 3-phosphatase that 

specifically hydrolyses PI(3,4,5)P3 in vitro to possibly generate a PI(4)P-enriched LCV (Hsu et al., 

2012). Accordingly, the LCV-resident PI(4)P was found to bind and recruit the effectors LidA, SidM, 

SidC and its paralogue SdcA (Del Campo et al., 2014, Schoebel et al., 2010, Brombacher et al., 

2009, Weber et al., 2006). Furthermore, the resemblance of the LCV to a cis-Golgi network was 

hypothesised to favour the acquisition of ER vesicles (Weber et al., 2006). 

Figure 1: The growth-phase dependent process of L. pneumophila infection. (A) (1) Adhesion and 

entry of L. pneumophila into the host cell. (2) Evasion of endocytic pathway mediated by VipA, VipD and 

VipF (3). Establishment of the Legionella containing vacuole (LCV). (4) Recruitment and fusion of ER-

derived vesicles with the LCV, e.g. by the translocated effectors LidA or SidM. (5) Second step of LCV 

maturation: Fusion of the modified LCV with ER membranes, delivery of luminal ER proteins to LCV. (6). 

Bacterial replication within rough-ER-like vacuole. (7) Switch to transmissive phase and LepA-/LepB-

dependent bacterial egress. (8) Transmission to environmental niches or infection of new host cells. 

Major Icm/Dot-translocated effectors involved in the different steps are indicated in black (adapted from 

Brüggemann et al., 2006b) and discussed in Section 1.2. (B) Growth-phase dependent regulation of 

transmissive (virulence) traits throughout the infectious cycle of L. pneumophila. Numbers along the 

growth curve (optical density, OD600) correspond to the different steps of infection depicted in (A). 

Proteosomal degradation of proteins leads to elevated cellular levels of amino acids (AA) that might 

promote bacterial replication. Similarly to the spent host cell, nutrient limitation in broth triggers the entry 

into the stationary growth phase of L. pneumophila via the accumulation of the alarmone (p)ppGpp 

(guanosine 3′,5′-bispyrophosphate), thereby inducing transmissive traits.  
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Important host factors that are recruited to the LCV include the small GTPase families ARF and Rab. 

They associate with ER-derived vesicles and Golgi membranes (Donaldson and Jackson, 2011) as 

well as with host-tethering proteins produced by L. pneumophila (Machner and Isberg, 2006). Small 

GTPases act as molecular switches which are inactive in their cytosolic GDP-bound form, but when 

binding GTP, associate with membranes and engage with proteins that modulate membrane 

structure and function. The coordinated function of the small GTPases Arf1, Sar1 and Rab1 directs 

the transport and fusion of ER-derived vesicles to the LCV (Nagai and Roy, 2003).  

The activation of Rab proteins on a target vesicle is tightly controlled on several levels of 

regulation and requires (i) the exchange of GDP for GTP by a specific guanine nucleotide exchange 

factor (GEF) (Pfeffer et al., 2001), (ii) the displacement of GDP-dissociation inhibitors (GDIs) by GDI-

displacement-factors (GDF) and (iii) Rab inactivation by GTPase-activating proteins (GAPs) that 

promote hydrolysis of GTP to GDP (Bernards et al., 2003). The first biochemically characterised 

Icm/Dot-secreted effector protein RalF was identified as an Arf1 GEF (Nagai et al., 2005). The 

bifunctional Rab1 regulator SidM raised particular interest (Ingmundson et al., 2007; Machner and 

Isberg, 2007). One region in SidM is required for Rab1 recruitment to membranes and functions as a 

GDF, whereas the second region stimulates Rab1 activation by operating as a GEF (Arasaki et al., 

2012, Ingmundson et al., 2007, Machner and Isberg, 2007). Moreover, the interactions of Rab1 with 

the effectors LidA (Itzen et al., 2011, Derré and Isberg, 2005) or LepB were reported to promote the 

recruitment of early ER-derived vesicles to the LCV. The effector AnkX was shown to interact with 

the transport of both endocytic vesicles and secretory vesicles by phosphocholination and hence 

induce activation of Rab1 on the LCV (Mukherjee et al., 2011). A recent study presented the small 

GTPase-targeting effector LegG1 as a promoter of intracellular growth. The accumulation of LegG1 

on the LCV results in the activation of Ran GTPase and the subsequent stabilisation of microtubules, 

supporting LCV motility (Rothmeier et al., 2013).  

Successful budding and docking of ER-derived vesicles is followed by the LCV fusion with rough 

ER membranes. This second phase of LCV remodelling occurring several hours after infection is 

characterised by the acquisition of the ER-specific proteins calnexin and glucose-6-phosphatase and 

the presence of ribosomes on the LCV surface. The GTPase Sar1 contributes to the initial tethering 

of membranes (Robinson and Roy, 2006). Subsequent interactions of the LCV with the rough ER 

enables the delivery of resident ER proteins into the LCV lumen. Moreover, active Rab1 promotes 

the pairing of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) on 

the target (t-SNARE) membrane (e.g. Sec22b) with a vesicular v-SNARE (e.g. syntaxin) on the LCV 

membrane, leading to the fusion of ER-vesicles with the LCV membrane. L. pneumophila has been 

suggested to promote fusion of ER-derived vesicles with the LCV via the translocation of t-SNARE-

mimicking effector proteins, such as YlfA/B, or the incorporation of a t-SNARE complex present at 

the LCV or plasma membrane during uptake (Paumet et al., 2009).  

The removal of effectors from the LCV after completion of their function was suggested to support 

successful progression of infection. Polyubiquitination of proteins marks them for proteasomal 

degradation in a process called ER-associated degradation (ERAD) (Price et al., 2009). The U-box-
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containing effector LubX mimicks host E3 ubiquitin ligase-activity and thereby mediates SidH 

removal from the LCV (Kubori et al., 2008). The LCV is decorated with polyubiquitinated proteins, 

which are targeted for proteasomal degradation leading to elevated cellular levels of amino acids 

that might power bacterial replication (Price et al., 2011).  

Once LCV establishment is complete, L. pneumophila switches to a replicative phase and starts 

to proliferate. Transcriptome analyses revealed a profound shift between gene expression profiles of 

replicative or transmissive bacteria during intracellular growth in A. castellanii or macrophages 

(Faucher et al., 2011, Brüggemann et al., 2006b). A further role in virulence was assigned to a 

number of regulatory non-coding RNAs due to their altered expression shown during the biphasic life 

cycle of the opportunistic pathogen (Sahr et al., 2012, Weissenmayer et al., 2011).  

Following multiple rounds of intracellular replication, nutrient consumption and the accumulation 

of the alarmone guanosine 3′,5′-bispyrophosphate (ppGpp) trigger the stringent response in L. 

pneumophila and the subsequent transmissive gene expression pattern. Host cell lysis is possibly 

mediated by a cytolysin/ egress pore (Molmeret et al., 2002) or by the effector proteins LepA and 

LepB which have been implicated in the active, nonlytic egress from protozoa (Chen et al., 2004b). 

Subsequent egress from the host cell and infection of neighbouring cells involves the upregulation of 

flagellar or Icm/Dot-encoding genes. Released bacteria may then reinfect new host cells, 

disseminate or persist in the environment as planktonic cells, or colonise biofilms. 
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1.3 Regulation of L. pneumophila virulence  

In order to establish a replication niche inside their host cells, pathogenic bacteria monitor and adapt 

to the environmental conditions by the use of sensory and signal transduction systems combined 

with regulatory cascades to manipulate intracellular processes (Beier and Gross, 2006; Mekalanos, 

1992, Miller et al., 1989).  

Along the biphasic life cycle, L. pneumophila exhibits physiologically and morphologically different 

states that can be mimicked in vitro. L. pneumophila alternates between distinct phenotypic forms 

described as intracellular vacuolar pathogens, extracellular planktonic form, filaments associated 

with biofilms, persistant bacteria, or mature infective form (mif) (Piao et al., 2006, Hiltz et al., 2004). 

The differentiation of transmissive Legionella into the replicative form is tightly coupled to its 

metabolic state (Edwards et al., 2010, Dalebroux et al., 2009, Hammer and Swanson, 1999).: The 

transcriptome of replicative bacteria revealed the elevated transcription of genes involved in cell 

division and metabolic processes, e.g. aerobic metabolism, amino acid catabolism as well as the 

Entner-Doudoroff glycolytic pathway (Brüggemann et al., 2006b). Within the LCV, the bacteria 

efficiently replicate and repress transmissive traits (virulence, motility, stress resistance): Nutrient 

deficiencies trigger the induction of transmissive features once reaching the late post-exponential 

phase in broth or in phagocytic host cells (Faucher et al., 2011, Brüggemann et al., 2006b, Byrne 

and Swanson, 1998). Late in its life cycle, L. pneumophila transforms to a motile, sodium-sensitive 

and osmosis-resistant state in order to promote the transmission to and manipulation of a new host 

cell.  

1.3.1 Two-component systems control L. pneumophila virulence  

L. pneumophila constantly senses endogenous, host-derived and environmental stimuli to ensure a 

periodic transition between environmental and host-associated niches (Molofsky and Swanson, 

2004). One of the predominant ways by which L. pneumophila regulates the transition between 

niche-specific gene expression, is defined by two-component systems (TCS). In relation to the large 

genome size, genome analyses identified a low overall number of TCS (13 histidine kinases, 14 

response regulators) in strain Paris (Cazalet et al., 2004). The TCS are typically composed of a 

membrane-located sensor with histidine kinase activity and a cytoplasmic transcriptional regulator. 

Metabolic stimuli detected by these systems are transformed into a cellular signal by 

autophosphorylation of the sensor proteins at a conserved histidine residue. The phosphoryl group is 

then transferred to an aspartic acid residue in the receiver domain of the response regulator, which 

frequently leads to its dimerisation and hence activation of the highly diverse output domains. 

The regulatory network controlling L. pneumophila virulence encompasses four TCS (Nevo et al., 

2014) (Figure 2): (i) the LetAS-RsmYZ-CsrA regulatory cascade including the LetAS TCS, the two 

small RNAs (sRNAs) RsmY and RsmZ as well as the post-transcriptional carbon storage regulator A 

(CsrA) regulating the Arf1 GEF gene ralF, actin-associated vipA and the paralogous effectors ylfA 

and ylfB, (ii) PmrAB (Rasis and Segal, 2009, Al-Khodor et al., 2009, Zusman et al., 2007) which is 

under control of RpoS (Hovel-Miner et al., 2009) and upregulates expression of the effectors lepB, 
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sdhA and sidF, (iii) the CpxRA TCS which additionally controls sidM and icm/dot apparatus genes 

and iv) the Legionella quorum sensing circuit consisting of lqsRS (cognate sensor kinase and 

response regulator) together with the autoinducer synthase lqsA (further discussed in Section 1.3.2). 

In concert with additional sensor systems such as small RNAs (Sahr et al., 2009), the network 

encompassing these TCS coordinates various processes during the L pneumophila life cycle, 

including pathogen-host interactions, expression of virulence factors (Nevo et al., 2014), 

establishment of the LCV (Gomez-Valero et al., 2011, Isberg et al., 2009, Franco et al., 2009), 

biofilm and filament formation and the regulation of a genomic ‘fitness island’ (Tiaden et al., 2010b, 

Tiaden et al., 2007). The icm/dot and effector genes under direct control of the four TCS are 

discussed in Section 2.2 and illustrated in Figure 2 (Altman and Segal, 2008).  

Whether in extracellular or intracellular environments, differentiation of transmissive L. 

pneumophila to the replicative form is coupled to its metabolic state (Edwards et al., 2010, 

Dalebroux et al., 2009, Hammer and Swanson, 1999). Together with alternative sigma factors, the 

aforementioned TCS orchestrate the biphasic life cycle of L pneumophila in a growth-phase 

dependent manner (Figure 2): During the exponential phase, the RNA-binding global regulator CsrA 

binds to target mRNAs and repress the translation of transmissive (virulence, motility) genes, thus 

promoting the replicative (metabolism) transcriptional programme. The reversible switch from 

replicative to transmissive phase is triggered initially through the production of the ‘alarmone’ ppGpp 

by the synthetase RelA and the bifunctional synthetase/hydrolase SpoT (Dalebroux et al., 2009, 

Zusman et al., 2002, Hammer and Swanson, 1999) or at the end of the infection cycle by reduction 

of amino acid and/or fatty acid biosynthesis. The accumulation of (p)ppGpp upon nutrient starvation 

was shown to coordinate the entry into the stationary phase and is sufficient to promote the induction 

of the transmission regulon (Hammer and Swanson, 1999). ppGpp may act as a direct 

transcriptional activator of rpoS and letA in starved bacteria by binding to the rpoS promoter, (Lange 

et al., 1995). Consequently, high concentrations of ppGpp lead to the upregulation of RpoN and 

flagellar (FliA) sigma factors, and the subsequent exhibition of virulence traits (Bachman and 

Swanson, 2001). 
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Figure 2: Model of the TCS controlling the transition from the replicative to the virulent phase of 

L. pneumophila. The TCSs CpxRA, PmrAB, LetAS and LqsRS and the regulatory cascade LetAS-

RsmYZ-CsrA are schematically illustrated. In addition, regulated effector proteins whose function is 

known or predicted to play a role in this process are depicted. During the replicative phase, nutrients are 

abundant and the post-transcriptional carbon storage regulator A (CsrA) represses transmission traits 

and promotes replication. Upon nutrient depletion at the onset of stationary phase, RelA stimulates the 

production of the alarmone ppGpp. Other signals may stimulate the enzyme SpoT to contribute to the 

accumulation of ppGpp, which in turn induces the LetAS TCS and the alternative sigma factor RpoS. 

Together with FliA, LetA and RpoS induce transmission traits. Active LetA induces the production of 

small regulatory RNAs RsmY and RsmZ to sequester CsrA and relieve post-transcriptional repression. 

LAI-1 (Legionella autoinducer-1) is produced by LqsA and likely binds to LqsS that phosphorylates and 

activates the cognate response regulator LqsR, whose production is dependent on RpoS as well as on 

RsmYZ and CsrA. Additionally, the response regulators CpxR and PmrA positively regulate Icm/Dot 

components and substrates, respectively. Solid and dashed lines represent direct and indirect 

regulation, respectively. Model adapted from (Tiaden and Hilbi, 2012, Jules and Buchrieser, 2007, 

Molofsky and Swanson, 2004). 

Upon entry into the stationary phase, the sensor kinase LetS is activated by a so far unknown 

signal and phosphorylates LetA, its cognate response regulator. LetA directly upregulates the 

expression of the two small non-coding RNAs RsmY and RsmZ, which bind and sequester multiple 

CsrA molecules from their target mRNAs and thereby releave the repression of transmissive traits by 

CsrA. Moreover, RpoS excerts further levels of regulation by controlling (i) PmrAB which itself 

contributes to the csrA gene regulation, (ii) non-coding RNAs RsmY and RsmZ upon activation of 

LetAS, and (iii) production of the response regulator LqsR which is co-regulated post-



  INTRODUCTION 

23 

transcriptionally by the sRNAs RsmYZ and by CsrA. Moreover, CpxA activation might be linked to L. 

pneumophila adherence to host cells, as CpxR-activated effectors were shown to translocate into 

host cells early during infection.  

After internalisation into a host cell, L. pneumophila establishes the LCV by TCS-dependent 

expression of virulence genes and the subsequent translocation of different sets of effectors in a 

timely controlled fashion (Section 1.2). Indeed, the interplay between two regulators was shown to 

result in two distinct groups of effectors: One group is expressed and activated by the PmrAB TCS 

during the exponential growth phase and the second group of effectors is de-repressed by the LetAS 

TCS during stationary phase. During these stepwise events, the bacteria are converted to a 

replicative, avirulent, non-motile form. When nutrients are depleted, the bacteria enter the 

transmissive phase and express virulence proteins, resulting in lysis of the host cells and the 

initiation of a new infection round (for reviews see Shin and Roy, 2008 and Steinert et al., 2007).  

Finally, L. pneumophila contains an α-hydroxyketone (AHK) signalling circuit consisting of the 

autoinducer synthase LqsA, the putative cognate sensor kinase LqsS, and the response regulator 

LqsR (Figure 2, Kessler et al., 2013, Tiaden et al., 2010b). AHK signalling is linked to the stationary 

growth phase regulatory network of L. pneumophila via LqsR. Production of LqsR requires RpoS 

and also depends to a smaller extent on the response regulator LetA (Tiaden et al., 2007). 

Furthermore, the small RNAs RsmY and RsmZ and CsrA act as posttranscriptional regulators of 

LqsR production (Sahr et al., 2009). 

1.3.2 Gene regulation by α-hydroxyketone mediated signalling  

In addition to exogenous signals, L. pneumophila also synthesises, releases and detects small, 

membrane-diffusible signalling molecules to promote intra- and interspecies cell–cell communication 

(Spirig et al., 2008). Upon reaching a certain threshold concentration, autoinducer molecules trigger 

signalling pathways and gene regulation to functionally coordinate a bacterial population in a 

process termed quorum sensing. Quorum sensing represents a means of bacterial cell density-

dependent gene regulation in order to control processes, such as virulence, biofilm formation, 

competence or bioluminescence (Camilli and Bassler, 2006, Fuqua and Greenberg, 2002). 

Among the various chemical classes of autoinducers known thus far, only the AHK LAI-1 

(Legionella autoinducer-1, 3-hydroxypentadecane-4-one) has been identified by tandem mass 

spectrometry as a signalling molecule in L. pneumophila (Spirig et al., 2008). LAI-1 and the closely 

related Vibrio cholerae CAI-1 (cholera autoinducer-1, 3-hydroxytridecane-4-one) are the first 

biologically relevant 3-hydroxy-4-keto compounds belonging to the class of AHKs (Higgins et al., 

2007).  
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LAI-1 and CAI-1 are produced and detected by the lqs (Legionella quorum sensing) and cqs (cholera 

quorum sensing) genes, respectively. The lqs genes encode the cognate pair of an autoinducer 

synthase LqsA and the putative sensor histidine kinase LqsS. LqsA and LqsS are homologues of 

CqsA and CqsS, sharing 45% and 29% identity, respectively (Tiaden and Hilbi, 2012).  

Figure 3: The L. pneumophila lqs gene cluster encodes components of the LAI-1 signalling 

circuit. (A) Genomic organisation of the L. pneumophila lqs (Legionella quorum sensing) gene cluster 

(lpg2731–2734). The lqs cluster comprises the autoinducer synthase lqsA, the response regulator lqsR, 

a homologue of E. coli hdeD (HNS-dependent expression D) and the cognate sensor kinase lqsS. (B) 

Scheme of the L. pneumophila LAI-1 (Legionella autoinducer-1) signalling circuit. The α-hydroxyketone 

(AHK) signalling molecule 3-hydroxypentadecane-4-one LAI-1 is produced by the autoinducer synthase 

LqsA and presumably detected by the sensor kinase LqsS and perhaps other sensors which transmit the 

signal through the response regulator LqsR and/or other response regulators. Dashed arrows indicate 

hypothetical or indirect interactions (published in Kessler et al. (2013). 
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Functional similarity was reported for the pyridoxal-5’-phosphate (PLP)-dependent 

aminotransferases LqsA and CqsA, as lqsA partially complemented a cqsA mutation in V. cholerae 

(Spirig et al., 2008). The sensor kinases which belong to the class of six-transmembrane helices 

couple the detection of AHK signalling molecules via an N-terminal receptor domain to a C-terminal 

signal transduction module. In the case of the hybrid sensor kinase CqsS, this signal module in 

addition contains a receiver domain with an aspartate residue. In Vibrio spp., the cognate 

CqsA/CqsS system promotes regulation of virulence and biofilm formation in a cell density-

dependent manner (Henke and Bassler, 2004, Miller et al., 2002), as well as natural competence 

(Antonova and Hammer, 2011, Suckow et al., 2011).  

Furthermore, the lqs gene cluster additionally encodes the putative response regulator LqsR and 

a homologue of Escherichia coli HdeD (HNS-dependent expression D) linked to acid resistance in E. 

coli. The four genes lqsA, lqsS, lqsR and hdeD are divergently transcribed and expressed from 

individual promoters (Sahr et al., 2012). Moreover, the lqs gene cluster is present in the genomes of 

all L. pneumophila strains sequenced to date: Philadelphia (lpg2731-2734), Paris (lpp2787-2790), 

Alcoy (lpa_03985, lpa_03987, lpa_03988, lpa_03991), Corby (LPC_0396, LPC_0398, LPC_0401, 

LPC_0402), as well as Lens (lpl2656-2659). The clustering of the lqsR gene with lqsA and lqsS is 

conserved in bacterial species possessing an LqsR homologue, e.g. Burkholderia and 

Janthinobacterium spp. (Hornung et al., 2013), implying an evolutionarily conserved functional 

relation between LqsA/LqsS and LqsR.  

As the prototypic member of a novel response regulator family, LqsR contributes to the 

stationary-phase regulatory network, mediated by the alternative sigma factor RpoS and to a lesser 

extent by LetA (Tiaden et al., 2007, discussed in Section 1.3.1). LqsR harbours a canonical, CheY-

like N-terminal receiver domain (amino acids 80-160) including the conserved aspartate residue 

(D108). The C-terminal fragment of LqsR is of unknown function and does not show homology to 

any known signal output domains.  

Previous functional analysis of L. pneumophila lacking either single genes or the entire lqs cluster 

revealed that the Lqs system controls various processes, including pathogen-host cell interactions, 

production of virulence factors, formation of extracellular filaments and regulation of a genomic 

island (Tiaden et al., 2010b, 2008, 2007). The Lqs components liekly act in the stationary phase, as, 

compared to wild-type bacteria, mutant strains lacking lqsS or lqsR exhibited differential 

transcriptional profiles exclusively during stationary growth. Interestingly, the phenotypes of the 

∆lqsS mutant strain were reversed by overexpression of lqsA, suggesting the existence of another 

LAI-1 responsive sensor in L. pneumophila. 
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1.4 Elements of genome plasticity in L. pneumophila  

In addition to the core genome encoding essential metabolic functions, bacterial genomes also 

harbour a range of accessory genes likely acquired by horizontal gene transfer (HGT) (Juhas et al., 

2009). HGT between bacterial strains and species is a key mechanism of genome evolution, 

contributing to the diversification and adaptation of microorganisms and significantly affecting 

genome plasticity (Treangen and Rocha, 2011, Skippington and Ragan, 2011, Dagan et al., 2008, 

Gogarten and Townsend, 2005, Ochman et al., 2000). A successful HGT event can be split in three 

successive steps. The first step is DNA transfer from one cell to another, involving free DNA (by 

transformation), encapsidated DNA (by transduction or lysogenisation), or cell-to-cell contact (by 

conjugation). Secondly, DNA is acquired by the daughter cells during division either by replication of 

the incoming DNA as a plasmid or by integration/transposition into a replicon. The third step is 

marked by the evolutionary success of the strain. It may be correlated to advantageous functions 

encoded by the transferred genes that result in better adaptation of the recipient cell to the 

environment or colonisation of novel niches.  

