
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Biomimetic Synthesis of Polyketides:  

Dibefurin and Epicolactone 

 

and 

 

Synthetic Studies Toward Gracilin Terpenoids 

 

 

 

 

 

 

von 

Pascal Ellerbrock 

aus 

Wuppertal, Deutschland 

 

 

2015



Erklärung 

 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von 

Herrn Prof. Dr. Dirk Trauner betreut. 

 

 

 

Eidesstattliche Versicherung 

 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

 

 

München, den 29.01.2015 

 

 

 

 

 

 

……………………………… 

Pascal Ellerbrock   

 

 

 

 

 

 

 

 

Dissertation eingereicht am:  29.01.2015 

1. Gutachter:       Prof. Dr. Dirk Trauner 

2. Gutachter:       Prof. Dr. Paul Knochel 

Mündliche Prüfung am:   02.03.2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Meinen Eltern -



Parts of this work have been published in peer-reviewed journals. 

 

‘Biomimetic Synthesis of the Calcineurin Phosphatase Inhibitor Dibefurin’, P. Ellerbrock, 

N. Armanino, and D. Trauner, Angew. Chem. Int. Ed. 2014, 53, 13414–13418. 

 

Parts of this work have been presented on scientific conferences. 

 

‘Biomimetic Synthesis of Fungal Polyketides’ (poster), Syngenta Workshop for Talented PhD 

Chemistry Students, Stein (Switzerland), 29.09.–30.09.2014 

 

'Biomimetic Synthesis of Polyketides: Dibefurin and Epicolactone’ (oral communication), 127th 

BASF International Summer Course, Ludwigshafen (Germany), 03.08.–09.08.2014 

 

‘Biomimetic Synthesis of Fungal Polyketides’ (poster), Gordon Research Conference: Heterocyclic 

Compounds, Newport (RI, USA), 15.06.–20.06.2014 

 

‘Toward the Biomimetic Synthesis of Epicolactone’ (poster), CIPS
M

 conference, Wildbad Kreuth 

(Germany), 03.06.–06.06.2014  

  

‘Employing Rhodium Carbenoids in Complex Settings: Toward the Total Synthesis of Gracilin 

Natural Products’ (poster), 14th Tetrahedron Symposium, Vienna (Austria), 25.06.–28.06.2014 

 

Parts of this work are in preparation for publication in peer-reviewed journals. 

 

‘Biomimetic Synthesis of Epicolactone’, P. Ellerbrock*, N. Armanino*, R. Webster, M. K. Ilg, and D. 

Trauner, manuscript in preparation. 

 

‘Synthetic Studies Toward Gracilin Natural Products’, P. Ellerbrock, M. Olbrich, and D. Trauner, 

manuscript in preparation. 

 

 



ABSTRACT  I 

ABSTRACT 

This thesis describes the biomimetic synthesis of dibefurin as well as synthetic studies toward the 

polyketide epicolactone and the gracilin norditerpenoids. Following the biosynthesis proposed in this 

thesis, the Ci-symmetric fungal metabolite dibefurin was synthesized by oxidative homodimerization 

of the natural product epicoccine. En route to epicolactone, an oxidative heterodimerization of 

epicoccine with different pyrogallol derivatives I was developed. This key step gave rise to tetracycles 

II featuring three tetrasubstituted carbon atoms with correct diastereoselectivity. During the 

investigation of this key step, a novel hetero-DIELS–ALDER coupling of pyrogallols was identified. 

 

In the second project, three strategies toward the gracilin natural products were tested. A 

Rh-catalyzed cyclopropanation/COPE rearrangement furnished cyclic diene V. Hemiacetal VI, 

synthesized via double oxidative cleavage, could not be converted to the target natural products. An 

alternative route involving a formal (3+2)-cycloaddition and desymmetrization of a meso-substrate 

efficiently afforded alcohol VII, providing an excellent basis for the completion of the total synthesis.  
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1 GENERAL INTRODUCTION 

1.1 Symmetry  

Symmetry (from Greek symmetria, “agreement in dimensions”) is mathematically defined as the 

invariation of an object to a transformation. Highly symmetric objects are exceptionally appealing and 

aesthetically pleasing to human beings and have therefore found frequent use in art and architecture. 

Among the myriad applications of symmetry considerations in science, the WOODWARD–HOFFMANN 

rules concerning the conservation of orbital symmetry in pericyclic reactions have had a profound 

impact on this thesis and organic chemistry in general.
[1–3]

  

The symmetry of an object can be described with the help of symmetry operations, operations that 

transform the object into a state indistinguishable of the starting state (Table 1).  

Table 1. Symmetry operations. 

category symbol description special cases 

proper rotation operation Cn rotation by 360/n° identity I or E: C1 

improper rotation operation Sn rotation by 360/n° followed by  

reflection in plane  

perpendicular to rotation axis 

inversion: S1 (σ) 

reflection: S2 (i) 

 

Based on its symmetry operations, a molecule in a given conformation can be categorized in point 

groups (Table 2). In this context, symmetry elements such as rotation axis, mirror planes or inversion 

centers are the points of references, about which the symmetry operation in question can take place. 

Table 2. Selection of molecular point groups (SCHOENFLIES notation). 

point group selection of symmetry elements 

Cn n-fold rotation axis 

Cs mirror plane 

Ci inversion center 

Cnv n-fold rotation axis, n vertical mirror planes 

Cnh n-fold rotation axis, horizontal mirror plane 

Dn n-fold rotation axis, n perpendicular two-fold rotation axes 

Dnh n-fold rotation axis 

n vertical mirror planes 

perpendicular two-fold rotation axis 

Td tetrahedral symmetry (three-fold rotation axis) 

Oh octahedral symmetry (four-fold and three-fold rotation axes) 

Ih icosahedral symmetry (five-fold rotation axis) 
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In organic chemistry, inversion centers, mirror planes and two-fold rotation axes are of particular 

importance. Common point groups of organic molecules therefore include C1, Cs, Ci, C2, C2v and C2h 

(Figure 1).  

 

Figure 1. Examples of organic molecules with different point groups. 

The point group of molecules determines whether they are chiral or achiral. Derived from the 

Greek word for “hand”, chirality is defined by the lack of improper rotation axes S1 (i) and S2 (σ). A 

molecule with this feature cannot be superimposed with its mirror image by rotation alone. In addition 

to the fact that many natural products are chiral, they mostly also only exist as one of the enantiomers 

in Nature. Since the biology activity of molecules depends on their absolute configuration, their total 

synthesis is required to discriminate between different enenatiomers. To this end, topicity 

considerations are crucial. The term topicity defines the stereochemical relationship of objects, e.g. 

substituents or faces. The objects are homotopic if they can be transformed into each other by rotation 

and enantiotopic, if a superimposition with itself is only possible by a mirror plane. In all other cases, 

they are diastereotopic. Whereas homotopic substituents or faces react in the same way under all 

conditions and afford the same product, diastereotopic groups undergo transformations at different 

rates. Every enantioselective methodology relies on the fact that enantiotopic substituents behave like 

diastereotopic groups in a chiral environment.  

1.2 History of Natural Product Synthesis 

The history of natural product synthesis dates back almost 150 years to efforts of BAEYER, 

LADENBURG and WILLSTÄTTER (Figure 2).
[4]

 Major aim of these early investigations was to provide 

proof that natural products can indeed be accessed in laboratories. Already in 1870, BAEYER disclosed 

the first synthesis of the dye indigo from isatin.
[5]

 His report was followed by LADENBURG’s racemic 

route to the known alkaloid coniine from α-picoline in 1886.
[6]

 A breakthrough as a tool for structural 

elucidation of natural products was achieved by WILLSTÄTTER in his studies on the tropane alkaloid 

cocaine, which was ultimately accessed from cycloheptanone via tropinone.
[7,8]

 Due to the intricate 

structure and societal impact of the important antimalarial drug quinine, its successful total synthesis 

in 1944 by WOODWARD and DOERING based on previous work by RABE and KINDLER constitutes a 

milestone in the development of this field.
[9–11]
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Figure 2. History of natural product synthesis. 

Over the following decades, synthetic endeavours increasingly served the purpose of showcasing 

the power of total synthesis rather than obtaining structural proof. Many molecules such as vitamin B12 

or palytoxin that were previously deemed impossible to access succumbed to total synthesis.
[12–14]

 

These efforts were the main driving force in the development of novel synthetic methodology (Figure 

3). The significant progress ranges from the first application of Cu-mediated couplings to form 

trisubstituted olefins (COREY synthesis of juvenile hormone I) over studies on novel synthetic routes 

towards guanidines (KISHI synthesis of tetrodotoxin) to investigations on macrolactonization and 

glycosylation reactions for macrolide antibiotics (WOODWARD synthesis of erythromycin A).
[15–17]

 

With the demonstration that highly complex natural products can indeed be accessed synthetically, the 

field of total synthesis slowly underwent a paradigm shift.  



4  GENERAL INTRODUCTION 

 

Figure 3. Development and application of new synthetic methodology in natural product synthesis. 

Subsequently, the focus was put more on the general efficiency of the synthetic route rather than 

the mere accomplishment of the synthesis.
[18]

 Different criteria than structural complexity such as the 

potential benefit to society gained importance in the choice of targets. The pursuit to arrive at the right 

enantiomer of the bioactive natural product stimulated substantial research activity in the 

stereoselective preparation of molecules.  

The developments in natural product synthesis have markedly broadened the portfolio of efficient 

and selective methods to access organic molecules in general. In turn, this field still serves as a 

valuable testing ground to assess the robustness and generality of new synthetic methodology.
[19–21]

 

Based on these significant improvements in the synthesis of natural products over the past decades, 

sufficient quantities of highly bioactive, natural or non-natural molecules can now be provided in 

flexible routes that easily allow for the derivatization of the final structure. Prominent examples 

include the MYERS synthesis of tetracyclin antibiotic doxycycline and the fully synthetic production of 

the anti-cancer drug eribulin mesylate (Halaven
®
) on multi-gram scale (Figure 4).

[22,23]
 However, even 

in a time of advanced spectroscopic methods, total synthesis is still helpful in the structural elucidation 

of natural products.
[24]

  

 

Figure 4. Highly bioactive molecules accessed by organic synthesis. 
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1.3 Symmetry in Natural Product Synthesis 

The exploitation of the symmetry
1
 of natural products in their total synthesis is considered very 

rewarding in terms of general efficiency. Besides a decrease in the number of steps, the stereoselective 

installation of substituents can be simplified. Depending on the molecule and the strategy, two main 

scenarios are possible (Scheme 1). In one case, the bidirectional synthesis, a target molecule can be 

traced back to one symmetric precursor by a desymmetrization reaction (strategy 1). In the other, the 

(pseudo-)symmetry of the natural product allows for a coupling reaction between two or more 

structurally related building blocks (strategy 2). Most frequently, strategy 2 involves a homo- (E = F) 

or a heterodimerization (E ≠ F). Both strategies require thorough retrosynthetic planning since the 

identification of symmetry elements in the natural product can be challenging.  

 

Scheme 1. Potential strategies for the exploitation of symmetry in total synthesis. 

Approaches along the lines of strategy 1 can be subdivided according to the point group of the 

molecule that is projected to undergo the desymmetrization (Scheme 2).  

 

Scheme 2. Desymmetrization strategies in total synthesis. 

                                                      
1
 In the following, the term ‘symmetry‘ with respect to molecules excludes C1 symmetry unless explicitly 

stated.  



6  GENERAL INTRODUCTION 

Elegant examples with Cs- or Ci-symmetric compounds 1 and 2 have been disclosed by LIST and 

co-workers in their synthesis of hirsutene and the NELSON group in their studies on 

hemibrevetoxin B.
[25,26]

 Both desymmetrizations require asymmetric methodology due to the achirality 

of the starting material. In contrast to this, STOLTZ and co-workers accessed cyanthiwigin F by a 

desymmetrization of an already chiral C2-symmetric molecule 3, which needed to be prepared by 

enantioselective decarboxylative allylation.
[27]

  

The coupling of building blocks according to strategy 2 constitutes one of the most frequently 

applied approaches to (pseudo-)symmetric multimeric molecules. Since Nature often follows a similar 

concept, biosynthetic considerations can be decisive in the identification of suitable coupling partners. 

Depending on the specific conditions, dimerizations can yield products with different symmetry 

elements (Scheme 3). The control over the selectivity in these reactions is crucial for the success of 

this strategy. 

 

Scheme 3. Dimerization strategies in total synthesis. 

Prominent examples of strategy 2 are illustrated in Scheme 3 with the CHAPMAN carpanone 

synthesis from phenol 4, COREY’s glabrescol synthesis from terpenoid 5 and KOBAYASHI’s studies of 

the head-to-tail dimerization of ester 6 toward the Ci-symmetric core of incarvillateine.
[28–30]

 

Within this thesis, both strategies were applied in the course of the biomimetic synthesis of 

polyketides dibefurin and epicolactone and the total synthesis of gracilin terpenoids. 
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2 PART I: BIOMIMETIC SYNTHESIS OF DIBEFURIN AND EPICOLACTONE 

2.1 Introduction 

2.1.1  Biomimetic Synthesis 

Biomimetic synthesis is defined as a transformation or a sequence of reactions that mimics the 

proposed biosynthesis of a natural product.
[31]

 As such, it can differ from a biogenetic route which 

strictly follows the biosynthetic pathway. 

The first biomimetic synthesis was undertaken in 1917 by ROBINSON, who showed that the 

Cs-symmetric natural product tropinone could be accessed from the simple components acetone 

dicarboxylic acid, succinic aldehyde and methyl amine by a sequence of MANNICH reactions.
[32]

 Ever 

since, the study of biosynthetic pathways and the synthesis of natural products along these lines have 

largely benefitted from each other. Some of the most recognized syntheses, such as the JOHNSON 

progesterone synthesis, the HEATHCOCK access to daphniphyllum alkaloids or the preparation of 

FR182877 by SORENSEN and co-workers, have been inspired by Nature.
[33–35]

 In turn, the 

WOODWARD/ESCHENMOSER total synthesis of vitamin B12 or the DE BRABANDER synthesis of 

berkelic acid have prompted novel biosynthetic hypotheses.
[36,37]

 

Over the course of millenia, Nature has invented and optimized the synthesis of complex 

molecules from common precursors. Herein, cascade reactions, i.e. sequences where the product of 

one reaction is at the same time the starting material of a subsequent transformation, often form a 

crucial part and rapidly increase molecular complexity.
[38]

 The major advantage of a biomimetic 

strategy is therefore the possibility to employ these efficient cascade processes for a step-economic 

synthesis from readily available starting materials. In favorable cases, cascade processes can avoid 

stereoselectivity problems by affording the desired diastereomer based on previously present 

stereocenters. If a common biosynthetic precursor can be identified, biomimetic syntheses can also 

provide a general entry to a family of natural products, e.g. to the lycopodium alkaloids.
[39]

 

Furthermore, HERTWECK’s and TRAUNER’s report on orinocin revealed that even new natural products 

can be found.
[40]

 Successful mimicry of the natural pathways can also enrich the synthetic 

methodology as evidenced by polyene cyclizations or biomimetic electrocyclizations.
[41,42]

  

The benefits of biomimetic syntheses are accompanied by significant challenges that need to be 

overcome.
[31]

 First, realistic proposals of biosyntheses require experience and oftentimes an in-depth 

analysis of co-isolated natural products.
[43]

 In this context, genome-based elucidation of biosynthetic 

pathways has recently emerged as a powerful tool and can provide valuable insights.
[44]

 Second, the 

experimental realization of biomimetic syntheses can be demanding. Nature has optimized 

biosyntheses through the development of complex enzyme machineries that are able to structurally 

pre-organize substrates, catalyze reactions, stabilize reactive intermediates and control the 

stereoselectivity. The absence of some of these factors in the laboratory can lead to the failure of 
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biomimetic strategies.
[45,46]

 Although by far not exclusively, biomimetic syntheses have therefore often 

been successful for racemic natural products that are anticipated to be formed by spontaneous 

processes without enzyme involvement. BLACK’s biosynthetic proposal of the racemic endiandric acid 

natural products represents one example of such a transformation (Scheme 4).
[47]

 For instance, 

endiandric acid C as one member of this family was envisioned to stem from cyclohexadiene 7 by a 

DIELS–ALDER reaction, which in turn would be formed from polyene 8 through an 8π/6π-

electrocyclization cascade. This hypothesis was supported by NICOLAOU’s successful synthesis along 

these lines, which still is a testimony to the power of biomimetic strategies.
[48–51]

 As in many other 

cases, the actual precursor 8 to the biomimetic cascade was accessed by conventional, non-biomimetic 

methods.  

 

Scheme 4. Biomimetic endiandric acid cascade.[47–51] 

2.1.2 Oxidative Dearomatization of Hydroxylated Arenes in Total Synthesis 

The marked difference in reactivity between hydroxylated benzenes like 9 and their non-oxidized 

counterparts has frequently been exploited for the synthesis of functionalized cyclohexane skeletons 

(Scheme 5).
[52]

 Phenols can be viewed as stable enol tautomers with increased nucleophilicity in the 

ortho- and para-position, especially when deprotonated (10). In addition, other reaction pathways are 

also facilitated compared to arenes. Effective Umpolung of phenols by the abstraction of one (11) or 

two electrons (12) can render the resulting arene susceptible to nucleophilic attack.  
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Scheme 5. Dearomatization strategies in total synthesis.  

Both processes, with phenol as nucleophile or electrophile, result in dearomatized 

cyclohexadienones such as 13, 14, 15 or 16 in case no tautomerization to the corresponding enol can 

occur (R ≠ H). These products represent valuable synthetic intermediates due to their tendency to 

undergo pericyclic reactions or to engage in various ionic processes such as 1,2- or 1,4-additions. In 

the presence of benzylic hydrogen atoms, the phenonium ion 12 can also be deprotonated to yield 

para-quinone methides 17. Mostly if para-quinone methides cannot form, the deprotonation gives rise 

to ortho-quinone methides 18. These quinone methides are prone to react in cycloadditions, but can 

also rearomatize by benzylic nucleophilic attack to give phenols 19 and 20.  

In the following, recent applications of oxidative dearomatization strategies in total synthesis will 

be highlighted. This will only include examples, where the dearomatization was triggered by an 

oxidant and no rearomatization occured. Alkylative processes via phenolates, pericyclic reactions such 

as CLAISEN rearrangements or BUCHNER reactions, dearomatizations via BIRCH reductions or 

enzymatic oxidations as well as benzylic functionalizations will not form part of this overview.
[53–56]

  

2.1.2.1 Dearomatization of Phenols 

Oxidation of phenols opens the path to nucleophilic attack on the aromatic core. The overall 

transformation thus represents a valuable entry into substituted six-membered ring systems. Among 

other factors, the regioselectivity is hereby either governed by the rate of ring size formation in 

intramolecular cases or by the substituents. If a substituent can effectively stabilize the developing 

positive charge in the arene, attack will mainly occur on the site of this substituent. In this context, 
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oxygen-based nucleophiles lead to the formation of quinones, quinols or quinone monoketals. The 

reactivity of these compounds will be described in the following chapter, because it largely resembles 

the reactivity of oxidized catechols. The main disadvantage of the generation of quinones from 

phenols can be the lack of regioselectivity.  

An elegant application of the oxidative dearomatization of phenols was reported by GAUNT and 

co-workers in their synthesis of the alkaloid morphine.
[57]

 Their work is based on a bioinspired 

intramolecular ortho-para-coupling of two arenes that is reminiscent of the conversion of 

(R)-reticuline to salutaridine in the morphine biosynthesis (Scheme 6). Biomimetic approaches along 

these lines had thus far suffered from poor yields, e.g. 0.012% (BARTON)
[58]

 or 23% (SCHWARTZ).
[59]

 

The GAUNT group therefore chose a different geometric setup in bicycle 21 for the projected 

I
III

-mediated key step. The oxidative dearomatization triggered a para-selective attack of the pendant 

arene yielding cyclohexadienone 22 and was followed by a desymmetrizing MICHAEL addition to 

tetracycle 23. A similar desymmetrization had previously been disclosed by the MAGNUS group.
[60]

 

Remarkably, the one chiral center in phenol 21 set by asymmetric NOYORI transfer reduction induced 

the installation of three more stereocenters with the desired configuration.  

 

Scheme 6 A. Biosynthesis of Morphine. B. Morphine synthesis by GAUNT and co-workers.[57] 

The secondary alcohol in cyclohexenone 23 not only ensured the stereoselective synthesis of 

morphine, but was also used to convert the adjacent carbon atom to the aldehyde oxidation state in 

enol ether 24. Further transformations of enol ether 24 led to TABER’s intermediate, which can be 
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converted to morphine in 7 steps.
[61]

 The synthesis shows an efficient example of the installation of a 

quaternary carbon center by para-arylation upon dearomatization. 

In their racemic synthesis of tetrapetalone A-Me aglycon, the FRONTIER group together with 

HOVEYDA and co-workers reported a late-stage oxidation of a phenol to a para-quinol (Scheme 7).
[62]

 

Phenol 25 was accessed in a highly optimized route by NAZAROV cyclization, BUCHWALD-HARTWIG 

amination and a challenging ring-closing metathesis (RCM). Under a variety of conditions, the 

envisioned oxidation to para-quinol 27 resulted in the undesired oxidation at C7, probably via 

nucleophilic attack on the corresponding para-quinone methide. Suitable conditions were identified in 

a procedure published by DOYLE and co-workers using a Rh
II
 catalyst in combination with tert-butyl 

hydroperoxide and gave peroxides 26 and 27 as a diastereomeric mixture.
[63]

 The undesired isomer 26 

could be recycled via reduction to phenol 25. However, the desired isomer 27 could only be advanced 

to the target molecule through the reduction by a Cd/Pb couple since other conditions also resulted in 

the formation of phenol 25. Consequently, the first synthesis of tetrapetalone A-Me aglycon was 

realized in 25 steps. 

 

Scheme 7. Tetrapetalone A-Me aglycon synthesis by the FRONTIER and HOVEYDA group.[62]  

The potential of oxidative dearomatizations for the construction of highly functionalized 

cyclohexane rings was further showcased in a number of other total syntheses (Scheme 8). In studies 

on cortistatin A, several groups have closed the tetrahydrofuran ring in cyclohexadienone 28 via 

oxidative dearomatization of intermediates such as 29.
[64–67]

 Furthermore, NICOLAOU and co-workers 

have employed this key step in the synthesis of platensimycin, a natural product with antibacterial 

properties.
[68]

 The phenonium ion derived from phenol 30 was efficiently trapped in a SAKURAI-type 

allylation to furnish spirocycle 31.  
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Scheme 8 A. Studies on the synthesis of (+)-cortistatin A.[64–67]  

B. (–)-Platensimycin synthesis of NICOLAOU and co-workers.[68]  

2.1.2.2 Oxidation of Catechols: Reactivity of ortho-Quinones and Derivatives 

Upon oxidation, catechols can form ortho-quinones 32 or ortho-quinone monoketals 33 as well as 

quinone methides 34 depending on the substituents and reaction conditions (Figure 5). Major 

advantage of this ortho-quinone generation method compared to the oxidation of phenols is the 

excellent regiocontrol. In total synthesis, the more stable ortho-quinone monoketals derived from the 

oxidation of catechol monoethers are more frequently employed than their ortho-quinone counterparts. 

As mentioned previously, ortho-quinols 35 possess similar reactivity to ortho-quinone monoketals and 

will hence be described here.  

 

Figure 5. Reactivity pattern of ortho-quinones, -quinone monoketals and -quinols. 
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Due to their electron-poor cyclic diene system, ortho-quinones and ortho-quinone monoketals can 

engage in inverse-demand DIELS–ALDER reactions. The fact that one of the most powerful reactions in 

synthetic chemistry can be employed after dearomatization of hydroxylated arenes represents one of 

the main reasons for their use in the total synthesis of structurally challenging natural products. In 

addition, ortho-quinones possess a second 4π-system, which can undergo hetero-DIELS–ALDER 

cycloaddition with electron-rich alkenes. Apart from the diene motifs, building blocks 32, 33 and 35 

feature several 2π-systems (alkene, carbonyl), which can react in ionic, radical and pericyclic 

processes. Comparable to phenols, the oxidation of catechols can afford quinone methides by 

tautomerization of benzylic hydrogen atoms in the para- or ortho-position. This lowers the dipole 

repulsion of the two carbonyls and can be thermodynamically favored. Apart from rearomatization by 

nucleophilic attack at the former benzylic position, the olefins could engage in concerted 

cycloadditions as a 2π-component (dienophile). 

The cyclohexadienes 32, 33 and 35 are known to undergo rapid homodimerization, which needs 

to be taken into account when applied in a total synthesis.
[69]

 In many examples, intramolecular 

processes were therefore envisioned to capture the resulting reactive intermediates and outcompete the 

intermolecular dimerization. However, precisely due to this high tendency, several natural products are 

derived from the homodimerization of ortho-quinones or -quinols. An example of their high reactivity 

in DIELS-ALDER reactions was provided by QUIDEAU and co-workers in their synthesis of 

(+)-aquaticol (Scheme 9).
[70]

  

 

Scheme 9. QUIDEAU synthesis of (+)-aquaticol (formed bonds are highlighted in bold).[70] 

Phenol 36 was accessed in three steps from commercially available racemic cuparene and purified 

by chiral HPLC. No diastereoselection was observed in the following oxidation to quinols 37 and 38. 

Remarkably, only the quinols with the same configuration at C6 combined to afford (+)-aquaticol and 

its diastereomer 39. The observed recognition between the quinols was rationalized with        

CIEPLAK–FALLIS interactions, a hyperconjugative stabilization between the C6–Me bonding σ-orbital 

and the antibonding σ*-orbital of the C5–C5’ bond. Side product of the key step was catechol 40, 

resulting from a regioisomer of the initial oxidation.  
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Several total syntheses have profited from the implementation of a catechol dearomatization to 

install additional rings on a cyclohexane skeleton by cycloaddition. In their study on atropurpuran, 

KOBAYASHI and co-workers accessed tricycle 41 in 11 steps (Scheme 10).
[71]

 Remarkably, the 

dearomatization and subsequent high-temperature intramolecular DIELS–ALDER cycloaddition of 

catechol 41 via transition state 42 delivered the anti-BREDT olefin 43. The substituent at C10 was 

found to exert a major influence on the intramolecular cycloaddition since a substrate with a carbonyl 

functionality did not provide the desired cyclization product. Instead, this substrate homodimerized in 

a DIELS–ALDER reaction and could not be transformed into the desired product even at higher 

temperatures. Despite the lack of suitable handles to install the missing substituents on C6 and C4, 

pentacycle 43 was advanced to ketone 44, providing the first synthesis of this rare skeleton. 

 

Scheme 10. Studies toward the synthesis of atropurpuran by KOBAYASHI and co-workers.[71] 

Lepenine belongs to the denudatine-type alkaloids and features a tetradecahydrophenanthrene 

skeleton with an additional N-containing ring and a bicyclo[2.2.2]octane. The FUKUYAMA group has 

reported the first successful synthesis of this natural product starting from acrylic ester 45, which was 

accessed in 12 steps (Scheme 11).
[72]

 Subsequent intramolecular DIELS–ALDER reaction and functional 

group interconversions afforded ketone 46, the substrate for the key MANNICH reaction. The latter 

proceeded smoothly to give phenol 47 after an additional step. Remarkably, the key oxidative 

dearomatization/DIELS–ALDER sequence was successfully carried out with ethylene as the dienophile 

under increased pressure to afford the desired bicyclo[2.2.2]octane 48. The amine functionality had to 

be protected as an ammonium salt to prevent decomposition of the molecule resulting from its 

undesired oxidation. Lepenine was hence prepared in 29 steps as the first member of this class to be 

accessed by total synthesis. 
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Scheme 11. Lepenine synthesis by FUKUYAMA and co-workers.[72] 

A rare reactivity mode in oxidative dearomatizations was observed by HUDLICKY and co-workers 

in their synthesis of ent-hydromorphone (Scheme 12).
[73]

 Ether 49 was accessed from a toluene 

derivative by enzymatic dihydroxylation and subsequent MITSUNOBU reaction. Oxidation with lead 

tetraacetate gave rise to an ortho-quinone monoketal, which underwent a DIELS–ALDER reaction via 

transition state 50. The authors reason that, despite the reactivity of the cyclic diene, the diene 

involving the terminal olefin is sterically more accessible and therefore engages preferentially in the 

cycloaddition to afford tetracycle 51. This key step affords the B and E ring of the desired product 

simultaneously. Radical cyclization to effect closure of the piperidine ring and oxidation yielded 

ent-hydromorphone. 

 

Scheme 12. ent-Hydromorphone synthesis by HUDLICKY and co-workers.[73] 

Several other well-known syntheses have benefitted from the potential of ortho-quinone-type 

structures to engage in complex cycloadditions (Scheme 13). In their helisorin synthesis, SNYDER and 

co-workers initially attempted a fully biomimetic oxidative dimerization of the natural compound 

rosmarinic acid to the target molecule.
[74]

 However, this step afforded the kinetic product, i.e. a 
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dimerization of both arene rings in a DIELS–ALDER reaction. The lack of regiocontrol in the laboratory 

was rationalized with the hypothesis that enzymes control the regioselectivity of the dimerization in 

Nature. It was argued that the thermodynamic product would be the natural product. Heating the initial 

kinetic dimer in the presence of a dienophile afforded the desired dimerization product that was 

converted to helisorin. In their landmark discovery of a synthetic route toward ryanodol, 

DESLONGCHAMPS and co-workers also employed an ortho-quinone DIELS–ALDER reaction to access 

pentacycle 52.
[75]

  

 

Scheme 13. Further syntheses with ortho-quinone Diels-Alder reactions.[74–76] 

An example of the hetero-DIELS–ALDER reactivity of ortho-quinones was provided by NICOLAOU 

and co-workers in their synthesis of sporolide B (Scheme 13).
[76]

 A macrocycle was closed in this key 

step via ortho-quinone 53, which required thorough investigation of the coupling partners to achieve 

the desired regioselectivity. 

Apart from DIELS–ALDER reactions, the potential of catechol oxidation in combination with a 

subsequent 1,4-addition has also been exploited as demonstrated in the bioinspired synthesis of five 

members of the montanine-type Amaryllidaceae alkaloids by the FAN group (Scheme 14).
[77]

 

Tetrahydroisoquinoline 54 was accessed in seven steps by an asymmetric conjugate addition of an 

arylboronic acid to a nitroalkene. Subsequently, the N-containing ring was closed using a 

regioselective PICTET-SPENGLER cyclization. Due to the inherent lower nucleophilicity of 

methylenedioxy-substituted ring B, an electron-withdrawing phenol protecting group on ring E had to 

be employed to arrive at the desired product 54. The key oxidative dearomatization with subsequent 

aza-MICHAEL addition proceeded with excellent diastereoselectivity to give pentacycle 55 via 

ortho-quinone monoketal 56.  
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Scheme 14. Montanine-type alkaloid synthesis by FAN and co-workers.[77] 

The intermediate 55 served as a common precursor to the montanine-type alkaloids by different 

transformations on ring E. Among others, the authors synthesized (–)-montanine by this novel 

bioinspired route. 

 

2.1.2.3 Oxidation of Hydroquinones: Reactivity of para-Quinones and Derivatives  

para-Hydroquinones and phenols, depending on the substrate and the conditions, can be oxidized 

to para-quinones 57, -quinols 58 or -quinone monoketals 59 (Figure 6). Whereas the former are more 

reactive due to the presence of two LUMO-lowering carbonyl groups, the latter can undergo 

diastereoselective transformations without additives due to their tetrahedral carbon atom. 

 

Figure 6. Reactivity of para-quinones, -quinols, -quinone monoketals and ortho-quinone methides. 

Since the 4π-systems of the above mentioned quinone-type structures are all locked in the s-trans 

configuration, they cannot undergo concerted cycloadditions. However, the alkene part of the 

respective enone moieties can engage in 1,2- or 1,4-additions of nucleophiles or react as a dienophile. 
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In case benzylic hydrogen atoms are present, the corresponding ortho-quinone methide 60 can be 

formed by tautomerization.
[78]

 Besides rearomatization by nucleophilic attack on the former benzylic 

position, they can undergo cycloadditions as a 4π-component via the cyclic all-carbon diene or via the 

exocyclic hetero diene. Several 2π-systems can furthermore engage in pericyclic reactions. In contrast 

to ortho-quinones, the dipole moments of para-quinones oppose each other, which renders them more 

stable. Numerous natural products containing para-quinones have been isolated.
[79]

  

The participation of para-quinones as dienophiles in DIELS–ALDER reactions has been reviewed 

very recently.
[80]

 Therefore, other applications of this structural motif in total synthesis will be 

highlighted. In 2005, the NICOLAOU group disclosed a biomimetic synthesis of (+)-rugulosin, which 

features several key aspects of the reactivity of para-quinones (Scheme 15).
[81]

 Oxidation of 

hydroquinone 61, which was accessed in 6 steps, yielded quinone 62. After tautomerization to quinone 

methdide 63, two molecules underwent a hetero-DIELS–ALDER homodimerization to pyran 64. Further 

oxidation to hexaketone 65 resulted in a double MICHAEL addition cascade, furnishing (+)-rugulosin 

after global deprotection. 

 

Scheme 15. (+)-Rugulosin synthesis by NICOLAOU and co-workers.[81] 

The potential of para-quinones was also exploited in the asymmetric and biomimetic synthesis of 

the dimeric epoxyquinone natural product (+)-torreyanic acid by PORCO and co-workers in 2003 

(Scheme 16).
[82]
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Scheme 16. (+)-Torreyanic acid synthesis by PORCO and co-workers.[82] 

Quinone monoketal 66 was synthesized in 12 steps involving an oxidation of a monoprotected 

hydroquinone by I
III

. Asymmetric nucleophilic SCHEFFER–WEITZ-type epoxidation afforded 

enantioenriched epoxide 67, which was converted to alcohol 68. Upon oxidation, the resulting 

aldehyde underwent spontaneous electrocyclization to cyclic diene 69. The latter can cyclize in a 

[4+2]-cycloaddition with its anti-isomer 70 to yield torreyanic acid precursor 71. Deprotection 

furnished (+)-torreyanic acid. The synthesis demonstrates the versatility of quinones in the synthesis of 

functionalized cyclohexane rings. It provides an example of the influence of the para-quinone 

π-system on the reaction of neighboring olefins. 

2.1.2.4 Oxidation of Resorcinols 

Resorcinols (72) cannot be oxidized to an isolable quinone structure since the OH in meta-position 

does not effectively stabilize the positive charge in the ring (Scheme 17). 

 

Scheme 17. Resorcinol oxidation. 
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As a result, the reactivity of resorcinols upon oxidation (73) resembles more a 1,3-dipole since 

they possess nucleophilic and electrophilic sites in a 1,3-relationship in the mesomeric structure 74, 75 

or 76. In addition to the displayed sites on carbon atoms, the oxygen atom can also act as a 

nucleophile.  

The reactivity pattern of oxidized resorcinols was exploited in two publications on the synthesis 

of members of the merochlorin family by the TRAUNER and the GEORGE group (Scheme 18).
[83,84]

 

 

Scheme 18 A. Merochlorin B synthesis by TRAUNER and co-workers.[83] B. Merochlorin A synthesis by GEORGE and 

co-workers.[84] 

Whereas TRAUNER and co-workers accomplished the synthesis of merochlorin B from naphthol 

77 in a (3+2) cycloaddition involving the oxygen atom, GEORGE reported the intramolecular (5+2) 

cycloaddition of the related naphthalenediol 78 via intermediate 79. Global deprotection of dimethyl 

ether 80 afforded merochlorin A. Both syntheses highlight the potential of resorcinols to engage in 

cascade additions of nucleophiles and electrophiles upon oxidation. Importantly, the reactivity of 

resorcinols can be channeled into the one of phenols if one of the resorcinol OH groups is protected 

with a suitable protecting group that is inert to the oxidation conditions. 

2.1.2.5 Dearomatization of Phloroglucinols 

Numerous natural products contain the phloroglucinol subunit.
[85]

 Especially at higher pH, 

phloroglucinol can form substantial quantities of its keto-tautomers 81, 82 or 83.
[86]

 Therefore, 

phloroglucinols can be seen as partially intrinsically dearomatized (Scheme 19). Syntheses of related 

natural products therefore rely mostly on alkylative dearomatizations by α-functionalization of the 

respective ketones.  
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Scheme 19. Tautomerization between phloroglucinols and triketones. 

2.1.2.6 Oxidation of Hydroxyquinols: Reactivity of Related Quinones and Quinols 

Hydroxyquinols are the second of three possible constitutional isomers of benzene triols. Their 

reactivity upon oxidation resembles either para- or ortho-quinones 84 or 85 depending on the 

substitution pattern of the substrate (Scheme 20). This also applies to related ketals or quinol-type 

systems. In this context, a control over the outcome of the oxidation is usually achieved by suitably 

protecting one or more of the hydroxyl groups. The protected hydroxyl group can then be seen as a 

spectator and the reactivity profile is mostly dictated by the remaining OH substituents. As such, 

protected hydroxyquinols can react like more electron-rich variants of either hydroquinones, 

resorcinols or catechols. 

 

Scheme 20. Oxidation products of hydroxyquinol.  

An elegant example of their reactivity as ortho-quinones was provided by ZAKARIAN and 

co-workers in their racemic synthesis of maoecrystal V, a cytotoxic ent-kauranoid with an unusual 

structure (Scheme 21).
[87]

 Silyl ether 86 was accessed in 9 steps from sesamol by MITSUNOBU 

reaction, C–H insertion and oxidation with PIFA.  

 

Scheme 21. Maoecrystal V synthesis by ZAKARIAN and co-workers.[87] 

The following intramolecular DIELS–ALDER reaction with a silyl tether proceeded smoothly via 

87 to furnish tetracycle 88 in 95% yield. Removal of the silyl tether, subsequent carbonyl radical 

cyclization and a ring closing metathesis allowed for the successful synthesis of the challenging 
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natural product maoecrystal V. Later on, the ZAKARIAN group also reported an asymmetric version of 

this synthesis.
[88]

 

Similar to ortho-quinones, oxidized hydroxyquinols can homodimerize in a DIELS-ALDER 

cycloaddition. The biomimetic synthesis of bisorbicillinol by the NICOLAOU group took advantage of 

this key reactivity feature (Scheme 22).
[89]

  

 

Scheme 22. Racemic bisorbicillinol synthesis by NICOLAOU and co-workers.[89] 

Oxidation of sorbicillin with lead tetraacetate allowed for the preparation of quinol precursor 89 in 

a controlled fashion in contrast to attempts of direct oxidation to quinol 90. Furthermore, regioisomers 

could be removed by column chromatography. Acidic hydrolysis of the acetate protecting group 

afforded quinol 90, which can react as a diene. Tautomerization gave rise to para-quinone-type quinol 

91. Both tautomers then engaged in a DIELS-ALDER dimerization via 92 to furnish the natural product 

bisorbicillinol in 43% yield. A homodimerization of quinol 90 followed by tautomerization would 

provide the same result. 

2.1.2.7 Oxidation of Protected Pyrogallols 

The oxidation of protected pyrogallols 93 or 94 gives quinones 95 or 96 that possess a similar 

reactivity to the already described ortho-quinones or their monoketals (Scheme 23). It is worth noting 

in this context that the reactivity of the oxidized unprotected pyrogallols can be very different from 

their protected analogs. As mentioned previously, the reactivity of hydroxylated arenes is mainly 

governed by the position and number of unprotected OH-groups. 
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Scheme 23. Oxidation of protected pyrogallols. 

Since their reactivity profile is similar to ortho-quinones, the oxidation products of protected 

pyrogallols have mainly been employed in total syntheses for target molecules with higher degrees of 

oxidation or when the strategy required additional functionalization. The installation of hydroxyl-

groups after the key step can thus be avoided.  

The diterpenoid vinigrol was isolated in 1987 and attracted significant interest from the synthetic 

community over the years due to its unprecedented structure.
[90]

 Only in 2009, the BARAN group 

reported the first total synthesis of this tricyclic natural product, which features a diaxial butano-bridge 

over a cis-decalin core.
[91]

 The NJARÐARSON group has recently accomplished a racemic synthesis of 

vinigrol by implementing an intramolecular DIELS–ALDER cycloaddition upon oxidative 

dearomatization of a pyrogallol derivative (Scheme 24).
[92]

 A protected pyrogallol rather than a 

catechol was necessary in this case to allow for further functionalization of the skeleton later on. 

 

Scheme 24. Racemic synthesis of vinigrol by NJARÐARSON and co-workers. 

 The starting material 97, prepared in 9 steps, was oxidized by an I
III

 reagent to the corresponding 

quinone monoketal 98. The electron-withdrawing trifluoroethyl group ensured the desired 

regioselectivity of the oxidation. Heating of the reaction mixture to T = 60 °C allowed for the desired 

cycloaddition to occur, yielding tricycle 99. The total synthesis of vinigrol was completed after 29 

further steps, a testimony to its challenging structure. 

In their acutumine synthesis, CASTLE and co-workers employ an elegant way for the installation 

of a quaternary center profiting from the enone functionality of a quinone.
[93]

 In this case, the natural 

product features a high oxidation degree so that the use of a protected pyrogallol obviates the need for 

additional installation of oxygen atoms after the key step.  

Quinone monoketal 100 was prepared in 17 steps by a radical cyclization and oxidation with I
III

. 

An asymmetric carbonyl allylation following NAKAMURA’s methodology with chiral reagent 101 

allowed for the synthesis of tertiary alcohol 102, which underwent a subsequent anionic COPE 
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rearrangement to give rise to ketone 103 with two adjacent quaternary centers.
[94]

 Acutumine was 

accessed in seven additional steps from this advanced intermediate.  

 

Scheme 25. (–)-Acutumine synthesis of CASTLE and co-workers.[93] 

In summary, the vast potential of oxidative dearomatizations can facilitate the construction and 

functionalization of six-membered rings and allow for the synthesis of carbon skeletons that are 

otherwise difficult to access.  
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2.1.3 Oxidation of Unprotected Pyrogallols 

Intriguingly, the oxidation of unprotected pyrogallols gives rise to molecules containing an 

electrophilic and a nucleophilic site (Figure 7). In general, this reactivity pattern is observed when the 

oxidation of hydroxylated benzenes leads to compounds, where one of the former OH groups is still 

present in its enol form (in a non-zwitterionic structure, see for instance chapter 2.1.2.4 Oxidation of 

Resorcinols). This fact represents the main reason for the different reactivity of oxidized pyrogallols 

compared to oxidized catechols. 

 

Figure 7. Reactivity analysis of oxidized pyrogallols. 

Depending on the conditions and the substrate, oxidized pyrogallols can react in several ways. 

Hydroxyquinone 104A shows their most important nucleophilic and electrophilic sites. For instance, 

hydroxyquinone 104B can engage in pericyclic reactions as a 2π-system or in ionic reaction cascades 

such as 1,4-additions with subsequent enol/enolate α-functionalization. An example is provided in the 

purpurogallin formation (see 2.1.3.1 Purpurogallin Formation Reaction). A nucleophilic attack on 

the most electrophilic carbonyl function and a reaction of the enol (104C) can also be observed in the 

purpurogallin formation and is of central importance to the formation of the PERKIN dimer (see 2.1.3.2

 Formation of the PERKIN Dimer). Furthermore, like ortho-quinones, oxidized pyrogallols can 

undergo inverse-demand hetero-DIELS–ALDER reactions with the hetero-diene motif highlighted in 

structure 104D. Importantly, due to the presence of a nucleophilic enol, they can also react as a 

dienophile (104E). Literature precedence will be reviewed in the following chapters to establish 

guidelines for the substrate dependence of these reactivity trends. Reactions according to the 

purpurogallin and PERKIN dimer formation as well as the hetero-DIELS–ALDER dimerization were 

observed in the course of this thesis. 

2.1.3.1 Purpurogallin Formation Reaction 

2.1.3.1.1 Historical Perspective 

In 1869, GIRARD oxidized pyrogallol with silver nitrate or potassium permanganate and sulfuric 

acid to an unknown compound, which he named purpurogallin.
[95]

 His finding marked the beginning of 

decades of investigation concerning its constitution and structure (Scheme 26).  
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Scheme 26 A. Proposed constitution and structure of purpurogallin in history.[95–99]  

B. Additional structures of interest.[96,100,101] 

The originally proposed molecular formula C20H16O9 by GIRARD was falsified early on, but it was 

only in 1903 that it could be adjusted to the correct C11H8O5 by PERKIN and STEVEN.
[96]

 Both scientists 

also put forward a naphthalene structure for purpurogallone, one of the alkaline degradation products 

of purpurogallin. In 1913, DEAN and NIERENSTEIN suggested para-quinone methide 105 for 

purpurogallin, which in the following was highly disputed since experimental evidence clearly 

disproved this assignment.
[97]

 Unaware of its instability, WILLSTÄTTER and HEISS proposed the 

antiaromatic cyclopentadienone 106 in 1923.
[98]

 However, the considerations that led to this proposal 

were ingenious at the time. It was hypothesized that two molecules of pyrogallol dimerize after initial 

oxidation to the corresponding hydroxy ortho-quinone. The quinone part of the resulting dimer would 

undergo benzilic acid rearrangement and subsequent decarboxylation to give rise to pyrogallol 106. 

After DEWAR’s groundbreaking assignment of stipitatic acid and colchicine as cycloheptatrienones,
2
 

which he named tropolones, the similarity in chemical behaviour between these compounds provided 

evidence for the benzotropolone structure of purpurogallin (BARLTROP/NICHOLSON, 1948).
[99–101]

 

Strong support for this proposal was offered by CRITCHLOW, HAWORTH and co-workers, who in a 

series of publications disclosed their studies on the reactivity and degradation of purpurogallin as well 

as its synthesis from different starting materials.
[102–104]

  

                                                      
2
 The tropolone structure of colchicine was first proposed by DEWAR in 1945. In 1952, KING et al. assigned 

the correct regioisomer by X-ray single crystal structure analysis: M. V. King, J. L. De Vries, R. Pepinsky, Acta 

Crystallogr. Sect. B 1952, 5, 437–440. 
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With the correct structure identified also by X-ray crystallography in 1952, a new search began 

toward the elucidation of the cascade mechanism.
[105]

 WILLSTÄTTER and HEISS had already suggested 

the oxidation of pyrogallol to its hydroxy ortho-quinone 104 and subsequent dimerization to 

tetraketone 107 by 1,4-addition (Scheme 27).
[98]

 In their mechanistic hypothesis, this compound would 

undergo tautomerization to pyrogallol 108. It was long uncertain how this dimer could yield 

purpurogallin. Cleavage of the C1–C6 bond by hydrolysis, FRIEDEL-CRAFTS-type alkylation and loss 

of formic acid was envisioned by CRITCHLOW, HAWORTH and others.
[106]

 

 

Scheme 27. Mechanism of purpurogallin formation by SALFELD.[107] 

The isolation of a carboxylic ester 109 of purpurogallin from oxidation in alcoholic solvents led 

SALFELD to reconsider the mechanism (Scheme 27).
[107]

 According to him, the triketone moiety in 

tetraketone 107 would suffer from intramolecular attack of the nearby enol onto the most electrophilic, 

central carbonyl to form tricycle 110. After tautomerization to pyrogallol 111, the carbonyl bridge 

would be opened by water (R=H), or in alcoholic solvents the respective alcohol, to furnish bicycle 

112. For esters, further oxidation and tautomerization would give rise to purpurogallin ester 109. In 

case of carboxylic acids, a decarboxylation is triggered by oxidation to afford purpurogallin. 

SALFELD’s assumption of the ester at C9 was proven by HORNER and DÜRCKHEIMER two years later, 

who also managed to trap the intermediate hydroxy quinones.
[108–110]

 Remarkably, in 1985, 

DÜRCKHEIMER and PAULUS isolated and obtained X-ray single crystal structure proof of tricycle 113 

from treatment of pyrogallol with ortho-quinone 114.
[111]

 The similarity between the characterized 

compound and presumed intermediate 110 of the purpurogallin cascade was striking and led to the 

general acceptance of the mechanism depicted in Scheme 27. Further evidence of the formation of 

tricycle 111 was offered by studies of NAKATSUKA and co-workers in 2005, who were able to fully 
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characterize catechol 115 from oxidation of 5-methyl pyrogallol with 4-methyl ortho-quinone.
[112]

 

Upon addition of water, extrusion of CO2 and conversion to a benzotropolone was observed, 

supporting the proposed transformation of tricycle 111 to bicycle 112. In addition, the mechanism in 

Scheme 27 was underlined by TANAKA and co-workers with the isolation and identification of 

hemiacetal 116. The latter compound was formed by enzymatic oxidation of epigallocatechin and 

subsequent dimerization of its quinone. Hemiacetal 116 converted to epitheaflagallin by hydrolysis 

and decarboxylation (Scheme 28).
[113]

  

 

Scheme 28. Intercepted purpurogallin cascade by TANAKA and co-workers.[113] 

 However, the details of the early stages of the purpurogallin cascade to intermediate 110 still 

remain subject of speculation. It is still unknown, if two ortho-quinones dimerize or one ortho-quinone 

suffers from 1,4-addition of an unoxidized pyrogallol followed by oxidation of the dimer.  

2.1.3.1.2 Use in Total Synthesis 

Purpurogallin itself can be found in some oak bars and possesses antioxidant bioactivity.
[114]

 In 

Nature, it stems from gallic acid and is therefore a shikimic acid derivative. The purpurogallin reaction 

is widely found in Nature as the biosynthetic pathway toward benzotropolones.
[115,116]

 Due to this fact, 

it has been mostly applied in biomimetic total syntheses toward this class of natural products. 

During the fermentation of tea leaves to produce black tea, the naturally occurring catechins are 

oxidatively dimerized to benzotropolones, so-called theaflavins that are among others responsible for 

the characteristic color of black tea.
[117]

 Due to the beneficial antioxidant properties of tea, many 

research groups have investigated this cascade process.
[113]

 TAKINO et al. achieved the first biomimetic 

synthesis of these compounds using an oxidative dimerization of epigallocatechin with epicatechin 

with oxidases or inorganic oxidants in 1964 (Scheme 29).
[117]

 Since then, many more biomimetic 

syntheses of tea ingredients have been disclosed, all following the same principle.
[118,119]
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Scheme 29. Theaflavin synthesis by TAKINO et al.[117] 

The purpurogallin cascade is also involved in the biosynthesis of benzotropolone pigments such 

as aurantricholone or crocipodin that were isolated from fungi.
[120,121]

 The latter was synthesized 

employing an enzymatic oxidation of gallic acid and bromo catechol 117 (Scheme 30).
[121]

 A fully 

biomimetic approach involving gallic acid and caffeic acid failed, potentially because the more 

electron-poor caffeic acid was not readily oxidized. 

 

Scheme 30. Purpurogallin derivatives of fungal origin.[120,121] 

Purpurogallin derivatives have also attracted attention in medicinal chemistry as potential 

anti-parasitics (118) or as a molecular probe for the investigation of ligand interactions (119, Figure 

8).
[122–124]

 Furthermore, purpurogallin was often employed as a starting material for the total synthesis 

of colchicine.
[125]

 

 

Figure 8. Use of purpurogallin in medicinal chemistry.[122–124]  
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2.1.3.2 Formation of the PERKIN Dimer 

The structural elucidation of another dimer of oxidized pyrogallols is closely linked to the history 

of purpurogallin. In 1906, PERKIN and STEVEN made the peculiar observation that treatment of 

pyrogallol with acetic acid and isoamyl nitrite did not afford purpurogallin, but an almost colorless 

crystalline solid (Scheme 31).
[126]

 The compound with the formula (C6H4O3)n, later referred to as the 

PERKIN dimer, reverted back to pyrogallol under reducing conditions, but most intriguingly formed 

purpurogallin upon boiling in water. In lack of a better solution and despite its colorless nature, 

PERKIN and STEVEN suggested hydroxy quinone 104 as the structure of the obtained product (Scheme 

31). 

 

Scheme 31. Formation of the PERKIN dimer and structural elucidation.[98,126–130] 

WILLSTÄTTER and HEISS recognized the dimeric nature of this compound in 1923,
[98]

 and 

subsequently molecular structures were proposed by SALFELD (120) and HORNER and DÜRCKHEIMER 

(121).
[127,128]

 Since none of these structures accounted for the lack of color, TEUBER and co-workers 

assigned and later proved that the PERKIN dimer in fact possesses a tricyclo[5.3.1.1
2,6

]dodecane 

skeleton.
[129,130]

 Previously, the same group had accessed related dimers by FRÉMY’s salt (= potassium 

nitroso disulfonate) oxidation of 2,3-dihydroxynaphthaline 122 and 4,6-diethyl pyrogallol 123 to 

dimers 124 and 125 respectively (Scheme 32).
[129–131]

  

 

Scheme 32. Catechol and pyrogallol dimerization to PERKIN-type dimers by TEUBER and co-workers.[129–131] 
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It should be mentioned that related dimers have also been reported for phloroglucinols like 126 

which was oxidatively coupled by ČEČELSKY in 1899 to a tricycle he named cedrone.
[132]

 Its structure 

was successfully elucidated by ERDTMAN and FALES in 1969 and 1971 respectively (Scheme 

33).
[133,134]

  

 

Scheme 33. Synthesis of cedrone.[132] 

2.1.3.3 Hetero-DIELS–ALDER Dimerization of Pyrogallols 

The extensive investigations on pyrogallol oxidation also resulted in the identification of a third 

reactivity trend. In 1955, FLAIG et al. oxidized pyrogallol 127 and upon heating observed the 

dimerization of its ortho-quinone 128.
[135]

 SALFELD first misassigned the product, based on analogy to 

the corresponding ortho-quinone dimers, as tricycle 129.
[128]

 CRITCHLOW et al. later recognized, based 

on NMR and IR-spectroscopy, that only two carbonyls were present in the structure and assigned it to 

dioxines 130 or 131.
[136]

 In 2009, it became evident that dioxine 131 is the correct isomer based on 

single crystal X-ray analysis.
[137]

 Dimers of type 131 have been found to decompose easily into the 

monomeric species. 

 

Scheme 34. Dimerization of sterically hindered oxidized pyrogallols.[128,135–137] 

2.1.3.4 Conceptualization of Substrate-Dependent Reactivity Trends 

The literature analysis of known pyrogallol oxidations reveals that the assignment of products 

resulting from this reaction has been challenging. Despite this fact, guidelines for the reactivity trends 

of hydroxy ortho-quinones can be proposed. The purpurogallin cascade reaction is usually undergone 
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by substrates which are ultimately able to aromatize to benzotropolones like 132. This in general 

involves 4-substituted pyrogallols 133, but can be extended to any pyrogallol if the substituent(s) can 

be cleaved under the reactions conditions, e.g. decarboxylation of carboxylic acids. Even if 

PERKIN-type dimer products are observed, these can be channeled into the purpurogallin cascade due 

to the ultimate rearomatization as a thermodynamic driving force.  

It appears that the competing pathway of the oxidative pyrogallol dimerization, the formation of 

PERKIN-type dimer tricyclic systems 134, is mainly operational with substrates that cannot form 

aromatic benzotropolones (such as 135 or 136). However, substrates that are too sterically congested 

and cannot give aromatic purpurogallin derivatives (137) tend to dimerize via their hetero-diene in a 

hetero-DIELS–ALDER reaction (138). Driving force of this reaction is mostly the rearomatization of 

one of the hydroxy ortho-quinone partners. This cycloaddition places the substituents on each ring 

further away from each other than in the other reaction modes due to the formation of C–O instead of 

C–C bonds. 

 

Figure 9. Substrate substitution pattern for different reaction modes in oxidative dimerizations of pyrogallols. 

In particular, the investigation of the purpurogallin cascade has demonstrated that slight 

modifications of the substrate can lead to the desired reactivity. For instance, the purpurogallin 

cascade to molecules of type 139 in principle only requires one of the coupling partners to be a 

hydroxy ortho-quinone 104 with the crucial combination of nucleophilic and electrophilic site (Figure 

10). The other component (140) reacts in a 1,4-addition with subsequent enol alkylation, a 

characteristic reaction of any ortho-quinone (1,2-relation between nucleophilic and electrophilic site). 

In contrast to this, the PERKIN dimer can only form between two benzene triols, e.g. two 

molecules of hydroxy ortho-quinone 104, because both coupling partners need to possess a 

1,3-relationship between nucleophilic and electrophilic site. Thus, in order to avoid competitive or 

exclusive PERKIN dimer formation and achieve a purpurogallin cascade even with substrates that do 

not lead to aromatic benzotropolones, a hydroxy quinone should be combined with an ortho-quinone. 

Following this guideline, DÜRCKHEIMER and PAULUS were able to access tricycle 113 (Scheme 

27).
[111]
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Figure 10. Minimal reactivity profiles for oxidative dimerization of pyrogallols. 

Furthermore, hetero-DIELS–ALDER reactions to dimers of type 141 could in principle be achieved 

between any ortho-quinones 140 and any oxidized hydroxylated benzene that still contains an enol, 

e.g. enol 104. 

This chapter included the most important reactivity profiles that were exploited or observed in this 

thesis. Therefore, other important reactions of hydroxylated benzenes like biaryl couplings upon 

oxidation were not mentioned. A differentiation between one- and two-electron oxidations of phenolic 

compounds will be discussed in 2.3.2 Synthesis of Dibefurin. 
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2.1.4 Natural Products from Epicoccum species 

2.1.4.1 Overview 

Epicoccum nigrum is an endophytic fungus of the phylum Ascomycota, which is distributed 

worldwide in soils and plants.
[138]

 It is mostly recognized for its activity against pathogens and 

production of pigments.
[139]

 Numerous secondary metabolites with various properties such as the 

fluorescent dye epicocconone, the thiodiketopiperazine epicoccin J and the antibiotic flavipin have 

been isolated from this fungus (Figure 11).
[140–142]

  

 

Figure 11. Secondary metabolites isolated from Epicoccum nigrum.[140–142] 

Flavipin is of particular interest to this thesis since both targeted natural products dibefurin and 

epicolactone are proposed to be derivatives of this dialdehyde. Biosynthetically, flavipin stems from 

orsellinic acid and is therefore of polyketidic origin (Scheme 35).
[143]

  

 

Scheme 35. Biosynthesis of flavipin via orsellinic acid.[143] 

The isolation of orsellinic acid and carboxylic acid 142 before the observation of flavipin 

production led to the proposal that flavipin can be biosynthetically traced back to these acids.
[143]

 

Indeed, it appears that the aromatic methyl group in flavipin is introduced into orsellinic acid since 

labelling of (L)-methionine as 
14

C-(L)-methionine resulted in the incorporation of radioactivity into 

acid 142. Furthermore, the biosynthetic pathway outlined in Scheme 35 was supported by 

experiments, in which radioactive orsellinic acid as well as radioactive acid 142 were shown to lead to 

radioactive flavipin. 

Numerous flavipin-derived antioxidant natural products were isolated from Epicoccum species 

(Figure 12). The structural variety ranges from the reduced cyclic derivatives epicoccine and 

epicoccine methyl ether 143 over redox-isomerized cyclic congeners epicoccone A and B to the 

dimeric epicocconigrones and epicoccolides.
[144–149]
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Figure 12. Flavipin-derived natural products from Epicoccum species.[144–149] 

LAATSCH and co-workers have suggested a biosynthetic pathway from flavipin to the dimeric 

epicoccolides A and B (Scheme 36).
[148]

  

 

Scheme 36. Proposed biosynthetic relationship between flavipin and epicoccolides A and B.[148] 
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According to the hypothesis, two molecules of flavipin would undergo an unsymmetric benzoin 

condensation catalyzed by thiamine to give rise to hydroxy ketone 144. The latter could cyclize via 

hemiacetal 145 to epicoccolide A. Alternatively, hydroxy ketone 144 could be reduced to ketone 146 

and subsequently cyclize to afford benzofuran epicoccolide B. Epicocconigrone A results from a 

regioisomer of the initial benzoin condensation of two flavipin molecules. 

2.1.4.2 Dibefurin 

2.1.4.2.1 Origin and Structure  

Dibefurin was isolated
3
 from the fungal culture AB 1650I-759 at Abbott Laboratories (now 

AbbVie) following a bioactivity-directed search for novel immunosuppressants.
[150]

 In the course of 

this thesis, the fungus got identified as a fungus of phylum Basidiomycota, different from the 

ascomycete Epicoccum.
4
 The structure of dibefurin was elucidated with NMR spectroscopy, mass 

spectrometry and X-ray single crystal analysis. Crystallographic data revealed the centrosymmetric 

triclinic space group (P1).  

 

Figure 13. Dibefurin, a fungal metabolite from a basidiomycete.[150] 

Dibefurin is a pentacycle with the molecular formula C18H16O8 and was suggested to be 

biosynthetically related to the polyketide flavipin (Figure 13).
[150]

 A central cyclohexane ring features 

two 1,3-diaxial connections by a three-carbon atom bridge giving rise to a tricyclo[5.3.1.1
2,6

]dodecane 

skeleton, which is decorated with two tetrahydrofuran rings. The natural product thus has four 

tetrasubstituted centers that are adjacent in pairs. Remarkably, dibefurin possesses an inversion center, 

which, due to the absence of other symmetry elements (apart from the identity), makes it Ci-symmetric 

and therefore achiral. This feature is very rare among natural products (vide infra). The unusual 

symmetry can be explained by the dimeric nature of dibefurin, with the monomer unit highlighted in 

Figure 13.  

                                                      
3
 The natural product was obtained from the EtOAc extract after purification by countercurrent, reverse 

phase and gel filtration chromatography. The natural product was crystallized from MeOH. 
4
 Personal communication with Dr. George S. Sheppard (AbbVie, Wilmette, Illinois, USA). 
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2.1.4.2.2 Bioactivity 

Since dibefurin was isolated in a bioactivity-guided search for novel potential 

immunosuppressants, it was proposed to possess interesting bioactivity.
[150]

 Dibefurin was found to 

directly inhibit calcineurin phosphatase, an enzyme which is critically involved in the immune 

response.
[150]

 Indirect calcineurin phosphatase inhibitors such as cyclosporin A or FK-506 (tacrolimus) 

have a significant impact on society due to their use as an immunosuppressant to prevent organ 

rejection after transplantation (Figure 14).
[151]

  

 

Figure 14. Indirect calcineurin phosphatase inhibitors.[151] 

These drugs act upon forming a complex with immunophilin proteins, which can then inhibit the 

calcineurin phosphatase.
[152]

 Thus, the cytosolic component of NFAT (nuclear factor of activated T 

cells) does not get dephosphorylated so that the production of interleukin-2 and other cytokines 

responsible for the growth and differentiation of T cells is not activated. Direct inhibition of 

calcineurin phosphatase is yet highly desirable, since it would obviate the need for other proteins and 

thus not inhibit their usual cytosolic function. Dibefurin showed a moderate direct calcineurin 

phosphatase inhibition with a half-maximal inhibitory concentration of IC50 = 44 μM.
[153]

 

2.1.4.2.3 Ci-symmetric natural products 

As mentioned above, Ci-symmetric natural products are rare and usually form upon head-to-tail 

dimerization of two Cs-symmetric molecules. A privileged reaction in this context appears to be the 

[2+2]-photocycloaddition of olefins.
[154–157]

 Hence, the main representatives of Ci-symmetric natural 

products are head-to-tail dimers of cinnamic acid, so called truxillic acid derivatives, such as 

α-diplicatin B or piplartine dimer (Figure 15).  
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Figure 15. Truxillic acid derivatives as example of Ci-symmetric natural products.[154–157] 

Achieving the desired selectivity of these dimerizations in a biomimetic synthesis can be 

challenging. Thus, the BARAN group for instance has reported the successful synthesis of 

piperarborenines, chiral natural products similar to piplartine dimer, based on a non-biomimetic 

approach.
[158]

 However, selectivity can be achieved by preorganization of the substrates or based on 

the thermodynamic stability of the products. In their synthesis of incarvillateine, shown in chapter 1.3

 Symmetry in Natural Product Synthesis, the KOBAYASHI group has crystallized the monomer so 

that both monomer units were oriented in a head-to-tail arrangement.
[30]

 Based on the resulting 

inflexibility of the starting material in the solid state, the following [2+2] photocycloaddition could 

then only proceed with the desired regioselectivity. 

2.1.4.3 Epicolactone – Origin, Structure and Bioactivity 

Epicolactone was isolated
5
 from the endophytic fungus Epicoccum nigrum in sugarcane and 

Epicoccum sp. CAFTBO in Theobroma cacao, the cocoa tree, as a white crystalline solid.
[148,159]

 Its 

structure was elucidated with NMR spectroscopy, mass spectrometry as well as X-ray single crystal 

analysis. Epicolactone attracted much attention due to its unprecedented structure which also does not 

belong to any known family of natural products (Figure 16). Remarkably, epicolactone is a racemic 

natural product because it crystallized in a centrosymmetric space group (P1).  

                                                      
5
 The isolation procedure separated cyclohexane-soluble fractions from the EtOAc extract of the culture. 

The crude mixture was purified by silica gel and Sephadex LH-20 chromatography to yield m = 1.8 mg of 

epicolactone from m = 39.2 g of crude extract.
[148]
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Figure 16. Epicolactone, a secondary metabolite from Epicoccum;[148,159]  

CCDC: 865386, 788534; H-atoms omitted for clarity. Color code: green = carbon, red = oxygen. 

The secondary metabolite with the molecular formula C17H16O8 is a pentacycle presumably of 

polyketide origin. The basis of epicolactone is a decalin ring system, which is bridged by the spiro 

carbon center C5. Since each bond of the one carbon bridge (C1–C5; C5–C9) is part of a 

five-membered heterocycle, epicolactone possesses three neighboring spiro centers (C1, C5, C9). One 

of the heterocycles is a lactone (C1 to C5), the other a tetrahydrofuran (C5 to C9). This molecular 

architecture inevitably results in a central five-membered carbocycle. It features five stereogenic 

centers that are all adjacent to each other, three of which are contiguous quaternary carbon atoms (C1, 

C5, C9). Alternatively, a heterotriquinane skeleton can be identified in epicolactone, which is bridged 

by two carbon bridges consisting of three carbon atoms each.  

Despite the overall C1-symmetry of epicolactone, the carbon skeleton is symmetric. Oxidation at 

carbon atoms C4 and C14 result in the lowering of the overall symmetry. The crystal structure of 

epicolactone reveals that the C9–C14 bond is slightly elongated to d = 1.58 Å and therefore potentially 

the weakest C–C bond.  

Epicolactone was found to possess antimicrobial and antifungal activity and LAATSCH and 

co-workers suggested that it might be responsible of protecting the host plant from devastating 

pathogens.
[148]
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2.2 Project Outline 

2.2.1 General Biosynthetic Proposal 

Dibefurin and epicolactone are both pentacyclic polyketides of fungal origin. It was noticed that 

both natural products could stem from epicoccine, a natural product that was co-isolated with 

epicolactone. Although dibefurin was identified in a different fungus, a head-to-tail homodimerization 

of epicoccine was envisioned to be involved in its biosynthesis (Scheme 37). Hypothetically, its 

formation could occur spontaneously upon oxidation of epicoccine without enzymatic assistance.  

 

Scheme 37. Proposed biosynthesis of dibefurin. 

In contrast to dibefurin, the epicoccine moiety in epicolactone is more complicated to identify as it 

seems to have undergone further metabolic processing (Figure 17). The aromatic core seems to have 

been oxidized and fragmented and more substituents were introduced on carbon atoms C5 and C9 of 

the tetrahydrofuran ring. Due to the pseudosymmetry of epicolactone, its racemic nature and its high 

oxidation degree, it was assumed that a coupling of two distinct hydroxylated arenes occurs upon their 

oxidation without the involvement of enzymes. The molecular formula of epicolactone with 17 carbon 

atoms suggested that either a building block with uneven carbon atom number could combine with one 

of even number or two molecules with uneven numbers could be coupled and subsequently lose a 

carbon atom.  

 

Figure 17. Analysis of biosynthetic origin of epicolactone; epicoccine part shown in bold. 

It was recognized that epicolactone featured a 7/6-ring system that closely resembles the one of 

purpurogallin (Figure 17). Epicolactone was therefore initially traced back to precursor 147 by a 

vinylogous aldol reaction to form the C9–C14 bond. This bond was found to be slightly 

elongated
[148,159]

 with d = 1.58 Å and hence represents a likely first retrosynthetic simplification in the 

potential biosynthesis (Scheme 38). 
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Scheme 38. Vinylogous aldol reaction in the hypothetical epicolactone biosynthesis. 

Ene diol 147 is structurally similar to intermediates in the purpurogallin cascade. With suitable 

substituents, these intermediates would not be able to aromatize to a benzotropolone. The proposed 

biosynthesis that formed the basis of this project is depicted in Scheme 39. 

 

Scheme 39. Biosynthetic proposal for epicolactone with benzyl alcohol 148. 

Epicoccine and benzyl alcohol 148 would be oxidized to their corresponding ortho-quinones 149 

and 150 that could subsequently combine in a formal (5+2)-cycloaddition to give tetracycle 151 

(alternative nomenclature: (3+2)-cycloaddition). This step also occurs accordingly in the purpurogallin 

cascade. Tautomerization of the diketone to the more stable enone 152 would be followed by an 

intramolecular attack of the primary alcohol onto the bridge carbonyl at C4 instead of an 

intermolecular attack of water as in the biosynthesis of benzotropolone natural products. A hemiacetal 

derived from such an attack was characterized in 2009 in studies on black tea and supports the 

feasibility of this biosynthetic proposal.
[113]

 The resulting hemiacetal derived from 152 could collapse 

in a retro-DIECKMANN-type reaction to afford tetracycle 153 in a net transacylation from carbon to 
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oxygen. The latter compound could undergo the final vinylogous aldol reaction after tautomerization 

to diketone 147 to furnish epicolactone. 

The required benzyl alcohol 148 was not yet identified in Nature, but closely resembles 

epicoccone B and could be derived from it by hydrolysis and decarboxylation. Epicoccone B as a 

congener of epicolactone also represents a possible partner for the oxidative heterodimerization with 

epicoccine to epicolactone. Since epicoccone B possesses one extra carbon atom, which would need to 

be lost in a valid biosynthetic proposal, a decarboxylation was envisioned to occur during the 

biosynthesis (Scheme 40). 

 

Scheme 40. Biosynthetic proposal for epicolactone with epicoccone B. 

Both epicoccine and epicoccone B would again combine as their ortho-quinones 149 and 154 to 

afford the sterically encumbered pentacycle 155 according to the purpurogallin formation reaction. 

The latter would be opened by water to afford β-keto carboxylic acid 156, which would rapidly 

decarboxylate to give rise to the same tetracycle 152 as in the above-mentioned biosynthetic proposal 

(Scheme 39). However, it is also possible to switch the order of events of alcohol attack on bridged 

carbonyl and decarboxylation.  

2.2.2 Aim of the Project 

The project aimed at a biomimetic synthesis of dibefurin and epicolactone following the 

biosynthetic hypotheses outlined in Scheme 37, Scheme 39 and Scheme 40. Since epicoccone B had 
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already been isolated from Nature, it was first focused on evaluating its potential in the biomimetic 

synthesis of epicolactone rather than the supposedly labile benzylic alcohol 148. The project therefore 

involved a step-economic preparation of the natural products epicoccine and epicoccone B. Control 

over the reaction outcome of their oxidation was expected to require the introduction of suitable 

protecting groups to tame the reactive nature of free hydroxy ortho-quinones.  

In a broader sense, the project was intended to study the behavior of pyrogallols under oxidative 

conditions and to provide evidence for potential biosynthetic pathways. Part of this work was to 

conceptualize and generalize the reactions that can occur upon oxidation of different pyrogallols, 

which formed the basis of the introductory chapter of this thesis. The purpurogallin cascade or the 

PERKIN dimer formation have neither been identified nor applied in the synthesis of natural products 

that are as structurally complex as epicolactone or dibefurin. Proving that they might take place 

spontaneously in Nature might help to understand their involvement in the biogenesis of other natural 

products. Furthermore, the identification of suitable conditions to effect these cascade reactions would 

offer a valuable methodology tool for the rapid increase in structural complexity starting from planar 

building blocks. This might be beneficial for the total synthesis of other intricate molecules in general. 

It was therefore envisioned to test the power and limits of biomimetic synthesis in the preparation of 

the complex targets dibefurin and epicolactone. 

2.2.3 Initial Work 

Before the contributions described in this thesis, Dr. Robert Webster as a postdoctoral scholar in 

the TRAUNER group devised a synthetic route toward epicoccine and a protected derivative of the 

benzylic alcohol 148. After optimization studies by Marina K. Ilg in her Master Thesis, epicoccine 

was synthesized in 8 steps and 12% overall yield (Scheme 41).
[160]
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Scheme 41: Previous epicoccine synthesis.[160] 

Benzaldehyde 157 was chosen as a starting material and converted to imine 158 under 

dehydration conditions. The latter proved to be a better directing group on scale for the following 

ortho-metalation by deprotonation with LiTMP. Subsequent methylation and hydrolysis afforded 

benzaldehyde 159. Reduction with NaBH4 to alcohol 160 and RIECHE formylation installed the last 

substituent of the benzene core in moderate yield. Benzylic chloride 161 was treated with NaOH to 

effect ring closure to dihydrofuran 162, the hemiacetal of which was reduced with triethylsilane and 

TFA to trimethylated epicoccine derivative 163. Final deprotection with BBr3 gave the natural product 

in a best yield of 50%. However, this reaction proved to be capricious and could only be conducted on 

m = 200 mg scale with varying yields from 10–50%.  

Using this route, Marina K. Ilg also synthesized epicoccone B in 8 steps and 30% yield (Scheme 

42).
[160]

 The hemiacetal 162 was converted to lactone 164 in a LEY oxidation and subsequently 

deprotected with BBr3. The final product was not purified due to the lability of the natural product, but 

B NMR showed no boron impurities. 