HGT mainly corresponds to the acquisition of a mobile genetic element (MGE; Frost et al., 2005). 

In particular, this process involves a DNA fragment that moves from cell to cell (intercellular mobility) 

or within a genome (intracellular mobility) and that carries some or all sequences and genes involved 

in its mobility (Toussaint and Merlin, 2002). The traditional classes of MGEs, represented by 

conjugative plasmids, transposons and integrated prophages, frequently carry additional adaptation 

genes that contribute to the success of their transfer). Beyond the traditional classes of MGE, other 

types have been reported to rely on a combination of transfer and maintenance mechanisms 

(Guerillot et al., 2013, Wozniak and Waldor, 2010, Beaber et al., 2002).  

Genomic islands (GEIs) define a superfamily of horizontally acquired DNA elements that play a 

key role in bacterial evolution and adaptation, the dissemination of antibiotic resistance and virulence 

genes, and formation of novel catabolic pathways, ultimately enhancing the fitness of their host 

(Figure 4, Juhas et al., 2009, Gaillard et al., 2006, Dobrindt et al., 2004, Hacker and Kaper, 2000). 

Generally, GEIs comprise a large spectrum of variable genetic organisation and functionality, and 

thus, only share conserved analogous core and structural features required for their maintenance, 

rather than being phylogenically related (Vernikos and Parkhill, 2008). Most GEIs are characterised 

by (i) large syntenic DNA blocks of 10-200 kb harbouring relatively novel genes that are present in 

only few strains, (ii) ununsual G+C percentage or codon usage, and (iii) their frequent insertion at 

tRNA genes. Moreover, GEIs are often flanked by direct repeats (DR) which arise during site-

specific integration into the target site (Schmidt and Hensel, 2004).  

Other systems involved in the mobilisation of GEIs include plasmid conjugation machineries, 

integrons, insertion sequence (IS) elements, transposons, phages or integrases (Buchrieser et al., 

1998). Integrons are characterised by the formation of large arrays of gene cassettes by 

homologous recombination, associated with transposons or conjugative plasmids, mediating the 

spread of HGEs (Dobrindt et al., 2004). All of these elements contribute to the dynamic character of 
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bacterial chromosomes by allowing excision of GEIs and their transfer to other recipients. Accessory 

genes offering a selective advantage for host bacteria might especially contribute to their genomic 

plasticity and complex evolution. Thus, depending on the life-style of their particular host species, 

GEIs may be further specified according to their gene content, encoding pathogenicity, symbiosis, 

metabolic, resistance or fitness traits (Schmidt and Hensel, 2004, Dobrindt et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

A high plasticity was observed among the genome sequences of L. pneumophila (D'Auria et al., 

2010, Schroeder et al., 2010 Glöckner et al., 2008, Cazalet et al., 2004, Chien et al., 2004), L. 

longbeacheae (Cazalet et al., 2010, Kozak et al., 2010) and the draft genome of L. drancourtii 

(Moliner et al., 2009), represented by multiple chromosomal islands containing a G+C content 

different from the 38% of the core genome.  

The marked cellular and genetic plasticity is an intrinsic propertiy of L. pneumophila, which allows 

the bacteria to colonise different ecological niches or hosts. Most likely, the long-term convergent co-

evolution of the pathogen with various prokaryotes or eukaryotic hosts has favoured inter-kingdom 

horizontal gene transfer (Moliner et al., 2010, Franco et al., 2009, Cazalet et al., 2008). During the 

different stages of the intracellular life cycle, L. pneumophila diverts host cell functions by an 

abundance of eukaryote-like proteins containing domains implicated in protein-protein interactions 

(Cazalet et al., 2004). Of great interest are the F-box and U-box-containing proteins which may 

functionally mimic and interfere with the host cell’s ubiquitin machinery (Brüggemann et al., 2006a). 

Additionally, the bacterial eukaryote-like serine/threonine protein kinases (STPKs) may engage host 

signal transduction pathways.  

Numerous features of genetic mobility found in L. pneumophila may facilitate the transfer and 

uptake of DNA, e.g. L. pneumophila harbours an alternative T4SS implicated in conjugation of 

Figure 4: Typical components of genomic islands. Genomic islands (GEIs) include further classes of 

mobile elements, such as conjugative transposons, integrated plasmids, nonreplicative but excisable 

elements (integrases, integrons, insertion sequences (IS), and cryptic or damaged phages. Blue areas 

indicate self-mobile GEIs. Modified after Juhas et al., 2009. 
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plasmid DNA (Segal et al., 1999; 1998; Vogel et al., 1998) and has been described as naturally 

competent (Sexton and Vogel, 2004, Stone and Kwaik, 1999). Natural transformation by 

competence is a major mechanism of HGT in bacteria. Competence is defined as the genetically 

programmed physiological state that allows the active import of DNA from the environment and the 

subsequent genotypic and phenotypic transformation (Charpentier et al., 2011). The conditions that 

promote competence development are multiple and often elusive  

A putative genomic island of L. pneumophila Philadelphia-1 is a 133 kb region harbouring 125 

open reading frames (lpg0973–lpg1096). This region has a higher G+C content than the core 

genome, is located adjacent to the tRNAThr gene lpg0972 and flanked by presumed DNA-mobilising 

elements such as integrases, transposases and phage-like genes. Interestingly, 67 out of these 125 

genes are upregulated 1.5–8.5-fold in the absence of the putative sensor kinase lqsS (Tiaden et al., 

2010b). The 133 kb gene cluster shows high genomic plasticity and is further divided into two 

regions. Region I (lpg0973–lpg1003, 26 kb) harbours many conserved, yet unknown genes, which 

possibly encode pili components. Region II (lpg1006–lpg1096, 107 kb) encodes the subunits of a 

FoF1 ATP synthase and various putative metal ion resistance transport proteins. The region from 

lpg1008 to lpg1035 was previously identified as a 40 kb efflux pump genomic island, which is 

induced in L. pneumophila upon (but is not required for) infection of macrophages (Rankin et al., 

2002). Moreover, in strain Philadelphia-1 region II, a SinR family transcription regulator is located 

between lpg1055 and lpg1056 (1’153’652–1’153’389 bp, previously not annotated). The 

corresponding gene was also identified in the genome of strain Paris (lpp2326). In summary, the 133 

kb genomic region fulfils the criteria of a canonical genomic fitness island (Dobrindt et al., 2004) and 

might play a role during pathogen–phagocyte interactions. 

Another genomic island present in four of six L. pneumophila strains (Schroeder et al., 2010, 

Cazalet et al., 2004, Chien et al., 2004) and in two L. longbeacheae strains (Cazalet et al., 2010, 

Kozak et al., 2010) is defined by the lvh region, which encodes a T4SS (Segal et al., 1999). The lvh 

region shows a higher G+C content than the core genome, is inserted at tRNA sites and flanked by 

mobility genes. Moreover, this genomic mobile element can be excised from the chromosome and 

exist as a multicopy plasmid in the lag phase of bacterial growth (Doleans-Jordheim et al., 2006). 

Finally, these genomic islands have been postulated to be mobile and transferred by horizontal gene 

transfer, thus contributing to the genetic diversity of the species L. pneumophila (Cazalet et al., 

2008). 
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1.5 Aims of the thesis 

L. pneumophila harbours a plethora of regulatory elements to adapt to and switch between the 

aquatic environment and the intracellular milieu of phagocytic cells during a biphasic life cycle. This 

complex regulatory network involves AHK-mediated signal transduction to modulate essential traits 

including virulence, biofilm formation and environmental fitness. The signalling molecule LAI-1 is 

synthesised by the autoinducer synthase LqsA and is presumably detected by the sensor kinase 

LqsS. Strikingly, the virulence and sedimentation phenotypes of L. pneumophila lacking lqsS are 

reverted upon overexpression of lqsA, suggesting that LAI-1 is also recognised by alternative 

sensors. AHK signalling is transduced via the prototypic response regulator LqsR that harbours an 

N-terminal receiver domain and a C-terminal part, which shares no homology with any known 

response regulator output domains.  

The 133 kb putative genomic fitness island upregulated in L. pneumophila lacking lqsS encodes a 

putative response regulator homologous to SinR, the master regulator of biofilm formation in Bacillus 

subtilis (Colledge et al., 2011). In strain Philadelphia-1, this regulator has not been annotated nor 

investigated so far.  

The objective of this thesis was to analyse AHK-mediated signal transduction and gene regulation 

in L. pneumophila by the homologous sensor kinases LqsS and LqsT using genetic, biochemical and 

cellular microbial approaches. Moreover, the role of the L. pneumophila sinR homologue in the AHK-

signalling network was to be investigated in terms of pathogen-host cell interactions, gene regulation 

and natural competence. Finally, crystallisation and determination of the high resolution structure of 

the response regulator LqsR was initiated to provide insight into its molecular function. This study 

should contribute to a biochemical analysis of the elements of the Lqs system, the signal 

transduction cascade and the cross-talk among its constituents. 
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2. Materials and methods  

2.1 Materials 

2.1.1 Laboratory equipment 

Item Model Manufacturer 
   

Autoclave  STERIMAQUET  MAQUET (Rastatt) 

Autoclave Varioklav classic H+P (Oberschleissheim) 

Benchtop centrifuge 5417R Eppendorf (Hamburg) 

Centrifuge   5810 Eppendorf (Hamburg 

Centrifuge Sorvall RC5C Plus Dupont (Wilmington) 

CO2 incubator  Heraeus HeraCell 240  Thermo (Waltham) 

Concentrator Amicon filter (MWCO 30000)  Millipore (Zug) 

Colony counter  Countermat flash  IUL (Barcelona) 

Cryo stream  Cryostream Plus Oxford Cryosystems (Oxford) 

Crystallisation 96-well plate 96-well Crystal Quick Greiner (Frickenhausen) 

Crystal score imaging system RockImager Formulatrix (Waltham) 

Crystallisation robot Mosquito TTP (Dürnten) 

Crystallisation kit Clear Strategy I Qiagen (Hombrechtikon) 

Crystallisation kit Clear Strategy I Qiagen (Hombrechtikon) 

Crystallisation kit JCSG Molecular Dimensions 

Crystallisation kit Morpheus Molecular Dimensions 

Crystallisation kit Nextal PEG Suite Qiagen (Hombrechtikon) 

Crystallisation kit PEGs Qiagen (Hombrechtikon) 

Crystallisation kit PACT Qiagen (Hombrechtikon) 

Culture microscope  Primo Vert  Zeiss (Oberkochen) 

Diaphragm vacuum pump  MZ 2C Vacuubrand (Wertheim) 

Electrophoresis chamber  Mini-Protean 3  Bio-Rad (Munich) 

Electrophoresis chamber  Mini-Subcell GT  Bio-Rad (Munich) 

Electrophoresis chamber  Subcell GT  Bio-Rad (Munich) 

Electroporation device  GenePulser XCell  Bio-Rad (Munich) 

FACS system FACS Canto BD BioSciences (Heidelberg) 

Gel filtration column  HILoad™ 16/60 Superdex 200 GE Healthcare (Glattbrugg) 

Gel imaging system  ChemiDoc MP System Bio-Rad (Munich) 

Gel imaging system  GelDoc EQ Bio-Rad (Munich) 

Hot plate magnetic stirrer  RCT basic  IKA (Staufen) 

Incubation cabinet Certomat BS-1 Sartorius (Goettingen) 

Incubation cabinet Oribital shaker Forma Thermo (Waltham) 

Incubator  Heraeus BR6000 Thermo (Waltham) 

Incubator  Heraeus Function Line Thermo (Waltham) 

Incubator  IPP500 Memmert (Schwabach) 

Mixer Vortex-Genie 2  IKA (Staufen) 

pH-meter  Level 1  inoLab (Weilheim) 



  MATERIALS AND METHODS 

31 

Item Model Manufacturer 
   

Pipettes  Pipetman Gilson (Middleton) 

Power supply  PAC100  Bio-Rad (Munich) 

Precision balance  PG2002-S Mettler-Toledo (Greifensee) 

Precision balance  BP61-S Sartorius (Goettingen) 

Protein purification System Äkta™ 10 purifier GE Healthcare 

Protein transfer device  MAXI- Semi-Dry-Blotter Roth (Karlsruhe) 

Rocking platform shaker Duomax 1030 Heidolph (Schwabach) 

Rolling mixer  RM5-35s 1732 Fröbel (Lindau) 

Spectrophotometer Helios Epsilon Thermo (Waltham) 

Spectrophotometer NanoDrop ND-1000 PeqLab (Erlangen) 

SEC column Superdex 200 16/60 GE Healthcare (Glattbrugg) 

IMAC column   HisTrap HP  GE Healthcare (Glattbrugg) 

Superspeed centrifuge  Sorvall RC-5B DuPont (Wilmington) 

Suspension mixer CMV Fröbel (Lindau) 

Thermal cycler  T3 Biometra (Goettingen) 

Thermal mixer Thermomixer comfort Eppendorf (Hamburg) 

UV-transilluminator  Bachofer (Reutlingen) 

Water bath Wasserbad 1005 GFL (Burgwedel) 
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2.1.2 Chemicals and consumables 

Item Supplier 
  

ACES AppliChem (Drmstadt) 

Acrylamid/ bisacrylamid Serva (Heidelberg) 

Activated charcoal powder Fluka (Buchs) 

Anti-histidine antibody Qiagen (Germantown) 

Agar BD Biosciences (Franklin Lakes) 

Agarose Biozym (Oldendorf) 

β-Mercaptoethanol Sigma Aldrich (Buchs) 

Bacteriological peptone BD Biosciences (Franklin Lakes) 

Bacto proteose peptone BD Biosciences (Franklin Lakes) 

Bacto yeast extract BD Biosciences (Franklin Lakes) 

DNA ladder (1 kb plus) Life Technologies (Grand Island) 

DNA purification kit Machery Nagel (Dueren)  

DNase I Roche (Basel) 

DreamTaq PCR master mix Thermo (Waltham) 

FCS Life Technologies (Grand Island) 

FeN3O9 x 9 H2O Sigma (Saint Louis) 

Gene pulser cuvette Bio-Rad (Munich) 

D(+)-glucose monohydrate Fluka (Buchs) 

KH2PO4 Fluka (Buchs) 

LB agar Life Technologies (Grand Island) 

LB broth base Life Technologies (Grand Island) 

L-cysteine Sigma (St. Louis) 

L-glutamine Life Technologies (Grand Island) 

Na2HPO4 Fluka (Buchs) 

Phusion polymerase Thermo (Waltham) 

Plastic cell containers TPP (Trasadingen) 

PMA Fisher Scientific (Reinach) 

Protease inhibitor (cOmplete, mini)  Roche (Basel) 

Protein ladder (PageRuler prestained 10-170K) Thermo (Waltham) 

SDS Serva (Heidelberg)  

Sterile syringe filters 0.22 µm pore size Millipore Merck (Darmstadt)  

Restriction enzymes  Thermo (Waltham) 

RPMI 1640  Life Technologies (Grand Island) 

Sodium citrate x 2 H2O Fluka (Buchs) 

T4 DNA ligase   New England Biolabs (Ipswich) 

 
Chemicals not listed were obtained from Roth (Karlsruhe) or Sigma-Aldrich (Buchs).  
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2.1.3 Strains and plasmids 

 

Strain  Relevant pheno-/genotype Reference 

Escherichia coli 
  

BL21NiCo(DE3)  Invitrogen 

TOP10  Novagen 

   

Legionella pneumophila  

AK01 (∆lqsT) JR32 lqsT::Km  Kessler et al. (2013) 

AK02 (∆lqsS-∆lqsT) JR32 lqsS::Km lqsT::Gm Kessler et al. (2013) 

AK03 (∆sinR) JR32 sinR::Km  This work 

GS3011 (∆icmT) JR32 icmT3011::KmΩ Segal and Shuman (1998) 

JR32 L. pneumophila serogroup 1 Philadelphia-1 

salt-sensitive isolate of AM511 

Sadosky et al. (1993) 

NT02 (∆lqsA) JR32 lqsA::Km Tiaden et al. (2010b) 

NT03 (∆lqsR) JR32 lqsR::Km Tiaden et al. (2007) 

NT04 (∆hdeD) JR32 hdeD::Km Tiaden et al. (2008) 

NT05 (∆lqsS) JR32 lqsS::Km Tiaden et al. (2010b) 

   

Acanthamoeba castellanii ATCC 30234 

Dictyostelium 

discoideum 
Ax3 Zhou et al. (1995) 

HL-60 Human monocytes ATCC CCL-240 

RAW 264.7 Murine macrophage cell line ATCC TIB-71 
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Plasmid Description Reference 

pAK-2 pMMB207C, gfp (constitutive), lqsT (PlqsT) Kessler et al. (2013) 

pAK-6 pMMB207C-RBS-lqsT Kessler et al. (2013) 

pAK-15 pGEM-T-Easy, lqs flanking region, Cm Kessler et al. (2013) 

pAK-18 pMMB207C, gfp (constitutive), sinR (PsinR) This work 

pAK-21 pET28(+)-sinR This work 

pBSL141 oriR (pBM1), Ap, MCS::Gm Alexeyev et al. (1995) 

pCM-5 pMMB207-lqsA-gfp (ASV) Christian Manske 

pCM-6 pMMB207-lqsR-gfp (ASV) Christian Manske 

pGEM-T-Easy Cloning of PCR products, Ap Promega 

pLAW344 oriT (RK2), oriR (ColE1), sacB, Cm, Ap Wiater et al. (1994) 

pMMB207C-RBS-lcsC Legionella expression vector for LcsC (with 

ribosome binding site, RBS) 

Weber et al. (2006) 

pNT-1 pUCBM20, lqs genomic region Tiaden et al. (2007) 

pNT-28 pMMB207C, gfp (constitutive) Tiaden et al. (2007) 

pNT-31 pMMB207C, gfp (constitutive), lqsS (PlqsS) Tiaden et al. (2010b) 

pNT-36 pMMB207C, gfp (constitutive), lqsA (PlqsA) Tiaden et al. (2010b) 

pNT-46 pLAW344, lqsT::Km Kessler et al. (2013) 

pNT-47 pLAW344, lqsT::Gm Kessler et al. (2013) 

pRB-3 pET28(+)-lqsR-D109A Schell et al. (2014) 

pRB-4 pET28(+)-lqsR-D109N Schell et al. (2014) 

pTS-1 pMMB207C, lqs region Spirig et al. (2008) 

pTS-2 pMMB207C-RBS-lqsA Spirig et al. (2008) 

pTS-3 pMMB207C-RBS-lqsS Tiaden et al. (2010b) 

pTS-10 pMMB207C-RBS Tiaden et al. (2007) 

pTS-23 pET28(+)-lqsR Schell et al. (2014) 

pUC4K oriR (pBR322), Ap, MCS::Km Amersham 

pUS-11 pMMB207-sinR-gfp (ASV) Ursula Schell 

pXDC42 GFP reporter construct (promoterless gfp) Charpentier et al. (2011) 

pXDC91 GFP reporter construct (PcomEA–gfp) Charpentier et al. (2011) 
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2.1.4 Oligonucleotides  

Oligonucleotide Sequence 5’-3’ Description 

  
oC-LqsA-fo  GGCGATCTGCAGTTCTTTTCCCTTGTGTGCA 5’ flanking seq. of lqsA (fo) 

oC-LqsA-re GCACAAGGATCCTGGTTGTAGTCCAACAGC 5’ flanking seq. of lqsA (re) 

oC-LqsS-fo GGCGGTCAACAAGAGGCCATCCGGAAGTT 3’ flanking seq. of lqsS (fo) 

oC-LqsS-re GGCGTACTGCAGGCAAAGAAATTGGGGGT 3’ flanking seq. of lqsS (re) 

oH1-LqsT-fo TACAAGAACACAAAACGCCAG 5’ flanking seq. of lqsT (fo) 

oH1-LqsT-re TATAGACGGGATCCTTAACCTTTGCATGATTCC 5’ flanking seq. of lqsT (re) 

oH2-LqsT-fo TATAGACGGGATCCCCCCAAAATTGATTAATTCC 3’ flanking seq. of lqsT (fo) 

oH2-LqsT-re ATGCCTGAAGAGACGAGCAC 3’ flanking seq. of lqsT (re) 

oCR-fo GGGTTACTGCAGACTGGATCTCAACAGCG 5’ flanking seq. of CmR (fo) 

oCR-re GCAACGCTGCAGAGACAATAACTGCC 3’ flanking seq. of CmR (re) 

o-LqsT-fo CCTGTCCATATGCAAAGGTTAAAAAATA 5' lqsT (fo) 

oP-LqsT-fo TATAGACGGGATCCATGGTATTGTATTATGATGC 5’ PlqsT +lqsT (fo) 

o-LqsT-re TATAGACGGGATCCAGGAATTAATCAATTTTGGG 3’ lqsT (re) 

oH1-SinR-fo AAAAAATCTAGAGCGTGCTGATTGGTCC 5’ flanking seq. of sinR (fo) 

oH1-SinR-re GCGCGCGGATCCTTGTTTTTTCATTC 5’ flanking seq. of sinR (re) 

oH2-SinR-fo ATAACTGGATCCTCAGCCTCATAAACC 3’ flanking seq. of sinR (fo) 

oH2-SinR-re CGTTTATCTAGACGCAGTGCCAGTCATGAC 3’ flanking seq. of sinR (fo) 

o-SinR-fo AAAAAAACGCGTGTGCTGATTGGTCC 5’ PsinR+sinR (fo) 

oP-sinR-fo CCTGTCCATATGAAAAAACAAACCG 5’ sinR (fo) 

o-SinR-re AAAAAAGGATCCTTATGAGGCTGAG 3’ sinR (re) 

oP-FrgA-fo GCGCGCGAGCTCGGAAGTTGATGGGTATC 5’ PfrgA (fo) 

oP-FrgA-re CGCGCGTCTAGATATTATCTCCTGAAGG 3’ PfrgA (re) 

oP-LqsA-EMSA-fo AATCCCCTGCTCCCCAAAATAG 5’ PlqsA (fo) 

oP-LqsA-EMSA-re CGCTGGATCCGTGTTAATTACCCTTAAAC 3’ PlqsA (re) 

oP-LqsR-EMSA-fo CGGATTTCTTAGCTAAGATAAGGTACG 5’ PlqsR(fo) 

oP-LqsR-EMSA-re GCAAAACGTTCCAAAGTTATATCCGCG 3’ PlqsR  (re) 

oP-RpoS-EMSA-fo GATGCGACTCAACTTTACTTGG 5’ PrpoS (fo) 

oP-RpoS-EMSA-re TAGGCAAACGGATAGTTCTC 3’ PrpoS (re) 

a lower case: artificially introduced mucleotides 
b underlined: restriction sites 
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2.1.5 Media and buffers 

2.1.5.1 Legionella pneumophila  

Charcoal yeast extract (CYE) agar plates (Feeley et al., 1979) 

Component Per litre Supplier 
   

ACES 10 g AppliChem 

Bacto yeast extract 10 g BD Biosciences 

Activated charcoal powder 

p.a. puriss 

2 g 
Fluka 

Agar 15 g BD Biosciences 

L-cysteine 0.4 g in 10 ml H2O Sigma 

FeN3O9 x 9 H2O 0.25 g in 10 ml H2O Sigma 

 

Antibiotic Final concentration Supplier 
   

Chloramphenicol 5 mg/l Roth 

Gentamicin 10 mg/l Roth 

Kanamycin 50 mg/l Roth 

 

For the preparation of CYE (Charcoal yeast extract) agar plates ACES and Bacto yeast extract 

were dissolved in H2O and the pH was adjusted to 6.9 using 10 M KOH. Following addition of 

activated charcoal and agar, the solution was autoclaved and cooled to 50°C. Filter sterilised L-

cysteine and iron solutions were pipetted aseptically to the mixture. If necessary antibiotics were 

supplemented at the concentrations indicated. Plates were stored at 4°C.  