 

Scheme 42. Synthesis of epicoccone B.[160] 

An already oxidized and protected analog of benzylic alcohol 148 was synthesized from vanillyl 

alcohol in 10 steps and 9% overall yield (Scheme 43). Displacement of the benzylic alcohol by MeOH 
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yielded methyl ether 165, which was lithiated, methylated and oxidized in the benzylic position with 

DDQ to give aldehyde 166 in modest yield. Electrophilic bromination to pentasubstituted benzene 167 

and following heterogeneous Cu-catalyzed phenol synthesis afforded catechol 168 in good yield. 

Selective protection of the benzylic alcohol was achieved by benzylation of the catechol, reduction of 

the benzaldehyde and subsequent protection to silyl ether 169. Hydrogenolysis of the benzyl groups to 

catechol 170 and its subsequent oxidation furnished ortho-quinone 171. This sequence was suitable for 

gram-scale synthesis. 

 

Scheme 43. Synthesis of quinone 171, an oxidized analog of benzylic alcohol 148. 

Although with poor yields, both building blocks could be successfully combined to a 

purpurogallin cascade intermediate by Marina K. Ilg. To increase comprehensiveness in the following 

chapters, this result will be discussed in more detail when applicable. 
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2.3 Results and Discussion
6
 

2.3.1 Synthesis of Epicoccine 

2.3.1.1 Optimization Studies on Previous Route 

The studies toward the synthesis of dibefurin and epicolactone both required a scalable synthetic 

route toward the natural product epicoccine. In the first generation synthesis (Scheme 41), epicoccine 

was prepared in 12% yield over 8 steps. The main purpose of this route had been to provide material 

for proof-of-principle studies on the biomimetic cascade toward epicolactone. However, with the 

additional target molecule dibefurin, a more time-economic route with less steps and higher yields was 

required. Especially better scalability was necessary since the last global deprotection step of the 

previous synthesis proved to be very unreliable even on smaller scale.  

First, the four-step procedure from aldehyde 157 to alcohol 160 could be shortened to provide a 

more rapid access (Scheme 44). According to a literature-known procedure, benzylic alkoxides can 

serve as ortho-directing groups for metalations.
[161]

 Although unknown for pyrogallol derivatives, the 

method was adapted to the current system.  

 

Scheme 44. Optimization attempt at synthesis of benzylic alcohol 160. 

Commercially available benzylic alcohol 172 was deprotonated twice and subsequently 

methylated to afford benzylic alcohol 160 in one step and an unoptimized yield of 53%. Remarkably, 

no methyl ether formation was observed. Potentially, the methyl ether could be hydrolyzed during 

workup since the aromatic ring is fairly electron-rich and could accelerate SN2-type displacements. 

Despite the success of the first attempt, this initial result could not be reliably reproduced since 

varying amounts of starting material were formed alongside the desired product. Due to the 

                                                      
6
 The synthesis of dibefurin and epicolactone was a joint project together with Dr. Nicolas Armanino, 

postdoctoral scholar in the TRAUNER group. 
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identification of a more efficient route in the meantime, it remained undetermined if the deprotonation 

was unsuccessful or a subsequent protic quench by aqueous impurities in MeI occurred.  

The most significant drawback of the previous route however was the unreliable final 

deprotection step. Herein, it was assumed that the reaction proceeds smoothly, but that epicoccine 

decomposes upon workup and purification by flash column chromatography on silica gel. Indeed, 

changes in workup protocols and purification with reverse phase silica significantly improved yield, 

reliability and scalability of the reaction. Among others, this observation proved to be the key to the 

successful purification of multiple compounds involved in this thesis. 

 

Scheme 45. Optimization of final deprotection step with key observation for this thesis. 

2.3.1.2 Second Generation Synthesis of Epicoccine 

Epicoccine represents a challenging natural product due to its electron-rich hexasubstituted 

benzene nucleus. The resulting steric encumbrance and lability to oxidizing conditions and even 

spontaneous air oxidation, though desired for the biomimetic cascade, can complicate its synthesis. It 

was speculated that the inherent electron-richness and nucleophilicity can be turned to an advantage by 

exploiting electrophilic aromatic substitution reactions rather than metalation pathways. Initial trials 

focused on commercially available trihydroxylated benzoic acid derivatives such as acid 173. The 

introduction of the methyl group was envisioned by formylation and subsequent reduction (Scheme 

46). Acid 173 was converted to methyl ester 174 by FISCHER esterification to avoid undesired 

directing group effects of the carboxylic acid. However, the following formylation to aldehyde 175 

was not met with success under a variety of conditions involving DUFF, RIECHE or             

VILSMEIER–HAACK formylation. 

 

Scheme 46. Attempts at epicoccine synthesis with electrophilic aromatic substitution reactions. 

 An isomeric benzoic acid precursor would potentially avoid regioselectivity problems if both 

available sites on the aromatic ring are homotopic. Thus, harsher functionalization procedures could be 
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employed. Epicoccine was therefore traced back to eudesmic acid, a gallic acid derivative (Scheme 

47). 

 

Scheme 47. Second generation synthesis of epicoccine. 

In a procedure first described by KING and KING in 1942,
[162]

 eudesmic acid was converted to 

phthalide 176 by reaction with formaldehyde as a small electrophile to enable the introduction of six 

substituents on the benzene core. This procedure exploits that the initial bischloride from the 

chloromethylation possesses homotopic benzylic positions that the carboxylic acid can cyclize onto. In 

one step, all carbon atoms of epicoccine are installed. Oxidation state adjustment was carried out in a 

stepwise fashion by first removing the benzylic chloride with elemental Zn in slightly acidic medium 

to afford lactone 177. It was then crucial to avoid the formation of a diol by single-step reduction of 

lactone 177 since Dr. Robert Webster had previously encountered difficulties in its dehydration to the 

required tetrahydrofuran. Therefore, a two-step reduction of lactone 177 was implemented by 

conversion to a labile hemiacetal, which was subsequently reduced with triethylsilane in TFA to give 

trimethyl ether 163 in good yield over two steps. The previously identified procedure (Scheme 45) was 

further optimized especially concerning the reaction concentration for the demethylation of 

intermediate 163 to furnish epicoccine on multi-gram scale within three days of work for the entire 

sequence. The route required only two column chromatographic purifications and provided sufficient 

quantities of epicoccine to study the proposed biomimetic cascades.  
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2.3.2 Synthesis of Dibefurin 

2.3.2.1 Potential Challenges 

As outlined in Scheme 37, dibefurin was envisioned to be synthesized from oxidative 

dimerization of epicoccine. Several challenges can arise from a direct oxidation of this pyrogallol 

derivative. In general, hydroxy ortho-quinones like 149 or 178 can possess various reactivities as 

described in 2.1.3 Oxidation of Unprotected Pyrogallols. Beside purpurogallin-type dimers 179, 

PERKIN dimer formation, hetero-DIELS–ALDER reactions to dioxines 180 and decomposition by other 

pathways could be observed (Scheme 48). Furthermore, the hydroxy quinone could tautomerize 

involving the benzylic hydrogen atoms to furnish quinone methides 181, 182 or 183.  

 

Scheme 48. Different reactivities upon oxidation of epicoccine. 

The literature survey and concepts drawn from this (2.1.3.4 Conceptualization of Substrate-

Dependent Reactivity Trends) suggested that the PERKIN dimer formation would be feasible. Both 

reaction partners are unprotected oxidized pyrogallols that cannot aromatize upon purpurogallin 

formation. Although the reaction partners are sterically hindered, which could favor        

hetero-DIELS–ALDER reaction, the steric encumbrance was not considered comparable to quinones of 

type 128 (Scheme 34).  

If epicoccine primarily formed PERKIN-type dimers upon oxidation, three products would be 

possible (Figure 18). Dibefurin as the desired product could be accompanied by another Ci-symmetric 

dimer 184 and a racemic C1-symmetric dimer 185. The required nucleophilic and electrophilic sites 

are depicted for one of the possible hydroxy ortho-quinones. 
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Figure 18. Potential PERKIN-type dimers from oxidation of epicoccine. 

It was reasoned that dibefurin could be the most stable and kinetically accessible dimer of the 

three, because the methylene group (C3), tied back in the tetrahydrofuran ring, was considered less 

sterically demanding than the freely rotating methyl group (C10). Therefore, steric repulsion with the 

neighboring substituents on the tetrasubstituted carbon atom C6’ would be reduced. As the 

retrosynthetic plan is based on the potential biosynthesis, it was assumed that despite the plethora of 

possibilities, dibefurin would form as one of the major products. 

2.3.2.2 Oxidation of Epicoccine and Dibefurin Formation 

The trials toward the formation of dibefurin commenced with attempts involving organic oxidants 

such as ortho-chloranil or DDQ (entries 1, 2). Both oxidants failed to provide the desired product. It 

was reasoned that they could prevent the dimerization by forming stable π-complexes with the 

substrate. Chloranil and DDQ are known to form charge-transfer complexes, which would be 

supported by the observed intense color change upon mixing of the reagents.
[163,164]

 Furthermore, since 

the mechanism of formation was unknown, it was speculated if the dimerization could occur through 

radical intermediates. Frémy’s salt as an organic single-electron oxidant was therefore employed and 

indeed furnished dibefurin in modest yield as a 1:1 mixture with the chiral dimer 185 (entry 3). This 

result encouraged a screen of more oxidants that are less expensive and easier to handle, also to 

achieve a better yield and selectivity. Inorganic oxidants like Mn
IV

, Ag
II
 and Ce

IV
 failed to deliver 

dibefurin (entries 4, 6, 7), but Ag
I
 and I

III
 both effected the oxidation and dimerization, albeit in worse 

yield and comparable selectivity (entries 5, 8). Decomposition reactions could arise from quinone 

methide species formed in the reaction mixture. Copper-based oxidants were supposedly too weak to 

oxidize epicoccine (entry 9).  

Next, epicoccine was treated with Fe
III 

oxidants such as FeCl3 or ferrocenium
III

 that did not afford 

isolable amounts of the natural product (entries 10, 11). While ferrocenium
III

 might not be able to 
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oxidize epicoccine efficiently,
[165]

 the rapid formation of a dark blue solution with FeCl3 suggested that 

epicoccine forms catechol or ortho-quinone complexes with Fe
III

 or Fe
II
 respectively.

[166]
 The 

dimerization might therefore be impossible in the ligand sphere of the iron–substrate complex. In 

addition, the acidic iron trichloride might change the pH dramatically. An excess of base was therefore 

premixed with the substrate, but only formation of insoluble iron oxides was observed upon FeCl3 

addition.  

Table 3. Selected conditions of the oxidation of epicoccine and formation of dibefurin. 

 

  

In order to use iron oxidants in basic media and avoid potential coordination to the substrate, 

potassium ferricyanide as a known outer-sphere oxidant was employed.
[167]

 This oxidant possesses 

strong ligands that do not dissociate in basic medium to allow the substrate to coordinate. Indeed, 
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these conditions yielded dibefurin in good yield as the major isomer (entry 12). The oxidation proved 

to be almost quantitative with dibefurin and isomer 185 precipitating from the reaction mixture (more 

on isolation, see chapter 2.3.2.3 Purification of the Natural Product Dibefurin). Although potassium 

ferricyanide is not a strong oxidant, the possibility to conduct this reaction in aqueous medium might 

help to provide additional driving force for the synthesis of dibefurin. As opposed to the reaction with 

ferrocenium in acetonitrile, the equilibrium portion of oxidized epicoccine could be withdrawn 

through dimerization and rapid precipitation in aqueous solution.  

Since the solvent and temperature might have a significant effect on yield and selectivity, further 

conditions were tested. Changing the solvent (entry 13) or temperature (entry 14) however did not 

improve the result of entry 12. Alternative counterions by use of Li2CO3, Na2CO3 or Cs2CO3 showed 

comparable results to NaHCO3. The reaction was less efficient with weaker bases (entries 15) and was 

completely inhibited when no base was employed (entry 16), which in accordance with literature 

precedence implies that the actual oxidation occurs with the phenolate ion rather than with neutral 

epicoccine.
[167]

 Due to the fact that no improvement could be achieved in this screening, it was tested 

whether dibefurin and isomer 185 can rapidly equilibrate to form a thermodynamic mixture in DMSO 

solution. No rapid conversion of the two compounds was observed.  

In order to further support the biosynthetic proposal, it was studied whether dibefurin could form 

spontaneously on air. Since only air as an oxidant did not lead to dibefurin, known catalysts for the 

autoxidation of phenols such as Cu
II
, Zn

II
 or Mn

II
 were employed (entry 17).

[168]
 Gratifyingly, Fe

II
 as 

an additive yielded noticeable amounts of dibefurin (entry 18). This result clearly shows that dibefurin 

can be formed in Nature spontaneously without the help of enzymes. Attempts at increasing the yield 

of this transformation by oxidation with pure oxygen in the presence of Fe
II
 were unfruitful (entry 19). 

Since the substrate can potentially also coordinate to Fe
II
, an Fe–porphyrin catalyst was chosen that 

could act as a biomimetic catalyst for the desired oxidation (entry 20). No performance enhancement 

could be achieved though. Potentially, the reaction largely depends on the contact between gas and 

liquid phase and is therefore less suitable than the homogeneous reaction under conditions of entry 12. 

Intriguingly, it was noticed that the minor impurities in the NMR spectra of natural dibefurin 

could be assigned to isomer 185 (see 6.1 Part I: Biomimetic Synthesis of Dibefurin and Epicolactone 

for more information). It is likely that isomer 185 also forms upon oxidation of epicoccine in Nature 

and yet remains to be isolated from natural sources. The experimental details provided in this thesis 

might therefore help to identify this potential natural product in complex mixtures. However, since the 

amount of this isomer in the spectrum of natural dibefurin is small, it cannot be excluded that it 

formed through decomposition of dibefurin to its ortho-quinones and recombination.  

The conditions in entry 12 were found to be most efficient in the biomimetic synthesis of 

dibefurin from epicoccine. Analytical data of dibefurin was consistent in all aspects to the natural 

sample.
[150]

 In a single step, four tetrasubstituted stereocenters, adjacent in pairs, are formed by the 
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action of the inexpensive outer-sphere oxidant potassium ferricyanide. The dimerization highlights the 

potential of biomimetic synthesis for the rapid generation of molecular complexity.  

2.3.2.3 Purification of the Natural Product Dibefurin 

Since dibefurin was found to be very poorly soluble in almost every organic solvent except 

DMSO and DMF and isomer 185 showed similar properties, the purification of the natural product 

presented a considerable challenge. Precipitation from the aqueous reaction medium and subsequent 

centrifugation was identified to separate inorganic impurities. Initial attempts at recrystallization from 

refluxing dioxane were found to slightly increase the purity of the natural product, but also resulted in 

significantly lower yields. Presumably, the natural product decomposes to the monomers at higher 

temperatures. Ambient-temperature recrystallizations from DMSO revealed that dibefurin also 

decomposes in polar solvents. Eventually, epicoccine could be identified as the ultimate product of the 

decomposition in DMSO. The nature of the reductant could not be identified, but ortho-quinones 149 

and 178 could be sufficient oxidants for DMSO. The poor solubility of dibefurin prevented any flash 

column chromatographic purification, and even HPLC purification on reverse phase silica gel was not 

able to separate the two dimers. Furthermore, size-exclusion chromatography also failed to increase 

the purity of the natural product. 

In an attempt to increase the solubility of dibefurin and then purify it by conventional methods, 

efforts were undertaken to derivatize the natural product with protecting groups that could be removed 

cleanly (Scheme 49). Dibefurin proved to be labile under mild acetylation conditions, affording traces 

of monoacetylated product 186 and mainly triacetoxylated epicoccine 187. The potential redox partner 

of this reaction could be pyridine. NMR experiments of dibefurin in pyridine were unable to support 

this conclusion due to the poor solubility of dibefurin. No conversion was observed in a similar 

reaction toward TBS protection, probably due to the steric hindrance of the tertiary alcohols. 

 

Scheme 49. Derivatization attempts of dibefurin. 

Since the products showed moderate solubility in DMF, slow diffusion of water into a solution of 

dibefurin and isomer 185 gratifyingly afforded pure dibefurin in 40% isolated yield. Additionally, a 

solvent screen demonstrated that isomer 185 is slightly more soluble in THF than dibefurin, which 

resulted in an alternative purification protocol by repeated triturations with THF. This purification 
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protocol was not only more time-economic, but also afforded dibefurin in a higher yield of 49% 

(Scheme 50). 

 

Scheme 50. Optimized synthesis of dibefurin. 

2.3.2.4 Supramolecular Interactions in Solid State 

The poor solubility of dibefurin and its instability in solution deserved further investigation. It was 

possible to obtain X-ray suitable crystals for structural confirmation and analysis of the 

supramolecular interactions (Figure 19). From MeCN, dibefurin crystallized in the centrosymmetric 

monoclinic space group P21/c, which differs from the sample of the isolation group.
[150]

 It was found 

that the longest and therefore weakest bond in dibefurin is the C4–C6’ bond with dC–C = 1.598 Å. The 

tertiary alcohol possesses a slightly shorthened C–O bond of dC–O = 1.387 Å. Together with a torsion 

angle φ (O–C6’–C4–C5) of φ = 179.83°, the crystal structure points at a facile decomposition via 

retro-aldol reaction. The lone pair of the oxygen can be oriented in a way that it overlaps with the 

σ*-antibonding orbital of the C4–C6’ bond, causing this bond to lengthen and simultaneously resulting 

in a shortening of the C6’–O bond. In turn, the σ*-antibonding orbital is correctly aligned with the 

π*-orbital of the C5=O double bond so that an enol can be directly formed in the retro-aldol reaction. 

 

Figure 19. X-Ray single crystal structure of synthetic dibefurin, CCDC: 1022042. 

Color code: green = carbon, red = oxygen, white = hydrogen.  

The reason for the poor solubility of dibefurin became evident by a close analysis of the 

supramolecular contacts. Both C6(‘)–OH groups act as a hydrogen–bond donors while the 

tetrahydrofuran oxygen atoms are the corresponding acceptors. The resulting hydrogen bond is 

characterized by the length of dO–O = 2.792 Å. Accordingly, dibefurin forms one-dimensional rods of 

hydrogen-bonded molecules along the c-axis (Figure 20).  
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Figure 20. Hydrogen–bond network in solid dibefurin.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

These rods assemble through hydrophobic interactions to extended sheets, which stack in the solid 

state structure. Especially the network of 4 hydrogen bonds per molecule of dibefurin should be 

responsible for the poor solubility in most solvents. 

2.3.2.5 Mechanistic Proposal for the Formation of Dibefurin 

Mechanistically, the formation of dibefurin is not yet fully elucidated and part of an ongoing 

project involving, among others, computational methods.
7
 It is uncertain whether the dimerization 

occurs on the oxidation state of an ortho-quinone or through radical intermediates. Due to the presence 

of a single-electron oxidant, it can be safely assumed that the first step involves oxidation to a 

semiquinone radical with mesomeric structures 188, 189 and others (Scheme 51). Only one of the 

possible tautomers is depicted. 

                                                      
7
 with Martin Maier, graduate student in the TRAUNER group. 
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Scheme 51. Possible mechanistic pathways in the formation of dibefurin. 

Simple phenol radicals are known to undergo radical coupling processes in the ortho- and para-

position, e.g. to PUMMERER’s ketone.
[169,170]

 However, polyhydroxylated arenes can be easily oxidized 

further. Several pathways can therefore be proposed.  

The first pathway, the “radical pathway”, would involve attack of a neutral or deprotonated 

epicoccine molecule onto the semiquinone radical to form dimer 190. This step determines the 

selectivity of the overall coupling since epicoccine can either attack with C4 or C8. Another oxidation 

would lead to ene diol 191, from which another electron can be abstracted to yield radical 192. The 

final cyclization could occur next, but the formed radical would be potentially less stable. Thus, it is 

suggested that first triketone 193 is accessed by yet another oxidation before the last bond is forged, 

leading to dibefurin. The latter is withdrawn from the reaction mixture by precipitation, which might 

constitute a major driving force of its formation. 

Alternatively, the semiquinone radical could be oxidized further to quinones 149 or 178 and 

undergo dimerization either by a concerted pathway via transition states 194 and 195 or with stepwise 
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formation of the resulting bonds. Intriguingly, the hydrogen bond between C6-ketone and C7–OH in 

the transition states not only activates the ketone as an electrophile, but also simultaneously increases 

the nucleophilicity of the dienol.  

A potential radical combination of two semiquinones is not depicted since the oxidant is 

introduced slowly into the reaction mixture. Due to the resulting low concentration of radicals, it 

seems kinetically unlikely that two radicals collide. Side reactions arising from quinone methide 

species are also not included since they were not observed. 

The presence of iron complexes prevents NMR spectroscopic investigation of the reaction 

mechanism. To gain mechanistic insights, it could be envisioned to perform selective trapping 

experiments for radicals or quinones and attempts at identifying potential radical intermediates could 

be made by ESR spectroscopy. Furthermore, the selectivity-determining steps could be calculated and 

the energy differences compared to the experimentally observed isomer ratio. The overall success of 

single-electron oxidants tempts one to consider radical pathways more likely, however the two-

electron oxidants employed all had the potential to coordinate quinones or pyrogallols, which might be 

the real reason for their failure.  

2.3.2.6 Biological Activity of Dibefurin
8
 

In an interleukin-2 reporter gene assay monitoring the expression of β-galactosidase,
[171]

 dibefurin 

was previously found to inhibit calcineurin phosphatase activity with an IC50 = 44 μM.
[150]

 However, 

the unusual linear dose–response curve and the observed instability of dibefurin toward decay into the 

monomer quinones and their redox activity demanded further studies concerning its bioactivity. 

Quinones are known for their off-target effects either by covalently binding to proteins, complexing 

metals or producing hydrogen peroxide in cells.
[172]

 The compounds depicted in Figure 21 were 

therefore sent to Novartis Pharma AG in Basel for testing of their ability to act as an 

immunosuppressant. An interleukin-2 reporter gene assay in jurkat cells monitoring the expression of 

luciferase with AEB071 as a control substance was employed.
[173,174]

 All compounds, dibefurin, 

epicoccine, its trimethylether 163, epicoccone B and its methyl ether 196 were found to be inactive. 

The initial test results of dibefurin could therefore be based on non-specific effects rather than 

selective binding to calcineurin phosphatase.  

                                                      
8
 We are grateful to Dr. Klemens Hoegenauer, Adeline Unterreiner and Dr. Frederic Bornancin at Novartis 

Pharma AG, Basel for the results of the biological tests of dibefurin and related compounds presented in this 

chapter. 
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Figure 21. Biological test results of dibefurin and related compounds. 

2.3.2.7 Natural Occurence of Dibefurin in Epicoccum sp.
9
 

As mentioned above, dibefurin was not isolated from an Epicoccum species, but from a fungus of 

different phylum. It was therefore of interest to investigate, whether dibefurin also occurs in the same 

species as epicolactone, epicoccine and related natural products. A sample of dibefurin was sent to 

Prof. Dr. Laatsch (Georg August University of Göttingen) and Prof. Dr. Dr. h.c. Spiteller (TU 

Dortmund) for comparison with the culture extract. Strong support was provided to our biosynthetic 

hypothesis and the proposal that dibefurin should also be found in Epicoccum sp. when a compound 

with the same retention time (LC/MS) as dibefurin was identified in the Epicoccum extract (Scheme 

52). The substance was purified and showed matching MS1, MS2 and MS3 spectra to the ones of 

dibefurin. Although this compound will have to be isolated to provide final proof of the existence of 

dibefurin in Epicoccum, these results strongly suggest its occurrence also in fungi of phylum 

Ascomycota.  

                                                      
9
 We thank Prof. Dr. Laatsch and Prof. Dr. Dr. Spiteller for help in generating the results presented in this 

chapter. 
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Scheme 52. Comparison of MS spectra of dibefurin with MS spectra of a compound in the Epicoccum extract. 
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2.3.3 Synthesis of Epicoccone B 

Despite the high-yielding previous synthesis of epicoccone B, it was necessary to invent a new 

route that is amenable to selective protection of the different phenolic OH groups. The first generation 

synthesis involved a non-discriminating global deprotection of the phenolic methyl ethers in the final 

step.  

2.3.3.1 Cycloaddition Approaches 

The introduction of OH groups on aromatic systems is still more challenging than the installation 

of other heteroatoms.
[175]

 The reason for this is the lack of mild electrophilic oxygen sources, which is 

why oxygen atoms are either introduced by nucleophilic aromatic substitution ArSN on electron-poor 

arenes,
[176]

 indirectly through manipulation of carbonyl groups (DAKIN oxidation),
[177]

 boronates,
[178]

 

silanes
[179]

 or halides (ULLMANN reaction, BUCHWALD–HARTWIG phenol synthesis)
[180]

 or through 

directed C–H activation.
[181]

  

It was therefore envisioned to access the trihydroxylated benzene derivative epicoccone B by 

cycloaddition in a de novo-arene synthesis. Following this protocol, a high substitution degree of the 

arene can be achieved and the required oxygen atoms can be included in the diene. For reasons 

outlined in 2.3.4 Synthesis of Epicolactone, it was focused on a route that would also allow for the 

preparation of C5 mono methyl ether of epicoccone B. Since many retrosynthetic alternatives existed 

and were tried in parallel, attempts were discarded rather than optimized when problems concerning 

reactivity, scalability or selectivity became evident early on. 

Furans and especially tetronic acid derivatives have proven to be excellent dienes for the synthesis 

of hydroxylated arenes.
[182]

 The first retrosynthesis was based on the strategic introduction of the last 

oxygen atom by oxidation to an ortho-quinone with FRÉMY’s salt (Scheme 53). Epicoccone B was 

therefore traced back to quinone 197, which would arise from resorcinol derivative 198. The latter 

would be accessed through a [4+2]-cycloaddition of furan 199 and butenolide 200. 

 

Scheme 53. Retrosynthesis of epicoccone B involving cycloaddition of a tetronic acid derivative.  

Commercially available tetronic acid derivative 201 was deprotonated and C5 methylated in an 

unoptimized procedure to give methyl tetronate 202 in poor yield (Scheme 54). Further deprotonation 

and O-silylation was attempted under a variety of conditions, but failed to provide the desired furan 

derivative 199. Since in conditions 1 and 2, only starting material was recovered, amine bases seemed 

too weak or too sterically hindered to deprotonate the C5 position. Problematic O-silylations with 
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similar derivatives have been reported.
[183]

 However, stronger bases like KHMDS or n-BuLi in 

combination with TBSCl delivered the same result (conditions 3, 4).
[184]

 Deprotonation with LDA and 

trapping with TBSOTf resulted in the formation of dimeric species and hence failed to provide a 

robust route to furan 199. Due to the difficulties encountered already at an early stage of the synthesis 

and a variety of possible alternatives, the route was discontinued. However, tetronate 202 was 

identified as another challenging member of this class that fails to undergo efficient O-silylation.
[185]

   

 

Scheme 54. Attempts at preparation of tetronic acid derivatives. 

The next retrosynthesis was again based on a cycloaddition approach, but involved the use of 

non-cyclic diene partners such as 203 or 204 and more activated dienophiles like DMAD for the 

preparation of resorcinol 198 (Scheme 55). The resorcinol 198 should therefore stem from diester 205 

or 206 by cyclization to the corresponding anhydride and selective reduction according to literature 

precedence.
[186,187]

 A cycloaddition between dienes 203 or 204 and DMAD was expected to furnish 

this building block.
[188]

 

 

Scheme 55. Alternative access to resorcinol 198 by cycloaddition with open diene. 

The preparation of the required dienes proved less efficient and more sensitive than anticipated. 

Double deprotonation of keto ester 207 and following O-silylation to bis silylether 203 either did not 

proceed with full consumption of the starting material or reverted back to monosilyl ether 208 by 
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hydrolysis.
[189]

 The key cycloaddition was nonetheless attempted with this mixture, but did not occur 

despite promising literature precedence.
[190]

 Only hydrolyzed starting material was recovered from the 

reaction mixture. The same sequence was tested with a different diene prepared from enol ether 209, 

but analogously failed to give product 206 even at slightly elevated temperatures.
[191]

 Due to the 

lability of the open dienes and the identification of a better strategy, this route was abandoned and no 

further attempts were undertaken to optimize the required cycloaddition at higher temperatures. 

 

Scheme 56. Alternative preparation of resorcinol 206 by ALDER–RICKERT cycloaddition. 

The ALDER–RICKERT cycloaddition is a well-precedented way to synthesize resorcinols from 

cyclohexadiones like 210.
[192]

 A DIELS–ALDER cycloaddition gives rise to a bicycle that subsequently 

undergoes retro-DIELS–ALDER reaction to release isobutylene and afford an aromatic system. In an 

alternative approach to resorcinol 206, it was hence traced back to its demethylated analog 211, which 

would be synthesized from a [4+2]-cycloaddition of diketone 210 with DMAD (Scheme 56).
10

  

Resorcinol 212 was selectively methylated to phenol 211 at the more acidic OH group due to the 

stronger electron-withdrawing effect of the para-positioned ester (as opposed to ortho-). As evident 

from the analysis of the crude reaction mixture, the subsequent DUFF formylation to introduce the 

methyl-carbon atom proceede8 with the wrong regioselectivity to aldehyde 213. The reagent was 

potentially directed by the free hydroxyl group. An aminomethylation to diester 214 with 

ESCHENMOSER’s salt led to no conversion.
[193]

 Whereas a DAKIN oxidation could have converted 

resorcinol 213 to a pyrogallol that could undergo the desired methylation, a more step- and 

time-economic route was identified in the meantime. 

                                                      
10

 Resorcinol 212 was kindly provided by M. Sc. Klaus Speck, graduate student in the MAGAUER group 

(LMU Munich).  
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2.3.3.2 Synthesis of Epicoccone B from Pyrogallol Derivative 

The multitude of inexpensive commercially available pyrogallol starting materials and the 

challenges encountered in the cycloaddition approaches to epicoccone B led to the reconsideration of 

the strategy. It was therefore proposed to commence the synthesis with a pyrogallol that features the 

correct oxidation state at carbon atom C1. The subsequent carbon atoms would need to be introduced 

successively by electrophilic aromatic substitution reactions, which should readily proceed with the 

electron-rich arene (Scheme 57). 

 

Scheme 57. Retrosynthesis of epicoccone B by electrophilic aromatic substitutions. 

The retrosynthetic plan involved a deprotection of the last remaining methyl ether 196 as the final 

step of the synthesis. This methyl ether 196 was to be accessed by introduction of the lactone and 

arene methylation of catechol 215. Selective deprotection of aryl methyl ethers in 173 should give rise 

to this catechol. 

2.3.3.2.1 Synthesis of Catechol 215 

The selective deprotection of acid 173 was literature-known and proceeded smoothly on 

multi-gram scale in good yield (Scheme 58).
[194]

  

 

Scheme 58. Synthesis of methyl ester 215. 

Although the resulting acid 216 showed poor solubility in most organic solvents, it was tested 

whether the methyl group of epicoccone B could be introduced. MANNICH-type reaction with 
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piperidine and formaldehyde was stopped at partial conversion to assess the regioselectivity of the 

aminomethylation, which proved to exclusively afford the wrong regioisomer 217. Apparently, the 

carboxylic acid directs the reagent to the ortho-position. A LEWIS acid mediated formylation with 

triethyl orthoformate to aldehyde 218 did not show any conversion. To be able to test further 

formylation methods and to increase the solubility and practicability of the route, acid 216 was 

subjected to a FISCHER esterification to afford methyl ester 215 in almost quantitative yield. 

2.3.3.2.2 Introduction of the Methyl Group in Epicoccone B 

A two-step procedure of formylation and reduction constitutes an efficient way to introduce a 

methyl group on arenes.
[195–197]

 Alternatives would be deprotonation and treatment with a methylating 

agent like MeI or dimethyl sulfate or NEGISHI coupling reactions with ZnMe2. Since catechol 215 

seemed very activated to electrophilic aromatic substitution reactions, the latter procedure was chosen. 

After the isolation of catechol 215 in the previous step, it became evident that any process involving 

this compound or further catechols would need to furnish a clean product without conventional 

purification since it decomposed on regular silica gel. For time and cost reasons, flash column 

chromatography on reverse phase silica was to be avoided to ensure a scalable and efficient route. 

Unexpectedly, initial formylation trials to aldehyde 219 were not met with success (Scheme 59).  

 

Scheme 59. Formylation of catechol 215. 

While the RIECHE formylation either only led to recovery of starting material (conditions 1)
[198]

 or 

partial O-demethylation (condition 2),
[199]

 the REIMER–TIEMANN reaction resulted in complete 

decomposition of the starting material (condition 3). In general, it was observed that catechols like 215 

were sensitive to basic conditions, potentially due to the more facile oxidation to very reactive 

ortho-quinones. Only ester hydrolysis was detected using VILSMEIER–HAACK formylation conditions, 

which probably occurred during workup (condition 4). It was argued that the reactions failed because 

the catechol coordinates to metal ions or undergoes phosphorylation, which largely decreases the 

nucleophilicity of the aromatic system. Therefore, a DUFF formylation was employed, which is free of 

coordinating metal ions, and proved to be the only successful formylation method. Benzaldehyde 219 
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was synthesized almost quantitatively on multi-gram scale in a facile procedure. Intriguingly, in an 

attempt to access an alternative precursor to epicoccone B, acid 173 failed to undergo any reaction 

under these conditions. 

The reduction of benzaldehydes like 219 to toluene derivatives is described in the literature 

mostly by using heterogeneous hydrogenation.
[196,197]

 Attempts to remove the oxygen atom by 

hydrogenation with catalytic Pd on activated charcoal in EtOAc first only resulted in the formation of 

the labile benzyl alcohol 220 (Scheme 60).  

 

Scheme 60. Reduction of aldehyde to methyl group. 

Immediate resubjection to the heterogeneous hydrogenation in EtOH gave rise to the desired 

toluene derivative 221. It was reasoned that the poor solubility of intermediate benzyl alcohol 220 in 

EtOAc hinders the second reduction to take place, but conducting the reaction with aldehyde 219 in a 

solvent mixture of EtOAc/EtOH also only furnished benzyl alcohol 220. Using ethanol as the 

exclusive solvent for the two-step process was not possible since the starting benzaldehyde was 

insoluble. As the first reduction could be achieved more cost-efficiently, benzaldehyde was reduced 

with sodium borohydride to benzyl alcohol 220. The latter readily decomposed upon isolation attempts 

or even under low pressure, presumably by dehydration and generation of the reactive para-quinone 

methide. Further investigation of the hydrogenolysis revealed that the outcome is dependent on the 

batch of Pd/C employed, the size of the reaction vessel and the quality of the starting material. 

Aldehydes that had been filtered over a reverse-phase silica plug performed worse than crude 

aldehydes. A probable rationale for the inconsistent results of this reaction was the varying acid 

content of the Pd/C batch and the starting material. Ultimately, the reaction was performed on multi-

gram scale in excellent yield in large reaction vessels to ensure maximum solvent exposure to the 

hydrogen atmosphere in strongly acidic media to facilitate hydrogenolysis of the intermediate benzyl 

alcohol to catechol 221. The reaction probably benefits from protonation of the benzyl alcohol and 

subsequent hydrogenolysis to directly furnish water. 

2.3.3.2.3 Introduction of the Sixth Substituent  

The remaining task was to introduce the sixth substituent on the aromatic ring of ester 221. Due to 

the steric challenge of this endeavor, the transformation was mainly tried with small electrophiles, 
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benefitting from the electron-richness of the benzene ring (Scheme 61). Since several other 

formylation methods had failed previously, only the DUFF formylation to aldehyde 222 was tried 

(condition 1). However, starting material was recovered. Since hydroxy- or chloromethylations would 

be more step- and redox-economic and would involve the use of the small reagent formaldehyde, it 

was next focused on these transformations to access esters 223 or 224. Functionalization attempts 

proved unfruitful with decomposition under basic conditions (condition 2)
[200]

 and no reaction under 

acidic conditions at ambient temperature (condition 3).
[201]

 It was reasoned that acidic conditions were 

more likely to provide the product if temperatures were to be increased. Indeed, chloromethylation 

conditions adapted from the literature with a mix of acids and paraformaldehyde at elevated 

temperatures provided the already cyclized product 196 with an unknown side product (condition 

4).
[202]

 As mentioned above, purification of the catechol products presented a challenge and further 

reaction conditions were therefore screened. 

 

Scheme 61. Attempts at introduction of last substituent toward epicoccone B. 

The conditions were found equally effective if acetic and phosphoric acid were omitted, but the 

side product remained. It was observed that its quantity increased with longer reaction times. 

Potentially, the side product could arise from concomitant oxidation of the catechol moiety and 

subsequent decomposition, which would explain the dark brown color of the reaction mixture. Yet, 

conducting the reaction under strict exclusion of oxygen with deaerated solvents did not change the 

result. The side product was eventually identified as epicoccone B, resulting from demethylation with 

a nucleophile. As the nucleophile could only arise from hydrochloric acid, a change to the 

non-nucleophilic sulfuric acid allowed for the optimal hydroxymethylation conditions to introduce the 

last epicoccone B substituent (Scheme 62). This reaction could be successfully applied on multi-gram 

scale in quantitative yield and did not require purification of the product 196. 
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Scheme 62. Optimal hydroxymethylation conditions for the synthesis of epicoccone B precursor. 

Mechanistically, ester 221 first has to hydrolyze to the corresponding acid to undergo 

functionalization. Prior to the completion of the reaction, this acid could be identified by LC/MS. 

Non-aqueous conditions with paraformaldehyde and HCl in dioxane or in MeOH did not afford 

appreciable amounts of the chloromethylation product 225. It appears that the related carboxylic acid 

can direct the reagent to the ortho-position, which enables the installation of the last substituent. 

Lactone 196 was crystallized to obtain unambiguous confirmation of its structure (Figure 22). The 

structure reveals that the methyl group of the ether is twisted out of the arene plane, which facilitates a 

demethylation by nucleophilic attack on the methyl group due to less steric hindrance.  

 

Figure 22. X-Ray single crystal structure of lactone 196; CCDC: 1022041.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

2.3.3.2.4 Completion of the Synthesis of Epicoccone B 

The previous reaction had demonstrated that demethylation of the last remaining methyl ether is 

feasible. Isolation of epicoccone B from this reaction mixture proved to be difficult though. Therefore, 

a standard procedure involving BBr3 was applied, with which epicoccone B was synthesized in good 

yield (Scheme 63).  

 

Scheme 63. Final demethylation in the synthesis of epicoccone B. 
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In summary, epicoccone B was synthesized in 6 steps and 46% overall yield in a sequence 

depicted in Scheme 64. This route allows for the preparation of the natural product without flash 

column chromatographic purification of the intermediates with similar results.  

 

Scheme 64. Completed synthesis of epicoccone B. 

2.3.3.2.5 Combination of Epicoccine and Epicoccone B Synthesis 

Due to the structural similarity of epicoccine and epicoccone B and the excellent scalability of the 

epicoccone B synthesis, it was attempted to prepare epicoccine by a similar route. The potential 

branching point of the route was identified in catechol 196. A reduction and subsequent demethylation 

would yield epicoccine (Scheme 65). 

 

Scheme 65. Potential synthesis of epicoccine from epicoccone B intermediate. 

The previous studies had exposed the base sensitivity of the catechols as well as their ability to 

coordinate to metal ions, which is why a reduction was not expected to be facile. Treatment of lactone 

196 under various conditions with DIBAL (only one shown, condition 1) or LAH (condition 2) or 

attempted LUCHE reduction to yield diol 226 exclusively led to decomposition (Scheme 66).
[203]
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Scheme 66. Attempts at reduction or protection of catechol 196. 

It was observed that a diol of type 226 formed rather than the desired hemiacetal, but the diol 

resisted isolation. It was reasoned that a benzylic alcohol next to a phenol is very prone to elimination 

under generation of the reactive ortho-quinone methide. Therefore, protection of the catechol became 

necessary. After unsuccessful trials to protect the catechol as dioxolane 227 (conditions 4, 5), TBS 

protection proceeded smoothly to yield bissilyl ether 228. It was crucial to conduct this reaction at 

concentrations c as high as c = 1.6 M to obtain the product.  

The protected catechol 228 underwent reduction with LAH to afford crude diol 229, which due to 

the danger of silyl migration was not purified (Scheme 67). Although the steric bulk of the TBS 

groups could favor cyclization to tetrahydrofuran 230, no product was observed under the conditions 

tested. Whereas tosylation or substitution by chloride was successful, no cyclization was observed in 

conditions 1 and 2. Condition 3 led to a multitude of silyl migration products. Cyclization and parallel 

TBS deprotection was further attempted with aq. sulfuric acid (condition 4), but no product was 

detected. 

 

Scheme 67. Attempt at reduction of lactone 228. 
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The unfruitful attempts at converting epicoccone B intermediate 196 to epicoccine showed that a 

resulting route to epicoccine would not be as efficient as the already established one. Efforts toward 

this goal were therefore abandoned and focused on the synthesis of epicolactone.  
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2.3.4 Synthesis of Epicolactone 

The envisioned synthesis of epicolactone involved a heterodimerization of two pyrogallol 

building blocks as the key step and subsequent skeletal rearrangement. In general, the challenge of a 

heterocoupling is always the competing homocoupling of either compound. It is therefore crucial to 

provide a driving force for the heterocoupling by substrate manipulation or the reaction setup. Since 

epicolactone was isolated alongside other natural products and evidence was found in this thesis that 

dibefurin is one of these, it was expected that an attempted heterodimerization might generate 

dibefurin as a side product. Furthermore, potential side reactions arising from quinone methides 

described in 2.3.2.1 Potential Challenges would have to be suppressed. 

2.3.4.1 Heterodimerization of Epicoccine with Epicoccone B 

The envisioned heterodimerization was first attempted with epicoccone B as one of the potential 

biomimetic coupling partner. Epicoccone B was already isolated from the same fungus that also 

produces epicolactone and therefore represented a viable choice.
[147]

 

The optimized conditions for the synthesis of dibefurin were applied to an equimolar mixture of 

epicoccine and epicoccone B (Scheme 68). However, only the formation of dibefurin was observed 

and epicoccone B was isolated as unreacted starting material. Even with a ten-fold excess of 

epicoccone B compared to epicoccine, no heterodimerization product was obtained. Instead, only a 

small quantity of dibefurin was formed and both starting natural products were reisolated. 

 

Scheme 68. Heterodimerization attempt of epicoccine and epicoccone B. 

This result can be rationalized with the more facile oxidation of epicoccine compared to 

epicoccone B. Due to the additional carbonyl as an electron-withdrawing group, epicoccone B is more 

electron-deficient than epicoccine. The oxidant therefore preferentially abstracts electrons from 

epicoccine, which activates this natural product for coupling reactions. If the dimerization proceeds via 

ortho-quinone dimerizations, dibefurin will be the only feasible product. In case that a nucleophilic 

attack occurs on an epicoccine semiquinone radical, it will also again be the more electron-rich and 

more nucleophilic epicoccine that preferentially intercepts this reactive intermediate. Both scenarios 

result in a favored homodimerization. However, the fact that no trace of heterodimerization product 

was detected could point toward a potential instability of the corresponding product or toward the fact 

that potassium ferricyanide is not capable of efficiently oxidizing epicoccone B. A control experiment 
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under the same conditions with only epicoccone B showed unreacted epicoccone B and oxidation of 

the lactone ring in the benzylic position. Regardless of whether the oxidation arose from an 

ortho-quinone tautomerization or by direct benzylic oxidation, the fact that mostly starting material 

was recovered proved that potassium ferricyanide cannot quantitatively oxidize epicoccone B. 

It was reasoned that a more basic medium would facilitate the oxidation of epicoccone B since 

epicoccone B was assumed to be the more acidic pyrogallol derivative of the two starting materials. 

To this end, the fermentation conditions with a basic pH were mimicked with and without metal salt 

additives (Scheme 69). 

 

Scheme 69. Attempts at biomimetic heterodimerization in basic media or solid state. 

Both pyrogallols, insoluble in neutral water, readily dissolved in the phosphate buffer exposed to 

air (condition 1). The mass of a heterodimer that had undergone a single oxidation was identified after 

days. Since the structure of the desired heterodimer can only stem from double oxidation, the observed 

heterodimer potentially is an ether adduct resulting from nucleophilic attack of a phenol onto an 

ortho-quinone. Its lability during isolation attempts and even under acetylation trials with acetic 

anhydride and pyridine would be in line with this conclusion. In order to effect the necessary second 

oxidation, known autoxidation catalysts such as Fe
II
, Mn

II
, Cu

II
 and Zn

II
 salts were added, only leading 

to the decay of the initial heterodimer (condition 2).
[168]

 The catalytic conditions under oxygen 

atmosphere with Fe
II
 salts that had previously proven to afford dibefurin were also tested but only 

gave rise to dibefurin (condition 3). In an effort to increase the proximity between the reaction partners 

and thus enable heterodimerization, both were intimately mixed in a mortar, moisturized with water 

and left standing on air for the duration of 1 month. Only unreacted starting material was recovered. 

It appeared as if any dimerization attempt between epicoccine and epicoccone B with in situ 

oxidation would always preferentially lead to dibefurin for the reasons outlined above. Therefore, 

preoxidized epicoccone B was envisioned to be treated with epicoccine (Scheme 70). In scenario A, 

epicoccine would first be oxidized by ortho-quinone 154 obtained from epicoccone B to furnish 

epicoccine ortho-quinone 149. This could now dimerize with a second equivalent of quinone 154 to 

afford a heterodimer. Likewise, in scenario B the heterodimerization would occur first by nucleophilic 

attack of epicoccine onto quinone 154 and then undergo oxidation by the second equivalent of quinone 
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154. Independent of the actual dimerization mode (scenario A or B), epicoccone B quinone 154 would 

always be present in higher amounts than epicoccine quinone 149. Therefore, the homodimerization 

should be largely suppressed and the desired heterodimerization should be favored. If successful, the 

role of epicoccone B as a sacrificial oxidant could also be taken over by conventional reagents. 

 

Scheme 70. Rationale behind preoxidation of epicoccone B. 

Preoxidation of epicoccone B proved to be challenging since quinone 154, probably as a mixture 

with its tautomers, resisted isolation and characterization. Hence, epicoccone B was presumably 

oxidized with ortho-chloranil yielding a dark burgundy precipitate that was insoluble in ether at    

T = –78 °C. As the reagent and its reduction product are both soluble in ether, the precipitate was 

assumed to be quinone 154 or its tautomers. Treating epicoccine resulted in the formation of dibefurin, 

epicoccone B and a heterodimer with covalently bound water by mass analysis. The structure of the 

heterodimer could not be elucidated at the time (for hypothesis on its structure, see chapter 2.3.4.2.2

 Preformation of ortho-Quinone). 

2.3.4.2 Heterodimerization with Epicoccone B Methyl Ether 

The inability to analyze the ortho-quinone of epicoccone B led to the conclusion that the synthesis 

of a suitably protected analog was required. As known from the concepts of pyrogallol dimerization 

(see 2.1.3.4 Conceptualization of Substrate-Dependent Reactivity Trends), the oxidized epicoccone B 

only has to react as an enone for a successful purpurogallin-type dimerization. Thus, one of the phenol 

groups was to be protected by conversion to methyl ether 196, which still allowed for oxidation to a 

quinone (Scheme 71). Blocking the C7–OH rather than the C5–OH could also be feasible, but quinone 

197 was reasoned to be the most activated for the cascade reaction. The alteration of the synthetic plan 

is depicted in Scheme 71 and reveals that the overall cascade process should not be affected. After 
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oxidation to quinones 149 and 197, both should still dimerize in a formal (5+2)-cycloaddition to 

adduct 231, which upon hydrolysis would yield acid 232. Decarboxylation to alcohol 233, skeletal 

rearrangement to tetracycle 234 and final bond formation from diketone 235 to methyl ether 236 

should furnish epicolactone after additional hydrolysis of the enol ether. 

 

Scheme 71. Alternative synthetic plan with methyl ether 196. 

The advantage of the altered strategy was that quinone 197 could be synthesized and isolated in 

contrast to the oxidation product of epicoccone B. If similar challenges arose in the oxidation of the 

epicoccine/196 mixtures, it would be possible to test heterodimerizations between quinone 197 and 

epicoccine. 

2.3.4.2.1 Dimerization upon Oxidation with External Oxidants 

Despite the unsuccessful dimerization trials upon oxidation of epicoccine and epicoccone B 

mixtures by external oxidants, this strategy was first attempted with the new epicoccone B methyl 

ether 196. Due to the electron-donating effect of the additional alkyl substituent in ether 196, the redox 

potential might have changed and could allow for the competitive oxidation of ether 196 in the 

presence of epicoccine. A selection of attempted conditions is provided in Table 4. Since the products 

were not isolated or purified, the table only contains qualitative information by LC/MS analysis. 

Oxidation with ortho-chloranil (entry 1) indeed afforded a hydrated heterodimer and, surprisingly, 

dibefurin. Since ortho-chloranil was unable to convert epicoccine to dibefurin, it was speculated 

whether the initially formed quinone 197 could effect this transformation or if the heterodimer 
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decomposes to give rise to dibefurin. However, the formation of a hydrated heterodimer was 

encouraging, although side products were observed. 

Table 4. Selection of external oxidants for oxidation and dimerization of epicoccine and ether 196. 

 

 

Inorganic external oxidants such as Mn
IV

, Ce
IV

, Ag
I
 or I

III
 failed to provide the heterodimer 

(entries 2–5). Decomposition reactions are likely to involve quinone methides or uncontrolled 

reactions of the quinones with nucleophilic solvent molecules such as water. Adaptation of the optimal 

conditions in the dibefurin synthesis revealed that the heterodimerization can indeed be competitive to 

the dibefurin formation (entry 6). Interestingly, enzymatic approaches were successful in the case of 

horseradish peroxidase, a 44 kDa glycoprotein with the cofactor heme, whereas they failed with 

mushroom tyrosinase, a copper-containing enzyme.
[204,205]

 However, these approaches were not further 

investigated due to the multiple side products and decomposition of the heterodimer under the reaction 

conditions.  

Product isolation by chromatography on reverse phase silica was not possible due to the numerous 

side products and unreacted starting material. Efforts were therefore directed at the optimization of the 

reaction conditions to enable isolation and characterization of the heterodimer.  

2.3.4.2.2 Preformation of ortho-Quinone 

As mentioned in chapter 2.3.4.1 Heterodimerization of Epicoccine with Epicoccone B, 

heterodimerization could be favored by preformation of the respective ortho-quinone (Scheme 72). 

Hence, ether 196 was subjected to oxidation by Ce
IV

 (condition 1), Ag
I
 (condition 2) or ortho-chloranil 

in THF (condition 3). None of the conditions led to the formation of the desired ortho-quinone. It was 

reasoned that its high reactivity was the source of this complication and that the desired ortho-quinone 

would have to precipitate from solution immediately after its formation to avoid side reactions. Hence, 
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quinone 197 was successfully synthesized at room temperature with ortho-chloranil as the oxidant in 

ether and precipitated at T = –78 °C (Scheme 72). It proved to have limited stability and decomposed 

under oxidation of the benzylic position, presumably via nucleophilic attack of water on the 

para-quinone methide tautomer. 

 

Scheme 72. Preformation of ortho-quinone 197. 

The potential tautomerization to the para-quinone methide was of concern, because it would 

hinder the desired reaction of quinone 197 as an ortho-quinone. It was therefore tested whether a 

potential 1,4-addition of nucleophiles onto quinone 197 was feasible (Scheme 73). A cuprate was 

generated in situ and allowed to react with quinone 197 to give rise to lactone 237, which was 

identified by mass and NMR. This reaction underlined the potential of quinone 197 to undergo 

benzylic functionalization and shows the marked tendency toward rearomatization. However, the 

reaction conditions and partners largely differ from the intended biomimetic cascade and therefore 

only serve as a warning of potential side reactions.  

 

Scheme 73. Cuprate addition to ortho-quinone 197. 

When quinone 197 and epicoccine were combined in dioxane at room temperature, multiple 

products were observed (Table 5). Some of the products were identified by LC/MS as dibefurin, 

methyl ether 196, decomposition product 238 and two hydrated heterodimers. While formation of 

dibefurin and ether 196 as the reduction product from the use of one equivalent of quinone 197 was 

expected, the observed larger quantities of hemiacetal 238 were not predicted. The fact that the 

reaction mixture contained two heterodimers could have arisen from poor diastereoselectivity of the 

cascade reaction. In the standard purpurogallin cascade, the face-selective approach of the coupling 

partner could result from hydrogen bonding to the ortho-quinone (here C6). Since quinone 197 
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possesses two carbonyl groups (C6/C1) that are geometrically capable of hydrogen bonding in the 

transition state, the approach of the dimerization partner could be less selective.  

The addition of water to the heterodimer was rationalized with lactone ring-opening and 

cyclization to a stable hemiacetal 239, as previously observed.
[113]

 The structure 239 was assigned to 

the product as a working hypothesis, since only HRMS proof could be obtained. Attempts to isolate 

and characterize the structure were thwarted by its instability, low yield and the existence of multiple 

byproducts. In a qualitative attempt to raise the amount of heterodimers, several reaction conditions 

were tried but none could improve the initial result (Table 5). 

Table 5. Combination of epicoccine and quinone 197 and resulting products. 

 

 

It was found that the reaction could be conducted under air with the same result (entry 1), but 

lowering the concentration inhibited the heterodimer formation completely (entry 2). Surprisingly, 

larger-scale reactions with the same concentration as the small-scale reactions also failed. Product was 

only obtained if as little amount of solvent was used as necessary to dissolve the components. An 

excess of ortho-quinone to favor heterodimerization did not lead to more heterodimer (entry 3) and a 

solvent screen showed that only polar solvents could be used because the coupling partners needed to 

be fully dissolved (entries 4–7). Acidic aqueous media to effect cleavage of the presumed hemiacetal 
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239 and trigger the desired retro-DIECKMANN reaction revealed that the two heterodimers seemed to 

be able to convert into each other or that one of them decomposes more readily (entry 8). As the latter 

appeared to occur, these conditions also did not provide more of the desired heterodimer. Drying 

agents such as MgSO4 or molecular sieves partially prevented the decomposition of the ortho-quinone 

during the reaction, but did not favor heterodimer formation (entries 9, 10). An attempt at      

hydrogen–bond catalysis was not met with success (entry 11). The best conditions (dioxane, rt) were 

scaled to m = 340 mg (197), the product purified as much as possible by chromatography on reverse 

phase silica and extensive NMR analysis undertaken. However, 2D NMR spectra did not reveal many 

cross peaks and the molecule decomposed during prolonged INADEQUATE studies. 

As the lability of the compound and the number of side products did not allow efficient 

purification, a sample enriched in the hydrated heterodimer was set up for crystallization. Numerous 

attempts failed, but crystallization from DMSO/H2O in a hanging-drop setup afforded X-ray suitable 

crystals. X-Ray single crystal structure analysis revealed that the structure was dibefurin, a compound 

with a different mass and retention time than the hydrated heterodimer. Therefore, it was reasoned that 

the heterodimer is in equilibrium with its monomeric ortho-quinones 178 and 197 (Scheme 74). Both 

can undergo irreversible reactions and would therefore be withdrawn from the equilibrium. A 

reformation of the heterodimer would then be impossible. Upon crystallization, additional driving 

force is offered for quinone 178 or its tautomer to engage in a homodimerization to the insoluble 

dibefurin. Furthermore, in contact with water, quinone 197 could irreversibly convert to hemiacetal 

238. 

 

Scheme 74. Dibefurin as the result of crystallization attempts of the hydrated heterodimer. 

Intriguingly, the dibefurin X-ray single crystal Hstructure revealed the presence of the so far 

unobserved isomer 184 (Figure 23). Dibefurin and isomer 184 were mixed in the crystal with an 

occupation ratio of 9:1, but the space group remained centrosymmetric (P21/n). Therefore, the 

presence of the C1-symmetric 185 can be excluded. The observation that different products were 
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obtained in this experiment might hint at a different mechanism of formation. In the previous 

Fe-mediated oxidation, radicals or ortho-quinones could have combined to yield dibefurin. However, 

the decomposition of the heterodimer can only yield ortho-quinones. This result of this experiment 

therefore supports the hypothesis of a radical-type mechanism in the dibefurin formation upon 

oxidation with potassium ferricyanide.  

         

Figure 23. X-Ray single crystal structure of dibefurin and isomer 184 with H2O; CCDC 1022043.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

Given its instability, it became necessary to protect crucial functionalities in the heterodimer to 

ensure its stability and prevent it from reverting back to the starting materials. Free hydroxyl groups 

were thought to be the main reason for potential decomposition.  

Since hemiacetal carbon atoms were identified in the hydrated heterodimer during NMR studies, 

it was attempted to convert the hemiacetal to a full acetal with various alcohols. Full acetals were 

detected by LC/MS after reaction with aliphatic alcohols under acid catalysis, but the acetal was 

cleaved upon purification attempts.  

Furthermore, hydroxyl groups were acyl protected by treatment with acetic anhydride or benzoyl 

chloride. Both reactions showed double incorporation of the respective acyl group under loss of water. 

This result was not compatible with the structure proposal 239 of the hydrated heterodimer. 

Remarkably, the acetylated heterodimer proved to be a solid and stable to conventional purification 

methods, as intended. However, NMR spectroscopic analysis only showed two diastereotopic 

methylene groups, another hint that the proposed structure 239 was incorrect.  

Since the molecule first did not form suitable crystals for X-ray single crystal structure analysis, a 

recently reported procedure by FUJITA and co-workers was applied.
[206,207]

 The procedure involves the 

growth of molecular-organic framework (MOF) crystals that can host organic molecules. If the lattice 

is saturated with the organic molecule in question, the structure of the guest can be determined by 

X-ray structure analysis due to the crystallinity of the host even though the guest molecule itself did 

not crystallize. Host crystals with the formula (Zn3C36H24I6N12 · C6H12)n were grown according to 

literature procedures,
[207]

 but the inclusion of the hydrated heterodimer led to a structure that was too 
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complicated to be elucidated. It appears that the occupation of the host cavities was insufficient. The 

obtained crystal structure of the host is shown in Figure 24. 

             

Figure 24. X-Ray structure of host (Zn3C36H24I6N12 · C6H12)n 

Color code: white (large ellipsoids) = carbon, blue = nitrogen, violet = iodine, white (small ellipsoids) = hydrogen,  

grey = zinc. 

Eventually, crystallization from DMSO/H2O in a hanging drop setup resulted in X-ray suitable 

crystals that led to the structural elucidation of the heterodimer as a hetero-DIELS–ALDER adduct 240 

(Figure 25). 

 

Figure 25. X-Ray crystal structure of acetylated heterodimer; CCDC: 1022044.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

Mechanistically, the generation of this heterodimer can be rationalized as depicted in Scheme 75. 

Epicoccine undergoes oxidation by quinone 197 as intended to furnish ortho-quinone 178 or tautomer 

149. This step explains the previously observed formation of dibefurin in the attempted 

heterodimerization, because these quinones can also undergo homocoupling. However, under the 

reaction conditions, they also isomerize to the supposedly more stable para-quinone methide 181 

under release of dipole repulsion of the carbonyl groups. Other quinone methides are omitted for 

clarity and only the one with the most nucleophilic double bond, an enol, is presented. Quinone 

methide 181 engages in an inverse electron–demand hetero-DIELS–ALDER reaction to dioxine 241 
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with the second equivalent of quinone 197. Due to the reversibility of this process and the fact that 

structural proof was only acquired after one additional step, it cannot be excluded that other 

regioisomers than 241 form. However, this regioselectivity of the cycloaddition could be rationalized 

based on steric and electronic effects. Quinone methide 181 possesses two major nucleophilic sites, 

C3a and C7. The C7 methyl group can rotate freely as opposed to the stiff, tied-back C3 methylene 

unit and could therefore render the C7 position less accessible. Concerning ortho-quinone 197, the C6 

oxygen atom is the most electrophilic because it is in full conjugation with the C1 carbonyl group. 

Therefore, a bond is forged between C3a and O=C6.  

 

Scheme 75. Hetero-DIELS–ALDER heterodimerization. 

The initial heterodimer could get attacked by water to form the observed hydrated heterodimer 

242 as a diastereomeric mixture. This would explain the detection of two hydrated heterodimers. 

Acetylation of hemiacetal 242 would yield pentacycle 240 by dehydration and double acetate group 

introduction to prevent the retro-cycloaddition.  

Low concentration would greatly disfavor heterodimerization and rather lead to dibefurin 

formation or decomposition of quinone and quinone methide species, which would provide a rationale 

for the observed concentration dependence. The apparent instability of compound 242 is also easily 

explained since the dimerization process until hemiacetal 242 is reversible. Once the monomers are 

present during workup or purification, they can irreversibly rearomatize by addition of nucleophiles, 

thus decreasing the amount of the original heterodimer. During the attempts to couple epicoccine with 

quinone 197, it was also observed that residual ortho-chloranil completely inhibits the formation of the 

heterodimer. This could be rationalized by the fact that ortho-chloranil is a much more electrophilic 

hetero diene for the inverse demand hetero-DIELS–ALDER reaction and thus more readily engages in 

the cycloaddition than quinone 197. 
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Dioxine 242 constitutes the first hetero-DIELS–ALDER adduct of two different pyrogallols. In 

general, this type of dimerization is not precedented with pyrogallols that are structurally as complex 

as epicoccine and epicoccone B derivative 196. It is reasonable to assume that the heterodimer 

obtained in chapter 2.3.4.1 Heterodimerization of Epicoccine with Epicoccone B also dimerized in a 

hetero-cycloaddition. 

In Nature, some triterpenoid catechols have been shown to be able to form homodimers after 

oxidation to quinones.
[208–212]

 The biomimetic synthesis of dibefurin provides strong support to the 

hypothesis that pyrogallol oxidation can occur in fungi of species Epicoccum. Combined with the fact 

that quinone dimerization to dioxines has been observed in Nature with catechols, heterodimers of 

type 240 might well be present in Epicoccum sp. and were thus far not isolated due to their instability. 

The fact that an undesired heterodimer was obtained via a DIELS–ALDER cycloaddition can be 

rationalized by the high steric congestion of both hexasubstituted arenes. In order to avoid unfavorable 

steric interactions, the heterodimerization occurs via the oxygen atoms rather than the carbon atoms to 

ensure maximum distance between the substituents. The results obtained in this thesis seem to 

disprove one of the biosynthetic hypotheses for epicolactone presented in 2.2.1 General Biosynthetic 

Proposal. Epicoccone B appears to be an unlikely heterodimerization partner to engage in a 

purpurogallin cascade, at least if both pyrogallols dimerize on the oxidation state of an ortho-quinone. 

However, the fact that a biosynthesis cannot be mimicked in the laboratory does not prove its 

impossibility.  

In the following, strategies will be presented that aim at achieving the desired heterodimerization. 

2.3.4.3 Heterodimerization via Methylated Epicoccine 

Two major reasons for the challenges encountered in the heterodimerization, concomitant 

homodimerization and formation of a DIELS–ALDER dimer, can be traced back to the initial oxidation 

of epicoccine. The existence of an ortho-quinone of epicoccine gives rise to dibefurin and the 

para-quinone methide that engages in the cycloaddition. It was argued that if epicoccone B were to be 

the correct coupling partner in the biomimetic cascade, initial oxidation of epicoccine would have to 

be avoided. Mechanistically, this proposal follows the hypothesis that the purpurogallin cascade is not 

a dimerization of two quinones but rather the union of one pyrogallol with one quinone (see 2.1.3.1.1

 Historical Perspective). 

 Therefore, the use of epicoccine methyl ether 143 was envisioned, which would be unable to 

undergo oxidation to an ortho-quinone if the methyl group was a stable protecting group under the 

reaction conditions (Scheme 76). Intriguingly, the new biomimetic strategy was supported by the fact 

that methyl ether 143 was isolated as a natural product from Epicoccum species as well.
[145]
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Scheme 76. Epicoccine methyl ether as epicoccine substitute in the synthesis of epicolactone. 

The new biomimetic strategy would involve initial oxidation of epicoccone B derivative 196, 

which as quinone 197 would subsequently suffer from nucleophilic attack of ether 143 to yield adduct 

243. Since the methyl ether in adduct 243 is now an enol ether, a subsequent hydrolysis could convert 

it to ene diol 244. Intriguingly, the initial oxidation could therefore be circumvented, but adduct 244 

could be channeled into the originally envisioned biomimetic cascade after further oxidation to 

triketone 245 and subsequent aldol addition to already proposed cascade intermediate 231. 

Epicoccine methyl ether (143) synthesis was first attempted from methyl gallate via the known 

route to epicoccine (Scheme 77).  

 

Scheme 77. Epicoccine methyl ether (143) synthesis. 

Selective methylation of the most acidic phenol group due to its conjugation to the 

para-carboxylic ester group according to a literature procedure proceeded smoothly to provide 

pyrogallol derivative 246.
[213]

 However, the subsequent double functionalization according to KING 

and KING led to the migration of the methyl ether under formation of dioxolane 247.
[162]

 No product 

248 was observed. Potentially due to the least steric hindrance of the central hydroxyl group, 
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epicoccine itself could be selectively methylated to furnish the target natural product 143, 

accompanied by dimethylated side products. 

Next, the dimerization with known quinone 197 was tested (Scheme 78). It was focused on 

conditions that would allow for dimerization and hydrolysis of the intermediate enol ether 243. No 

trace of dimerization product was detected in dioxane and acidic aqueous buffer solution (condition 1) 

or with subsequent acetylation in case the initial heterodimer was too unstable for isolation (condition 

2). The only identified product was the hemiacetal 238 from the decomposition of quinone 197.  

 

Scheme 78. Dimerization trials with methylated epicoccine. 

It was tried to achieve the initial attack to adduct 243 under inert conditions and then introduce 

water for the required hydrolysis, albeit without success. Neither attempted deprotonation to increase 

the nucleophilicity of ether 143 nor thermal activation were met with success (conditions 3, 4).  

As it appeared that the required intermediate hydrolysis from enol ether 243 to ene diol 244 would 

be incompatible with the instability of quinone 197 under aqueous conditions, alternative routes were 

pursued. 

2.3.4.4 Heterodimerization via Inverted Reactivity 

Since epicoccine and epicoccone B were still believed to be the biosynthetic precursors to 

epicolactone was still high, given their isolation from the same fungus and the oxidative metabolism 

within the fungus, it was suggested that the cascade reaction to epicolactone could proceed differently 

than originally envisioned.  

It had been shown that the dimerization of two pyrogallols as their ortho-quinones leads to a 

DIELS–ALDER dimer (see 2.3.4.2.2 Preformation of ortho-Quinone). Trials to dimerize one pyrogallol 

with one ortho-quinone by blocking the oxidation of epicoccine had completely inhibited the coupling 

(see 2.3.4.3 Heterodimerization via Methylated Epicoccine). Furthermore, it had also become evident 

that epicoccine is more readily oxidized than epicoccone B (see 2.3.4.1 Heterodimerization of 

Epicoccine with Epicoccone B). It was therefore reasoned that the preformation of an epicoccine 

ortho-quinone in combination with epicoccone B as the unoxidized pyrogallol component could result 

in the desired heterodimerization. This proposal constitutes a novel mechanistic idea for the 

purpurogallin cascade that had not yet been considered (Scheme 79).
11

 As mentioned in chapter 

2.1.3.1.1 Historical Perspective, the exact mechanism of the dimerization of pyrogallols is yet 

                                                      
11

 to the best of our knowledge 
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unknown. Dimerization of two ortho-quinones as well as coupling of one unoxidized pyrogallol with 

one ortho-quinone have been proposed.
[107,113]

 In the latter case, the pyrogallol always attacks the 

ortho-quinone 104 in a 1,4-addition. The resulting ene diol 249 is oxidized and a final aldol reaction 

gives rise to pyrogallol 111 after tautomerization.  

 

Scheme 79. Alternative mechanistic proposal for the purpurogallin cascade. 

An alternative is proposed herein, according to which the initial bond formation occurs between 

the pyrogallol and the carbonyl group of the ortho-quinone 104 to give rise to ene diol 250, which 

could immediately undergo a 1,4-addition to furnish cyclohexadiene 251. A final oxidation would then 

lead to known intermediate 111. 

The realization that the purpurogallin cascade might also occur by a different mechanism had an 

important impact on the retrosynthetic planning. Instead of changing the strategy to a preoxidized 

epicoccone B coupling partner, a preoxidized epicoccine derivative might lead to a successful 

heterodimerization (Scheme 80).  

 

Scheme 80. Proposed heterodimerization with methylated epicoccine derivative 252. 
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The ortho-quinone of epicoccine, 252, could get attacked by epicoccone B to form adduct 253, 

which would need to undergo hydrolysis to enol 254 to engage in a 1,4-addition without prior 

oxidation. Cyclohexadiene 255 could then either be a stable adduct or get further oxidized to already 

proposed intermediate 155. The regioisomeric ortho-quinone of 252 would also be possible, but access 

to quinone 252 was more facile (Scheme 81). 

 

Scheme 81. Cascade attempts with oxidized epicoccine. 

Trimethyl ether 163 was selectively demethylated with BBr3 and the position of the remaining 

OMe-group determined by nOe experiments. Catechol 256 was next oxidized to quinone 252 under 

the conditions that had proven successful in the synthesis of other ortho-quinones. When epicoccone B 

was treated with quinone 252 and subsequently subjected to hydrolysis conditions, a heterodimer was 

identified that showed an acetal methine by NMR spectra analysis. Since this carbon atom could only 

be formed by DIELS–ALDER dimerization involving para-quinone methides, no further experiments 

with quinone 252 were conducted. 

 Next, it was attempted to access the ortho-quinone of epicoccine without protecting groups and 

combine it with epicoccone B. Oxidation of epicoccine inevitably forms dibefurin, but it was known 

that dibefurin can decompose to its monomers in solution and especially when treated with base. 

Hence, the natural product dibefurin was employed as a protected version of the required 

ortho-quinone 149 or 178. Treatment with epicoccone B under conditions that had previously been 

identified to decompose dibefurin did not lead to detectable amounts of heterodimers (conditions 1–3, 

Scheme 82). Presumably, the decomposition of dibefurin only gives rise to small equilibrium amounts 

of the required epicoccine ortho-quinones 149 or 178 that decompose by other pathways involving the 

solvent, e.g. redox processes as previously observed. An efficient dimerization with epicoccone B can 

therefore not be achieved since epicoccone B is present in lower concentration than the solvent. 
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Scheme 82. Heterodimerization attempts with dibefurin as protected ortho-quinone precursor.  

2.3.4.5 Heterodimerization with Pentasubstituted Epicoccone B Derivatives 

The results obtained from the heterodimerization attempts of epicoccine and epicoccone B and 

their derivatives did not support the initial biosynthetic hypotheses. It appeared as if epicoccone B as a 

surrogate for benzyl alcohol 148 is too sterically encumbered to allow for a purpurogallin-type 

coupling, rather undergoing DIELS–ALDER-type dimerizations. In addition, the diketone moiety in 

intermediate 155 cannot stabilize itself by tautomerization as opposed to intermediate 152. Therefore, 

it was considered more likely that a pentasubstituted pyrogallol would engage in the desired 

heterocoupling (for biosynthetic hypothesis, see Scheme 39). 

The originally proposed benzyl alcohol could form in Nature prior to reaction with epicoccine and 

would be much less sterically hindered. It is possible that its potential instability has thus far prevented 

isolation. The initial heterodimer based on benzyl alcohol 148 would not contain four contiguous 

tetrasubstituted stereocenters, the steric strain of which probably prevented the successful synthesis of 

dimer 155. However, oxidation of alcohol 148 seemed challenging since the benzylic position is more 

prone to oxidation, be it via a direct pathway or via the quinone to quinone methide tautomerization. 

Furthermore, it was considered important to eliminate possible side reactions such as PERKIN dimer 

formation by suitable protection of one of the phenolic hydroxyl groups. 

Prior to this thesis, the quinone 171 had been accessed and employed with two equivalents in a 

purpurogallin formation reaction (Scheme 83).
[160]

 The structure of dimer 257 was elucidated by NMR 

and MS, but no crystal structure proof was obtained, which prevented definitive assignment of the 

relative stereochemistry. Moreover, the yield of the transformation was poor and dimer 257 required 

HPLC purification on reverse phase silica. 

 

Scheme 83. Successful heterodimerization of quinone 171 with epicoccine. 
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2.3.4.5.1 Synthesis of Benzyl Alcohol Derivatives 

In this thesis, the synthesis toward ortho-quinone 171 was conducted on multi-gram scale to 

benzylic alcohol 258 with comparable yields to the route identified by Dr. Robert A. Webster (Scheme 

43, Scheme 84). A description of the route is offered in 2.2.3 Initial Work. 

 

Scheme 84. Synthesis of benzylic alcohol 258. 

The crucial Cu-catalyzed step for the installation of a hydroxyl group in exchange for an aryl 

bromide was optimized in collaboration with Dr. Nicolas Armanino, because the heterogeneous 

reaction proved to be unreliable on larger scales (Scheme 85). It seemed as if efficient contact of the 

Cu metal surface with the solution could not be accomplished on larger scale due to insufficient 

mixing. Upon switching to a homogeneous Cu catalyst, the reaction proved to be scalable and afforded 

the aldehyde 259 in very good yield after dibenzylation (Scheme 85). 

 

Scheme 85. Optimization of Cu-catalyzed introduction of hydroxyl group. 

Other ortho-quinones were synthesized from benzyl alcohol 258 in a three–step sequence 

(Scheme 86). TBS protection of alcohol 258 to ether 169 followed by hydrogenolysis afforded 

catechol 170, which upon oxidation gave the known quinone 171 in good yield. Prolonged reaction 

times during the deprotection of the benzyl groups exclusively led to toluene derivative 260 so that 

careful monitoring of this reaction was required. In analogy, acetylation or methylation of alcohol 258 

yielded catechols 261 and 262, which were oxidized to ortho-quinones 263 and 264 as substrates for 

the desired heterodimerization. The requirement of a methyl ether as an alcohol equivalent will be 

explained in 2.3.4.5.4 Final Studies Toward the Synthesis of Epicolactone. In contrast, MOM 
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protection of alcohol 258 to give compound 265 was inefficient and therefore not pursued. Acyl 

groups that form better leaving groups than acetate could not be implemented since catechols like 266 

were found to be labile and not purifiable. Presumably, para-quinone methides are formed from 

elimination of the acyl group and result in decomposition.  