ACES yeast extract (AYE) medium (Horwitz et al., 1984) 

Component Per litre Supplier 

   
ACES 10 g AppliChem 

Bacto yeast extract 10 g BD Biosciences 

L-cysteine 0.4 g in 10 ml H2O Sigma 

FeN3O9 x 9 H2O 0.25 g in 10 ml H2O Sigma 

   

Antibiotic Final concentration Supplier 

   
Chloramphenicol 5 mg/l Roth 

Gentamicin 10 mg/l Roth 

Kanamycin 30 mg/l Roth 

 

AYE medium was generated by dissolving ACES and Bacto yeast extract in 900 ml of H2O and 

adjusting the pH to 6.9 using 10 M KOH. Cysteine and iron were separately dissolved in 10 ml 
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H2O each and slowly added while stirring. The solution was filtered using a glass fiber filter 6-8 

times and subsequently filter-sterilised. The medium was stored at 4°C.  

2.1.5.2 Escherichia coli  

Luria-Bertani (LB) agar  

Component Per litre Supplier 

LB agar 32 g Life Technologies  

 

Antibiotic Final concentration Supplier 

Chloramphenicol 30 mg/l Roth 

Kanamycin 30 mg/l Roth 

 

LB agar was dissolved in H2O. The solution was autoclaved and cooled to 50°C. If required, 

antibiotics were added at the concentrations indicated. Plates were stored at 4°C. 

 

Luria-Bertani (LB) medium 

Component Per litre Supplier 

Luria-Bertani broth base 20 g AppliChem 

 

LB broth base was dissolved in H2O. The solution was autoclaved and cooled to 50°C. If 

required, antibiotics were added at the concentrations indicated. Plates were stored at 4°C. 

 

ZYM-5052 autoinduction medium (Studier, 2005) 

Component Final concentration Supplier 

N-Z amine AS 1% AppliChem 

Yeast Extract 5%  BD Biosciences 

1000x Trace metals   

FeCl3 10 µM Sigma-Aldrich 

CaCl2 4 µM  Sigma-Aldrich 

MnCl2 2 µM Sigma-Aldrich 

ZnSO4 2 M Sigma-Aldrich 

CoCl2 1 µM Sigma-Aldrich 

CuCl2 1 µM Sigma-Aldrich 

NiCl2 1 µM Sigma-Aldrich 

Na2MoO4 1 µM Sigma-Aldrich 

Na2SeO3 1 µM Sigma-Aldrich 

H3BO3 1 µM Sigma-Aldrich 
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50x5052 mixture   

Glycerol 54 mM Sigma-Aldrich 

Glucose 2.8 mM Sigma-Aldrich 

α-Lactose 5.6 mM Sigma-Aldrich 

50xM mixture   

Na2HPO4 25 mM Sigma-Aldrich 

KH2PO4 25 mM Sigma-Aldrich 

NH4Cl 50 mM Sigma-Aldrich 

Na2SO4 5 mM Sigma-Aldrich 

MgSO4 2 mM Sigma-Aldrich 

   The ZYM-5052 medium was prepared according to the recipe described by Studier (2005). 

Briefly, N-Z-amine AS and yeast extract were dissolved in 1 L H2O in a 2 l Erlenmeyer flask, 

autoclaved and cooled. A stock solution of 0.1 M FeCl3 was dissolved in a 100-fold dilution of 

0.12 M HCl. This solution was combined with autoclaved stock solutions of the other metals to 

make a 1000x trace metal mixture. 50x5052 and 50xM were prepared, filter-sterilised and added 

to a final concentration as indicated. Kanamycin was added to a concentration of 30 µg/µl. 

TFB1  

Component Per litre Supplier 

Potassium acetate 2.82 g (30 mM) Roth 

KCl  7.46 g (100 mM) Roth 

CaCl2 x 2 H2O 1.48 g (10mM)  Roth 

MnCl 6.3 g (50 mM) Roth 

Glycerol 150 ml (15%) Roth 

The pH was adjusted to 5.8 with 0.2 M acetic acid prior to filter-sterilisation. 40 ml aliquots were 

stored at -20°C.  

 

TFB2  

Component Per 100 ml Supplier 

MOPS  0.42 g (10 mM) Roth 

KCl  7.46 g (100 mM) Roth 

CaCl2 x 2 H2O 1.11 g (75 mM) Roth 

KCl  0.074 g (10 mM) Roth 

Glycerol 15 m (15%) Roth 

The pH was adjusted to 6.5 with KOH prior to filter-sterilisation. 4 ml aliquots were stored at 20°C.  
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2.1.5.3 Dictyotelium discoideum 

HL5 medium (Watts and Ashworth, 1970) 

Component Per litre Supplier 

D(+)-glucose monohydrate  11 g Fluka 

BBL yeast extract  5 g BD Biosciences 

Bacto proteose peptone  5 g BD Biosciences 

Bacteriological peptone 5 g Oxoid 

Na2HPO4 0.355 g (2.5 mM) Fluka 

KH2PO4 0.34 g (2.5 mM) Fluka 

   

The pH was adjusted to 6.5 with 1 M KOH or 1 M HCl and the medium autoclaved and stored at 

4°C. 

MB medium (Solomon et al., 2000) 

Component Per litre Supplier 

Yeast Extract 7 g Oxoid 

Bacto proteose peptone 14 g BD BioSciences 

MES buffer  4.26 g (20 mM) AppliChem 

MB medium was prepared immediately before use. The pH was adjusted to 6.9 using 1 M KOH, 

autoclaved and stored at 4°C.  

 

SorC (Malchow et al., 1972) 

Component Per litre Supplier 

NaHPO4 0.28 g (2 mM) Fluka 

KH2PO4 2.04 g (15 mM) Fluka 

CaCl2 x 2 H2O 7.35 mg (50 mg) Roth 

 

The pH was adjusted to 6.0 using KOH, autoclaved and stored at 4°C.  
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2.1.5.4 Acanthamoeba castellanii 

PYG (Peptone yeast extract glucose) medium (Moffat and Tompkins, 1992) 

Component Per litre Supplier 

Bacto proteose peptone  20 g BD BioSciences 

BBL yeast extract  1 g BD BioSciences 

MgSO4 x 7 H2O 10 ml (4 mM) Roth 

Sodium citrate x 2 H2O 3.4 ml (1 M) Roth 

Fe(NH4)2 x 7 H2O  10 ml (0.25 M) Roth 

Na2HPO4 10 ml (0.25 M) Roth 

KH2PO4 2.5 mg (2.5 mM) Fluka 

D(+)-glucose monohydrate 19.8 g Fluka  

The pH was adjusted to 6.5 with 1 M KOH or 1 M HCl. After addition of 50 ml 2 M glucose the 

medium was filter-sterilised using a glass-fiber filter 5 times and stored at 4°C. 

Lo Flo medium  

Component Per litre Supplier 

LoFlo base  20 g ForMedium (Norfolk) 

 

Ac buffer (Moffat and Tompkins, 1992) 

Component Per litre Supplier 

MgSO4 x 7 H2O  985.9 mg (4 mM) Oxoid 

CaCl2 x 2 H2O 44 mg (0.4 mM) BD BioSciences 

Sodium citrate x 2 H2O 999 mg (3.4 mM) AppliChem 

Na2HPO4 x 7 H2O 86 mg (0.05 mM)  

KH2PO4 2.5 mg (2.5 mM)  

NH4Cl 2.6 mg (0.05 mM)  

FeSO4  7.55 mg (0.05 mM)  

The pH was adjusted pH to 6.5 using 1 M HCl, autoclaved and stored at 4°C. 
 

Phosphate buffered saline (PBS) 10x 

The pH was adjusted to 7.4 with 1 M NaOH or 1 M HCl, autoclaved and stored at room 

temperature.  

 

Component Final concentration Supplier 

NaCl  80 g Roth 

KCl 2 g Roth 

Na2HPO4 14.2 g Fluka 

KH2PO4 2.4 g Fluka 
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2.2 Methods 

2.2.1 Legionella pneumophila 

2.2.1.1 Cultivation of L. pneumophila 

The bacterial strains used are listed in Section 2.1.3. L. pneumophila was grown on CYE agar 

plates (Feeley et al., 1979), or in AYE broth, supplemented with chloramphenicol (Cm, 5 µg/ml), 

gentamicin (Gm, 10 µg/ml) or kanamycin (Km, 50 µg/ml), if necessary.  

L. pneumophila grown for 3 days on CYE plates were used to inoculate 3 ml of AYE liquid 

medium in a 15-ml polystyrene test tube at an OD600 of 0.1 for subsequent incubation on a turning 

wheel at 37°C.  

2.2.1.2 L. pneumophila glycerol stocks 

Late-exponential L. pneumophila liquid cultures (Section 2.2.1.1) were mixed with 50% glycerol in 

a 1:2 ratio and frozen in liquid nitrogen in cryo tubes for storage purpose at -80°C.  

2.2.1.3 Electrocompetent L. pneumophila 

Exponentially grown overnight culture of L. pneumophila (Section 2.2.1.2) was diluted 1:30 and 

used to inoculate 30 ml of AYE. At an OD600 between 0.3 and 0.6, the bacteria were cooled on ice 

and washed 3 times with sterile, ice-cold 10% glycerol (10 ml, 2.5 ml, 160 µl). 40-µl aliquots were 

frozen in liquid nitrogen and stored at -80°C.  

2.2.1.4 Transformation of L. pneumophila by electroporation 

40 µl electrocompetent L. pneumophila (Section 2.2.1.3) were mixed with a minimum of 150 ng of 

plasmid DNA on ice. Bacteria were transferred into a 2 mm electrode-gap electroporation cuvette 

and subjected to electroporation (2.5 kV, 200 Ohm, 25 µF, 5 ms). After addition of 450 µl AYE, 

bacteria were incubated at 37°C at 800 rpm for 5 h and plated onto selective CYE agar.  

2.2.2 Escherichia coli 

2.2.2.1 Cultivation of E. coli  

E. coli strains were cultured in LB medium, supplemented with Cm (30 µg/ml) or Km (30 µg/ml), if 

required. Protein overproduction in E. coli was performed in ZY50-52 medium (Section 2.1.5.2) as 

described elsewhere (Studier, 2005).  

2.2.2.2 Preparation of chemocompetent E. coli  

A late-exponential E. coli overnight culture (Section 2.2.2.1) was used to inoculate 100 ml of LB 

medium at 37°C at 180 rpm. At an OD600 of 0.5, bacteria were cooled on ice and washed with 40 

ml of ice-cold TFB1 (Section 2.1.5.2) and subsequently with 4 ml of ice-cold TFB2. Bacterial 

aliquots of 40 µl were flash-frozen in liquid nitrogen and stored at -80°C.  
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2.2.2.3 Transformation of E. coli by heat shock 

40 µl of chemocompetent E. coli (Section 2.2.2.2) were incubated with 100 ng of plasmid DNA on 

ice for 30 min. After performing a heat shock at 42°C for 45 s, bacteria were mixed with 450 µl of 

LB, incubated for 90 min at 800 rpm at 37°C and plated on selective LB agar.  

2.2.2.4 Glycerol stocks of E. coli 

Overnight E. coli liquid cultures (Section 2.2.2.1) grown in LB medium were mixed with 50% 

glycerol in a 1:2 ratio and frozen in liquid nitrogen in cryo tubes for storage purpose at -80°C.  

2.2.3 Mammalian and protozoan cell lines 

2.2.3.1 Cultivation of mammalian cell lines 

The murine macrophage cell line RAW264.7 and human HL-60 cells were cultured in a humidified 

atmosphere of 5% CO2 at 37°C in RPMI (Roswell Park Memorial Institute) 1640 medium (Life 

Technologies) supplemented with 10% (v/v) fetal calf serum and 2 mM L-glutamine (50 µg/ml). 

HL-60 cells were differentiated into macrophages with phorbol 12-myristate 13-acetate (PMA, 100 

ng/ml, 48 h) as described by Hilbi et al. (2001). 

2.2.3.2 Storage of mammalian cell lines  

Cells were cultivated to 80% confluence in a 75 cm2 culture flask, spun down and resuspended in 

3-4 ml freezing medium (70% RPMI 1640, 20% FCS, 10% DMSO). Cryo tubes were filled with 1 

ml-aliqouts of the prepared suspension and were transferred to a freezing box (containing 

isopropanol and precooled at 4°C for 1 h), frozen at -80°C overnight and stored in liquid N2. 

2.2.3.3 Cultivation of protozoan cell lines 

Acanthamoeba castellanii (ATCC 30234) was grown in PYG medium (Section 2.1.5.4) at 30°C 

(Segal and Shuman, 1999, Moffat and Tompkins, 1992). Dictyostelium discoideum wild-type 

strain Ax3 was grown in HL5 medium (Section 2.1.5.3) at 23°C as described (Weber et al., 2006).  

2.2.3.4 Storage of protozoan cell lines 

9 ml of D. disoideum or A. castellanii cultures were grown to 80% confluence in a 75 cm2 culture 

flask (Section 2.2.3.3), and resuspended in 3-4 ml freezing medium (80% HL-5 or PYG, 10% 

FCS, 10% DMSO). Cryo tubes were filled with 1 ml-aliqouts of the prepared suspension and were 

transferred to a freezing box (containing isopropanol and precooled at 4°C for 1 h), frozen at  

-80°C overnight and stored in liquid N2. 
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2.2.4 Construction of vectors for expression, allelic exchange and competence  

Cloning and DNA manipulations were performed according to standard protocols (Promega, 

NEB, Fermentas, Roche). DNA fragments were amplified using primers listed in Section 2.1.4 

and plasmids were isolated using commercially available kits from Qiagen or Macherey-Nagel. All 

constructs were verified by DNA sequencing (GATC, Germany). 

To construct the allelic exchange vectors pNT-46 (lqsT, KmR) or pNT-47 (lqsT, GmR), 

approximately 0.6 kb each of the 5′ and 3′ flanking sequences of lqsT (TH1, TH2) were amplified 

by PCR using the primer pairs oH1-LqsT-fo/-re and oH2-LqsT-fo/-re respectively. The PCR 

products and a Km resistance cassette from pUC4K or a Gm resistance cassette from pBSL141 

were digested with BamHI and ligated into pGEM-T-Easy in a four-way ligation reaction. The 

resulting clones were analysed by restriction digestion and sequenced. Using NotI the TH1-KmR-

TH2 or TH1-GmR-TH2 fragments were then cloned into the pLAW344 suicide vector, yielding 

plasmid pNT-46 or pNT-47 respectively. 

The deletion plasmid for pAK-16 was constructed as follows: Using primer pairs oH1-SinR-

fo/re and oH2-SinR-fo/re, 0.7 kb of the 5’ and 3’ flanking sequences of sinR (SH1, SH2) were 

amplified by PCR and together with a Km resistance cassette cloned into pLAW344 using the 

restriction sites XbaI and BamHI.  

The expression vectors pAK-2 (lqsT under control of PlqsT, constitutive gfp expression) and 

pAK-6 (lqsT under control of Ptac) were constructed by PCR amplification using chromosomal 

DNA of L. pneumophila JR32 as template and the primer pairs oP-LqsT-fo/-re (including the 5′ 

UTR of lqsT), or oLqsT-fo/oP-LqsT-re respectively (Section 2.1.4). The PCR products were 

ligated into pGEM-T-Easy, liberated by digestion with either BamHI or NdeI/BamHI and cloned 

into plasmid pNT-28 (BamHI within the additional MCS) or into pMMB207C-RBS-lcsC 

(NdeI/BamHI). All PCR products were sequenced (GATC, Munich).  

The complementation plasmid pAK-18 was generated by amplifying sinR and its promoter by 

PCR, digestion with XbaI and BamHI and cloning into pNT-28.  

GFP-transcriptional fusions of PfrgA and PsinR were constructed using primer pairs oP-FrgA-fo/re 

and oP-SinR-fo/re and cloned into the SacI and XbaI sites of pCM-4, yielding pAK-17 and pUS-

11, respectively. 

For the construction of the vector encoding His-SinR (pAK-21), a PCR fragment amplified with 

the primer pair oSinR-fo/re was cloned into pET28a(+) using the restriction sites NdeI and 

BamHI.  

For competence assays, the vector pAK-15 harbouring a Cm resistance cassette was 

generated as follows: flanking sequences of lqsA and lqsS (0.5 kb each) were amplified by PCR 

using the primer pair oC-LqsA-fo/-re and oC-LqsS-fo/-re, and pNT-1 as a template. The Cm 

resistance cassette fragment (1.1 kb) was amplified by PCR using the primer pair oCR-fo/-re and 

pTS-1 as a template. The PCR products were digested with PstI and ligated into the pGEM-T-

Easy vector in a four-way ligation reaction. The resulting clones were analysed by restriction 

digestion and sequenced for correct inserts. 
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2.2.5 Construction of chromosomal lqsT, lqsS-lqsT and sinR deletion strains 

Allelic exchange by double homologous recombination using counter-selection on sucrose was 

performed essentially as described (Tiaden et al., 2007; Wiater et al., 1994). To construct a 

chromosomal lqsT or sinR deletion strain, L. pneumophila JR32 was transformed by 

electroporation with pNT-46 or pAK-16, respectively. Co-integration of the plasmids was assayed 

by selection on CYE/Km (5-7 d, 30°C). Several clones thus obtained were re-streaked on 

CYE/Km, grown overnight in 96-well plates containing AYE medium at 180 rpm and streaked on 

CYE/Km containing 2% sucrose (Suc). After an incubation period of 3-5 d at 37°C, single 

colonies were spotted on CYE/Cm, CYE/Km/2% Suc and CYE/Km plates to screen for CmS, 

KmR, SucR colonies. Double-cross-over events and thus deletion mutants were confirmed by 

PCR screening and sequencing. 

For construction of the double mutant strain lqsS-lqsT, pNT-47 was transformed into ∆lqsS. 

Subsequent selection steps were performed on CYE/Gm. Candidate deletion mutant clones were 

screened by PCR and confirmed by sequencing.  

2.2.6 Production and purification of LqsR  

The LqsR expression vectors encoding His-LqsRD108A (pRB-3) or His-LqsRD108N (pRB-4) were 

generated from His-LqsR (pTS-23) (Tiaden et al., 2007) by site-directed mutagenesis as 

described in Schell et al. (2014). The constructs were confirmed by sequencing and transformed 

into E. coli BL21(DE3) cells (Robichon et al., 2011). For large-scale protein production, bacterial 

cells grown overnight at 37°C in LB were used to inoculate main cultures of ZYM-5052 

autoinduction medium at a ratio of 1:500. Bacterial cells were grown at 30°C for 24 h, harvested 

(4'000 x g, 4°C, 20 min) and resuspended in lysis buffer (50 mM Tris-HCl pH 7.5, 10 mM β-

mercaptoethanol, 10% glycerol, 500 mM NaCl) containing lysozyme and Roche Complete 

protease inhibitor cocktail (Roche). After cell disruption by sonication, the lysate was centrifuged 

(24'000 x g, 4°C, 1 h) and filtrated (0.45 µm pore size filter units). Target proteins in the obtained 

supernatant were purified by immobilised metal ion affinity chromatography (IMAC) using an Äkta 

purifier system equipped with a HisTrap HP affinity column (GE Healthcare) and buffer B (50 mM 

Tris-HCl pH 7.5, 500 mM NaCl, 10 mM β-MeOH, 500 mM Imidazole, 10% glycerol). The fractions 

containing LqsR protein were pooled and concentrated to 5 ml using a Centriprep device 

(Microcon Ultrafree concentrator with a 30 kDa cut-off membrane (Millipore). Gel filtration of the 

samples was performed using a Superdex 200 16/60 size-exclusion chromatography (SEC) 

column (GE Healthcare) in SEC buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM β-MeOH). 

Protein purity and integrity was assessed by SDS-PAGE according to Lämmli (1970). Protein 

concentrations were determined using the NanoDrop 1000 apparatus (Thermo Scientific).  

The protein-containing fractions were collected, concentrated to ∼50 mg/ml for 

crystallisation, and frozen in aliquots for storage at -80°C. All samples LqsR wild type, LqsRD108A 

and LqsRD108N were treated likewise. 
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2.2.7 Crystallisation of LqsR 

All recombinant protein samples His-LqsR wild type, His-LqsRD108A and His-LqsRD108N were 

screened initially using approximately 480 crystallisation conditions chosen from various 

commercially available kits: Clear Strategy I, Clear Strategy II, JCSG, Morpheus (Molecular 

Dimensions), PACT and PEGs (Qiagen). Sitting drop vapour-diffusion crystallisation experiments 

and automated seeding were set up at 20°C using a Mosquito crystallisation robot (TTP). In initial 

crystallisation screens, 0.3 µl reservoir solution was added to 0.3 µl protein solution in 96-well 

CrystalQuick Plates (Greiner), the reservoir wells contained 90 µl of the screen solution. To test if 

removal of the His tag has an effect on the crystallisation of LqsR, Thrombin cleaved LqsRD108A 

was tested using the screens PEGs Suite and PACT.  

Crystal optimisation was performed with His-LqsR wild type, His-LqsRD108A and His-LqsRD108N. 

applying the previously desbribed microseeding technique (Marsh and D’Arcy, 2007, Ireton and 

Stoddard, 2004, Bergfors, 2003). The seed preparations were made using the ‘seed-bead' kit 

from Hampton Research, as described by Luft and DeTitta (1999). Briefly, crystals obtained from 

initial screen conditions were placed in 50 µl of their respective reservoir solution and 

mechanically homogenised on a vortex apparatus for 3 min at full speed. These seeds were 

stored as 50 µl aliquots and frozen at -80°C. Dilutions of the seed stocks (between 10- and 1000-

fold) were generated with the respective reservoir solutions and stored likewise. Similarily, 

crystals obtained for LqsR wild type and LqsRD108A in the following PACT screen conditions were 

used to produce seed bead stocks: (0.2 M sodium acetate, 0.1 M bis Tris propane pH 7.5, 20% 

PEG 3350) and (0.2 M lithium chloride, 0.1 M HEPES pH 7.0, 20% PEG 6000), respectively. 

Images of all drops were collected after a period of 2 days using a Crystal Score imaging system 

(RockImager). Crystals were soaked briefly in cryoprotectant that consisted of 85/15% (v/v) 

reservoir solution with glycerol prior to data collection in an N2 cold stream. Data were collected at 

100 K at the beamlines X06SA and X06DA at the Swiss Light Source (SLS, Paul Scherrer 

Institute, Villigen, Switzerland) and were processed and merged with the XDS program (Kabsch, 

2010). 

2.2.8 Production and purification of SinR 

His-SinR was purified from the cytosolic fraction of BL21(DE3)/pAK-21. Cells were grown 

aerobically in LB medium at 30°C and induced with 0.1 mM IPTG during exponential growth for 

10 h. Bacterial cells were harvested by centrifugation (20 min at 6000 x g; 4°C), resuspended and 

homogenised in lysis buffer (50 mM Tris-HCl, pH 8.0, 10% glycerol (v/v), 10 mM MgCl2, 1 mM 

DTT, 0.5 mM PMSF, 30 ng/ml DNase I) and disrupted at 10000 psi by French press. After 

centrifugation (10 min at 6000 x g, 4°C), the supernatant containing His-SinR was subjected to 

purification by affinity chromatography using nickel-nitrilotriacetic acid (Ni-NTA)-agarose (Qiagen) 

equilibrated with buffer E (10 mM imidazole, 10% (v/v) glycerol, 50 mM Tris-HCl pH 8.0, 10 mM 

β-MeOH). His-tagged proteins were eluted using buffer E containing 250 mM imidazole. His-SinR 

was examined by SDS-PAGE and subsequent Coomassie Brilliant Blue staining. Protein 

concentrations were determined using the NanoDrop 1000 apparatus.  
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2.2.9 Electrophoretic mobility shift assays (EMSA) 

For electrophoretic mobility shift assay (EMSA), amplicons spanning the promoter regions of 

sinR, lqsA, or lqsR (PsinR, PlqsA, or PlqsR) were generated by PCR amplification using primer sets 

oSinR-fo/re, oLqsA-EMSA-fo/re, oLqsR-EMSA-fo/re, or oRpoS-EMSA-fo/re respectively. sinR 

and lqsA promoter fragments were restriction digested with EcoRI, yielding DNA probes A, B and 

E, F, respectively (see Section 3.3.1.2, Figures 21 and 22). DNA probes (65 pmol) were 

incubated with various concentrations of His6-SinR (0, 10, 20, 40, 60, 80, 100, 120, 140 µM) in a 

20-µl reaction mixture containing 50 mM Tris-HCl, pH 8.0; 750 mM KCl; 2.5 mM EDTA, 62.5% 

(v/v) glycerol; 0.5% Triton-X 100, 1 mM dithiothreitol (DTT). Each reaction was supplied with 1 µg 

of the copolymer poly(deoxyinosinic-deoxycytidylic) acid (poly(dI-dC)) to prevent unspecific 

binding of protein to the promoter regions of interest. After 10 min of incubation at room 

temperature, the binding reaction mixtures were resolved by electrophoresis for approximately 1 

h at 180 V on a 6% nondenaturing polyacrylamide gel in 1×TBE buffer. Visualisation and digital 

image capture of the EtBr-stained bands were performed using a Bio-Rad imager. 

 

2.2.10 Host cell interaction experiments  

2.2.10.1 Phagocytosis 

Phagocytosis of GFP-labelled L. pneumophila by A. castellanii, D. discoideum or RAW 264.7 

macrophages was assessed by FACS (fluorescence-activated cell sorting) as described (Tiaden 

et al., 2007, Weber et al., 2006). Briefly, cells were seeded onto a 24-well plate (2.5 × 105 A. 

castellanii/ml, 5 × 105 D. discoideum/ml, or 2 x 105 RAW macrophages/ml) and were allowed to 

adhere for 1–2 h. L. pneumophila AYE overnight cultures grown for 21 h were diluted in the 

corresponding culture media and used for infection of the amoebae and macrophages at an MOI 

of 50. The infection was synchronised by centrifugation (10 min, 880 × g), and the infected cells 

were incubated at 30°C (A. castellanii), 25°C (D. discoideum) or 37°C (RAW 264.7 cells). At 40 

min post infection the infected cells were washed three times with Ac buffer (A. castellanii), SorC 

buffer (D. discoideum), or PBS (RAW 264.7 cells). Cells were detached by vigorously pipetting in 

culture supernatant, and GFP fluorescence was measured using a FACS Canto flow cytometer 

(BD BioSciences) and a scatter gate adjusted for A. castellanii, D. discoideum or RAW 264.7 

cells. The viability of L. pneumophila (CFU) and expression of GFP (typically 80-90%) was 

routinely controlled.  

2.2.10.2 Intracellular replication 

For an iIntracellular replication assay A. castellanii, D. discoideum or RAW 264.7 macrophages 

were washed once, suspended in Ac buffer (A. castellanii), MB medium (D. discoideum) or PBS 

(RAW 264.7 macrophages), seeded onto a 96-well plate (2.5 × 105 A. castellanii/ml, 5 × 105 D. 

discoideum/ml or 2 × 105 RAW macrophages/ml) and allowed to adhere. L. pneumophila was 

grown for 21 h in AYE broth, diluted in Ac buffer (A. castellanii) or MB medium (D. discoideum) or 

RPMI 1640 (RAW 264.7 cells) and used to infect the amoebae at an MOI of 0.1. The infection 

was synchronised by centrifugation, and the infected amoebae were incubated at 30°C (A. 
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castellanii), 25°C (D. discoideum) or 37°C (RAW macrophages). At days 1-5 post infection, 

samples were taken by resuspending the infected amoebae in culture supernatant. 

Single round intracellular growth of GFP-producing L. pneumophila was assayed in 

A. castellanii amoebae or RAW macrophages, which were transferred to fresh medium (PYG or 

RPMI 1640, respectively) 2 days before the experiment. One day before the experiment, the cells 

were resuspended and seeded into a black 96-well clear bottom plate (Perkin-Elmer) at a density 

of 2 × 104 (amoebae) or 8 × 104 (RAW 264.7 macrophages) cells per well and allowed to adhere 

overnight. L. pneumophila transformed with pNT-28 (constitutively producing GFP) were grown 

overnight in AYE/Cm to an OD600 of 3.0 (∼ 2 × 109 bacteria/ml) and diluted to 8 × 106 bacteria/ml 

in LoFlo low fluorescence medium (Formedium). The cells were infected at an MOI of 20 with 

100 µl of diluted L. pneumophila suspension by centrifugation at 450 × g for 10 min, and then 

incubated at 30°C for 48 h or several days. GFP fluorescence was quantified at multiple time 

points using a plate reader (FLUOstar Optima, BMG Labtech). To correlate fluorescence readings 

with bacterial viability, the cells were lysed at set time points using 0.8% saponin (amoebae) or 

ddH2O (macrophages), dilutions were plated on CYE plates, and CFU were recorded. 

 
2.2.10.3 Co-infection experiments 

For co-infection competition assays the protocol of Herrmann et al. was modified (Herrmann et al., 

2011). A. castellanii amoebae (5 x 104 per well, 96-well plate) in Ac buffer were infected at an 

MOI of 0.01 each with wild-type L. pneumophila and the Km-resistant mutant strain to be tested. 

The infected amoebae were grown for 21 days at 37°C. Every third day the supernatant and 

amoebae lysed with 0.8% saponin were diluted 1:1000, fresh amoebae were infected (50 µl 

homogenate per 200 µl amoebae culture volume), and aliquots were plated on CYE agar plates 

containing Km or not to determine CFU. 

2.2.10.4 Gentamicin protection assay  

Phagocytosis of L. pneumophila by HL-60 macrophages was analysed by a gentamicin protection 

assay as described (Hilbi et al., 2001). Briefly, HL-60 macrophages differentiated with PMA (100 

ng/ml) were infected at an MOI of 100 with L. pneumophila strains grown for 21 h in AYE broth, 

washed and resuspended in RGN medium (RPMI 1640, 2 mM L-glutamine, 10% normal human 

AB serum). After centrifugation, the infected macrophages were incubated for 20 min at 37ºC, 

washed with PBS, and the medium was replaced by RGN medium containing gentamicin (0.1 

mg/ml). After another 40 min, the medium was aspirated, the infected macrophages were lysed 

by addition of 100 µl H2O, and 20 µl of the lysate were plated onto CYE agar plates.  
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2.2.11 Salt sensitivity test 

The stress resistance of L. pneumophila was analysed using 0.5 ml of cultures in exponential 

(OD600=2.0) or stationary (OD600=3.8) growth phase. The bacteria were harvested and 

resuspended in 0.5 ml PBS (control) or the medium containing either 10 mM H2O2 (10 min), 0.1 

M citric acid pH 3 (10 min) or 5 M NaCl (30 min). The bacteria were collected by centrifugation, 

resuspended in 0.5 ml of PBS and plated in appropriate dilutions on CYE plates.  

 
2.2.12 Biofilm formation and sedimentation 

Biofilm formation of L. pneumophila under static conditions was assayed in 96-well polystyrene 

microtitre plate by crystal violet incorporation after 5 days as described (Mampel et al., 2006). 

Briefly, stationary phase L. pneumophila overnight cultures were adjusted to OD600 of 0.2, and 

200 µl were transferred to a 96-well microtitre plate. Following incubation at 37°C for 3 days, the 

biomass of biofilm was quantified by crystal violet staining assay. Bacteria were stained with 200 

µl of a 0.2% crystal violet solution in each well for 15 min, washed 3 times with 340 µl sterile 

distilled water and solubilised in 200 µl of 95% ethanol at room temperature for 15 min. 

Absorbance was measured at OD595 with a microplate reader. Each experiment was repeated 

three times with nine technical replicates for each condition and control. 

To assay sedimentation, the bacteria were grown for 3–4 days on CYE agar plates, 

resuspended in 1–2 ml AYE medium at an OD600 of 3.5 and let sediment for 6–12 h at room 

temperature (Tiaden et al., 2010). 

 

2.2.13 Natural competence 

Analysis of natural competence was performed according to Charpentier et al. (2011), with the 

following modifications: L. pneumophila wild-type and lqs mutant strains were grown in 5 ml of 

AYE broth to post-exponential growth phase (OD600 2.6–3.0) or to the OD600 indicated. The 

cultures were centrifuged, and after removing 2 ml of AYE, resuspended in the remaining 3 ml of 

the medium. The bacteria were then incubated without agitation at 30°C for 24 h with 300 ng of 

linear DNA (purified PCR product). The PCR fragments consisted of either a Gm resistance 

cassette inserted into the 5′ and 3′ flanking regions of lqsT (amplified with the primers oH1-LqsT 

fo/oH2-LqsT-re using pNT-47 as template), or a Cm resistance cassette plus flanking regions of 

the lqs cluster (amplified with the primers oC-LqsA-fo/oC-LqsS-re using pAK-15 as template). 

Subsequently, the strains were plated in appropriate dilutions on CYE agar plates supplemented 

with 5 µg/ml Cm or 10 µg/ml Gm, and CFU were determined after 3 days. For the ∆lqsS-∆lqsT 

strain (KmR, GmR) only linear DNA conferring Cm resistance was used. 
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2.2.14 GFP reporter experiments 

Overnight liquid cultures of L. pneumophila strains harbouring transcriptional gfp fusion reporter 

constructs were grown to an OD600 of 1.5-2.0 and diluted to an initial OD600 of 0.1 in AYE/Cm 

(200 µl/well), and the 96-well plate was incubated at 37°C at 150 rpm. Growth and expression of 

the green fluorescent protein (GFP) gene fusions were monitored by measuring the absorbance 

at 600 nm (A600) and fluorescence (RFU, relative fluorescence units; excitation, 485 nm; 

emission, 520 nm) using a microtitre plate reader (FluoStar Optima, BMG Labtech). Values are 

expressed as relative fluorescence units (RFU) per OD600 and represent means and standard 

deviations of sextuplicates. 
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3. Results  

3.1 The Legionella pneumophila sensor kinase LqsT, a homologoue of LqsS 

Bioinformatic analysis of the L. pneumophila strain Philadelphia-1 genome revealed a gene 

(lpg2506), which was homologous to the L.pneumophila lqsS and V. cholerae cqsS sensor 

histidine kinases (Miller et al., 2002) and therefore termed lqsT. The putative histidine kinase LqsT 

Figure 4: Sequence comparison of Lqs/Cqs family sensor histidine kinases. The sequences of the 

Lqs/Cqs family sensor histidine kinases LqsT (lpg2506) and LqsS (lpg2733) of Legionella pneumophila 

Philadelphia-1 and CqsS of Vibrio cholerae C6706str El Tor (Accession Q9KM66) were aligned using 

the ClustalW algorithm and Bioedit. The degree of residue shading was determined by using BioEdit at 

setting ‘Blosum62’. Black and grey shading indicate 100% and 80% residue similarity, respectively. The 

putative six transmembrane helices are marked with a blue line, the conserved histidine residue 

(LqsTH204, LqsSH200 and CqsSH195) and putative phosphorylation site is represented by a red star.  
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Figure 5: The lqs system in L. pneumophila. Genomic organisation of the L. pneumophila lqs gene 

cluster (lpg2731–2734) and lqsT (lpg2506). The lqs cluster comprises the autoinducer synthase lqsA, 

the response regulator lqsR, a homologue of E. coli hdeD (HNS-dependent expression D) and the 

cognate sensor kinase lqsS. The ‘orphan’ sensor kinase lqsT localises in the vicinity of the effector 

genes sdeD, sdcA and sidC. 

shares 31% sequence identity with L. pneumophila LqsS including six transmembrane helices 

adjacent to the periplasmic signal recognition domain. Analogously to LqsS, LqsT also lacks the C-

terminal receiver domain of the V. cholerae hybrid sensor kinase CqsS (Figure 4).  

In contrast to cqsS and lqsS, the ‘orphan’ gene lpg2506 is located in a distance to the lqs cluster 

in the genome, in the vicinity of three genes encoding Icm/Dot substrates (Figure 5): sdeD 

(lpg2509), sdcA (lpg2510) and sidC (lpg2511) (Luo and Isberg, 2004, Weber et al., 2006, Ragaz 

et al., 2008, respectively). Moreover, the lpg2506 gene is expressed from its own promoter (Sahr 

et al., 2012) and does not bear any resemblance to other genes apart from lqsS  

 

 

 

 

 

 

To characterise the lqsT gene on the genetic level, defined chromosomal deletion mutants of 

L. pneumophila Philadelphia-1 lacking lqsT (∆lqsT; AK01), or lqsS and lqsT (∆lqsS-∆lqsT; AK02) 

were constructed by allelic exchange. The strains ∆lqsT or ∆lqsS-∆lqsT replicate at the same rate 

as wild-type bacteria in AYE broth (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Growth of the L. pneumophila ∆lqsT and ∆lqsS-∆lqsT mutant strains in AYE broth. L. 

pneumophila wild type, ∆lqsT or ∆lqsS-∆lqsT mutant strains were grown in AYE broth at 37°C and the 

optical density (OD600) was monitored over time. Data represent means and standard deviations of 

triplicates and are representative of at least three independent experiments.  
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Figure 7: Salt sensitivity of L. pneumophila ∆lqsT or ∆lqsS-∆lqsT mutant strains. L. pneumophila 

wild-type, ∆lqsR, ∆lqsS, ∆lqsT or ∆lqsS-∆lqsT mutant strains harbouring a vector control (pNT-28) or a 

plasmid expressing lqsS (plqsS, pNT-31) or lqsT (plqsT; pAK-2) under control of their native promoters 

were grown to stationary growth phase in AYE broth at 37°C and spotted in decreasing concentrations 

onto CYE agar plates either with or without 100 mM NaCl (control). Similar results were obtained in 3 

independent experiments. Published in Kessler et al., 2013. 

Moreover, the ∆lqsT mutant strain was identical to wild-type bacteria regarding morphology, growth 

on agar plates at different pH values (pH 6.5–7.5) and at lower temperature (25°C), persistence (14 

days in water) or biofilm formation (Kessler et al., 2013). 

3.1.1 Salt sensitivity and sedimentation of L. pneumophila lacking lqsT or lqsS 

and lqsT 

The transition from the exponential to the post-exponential growth phase confers profound 

phenotypic changes to L. pneumophila. In particular, the expression of various virulence attributes 

is linked to specific growth conditions. Wild-type L. pneumophila are sensitive to sodium chloride, a 

trait that closely correlates with virulence, such that avirulent strains are more salt-resistant (Hales 

and Shuman, 1999, Byrne and Swanson, 1998). To compare the salt sensitivity of ∆lqsT or ∆lqsS-

∆lqsT to wild-type or lqs mutant bacteria, the strains were grown to stationary phase and spotted in 

serial dilutions on CYE agar plates in the presence or absence of 100 mM NaCl. In the presence of 

salt, plating efficiency of the ∆lqsT or ∆lqsS-∆lqsT strains was 1000-fold higher compared with 

wild-type bacteria, akin to the ∆lqsR and ∆lqsS mutant strains (Figure 7). Expression of lqsT on a 

plasmid under control of its native promoter complemented the phenotype both in the ∆lqsT and in 

the ∆lqsS-∆lqsT background. Similarly, salt sensitivity was restored by introducing lqsS on a 

plasmid under the control of the endogenous promoter either in the ∆lqsS or in the ∆lqsS-∆lqsT 

background. On the other hand, exponentially growing lqs mutant strains did not display any 

differences in salt sensitivity (Kessler et al., 2013).  
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Together, these results indicate that the absence of lqsT decreases the bacterial salt sensitivity 

during stationary phase, and lqsT and lqsS may functionally substitute each other.  

Wild-type L. pneumophila grown for 3–4 days on CYE agar plates and suspended in AYE 

medium were observed to settle to the bottom of polystyrene test tubes and form a loose cell pellet 

after 12-18 hours. By contrast, strains lacking lqsR or lqsS exhibited impaired sedimentation 

behaviour due to the formation of extracellular filaments (Tiaden et al., 2010b). To test whether lqsT 

played a role in the production of extracellular filaments, sedimentation of the ∆lqsT or ∆lqsS-∆lqsT 

strains was compared to wild-type bacteria and the ∆lqsR and ∆lqsS strains (Figure 8). Consistent 

with previous results, the ∆lqsR and ∆lqsS mutant strains remained partially resuspended with 

limited sedimentation. By contrast, ∆lqsT formed a wild-type-like cell pellet, indicating that the 

formation of extracellular filaments implicated in sedimentation did not depend on lqsT. Bacterial 

cell pellets of the ∆lqsS and ∆lqsS-∆lqsT strains were of similar size, indicating that the absence of 

lqsS promotes the production of extracellular filaments in a dominant manner. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Sedimentation behavior of L. pneumophila lacking lqsT or lqsS and lqsT. L. 

pneumophila wild type, ∆lqsR, ∆lqsS, ∆lqsT or ∆lqsS-∆lqsT were grown for 3 days on CYE agar 

plates, resuspended in 1 ml of AYE broth at an OD600 of 3.5 and analysed for sedimentation at room 

temperature for 12 h. Similar results were obtained in at least three independent experiments. 

Published in Kessler et al., 2013. 
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Figure 9: Lqs genes regulate natural competence for transformation in L. pneumophila.             

L. pneumophila wild-type, ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT or ∆icmT strains were grown in 

AYE broth (A, B, D) to post-exponential growth phase (OD600 2.6–3.0) or (C) to the OD600 indicated 

and incubated at 30°C for 24 h with linear DNA encoding (A, B) a Cm or (C) a Gm resistance cassette 

flanked by fragments homologous to the chromosomal up- and downstream regions of either the lqs 

cluster or lqsT. Transformation efficiency was quantified by determining CFU on selective agar plates. 

(D) PcomEA-dependent production of GFP relative to cell density (relative fluorescence units, RFU/OD600 

was monitored over time in L. pneumophila wild-type, ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT or ∆lqsS-∆lqsT 

strains harbouring a transcriptional PcomEA–gfp fusion reporter construct. The data shown are means 

and standard deviations of duplicates (A–C) or triplicates (D) and representative of at least two 

independent experiments. P-value (A–C) < 0.05 (unpaired Student's t-test) for an OD600 > 2.5. 

Published in Kessler et al., 2013. 