 

Scheme 86. Synthesis of other ortho-quinones for heterodimerization. 

2.3.4.5.2 Heterodimerization with Benzyl Alcohol Derivatives 

In order to access heterodimers with different protecting groups for maximum flexibility, the 

accessed ortho-quinones were employed in the coupling. The TBS dimer was synthesized according to 

the previous procedure and LC/MS analysis also revealed a successful synthesis of heterodimers 267 

and 268 by combination of epicoccine and quinone 263 or 264 in dioxane at room temperature 

(Scheme 87).  
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Scheme 87. Heterodimerization with different pentasubstituted ortho-quinones. 

Common side product in all reactions was dibefurin. In contrast to the TBS dimer 257, the other 

dimers 267 and 268 were not purifiable since they were copolar with the respective reduced form of 

quinones 263 or 264 that inevitably exist due to their use as sacrificial oxidant. Other purification 

methods such as size-exclusion chromatography or crystallization failed. However, analysis of the 

crude reaction mixture allowed for the observation of an important trend concerning the stability of the 

employed ortho-quinone. When employing ortho-quinone 264 as a heterodimerization partner, the 

crude reaction mixture showed substantial amounts of aldehyde 269 (Scheme 88). However, in a 

separate experiment it was shown that the ortho-quinone 264 itself does not decompose under the 

reaction conditions, but mixtures of catechol 262 and quinone 264 did. Mixtures of quinone 264 and 

protected catechols such as 265 with Me instead of MOM did not lead to aldehyde 269. It appeared as 

if the benzylic C–H bond in quinone 264 was exceptionally prone to tautomerization to enol ether 270. 

The mesomeric structure 271 is thereby more stable than with other benzylic alcohol protecting 

groups. Attack of a nucleophile would yield acetale 272. In this mechanism, the catechol 262 could act 

as a potential BRØNSTEDT acid catalyst.  
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Scheme 88. Decomposition of ortho-quinone in autocatalysis with catechol 262. 

This process affects the heterodimerization attempt since it provides another pathway by which 

the valuable ortho-quinone 264 can be consumed. As the catechol will inevitably form during the 

reaction, this process can best be avoided by different protecting groups. Indeed, no aldehydes 

according to 269 were detected in the case of quinones 171 or 263. Whereas it is likely that the 

electron-withdrawing acetate group prevents the formation of methides 270/271, an intermediate of 

type 270 would probably be unstable in the case of TBS protected alcohols since the bulky OTBS 

group would be forced into the plane of the arene, suffering from steric repulsion.  

The analysis of the stability of ortho-quinones under the reaction conditions had important 

implications for strategic considerations. It was focused on protected benzylic alcohols rather than the 

potential biosynthetic benzylic alcohol 148 because the oxidation of the latter would probably lead to 

rapid benzylic oxidation. Furthermore, only bulky or electron-withdrawing protecting groups were to 

be considered to avoid the use of additional equivalents of valuable ortho-quinone. 

It became apparent that the synthesis of heterodimer analogs of dimers 257 according to this 

protocol would be complicated by the use of coupling partners like 171 or 263 as a sacrificial oxidant. 

The use of an excess of these valuable ortho-quinones was not only wasteful, but also resulted in 

time-extensive and cumbersome purification, which even failed for important dimers such as 267. 

2.3.4.5.3 Optimization of Purpurogallin-type Cascade 

It was desirable to develop a protocol for this reaction that would provide access to larger 

quantities of the purpurogallin cascade intermediates for further investigation. This would include 

higher yields, more facile purification and a stoichiometric dimerization with the use of only one 

equivalent of both coupling partners. Ideally, both pyrogallols would be mixed and oxidized in situ to 
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trigger the dimerization. The viability of this approach had already been established in this thesis as 

described in 2.3.4.2.1 Dimerization upon Oxidation with External Oxidants. Main challenge of such 

an endeavor is the competitive formation of dibefurin, which could previously not be solved by slow 

addition of epicoccine to a mixture of oxidant and pyrogallol 196 due to the instability of the 

corresponding quinone 197. However, the pentasubstituted quinones 171 and 263 had shown no sign 

of decomposition in solution. 

Therefore, efforts for the optimization of the cascade reaction were directed at the use of external 

oxidants in collaboration with Dr. Armanino. It was focused on inorganic oxidants that could easily be 

removed from the reaction mixture by filtration. By use of an excess Ag
I
 oxide premixed with catechol 

170 or 261 in dioxane and slow addition of epicoccine, a protocol was identified that afforded the 

corresponding heterodimers in excellent yield without the need for purification (Scheme 89). 

Purification of the crude product by flash chromatography on reverse-phase silica gel can provide 

analytically pure products, but was also found to partially decompose the dimers. Therefore, 

purification of dimers 257 and 268 was not performed and the products were used directly in the next 

steps.  

 

Scheme 89. Optimized protocols for the heterodimerization toward epicolactone. 

This cascade reaction forms three stereocenters simultaneously, two of which are neighboring 

quaternary centers, by the equimolar coupling of two aromatic compounds in excellent yield.  

Due to the higher purity of the product, X-ray-suitable crystals of acetate 267 could be obtained. 

Its structure was unambiguously assigned by X-ray single crystal structure analysis as the desired 

heterodimer formed through C–C bond coupling (Figure 26). Remarkably, the correct diastereomer is 

exclusively formed in the heterodimerization, a fact that is currently under mechanistic investigation 

by computational methods. 
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Figure 26. X-Ray single crystal structure of acetate 267; H atoms omitted for clarity.  

Color code: green = carbon, red = oxygen. 

Several aspects of the structure 267 in the solid state deserve to be discussed. In agreement with 

the experimental observation (see 2.3.4.5.4 Final Studies Toward the Synthesis of Epicolactone), the 

weakest bond in the molecule appears to be the slightly elongated C1–C5 with a distance d of 

d = 1.579 Å. Interestingly, the distance d between the C2 oxygen atom and the C4 ketone of 

d = 2.567 Å is significantly below the sum of their VAN DER WAALS radii of d = 3.22 Å. A 

nucleophilic attack on the C4 carbonyl could therefore be feasible. Despite the close contact, the C4 

ketone is only slightly pyramidalized, with an angle χ of the C5–C4–C12 plane and the C4–O vector 

of χ = 4.74°. Significant distortion would show interaction of the oxygen atom lone pairs with the 

π*-orbital of the C4 carbonyl.  

The acetate 267 crystallized more easily than the corresponding TBS ether 257 since a relatively 

unhindered hydrogen–bond network could be formed. The bulky TBS group probably prevents closer 

interactions due to steric repulsion. The tertiary C12 alcohol acts as a hydrogen–bond donor and 

acceptor at the same time (Figure 27). The corresponding acceptor is the C15 ketone with             

dC12O–C15O = 2.777 Å and the donor the C14 enol OH of another molecule with dC12O-C14O = 2.703 Å. 

Thus, each molecule 267 binds to one other molecule via the C12–OH and yet another via the C14 

enol/C15 ketone, forming chains of hydrogen–bonded molecules in one dimension. These chains stack 

in the other dimensions via VAN DER WAALS interactions.  
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Figure 27. Hydrogen–bond network in solid acetate 267;  

only hydrogen atoms of hydrogen bonds shown for clarity.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

  

2.3.4.5.4 Final Studies Toward the Synthesis of Epicolactone 

With the purpurogallin cascade intermediates 267 and 257 accessed, their conversion to 

epicolactone was attempted. According to the biosynthetic hypothesis, deprotection of the primary 

alcohol protecting group would give intermediate 152 that would trigger skeletal rearrangement to 

epicolactone. 

First, deprotection of the TBS protected alcohol 257 was tried with monitoring by NMR 

spectroscopy and LC/MS (Table 6). Stirring in slightly acidic medium or addition of formic acid did 

not lead to any conversion (entries 1, 2). However, addition of CSA as a stronger acid with MeOD as 

the nucleophile resulted in very slow deprotection and formation of a new compound (entry 3). The 

latter could be obtained very rapidly by addition of TFA and was identified as compound 273 by NMR 

spectroscopy and HRMS (entry 4). It appeared that a deprotection of the primary alcohol effects the 

loss of formaldehyde under rearomatization (vide infra). Since this reaction should have a positive 

reaction entropy, it was tested whether lower temperatures could prevent the extrusion of 

formaldehyde. No reaction was observed at T = –80 °C, but warming to T = –40 °C triggered the 

undesired rearomatization, which was completed in t = 30 min (entry 5). It appeared as if this 

undesired transformation could not be avoided under these conditions. Therefore, alternatives were 

screened to test if the projected alcohol addition to the bridged carbonyl group (C4) might occur. 

However, several fluoride-mediated deprotections with TBAF, HF complexes, CsF or the very mild 

silicate TASF either resulted in unidentified decomposition products or pyrogallol 273 (entries 6–10). 
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Table 6. Deprotection studies of cascade intermediate. 

 

 

The arene 273 proved to be labile, probably because the loss of the shielding OTBS group opens 

up the trajectory to attack the bridged carbonyl group (C4). The X-ray single crystal structure of 

acetate 267 suggested that the primary protected alcohol (C2) would be perfectly aligned to attack the 

carbonyl (C4) in the BÜRGI–DUNITZ trajectory. Therefore, simple thermal cyclization was tried with 

traces of water to remove the silyl protecting group from a putative oxonium ion formed by attack of 

the OTBS ether onto the carbonyl. These attempts were not met with success (entries 11, 12). 

The undesired rearomatization under removal of formaldehyde can be rationalized by a retro-aldol 

type mechanism (Scheme 90). The σ-bonding orbital of the C1–C2 bond is already aligned with the 

π*-antibonding orbital of the neighboring olefins. In essence, the C1–C2 σ-bond forms a part of the 

delocalized dienone system (see also Figure 26). It therefore appears to be enthalpically and 

entropically favorable to undergo rearomatization by extrusion of formaldehyde.  
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Scheme 90. Rationalization of the rearomatization of TBS protected alcohol 257. 

Potentially, the tetrahedral intermediate during acetate hydrolysis could deliver the C2 oxygen 

atom directly to the bridged carbonyl group in a net transacylation.  

Acidic hydrolysis only delivered pyrogallol 273 under rearomatization as previously observed 

(Scheme 91). During basic hydrolysis, a product could be identified by NMR and HRMS that 

probably resulted from decomposition of the dimer prior to acetate hydrolysis. This crucial insight 

revealed the lability of the C1–C5 bond in the dimer especially under basic conditions that easily 

convert the enol moiety into an enolate 274, giving rise to enolate 275 in a retro-MICHAEL reaction. 

After hydrolysis to alcohol 276, the known redox isomerization occurs to afford the product 277. 

 

Scheme 91. Attempted conversion of acetylated dimer 257 to epicolactone. 

Hydrolysis attempts under neutral conditions, namely Bu3SnOMe or potassium cyanide, both led 

to decomposition of the starting material.
[214]
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Since deprotection and then cyclization was not with success, it was attempted to reverse the order 

of these events. To this end, a nucleophilic oxygen atom would be needed that can cyclize onto C4 

ketone to yield an oxonium ion. The latter would be neutralized by cleavage of the protecting group. It 

was known that OMe ethers could undergo this type of reaction.
[215–217]

 Therefore, dimer 268 was 

heated with LiCl in DMSO and the reaction was monitored by 
1
H NMR (Scheme 92). At temperatures 

of T = 50 °C, no reaction was observed. At T = 80 °C, formation of epicoccine was detected. This 

observation was rationalized with a decomposition of the dimer into its monomers and subsequent 

redox reaction with DMSO as previously observed (see 2.3.2.3 Purification of the Natural Product 

Dibefurin). It was reasoned that higher temperatures could help to overcome the activation barrier for 

oxonium ion formation. Heating to T = 140 °C did provide a new compound, but it became evident by 

crude NMR analysis that a methylene group was lost during the reaction. Eventually, it appeared as if 

the methyl ether had been cleaved without cyclization, triggering the same process via alcohol 233 as 

observed with the other protecting groups. Water impurities in DMSO then reacted with C4 ketone to 

form hydrate 278. 

 

Scheme 92. Cyclization and deprotection attempts with dimer 268. 

The observation of the rearomatization had important consequences for the biosynthetic 

hypothesis. It seems unlikely that the biosynthesis would proceed through an intermediate such as 

alcohol 152, because rearomatization could occur. Although enzymes could potentially stabilize the 

presumed intermediate, the racemic nature of epicolactone hints at a spontaneous dimerization without 

enzymatic assistance. Therefore, intermediates such as acid 156 would seem more likely since the 

quaternization of C13 would decrease the driving force for immediate aromatization by formaldehyde 

extrusion (Figure 28).  

 

Figure 28. Reevaluation of biosynthetic precursors. 
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Independent of the way that Nature avoids the observed rearomatization, strategies became 

necessary to prevent this process in the laboratory, which will be presented in the following chapters. 

It was envisioned to quaternize one center in the carbocycle that is prone to rearomatization or to 

attack the bridged carbonyl (C4) with an external nucleophile (see 2.3.4.5.5 Strategies to Prevent 

Rearomatization of Advanced Intermediate). Furthermore, an advanced model of the biosynthetic 

hypothesis was proposed (see 2.4 Conclusion and Outlook).  

2.3.4.5.5 Strategies to Prevent Rearomatization of Advanced Intermediate 

In order to convert the promising advanced intermediates to epicolactone, two strategies were 

envisioned (Scheme 93). The first involved the transformation of one of the carbon atoms of the 

cyclohexadiene ring that is prone to rearomatization into a tetrasubstituted carbon atom. This operation 

would need to be reversible and the installed group removable under mild conditions due to the 

intricate structure of the molecule. It was therefore planned to manipulate the C15 ketone to ketal 279, 

preferably a cyclic one so the risk of elimination would be reduced. The latter could undergo the same 

cascade sequence as envisioned in the biosynthesis to arrive at protected epicolactone 280 that would 

be deprotected to epicolactone itself in the final step.  

Second, the intermolecular attack of a nucleophile onto the bridged carbonyl (C4) in dimer 257 

could yield dienol 281. In analogy to the biosynthesis, this intermediate could furnish TBS ether 282 

that upon deprotection would close the lactone ring to give epicolactone.  

 

Scheme 93. Attempts to convert advanced intermediates to epicolactone without rearomatization. 

Initial experiments were performed along the lines of these two strategies, but were so far 

unfruitful (Scheme 94). A NOYORI ketalization strategy was followed to access dioxolane 279 from 

TBS ether 257, but the conditions only led to decomposition. Mild attempts to attack the ketone at C4 

with water or methanol for the synthesis of products like 281 did not show any conversion (Scheme 
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94, conditions 1, 2). It was thus focused on good but non-basic nucleophiles. Treatment with 

potassium cyanide at elevated temperatures led to the formation of achiral substrates, which were 

assumed to result from decomposition of the substrate (condition 3). Thiolate as a nucleophile only 

gave rise to decomposition (condition 4). It was reasoned that the BÜRGI–DUNITZ trajectory of the C4 

ketone could be blocked from both faces by either the –CH2OTBS group or the C10–Me group. 

Hence, external nucleophilic attack was attempted with the less sterically demanding acetate 

protecting group for the C2 primary alcohol to arrive at products like 283 (Scheme 94). Both KCN and 

ethylthiolate led to intractable mixtures, probably due to cleavage of the acetate group (conditions 5, 

6). No conversion was observed with KOTMS as a mild reagent, because it might have been too bulky 

to attack the sterically congested C4 ketone (condition 7). LEWIS-acidic attempts with Ti
IV

 only gave 

intractable decomposition. Substrate 267 possesses multiple coordination sites that could coordinate to 

Ti
IV

 and give rise to decomposition products.  

 

Scheme 94. Initial attempts to convert intermediates to epicolactone without rearomatization. 

As it appeared that it would be difficult to attack the C4 ketone with nucleophiles due to steric 

reasons and since substrates such as 257 and 267 proved to be sensitive, this strategy was not further 

pursued.  

Strategically, an attack of the C2 oxygen atom on the C4 ketone would be the most 

straightforward solution. Therefore, an alternative strategy was proposed which would directly give 

rise to precursors such as 279 that would be less prone to rearomatization. Instead of ortho-quinones, 

the related quinone monoketal could potentially also engage in purpurogallin-type dimerizations 

because the crucial enone moiety would remain intact. Therefore, four different monoketals 284–287 

were prepared. Although the ortho-quinone analog of 284 had given the undesired           

hetero-DIELS–ALDER dimerization, its monoketal cannot engage in this reaction.  
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Figure 29. Targeted monoketals to prevent rearomatization of advanced intermediates. 

The most time-economic way to synthesize ketal 284 would be from intermediates of the 

epicoccone B synthesis (Scheme 95). Hence, monomethylated epicoccone B 196 was submitted to 

methylation conditions and yielded a mixture of undesired isomer 288 and trimethylated epicoccone B 

164. Selective protection of the C7 phenol by acetylation or benzylation also suffered from the 

significant overreaction, affording mostly bisacetate 289 instead of phenol 290 (Scheme 95).  

 

Scheme 95 A. Selective protection of epicoccone B intermediate. B. Novel synthetic route to dimethylated epicoccone B 

derivative. C. Successful synthesis of epicoccone B derivative by selective demethylation.  
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It was therefore tested if the dimethylated epicoccone B 291 could be accessed in an analogous 

synthesis to epicoccone B (Scheme 95). Pyrogallol 292 was trimethylated with relatively poor 

selectivity, but the desired isomer could be separated and smoothly underwent formylation and 

reduction to give phenol 293. Under a variety of conditions, the compound resisted introduction of the 

sixth benzene substituent, proving that the C6 free phenol is crucial for the successful epicoccone B 

synthesis. Only hydrolysis of the ester was detected under the previously identified conditions 

(condition 1). No reaction was observed in the RIECHE, VILSMEIER–HAACK or DUFF formylation 

(conditions 2–4). Furthermore, the REIMER–TIEMANN reaction also only resulted in hydrolysis of the 

ester.  

Since trimethylated pyrogallol 164 could be obtained by methylation of intermediate 196, a 

selective demethylation was tried rather than the selective methylation. After screening of conditions 

with BBr3 (overreaction), LiCl (unselective) and AlCl3 (decomposition), selective demethylation could 

be effected by MgI2 in THF to afford 291 in moderate yield. The structure of phenol 291 was 

unambiguously proven by X-ray single crystal structure (Figure 30). In the solid state, the molecules 

engage in aromatic π–π interactions with parallel-displaced geometry and a distance d of the two arene 

planes of d = 3.468 Å.
[218]

 

 

Figure 30. X-Ray single crystal structure of phenol 291 and supramolecular aromatic π–π interactions.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

However, the oxidation product 284 proved to be too unstable for isolation. Oxidation of a 

mixture of epicoccine and phenol 291 was complicated by competitive homodimerization to dibefurin. 

Due to the low stability of the quinone monoketal 284 and its high substitution degree, which had 

previously led to an uindesired dimerization mode, it was focused on pentasubstituted benzene 

derivatives.  

With the aim of a divergent synthesis of the three pentasubstituted pyrogallol derivatives        

285–287, the route depicted in Scheme 96 was developed. 
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Scheme 96. Synthesis of quinone monoketal building block 287. 

Methyl gallate was selectively benzylated to catechol 294 by intermediate formation of a catechol 

borate in good yield.
[219]

 Sterically controlled regioselective bromination and methylation of the 

catechol yielded bromide 295, which after reduction of the ester and MOM-protection delivered 

pentasubstituted benzene 296. The MOM protecting group had to be chosen since other protecting 

groups were incompatible with the following methylation to pyrogallol 297 via metalation with 

n-BuLi. The OTBS analog underwent a 1,3-retro-BROOK rearrangement under these conditions, 

yielding silylated benzene 298. An alternative NEGISHI cross coupling showed inferior results. 

Debenzylation and oxidation afforded quinone monoketal 287.  

Acidic deprotection of MOM ether 297 had to be implemented to access benzylic alcohol 299 

(Scheme 97). The latter served as the precursor to the other two quinone monoketals 285 and 286. 

 

Scheme 97. Synthesis of further ortho-quinone monoketals. 

 TBS protection or acetylation respectively gave rise to protected benzyl alcohols 300 and 301. 

Debenzylation and oxidation furnished two further ortho-quinone monoketals 285 and 286. 
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The quinone monoketals were next tested in the dimerization with epicoccine to tetracycles of 

type 302 or 303 (Scheme 98). It was expected that epicoccine would attack the enone moiety of the 

quinone ketals 285–287 in a 1,4-fashion to give rise to an ene diol of type 244. The latter would need 

to get oxidized before the cascade would proceed, which is why the reactions were left open to air. 

Use of other oxidants was ruled out due to the danger of competitive dibefurin formation. 

Nucleophilic attack of epicoccine on quinone ketal 287 did not occur in dioxane up to T = 70 °C 

(condition 1). At higher temperatures, the reduced form 304 was identified and epicoccine seemed to 

have decomposed (condition 2). Presumably, epicoccine was oxidized by a putative quinone methide 

intermediate resulting from thermal elimination of MeOH from quinone monoketal 287.  

 

Scheme 98. Dimerization attempts with quinone monoketal building blocks. 

No dimerization was observed upon electrophilic activation of the quinone monoketal or 

increasing the nucleophilicity of epicoccine in basic medium (conditions 3–5). Thiourea catalysts 

slowly led to decomposition over several weeks, but no product was detected (condition 6). Since air 

might not be sufficient to oxidize intermediates, dibefurin as a preoxidized epicoccine was employed. 

Neither thermal nor acid-promoted conditions led to any conversion (condition 7–9). Although 

dibefurin decomposition was efficient with triethylamine, no product was observed (condition 10). 

While stirring with triethylamine in DMF, the quinone monoketal decomposed to aldehyde 305, 

potentially via the previously observed pathways (condition 11). These results were discouraging for 

trials with the other building blocks since the challenges did not arise from the protecting group, but 
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rather from a general lack of reactivity. Similar conditions with ketal 285 therefore were also 

unsuccessful, with aldehyde 305 formed in condition 13 (conditions 12, 13). 

Quinone monoketals are stabilized ortho-quinones that for instance lack the large dipole repulsion 

between the carbonyl groups. They are therefore also less reactive than ortho-quinones. The fact that 

no dimerization was observed under a variety of conditions could be attributed to the higher stability 

of these ketals. Additionally, it could be reasoned that the approach of epicoccine is hindered by the 

substituents on the C15 carbon atom. The former flat reaction partner was transformed into a three-

dimensional molecule by breaking the conjugation of the π-system, which could severely interfere 

with π-stacking of the reaction partners prior to C–C bond formation.  

 

Another alternative to install a quaternary center in intermediates such as 257 would be the use of 

C13-halogenated building blocks (Scheme 99). The halogen blocking group could later be removed by 

radical defunctionalization. Despite the fact that hexasubstituted pyrogallol derivatives appear to 

engage in hetero-DIELS–ALDER dimerizations, the additional halogen might increase the π-stacking 

ability of this coupling partner and therefore potentially facilitate C–C bond formation due to a 

proximity effect. By coupling of epicoccine with chloroarene 306, intermediate 307 could be accessed 

and converted to chloro epicolactone 308.  

 

Scheme 99. Quaternization of carbon atom in cascade intermediate to prevent rearomatization. 

In order to access these intermediates, it was first envisioned to chlorinate advanced intermediates 

of the synthesis of pentasubstituted pyrogallols such as 170. This route was not met with success since 

only benzylic oxidation occurred to aldehyde 269 (Scheme 100). This could either occur by a direct 

benzylic chlorination or by initial O-chlorination and subsequent formation of ortho-quinones, which 

give rise to the product by TBS deprotection and redox-isomerization. 

A novel route was therefore developed starting from gallic acid, which was selectively methylated 

by intermediate formation of a catechol borate and then esterified to provide ester 309. Against 

expectation, the following chlorination always afforded mixtures of mono- and double chlorination. 

Therefore, catechol 309 was double chlorinated with NCS, the catechol was TBS protected, the ester 

reduced and the resulting benzylic alcohol protected with a MOM group to afford hexasubstituted 

benzene 310. Generation of a monoanionic species by bromine/lithium exchange and following 

methylation gave rise to toluene derivative 311, which could be deprotected with HF in pyridine to 

afford catechol 312. The optimized oxidation procedure with ortho-chloranil was ineffective because 
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the ortho-quinone 306 did not precipitate from the reaction mixture. An alternative procedure with 

Ag2O gave the desired quinone 306, to which epicoccine was immediately added. However, only 

dibefurin and catechol 312 were identified in the reaction mixture.  

 

Scheme 100. Synthesis of chlorinated building block for heterodimerization. 

In addition to other hexasubstituted building blocks, also quinone 306 was considered to be 

unsuitable for the synthesis of epicolactone precursors. 
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2.4 Conclusion and Outlook 

In this thesis, the three fungal metabolites epicoccine, epicoccone B and dibefurin were efficiently 

synthesized. The biosynthetic hypothesis of dibefurin involving a spontaneous dimerization of 

epicoccine upon oxidation was largely supported by the preparation of dibefurin along these lines. The 

reason for its insolubility was unraveled by the identification of a hydrogen–bond network in the solid 

state. A proposal for the interesting mechanism of the oxidative dimerization has been put forward that 

is currently under investigation by computational methods. Further studies on this intriguing 

Ci-symmetric natural product reinforced the hypothesis that dibefurin is also produced by Epicoccum 

species.  

Several different routes toward the pseudosymmetric and racemic epicolactone were tested 

employing the heterodimerization of two different pyrogallols. The required monomers were all 

efficiently prepared by relying on the potential of electrophilic aromatic substitution reactions 

involving the electron-rich benzene core of pyrogallol derivatives. It is worth noting that the synthetic 

routes presented herein can be applied to the preparation of various pyrogallol natural products. It was 

found that hexasubstituted pyrogallol derivatives were unsuitable for the desired heterodimerization 

toward epicolactone, which was attributed to increased steric hindrance and inability of the initial 

product to avoid an energetically unfavorable diketone. During these studies, an unprecedented 

hetero-DIELS–ALDER heterodimerization of a quinone methide with an ortho-quinone was identified, 

which constituted an undesired reaction mode.  

In accordance with the concepts of pyrogallol dimerization that were put forward in this thesis, it 

was established that the epicoccine part requires all free hydroxyl groups for a successful 

heterodimerization.The use of pentasubstituted and suitably protected pyrogallol derivatives allowed 

for the successful preparation of heterodimers with the desired connectivity and diastereoselectivity. 

This reaction leads to the formation of three tetrasubstituted carbon atoms in one reaction and 

constitutes the first application of the purpurogallin cascade for the synthesis of non-benzotropolone 

natural products. Its success and especially the correct simple diastereoselectivity provide valuable 

support to the presented biosynthetic hypothesis and certainly underline the power of biomimetic 

synthesis. The completed targets and the remaining challenge toward epicolactone are summarized in 

Figure 31. 
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Figure 31. Completed targets of this thesis and one remaining challenge. 

The transformation of the advanced intermediates 257, 267 or 268 into epicolactone proved 

challenging due to unwanted side reactions of the sensitive heterodimers. Several strategies were 

envisioned to overcome these challenges. 

First, already attempted strategies will have to be investigated in more detail. The installation of 

protecting groups for C15 ketone, e.g. dioxolanes, dioxanes or dithianes, will need to be revisited with 

more stable protecting groups on the primary alcohol at C2 (Figure 32). Once protected, the driving 

force for rearomatization will be greatly reduced.  

 

Figure 32. Future directions in the biomimetic synthesis of epicolactone. 

Furthermore, attack of external nucleophiles should be attempted with C2 alcohol protecting 

groups that are small enough not to block the BÜRGI–DUNITZ trajectory and yet stable to the reaction 

conditions. As a proof of principle, dimer 268 should be subjected to cyanide, azide or thiolate anions 

to assess whether external nucleophiles are able to attack the sterically shielded C4 ketone. These 

experiments would also reveal if the second part of the cascade toward epicolactone via retro-

DIECKMANN-type reaction and vinylogous aldol addition is feasible. If successful, even a chloride 
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substituent could be chosen at C2 as in substrate 313 to enable facile lactone formation after external 

nucleophilic attack on the C4 ketone. 

In addition to these experiments, each deprotection step should be tested under high pressure to 

disfavor the cleavage of formaldehyde.  

Since the protocol toward heterodimers appears to be robust, a variety of different C2 alcohol 

protecting groups should be employed (Figure 32). Special focus should be on protecting groups with 

the ability to cyclize onto the carbonyl group at C4 followed by deprotection of the resulting oxonium 

ion. In this context, the use of benzyl ethers (314) or acetals such as MOM (315), SEM (316) or THP 

(317) protecting groups should be considered. Silyl protecting groups, potentially with less steric bulk 

than TBS, could also be reinvestigated concerning their ability to attack the C4 ketone in the presence 

of halides or other nucleophiles. A different type of deprotection under metal catalysis could be 

offered by C2 allylic ethers that might not proceed via the free alcohol 233. 

Another potential alternative would be the use of heteroatoms on the C2 oxygen atom that would 

not only increase its nucleophilicity, but also reduce the tendency to cleave the C1–C2 bond. Since 

sulfur would be readily oxidized under the dimerization conditions, possible heteroatoms would 

include oxygen or nitrogen if protected with EWGs as in monomers 318 and 319. The corresponding 

dimers 320 and 321 are shown in Scheme 101. Substrate 320 could either form a five- or six-

membered lactone. The latter could be contracted to a five-membered ring under reducing conditions. 

Upon N-deprotection and cyclization onto the C4 ketone, substrate 321 would yield a WEINREB amide, 

which would be activated toward subsequent hydrolysis. 

 

Scheme 101. Potential alternative substrates to avoid cleavage of the C1–C2 bond. 

In conclusion, an advanced model of the potential biosynthesis can be proposed, which is based 

on the experimental results obtained in this thesis (Scheme 102). It was argued that alcohol 148 was 

not yet isolated from Epicoccum species due to its potential instability, although it might form in 

Nature by hydrolysis and decarboxylation of epicoccone B. Alcohol 148 would be very prone to SN2 

reaction in the benzylic position, so that it might occur that the phenol of epicoccine condenses to form 

benzylic ether 322. Other regioisomers could result from this condensation, but would probably not 

lead to epicolactone. 
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Scheme 102. Alternative biosynthetic hypothesis based on intramolecular dimerization. 

The resulting benzyl ether 322 could be oxidized to ortho-quinones 323 or 324 since the 

unprotected pyrogallol moiety should be more electron-rich especially in slightly basic media. 

Intriguingly, both quinones would yield the same product if the epicoccine portion underwent 

dearomatization to attack the quinone in a 1,4-fashion. The C1–C5 bond would be forged in this step 

in a 5-exo-trig cyclization, yielding bisdienone 325. The ene diol portion (C4/C12) could then be 

oxidized in the presence of water to afford diketone 326, which could be captured by the pendant enol 

to give 327 after tautomerization. A retro-DIECKMANN-type fragmentation would afford proposed 

intermediate 153 that would yield epicolactone according to the steps shown in Scheme 39. 

Several aspects of this biosynthetic proposal are worth mentioning. First, a synthesis of 

epicolactone along these lines would prevent a competing oxidative homodimerization of epicoccine 

since the coupling partners would be tethered prior to oxidation. Second, other cyclization modes such 

as the PERKIN dimer formation or hetero-DIELS–ALDER cycloaddition would be suppressed due to ring 

formation constraints. Third, the problematic loss of the C2 substituent would be suppressed because 

the C2 alcohol would be present as an enol ether (325) or involved in a hemiacetal (326). Fourth, for 

the same reason of ring formation considerations, the correct diastereoselectivity would be obtained in 
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325 with a cis-orientation of the C1–C2 and C4–C5 bond. Fifth, all rings up to ene diol 153 are forged 

through 5-exo-trig cyclizations, which are favored according to the BALDWIN rules.
[220]

 Sixth, the 

biosynthesis could analogously be envisioned with epicoccone B if a –COOH was attached to the C13 

position. Seventh, suitable conditions for this transformation could be adapted from the dibefurin 

synthesis since the biosynthesis would also require an oxidant in aqueous medium. 

Whereas the synthesis of benzyl ether 322 could be difficult, several possibilities exist to form the 

required ether linkage in situ (Scheme 103). A dimethyl pyrogallol derivative 328 could be oxidized, 

forming equilibrium amounts of para-quinone methide 329 via quinone 330. The quinone methide 

could be nucleophilically attacked by epicoccine in the benzylic position to furnish the desired ether 

322. Potential drawbacks of this strategy would be competitive PERKIN dimer formation of quinone 

330, potential purpurogallin-type dimerization between quinone 330 and epicoccine and 

regioselectivity problems concerning the hydroxyl groups of epicoccine. The competitive PERKIN 

dimer formation could be suppressed by synthesizing quinone 329 from pyrogallols of type 331 via 

elimination. In addition, selectively protected analogs of the pyrogallol substrates 328 and 331 could 

be employed, e.g. arene 260 or 266. 

 

Scheme 103. Possible methods to form benzyl ether bond in situ prior to oxidation. 

Although a biomimetic synthesis along the lines of this alternative biosynthesis could be 

accompanied by various side reactions, it would solve many challenges that had previously been 

observed. 
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3. PART II: SYNTHETIC STUDIES TOWARD GRACILIN TERPENOIDS 

3.1 Introduction 

3.1.1 Strategies in the Synthesis of Cage-Shaped Compounds 

The challenge in the synthesis of cage-shaped compounds, be it natural products, hydrocarbons or 

ligands, is the high steric hindrance associated with their structure. During the synthesis of these 

compounds, the stereoselective installation of substituents that are located on the concave side of the 

molecule will be complicated by the fact that the convex face is more accessible.  

One strategy to overcome this challenge is to enforce a puckered conformation in polycyclic 

systems. So-called oxa-cages, cage-like compounds including oxygen atoms, have been studied due to 

their potential application in selective metal-ion complexation and the interest in discovering novel 

transannular interactions. MEHTA and VIDYA have accessed polyacetal 332 by ozonolysis and 

cyclization of the cyclopentadiene dimer (a tricyclo[5.2.1.0
2,6

]decane), which enforces the proximity 

of the olefins by the one-carbon bridge (Scheme 104).
[221]

 After ozonolysis, all carbonyl functionalities 

in tetraaldehyde 333 thus point to the same side of the molecule to form the caged-shaped compound 

by acetalization.  

 

Scheme 104. Synthesis of oxa-cages by enforcing the conformation in a bicycle.[221] 

In order to take advantage of this strategy, the respective bridge would either have to be 

incorporated into the natural product or be removable in the course of the synthesis. Hence, this 

approach is either limited to certain target molecules or decreases the overall efficiency of the 

synthesis due to additional steps required for the removal of the bridge. 

Another prominent strategy for the synthesis of cage-shaped compounds is the addition of 

substituents from the convex, less sterically encumbered face to increase the curvature of the 

molecule. In the most frequently applied scenario, this would involve the reduction of an olefin with 

H2 from the convex face. PAQUETTE and co-workers employed this strategy in the synthesis of 

dodecahedrane (Scheme 105).
[222,223]

 The starting material 334 was accessed in 9 steps employing e.g. 

a double DIELS–ALDER reaction. The ensuing face-selective heterogeneous hydrogenation to 

bisketone 335 occurred from the convex side of the molecule and forced the cyclopentanone ring 

further onto the concave side. Dodecahedrane was successfully synthesized in additional 16 steps. 
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Scheme 105. Hydrogenation strategy to increase curvature in the PAQUETTE synthesis of dodecahedrane.[222,223] 

Another example of this general strategy, closely related to the synthesis of the gracilin natural 

products discussed in 3.1.2 Gracilin Natural Products, was reported by KRAUS and GUNEY in their 

route toward paracaseolide A (Scheme 106).
[224]

  

 

Scheme 106. Paracaseolide A synthesis by KRAUS and GUNEY.[224] 

Bent tetracycle 336 was synthesized in five steps and was diastereoselectively converted to 

alcohol 337 by a sequential conjugate cuprate addition and enolate alkylation. Both reactions occurred 

from the convex side of the molecule and increased the curvature of the already bent tetracycle even 

further. The natural product paracaseolide A was accessed in three additional steps. The general 

strategy of adding substituents from the convex side to increase the curvature of the molecule will also 

be employed in the synthesis of the gracilin natural products (see 3.6 Third Strategy: Formal (3+2) 

Cycloaddition and Desymmetrization). 

3.1.2 Gracilin Natural Products 

3.1.2.1 The Gracilin Family – Isolation and Structure 

The gracilin family of natural products is considered to belong to the large class of spongian 

diterpenoids.
[225]

 The general skeleton is shown in Figure 33. 
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Figure 33. Spongian diterpenoid skeleton.[225] 

The first member of the gracilin family, the norditerpenoid gracilin A, was isolated from the 

Mediterranean sponge Spongionella gracilis (order: Dictyoceratida; family: Dysideidae) in 1985 by 

SICA and co-workers (Figure 34).
[226]

 In the same year, this research group also reported the isolation
12

 

and structural elucidation of the first bisnorditerpenoid ever found in marine sponges, gracilin B.
[227]

 

Further investigation of the sponge led to the identification of gracilins C, D, E and F.
[228,229]

 Almost 

twenty years later, the novel members gracilin G, H and I were discovered in Spongionella pulchella 

and additional members gracilin J, K and L from a Spongionella species were added in 2009.
[230,231]

 

Structurally, the norditerpenoids of the gracilin family differ significantly from the bis- and 

trisnorditerpenoid members. 

                                                      
12

 The natural product was obtained from a MeOH/CHCl3 extract after several flash column 

chromatographies on silica gel.  
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Figure 34. Members of the gracilin family of natural products.[226–231] 

This thesis focuses on the synthesis of the bis- and trisnorditerpenoids of this family, thus their 

structure will be described in more detail. The core of these natural products is characterized by a rare 

linear heterotriquinane skeleton, which can be classified as a hexahydrodifurofuranone. In essence, the 

core is the cyclic form of a trialdehyde carboxylic acid with additional oxidation at C12. The three 

furan-based heterocycles are all cis-fused, so that the molecule adopts the shape of an arc as can be 

seen in the X-ray single crystal structure of gracilin H (Figure 35). 

 

Figure 35. X-Ray single crystal structure of gracilin H; H atoms omitted for clarity; CCDC: 702621.  

Color code: green = carbon, red = oxygen. 
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The acetate group at C12 points to the convex face whereas the one at C13 is situated on the 

concave side of the molecule. Overall, the core of this family of natural products features six 

stereogenic centers that are all adjacent to each other. The only structural difference within the bis- and 

trisnorditerpenoid members, apart from gracilin D possessing a propionate instead of an acetate group 

at C12, is the α-substituent of the lactone. In all structures, the substituent features a six-membered 

ring containing a gem-dimethyl group that is attached to the heterotriquinane by a linear carbon chain. 

The linker length varies from one to two carbon atoms and can have different degrees of unsaturation. 

The olefins can either possess (Z)- or (E)-configuration. Diene systems are either skipped or 

conjugated. The side chain attached to the α-position of the lactone can contain another stereocenter, 

the relative configuration of which is still unknown. 

3.1.2.2 Biosynthesis of the Gracilin Natural Products 

Many members of the spongian diterpenoids are oxidatively metabolized to other natural 

products.
[225]

 A comparison of the norditerpenoid and especially the bis- and trisnorditerpenoid 

members of the gracilin family with the spongian skeleton reveals that these natural products must 

also have undergone extensive metabolic processing. A biosynthetic route from the spongian skeleton 

to the gracilane one, the skeleton of gracilin A, E, F and L, was proposed, whereas the biogenesis of 

the other members still remains unclear (Scheme 107).
[225]

  

According to the proposal, starting from the spongian skeleton 338, the C11 position is oxidized 

(339) and an epoxidation occurs at C6/C7 to afford epoxide 340. This undergoes a                 

WAGNER–MEERWEIN rearrangement of the C17–Me group to furnish secondary alcohol 341, which 

provides a handle for oxidative C5–C6-bond cleavage to carboxylic acid 342. The diterpenoid loses 

carbon atom C6 by a subsequent GROB-type decarboxylation that expels the leaving group at C11 to 

yield norditerpenoid 343. The gracilin natural products can be accessed from there by further cyclic 

ether oxidation at C15/C16 for gracilin A, E and F and additionally at C12 for gracilin L. In addition, 

related metabolites with this skeleton such as the aplytandienes and aplysillolides are accessible via 

this pathway.
[232]

  

The biosynthetic hypothesis was supported by the fact that the existence of several other 

spongian-derived diterpenoids could be explained by this pathway. Prevention of the decarboxylation 

of carboxylic acid 342 and further oxidation of the cyclic ether at C15 or C16 can either yield the 

pourewic acid derivatives or the cadlinolide and aplysulfurin skeletons, all diterpenoid natural 

products. Furthermore, oxidation of norditerpenoid 343 at C9/C11 to epoxide 344 could trigger 

another elimination reaction to give rise to diene 345, which after oxidative fissure of the C9–C11 

bond to carboxylic acid 346 could afford spongionellin, a congener of the gracilin natural products, 

after another oxidation step. 
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Scheme 107. Biosynthesis of spongian diterpenoid derivatives.[225] 

3.1.2.3 Bioactivity of the Gracilin Natural Products 

The gracilin natural products were identified as antioxidants, which might feature neuroprotective 

properties.
[233]

 Neurons have a higher energy demand compared to other cells, the supply of which is 

ensured by the increased production of ATP molecules in mitochondria.
[234]

 Therefore, these cells 

require a high amount of the total oxygen in the human body. The reduction of oxygen by electrons 

from the electron transport chain can lead to reactive oxygen species (ROS), which are detrimental to 

the cell.
[235]

 Several intracellular enzymatic and non-enzymatic defense mechanisms are then 

activated.
[233]

 However, the outperformance of these mechanisms by the ROS production, a situation 

called oxidative stress, ultimately results in apoptosis. The death of neuron cells is of central 

importance in many neurodegenerative diseases such as ALZHEIMER’s or PARKINSON’s disease. 

Gracilin J showed neuroprotective properties in cells under oxidative stress induced by H2O2.
[233]

 In a 
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control experiment without gracilin J, the viability decrease d of cells from the primary cortical 

neurons of mice incubated with c = 200 μM H2O2 was d = 28.7% ± 1.1%, meaning almost 30% of the 

cells underwent apoptosis. However, co-incubation of H2O2 and gracilin J at c = 0.1 μM protected the 

cells, showing a total viability v = 92.0% ± 5.6%. Thus only around 8% of the cells underwent 

apoptosis. The action of gracilin J could not be elucidated on a mechanistic level.  

Gracilin G, H and I were found to be cytotoxic against a range of human cancer cells.
[230]

 The 

values of the concentration of 50% maximal inhibition of cell proliferation (GI50) were moderate in the 

μM-range. In cytotoxicity tests against leukemia, gracilin H, I, J and K were also found to be cytotoxic 

with IC50 in the μM-range, but the selectivity over healthy cells was poor. Gracilin B was found to 

inhibit the cell adhesion of tumor cells to extracellular matrix proteins.
[230]

 As such, it could disrupt the 

tumor-cell communication with the extracellular space and therefore potentially arrest tumor growth.  

3.1.2.4 COREY Synthesis of Gracilin B and C 

Due to their unusual tricyclic heterotriquinane skeleton, the gracilin molecules have attracted 

attention as synthetic targets. In 1995, COREY and LETAVIC reported the first and thus far only 

successful total synthesis of gracilin B and C in 20 and 21 steps with an overall yield of 6% and 8% 

respectively.
[236,237]

 The overall yield corresponds to an average yield of 87% (gracilin B) and 89% 

(gracilin C) per step. Strategically, their synthesis relied on the stereoselective installation of the 

cis-relation at C10/C11 by a concerted [4+2]-cycloaddition. Oxidative cleavage of the bicyclic ring 

should then afford the gracilin tricycle, which would require further manipulations to give rise to the 

natural products. Rather late installation of the lactone α-substituent was envisioned to provide a 

synthetic route toward gracilin B and C. 

The synthesis commenced with an asymmetric LEWIS acid-catalyzed DIELS–ALDER reaction 

developed in the COREY laboratory between diene 347 and maleimide 348 to furnish cis-bicycle 349 

in excellent yield and enantiomeric excess (Scheme 108).
[238]

 Thus, the first step already set the 

stereocenters that provide the stereocontrol in the following steps. Conversion of the succinimide 

moiety in 349 to diol 350 was accomplished by stepwise reduction. The desired 1,4-dialdehyde motif 

at C15/C16 was introduced by subsequent double SWERN oxidation and protection to yield 

tetrahydrofuran 351.  
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Scheme 108. Asymmetric DIELS–ALDER reaction in the first part of COREY’s gracilin synthesis.[236,237] 

In preparation of the oxidative cleavage of the cyclohexene part, the C13/C14 olefin was 

epoxidized and the epoxide opened by generation of a neighboring silicate anion to yield exocyclic 

methylene 352 as an inconsequential mixture of diastereomers. The following LEMIEUX–JOHNSON 

oxidation allowed for the generation of the correct oxidation states at C13 and C14 with concomitant 

ring opening to labile aldehyde acid 353. Acid-mediated acetalization resulted in the formation of the 

desired tricycle 354, still lacking oxidation at C12 and a substituent at C9. Elimination of MeOH to 

dihydrofuran 355 was realized in three steps via replacement by a thiol and subsequent sulfoxide 

elimination.  

COREY and LETAVIC then first installed the diene side chain in quantitative yield by aldol addition 

of the zinc-enolate of lactone 355 to an excess of unsaturated aldehyde 356, which selectively 

approached from the convex face (Scheme 109). The resulting 4:1 mixture of diastereomers at C8 

could be separated. Whereas minor alcohol 357 could also be used for the synthesis of gracilin C, it 

was demonstrated that the major diastereomer 358 can be taken forward to gracilin B and C. 

 

Scheme 109. Face-selective aldol addition for the installation of the side chain.[236,237] 
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The completion of the aldol condensation could either be achieved via elimination of an acetate to 

yield (E)/(E)-diene 359 or replacement of the secondary alcohol with a chloride and subsequent 

elimination to give (Z)/(E)-diene 360 (Scheme 110). Selective epoxidation of the dihydrofuran part 

afforded an epoxide, which was opened in acetic acid and the resulting alcohol acetylated to complete 

the synthesis of either gracilin B or C. The epoxide opening occurred selectively from the concave side 

of the molecule, which installed the correct stereochemistry at C13. 

 

Scheme 110. Completion of the synthesis of gracilin B and C.[236,237] 

The COREY synthesis rapidly and efficiently sets the desired configurations at C10 and C11, but 

requires several redox manipulations to obtain the correct oxidation state at C15 and C16. The 

common tricyclic precursor 355 allows for the preparation of both natural products, but access to 

dihydrofuran was only possible after a three-step sequence to effect the elimination of MeOH from 

acetal 354. However, the endo-substituent at C13 was effectively introduced by stereoselective 

epoxide opening. 
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3.2 Project Outline 

The project focused on the identification of a step-economic and general access to the structurally 

unusual gracilin natural products. Recently, interest in gracilin and more general spongian-derived 

natural products has increased due to their intriguing biological activity.
[239]

 However, an efficient 

synthesis that rivals the isolation from Nature is yet to be established for further detailed 

investigations. Novel members of the gracilin family have neither been stereochemically assigned nor 

prepared. To provide a general entry to the bis- and trisnorditerpenoid gracilin natural products, a 

late-stage aldol condensation inspired by the work of COREY and LETAVIC was envisioned (Scheme 

111).
[236]

 A precursor such as tricycle 361 would feature the correct oxidation states for all carbon 

atoms, a major advantage over the COREY synthesis.  

 

Scheme 111. General retrosynthesis of gracilin natural products with late-stage aldol condensation. 

The retrosynthetic strategies toward the unusual skeleton 361 of the gracilin bis- and 

trisnorditerpenoids were to take advantage of powerful pericyclic or metal-catalyzed reactions and will 

be discussed in due course. Special attention was given to the synthesis of the central 1,4-dialdehyde 

motif with trisubstituted stereocenters in the α-positions (C10 and C11). Although this motif is often 

synthesized via the potent DIELS–ALDER reaction, alternatives are sought-after and would greatly 

enrich the synthetic methodology.
[236,240,241]

  

In addition, it was unknown whether the substituent at C13 points to the concave side for 

thermodynamic or kinetic reasons or both (Figure 36). Although the steric hindrance on the concave 

side should be sizeable, the C13 substituent could also try to avoid steric repulsion and parallel dipole 

moments with the C12 acetate group (A). In addition, an anomeric effect, depicted as B, could 

potentially favor the anti-relationship between the two. However, this trans-arrangement could also 

represent the result of a neighboring group effect from the C12 acetate during the biosynthesis of the 

gracilin natural products (C).  
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Figure 36. Stereochemical control in gracilin natural products either through thermodynamic or kinetic effects. 

Since precursor 361 would not possess acyl protecting groups such as acetate due to their 

incompatibility with the following aldol condensation, it would become apparent whether the 

anti-relationship of the C12 and C13 substituents results from a thermodynamic or kinetic effect. If the 

concave side is thermodynamically disfavored for the C13 substituent, the precursor 361 without acyl 

protecting groups could preferentially show a cis-relationship between the C12 and C13 residues. 

Different retrosynthetic strategies toward tricycle 361 were pursued and the results will be 

presented in the following chapters. Each retrosynthesis will also contain a part in which its potential 

benefit to total synthesis or methodology will be highlighted.  
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3.3 Synthesis of the Side Chain of Gracilin B and C 

The initial objective of the project was to synthesize gracilin B and C, which had already been 

prepared by COREY and LETAVIC, and then access further members of the gracilin family. To this end, 

the aldehyde for the final aldol condensation was synthesized from commercially available starting 

materials in a two-step procedure. A HORNER–WADSWORTH–EMMONS olefin synthesis involving 

ketone 362 and phosphonate 363 provided WEINREB amides 364 and 365 in very good yield as a 3:1 

mixture of diastereomers in favor of the desired one 364 (Scheme 112).  

 

Scheme 112. HORNER–WADSWORTH–EMMONS olefination to unsaturated WEINREB amides 364 and 365. 

The isomers were readily separated by flash column chromatography and WEINREB amide 364 

was subjected to reduction (Scheme 113). Treatment with DIBAL at low temperatures resulted in the 

formation of a mixture of aldehydes 356 and 366 in good yield after purification. Mechanistically, the 

aldehyde can isomerize via tautomerization to a dienol. Due to this tendency, it will therefore be 

necessary to effect this transformation and the purification under milder conditions to avoid the 

undesired formation of isomer 366. Nevertheless, the required aldehyde 356 for gracilin B and C was 

successfully prepared.  

 

Scheme 113. Reduction of WEINREB amide 364 to mixture of aldehydes.
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3.4 First Strategy: Torquoselective 6π-electrocyclization 

3.4.1 Retrosynthetic Analysis 

In the first synthetic strategy, it was intended to prepare the central 1,4-dialdehyde motif in 

tricycle 361 by a double oxidative cleavage of a cyclic diene like 367 (Scheme 114). The resulting 

C15 and C16 aldehydes would be converted to tricycle 361 under suitable cyclization conditions. It 

was expected that this alternative synthesis of 1,4-dialdehydes by ozonolysis or LEMIEUX–JOHNSON 

oxidation would largely avoid reactive intermediates and enable a novel access to this sensitive 

functionality. Diene 367 was planned to arise from a torquoselective thermal 6π-electrocyclization of 

(E)/(Z)/(E)-triene 368. This key step was chosen since only a disrotatory pericyclic reaction would 

ensure the cis-relationship between the C10/C11 substituents if the more practical trans-olefins were 

to be employed. Any oxidation state at carbon atoms C13 and C14 would be possible. 

 

Scheme 114. Retrosynthesis plan involving a torquoselective thermal 6π-electrocyclization. 

It was planned to control the absolute configuration of the two new stereocenters by an already 

existing one at C12 in close proximity to the triene. Despite the required high temperatures, thermal 

6π-electrocyclizations have previously been shown to be able to proceed in a highly torquoselective 

fashion with cyclic substituents on the triene.
[242]

 In part, this strategy was aimed at establishing 

diastereoselective electrocyclizations as a more broadly applicable synthetic method and to provide 

mechanistic rationales and guidelines for the torquoselectivity. Since it was difficult to predict the 

extent and direction of the stereochemical influence of the existing stereocenter in transition state 369, 

it was expected that several substrates with protecting groups of different electronic and steric 

properties would need to be prepared. Furthermore, if necessary, it was considered to invert the 

absolute configuration of the C12 stereocenter in triene 370 and later correct the stereochemistry by a 

MITSUNOBU inversion. A potentially more atom-economic strategy via the oxidative cleavage of a 

cyclobutene by photochemical 4π-electrocyclization was discarded because satisfactory results can 

only be achieved in polycyclic systems. 

The required triene was to be synthesized by cross-coupling methodology in a convergent way 

(Scheme 115). Thus, the triene was traced back to equally complex building blocks, enyne 371 and 
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vinyl halide 372, that could be coupled in a SONOGASHIRA reaction with subsequent alkyne reduction. 

Enyne 371 could feature any oxidation state from alcohol to carboxylic acid at carbon atom C14 and 

the residue R in vinyl halide 372 would need to be a synthetic equivalent of an aldehyde. The use of 

alkenes, epoxides and primary alcohols was envisioned. Alternatively, the cross coupling could be 

realized in a STILLE or SUZUKI reaction with a diene coupling partner like 373, where either of the 

components 372 or 373 could be the organometallic species. 

 

Scheme 115. Retrosynthesis of triene by cross-coupling methodology. 

Since the major aim was to test the electrocyclization key step, it was focused on a rapid access to 

trienes of type 368.  

3.4.2 Introduction to 4π- and 6π-Electrocyclization  

Electrocyclizations are pericyclic reactions in which one σ-bond is formed at the expense of one 

π-bond (Δσ = 1). As such, they differ from cycloadditions (Δσ = 2) and sigmatropic rearrangements 

(Δσ = 0), but are also concerted and therefore subject to the WOODWARD–HOFFMANN rules.
[2]

 The 

stereochemical outcome of electrocyclizations depends on whether they were triggered by thermal 

energy or by irradiation (Table 7). Whether an electrocyclization proceeds in a conrotatory or 

disrotatory fashion also depends on the number of electrons involved.  

Table 7. Stereochemical requirements of thermal and photochemical electrocyclizations; n = N. 

number of electrons thermal photochemical 

4n conrotatory disrotatory 

4n + 2 disrotatory conrotatory 

 

Herein, only thermal 6π- and photochemical 4π-electrocyclizations, both disrotatory, will be 

covered due to their relevance to this thesis. Therefore, typical reaction conditions and challenges as 

well as torquoselectivity will be discussed. Other types of this pericyclic reaction have been reviewed 

in the context of biomimetic syntheses.
[42]

 

Thermodynamically, 4π-electrocyclizations usually proceed in direction of the open diene 374 

rather than the strained cyclobutene 375 (Scheme 116).  
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Scheme 116. Disrotatory photochemical 4π-electrocyclization. 

Although a σ-bond is formed at the expense of a π-bond, which is a general thermodynamic 

driving force of electrocyclizations, the formation of cyclobutene is disfavored due to its immense ring 

strain and negative reaction entropy. However, if the conformation of the starting material is 

constrained in a cycle or a polycycle, cyclobutenes will form from dienes under irradiation with UV 

light. COREY and STREITH have taken advantage of this feature in their efforts toward cyclobutadiene 

(Scheme 117).
[243]

 The starting 2-pyrone (376) was successfully converted to bicycle 377 in a 

disrotatory 4π-electrocyclization. Although both photochemical and thermal electrocyclizations are 

allowed in a given conjugated polyene according to the WOODWARD–HOFFMANN rules, the stability 

of the product has to be considered. For instance, the electrocyclization of pyrone 376 would never 

occur thermally since these reactions could only proceed in a conrotatory fashion to yield 

trans-bicycle 378 with a preventively high ring strain. 

 

Scheme 117. Electrocyclizations of 2-pyrone triggered by light or thermal energy.[243] 

6π-electrocyclizations transform a triene such as 379 or 380 into a 1,3-cyclohexadiene like 381 or 

382 and vice versa.
[244]

 Both cis- and trans-substitution of the cyclohexadiene can hereby be achieved 

either by switching the activation mode from thermal to photochemical or by changing the 

configuration of one olefin (Scheme 118). However, although symmetry-allowed, these 

electrocyclizations usually possess considerable activation barriers due to the required highly-ordered 

transition state.
[245]

  

 

Scheme 118. Stereochemistry of 6π-electrocyclizations.[244] 

Due to certain drawbacks, thermal 6π-electrocyclizations have not been frequently used in total 

syntheses.
[42]

 Whereas light can provide the required activation energy more easily, these 
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electrocyclizations can be difficult to effect thermally since temperatures of T ≥ 150 °C are often 

necessary.
[246]

 Furthermore, the preparation of the central (Z)-configured olefin can be challenging and 

the olefin differentiation in the resulting cyclohexadiene problematic. Achieving absolute stereocontrol 

of the newly formed stereocenters is also not considered straightforward. However, the application of 

these electrocyclizations can be highly beneficial for cascade reactions since cyclohexadienes can be 

employed in e.g. DIELS–ALDER reactions.  

In the following, selected examples of thermal 6π-electrocyclizations in total synthesis will be 

highlighted. In their efforts toward the oxygenated diterpenoid forskolin, the CHA group made use of a 

thermal 6π-electrocyclization for forging the C9–C10 bond (Scheme 119).
[247]

 Starting material 383 

was converted to triene 384 in two steps. The authors envisioned first the isomerization of the C6/C7 

olefin to the required (Z)-configuration and a subsequent electrocyclic ring closure. Both 

transformations were either realized by heating to T = 240 °C or by isomerization of the olefin with 

light followed by a milder thermal disrotatory electrocyclization at T = 140 °C to yield diene 385.   

 

Scheme 119. Synthetic efforts toward forskolin by the CHA group.[247] 

To their benefit, triene 384 and diene 385 were not sensitive to the harsh reaction conditions that 

the pericyclic reaction required. A similar transformation under related conditions was also employed 

by JUNG and MIN in the synthesis of arisugacin A.
[248]

 The resulting cyclohexadiene 385 was taken 

forward to lactone 386, which was envisioned as an intermediate in the synthesis of forskolin.  

HSUNG and co-workers were able to demonstrate a 1,6-induction of an attached auxiliary in 

LEWIS acid-accelerated thermal electrocyclizations (Scheme 120).
[249]

 This methodology was later 

used in synthetic efforts toward atropurpuran.
[250]
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Scheme 120. Diastereoselective thermal 6π-electrocyclization.[249] 

Starting material 387 containing an EVANS auxiliary was cyclized in the presence of AlMe3 to 

accelerate the ring closure, decrease the necessary temperature and therefore accomplish higher 

diastereomeric ratios. Cyclohexadiene 388 was obtained in excellent yield and good diastereomeric 

ratio via transition state 389. The arrangement in the latter was rationalized by a preferential rotation 

of the Ph-ring away from the Bn substituent of the chiral auxiliary, which in turn avoids steric clash 

with the halogen atom. Such preferential rotation of substituents in electrocyclizations is named a 

torquoselectivity. Depending on the substrate, the authors also observed aromatization of the 

cyclohexadiene product under the reaction conditions, a common side reaction. Addition of radical 

inhibitors or milder reaction conditions through catalysis, as shown by the TRAUNER group, can help 

to decrease these undesired byproducts.
[251]

 However, catalysis by LEWIS acids will only be feasible if 

suitable LEWIS bases are attached to the triene (e.g. oxazolidones, esters, …). 

In 2006, YU et al. disclosed their computational results of substituent effects on thermal 

6π-electrocyclization.
[246]

 They were able to validate previous reports that a C1 substituent in a triene 

usually slightly decelerates the reaction due to steric hindrance. Monosubstitution at C2 and C3 

however is beneficial for the rate due to ground-state destabilization and conformational restriction.
[252]

 

The authors were able to identify that disubstitution of trienes with an electron-donating and -

withdrawing group in suitable positions can render an electrocyclization very facile through 

captodative effects (Figure 37). However, 1,6-disubstitution as presented in this thesis was considered 

disfavored due to the increased steric hindrance of both substituents. 

 

Figure 37. Substrates with very facile electrocyclization.[246] 
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3.4.3 Results and Discussion 

3.4.3.1 Preparation of Achiral Coupling Partner 

The achiral coupling partner of type 371 or 373 was planned to feature the alcohol oxidation state 

at carbon atom C14 due to the ease of its synthesis (Scheme 121). Commercially available alcohol 390 

was quantitatively protected as silyl ether 391, which was subjected to a cross metathesis with 

crotonaldehyde. The resulting aldehyde proved to be volatile and was immediately subjected to a 

RAMIREZ olefination, furnishing dibromo alkene 392. 

 

Scheme 121. Synthesis of achiral coupling partners, enyne 393 and bromo alkene 394. 

In order to complete the COREY–FUCHS alkyne synthesis, dibromo alkene 392 was treated with 

n-BuLi triggering the desired FRITSCH–BUTTENBERG–WIECHELL rearrangement to alkyne 393 in 

good yield over three steps. Alternative alkyne syntheses from the intermediate aldehyde such as the 

SHIOIRI reaction or the SEYFERTH–GILBERT homologation with the OHIRA–BESTMANN reagent did 

not lead to the desired product 393.  

In order to increase the flexibility of the envisioned cross coupling, dibromo alkene 392 was also 

selectively reduced under Pd catalysis to afford (Z)-bromo alkene 394 in moderate yield over three 

steps.
[253]

 However, bromo alkene 394 proved to be unstable to light and noticeably isomerized to the 

(E)-isomer at room temperature. It was thus focused on enyne 393. 

3.4.3.2 Preparation of Chiral Coupling Partner 

The coupling partner of type 372 contained a stereocenter, which either required chiral pool 

starting materials or asymmetric methodology. Concerning the aldehyde equivalent R, a primary 

alcohol and an epoxide were chosen that both can be oxidatively converted to an aldehyde.
[254]

 As 
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enyne 393 constituted the nucleophilic cross coupling partner in the envisioned SONOGASHIRA 

coupling, it was necessary to synthesize a suitable electrophile. 

The first coupling partner was accessed from chiral pool starting materials (Scheme 122). 

Mannitol derivative 395 was oxidatively cleaved to aldehyde 396 according to a literature 

procedure.
[255]

 The following TAKAI olefination proceeded smoothly to give vinyl iodide 397. 

 

Scheme 122. A. Synthesis of dioxolane 397. B. Synthesis of epoxide 400. 

In order to test an alternative building block, epoxy alcohol 398, available by SHARPLESS 

asymmetric epoxidation of divinyl carbinol,
13

 was subsequently protected to yield silyl ether 399 

(Scheme 122). Ozonolysis followed by reductive workup through catalytic hydrogenation gave a 

labile aldehyde, which was immediately converted to vinyl iodide 400 in a TAKAI olefination.  

3.4.3.3 Building Block Coupling and 6π-Electrocyclization 

The Pd- and Cu-catalyzed coupling of enyne 393 with the respective vinyl iodides 397 and 400 in 

a SONOGASHIRA reaction proceeded smoothly to afford the dienynes 401 and 402 in good yield 

(Scheme 123). 

                                                      
13

 Crude epoxy alcohol 398 was present in the TRAUNER research group. Purification by high-vacuum 

Kugelrohr distillation gave the pure starting material for this synthesis. 
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Scheme 123. Coupling of building blocks in SONOGASHIRA reaction. 

Whereas alkynes with neighboring olefins can usually be selectively reduced to polyenes in 

LINDLAR hydrogenations,
[48–51]

 problems concerning overreduction have frequently been reported.
[256]

 

It was thus focused on a heterogeneous reduction method involving activated Zn in a Zn/Cu/Ag couple 

(Scheme 124).
[257]

  

 

Scheme 124. A. Electrocyclization attempt with dioxolane 401. B. Electrocyclization attempt with epoxide 402. 

The alkyne in 401 was readily reduced to give crude triene 403, which was directly subjected to 

thermal electrocyclization conditions. It was reasoned that the torquoselectivity would be under kinetic 

control, hence higher diastereomeric ratios were expected at lower temperatures. As mentioned in 
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chapter 3.4.2 Introduction to 4π- and 6π-Electrocyclization, electrocyclizations usually require 

higher temperatures than the refluxing temperature of DMF. Although the electrocyclization would 

probably not be complete under the employed conditions, valuable insight could be obtained 

concerning the degree of torquoselectivity. Indeed, a cyclohexadiene 404 was identified in the reaction 

mixture by NMR and HRMS, but only a 1:1 mixture of diastereomers was detected. Given that 

electrocyclizations are stereospecific, it was concluded that the chiral center at C12 was incapable of 

efficient stereoinduction. Epimerization of the newly formed stereocenters C10 and C11 by a radical 

mechanism is unlikely under these conditions since a strong C–H bond would have to be cleaved. 

Furthermore, loss of stereoinformation would then occur on both stereocenters, leading to more 

diastereomers. The reason for the low diastereoselection is probably the similar size of the oxygen 

atom of the dioxolane moiety and the C13 methylene.  

Therefore, the electrocyclization to cyclohexadiene 405 was attempted with a sterically 

demanding TBS protecting group on the allylic alcohol of enyne 402 (Scheme 124). Analogous 

heterogeneous reduction to triene 406 set the stage for the subsequent electrocyclization. Xylene was 

chosen as the solvent since it does not decompose at refluxing temperatures in contrast to DMF. A 

cyclohexadiene was identified in the reaction mixture based on NMR and HRMS analysis and showed 

a poor diastereomeric ratio of 1.6:1. The product decomposed upon purification attempts. 

Based on the observed low diastereomeric ratios even at comparably low temperatures, it did not 

seem promising to continue this synthetic strategy especially because the required trienes of type 403 

or 406 do not possess suitable handles to catalyze the key electrocyclization by LEWIS acid 

coordination. It was reasoned that milder reaction conditions could result in higher diastereomeric 

ratios. The activation entropy of trienes 403 or 406 was considered immense, given that the most 

stable triene conformation would resemble the one shown in Figure 38 with s-trans configured bonds 

between the olefins. A possibility to reduce the activation entropy would be the installation of a cyclic 

substituent, e.g. as in triene 407. The additional ring would lock the conformation of the triene in the 

s-cis configuration and thus favor the electrocyclization at lower temperatures. However, this strategy 

would significantly decrease the atom economy of the gracilin synthesis because the whole cyclic 

substituent would be removed in the subsequent ozonolysis or LEMIEUX–JOHNSON oxidation. 

 

Figure 38. Stable conformation of trienes 403 and 406 and alternative substrate to reduce the temperature of the key 

electrocyclization. 
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Since in the meantime, an efficient, more step-economic strategy to another cyclic diene had been 

developed, the electrocyclization approach was discontinued. Although efficient torquoselectivity in 

thermal 6π-electrocyclizations could not be achieved, the results presented in this chapter have 

highlighted the efficiency of SONOGASHIRA couplings in complex settings and the alternative use of 

activated zinc for the selective reduction of alkynes flanked by olefins. The investigation of this route 

has led to a new versatile building block, vinyl iodide 400 that can find application in future total 

syntheses. 
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3.5 Second Strategy: Rhodium-Catalyzed Formal (4+3)-Cycloaddition 

3.5.1 Retrosynthesis 

As an alternative to the disrotatory 6π-electrocyclization for the synthesis of the required cyclic 

dienes, a Rh-catalyzed formal (4+3)-cycloaddition was envisioned (Scheme 125). Precursor 361 could 

be accessed by oxidative cleavage of cycloheptadiene 408, which would stem from vinyl diazoacetate 

409 and diene 410 via divinylcyclopropane 411 under Rh catalysis. Cycloheptadiene 408 could feature 

various oxidation states at carbon atoms C12, C13 and C14. The residue R in vinyl diazoacetate 409 

should allow conversion to the C12/C13 substitution pattern in cycloheptadiene 408. 

 

Scheme 125. Rh-catalyzed formal (4+3) cycloaddition in the retrosynthetic strategy of gracilin natural products. 

As discussed in 3.5.2.3 Intermolecular Cyclopropanation with Rhodium Carbenoids, Rh-catalyzed 

decomposition of vinyl diazoacetate 409 would result in cis-selective cyclopropanation of the terminal 

olefin of diene 410, which would give rise to divinylcyclopropane 411. A spontaneous, 

strain-releasing COPE rearrangement would then lead to the desired cycloheptadiene 408. Since the 

COPE rearrangement proceeds stereoselectively, the success of the formal (4+3)-cycloaddition hinges 

on the diastereoselectivity of the initial cis-cyclopropanation. trans-Divinylcyclopropanes usually do 

not rearrange under the employed conditions so that low diastereoselectivities of the initial 

cyclopropanation will be reflected in lower yields of the cycloheptadiene product rather than its 

isolation as a diastereomeric mixture. Parallel oxidative cleavage of both olefins would furnish C15 

and C16 aldehydes, which would be converted to tricycle 361. However, the two olefins of skipped 

diene 408 are electronically and sterically distinct, which could be taken advantage of in a stepwise 

oxidative cleavage procedure.  

The success of the proposed retrosynthesis would expand the utility of the formal (4+3) 

cycloaddition methodology.
[258]

 Strategies involving this key step, mostly advanced by DAVIES and 

co-workers, have largely been employed for the synthesis of functionalized seven-membered rings.
[258]

 

Therefore, the investigation of oxidative cleavage reactions with cycloheptadienes like 408 could 

render this methodology useful to the stereoselective preparation of a variety of other highly oxidized 

natural products beyond those featuring carbocyclic seven-membered rings. Furthermore, mostly 

electron-rich dienes with alkyl- or heteroatom substituents have thus far been employed.
[258–260]

 The 

envisaged diene 410 is not as electron-rich as previously employed dienes and the identification of 
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suitable reaction conditions for its conversion to cycloheptadiene 408 could be beneficial for future 

applications of the formal (4+3)-cycloaddition.
[261]

 Thus far, it has also not been studied whether an 

allylic stereocenter in vinyl diazoacetate 409 can control the stereoselectivity of the initial 

cyclopropanation and thus the diastereoselective installation of two further stereocenters. 

Diastereoselectivity was observed to be moderate when stereocenters were present in the diene 

reaction partner.
[262]

 Apart from this, only chiral auxiliaries attached to the ester moiety of the vinyl 

diazoacetates were used in this methodology.
[263–266]

  

As an advantage over the synthetic route presented in 3.4.1 , the cycloheptadiene products 408 are 

not prone to aromatization and would also be formed under milder reaction conditions as compared to 

cyclohexadienes 367. Most importantly, in case substrate control fails or favors the undesired 

diastereomer, the use of literature-precedent chiral Rh catalysts would enable a reagent-controlled 

stereoselective synthesis of the cyclic diene 408. These advantages were thought to outcompete the 

slightly worse atom economy of this synthetic route. 
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3.5.2 Introduction to Rhodium-Catalyzed Formal (4+3)-Cycloaddition 

The discovery of metal carbenoids as synthetic equivalents of very reactive carbenes has opened 

intriguing opportunities for their application in selective transformations and complex total 

syntheses.
[267]

 The metal stabilizes the electron-deficient carbene-like carbon center by forming a 

σ- and a π-bond in a resulting metal-carbene complex. As such, metal carbenoids engage in a variety 

of reactions such as cyclopropanation, X–H bond insertion (X = C, N, O, S, …), hydride migration, 

ylide formation, carbenoid migration or metal-catalyzed coupling reactions.
[267–271]

 The investigation 

of carbenoids and carbenoid precursors has led to the development of named reactions like the WOLFF 

rearrangement, ARNDT–EISTERT homologation or the ROSKAMP reaction (Scheme 126).
[272–274]

  

 

Scheme 126. Possible reactions of metal carbenoids. M = metal; R = generic substituent.[267–274] 

In this thesis, a Rh-catalyzed formal (4+3)-cycloaddition of a vinyldiazoester and a diene was 

employed for the stereoselective synthesis of a cycloheptadiene. Hence, only the relevant literature to 

this specific topic will be discussed focusing on the synthetic application rather than the 

physicochemical aspects of carbenoid chemistry.  

3.5.2.1 Synthesis of Vinyl Diazoacetates 

Substrates containing a diazo group have been preferentially employed in the preparation of 

Rh-carbenoids due to their facile synthesis or even commercial availability.
[275]

 DAVIES and 

co-workers noticed that the use of carbenoids derived from donor-/acceptor-substituted diazo 

compounds allowed for an increase in selectivity of typical reactions like cyclopropanation and C–H 

insertions.
[258]

 This was rationalized by the attenuation of reactivity through increased stabilization of 
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the electrophilic carbenoid through electron donation. Of particular importance to this thesis was the 

synthetic access to vinyl diazoacetates as one type of donor-/acceptor-substituted diazo compounds for 

the synthesis of seven-membered rings in a formal (4+3)-cycloaddition. Four main pathways have 

been identified for the synthesis of vinyl diazoacetates (Scheme 127). 