 

3.1.2 The role of lqs genes in the regulation of natural competence  

Natural competence for transformation is a mode of horizontal gene transfer used by bacteria to 

acquire DNA from their environment. This process is mediated by a set of proteins dedicated to 

uptake and subsequent homologous recombination and integration of transforming DNA (Seitz et 

al., 2014): Transport of exogenous DNA through the outer membrane involves type IV pili. The 

passage of DNA through the cytoplasmic membrane in Bacillus subtilis was shown to be mediated 
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by the membrane-anchored dsDNA binding protein ComEA (Johnsborg et al., 2007, Chen et al., 

2004a). To investigate any potential link between natural transformation and small-molecule 

signalling in L. pneumophila, the lqs mutant strains were tested for the ability to take up exogenous 

DNA. For this purpose, wild-type and lqs deletion bacteria were grown to late exponential growth 

phase and incubated with linear DNA. This DNA fragment comprised a Cm resistance cassette 

flanked by fragments homologous to the chromosomal up- and downstream regions of the lqs 

cluster. Selection for Cm resistance yielded only low numbers of wild-type bacteria, arguing for a 

generally low transformation frequency of this strain under the conditions applied. In stark contrast, 

four orders of magnitude more colonies appeared for strains lacking lqsA, lqsR, lqsS or lqsT 

(Figure 9A). Moreover, approximately 50 times more colonies of the ∆lqsS-∆lqsT strain were 

obtained, compared with ∆lqsS or ∆lqsT. Natural competence of an icmT mutant strain lacking a 

functional Icm/Dot system was as low as the wild-type strain, suggesting that the T4SS, which also 

functions as a conjugation apparatus (Segal and Shuman, 1998), was not involved in the uptake of 

free DNA. The increased competence of the ∆lqsS or ∆lqsT strains was partially reverted by 

providing either lqsS or lqsT under the control of their native promoters, indicating that the genes 

are able to restore the phenotype (Figure  9B). Finally, in absence of the linear DNA fragment wild-

type L. pneumophila or ∆lqsS-∆lqsT failed to develop Cm-resistant transformants (Kessler et al., 

2013). 

Given that quorum sensing-controlled features are commonly regulated by cell density, natural 

competence of L. pneumophila was assessed at various stages throughout the growth curve. To 

this end, ∆lqsA and wild-type bacterial cultures of varying optical densities were exposed to linear 

DNA fragments comprising a Gm resistance cassette flanked by fragments homologous to the 

chromosomal up- and downstream regions of lqsT. Transformation frequency of the strains was 

quantified by selection for and counting of Gm resistant colony-forming units. Natural competence 

of wild-type bacteria was low within the OD600 range of 1.5–3.5. In contrast, the transformation 

frequency of the ∆lqsA mutant strain was significantly elevated at an OD600 above 2.5. This implied 

that competence of L. pneumophila is indeed regulated by the bacterial density and in particular by 

the growth phase, yet presumably repressed by LAI-1 signalling at high cell densities (Figure 9C). 

Similarly, increased competence of a strain lacking lqsR was observed only for cultures with an 

OD600 larger than 2.5 (Kessler et al., 2013). 

The gene encoding for the small DNA-binding periplasmic protein ComEA has been described 

as the most differentially expressed gene of those required for natural transformation of                      

L. pneumophila (Charpentier et al., 2008). As a direct indicator of competence, production of GTP 

under the control of the PcomEA promoter was therefore analysed in the lqs mutant strains (Figure 

9D). Late-exponential overnight cultures of bacterial strains harbouring a transcriptional PcomEA–gfp 

fusion were diluted to an initial OD600 of 0.1 in a microtitre plate and incubated at 600 rpm at 37°C. 

Compared with the wild-type strain, PcomEA-induced gfp-expression was significantly upregulated in 

bacteria laking lqsA, lqsR, lqsS or lqsT and even more pronounced in ∆lqsS-∆lqsT. This 

observation was in line with the findings obtained for the uptake and integration of linear DNA by 

homologous recombination (Figure 9A). After 4 h growth the normalised PcomEA-dependent 
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fluorescence intensity was enhanced approximately 1.5 × (∆lqsA), 2.0 × (∆lqsR), 2.7 × (∆lqsS), 

3.6 × (∆lqsT) or 4.0 × (∆lqsS-∆lqsT) compared with wild-type bacteria. Strains harbouring the 

corresponding promoterless vector control did not produce detectable GFP (Kessler et al., 2013). 

In summary, these results indicate that the lqs genes negatively regulate natural transformation of 

L. pneumophila at high cell densities, where lqsS and lqsT are assumed to control competence in a 

synergistic manner. 

3.1.3 Uptake and intracellular replication of L. pneumophila lacking lqsT or both 
lqsS and lqsT 

Previous reports demonstrated a decreased efficiency in phagocytic uptake for L. pneumophila 

strains lacking a functional Icm/Dot T4SS (Weber et al., 2006, Hilbi et al., 2001), lqsR (Tiaden et al., 

2007), lqsS (Tiaden et al., 2010b) or the entire lqs cluster (Tiaden et al., 2008).  

To test the involvement of lqsT in phagocytic uptake of L. pneumophila, amoebae or 

macrophages were infected with various GFP producing lqs deletion mutants, and uptake of the 

bacteria was quantified by flow cytometry. Compared with the wild type, fewer ∆lqsT mutant 

bacteria were taken up by A. castellanii (Figure 10A) or D.discoideum amoebae (50% or 25%, 

respectively), and approximately 10 times fewer ∆lqsS-∆lqsT mutant bacteria were phagocytosed 

by A. castellanii. Thus, the absence of lqsT had a smaller impact on uptake by phagocytes than the 

deletion of lqsS, and bacteria lacking both sensor kinases exhibited a synergistic phenotype. These 

data were corroborated in a gentamicin protection assay, where the uptake by human HL-60 

macrophage-like cells of L. pneumophila lacking either lqsT, lqsS or lqsR was also found to be 

impaired (Figure 10B).  

A putative role of lqsT in intracellular replication was assessed by infecting A. castellanii with 

L. pneumophila strains constitutively producing GFP. The replication efficiency of bacteria lacking 

lqsT as indicated by fluorescence intensity was comparable to the wild-type or lqsA mutant strain 

(Figure 10C). The growth defect observed for the ∆lqsS-∆lqsT deletion strain was more profound 

than for ∆lqsS, but the double mutant strain still replicated more efficiently than ∆lqsR bacteria. 

Furthermore, multiple round intracellular replication assays were performed with A. castellanii 

(Kessler et al., 2013) or murine RAW 264.7 macrophages (Figure 10D) infected at a low MOI (0.1). 

In this test the ∆lqsT, ∆lqsS, ∆lqsS-∆lqsT or other lqs mutant strains grew similarly to wild-type 

bacteria. In summary, host cell uptake and replication experiments revealed that lqsT regulates the 

interactions of L. pneumophila with phagocytes, yet lqsT appears to play a minor role compared 

with lqsS. 
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Figure 10. Lqs genes promote phagocytosis of L. pneumophila and intracellular replication in 

host cells. (A) A. castellanii amoebae were infected (MOI 50) with L. pneumophila wild-type, ∆lqsA, 

∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT or ∆icmT mutant strains harbouring a vector constitutively 

producing GFP (pNT-28). Uptake was quantified by flow cytometry defining an uptake index as the 

product of the number of cells above the gate threshold and the fluorescence intensity of the cells 

(relative units, RU). (B) Human HL-60 cells differentiated with PMA into macrophages were infected 

(MOI 50) with the aforementioned strains with or without the actin polymerisation inhibitor cytochalasin 

D (CytoD), and the uptake efficiency was determined by a gentamicin protection assay. (C) A. 

castellanii amoebae were infected (MOI 20) in a 96-well plate with the above strains harbouring pNT-

28, and the production of GFP was monitored over time by using a microtitre plate fluorescence reader 

(relative fluorescence units, RFU). (D) Murine RAW 264.7 macrophages were infected (MOI 0.1) with 

the aforementioned L. pneumophila strains, the infected cells were lysed with H2O, and bacterial 

growth was quantified by CFU counting.The data shown are means and standard deviations of 

triplicates and representative of three independent experiments. P-value (A) < 0.001 (unpaired 

Student's t-test) for all mutant strains except ∆lqsA. Published in Kessler et al., 2013. 

 
. 
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3.1.4 Competition of L. pneumophila wild-type and lqs mutant strains in  

A. castellanii 

The ∆lqsT mutant strain was only slightly impaired in intracellular replication compared to wild-type 

bacteria. In order to pinpoint the role of lqsT in the interactions between L. pneumophila and its 

hosts, a co-infection experiment was established. To this end, A. castellanii was co-infected with 

wild-type L. pneumophila and different lqs mutant strains at a 1:1 ratio (MOI 0.01 each) and grown 

at 37°C for 21 days. At the time points indicated, CFU of wild-type and mutant L. pneumophila were 

quantified by plating appropriate dilutions on CYE as well as on CYE/Km agar plates. Under the 

conditions used, the ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT mutant strains failed to compete 

against wild-type bacteria and were eradicated within 15–21 days (Figure 11). Compared with the 

∆lqsT or ∆lqsS-∆lqsT mutants, the strains lacking lqsA, lqsR or lqsS persisted more robustly for up 

to 15 days before being outcompeted by wild-type bacteria. Finally, an L. pneumophila strain 

lacking hdeD, a gene of unknown function located in the lqs cluster (Tiaden et al., 2008) (Section 

1.3.2, Figure 3), persisted throughout the course of the experiment, indicating that the Km 

resistance cassette used to construct the mutants did not per se impair the strains. Together, these 

results demonstrate a profound intracellular competitive disadvantage for strains lacking individual 

lqs genes. 

 

 

 

 

 

 

 

 

Figure 11: Lqs deletion strains are outcompeted by wild-type L. pneumophila upon co-infection 

of A. castellanii. A.castellanii amoebae in Ac buffer were co-infected (1:1 ratio, MOI 0.01 each) in 96-

well plates with wild-type L. pneumophila (filled circles) and the ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-

∆lqsT or ∆hdeD mutant strains (open circles), and grown at 37°C for 21 days. Every third day the 

supernatant and lysed amoebae were diluted 1:1000, fresh A. castellanii amoebae were infected (50 µl 

homogenate per 200 µl of amoebae culture volume), and aliquots were plated on CYE agar plates in 

presence or absence of Km for CFU quantification. The data shown are means and standard deviations 

of triplicates and representative of three independent experiments. Published in Kessler et al., 2013. 
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3.1.5 Overexpression of lqsA does not reverse phenotypes of ∆lqsS-∆lqsT 

A mutant strain defective for a LAI-1-responsive sensor kinase is likely insensitive to LAI-1 

signalling. Therefore, overproduction of the LAI-1-producing autoinducer synthase LqsA, should 

have no effect on L. pneumophila strains lacking LAI-1-responsive sensors. Unexpectedly however, 

overexpression of lqsA in the ∆lqsS strain reversed phenotypes of the mutant, suggesting that 

L. pneumophila produces another LAI-1-responsive sensor (Tiaden et al., 2010b). To investigate on 

a genetic level whether LqsT is a LAI-1-responsive sensor, lqsA was expressed under the control 

of its own promoter in lqs mutants, and uptake and salt sensitivity were compared to bacteria 

lacking both sensor kinases (strain ∆lqsS-∆lqsT). Additional experiments were performed to 

analyse potential reversion of the phenotypes by supplying the sensor kinases on a plasmid. 

Overexpression of lqsA partially restored the enhanced salt resistance of the ∆lqsS and ∆lqsT 

mutant strains but did not reach wild-type levels in the ∆lqsS-∆lqsT or ∆lqsR strains (Figure 12A). 

When provided on a plasmid, lqsA expression was able to restore the uptake defect of the single 

sensor kinase mutants ∆lqsS or ∆lqsT. In contrast, uptake efficiency of the ∆lqsS-∆lqsT or ∆lqsR 

strains was not restored to wild-type level upon expression of lqsA (Figure 12B). Previous reports 

demonstrated that lqsA also enhanced the uptake efficiency of wild type or ∆lqsA, but not of ∆icmT, 

confirming that a functional Icm/Dot T4SS is required for efficient uptake (Tiaden et al., 2010b). 

Finally, these observations indicate that LqsS and LqsT are likely the only two LAI-1-responsive 

sensor kinases produced by L. pneumophila. 
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Figure 12: lqsA does not revert phenotypes of L. pneumophila ∆lqsS-∆lqsT. (A) L. 

pneumophila wild-type, ∆lqsR, ∆lqsS, ∆lqsT or ∆lqsS-∆lqsT harbouring a vector control (pNT-28, 

black bars) or a plasmid expressing lqsA (pNT-36, white bars) were spotted in decreasing 

concentrations onto CYE agar plates supplemented with or without 100 mM NaCl and incubated 

for 3 days. (B) D. discoideum amoebae were infected (MOI 50) with L.  pneumophila wild-type, 

∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT or ∆icmT mutant strains harbouring a vector constitutively 

producing GFP (pNT-28), or GFP and LqsA under control of its own promoter (pNT-36). The 

percentage of infected amoebae was quantified by flow cytometry (uptake index: relative units, 

RU; *P < 0.05; ***P < 0.001, unpaired Student's t-test). The data shown are means and standard 

deviations of triplicates (A) and representative of three independent experiments.Published in 

Kessler et al., 2013. 
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3.1.6 Regulation of L. pneumophila gene expression by lqsT and lqsS 

To characterise the impact of the lqs genes in the different growth phases of L. pneumophila, the 

expression of lqsA, lqsR, lqsS and lqsT genes was investigated by quantitative real-time (qRT)-

PCR during the course of bacterial growth in AYE medium (Kessler et al., 2013). In the post-

exponential growth phase, lqsA showed a 2-fold and lqsR and lqsS a six-fold higher expression 

compared to the exponential growth phase. lqsS and lqsT were most differentially regulated in the 

late post-exponential growth phase (OD600 3.5–4.0). To follow up on this finding, the impact of the 

deletion of lqsS and lqsT on genome-wide transcription during the late post-exponential growth 

phase was analysed by using DNA microarray (experiments performed by Tobias Sahr, published  
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in Kessler et al., 2013). Direct or indirect targets of the L. pneumophila sensor kinase LqsT were 

identified in transcriptomic studies: In the post-exponential growth phase (OD600 4.0), no genes 

were upregulated in an lqsT mutant strain compared to the wild-type strain JR32. On the other 

hand, microarray data revealed downregulation of 105 genes by a factor of at least 1.5-fold in a 

strain lacking lqsT (Kessler et al., 2013). In addition to constituents of the region I (22 genes) or 

region II (19 genes) of the 133 kb genomic fitness island (Tiaden et al., 2010b), lvrA and lvrB of the 

Legionella vir region were found to be repressed in absence of lqsT. Interestingly, a number of 

genes downregulated in absence of lqsT encode components of the Icm/Dot T4SS (IcmML, 

DotBC) or 13 different Icm/Dot substrates (Kessler et al., 2013). Furthermore, downregulation in 

the lqsT deletion mutant was observed for the genes encoding the following factors: macrophage 

Figure 13: lqsS and lqsT are differentially regulated in the late post-exponential growth phase. 

qRT-PCR data showing relative expression of lqsA, lqsR, lqsS and lqsT along the L. pneumophila 

growth curve in AYE medium. Data were normalised to the expression level at an OD600 of 0.5. 

Experiment was performed by Tobias Sahr. Published in Kessler et al., 2013. 
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infectivity potentiator (Mip), chitinase, flagellum components (FlgG, FlgH), 19 kDa peptidoglycan-

associated lipoprotein (Pal), major outer membrane proteins, oxidative stress factors, cold shock 

proteins (CspA, CspC, CspD), cell division factors (MraW, MraZ, FtsL, MinD), DNA-binding 

proteins and transcription factors (Fis, HU-β, GyrA, RpoS), metabolic enzymes (GlnA, LysAC, 

LpxC), or a putative non-coding RNA (ncRNA18). 

While none of the genes repressed in absence of lqsT was also downregulated in L. 

pneumophila lacking lqsS, 95 of the 105 genes downregulated in absence of lqsT (90%) showed 

enhanced expression levels in absence of lqsS (Figure 14). Interestingly, several genes under 

reciprocal regulation in absence of lqsT or lqsS encode Icm/Dot substrates. Taken together, LqsS 

and LqsT regulate a vast number of genes in an inverse manner, suggesting at least a partial 

antagonistic function of the two sensor kinases.  

 

 

 

 

 

 

 

 

 

 

Of note, in absence of both lqsS and lqsT, a total of 142 genes were upregulated at least 1.5-

fold compared to wild-type L. pneumophila. However, only one gene of unknown function (lpg0893) 

was repressed under these conditions (late post-exponential phase, OD600 4.0). Enhanced 

expression in ∆lqsS-∆lqsT was observed for lvrA, as well as constituents of region I (five genes) 

and region II (one gene) of the 133 kb genomic fitness island alongside various Icm/Dot 

components plus 26 Icm/Dot substrate genes. Moreover, deletion of both lqsS and lqsT revealed 

induced expression of genes encoding enhanced entry proteins (EnhB, EnhC), major outer 

membrane proteins, phagosomal transporter (PhtA), Mip, Pal, chitinase, pyoverdine synthesis 

protein (PvcA), type IV pilin (PilA), flagellum components (FlgH), oxidative stress factors, global 

stress protein (GspA), cold shock proteins (CspA, CspD), cell division factors (FtsZ, MinD, MinE), 

DNA-binding proteins and transcription factors (Fis, HU-β, GyrA, RpoD), or a putative non-coding 

RNA (ncRNA18). A gene of unknown function (lpg2395) was upregulated more than 10-fold in 

absence of both lqsS and ∆lqsT strain (Kessler et al., 2013) or even more than 11-fold in a ∆lqsR 

strain (Tiaden et al., 2007). 

Figure 14: Venn diagram of lqsT- and lqsS-regulated genes. Genome-wide comparative 

transcription analysis in stationary growth phase of genes downregulated in absence of lqsT, or 

upregulated in absence of either lqsS alone or lqsS and lqsT. Pubished in Kessler et al., 2013. 
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A comparison of genes upregulated in absence of lqsS and lqsT with genes regulated in strains 

lacking the individual sensor kinase genes revealed that 75 of the 142 genes upregulated in 

absence of lqsS and lqsT (53%) were also upregulated in L. pneumophila lacking only lqsS, while 

47 of the 105 genes downregulated in an lqsT-deficient strain (45%) were upregulated in an lqsS-

lqsT double deletion strain (Figure 14). Finally, a direct comparison of the transcriptome of 

L. pneumophila lacking both lqsS and lqsT with a strain lacking only lqsT revealed that in absence 

of both sensor kinases 209 genes were upregulated and 96 genes were downregulated at least 1.5 

times (Kessler et al., 2013). Many genes differentially regulated encode components required for 

protein production, bioenergetics, metabolism, virulence, motility, cell division and regulation. The 

differential regulation of genes in absence of lqsT or both lqsS and lqsT was confirmed by qRT-

PCR for the mip (lpg0791) and chitinase (lpg1116) genes, as well as for genes of region I of the 

genomic fitness island (lpg0976, lpg0978, lpg0980, lpg0987, lpg0992). Among others, the iron-

regulator-encoding gene frgA was shown to be 8-fold upegulated in the absence of lqsS and lqsT 

compared to L. pneumophila wild-type. To substantiate this finding, a PfrgA-gfp reporter construct 

was transformed into the lqs mutant strains and the expression patterns were compared to wild-

type L. pneumophila (Figure 15). 

 

 

 

 

 

 

 

 

 

Taken together, this indicates that the lqsS and lqsT genes are reciprocally regulated in the 

post-exponential growth phase of L. pneumophila, and transcriptome studies performed under 

these conditions revealed that the regulatory pattern of an lqsS-deficient strain is also reciprocally 

correlated to ∆lqsT. Furthermore, the transcriptome pattern of a strain lacking both lqsS and lqsT 

resembles a strain lacking lqsS. These results indicate that in the post-exponential growth phase 

LqsS and LqsT may have at least partially antagonistic regulatory functions, yet LqsS controls 

additional aspects of L. pneumophila physiology and virulence.

Figure 15: Expression of frgA in L. pneumophila is regulated by rpoS, lqsR and simultaneously 

by lqsS and lqsT. PfrgA-dependent production of GFP relative to cell density (relative fluorescence units, 

RFU/OD600 was monitored over time in L. pneumophila wild-type, ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-

∆lqsT or ∆rpoS strains harbouring a transcriptional PfrgA–gfp fusion reporter construct. The data shown 

are means and standard deviations of quadruplicates and representative of at least three independent 

experiments. 
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Figure 16: SDS–PAGE analysis of His-LqsR, His-LqsRD108A and His-LqsRD108N. Lanes 1, 3, and 5 

depict peak fractions of wash fraction eluted from the Histrap HP column. Lanes 2, 4, and 6 represent 

peak fractions of protein eluted from Histrap FF column (IMAC). Lanes 7-9 indicate peak fractions of 

protein eluted from the HiLoad Superdex 200 pg column (SEC). 20 µl of sample were boiled with 5x 

loading buffer and loaded on each lane. M, molecular weight marker (kDa); IMAC, immobilised metal 

ion chromatography; SEC: size-exclusion chromatography. 

3.2 Purification and crystallisation of LqsR 

3.2.1 Production and purification of His-LqsR in E. coli  

For the large scale production of His-LqsR WT, His-LqsRD108A and His-LqsRD108N, the 

corresponding plasmids pTS-23, pRB-3 and pRB-4 were freshly transformed into E. coli 

BL21(DE3). The recombinant His-tagged LqsR proteins were successfully produced and purified to 

electrophoretic homogeneity by Ni2+-chelating affinity and size-exclusion chromatography using an 

Äkta Purifier System (GE Healthcare). The purified His-LqsR WT, His-LqsRD108A and His-LqsRD108N 

proteins represented by the peak fractions of the resulting chromatograms were analysed by SDS–

PAGE and found to be 95% pure as indicated by the major band at 41.4 kDA (Figure 16). From 

hereon, LqsR and its derivatives will be used synonymously for the His-tagged proteins throughout 

the thesis. 
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3.2.2 Crystallisation of His-LqsR 

Preliminary screening of crystallisation conditions for LqsR, LqsRD108A and LqsRD108N was carried 

out by sitting-drop vapour-diffusion and several commercially available screening kits; 

approximately 500 individual conditions were tested. After 5-7 d incubation, LqsRD108A and 

LqsRD108N crystals of different shapes were obtained in various solution conditions. Promising 

microcrystals of LqsRD108N were obtained after 3-5 d in 0.1 M sodium HEPES pH 7.5, 25% (w/v) 

polyethylene glycol monomethyl ethanolamine (MME) 2000.  

According to preliminary X-ray diffraction analysis of the crystals, optimisation of the initial 

conditions was required to increase the size of the crystals and to improve the crystal quality. 

Microseeding has become a well established strategy during the optimisation of crystallisation 

conditions (Bergfors, 2003). Ireton and Stoddard (2004) and Marsh and D'Arcy (2007) refer to this 

technique as ‘microseed matrix screening', a method where poorly diffracting crystals were used to 

seed into similar, but non-identical conditions, resulting in a markedly improved crystal form. We 

therefore employed a microseeding technique for the crystallisation of the LqsRD108N protein.  