 

Scheme 127. Synthesis of vinyl diazoacetates.[276–281] 

Vinyl diazoacetates like 412 can be formed by mild C–C bond-forming olefin syntheses like the 

HORNER–WADSWORTH–EMMONS reaction under the MASAMUNE–ROUSH conditions or WITTIG 

olefinations.
[276,277]

 The required α-formyl diazo compounds 413 were shown to be accessible in one 

step from commercially available reagents and can then be coupled with ylenes 414 or phosphonates 

415.
[278]

 Alternatively, diazoacetates 416 can be employed in aldol reactions with aldehydes 417. The 

resulting β-hydroxy-α-diazoester is dehydrated to yield the desired vinyl diazoacetate 412.
[279]

 

Diazoacetates were also shown to engage in Pd-catalyzed cross-coupling reactions with vinyl iodides 

418.
[280]

 The REGITZ diazotransfer provides another possibility for the synthesis of vinyl diazoacetates 

412 by formally adding a diazo group to enolates of esters 419 using sulfonyl azides.
[281]

  

3.5.2.2 Rhodium Carbenoid Formation 

As mentioned above, rhodium carbenoids are mostly formed from diazo compounds, although the 

use of triazoles is increasing.
[282]

 Mechanistically, the rhodium carbenoid formation is believed to 

involve two separate steps (Scheme 128).
[283]

 The α-carbon atom in α-diazoesters like ethyl 

diazoacetate (EDA, L) displays nucleophilic character and is able to reversibly coordinate to the free 

axial coordination site of D4h-symmetric Rh complexes such as Rh2(OAc)4 (paddlewheel complex, 

“Chinese lantern” complex).
[284]

 The second Rh atom thereby acts as an electron sink in complex 420, 

which however could also be depicted with an intact Rh–Rh bond and negative charge on the ligated 

Rh atom. Detailed investigation has revealed that the nitrogen extrusion from complex 420 is the 

rate-limiting step.
[285]

 Herein, electrons flow from the ligands and from the other Rh atom to the 

ligated Rh metal to form a double bond between Rh and the carbene-like carbon atom (421). 

Simultaneously, the C–N bond is broken and molecular nitrogen is released. This mechanism is 
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supported by HAMMETT values of the carboxylate ligands, a large normal 
15

N-kinetic isotope effect 

and the observation of saturation kinetics in cyclopropanation reactions.
[285–287]

  

 

Scheme 128. Mechanism of rhodium carbenoid formation.[283–287] 

The carbene complex exists in a staggered conformation between the carbenoid carbon and Rh 

substituents as shown with the more general carbenoid complex 422 (Scheme 129).
[288]

 Intuitively, 

steric arguments would be in favor of this arrangement. However, a π-backbonding of the Rh complex 

(dxz or dyz) into the p-orbital of the carbene is only possible in this conformation.  

 

Scheme 129. Most stable conformation of Rh carbenoids.[288] 

The formation of carbenoids is greatly facilitated by the presence of the second Rh atom and its 

role as a stabilizing electron sink in the first step and as an electron-releasing group during nitrogen 

extrusion.
[289]

 Rhodium carbenoids play an important role in synthesis due to their facile tunability, the 

air stability of the precatalysts and the associated mild reaction conditions.
[258]

 DAVIES, BERRY and 

co-workers recently managed to structurally characterize a Rh-carbene complex similar to complex 

421 and prove its effectiveness as a catalyst.
[290]

  

3.5.2.3 Intermolecular Cyclopropanation with Rhodium Carbenoids 

Rhodium carbenoids from donor-/acceptor-substituted diazo compounds such as vinyl 

diazoacetate are stable enough to undergo intermolecular reactions. They display electrophilic 

character at the carbenoid carbon atom. However, these rhodium carbenoids are sensitive to steric bulk 
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and can therefore be employed in selective cyclopropanations of terminal alkenes or cis-disubstituted 

olefins.
[288,291]

  

The transition state of these cyclopropanations involves a concerted bond formation between the 

carbenoid carbon atom and the olefin, which results in the conservation of configuration of the alkene 

(Scheme 130).
[292]

 Similar to the JACOBSEN–KATSUKI epoxidation, the alkene is believed to approach 

the carbenoid in a side-on fashion because no reaction was observed with trans-olefins and Rh 

carbenoids of type 423.
[293]

 However, the extent to which the two bonds of the final cyclopropane are 

being built is different.
[288]

 The more nucleophilic olefin carbon atom is already closer to the carbenoid 

carbon, which results in a non-synchronous transition state 424 and charge development with the 

negative charge residing on the former carbenoid carbon and the positive on the other olefin carbon 

atom.  

 

Scheme 130. Mechanism of the diastereoselective cyclopropanation with Rh carbenoids.[292] 

The olefin presumably orients itself so that the ester group, or more general the EWG, can 

stabilize the positive charge build-up on the other olefin carbon atom.
[288]

 Furthermore, the olefin 

substituent avoids unfavorable steric interactions with the bulky Rh catalyst. This arrangement is 

responsible for the high diastereoselectivity of these cyclopropanations. Replacement of either of the 

carbenoid carbon substituents would result in a less defined trajectory of the alkene approach. In 

addition, the transition state model 424 explains why trans-olefins are unreactive: one of their residues 

would always collide with the bulky Rh catalyst. Rotation of the olefin substituent and resulting bond 

formation yields cyclopropane 425 with former olefin substituent R’ and the olefin of the vinyl 

diazoacetate on the same side.
[288]

 

Although the rhodium complexes were initially thought to provide poor enantioselectivities since 

two sites of coordination exist and the carboxylate substituents all point away from them, several 

chiral Rh complexes have been developed that show extraordinarily high levels of enantiocontrol.
[294]

 

Some of the chiral Rh complexes are depicted in Figure 39.
[295]
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Figure 39. Selection of chiral Rh(II) catalysts.[295] 

For high enantioselectivities, the alkene approach has to occur preferentially from one side. Based 

on empiric results, the chiral catalyst structure of the Rh2(DOSP)4 was proposed to be D2-symmetric, 

in which both Rh atoms are equivalent.
[291]

 A corresponding carbenoid can then be approached from a 

less sterically hindered face, whereas the opposite face is blocked by the prolinate substituent (Scheme 

131).  

 

Scheme 131. Asymmetric cyclopropanation with chiral Rh catalyst.[291]  

This transition state is in accordance with experimental observations. For instance, the fact that 

hydrocarbon solvents lead to higher enantioselectivities was rationalized by a tighter transition state 

that decreases unfavorable charge separation. 

3.5.2.4 Divinylcyclopropane Rearrangement 

COPE rearrangements are [3,3]-sigmatropic rearrangements of 1,5-dienes and therefore belong to 

the class of pericyclic reactions.
[296]

 Both 1,5-dienes are in equilibrium and a certain driving force has 

to be incorporated to obtain preference for one side of the equilibrium. One strategy in this context has 

been the divinylcyclopropane rearrangement, in which a cyclopropane ring is irreversibly opened 

during the COPE rearrangement to afford 1,4-cycloheptadienes.
[297]

 The driving force results from the 

release of the inherent large ring strain of cyclopropanes. Whereas the preferred conformation of the 

divinylcyclopropane is exo/exo 426, the endo/endo isomer 427 is thermally accessible 

(ΔE = 2.9 kcal/mol). Only this conformer can rearrange to afford cis/cis-cycloheptadienes 428, while 

the others would deliver very strained seven-membered rings with at least one trans-olefin. 

Remarkably, the transition state of the rearrangement 429 displays a boat conformation as opposed to 

the standard COPE reaction, which possesses a large preference for the chair-type transition state 

(Scheme 132).
[297]
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Scheme 132. Boat-type transition state of divinylcyclopropane rearrangement.[297]  

3.5.2.5 Application of the Cyclopropanation/COPE rearrangement Cascade 

Both powerful transformations, asymmetric, regio- and diastereoselective cyclopropanation and 

divinylcyclopropane rearrangement, can be efficiently combined for the enantioselective synthesis of 

seven-membered rings. Their potential to rapidly increase molecular complexity in this formal (4+3)-

cycloaddition has been exploited in total synthesis especially when the target molecule featured this 

motif.
[258]

 In 1999, KENDE and co-workers employed this transformation to elegantly construct the 

tropane skeleton in isostemofoline (Scheme 133).
[260]

 

 

Scheme 133. Construction of the tropane skeleton by cyclopropanation/COPE rearrangement cascade.[260] 

The starting pyrrole 430 was allowed to react with vinyl diazoacetate 431 in the presence of an 

achiral Rh catalyst to afford the bicycle 432 in excellent yield. As described above, the reaction 

proceeded via a diastereoselective cyclopropanation to furnish cyclopropane 433, which subsequently 

underwent the desired COPE rearrangement. In 19 further steps, tropane 432 was converted to 

isostemofoline, completing the first synthesis of this challenging polycyclic natural product. 
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3.5.3 Results and Discussion 

3.5.3.1 Preparation of Diene 

The required dienes of type 410 were prepared in a literature-known procedure from inexpensive 

sorbic acid esters by deprotonation and kinetic reprotonation.
[298,299]

 Ethyl ester 434 and methyl ester 

435 were treated with LDA and HMPA as additive and then reprotonated with an acetic acid/water 

mixture to afford deconjugated esters 436 and 437 in good yield. 

 

Scheme 134. Preparation of dienes 436 and 437 by deprotonation/reprotonation. 

3.5.3.2 Asymmetric Formal (4+3)-Cycloaddition with Achiral Substrates 

The key cycloheptadiene 408 could potentially be accessed from a triene such as 438 by selective 

dihydroxylation of the monosubstituted olefin (Scheme 135). Despite the challenge of this chemo- and 

stereoselective dihydroxylation, the strategy was attractive since triene 438 could stem from dienes 

436 and 439 in an enantioselective cyclopropanation/COPE rearrangement cascade. Both are available 

from inexpensive sorbic acid esters.
[291,298,299]

 In case the dihydroxylation would afford a 

diastereomeric mixture, reagent control could be used to overcome the substrate preference. As an 

additional advantage, the C14 acid could be used to correct the C12 stereochemistry by an 

intramolecular MITSUNOBU lactonization. 

 

Scheme 135. Convergent retrosynthesis with achiral substrates for formal (4+3)-cycloaddition. 

The required vinyl diazoacetate 439 was synthesized in a REGITZ diazo transfer reaction from 

diene 436 (Scheme 136).
[291]

 Related one-pot protocols, in which ethyl sorbate was deprotonated and 

then treated with diazo transfer reagent para-ABSA (para-acetamidobenzenesulfonyl azide) failed. 

The resulting vinyl diazoacetate 439 proved to be prone to polymerization at room temperature and 

had to be handled carefully in the dark. 
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Scheme 136. Synthesis of required vinyl diazoacetate 439. 

Initial experiments to combine both building blocks in a Rh-catalyzed cyclopropanation/COPE 

rearrangement cascade at various temperatures below T = –30 °C failed and were only accompanied 

by the precipitation of a colorless solid, which seemed to result from decomposition of vinyl 

diazoacetate 439. It was reasoned that diene 436 is too electron-poor to engage in a cyclopropanation 

at low temperatures due to the electron-withdrawing effect of the ester group. This might explain the 

observation that only the diazo compound decomposed in the presence of the Rh catalyst, despite the 

excess of diene 436. In order to investigate whether both building blocks would be able to combine at 

all, the reaction was conducted at T = 0 °C although this might be detrimental to the enantiomeric 

excess (Scheme 137). 

 

Scheme 137. Successful asymmetric cyclopropanation/COPE rearrangement. 

Remarkably, upon slow addition of vinyl diazoacetate 439 to an excess of diene 436 and catalytic 

amounts of a chiral dimeric Rh catalyst in deaerated n-hexane, triene 438 formed in good yield and 

enantiomeric excess. Despite the numerous reactions that diazo compounds can undergo, the 

instability of diazo compound 439 and the multitude of olefins that could engage in a 

cyclopropanation, both building blocks combined in a regio- and even stereoselective fashion, a 

testimony to the power of the methodology developed by DAVIES and co-workers. The enantiomeric 

excess of triene 438 was determined by chiral HPLC in comparison to a sample prepared with 

catalytic amounts of Rh2(OAc)4 in CH2Cl2 and the absolute configuration was assigned based on 

literature similarity.
[291]

 Although triene 438 contains two skipped diene moieties, no sign of olefin 

migration was observed. The reaction was not further optimized since the following crucial selective 

dihydroxylation had to be explored first.  

Selective dihydroxylations of terminal olefins in the presence of more highly substituted ones are 

challenging because the electrophilic dihydroxylation reagent usually reacts with the more 

electron-rich olefin.
[300–302]

 Nevertheless, selectivity for terminal olefins has been achieved, especially 

with bulky reagents that are sensitive to steric hindrance.
[303–307]

 It was first attempted to dihydroxylate 

triene 438 under UPJOHN conditions (Table 8, entry 1), but apart from starting material, only diol 440 

was identified. This outcome was not unexpected since the disubstituted olefin is considered more 
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electron-rich and therefore more reactive. Furthermore, the cis-olefin is inherently more strained due 

to its incorporation in a carbocycle. 

Table 8. Selective dihydroxylation trials for triene 438. 

 

Subsequent trials therefore focused on an olefin differentiation based on steric grounds. As 

previously reported, the bulky ligands of the active reagent in an asymmetric SHARPLESS 

dihydroxylation could be able to lead to the desired product by favoring the sterically more accessible 

terminal olefin.
[305]

 Dihydroxylation with different numbers of equivalents were not met with success, 

unexpectantly affording the diol 441 (entries 2, 3). The corresponding olefin as a trisubstituted alkene 

with electron-withdrawing substituents was considered to be the least reactive under the employed 

conditions, but seems to fit best into the chiral binding pocket of the reagent. Since previous reports 

had established that methanesulfonamide as an additive only accelerates the dihydroxylation of 

nonterminal olefins, this additive was omitted to effect preferential dihydroxylation of the terminal 

olefin, without success (entry 4).
[308]

 Furthermore, fresh preparation of the AD-mix instead of 

commercially available batches did not affect the outcome of the reaction. Since triene 438 is a chiral 

substrate, it might be that the AD-mix α leads to a mismatched case and therefore does not yield the 

desired dihydroxylation product 442. However, a change to the pseudo-enantiomeric AD-mix β only 

led to diastereomer 443 without change in regioselectivity. A complete change in the ligand platform 

to ligand 444, which was reported to increase the enantiomeric excess especially for terminal olefins, 
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afforded a mixture of diols 440 and 441, but no formation of the desired product was observed (entry 

6).
[309]

 

It appeared as if the terminal olefin was the least sterically accessible of the three olefins despite 

the fact that it only possesses one substituent. One of its faces might be blocked by the cis-substituent 

at C10. As no selective dihydroxylation seemed possible with osmium-based reagents, alternative 

methods were investigated. 

Recently, Pd-catalyzed or organocatalytic diacetoxylation of alkenes has emerged as a promising 

alternative to osmium-catalyzed dihydroxylations (Scheme 138).
[310]

 It was hence attempted to effect 

the desired transformation to diacetate 445 either under Pd- (condition 1) or organocatalysis with 

iodide 446 (condition 2).
[311,312]

 Neither starting material nor product was isolated from the reaction 

mixture, which can be rationalized by the highly acidic medium that might have resulted in olefin 

migration. It is possible that a cycloheptatriene was formed, that then underwent decomposition 

reactions. 

 

Scheme 138. Alternative olefin difunctionalization methods. 

In order to verify if the terminal olefin would undergo reactions with electrophilic reagents, the 

sterically undemanding epoxidation reagent m-CPBA was employed (Scheme 139). It was expected 

that concomitant epoxidation of the more reactive cis-disubstituted olefin would occur. When triene 

438 was subjected to these reaction conditions, two bisepoxides 447 and 448 were identified. Whereas 

it was proven that the terminal olefin can be functionalized, it also became evident that the cis-olefin is 

epoxidized first and can then react further in a rather unselective fashion. 

 

Scheme 139. Epoxidation attempts with triene 438. 

The results presented in this chapter discouraged further attempts toward the selective 

functionalization of triene 438. Since more promising results were obtained with chiral vinyl 

diazoacetates (see 3.5.3.4 Vinyl Diazoacetates with Alcohols as C13 Aldehyde), which led to the 

efficient synthesis of derivatives of diol 442 or diacetate 445, further methods such as the 

dihydroxylation via diborylation by MORKEN and co-workers were not investigated.
[313]
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3.5.3.3 Vinyl Diazoacetates with Olefin as C13 Aldehyde Equivalent 

The unsuccessful attempts to functionalize triene 438 led to the reconsideration that 

prefunctionalized vinyl diazoacetates should be employed in the key cyclopropanation/COPE 

rearrangement. Due to the accomplishment of an asymmetric version of this reaction, it was first 

focused on further achiral diazo compounds. Thus, gracilin precursor 361 was traced back to triene 

449, which features a ketone oxidation state at carbon atom C12 and an olefin as an aldehyde 

precursor (Scheme 140). It was envisioned to cleave the three olefins by ozonolysis, which would 

result in spontaneous cyclization to the tricyclic core. C12 ketone would then be reduced from the 

convex face and the stereochemistry corrected by MITSUNOBU inversion to yield precursor 361. 

 

Scheme 140. Retrosynthesis involving an olefin as C13 aldehyde precursor. 

The prerequisite triene 449 would be accessed by asymmetric formal (4+3)-cycloaddition of diazo 

compound 450 and diene 436. The former would stem from a HORNER–WADSWORTH–EMMONS 

olefination of literature known phosphonate 451 and aldehyde 452.
[278,314]

  

The synthesis commenced with the formylation of ethyl diazoacetate in a procedure similar to the 

VILSMEIER–HAACK formylation, giving aldehyde 452 in moderate yield (Scheme 141).
[278]

 A 

CLAISEN-type condensation of ester 453 gave rise to phosphonate 451, which was coupled in a 

HORNER–WADSWORTH–EMMONS reaction under MASAMUNE–ROUSH conditions, presumably to 

diazoester 450.
[276]

 However, the latter spontaneously underwent a 6π-electrocyclization to pyrazole 

454, which was isolated in poor yield. The structure of pyrazole 454 was unambiguously proven by 

X-ray single crystal structure analysis. 
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Scheme 141. Electrocyclization to pyrazole 454 and its X-ray single crystal structure. 

Spontaneous pyrazole formation is a known unimolecular reaction of vinyl diazoesters that is 

significantly accelerated by conjugation.
[315]

 As a potential reason, it was proposed that a different 

degree of bond formation in the transition state can lead to charge separation, which would be 

stabilized by additional conjugation.
[315]

 It seemed unlikely that this unwanted side reaction could be 

suppressed with vinyl diazoesters of type 450 with olefins as the aldehyde precursor. Furthermore, 

reduction of the C12 ketone in order to break the conjugation would yield a divinylcarbinol that would 

be prone to decomposition. Thus, it was focused on the synthesis of different vinyl diazoesters. 

3.5.3.4 Vinyl Diazoacetates with Alcohols as C13 Aldehyde Equivalent  

Following the general retrosynthetic analysis shown in chapter 3.5.1 Retrosynthesis, vinyl 

diazoacetates such as 409 with alcohols as the C13 aldehyde precursor were chosen as substrates. In 

order to still be able to use the asymmetric cyclopropanation/COPE rearrangement cascade with achiral 

substrates, ketone 455 was to be prepared (Scheme 142). 
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Scheme 142. Synthesis of achiral vinyl diazoacetate 455 with alcohol as C13 aldehyde precursor. 

Commercially available aldehyde 456 was converted to alkynoate 457 via propargylic alcohol 458 

in a literature-known sequence of GRIGNARD addition and reoxidation (Scheme 142).
[316]

 Conjugate 

addition of sodium iodide, inspired by reports of NIPHAKIS et al., afforded vinyl iodide 459.
[317]

 The 

stage was now set for a Pd-catalyzed coupling of ethyl diazoacetate with this vinyl iodide according to 

a procedure developed by the WANG group. The coupling furnished the desired vinyl diazoacetate 455 

only in moderate yield.
[280]

 The synthesis of this precursor proved to be less efficient and more 

cumbersome than the one of chiral vinyl diazoacetates from chiral pool starting materials, which had 

been completed in parallel. Vinyl diazoacetate 455 was therefore not further tested in the gracilin 

synthesis. 

As an alternative to the discussed vinyl diazoacetates, the synthesis of cycloheptadiene 408 

seemed to be more redox-economic if a C12 alcohol was incorporated from the beginning. This would 

require setting the C12 stereocenter in the vinyl diazoacetate coupling partner prior to the key step. In 

this case, a potentially diastereoselective cyclopropanation/COPE rearrangement key step with achiral 

Rh catalysts could be tested with this strategy. 

The prerequisite vinyl diazoacetate 460 was to be prepared from commercially available malic 

acid derivative 461 and ethyl diazoacetate by aldol addition and elimination (Scheme 143). An 

analogous Pd-catalyzed coupling of already prepared vinyl iodide 397 and ethyl diazoacetate failed, in 

accordance with literature precedence.
[280]

 

 

Scheme 143. Retrosynthesis of desired vinyl diazoacetate 460. 

Oxidation of alcohol 461 to commercially available aldehyde 462 proceeded uneventfully (Table 

9).
[318]

 Unexpectantly, the subsequent aldol addition to β-hydroxy-α-diazoester 463 proved to be 

challenging. In a routine procedure, aldehyde 462 was treated with ethyl diazoacetate and catalytic 
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amounts of DBU, but the desired product was only isolated in modest yield as an inconsequential 

mixture of diastereomers (entry 1).
[279]

  

Table 9. Aldol addition of ethyl diazoacetate to aldehyde 462. 

 

Subsequent trials at lower temperatures only slightly increased the yield of the transformation 

(entries 2, 3). The reaction failed completely in THF as the solvent at dry ice temperature, which might 

be attributed to a rapid aldehyde decomposition that still occurred at low temperatures where the 

desired aldol addition was too slow. Presumably, aldehyde 462 is more susceptible to base-catalyzed 

enol formation under the reaction conditions since the respective enol can form a hydrogen bond to the 

dioxolane protecting group. Alternatively, the α-protons of aldehyde 462 might be sufficiently 

acidified for the generation of enolates owing to the inductive effect of the dioxolane moiety. Thus, 

alongside the enolate formation of EDA, also the very reactive enol or enolate of the aldehyde forms 

and decomposes by dimerization. It has to be mentioned though that a corresponding decomposition 

product could not be isolated from the reaction mixture.  

Preformation of the EDA enolate to avoid competing deprotonation of the aldehyde failed with 

LDA, but was successful with Bu4NOH in MeOH (entry 5).
[319]

 A substoichiometric amount of base 

was used to ensure a low equilibrium amount of a β-alkoxy-α-diazoester compared to the 

corresponding β-hydroxy-α-diazoester. The β-alkoxy-α-diazoester was suspected to be cause side 

reactions with unconsumed aldehyde 462. However, the yield decreased significantly. It seemed as if a 

free hydroxide or methoxide base was still present in the reaction mixture that led to the 

decomposition of aldehyde 462.  
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No better yield compared to the initial result was obtained by treatment of an EDA/aldehyde 

mixture with LiHMDS (entry 6). To verify if aldehyde deprotonation was a problem, the reaction was 

conducted in the presence of TMSCl. The recovery of unreacted aldehyde supported this hypothesis, 

because it likely stemmed from the TMS enol ether of aldehyde 462. A retro-aldol reaction upon 

workup seemed improbable since changes in the workup procedure did not affect the yield.  

Trials with less coordinating counter cations surprisingly seemed to give slightly better results 

(entry 7), but a slow addition of NaHMDS was detrimental to the yield. The intermediate β-alkoxy-α-

diazoester was assumed to be able to react with the remaining aldehyde by deprotonation or acetal 

formation, making it unavailable for the envisioned aldol condensation. To exclude that the HMDS 

base condenses with the aldehyde, NaH was employed as a base (entry 9).
[320]

 The resulting 

comparable yield suggested that HMDS condensation was not problematic. Furthermore, LDA as an 

alternative base with a Li counterion was used, but gave equally modest yields (entry 10).
[321]

  

It was concluded that the reactivity of the intermediate alkoxide would have to be reduced by 

coordination to higher valent cations and that the competing deprotonation of the aldehyde would have 

to be suppressed. Thus, ZnEt2 was employed as a base to preform the EDA Zn-enolate, which would 

then react with the added aldehyde (entry 11).
[322]

 As Zn cations are strongly chelating, the 

nucleophilicity of the intermediate β-alkoxy-α-diazoester would be decreased and retro-aldol reactions 

inhibited. Nonetheless, the yield of the transformation did not exceed moderate values. In a paradigm 

shift, it was tested whether acidic conditions could avoid the above-mentioned problems of aldehyde 

decomposition from deprotonation or reaction with the intermediate β-alkoxy-α-diazoester. Indeed, 

substoichiometric amounts of benzoic acid did lead to a yield improvement and a significantly easier 

reaction setup.
[323]

 It was assumed that the benzoic acid concertedly protonates the aldehyde while 

deprotonating EDA in a chelating fashion. Other mechanisms would not be able to explain the high 

yield for the desired product without observation of DARZENS epoxide formations or the ROSKAMP 

reaction.  

With the prerequisite β-hydroxy-α-diazoester 463 as an inconsequential mixture of diastereomers 

in hand, dehydration proceeded smoothly with POCl3 (Scheme 144).
[324]

 Alternative methods with 

MsCl were found less efficient. The desired diazo compound 460 was prepared on multi-gram scale, 

but required careful handling and had to be stored in a benzene matrix at T = –78 °C. The compound 

decomposes in solution to a colorless solid at room temperature over the course of one day. 

 

Scheme 144. Optimized synthesis of vinyl diazoacetate 460. 

As observed previously (see 3.4.3.3 Building Block Coupling and 6π-Electrocyclization), the 

dioxolane moiety might not provide high stereocontrol in the following key step. Therefore, 
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alternative related vinyl diazoacetates were planned to be accessed, ideally with a TES protecting 

group for the C12 and C13 alcohol. Primary TES ethers are known for their potential to be oxidized to 

aldehydes under SWERN conditions, whereas secondary TES ethers remain untouched.
[325]

 This 

potential could be used to differentiate the C12/C13 diol after the key cyclopropanation/COPE 

rearrangement. 

The ester moiety adjacent to the secondary alcohol of malic acid derivative 464 was selectively 

reduced by borane and the resulting diol TES protected to ester 465. The latter was reduced to yield 

aldehyde 466 (Scheme 145).
[326]

 The previously optimized aldol addition was conducted on gram-scale 

and furnished hydroxy diazoester 467 as a mixture of diastereomers in good yield using EDA and 

substoichiometric amounts of benzoic acid. The subsequent dehydration with POCl3 proved to be 

problematic and only gave traces of the desired product 468. Purification by flash column 

chromatography on silica gel was impossible due to decomposition of the molecule. Aluminum oxide 

(grade II) as a solid phase allowed for the separation of most side products from vinyl diazoacetate 

468. Milder dehydration conditions with BURGESS reagent did not give better results.  

 

Scheme 145. Synthesis of alternative vinyl diazoacetate 468. 

A possible explanation of these results would be that silyl protecting group shifts are operative in 

the reaction mixture, which could then lead to a mixture of different dehydration products. Since the 

reaction was low-yielding and the purification cumbersome, which would render larger-scale reactions 

challenging, it was decided not to pursue this building block. 

Due to the chirality of vinyl diazoacetate 460, diastereoselective cyclopropanation/COPE 

rearrangements based on substrate control were tried first. Both ethyl ester 436 and methyl ester 437 

were employed in the key cascade reaction (Scheme 146). However, it seemed advisable to continue 

the synthesis with product 469 rather than cycloheptadiene 470 because a differentiation of the two 

ester functionalities in the product would be more facile. Only the optimization with methyl ester 437 

toward cycloheptadiene 469 will be described, but ethyl ester 470 was prepared analogously. 
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Scheme 146. Different products of the key cyclopropanation/COPE rearrangement and advantage of diester 469. 

Upon slow addition of diazo compound 460 to a solution of diene 437, present in excess, and the 

respective Rh catalyst, a mixture of both possible stereoisomers was obtained with a 

trans-cyclopropane as side product (Table 10, also see page 282). For convenience, the catalyst 

screening was mostly conducted at room temperature and suitable catalysts were then chosen for 

optimization. The standard Rh2(OAc)4 catalyst provided slightly more of the desired (469) than of the 

undesired isomer 471 (entry 1). It was expected that bulkier, electron-donating ligands such as 

pivalate, esp or TPA would increase the long-range steric sensitivity of the catalyst while also 

attenuating its reactivity, which both could lead to higher diastereoselectivities. However, these 

ligands all favored the formation of cycloheptadiene 471 (entries 2–4). It was thus tested whether more 

electrophilic and therefore more reactive catalysts would be in favor of the desired cycloheptadiene. 

Indeed, TFA as a ligand gave a diastereomeric ratio of almost dr (469:471) = 2:1, while the more 

electron-withdrawing pfb ligand did not follow this trend (entries 5, 6). As it was known that the 

solvent polarity plays a crucial role in the ordered arrangement of the transition state (see 3.5.2.3

 Intermolecular Cyclopropanation with Rhodium Carbenoids), less polar solvents were to be used. 

However, most Rh dimers are not soluble in these solvents. It was therefore switched to chiral Rh 

dimers that could also lead to higher diastereoselectivities by reagent control. Encouragingly, the 

chiral (R)-PTAD ligand exclusively afforded the undesired isomer 471, which showed that reagent 

control can overrule substrate control (entry 7). In contrast to this, the enantiomeric ligand (S)-PTAD 

was unable to discriminate between both isomers, proving that the former case represented a matched 

scenario (entry 8). In this mismatched case, substrate control competes with the reagent preference. It 

was tested if a different chiral scaffold would result in better selectivities by using the (S)-DOSP 

ligand in deaerated n-hexane. The employed catalyst system favored formation of the undesired 

isomer 471 (entry 9). However, its enantiomer (R)-DOSP gave the best values thus far with a 

diastereomeric ratio dr (469:471) = 2.5:1 at room temperature (entry 10).  



PART II: SECOND STRATEGY   155 

Table 10. Optimization of diastereoselective cyclopropanation/COPE rearrangement. 

 

Although diene 437 was readily available, it was highly desirable to lower its equivalents because 

its excess significantly complicated workup and purification. A slight decrease in yield, but the same 

diastereoselectivity was observed when lowering the equivalents of diene 437 from 10 to two (entry 

11). The Rh dimer with the (R)-DOSP ligand was thus chosen for further optimization, which mainly 

focused on the temperature. The diastereomeric ratio was increased to useful values by lowering the 

temperature to T = 0 °C or T = –30/40 °C (range, entries 12, 13). After complete addition, the reaction 

mixture was allowed to warm to room temperature very slowly. As previously observed, no reaction 

occured at lower temperatures due to the lack of reactivity of diene 437 compared to more electron-

rich olefins. The conditions in entry 14 only furnished the product, because the reaction mixture was 
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allowed to warm to room temperature. The lower diastereomeric ratio shows that the reaction started 

once T = –30 °C was reached. As the temperature increased, the cyclopropanation presumably got less 

selective, leading to a worse overall dr.  

The conditions of entry 13 were chosen for future experiments and the synthesis of 

cycloheptadiene 469 was successfully realized on scale (Scheme 147). Vinyl diazoacetate was 

unstable in solution even at T = –78 °C, which demanded a thoroughly optimized setup procedure 

because of its slow addition. The diastereomeric ratio on scale was even improved and the undesired 

cycloheptadiene 471 was readily separated by flash column chromatography. 

 

Scheme 147. Optimized Rh-catalyzed formal (4+3)-cycloaddition. 

It was crucial to obtain unambiguous proof of the relative stereochemistry of the desired isomer 

469, which could not be crystallized because it was a liquid. However, the undesired isomer 471 

proved to be a solid and X-ray single crystal structure was obtained, providing indirect evidence of 

structure 469 (Figure 40). 

 

Figure 40. X-Ray single crystal structure of undesired isomer 471.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

3.5.3.5 Initial Oxidative Cleavage Attempts by Ozonolysis 

In general, the envisioned oxidative cleavage reactions proved to be very challenging especially in 

attempts to yield dialdehydes. Numerous attempts were thwarted by decomposition either during the 
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reaction, upon workup or especially upon purification attempts. Multiple side products, poor 

reproducibility or the polarity of the highly oxidized product and its subsequent loss in the aqueous 

phase further complicated these attempts. From a practical viewpoint, the reactions were challenging 

to analyze because oftentimes, formation of numerous products was observed simply due to partial 

lactonization or acetalization. In the following, only the experiments that provided clear results or 

insights will be summarized.  

With cycloheptadiene 469 in hand, the the feasibility of the oxidative cleavage was first 

investigated. The feasibility of this reaction had been previously reported, albeit in low yield.
[327]

 As it 

was expected that the ozonolysis would show similar rates of olefin cleavage for both diastereomers 

469 and 471, these investigations were initially carried out with diastereomeric mixtures enriched in 

isomer 469 (entry 1, Table 10). Exposure of dioxolanes 469/471 to ozone at low temperatures 

followed by reductive workup with dimethyl sulfide gave dialdehyde 472 as indicated by crude NMR 

analysis (Scheme 148). The compound was not stable to purification or derivatization. In order to 

obtain structural confirmation, sodium borohydride was added to the reductive workup, which led to 

either lactone 473 in the presence of alcoholic co-solvents or to diol 474 without alcohol additives. 

These results were obtained even under long exposure times to ozone, implying that the olefin 

conjugated to the ethyl ester could be inert to oxidative cleavage under these conditions.  

 

Scheme 148. Ozonolysis studies with dioxolane 469/471. 

In an attempt to also cleave the electron-poor olefin, the ozonolysis was conducted under harsh 

conditions at T = 0 °C (Scheme 148). Remarkably, lactone 475 was isolated in good yield after 

reductive workup. This result encouraged further effort concerning the oxidative cleavage with more 
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elaborate substrates that would easily allow for differentiation between the multiple sites of oxidation. 

Lactone 475 features several carbon atoms on the alcohol oxidation state that would probably require 

multi-step differentiation in the following steps. 

3.5.3.6 Synthesis of Bicyclic Substrate for Oxidative Cleavage 

With good support of the feasibility of the envisioned key oxidative cleavage, substrates were to 

be prepared that would allow for a more facile conversion to the gracilin natural products. Therefore, it 

was envisioned that the formation of a lactone could efficiently differentiate the C12 and the C13 

alcohol functionality based on ring size considerations (Scheme 149). A bicyclic molecule could also 

undergo oxidative cleavage under milder conditions because the cyclic olefins would be more strained 

and hence more reactive. Strategically, it seemed very effective to use the lactone in 476 as an 

intramolecular protecting group that also would allow for a more facile cyclization of the sensitive 

intermediate C15/C16 dialdehyde 477 to bisacetal 478. The oxidation state of carbon atom C13 could 

be adjusted prior or after the key oxidative cleavage. In either case, a cyclization of the C13 oxygen 

atom on C16 was considered unlikely because it would form a rather strained trans-hydrindane-type 

skeleton. 

 

Scheme 149. Alternative substrate 476 for oxidative cleavage and its advantages en route to gracilin natural products. 

Initial attempts focused on the deprotection of the dioxolane moiety in cycloheptadiene 469 with 

the final aim to convert the intermediate diol 479 to lactone 476 in one overall step (Scheme 150). 

Standard acidic conditions for the deprotection were found to be unsuitable due to olefin migration 

into conjugation to yield diene 480 (condition 1). The olefin migration was suppressed with weaker 

acids and the dioxolane was effectively deprotected to diol 479, but cyclization to lactone 476 was 

very slow (condition 2).  
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Scheme 150. Deprotection studies of dioxolane 469 to lactone 476. 

Both reactions could be realized by LEWIS rather than BRØNSTEDT acids. Consequently, a 

literature-inspired deprotection with CAN was attempted.
[328]

 No side reactions were observed under 

these conditions and deprotection of the dioxolane was rapid, but cyclization to lactone 476 was only 

quantitative after several days even at elevated temperatures (condition 3). An alternative procedure 

based on the intermediate formation of HF from LiBF4 and wet MeCN was attempted and afforded the 

product cleanly in good yield at higher temperature (condition 4).
[329]

 To shorten the reaction time 

further, an iron-based deprotection was tested (condition 5).
[330]

 These conditions proved to be most 

efficient for the deprotection and cyclization to lactone 476 and were used on gram scale in very good 

yield (Scheme 151). The use of additives to increase the rate of lactonization was found to be 

ineffective (4 Å MS) or inhibited the dioxolane deprotection (K2CO3 or DBU). This is in accordance 

with the assumption in the literature that this dioxolane cleavage is not merely a LEWIS acid-based 

process, but also involves protonation.  

 

Scheme 151. Optimized procedure for the deprotection of dioxolane 469 and cyclization to lactone 476. 

At this point, the structure of lactone 476 resulting from diastereomer 469 was unambiguously 

proven by X-ray single crystal structure analysis (Figure 41). 
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Figure 41. X-Ray single crystal structure of lactone 476.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

In order to decrease the polarity of alcohol 476 to avoid potentially cumbersome workup after the 

oxidative cleavage, the alcohol functionality was protected (Scheme 152). Both TBS and TES 

protection were successful under standard conditions to afford silyl ethers 481 and 482. However, 

benzyl protection again highlighted the sensitivity of cycloheptadienes such as 476 under certain 

conditions. Both oxygen functionalities (C12/C13) were successively eliminated under the reaction 

conditions, with intermediate migration of the olefin into conjugation. Since C13 alcohol was probably 

eliminated after benzyl ether formation, the resulting BnOH could be acylated to eventually afford 

benzyl ester 483. Alternative benzylation methods either led to reisolation of starting material 

alongside with ester hydrolysis (condition 1), potentially upon workup, or decomposition 

(condition 2). 

 

Scheme 152. Protection of alcohol 476 to decrease polarity. 
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3.5.3.7 Oxidative Cleavage of Bicyclic Substrates 

With a route to the required lactone 476 secured, its oxidative cleavage was studied. Three key 

experiments are shown in Scheme 153. It had been identified that ozonolysis at T = –40 °C was able to 

cleave both cyclic olefins. Despite the previous success of this transformation with dioxolane 469, the 

application of these conditions only afforded multiple intractable products. When subsequent 

cyclization to bisacetal 478 was attempted, a furan was identified by crude NMR and HRMS. It 

appeared as if the intermediate dialdehyde would need to be handled carefully, because dehydrative 

aromatization could otherwise occur.  

 

Scheme 153. Oxidative cleavage trials by ozonolysis of lactone 476. 

An alternative two-step LEMIEUX–JOHNSON procedure delivered pentaol 484 as judged by 

LC/MS, which was immediately subjected to NaIO4-mediated cleavage to give product 485 (Scheme 

153). However, only monocleavage to the C15 aldehyde was observed. In order to decrease the 

polarity of the products, the protected analogs 481 and 482 were tetrahydroxylated to tetraol 486 and 

487 respectively (Scheme 154). The relative stereochemistry was not proven and assumed based on 

the higher probability of the functionalization from the convex face. A different diastereomer was not 

detected.  

 

Scheme 154. Tetrahydroxylation of protected alcohol derivatives. 

Subjection to LEMIEUX-JOHNSON oxidation conditions led to exclusive monocleavage of tetraol 

486 regardless of the oxidation agent. No bisacetal 488 was detected. The TES protecting group in 

tetraol 487 was unstable to the cleavage conditions and the resulting product, either monocleavage or 

bisacetal 489, therefore became too polar for isolation. The results of the LEMIEUX–JOHNSON cleavage 
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were obtained in parallel with results presented in 3.5.3.8 Synthesis and Oxidative Cleavage of C13 

Oxidized Substrates and will be discussed in detail there.  

Unexpectantly, the ozonolysis reactions with lactone 476 often generated complex reaction 

mixtures, from which some components could be identified. In some cases, enones were recovered 

after ozonolysis at T = –78 °C, which was first attributed to the low reactivity of the electron-poor 

olefin. In another hypothesis, the recovery of enones was credited to the possibility that the conjugated 

olefin might get masked during the reaction and is reinstalled during workup. A detailed analysis of 

the reaction mechanism suggested that the intermediate carbonyl oxide most likely underwent a 

1,3-dipolar cycloaddition with the conjugated olefin (Scheme 155). Thus, initial cleavage of the more 

reactive bond in general substrate 490 could yield carbonyl oxide 491 or 492. The former could lead to 

the desired product, whereas the latter is also able to undergo intramolecular (3+2)-cycloaddition to 

furnish peroxide 493. Upon workup, dimethyl sulfide could cleave the labile O–O bond in two distinct 

ways. Both would initially yield an alkoxide 494/495 that would engage in a retro-aldol reaction to 

furnish enolate 496/497. The latter would expel DMSO and give rise to unsaturated ester 498/499.  

 

Scheme 155. Hypothesis for recovery of unsaturated esters 498 and 499 from ozonolysis. 

The hypothesis was in line with previously obtained results. The complete ozonolysis of 

dioxolane 469 to lactone 475 would presumably suffer less from this undesired cycloaddition, because 

the conformation of the substrate is more flexible and disfavors rapid cyclization. In contrast, bicyclic 

substrates were designed to undergo fast cyclization, e.g. of dialdehyde 477 to bisacetal 478. The 

restriction of the substrate conformation would also accelerate other cyclization processes, which 

would increase the amount of undesired side products 498 and 499. Conducting the reaction in 

alcoholic solvent might help to trap the carbonyloxide 492, but the resulting hydroperoxide is still 

predestined to engage in an oxa-MICHAEL reaction with the conjugated olefin. 
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As a potential solution, the ozonolysis could be conducted twice because product 498/499 cannot 

undergo the same masking process again. Indeed, when alcohol 476 was subjected to two consecutive 

ozonolyses, double oxidative cleavage occurred more cleanly. Alcohol 500 was observed by crude 

NMR as the major product (Scheme 156). The relative stereochemistry was not proven, but was 

assigned based on the assumption that no epimerization occurred.  

 

Scheme 156. Double ozonolysis of cycloheptadiene 476 to aldehyde 500. 

Under the reaction conditions, the initial dialdehyde 477 was able to rearrange to aldehyde 500. It 

had not been expected that aldehyde 500 would form preferentially over tricycle 501, but this result 

was observed often in this thesis with unprotected C12 secondary alcohols, even under thermodynamic 

conditions. Aldehyde 500 was found to be unstable to purification. Therefore, it seemed unlikely that 

the aldehyde moiety would survive conditions that could convert undesired bicycle 500 to desired 

tricycles of type 501. Especially the C11 stereocenter would be very prone to epimerization so that the 

C13 alcohol could cyclize on the C16 aldehyde.  

Concerning the envisioned total synthesis, the different cyclization mode was problematic since it 

inhibited the synthesis of the desired tricycle 501 when the C12 alcohol was unprotected. A possible 

way to enforce the formation of the desired tricycle 501 might be the oxidation of the C13 position to 

an aldehyde. Due to its lability, it was not possible to test this hypothesis with alcohol 500. It was 

rather decided to oxidize the C13 position prior to oxidative cleavage.  

3.5.3.8 Synthesis and Oxidative Cleavage of C13 Oxidized Substrates 

The alcohol 476 was subjected to known oxidation protocols that are mild enough to avoid 

epimerization of the sensitive oxygenated α-stereocenter at C12. This oxidation would deliver a 

molecule with the correct oxidation states of all atoms except C15 and C16 for gracilin precursor 361. 

After olefin cleavage, this molecule was expected to directly cyclize to the desired tricycle. 

Neither PARIKH–DOERING nor DESS–MARTIN nor LEY oxidation gave aldehyde 502 and the 

starting material was recovered (Scheme 157, conditions 1–3). A protocol described by ARTERBURN 

and PERRY was tested, wherein alcohol 476 would be directly converted to dioxolane 503, albeit 

without success. Starting material was reisolated (condition 3).
[331]
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Scheme 157. Oxidation of lactone 476 to aldehyde 502. 

A standard SWERN oxidation protocol gave rise to the desired aldehyde 502 that could not be 

purified due to its lability (condition 4). Gratifyingly, the α-stereocenter of crude aldehyde 502 in 

benzene solution did not show signs of epimerization. The presence of base at higher temperatures 

seemed to lead to partial decomposition, which was rationalized with side reactions arising from 

aldehyde enolization. Thus, DIPEA as a more bulky base that would not readily deprotonate aldehyde 

502 was employed. A corresponding SWERN oxidation furnished the latter very cleanly at 

temperatures as low as T = –40 °C (judged by crude NMR analysis, condition 5). As an alternative, 

triethylamine at T = –78 °C could also be used whereas DIPEA was not an effective base at this 

temperature (conditions 6, 7). 

As evident from the lability of aldehyde 502, its protection was crucial for further 

transformations. Initial efforts to convert aldehyde 502 to dimethoxyacetal 504, which could be easily 

deprotected, proved to be unfruitful with MeOH and Ce
III

 (Scheme 158).
[332]

 Starting material was 

reisolated and epimerization was observed at carbon atom C12.  
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Scheme 158. Protection of aldehyde 502 as an acetal. 

It was attempted to protect the labile aldehyde 502 as a cyclic acetal, which forms more readily 

and is usually more stable.
[333]

 NOYORI ketalization conditions provided the desired dioxolane 503 

along with overprotected orthoester 505 if an excess of the ethane diol derivative was employed and 

reaction times were long. The formation of the side product was suppressed at shorter reaction times 

with only slight excess of the protection reagent, but the yield was still moderate. It was hypothesized 

that the strongly LEWIS-basic conditions could lead to the formation of an enol, which could 

decompose by dimerization or other reactions. Thus, a diol was chosen that cyclizes more rapidly due 

to the THORPE–INGOLD effect. Exposure of the labile aldehyde to strong LEWIS acids would thus be 

limited. Acetalization with BF3 as a LEWIS acid activator and MgSO4 as drying agent successfully 

gave dioxane 506 in good yield over two steps.
[334]

 Several reproducibility problems had to be 

addressed in this two-step procedure. Thorough drying of aldehyde 502 by coevaporation with 

benzene, pre-drying of MgSO4 at T = 650 °C on high vacuum as well as careful temperature control in 

the protection step were crucial. CuSO4 as drying agent was equally effective, but less practical to dry. 
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Incorporation of a UV-active protecting group to facilitate monitoring of the oxidative cleavage by 

reaction with diol 507 in an analogous procedure was possible, but the yield of dioxane 508 was low 

and not synthetically useful. Presumably, the protection is too slow to prevent decomposition of the 

aldehyde under these conditions. 

Dioxane 506 was subjected to the previously effective ozonolysis conditions, but only 

unidentified decomposition products were observed (Scheme 159). The comparably high temperature 

of T = 0 °C was probably too harsh for the more elaborate substrate 506. Especially the oxidative 

cleavage of aldehyde acetals by ozone had been reported in the literature and probably constitutes one 

of the main decomposition pathways.
[335]

 Following a previously successful protocol, the ozonolysis 

was conducted at lower temperature twice but no product could be isolated at this stage. Thus, it 

became necessary to reduce the intermediate product with NaBH4 and even acetylation was required to 

be able to identify products from this reaction.  

 

Scheme 159. Ozonolysis attempts with dioxane 506. 

The dioxane 509 was obtained from the reaction mixture in good yield over four steps (71% per 

step). However, since reduction and protection are usually high-yielding, the low overall yield 

probably reflects the formation of several byproducts in the ozonolysis step. According to earlier 

observations, it became apparent that the undesired cyclization mode was also operative in this 

substrate. The stability of the double ozonolysis product did not allow for their isolation so that 

reduction became necessary. Therefore, acidic deprotection to C13 aldehyde with parallel skeletal 

rearrangement to tricycles of type 501 as originally planned could not be tested.  

As a consequence, alternatives of the ozonolysis for the synthesis of the gracilin natural products 

were to be tested. Despite the initial success of the double ozonolytic cleavage, the reactions were 

problematic to monitor and product mixtures were often generated with more elaborate structures. A 

more controlled and stepwise approach to the oxidative cleavage of dioxane 506 could be pursued 

with a two–step LEMIEUX–JOHNSON oxidation. One-pot protocols had also afforded intractable 

product mixtures. 

To this end, dioxane 506 was tetrahydroxylated to tetraol 510 using catalytic amounts of OsO4 

and an excess NMO (Scheme 160). The resulting tetraol 510 was used without purification.  
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Scheme 160. LEMIEUX–JOHNSON cleavage of dioxane 506. 

Diol cleavage was attempted with PhI(OAc)2,
[336]

 but it became evident that a suitable analysis of 

the products would only be possible with inorganic oxidants that would remain in the aqueous workup 

phase. Cleavage with NaIO4 at room temperature or up to T = 80 °C resulted in the formation of the 

monocleavage product 511 as a mixture of diastereomers (dr = 1.2:1), probably via dialdehyde 512. 

Not unexpectantly, the cleavage of the less sterically encumbered diol (C15/C15’) occured first. The 

remaining diol probably cyclizes onto the newly formed C15-aldehyde, which is encouraged by the 

preorganization induced by the lactone ring. The resulting hemiacetal proved to be stable up to 

T = 95 °C, where the sterically hindered dialdehyde 512 could be cleaved. However, the resulting 

C15/C16-dialdehyde underwent dehydrative aromatization to a furan under these conditions as judged 

by crude NMR analysis, potentially again supported by the structural preorganization. It was 

hypothesized that the use of stronger oxidants with LEWIS-acidic properties would facilitate the 

cleavage of the second diol motif in hemiacetal 511. Upon treatment with Pb
IV

, a structural 

reorganization was detected, but no cleavage occurred. The same product was observed when tetraol 

510 was directly treated with lead tetraacetate and could be assigned as hemiacetal 513, again as a 

mixture of diastereomers. Unambiguous determination of the diastereomeric ratio was not possible 

based on crude NMR analysis. Upon LEWIS acid activation, the C15 hemiacetal apparently formed an 

isomeric hemiacetal with the C16 alcohol. One of the diastereomers of this new hemiacetal might 

cyclize onto lactone (C14), liberating the C12 secondary alcohol. Potentially again under LEWIS acid 

catalysis, the latter can attack the C15’ aldehyde to furnish hemiacetal 513. The cyclization of C16 

alcohol onto C15 aldehyde probably is as unselective as the cyclization of C16’ alcohol to hemiacetal 

511, but one of the diastereomers is removed from the equilibrium by cyclization onto C14 lactone. 

Hence, product 513 only exists as a mixture of two diastereomers based on the C15’ stereocenter.  
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An alternative cleavage method of the C16–C16’ bond in hemiacetal 511 to bisacetal 514 was 

attempted by a retro-aldol reaction (Scheme 161). Whereas treatment with carbonate base in alcohol 

solvents did not lead to the desired bond fragmentation (condition 1), NaH in THF converted the 

lactone 511 to hemiacetal 513 (condition 2). Hydroxide base was found efficient to cleave the desired 

C16–C16’ bond, but also led to the formation of the previously observed furan (condition 3, see 

Scheme 160 for comparison). 

 

Scheme 161. Retro-aldol attempts at cleavage of C16–C16’ bond. 

The LEMIEUX–JOHNSON oxidation was found much more straight-forward and easier to analyze 

than related ozonolyses. The results obtained showed that double oxidative cleavage is possible, but 

milder conditions would be needed to avoid cyclization to a furan.  

3.5.3.9 Oxidative Cleavage of Substrates with C14 Carboxylic Acid 

The crucial challenge of the successful double oxidative cleavage would be to avoid premature 

cyclization of the remaining diol onto the formed C15 aldehyde. One possibility would include a 

competing cyclization of a C14 acid such as 515 that would in any case ensure a higher equilibrium 

content of the free C16/C16’ diol (Figure 42). Furthermore, the problem of C12 alcohol cyclization on 

C15 to afford undesired bicycles such as 500 could be avoided by installation of suitable protecting 

groups after lactone hydrolysis. 

 

Figure 42. Rationale behind synthesis of acid precursor 515. 

As a proof of principle, the intermediate tetraol 510 was treated with base to effect the hydrolysis 

of the lactone (Scheme 162). The resulting pentaol 516 was immediately subjected to NaIO4 in slightly 
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acidic solution in the same reaction vessel. Indeed, the olefin diol cleavage went to completion and 

furnished aldehyde 517 as evident from LC/MS and crude NMR analysis.  

 

Scheme 162. Proof of principle of milder reaction conditions to complete diol cleavage. 

Lactone 506 was selectively hydrolyzed to acid 518 with a stoichiometric amount of LiOH, which 

had to be introduced slowly to ensure that the conjugated ester remained untouched (Scheme 163). 

The subsequent protection of the secondary alcohol to products of type 515 proved to be very 

challenging due to its low reactivity, probably resulting from steric encumbrance. Furthermore, some 

conditions activated the acid so that lactone 506 was formed again. 

 

Scheme 163 A. Hydrolysis and protecting studies of lactone 506. B. Optimized protection conditions. 

Acyl protecting groups could not be introduced since they first reacted with the carboxylic acid 

and then underwent lactonization to dioxane 506 (conditions 1, 2). Even deprotonation of both 
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functionalities and treatment with one equivalent of BzCl afforded lactone 506. Despite the higher 

nucleophilicity of an alkoxide compared to the carboxylate, the steric hindrance of the secondary 

alcohol apparently prevented its functionalization. It was thus switched to silyl protecting groups, 

which were supposed not to activate the acid functionality. Concomitant silyl protection of the acid 

was expected, but the silyl ester would be hydrolyzed upon workup. The bulky TBDPS group could 

not be installed on the secondary alcohol, but silyl ester 519 was isolated since it resisted hydrolysis 

(condition 4). Only starting material was isolated when acid 518 was completely deprotonated with 

NaH and treated with TESOTf (condition 5). TBS protection was not met with success under a variety 

of conditions involving 2,6-lutidine as the base, even at elevated temperatures (conditions 6–9). 

Activation of TBSCl with AgNO3 or Li2S was not effective (conditions 10, 11).
[337,338]

 Formation of 

product 520 was observed when acid 518 was treated with TBSOTf (condition 12, 10 mg scale, 25%). 

However, the side product of this reaction proved to be orthoester 521, which was assigned by crude 

NMR analysis since it was not stable during purification. Mild benzyl protection with Ag2O and BnBr 

lead to Bn incorporation under closure of the lactone (condition 13). Presumably, the α-position of 

lactone 506 was functionalized, but no further analyses were performed. Benzyl protection by 

WILLIAMSON ether synthesis only gave unreacted starting material (condition 14). It appeared as if the 

secondary alcohol was very reluctant to react as a nucleophile due to steric hindrance. Using a 

procedure that was found optimal for the TBS protection of phenols (see e.g. 2.3.3.2.5 Combination 

of Epicoccine and Epicoccone B Synthesis), it was possible to protect the secondary alcohol as TBS 

silyl ether 520 in excellent yield. The installed TBS group did not represent a desirable protecting 

group since it was suspected that it might not be compatible with ensuing transformations. 

Nevertheless, it was more important to have the secondary alcohol protected to prevent formation of 

undesired bicycles such as 500. Purification of this product was complicated by recyclization to 

lactone 506 upon contact with silica gel. 

With the required acid 520 in hand, the two-step LEMIEUX–JOHNSON oxidation was attempted 

(Scheme 164). Tetrahydroxylation to tetraol 522 proved to be more complicated than with previous 

substrates, requiring more equivalents of OsO4 and longer reaction times. In addition, on larger scales, 

the reaction was found to be capricious with only partial conversion after long reaction times. On 

small scale, tetraol 522 was accessed as a mixture of diastereomers resulting from its more 

conformationally flexible skeleton compared to cycloheptadiene 506.   

 

Scheme 164. Oxidative cleavage of acid 520. 
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The tetraol 522 was isolable, but could not be purified and was therefore immediately subjected to 

oxidative cleavage with NaIO4. Only monocleavage was observed, but treatment of the intermediate 

product with Pb(OAc)4 afforded crude hemiacetal 523 as a mixture of diastereomers. The 

accomplishment of the synthesis of hemiacetal 523 was encouraging for the synthetic efforts toward 

the gracilin natural products. However, the tetrahydroxylation was not reproducible on larger scale. 

Repetition of the synthesis of the initially obtained compound, supposedly tetraol 522, was not 

achieved. Instead, an isomeric tetraol was obtained in all following experiments, which upon 

subjection to the same oxidation conditions only yielded monocleavage products as judged by LC/MS. 

It was speculated that the longer exposure to the reaction conditions on larger scale might eventually 

lead to lactone formation with the free acid, most likely involving the C15–OH. Oxidative cleavage 

would thus only occur once with the C16/C16’ diol.  

Due to these reproducibility problems, an ozonolysis strategy was revisited that could potentially 

profit from the fact that an intermediate carbonyl oxide would be captured by the pendant acid moiety. 

It was reasoned that associated side reactions such as intramolecular 1,3-dipolar cycloadditions could 

be suppressed. Indeed, ozonolysis of acid 520 gave the hemiacetal 523 in modest yield next to 

C15/C15’ monocleavage product even after a second ozonolysis (Scheme 165). It appeared as if the 

conjugated olefin needed higher temperatures for an efficient cleavage. 

 

Scheme 165. Double ozonolysis toward hemiacetal 523. 

Prior to optimization studies of this reaction, it was attempted to convert hemiacetal 523 to the 

desired tricyclic precursor of type 361 by deprotection of the dioxane protecting group (Scheme 166).  
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Scheme 166. Deprotection attempts of dioxane 523 to acetal 525. 

Previously successful acetal deprotection conditions with CAN at basic pH were tested first, but 

only resulted in the formation of undesired bicycle 517 by TBS deprotection via alcohol 524.
[328]

 As a 

consequence, it was tried to cleave the dioxane protecting group in aldehyde 517 to identify suitable 

conditions for future experiments. In order to arrive at tricycle 525, it was focused on aqueous 

conditions that could mediate the transacetalization. Under a variety of conditions, only starting 

material was reisolated. Neither aqueous hydrochloric acid nor acetic acid provided the product 

(Scheme 166, conditions 1, 2). Decomposition was observed when acetone was added, which could 

result from nucleophilic attack of the acetone enol on the free aldehyde in substrate 517. Ce
IV

 as an 

oxidant and LEWIS acid was employed at neutral and basic pH, but no reaction was observed 

(conditions 3, 4). Transacetalization to acetone was attempted with the weaker acid PPTS, without 

success (condition 5). Even HClO4 was not able to cleave the dioxane protecting group (condition 6). 

As previously expected, it seemed as if the TBS protecting group would not be stable under harsh 

conditions to cleave the dioxane moiety. However, formation of a TBS silyl ether had been identified 

as the only successful conditions for the protection of the C12 alcohol. This route was therefore 

discontinued since it did not seem possible to prevent cyclization to the undesired bicycle 517.   

3.5.3.10 Stepwise Oxidative Cleavage 

The main challenge of the envisioned double oxidative cleavage was the presence of another 

olefin or diol that can undergo subsequent reactions to prevent completion of the procedure. In the 

case of the ozonolysis, it appeared as if the unsaturated ester engaged in a 1,3-dipolar cycloaddition 

(see 3.5.3.7 Oxidative Cleavage of Bicyclic Substrates), whereas in the case of the               

LEMIEUX–JOHNSON oxidation, the other diol prematurely cyclized on the formed aldehyde (see 3.5.3.8
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 Synthesis and Oxidative Cleavage of C13 Oxidized Substrates). As a potential solution, it was 

planned to functionalize one of the olefins prior to oxidative cleavage. 

First, the cis-disubstituted olefin in cycloheptadiene 476 was targeted. Selective epoxidation was 

possible using m-CPBA to afford epoxide 526 as an inconsequential mixture of diastereomers 

(Scheme 167). Support of the hypothesis presented in Scheme 155 was offered by the fact that 

ozonolysis of this substrate was straight-forward, yielding hemiacetal 527 as the major oxidative 

cleavage product. The carbon skeleton and the oxidation states of the carbon atoms were reliably 

assigned by crude NMR analysis, but the acetal connections are speculative. It could only be secured 

that C15‘–O must be bound to C16 based on 2D NMR spectra. The hemiacetal 527 partially 

decomposed to give olefin 528 upon purification attempts by retro-oxa-MICHAEL reaction. Therefore, 

crude 527 was subjected to oxidative cleavage conditions that could also convert epoxides in case they 

were present in the crude mixture as a minor component.
[254]

 The resulting products were too polar for 

isolation. It was hence attempted to decrease the polarity by incorporation of a TBS protecting group. 

Since TBS ether 481 was found to be unstable during purification, it was argued that the TBS 

protecting group would be cleaved under the epoxidation conditions. Thus, the order of steps was 

inverted and the TBS group installed in epoxide 526.  

 

Scheme 167. Selective epoxidation of cis-disubstituted olefin in cycloheptadiene 476 and its oxidative cleavage. 

The resulting epoxide 529 was taken forward to the ozonolysis with ensuing oxidative cleavage 

by I
VII

. Hemiacetal 530 was identified the major product based on crude NMR analysis. Considering 

that both ozonolysis products were prone to a retro-oxa-MICHAEL type reaction once C16’ ketone had 

formed during ozonolysis, further attempts involving epoxides 526 or 529 were not undertaken. The 

C16’ ketone will always be likely to enolize due to its nature as an α-keto ester, which will lead to the 
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observed decomposition and significantly complicate the desired oxidative cleavage of the C15–C15’ 

bond.  

In addition to epoxidation, a selective dihydroxylation was attempted. Although a diol would also 

be prone to undergo β-elimination of the C15’–OH once the C16’ ketone was formed, it would lack 

the driving force of the epoxide opening. 

 

Scheme 168. Stepwise oxidative cleavage attempts via selective dihydroxylation. 

TBS ether 481 was therefore subjected to dihydroxylation conditions, but only very poor 

selectivity between diol 531 and tetraol 486 was obtained based on LC/MS. An analogous reaction 

involving alcohol 476 showed the same lack of selectivity, but the corresponding tetraol 484 remained 

in the aqueous phase upon workup. As expected, the ozonolysis of triol 532 proceeded but the 

products were too polar for isolation.  

Since masking of the cis-disubstituted olefin had only led to undesired side reactions, it was 

attempted to transform the conjugated trisubstituted olefin via nucleophilic SCHEFFER–WEITZ-type 

epoxidation. However, the olefin in alcohol 476 or silyl ether 481 resisted functionalization to 

epoxides 533 or 534 even under forcing conditions and only lactone hydrolysis to acids 535/536 

occurred (Scheme 169). The hydrolysis probably resulted from peroxide attack on the lactone and 

cleavage of the labile O–O bond during reductive workup. Hydrogen peroxide as a less sterically 

demanding reagent to overcome the apparent high steric hindrance was equally ineffective in a related 

nucleophilic epoxidation of acid 536.  
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Scheme 169. SCHEFFER–WEITZ epoxidation attempts. 

3.5.3.11 Conclusion 

This chapter has described the use of DAVIES’ Rh-catalyzed formal (4+3)-cycloaddition in the 

context of the synthesis of the gracilin natural products. The methodology could be successfully 

extended to less electron-rich dienes and afforded cyclic dienes for the envisioned double oxidative 

cleavage. The latter proved to be complicated by the fact that initial oxidation products could engage 

in side reactions with the remaining olefin. After a solution had been identified, the oxidative cleavage 

of conformationally restricted substrates led to partial furan formation by dehydrative aromatization of 

the intermediate 1,4-dialdehyde. Reduction of the conformational restriction and implementation of an 

acid that could stabilize the intermediate dialdehydes resulted in successful double oxidative cleavage 

reactions. However, limited protecting group options in previous steps prevented the application of 

this methodology to the synthesis of gracilin natural products. 
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3.6 Third Strategy: Formal (3+2) Cycloaddition and Desymmetrization 

3.6.1 Retrosynthetic Analysis 

Due to the difficulties to either access the required cyclic diene (see 3.4 First Strategy: 

Torquoselective 6π-electrocyclization) or effect the double oxidative cleavage while preventing furan 

formation (see 3.5 Second Strategy: Rhodium-Catalyzed Formal (4+3)-Cycloaddition), an 

alternative, more atom-economic retrosynthesis was envisioned. It was realized that the gracilin 

natural products are pseudosymmetric to some extent (Figure 43). The symmetry-breaking elements 

are a substituent at C9, oxidation at C12 and reduction at C13. All of these features could be installed 

in meso-bislactones like 537. However, the necessary deprotonation of one of the lactones could lead 

to an attack onto the other lactone functionality, which is the reason why this approach was not 

prioritized.  

 

Figure 43. Pseudosymmetry in gracilin natural products. 

It was envisioned that the crucial central 1,4-dialdehyde (C15/C16) would ultimately result from a 

furan. Furthermore, in contrast to COREY’s synthesis, a meso-substrate was to be accessed that would 

undergo desymmetrization (strategy 1, 1.3 Symmetry in Natural Product Synthesis). The synthesis 

would therefore not need to be asymmetric until this point, which would greatly facilitate each 

transformation and reduce the step count. The planned retrosynthesis is depicted in Scheme 170. 

 

Scheme 170. Retrosynthesis of gracilin natural products. 
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The general precursor 361 would be traced back to chiral lactone 538 by selective oxidation of the 

C13 alcohol, lactone opening and cyclization. The lactone itself would stem from a chiral bicyclic 

ketone 539 by regioselective BAEYER–VILLIGER oxidation. It is well precedented that a preferential 

migration of the more highly-substituted carbon atom occurs.
[339]

 The key step of this synthesis would 

be the face-selective desymmetrizing α-alkylation of meso-ketone 540 to ketone 539. The 

diastereoselectivity of the enolate alkylation would be governed by the bicyclic structure of the 

substrate since the convex face is much more sterically accessible than the concave face. The 

desymmetrization would be ensured by a selective deprotonation of one of the enantiotopic protons by 

a chiral base. The corresponding set of diastereotopic protons is inaccessible due to the steric repulsion 

with the tetrahydrofuran ring. An asymmetric deprotonation/alkylation sequence was already 

successfully applied in related diquinane systems.
[340–343]

 The prerequisite diketone 540 could be 

synthesized from racemic olefin 541 that would be derived from lactone 542 through 

diastereoselective trimethylene methane (TMM) cycloaddition inspired by reports by TROST and 

CRAWLEY.
[241]

 This lactone is literature-known and stems from furfural by singlet oxygen           

DIELS–ALDER cycloaddition in MeOH. 

This new retrosynthetic strategy would install the crucial 1,4-dialdehyde early on in a protected 

form so that aromatization to a furan will become less likely. The success of this strategy would stress 

the importance of symmetry considerations in retrosynthetic planning and establish the potential of 

lactone 542 as a dialdehyde precursor. 

3.6.2 Results and Discussion 

3.6.2.1 Synthesis of meso-Ketone 

Furfural was oxidized to lactone 542 by singlet oxygen DIELS–ALDER reaction and subsequent 

completion of the acetalization under PPTS catalysis (Scheme 171).
[344]
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Scheme 171. Synthesis of meso-ketone 540. 

The subsequent TMM cycloaddition proceeded smoothly even on multi-gram scale to afford 

olefin 541 in excellent yield. The reaction was cis-selective with respect to carbon atoms C10 and 

C11. The inconsequential diastereoselectivity based on carbon atoms C10 and C15 was not determined 

by crude NMR analysis, but product 541 after purification was exclusively the trans-isomer. It was 

found that the subsequent conversion to ketone 540 was best conducted in the presented order without 

intermediate purification due to the volatility of the intermediates. DIBAL reduction gave the best 

results in methylene chloride as a solvent at low temperatures, cleanly furnishing hemiacetal 543. The 

latter was acetalized to bisacetal 544 under LEWIS acid catalysis since BRØNSTEDT acids led to olefin 

migration. With added HC(OMe)3 as a drying agent, the formation of bisacetal 545 was observed. 

Olefin cleavage using a LEMIEUX–JOHNSON oxidation gave rise to the desired ketone 540 in very good 

yield over three steps. The structure of Cs-symmetric ketone 540 was unambiguously proven by X-ray 

single crystal structure analysis (Figure 44). 

 

Figure 44. X-Ray single crystal structure of ketone 540.  

Color code: green = carbon, red = oxygen, white = hydrogen. 
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In the crystal structure, each molecule is frozen in a C1-symmetric conformation. However, in 

solution on the NMR spectroscopy timescale, the structure proved to be Cs-symmetric with only one 

set of symmetry-equivalent signals.  

3.6.2.2 Desymmetrization via Enolate Alkylation 

The desymmetrization by alkylation was initially tested without chiral bases for practical reasons. 

However, the employed procedures were chosen according to the potential of their realization with 

chiral bases. 

Introduction of a –CH2OBn group with a robust alcohol protecting group by deprotonation of 

ketone 540 with LDA and subsequent treatment with BOMCl only led to functionalization when 

HMPA was employed as a cosolvent (Scheme 172). However, the intermediate enolate was 

O-alkylated to give enol ether 546 in low yield due to its instability during purification. Softening of 

the electrophile and therefore increasing the tendency toward C-alkylation by addition of LiI or TBAI 

was unsuccessful. Using benzotriazole 547 as a C1 source allowed for the preparation of the desired 

hydroxymethylated ketone, which proved to be unstable and had to be immediately protected.
[345]

 

Silylated derivatives 548 and 549 were accessed in moderate yield over two steps. Upon conducting 

the reaction on larger scale, it became evident that the major byproducts of the alkylation resulted from 

overreaction due to the excess of base and reagent 547. Difunctionalized 550 as well as 

trifunctionalized ketone 551 were identified in the reaction mixture. Reduction of the equivalents and 

slow addition of reagent 547 was found effective to prevent the formation of these products. TBS ether 

548 was therefore prepared in good yield as a single diastereomer. 
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Scheme 172. Desymmetrizing alkylation attempts with nitrogen bases. 

The installation of acyl protecting groups was attempted by treatment with p-BrBzCl, but only 

gave the corresponding elimination product 552 as judged by crude NMR analysis. It was concluded 

that the alcohol should not be protected with electron-withdrawing groups that increase the leaving 

group quality. 

Alternatives to the above-mentioned hydroxymethylation were tried with the direct installation of 

an aldehyde (Scheme 173). Treatment of the ketone-enolate with ethyl formate yielded the 

corresponding α-formyl ketone, which was present as its enol tautomer. However, protection of this 

intermediate with MeOH and in situ-generated HCl en route to acetal 553 only resulted in 

decomposition, which was attributed to the sensitive bisacetal in ketone 540. Organocatalytic methods, 

which could potentially lead to an asymmetric α-functionalization, either resulted in self-condensation 

of ketone 540 (condition 1) or no conversion (conditions 2, 3).
[346,347]

 Alcohol 554 was not detected in 

the reaction mixtures.  

In order to increase the C-nucleophilicity of ketone 540, it was tried to synthesize silyl enol ether 

555. Its preparation succeeded by treatment of the corresponding enolate of ketone 540 with TMSCl. 
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Scheme 173. Alternative desymmetrization approaches. 

The silyl enol ether was employed in LEWIS acid-catalyzed functionalization attempts with 

BOMCl or aldehyde equivalent 556. Both reactions to yield either dioxolane 557 or benzyl ether 558 

were not met with success and only ketone 540 was recovered. Since ketone 548 was a suitable 

precursor to the gracilin natural products, other silyl enol ethers were not attempted. 

3.6.2.3 Conversion of Desymmetrized Ketone to General Gracilin Precursor 

With the desired desymmetrized ketone 548 in hand, it was tried to advance this substance to the 

general gracilin precursor 361. BAEYER–VILLIGER oxidation proved to be very efficient in accessing 

lactone 559, although the reaction times were long (Scheme 174). The regioisomeric oxidation product 

was not detected and lactone 559 was isolated in excellent yield. Attempted acceleration of the 

reaction by use of KHCO3 and 18-crown-6 inhibited the oxidation. The alternative TES protected 

alcohol 560 was isolated in low yields next to alcohol 476, also in low yields. It was argued that the 

TES protecting group is labile under the reaction conditions. Cleavage of the TES group would afford 

labile alcohol 554, which is prone to decomposition.  

Subsequent lactone hydrolysis of lactone 559 was complicated by the lability of the primary TBS 

protecting group, which was cleaved when LiOH was employed. Hydrogen peroxide afforded the 

product, but the method was inferior to a mild hydrolysis protocol using KOTMS.  
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Scheme 174. Transformations of ketone 548. 

Acid 561 could not be purified, but the crude product was sufficiently pure for further 

transformations. Protection of the secondary alcohol to bissilyl ether 562 was impossible and only 

afforded complex mixtures. A potential reason for this observation might be that the acid moiety 

partially cyclizes onto C15 and therefore epimerizes this center. Furthermore, the acidity of carboxylic 

acid 561 might lead to deprotection of the TBS groups, which was not noticed in the hydrolysis step 

since the acid was protected as a silyl ester until workup. An immediate cyclization of acid 561 could 

not be allowed because it would yield the undesired bicyclic product of type 500. Hence, it was 

attempted to first oxidize the C13 position prior to lactone hydrolysis. Deprotection of TBS ether 559 

with HF in pyridine was ineffective, but TBAF in THF afforded the desired alcohol 478. Its structure 

was unambiguously proven by X-ray single crystal structure analysis (Figure 45). The C13 alcohol 

forms hydrogen bonds to the C14 lactone with a distance of dO–O = 2.722 Å, which thus connect to 

one-dimensional chains of hydrogen–bonded molecules. 
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Figure 45. X-Ray single crystal structure of alcohol 478. Color code: green = carbon, red = oxygen, white = hydrogen.  

SWERN oxidation was found to decompose alcohol 478, but mild LEY oxidation afforded the 

desired aldehyde 563. The labile aldehyde was hydrolyzed with KOTMS and subsequently subjected 

to cyclization conditions adapted from COREY’s synthesis of gracilin B and C. However, no formation 

of product 564 was observed and the substrate decomposed under the reaction conditions. 
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3.7 Conclusion and Outlook 

In PART II of this thesis, synthetic studies toward the gracilin natural products were described. In 

attempts to implement a double oxidative cleavage for the synthesis of 1,4-dialdehydes, cyclic dienes 

were to be prepared. Whereas the stereoselective preparation of cyclohexadienes by electrocyclization 

proved unsatisfactory, cycloheptadienes were efficiently accessed using DAVIES’ Rh-catalyzed formal 

(4+3)-cycloaddition. The success of the ensuing oxidative cleavage was dependent on the choice of 

substrates. Eventually suitable conditions were identified, but could not be applied to the synthesis of 

the gracilin natural products due to incompatibility problems of the different protecting groups. In a 

third strategy, the aldehyde 563, containing all carbon atoms of general gracilin precursor 361 at the 

correct oxidation state, was accessed in a short and efficient sequence. The conversion of this aldehyde 

to the gracilin natural products by hydrolysis and cyclization will be subject to future studies toward 

these marine natural products (Scheme 175). An alternative synthesis could take advantage of ketone 

540 in an α-acylation and following BAEYER–VILLIGER oxidation to furnish bicycle 565 that would be 

more stable than aldehyde 563. Hydrolysis of both esters and cyclization might give rise to bislactone 

566, which could be selectively reduced to afford the general precursor 361. Once successful, the 

synthesis would need to be conducted asymmetrically with the help of chiral bases in the ketone 

functionalization step. 

 

Scheme 175. Future directions toward the synthesis of gracilin natural products.
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4. SUMMARY 

This thesis dealt with the biomimetic synthesis of the polyketide dibefurin and synthetic studies 

toward epicolactone (PART I) and the gracilin terpenoids (PART II). 

 

PART I: Biomimetic Synthesis of Dibefurin and Epicolactone 

In PART I, the oxidative dimerization modes of pyrogallols were reviewed and conceptualized to 

establish guidelines for future synthetic endeavours in this area. A biosynthetic hypothesis for the 

Ci-symmetric polyketide dibefurin and the pseudosymmetric racemic polyketide epicolactone was 

proposed that served as the basis of their biomimetic synthesis (Scheme 176). 

 

Scheme 176. Biosynthetic hypothesis of dibefurin and epicolactone. 

First, the natural product epicoccine, a hexasubstituted and electron-rich benzene derivative 

isolated from Epicoccum species, was synthesized on multi-gram scale in five steps and 41% overall 

yield from inexpensive eudesmic acid. The sequence only required two column chromatographic 

purifications and relied on the power of classic electrophilic aromatic substitution reactions with 

formaldehyde (Scheme 177). 

 

Scheme 177. Total synthesis of epicoccine from eudesmic acid and formaldehyde.  

Epicoccine was successfully homodimerized in good yield upon oxidation with the outer-sphere 

single-electron oxidant potassium ferricyanide (Scheme 178). In this head-to-tail dimerization, four 

challenging tetrasubstituted centers were formed that are adjacent in pairs. Suitable crystals for X-ray 

single crystal structure analysis were obtained and a hydrogen–bond network in the solid state was 

identified as the source of the insolubility of dibefurin. Data were presented that support the alleged 

presence of dibefurin also in Epicoccum species. The accomplishment of the synthesis of dibefurin by 
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oxidative dearomatization of epicoccine constitutes the first application of the PERKIN dimer formation 

in natural product synthesis and supports the validity of the proposed biosynthetic pathway. 

 

Scheme 178. Successful oxidative dimerization of epicoccine to dibefurin; CCDC: 1022042. 

Color code: green = carbon, red = oxygen, white = hydrogen. 

In order to study the oxidative heterodimerization toward epicolactone, epicoccone B, another 

natural product from Epicoccum sp., was accessed on multi-gram scale in six steps and 46% overall 

yield. The sequence only required one column chromatographic purification. 

 

Scheme 179. Successful synthesis of natural product epicoccone B. 

In attempts to synthesize epicolactone through oxidation of epicoccine and epicoccone B as an 

equivalent of alcohol 148, a high driving force of the dibefurin formation was identified and 

rationalized with thermodynamic and kinetic factors. The dominating homodimerization of epicoccine 

was largely reduced by preoxidation of the dimerization partner and optimized setup procedures.  

It was found that hexasubstituted pyrogallol derivatives were unreactive in the desired 

heterodimerization, because epicoccone B analog 197 or chloro arene 306 gave dibefurin either next to 

other products (197) or exclusively (306). This tendency was explained by the immense steric 

repulsion between four contiguous tetrasubstituted carbon atoms (C5/C1/C13/C12) in the 

corresponding dimers 155 or 307. Furthermore, the C14 ketone is unable to tautomerize to the more 

stable enol form, leaving an energetically unfavorable diketone. 

 

Figure 46. Heterodimerization partners in epicolactone synthesis that result in dibefurin formation. 
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During the studies with quinone 197, an unprecedented pyrogallol oxidative dimerization via a 

hetero-DIELS–ALDER reaction of a para-quinone methide with ortho-quinone 197 was identified 

(Scheme 180). Isolation and characterization proved to be challenging due to the sensitivity of the 

heterodimer, but X-ray single crystal structure proof was nonetheless obtained. Identification of 

dimers of type 240 in Nature might have been complicated by their instability. It was proposed that 

this dimerization between epicoccone B and epicoccine might well occur in Nature so that the 

isolation protocol presented in this thesis could help to identify this compound in natural sources.  

 

Scheme 180. Hetero-DIELS–ALDER heterodimerization of epicoccine and epicoccone B derivative 197; CCDC: 1022044.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

Subsequent alternations of the epicoccine structure led to the conclusion that all three hydroxyl 

groups of epicoccine need to be unprotected for a successful dimerization to occur. 

Following the initial biosynthetic hypothesis involving pentasubstituted benzene derivatives such 

as 170, 261 or 262, it was possible to effect the desired oxidative heterodimerization with various 

protecting groups on the primary alcohol (Scheme 181). The resulting heterodimers were the major 

product by crude NMR analysis and pure enough for further transformations. Suitable crystals for 

X-ray single crystal structure analysis were obtained of acetate 267 that provided unambiguous 

evidence of its structure. In this key step, two aromatic pyrogallol derivatives are oxidatively coupled 

with exclusive regio- and diastereoselectivity, setting three tetrasubstituted stereocenters in a single 

step. The reaction constitutes the first example of the purpurogallin formation reaction in the synthesis 

of non-benzotropolone natural products and could find broader application as a tool for rapid increase 

in molecular complexity. 

 

Scheme 181. Successful heterodimerization of pentasubstituted pyrogallol derivatives with epicoccine. X-Ray single crystal 

structure of acetate 267; H atoms omitted for clarity. Color code: green = carbon, red = oxygen. 

The obtained heterodimers were sensitive to a variety of reaction conditions and preferably 

underwent rearomatization (Scheme 182). This experimental result implies that Nature might have 
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found a way to inhibit the undesired fragmentation of tetracycles such as 233 in the biosynthesis of 

epicolactone. 

 

Scheme 182. Rearomatization of desired heterodimer. 

Strategies to prevent the rearomatization were not met with success either because of the 

sensitivity of the heterodimers or because the desired heterodimers could not be synthesized (Figure 

47).  

 

Figure 47. Unsuccessful attempts to prevent rearomatization of heterodimers. 

An alternative biosynthetic proposal was developed based on the experimental results. Several 

strategies to enable the transformation of heterodimers of type 257 into the fungal metabolite 

epicolactone have been suggested for future experiments.  

PART I presented the total synthesis of the three natural products epicoccine, dibefurin and 

epicoccone B and the successful heterodimerization of epicoccine with a pentasubstituted benzene 

derivative to give rise to a tetracycle featuring all carbon atoms of the natural product epicolactone. 

The obtained results showcase the vast potential of biomimetic synthesis in the preparation of intricate 

molecules. 

 

PART II: Total Synthesis of Gracilin Terpenoids 

PART II of this thesis presented three different synthetic studies toward the gracilin natural 

products. The first two approaches focused on accessing a potential common precursor 361 to these 

marine secondary metabolites by double oxidative cleavage of a cyclic diene (Scheme 183). 
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Scheme 183. Retrosynthetic analysis for the first two approaches to gracilin natural products. 

An efficient synthesis of trienes 404 and 405 was developed (Scheme 184). The following 

torquoselective 6π-electrocyclization did not proceed with diastereoselectivities that would allow for 

an efficient synthesis of the gracilin natural products. Therefore, this approach was discontinued in 

favor of another strategy. 

 

Scheme 184. First strategy toward gracilin natural products by 6π-electrocyclization. 

A Rh-catalyzed formal (4+3)-cycloaddition via a cyclopropanation/COPE rearrangement cascade 

was employed to furnish cycloheptadienes such as 476 as precursors to 1,4-dialdehydes (Scheme 185). 

For the first time, stereochemical induction of the allylic stereocenter in vinyl diazoacetates like 460 

was observed in this formal (4+3)-cycloaddition. After thorough optimization of conditions and the 

substrate, the envisioned double oxidative cleavage was successfully applied to furnish hemiacetal 

523, which in turn could not be converted into the gracilin natural products. 
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Scheme 185. Synthesis of lactone 476 and advanced intermediate 523 toward gracilin natural products.  

Color code: green = carbon, red = oxygen, white = hydrogen. 

In a third attempt, the use of furan as a 1,4-dialdehyde precursor was highlighted by accessing 

meso-ketone 540 through Pd-catalyzed formal (3+2)-cycloaddition (Scheme 186). Efficient 

desymmetrization of this substrate and subsequent transformations afforded alcohol 478, which was 

shown to undergo oxidation to the corresponding aldehyde. Future studies will focus on the 

conversion of this building block to the gracilin natural products. 

 

Scheme 186. Third strategy toward gracilin natural products by desymmetrization of meso-intermediate 540. 

In short, an efficient synthetic route was identified toward the gracilin norditerpenoids that could 

be applied as a general entry to these marine natural products.  
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5. GENERAL PROCEDURES 

Air and/or moisture sensitive reactions were conducted under inert gas atmosphere (nitrogen). 

Glassware was stored in an oven (130 °C) and heat-gun dried (650 °C) under high-vacuum prior to use 

(three times, in between filled with nitrogen). Liquids and solutions were transferred via three times 

nitrogen-flushed syringes with oven-dried stainless steel cannulas (130 °C). Solids were added under 

counter flow of nitrogen (Schlenk technique). Reaction temperatures refer to the external oil or cooling 

bath temperature. Large scale reactions (reaction vessel ≥ 1 l) were conducted by monitoring the 

temperature of the reaction mixture with an internal thermometer. Drying over Na2SO4 involved 

stirring the organic solvent over the anhydrous salt and subsequent separation of the solids by 

filtration. The filter cake was rinsed multiple times with the respective extraction solvent. Solutions 

were concentrated under reduced pressure by rotary evaporation at 30 °C with Heidolph Laborota 

4000 efficient employing a vacuubrand PC 3001 pump.  

 membrane pump for rotary evaporation (VACUUBRAND): 4 mbar 

 oil pump for high-vacuum: 0.006 mbar 

Yields, unless noted otherwise, are isolated yields. All reactions were magnetically stirred and 

monitored either by LC/MS or TLC (vide infra). 

 

5.1  Solvents and Reagents 

Commercial reagents and dry solvents over molecular sieves were used as purchased from Acros 

Organics with the following exceptions. Tetrahydrofuran (THF) and diethylether (Et2O) were pre-

dried over CaCl2 and distilled over sodium and benzophenone under a nitrogen atmosphere before use. 

Triethylamine (NEt3), diisopropylamine (DIPA) and diisopropylethylamine (DIPEA) were distilled 

over CaH2 under a nitrogen atmosphere prior to use. Solvents were stored under nitrogen. Deaeration 

of solvents was performed by passing a stream of nitrogen through the solvent for t ≥ 15 min for 

solvents such as water, DMSO, DMF or toluene. For lower-melting solvents, the freeze-pump-thaw 

(FPT) method was applied. Solvents were placed in a vessel under nitrogen atmosphere, frozen at 

T = –196 °C with an external liquid nitrogen bath and the vessel evacuated. The frozen solvent was 

allowed to melt under high vaccum and the vessel placed under nitrogen atmosphere again.  

 

5.2  Chromatography 

Thin-Layer Chromatography (TLC): TLC plates (silica gel 60) on glass with fluorescence 

indicator F-254 (MERCK KGAA) were used for monitoring of reactions, analysis of column 

chromatography fractions (unless C18 silica was employed, vide infra) and determination of Rf values. 

Eluents were of HPLC grade. TLCs were analyzed by UV light ( = 254 nm), if applicable, or 

immersing in staining solutions. After staining, TLC plates were heated with a heat-gun at 300 °C until 

dry. 
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Staining solutions: 

 KMnO4-solution: 3 g KMnO4, 20 g K2CO3, 5 ml 5% NaOH (aq), 300 ml dist. H2O  

 CAN-solution: 6.25 g molybdophosphoric acid, 2.50 g Ce(SO4)2·4H2O and 15 ml sulfuric acid 

(97%) in 230 ml dist. H2O 

Flash Column Chromatography: Purification by flash column chromatography was achieved 

using Geduran
©
 Si60 silica gel (40–63 μm, MERCK KGAA) with HPLC grade solvents. The volume of 

silica gel used is provided in (height x diameter column). The compounds were loaded in the 

respective eluent (if soluble), CH2Cl2 (if soluble) or EtOAc. If insoluble in either of these solvents, 

compounds were dissolved in an appropriate solvent (acetone or MeOH), silica gel was added and the 

solvent evaporated under reduced pressure. The remaining solid was loaded on the column (dry load). 

For purification with C18 silica gel flash column chromatography, silica gel (preparative C18, 125 Å, 

55105 μm, Waters Corp.) was suspended in HPLC grade MeCN, the column packed and the silica 

gel washed twice with the starting eluent. The volume of silica gel used is provided in (height x 

diameter column). The compounds were loaded in dioxane or THF and fractions analyzed by LC/MS 

(vide infra). The combined fractions were extracted with EtOAc three times, the combined organic 

phases dried over Na2SO4 and concentrated under reduced pressure.  

High performance liquid chromatography (HPLC): HPLC was performed on C18 silica with 

HPLC grade solvents and deionized water purified by a TKA MICROPURE water purification system. 

All solvents were deaerated with helium gas prior to use. HPLC purification was carried out at room 

temperature with the specified column. Analytical HPLC traces were recorded on an ultra high 

performance liquid chromatography (UHPLC) system from AGILENT 1260 Infinity series (1260 

degasser, 1260 binary pump VL, 1260 ALS auto sampler, 1260 TCC thermostatted column 

compartment, 1260 DAD diode array detector), which was computer-controlled by AGILENT 

ChemStation software. Preparative HPLC was performed on a computer-operated VARIAN system 

(Galaxie Chromatography Software, two PrepStar pumps Model SD-1, manual injection, ProStar 335 

Photo Diode Array Detector, 380-LC Evaporative Light Scattering Detector). 

 

5.3  NMR Spectroscopy 

All nuclear magnetic resonance spectra were recorded either on VARIAN VNMRS 300, VNMRS 

400, INOVA 400, VNMRS 600 or a BRUKER AVANCE III HD 400 spectrometer. NMR spectra were 

referenced to the undeuterated solvent signal relative to SiMe4:  

 CDCl3: 
1
H NMR  7.26 ppm, 

13
C NMR  77.16 (t) ppm  

 CD2Cl2: 
1
H NMR  5.32 (t) ppm, 

13
C NMR  53.84 (quint) ppm  

 C6D6: 
1
H NMR  7.16 ppm, 

13
C NMR  128.06 (t) ppm  

 (D3C)2CO: 
1
H NMR  2.05 (quint) ppm, 

13
C NMR  29.84 (sept) ppm 

 DMSO-d
6
: 

1
H NMR  2.50 (quint) ppm, 

13
C NMR  39.52 (sept) ppm 
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 MeOD: 
1
H NMR  3.31 (quint) ppm, 

13
C NMR  49.00 (sept) ppm 

 THF-d
8
: 

1
H NMR  1.72 (m) ppm, 

13
C NMR  25.31 (quint) ppm 

 DMF-d
7
: 

1
H NMR  2.75 (quint) ppm, 

13
C NMR  29.76 (sept) ppm  

Spectral data is provided in ppm from downfield to upfield. The following abbreviations are 

utilized in the analysis of NMR spectra: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, 

sept = septet, m = multiplet, brs = broad singlet. Combination of these abbreviations is applied 

whenever more than one coupling is observed. Data is provided in the following order: chemical shift 

in ppm (multiplicity, coupling constant J in Hz, signal integration, assignment to molecule). Unless 

noted differently, coupling constants are 
3
JH,H in 

1
H NMR. The assignment to the molecule refers to 

the numbered atoms of title compound as shown in the respective scheme and is denoted as CxHy, with 

x = carbon atom number and y = number of hydrogen atoms attached to this carbon atom. 

Diastereotopic methylene protons were denoted with y = 1. The carbon atom numbering of the title 

compound and its nomenclature do not necessarily follow IUPAC conventions.  

NMR spectra were recorded at T = 27 °C. Analysis of all spectra was performed with 

MestReNova version 8.1 by MESTREC LABORATORIES. 

 

5.4  Mass Spectrometry 

High resolution (HRMS) and low resolution (MS) mass spectra were recorded on a FINNIGAN 

MAT 95 (GC/EI or DEP/EI) or a THERMO FINNIGAN MAT 95 (ESI), JEOL JMS-700 (CI) instrument. 

Ionization of the samples was achieved using electrospray ionization (ESI) or electron ionization (EI).  

 

5.5  Melting Points 

Melting points were measured on a B-540 meltin point apparatus from BÜCHI LABORTECHNIK 

AG and are uncorrected. 

 

5.6  Infrared Spectroscopy (IR) 

Infrared (IR) spectra were recorded on a PERKIN ELMER Spectrum BX II FT-IR instrument with a 

SMITHS DETECTION DuraSamplIR II Diamond ATR sensor for detection in the range from 

𝜈 = 4500 cm
–1

 to 𝜈 = 600 cm
–1

. Samples were prepared as a film for liquid or neat for solid substances 

and directly applied on the ATR unit. The wavenumbers are followed by intensities in brackets and 

intensities are given with vw (very weak, 120%), w (weak, 2040%), m (medium, 4060%), s 

(strong, 6080%) and vs (very strong, 80100%) referring to the most intense peak (100%). The 

abbreviation br was used for broad absorption bands. 
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5.7  LC/MS 

LC/MS data was obtained on Agilent Technologies 1260 Infinity with C18 silica gel columns and 

Agilent 1100 Series LC/MSD mass detector. As eluent, a mixture of MeCN (HPLC grade) with H2O 

(Milli-Q Integral Water Purification System) and 0.1 vol-% formic acid as additive was employed. 

 

5.8  Optical Rotation 

Optical rotation values were recorded on a PERKINELMER 241 polarimeter. The sodium D line 

(λ = 589 nm) was used as the standard wavelength. For different tempartures T, the specific rotation is 

denoted as [α]D
T
 (D = sodium D line). The specific rotation values are reported in units of ° ml g

-1
 dm

-1
 

followed by the concentration of the solution in mg ml
-1

 and the respective solvent. 

 

5.9  Ozonolysis 

All ozonolyses were carried out with a DÉGREMONT TECHNOLOGIES ozone generator on level 2 

oxygen flow with power level 11 of ozone production. 
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6. EXPERIMENTAL PROCEDURES 

6.1 Part I: Biomimetic Synthesis of Dibefurin and Epicolactone 

6.1.1 Synthesis of Epicoccine 

(3,4,5-trimethoxy-2-methylphenyl)methanol (160) 

 

Benzyl alcohol 172 (1.0 ml, 1.2 g, 6.2 mmol) was suspended in n-hexane (13 ml) and n-BuLi in n-

hexane (c = 2.5 M, 5.2 ml, 13 mmol, 2.1 eq.) was added slowly at 5 °C. After stirring for 10 h at 0 °C, 

the reaction mixture was treated with MeI (1.2 ml, 2.7 g, 19 mmol, 3.0 eq.) stirred at rt for 13 h. The 

reaction mixture was diluted with EtOAc (20 ml) and the organic phases washed with aq. sat. NaHCO3 

solution (3x20 ml). The organic phase was concentrated under reduced pressure and the residue 

purified by flash column chromatography (13x2.5 cm, 30–40% EtOAc/hexanes) to yield the title 

compound as a yellowish oil (705 mg, 53%). 

The analytical data was in agreement with literature precedence.
[195]

 

TLC Rf = 0.20 (30% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 6.76 (s, 1H), 5.29 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.83 (s, 

3H), 2.18 (s, 3H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 152.2, 151.3, 141.9, 134.4, 122.1, 107.4, 63.6, 61.0, 60.8, 56.2, 

10.8 ppm. 

MS  (EI, %): 212.10 (100, M
+
), 194.09 (27), 141.09 (20), 77.04 (7). 

HRMS  (EI, m/z): calc. [M
+
]: 212.1049; found: 212.1041 [M

+
]. 

IR  𝜈 = 3417 (vw), 2935 (w), 2834 (vw), 1602 (vw), 1583 (vw), 1491 (m), 1458 (m), 1432 

(w), 1405 (m), 1325 (s), 1281 (vw), 1238 (w), 1194 (m), 1167 (vs), 1048 (s), 1007 

(m), 975 (m), 914 (m), 840 (w), 779 (vw), 713 (w), 671 (vw) cm
–1

. 
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methyl 2,3,4-trimethoxybenzoate (174)  

 

Acid 173 (4.00 g, 0.0189 mol) was dissolved in MeOH (32 ml) and conc. H2SO4 was added (1.15 

ml, 2.12 g, 0.0216 mol, 1.14 eq).The reaction mixture was heated to reflux for 26 h. Sat. aq. NaHCO3 

(100 ml) was added and the aqueous phase was extracted with CH2Cl2 (3x150 ml). The combined 

organic phases were washed with brine (150 ml), dried over Na2SO4 and concentrated under reduced 

pressure to afford the title compound as a yellow oil (4.28 g, quant.) that was taken forward without 

further purification. 

Analytical data was in agreement with literature precedence.
[194]

 

TLC Rf = 0.39 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 7.59 (d, J = 8.9 Hz, 1H), 6.69 (d, J = 8.9 Hz, 1H), 3.92 (s, 3H), 

3.89 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 166.2, 157.3, 154.8, 143.0, 127.1, 117.9, 107.0, 61.9, 61.1, 

56.2, 52.1 ppm. 

MS  (EI, %): 226.06 (100, M
+
), 195.04 (100), 193.03 (62), 179.01 (34), 153.01 (28), 

137.00 (20), 109.00 (12). 

HRMS (EI, m/z): calc. [M
+
]: 226.0841; found: 226.0832 [M

+
]. 

IR  𝜈 = 2992 (vw), 2945 (vw), 2841 (vw), 1722 (s), 1593 (s), 1494 (m), 1464 (s), 1430 

(m) 1411 (s), 1288 (vs), 1270 (vs), 1237 (w), 1216 (vs), 1188 (w), 1137 (m), 1095 

(vs), 1033 (s), 1015 (m), 982 (w), 923 (vw), 872 (vw), 820 (vw), 799 (w), 790 (w), 

750 (w), 695 (w) cm
–1

. 

7-(chloromethyl)-4,5,6-trimethoxyisobenzofuran-1(3H)-one (176)  
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Eudesmic acid (10.0 g, 47.1 mmol) was dissolved in formalin (25 ml) and conc. HCl solution (40 

ml) and the reaction mixture was heated to 140 °C in a preheated oil bath for 20 min. The oil bath was 

removed and the suspension was allowed to cool for 5 min before H2O (50 ml) was added. The title 

compound was precipitated upon cooling to 0 °C with an ice bath. The precipitate was filtered off and 

dried under HV to afford the title compound 176 (12.1 g, 94%) as a colorless solid. The title 

compound could be taken forward to the next step without need for purification. 

Analytical data was in agreement with literature precedence.
[162]

 

 

TLC Rf = 0.19 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 5.24 (s, 2H), 5.06 (s, 2H), 4.00 (s, 3H), 3.99 (s, 3H), 3.96 (s, 

3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 169.6, 154.4, 150.2, 148.1, 134.4, 126.2, 118.6, 67.2, 62.0, 

61.2, 60.5, 34.1 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 272.0452; found: 272.0439 [M

+
]. 

IR  𝜈 = 2976 (vw), 2944 (vw), 2834 (vw), 1755 (vs), 1610 (vw), 1485 (m), 1460 (m), 

1433 (w), 1414 (w), 1343 (vs), 1294 (w), 1266 (vw), 1192 (w), 1128 (s), 1066 (m), 

1032 (m), 1001 (vs), 958 (m), 936 (w), 899 (vw), 853 (vw), 771 (vw), 721 (vw), 667 

(w) cm
–1

. 

4,5,6-trimethoxy-7-methylisobenzofuran-1(3H)-one (177)  

 

Benzyl chloride 176 (11.25 g, 41.26 mmol) was dissolved in THF (150 ml) and aq. KH2PO4 

solution (c = 1 M, 72 ml) and zinc powder (27.0 g, 0.412 mol, 10 eq.) were added. The resulting 

suspension was stirred for 1 h, filtered over Celite and the filter cake was washed with EtOAc. Sat. aq. 

NaHCO3 solution (150 ml) was added to the filtrate and the resulting mixture was extracted with 

EtOAc (2x150 ml). The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography (15x7 cm, 25% 

EtOAc/hexanes) to afford the title compound 177 (8.37 g, 85%) as a colorless solid. The crude product 

could also be carried forward in the following steps without purification affording comparable overall 

yield. 
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TLC Rf = 0.49 (33% EtOAc/hexanes) 

m.p.:  90–91 °C 

1
H NMR  (400 MHz, CDCl3): δ 5.19 (s, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 3.83 (s, 3H), 2.52 (s, 

3H) ppm. 

13
C NMR (100 MHz, CDCl3): δ 170.8, 153.5, 150.5, 145.3, 134.3, 128.4, 118.7, 66.8, 61.2, 

60.9, 60.6, 10.1 ppm. 

HRMS (EI, m/z): calc. [M
+
]: 238.0841; found: [M

+
] 238.0839 

IR  𝜈 = 2976 (vw), 2940 (vw), 2838 (vw), 1743 (vs), 1608 (vw), 1589 (vw), 1485 (m), 

1455 (s), 1427 (m), 1406, 1364 (m), 1341 (vs), 1298 (w), 1281 (w), 1191 (w), 1154 

(w), 1124 (vs), 1083 (s), 1034 (vs), 1011 (vs), 997 (vs), 961 (s), 889 (m), 854 (m), 783 

(m), 767 (m), 756 (w), 709 (w), 667 (w) cm
–1 

4,5,6-trimethoxy-7-methyl-1,3-dihydroisobenzofuran (163)  

 

Lactone 177 (8.00 g, 33.6 mmol) was dissolved in CH2Cl2 (500 ml) and cooled to 60 °C. DIBAL 

(c = 1.2 M in toluene, 64.3 ml, 77.2 mmol, 2.3 eq.) was added in a slow stream and the reaction 

mixture was stirred for 2 h. MeOH (20 ml) and water (20 ml) were added carefully and the reaction 

mixture was allowed to warm to rt. Sat. aq. Rochelle salt solution (200 ml) was added and the aqueous 

phase was extracted with CH2Cl2 (4x150 ml). The combined organic phases were washed with brine 

(200 ml), dried over Na2SO4 and concentrated under reduced pressure. The crude product was dried on 

HV before it was redissolved in CH2Cl2 (170 ml) and cooled to 0 °C. Triethylsilane (53.7 ml, 39.1 g, 

0.336 mol, 10 eq.) and TFA (2.57 ml, 3.83 g, 33.6 mmol, 1.0 eq.) were added and the reaction mixture 

was allowed to warm to rt. After 2 h, aq. pH 7.2 phosphate buffer (c = 1.0 M, 150 ml) was added and 

the aqueous phase was extracted with EtOAc (3x100 ml). The combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (22x7 cm, 8% EtOAc/hexanes) to afford the title compound 163 as a 

colorless solid (4.34 g, 58% over 2 steps). 

TLC Rf = 0.71 (33% EtOAc/hexanes). 

m.p.:  43 °C. 

1
H NMR  (400 MHz, CDCl3): δ 5.16 (t, J = 2.1 Hz, 2H), 5.00 (t, J = 2.1 Hz, 2H), 3.88 (s, 3H), 

3.86 (s, 3H), 3.83 (s, 3H), 2.08 (s, 3H) ppm. 
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13
C NMR  (100 MHz, CDCl3): δ 152.0, 145.8, 144.8, 134.2, 125.2, 119.5, 73.4, 72.7, 61.2, 60.9, 

60.3, 12.5 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 224.1049; found: [M

+
] 224.1036. 

IR  𝜈 = 2935 (w), 1478 (s), 1422 (m), 1363 (s), 1349 (vs), 1195 (w), 1114 (s), 1059 (s), 

1015 (m), 976 (m), 904 (w) cm
–1

. 

7-methyl-1,3-dihydroisobenzofuran-4,5,6-triol (epicoccine)  

 

Trimethylether 163 (3.00 g, 13.4 mmol) was dissolved in CH2Cl2 (50 ml) and the solution was 

cooled to 78 °C. Neat BBr3 (5.71 ml, 60.2 mmol, 4.5 eq.) was added dropwise, the reaction was 

allowed to warm to rt and stirred for 14 h. The reaction mixture was slowly poured onto aq. pH 4.5 

phosphate buffer (c = 1 M, 100 ml) cooled to 0 °C and the aqueous layer was extracted with EtOAc 

(3x150 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The residue was filtered over a C18 silica plug (10% MeCN/H2O + 1% FA) and the filtrate 

was extracted with EtOAc (3x50 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure to afford epicoccine
 
as a colorless solid (1.95 g, 80%). 

TLC Rf = 0.12 (33% EtOAc/hexanes) – unstable on silica 

m.p.:  > 200°C (gradual decomp.). 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.19 (brs, 3H), 4.96 (t, J = 2.1 Hz, 2H), 4.90 (t, J = 2.1 Hz, 

2H), 2.01 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 144.7, 138.4, 133.1, 130.6, 117.1, 109.6, 73.6, 72.6, 12.2 

ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 182.0579; found: [M

+
]: 182.0574 

IR  𝜈 = 3428 (w), 3182 (br, w), 2916 (vw), 2876 (vw), 1625 (vw), 1505 (m), 1477 (m), 

1382 (m), 1306 (vs), 1259 (s), 1111 (s), 1099 (s), 1049 (m), 1015 (m), 952 (m), 883 

(vs), 867 (vs), 767 (s), 723 (w) cm
–1  
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6.1.2 Synthesis of Dibefurin 

(3aR,4S,9aS,10R)-4,10-dihydroxy-6,12-dimethyl-1H,3H,4H,9H-3a,10:4,9a-

dimethanocyclodeca[1,2-c:6,7-c']difuran-5,11,13,14(7H,10H)-tetraone (dibefurin)  

 

Epicoccine (50 mg, 0.27 mmol) was suspended in MeCN (2.0 ml) and cooled to 0 °C. A solution 

of K3[Fe(CN)6] (181 mg, 0.550 mmol, 2.0 eq.) and NaHCO3 (46 mg, 0.55 mmol, 2.0 eq.) in H2O (4.0 

ml) was added dropwise. The reaction mixture was stirred for 30 min at 0 °C and the precipitate was 

separated by centrifugation (4000 rpm, 15 min, 10 °C). The aqueous phase was decanted off, crude 

dibefurin triturated with THF (1 ml) and the suspension centrifuged (11000 rpm, 5 min). The 

trituration was repeated twice to afford dibefurin as a colorless solid. The combined THF phases were 

concentrated under reduced pressure and the remaining solid was again triturated according to the 

above procedure to afford a second batch of dibefurin as a colorless solid (combined yield: 24 mg, 

49%). Alternatively, crude dibefurin can be crystallized from DMF by slow diffusion of water at rt to 

afford the title compound as a colorless solid (20 mg, 40%). X-Ray suitable crystals were obtained by 

crystallization from MeCN. 

Formation of a major byproduct, regioisomer 185, was observed under the dimerization 

conditions (vide infra). 

The natural product decomposes in DMSO at rt. The 
13

C NMR spectrum was hence recorded in 

DMF-d
7
 in addition to DMSO-d

6
.  

The analytical data was in agreement with literature precedence.
[150]

 

LC/MS  2.58 min (1040% MeCN/H2O, 5 min, 2 ml/min). 

m.p.:  204205 °C (decomposition). 

1
H NMR  (400 MHz, DMSO-d

6
): δ 7.21 (s, 2H), 4.63 (d, J = 15.5 Hz, 2H), 4.57 (d, J = 15.5 

Hz, 2H), 4.35 (d, J = 9.4 Hz, 2H), 4.23 (d, J = 9.4 Hz, 2H), 1.70 (s, 6H) ppm. 

13
C NMR  (100 MHz, DMSO-d

6
): δ 196.0, 192.3, 158.0, 128.1, 88.7, 69.9, 65.9, 64.3, 12.4 ppm. 

13
C NMR  (100 MHz, DMF-d

7
): δ 197.2, 193.7, 159.6, 129.6, 90.3, 71.3, 67.6, 65.8, 13.0 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 360.0845; found: 360.0835 [M

+
]. 
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IR 𝜈 = 3294 (br, w), 2970 (vw), 2907 (vw), 2849 (vw), 1752 (vs), 1668 (s), 1648 (vs), 

1536 (vw), 1509 (vw), 1480 (vw), 1444 (vw), 1381 (vw), 1344 (m), 1314 (w), 1238 

(vs), 1172 (m), 1063 (s), 1025 (s), 924 (m), 883 (vs), 749 (w), 700 (vw) cm
–1

. 

1
H NMR (DMSO-d

6
): 

chemical shift  

δ/ppm (natural sample) 

chemical shift  

δ/ppm (synthetic sample)  

Δδ/ppm 

   

7.16 (s, 2H) 7.21 (s, 2H) +0.05 

4.63 (d, J = 15 Hz, 2H) 4.63 (d, J = 15.5 Hz, 2H) 0.00 

4.58 (d, J = 15 Hz, 2H) 4.57 (d, J = 15.5 Hz, 2H) 0.01 

4.36 (d, J = 9.3 Hz, 2H) 4.35 (d, J = 9.4 Hz, 2H) 0.01 

4.24 (d, J = 9.3 Hz, 2H) 4.23 (d, J = 9.4 Hz, 2H) 0.01 

1.70 (s, 6H) 1.70 (s, 6H) 0.00 

 

13
C NMR (DMSO-d

6
): 

chemical shift  

δ/ppm (natural sample) 

chemical shift  

δ/ppm (synthetic sample)  

Δδ/ppm 

   

195.8 196.0 +0.2 

192.2 192.3 +0.1 

157.9 158.0 +0.1 

128.0 128.1 +0.1 

88.6 88.7 +0.1 

69.8 69.9 +0.1 

65.9 65.9 0.0 

64.3 64.3 0.0 

12.3 12.4 +0.1 

 

Successful procedures from Table 3. 

 

NMR yields were determined from the crude sample by addition of internal standard 1,3,5-

trimethoxybenzene to solution of crude dibefurin in DMSO-d
6
.  

 

Entry 3: 

 

Epicoccine (40 mg, 0.22 mmol) was dissolved in pH 5 phosphate buffer (c = 1 M, 2 ml) and 

MeCN (2 ml) and cooled to 0 °C. A solution of Frémy salt (247 mg, 0.92 mmol, 4.2 eq.) in water (2 
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ml) was added dropwise and the solution was allowed to slowly warm to rt overnight. The resulting 

suspension was centrifuged (11000 rpm, 15 min) and the obtained crude dibefurin triturated with THF 

(0.7 ml) and the suspension centrifuged (11000 rpm, 5 min). The trituration was repeated to afford 

dibefurin as a colorless solid (10 mg, 25%).  

 

Entry 5:  

 

Epicoccine (11 mg, 0.060 mmol) was dissolved in dioxane (1 ml) and treated with Ag2O (124 mg, 

0.54 mmol, 9.0 eq.). After 3 h, the solution was concentrated under reduced pressure to afford crude 

dibefurin (NMR yield: 30%). Purification by trituration was not applicable due to the presence of 

inorganic solids. 

 

Entry 18:  

 

Epicoccine (30 mg, 0.16 mmol) was dissolved in MeCN/H2O (3 ml, 2:1) and FeSO4·7H2O (5 mg, 

0.02 mmol, 0.1 eq.) was added. The solution was stirred for 20 h and the resulting suspension was 

centrifuged to give crude dibefurin (NMR yield: 29%). 

 

Entry 19:  

 

Epicoccine (45 mg, 0.25 mmol) was dissolved in MeCN/H2O (1.3 ml, 1:2) and FeSO4·7H2O (7 

mg, 0.03 mmol, 0.1 eq.) was added. Oxygen was passed through the solution for 5 min. The solution 

was stirred under oxygen pressure (balloon) for 62 h before a sat. aq. Na2H2EDTA solution (0.5 ml) 

was added. The suspension was centrifuged (11000 rpm, 10 min), crude dibefurin triturated with THF 

(0.5 ml) and the suspension centrifuged (11000 rpm, 5 min). The trituration was repeated two times to 

afford dibefurin as a colorless solid (10 mg, 23%). 

 

Dibefurin Isomer (185) 

 

Regioisomer 185 was observed as a side product of the oxidative dimerization of epicoccine. It 

can be removed from the crude reaction mixture by successive washings with THF, which yields pure 
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dibefurin (see procedure above). Concentration of these combined washings gives a sample that is 

enriched in isomer 185, but still contains dibefurin. From this sample, the spectroscopic data for 

isomer 185 can be tabulated. 

NMR spectroscopic data for dibefurin isomer 185: 

1
H NMR  (400 MHz, DMSO-d

6
): δ 7.25 (s, 1H), 7.19 (s, 1H), 4.92 (dd, J = 16.9, 3.9 Hz, 1H), 

4.81 (d, J = 16.9, 4.1 Hz, 1H), 4.754.65 (m, 2H), 4.644.50 (m, 2H), 4.29 (d, J = 9.4 

Hz, 1H), 4.19 (d, J = 9.4 Hz, 1H), 1.70 (s, 3H), 1.23 (s, 3H) ppm. NMR data was 

assigned based on analysis of an enriched mixture of dibefurin and isomer 185 (1:3.5). 

13
C NMR  (100 MHz, DMSO-d

6
): δ 199.3, 196.4, 191.9, 186.8, 161.0, 157.5, 133.4, 128.7, 89.8, 

89.6, 76.0, 72.0, 70.0, 65.8, 64.5, 57.8, 12.6, 10.0 ppm. NMR data was assigned based 

on analysis of an enriched mixture of dibefurin and isomer 185 (1:3.5). 

 

1
H NMR  (400 MHz, THF-d

8
): δ 6.47 (s, 1H), 6.34 (s, 1H), 5.05 (ddd, J = 16.3, 5.5, 3.5 Hz, 

1H), 4.75 (ddd, J = 16.3, 5.7, 3.4 Hz, 1H), 4.734.63 (m, 2H), 4.654.55 (m, 2H), 

4.36 (d, J = 9.3 Hz, 1H), 4.26 (d, J = 9.3 Hz, 1H), 1.75 (s, 3H), 1.29 (s, 3H) ppm. 

NMR data was assigned based on analysis of an enriched mixture of dibefurin and 

isomer 185 (1:5). 

13
C NMR  (100 MHz, THF-d

8
): δ 199.1, 196.6, 192.6, 187.8, 162.3, 159.1, 134.9, 129.6, 91.1, 

91.0, 77.1, 73.2, 71.0, 67.0, 65.8, 59.1, 12.6, 10.5 ppm. NMR data was assigned based 

on analysis of an enriched mixture of dibefurin and isomer 185 (1:5). 

The natural dibefurin spectrum shown in Figure 48 and Figure 49 was kindly provided by Dr. 

George S. Sheppard (AbbVie, Wilmette, Illinois, USA). Especially the singlet at δ 1.24 ppm could 

correspond to isomer 185 (Figure 48). Furthermore, Figure 49 shows the appearance of dublets that 

could be assigned to isomer 185. 
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Figure 48. 1H NMR spectrum of natural dibefurin with potential isomer 185. 

 

Figure 49. Expansion of a selected area of 1H NMR spectrum of natural dibefurin.  
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6.1.3 Synthesis of Epicoccone B 

4-methoxy-5-methylfuran-2(5H)-one (202)  

 

Furanone 201 (1.0 g, 8.8 mmol) in THF (9 ml) was added dropwise to a solution of n-BuLi (2.8 M 

in n-hexane, 3.3 ml, 9.2 mmol, 1.05 eq.) in THF (24 ml) at 78 °C. The reaction mixture was stirred 

for 1 h before MeI (0.82 ml, 1.9 g, 13 mmol, 1.5 eq.) was added and the solution was allowed to warm 

to rt overnight. After 12 h, the reaction mixture was treated with aq. sat. NaHCO3 solution (50 ml). 

The aqueous phase was extracted with CH2Cl2 (2x75 ml), EtOAc (1x75 ml), the combined organic 

phases washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (13x3.5 cm, 20–30–35–40% EtOAc/hexanes) 

to afford the title compound as a colorless oil (277 mg, 25%). 

The title compound seems to decompose under flash column chromatography conditions. 

TLC Rf = 0.24 (40% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 5.03 (brs, 1H), 4.81 (qd, J = 6.7, 0.9 Hz, 1H), 3.87 (s, 3H), 1.44 

(d, J = 6.7 Hz, 3H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 183.6, 172.5, 88.1, 75.4, 59.6, 17.9 ppm. 

MS  (EI, %): 128.02 (49, M
+
), 113.00 (62), 85.02 (100), 69.00 (40). 

HRMS  (EI, m/z): calc. [M
+
]: 128.0473; found: 128.0469 [M

+
]. 

IR  𝜈 = 3490 (br, vw), 3107 (vw), 2988 (vw), 2945 (vw), 1842 (vw), 1744 (vs), 1625 (vs), 

1452 (w), 1379 (w), 1365 (s), 1296 (s), 1244 (s), 1159 (s), 1109 (vw), 1085 (m), 1057 

(w), 982 (m), 943 (s), 897 (w), 830 (m), 804 (m), 703 (w), 654 (w) cm
–1

. 

dimethyl 3-hydroxy-5-methoxyphthalate (211)  
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Resorcinol 212 (1.61 g, 7.11 mmol) was dissolved in acetone (32 ml) and K2CO3 (1.47 g, 10.7 

mmol, 1.5 eq.) and dimethyl sulfate (0.67 ml, 0.89 g, 7.1 mmol, 1.0 eq.) were added. The reaction 

mixture was stirred for 4 h, filtered over Celite and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (13x4.5 cm, 15–20% EtOAc/hexanes) to afford 

the title compound as a colorless solid (1.03 g, 61%). 

TLC Rf = 0.29 (20% EtOAc/hexanes). 

m.p.:  71–73 °C. 

1
H NMR  (400 MHz, CDCl3): δ 11.00 (s, 1H), 6.48 (s, 1H), 6.45 (s, 1H), 3.85 (s, 6H), 3.79 (s, 

3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 169.4, 169.3, 164.5, 163.9, 137.2, 107.8, 102.7, 102.2, 55.8, 

52.7, 52.7 ppm. 

MS  (EI, %): 240.03 (26, M
+
), 208.00 (40), 150.01 (100), 83.96 (17), 48.91 (19). 

HRMS  (EI, m/z): calc. [M
+
]: 240.0634; found: 240.0630 [M

+
]. 

IR  𝜈 = 3145 (br, vw), 3088 (vw), 3006 (vw), 2954 (vw), 2850 (vw), 1737 (s), 1669 (vs), 

1617 (s), 1583 (m), 1501 (vw), 1435 (s), 1372 (w), 1344 (s), 1311 (m), 1268 (vs), 

1237 (s), 1200 (vs), 1152 (vs), 1115 (w), 1039 (m), 1024 (m), 971 (vw), 955 (vw), 899 

(vw), 850 (w), 803 (w), 783 (w), 762 (w), 707 (vw) cm
–1

. 

2,3-dihydroxy-4-methoxybenzoic acid (216)  

 

Benzoic acid 173 (8.49 g, 40.0 mmol) was dissolved in CH2Cl2 (30 ml) and the resulting solution 

was treated with BCl3 (c = 1 M in CH2Cl2, 40.0 ml, 40.0 mmol, 1.0 eq.) at 0 °C. The reaction mixture 

was warmed to rt and stirred for 1.5 h. BCl3 (c = 1 M in CH2Cl2, 60.0 ml, 60.0 mmol, 1.5 eq.) was 

added over 40 min to the reaction mixture and stirring was continued at rt for 12 h. The reaction 

mixture was poured onto an ice/water mixture (100 ml), treated with EtOAc (100 ml) and neutralized 

with aq. NaOH solution (2 M) and sat. aq. NaHCO3 solution. The organic layer was discarded and the 

aqueous phase acidified to pH 1 with aq. HCl solution (c = 6 M). The aqueous phase was extracted 

with EtOAc (3x100 ml), the combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. Boron impurities were removed by addition of MeOH (20 ml) and heating to reflux 

for 45 min. The crude mixture was cooled to 0 °C and the precipitate was filtered off to afford the title 

compound 216 as a colorless solid (3.78 g). The mother liquor was concentrated under reduced 

pressure, the residue taken up in MeOH, cooled to 0 °C and filtered to furnish an additional crop of the 
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title compound as a colorless solid (691 mg). Repetition of this procedure afforded a third batch of the 

title compound (198 mg). The mother liquor was concentrated under reduced pressure and the residue 

recrystallized from H2O (70 ml) to afford the title compound as a colorless solid (966 mg, combined 

yield: 76%). 

The analytical data was in agreement with literature precedence.
[194]

 

TLC Rf = 0.12 (20% MeOH/CH2Cl2). 

m.p.:  233235 °C. 

1
H NMR  (400 MHz, CD3OD): δ 7.41 (d, J = 8.9 Hz, 1H), 6.58 (d, J = 8.9 Hz, 1H), 3.90 (s, 3H) 

ppm. 

13
C NMR  (100 MHz, CD3OD): δ 173.7, 153.9, 151.8, 134.9, 122.6, 108.0, 104.0, 56.5 ppm. 

NOESY  (400 MHz, CD3OD): δ 6.58 (ArH)  3.90 (OCH3) ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 184.0372; found: 184.0372 [M

+
]. 

IR 𝜈 = 3349 (w), 3187 (w), 2954 (w), 2850 (w), 2628 (w), 2549 (w), 1650 (vs), 1618 (s), 

1507 (s), 1485 (m), 1459 (m), 1438 (s), 1391 (s), 1327 (m), 1275 (vs), 1231 (vs), 1182 

(m), 1162 (w), 1088 (vs), 1046 (w), 973 (vw), 933 (w), 920 (m), 897 (m), 812 (vw), 

770 (vs), 727 (s), 715 (w), 682 (m) cm
–1

. 

methyl 2,3-dihydroxy-4-methoxybenzoate (215)  

 

Catechol 216 (4.65 g, 25.3 mmol) was heated to reflux in MeOH (42 ml) and conc. H2SO4 (1.5 

ml) for 18 h. The reaction mixture was concentrated under reduced pressure and washed with water 

(50 ml). The aqueous phase was extracted with EtOAc (2x75 ml), the combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure. The residue was filtered over a short plug 

of silica with 70% EtOAc/hexanes and the solvent was removed under reduced pressure to afford the 

title compound 215 as a colorless solid (4.88 g, 98%). The filtration over a silica gel plug was not 

required and the crude sample could be used in the following steps with comparable yields. 

TLC Rf = 0.38 (30% EtOAc/hexanes). 

m.p.:  8486 °C. 

1
H NMR  (600 MHz, CDCl3): δ 10.83 (s, 1H), 7.41 (d, J = 8.9 Hz, 1H), 6.50 (d, J = 8.9 Hz, 

1H), 5.45 (s, 1H), 3.94 (s, 3H), 3.93 (s, 3H) ppm. 
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13
C NMR  (150 MHz, CDCl3): δ 170.6, 151.7, 149.4, 133.5, 121.5, 106.8, 103.1, 56.3, 52.3 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 198.0528; found: 198.0520 [M

+
]. 

IR  𝜈 = 3467 (br, w), 3164 (br, vw), 3008 (vw), 2956 (vw), 2844 (vw), 1666 (s), 1622 (w), 

1589 (vw), 1512 (m), 1456 (m), 1438 (s), 1392 (vw), 1369 (w), 1315 (m), 1288 (vs), 

1229 (s), 1192 (m), 1154 (m), 1082 (s), 1013 (m), 942 (vw), 901 (vw), 813 (vw), 801 

(vw), 771 (m), 730 (w), 714 (vw), 690 (vw) cm
–1

. 

methyl 5-formyl-2,3-dihydroxy-4-methoxybenzoate (219)  

 

Catechol 215 (4.88 g, 24.6 mmol) was heated to reflux in TFA (100 ml) with urotropine (6.90 g, 

49.2 mmol, 2.0 eq.). After 13 h, the reaction mixture was cooled to 50 °C, treated with water (425 ml) 

and stirred for 2 h at 50 °C. The suspension was cooled to rt and the aqueous phase was extracted with 

EtOAc (3x350 ml). The combined organic phases were washed with aq. pH 7.2 phosphate buffer 

(c = 1 M, 3x200 ml), dried over Na2SO4 and concentrated under reduced pressure to afford the title 

compound 219 as a colorless solid (5.20 g, 94%).  

TLC Rf = 0.26 (40% EtOAc/hexanes). 

m.p.:  180183 °C. 

1
H NMR  (400 MHz, CDCl3): δ 11.51 (s, 1H), 10.24 (s, 1H), 8.01 (s, 1H), 4.16 (s, 3H), 3.97 (s, 

3H) ppm. 1 –OH missing. 

13
C NMR  (75 MHz, CDCl3): δ 188.5, 170.4, 154.8, 153.4, 136.8, 122.3, 121.6, 108.3, 61.9, 52.9 

ppm. 

NOESY  (400 MHz, CDCl3): δ 3.97 (COOCH3)  8.01 (ArH); 10.24 (–CHO)  8.01 

(ArH), 4.16 (OCH3) ppm.  

HRMS  (EI, m/z): calc. [M
+
]: 226.0477; found: 226.0468 [M

+
]. 

IR  𝜈 = 3150 (br, w), 2953 (w), 2925 (w), 2851 (w), 1665 (vs), 1593 (m), 1490 (w), 1462 

(m), 1442 (s), 1382 (w), 1316 (vs), 1289 (s), 1267 (m), 1233 (m), 1188 (m), 1091 (s), 

1033 (w), 1014 (vw), 994 (w), 941 (w), 898 (vw), 792 (m), 731 (m), 705 (w), 658 

(vw) cm
–1

. 
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methyl 2,3-dihydroxy-4-methoxy-5-methylbenzoate (221)  

 

Aldehyde 219 (3.99 g, 17.6 mmol) was dissolved in THF / aq. HCl (c = 4 M, 200 ml, 1:1) and 

Pd/C (10 wt-%, 3.76 g, 3.52 mmol, 0.20 eq.) was added. The reaction mixture was purged with 

hydrogen gas and stirred for 45 h at room temperature under hydrogen atmosphere. The reaction 

mixture was filtered over Celite and the filter cake was washed with EtOAc. The biphasic mixture was 

extracted with EtOAc (3x250 ml), the combined organic phases were dried over Na2SO4 and 

concentrated to give the title compound 221 as a colorless solid (3.43 g, 92%) after purification by 

filtration over a silica gel plug with CH2Cl2. The filtration over a silica gel plug was not required and 

the crude sample could be used in the following steps with comparable yields. 

TLC Rf = 0.26 (10% EtOAc/hexanes). 

m.p.:  7779 °C. 

1
H NMR  (400 MHz, CDCl3): δ 10.74 (s, 1H), 7.18 (s, 1H), 5.55 (s, 1H), 3.95 (s, 3H), 3.92 (s, 

3H), 2.19 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 170.6, 150.3, 148.7, 137.2, 122.4, 121.2, 107.5, 60.3, 52.3, 15.8 

ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 212.0685; found: 212.0681 [M

+
]. 

IR  𝜈 = 3444 (br, vw), 3162 (br, vw), 2954 (w), 2855 (vw), 1667 (s), 1621 (w), 1496 (w), 

1465 (m), 1440 (vs), 1382 (w), 1353 (m), 1304 (vs), 1246 (vs), 1205 (vs), 1173 (s), 

1090 (s), 1044 (vs), 1000 (s), 943 (s), 876 (m), 789 (s), 764 (m), 704 (m), 661 (w)    

cm
–1

. 

6,7-dihydroxy-5-methoxy-4-methylisobenzofuran-1(3H)-one (196)  
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Catechol 221 (6.90 g, 32.5 mmol) was dissolved in aq. H2SO4 (40%, 260 ml) and dioxane (70 ml). 

Paraformaldehyde (2.44 g, 81.3 mmol, 2.5 eq.) was added and the reaction mixture was heated to 80 

°C for 12 h. The reaction mixture was cooled to 0 °C and neutralized by dropwise addition of aq. 

NaOH soln. (120 g in 250 ml). The mixture was then treated with water (250 ml) and extracted with 

EtOAc (5x250 ml). The combined organic phases were washed with water (2x250 ml), dried over 

Na2SO4 and concentrated under reduced pressure. The residue was taken up in Et2O and concentrated 

under reduced pressure. The co-evaporation procedure was repeated three more times to afford the title 

compound 12 as a brown solid (6.83 g, 99%).  

The title compound decomposes on silica gel but could be purified by filtration through a plug of 

C18 silica gel (20% MeCN/H2O + 1% FA). 

Strong acids HX with X

being nucleophilic led to partial demethylation and subsequent 

decomposition of the unprotected pyrogallol derivative under the reaction conditions. 

Single crystals for X-ray analysis were obtained by recrystallization from hot benzene. 

TLC Rf = 0.36 (5% MeOH/CH2Cl2). 

m.p.:  113115 °C. 

1
H NMR  (400 MHz, (CD3)2CO): δ 7.71 (brs, 2H), 5.18 (s, 2H), 3.87 (s, 3H), 2.11 (s, 3H) ppm. 

13
C NMR  (100 MHz, (CD3)2CO): δ 171.5, 153.2, 143.8, 138.8, 137.4, 117.1, 107.5, 69.6, 60.7, 

11.1 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 210.0528; found: 210.0525 [M

+
]. 

IR  𝜈 = 3426 (br, m), 2939 (w), 2865 (vw), 1732 (vs), 1626 (w), 1505 (m), 1456 (m), 1382 

(m), 1311 (s), 1220 (s), 1137 (m), 1083 (m), 1037 (s), 970 (m), 858 (w), 786 (w) cm
–1

. 

5,6,7-trihydroxy-4-methylisobenzofuran-1(3H)-one (epicoccone B)  

 

Methyl ether 196 (500 mg, 2.38 mmol) was dissolved in CH2Cl2 (1.7 ml) and cooled to 78 °C. 

BBr3 (c = 1 M in CH2Cl2, 9.5 ml, 9.5 mmol, 4.0 eq.) was added dropwise and the reaction mixture was 

allowed to stir for 12 h while slowly warming to rt. The reaction mixture was cooled to 0 °C and 

quenched by dropwise addition of aq. pH 7 phosphate buffer (c = 1 M, 5 ml) followed by 5% aq. 

H2SO4 (10 ml). The mixture was extracted with EtOAc (3x50 ml) and the combined organic phases 

dried over Na2SO4 and concentrated under reduced pressure. The title compound decomposes on silica 
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gel but could be purified by filtration through a plug of C18 silica gel (10% MeCN/H2O + 0.3% FA) to 

afford the title compound epicoccone B
 
as a colorless solid (338 mg, 72%). 

LC/MS 2.01 min (1090% MeCN/H2O, 6 min, 2ml/min). 

m.p.:  233240 °C (gradual decomp.). 

1
H NMR  (400 MHz, DMSO-d

6
): δ 9.37 (brs, 1H), 9.27 (brs, 1H), 8.74 (brs, 1H), 5.10 (s, 2H), 

1.97 (s, 3H) ppm. 

13
C NMR  (100 MHz, DMSO-d

6
): δ 169.9, 151.2, 143.1, 138.1, 132.9, 109.1, 102.8, 67.8, 10.8 

ppm. 

HRMS  (()-ESI, m/z): calc. [MH

]: 195.0299; found: 195.0296 [MH


]. 

IR  𝜈 = 3511 (w), 3438 (w), 3335 (w), 1741 (s), 1634 (w), 1519 (s), 1483 (w), 1455 (m), 

1404 (vw), 1382 (m), 1346 (vw), 1327 (vw), 1265 (vs), 1223 (s), 1188 (m), 1121 (w), 

1102 (m), 1068 (m), 1021 (vs), 990 (vs), 943 (s), 873 (s), 774 (vs), 742 (m), 736 (w), 

713 (m) cm
–1

. 

6,7-bis((tert-butyldimethylsilyl)oxy)-5-methoxy-4-methylisobenzofuran-1(3H)-one (228) 

 

Catechol 196 (102 mg, 0.485 mmol) was dissolved in DMF (0.3 ml) and TBSCl (176 mg, 1.16 

mmol, 2.4 eq.), imidazole (159 mg, 2.33 mmol, 4.8 eq.) and DMAP (12 mg, 0.097 mmol, 0.2 eq.) 

were added. After 22 h, pH 4.5 phosphate buffer (c = 0.1 M, 3 ml) was added and the aqueous phase 

was extracted with Et2O (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. The residue was purified by flash column chromatography (12x2 

cm, 5–10% EtOAc/hexanes + 1% NEt3) to afford the title compound as a yellowish oil (163 mg, 77%). 

TLC Rf = 0.20 (5% EtOAc/hexanes). 

m.p.:  9092 °C. 

1
H NMR  (400 MHz, CD2Cl2): δ 5.04 (s, 2H), 3.74 (s, 3H), 2.12 (s, 3H), 1.05 (s, 9H), 1.01 (s, 

9H), 0.14 (s, 6H), 0.14 (s, 6H) ppm. 

13
C NMR  (100 MHz, CD2Cl2): δ 169.6, 157.3, 145.8, 141.9, 140.1, 119.1, 113.2, 68.0, 60.6, 

26.4, 26.3, 18.8, 18.7, 11.3, 3.9, 3.9 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 439.2331; found: 439.2331 [M+H

+
] 
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IR  𝜈 = 2950 (w), 2929 (m), 2887 (w), 2858 (w), 1769 (vs), 1606 (vw), 1591 (vw), 1472 

(s), 1449 (m), 1408 (w), 1356 (vs), 1282 (w), 1250 (m), 1193 (vw), 1138 (m), 1037 

(s), 1018 (w), 983 (s), 961 (w), 885 (s), 837 (vs), 825 (s), 813 (s), 797 (w), 781 (s), 

677 (vw) cm
–1

. 
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6.1.4 Synthesis of Epicolactone 

5-methoxy-4-methylisobenzofuran-1,6,7(3H)-trione (197)  

 

To catechol 196 (100 mg, 0.476 mmol) was added Et2O (20 ml) and the suspension was stirred 

until most of catechol 196 was dissolved. o-Chloranil (123 mg, 0.500 mmol, 1.05 eq.) was added and 

the solution was cooled to 78 °C after 30 sec. The reaction mixture was stirred at this temperature for 

1 h and the solvent was quickly removed under reduced pressure at below 0 °C (ca. 100125 mbar). 

The residue was washed with 78 °C cold Et2O until the ethereal phase was only pale yellow (5x1.5 

ml). The title compound 197 was obtained as a red-brown solid (76 mg, 77%) with traces of 

tetrachlorocatechol and starting material as minor impurity. 

The title compound fully decomposes overnight in solution. It is stable as a solid at 30 °C for 

more than three months.  

m.p.:  179182 °C (decomposition). 

1
H NMR  (400 MHz, (D3C)2CO): δ 5.53 (s, 2H), 4.03 (s, 3H), 2.08 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 177.1, 176.4, 172.3, 166.7, 155.4, 125.6, 118.5, 69.5, 61.0, 

10.8 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 209.0444; found: 209.0444 [M+H

+
]. 

IR  𝜈 = 3341 (br, vw), 2950 (vw), 2919 (vw), 2849 (vw), 1760 (vs), 1743 (m), 1678 (vs), 

1653 (w), 1578 (m), 1450 (w), 1440 (w), 1407 (w), 1385 (w), 1346 (m), 1295 (m), 

1278 (m), 1182 (vw), 1102 (s), 1024 (vs), 955 (w), 938 (s), 873 (w), 827 (vw), 807 

(vw), 747 (w), 729 (vw) cm
–1

. 

3,6,7-trihydroxy-5-methoxy-4-methylisobenzofuran-1(3H)-one (238) 
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o-Quinone 197 was dissolved in acetone-d
6
 (0.7 ml) and its decomposition was monitored by 

1
H NMR. After 18 h, the o-quinone 197 was fully converted into hydroxyisobenzofuranone 238. 

1
H NMR  (400 MHz, (D3C)2CO): δ 6.57 (s, 1H), 3.87 (s, 3H), 2.23 (s, 3H) ppm. 

HRMS  (()-ESI, m/z): calc. [MH

]: 225.0399; found: 225.0404 [MH


]. 

rac-(6aR,12aR)-5-methoxy-4,10-dimethyl-1,12-dioxo-1,3-dihydro-7H-[1,4]dioxino[2,3-d:3,2-

d':6,5-e'']triisobenzofuran-11,12a(12H)-diyl diacetate (240)  

 

Epicoccine (15 mg, 0.082 mmol) and o-quinone 197 (34 mg, 0.16 mmol, 2.0 eq.) were suspended 

in dioxane (0.1 ml) and the resulting mixture stirred at rt for 12 h. CH2Cl2 (0.5 ml) was added, 

followed by Ac2O (0.2 ml) and pyridine (0.2 ml) and the resulting mixture stirred for 2 h at rt. The 

reaction mixture was diluted with EtOAc (20 ml) and washed with aq. pH 5 phosphate buffer (c = 1 M, 

10 ml), dried over Na2SO4 and concentrated under reduced pressure. The crude mixture was purified 

by preparative TLC (70% EtOAc in hexanes) to give the title compound as a pale yellow film (4.0 mg, 

10%). Single crystals for X-ray analysis were obtained by slow diffusion of water into a DMSO 

solution of the compound in a hanging-drop setup. 

TLC Rf = 0.32 (70% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 7.10 (s, 1H), 5.09 (s, 2H), 4.71 (d, J = 11.5 Hz, 1H), 4.36 (d, 

J = 11.5 Hz, 1H), 3.81 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H) 

ppm. 

13
C NMR  (100 MHz, CDCl3): δ 180.6, 168.3, 167.8, 166.1, 153.3, 151.3, 141.2, 138.9, 135.2, 

133.5, 132.9, 119.0, 113.0, 108.1, 92.7, 84.7, 74.7, 68.4, 61.2, 21.2, 20.3, 13.3, 11.1 

ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 495.0898; found: 495.0896 [M+Na

+
]. 

IR  𝜈 = 1765 (s), 1708 (w), 1622 (m), 1600 (s), 1562 (m), 1556 (m), 1510 (w), 1502 (m), 

1483 (m), 1463 (s), 1364 (s), 1344 (m), 1326 (w), 1280 (w), 1253 (w), 1192 (s), 1124 

(vs), 1085 (s), 1059 (s), 1032 (vs), 1006 (m), 970 (w), 782 (m) cm
–1

. 
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5-methoxy-7-methyl-1,3-dihydroisobenzofuran-4,6-diol (143)  

 

Epicoccine (49 mg, 0.27 mmol) was dissolved in DMF (1.0 ml) and K2CO3 (38 mg, 0.27 mmol, 

1.0 eq.) and MeI (17 l, 38 mg, 0.27 mmol, 1.0 eq.) were added. The reaction mixture was stirred for 

12 h and pH 7.2 buffer (c = 1 M, 10 ml) was added. The aqueous phase was extracted with EtOAc 

(3x10 ml), the combined organic phases were washed with brine (2x15 ml), dried over Na2SO4 and 

concentrated under reduced pressure. The residue was subjected to flash column chromatography 

(16x2.5 cm, 25–35–45% EtOAc/hexanes) to afford the title compound as a colorless solid (19 mg, 

36%). 

TLC Rf = 0.48 (50% EtOAc/hexanes). 

m.p.:  157160 °C. 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.85 (s, 1H), 7.58 (s, 1H), 4.96 (t, J = 2.0 Hz, 2H), 4.91 (t, 

J = 2.0 Hz, 2H), 3.74 (s, 3H), 2.00 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 148.7, 142.7, 135.7, 135.2, 116.8, 109.4, 73.7, 72.5, 61.0, 

12.0 ppm. 

HRMS  (()-ESI, m/z): calc. [MH

]: 195.0657; found: 195.0660 [MH


]. 

IR  𝜈 = 3360 (br, m), 2915 (w), 2853 (w), 1615 (w), 1494 (m), 1463 (m), 1455 (m), 1435 

(w), 1375 (vs), 1337 (m), 1321 (s), 1272 (m), 1229 (m), 1114 (vs), 1054 (s), 985 (s), 

935 (w), 896 (s), 878 (s), 765 (m), 726 (w) cm
–1

. 

4-methoxy-7-methyl-1,3-dihydroisobenzofuran-5,6-diol (256)  

 

Trimethyl ether 163 (100 mg, 0.446 mmol) was dissolved in CH2Cl2 (4.5 ml) and the solution was 

cooled to –78 °C. A solution of BBr3 in CH2Cl2 (c = 1 M, 1.3 ml, 1.3 mmol, 3 eq.) was introduced 

dropwise and the reaction mixture allowed to warm to rt. After stirring for 20 min at rt, the reaction 
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mixture was cooled to –78 °C and pH 5 buffer (c = 1 M, 5 ml) and brine (10 ml) were added. The 

aqueous phase was extracted with EtOAc (4x10 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (12x2.5 cm, 33% EtOAc/hexanes) to afford the title compound as a colorless solid 

(72 mg, 83%). 

TLC Rf = 0.51 (33% EtOAc/hexanes). 

m.p.:  139–141 °C. 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.67 (brs, 1H), 7.20 (brs, 1H), 5.09 (s, 2H), 4.90 (s, 2H), 

3.75 (s, 3H), 2.03 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 144.6, 140.9, 136.1, 130.6, 119.8, 112.7, 73.2, 72.6, 59.8, 

12.2 ppm. 

MS  (EI, %): 196.08 (100, M
+
), 195.07 (93), 167.06 (64), 152.04 (19), 77.00 (15). 

HRMS  (EI, m/z): calc. [M
+
]: 196.0736; found: 196.0733 [M

+
]. 

IR  𝜈 = 3342 (m), 2855 (w), 1627 (w), 1501 (vs), 1472 (s), 1368 (s), 1327 (s), 1290 (vs), 

1271 (vs), 1193 (m), 1111 (vs), 1053 (s), 1003 (m), 903 (s), 766 (w), 725 (w), 668 (w) 

cm
–1

. 

4-methoxy-7-methylisobenzofuran-5,6(1H,3H)-dione (252)  

 

Catechol 256 (100 mg, 0.510 mmol) was dissolved in Et2O (20 ml) and o-chloranil (132 mg, 

0.537 mmol, 1.05 eq.) was added. The reaction mixture was stirred for 1 min at rt and then cooled to 

78 °C. After additional stirring for 1 h at 78 °C, the suspension was filtered at 78 °C with 

precooled glassware. The filter cake was washed with 78 °C cold Et2O and the title compound was 

obtained as a dark red solid (75 mg, 76%). 

m.p.:  130131 °C (decomposition). 

1
H NMR  (400 MHz, (D3C)2CO): δ 4.84 (s, 2H), 4.74 (s, 2H), 3.90 (s, 3H), 1.79 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 178.5, 176.5, 153.3, 145.0, 135.4, 125.1, 70.9, 69.8, 59.7, 

11.7 ppm. 

MS  (EI, %): 195.04 (4, M
+
), 167.03 (3), 57.99 (43), 42.97 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 194.0579; found: 194.0587 [M

+
]. 
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IR  𝜈 = 3013 (vw), 2953 (vw), 2891 (vw), 2848 (vw), 1688 (s), 1664 (s), 1651 (s), 1621 

(vw), 1600 (s), 1455 (w), 1443 (m), 1383 (w), 1359 (w), 1338 (w), 1324 (s), 1284 (s), 

1247 (w), 1227 (w), 1200 (w), 1186 (w), 1119 (m), 1094 (vs), 1057 (s), 1005 (m), 978 

(m), 933 (m), 922 (s), 885 (w), 811 (vw), 750 (vw), 726 (m), 667 (vw) cm
–1

. 

4-hydroxy-3-methoxy-2-methylbenzaldehyde (166) 

 

A solution of n-BuLi in hexanes (c = 2.5 M, 74.0 ml, 185 mmol, 3.0 eq.) was added dropwise to a 

solution of phenol 165 (10.35 g, 61.51 mmol) in THF (100 ml) at 10 °C. The resulting mixture was 

stirred at 5 °C for 5 h and then cooled to 78 °C. MeI (13.4 ml, 30.6 g, 215 mmol, 3.5 eq.) was 

subsequently added very slowly and the resulting reaction mixture was allowed to warm to 0 °C. 

Stirring was continued for 30 min before H2O (100 ml) and CH2Cl2 (300 ml) were added. The organic 

phase was washed with sat. aq. NaHCO3 (3x150 ml) and brine (200 ml) and concentrated under 

reduced pressure. 

The crude product was dissolved in CH2Cl2/H2O (95:5, 385 ml) and DDQ (14.1 g, 62.1 mmol, 

1.01 eq.) was added in 2 portions in a water bath. The water bath was removed and the reaction 

mixture stirred for 5 h before concentration under reduced pressure. The suspension was filtered over a 

silica plug (3x6.5 cm, CH2Cl2) and the crude product was purified by flash column chromatography 

(16x10 cm, 20304050% Et2O/hexanes). The resulting mixed fractions were again subjected to 

flash column chromatography to afford the title compound as a colorless solid (3.60 g, 35%). 

TLC Rf = 0.24 (15% EtOAc/hexanes). 

1
H NMR (300 MHz, CDCl3): δ 10.05 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 

1H), 6.24 (s, 1H), 3.81 (s, 3H), 2.61 (s, 3H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 191.6, 154.1, 146.0, 134.3, 131.4, 128.6, 113.2, 61.4, 12.1 ppm. 

MS  (EI, %): 166.01 (100, M
+
), 151.00 (57), 123.01 (36), 77.02 (20). 

HRMS  (EI, m/z): calc. [M
+
]: 166.0630; found: 166.0621 [M

+
]. 

IR  𝜈 = 3239 (br, w), 2996 (vw), 2976 (vw), 2948 (vw), 2866 (vw), 2833 (vw), 2766 (vw), 

1669 (s), 1585 (vs), 1491 (w), 1458 (vs), 1438 (w), 1410 (m), 1378 (vw), 1351 (vw) 

1310 (vs), 1264 (w), 1212 (m), 1173 (vs), 1155 (vs), 1093 (m), 1031 (vw), 986 (m), 

955 (vw), 879 (vw), 835 (vw), 821 (w), 783 (m), 764 (vw), 700 (vw), 664 (m) cm
–1

. 
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5-bromo-4-hydroxy-3-methoxy-2-methylbenzaldehyde (167) 

 

Bromine (1.5 ml, 4.5 g, 28 mmol, 1.2 eq.) was added to a solution of aldehyde 166 (3.91 g, 23.5 

mmol) and NaOAc (2.32 g, 28.3 mmol, 1.2 eq.) in HOAc (66 ml) in a water bath. The water bath was 

removed and the resulting solution was stirred at rt for 8.5 h. The reaction mixture was poured onto ice 

water (290 ml) and subsequently filtered at 0 °C (Buchner funnel sintered glass por. 4) to obtain the 

title compound as a colorless solid (5.59 g, 97%) after drying under HV. 

TLC Rf = 0.24 (20% EtOAc/hexanes). 

m.p.:  157–160 °C. 

1
H NMR  (600 MHz, CDCl3): δ 10.04 (s, 1H), 7.76 (s, 1H), 6.36 (s, 1H), 3.84 (s, 3H), 2.57 (s, 

3H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 190.2, 151.4, 146.5, 133.9, 132.9, 129.0, 107.0, 61.3, 11.8 ppm. 

MS  (EI, %): 243.93 (100, M
+
), 228.90 (64), 200.90 (32), 94.01 (22), 65.00 (35) Mass data 

only given for 
79

Br containing compound. 

HRMS  (EI, m/z): calc. [M
+
]: 243.9735; found: 243.9731 [M

+
]. 

IR  𝜈 = 3131 (br, w), 3067 (w), 2992 (w), 2944 (w), 2881 (vw), 2794 (vw), 2639 (vw), 

1657 (s), 1561 (s), 1505 (vw), 1456 (m), 1418 (s), 1377 (vw), 1300 (vs), 1248 (m), 

1203 (vs), 1164 (vs), 1076 (m), 989 (vs), 894 (m), 827 (s), 781 (vw), 737 (w), 703 

(m), 688 (w) cm
–1

. 

4,5-dihydroxy-3-methoxy-2-methylbenzaldehyde (168) 

 

Bromide 167 (310 mg, 1.26 mmol) and NaOH (506 mg, 12.6 mmol, 10.0 eq.) were dissolved in 

H2O (6.5 ml) and Cu powder (particle size 45 m, 4 mg, 0.06 mmol, 0.05 eq.) was added. The 

resulting suspension was heated to reflux for 17 h, filtered and the pH of the resulting solution was 
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adjusted to pH = 7 with an aq. HCl solution (2 M). The aqueous phase was extracted with EtOAc 

(3x15 ml), the combined organic phases washed with aq. sat. Na2H2EDTA solution (50 ml), dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (12x2.5 cm, 50% EtOAc/hexanes) to afford the title compound as a brownish solid 

(173 mg, 75%). 

The purity of the starting material proved to be crucial for the success of this reaction. Traces of 

residual bromine led to failure presumably due to oxidation of the copper catalyst. Larger scale 

reactions were conducted under inert gas atmosphere with deaerated water (nitrogen bubbling through 

H2O for 20 min), higher catalyst loading (10 mol-%) and reflux for 47 h (58% product + 16% 

hydrodebrominated side product). 

TLC Rf = 0.21 (40% EtOAc/hexanes). 

m.p.:  148–150 °C. 

1
H NMR  (400 MHz, D3COD): δ 10.01 (s, 1H), 7.09 (s, 1H), 3.76 (s, 3H), 2.48 (s, 3H) ppm. 

13
C NMR  (100 MHz, D3COD): δ 192.9, 147.9, 146.5, 145.5, 128.3, 127.2, 114.7, 60.8, 10.7 

ppm. 

MS  (EI, %): 182.96 (100, M
+
), 167.95 (31), 139.98 (36), 65.00 (30). 

HRMS  (EI, m/z): calc. [M
+
]: 182.0579; found: 182.0573 [M

+
]. 

IR 𝜈 = 3308 (br, m), 2940 (w), 2849 (vw), 2730 (vw), 1665 (s), 1587 (s), 1495 (m), 1465 

(s), 1429 (w), 1411 (w), 1374 (m), 1366 (m), 1315 (vs), 1226 (s), 1194 (m), 1105 (vs), 

1017 (w), 946 (w), 874 (vw), 761 (vw), 731 (w), 705 (w) cm
–1

. 