LqsRD108N crystallised best in the Nextal PEG Suite condition containing 20% polyethylene 

glycol (PEG) 3350 and 0.2 M lithium chloride. From these crystals a seed-bead stock was 

generated. Similarily, crystals obtained for LqsR and LqsRD108A in the following PACT screen 

conditions were used to produce seed bead stocks. LqsR: 0.2 M sodium acetate, 0.1 M bis-Tris 

propane pH 7.5, 20% PEG 3350 and LqsRD108A: 0.2 M lithium chloride, 0.1 M HEPES pH 7.0, 20% 

PEG 6000. 

The created microseeds were used in subsequent microseeding experiments in order to achieve 

optimised crystal morphology. In the microseeding plates, conditions containing 25% PEG 2000, 

0.1 M sodium HEPES pH 7.5 produced the most promising crystals. Interestingly, LqsRD108N 

protein crystals could be obtained after matrix seeding under conditions that significantly differed 

from those which provided the initial crystal seed stocks. For example, LqsRD108N seeds were 

isolated from 20% PEG 3350, 0.2 M lithium chloride, but subsequently generated crystals in drops 

containing 25% PEG 2000, 0.1 M sodium HEPES pH 7.5. The new crystals obtained by using the 

seeding technique consistently diffracted to 3.6 Å resolution. Crystals were soaked briefly in 

cryoprotectant that consisted of 85%/15% (v/v) reservoir solution with glycerol prior to data 

collection in an N2 cold stream. Data were collected at 100 K at the beamlines X06SA and X06DA 

at the Swiss Light Source (SLS, Paul Scherrer Institute, Villigen, Switzerland) and were processed 

and merged with the XDS program (Kabsch, 2010).  

In efforts to improve the diffraction resolution of the LqsRD108N crystals, additional optimisation 

parameters (pH range 7.2-7.8, PEG 2000 MME range 5%-30%) were tested using the 

microseeding technique. LqsRD108N was crystallised in 24-well plates by hanging drop vapor 

diffusion in a setup of drops consisting of 2 µl protein solution + 2 µl reservoir solution + 0.5 µl of 

concentrated seed bead stock.  
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Figure 17: Images of His-LqsRD108N crystals used for diffraction analysis. Crystals formed in 

crystallisation drops consisting of (A) 20% PEG 2000 MME, pH 7.6 and 0.1 M sodium HEPES or (B, 

C) 22.5% PEG 2000 MME, pH 7.6 and 0.1 M sodium HEPES. 

The optimised conditions obtained from microseeding crystallisation experiments consisted of PEG 

2000 MME in the concentration range 20–30% (w/v) and 0.1 M sodium HEPES in the pH range 

7.4-7.6. Applying these conditions in microseeding experiments using the concentrated seed stock 

solution, His-LqsRD108N crystals with representative dimensions of 0.1 × 0.1 × 0.1 mm and 0.2–0.3 

× 0.05 × 0.03 mm and several different crystal morphologies were grown at 20°C in 3–4 d in 24-

well plates by hanging-drop vapour diffusion. In this assay, the best protein crystals resulted from 

the His-LqsRD108N derivative in solution conditions of 22.5% PEG 2000 MME, pH 7.6 and 0.1 M 

sodium HEPES. These crystals diffracted to 2.4 Å resolution (Figure 17A). Diffraction data 

collection is to 90% complete and initial attempts to solve the structure using molecular 

replacement are currently in progress. 
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Figure 18: Genomic region of sinR in L. pneumophila. sinR (1’153’652–1’153’389 bp) is located 

proximally to the genes encoding the beta chain of an ATP synthase F1 (atpD1, lpg1054), a guanylate 

cyclase (lpg1056) and a sensory GGDEF family protein (lpg1057). Grey and white shading represents 

functionally annotated and unknown loci, respectively.  

3.3 Identification and characterisation of the putative transcription regulator SinR 

The sinR gene of Bacillus subtilis encodes a transcriptional regulator that is known to be involved in 

the biosynthesis of exopolysaccharides in biofilms (Kearns et al., 2005). L. pneumophila possesses 

a gene encoding a SinR family transcription regulator that genomically maps between lpg1055 and 

lpg1056 (1’153’652–1’153’389 bp) in Region I of the putative 133 kb genomic fitness island (Figure 

18). While not yet annotated in L. pneumophila, a 100% identical gene was identified in the 

genome of strain Paris (lpp2326), Lens (lpl1052) and Alcoy (lpa_1638). The putative sinR gene is 

located in the vicinity of genes encoding an ATP synthase F1 beta chain atpD1 (lpg1054), a 

guanylate cyclase (lpg1056) and a sensory GGDEF family protein (lpg1057). The L. pneumophila 

transcriptional regulator SinR is a putative member of the DNA binding xenobiotic response 

element (XRE) family, containing a HTH (helix-turn-helix) motif at its N-terminus.  

The present study focuses on the role of the L. pneumophila SinR homologue in physiological 

processes and pathogen-host cell interactions.  

 

 

 

3.3.1 The effects of sinR on lqsA, lqsR and sinR expression 

3.3.1.1 sinR is located in a putative genomic fitness island regulated by lqsS  

In previous transcriptome studies the expression of the putative sinR-like transcription regulator 

was upregulated 8.5-fold in the absence of lqsS compared to L. pneumophila wild type grown to 

stationary phase. Notably, qRT-PCR revealed a sevenfold higher upregulation for the sinR locus in 

the absence of lqsS (Tiaden et al., 2010). To analyse the correlation between the lqs system and 

sinR regarding gene regulation, expression of sinR was monitored in the different lqs mutant 

strains and ∆sinR using a transcriptional PsinR-gfp fusion construct. Compared to wild-type bacteria 

sinR was significantly upregulated in the late exponential to early stationary growth phase in the 

∆lqsS strain, validating the microarray data (Tiaden et al., 2010). Moreover, sinR expression in the 

other lqs deletion strains did not differ from wild-type bacteria and was only slightly induced in a 

sinR-defective strain under standard growth conditions (Figure 19A). Interestingly, the sinR mutant 

exhibited elevated sinR expression levels only very late during stationary growth (Figure 19B). This 

finding implies that the expression of sinR is temporally controlled in the late growth phases of L. 

pneumophila, i.e. by lqsS and by sinR in a repressive manner. Thus, in addition to the strong 

repressive role of lqsS on sinR expression, the autoregulation of sinR expression is likely governed 

by a negative feedback loop. 
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Figure 20: Expression of lqsA in L. pneumophila is regulated by sinR, lqsR, lqsS and lqsT. (A) 

PlqsA- or (B) PlqsR-dependent production of GFP normalised to cell density (relative fluorescence units, 

RFU) was monitored over time in L. pneumophila wild-type, ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT 

or ∆sinR strains harbouring a transcriptional PlqsA–gfp or PlqsR–gfp fusion reporter construct. The data 

shown are means and standard deviations of quadruplicates and representative of at least three 

independent experiments. 

 

3.3.1.2 sinR directly regulates the expression of lqsA and sinR  

In order to analyse putative target genes regulated by sinR in vivo, expression patterns of lqsA, 

lqsR and sinR was investigated in the lqs and sinR mutant strains via GFP production. Compared 

to the wild-type strain, expression levels of lqsA were reduced in ∆lqsR (by 50%), in ∆lqsS-∆lqsT 

Figure 19: Expression of sinR in L. pneumophila is regulated by lqsS and sinR. PsinR-dependent 

production of GFP normalised to bacterial cell density (relative fluorescence units, RFU) was monitored 

over time in L. pneumophila wild-type, ∆lqsA, ∆lqsR, ∆lqsS, ∆lqsT, ∆lqsS-∆lqsT or ∆sinR strains 

harbouring a transcriptional PsinR–gfp fusion construct. Strains were set up at (A) a start OD600 of 0.5 or 

(B) an OD600 of 0.8. The data shown are means and standard deviations of quadruplicates and 

representative of at least three independent experiments. 

A B 

B A 
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Figure 21: Interaction of sinR promoter DNA with the SinR regulator. (A) Map of the intergenic 

regions upsteam of L. pneumophila sinR, with SinR binding motifs A and B located at -227and -393 bp 

relative to the start of the sinR ORF, respectively. Arrows indicate the orientation of the motif and the 

DNA fragments used for EMSA experiments are depicted below. (B) EMSA were performed using 

purified SinR incubated at the concentrations indicated with 65 pmol of amplified sinR promoter 

fragment AB or with restriction digested DNA fragment (A+B). Control reactions were done with heat-

inactivated SinR (HI) or did not contain DNA (blank). M, DNA marker; CI, CII and CIII, protein-DNA 

complexes; MC, multimeric complex. The reaction products were analysed on a 6% native 

polyacrylamide gel and visualised by ethidum bromide staining. Data shown were reproduced at least 

three times. 

(45%), and in ∆sinR (42%) (Figure 20A). In contrast, lqsR expression only revealed differential 

regulation in the ∆sinR background compared to wild-type L. pneumophila (Figure 20B).  

Based on the results obtained in the expression analysis, SinR was expected to directly interact 

with the sinR promoter and perhaps also to bind to the upstream regions of the lqsA and lqsR loci. 

To test this possibility, we purified SinR from E. coli cells and assessed binding of SinR (10-100 

µM) to the promoter regions of sinR, lqsA and lqsR in gel electrophoretic mobility shift experiments. 

SinR specifically bound to both its own promoter, and albeit less efficiently, to the promoter 

sequence of lqsA. By contrast, SinR did not bind to the lqsR or rpoS promoter, and LqsR did not 

interact with the promoter region of sinR or lqsR, either. 

Figure 21 demonstrates that the mobility of the sinR promoter fragment was gradually 

decreased and revealed multiple bands with increasing concentrations of SinR. At a minimal SinR 

concentration of 10 µM, efficient band shifting occurred, without any free DNA probe remaining at 

higher concentrations of SinR. Several defined protein-DNA complexes of differing stoichiometry 
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were resolved, resulting in a 'ladder' of bands in which each stoichiometric step is represented: 

Upon interaction with the sinR promoter His-SinR efficiently formed three distinct complexes (CI, 

CII and CIII), likely with 1, 2 and 3 SinR dimers bound per DNA molecule, respectively, as well as a 

multimeric complex (MC) (Figure 21).  

The upstream region of sinR in L. pneumophila harbours sequences which were shown to 

mediate SinR binding in B. subtilis (Kearns et al., 2005): A near-perfect inverted repeat containing 

the consensus sequences GTTCTAT and AAAGAAC is located at -393 and -227 bp relative to the 

start of the ORF (Figure 21). Separation of the two putative consensus SinR binding sites by 

restriction digestion of the sinR promoter sequence resulted in a less efficient band shift upon 

incubation with SinR (Figure 21, probe A+B). Specifically, since each individual site is 

nonpalindromic and cannot contact SinR alone, this implies that each motif is equivalent to a half-

site with a spacer of 159 bp. This result reveals the requirement of both conserved SinR binding 

sites to be present on the same molecule of DNA to guarantee specific DNA-protein interaction. 

These data are in agreement with the results obtained from transcriptional profiling (Section 

3.3.1.2, Figure 19), suggesting that the SinR regulator repressed sinR transcription via binding 

these sites, and confirms that expression of sinR is directly autoregulated.  

In contrast, SinR bound weakly to the promoter region of lqsA and only at high concentrations of 

protein used (120 µM), where free DNA probe could still be observed (Figure 22). Interestingly, the 

lqsA promoter region contains only one single putative SinR binding site (GTTCTTT) which might 

mediate the interaction with the SinR regulator less stringently than the binding of SinR to its own 

promoter (Figure 22A). Indeed, interaction of SinR with the lqsA promoter generated a band shift 

that was barely visible, not displaying any distinct protein-DNA complex formation (Figure 22B).  

Similarly to the sinR promoter, the lqsA upstream region was restriction digested to yield two 

fragments, one of them containing the putative SinR binding site (Figure 22A). No difference in 

band shift efficiency was observed among lqsA promoter fragments regardless of the presence 

(Figure 22, lanes 1-6) or absence (Figure 22, lanes 7-17) of the SinR binding site. This finding 

suggests that binding of SinR to the lqsA promoter does not exclusively depend on the presence of 

the SinR binding motif on the DNA fragment provided. Additional, thus far unidentified binding 

elements are postulated to be involved in the interaction between the lqsA upstream region and 

SinR. In accordance with the decreased expression profile of lqsA observed in a ∆sinR strain, SinR 

is assumed to act as a direct activator of lqsA transcription.  
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Figure 22: Interaction of SinR with the lqsA promoter region. (A) Map of the intergenic region 

upsteam of L. pneumophila lqsA harbouring the SinR binding motif E located at -374 bp relative to the 

start of the sinR ORF. Arrows indicate the orientation of the motifs and the DNA fragments used for 

EMSA experiments are depicted below. (B) Titration of lqsA promoter DNA with SinR regulator by 

EMSA was performed using increasing concentrations of purified SinR incubated with 65 pmol of 

amplified lqsA promoter region fragment D (lanes 2-6; 0, 20, 60, 100, 120 µM), F (lanes 7-9; 0, 60, 120 

µM), E (lanes 10-12; 0, 60, 120 µM) and combined E+F (lanes 13 and 14; 0, 120 µM). Heat-inactivated 

SinR was used as control (Lane 1). The reaction products were analysed on a 6% native 

polyacrylamide gel and visualised by ethidum bromide staining. Data shown were reproduced at least 

three times. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No interaction of SinR with the promoter region of lqsR was observed as no band shift was 

apparent in the conditions tested (Figure 23). In control reactions, LqsR did not bind to the 

promoters of lqsR nor sinR, either. These findings together with in vivo expression profiles suggest 

that sinR regulates lqsR in an indirect manner, perhaps via the master regulator of stationary phase 

gene regulation, the sigma factor RpoS. We tested this hypothesis by using a probe corresponding 

to the rpoS promoter region in EMSA analysis. However, SinR clearly did not bind to rpoS promoter 

sequence (Figure 23), suggesting the presence of intermittent factor(s) along the sinR-lqsR 

regulatory cascade. 
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Figure 23: Mobility shift analysis of SinR binding to promoters of lqsR and rpoS. EMSA were 

performed using purified SinR incubated with promoter region fragments (65 pmol) of rpoS (PrpoS, lanes 

1, 2) or lqsR (PlqsR, lanes 3, 4). Purified LqsR was incubated with PsinR (lanes 5 and 6) or PlqsR (lane 7). 

Samples of lanes 1, 3 and 5 contained 20 µM of heat-inactivated protein and lanes 2, 4, 6, and 7 

contained 100 µM of native protein. Data shown were reproduced at least three times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collectively, these results indicate that SinR acts as a repressor of sinR transcription and as an 

activator of lqsA by directly interacting with their promoter regions in vitro. On the other hand, the 

regulatory effect of sinR on lqsR expression observed in gfp reporter studies presumably is 

mediated in an indirect fashion, independent of rpoS. 
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Figure 24: Analysis of biofilm formation and sedimentation of L. pneumophila ∆sinR. (A) Crystal 

violet staining of 5 days old biofilms of L. pneumophila wild type, ∆sinR, ∆rpoS and of non-inoculated 

wells (AYE) of a microtitre plate. Data shown are means and standard deviations representative of 

three independent experiments. (B) L. pneumophila wild type, ∆sinR and ∆lqsR were grown for 3 days 

on CYE agar plates, resuspended in 1 ml of AYE broth at an OD600 of 3.5 and analysed for 

sedimentation after 12 h at room temperature. P-value (A) < 0.001 (unpaired Student's t-test). Data 

shown are representative for three individual experiments. 

3.3.2 sinR controls biofilm formation of L. pneumophila 

To corroborate the hypothesis that SinR-mediated regulation might be of relevance during late 

phases of stationary growth, an L. pneumophila strain lacking sinR was tested for the ability to form 

biofilms, a trait linked to the stationary phase of the bacteria. For this purpose, ∆sinR was 

compared to wild-type and ∆rpoS bacteria in a crystal violet staining assay (Figure 24A). To 

quantify biofilm formation, late stationary phase AYE liquid cultures were diluted in a microtitre 

plate, and incubated for 5 d at 30°C and the adherent cells were fixed, resuspended in a crystal 

violet solution, and transferred to a separate plate before their absorbance (OD595) was measured 

using a microtitre plate reader.  

 

 

 

 

 

 

 

The sinR mutant exhibited significantly impaired biofilm formation under the conditions tested, 

as it produced 50% less biomass within 5 days. This finding proposes that sinR promotes biofilm 

formation in L. pneumophila (Figure 24A). Moreover, a sinR-defective strain showed wild-type-like 

sedimentation behavior, suggesting that sinR does not affect the production of extracellular 

filaments (Figue 24B). In contrast, a strain lacking the sigma factor rpoS, required for expression of 

transmissive traits of L. pneumophila, was not impaired in biofilm formation, consistent with 

previous reports (Mampel et al., 2006).  

 

 

 

 

A B 



 RESULTS 

74 

A B 

3.3.3 Effects of sinR on uptake and intracellular replication  

The Icm/Dot T4SS and LqsR promote the efficient uptake of L. pneumophila by amoebae and 

macrophages (Tiaden et al., 2007, 2008, Weber et al., 2006, Hilbi et al., 2001). To test whether 

SinR plays a role in efficient uptake of L. pneumophila by phagocytes, D. discoideum or A. 

castellanii were infected with a sinR mutant producing GFP, uptake was quantified by flow 

cytometry and then plotted as uptake index. Compared with wild-type L. pneumophila ca. 60% 

fewer amoebae were infected with the ∆sinR strain (Figure 25). The phenotype could be barely 

complemented by providing sinR under control of its own promoter on a plasmid. This might be due 

to a non-physiological gene dose of sinR, similar to previous observations obtained for lqsR 

(Tiaden et al., 2007). 

To investigate the impact of sinR in intracellular replication, single round replication assays 

were performed, where A. castellanii were infected with L. pneumophila strains constitutively 

producing GFP (MOI 20). A sinR-deficient strain was severely impaired for intracellular replication 

compared with wild-type bacteria. This replication defect could be partially restored by introducing 

sinR under its native promoter (Figure 26A). Moreover, compared with L. pneumophila wild type, a 

sinR mutant exhibited impaired intracellular replication in RAW macrophages (Figure 26B).  

 

 

Figure 25: sinR promotes the efficient uptake of L. pneumophila by phagocytic host cells. (A) A. 

castellanii amoebae or (B) D. discoideum were infected at an MOI of 50 with wild type, ∆sinR or ∆icmT 

mutant L. pneumophila harbouring a vector constitutively expressing GFP (pNT-28) or sinR expressed 

from its endogenous promoter (PsinR; pAK-18). The percentage of infected host cells was quantified by 

flow cytometry. P-value (A, B) < 0.001 (unpaired Student's t-test). Data shown are means and standard 

deviations representative of at least three independent experiments. 
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Figure 26: SinR is involved in intracellular growth and competition of L. pneumophila in host 

cells. (A) Single-round replication was analysed by infecting A. castellanii with L. pneumophila strains 

constitutively expressing gfp (pNT-28) or sinR under its native promoter (pAK-18) at an MOI of 20. 

Intracellular growth was measured over time using a microtitre plate fluorescence reader. (C) Co-

infection experiments of A. castellanii with L. pneumophila wild type and ∆sinR at an MOI of 0.01 each. 

Intracellular growth was monitored over 21 days by CFU counting. (B) Intracellular growth of L. 

pneumophila wild type, ∆sinR and ∆icmT deletion mutants in RAW 264.7 cells (MOI 0.1) was 

quantified over time by determining CFU. Data are based on means and standard deviations 

representative of at least three independent experiments. 

Upon co-infection of A. castellanii, intracellular growth of ∆sinR and L. pneumophila wild type was 

monitored over 21 days and quantified by CFU determination. The sinR-deficient bacteria were 

impaired for intracellular growth compared to the wild-type strain (Figure 26C). These data strongly 

imply a role for sinR in the regulation of pathogen–host interactions.  
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Figure 27: sinR controls natural competence of L. pneumophila. (A) L. pneumophila wild type and 

mutant strains were grown to post-exponential growth phase (OD600 2.6–3.0) and incubated at 30°C 

for 24  h with linear DNA encoding a Cm resistance cassette flanked by fragments homologous to the 

chromosomal up- and downstream regions of lqsT. Transformation efficiency was quantified by 

determining CFU on selective agar plates. (B) Expression of comEA was analysed by monitoring 

PcomEA-dependent production of GFP normalised to cell density (relative fluorescence units, RFU) over 

time in L. pneumophila wild-type and mutant strains. The data shown are means and standard 

deviations of quadruplicates and representative of at least three independent experiments. 

3.3.4 sinR controls natural competence in L. pneumophila 

Next, a putative role of sinR in the regulation of competence induction and natural transformation of 

L. pneumophila was assessed. In addition to the direct analysis of DNA uptake and integration 

efficiency resulting from homologous recombination, the expression of the competence gene 

comEA was used as an indicator for competence induction. As shown in Figure 27, a strain lacking 

sinR displayed a four orders of magnitude higher transformation frequency, as well as upregulated 

expression of comEA, compared to L. pneumophila wild type. Enhanced competence (termed 

hypercompetence) resulting from the deletion of sinR implies a role for sinR acting as a repressor 

in the complex pathway controlling natural transformation and the uptake of exogenous DNA. 

Whether this regulation is of the direct or indirect type requires further investigation. 

 

3.4 Summary of results 

In conclusion, the lqs system of L. pneumophila was demonstrated to govern a plethora of 

virulence and morphology traits, ranging from intracellular replication and natural competence to 

the formation of extracellular filaments. Speficically, the sensor kinases LqsS and LqsT may have 

at least partially antagonistic regulatory functions, with LqsS controlling separate aspects of 

L. pneumophila physiology and virulence, such as a 133 kb genomic fitness island. As a member 

thereof, sinR was identified and characterised to play a role in bacterial pathogenicity, biofilm 

formation and competence, exerting regulatory functions in addition to and interconnected with the 

AHK signalling circuit.  
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4. Discussion  

Gene regulation by small signalling molecules is utilised as a means of cell-cell communication by 

many bacteria to coordinate population behaviour (Bassler and Losick, 2006, Camilli and Bassler, 

2006, Fuqua and Greenberg, 2002). A novel class of signalling molecules, the α-hydroxyketones 

(AHK), were discovered in the facultative human pathogens L. pneumophila and   V. cholerae. 

Analogously to the V. cholerae CqsAS system, the lqs gene cluster encodes the LAI-1 autoinducer 

synthase LqsA, the cognate sensor kinase LqsS and the response regulator LqsR. This study 

documents the identification and characterisation of an ‘orphan’ homologue of LqsS, termed LqsT, 

which contributes to various functions of the Lqs system, such as pathogen-host cell interactions, 

bacterial virulence, salt resistance, natural competence and formation of extracellular filaments. 

Moreover, AHK signalling and in particular lqsS regulates a 133-kb genomic fitness island, which 

harbours a SinR-like transcription factor that was shown to coregulate virulence, natural 

competence and biofilm formation of L. pneumophila.  

4.1 Autoinducer regulatory circuits in L. pneumophila and V. cholerae 

L. pneumophila and V. cholerae are Gram-negative aquatic microorganisms and opportunistic 

human pathogens. They respond to environmental conditions and adjust their gene expression 

programs either according to the growth phase or population density, respectively. A biphasic life 

style allows L. pneumophila to cycle between a replicative state with upregulation of metabolic 

pathways and a transmissive state (virulence, motility and stress resistance traits) (Brüggemann et 

al., 2006b).  

Quorum sensing circuits, in concert with additional sensor systems enable to coordinate various 

processes during their life cycle (Figure 28), including pathogen-host interactions and production of 

virulence factors (Tiaden et al., 2007, 2008, Zhu et al., 2002, Miller et al., 2002), biofilm and 

filament formation (Waters et al., 2008, Zhu et al., 2003, Hammer et al., 2003), regulation of a 

genomic fitness island (Tiaden et al., 2008) and natural competence (Kessler et al., 2013, Section 

3.1.2, Figure 9). 

AHK signalling participates in the stationary phase regulatory network in L. pneumophila, and so 

the Lqs system promotes gene expression in the stationary growth phase. The L. pneumophila and 

V. cholerae AHK signalling circuits are comprised of the lqs or cholera QS (cqs) gene clusters, 

which produce and detect the signalling molecules LAI-1 and CAI-1 ((S)-3-hydroxytridecan-4-one), 

respectively (Figure 28). In L. pneumophila, the response regulator LqsR links AHK signalling to 

the stationary growth phase regulatory network. 
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Figure 28: Model of the regulatory network controlling the transition from the replicative to the 

virulent phase. (A) In L. pneumophila, the AHK signalling circuit is linked to the stationary growth 

phase regulatory network and comprises the autoinducer synthase LqsA (producing LAI-1), the putative 

cognate sensor kinase LqsS and the response regulator LqsR. Phosphorylation signalling through LqsS 

and its orphan homologie LqsT converges on LqsR. Alongside LqsR, the expression of transmission 

traits (virulence, motility) is controlled by the stationary sigma factor RpoS (sigma38) and the two-

component system LetAS, a homologue of V. cholerae VarAS. Active LetA induces the production of 

LqsR and the small regulatory RNAs RsmYZ to sequester the RNA-binding repressor CsrA and relieve 

post-transcriptional repression, thereby promoting replication. The transcription regulator SinR is 

interlinked with the AHK signalling circuit via its control of virulence, biofilm formation and natural 

competence. Furthermore, SinR directly regulates lqsA transcription. (B) In V. cholerae, AHK signalling 

is executed by the autoinducer synthase CqsA (producing CAI-1) and the sensor kinase CqsS. The 

TCS VarAS inhibits the production of the global repressor CsrA via the sRNAs csrBCD. Together with 

these systems LuxPQS (AI-2 sensing) converges on LuxO. At low cell density, the response regulator 

LuxO is phosphorylated by the phosphotransferase LuxU. Together with the sigma factor RpoN and the 

small nucleoid protein Fis, phosphorylated LuxO induces the expression of the sRNAs qrr1-qrr4, which 

destabilise the hapR mRNA and prevent production of the master regulator HapR and thus repress 

virulence traits. High bacterial density leads to LuxO dephosphorylation and inactivation. As the 

production of Qrr1-Qrr4 sRNA is repressed, HapR is generated, resulting in the production of QstR and 

the development of natural competence, which is in parallel induced via the chitin-TfoX pathway. Model 

adapted from (Tiaden et al., 2010a, Jules and Buchrieser, 2007, Molofsky and Swanson, 2004). 
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The production of LqsR depends on RpoS and LetA, requiring the sRNAs RsmYZ in addition to the 

RNA-binding protein CsrA at a post-transcriptional level. The essential activator of intracellular 

replication CsrA was shown to bind nascent mRNA, where it promotes Rho-dependent 

transcription attenuation or inhibits translation initiation of transmissive genes (Figueroa-Bossi et 

al., 2014). Additionally to the alternative sigma factors RpoS, RpoN and FliA, the two-component 

system LetAS, homologous to V. cholerae VarAS is involved in the induction of transmissive traits. 

LetA directly promotes the expression of rsmYZ, which bind and sequester CsrA together with the 

RNA chaperone Hfq. This leads to the released repression of transmissive traits and thus entry into 

the replicative growth phase. Hypothetically, the AHK-mediated response regulator LqsR can 

directly act as transcriptional regulator of virulence traits, interacting with the sRNAs rsmYZ or the 

replicative phase regulator CsrA to de-repress the transmissive regulon (Forsbach-Birk et al., 2004, 

Molofsky and Swanson, 2003, Fettes et al., 2001). Thus, similar to the V. cholerae VarAS two-

component system converging with the CqsAS quorum sensing system (Lenz et al., 2007), the L. 

pneumophila LetAS two-component system may crosstalk with the lqs system in the stationary 

growth phase.  

In parallel to AHK signalling, V. cholerae employs two additional regulatory units to repress 

virulence and biofilm formation at high bacterial density. The linkage of several modular two-

component systems (TCS) in QS circuits might offer an advantage for the integration of multiple 

signals and the fine tuning of an adaptive response. The CqsAS and LuxSPQ systems in V. 

cholerae are structurally distinct from the archetypical QS systems found in Vibrio fisheri (LuxRI) or 

Pseudomonas aeruginosa (LasRI and RhlRI), where the LuxI-type autoinducer synthase produces 

acyl homoserine lactone-based autoinducers (AHL), which directly bind to cytosolic LuxR-type 

transcriptional regulators (Camilli and Bassler, 2006, Fuqua and Greenberg, 2002).  

The two quorum sensing systems CqsAS and LuxSPQ in V. cholerae converge on the shared 

phosphorelay protein LuxU, which serves as a specific cross-communication module between the 

AHK and AI-2 signalling circuits: LuxS synthesises the furanosyl borate ester compound AI-2, 

which is detected by the sensor histidine kinase LuxQ in conjunction with the periplasmic AI-2 

binding protein LuxP (Milton et al., 2006, Bassler et al., 2004). At low cell density, the response 

regulator LuxO is phosphorylated by the histidine phosphotransferase LuxU and, together with 

RpoN, phosphorylated LuxO activates the expression of four small non-coding sRNAs, the ‘quorum 

regulatory RNAs’ Qrr1-Qrr4. The small nucleoid protein Fis directly binds and stimulates the Qrr1-4 

RNA promoters. Furthermore, these sRNAs destabilise the haprR mRNA in an Hfq-dependent 

fashion, inhibiting the production of the master regulator HapR. Upon reaching high cell densities, 

dephosphorylated and inactive LuxO prevents the induction of Qrr1-4 sRNAs and the production of 

HapR. Analogously to the CAI-1- and AI-2-based circuits, the VarAS TCS, homologous to L. 

pneumophila LetAS, implies a third component of QS-dependent gene regulation affected by the 

upregulation of the sRNAs csrBCD, which inhibit CsrA activity. CsrA in turn regulates luxO and the 

expression of Qrr sRNAs and hapR. HapR inhibits virulence, but induces natural competence via 

controlling the expression of the transcriptional regulator qstR (Lo Scrudato, 2013). Overall, LAI-1 

promotes virulence of L. pneumophila, while CAI-1 represses these traits in V. cholerae. 
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4.2 The orphan sensor histidine kinase LqsT contributes to AHK signalling 

in L. pneumophila  

Within the wide scope of intra- and interspecies cell-cell communication, a remarkable spectrum of 

small signalling molecules is utilised by bacteria to regulate gene expression, including the 

commonly used acyl-homoserine lactones (AHLs) or the furanosyl borate AI-2 (Winans, 2011, 

Bassler and Losick, 2006, Camilli and Bassler, 2006, Fuqua and Greenberg, 2002). However, L. 

pneumophila does not employ the aforementioned compounds, instead producing the AHK 

signalling molecule LAI-1 (Spirig et al., 2008). The LAI-1 autoinducer synthase LqsA and the 

putative cognate sensor kinase LqsS are encoded in the lqs gene cluster (lqsA-lqsR-hdeD-lqsS). 

Based on previous reports where phenotypes of an L. pneumophila strain lacking lqsS were 

reversed by overexpression of lqsA, an alternative sensor kinase (or kinases) was hypothesised to 

respond to the AHK signalling molecule LAI-1 (Tiaden et al., 2010b). This work is focused on the 

characterisation of the orphan LqsS homologue termed LqsT located distally to the lqs cluster. 

While phenotypes of the mutant strains lacking single sensor kinase (∆lqsS, ∆lqsT) (such as salt 

resistance or impaired host cell uptake) can be reversed by overexpression of lqsA, the 

corresponding phenotypes of a double deletion strain (∆lqsS-∆lqsT) are not (Section 3.1.5 and 

Table 12). These results suggest that under the conditions tested L. pneumophila does not produce 

additional LAI-1 sensors, and that LqsS and LqsT are the sole sensor kinases responsive to LqsA-

generated LAI-1. 

 

A ∆lqsT strain was only slightly impaired in pathogen–host interactions (Section 3.1.3, Figure 9), 

similarly to a strain lacking the autoinducer synthase lqsA,). Perhaps, under the conditions used, 

the expression of lqsA is tightly regulated, and the corresponding protein is produced in minor 

amounts or in an inactive state. In agreement with this notion, the signalling molecule produced by 

LqsA, 3-hydroxypentadecan-4-one (LAI-1), was detected only upon overexpression of lqsA in L. 

pneumophila (or E. coli) (Spirig et al., 2008), and in low concentrations (pmol-range) in wild-type L. 

pneumophila (Michael Witting, unpublished data). The V. cholerae sensor kinase CqsS recognises 

Phenotype JR32 ∆lqsA ∆lqsR ∆lqsS ∆lqsT ∆lqsS-∆lqsT 

Sodium resistance + + ++ +++ +++ ++++ 

Sedimentation ++++ ++++ + ++ ++++ + 

Natural competence + +++ +++ +++ +++ ++++ 

Uptake by host cells ++++ ++++ ++ +++ ++++ ++ 

Intracellular 
replication 

++++ ++++ ++ +++ ++++ ++ 

       

Effect of lqsA on        

Salt sensitivity No No No Yes Yes No 

Uptake by host cells Yes Yes No Yes Yes No 

Table 12: Summary of ∆lqsA, ∆lqsS or ∆lqsR mutant strain phenotypes.  
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3-hydroxytridecan-4-one (CAI-1) produced by CqsA (Higgins et al., 2007) or by LqsA as a side 

product (Spirig et al., 2008). L. pneumophila LqsA was reported to generate either LAI-1 (C12 acyl 

tail), or to a smaller extent CAI-1 (C10 acyl tail) and derivatives with C11 or C13 acyl tails, reflecting 

a relaxed product specificity upon heterologous production of LqsA in E. coli. Thus, in L. 

pneumophila, additional sensor kinases may preferentially recognise LqsA-produced α-

hydroxyketones with a carbon chain length different from the main product LAI-1. Alternatively, or 

in addition, different sensor kinases might have different affinities to the same α-hydroxyketone 

molecule, thus modulating signal transduction on a further level. However, the in vivo biosynthesis 

pathway of the physiologically relevant LAI-1 derivatives in L. pneumophila requires further 

investigation. 

As shown for L. pneumophila ∆lqsA, a V. cholerae ∆cqsA mutant was not significantly impaired 

for virulence, as determined by the production of virulence factors and by colonisation studies in a 

mouse model (Hammer and Bassler, 2003, Zhu and Mekalanos, 2003, Miller et al., 2002, Zhu et 

al., 2002). Functional redundancy of the three QS systems in V. cholerae might account for the 

absence of a virulence phenotype of the cqsA and cqsS mutant strains (Ng et al., 2011, Higgins et 

al., 2007). Analogously, L. pneumophila might possess additional autoinducer/sensor kinase 

systems functioning in parallel to the Lqs signalling pathway. These systems might mask 

phenotypes of a ∆lqsA mutant, respond to products of LqsA and signal through a set of common 

downstream components including LqsR to jointly regulate target genes. 

Interestingly, the presence of the two LAI-1-responsive sensor kinases LqsS and LqsT 

converging on one response regulator in the Lqs system implies a unique organisation (Section 

1.3.2, Figure 3), which has not been reported for other AHK-responsive circuits such as the Cqs 

system of Vibrio spp. In V. cholerae and V. harveyi two or three different autoinducer systems 

based on AHL, AI-2 and AHK signals converge further downstream to regulate virulence and other 

traits (Henke and Bassler, 2004, Miller et al., 2002). In contrast, as L. pneumophila does not 

produce AHL and AI-2, the complexity of AHK signalling allows (i) integration of distinct AHK 

signals, (ii) accommodation of different signalling thresholds and/or (iii) transmission of antagonistic 

responses. 

The increased salt resistance of the ∆lqsS-∆lqsT sensor kinase double mutant strain is reversed 

by providing either plasmid-encoded lqsT or lqsS (Section 3.1.1, Figure 7). This finding suggests 

that LqsS and LqsT are in part functionally redundant and might sense the same or similar AHK 

signalling molecules. Both LqsS and LqsT lack a C-terminal phospho-receiver domain as well as a 

a conserved aspartate present in the Vibrio spp. hybrid sensor kinase CqsS (Tiaden and Hilbi, 

2012, Tiaden et al., 2010a). Therefore, phosphorylated LqsS and LqsT are postulated to transfer 

the phosphate residue onto the receiver domain of a distinct protein, most likely to the putative 

response regulator LqsR encoded in the lqs cluster. Indeed, pull-down assays revealed direct 

interactions between the response regulator and the cognate sensor histidine kinases: LqsS and 

LqsT are bound by LqsR or phospho-LqsR. Furthermore, LqsS and LqsT undergo 

autophosphorylation by [γ-32P]-ATP at a conserved histidine residue (H200 or H204) located in their 
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cytoplasmic histidine kinase domain. Through a process dependent on the conserved aspartate 

(D108) in the receiver domain, the response regulator prevented autophosphorylation of both sensor 

kinases by catalysing the dephosphorylation of phospho-LqsS or phospho-LqsT. Moreover, LqsR 

dimerised upon phosphorylation at D108 following the addition of either acetyl-phosphate or 

phospho-LqsT (Schell et al., 2014).  

In agreement with the findings from the aforementioned in vitro studies, these data  indicate that 

phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT 

indeed converges on the response regulator LqsR. The kinases might (i) bind and interact 

differently with the response regulator, (ii) signal to common as well as distinct response regulators, 

and/or (iii) respond contrarily to agonists and antagonists (Schell et al., 2014). The complex 

crosstalk among the two sensor kinases is expected to involve both common and distinct response 

regulators. Corroborating this hypothesis, the complexity of LAI-1-mediated signalling in 

L. pneumophila is reflected by some of the phenotypes of the strains lacking lqsS or lqsT, being (i) 

qualitatively similar but quantitatively different (Section 3.1, Figures 7A, 9D, 10A, 11), (ii) inverse for 

∆lqsS and ∆lqsT (Kessler et al., 2013), or (iii) specific for ∆lqsS (Figures 7B and 10C) (Kessler et 

al., 2013). Ultimately, the determination of the high resolution structure of the obtained LqsR 

crystals might provide insight into the structure-function relationship in the context of signal 

perception and response relay. 

4.3 lqsT and lqsS reciprocally regulate gene expression in L. pneumophila 

The more pleiotropic phenotypes of the ∆lqsS mutant compared with ∆lqsT are also reflected in the 

distinct transcriptomes of the mutant strains compared with wild-type L. pneumophila (Tiaden et al., 

2010b). In absence of lqsS a total of 234 genes are upregulated, many of which involve protein 

production, metabolism and bioenergetics, and are not regulated by lqsT. The reciprocal regulons 

of LqsS and LqsT parallel their antagonistic function in L. pneumophila virulence, with differential 

expression of lqsT and lqsS occurring in the post-exponential growth phase (Kessler et al., 2013).  

The differential regulation of more than 100 genes in absence of lqsT (Kessler et al., 2013) 

might explain the impaired virulence of L. pneumophila lacking the sensor kinase, i.e. components 

and substrates of the Icm/Dot T4SS or other virulence and transmission factors are downregulated 

(e.g. Mip, chitinase, flagellum components). Furthermore, downregulation of protection and 

replication factors (cold shock proteins, major outer membrane proteins, oxidative stress factors, 

cell division components) might impede survival in the bactericidal intracellular environment. Other 

phenotypes exhibited by the ∆lqsT mutant, e.g. the enhanced natural competence, do not directly 

correspond to the transcriptome pattern. Most likely, this phenotypic set is controlled more 

indirectly and results from a complex regulatory network including pleiotropic DNA-binding proteins 

and transcription factors such as Fis, HU-β, DNA gyrase (GyrA) and the stationary sigma factor 

RpoS (sigma38) (Kessler et al., 2013). Moreover, the second messenger cyclic di-GMP (c-di-GMP) 

might also play a role in the regulation of virulence processes. C-di-GMP is produced from GTP by 

diguanylate cyclases, degraded by phosphodiesterases and acts through various effector proteins 

or riboswitches (Hengge et al., 2009, Schirmer et al., 2009). The catalytic site of diguanylate 
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cyclases contains a GGDEF motif. Three c-di-GMP-metabolising enzymes of the L. pneumophila 

Lens strain displaying diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and 

bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities were implicated in the 

survival and intracellular replication of L. pneumophila. The corresponding deletion mutants were 

partially defective for the escape of the Legionella-containing vacuole (LCV) from the host 

degradative endocytic pathway, resulting in decreased survival rate (Allombert et al., 2014).  

The lqsT and lqsS genes are reciprocally expressed in the post-exponential growth phase, and 

90% of the genes downregulated in absence of lqsT are upregulated in L. pneumophila lacking 

lqsS (Section 3.1.6, Figures  13 and 14; Kessler et al., 2013). Genes inversely regulated by lqsT 

and lqsS include components of the Icm/Dot T4SS and a number of Icm/Dot substrates (Kessler et 

al., 2013). Thus, LqsT and LqsS are assumed to represent antagonistic sensors. The presence of 

two homologous sensor kinases with antagonistic roles is a novel feature of quorum sensing 

circuits.  

In summary, LAI-1 signalling in L. pneumophila is characterised by a unique organization 

involving two AHK-responsive sensor kinases, LqsS and LqsT, and a complex cross-talk among 

the two signal transduction pathways. However, while both sensor kinases apparently respond to 

signal(s) produced by LqsA, the physiological signal(s) are currently unknown. Since AHK-triggered 

sensor kinases can respond to both agonists and antagonists (Wei et al., 2012, Bolitho et al., 

2011), LqsT and LqsS might signal in parallel or even synergistically in vivo. This hypothesis is 

supported by the more severe phenotypes of L. pneumophila lacking both lqsT and lqsS, compared 

to the single-deletion mutant strains.  

Accordingly, the transcriptome of an L. pneumophila straing lacking the entire lqs cluster was 

reflected by even stronger phenotypes in virulence (e.g. T4SS-translocated effectors), motility 

(flagella components) and growth (fis and hfq genes) in the stationary phase (Tiaden et al., 2008). 

Notably, transcriptome analysis of a ∆lqs strain in the stationary growth phase revealed the 

downregulation of crucial Icm/Dot-secreted effector proteins including SidC, SidD, SidH, SidG, 

SdcA, four SidE paralogues, RalF, SidM/DrrA and LidA. In addition, a set of Enh paralogues 

implicated in efficient phagocytosis (Cirillo et al., 2001, 2000), several eukaryotic-like proteins, 

flagellum genes (flaA and fliA), and multiple transmissive phase-induced regulatory proteins, 

including GGDEF regulators was downregulated. While the defects in the flagellum and the 

absence of Enh might explain the less efficient phagocytosis of the lqs mutant, the impaired 

intracellular replication might correlate with the lack of Icm/Dot-secreted factors. The effector 

proteins SidC, RalF, SidM or LidA contribute to the early establishment of the LCV by interfering 

with vesicle trafficking between the ER and Golgi network (Ninio and Roy, 2007). Supported by 

microarray and in vivo experiments, the lqs genes act synergistically during the transition from the 

replicative to the transmissive, virulent phase to establish a productive pathogen-host interaction. 

This switch is partly governed by the control of expression and activation of the Icm/Dot substrates 

that are translocated during consecutive phases of the infectious cycle (Section 1.2). 
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Figure 29: Genetic organisation of the 133 kb genomic island in L. pneumophila Philadelphia-1. 

Regions I and II of the genomic fitness island were chromosomally inserted in the vicinity of a tRNAThr 

gene and are flanked by genes coding for integrases (int; lpg0980, lpg1070), conjugation coupling 

factor traD (lpg0983) and transposase tnpA (lpg1071). An insertion sequence (IS) element is located 

close to the 3’ end of region II. Direct repeats (DR) represent sites of insertion and deletion of DNA 

fragments. 

Previous comparative transcriptome analysis revealed a distinct correlation between the gene 

regulation patterns of ∆lqsS and ∆lqsR and a wild-type strain overexprexpressing lqsA (JR32/pNT-

36) (Tiaden et al., 2010b). These findings suggest that LqsS and LqsR, as well as LqsA and LqsS 

share a common signal transduction pathway. Based on the transcriptome data, LqsA and LqsR 

seem to cooperate less prominently, corresponding to the mild impact of an lqsA deletion in 

contrast to the strong and pleiotropic phenotypes of a strain lacking lqsR. 