An alternative procedure was identified using a homogeneous Cu catalyst: 

 

CuSO4·5 H2O (100 mg, 0.400 mmol, 0.02 eq.) was added to a solution of NaOH (8.06 g, 202 

mmol, 10.0 eq.) in deaerated H2O (81 ml) and the mixture was deaerated by passing a nitrogen stream 

through the solution for 30 min. The solution was gently heated to dissolve the copper salt and then 

cannulated onto bromide 167 (4.94 g, 20.2 mmol). The reaction mixture was heated to reflux for 16 h. 

After cooling to rt, the suspension was filtered and acidified with aq. HCl solution (c = 6 M). The 

aqueous phase was extracted with EtOAc (3x200 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was dissolved in acetone (100 

ml) and K2CO3 (5.86 g, 42.4 mmol, 2.1 eq.) and BnBr (5.03 ml, 7.25 g, 42.4 mmol, 2.1 eq.) were 

added. The reaction mixture was heated to reflux for 15 h and then cooled to rt. NEt3 (1.0 ml) was 

added and the reaction mixture concentrated under reduced pressure. The residue was dissolved in 

EtOAc (100 ml), washed with aq. HCl solution (c = 1 M, 2x100 ml), dried over Na2SO4 and 

concentrated under reduced pressure. Purification of the crude product by flash column 

chromatography (5–9% EtOAc/hexanes) to afford the compound 259 as a colorless oil (5.41 g, 74%). 

For analytical data, see compound 259. 
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4,5-bis(benzyloxy)-3-methoxy-2-methylbenzaldehyde (259) 

 

Catechol 168 (1.32 g, 7.23 mmol) was dissolved in MeCN (36 ml) and BnBr (2.60 g, 1.49 ml, 

15.2 mmol, 2.1 eq.) and K2CO3 (2.19 g, 15.9 mmol, 2.2 eq.) were subsequently added. The reaction 

mixture was heated to 85 °C for 16 h, filtered and concentrated under reduced pressure. The crude 

product could be used in the next step without further purification. An analytical sample was obtained 

after flash column chromatography (5710% EtOAc/hexanes) as a yellow oil. 

TLC Rf = 0.31 (10% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 10.24 (s, 1H), 7.47–7.29 (m, 11H), 5.15 (s, 2H), 5.13 (s, 2H), 

3.86 (s, 3H), 2.54 (s, 3H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 190.9, 152.9, 151.1, 147.3, 137.4, 136.6, 129.9, 129.1, 128.7, 

128.5, 128.5, 128.2, 127.7, 110.4, 75.4, 71.2, 61.1, 10.4 ppm. 1 aromatic C missing 

(overlapping) 

MS  (EI, %): 362.21 (2, M
+
), 271.12 (8), 181.09 (12), 91.04 (100), 65.02 (6). 

HRMS  (EI, m/z): calc. [M
+
]: 362.1518; found: 365.1518 [M

+
]. 

IR  𝜈 = 3091 (vw), 3063 (vw), 3030 (vw), 2934 (vw), 2873 (vw), 2726 (vw), 1740 (vw), 

1680 (s), 1589 (m), 1568 (w), 1497 (w), 1481 (m), 1452 (s), 1412 (w), 1376 (m), 1326 

(vs), 1282 (s), 1240 (w), 1219 (w), 1199 (w), 1188 (w), 1118 (vs), 1079 (m), 1040 (s), 

1028 (s), 1001 (m), 973 (m), 933 (w), 910 (w), 852 (w), 839 (w), 775 (w), 736 (s), 695 

(vs) cm
–1

. 

(4,5-bis(benzyloxy)-3-methoxy-2-methylphenyl)methanol (258)  

 

Benzaldehyde 259 (5.41 g, 14.9 mmol) was dissolved in EtOH (80 ml) and the solution cooled to 

0 °C. NaBH4 (845 mg, 22.4 mmol, 1.5 eq.) was introduced in 3 portions and the reaction mixture was 
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stirred at 0 °C for 2 h. The reaction mixture was treated with aq. phosphate buffer (c = 1 M, pH 5, 150 

ml) and the aqueous phase was extracted with EtOAc (2x200 ml). The combined organic phases were 

washed with H2O (200 ml) and brine (400 ml), dried over Na2SO4 and concentrated under reduced 

pressure. The product can be taken forward without further purification. 

The crude product can be purified by flash column chromatography (12x4.5 cm, 1–1.5% 

MeOH/CH2Cl2) on 10.4 mmol scale to yield the title compound as a pale yellow solid (3.19 g, 84% 

over 2 steps from 168). 

TLC Rf = 0.11 (20% EtOAc/hexanes). 

m.p.:  5052 °C. 

1
H NMR  (600 MHz, CDCl3): δ 7.48–7.45 (m, 2H), 7.45–7.42 (m, 2H), 7.39–7.35 (m, 2H), 

7.35–7.29 (m, 4H), 5.09 (s, 2H), 5.04 (s, 2H), 4.64 (s, 2H), 3.86 (s, 3H), 2.21 (s, 3H), 

1.56 (brs, 1H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 152.7, 150.8, 141.6, 138.0, 137.3, 134.6, 128.6, 128.5, 128.4, 

128.0, 127.6, 122.7, 109.5, 75.5, 71.3, 63.7, 61.0, 11.0 ppm. 1 aromatic C missing 

(overlapping). 

MS  (EI, %): 364.15 (3, M
+
), 273.08 (8), 227.06 (3), 195.04 (3), 91.03 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 364.1675; found: 364.1673 [M

+
]. 

IR   𝜈 = 3396 (br, vw), 3089 (vw), 3063 (vw), 3031 (vw), 2921 (w), 2850 (w), 1658 (vw), 

1594 (vw), 1497 (w), 1487 (m), 1452 (s), 1411 (m), 1372 (m), 1324 (s), 1278 (w), 

1223 (w), 1187 (w), 1113 (vs), 1079 (m), 1035 (s), 1027 (s), 1002 (s), 974 (s), 929 

(w), 910 (w), 880 (w), 840 (w), 773 (vw), 734 (s), 694 (vs), 592 (w) cm
–1

. 

((4,5-bis(benzyloxy)-3-methoxy-2-methylbenzyl)oxy)(tert-butyl)dimethylsilane (169)  

 

Benzyl alcohol 258 (431 mg, 1.18 mmol) was dissolved in CH2Cl2 (2.1 ml) and the solution was 

cooled to 0 °C. Imidazole (121 mg, 1.77 mmol, 1.5 eq.) and TBSCl (232 mg, 1.54 mmol, 1.3 eq.) were 

added and the reaction mixture was stirred for 2 h. H2O (10 ml) was added and the aqueous phase was 

extracted with CH2Cl2 (3x20 ml). The combined organic phases were washed with brine, dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was used directly in the 

following deprotection to catechol 170. 
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An analytical sample was purified by flash column chromatography (5% EtOAc/hexanes) to 

afford the title compound as a colorless oil. 

TLC Rf = 0.69 (10% EtOAc/hexanes). 

1
H NMR  (400 MHz, CD2Cl2): δ 7.49–7.27 (m, 10H), 6.91 (s, 1H), 5.10 (s, 2H), 5.02 (s, 2H), 

4.63 (s, 2H), 3.82 (s, 3H), 2.10 (s, 3H), 0.95 (s, 9H), 0.10 (s, 6H) ppm. The compound 

shows rotamers in the 
1
H NMR spectrum. 

13
C NMR  (100 MHz, CD2Cl2): δ 152.6, 150.7, 140.9, 138.6, 137.9, 135.6, 128.8, 128.7, 128.6, 

128.2, 128.1, 127.9, 121.7, 108.4, 75.5, 71.2, 63.5, 61.1, 26.1, 18.7, 10.6, 5.2 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 501.2432; found: 501.2427 [M+Na

+
]. 

IR  𝜈 = 3065 (vw), 3031 (vw), 2952 (w), 2927 (w), 2881 (vw), 2855 (w), 1600 (vw), 1585 

(vw), 1497 (w), 1486 (w), 1471 (w), 1452 (m), 1413 (w), 1371 (m), 1326 (m), 1252 

(m), 1223 (w), 1188 (vw), 1116 (vs), 1055 (s), 1027 (s), 1004 (m), 937 (w), 910 (w), 

834 (vs), 814 (m), 774 (vs), 732 (s), 694 (vs), 677 (m) cm
–1

. 

5-(((tert-butyldimethylsilyl)oxy)methyl)-3-methoxy-4-methylbenzene-1,2-diol (170)  

 

Crude TBS ether 169 was dissolved in EtOAc (9.5 ml) and Pd/C (10 wt-%, 63 mg, 0.059 mmol, 

0.05 eq.) was added. The reaction vessel was evacuated and filled with hydrogen gas three times 

repetitively and stirred for 1.5 h. The reaction mixture was filtered over silica, the filter cake washed 

with EtOAc and the organic phase concentrated. Purification of the residue by flash column 

chromatography (12x2.5 cm, 20% EtOAc/hexanes) afforded the title compound as a colorless solid 

(333 mg, 94% over 2 steps). 

TLC Rf = 0.22 (20% EtOAc/hexanes). 

m.p.:  117118 °C. 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.52 (brs, 1H), 7.44 (brs, 1H), 6.71 (s, 1H), 4.60 (s, 2H), 

3.71 (s, 3H), 2.09 (s, 3H), 0.91 (s, 9H), 0.08 (s, 6H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 147.3, 144.2, 137.7, 131.1, 120.1, 111.1, 64.1, 60.4, 26.3, 

18.9, 10.8, 5.1 ppm. 

HRMS  (()-ESI, m/z): calc. [MH

]: 297.1522; found: 297.1524 [MH


]. 
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IR  𝜈 = 3458 (br, m), 3235 (br, m), 2950 (m), 2927 (m), 2876 (w), 2850 (m), 1605 (m), 

1494 (s), 1470 (m), 1459 (m), 1383 (w), 1365 (w), 1309 (s), 1251 (m), 1217 (s), 1171 

(s), 1129 (s), 1106 (s), 1056 (m), 1009 (m), 937 (m), 866 (s), 850 (s), 837 (vs), 778 (s) 

cm
–1

. 

3-methoxy-4,5-dimethylbenzene-1,2-diol (260)  

 

TBS ether 169 (623 mg, 1.30 mmol) was dissolved in EtOAc (10.5 ml) and Pd/C (10 wt-%, 69 

mg, 0.065 mmol, 0.05 eq.) was added. The reaction vessel was evacuated and filled with hydrogen gas 

four times repetitively and stirred for 15 h. The reaction mixture was filtered over Celite, the filter 

cake washed with EtOAc and the organic phase concentrated. Purification of the residue by flash 

column chromatography (dry load from acetone, 10x2.5 cm, 20% EtOAc/hexanes) afforded the title 

compound as a colorless solid (216 mg, 99%). 

TLC Rf = 0.27 (20% EtOAc/hexanes). 

m.p.:  136137 °C. 

1
H NMR  (400 MHz, CDCl3): δ 6.55 (s, 1H), 5.35 (s, 1H), 5.11 (s, 1H), 3.77 (s, 3H), 2.16 (s, 

3H), 2.12 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 145.7, 141.8, 134.1, 128.9, 120.7, 112.7, 61.0, 19.6, 12.0 ppm. 

HRMS  (()-ESI, m/z): calc. [MH

]: 167.0708; found: 167.0711 [MH


]. 

IR  𝜈 = 3453 (s), 3254 (br, m), 3010 (vw), 2967 (w), 2938 (vw), 1624 (vw), 1602 (w), 

1498 (vs), 1470 (s), 1448 (m), 1426 (w), 1367 (s), 1301 (vs), 1243 (w), 1225 (w), 

1194 (s), 1177 (s), 1099 (vs), 1087 (s), 1009 (vs), 933 (m), 874 (m), 868 (m), 778 

(vw), 717 (w), 668 (vw) cm
–1

. 
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5-(((tert-butyldimethylsilyl)oxy)methyl)-3-methoxy-4-methylcyclohexa-3,5-diene-1,2-dione (171)  

 

Catechol 170 (150 mg, 0.503 mmol) was dissolved in Et2O (9.5 ml) and o-chloranil (148 mg, 

0.602 mmol, 1.2 eq.) was added. The reaction mixture was stirred for 1 min at rt and then cooled to 

78 °C. After stirring for 1 h, the suspension was filtered at 78 °C with precooled glassware and the 

filter cake was washed with 78 °C cold Et2O to afford the product as a bronze solid (96 mg, 64%). 

m.p.:  98100 °C 

1
H NMR  (400 MHz, (D3C)2CO): δ 6.32 (t, J = 2.1 Hz, 1H), 4.67 (d, J = 2.1 Hz, 2H), 3.81 (s, 

3H), 2.03 (s, 3H), 0.96 (s, 9H), 0.16 (s, 6H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 179.9, 177.4, 157.9, 151.3, 134.1, 121.1, 63.1, 60.4, 26.2, 

18.8, 10.7, 5.3 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 319.1336; found: 319.1335 [M+Na

+
] 

IR  𝜈 = 2948 (vw), 2926 (w), 2892 (vw), 2853 (w), 1675 (w), 1659 (m), 1621 (vw), 1603 

(vw), 1563 (w), 1472 (w), 1460 (w), 1441 (w), 1396 (w), 1371 (vw), 1360 (vw), 1328 

(m), 1299 (w), 1252 (m), 1227 (w), 1196 (w), 1177 (w), 1128 (m), 1049 (s), 1004 (m), 

935 (w), 874 (m), 835 (vs), 816 (s), 792 (m), 776 (vs), 704 (w), 676 (w) cm
–1 

4,5-dihydroxy-3-methoxy-2-methylbenzyl acetate (261)  

 

Benzyl alcohol 258 (1.0 g, 2.7 mmol) was dissolved in pyridine (14 ml) and Ac2O (0.34 l, 0.37 

g, 3.6 mmol, 1.3 eq.) was added. The reaction mixture was stirred at rt for 25 h before aq. HCl solution 

(2 M, 30 ml) was added. The aqueous phase was extracted with EtOAc (2x100 ml), the combined 

organic phases were washed with aq. HCl solution (2 M, 2x100 ml), dried over Na2SO4 and 

concentrated under reduced pressure. The crude product 567 could be used without further 

purification. 
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TLC Rf = 0.56 (20% EtOAc/hexanes) 

1
H NMR  (400 MHz, CDCl3): δ 7.48–7.30 (m, 10H), 6.78 (s, 1H), 5.08 (s, 2H), 5.04 (s, 2H), 

5.04 (s, 2H), 3.86 (s, 3H), 2.21 (s, 3H), 2.10 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 171.1, 152.7, 150.7, 142.3, 137.9, 137.1, 129.6, 128.6, 128.5, 

128.4, 128.0, 127.6, 124.2, 111.3, 75.4, 71.3, 65.0, 61.0, 21.2, 11.3 ppm. One C 

missing (overlapping). 

MS  (EI, %): 406.14 (4, M
+
), 315.06 (4), 245.05 (7), 181.04 (2), 91.02 (100), 65.01 (4). 

HRMS  (EI, m/z): calc. [M
+
]: 406.1780; found: 406.1778 [M

+
]. 

IR 𝜈 = 3031 (vw), 2933 (vw), 2865 (vw), 1735 (s), 1599 (vw), 1583 (vw), 1490 (m), 

1453 (m), 1414 (w), 1372 (m), 1359 (m), 1328 (s), 1226 (vs), 1115 (vs), 1079 (w), 

1027 (s), 957 (m), 930 (w), 911 (w), 879 (vw), 834 (w), 735 (s), 695 (vs) cm
–1

. 

The crude product was dissolved in EtOAc (22 ml) and Pd/C (10 wt-%, 146 mg, 0.137 mmol, 

0.05 eq.) was added. The reaction vessel was evacuated and filled with hydrogen gas for four times 

and the reaction mixture was stirred under hydrogen gas atmosphere for 3.5 h at rt. The reaction 

mixture was filtered over celite with EtOAc and the organic phase was concentrated under reduced 

pressure to afford the title compound as a pale green solid (623 mg, 100% over 2 steps). 

TLC Rf = 0.63 (60% EtOAc/hexanes). 

m.p.:  98–100 °C. 

1
H NMR  (400 MHz, THF-d8): δ 7.73 (brs, 2H), 6.52 (s, 1H), 4.91 (s, 2H), 3.70 (s, 3H), 2.12 (s, 

3H), 1.95 (s, 3H) ppm. 

13
C NMR  (100 MHz, THF-d8): δ 170.4, 147.6, 144.9, 139.2, 125.9, 121.6, 113.6, 65.2, 60.1, 

20.6, 11.1 ppm. 

MS  (EI, %): 226.03 (14, M
+
), 167.02 (36), 166.01 (100), 151.00 (28), 123.01 (26), 42.90 

(40). 

HRMS  (EI, m/z): calc. [M
+
]: 226.0841; found: 226.0826 [M

+
]. 

IR 𝜈 = 3390 (br, w), 2940 (vw), 2839 (vw), 1709 (s), 1606 (w), 1501 (m), 1466 (m), 1432 

(w), 1363 (s), 1299 (s), 1217 (vs), 1090 (vs), 1018 (vs), 941 (m), 859 (w), 677 (w)  

cm
–1

. 
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(5-methoxy-6-methyl-3,4-dioxocyclohexa-1,5-dien-1-yl)methyl acetate (263)  

 

Catechol 261 (171 mg, 0.756 mmol) was dissolved in Et2O (14 ml) and o-chloranil (195 mg, 

0.793 mmol, 1.05 eq.) was added. After 1 min, the reaction mixture was cooled to 78 °C and stirred 

for 1 h. The reaction mixture was subsequently filtered (por 4 frit) at 78 °C and the filter cake washed 

with 78 °C cold Et2O (2 ml) to afford the title compound as a red solid (117 mg, 69 %). 

m.p.:  83–85 °C. 

1
H NMR  (600 MHz, CDCl3): δ 6.26 (s, 1H), 4.90 (s, 2H), 3.91 (s, 3H), 2.18 (s, 3H), 2.04 (s, 

3H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 179.1, 176.2, 170.1, 151.4, 151.1, 132.6, 121.9, 62.6, 60.7, 

20.9, 11.7 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 224.0685; found: 224.0661 [M

+
]. 

IR  𝜈 = 3636 (vw), 3460 (vw), 3326 (vw), 3004 (vw), 2941 (vw), 2847 (vw), 1745 (vs), 

1683 (m), 1665 (vs), 1629 (vw), 1564 (w), 1442 (w), 1397 (w), 1370 (w), 1328 (m), 

1304 (m), 1222 (vs), 1204 (s), 1137 (vw), 1113 (vw), 1095 (w), 1039 (vs), 1021 (m), 

935 (w), 864 (vw), 793 (vw) cm
–1

. 

3-methoxy-5-(methoxymethyl)-4-methylbenzene-1,2-diol (262)  

 

Alcohol 258 (252 mg, 0.692 mmol) was dissolved in THF (0.7 ml) and cooled to 0 °C. NaH (60% 

dispersion in mineral oil, 42 mg, 1.0 mmol, 1.5 eq.) was subsequently added and the resulting 

suspension was stirred at rt for 30 min. The suspension was treated with MeI (65 l, 150 mg, 1.0 

mmol, 1.5 eq.) and stirred for 2 h before sat. aq. NH4Cl solution (5 ml) was added. The aqueous phase 

was extracted with EtOAc (3x10 ml) and the combined organic phases were dried over Na2SO4 and 
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concentrated under reduced pressure. The crude product could be used in the next step without further 

purification. 

TLC Rf = 0.34 (10% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 7.48–7.45 (m, 2H), 7.45–7.42 (m, 2H), 7.39–7.35 (m, 2H), 

7.34–7.29 (m, 4H), 6.81 (s, 1H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 152.6, 150.6, 141.6, 138.0, 137.3, 132.1, 128.6, 128.5, 128.4, 

128.0, 127.7, 123.3, 110.4, 75.4, 73.1, 71.3, 61.0, 58.5, 11.0 ppm. One aromatic 

carbon missing (overlapping) 

MS  (EI, %): 378.21 (4), 287.12 (9), 259.12 (4), 227.09 (6), 195.06 (3), 91.04 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 378.1831; found: 378.1819 [M

+
]. 

IR 𝜈 = 3092 (vw), 3063 (vw), 3031 (vw), 2925 (w), 2870 (w), 2820 (vw), 1599 (w), 1584 

(vw), 1497 (m), 1488 (m), 1452 (s), 1412 (w), 1373 (m), 1327 (s), 1237 (w), 1227 (w), 

1188 (w), 1115 (vs), 1078 (s), 1041 (m), 1028 (m), 1008 (m), 977 (w), 930 (w), 910 

(w), 841 (w), 735 (m), 696 (s) cm
–1

. 

The crude product was dissolved in EtOAc (5.3 ml) and Pd/C (10 wt-%, 37 mg, 0.035 mmol, 0.05 

eq.) was added. The reaction vessel was evacuated and filled with hydrogen gas three times and the 

suspension was stirred under hydrogen atmosphere for 6.5 h. The reaction mixture was filtered over 

celite with EtOAc and the filtrate was concentrated under reduced pressure. The crude product was 

purified by flash column chromatography (11x2.5 cm, 30–40% EtOAc/hexanes) to afford the title 

compound as a pale brown solid (115 mg, 84%). 

The product slowly oxidizes to the corresponding o-quinone in solution under air. The o-quinone 

then redoxisomerizes to a catechol with benzaldehyde functionality presumably with air moisture or 

wet solvents. 

TLC Rf = 0.18 (30% EtOAc/hexanes). 

m.p.:  81–83 °C. 

1
H NMR  (300 MHz, CDCl3): δ 6.70 (s, 1H), 5.49 (s, 1H), 5.20 (s, 1H), 4.33 (s, 2H), 3.78 (s, 

3H), 3.37 (s, 3H), 2.20 (s, 3H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 146.0, 141.9, 136.0, 128.5, 121.6, 112.7, 73.1, 61.0, 58.1, 11.2 

ppm. 

MS  (EI, %): 198.07 (62, M
+
), 167.05 (76), 166.04 (100), 151.03 (34), 123.03 (27). 

HRMS  (EI, m/z): calc. [M
+
]: 198.0892; found: 198.0876 [M

+
]. 

IR  𝜈 = 3345 (br, w), 2922 (m), 2850 (w), 1605 (w), 1500 (m), 1464 (m), 1376 (m), 1362 

(m), 1303 (s), 1219 (s), 1190 (m), 1091 (vs), 1066 (vs), 1016 (m), 900 (w), 882 (w), 

855 (w), 759 (vw), 729 (w), 688 (w) cm
–1

. 
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3-methoxy-5-(methoxymethyl)-4-methylcyclohexa-3,5-diene-1,2-dione (264)  

 

Catechol 262 (110 mg, 0.555 mmol) was dissolved in Et2O (10 ml) and o-chloranil (136 mg, 

0.555 mmol, 1.0 eq.) was added at room temperature. The reaction was stirred for 1 h at 78 °C and 

subsequently filtered with the help of a Buchner funnel at 78 °C. The remaining solid was washed 

with 78 °C cold Et2O (4 ml) and the title compound was obtained as a bronze solid (80 mg, 74%). 

TLC Rf = 0.18 (20% EtOAc/hexanes). 

m.p.:  98100 °C (decomposition). 

1
H NMR  (600 MHz, CDCl3): δ 6.34 (s, 1H), 4.21 (d, J = 1.9 Hz, 2H), 3.88 (s, 3H), 3.46 (s, 

3H), 2.01 (s, 3H) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 179.5, 176.5, 153.6, 150.9, 133.7, 122.3, 71.8, 60.6, 59.1, 11.4 

ppm. 

 The sample proved to be unstable in solution, possibly undergoing decomposition 

pathways via its p-quinone methide. 

MS  (EI, %): 196.05 (20, M
+
), 166.04 (20), 149.02 (22), 125.08 (18), 97.08 (30), 84.99 

(68), 82.98 (100), 71.08 (42), 57.01 (69), 43.88 (86). 

HRMS  (EI, m/z): calc. [M
+
]: 196.0736; found: 196.0729 [M

+
]. 

IR  𝜈 = 3001 (br, vw), 3001 (vw), 2945 (vw), 2916 (w), 2848 (vw), 1738 (vw), 1681 (m), 

1659 (vs), 1624 (vw), 1561 (w), 1470 (w), 1434 (w), 1403 (w), 1385 (vw), 1333 (s), 

1304 (w), 1240 (vw), 1200 (w), 1133 (w), 1112 (vw), 1069 (s), 1017 (w), 980 (vw), 

932 (w), 871 (vw), 856 (w), 810 (vw), 793 (vw), 755 (vw), 719 (vw), 673 (vw) cm
–1

. 
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rac-(6S,10aS,10bR)-10a-(((tert-butyldimethylsilyl)oxy)methyl)-6,7-dihydroxy-9-methoxy-4,10-

dimethyl-1H,3H-6,10b-methanobenzo[3,4]cyclohepta[1,2-c]furan-5,8,11(6H,10aH)-trione (257) 

 

Quinone 171 (49 mg, 0.17 mmol, 2.0 eq.) was dissolved in dioxane (0.1 ml) and epicoccine (15 

mg, 0.083 mmol) in dioxane (0.1 ml) was added at rt. The reaction mixture was stirred for 12 h and 

then concentrated under reduced pressure. The crude product was purified by HPLC (40–90% 

MeCN/H2O + 0.15% FA, 45 min, 20ml/min, Rt = 25.7 min) to afford the title compound as a waxy 

solid (8 mg, 19%). 

The title compound can also be synthesized using a procedure described for the preparation of 

acetate 267. The crude product can then used without further purification. 

TLC Rf = 0.34 (5% MeOH/CH2Cl2). 

1
H NMR (600 MHz, CDCl3): δ 6.45 (brs, 1H, C14OH), 4.69 (dd, J = 17.3, 1.5 Hz, 1H, C8H), 

4.61 (dd, J = 17.3, 1.5 Hz, 1H, C8H), 4.58 (d, J = 10.7 Hz, 1H, C6H), 4.51 (d, J 

= 10.7 Hz, 1H, C6H), 4.35 (brs, 1H, C12OH), 3.87 (d, J = 9.6 Hz, 1H, C2H), 3.75 (s, 

3H, C24H3), 3.68 (d, J = 9.6 Hz, 1H, C2H), 2.18 (s, 3H, C8H3), 1.76 (s, 3H, C19H3), 

0.83 (s, 9H, 3xC23H3), 0.04 (s, 3H, C20H3 or C21H3), 0.01 (s, 3H, C20H3 or C21H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 195.0 (C4), 188.5 (C11), 177.3 (C15), 159.9 (C9), 151.8 (C16), 

146.8 (C14), 143.7 (C17), 128.0 (C10), 124.3 (C13), 88.8 (C12), 71.0 (C2), 69.6 (C8), 

66.7 (C6), 64.1 (C5), 60.2 (C24), 56.8 (C1), 25.9 (3×C23), 18.5 (C22), 12.7 (C19), 

12.4 (C18), –5.7 (C20/C21), –5.8 (C20/C21) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 499.1759; found: 499.1764 [M+Na

+
]. 

IR  𝜈 = 3410 (w), 2927 (s), 2856 (m), 1782 (s), 1738 (w), 1691 (s), 1644 (s), 1548 (vw), 

1463 (w), 1452 (w), 1376 (w), 1290 (m), 1251 (s), 1154 (m), 1101 (vs), 1006 (w), 940 

(w), 838 (vs), 782 (w), 699 (w) cm
–1

. 
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rac-((6S,10aS,10bR)-6,7-dihydroxy-9-methoxy-4,10-dimethyl-5,8,11-trioxo-3,5,6,8-tetrahydro-

1H,10aH-6,10b-methanobenzo[3,4]cyclohepta[1,2-c]furan-10a-yl)methyl acetate (267) 

 

Catechol 261 (38 mg, 0.17 mmol) was dissolved in dioxane (0.5 ml) and epicoccine (31 mg, 0.17 

mmol, 1.0 eq.) was added in small portions over 3.5 h. The crude product was purified by flash 

column chromatography on reverse-phase silica (10–20–30–40% MeCN/H2O + 0.1% FA). The 

product-containing fractions were extracted with EtOAc (2x) and the combined organic phases were 

washed with brine and concentrated under reduced pressure to afford the title compound as a colorless 

solid (34 mg, 50%). X-Ray suitable crystals were obtained by slow diffusion of hexanes into a solution 

of the title compound in EtOAc. 

The crude product can also be taken forward without further purification.  

LC/MS Rt = 2.738 min (10–90% MeCN/H2O + 0.1% FA, 7 min, 2 ml/min). 

m.p.:  205–215 °C (gradual decomposition). 

1
H NMR  (800 MHz, (D3C)2CO): δ 8.28 (s, 1H, OH, C14OH), 5.24 (s, 1H, OH, C12OH), 4.88 (d, 

J = 17.5 Hz, 1H, C8H), 4.73–4.69 (m, 2H, C6H, C8H), 4.42 (d, J = 11.0 Hz, 1H, C6H), 

4.39 (d, J = 11.1 Hz, 1H, C2H), 4.36 (d, J = 11.1 Hz, 1H, C2H), 3.68 (s, 3H, C22H3), 

2.21 (s, 3H, C18H3), 1.92 (s, 3H, C21H3), 1.73 (s, 3H, C19H3) ppm. 

13
C NMR  (200 MHz, (D3C)2CO): δ 197.0 (C4), 189.3 (C11), 178.1 (C15), 169.8 (C20), 159.6 

(C9), 153.1 (C16), 149.1 (C14), 142.2 (C17), 129.2 (C10), 123.7 (C13), 89.9 (C12), 

69.9 (C8), 68.1 (C2), 66.8 (C6), 65.4 (C5), 60.0 (C22), 55.0 (C1), 20.5 (C21), 12.3 

(C19), 12.1 (C18) ppm. 

MS (EI, %): 404.08 (6, M
+
), 334.11 (14), 275.13 (32), 193.12 (26), 181.09 (32), 153.13 

(42), 123.14 (20), 69.12 (28), 60.13 (42), 45.12 (51), 43.14 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 404.1107; found: 404.1101 [M

+
] 

IR  𝜈 = 3369 (w), 2926 (w), 2849 (vw), 1782 (s), 1739 (s), 1694 (vs), 1652 (vs), 1604 (w), 

1455 (w), 1378 (m), 1291 (s), 1224 (vs), 1149 (m), 1100 (vs), 1049 (s), 1002 (m), 961 

(w), 942 (w), 909 (m), 879 (w), 802 (vw), 767 (vw), 729 (m), 687 (vw) cm
-1

. 
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rac-(6S,10bS)-6,7,8-trihydroxy-9-methoxy-4,10-dimethyl-1H,3H-6,10b-

methanobenzo[3,4]cyclohepta[1,2-c]furan-5,11(6H)-dione (273) 

 

TBS ether 257 was dissolved in CD2Cl2 (0.6 ml) and the solution treated with TFA-d
1
 (3 drops). 

The product formed instantaneously as judged by NMR analysis. 

1
H NMR  (600 MHz, CD2Cl2): δ 5.03 (dq, J = 17.5, 1.4 Hz, 1H), 4.82 (d, J = 10.6 Hz, 1H), 4.79 

(dq, J = 17.5, 1.5 Hz, 1H), 4.69 (d, J = 10.6 Hz, 1H), 3.85 (s, 3H), 2.34 (s, 3H), 1.76 

(s, 3H) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 355.0788; found: 355.0794 [M+Na

+
]. 

6-hydroxy-5,7-dimethoxy-4-methylisobenzofuran-1(3H)-one (288)  

 

Catechol 196 (50 mg, 0.24 mmol) was dissolved in acetone (1.0 ml) and Na2CO3 (31 mg, 0.29 

mmol, 1.2 eq.) and Me2SO4 (25 μl, 33 mg, 0.26 mmol, 1.1 eq.) were added. The suspension was 

heated to 60 °C and stirred for 5 h. After stirring at rt overnight, the reaction mixture was diluted with 

EtOAc and washed with aq. HCl solution (c = 1 M). The organic phase was dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by flash column chromatography 

(25–29% EtOAc/hexanes) to afford the title compound as a colorless solid. 

TLC Rf = 0.12 (25% EtOAc/hexanes). 

m.p.: 119–120 °C. 

1
H NMR  (300 MHz, CDCl3): δ 5.96 (s, 1H), 5.10 (s, 2H), 4.17 (s, 3H), 3.95 (s, 3H), 2.14 (s, 

3H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 169.1, 151.3, 144.2, 141.9, 138.2, 119.9, 111.2, 68.6, 63.0, 60.7, 

11.3 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 225.0757; found: 225.0756 [M

+
]. 
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IR 𝜈 = 3390 (br, w), 2941 (vw), 2840 (vw), 1737 (vs), 1614 (w), 1486 (s), 1454 (m), 

1435 (m), 1362 (m), 1318 (vs), 1233 (s), 1195 (m), 1136 (s), 1115 (m), 1083 (w), 

1033 (vs), 1015 (s), 995 (s), 962 (s), 930 (m), 844 (w), 789 (vw), 756 (vw), 737 (vw), 

717 (vw) cm
–1

. 

5,6,7-trimethoxy-4-methylisobenzofuran-1(3H)-one (164)  

 

Catechol 196 (195 mg, 0.928 mmol) was dissolved in acetone (5.0 ml) and K2CO3 (450 mg, 3.26 

mmol, 3.5 eq.) and Me2SO4 (0.26 ml, 0.35 g, 2.8 mmol, 3.0 eq.) were added. The reaction mixture was 

heated to reflux for 2 h, before H2O (15 ml) was added. The aqueous phase was extracted with EtOAc 

(3x20 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by flash column chromatography (9–25% EtOAc/hexanes) to 

afford the title compound as a colorless solid (175 mg, 79%). 

TLC Rf = 0.24 (25% EtOAc/hexanes). 

m.p.:  48–50 °C. 

1
H NMR  (300 MHz, CDCl3): δ 5.09 (s, 2H), 4.10 (s, 3H), 3.95 (s, 3H), 3.89 (s, 3H), 2.12 (s, 

3H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 169.0, 157.8, 151.5, 146.1, 142.2, 120.2, 112.5, 68.2, 62.6, 61.5, 

61.0, 11.3 ppm. 

HRMS  ((+)-ESI, m/z): calc. 239.0914 [M+H
+
]: ; found: 239.0913 [M+H

+
]. 

IR  𝜈 = 2942 (vw), 1754 (vs), 1597 (w), 1481 (m), 1455 (m), 1423 (m), 1400 (w), 1355 

(s), 1336 (vs), 1284 (m), 1199 (w), 1135 (s), 1115 (w), 1087 (vw), 1043 (s), 1028 (s), 

1002 (w), 977 (m), 962 (m), 907 (vw), 851 (vw), 796 (vw), 764 (vw), 734 (vw), 715 

(vw) cm
–1

. 
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6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-4,5-diyl diacetate (289)  

 

The aim of the experiment was to achieve selective monoacetylation.  

Catechol 196 (42 mg, 0.20 mmol) was dissolved in CH2Cl2 (1.0 ml) and pyridine (32 μl, 32 mg, 

0.40 mmol, 2.0 eq.) and acetic anhydride (21 μl, 22 mg, 0.22 mmol, 1.1 eq.) were added. The reaction 

mixture was stirred for 15 h before pH 7.2 aq. phosphate buffer (c = 1 M, 5 ml) was introduced. The 

aqueous phase was extracted with EtOAc (3x10 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. Purification by preparative TLC (40% 

EtOAc/hexanes) afforded the title compound as a colorless solid (17 mg, 29%) next to monoacetylated 

starting material. 

TLC Rf = 0.37 (40% EtOAc/hexanes). 

m.p.:  192194 °C. 

1
H NMR  (400 MHz, CDCl3): δ 5.16 (s, 2H), 3.87 (s, 3H), 2.39 (s, 3H), 2.37 (s, 3H), 2.21 (s, 

3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 168.1, 168.0, 167.8, 156.5, 144.7, 139.8, 137.1, 123.9, 113.9, 

68.5, 61.4, 20.5, 20.5, 11.7 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 294.0740; found: 294.0742 [M

+
]. 

IR  𝜈 = 2987 (vw), 2940 (vw), 2858 (vw), 1767 (vs), 1616 (vw), 1483 (w), 1454 (w), 1363 

(m), 1337 (m), 1196 (vs), 1177 (vs), 1139 (w), 1103 (w), 1083 (w), 1036 (m), 1017 

(w), 968 (m), 950 (w), 893 (w), 846 (vw), 787 (vw), 760 (vw) cm
–1

. 

methyl 2-hydroxy-3,4-dimethoxy-5-methylbenzoate (293)  

 

To a suspension of acid 292 (1.99 g, 11.7 mmol) and K2CO3 (6.49 g, 47.0 mmol, 4.0 eq.) in DMF 

(45 mL) was added methyl iodide (4.40 mL, 70.7 mmol, 6.0 eq.). The resulting mixture was stirred at 
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room temperature for 24 hours. The reaction mixture was adjusted to pH 3 with aq. HCl (c = 1 M). 

After extraction with EtOAc (2x200 mL), the organic layer was dried over Na2SO4, filtered and 

concentrated under reduced pressure to afford the crude title compound. The crude product could be 

purified by flash column chromatography (17% EtOAc:petroleum ether) to give a mixture of trimethyl 

and tetramethylated starting material. An analytical sample was obtained by preparative TLC (15% 

EtOAc/hexanes). 

TLC Rf = 0.26 (10% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 10.91 (s, 1H), 7.60 (d, J = 9.0 Hz, 1H), 6.49 (d, J = 9.0 Hz, 

1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 170.6, 158.2, 156.1, 136.6, 125.9, 107.2, 103.3, 60.9, 56.2, 52.3 

ppm. 

MS  (EI, %): 212.15 (71, M
+
), 180.13 (100), 152.14 (96), 137.13 (50), 120.13 (29), 109.14 

(20), 69.15 (22). 

HRMS  (EI, m/z): calc. [M
+
]: 212.0685; found: 212.0676 [M

+
]. 

IR 𝜈 = 3092 (vw), 2992 (vw), 2942 (vw), 2841 (vw), 1721 (m), 1704 (w), 1672 (m), 1615 

(vw), 1592 (m), 1505 (w), 1494 (w), 1462 (m), 1431 (m), 1410 (m), 1331 (w), 1278 

(vs), 1238 (m), 1215 (s), 1190 (m), 1147 (m), 1137 (m), 1092 (vs), 1031 (vs), 1013 

(s), 983 (m), 948 (w), 922 (w), 871 (w), 819 (vw), 796 (m), 785 (s), 747 (s), 703 (w) 

cm
–1

. 

A mixture of tetra- and trimethylated acid 292 (1.05 g, max. 4.94 mmol of desired trimethylated 

acid 292) was dissolved in TFA (19.8 ml) and urotropine (1.39 g, 9.88 mmol, 2.0 eq.) was added. The 

solution was heated to 80 °C for 15 h before water (75 ml) was added. The suspension was stirred for 

1.5 h at 50 °C before the precipitate was separated by centrifugation (10000 rpm, 10 min). The solid 

was washed with sat. aq. NaHCO3 solution (20 ml) and centrifuged off (11000 rpm, 15 min). The 

combined aqueous phases were extracted with CH2Cl2 (2x150 ml) and the combined organic phases 

were washed with sat. aq. NaHCO3 solution (200 ml). The organic phase was dried over Na2SO4 and 

concentrated under reduced pressure to afford a crude product that was used in the next step. An 

analytical sample was obtained by preparative TLC (40% EtOAc/hexanes). 

TLC Rf = 0.50 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 11.53 (s, 1H), 10.23 (s, 1H), 8.19 (s, 1H), 4.16 (s, 3H), 3.97 (s, 

3H), 3.93 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 188.3, 170.4, 161.8, 160.4, 140.0, 126.2, 121.4, 109.1, 62.2, 

61.1, 52.8 ppm. 

MS  (EI, %): 240.17 (75, M
+
), 208.13 (99), 180.12 (100), 165.08 (41), 150.09 (29), 69.02 

(15). 

HRMS  (EI, m/z): calc. [M
+
]: 240.0634; found: 240.0639 [M

+
]. 
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IR  𝜈 = 3071 (vw), 3002 (vw), 2941 (vw), 2881 (vw), 2844 (vw), 1671 (vs), 1602 (w), 

1578 (m), 1558 (vw), 1506 (vw), 1481 (w), 1447 (m), 1424 (m), 1352 (s), 1304 (m), 

1272 (w), 1231 (m), 1212 (m), 1197 (w), 1174 (w), 1094 (s), 1055 (m), 1000 (m), 959 

(w), 917 (w), 890 (vw), 798 (w), 774 (w), 749 (vw), 727 (w) cm
–1

. 

The crude product was dissolved in THF (29 ml) and aq. HCl solution (c = 4 M, 22 ml). Palladium 

on activated charcoal (10 wt-%, 502 mg, 0.471 mmol, 0.1 eq.) was added and the reaction vessel was 

purged with hydrogen gas by successive evacuation and filling with hydrogen. The reaction mixture 

was stirred for 14 h and more Pd/C (200 mg, 0.19 mmol, 0.04 eq.) was added after the reaction vessel 

had been flushed with nitrogen gas. The reaction mixture was purged with hydrogen gas according to 

the above procedure and stirred for 6 h. Filtration over a silica gel plug with 30% EtOAc/hexanes, 

extraction of the aqueous layer with EtOAc (2x100 ml), drying of the combined organic phases over 

Na2SO4 and concentration under reduced pressure gave a residue that was purified by column 

chromatography (12x4.5 cm, 10% EtOAc/hexanes) to afford the title compound as a colorless oil (500 

mg, 19% over 3 steps).  

TLC Rf = 0.77 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 10.79 (s, 1H), 7.39 (s, 1H), 3.96 (s, 1H), 3.92 (s, 1H), 3.89 (s, 

3H), 2.16 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 170.7, 157.1, 155.2, 140.6, 125.5, 122.2, 108.1, 60.9, 60.7, 

52.3, 15.9 ppm. 

MS  (EI, %): 226.19 (89, M
+
), 194.15 (100), 166.13 (84), 151.10 (43), 136.10 (36), 123.08 

(11), 69.02 (15). 

HRMS  (EI, m/z): calc. [M
+
]: 226.0841; found: 226.0840 [M

+
]. 

IR  𝜈 = 3129 (vw), 2992 (vw), 2952 (vw), 2952 (vw), 2844 (vw), 1699 (w), 1669 (s), 1652 

(w), 1616 (w), 1558 (w), 1539 (w), 1506 (w), 1486 (w), 1471 (w), 1456 (m), 1441 

(m), 1418 (w), 1345 (vs), 1273 (m), 1239 (m), 1212 (s), 1172 (w), 1100 (w), 1067 

(m), 1003 (w), 966 (w), 927 (vw), 797 (w), 763 (vw), 725 (vw), 667 (vw) cm
–1

. 

7-hydroxy-5,6-dimethoxy-4-methylisobenzofuran-1(3H)-one (291) 

 

Lactone 164 (44 mg, 0.18 mmol) was dissolved in THF (1.8 ml) and MgI2 (77 mg, 0.27 mmol, 1.5 

eq.) was added. The reaction mixture was heated to 50 °C and stirred for 1 h. An aq. HCl solution 
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(c = 2 M, 2 ml) and an aq. sat. Na2S2O3 solution (5 ml) were added and the aqueous phase extracted 

with EtOAc (3x 10 ml). The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. Purification by flash column chromatography (9–17–33% EtOAc/hexanes) afforded 

the title compound as a yellow solid (13 mg, 31%) next to unreacted starting material (8 mg). X-Ray 

suitable crystals were obtained by crystallization from EtOAc. 

TLC Rf = 0.60 (50% EtOAc/hexanes). 

m.p.:  122–124 °C.  

1
H NMR  (400 MHz, CDCl3): 7.39 (s, 1H), 5.18 (s, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.10 (s, 

3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 172.5, 158.2, 148.2, 140.4, 140.0, 117.2, 106.6, 69.9, 61.1, 

61.1, 11.5 ppm. 

HRMS  ((–)-ESI, m/z): calc. [M–H
–
]: 223.0612; found: 223.0610 [M–H

–
]. 

IR  𝜈 = 3401 (br, w), 2958 (vw), 2865 (vw), 1757 (vs), 1615 (w), 1485 (w), 1470 (w), 

1456 (w), 1436 (w), 1371 (s), 1314 (vw), 1287 (s), 1233 (w), 1196 (vw), 1131 (m), 

1084 (vw), 1040 (m), 1012 (w), 995 (w), 958 (w), 932 (w), 836 (vw), 790 (vw), 762 

(vw), 718 (vw) cm
–1

. 

methyl 3-(benzyloxy)-4,5-dihydroxybenzoate (294) 

 

Methyl gallate (5.00 g, 27.2 mmol) was dissolved in DMF (150 ml) and the solution cooled to 

10 °C. NaH (2.17 g, 54.4 mmol, 2.0 eq.) was added in portions and the reaction mixture was allowed 

to warm to rt. B(OMe)3 (3.03 ml, 2.82 g, 27.2 mmol, 1.0 eq.) was added and the solution treated with a 

solution of BnBr (3.23 ml, 4.64 g, 27.2 mmol, 1.0 eq.) in DMF (50 ml) over the course of 1 h. The 

reaction mixture was stirred for 12 h and poured onto ice and aq. HCl solution (c = 1 M, 100 ml) and 

then extracted with EtOAc (3x200 ml). The combined organic phases were washed with brine (3x50 

ml), dried over Na2SO4 and concentrated under reduced pressure. The residue was dissolved in EtOAc 

(200 ml) and again washed with brine (5x50 ml), then dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by recrystallization from toluene and afterwards 

recrystallization from benzene to afford the title compound as a colorless solid (4.26 g, 57%). 

The compound is literature-known.
[219]
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1
H NMR  (400 MHz, (D3C)2CO): 8.50–7.94 (brm, 2H), 7.54–7.49 (m, 2H), 7.43–7.31 (m, 

3H), 7.28–7.20 (m, 2H), 5.18 (s, 2H), 3.80 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): 166.5, 151.9, 151.6, 146.8, 136.2, 128.8, 128.4, 127.6, 

127.5, 112.2, 110.1, 71.4, 61.4, 61.2, 52.7 ppm. 

methyl 5-(benzyloxy)-2-bromo-3,4-dimethoxybenzoate (295) 

 

Catechol 294 (2.38 g, 8.66 mmol) was dissolved in CH2Cl2 (30 ml) and cooled to 0 °C. Bromine 

(0.49 ml, 1.5 g, 9.5 mmol, 1.1 eq.) was added and the reaction allowed to warm to rt. After stirring for 

3 h, pH 7.2 aq. phosphate buffer (c = 1 M, 10 ml) and sat. aq. NaHCO3, aq. sat. Na2S2O3 and aq. sat. 

Na2CO3 solution (5:1:1, 70 ml) were added. The aqueous phase was extracted with CH2Cl2 (5x50 ml). 

The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. The 

crude product was dissolved in acetone (30 ml) and K2CO3 (4.32 g, 31.3 mmol, 3.5 eq.) and Me2SO4 

(2.5 ml, 3.3 g, 26 mmol, 3.0 eq.) were introduced. The reaction mixture was heated to reflux for 40 

min, before NEt3 and H2O (1:1, 40 ml) were added. The aqueous phase was extracted with EtOAc 

(3x50 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. Purification of the residue by flash column chromatography (2–4% EtOAc/hexanes) afforded 

the title compound as a colorless oil (1.62 g, 49% over 2 steps). 

TLC Rf = 0.50 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.35–7.45 (m, 5H), 7.25 (s, 1H), 5.12 (s, 2H), 3.94 (s, 3H), 3.91 

(s, 3H), 3.90 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 166.5, 151.9, 151.6, 146.8, 136.2, 128.8, 128.4, 127.6, 127.5, 

112.2, 110.1, 71.4, 61.4, 61.2, 52.7 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 381.0332; found: 381.0329 [M+H

+
]. 

IR  𝜈 = 3036 (vw), 3004 (vw), 2940 (vw), 1857 (vw), 1732 (s), 1570 (vw), 1550 (vw), 

1498 (vw), 1482 (m), 1451 (w), 1428 (m), 1385 (s), 1338 (vs), 1260 (w), 1218 (s), 

1190 (w), 1173 (w), 1159 (w), 1097 (s), 1028 (w), 1006 (m), 947 (vw), 904 (vw), 848 

(vw), 819 (vw), 778 (vw), 741 (w), 698 (w) cm
–1

. 
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1-(benzyloxy)-4-bromo-2,3-dimethoxy-5-((methoxymethoxy)methyl)benzene (296) 

 

Bromide 295 (1.57 g, 4.12 mmol) was dissolved in CH2Cl2 (20 ml) and cooled to –78 °C. The 

solution was treated with a solution of DIBAL in toluene (c = 1 M, 10 ml, 10 mmol, 2.4 eq.) and the 

reaction stirred for 25 min. EtOAc (1 ml) was introduced slowly before an aq. sat. Rochelle salt 

solution was added. The aqueous phase was extracted with EtOAc (3x30 ml) and the combined 

organic phases were dried over Na2SO4. Concentration under reduced pressure gave the crude product, 

which was pure enough for further transformations. An analytical sample was obtained by flash 

column chromatographic purification (5–9–17% EtOAc/hexanes).  

TLC Rf = 0.20 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.45–7.31 (m, 5H), 6.95 (s, 1H), 5.13 (s, 2H), 4.68 (d, J = 8.0 

Hz, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 1.97 (t, J = 8.0 Hz, 1H) ppm. 

13
C NMR  (100 MHz, CDCl3): 152.2, 151.2, 143.1, 136.7, 135.4, 129.2, 128.8, 128.4, 128.2, 

127.5, 109.7, 109.0, 71.2, 65.3, 61.3, 61.3 ppm. 

HRMS  ((–)-ESI, m/z): calc. [M+HCOO
–
]: 397.0292; found: 397.0292 [M+HCOO

–
]. 

IR  𝜈 = 3412 (br, w), 2937 (w), 1569 (w), 1498 (w), 1481 (s), 1449 (m), 1429 (m), 1400 

(vs), 1356 (w), 1330 (vs), 1242 (w), 1189 (w), 1163 (m), 1099 (vs), 1075 (s), 1009 

(vs), 928 (w), 843 (w), 810 (w), 738 (w), 698 (m) cm
–1

. 

The crude product was dissolved in CH2Cl2 (8.0 ml) and MOMBr (0.50 ml, 0.79 g, 6.2 mmol, 1.5 

eq.) and DIPEA (2.2 ml, 1.6 g, 12 mmol, 3.0 eq.) were added at 0 °C. The reaction mixture was 

allowed to warm to rt and stirred for 18 h. H2O (15 ml) was introduced and the aqueous phase 

extracted with CH2Cl2 (3x20 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. Purification of the crude product by flash column 

chromatography (2–5% EtOAc/hexanes) yielded the title compound as a colorless oil (1.39 g, 85% 

over 2 steps).  

TLC Rf = 0.50 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.31–7.45 (m, 5H), 6.94 (s, 1H), 5.13 (s, 2H), 4.72 (s, 2H), 4.60 

(s, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 3.40 (s, 3H) ppm. 
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13
C NMR  (100 MHz, CDCl3): 152.0, 151.2, 143.1, 136.8, 133.0, 128.7, 128.2, 127.5, 110.1, 

109.5, 96.2, 71.2, 69.0, 61.3, 61.2, 55.7 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M–MOMO
+
]: 335.0277; found: 335.0275 [M–MOMO

+
]. 

IR 𝜈 = 2936 (w), 2885 (w), 2824 (vw), 1570 (w), 1498 (w), 1482 (m), 1453 (w), 1430 

(w), 1397 (m), 1375 (m), 1333 (m), 1242 (w), 1212 (w), 1190 (w), 1165 (m), 1150 (s), 

1101 (vs), 1063 (s), 1034 (s), 1010 (s), 924 (w), 841 (vw), 814 (vw), 739 (w), 699 (w) 

cm
–1

. 

1-(benzyloxy)-2,3-dimethoxy-5-((methoxymethoxy)methyl)-4-methylbenzene (297)  

 

Bromide 296 (1.39 g, 3.50 mmol) was dissolved in THF (7.0 ml) and the solution cooled to –78 

°C. A solution of n-BuLi in hexanes (c = 2.4 M, 1.6 ml, 3.85 mmol, 1.1 eq.) was added and the 

reaction mixture stirred for 40 min. MeI (1.10 ml, 2.51 g, 17.7 mmol, 5.0 eq.) was introduced and the 

reaction mixture was allowed to warm to rt. After 30 min, aq. sat. NH4Cl solution (5 ml) was added 

and the aqueous phase was extracted with EtOAc (3x30 ml). The combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. Purification of the crude product by flash 

column chromatography (2–5% EtOAc/hexanes) afforded the title compound as a colorless oil (1.05 g, 

90%). 

TLC Rf = 0.50 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.29 (m, 5H), 6.79 (s, 1H), 5.11 (s, 2H), 4.69 (s, 2H), 4.50 

(s, 2H), 3.89 (s, 3H), 3.85 (s, 3H), 3.40 (s, 3H), 2.18 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 152.3, 150.4, 142.7, 137.3, 131.4, 128.7, 128.0, 127.5, 123.5, 

110.7, 96.0, 71.2, 67.7, 61.1, 60.9, 55.6, 11.1 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M–MOMO
+
]: 271.1329; found: 271.1326 [M–MOMO

+
]. 

IR 𝜈 = 2937 (w), 2885 (w), 1601 (vw), 1492 (m), 1454 (m), 1410 (w), 1377 (w), 1329 

(m), 1242 (w), 1191 (vw), 1149 (m), 1121 (vs), 1041 (vs), 921 (w), 839 (w), 839 (vw), 

737 (w), 698 (w) cm
–1

. 
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(5-(benzyloxy)-2-(tert-butyldimethylsilyl)-3,4-dimethoxyphenyl)methanol (298) 

 

Bromide 295 (34 mg, 0.073 mmol) was dissolved in THF (0.7 ml) and the solution cooled to –78 

°C. A solution of n-BuLi in hexanes (c = 2.4 M, 35 μl, 0.081 mmol, 1.1 eq.) was added and the 

reaction mixture stirred for 1 h. MeI (40 l, 89 mg, 0.63 mmol, 8.6 eq.) was introduced and the 

reaction mixture was allowed to warm to rt. After 20 min, aq. sat. NH4Cl solution (5 ml) was added 

and the aqueous phase was extracted with EtOAc (3x10 ml). The combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. Purification of the crude product by flash 

column chromatography (2–5–9% EtOAc/hexanes) afforded the title compound as a colorless oil 

(19 mg, 66%). 

TLC Rf = 0.30 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.30 (m, 5H), 6.98 (s, 1H), 5.14 (s, 2H), 4.64 (s, 2H), 3.87 

(s, 3H), 3.83 (s, 3H), 0.90 (s, 9H), 0.36 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): 159.4, 154.0, 143.1, 140.8, 137.1, 128.7, 128.1, 127.5, 120.1, 

109.0, 70.7, 65.7, 60.8, 60.5, 27.4, 18.5, 0.1 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 389.2143; found: 389.2140 [M+H

+
]. 

IR  𝜈 = 3416 (br, vw), 2951 (m), 2930 (m), 2884 (w), 2855 (m), 1583 (m), 1561 (w), 1498 

(vw), 1471 (m), 1463 (m), 1431 (w), 1386 (m), 1371 (m), 1310 (s), 1258 (w), 1249 

(w), 1189 (w), 1164 (w), 1101 (vs), 1073 (m), 1021 (m), 925 (vw), 842 (m), 827 (s), 

803 (m), 779 (w), 738 (w), 697 (m), 676 (w) cm
–1

. 

5,6,6-trimethoxy-3-((methoxymethoxy)methyl)-4-methylcyclohexa-2,4-dien-1-one (287) 

 

Benzyl ether 297 (129 mg, 0.387 mmol) was dissolved in EtOAc (4.0 ml) and Pd on activated 

charcoal (10 wt-%, 13 mg, 0.012 mmol, 3 mol-%) was added. The vessel was purged 3x with 
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hydrogen gas and stirred for 1 h. A stream of nitrogen was passed through the solution. Since the 

starting material was not entirely consumed, more Pd on activated charcoal (10 wt-%, 26 mg, 0.024 

mmol, 6 mol-%) was added and the vessel purged with hydrogen gas (3x). After stirring for an 

additional 1 h, the suspension was filtered over celite and the organic phase concentrated under 

reduced pressure. 

The crude product was dissolved in MeOH (2 ml) and the solution cooled to 0 °C. KHCO3 (102 

mg, 1.02 mmol, 2.6 eq.) and PhI(OAc)2 (137 mg, 0.425 mmol, 1.1 eq.) were added and the reaction 

mixture stirred for 20 min. Sat. aq. NaHCO3 solution (7 ml) was introduced and the aqueous phase 

extracted with EtOAc (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. Purification by flash column chromatography (2–5–9% 

EtOAc/hexanes) afforded the title compound as a yellow oil (83 mg, 79% over 2 steps). 

TLC Rf = 0.35 (17% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 6.08 (s, 1H), 4.71 (s, 2H), 4.32 (s, 2H), 3.96 (s, 3H), 3.39 (s, 

3H), 3.28 (s, 6H), 1.82 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 194.1, 156.6, 155.4, 116.6, 115.5, 96.3, 94.6, 66.6, 59.8, 59.7, 

55.8, 51.0, 9.9 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 295.1152; found: 295.1149 [M+Na

+
]. 

IR  𝜈 = 2992 (vw), 2947 (w), 2897 (vw), 2834 (vw), 1673 (m), 1649 (w), 1566 (w), 1463 

(vw), 1450 (vw), 1408 (vw), 1381 (vw), 1335 (vw), 1290 (w), 1265 (vw), 1206 (w), 

1151 (m), 1079 (s), 1043 (vs), 995 (w), 985 (w), 920 (vw), 849 (vw), 704 (vw) cm
–1

. 

(5-(benzyloxy)-3,4-dimethoxy-2-methylphenyl)methanol (299) 

 

MOM ether 297 (349 mg, 0.879 mmol) was dissolved in THF (3.0 ml) and conc. HCl (0.1 ml) 

was added. The solution was heated to 50 °C and stirred for 50 min. pH 7.2 Phosphate buffer (c = 1 M, 

2 ml) and H2O (5 ml) was added and the aqueous phase extracted with EtOAc (3x10 ml). The 

combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. 

Purification by flash column chromatography (9–25% EtOAc/hexanes) afforded the title compound as 

a colorless oil (148 mg, 58%). 

TLC Rf = 0.25 (20% EtOAc/hexanes). 
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1
H NMR  (400 MHz, CDCl3): 7.47–7.30 (m, 5H), 6.82 (s, 1H), 5.12 (s, 2H), 4.62 (s, 2H), 3.90 

(s, 3H), 3.85 (s, 3H), 2.19 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 152.4, 150.5, 142.6, 137.3, 134.3, 128.7, 128.0, 127.5, 122.7, 

109.6, 71.2, 63.7, 61.1, 60.9, 10.9 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M–HO
+
]: 271.1329; found: 271.1327 [M–HO

+
] 

IR 𝜈 = 3412 (vw), 2934 (w), 2860 (w), 1603 (vw), 1583 (vw), 1490 (m), 1454 (m), 1408 

(m), 1377 (w), 1327 (s), 1280 (vw), 1241 (w), 1191 (w), 1115 (vs), 1048 (s), 1030 

(m), 1006 (m), 982 (w), 926 (vw), 908 (vw), 837 (w), 808 (vw), 777 (vw), 737 (w), 

698 (w) cm
–1

. 

((5-(benzyloxy)-3,4-dimethoxy-2-methylbenzyl)oxy)(tert-butyl)dimethylsilane (300) 

 

Alcohol 299 (146 mg, 0.508 mmol) was dissolved in DMF (2.5 ml) and imidazole (76 mg, 1.1 

mmol, 2.2 eq.) and TBSCl (84 mg, 0.56 mmol, 1.1 eq.) were added. The reaction mixture was stirred 

for 30 min, before H2O (10 ml) was introduced. The aqueous phase was extracted with EtOAc (2x10 

ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. 

Purification by flash column chromatography (1% EtOAc/hexanes) afforded the title compound as a 

colorless oil (170 mg, 83%). 

TLC Rf = 0.90 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.46–7.30 (m, 5H), 6.89 (s, 1H), 5.12 (s, 2H), 4.60 (s, 2H), 3.89 

(s, 3H), 3.84 (s, 3H), 2.08 (s, 3H), 0.93 (s, 9H), 0.07 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): 151.9, 150.3, 141.6, 137.5, 134.9, 128.6, 127.9, 127.3, 121.1, 

108.1, 71.0, 63.1, 61.1, 61.0, 26.1, 18.5, 10.5, –5.2 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 425.2119; found: 425.2121 [M+Na

+
]. 

IR  𝜈 = 2950 (m), 2932 (m), 2881 (w), 2857 (w), 1602 (vw), 1583 (vw), 1490 (m), 1455 

(m), 1409 (w), 1374 (w), 1328 (m), 1255 (w), 1190 (vw), 1119 (vs), 1060 (s), 1030 

(w), 1003 (w), 937 (vw), 927 (vw), 838 (s), 813 (vw), 777 (m), 735 (w), 696 (w) cm
–1

. 
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3-(((tert-butyldimethylsilyl)oxy)methyl)-5,6,6-trimethoxy-4-methylcyclohexa-2,4-dien-1-one (285) 

 

Benzyl ether 300 (50 mg, 0.124 mmol) was dissolved in EtOAc (1.0 ml) and Pd on activated 

charcoal (10 wt-%, 5 mg, 0.005 mmol, 4 mol-%) was added. The vessel was purged 3x with hydrogen 

gas and stirred for 3 h. The suspension was filtered over celite and the organic phase concentrated 

under reduced pressure. 

TLC Rf = 0.70 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 6.84 (s, 1H), 5.54 (s, 1H), 4.59 (s, 2H), 3.90 (s, 3H), 3.80 (s, 

3H), 2.08 (s, 3H), 0.94 (s, 9H), 0.10 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): 150.7, 147.0, 138.6, 135.8, 120.1, 109.0, 63.2, 61.0, 60.4, 26.1, 

18.6, 10.4, –5.2 ppm. 

HRMS  ((–)-ESI, m/z): calc. [M+HCOO
–
]: 357.1739; found: 357.1734 [M+HCOO

–
]. 

IR  𝜈 = 3418 (br, vw), 2955 (m), 2931 (m), 2892 (w), 2857 (w), 1591 (w), 1488 (m), 1470 

(m), 1464 (m), 1375 (w), 1348 (w), 1307 (w), 1256 (m), 1217 (w), 1188 (w), 1168 

(w), 1106 (vs), 1058 (s), 1022 (m), 1003 (w), 944 (w), 850 (s), 837 (vs), 813 (w), 776 

(m), 674 (vw) cm
–1

. 

The crude product was dissolved in MeOH (0.6 ml) and the solution cooled to 0 °C. KHCO3 (37 

mg, 0.37 mmol, 3.0 eq.) and PhI(OAc)2 (44 mg, 0.14 mmol, 1.1 eq.) were added and the reaction 

mixture stirred for 30 min. Sat. aq. NaHCO3 solution (4 ml) was introduced and the aqueous phase 

extracted with EtOAc (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. Purification by flash column chromatography (1–3% 

EtOAc/hexanes) afforded the title compound as a yellow oil (83 mg, 79% over 2 steps). 

TLC Rf = 0.60 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 6.13 (s, 1H), 4.42 (s, 2H), 3.96 (s, 3H), 3.28 (s, 6H), 1.79 (s, 

3H), 0.93 (s, 9H), 0.10 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): 194.1, 159.9, 155.1, 115.9, 115.3, 94.7, 62.8, 59.8, 51.0, 26.0, 

18.5, 9.5, –5.3 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 365.1755; found: 365.1754 [M+Na

+
]. 

IR  𝜈 = 2950 (w), 2932 (w), 2857 (w), 1742 (vw), 1673 (m), 1569 (w), 1463 (w), 1446 

(vw), 1388 (vw), 1359 (vw), 1328 (vw), 1290 (w), 1258 (w), 1203 (w), 1180 (w), 
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1154 (w), 1135 (w), 1077 (s), 1056 (vs), 1006 (w), 982 (vw), 840 (s), 813 (vw), 779 

(m), 692 (vw) cm
–1

. 

5-(benzyloxy)-3,4-dimethoxy-2-methylbenzyl acetate (301) 

 

Alcohol 299 (43 mg, 0.15 mmol) was dissolved in CH2Cl2 (1.5 ml) and acetic anhydride (20 l, 

22 mg, 0.21 mmol, 1.5 eq.) and DMAP (2 mg, 0.02 mmol, 0.1 eq.) were added. After stirring for 15 

min, the reaction mixture was concentrated under reduced pressure. Purification by flash column 

chromatography (33% EtOAc/hexanes) afforded the title compound as colorless oil (48 mg, quant.).  

TLC Rf = 0.70 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 7.46–7.30 (m, 5H), 6.74 (s, 1H), 5.10 (s, 2H), 5.02 (s, 2H), 3.90 

(s, 3H), 3.85 (s, 3H), 2.18 (s, 3H), 2.08 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 171.1, 152.4, 150.4, 143.2, 137.2, 129.3, 128.7, 128.0, 127.5, 

124.2, 111.4, 71.3, 65.0, 61.1, 60.9, 21.1, 11.3 ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 353.1359; found: 353.1359 [M+Na

+
]. 

IR  𝜈 = 3066 (vw), 3029 (vw), 2936 (vw), 2865 (vw), 2828 (vw), 1738 (vs), 1585 (vw), 

1493 (m), 1454 (m), 1410 (w), 1373 (w), 1361 (w), 1329 (m), 1234 (vs), 1191 (w), 

1116 (vs), 1047 (m), 1027 (m), 982 (w), 952 (w), 927 (vw), 739 (w), 698 (w) cm
–1

. 

(4,4,5-trimethoxy-6-methyl-3-oxocyclohexa-1,5-dien-1-yl)methyl acetate (286) 

 

Benzyl ether 301 (44 mg, 0.14 mmol) was dissolved in EtOAc (1.3 ml) and Pd on activated 

charcoal (10 wt-%, 5 mg, 0.005 mmol, 4 mol-%) was added. The vessel was purged 3x with hydrogen 

gas and stirred for 30 min. The reaction mixture was filtered over celite and concentrated under 

reduced pressure. 
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The crude product was dissolved in MeOH (1.3 ml) and the solution cooled to 0 °C. KHCO3 (34 

mg, 0.37 mmol, 2.5 eq.) and PhI(OAc)2 (47 mg, 0.14 mmol, 1.1 eq.) were added and the reaction 

mixture stirred for 15 min. H2O (5 ml) was introduced and the aqueous phase extracted with EtOAc 

(3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. Purification by flash column chromatography (9–17% EtOAc/hexanes) afforded the title 

compound as a yellow oil (22 mg, 60% over 2 steps). 

TLC Rf = 0.50 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): 5.91 (s, 1H), 4.86 (s, 2H), 3.98 (s, 3H), 3.28 (s, 6H), 2.15 (s, 

3H), 1.85 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): 193.9, 170.3, 155.8, 154.3, 116.4, 114.7, 94.5, 63.0, 59.8, 51.0, 

20.9, 10.1 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 270.1103; found: 270.1083 [M+Na

+
]. 

IR  𝜈 = 2992 (vw), 2948 (w), 2834 (vw), 1748 (vs), 1675 (s), 1647 (w), 1566 (w), 1449 

(w), 1404 (vw), 1372 (w), 1328 (vw), 1292 (m), 1262 (m), 1227 (vs), 1211 (vs), 1151 

(w), 1080 (vs), 1042 (vs), 982 (w), 932 (vw), 850 (vw) cm
-1

. 

methyl 3,4-dihydroxy-5-methoxybenzoate (309)  

 

Gallic acid (5.00 g, 29.4 mmol) was dissolved in 5% aq. borax solution (400 ml) and aq. NaOH 

solution (26%, 25 ml) and dimethyl sulfate (20.0 g, 15.0 ml, 158 mmol, 5.4 eq.) were added 

simultaneously in a slow stream. The reaction mixture was stirred for 4 h and then acidified with aq. 

H2SO4 (1 M) to pH 1. The aqueous phase was extracted with EtOAc (2x60 ml) and the combined 

organic phases were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. 

The residue was dissolved in MeOH (25 ml) and conc. H2SO4 (1.0 ml) was added. The reaction 

mixture was heated to reflux for 3 h and then cooled to rt. pH 7.2 buffer (c = 1 M, 50 ml) was added 

and the aqueous phase extracted with EtOAc (3x50 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure to afford the title compound as a brownish oil (5.84 

g, 100%). The title compound could be taken forward without further purification. 

TLC Rf = 0.33 (40% EtOAc/hexanes). 
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1
H NMR  (400 MHz, (D3C)2CO): δ 8.23 (s, 1H), 8.01 (s, 1H) , 7.22 (d, J = 1.9 Hz, 1H), 7.16 (d, 

J = 1.9 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 167.1, 148.5, 145.9, 139.7, 121.6, 111.6, 105.6, 56.5, 52.0 

ppm. 

HRMS  (()-ESI, m/z): calc. [M–H

]: 197.0450; found: 197.0453 [M–H


]. 

IR  𝜈 = 3373 (m), 3007 (vw), 2954 (w), 2848 (vw), 1695 (s), 1610 (s), 1518 (m), 1457 

(m), 1436 (s), 1340 (vs), 1317 (vs), 1229 (vs), 1203 (vs), 1181 (s), 1104 (s), 1089 (vs), 

1006 (m), 959 (vw), 904 (vw), 872 (vw), 807 (vw), 767 (m), 751 (w) cm
–1

. 

((3,5-dichloro-6-methoxy-4-((methoxymethoxy)methyl)-1,2-phenylene)bis(oxy))bis(tert-

butyldimethylsilane) (310) 

 

Catechol 309 (503 mg, 2.54 mmol) was dissolved DMF (25 ml) and cooled to 0 °C. NCS (746 

mg, 5.59 mmol, 2.2 eq.) was added in portions. Upon completed addition, the reaction mixture was 

allowed to stir at rt for 16 h. The solution was poured onto aq. Na2S2O3 solution (c = 1 M, 50 ml) and 

aq. HCl solution (c = 1 M, 100 ml) and the aqueous phase was extracted with EtOAc (3x150 ml). The 

combined organic phases were dried over Na2SO4 and concentrated under reduced pressure.  

The crude product, imidazole (817 mg, 12.0 mmol, 4.8 eq.) and DMAP (61 mg, 0.50 mmol, 0.2 

eq.) were dissolved in DMF (0.3 ml). TBSCl (904 mg, 6.00 mmol) was added and the mixture was 

stirred for 19 h. H2O (100 ml) was added and the aqueous phase was extracted with EtOAc (3x100 

ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure.  

The crude product was dissolved in CH2Cl2 (10 ml) and cooled to –78 °C. DIBAL (25 wt-% in 

toluene, 4.2 ml, 6.3 mmol, 2.5 eq.) was added dropwise and the reaction mixture was stirred for 40 

min. EtOAc (30 ml) and sat. aq. Rochelle salt solution (30 ml) were added successively, and the 

mixture was stirred for 1 h. The water phase was extracted with EtOAc (3x30 ml) and the combined 

organic layer was dried with Na2SO4 and concentrated under reduced pressure.  

The crude product and DIPEA (1.8 ml, 10 mmol, 3.0 eq.) were dissolved in CH2Cl2 (5 ml) and 

cooled to 0 °C. MOMBr (0.69 ml, 8.8 mmol, 1.5 eq.) was added dropwise and the mixture was 

warmed to rt. After 4 h, pH 7.2 aq. phosphate buffer (c = 1 M, 5 ml) was added and the aqueous phase 

was extracted with CH2Cl2 (3x15 ml). The combined organic layers were dried over Na2SO4 and 

concentrated under reduced pressure. Purification of the crude product by flash column 
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chromatography (2.5% EtOAc/hexanes) afforded the title compound (526 mg, 40% over 4 steps) as 

colorless oil. 

 TLC Rf = 0.48 (9% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 4.83 (s, 2H), 4.76 (s, 2H), 3.75 (s, 3H), 3.45 (s, 3H), 1.04 (s, 

9H), 1.00 (s, 9H), 0.17 (s, 6H), 0.14 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 148.1, 144.3, 143.2, 126.7, 125.2, 123.6, 96.5, 65.0, 60.8, 55.6, 

26.4, 26.2, 18.9, 18.6, –3.2, –3.8 ppm. 

HRMS  ((–)-ESI, m/z): calc. [M–TBS
–
]: 395.0854; found: 395.0859 [M–TBS

–
]. 

IR  𝜈 = 2948 (w), 2932 (w), 2899 (w), 2890 (w), 2860 (w), 1462 (s), 1448 (m), 1439 (w), 

1402 (s), 1341 (w), 1255 (m), 1232 (vw), 1151 (w), 1100 (m), 1076 (w), 1039 (m), 

978 (m), 933 (m), 838 (vs), 786 (m), 722 (w) cm
–1

. 

((3-chloro-6-methoxy-4-((methoxymethoxy)methyl)-5-methyl-1,2-phenylene)bis(oxy))bis(tert-

butyldimethylsilane) (311) 

 

MOM ether 310 (459 mg, 0.897 mmol) was dissolved in THF (41 ml) and a solution of n-BuLi in 

hexanes (c = 2.35 M, 1.0 ml, 2.4 mmol, 10.0 eq.) was added at –40 °C and stirred for 1 h. MeI (2.8 ml, 

6.4 g, 45 mmol, 50 eq.) was added and the solution was slowly warmed to room temperature. After 

41 h, sat. aq. NH4Cl solution (30 ml) was added and the aqueous phase extracted with EtOAc 

(3x50 ml). The combined organic layers were dried with Na2SO4 and concentrated under reduced 

pressure. Purification of the crude product by flash column chromatography (2.5% EtOAc/hexanes) 

gave the title compound as a colorless oil (269 mg, 61%).  

TLC Rf = 0.43 (9% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 4.72 (s, 2H), 4.72 (s, 2H), 3.64 (s, 3H), 3.44 (s, 3H), 2.29 (s, 

3H), 1.03 (s, 9H), 1.00 (s, 9H), 0.16 (s, 6H), 0.11 (s, 6H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 149.9, 142.9, 142.0, 127.0, 126.1, 124.4, 96.3, 64.7, 60.3, 55.6, 

26.4, 26.3, 18.9, 18.6, 12.1, –3.2, –3.8 ppm. 

HRMS  (EI, m/z): calc. [M–CH3
+
]: 475.2103; found: 475.2103 [M–CH3

+
]. 

IR  𝜈 = 2952 (w), 2930 (m), 2894 (w), 2858 (w), 2858 (w), 1461 (s), 1411 (w), 1390 (w), 

1379 (w), 1362 (w), 1341 (w), 1252 (m), 1211 (vw), 1190 (vw), 1150 (w), 1115 (s), 
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1103 (m), 1031 (s), 1014 (m), 980 (m), 940 (w), 923 (w), 857 (s), 839 (vs), 810 (m), 

779 (s), 732 (vw) cm
–1

. 

3-chloro-6-methoxy-4-((methoxymethoxy)methyl)-5-methylbenzene-1,2-diol (312) 

 

Chloro arene 311 (269 mg, 0.547 mmol) was dissolved in MeCN (15.6 ml) and cooled to 0 °C. A 

solution of HF·pyridine (70 wt-% HF, 0.17 ml, 6.6 mmol, 12 eq.) and pyridine (0.71 ml) were added 

and the reaction mixture was heated to 50 °C. After 14 h, pH 5 aq. phosphate buffer (c = 1 M, 15 ml) 

and H2O (10 ml) were added and the aqueous phase was extracted with EtOAc (4x20 ml). The 

combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. 

Purification of the crude product by flash column chromatography (3% MeOH/CH2Cl2) afforded the 

title compound as a brownish oil (119 mg, 83%).  

TLC Rf = 0.25 (5% MeOH/CH2Cl2) 

1
H NMR  (400 MHz, CDCl3): δ 5.56 (brs, 1H), 5.49 (brs, 1H), 4.71 (s, 2H), 4.70 (s, 2H), 3.80 

(s, 3H), 3.44 (s, 3H), 2.31 (s, 3H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 144.7, 138.4, 137.6, 124.9, 124.5, 117.5, 96.2, 64.0, 61.0, 55.7, 

11.9 ppm. 

MS  (EI, %): 262.20 (30, M
+
), 257.18 (17), 200.14 (100), 185.11 (30), 167.16 (22).  

HRMS  (EI, m/z): calc. [M
+
]: 262.0608; found: 262.0602 [M

+
]. 

IR  𝜈 = 3355 (br, w), 2938 (w), 2892 (w), 1597 (vw), 1478 (m), 1458 (m), 1382 (m), 1344 

(w), 1298 (m), 1247 (w), 1224 (m), 1212 (w), 1148 (m), 1097 (vs), 1033 (vs), 964 (w), 

934 (w), 903 (w), 816 (m) cm
–1

.  
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6.2 Part II: Total Synthesis of Gracilin Natural Products 

6.2.1 Synthesis of Side Chain 

2-(3,3-dimethylcyclohexylidene)-N-methoxy-N-methylacetamide (364)
[348]

 

 

To a solution of phosphonate 363 (0.40 ml, 0.46 g, 1.9 mmol, 2.0 eq.) in Et2O (2.4 ml) was added 

NaH (60% dispersion in mineal oil, 73 mg, 1.8 mmol, 1.9 eq.) at 0 °C and the reaction mixture was 

stirred for 10 min. A solution of ketone 362 (0.13 ml, 0.12 g, 0.91 mmol) in Et2O (0.9 ml) was added 

and the reaction mixture was allowed to warm to rt. After stirring for 17 h, sat. aq. NaHCO3 (5 ml) 

was added and the aqueous phase was extracted with EtOAc (3x15 ml). The combined organic phases 

were dried over Na2SO4 and concentrated under reduced pressure. Crude 
1
H NMR analysis revealed a 

diastereomeric ratio (E):(Z) of 4:1 based on the olefinic proton. The crude product was purified by 

flash column chromatography (21x2.5 cm, 15–20% EtOAc/hexanes) to afford pure (E)- and (Z)-title 

compound as colorless oils (118 mg, 58%; 44 mg, 22 %). 

 

(364) Major (E) 

TLC Rf = 0.25 (15% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 5.99 (s, 1H, C2H), 3.68 (s, 3H, C9H3), 3.21 (s, 3H, C10H3), 2.70 

(t, J = 6.0 Hz, 2H, C8H2), 1.99 (s, 2H, C4H2), 1.641.58 (m, 2H, C7H2), 1.40 (t, J = 6.4 

Hz, 2H, C6H2), 0.91 (s, 6H, 2xC11H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 168.1 (C1), 158.3 (C3), 113.2 (C2), 61.5 (C9), 51.5 (C4), 39.3 

(C6), 34.4 (C5), 32.3 (br, C10), 29.6 (C8), 28.6 (C11), 23.6 (C7) ppm.  

MS  (EI, %): 211.05 (1, M
+
), 152.04 (11), 151.04 (100), 123.07 (14), 81.05 (20), 69.06 

(16). 

HRMS  (EI, m/z): calc. [M
+
]: 211.1572; found: 211.1588 [M

+
]. 

IR 𝜈 = 2928 (m), 2866 (w), 2843 (w), 1652 (vs), 1632 (vs), 1460 (m), 1438 (m), 1410 

(m), 1385 (m), 1364 (w), 1345 (m), 1322 (m), 1299 (w), 1242 (vw), 1177 (w), 1150 

(w), 1100 (w), 1048 (vw), 1018 (w), 1002 (s), 975 (vw), 960 (w), 916 (vw), 889 (vw), 

878 (vw), 863 (w), 841 (w), 823 (w), 799 (vw), 727 (vw), 707 (vw) cm
1

.
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(365) Minor (Z) 

TLC Rf = 0.31 (15% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 6.12 (s, 1H, C2H), 3.68 (s, 3H, C9H3), 3.20 (s, 3H, C10H3), 2.58 

(s, 2H, C4H2), 2.16 (t, J = 6.3 Hz, 2H, C8H2), 1.681.63 (m, 2H, C7H2), 1.40 (t, J = 6.2 

Hz, 2H, C6H2), 0.93 (s, 6H, 2xC11H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 168.1 (C1), 158.5 (C3), 113.4 (C2), 61.5 (C9), 42.7 (C4), 39.5 

(C6), 37.9 (C8), 34.2 (C5), 32.4 (C10), 28.5 (C11), 24.4 (C7) ppm. 

MS  (EI, %): 211.04 (1, M
+
), 196.03 (3), 151.04 (100), 123.07 (14), 81.05 (17), 69.06 (18). 

HRMS  (EI, m/z): calc. [M
+
]: 211.1572; found: 211.1552 [M

+
]. 

IR  𝜈 = 2932 (m), 2864 (w), 2841 (w), 1651 (vs), 1632 (vs), 1456 (m), 1436 (m), 1409 

(m), 1384 (s), 1364 (m), 1347 (w), 1339 (m), 1325 (m), 1298 (w), 1263 (vw), 1234 

(vw), 1176 (m), 1163 (w), 1150 (w), 1103 (m), 1091 (m), 1047 (w), 1016 (w), 1001 

(vs), 977 (w), 958 (m), 932 (vw), 872 (m), 847 (m), 828 (w), 804 (m), 730 (vw), 707 

(w) cm
1

.
 

2-(3,3-dimethylcyclohexylidene)acetaldehyde (356)
[348]

 

 

A solution of Weinreb amide 364 (0.13 g, 0.62 mmol) in THF (3 ml) was cooled to 78 °C and 

treated with a solution of DIBAL in toluene (c = 1.2 M, 1.0 ml, 1.2 mmol, 2.0 eq.). The reaction 

mixture was stirred for 1.25 h before a sat. aq. NH4Cl solution (1.5 ml) was carefully added. The 

mixture was allowed to warm to 0 °C and was stirred for additional 2 h. Aq. HCl solution (1 M) was 

then added to adjust the pH to 45. The aqueous phase was extracted with CH2CL2 (2x10 ml), the 

combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (5% EtOAc/hexanes) to afford a diastereomeric 

mixture of the title compound as a colorless oil (72 mg, 76%, (E):(Z) = 4:1). 

 

(356) Major (E) 

 

TLC Rf = 0.39 (10% EtOAc/hexanes). 
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1
H NMR  (600 MHz, CDCl3): δ 10.01 (d, J = 8.3 Hz, 1H, C1H), 5.80–5.78 (m, 1H, C2H), 2.64 

(td, J = 6.3, 0.9 Hz, 2H, C8H2), 2.08 (s, 2H, C4H2), 1.741.69 (m, 2H, C7H2), 

1.481.44 (m, 2H, C6H2), 0.93 (s, 6H, 2xC11H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 190.6 (C1), 166.7 (C3), 126.9 (C2), 51.3 (C4), 39.0 (C6), 34.9 

(C5), 29.2 (C8), 28.6 (C9), 23.9 (C7) ppm. 

MS  (EI, %): 152.12 (83, M
+
), 137.10 (45), 109.02 (100), 96.02 (23), 69.07 (48) 

HRMS  (EI, m/z): calc. [M
+
]: 152.1201; found: 152.1180 [M

+
]. 

IR  𝜈 = 2948 (w), 2866 (w), 2845 (w), 2770 (vw), 2740 (vw), 1668 (vs), 1629 (m), 1456 

(w), 1445 (w), 1401 (vw), 1386 (vw), 1365 (w), 1346 (vw), 1323 (vw), 1299 (vw), 

1264 (vw), 1240 (vw), 1198 (w), 1165 (m), 1115 (m), 1088 (vw), 1049 (vw), 1013 

(vw), 993 (vw), 975 (vw), 947 (vw), 919 (vw), 889 (vw), 873 (vw), 861 (vw), 841 

(vw), 803 (vw), 763 (vw), 723 (vw), 673 (vw) cm
1

.
 

(366) Minor (Z) 

TLC  Rf = 0.42 (10% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 9.97 (d, J = 8.3 Hz, 1H, C1H), 5.945.92 (m, 1H, C2H), 2.47 (s, 

2H, C4H2), 2.23 (td, J = 6.2, 0.9 Hz, 2H, C8H2), 1.741.69 (m, 2H, C7H2), 1.481.44 

(m, 2H, C6H2), 0.96 (s, 6H, 2xC9H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 190.7 (C1), 166.8 (C3), 127.2 (C2), 42.8 (C4), 39.1 (C6), 37.8 

(C8), 34.8 (C5), 28.6 (C9), 24.2 (C7) ppm. 
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6.2.2 First Strategy: Torquoselective 6π-Electrocyclization 

(but-3-en-1-yloxy)(tert-butyl)dimethylsilane (391)
[349]

 

 

Alcohol 390 (4.8 ml, 4.0 g, 50 mmol, 1 eq.) in DMF (60 ml) was treated with TBSCl (10.0 g, 67.0 

mmol, 1.2 eq.) and imidazole (7.50 g, 110 mmol, 2.0 eq.) at 0 °C. The ice bath was removed and the 

reaction mixture stirred for 30 min. H2O (100 ml) was added and the aqueous phase was extracted 

with n-pentane (3x25 ml). The combined organic phases were dried over Na2SO4 and concentrated 

under reduced pressure. The crude product was filtered over a small silica plug with n-pentane (350 

ml) and could be used without further purification (10.2 g, 110% due to TBSOTBS impurities). 

TLC Rf = 0.17 (100% n-pentane). 

1
H NMR  (300 MHz, CDCl3): δ 5.895.75 (m, 1H, C3H), 5.114.99 (m, 2H, cis-C4H, 

trans-C4H), 3.66 (t, J = 6.8 Hz, 2H, C1H2), 2.27 (tddd, J = 6.8, 6.8, 1.3, 1.3 Hz, 2H, 

C2H2), 0.89 (s, 9H, 3xC7H3), 0.06 (s, 6H, 2xC5H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 135.6 (C3), 116.4 (C4), 63.0 (C1), 37.6 (C2), 26.1 (C7), 18.5 

(C6), 5.1 (C5) ppm. 

MS  (CI, %): 187.1 (MH
+
, 94), 145.1 (22), 129.1 (24). 

IR  𝜈 = 3081 (vw), 2955 (w), 2930 (w), 2896 (vw), 2858 (w), 1642 (vw), 1472 (w), 1464 

(vw), 1432 (vw), 1387 (vw), 1362 (vw), 1254 (m), 1096 (vs), 1006 (w), 986 (w), 938 

(vw), 910 (m), 833 (vs), 811 (m), 774 (vs), 734 (w), 665 (w), 626 (vw) cm
1

. 

(E)-tert-butyl(hex-3-en-5-yn-1-yloxy)dimethylsilane (393)  

 

A mixture of TBS ether 391 (985 mg, 5.29 mmol), crotonaldehyde (1.11 g, 15.9 mmol, 3.0 eq.) 

and Grubbs II catalyst (90 mg, 0.11 mmol, 0.02 eq.) in deaerated CH2Cl2 (21 ml) was heated to reflux 
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for 3 h. The reaction mixture was filtered over a short silica plug with CH2Cl2 (100 ml) and Et2O (50 

ml) and the organic phase was concentrated in vacuo.  

CBr4 (4.39 g, 13.2 mmol, 2.5 eq.) in CH2Cl2 (70 ml) was added dropwise to a solution of PPh3 

(6.94 g, 26.5 mmol, 5.0 eq.) in CH2Cl2 (75 ml) at 0 °C. This mixture was treated with NEt3 (1.7 ml, 1.2 

g, 13 mmol, 2.3 eq.) and stirred for 30 min. The crude aldehyde in CH2Cl2 (20 ml) was added 

dropwise over 10 min and the ice bath was removed upon completed addition. After 17 h, the reaction 

mixture was diluted with hexanes (200 ml) and the resulting precipitate filtered off. The organic phase 

was concentrated in vacuo. The suspension was again filtered after addition of hexanes (100 ml) and 

the remaining organic phase concentrated under reduced pressure. 

The crude intermediate was dissolved in THF (50 ml) and cooled to 78 °C. A solution of n-BuLi 

in n-hexane (2.5 M, 9.1 ml, 23 mmol, 4.3 eq.) was added dropwise. The reaction mixture was stirred 

for 1 h at 78 °C and then allowed to warm to rt. Water (75 ml) was added and the aqueous phase was 

extracted with CH2Cl2 (3x100 ml). The combined organic phases were washed with brine (200 ml), 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (5–15% CH2Cl2/hexanes) to afford the title compound as a yellowish oil (425 

mg). The mixed fractions were resubjected to flash column chromatography (5–10% CH2Cl2/hexanes) 

to furnish the title compound as a yellowish oil (79 mg, combined yield over 3 steps 45%).  

TLC Rf = 0.34 (2% Et2O/n-pentane). 

1
H NMR  (300 MHz, CDCl3): δ 6.25 (dt, J = 16.1, 7.2 Hz, 1H, C3H), 5.52 (ddd, J = 16.1, 2.2, 

1.6, 1H, C4H), 3.66 (t, J = 6.6 Hz, 2H, C1H2), 2.802.78 (m, 1H, C6H), 2.372.28 (m, 

2H, C2H2), 0.89 (s, 9H, 3xC9H3), 0.06 (s, 6H, 2xC7H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 143.4 (C3), 110.5 (C4), 82.5 (C5), 76.1 (C6), 62.2 (C1), 36.7 

(C2), 26.1 (C9), 18.5 (C8), 5.2 (C7) ppm. 

MS  (EI, %): 212.21 (18), 153.11 (100), 123.08 (52), 75.04 (73). 

HRMS  (EI, m/z): [MCH3
+
] calc.: 195.1205; found: 195.1216 (MCH3

+
). 

IR  𝜈 = 3314 (vw), 2954 (w), 2928 (w), 2897 (vw), 2856 (w), 1472 (w), 1463 (w), 1389 

(vw), 1361 (vw), 1252 (m), 1094 (vs), 1043 (vw), 1006 (w), 957 (m), 938 (w), 833 

(vs), 812 (m), 774 (vs), 721 (w), 670 (w), 660 (w), 634 (m) cm
1

. 

(((3E,5Z)-6-bromohexa-3,5-dien-1-yl)oxy)(tert-butyl)dimethylsilane (394)  
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A mixture of TBS ether 391 (314 mg, 1.68 mmol), crotonaldehyde (354 mg, 5.05 mmol, 3.0 eq.) 

and GRUBBS II catalyst (71 mg, 0.084 mmol, 0.05 eq.) in deaerated CH2Cl2 (7 ml) was heated to reflux 

for 4 h. The reaction mixture was filtered over a short silica plug with CH2Cl2 (80 ml) and the organic 

phase was concentrated under reduced pressure. 

CBr4 (1.68 g, 5.05 mmol, 3.0 eq.) in CH2Cl2 (20 ml) was treated dropwise with a solution of PPh3 

(2.65 g, 10.1 mmol, 6.0 eq.) in CH2Cl2 (15 ml) at 0 °C. This mixture was subjected to NEt3 (2.4 ml). 

The crude aldehyde in CH2Cl2 (6 ml) was added dropwise over 10 min and the ice bath was removed 

upon completed addition. After 1.5 h, the reaction mixture was quenched with sat. NH4Cl (30 ml), the 

aqueous phase extracted with CH2Cl2 (3x75 ml), dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by column chromatography (5% EtOAc/hexanes) to afford 

the dibromoolefin as a yellow oil (284 mg, 45% over 2 steps). 

The latter was dissolved in toluene (2.5 ml) and Pd(PPh3)4 (89 mg, 0.077 mmol, 0.1 eq.) and 

HSnBu3 (0.23 ml, 0.26 g, 0.87 mmol, 1.14 eq.) were added subsequently. The reaction mixture was 

stirred for 1 h before it was filtered over a silica plug with CH2Cl2 (350 ml) and hexanes (50 ml). The 

organic phase was concentrated under reduced pressure and the crude product was purified by column 

chromatography (10–15% CH2Cl2/hexanes) to afford the product as a colorless oil (150 mg, 67%). MS 

spectral analysis failed for this compound. 

TLC Rf = 0.42 (1% EtOAc/hexanes). 

1
H NMR  (300 MHz, C6D6): δ 6.626.52 (m, 1H, C4H), 6.246.14 (m,1H, C6H), 5.775.65 (m, 

2H, C3H, C5H), 3.45 (t, J = 6.5 Hz, 2H, C1H2), 2.152.07 (m, 2H, C2H2), 0.96 (s, 9H, 

3xC9H3), 0.02 (s, 3H, 2xC7H3) ppm. 

13
C NMR  (75 MHz, C6D6): δ 136.1 (C3), 132.9 (C6), 106.3 (C5), 62.5 (C1), 36.7 (C2), 26.1 

(C9), 18.5 (C8), 5.2 (C7) ppm. C4 hidden by solvent signal. 

IR 𝜈 = 2953 (w), 2927 (w), 2883 (vw), 2856 (w), 1725 (vw), 1698 (vw), 1619 (vw), 1471 

(w), 1462 (w), 1388 (vw), 1361 (w), 1330 (vw), 1252 (m), 1095 (s), 1005 (w), 971 

(w), 938 (w), 834 (vs), 812 (s), 775 (vs), 724 (w), 665 (m) cm
1

. 

(R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (396)
[255]
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Diol 395 (2.50 g, 9.50 mmol) in CH2Cl2 (23 ml) was treated with sat. aq. NaHCO3 (1 ml) and 

NaIO4 (4.10 g, 19.1 mmol, 2.0 eq.) and stirred for 1.5 h. The solid phase was filtered off and washed 

with CH2Cl2 (4x10 ml) and the organic phase was concentrated in vacuo. The crude product was 

purified by distillation (b.p.: 50 °C, p = 30 mbar) to afford the title compound as a colorless oil 

(1.77 g, 73%). 

TLC Rf = 0.20 (30% EtOAc/hexanes). 

b.p.:  50 °C (p = 30 mbar). 

1
H NMR  (300 MHz, CDCl3): δ 9.72 (d, J = 2.0 Hz, 1H, C1H), 4.38 (ddd, J = 7.0, 4.8, 2.0 Hz, 

1H, C2H), 4.17 (dd, J = 8.8, 7.0 Hz, 1H, C3H), 4.10 (dd, J = 8.8, 4.8 Hz, 1H, C3H), 

1.49 (s, 3H, C5H3), 1.42 (s, 3H, C6H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 201.9 (C1), 111.4 (C4), 80.0 (C2), 65.7 (C3), 26.4 (C5), 25.3 

(C6) ppm. 

MS  (EI, %): 131.12 (14), 115.09 (63), 101.11 (100), 85.06 (17), 43.00 (79). 

HRMS  (EI, m/z): calc: 131.0663 [MH
+
]; found: 131.0695 (MH

+
). 

IR  𝜈 = 3450 (vw), 2990 (vw), 2938 (vw), 2892 (vw), 2820 (vw), 1734 (s), 1456 (vw), 

1374 (m), 1253 (m), 1214 (m), 1149 (m), 1067 (vs), 964 (w), 917 (w), 839 (vs), 791 

(vw), 733 (m), 648 (vw) cm
1

. 

OR  [α]D
22

 = + 81.0° (12 mg/ml, CHCl3). 

(S,E)-4-(2-iodovinyl)-2,2-dimethyl-1,3-dioxolane (397)  

 

A suspension of CrCl2 (1.34 g, 10.9 mmol, 5.0 eq.) in THF (50 ml) was treated with a solution of 

CHI3 (1.07 g, 2.73 mmol, 1.25 eq.) and aldehyde 396 (284 mg, 2.18 mmol) in THF (10 ml) at 0 °C. 

The ice bath was removed and the reaction mixture stirred for 22 h. After addition of H2O (30 ml), the 
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aqueous phase was extracted with Et2O (3x250 ml) and the combined organic phases were dried over 

Na2SO4 and concentrated in vacuo. The crude product was purified by column chromatography (0.5–

1–2–5% EtOAc/hexanes) to afford the title compound as a colorless oil (430 mg, 78%, E:Z 15:1). 

TLC Rf = 0.26 (1% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 6.24 (dd, J = 14.5, 6.7 Hz, 1H, C2H), 6.06 (dd, J = 14.5, 1.0 Hz, 

1H, C1H), 3.963.90 (m, 1H, C3H), 3.54 (dd, J = 8.3, 6.3 Hz, 1H, C4H), 3.16 (dd, 

J = 8.3, 7.1 Hz, 1H, C4H), 1.26 (s, 3H, C6H3), 1.24 (s, 3H, C7H3) ppm. 

13
C NMR  (100 MHz, C6D6): δ 144.2 (C2), 109.6 (C5), 79.2 (C1), 78.2 (C3), 68.4 (C4), 26.7 

(C6), 26.0 (C7) ppm. Unknown impurity at δ 2.7 ppm. 

MS  (EI, %): 253.98 (2, M
+
), 238.95 (48), 126.92 (8), 97.04 (24). 

HRMS  (EI, m/z): [M
+
] calc.: 253.9804; found: 253.9800 [M

+
]. 

IR 𝜈 = 3405 (vw), 3051 (vw), 2985 (w), 2935 (vw), 2874 (vw), 1610 (w), 1455 (vw), 

1380 (w) 1371 (m), 1248 (m), 1216 (s), 1179 (m), 1152 (s), 1112 (w), 1057 (vs), 1028 

(m), 943 (s), 914 (w), 851 (s), 793 (w), 765 (w), 732 (w), 645 (vw) cm
1

. 

OR [α]D
21

 = +23.1° (27 mg/ml, CHCl3). 

 tert-butyldimethyl(((S)-1-((R)-oxiran-2-yl)allyl)oxy)silane (399)
[350]

 

 

A solution of epoxyalcohol 398 (1.99 g, 16.0 mmol) in CH2Cl2 (31 ml) was cooled to 0 °C and 

TBSCl (2.97 g, 19.7 mmol, 1.2 eq.) and imidazole (1.63 g, 23.9 mmol, 1.5 eq.) were added. The 

reaction mixture was stirred for 1 h before the addition of H2O (40 ml) and Et2O (60 ml). The aqueous 

phase was extracted with Et2O (3x20 ml) and the combined organic phases were washed with HCl 

(c = 0.1 M, 50 ml), brine, dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (2% Et2O/n-pentane) to afford the title 

compound as a colorless oil (3.09 g, 14.4 mmol, 90%). 

TLC Rf = 0.36 (2% Et2O/n-pentane). 

1
H NMR  (400 MHz, CD2Cl2): δ 5.88 (ddd, J = 17.2, 10.5, 5.6 Hz, 1H, C2H), 5.31 (ddd, 

J = 17.2, 1.6, 1.6 Hz, 1H, trans-C1H), 5.17 (ddd, J = 10.5, 1.4, 1.4 Hz, 1H, cis-C1H), 

4.144.10 (m, 1H, C3H), 2.93–2.89 (m, 1H, C4H), 2.682.63 (m, 2H, C5H, C5H), 0.90 

(s, 9H, 3xC9H3), 0.07 (s, 3H, C6H3), 0.06 (s, 3H, C7H3) ppm. 
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13
C NMR  (100 MHz, CD2Cl2): δ 137.9 (C2), 116.0 (C1), 73.0 (C3), 54.7 (C4), 44.4 (C5), 25.9 

(C9), 18.5 (C8), 4.7 (C6/C7), 4.7 (C6/C7) ppm. 

MS  (EI, %): 171.21 (6), 157.15 (13), 127.12 (100), 101.09 (13), 75.05 (24). 

HRMS  (EI, m/z): [MCH3
+
] calc.: 199.1154; found: 199.1136 [MCH3

+
]. 

IR  𝜈 = 2956 (w), 2930 (w), 2887 (vw), 2858 (w), 1646 (vw), 1472 (w), 1464 (vw), 1404 

(vw), 1390 (vw), 1362 (vw), 1339 (vw), 1287 (vw), 1251 (m), 1170 (vw), 1158 (w), 

1136 (w), 1119 (w), 1080 (m), 1033 (m), 1001 (m), 926 (m), 834 (vs), 801 (m), 775 

(vs), 674 (m), 648 (vw) cm
1

. 

 tert-butyl(((S,E)-3-iodo-1-((R)-oxiran-2-yl)allyl)oxy)dimethylsilane (400)  

 

A stream of ozone/oxygen was bubbled through a solution of TBS ether 399 (111 mg, 0.520 

mmol) in CH2Cl2/MeOH (1:1, 2.6 ml) cooled to 78 °C until TLC analysis indicated full conversion 

(35 sec). The solution was purged with N2 to remove excess ozone. Pd on charcoal (spatula tip) was 

added to the reaction mixture and a H2 atmosphere was introduced. After 3 h, the suspension was 

filtered over Celite with Et2O, the organic phase washed with water (10 ml), brine, dried over Na2SO4 

and concentrated under reduced pressure (p = 390 mbar). 

A suspension of CrCl2 (447 mg, 3.64 mmol, 7.0 eq.) in THF (12 ml) was treated with a solution of 

CHI3 (512 mg, 1.30 mmol, 2.5 eq.) in THF (1 ml) and the crude aldehyde in THF (1.5 ml) at 0 °C. The 

ice bath was removed and the reaction mixture stirred for 5 h. After dilution with Et2O (10 ml), the 

organic phase was washed with half-saturated Na2S2O3 solution (10 ml), washed with H2O (2x10 ml), 

dried over Na2SO4 and concentrated in vacuo. The crude product was purified by flash column 

chromatography (1–2.5–5% Et2O/hexanes) to afford the title compound as a colorless oil 

((E):(Z) = 11:1, 103 mg, 58% over 2 steps). MS spectral analysis failed for this compound. 

TLC Rf = 0.17 (5% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 6.56 (dd, J = 14.6, 6.9 Hz, 1H, C2H), 6.44 (dd, J = 14.6, 0.7 

Hz, 1H, C1H), 4.14 (ddd, J = 6.9, 5.6, 0.7 Hz, 1H, C3H), 3.52 (ddd, J = 5.6, 5.6, 5.6 

Hz, 1H, C4H), 3.293.25 (m, 2H, C5H, C5H), 0.90 (s, 9H, 3xC9H3), 0.10 (s, 3H, C6H3), 

0.07 (s, 3H, C7H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 144.6 (C2), 79.7 (C1), 77.7 (C3), 73.7 (C4), 25.9 (C9), 18.2 

(C8), 9.3 (C5), 4.2 (C6/C7), 4.7 (C6/C7) ppm. 
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IR 𝜈 = 3464 (vw), 2954 (m), 2929 (m), 2886 (w), 2857 (m), 1607 (vw), 1472 (w), 1362 

(w), 1254 (m), 1090 (s), 1181 (w), 1090 (s), 948 (w), 867 (s), 837 (vs), 778 (vs), 680 

(vw) cm
1

. 

OR  [α]D
21

 = +3.0° (17 mg/ml, CHCl3). 

tert-butyl(((3E,7E)-8-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)octa-3,7-dien-5-yn-1-

yl)oxy)dimethylsilane (401)  

 

Vinyl iodide 397 (71 mg, 0.28 mmol, 1.05 eq.) in DMF (1 ml) and NEt3 (0.8 ml) was added to a 

solution of PdCl2(PPh3)2 (9 mg, 0.01 mmol, 0.05 eq.) and CuI (5 mg, 0.03 mmol, 0.1 eq.) in DMF (1 

ml) at room temperature and stirred for 10 min. The mixture was treated with alkyne 393 (56 mg, 0.27 

mmol, 1.0 eq.) in DMF (1 ml) and stirred for 5 h before sat. aq. NH4Cl solution (7 ml) was added. The 

aqueous phase was extracted with Et2O (3x25 ml) and the combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by column 

chromatography twice (1–3% Et2O/hexanes; 3–57% EtOAc/hexanes) to afford the product as a 

colorless oil (57 mg, 60%). 

TLC Rf = 0.31 (10% Et2O/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 6.15 (ddd, J = 16.0, 7.2, 7.2 Hz, 1H, C8H), 6.04 (dd, J = 15.9, 

6.8 Hz, 1H, C3H), 5.925.84 (m, 1H, C4H), 5.685.59 (m, 1H, C7H), 4.53 (ddd, 

J = 6.9, 6.8, 6.5, 1H, C2H), 4.11 (dd, J = 8.3, 6.5 Hz, 1H, C1H), 3.683.58 (m, 3H, 

C10H, C10H, C1H), 2.33 (dddd, J = 7.2, 7.2, 7.2, 1.5 Hz, 2H, C9H, C9H), 1.42 (s, 3H, 

C12H3), 1.39 (s, 3H, C13H3), 0.89 (s, 9H, 3xC17H3), 0.06 (s, 3H, C14H3), 0.06 (s, 3H, 

C15H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 141.8 (C8), 139.5 (C3), 113.0 (C4), 111.4 (C7), 109.9 (C11), 

89.8 (C6), 86.0 (C5), 76.5 (C2), 69.4 (C1), 62.3 (C10), 36.9 (C9), 26.7 (C12), 26.1 

(C17), 26.0 (C13), 18.5 (C16), 5.1 (C14, C15) ppm. 

MS  (EI, %): 321.26 (14), 279.23 (88), 147.15 (95), 115.12 (36), 89.07 (85), 75.05 (92), 

73.07 (100). 

HRMS  (EI, m/z): [M]
+
 calc.: 336.2121; found: 336.2116 [M

+
]. 
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IR 𝜈 = 2986 (vw), 2955 (w), 2930 (w), 2858 (w), 1472 (w), 1464 (vw), 1380 (w), 1371 

(w), 1290 (vw), 1252 (m), 1213 (w), 1155 (w), 1094 (s), 1060 (s), 1030 (w), 1006 (w), 

952 (s), 834 (vs), 775 (vs), 721 (vw), 662 (w) cm
1

. 

OR [α]D
21

 = +28.0° (7 mg/ml, CHCl3).  
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(S,6E,10E)-2,2,3,3,15,15,16,16-octamethyl-5-((R)-oxiran-2-yl)-4,14-dioxa-3,15-disilaheptadeca-

6,10-dien-8-yne (402) 

 

Vinyl iodide 400 (62 mg, 0.18 mmol, 1.05 eq.) in DMF (0.7 ml) and NEt3 (0.5 ml) was added to a 

solution of PdCl2(PPh3)2 (6 mg, 0.01 mmol, 0.05 eq.) and CuI (3 mg, 0.02 mmol, 0.1 eq.) in DMF (0.7 

ml) at room temperature and stirred for 10 min. The mixture was treated with alkyne 393 (36 mg, 0.17 

mmol, 1.0 eq.) in DMF (0.7 ml) and stirred for 17 h before sat. aq. NH4Cl solution (10 ml) was added. 

The aqueous phase was extracted with Et2O (3x25 ml) and the combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column 

chromatography (3–57% Et2O /hexanes) to afford the product as a colorless oil (89 mg, quant.). 

TLC Rf = 0.61 (10% Et2O/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 6.186.12 (m, 2H, C4H, C9H), 5.89 (ddd, J = 15.9, 2.0, 2.0 Hz, 

1H, C5H), 5.685.62 (m, 1H, C8H), 4.214.17 (m, 1H, C3H), 3.66 (t, J = 6.7 Hz, 2H, 

C11H, C11H), 2.942.91 (m, 1H, C2H), 2.712.68 (m, 2H, C1H, C1H), 2.372.31 (m, 

2H, C10H, C10H), 0.89 (s, 18H, 3xC15H3, 3xC19H3), 0.06 (s, 3H, C12H3), 0.05 (s, 3H, 

C13H3), 0.05 (s, 6H, C16H3, C17H3) ppm.  

13
C NMR  (150 MHz, CDCl3): δ 141.5 (C4/C9), 141.3 (C4/C9), 111.5 (C8), 111.1 (C5), 89.5 

(C6/C7), 86.4 (C6/C7), 71.6 (C3), 62.4 (C11), 54.4 (C2), 44.4 (C1), 36.9 (C10), 26.1 

(C15/C19), 25.9 (C15/C19), 18.5 (C14/C18), 18.4 (C14/C18), 4.7 (C12, C13), 5.1 

(C16, C17) ppm.  

MS  (EI, %): 365.20 (25), 233.17 (25), 205.20 (10), 163.16 (8), 147.12 (18), 115.12 (25), 

89.06 (75), 73.06 (100). 

HRMS  (EI, m/z): [M
+
] calc.: 422.2672; found: 422.2672 [M

+
]. 

IR  𝜈 = 2954 (w), 2929 (w), 2886 (vw), 2857 (w), 1613 (vw), 1472 (w), 1463 (w), 1389 

(vw), 1361 (vw), 1284 (vw), 1252 (m), 1164 (vw), 1117 (m) 1095 (m), 1000 (m), 953 

(m), 834 (vs), 813 (m), 775 (vs), 676 (w) cm
1

. 

OR [α]D
24

 = +23.4° (28 mg/ml, CHCl3).  
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6.2.3 Second Strategy: Rhodium-Catalyzed Formal (4+3)-Cycloaddition 

ethyl (E)-hexa-3,5-dienoate (436)
[299]

  

 

n-BuLi (c = 2.45 M, 29.4 ml, 72.0 mmol, 1.2 eq.) was added to DIPA (10.1 ml, 7.29 g, 72.0 mmol, 

1.2 eq.) in THF (120 ml) cooled to 78 °C. After 45 min, HMPA (13.6 ml, 14.0 g, 78.0 mmol, 1.3 eq.) 

was added slowly dropwise and stirring was continued for 1.5 h. After the addition of diene 434 (9.1 

ml, 8.7 g, 60 mmol) was complete, the reaction mixture was stirred for an additional hour, before it 

was poured onto HOAc (10.3 ml, 10.8 g, 180 mmol, 3.0 eq.) in H2O (210 ml) cooled to 0 °C under 

vigorous stirring. The aqueous phase was extracted with hexanes (2x300 ml) and the combined 

organic phases were washed with H2O, sat. aq. NaHCO3, dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was distilled under reduced pressure (20 ± 5 mbar) to afford the 

title compound as a colorless oil (6.39 g, 76%).  

b.p.:  6670 °C (p = 20 mbar). 

1
H NMR  (300 MHz, CDCl3): δ 6.34 (ddd, J = 20.3, 10.4, 10.4 Hz, 1H, C5H), 6.206.08 (m, 

1H, C4H), 5.855.72 (m, 1H, C3H), 5.16 (d, J = 16.6 Hz, 1H, transC6H), 5.06 (d, 

J = 10.4 Hz, 1H, cisC6H), 4.15 (q, J = 7.0 Hz, 2H, C7H2), 3.11 (d, J = 7.4 Hz, 2H, 

C2H2), 1.26 (t, J = 7.0 Hz, 3H, C8H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 171.6 (C1), 136.5 (C5), 134.4 (C4), 125.9 (C3), 117.0 (C6), 60.9 

(C7), 38.2 (C2), 14.3 (C8) ppm. 

MS  (EI, %): 140.15 (33, M
+
), 97.11 (14), 85.13 (22), 67.14 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 140.0837; found: 140.0827 [M

+
]. 

IR  𝜈 = 3089 (vw), 2982 (vw), 2937 (vw), 1734 (vs), 1654 (vw), 1604 (vw), 1465 (vw), 

1447 (vw), 1407 (vw), 1369 (w), 1337 (w), 1303 (w), 1244 (m), 1179 (s), 1140 (m), 

1097 (vw), 1026 (m), 1004 (s), 953 (w), 904 (w), 858 (vw), 828 (vw) cm
1

. 
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methyl (E)-hexa-3,5-dienoate (437)  

 

A solution of LDA in THF was prepared by adding a solution of n-BuLi in THF (2.4 M, 20.0 ml, 

48.0 mmol, 1.2 eq.) to DIPA (6.7 ml, 4.8 g, 48 mmol, 1.2 eq.) in THF (80 ml) at 78 °C. This mixture 

was stirred for 25 min at the same temperature before it was treated with HMPA (9.1 ml, 9.3 g, 52 

mmol, 1.3 eq.) via syringe pump (50 ml/hr). The resulting mixture was stirred for 35 min at 78 °C. 

Subsequently, diene 435 (5.3 ml, 5.0 g, 40 mmol) was slowly introduced to the reaction mixture via 

syringe pump (5 ml/hr). Upon completed addition, the orange solution was stirred for 1 h and then 

poured onto ice-cold acetic acid (6.9 ml, 7.2 g, 0.12 mol, 3.0 eq.) in H2O (180 ml). The aqueous phase 

was extracted with hexanes (2x300 ml) and the combined organic phases were washed with H2O (200 

ml) and sat. aq. NaHCO3 solution (150 ml), dried over Na2SO4 and concentrated under reduced 

pressure. The remaining residue was distilled under reduced pressure (22 ± 5 mbar) to afford the title 

compound as a colorless oil (3.73 g, 74%). 

The title compound coevaporates with solvents such as THF, hexanes, n-hexane, CH2Cl2, CHCl3 

and EtOAc upon concentration under reduced pressure. Other solvents were not employed in 

combination with the title compound but are expected to show the same behavior. 

b.p.:  61 °C (p = 22 mbar). 

1
H NMR  (300 MHz, CDCl3): δ 6.34 (ddd, J = 16.8, 10.2, 10.2 Hz, 1H, C5H), 6.206.08 (m, 

1H, C4H), 5.78 (dt, J = 15.0, 7.2 Hz, 1H, C3H), 5.17 (dm, J = 16.8 Hz, 1H, trans-

C6H), 5.07 (dm, J = 10.2 Hz, 1H, cis-C6H) 3.69 (s, 3H, C7H3), 3.13 (d, J = 7.2 Hz, 2H, 

C2H2) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 172.0 (C1), 136.5 (C5), 134.6 (C4), 125.6 (C3), 117.2 (C6), 52.0 

(C7), 37.9 (C2) ppm. 

MS  (EI, %): 126.18 (90, M
+
), 84.14 (100), 67.05 (96). 

HRMS  (EI, m/z): calc. [M
+
]: 126.0681; found: 126.0676 [M

+
]. 

IR  𝜈 = 3089 (vw), 3002 (vw), 2954 (vw), 2845 (vw), 1737 (vs), 1654 (vw), 1604 (vw), 

1436 (m), 1408 (vw), 1343 (w), 1306 (w), 1249 (m), 1192 (m), 1171 (s), 1065 (vw), 

1003 (vs), 954 (m), 904 (m), 883 (w), 825 (w), 738 (vw), 708 (vw) cm
1

. 
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ethyl (E)-2-diazohexa-3,5-dienoate (439)  

 

DBU (0.19 ml, 0.19 g, 1.3 mmol, 1.18 eq.) was added dropwise to a solution of compound 436 

(160 l, 150 mg, 1.07 mmol) and p-ABSA (273 mg, 1.13 mmol, 1.06 eq.) in MeCN (2.3 ml) at 10 

°C. After 2 h, the reaction was treated with sat. aq. NH4Cl (10 ml), extracted with Et2O (2x40 ml), the 

combined organic phases washed with brine (25 ml) and dried over Na2SO4. The solvent was 

evaporated under reduced pressure and the crude product purified by column chromatography (18x2.5 

cm, 2% Et2O/hexanes, deactivated silica) to afford the title compound as a red oil (140 mg, 79%). 

The title compound polymerizes at room temperature. It should therefore be stored frozen in 

benzene at 78 °C. 

TLC Rf = 0.32 (5% Et2O/hexanes). 

1
H NMR  (600 MHz, CDCl3): δ 6.466.39 (m, 1H, C5H), 5.995.90 (m, 2H, C3H, C4H), 

5.145.10 (m, 1H, trans-C6H), 5.035.00 (m, 1H, cis-C6H), 4.28 (q, J = 7.2 Hz, 2H, 

C7H2), 1.30 (t, J = 7.2 Hz, 3H, C8H3) ppm.  

13
C NMR  (150 MHz, CDCl3): δ 165.2 (C1), 136.3 (C5), 124.4 (C3/C4), 118.7 (C2), 115.3 

(C3/C4), 115.3 (C6), 61.5 (C7), 14.6 (C8) ppm. 

MS  (EI, %): 166.17 (100), 121.15 (30), 92.15 (11), 64.12 (32). 

HRMS  (EI, m/z): calc. [M
+
]: 166.0742; found: 166.0743 [M

+
]. 

IR  𝜈 = 3089 (vw), 2982 (vw), 2931 (vw), 2074 (vw), 2856 (vw), 2074 (vs), 1698 (vs), 

1627 (m), 1597 (vw), 1478 (vw), 1465 (w), 1446 (w), 1421 (w), 1392 (w), 1369 (m), 

1320 (vs), 1243 (vs), 1218 (w), 1167 (vs), 1123 (m), 1099 (vs), 996 (vs), 934 (m), 892 

(m), 873 (m), 838 (w), 786 (w), 760 (w), 739 (s), 673 (w) cm
1

.
 

ethyl (3R,4R)-4-(2-ethoxy-2-oxoethyl)-3-vinylcyclohepta-1,5-diene-1-carboxylate (438) 
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Racemic procedure: 

 

To a solution of diene 436 (5.7 ml, 5.4 g, 38 mmol, 8.0 eq.) and Rh2(OAc)4 (21 mg, 0.048 mmol, 

0.01 eq.) in CH2Cl2 (95 ml) was slowly added a solution of vinyl diazo compound 439 (793 mg, 1.56 

mmol) in CH2Cl2 (55 ml) via syringe pump (18 ml/hr) at 0 °C. After stirring the reaction for 15 min 

after the addition was complete, the mixture concentrated under reduced pressure. The crude product 

was purified by flash column chromatography (13x7 cm, deactivated silica, 2–4–6–10% 

EtOAc/hexanes) and the mixed fraction resubjected to flash column chromatography (2–3–4% 

EtOAc/hexanes) to afford the title compound as a yellowish oil (668 mg, 50%).  

Yield is given for product after 2 flash column chromatographies. Yet, mixed fractions still 

existed afterwards (not included). 

 

Asymmetric procedure (absolute configuration not verified): 

 

To a solution of diene 436 (2.4 ml, 2.2 g, 16 mmol, 10.0 eq.) and Rh2(R-DOSP)4 (weighed out and 

stored in glove box, 30 mg, 0.016 mmol, 0.01 eq.) in deaerated n-hexane (31 ml, deaerated by 2xFPT) 

was slowly added a solution of vinyl diazo compound 439 (260 mg, 1.56 mmol) in deaerated n-hexane 

(31 ml) via syringe pump (12 ml/hr) at 0 °C. After stirring the reaction for 15 min after the addition 

was complete, the mixture was filtered over a silica plug (4x3.5 cm, deactivated silica, 5 % 

EtOAc/hexanes) and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (19x3.5 cm, deactivated silica, 2–3–4% EtOAc/hexanes) to afford the title 

compound as a yellowish oil (273 mg, 63%, 82% ee). 

TLC Rf = 0.49 (10% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 6.93 (dd, J = 6.6, 1.9 Hz, 1H, C2H), 5.855.70 (m, 2H, C4H, 

C6H), 5.55 (ddd, J = 11.2, 5.7, 2.4 Hz, 1H, C5H), 5.205.11 (m, 2H, cis-C9H, trans-

C9H), 4.18 (q, J = 7.2 Hz, 2H, 2xC13H), 4.12 (q, J = 7.2 Hz, 2H, 2xC15H), 3.373.28 

(m, 1H, C3H), 3.253.19 (m, 2H, 2xC7H), 3.183.09 (m, 1H, C4H), 2.43 (dd, J = 15.3, 

6.3 Hz, 1H, C10H), 2.31 (dd, J = 15.3, 8.9 Hz, 1H, C10H), 1.29 (t, J = 7.0 Hz, 3H, 

C14H3), 1.25 (t, J = 7.2 Hz, 3H, 3xC16H3) ppm.  

13
C NMR  (75 MHz, CDCl3): δ 172.6 (C11), 167.7 (C12), 142.6 (C2), 136.6 (C8), 133.0 (C5), 

131.3 (C1), 127.6 (C6), 117.7 (C9), 61.0 (C13), 60.6 (C15), 46.0 (C3), 37.7 (C10), 

37.4 (C4), 26.9 (C7), 14.4 (C14), 14.4 (C16) ppm. 

MS  (EI, %): 278.22 (12, M
+
), 249.19 (21), 232.18 (77), 191.17 (34), 158.14 (65), 131.14 

(80), 117.11 (100), 91.09 (56). 

HRMS  (EI, m/z): calc. [M
+
]: 278.1518; found: 178.1505 [M

+
]. 

IR  𝜈 = 3079 (vw), 2980 (w), 2928 (vw), 2854 (vw), 1732 (s), 1706 (vs), 1645 (vw), 1590 

(vw), 1464 (w), 1446 (w), 1417 (vw), 1391 (w), 1370 (w), 1352 (vw), 1277 (m), 1237 
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(vs), 1197 (s), 1159 (s), 1095 (m), 1053 (m), 1029 (m), 996 (m), 920 (m), 861 (w), 827 

(vw), 810 (w), 707 (w), 690 (w), 662 (w) cm
1

.
 

OR  [α]D
21 

= +78.9° (11 mg/ml, CHCl3) (82% ee). 

Chiral HPLC Rt = 18.59 min (major);Rt = 20.16 (minor) (Nucleocel Delta S, 0.5% i-PrOH/n-hexane, 

 = 220nm), 82% ee. 

dimethyl (E)-(2-oxo-4-phenylbut-3-en-1-yl)phosphonate (451)
[314]

 

 

n-BuLi (2.45 M, 5.3 ml, 13 mmol, 2.1 eq.) was added dropwise to a solution of DIPA (1.82 ml, 

1.31 g, 12.9 mmol, 2.1 eq.) in THF (7 ml) at 78 °C and stirred for 20 min. The solution was warmed 

to 0 °C and added to a solution of 453 (1.0 g, 6.2 mmol, 1 eq.) and phosphonate 569 (0.76 ml, 0.84 g, 

6.8 mmol, 1.1 eq.) in THF (10 ml) at 5 °C. After 45 min, the reaction was treated with aq. HCl 

solution (c = 5 M, 6 ml) to a pH of 45 and extracted with EtOAc (3x25 ml). The combined organic 

phases were washed with H2O (50 ml) and brine (50 ml), dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by column chromatography (13x6.5 cm, 5% 

MeOH/CH2Cl2) to afford the title compound as a yellow oil (1.50 g, 96%). 

TLC Rf = 0.29 (5% MeOH/CH2Cl2). 

1
H NMR  (300 MHz, CDCl3): δ 7.64 (d, J = 16.2 Hz, 1H, C4H), 7.607.55 (m, 2H, CArH), 

7.437.37 (m, 3H, CArH), 6.87 (1H, J = 16.2 Hz, 1H, C3H), 3.80 (d, 
3
JHP = 11.2 Hz, 

6H, 2xC9H3), 3.33 (d, 
2
JH-P = 22.8 Hz, 2H, C1H2) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 191.0 (d, 

2
JC-P = 6.2 Hz, C2), 145.2 (C4), 134.2, 131.1, 129.1, 

128.8, 125.8 (d, 
3
JCP = 1.6 Hz, C3), 53.3 (d, 

2
JCP = 6.5 Hz, C9), 40.1 (d, 

1
JCP = 129.1 

Hz, C1) ppm. 

31
P NMR  (162 MHz, CDCl3): δ 22.9 ppm. 

MS  (EI, %): 254.21 (12, M
+
), 144.17 (100), 131.15 (60), 103.15 (24) 

HRMS  (EI, m/z): calc. [M
+
]: 254.0708; found: 254.0708 [M

+
]. 

IR 𝜈 = 3468 (br, vw), 3028 (vw), 2957 (vw), 2854 (vw), 1686 (v), 1654 (m), 1607 (m), 

1576 (w), 1496 (vw), 1450 (w), 1404 (vw), 1333 (w), 1254 (m), 1208 (w), 1185 (w), 

1029 (vs), 983 (w), 930 (vw), 881 (vw), 837 (w), 803 (w), 762 (vw), 735 (vw), 693 

(w) cm
1

. 
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ethyl 2-diazo-3-oxopropanoate (452)
[351]

 

 

DMF (0.39 ml, 0.37 g, 5.0 mmol, 1.0 eq.) was treated with SOCl2 (0.36 ml, 0.59 g, 5.0 mmol, 1.0 

eq.) and the reaction mixture was heated to 40 °C. After 2 h, the solvent was removed under high 

vacuum and the remaining solide dissolved in CHCl3 (2.2 ml). Ethyl diazoacetate (13 wt-% CH2Cl2, 

1.2 ml, 1.3 g, 10 mmol, 2.0 eq.) was added dropwise at 0 °C and the reaction mixture was warmed to rt 

after the addition was complete. After 1 h, the solvent was removed under reduced pressure, the 

resulting precipitate washed with Et2O (3 ml) and stirred in HOAc/H2O (10%) for 14 h. The reaction 

mixture was extracted with Et2O (3x10 ml), the combined organic phases washed with sat. aq. 

NaHCO3 solution (10 ml), 10% aq. H2SO4 (10 ml), brine (10 ml) and dried over Na2SO4 to afford the 

title compound as a yellow oil (359 mg, 50%). MS spectral analysis failed for this compound. 

TLC Rf = 0.48 (20% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 9.70 (s, 1H, C1H), 4.36 (q, J = 7.1 Hz, 2H, C4H2), 1.35 (t, 

J = 7.1 Hz, 3H, C5H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 197.6 (C1), 181.5 (C3), 161.4 (C2), 62.1 (C4), 14.5 (C5) ppm. 

IR  𝜈 = 2986 (vw), 2940 (vw), 2873 (vw), 2139 (s), 1707 (vs), 1660 (vs), 1467 (vw), 1448 

(vw), 1401 (w), 1386 (w), 1369 (w), 1290 (vs), 1231 (vs), 1174 (w), 1113 (s), 1011 

(m), 860 (w), 843 (w), 796 (m), 779 (m), 764 (m), 740 (s) cm
1

. 

ethyl 3-cinnamoyl-1H-pyrazole-5-carboxylate (454)  

 

LiCl (dried at 140 °C on HV overnight, stored in glove box, 121 mg, 2.85 mmol, 2.0 eq.), 

phosphonate 451 (738 mg, 2.90 mmol, 2.0 eq.) and diazo ester 452 (215 mg, 1.51 mmol) were 

dissolved in MeCN (10.4 ml) and DIPEA (0.51 ml, 0.38 g, 2.85 mmol, 2.0 eq.) was introduced. The 

resulting mixture was stirred for 18 h. H2O (20 ml) was added and the aqueous layer was extracted 

with Et2O (5x30 ml). The combined organic phases were washed with brine (100 ml), dried over 
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Na2SO4 and concentrated under reduced pressure. The residue was purified by flash column 

chromatography (16x3.5 cm, 305060% EtOAc/hexanes) to afford the product as a yellow solid (61 

mg, 15%). X-Ray suitable crystals were obtained by slow diffusion of hexanes into a solution of the 

title compound in EtOAc. 

TLC Rf = 0.58 (50% EtOAc/hexanes). 

m.p.:  124126 °C. 

1
H NMR  (600 MHz, CDCl3): δ 7.96 (d, J = 15.9 Hz, 1H, C7H), 7.707.66 (m, 2H, CArH), 

7.647.55 (m, 1H, C3H), 7.45 (d, J = 15.9 Hz, 1H, C6H), 7.447.41 (m, 3H, CArH), 

4.45 (q, J = 7.2 Hz, 2H, C12H2), 1.43 (t, J = 7.2 Hz, 3H, C13H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 181.8 (C5), 160.4 (C1), 145.5 (C7), 134.6 (C8), 131.2 (CAr), 

129.2 (CAr), 128.9 (CAr), 121.5 (C3), 110.2 (C6), 61.9 (C12), 14.4 (C13) ppm. C2 

and C4 missing. 

MS  (EI, %): 270.21 (100, M
+
), 269.21 (68), 224.16 (25), 195.15 (15), 103.10 (19). 

HRMS  (EI, m/z): calc. [M
+
]: 270.1004; found: 270.0999 [M

+
]. 

IR  𝜈 = 3218 (vw), 3145 (vw), 3083 (vw), 2981 (vw), 1721 (m), 1662 (m), 1595 (S), 1575 

(m), 1495 (w), 1469 (m), 1448 (m), 1403 (w), 1385 (w), 1361 (w), 1330 (w), 1300 

(m), 1281 (m), 1221 (s), 1204 (s), 1131 (m), 1095 (w), 1067 (w), 1039 (m), 1019 (m), 

988 (s), 970 (s), 907 (m), 884 (m), 851 (m), 764 (vs), 725 (vs), 685 (vs) cm
1

. 

1-(benzyloxy)but-3-yn-2-ol (458)
[316]

 

 

Ethynylmagnesium bromide (c = 0.5 M in THF, 7.3 ml, 3.7 ml, 1.1 eq.) was added fast dropwise 

to a solution of aldehyde 456 (0.47 ml, 0.50 g, 3.3 mmol) in THF (24 ml) at 0 °C. The reaction was 

warmed to rt and stirred for 2 h. After treatment with sat. aq. NH4Cl solution (25 ml), the mixture was 

extracted with EtOAc (3x70 ml), the combined organic phases washed with brine (100 ml), dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by column 

chromatography (15x2.5 cm, 2030% EtOAc/hexanes) to afford the title compound as a colorless oil 

(488 mg, 84%). 

TLC Rf = 0.46 (30% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 7.417.26 (m, 5H, CArH), 4.65 (d, J = 12.1 Hz, 1H, C5H), 4.60 

(d, J = 12.1 Hz, 1H, C5H), 4.56 (ddd, J = 6.9, 3.7, 2.2 Hz, 1H, C2H), 3.67 (dd, J = 9.7, 
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3.7 Hz, 1H, C1H), 3.59 (dd, J = 9.7, 7.1 Hz, 1H, C1H), 2.652.14 (brs, 1H, C2OH), 

2.46 (d, J = 2.2 Hz, 1H, C4H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 137.6 (C6), 128.7 (CAr), 128.1 (CAr), 128.0 (CAr), 81.8 (C3), 

73.7 (C4), 73.6 (C5), 73.5 (C1), 61.7 (C2) ppm. 

MS  (EI, %): 176.06 (2), 146.15 (2), 117.12 (3), 91.09 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 176.0837; found: 176.0842 [M

+
]. 

IR  𝜈 = 3403 (vw), 3287 (w), 3088 (vw), 3060 (vw), 3031 (vw), 2911 (vw), 2866 (vw), 

2117 (vw), 1496 (vw), 1454 (w), 1391 (w), 1362 (w), 1313 (w), 1252 (w), 1206 (w), 

1107 (s), 1072 (vs), 942 (w), 919 (w), 878 (w), 809 (w), 737 (vs), 697 (vs) cm
1

.
 

1-(benzyloxy)but-3-yn-2-one (457)
[316]

 

 

IBX (3.47 g, 12.4 mmol, 4.7 eq.) was suspended in DMSO (100 ml) and alcohol 458 (465 mg, 

2.64 mmol) in DMSO (3 ml) was added. The reaction mixture was heated to 35 °C for 17 h and then 

treated with H2O (12 ml). The mixture was cooled to 0 °C, H2O (20 ml) was added and the resulting 

precipitate filtered off. The filtrate was extracted with Et2O (2x125 ml), the combined organic phases 

washed with H2O (3x100 ml), sat. aq. NaHCO3 (100 ml), brine (100 ml) and dried over Na2SO4. After 

concentration under reduced pressure, the title compound was obtained as a colorless oil (427 mg, 

93%) which was used without further purification. 

TLC Rf = 0.54 (20% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 7.417.27 (m, 5H, CArH), 4.65 (s, 2H, C5H2), 4.24 (s, 2H, C1H), 

3.31 (s, 1H, C4H) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 184.6 (C2), 137.0 (C6), 128.7 (CAr), 128.3 (CAr), 128.2 (CAr), 

81.4 (C4), 79.6 (C3), 75.9 (C1), 73.7 (C5) ppm.  

MS  (EI, %): 143.10 (2), 116.10 (8), 107.08 (63), 91.08 (100), 65.04 (10). 

HRMS  (EI, m/z): calc. [M
+
]: 174.0681 ; found: 173.0597 [MH

+
]. 

IR  𝜈 = 3261 (vw), 3090 (vw), 3064 (vw), 3033 (vw), 2926 (vw), 2869 (vw), 2092 (m), 

1697 (s), 1683 (s), 1604 (vw), 1585 (vw), 1496 (vw), 1455 (w), 1417 (vw), 1389 (vw), 

1359 (vw), 1338 (vw), 1314 (vw), 1260 (vw), 1243 (vw), 1205 (w), 1177 (w), 1155 

(w), 1065 (vs), 1028 (m), 942 (w), 909 (w), 837 (vw), 824 (vw), 738 (vs), 697 (vs) 

cm
1

.
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(E)-1-(benzyloxy)-4-iodobut-3-en-2-one (459)  

 

NaI (0.94 g, 6.3 mmol, 3.0 eq.) was added to compound 457 (365 mg, 2.09 mmol) in formic acid 

(21 ml). After stirring for 2 h, the reaction was treated with H2O (30 ml) and sat. aq. NaHCO3 (25 ml) 

and poured onto sat. aq. NaHCO3 (40 ml) at 0 °C. The mixture was extracted with EtOAc (2x100 ml), 

washed with sat. aq. NaHCO3 (100 ml), brine (50 ml) and dried over Na2SO4. After concentration of 

the organic phase under reduced pressure, the residue was subjected to column chromatography 

(16x3.5 cm, 45 % EtOAc/hexanes) to afford the title compound as a yellow oil (502 mg, 81%). 

TLC Rf = 0.17 (5% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 8.00 (d, J = 15.0 Hz, 1H, C4H), 7.427.28 (m, 6H, C3H, CArH), 

4.60 (s, 2H, C5H2), 4.16 (s, 2H, C1H2) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 194.5 (C2), 140.7 (C3), 137.0 (C6), 128.7 (CAr), 128.3 (CAr), 

128.2 (CAr), 101.1 (C4), 73.9 (C1), 73.7 (C5) ppm. 

MS  (EI, %): 303.13 (1), 196.02 (44), 181.04 (100), 153.04 (14), 127.01 (6), 91.14 (31) 

HRMS  (EI, m/z): calc. [M
+
]: 301.9804; found: 301.9872 [M

+
]. 

IR  𝜈 = 3062 (vw), 3032 (vw), 2922 (w), 2855 (w), 1707 (m), 1691 (s), 1559 (vs), 1496 

(w), 1454 (w), 1433 (vw), 1389 (vw), 1368 (vw), 1289 (m), 1202 (m), 1099 (s), 1053 

(s), 1028 (m), 948 (vs), 907 (w), 868 (w), 820 (vw), 736 (vs), 697 (vs) cm
1

. 

ethyl (E)-6-(benzyloxy)-2-diazo-5-oxohex-3-enoate (455)  

 

Pd(PPh3)4 (39 mg, 0.034 mmol, 0.05 eq.) was added to a solution of compound 459 (205 mg, 

0.679 mmol), NEt3 (0.14 ml, 0.10 g, 1.0 mmol, 1.5 eq.), NBu4Br (0.22 g, 0.68 mmol, 1.0 eq.) and ethyl 

diazoacetate (13% CH2Cl2, 0.21 ml, 0.22 g, 1.7 mmol, 2.5 eq.) in deaerated acetone (3.4 ml) and 

heated to 35 °C for 30 min. CH2Cl2 (10 ml) was added the reaction mixture and the solvents were 
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removed under reduced pressure. The crude product was purified by column chromatography (15x3.5 

cm, 71015% EtOAc/n-pentane, deactivated silica) to afford the title compound as an orange oil (88 

mg, 45%). 

TLC Rf = 0.13 (10% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 7.45 (d, J = 15.7 Hz, 1H, C3H), 7.397.27 (m, 5H, CArH), 6.34 

(d, J = 15.7 Hz, 1H, C4H), 4.61 (s, 2H, C7H2), 4.32 (q, J = 7.1 Hz, 2H, C12H2), 4.18 (s, 

2H, C6H2), 1.32 (t, J = 7.1 Hz, 3H, C13H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 195.3 (C5), 163.1 (C1), 137.3 (C8), 130.9 (C3), 128.7 (CAr), 

128.2 (CAr), 128.1 (CAr), 115.4 (C4), 74.7 (C6), 73.6 (C7), 66.8 (C2), 62.2 (C12), 

14.5 (C13) ppm. 

MS  (EI, %): molecule not detected, instead McLafferty rearrangement: 182.17 (56), 

154.19 (72), 91.17 (100). 

 

IR  𝜈 = 3032 (vw), 2983 (vw), 2868 (vw), 2096 (s), 1703 (vs), 1574 (vs), 1497 (vw), 1454 

(w), 1395 (w), 1373 (m), 1340 (w), 1287 (s), 1235 (vs), 1207 (s), 1190 (s), 1174 (s), 

1102 (vs), 1061 (s), 1014 (s), 968 (m), 909 (m), 870 (w), 820 (w), 737 (vs), 698 (vs), 

674 (w) cm
1

.
 

ethyl 2-diazo-4-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-hydroxybutanoate (463)  

 

Benzoic acid (1.08 g, 8.84 mmol, 0.5 eq.) was added to a mixture of aldehyde 462 (2.55 g, 17.7 

mmol) and ethyl diazoacetate (contains approx. 1320% CH2Cl2, 3.0 ml, 3.2 g, 19 mmol, 1.1 eq) in 

CH2Cl2 (1 ml) in a water bath. The water bath was removed after 5 min and the reaction mixture was 

allowed to stir for 13 h. The crude reaction mixture was directly purified by flash column 

chromatography (17x4.5 cm, deactivated silica, 20–25–30% EtOAc/hexanes) to afford the title 

compound as a yellow oil (2.97 g, dr 1:1, 65%). 
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TLC Rf = 0.15 (20% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): NMR data refers to both diastereoisomer δ 4.89 (dd, J = 8.9, 3.5 

Hz, 1H, C3H), 4.82 (dd, J = 8.7, 4.4 Hz, 1H, C3H), 4.374.32 (m, 1H, C5H), 4.324.27 

(m, 1H, C5H), 4.264.21 (m, 4H, 2xC10H, 2xC10H), 4.11 (dd, J = 8.2, 6.1 Hz, 1H, 

C6H), 4.11 (dd, J = 8.3, 6.1 Hz, C6H), 3.643.59 (m, 2H, C6H, C6H), 3.44 (brs, 1H, 

C3OH), 3.04 (brs, 1H, C3OH), 2.001.86 (m, 4H, 2xC4H, 2xC4H), 1.43 (s, 3H, C8H3), 

1.42 (s, 3H, C9H3), 1.36 (s, 3H, C8H3), 1.36 (s, 3H, C9H3), 1.28 (t, J = 7.2 Hz, 3H, 

C11H3), 1.28 (t, J = 7.2 Hz, 3H, C11H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 166.4 (C1), 166.1 (C1), 109.8 (C7), 109.3 (C7), 74.6 (C5), 73.2 

(C5), 69.5 (C6), 69.5 (C6), 65.4 (C3), 64.1 (C3), 61.1 (C10), 61.1 (C10), 38.8 (C4), 

38.0 (C4), 27.0 (C8/C9), 27.0 (C8/C9), 25.8 (C8/C9), 25.8 (C8/C9), 14.6 (C11), 14.6 

(C11) ppm. C2 not detected. 

MS  (EI, %): 215.14 (64 MC3H6), 169.11 (35), 155.13 (100, MC3H6N2), 127.10 (37), 

101.13 (44). 

IR  𝜈 = 3448 (br, vw), 2986 (w), 2934 (w), 2875 (vw), 2092 (s), 1741 (w), 1687 (vs), 1456 

(w), 1396 (w), 1371 (vs), 1291 (s), 1246 (s), 1217 (s), 1157 (s), 1109 (s), 1060 (vs), 

1028 (s), 974 (w), 920 (w), 839 (m), 791 (w), 742 (m), 704 (vw) cm
1

.
 

ethyl (S,E)-2-diazo-4-(2,2-dimethyl-1,3-dioxolan-4-yl)but-3-enoate (460)  

 

To a solution of alcohol 463 (5.93 g, 23.0 mmol) in CH2Cl2 (115 ml) was added NEt3 (12.8 ml, 

9.29 g, 9.18 mmol, 4.0 eq.) at 0 °C. A solution of POCl3 (3.2 ml, 5.3 g, 34 mmol, 1.5 eq.) in CH2Cl2 

(75 ml) was slowly introduced via syringe pump over 3 h. The reaction mixture was subsequently 

warmed to rt, stirred for 12 h and then washed with H2O (2x300 ml). The collected aqueous phase was 

extracted with CH2Cl2 (1x300 ml) and the combined organic phases washed with brine (500 ml), dried 

over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (15x6.5 cm, deactivated silica, 3–47–10–20–30–50% EtOAc/hexanes) to 

afford the title compound as a yellow oil (4.08 g, 74%). 

The title compound is light sensitive and polymerizes at room temperature. Therfore, it was stored 

in frozen benzene at –78 °C. 
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TLC Rf = 0.22 (5% EtOAc/hexanes). 

1
H NMR  (300 MHz, CDCl3): δ 6.15 (dd, J = 15.8, 0.8 Hz, 1H, C3H), 5.31 (dd, J = 15.8, 7.8 

Hz, C4H), 4.63 (dddd, J = 7.8, 7.8, 6.1, 0.8 Hz, 1H, C5H), 4.27 (q, J = 7.2 Hz, 2H, 

2xC10H), 4.10 (dd, J = 8.2, 6.1 Hz, 1H, C6H), 3.59 (dd, J = 8.2, 7.8 Hz, 1H, C6H), 

1.43 (s, 3H, C9H3), 1.39 (s, 3H, C10H3), 1.29 (t, J = 7.2 Hz, 3H, C11H3) ppm. 

13
C NMR  (75 MHz, CDCl3): δ 164.8, 120.6 (C4), 117.8 (C3), 109.5 (C7), 77.1 (C5), 69.7 (C6), 

61.5 (C10), 26.9 (C9), 26.0 (C10), 14.6 (C11) ppm. C2 not detected. 

MS  (EI, %): 240.23 (12, M
+
), 197.19 (10), 125.15 (9), 109.13 (23), 81.13 (31), 53.10 (24), 

43.10 (100). 

HRMS  (EI, m/z): calc. [M
+
]: 240.1110; found: 240.1102 [M

+
]. 

IR  𝜈 = 2985 (w), 2936 (vw), 2874 (vw), 2082 (vs), 1698 (vs), 1647 (w), 1456 (vw), 1396 

(w), 1370 (s), 1306 (s), 1236 (vs), 1214 (s), 1148 (vs), 1099 (s), 1057 (vs), 1023 (s), 

952 (m), 917 (vw), 862 (m), 812 (vw), 790 (w), 739 (m) cm
1

.
 

OR  [α]D
23

 = +12.0° (4 mg/ml, CHCl3). 

methyl (S)-3,4-bis((triethylsilyl)oxy)butanoate (465)  

 

To a solution of L-()-malic acid dimethyl ester (464, 0.66 ml, 0.81 g, 5.0 mmol) in THF (5 ml) 

was added BH3·SMe2 (c = 2 M in THF, 2.6 ml, 5.3 mmol, 1.05 eq.) at rt and the resulting solution was 

stirred for 1 h. Then, NaBH4 (10 mg, 0.25 mmol, 0.05 eq.) was added and stirring was continued for 

45 min. The reaction mixture was treated with MeOH (10 ml) and concentrated under reduced 

pressure. The crude product was purified by flash column chromatography (13x3.5 cm, 2–5–7% 

MeOH/CH2Cl2) to afford a diol, which was dissolved in CH2Cl2 (20 ml). 2,6-lutidine (1.9 ml, 1.7 g, 16 

mmol, 3.2 eq.) and TESOTf (2.5 ml, 2.9 g, 11 mmol, 2.2 eq.) were successively added to the solution 

and the reaction mixture was stirred for 16 h. The solution was then treated with aq. HCl (2 M, 2 ml) 

and H2O (16 ml), the aqueous phase extracted with CH2Cl2 (2x30 ml), the combined organic phases 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (11x3.5 cm, 5% EtOAc/hexanes) to afford the title compound as a colorless 

oil (1.87 g, 103%).  

TLC Rf = 0.41 (5% EtOAc/hexanes). 
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1
H NMR  (300 MHz, CDCl3): δ 4.214.12 (m, 1H, C3H), 3.67 (s, 3H, C5H3), 3.60 (dd, J = 9.9, 

4.9 Hz, 1H, C4H), 3.41 (dd, J = 9.9, 7.5 Hz, 1H, C4H), 2.66 (dd, J = 15.0, 4.9 Hz, 1H, 

C2H), 2.38 (dd, J = 15.0, 7.5 Hz, 1H, C2H), 0.970.92 (m, 18H, 3xC7H3, 3xC9H3), 

0.640.55 (m, 12H, 3xC6H2, 3xC8H2) ppm. Sample contains impurities of residual 

TESOTES. 

13
C NMR  (75 MHz, CDCl3): δ 172.5 (C1), 70.4 (C3), 66.8 (C4), 51.6 (C5), 40.3 (C2), 6.9 (C7), 

6.9 (C9), 5.0 (C6/C8), 4.5 (C6/C8) ppm. 

HRMS  ((+)-ESI, m/z): calc. 385.2201 [M+Na
+
]: ; found: 385.2198 [M+Na

+
]. 

IR  𝜈 = 2953 (w), 2911 (w), 2876 (w), 1741 (m), 1458 (w), 1436 (vw), 1414 (vw), 1378 

(vw), 1310 (vw), 1238 (w), 1190 (w), 1170 (w), 1117 (m), 1077 (s), 1003 (s), 975 (w), 

882 (vw), 811 (w), 724 (vs), 672 (w) cm
1

.
 

OR  [α]D
25

 = 19.9° (6.5 mg/ml, CHCl3). 

(S)-3,4-bis((triethylsilyl)oxy)butanal (466)  

 

Methyl ester 465 (1.87 g, 5.16 mmol) was dissolved in CH2Cl2 (45 ml) and the solution was 

cooled to 78 °C. A solution of DIBAL in toluene (c = 1.0 M in toluene, 5.7 ml, 5.7 mmol, 1.1 eq.) 

was added over 10 min and the reaction mixture was stirred for 1 h. MeOH (2.1 ml) and sat. aq. 

NH4Cl solution (0.9 ml) were carefully added to the solution and the mixture was allowed to warm to 

rt. After 20 min, Et2O (60 ml) was introduced and the organic phase dried over Na2SO4, filtered and 

concentrated under reduced pressure. The crude product was purified by flash column chromatography 

(11x3.5 cm, deactivated silica, 2% EtOAc/hexanes) to afford the title compound as a colorless oil 

(1.64 g, 95%). 

TLC Rf = 0.45 (5% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 9.81 (dd, J = 2.5, 2.5 Hz, 1H, C1H), 4.264.18 (m, 1H, C3H), 

3.65 (dd, J = 9.9, 5.1 Hz, 1H, C4H), 3.45 (dd, J = 9.7, 7.0 Hz, 1H, C4H), 2.66 (ddd, 

J = 15.7, 5.4, 2.5 Hz, 1H, C2H), 2.51 (ddd, J = 15.7, 6.3, 2.5 Hz, 1H, C2H), 0.980.92 

(m, 18H, 3xC6H3, 3xC8H3), 0.650.55 (m, 12H, 3xC5H2, 3xC7H2) ppm. 
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13
C NMR  (100 MHz, CDCl3): δ 201.8 (C1), 69.1 (C3), 66.9 (C4), 49.1 (C2), 6.9 (C6), 6.9 (C8), 

5.0 (C5/C7), 4.4 (C5/C7) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 331.2125; found: 331.2119 [M+H

+
]. 