4.3.1 lqsS regulates a 133 kb genomic fitness island  

While absence of lqsT resulted in downregulation of the 133 kb genomic fitness island, deletion of 

lqsS induced the expression of this gene cluster (Tiaden et al., 2010b). These islands have recently 

been classified as integrative and conjugative elements capable of horizontal gene transfer (Wee et 

al., 2013). As an element of genomic plasticity, the entire 133 kb element regulated by lqsS 

contributes to genetic diversity of the species L. pneumophila, since in L. pneumophila 

Philadelphia-1 the regions I and II (lvrA1-helC) are contiguous, while in L. pneumophila Lens the 

two genes (lpl1038, lpl1044) are separated by 5 kb (Cazalet et al., 2004, Chien et al., 2004) and in 

L. pneumophila Paris lvrA1 (lpp1076) is even located 1530 kb away from helC (lpp2373). The locus 

includes region I (putative pili components), which is separated by lvrB1-lvrA1 (lpg1004-1005) from 

region II (multiple metal ion efflux systems). The 133 kb element is present in all sequenced 

genomes of L. pneumophila, and in two-thirds of 217 strains tested by hybridisation (Cazalet et al., 

2008), implying a crucial role in the bacterial life cycle. Typical mobilising attributes of genomic 

islands (discussed in Section 1.4) map to the 133 kb region: Flanking sequences of regions I 

(lpg0969-lpg1000) and II (lpg1006-lpg1069) contain a tRNA gene (lpg0972) located upstream of 

integrase-encoding loci (lpg0980, lpg1070), a conjugative coupling factor TraD (lpg0983) and a 

transposase gene tnpA (lpg1071). Furthermore, an ISL3-family insertion sequence (IS) element 

maps between lpg1062 and lpg1063 (Figure 29).  

Interestingly, in the wild-type strain overexpressing lqsA all induced genes cluster to region I of the 

133 kb genomic island, as compared to a ∆lqsA mutant. In summary, the 133 kb region exhibits 

characteristics of a mobile fitness island, which was incorporated via horizontal gene transfer into 

the genomes of different L. pneumophila strains after their divergence from a common ancestor.  
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A functional annotation was assigned to a distinct section of region II of the fitness island ranging 

from helA (lpg1008) to pcoA/copA2 (lpg1035): This portion was previously described as a 40 kb 

efflux pump genomic island (Kim et al., 2009, Rankin et al., 2002, McClain et al., 1996), harbouring 

bacterial genes that were found to be induced during, but dispensable for, infection of 

macrophages.  

The V. cholerae 57.3 kb pathogenicity island VPI-2 is hypothesised to be important in 

pathogenesis, either directly in cholera virulence or indirectly in the transfer and integration of the 

island (Jermyn et al., 2005). A VPI-2-resident neuraminidase and a gene cluster involved in the 

utilisation of specific amino sugars as an alternative nutrient source may contribute to the survival 

of the bacterium in different ecological niches, and thus provides a significant competitive 

advantage to pathogenic V. cholerae strains (Jermyn et al., 2002). In L. pneumophila, reciprocal 

regulation of the 133 kb fitness island by the two sensor histidine kinases LqsS and LqsT might 

correlate with the A. castellanii competition data, where the ∆lqsT strain was more efficiently 

outcompeted than the ∆lqsS strain (Figure 10). The amoeba competition assay is a sensitive, yet 

complex readout, selecting for intracellular survival and replication of the bacteria, as well as for 

extracellular persistence and fitness. Thus, the 133 kb genomic fitness island might promote 

survival and persistence during pathogen–phagocyte interactions under the conditions tested 

(Kessler et al., 2013).  

4.3.2 The transcriptional regulator SinR is part of a 133 kb genomic fitness island 

As a part of the lqsS-regulated 133 kb genomic fitness island, a SinR-like regulator belonging to the 

xenobiotic response element (XRE) family of transcription factors harbouring a HTH-binding motif 

was identified in L. pneumophila. PsinR-dependet gfp expression was strongly induced in absence of 

lqsS in the stationary growth phase, and only mildly elevated in a ∆sinR strain. Yet, upon prolonged 

incubation, sinR displayed upregulated expression at very late stationary growth stages. 

Conceavably, these growth conditions trigger specific stress or starvation processes that ultimately 

affect sinR expression in addition to the bacterial growth phase. SinR shows similarity to the B. 

subtilis homologue, the master regulator of biofilm formation (Colledge et al., 2011). Biofilms are 

structured microbial communities of cells attached to an inert or living surface by means of a matrix 

of self-produced extracellular polymeric substances (Mattick et al., 2002). Interestingly, L. 

pneumophila lacking sinR was defective for biofilm formation (Figure 24). Of the known L. 

pneumophila sigma factors, only the flagellar sigma factor FliA has been implicated in the 

regulation of biofilm production to date (Mampel et al., 2006). It will be interesting to determine 

whether sinR promotes biofilm production in L. pneumophila like in B. subtilis.  

∆sinR exhibited no difference in sedimentation behaviour compared to L. pneumophila JR32, 

implying a wild-type-like absence of extracellular filament production. Moreover, sinR-deficient 

bacteria were deficient in uptake and intracellular replication in macrophages, D. discoideum, and 

A. castellanii and were outcompeted by wild-type L. pneumophila in A. castellanii, suggesting a role 

in pathogen host-cell interactions (Section 3.3.3, Figure 11). In addition to the lqs system, sinR was 

identified as novel factor controlling natural competence in L. pneumophila, which reduces the 
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transformation efficiency and represses the transcription of the DNA uptake machinery components 

comEA (Section 3.3.4, Figure 10).  

Furthermore, expression analyses showed that sinR induced expression of lqsA and lqsR in the 

late stationary phase and repressed transcription of its own gene, suggesting an autoregulatory 

feedback loop. This regulation is supported by gel band-shift data, where SinR was shown to 

directly interact with conserved SinR binding motifs located in the promoter regions of sinR and 

lqsA. Copies of the 7-bp SinR DNA binding consensus sequence are found in different numbers 

and arrangements at SinR-regulated promoters, suggesting that it can be bound in a variety of 

orientations and valencies (Kearns et al., 2005, Colledge et al., 2011). SinR bound with higher 

affinity to the full-length sinR promoter, which harbours two copies of the 7-bp SinR DNA binding 

consensus sequence GTTCTTT in inverted orientation. In contrast, binding of SinR to a single motif 

present in the lqsA upstream region appeared to be weaker. These data are in agreement with a 

recent report showing that SinR of B. subtilis is able to bind in vitro to the single motif, in addition to 

the inverted repeat motifs (Ogura et al., 2014). This implies that SinR is adapted to binding DNA 

elements which contain 2-fold rotational symmetry and that these sites are required for SinR 

interaction with the sinR upstream intergenic region on the bacterial chromosome. Differing from 

common binding geometries adopted by HTH-domains of prokaryotic proteins (Huffman and 

Brennan, 2002), SinR is assumed to bind to DNA elements located unusually far from the 

promoter, separated by as much as 159 bp. Due to their nonpalindromic characteristic, high-affinity 

interaction with SinR required both binding motifs of the sinR promoter to be present on the same 

molecule of DNA (Section 3.3.1.2, Figure 21). Similarly, the M. tuberculosis EspR dimer was shown 

to contact two operator DNA elements linked by a 177 base spacer (Rosenberg et al., 2011). In this 

model, one EspR monomer binds to one site, while the second one contacts the other site, allowing 

for cooperative binding of the dimer with concomitant looping of the intervening DNA. Further 

biochemical studies such as genome-wide ChIP-on-Chip experiments in combination with the high 

resolution structure determination are required to decipher the mode of SinR binding to its 

operators.  

The possibility of additional factors cooperating with SinR in promoter regions of target genes 

also needs to be considered. In fact, activation of multiple SinR target promoters in B. subtilis was 

reported to involve formation of a complex with the co-factor SlrR. Upon binding to the degU 

promoter, the SlrR/SinR complex is in turn removed by a phosphorylated response regulator, 

DegU, in dependence on RNA polymerase (Ogura et al., 2014). Moreover, biofilm synthesis 

requires SlrR/SlrA to activate the eps and ypxM operons by antagonising SinR (Kobayashi, 2008). 

SinR is a wide-range DNA-binding protein that is essential for the late-growth phase processes of 

competence and motility in B. subtilis and also acts as a repressor of other loci, e.g., the 

sporulation gene spo0A (Cervin et al., 1998, Mandic-Mulec et al., 1995). The broad spectrum of 

functions regulated by SinR in L. pneumophila allows speculations about the involvement of further 

factors in the fine-tuning of SinR target gene expression. This direct transcriptional control might be 

mediated by the formation of protein-protein complexes that occlude differential operator 

sequences of regulated promoter regions. Furthermore, transcriptional profiling using a sinR-
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defective strain by microarray and qRT-PCR analysis will provide detailed insight into the extensive 

regulon of SinR, including the indirectly regulated genes.  

Collectively, the pleiotropic DNA-binding protein SinR was identified as affecting several 

processes of L. pneumophila virulence and physiology at the onset of the stationary growth phase. 

Part of these phenotypes are co-regulated by the lqs system (pathogen-host interactions and 

natural competence), yet sinR also exhibits separate functions (biofilm formation). In addition to 

inducing lqsR expression in an indirect manner, sinR is also assumed to be a positive factor in lqsA 

transcription, directly binding to its promoter region. Thus, sinR might provide a novel link between 

the AHK signalling cascade and the interconnected regulatory systems governing adaptation of L. 

pneumophila to the transition from the exponential growth to stationary phase. 

 

4.4 AHK signalling mediates natural competence of L pneumophila and V. 

cholerae 

L. pneumophila strains lacking lqs genes displayed significantly increased natural competence and 

efficient acquisition of extracellular DNA (Section 3.1.2, Figure 10). Natural competence depends 

on type IV pili (Stone and Kwaik, 1999) and is significantly enhanced in certain strains upon 

microaerophilic growth at 37°C or aerobic growth at 30°C (Sexton and Vogel, 2004). Moreover, 

genotoxic stress caused by UV radiation or compounds such as mitomycin C or antibiotics were 

shown to promote natural competence for transformation of L. pneumophila (Charpentier et al., 

2011). In support of previous studies (Sexton and Vogel, 2004, Stone and Kwaik, 1999), the 

competence of L. pneumophila wild-type strain Philadelphia-1 was found to be low (Section 3.1.2, 

Figure 10A). However, the ∆lqsA, ∆lqsR, ∆lqsS or ∆lqsT strains exhibited a 4-orders of magnitude 

higher transformation efficiency, with the ∆lqsS-∆lqsT deletion mutant having an even stronger 

phenotype. Substantiating these data, the expression of the comEA promoter was upregulated in 

all L. pneumophila strains lacking individual lqs genes and most profoundly in the ∆lqsS-∆lqsT 

strain (Section 3.1.2, Figure 10D). Thus, lqsS and lqsT seem to control competence in a synergistic 

manner. 

L. pneumophila lacking lqs genes was induced to take up extracellular DNA only at high 

bacterial densities (OD600 > 2.5; Figure 10), akin to V. cholerae. In contrast to L. pneumophila, 

however, V. cholerae DNA acquisition and comEA transcription was abolished in absence of cqsA 

or cqsS, and enhanced by AHK signalling in biofilms or by synthetic CAI-1 (Antonova and Hammer, 

2011, Suckow et al., 2011). Taken together, AHK signalling reciprocally regulates competence as 

well as virulence in L. pneumophila and V. cholerae. While AHK signalling represses competence 

and promotes virulence in L. pneumophila, CAI-1 signalling promotes natural competence and 

repress virulence as well as biofilm formation in V. cholerae (Figure 28; Suckow et al., 2011, Henke 

and Bassler, 2004, Miller et al., 2002). Biofilm formation was not affected by the lqs genes in 

L. pneumophila (Tiaden et al., 2010b). Interestingly, the SinR-type transcription factor characterised 

in this study was found to inhibit natural competence, as was observed for the lqs components. As 

sinR was not only found to control its own expression, but also to induce lqsA transcription, SinR 
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establishes a novel link between the development of natural competence and AHK signalling. 

Analogously, several regulatory pathways, i.e. growth on chitin surfaces and quorum sensing, are 

involved in the development of natural competence in V. cholerae. The major regulators of these 

two cascades, TfoX and HapR, were shown to activate the expression of the common 

transcriptional regulator QstR, which itself links chitin-induced TfoX activity with quorum sensing 

(Section 4.1, Figure 28; Lo Scrudato, 2013). In the absence of chitin oligomers, TfoX translation is 

inhibited. Specifically, the membrane-bound transcriptional regulator TfoS cannot dimerise and 

activate the transcription of the small RNA TfoR, leading to an inhibitory stem-loop structure in the 

tfoX mRNA (Yamamoto et al., 2011). In the presence of chitin, these oligomers may interact with 

and dimerise the membrane-bound transcriptional regulator TfoS, which allows the cytoplasmic 

DNA-binding domains to activate expression of tfoR. TfoR then interacts with Hfq and positively 

regulates tfoX translation, resulting in activation of the genes required for competence (Dalia et al., 

2014). In L. pneumophila, detailed mechanisms of DNA uptake, including the involvement of the 

type IV-like pilus and ComEA remain to be uncovered. 

Finally, the lqs system together with the transcription factor SinR represents a major negative 

regulatory element of natural competence of L. pneumophila and also functionally links the lqs 

cluster with the orphan lqsT gene. The in vivo conditions under which lqs-repressed natural 

competence of L. pneumophila is induced remain elusive. Of special interest is the identification of 

a pivotal role of LAI-1 in the horizontal transfer of DNA and the acquisition of fitness-enhancing 

features. 

4.5 Evolutionary and environmental implications of AHK-mediated 

signalling  

The V. cholerae CqsAS QS system was identified in several Vibrio spp. including V. harveyi and V. 

parahaemolyticus and other marine bacteria (Henke et al., 2004). Studies using a luminescent V. 

cholerae CAI-1 reporter strain revealed that CAI-1 from V. harveyi (or other Vibrio spp.) controls 

gene expression in V. cholerae (and vice versa). Therefore, cell–cell communication via CAI-1 

functions across the species barrier. 

The cqsA and cqsS genes are transcribed in opposite directions in V. cholerae and the 

corresponding homologues in other environmental bacteria retain this orientation. In contrast, the 

lqsR homologues appear to form an operon with the lqsS/cqsS genes. The hdeD homologue 

exclusively present in L. pneumophila disrupts this putative operon structure, but also introduces 

novel regulatory elements. Upstream of hdeD a ‘lux box’-type operator consensus is present, which 

binds LuxR-type regulators such as LetA and promotes the expression of several autoinducer 

synthases and other genes regulated by quorum sensing.  

The LAI-1 synthase-encoding gene lqsA is present in all L. pneumophila genomes sequenced 

so far (Glöckner et al., 2007, Chien et al., 2004, Cazalet et al., 2004) as well as in several other 

clinical or environmental isolates (Spirig et al., 2008). On the other hand, neither L. longbeachae, 

nor Legionella spp. other than L. pneumophila apparently possess the lqs system (Cazalet et al., 
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2010). The L. pneumophila lqs cluster is flanked by a putative hot spot for genomic recombination, 

as the corresponding region in L. longbeachae harbours a homologue of the putative effector gene 

legG2 (llo0327, lpg0267), flanked by transposase elements and localises upstream of an E. coli 

hdeD-like gene. Since hdeD interrupts the convergently transcribed lqsS and lqsR, it is tempting to 

speculate that these two genes originate from one single, larger cqsS ancestor gene. Perhaps, 

recombinatory events might have introduced a cqs-like cluster into the L. pneumophila genome. 

Homologuous gene clusters containing lqsA, lqsS and lqsR (but not hdeD) have been discovered 

in other environmental bacteria, including Nitrococcus mobilis, Burkholderia xenovorans and 

Polaromonas spp. (Tiaden et al., 2007), corroborating the notion that L. pneumophila might have 

acquired the lqsA-lqsR-lqsS cluster by horizontal gene transfer.  

AHK signalling is prevalent among family members of the Legionellaceae (Legionella spp.), 

Vibrionaceae (Vibrio spp., Photobacterium spp.), Burkholderiaceae (Burkholderia spp., Cupravidus 

spp.) and Chlorobiaceae (Chlorobium spp., Prostheochloris spp.). Given the prevalence of Lqs/Cqs 

systems among a number of environmental bacterial species of different genera, AHK molecules 

might also contribute to more widespread crosstalk between different bacterial genera using this 

class of signalling molecules (Section 4.6). 

4.6 Interkingdom signalling  

Beyond bacterial cell-cell communication, small signalling molecules are mediators of the 

prokaryote-host cell interplay in a process termed interkingdom signalling (Pacheco et al., 2009). A 

number of reports have assigned bacterial autoinducers diverse effects on their host cells during 

the infection process, including mammalian cell physiology (Williams et al., 2004), cellular stress 

pathways (Clarke et al., 2007), epithelial cell migration (Karlsson et al., 2012) and apoptosis 

(Tateda et al., 2003). Specifically, N-Acylhomoserine lactone (AHL) produced by P. aeruginosa 

was shown to interact with lymphocytes via a cooperative binding model, implying the existence of 

an AHL membrane receptor (Davis et al., 2010). Jahoor and coworkers described a ligand for oxo-

C12-HSL, namely the peroxisome proliferator activated receptors beta-delta (PPAR), which upon 

activation inhibit the expression of proinflammatory genes (Jahoor et al., 2008). Binding of these 

transcription factors to their target promoters was shown to be antagonised by oxo-C12-HSL in 

vitro. Moreover, in a host cell-dependent fashion, AHL was reported to mediate either pro- or anti-

inflammatory host responses by subverting NF-κB-dependent gene expression (Kravchenko et al., 

2008). It will be interesting to test effects of the L. pneumophila autoinducer molecule LAI-1 on 

eukaryotic host cells. Overall, it is still controversial whether quorum sensing molecules modulate 

host signaling pathways or if the eukaryotic host uses the conserved microbial compound 

structures as molecular alarmone to detect and fight infections.  

 

 

 



 DISCUSSION 

90 

Figure 30: Model of the QseC and QseE signalling cascades in EHEC. QseC responds to the 

human stress hormones epinephrine/norepinephrine and to AI-3 generated by the gut microbial flora. 

QseC phosphorylates its cognate response regulator QseB, which directly activates transcription of 

flagellar genes flhDC and the virulence gene nlEA,  and indirectly promotes LEE gene expression. QseF 

is phosphorylated by both QseC and QseE and indirectly induces expression of Shiga toxin and the 

virulence factor espFu, promoting actin polymerisation. Solid and dashed lines indicate direct positive 

and indirect regulation, respectively. EHEC. Enterohaemorrhagic E. coli; Epi, epinephrine; LEE, locus of 

enterocyte effacement; NE, norepinephrine; AI-3, autoinducer-3; AE, attaching and effacing, HUS, 

haemolytic-uremic syndrome. Modified after Hughes et al., 2009. 

Moreover, signal transduction systems of some pathogenic bacteria were shown to recognise host 

adrenergic hormones (catecholamines) to promote virulence. The first piece of evidence of 

crosstalk between eukaryotic and prokaryotic signaling systems was provided by the two-

component system QseBC present in the enteric pathogen EHEC (Enterohameorrhagic E. coli) 

(Clarke et al., 2006, Figure 30). 
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The membrane-embedded sensor kinase QseC not only senses the host hormones epinephrine 

and norepinephrine, but also binds to AI-3 produced by the microbial gastrointestinal flora. Through 

the QseC sensor kinase, AI-3 promotes EHEC motility, permitting the bacteria to approach the gut 

epithelium, where they can be exposed to host-produced epinephrine and norepinephrine (Clarke 

et al., 2006). Upon binding of any of these signalling molecules, QseC autophosphorylates and 

subsequently phosphorylates a transcription factor, QseB which relays to a complex regulatory 

cascade, leading to the transcription of key virulence genes. Interestingly, QseB binds to different 

sites in the target promoters depending on its phosphorylation state. Thus, one single response 

regulator is able to modulate gene expression by both activating or repressing the same gene. 

Upon recognition by the QseCB system, adrenergic hormones were revealed to regulate 

expression of the locus of enterocyte effacement (LEE), Shiga toxin and motility genes (flhDC) in 

EHEC (Njoroge and Sperandio, 2012, Figure 30).  

A second two-component system (QseEF), composed of the sensor kinase QseE and the 

response regulator QseF, was reported to cooperate with QseCB to control virulence in EHEC 

(Reading et al., 2007). Like QseC, QseE also senses the host hormone epinephrine, but in 

contrast, does not react to the bacterial signal AI-3. qseEF transcription is activated by epinephrine 

via QseC. The QseEF system is not involved in regulation of flagella and motility, but plays an 

important role in activating genes necessary for AE lesion formation (Reading et al., 2007) and also 

activates production of Shiga toxin (Figure 31).  

The complex multitude of effects governed by adrenaline and noradrenaline target both bacteria 

and the host response: Although the NE stress hormones mostly benefit the bacteria to navigate 

their infectious pathway, under certain conditions the noradrenergic compounds provide a unique 

advantage to the host in order to manipulate bacterial pathogens: While the downregulation of the 

lipopolysaccharide (LPS) modifying enzymes PmrF and PagL causes an increase in sensitivity to 

polymyxin B, it also concomitanty reduces activation of the TLR-4 recpeptors, thereby alleviating 

the host inflammatory response to infection (Kawasaki et al., 2004). Homologues of the QseBC 

signal transduction system were discovered in more than 25 human or plant pathogenic species 

and mutants of EHEC, in Salmonella Typhimurium, and Francisella tularensis were attenuated in 

infected animals (Rasko et al., 2008).  
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5. Conclusions and future perspectives 

Bacterial cell-cell communication involving the novel class of AHK signalling molecules is known to 

regulate different functions involved in microbial pathogenesis. The lqs system of L. pneumophila 

was shown to control virulence, biofilm or extracellular filament formation, natural competence and 

the expression of a genomic fitness island. The transcription factor SinR was found to be 

functionally linked to the resident AHK signalling pathway, allowing speculations regarding further 

regulatory elements expanding this complex network. Due to its vast array of controlled traits, 

quorum sensing is deemed to be an interesting target to modulate pathogenesis. Quorum sensing 

inhibitors may quench the virulence phenotypes exerted by pathogenic bacteria and complement 

antibiotic treatment, a highly desirable strategy in response to alarming global reports of continuous 

emergence of antibiotic-resistant microbes (Naik et al., 2013). Of note, agonists or inhibitors of 

LqsS or LqsT family sensor kinases as well as chemicals targeting LAI-1 or its derivatives pose 

great potential for therapeutic applications. The antimicrobial function of quorum sensing inhibitors 

acts at various stages of infection processes ranging from the generation or detection of the signal 

molecule by its receptor to the activation of the QS regulon.  

Future research on AHK signal transduction in L. pneumophila might encompass the direct 

impact of synthetic LAI-1 (i) on mechanistic interactions among the Lqs proteins in biochemical 

profiles, (ii) on pathogen host-cell processes using cellular approaches, and (iii) on global gene 

expression studies of L. pneumophila or its host in the context of interkingdom signalling. 

Ultimately, the identification of new chemical communication modules and their crosstalk between 

different kingdoms will provide insights into pathogenicity and open new avenues for antimicrobial 

research.  
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