IR  𝜈 = 2953 (w), 2911 (w), 2876 (w), 1729 (w), 1457 (vw), 1413 (vw), 1379 (vw), 1321 

(vw), 1238 (w), 1096 (m), 1002 (s), 972 (w), 811 (w), 781 (w), 724 (vs), 672 (m) 

cm
1

.
 

OR  [α]D
25

 = 13.57° (7 mg/ml, CHCl3). 

(5S)-ethyl 2-diazo-3-hydroxy-5,6-bis((triethylsilyl)oxy)hexanoate (467)  

 

Benzoic acid (270 mg, 2.21 mmol, 0.5 eq.) was added to a mixture of aldehyde 466 (1.47 g, 4.43 

mmol) and ethyl diazoacetate (contains 1320 wt-% CH2Cl2, 0.74 ml, 0.81 g, 4.87 mmol, 1.1 eq.) at rt. 

The reaction mixture was vigorously stirred for 21 h before pH 7.2 aq. phosphate buffer solution (c = 1 

M, 5 ml) was added. The aqueous phase was extracted with CH2Cl2 (2x20 ml) and the combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. The crude product 

was purified by flash column chromatography (15x3.5 cm, deactivated silica, 5–10% EtOAc/hexanes) 

to afford the title compound as yellow oil (1.55 g, 78%). The title compound was obtained as a 

mixture of diastereomers (dr 1.7:1). 

NMR spectral data is provided for the major diastereomer. 

TLC Rf = 0.27 (major) / 0.21 (5% EtOAc/hexanes). 

1
H NMR  (600 MHz, CDCl3): 4.90 (ddd, J = 7.6, 4.4, 2.9 Hz, 1H, C3H), 4.24 (q, J = 7.0 Hz, 

2H, 2xC7H), 3.953.90 (m, 1H, C5H), 3.70 (brs, 1H, OH), 3.61 (dd, J = 10.1, 4.8 Hz, 

1H, C6H), 3.47 (dd, J = 10.1, 6.9 Hz, 1H, C6H), 2.00 (ddd, J = 15.1, 4.4, 4.4 Hz, 1H, 

C4H), 1.84 (ddd, J = 15.1, 7.6, 7.6 Hz, 1H, C4H), 1.28 (t, J = 7.0 Hz, 3H, C8H3), 

0.980.93 (m, 18H, 3xC10H3, 3xC12H3), 0.650.58 (m, 12H, 3xC9H2, 3xC11H2) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 166.2 (C1), 70.9 (C5), 66.4 (C6), 63.4 (C3), 60.8 (C7), 38.9 

(C4), 14.5 (C8), 6.8 (C10/C12), 6.7 (C10/C12), 4.8 (C9/C11), 4.2 (C9/C11) ppm. C2 

missing. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 469.2530; found: 469.2520 [M+Na

+
]. 
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IR  𝜈 = 3463 (vw), 2954 (w), 2911 (w), 2876 (w), 2092 (m), 1690 (m), 1458 (w), 1413 

(w), 1372 (w), 1292 (m), 1238 (w), 1171 (vw), 1113 (m), 1079 (s), 1003 (s), 806 (w), 

725 (vs), 672 (w) cm
1

. 

ethyl (3R,4R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2-ethoxy-2-oxoethyl)cyclohepta-1,5-

diene-1-carboxylate (470) 

 

To a solution of diene 436 (0.17 ml, 0.16 g, 1.2 mmol, 10.0 eq.) and Rh2(OAc)4 (1 mg, 0.002 

mmol, 0.02 eq.) in CH2Cl2 (1.3 ml) was slowly added a solution of vinyl diazo compound 460 (28 mg, 

0.12 mmol) in CH2Cl2 (1.2 ml) over 2 h via syringe pump at 0 °C. The reaction was stirred for 4 h, 

filtered through a silica plug (25% EtOAc/hexanes) and concentrated under reduced pressure. The 

crude product was purified by flash column chromatography (5101520% EtOAc/hexanes) to 

afford the title compound as a mixture of diastereomers as a colorless oil (21 mg, 50%, dr 2:1).  

 

major diastereomer (470) 

TLC Rf = 0.30 (15% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 6.67 (dd, J = 6.7, 2.5 Hz, 1H, C2H), 5.73 (ddd, J = 11.5, 5.7, 

2.3 Hz, 1H, C5H), 5.695.63 (m, 1H, C6H), 4.18 (q, J = 7.2 Hz, 2H, 2xC16H), 4.12 (q, 

J = 7.2 Hz, 2H, 2xC18H), 4.204.17 (m, 1H, C8H), 4.07 (dd, J = 8.1, 5.9 Hz, 1H, 

C9H), 3.60 (dd, J = 8.1, 5.9 Hz, 1H, C9H), 3.28 (dd, J = 16.4, 7.1 Hz, 1H, C7H), 

3.263.19 (m, 1H, C4H), 3.213.16 (m, 1H, C7H), 3.012.94 (m, 1H, C3H), 2.56 (dd, 

J = 15.3, 5.1 Hz, 1H, C13H), 2.32 (dd, J = 15.3, 10.1 Hz, 1H, C13H), 1.41 (s, 3H, 

C11H3), 1.35 (s, 3H, C12H3), 1.29 (t, J = 7.2 Hz, 3H, C17H3), 1.25 (t, J = 7.2 Hz, 3H, 

C19H3) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 172.6 (C14), 166.8 (C15), 139.9 (C2), 134.6 (C1), 133.1 (C5), 

126.3 (C6), 109.5 (C10), 75.7 (C8), 68.7 (C9), 61.1 (C16), 60.6 (C18), 45.4 (C3), 36.9 

(C13), 34.7 (C4), 27.4 (C7), 27.1 (C11), 25.8 (C12), 14.4 (C17/C19), 14.4 (C17/C19) 

ppm.  
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MS  (EI, %): 337.36 (MCH3
+
, 4), 252.26 (10), 206.19 (12), 125.20 (16), 111.18 (28), 

101.12 (100), 71.13 (56), 57.10 (80). 

HRMS  (EI, m/z): calc. [M
+
]: 352.1886; found: 352.1888 [M

+
]. 

IR  𝜈 = 2982 (w), 2934 (vw), 1731 (s), 1707 (vs), 1652 (vw), 1447 (vw), 1369 (s), 1241 

(vs), 1211 (vs), 1156 (vs), 1069 (vs), 1033 (vs), 963 (w), 920 (w), 896 (w), 882 (w), 

855 (s), 827 (w), 792 (w), 701 (m) cm
1

.
 

 

minor diastereomer (ethyl (3S,4S)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2-ethoxy-2-

oxoethyl)cyclohepta-1,5-diene-1-carboxylate (564)) 

 

1
H NMR  (400 MHz, CDCl3): δ 7.11 (dd, J = 6.5, 2.8 Hz, 1H, C2H), 5.715.66 (m, 1H, C5H), 

5.59 (dddd, J = 11.8, 7.4, 2.8, 1.1 Hz, 1H, C6H), 4.234.04 (m, 6H, 2xC16H, 2xC18H, 

C8H, C9H), 3.58 (dd, J = 8.1, 7.8 Hz, 1H, C9H), 3.33 (dd, J = 16.6, 7.4 Hz, 1H, C7H), 

3.153.11 (m, 1H, C7H), 3.113.06 (m, 1H, C3H), 2.832.74 (m, 1H, C4H), 2.68 (dd, 

J = 16.1, 4.9 Hz, 1H, C13H), 2.21 (dd, J = 16.1, 9.5 Hz, 1H, C13H), 1.43 (s, 3H, 

C11H3), 1.36 (s, 3H, C12H3), 1.30 (t, J = 7.2 Hz, 3H, C17H3), 1.25 (t, J = 7.2 Hz, 3H, 

C19H3) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 172.8 (C14), 166.9 (C15), 141.2 (C2), 134.6 (C1), 132.7 (C5), 

125.9 (C6), 109.8 (C10), 77.9 (C8), 68.6 (C9), 61.0 (C16), 60.6 (C18), 43.8 (C3), 37.1 

(C4), 36.9 (C13), 27.1 (C7), 26.8 (C11), 25.8 (C12), 14.4 (C17/C19), 14.4 (C17/C19) 

ppm.  

ethyl (3R,4R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2-methoxy-2-oxoethyl)cyclohepta-1,5-

diene-1-carboxylate (469)  
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To a solution of diene 437 (0.98 ml, 0.93 g, 7.4 mmol, 2.0 eq.) and Rh2(R-DOSP)4 (70 mg, 0.037 

mmol, 0.01 eq.) in deaerated n-hexane (deaerated by 2xFPT, 74 ml) was slowly added a solution of 

vinyl diazo compound 460 (885 mg, 3.68 mmol) in deaerated n-hexane (deaerated by 2xFPT, 74) via 

syringe pump (6 ml/hr) in a 20 ml and a 50 ml portion at 35 °C. The solution of vinyl diazo 

compound 460 in n-hexane was kept at 78 °C and the syringe was covered with dry ice. Upon 

complete addition, the reaction mixture was allowed to warm to rt over 7 h. The solution was 

concentrated under reduced pressure. The remaining residue was subjected to flash column 

chromatography (19x4.5 cm, 15–20% EtOAc/hexanes) and the resulting mixed fractions were purified 

again by flash column chromatography (19x2.5 cm, 15–20% EtOAc/hexanes) to afford the title 

compound as a colorless oil (1.02 g, 82%, dr = 7.1:1). 

The excess equivalent of diene 437 can be recovered after the first flash column chromatography. 

Vinyl diazo compound 460 proved to be unstable in n-hexane upon standing at 78 °C for longer 

time. During scale-up experiments, a stock solution of compound 460 in benzene was frozen at 78 °C 

over the course of the addition time. A part of this stock solution was taken when needed, concentrated 

under reduced pressure and HV, directly dissolved in n-hexane (c = 0.05 M) and added to the reaction 

mixture as described above. 

 

(469) major diastereoisomer 

 

TLC Rf = 0.25 (15% EtOAc/hexanes). 

1
H NMR  (600 MHz, C6D6): δ 6.72 (dd, J = 6.6, 2.6 Hz, 1H, C2H), 5.845.77 (m, 1H, C5H), 

5.44 (ddd, J = 7.5, 3.0, 1.4 Hz, 1H, C6H), 3.98 (q, J = 7.2 Hz, 2H, 2xC16H), 3.913.86 

(m, 1H, C8H), 3.71 (dd, J = 8.2, 5.9 Hz, 1H, C9H), 3.45–3.40 (m, 1H, C4H), 3.39 (dd, 

J = 8.2, 6.5 Hz, 1H, C9H), 3.33 (dd, J = 19.9, 7.5 Hz, 1H, C7H), 3.30 (s, 3H, C18H3), 

3.022.96 (m, 1H, C7H), 2.952.89 (m, 1H, C3H), 2.51 (dd, J = 15.5, 4.9 Hz, 1H, 

C13H), 2.32 (dd, J = 15.5, 10.4 Hz, 1H, C13H), 1.33 (s, 3H, C11H3), 1.23 (s, 3H, 

C12H3), 0.96 (t, J = 7.2 Hz, 3H, C17H3) ppm. 

13
C NMR  (150 MHz, C6D6): δ 172.4 (C14), 166.4 (C15), 140.0 (C2), 135.0 (C1), 133.4 (C5), 

126.4 (C6), 109.5 (C10), 75.8 (C8), 68.8 (C9), 60.8 (C16), 51.1 (C18), 45.6 (C3), 36.8 

(C13), 35.0 (C4), 27.6 (C7), 27.1 (C11), 25.8 (C12), 14.3 (C17) ppm. 
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MS  (EI, %): 322.89 (4), 237.94 (9), 191.94 (8), 162.96 (6), 105.00 (6), 101.00 (100), 

91.00 (9), 43.02 (25). 

HRMS  (EI, m/z): calc. [M
+
]: 338.1729; found: 338.1721 [M

+
]. 

IR  𝜈 = 2985 (w), 2953 (vw), 2876 (vw), 1736 (s), 1708 (vs), 1652 (vw), 1436 (w), 1380 

(w), 1370 (m), 1331 (w), 1242 (vs), 1212 (vs), 1159 (vs), 1070 (vs), 922 (w), 884 (w), 

856 (m), 793 (vw), 703 (w) cm
1

.
 

OR  [α]D
25

 = –65.0° (2 mg/ml, CHCl3). 

(471) minor diastereoisomer: ethyl (3S,4S)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2-

methoxy-2-oxoethyl)cyclohepta-1,5-diene-1-carboxylate 

 

X-Ray suitable crystals were obtained by slow diffusion of hexanes into a solution of 

diastereomer 471 in EtOAc. 

TLC Rf = 0.25 (15% EtOAc/hexanes). 

m.p.:  6264 °C. 

1
H NMR  (600 MHz, C6D6): δ 7.41–7.37 (m, 1H, C2H), 5.73 (dddd, J = 11.7, 6.0, 2.9, 0.9 Hz, 

1H, C5H), 5.42 (dddd, J = 11.7, 7.5, 2.8, 1.1 Hz, 1H, C6H), 3.96 (q, J = 6.8 Hz, 2H, 

2xC16H), 3.923.88 (m, 1H, C8H), 3.73 (dd, J = 8.3, 6.3 Hz, 1H, C9H), 3.47 (dd, 

J = 19.9, 7.7 Hz, 1H, C7H), 3.28 (s, 3H, C18H3), 2.992.93 (m, 1H, C7H), 2.822.76 

(m, 2H, C3H, C4H), 2.72 (dd, J = 16.3, 4.7 Hz, 1H, C13H), 2.25 (dd, J = 16.3, 9.2 Hz, 

1H, C13H), 1.38 (s, 3H, C11H3), 1.24 (s, 3H, C12H3), 0.91 (t, J = 7.1 Hz, 3H, C17H3) 

ppm. 

13
C NMR  (150 MHz, C6D6): δ 172.7 (C14), 166.4 (C15), 141.1 (C2), 135.0 (C1), 133.1 (C5), 

125.9 (C6), 109.7 (C10), 78.1 (C8), 68.6 (C9), 60.7 (C16), 51.1 (C18), 43.9 (C3), 37.6 

(C4), 36.8 (C13), 27.4 (C7), 26.7 (C11), 25.8 (C12), 14.2 (C17) ppm. 

MS  (EI, %): 322.89 (4), 237.94 (10), 191.94 (9), 162.96 (6), 101.00 (100), 91.00 (6), 

43.02 (23). 

HRMS  (EI, m/z): calc. [M
+
]: 338.1729; found: 338.1731 [M

+
]. 
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IR  𝜈 = 2985 (w), 2953 (vw), 2876 (vw), 1736 (s), 1708 (vs), 1652 (vw), 1436 (w), 1380 

(w), 1370 (m), 1331 (w), 1242 (vs), 1212 (vs), 1159 (vs), 1070 (vs), 922 (w), 884 (w), 

856 (m), 793 (vw), 703 (w) cm
1

.
 

ethyl 1-((E)-2-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)vinyl)-2-((E)-4-methoxy-4-oxobut-1-en-1-

yl)cyclopropane-1-carboxylate (570) 

 

The title compound is a colorless oil that was identified in the formal (4+3)-cycloaddition of diene 

437 with vinyl diazoacetate 460. 

TLC Rf = 0.19 (15% EtOAc/hexanes). 

1
H NMR (600 MHz, C6D6): δ 6.34 (d, J = 15.6 Hz, 1H, C8H), 5.65 (ddd, J = 15.4, 7.1, 7.1 Hz, 

1H, C3H), 5.38 (dd, J = 15.4, 9.0 Hz, 1H, C4H), 5.20 (dd, J = 15.6, 7.9 Hz, 1H, C9H), 

4.40 (ddd, J = 8.1, 7.9, 6.1 Hz, 1H, C10H), 4.06 (q, J = 7.1 Hz, 2H, 2xC16H), 3.98 (dd, 

J = 8.1, 6.1 Hz, C11H), 3.58 (s, 3H, C18H3), 3.45 (dd, J = 8.1, 8.1 Hz, 1H, C11H), 2.96–

2.93 (m, 2H, 2xC2H), 1.85 (ddd, J = 9.0, 8.8, 7.5 Hz, 1H, C5H), 1.66 (dd, J = 7.5, 5.1 

Hz, 1H, C6H), 1.39 (dd, J = 8.8, 5.1 Hz, 1H, C6H), 1.32 (s, 3H, C13H3), 1.28 (s, 3H, 

C14H3), 1.16 (t, J = 7.1 Hz, 3H, C17H3) ppm. 

13
C NMR  (150 MHz, C6D6): δ 171.2 (C1), 170.5 (C15), 132.8 (C8), 130.5 (C4), 125.9 (C9), 

125.5 (C3), 109.3 (C12), 77.2 (C10), 69.7 (C11), 61.0 (C16), 51.2 (C18), 37.9 (C2), 

36.6 (C5), 33.0 (C7), 27.1 (C13), 26.1 (C14), 21.0 (C6), 14.3 (C17) ppm. 

MS  (EI, %): 338.17 (7, M
+
), 217.09 (12), 190.07 (27), 145.07 (25), 117.07 (23), 105.07 

(21), 101.06 (100), 91.05 (27), 84.08 (46), 72.06 (38), 42.97 (59). 

HRMS  (EI, m/z): calc. [M
+
]: 338.1729; found: 338.1730 [M

+
]. 

IR  𝜈 = 2984 (w), 2934 (vw), 2874 (vw), 1720 (vs), 1635 (vw), 1437 (w), 1370 (m), 1305 

(m), 1236 (s), 1214 (s), 1153 (vs), 1096 (w), 1057 (vs), 1026 (s), 968 (s), 938 (w), 917 

(w), 862 (m), 797 (w), 746 (vw), 702 (vw) cm
1

.
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4-(1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-hydroxyethyl)dihydrofuran-2(3H)-one (475)  

 

Ozone (O2 flow level 12, generator level 11) was bubbled through a solution of cycloheptadiene 

469/471 (103 mg, 0.304 mmol) in CH2Cl2 (6 ml) at 0 °C for 8 min. The solution was then purged with 

N2 for 2 min and SMe2 (0.4 ml) and NaBH4 (100 mg) were subsequently added. The reaction mixture 

was stirred for 15 h before H2O (4 ml) was added. The aqueous phase was extracted with CH2Cl2 

(3x10 ml), the combined organic phases washed with brine, dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography (17x2.5 cm, 1–3% 

MeOH/CH2Cl2) to afford the title compound as a colorless oil (41 mg, 59%). 

When a starting material with a diastereomeric ratio dr (469:471) = 2.2:1 was employed, the 

product could be purified to yield a diastereomeric ratio dr = 6.7:1. 

TLC Rf = 0.38 (5% MeOH/CH2Cl2). 

1
H NMR  (600 MHz, CDCl3): δ 4.59 (dd, J = 9.6, 7.8 Hz, 1H, C7H), 4.184.12 (m, 3H, C5H, 

C6H, C7H), 3.723.66 (m, 3H, C6H, C8H, C8H), 2.882.80 (m, 1H, C3H), 2.64 (dd, 

J = 17.2, 8.3 Hz, 1H, C2H), 2.43 (dd, J = 17.2, 10.8 Hz, 1H, C2H), 1.781.72 (m, 1H, 

C4H), 1.66 (brs, 1H, C8OH), 1.39 (s, 3H, C10H3), 1.35 (s, 3H, C11H3) ppm. 

13
C NMR  (150 MHz, CDCl3): δ 176.8, 109.1 (C9), 76.9 (C5), 73.1 (C7), 68.6 (C6), 62.2 (C8), 

47.1 (C4), 36.9 (C3), 33.2 (C2), 26.7 (C10), 25.6 (C11) ppm. 

MS  (EI, %): 215.17 (78), 173.14 (26), 155.13 (45), 109.11 (32), 101.10 (60), 72.09 (44). 

HRMS  (EI, m/z): calc. [M
+
]: 231.1227; found: 231.1273 [M

+
]. 

IR  𝜈 = 3401 (w), 2985 (w), 2918 (w), 1765 (s), 1456 (vw), 1418 (vw), 1370 (m), 1246 

(m), 1205 (s), 1161 (s), 1053 (vs), 1024 (vs), 1004 (vs), 935 (w), 856 (s), 794 (w), 763 

(w), 688 (m) cm
1

. 
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ethyl (1S,4aR,9aR)-1-(hydroxymethyl)-3-oxo-1,3,4,4a,7,9a-hexahydrocyclohepta[c]pyran-8-

carboxylate (476)  

 

Dioxolane 469 (401 mg, dr 7.7:1, 1.19 mmol) was dissolved in CH2Cl2 (20 ml) and FeCl36 H2O 

was added. The suspension was stirred vigorously for 14 h before aq. sat. NaHCO3 solution (25 ml) 

was added. The aqueous phase was extracted with CH2Cl2 (3x40 ml), the combined organic phases 

were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (11x2 cm, 2.5% MeOH/CH2Cl2) to afford the 

title compound as a colorless solid (265 mg, dr 7.7:1, 84%). X-Ray suitable crystals were obtained by 

slow diffusion of hexanes into a solution of the title compound in EtOAc. 

The reproducibility of this reaction was only assured when using heat-gun-dried glassware and 

dry solvent. Otherwise, the reaction times varied or the reaction did not reach full conversion. 

NMR sample is a diastereomeric mixture (dr 7:1), NMR spectral data only provided for major 

isomer (title compound). 

TLC Rf = 0.36 (5% MeOH/CH2Cl2). 

m.p.:  113115 °C (C6D6). 

1
H NMR  (600 MHz, C6D6): δ 6.94 (ddd, J = 7.1, 1.9, 0.7 Hz, 1H, C2H), 5.38 (dddd, J = 11.1, 

6.7, 4.1, 2.5 Hz, 1H, C6H), 5.03 (ddd, J = 11.1, 3.5, 3.5 Hz, 1H, C5H), 4.10 (ddd, 

J = 9.0, 3.5, 3.0 Hz, 1H, C8H), 3.98 (q, J = 7.1 Hz, 2H, 2xC13H), 3.53 (ddd, J = 12.5, 

6.0, 3.0 Hz, 1H, C11H), 3.32 (ddd, J = 12.5, 7.3, 3.5 Hz, 1H, C11H), 3.10 (dd, J = 20.5, 

6.7 Hz, 1H, C7H), 3.01 (dm, J = 20.5 Hz, 1H, C7H), 2.672.62 (m, 1H, C3H), 

2.482.44 (m, 1H, C4H), 2.392.34 (brs, 1H, C11OH), 2.19 (dd, J = 17.6, 4.5 Hz, 1H, 

C10H), 2.09 (dd, J = 17.6, 5.4 Hz, 1H, C10H), 0.95 (t, J = 7.1 Hz, 3H, C14H3) ppm. 

Shifts highly depend on c, pH and water content of the sample. 

13
C NMR  (150 MHz, C6D6): δ 169.1 (C9), 166.8 (C12), 138.3 (C2), 133.8 (C1), 131.6 (C5), 

128.8 (C6), 81.6 (C8), 63.0 (C11), 61.0 (C13), 37.2 (C3), 37.0 (C10), 32.5 (C4), 27.6 

(C7), 14.2 (C14) ppm. 

MS  (EI, %): 266.25 (2, M
+
), 220.18 (14), 192.16 (10), 164.16 (38), 135.11 (100), 105.12 

(24), 91.10 (78), 84.13 (22), 57.08 (14). 
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HRMS  (EI, m/z): calc. [M
+
]: 266.1154; found: 266.1162 [M

+
]. 

IR  𝜈 = 3371 (br, vw), 2964 (vw), 2932 (vw), 2878 (vw), 1710 (vs), 1652 (vw), 1368 (w), 

1292 (w), 1250 (vs), 1170 (w), 1097 (m), 1064 (s), 884 (vw), 804 (vw), 709 (w) cm
1

.  

OR  [α]D
25

 = +13.0° (20 mg/ml, CH2Cl2). 

ethyl (1S,4aR,9aR)-1-(((tert-butyldimethylsilyl)oxy)methyl)-3-oxo-1,3,4,4a,7,9a-hexahydro-

cyclohepta[c]pyran-8-carboxylate (481) 

 

Alcohol 476 (50 mg, 0.19 mmol) was dissolved in DMF (0.5 ml) and imidazole (30 mg, 0.41 

mmol, 2.4 eq.), TBSCl (32 mg, 0.21 mmol, 1.1 eq.) and DMAP (5 mg, 0.04 mmol, 0.2 eq.) were 

sequentially added. The reaction mixture was stirred for 14 h before pH 7.2 phosphate buffer (c = 1 M, 

10 ml) was added. The aqueous phase was extracted with EtOAc (3x15 ml), the combined organic 

phases dried over Na2SO4 and concentrated under reduced pressure to afford the title compound as a 

colorless oil (75 mg, quant.). 

The TBS group is partially deprotected during flash column chromatography. The title compound 

was thus taken forward without further purification. 

TLC Rf = 0.47 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.02 (d, J = 6.3 Hz, 1H, C2H), 5.87–5.79 (m, 1H, C6H), 

5.61–5.54 (m, 1H, C5H), 4.50 (ddd, J = 7.0, 3.5, 3.1 Hz, 1H, C10H), 4.16 (q, J = 7.2 

Hz, 2H, 2xC13H), 3.90 (dd, J = 11.5, 3.5 Hz, 1H, C11H), 3.84 (dd, J = 11.5, 3.1 Hz, 

1H, C11H), 3.32–3.22 (m, 4H, C3H, C4H, 2xC12H), 2.63 (dd, J = 17.6, 5.2 Hz, C8H), 

2.45 (dd, J = 17.6, 5.3 Hz, C8H), 1.26 (t, J = 7.2 Hz, 3H, C14H3), 0.91 (s, 9H, C18H3), 

0.12 (s, 3H, C15H3), 0.10 (s, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 169.3 (C9), 167.3 (C12), 139.8 (C2), 134.8 (C1), 132.4 

(C5), 129.0 (C6), 81.8 (C10), 64.6 (C11), 61.4 (C13), 37.9 (C3), 37.1 (C8), 32.9 (C4), 

27.7 (C7), 26.2 (C18), 18.8 (C17), 14.5 (C14), –5.3 (C15/C16), –5.4 (C15/C16) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+H
+
]: 381.2097; found: 381.2089 [M+H

+
]. 

IR  𝜈 = 2950 (w), 2930 (w), 2855 (w), 1742 (s), 1711 (s), 1472 (w), 1462 (w), 1388 (vw), 

1367 (w), 1341 (vw), 1244 (vs), 1201 (m), 1140 (m), 1125 (m), 1101 (w), 1069 (s), 

1024 (vw), 1003 (w), 948 (vw), 837 (s), 811 (w), 780 (m), 711 (vw) cm
1

.
 

OR  [α]D
22

 = +53.0° (2 mg/ml, CH2Cl2). 
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ethyl (1S,4aR,9aR)-3-oxo-1-(((triethylsilyl)oxy)methyl)-1,3,4,4a,7,9a-hexahydrocyclohepta 

[c]pyran-8-carboxylate (482) 

 

2,6-Lutidine (13 l, 12 mg, 0.11 mmol, 2.0 eq.) and TESOTf (15 l, 18 mg, 0.068 mmol, 1.2 eq.) 

were successively added to a 78 °C cold solution of alcohol 476 (15 mg, 0.056 mmol) in CH2Cl2 (0.5 

ml). After 3 h, 2,6-lutidine (13 l, 12 mg, 0.11 mmol, 2.0 eq.) and TESOTf (15 l, 18 mg, 0.068 

mmol, 1.2 eq.) were added since the reaction was judged incomplete by TLC analysis. After stirring 

for 2 h, pH 5 phosphate buffer (c = 1 M, 3 ml) was added and the reaction mixture was allowed to 

warm to rt. The aqueous phase was extracted with EtOAc (3x5 ml) and the combined organic phases 

were dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography (12x2.5 cm, 51020% EtOAc/hexanes) to afford the product as a 

colorless oil (20 mg, 93%). 

TLC Rf = 0.26 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 7.01 (dd, J = 6.9, 1.8 Hz, 1H, C2H), 5.42 (dddd, J = 11.0, 6.8, 

4.0, 2.4 Hz, 1H, C6H), 5.125.06 (m, 1H, C5H), 4.16 (ddd, J = 8.6, 3.6, 3.0 Hz, 1H, 

C8H), 3.98 (q, J = 7.1 Hz, 2H, 2xC13H), 3.60 (dd, J = 11.5, 3.6 Hz, 1H, C9H), 3.46 

(dd, J = 11.5, 3.0 Hz, 1H, C9H), 3.18 (dd, J = 20.2, 6.8 Hz, 1H, C7H), 3.082.99 (m, 

1H, C7H), 2.872.81 (m, 1H, C3H), 2.572.50 (m, 1H, C4H), 2.23 (dd, J = 17.6, 4.8 

Hz, 1H, C10H), 2.10 (dd, J = 17.6, 5.6 Hz, 1H, C10H), 1.000.93 (m, 12H, C14H3, 

3xC16H3), 0.620.54 (m, 6H, 3xC15H2) ppm. 

13
C NMR  (100 MHz, C6D6): δ 168.0 (C11), 166.8 (C12), 138.8 (C2), 133.8 (C1), 131.8 (C5), 

128.8 (C6), 80.9 (C8), 63.6 (C9), 61.0 (C13), 37.5 (C3), 37.0 (C10), 32.5 (C4), 27.5 

(C7), 14.2 (C14), 7.0 (C16), 4.7 (C15) ppm. 

MS  (EI, %): 351.11 (42), 307.10 (46), 145.02 (26), 131.04 (100), 117.01 (54), 91.02 (38) 

HRMS  (EI, m/z): calc. [M
+
]: 380.2019; found: 380.2003 [M

+
] . 

IR  𝜈 = 2954 (w), 2936 (w), 2912 (w), 2875 (w), 1740 (vs), 1708 (vs), 1653 (vw), 1458 

(w), 1414 (w), 1367 (w), 1344 (vw), 1274 (w), 1239 (vs), 1199 (s), 1142 (m), 1122 

(m), 1097 (m), 1068 (vs), 1003 (m), 977 (w), 950 (w), 925 (vw), 912 (vw), 882 (vw), 

859 (vw), 819 (w), 787 (w), 744 (s), 730 (s) cm
1

.
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OR  [α]D
21

 = +14.4° (18 mg/ml, CH2Cl2). 

ethyl (R)-5-(2-(benzyloxy)-2-oxoethyl)-6-vinylcyclohepta-1,3,6-triene-1-carboxylate (483)  

 

Lactone 476 (10 mg, 0.038 mmol) was dissolved in DMF (0.4 ml) and 4 Å MS was added. Benzyl 

bromide (5 μl, 7 mg, 0.04 mmol, 1.05 eq.) and Ag2O (10 mg, 0.041 mmol, 1.1 eq.) were successively 

introduced and the reaction mixture stirred for 58 h. In the meantime, BnBr (3 μl, 4 mg, 0.02 mmol, 

0.5 eq.) had been added after 9 h and again benzyl bromide (5 μl, 7 mg, 0.04 mmol, 1.05 eq.) and 

Ag2O (10 mg, 0.041 mmol, 1.1 eq.) after 25 h. Preparative TLC (15% EtOAc/hexanes) afforded the 

title compound as a colorless solid (2 mg, 16%).  

TLC Rf = 0.25 (5% EtOAc/hexanes). 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.57 (d, J = 6.6 Hz, 1H, C7H), 7.39–7.29 (m, 5H, ArH), 

6.86 (s, 1H, C2H), 6.56 (dd, J = 17.4, 10.8 Hz, 1H, C10H), 6.42 (dd, J = 9.9, 6.6 Hz, 

1H, C6H), 5.98 (dd, J = 9.2, 9.2 Hz, 1H, C5H), 5.63 (d, J = 17.4 Hz, 1H, trans-C11H), 

5.18 (d, J = 10.7 Hz, 1H, cis-C11H), 5.09 (d, J = 12.5 Hz, 1H, C15H), 5.04 (d, 

J = 12.5, 1H, C15H), 4.25 (q, J = 7.2 Hz, 2H, 2xC13H), 4.15–4.06 (m, 1H, C4H), 2.28 

(dd, J = 15.8, 9.1 Hz, 1H, C8H), 2.14 (dd, J = 15.8, 6.7 Hz, 1H, C8H), 1.31 (t, J = 7.2 

Hz, 3H, C14H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 171.7 (C9), 167.3 (C12), 139.1 (C10), 137.4 (C16), 136.3 

(C7), 135.9 (C3), 133.3 (C5), 132.3 (C1), 129.2 (C17/C18/C19), 128.9 

(C17/C18/C19), 128.8 (C17/C18/C19), 126.9 (C6), 125.2 (C2), 115.8 (C11), 66.5 

(C15), 61.6 (C13), 34.0 (C4), 33.0 (C8), 14.5 (C14) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 361.1410; found: 361.1408 [M+Na

+
]. 

IR  𝜈 = 3029 (vw), 2976 (vw), 2960 (vw), 2923 (w), 2851 (vw), 1728 (s), 1713 (vs), 1613 

(vw), 1530 (vw), 1496 (vw), 1454 (w), 1415 (w), 1380 (w), 1367 (w), 1283 (m), 1257 

(vs), 1219 (s), 1161 (s), 1111 (w), 1076 (w), 1022 (w), 992 (w), 908 (w), 866 (w), 733 

(m), 698 (m) cm
1

.
 

OR  [α]D
22

 = –116° (1 mg/ml, CH2Cl2). 
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ethyl (1S,4aS,5R,6S,8R,9S,9aR)-1-(((tert-butyldimethylsilyl)oxy)methyl)-5,6,8,9-tetrahydroxy-3-

oxodecahydrocyclohepta[c]pyran-8-carboxylate (486)  

 

Lactone 481 (30 mg, 0.079 mmol) was dissolved in THF/t-BuOH/H2O (2:1:1, 1.2 ml) and OsO4 

(4 wt-% in H2O, 50 μl, 0.0079 mmol, 0.1 eq.) and NMO (28 mg, 0.24 mmol, 3.0 eq.) were added. The 

reaction mixture was stirred in the dark for 47 h, when OsO4 (4 wt-% in H2O, 100 μl, 0.016 mmol, 0.2 

eq) was introduced. After further stirring for 39 h, the reaction was judged complete and aq. sat. 

Na2S2O3 (2 ml) and pH 5 buffer (c = 1 M, 3 ml) was added. The aqueous phase was saturated with 

NaCl and extracted with EtOAc (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated to afford the crude product (40 mg, >quant.), which could be used without further 

purification.  

LC/MS  Rt = 3.463 min (10–90% MeCN/H2O + 0.1% FA, 7 min, 2 ml/min). 

1
H NMR  (400 MHz, (D3C)2CO): δ 4.71 (dd, J = 9.4, 4.7 Hz, 1H, C10H), 4.47–4.33 (brs, 2H, 

2xOH), 4.19 (q, J = 7.1 Hz, 2H, 2xC13H), 4.13–4.06 (m, 1H, C6H), 4.05–3.96 (m, 2H, 

C2H, OH), 3.93 (dd, J = 11.0, 4.4 Hz, 1H, C11H), 3.86 (dd, J = 11.0, 4.5 Hz, 1H, 

C11H), 3.68–3.64 (m, 1H, C5H), 2.93–2.81 (brs, 1H, OH), 2.71–2.61 (m, 2H, C3H, 

C4H), 2.60–2.54 (m, 2H, 2xC8H), 2.21 (dd, J = 15.0, 8.8 Hz, 1H, C7H), 2.03 (dd, 

J = 15.0, 2.9 Hz, 1H, C7H), 1.26 (t, J = 7.1 Hz, 3H, C13H3), 0.90 (s, 9H, 3xC18H3), 

0.10 (s, 3H, C15H3), 0.09 (s, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 175.9 (C12), 170.9 (C9), 81.1 (C10), 79.7 (C1), 74.9 (C5), 

72.3 (C2), 70.1 (C6), 66.4 (C11), 62.1 (C13), 39.3 (C7), 37.0 (C3), 35.3 (C4), 32.6 

(C8), 26.2 (C18), 18.8 (C17), 14.4 (C14), –5.2 (C15/C16), –5.3 (C15/C16) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 471.2021; found: 471.2030 [M+Na

+
]. 

IR  𝜈 = 3408 (w), 2955 (w), 2930 (w), 2886 (vw), 2857 (w), 1723 (s), 1472 (w), 1464 (w), 

1445 (w), 1391 (w), 1362 (w), 1252 (s), 1195 (m), 1123 (s), 1089 (s), 1069 (s), 1024 

(s), 935 (w), 908 (w), 836 (vs), 816 (w), 779 (s), 725 (w), 668 (w) cm
1

.
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ethyl (1S,4aS,5R,6S,8R,9S,9aR)-5,6,8,9-tetrahydroxy-3-oxo-1-(((triethylsilyl)oxy)methyl) 

decahydrocyclohepta[c]pyran-8-carboxylate (487)  

 

Cycloheptadiene 482 (10 mg, 0.026 mmol) was dissolved in THF/t-BuOH/H2O (1.0 ml, 2:1:1) 

and OsO4 (4 wt-% in H2O, 17 l, 17 mg, 0.0026 mmol, 0.1 eq.) and NMO (10 mg, 0.079 mmol, 3.0 

eq.) were added. The reaction mixture was stirred in the dark for 41 h and OsO4 (4 wt-% in H2O, 17 

l, 17 mg, 0.0026 mmol, 0.1 eq.) and NMO (10 mg, 0.079 mmol, 3.0 eq.) were added. Further stirring 

for 53 h led to completion of the reaction as judged by LC/MS. Sat. aq. Na2S2O3 (4 ml) and solid NaCl 

was added to the reaction mixture and the NaCl saturated aqueous solution was extracted with EtOAc 

(3x10ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure to afford the title compound as a colorless oil (9 mg, 76%). The product could be used 

without further purification. 

1
H NMR  (400 MHz, (D3C)2CO): δ 4.70 (ddd, J = 4.8, 4.8, 4.4, 1H, C10H), 4.20 (q, J = 7.1 Hz, 

2H, 2xC13H), 4.09 (ddd, J = 8.8, 2.8, 2.1 Hz, 1H, C6H), 4.02 (d, J = 8.7 Hz, 1H, C2H), 

3.93 (dd, J = 11.0, 4.4 Hz, 1H, C11H), 3.86 (dd, J = 11.0, 4.8 Hz, 1H, C11H), 3.66 (dd, 

J = 6.6, 2.1 Hz, 1H, C5H), 2.70–2.61 (m, 2H, C3H, C4H), 2.60–2.56 (m, 2H, 2xC8H), 

2.21 (dd, J = 14.9, 8.8 Hz, 1H, C7H), 2.03 (dd, J = 14.9, 2.8 Hz, 1H, C7H), 1.26 (t, 

J = 7.1 Hz, 3H, C14H3), 0.97 (t, J = 8.0 Hz, 9H, 3xC16H3), 0.64 (q, J = 8.0 Hz, 6H, 

3xC15H2) ppm. Sample contains EtOAc and an unknown impurity. 

13
C NMR  (100 MHz, (D3C)2CO): δ 175.9 (C12), 170.9 (C9), 81.2 (C10), 79.6 (C1), 74.8 (C5), 

72.2 (C2), 70.1 (C6), 66.2 (C11), 62.1 (C13), 39.3 (C7), 37.0 (C3), 35.4 (C4), 32.6 

(C8), 14.4 (C14), 7.0 (C16, C18, C20), 4.9 (C15, C17, C19) ppm. Sample contains 

EtOAc and an unknown impurity. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 471.2021; found: 471.2020 [M+Na

+
]. 

IR  𝜈 = 3409 (br, w), 2953 (m), 2921 (m), 2874 (m), 1725 (vs), 1457 (w), 1414 (w), 1392 

(w), 1369 (w), 1238 (s), 1191 (m), 1114 (vs), 1088 (vs), 1066 (s), 1017 (vs), 864 (w), 

822 (w), 743 (s), 667 (w) cm
1

.
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 ethyl (1S,4aR,9aR)-1-(1,3-dioxolan-2-yl)-3-oxo-1,3,4,4a,7,9a-hexahydrocyclohepta[c]pyran-8-

carboxylate (503)  

 

Oxalyl chloride (19 l, 28 mg, 0.22 mmol, 2.0 eq.) in CH2Cl2 (0.8 ml) was cooled to 78 °C and 

DMSO (31 l, 34 mg, 0.44 mmol, 4.0 eq.) was added slowly. This solution was treated with alcohol 

476 (dr: 6.3:1, 29 mg, 0.11 mmol) in CH2Cl2 (0.9 ml) after 5 min and stirring was continued for 25 

min. DIPEA (0.15 ml, 0.11 g, 0.87 mmol, 8.0 eq.) was introduced at 78 °C and after 1 h, the reaction 

mixture was allowed to warm to 40 °C over 30 min. Aq. phosphate buffer (c = 0.15 M, pH 7.2, 3 ml) 

was added, the aqueous phase was extracted with CH2Cl2 (3x10 ml) and the combined organic phases 

were dried over Na2SO4 and concentrated under reduced pressure. Half of the crude product was 

dissolved in CH2Cl2 (1.5 ml) and cooled to 0 °C. Ethylene glycol (9 l, 5 mg, 0.05 mmol, 3.0 eq.), 

anhydrous CuSO4 (dried at 120 °C overnight on HV, 23 mg, 0.15 mmol, 2.7 eq.) and BF3OEt2 (14 l, 

16 mg, 0.12 mmol, 2.2 eq.) were successively added and the reaction mixture stirred at rt for 17 h. Aq. 

phosphate buffer (c = 0.15 M, pH 7.2, 4 ml) was added, the aqueous phase was extracted with CH2Cl2 

(3x10 ml) and the combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure to afford the title compound as a colorless oil (23 mg, >100%). The product could be used 

without further purification. An analytical sample was obtained by flash column chromatography 

(15x1.5 cm, 25303560% EtOAc/hexanes). 

This reaction only led to success when alcohol 476 was purified by flash column chromatography 

to remove traces of Fe
III

 salts from the previous step. Otherwise, the intermediate aldehyde proved 

unstable during concentration under reduced pressure. 

TLC Rf = 0.29 (40% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 6.97 (dd, J = 6.7, 2.2 Hz, 1H, C2H), 5.34 (dddd, J = 11.3, 7.3, 

3.6, 2.1 Hz, 1H, C6H), 4.95 (ddd, J = 11.3, 4.5, 2.8 Hz, 1H, C5H), 4.77 (d, J = 1.2 Hz, 

1H, C11H), 4.32 (dd, J = 5.6, 1.2 Hz, 1H, C8H), 3.98 (q, J = 7.1 Hz, 2H, 2xC15H), 

3.713.58 (m, 2H, C12H, C13H), 3.323.25 (m, 2H, C12H, C13H), 3.16 (dd, J = 19.7, 

7.3 Hz, 1H, C7H), 2.972.89 (m, 1H, C7H), 2.712.63 (m, 2H, C3H, C4H), 2.19 (dd, 

J = 17.6, 6.1 Hz, 1H, C10H), 2.13 (dd, J = 17.6, 7.5 Hz, 1H, C10H), 0.95 (t, J = 7.1 Hz, 

3H, C16H3) ppm. 
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13
C NMR  (100 MHz, C6D6): δ 168.0 (C9), 166.4 (C14), 139.3 (C2), 135.5 (C1), 130.9 (C5), 

127.4 (C6), 103.5 (C11), 81.6 (C8), 65.8 (C12/C13), 65.6 (C12/C13), 61.0 (C15), 37.1 

(C3), 36.0 (C10), 32.2 (C4), 26.7 (C7), 14.2 (C16) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 331.1152; found: 331.1152 [M+Na

+
]. 

IR  𝜈 = 3397 (vw), 2979 (vw), 2896 (vw), 1740 (vs), 1705 (vs), 1653 (vw), 1474 (vw), 

1445 (vw), 1367 (w), 1278 (m), 1241 (vs), 1196 (s), 1151 (s), 1071 (vs), 1045 (m), 

991 (w), 946 (m), 929 (w), 910 (w), 883 (w), 808 (vw), 770 (vw), 745 (vw), 706 (w) 

cm
1

.
 

OR  [α]D
23

 = +5.2° (6.5 mg/ml, CHCl3). 

Minor diastereomer (571): ethyl (1S,4aS,9aS)-1-(1,3-dioxolan-2-yl)-3-oxo-1,3,4,4a,7,9a-

hexahydrocyclohepta[c]pyran-8-carboxylate 

 

Since the intermediate aldehyde can also epimerize at C8, the isolated diastereomer can also be a 

C8-epimer of the major product of this reaction. Due to the irrelevance of the minor diastereomer to 

the overall total synthesis, the relative stereochemistry was not elucidated. It was assumed that the 

isolated diastereomer results from the minor diastereomer 571 of the starting material.  

 

TLC Rf = 0.23 (40% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 7.44 (ddd, J = 6.1, 1.4, 1.4 Hz, 1H, C2H), 5.36 (dddd, J = 11.5, 

8.5, 2.8, 1.7 Hz, 1H, C6H), 4.90 (d, J = 4.7 Hz, 1H, C11H), 4.82 (ddd, J = 11.5, 5.1, 

3.0 Hz, 1H, C5H), 3.95 (q, J = 7.2 Hz, 2H, 2xC15H), 3.84 (dd, J = 4.7, 2.3 Hz, 1H, 

C8H), 3.50 (ddd, J = 7.5, 6.4, 6.1 Hz, 1H, C12H), 3.40 (ddd, J = 7.2, 6.4, 5.8 Hz, 1H, 

C13H), 3.35 (ddd, J = 18.2, 8.5, 1.2 Hz, 1H, C7H), 3.28 (ddd, J = 7.5, 6.8, 5.8 Hz, 1H, 

C12H), 3.16 (ddd, J = 7.2, 6.8, 6.1 Hz, 1H, C13H), 3.07–3.03 (m, 1H, C3H), 2.88–2.80 

(m, 1H, C7H), 2.15–2.10 (m, 2H, 2xC10H), 1.87–1.77 (m, 1H, C4H), 0.90 (t, J = 7.2 

Hz, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, C6D6): δ 167.3 (C9), 165.9 (C14), 138.0 (C1), 136.7 (C2), 130.4 (C5), 

125.8 (C6), 102.7 (C8), 82.2 (C8), 65.5 (C12), 65.0 (C13), 61.0 (C15), 36.6 (C3), 35.8 

(C4), 34.0 (C10), 25.4 (C7), 14.2 (C16) ppm. 

HRMS ((+)-ESI, m/z): calc. [M+Na
+
]: 331.1152; found: 331.1149 [M+Na

+
]. 
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IR  𝜈 = 3403 (vw), 2956 (w), 2923 (w), 2857 (vw), 1742 (vs), 1707 (vs), 1649 (vw), 1443 

(vw), 1368 (w), 1294 (w), 1250 (vs), 1160 (m), 1079 (m), 1032 (m), 945 (w), 885 

(vw), 817 (vw), 746 (vw), 712 (w) cm
1

.
 

OR  [α]D
23

 = 12.8° (3 mg/ml, CHCl3). 

ethyl 1-(1,3-dioxolan-2-yl)-4,4a,7,9a-tetrahydro-1H-spiro[cyclohepta[c]pyran-3,2'-

[1,3]dioxolane]-8-carboxylate (505)  

 

Oxalyl chloride (10 l, 14 mg, 0.11 mmol, 2.0 eq.) in CH2Cl2 (1.0 ml) was cooled to 78 °C and 

DMSO (16 l, 18 mg, 0.23 mmol, 4.0 eq.) was added slowly. This solution was treated with alcohol 

476 (15 mg, 0.06 mmol) in CH2Cl2 (0.6 ml) after 15 min and stirring was continued for 40 min. NEt3 

(0.06 ml, 0.04 g, 0.4 mmol, 7.5 eq.) was introduced at 78 °C and the reaction mixture was allowed to 

warm to  °C over 1.5 h. Sat aq. NaHCO3 solution (5 ml) was added, the aqueous phase was extracted 

with CH2Cl2 (3x10 ml) and the combined organic phases were dried over Na2SO4 and concentrated 

under reduced pressure. The crude product was redissolved in CH2Cl2, cooled to 78 °C and 

TMSOCH2CH2OTMS (42 l, 35 mg, 0.17 mmol, 3.0 eq.) was added. TMSOTf (10 l, 12 mg, 1 eq.) 

was introduced and the reaction mixture was stirred at the same temperature for 3.5 h. The reaction 

mixture was then allowed to warm to 0 °C, stirred for 2 h, then allowed to warm to rt overnight. 

Pyridine (2 ml) was added, the organic phase washed with sat. aq. NaHCO3 solution and the aqueous 

phase extracted with CH2Cl2 (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by flash column chromatography 

(17x2.5 cm, 3040% EtOAc/hexanes) to afford the product as a colorless oil (2 mg, 10%) next to 

monoprotected dioxolane 503 and a diastereomer of diprotected 505. 

This reaction only led to success when alcohol 476 was purified by flash column chromatography 

to remove traces of Fe
III

 salts from the previous step. Otherwise, the intermediate aldehyde proved 

unstable during concentration under reduced pressure. 

TLC Rf = 0.39 (40% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 7.35 (dd, J = 6.5, 2.2 Hz, 1H, C2H), 5.71 (ddd, J = 11.3, 4.6, 2.4 

Hz, 1H, C5H), 5.62 (dddd, J = 11.3, 7.4, 3.7, 2.2 Hz, 1H, C6H), 5.39 (d, J = 4.5 Hz, 
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1H, C11H), 4.12 (dd, J = 6.1, 4.5 Hz, 1H, C8H), 4.03–3.91 (m, 3H, 2xC15H, C17H), 

3.87–3.82 (m, 1H, C18H), 3.64–3.60 (m, 1H, C12H), 3.59–3.55 (m, 1H, C13H), 3.51–

3.47 (m, 2H, C17H, C18H), 3.43–3.39 (m, 1H, C12H), 3.39–3.35 (m, 1H, C13H), 3.29 

(dd, J = 19.1, 7.5 Hz, 1H, C7H), 3.19–3.15 (m, 1H, C3H), 3.12–3.06 (m, 1H, C7H), 

2.94–2.89 (m, 1H, C4H), 2.03–2.97 (m, 2xC10H), 0.92 (t, J = 7.2 Hz, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, C6D6): δ 167.0 (C14), 141.2 (C2), 134.4 (C1), 133.2 (C5), 127.1 (C6), 

119.7 (C9), 103.3 (C11), 77.0 (C8), 65.5 (C13), 65.1 (C12), 64.1 (C18), 63.7 (C17), 

60.7 (C15), 39.2 (C3), 36.3 (C10), 33.6 (C4), 26.3 (C7), 14.3 (C16) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 375.1414; found: 331.1413 [M+Na

+
]. 

IR  𝜈 = 2963 (w), 2902 (w), 1706 (vs), 1653 (vw), 1438 (vw), 1374 (w), 1298 (w), 1281 

(w), 1242 (vs), 1195 (m), 1167 (w), 1075 (vs), 1023 (s), 1004 (s), 950 (m), 869 (w), 

803 (vw), 745 (vw), 702 (vw), 663 (vw) cm
1

.
 

OR  [α]D
23

 = 30.0° (1 mg/ml, CHCl3). 

ethyl (1S,4aR,9aR)-1-(5,5-dimethyl-1,3-dioxan-2-yl)-3-oxo-1,3,4,4a,7,9a-hexahydrocyclohepta[c] 

pyran-8-carboxylate (506) 

 

Oxalyl chloride (97.0 μl, 143 mg, 1.13 mmol, 3.0 eq.) in CH2Cl2 (2.7 ml) was cooled to 78 °C 

and DMSO (160 μl, 176 mg, 2.25 mmol, 6.0 eq.) was added slowly. This solution was treated with 

alcohol 476 (100 mg, 0.38 mmol) in CH2Cl2 (3.0 ml) after 25 min and stirring was continued for 45 

min. NEt3 (0.42 ml, 0.30 g, 3.0 mmol, 8.0 eq.) was introduced at 78 °C and after 2 h, the reaction 

mixture was treated with aq. phosphate buffer (c = 1 M, pH 7.2, 10 ml). The aqueous phase was 

extracted with EtOAc (3x20 ml) and the combined organic phases were washed with an aq. sat. NH4Cl 

solution (3x40 ml) and brine (50 ml), dried over Na2SO4 and concentrated under reduced pressure. The 

intermediate aldehyde was dried on HV for 5 min. 

The crude product was dissolved in CH2Cl2 (5.5 ml) and 2,2-Dimethylpropanediol (79 mg, 0.76 

mmol, 2.0 eq.) was added. Stirring was continued until the diol dissolved (15 min). The solution was 

cooled to 0 °C and treated with BF3OEt2 (61 μl, 70 mg, 0.49 mmol, 1.3 eq.) and MgSO4 (dried at 650 

°C twice under HV, purged with nitrogen in between, 128 mg, 1.06 mmol, 2.8 eq.) and stirred at rt for 

3 h. Additional BF3OEt2 (30 μl, 35 mg, 0.24 mmol, 1.3 eq.) and MgSO4 (dried at 650 °C twice under 
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HV, purged with nitrogen in between, 56 mg, 0.47 mmol, 1.2 eq.) were added and stirring continued 

for 1 h. Aq. phosphate buffer (c = 1 M, pH 7.2, 15 ml) was added, the aqueous phase was extracted 

with EtOAc (3x20 ml) and the combined organic phases were dried over Na2SO4 and concentrated 

under reduced pressure. The crude product was purified by flash column chromatography (17x2.5 cm, 

202530% EtOAc/hexanes) to afford the title compound as a colorless oil (95 mg, 72% over 2 steps).  

This reaction only led to success when alcohol 476 was purified by flash column chromatography 

to remove traces of Fe
III

 salts from the previous step. Otherwise, the intermediate aldehyde proved 

unstable during concentration under reduced pressure. Additionally, exposure to amine bases has to be 

as short and mild as possible to obtain reproducible yields. 

TLC Rf = 0.21 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 7.20 (dd, J = 6.7, 2.2 Hz, 1H, C2H), 5.42 (dddd, J = 11.2, 7.3, 

3.7, 2.2 Hz, 1H, C6H), 5.07 (ddd, J = 11.2, 4.7, 2.7 Hz, 1H, C5H), 4.44 (d, J = 2.6 Hz, 

1H, C11H), 4.41 (dd, J = 6.4, 2.6 Hz, 1H, C8H), 4.00 (q, J = 7.2 Hz, 2H, 2xC13H), 

3.36–3.18 (m, 4H, C3H, C7H, C15H, C16H), 3.05–2.96 (m, 1H, C7H), 2.97–2.91 (m, 

2H, C15H, C16H), 2.85–2.78 (m, 1H, C4H), 2.24–2.16 (m, 2H, 2xC10H), 1.07 (s, 3H, 

C18H3), 0.97 (t, J = 7.2 Hz, 3H, C14H3), 0.21 (s, 3H, C19H3) ppm. 

13
C NMR  (100 MHz, C6D6): δ 167.8 (C9), 166.7 (12), 140.4 (C2), 134.3 (C1), 131.1 (C5), 128.2 

(C6), 101.2 (C11), 81.2 (C8), 77.2 (C15/C16), 77.0 (C15/C16), 60.9 (C13), 36.2 

(C10), 35.8 (C3), 32.7 (C4), 30.1 (C17), 26.7 (C7), 23.1 (C18), 21.3 (C19), 14.3 (C14) 

ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 373.1622; found: 373.1618 [M+Na

+
]. 

IR  𝜈 = 2957 (w), 2928 (w), 2854 (w), 1744 (vs), 1707 (vs), 1653 (vw), 1471 (w), 1396 

(w), 1366 (w), 1281 (m), 1243 (vs), 1200 (s), 1146 (s), 1083 (vs), 1032 (m), 1016 (m), 

992 (m), 908 (vw), 872 (vw), 804 (vw), 744 (vw), 715 (vw), 689 (vw), 668 (vw) cm
1 

OR  [α]D
25

 = +10.2° (6 mg/ml, CH2Cl2). 

ethyl (1S,4aR,9aR)-3-oxo-1-(spiro[fluorene-9,5'-[1,3]dioxan]-2'-yl)-1,3,4,4a,7,9a-hexahydrocyclo-

hepta[c]pyran-8-carboxylate (508)  
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Oxalyl chloride (27 l, 40 mg, 0.32 mmol, 2.0 eq.) in CH2Cl2 (1.2 ml) was cooled to 78 °C and 

DMSO (45 l, 49 mg, 0.63 mmol, 4.0 eq.) was added slowly. This solution was treated with alcohol 

476 (42 mg, 0.16 mmol) in CH2Cl2 (1.3 ml) after 15 min and stirring was continued for 15 min. 

DIPEA (0.22 ml, 0.16 g, 1.3 mmol, 8.0 eq.) was introduced at 78 °C and after 1 h, the reaction 

mixture was allowed to warm to 40 °C over 30 min. Aq. phosphate buffer (c = 0.15 M, pH 7.2, 10 

ml) was added, the aqueous phase was extracted with CH2Cl2 (3x20 ml) and the combined organic 

phases were washed with brine (50 ml), dried over Na2SO4 and concentrated under reduced pressure.  

The crude product was dissolved in CH2Cl2 (2.4 ml) and MgSO4 (dried with heat gun three times 

under vacuum, purged with nitrogen in between, 53 mg, 0.44 mmol, 2.8 eq.) was added. Diol 507 (71 

mg, 0.32 mmol, 2.0 eq.) was introduced. The suspension was treated with BF3OEt2 (25 l, 29 mg, 

0.20 mmol, 1.3 eq.) and stirred at rt for 2.5 h. Aq. phosphate buffer (c = 0.15 M, pH 7.2, 10 ml) was 

added, the aqueous phase was extracted with CH2Cl2 (3x20 ml) and the combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (14x2 cm, 102030% EtOAc/hexanes) to afford the title compound as a 

colorless oil (15 mg, 20% over 2 steps). 

This reaction did not go to full completion probably due to the low solubility of diol 507 in 

CH2Cl2. Longer reaction times will be required. 

This reaction only led to success when alcohol 476 was purified by flash column chromatography 

to remove traces of Fe
III

 salts from the previous step. Otherwise, the intermediate aldehyde proved 

unstable during concentration under reduced pressure. 

TLC Rf = 0.16 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, C6D6): δ 8.608.56 (m, 1H, CArH), 7.607.45 (m, 3H, 3xCArH), 7.297.24 

(m, 1H, CArH), 7.237.17 (m, 2H, C2H, CArH), 7.127.06 (m, 1H, CArH), 6.916.88 

(m, 1H, CArH), 5.485.40 (m, 1H, C6H), 5.07 (ddd, J = 11.4, 4.6, 2.7 Hz, 1H, C5H), 

4.70 (d, J = 2.3 Hz, 1H, C9H), 4.56 (dd, J = 5.9, 2.3 Hz, 1H, C8H), 4.01 (q, J = 7.1 

Hz, 2H, 2xC13H), 3.863.76 (m, 2H, C15H, C16H), 3.523.46 (m, 2H, C15H, C16H), 

3.303.26 (m, 1H, C3H), 3.24 (dd, J = 20.0, 7.2 Hz, 1H, C7H), 3.072.98 (m, 1H, 

C7H), 2.932.86 (m, 1H, C4H), 2.27 (dd, J = 17.6, 7.4 Hz, 1H, C10H), 2.22 (dd, 

J = 17.6, 5.7 Hz, 1H, C10H), 0.97 (t, J = 7.1 Hz, 3H, C14H3) ppm. 

13
C NMR  (100 MHz, C6D6): δ 167.8 (C11), 166.5 (C12), 149.4 (CqAr), 142.9 (CqAr), 142.1 

(CqAr), 139.8 (C2), 139.8 (CqAr), 135.7 (C1), 130.9 (C5), 128.8 (CAr), 128.0 (CAr), 

128.0 (CAr), 127.5 (C6), 127.2 (CAr), 127.2 (CAr), 123.8 (CAr), 120.6 (CAr), 120.0 

(CAr), 100.8 (C9), 81.4 (C8), 73.9 (C15/C16), 73.8 (C15/C16), 61.1 (C13), 49.3 

(C17), 36.1 (C3/C10), 36.0 (C3/C10), 32.6 (C4), 26.8 (C7), 14.3 (C14) ppm. 

MS  (EI, %): 471.96 (M
+
, 2), 238.00 (3), 191.00 (39), 178.00 (100), 83.94 (4). 

HRMS  (EI, m/z): calc. [M
+
]: 472.1886; found: 472.1872 [M

+
]. 
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IR  𝜈 = 3396 (br, vw), 2976 (w), 2927 (vw), 2853 (vw), 1741 (vs), 1708 (vs), 1652 (vw), 

1477 (w), 1448 (m), 1371 (w), 1280 (m), 1242 (vs), 1193 (m), 1142 (vs), 1090 (m), 

1067 (vs), 1032 (m), 998 (m), 946 (w), 920 (w), 808 (vw), 763 (m), 735 (vs), 711 (w), 

679 (w) cm
1

.
 

OR  [α]D
25

 = +57.1° (8 mg/ml, CH2Cl2). 

((2S,3R,3aS,6aS)-2-(5,5-dimethyl-1,3-dioxan-2-yl)-5-oxohexahydrofuro[2,3-b]furan-3-yl)methyl 

acetate (509)  

 

Lactone 506 (27 mg, 0.077 mmol) was dissolved in CH2Cl2 (2.0 ml) and cooled to –78 °C. Ozone 

was bubbled through the solution for 1 min and TLC analysis showed complete consumption of the 

starting material. Nitrogen was passed through the solution and dimethyl sulfide (0.2 ml) was added. 

The reaction mixture was allowed to warm to 0 °C and stirred for 2 h. An aq. phosphate buffer 

solution (pH 7.2, c = 1 M, 10 ml) was added and the aqueous phase extracted with EtOAc (3x10 ml). 

The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. 

The crude intermediate was dissolved in CH2Cl2 (2.0 ml) and cooled to –40 °C. Ozone was 

bubbled through the solution for 30 s and excess ozone was removed by passing a nitrogen stream 

through. Dimethyl sulfide (0.2 ml) was added and the reaction mixture stirred for 1 h at 0 °C. An aq. 

phosphate buffer solution (pH 7.2, c = 1 M, 10 ml) was added and the aqueous phase extracted with 

EtOAc (3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. 

The crude product was dissolved in EtOH (1.0 ml) and NaBH4 (15 mg, 0.39 mmol, 5.0 eq.) was 

added. After stirring for 5 h at rt, an aq. phosphate buffer solution (pH 5, c = 1 M, 10 ml) was added 

and the aqueous phase extracted with EtOAc (3x10 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. 

The crude product was dissolved in CH2Cl2 (1.0 ml) and acetic anhydride (0.3 ml) and pyridine 

(0.4 ml) were added. The reaction was stirred for 7 h at rt before an aq. phosphate buffer solution (pH 

5, c = 1 M, 10 ml) was added and the aqueous phase extracted with EtOAc (3x10 ml). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. The crude product 
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was purified by flash column chromatography (deactivated silica, 24x1 cm, 40–50–60% 

EtOAc/hexanes) to afford the title compound as a colorless oil (6 mg, 25% over 4 steps). 

TLC Rf = 0.21 (40% EtOAc/hexanes). 

1
H NMR  (400 MHz, (D3C)2CO): δ 6.03 (d, J = 5.9 Hz, 1H, C4H), 4.52 (d, J = 3.1 Hz, 1H, 

C7H), 4.17–4.07 (m, 2H, 2xC13H), 4.05–4.01 (m, 1H, C6H), 3.65–3.41 (m, 4H, 2xC8H, 

2xC10H), 3.11–3.04 (m, 1H, C5H), 2.83–2.78 (m, 1H, C2H), 2.70–2.63 (m, 1H, C3H), 

2.54 (dd, J = 18.0, 2.5 Hz, 1H, C2H), 2.02 (s, 3H, C15H3) 1.14 (s, 3H, C11H3), 0.73 (s, 

3H, C12H3), 0.15 (s, 3H, C12H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 175.3 (C1), 171.0 (C14), 109.5 (C4), 101.5 (C9), 85.3 (C6), 

77.3 (C8), 77.1 (C10), 65.9 (C13), 45.9 (C5), 43.4 (C3), 35.8 (C2), 30.7 (C9), 23.2 

(C11), 21.7 (C12), 20.7 (C15) ppm. 

HRMS  (EI, m/z): calc. [M–H
+
]: 313.1287; found: 313.1264 [M–H

+
].  

IR  𝜈 = 2956 (w), 2928 (w), 2852 (vw), 1783 (s), 1740 (vs), 1471 (vw), 1417 (vw), 1394 

(w), 1366 (w), 1343 (vw), 1232 (vs), 1176 (w), 1148 (w), 1105 (m), 1029 (s), 1001 

(m), 989 (w), 828 (vw), 792 (vw) cm
1

.
 

OR  [α]D
21

 = +12.0° (1.5 mg/ml, EtOAc). 

ethyl (1S,4aS,5R,6S,8R,9S,9aR)-1-(5,5-dimethyl-1,3-dioxan-2-yl)-5,6,8,9-tetrahydroxy-3-

oxodecahydrocyclohepta[c]pyran-8-carboxylate (510)  

 

Lactone 506 (52 mg, 0.15 mmol) was dissolved in THF/t-BuOH/H2O (2:1:1, 5.0 ml) and a 

solution of OsO4 in t-BuOH (2.5 wt-%, 0.15 ml, 151 mg, 0.015 mmol, 0.1 eq.) and NMO (52 mg, 0.46 

mmol, 3.0 eq.) were successively added. The reaction mixture was stirred for 47 h in the dark. A 

solution of OsO4 in H2O (4 wt-%, 0.094 ml, 94 mg, 0.015 mmol, 0.1 eq.) and NMO (52 mg, 0.46 

mmol, 3.0 eq.) were successively added since the reaction was judged incomplete by LC/MS analysis 

and the reaction mixture was further stirred for 24 h in the dark. Sat. aq. Na2S2O3 solution (7 ml) was 

added to the reaction mixture and the aqueous phase was saturated with NaCl and extracted with 

EtOAc (3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under 
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reduced pressure to afford the title compound as a colorless oil (52 mg, 84%). No further purification 

was needed. 

Purification of the crude product can be performed by flash column chromatography on reverse 

phase silica (10–15–20% MeCN/H2O + 0.5% FA). The fractions containing the product are extracted 

with EtOAc (2x), the organic phases dried over Na2SO4 and the solvents removed under reduced 

pressure to afford the title compound as a colorless oil. The sample after purification was less pure 

than the crude sample.  

LC/MS  Rt = 2.770 min (1040% MeCN/H2O + 0.1% FA, 5 min, 2 ml/min). 

1
H NMR  (400 MHz, (D3C)2CO): δ 4.77 (dd, J = 3.6, 3.6 Hz, 1H, C10H), 4.71 (d, J = 3.6 Hz, 

1H, C11H), 4.20 (q, J = 7.1 Hz, 2H, 2xC18H), 4.10 (ddd, J = 8.9, 2.2, 2.2 Hz, 1H, 

C6H), 3.97 (d, J = 9.0 Hz, 1H, C2H), 3.693.60 (m, 4H, C5H, C12H, C14H, OH), 

3.563.47 (m, 2H, C12H, C14H), 2.902.82 (m, 2H, C3H, C4H), 2.60 (dd, J = 18.0, 6.4 

Hz, 1H, C8H), 2.552.45 (m, 1H, C8H), 2.29 (dd, J = 15.0, 9.0 Hz, 1H, C7H), 2.02 

(dd, J = 15.0, 2.3 Hz, 1H, C7H), 1.26 (s, 3H, C19H3), 1.17 (s, 3H, C15H3), 0.73 (s, 3H, 

C16H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 176.1 (C17), 170.4 (C9), 101.9 (C11), 80.1 (C10), 79.1 

(C1), 77.6 (C12/C14), 77.5 (C12/C14), 75.7 (C5), 71.6 (C2), 69.6 (C6), 62.1 (C18), 

39.0 (C7), 35.4 (C3/C4), 34.5 (C3/C4), 32.1 (C13), 30.9 (C8), 23.2 (C15), 21.7 (C16), 

14.4 (C19) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 441.1731; found: 441.1730 [M+Na

+
]. 

IR  𝜈 = 3419 (br, w), 2956 (w), 2929 (w), 2869 (vw), 1727 (s), 1471 (w), 1395 (w), 1370 

(w), 1256 (m), 1242 (s), 1190 (m), 1141 (s), 1089 (vs), 1063 (s), 1026 (vs), 989 (s), 

922 (w), 860 (w), 799 (w), 732 (m), 700 (w) cm
1

.
 

ethyl (3R,4aR,8aS)-5-(5,5-dimethyl-1,3-dioxan-2-yl)-1,4-dihydroxy-7-oxo-3-(2-oxoethyl)octa-

hydropyrano[4,3-c]pyran-3-carboxylate (511)  

 

Crude Tetraol 510 (35 mg, 0.084 mmol) was dissolved in acetone/H2O (3:2, 1.0 ml) and NaIO4 

(50 mg, 0.23 mmol, 2.8 eq.) was added. The reaction mixture was stirred in the dark for 1 h. H2O (5 

ml) saturated with NaCl was added and the aqueous phase extracted with EtOAc (3x10 ml). The 
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combined organic phases were dried over Na2SO4 and concentrated under reduced pressure to afford 

the title compound (dr = 1.3:1, 26 mg, 75%) as a colorless oil.  

The analysis is provided for the diastereomeric mixture of the crude product which was 

sufficiently pure to take forward to the next steps.  

TLC Rf = 0.44 (5% MeOH/CH2Cl2). 

1
H NMR  (400 MHz, (D3C)2CO): δ 9.84 (dd, J = 3.0, 2.3 Hz, 1H, C1H), 9.77 (dd, J = 2.6, 2.2 

Hz, 1H, C1H), 6.04 (d, J = 4.5 Hz, 1H, C7OH), 5.97 (d, J = 5.0 Hz, 1H, C7OH), 

5.645.59 (m, 1H, C7H), 4.93 (d, J = 4.5 Hz, 1H, C7H), 4.86 (d, J = 3.3 Hz, 1H, 

C10H), 4.774.75 (m, 2H, 2xC11H), 4.714.66 (m, 1H, C10H), 4.40 (d, J = 8.4 Hz, 1H, 

C4OH), 4.344.19 (m, 4H, 2x2xC13H), 3.913.78 (m, 2H, 2xC4H), 3.723.45 (m, 8H, 

2x2xC15H, 2x2xC17H), 3.10 (dd, J = 16.2, 2.7 Hz, 1H, C2H), 3.06 (dd, J = 11.0, 6.1 

Hz, 1H, C5H), 2.982.91 (m, 2H, 2xC6H), 2.912.88 (m, 2H, 2xC2H), 2.852.83 (m, 

1H, C2H), 2.73 (dd, J = 11.5, 5.0 Hz, 1H, C5H), 2.60 (dd, J = 18.7, 7.4 Hz, 1H, C8H), 

2.552.44 (m, 3H, 3xC8H), 1.311.23 (m, 6H, 2xC13H3), 1.17 (s, 6H, 2xC18H3), 0.74 

(s, 6H, 2xC19H3) ppm. C4OH signal missing. 

13
C NMR  (100 MHz, (D3C)2CO): δ 199.9 (C1), 199.3 (C1), 174.7 (C12), 172.0 (C12), 170.0 

(C9), 169.3 (C9), 101.6 (C11), 101.6 (C11), 94.7 (C7), 93.1 (C7), 80.6 (C3), 78.1 

(C10), 77.8 (C10), 77.6 (C15/C17), 77.6 (C15/C17), 77.5 (C15/C17), 77.4 (C15/C17), 

75.9 (C3), 68.9 (C4), 67.8 (C4), 62.2 (C13), 62.0 (C13), 50.9 (C2), 50.9 (C2), 36.4 

(C6), 35.1 (C6), 35.1 (C5), 31.3 (C5), 30.9 (C16), 30.9 (C16), 26.2 (C8), 23.2 (C18), 

23.2 (C18), 21.6 (C19), 21.6 (C19), 14.3 (C14), 14.0 (C14) ppm. One carbon atom 

(C8) underneath solvent peak at δ 29.84 (sept) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 439.1575; found: 439.1572 [M

+
]. 

IR  𝜈 = 3441 (br, w), 2958 (w), 2918 (w), 2854 (w), 1723 (vs), 1470 (w), 1394 (w), 1288 

(w), 1259 (m), 1217 (m), 1140 (m), 1077 (vs), 1040 (s), 1013 (s), 792 (w) cm
1

.
 

ethyl (3aS,3bR,4S,8R,9aS)-4-(5,5-dimethyl-1,3-dioxan-2-yl)-6,8-dihydroxy-2-oxodecahydrofuro 

[3',2':4,5]furo[3,2-c]oxepine-8-carboxylate (513)  
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Tetraol 510 (8 mg, 0.02 mmol) was dissolved in CH2Cl2 (1.0 ml) and Pb(OAc)4 (24 mg, 0.54 

mmol, 2.8 eq.) was added. The reaction mixture was stirred for 16 h. H2O (5 ml) was sat. aq. Na2S2O3 

solution (5 ml) was added and the reaction mixture was extracted with CH2Cl2 (3x10 ml). The 

combined organic phases were dried over Na2SO4 and concentrated under reduced pressure to afford 

the crude title compound. 

Purification by preparative TLC led to decomposition of the compound. Analytical data is thus 

provided for the crude product.  

TLC Rf = 0.48 (5% MeOH/CH2Cl2). 

1
H NMR  (400 MHz, (D3C)2CO): δ 5.94 (d, J = 6.5 Hz, 1H, C4H), 5.345.32 (m, 1H, C9H), 

4.56 (d, J = 9.0 Hz, 1H, C6H), 4.44 (d, J = 5.2 Hz, 1H, C11H), 4.35 (dd, J = 5.2, 2.6 

Hz, 1H, C10H), 4.28 (q, J = 7.1 Hz, 2H, 2xC18H), 3.82 (dd, J = 18.9, 5.8 Hz, 1H, 

C2H), 3.713.57 (m, 3H, C12H, C14H, C7OH), 3.533.41 (m, 2H, C12H, C14H), 

3.303.22 (m, 1H, C3H), 2.97 (dd, J = 9.0, 9.0, 2.6 Hz, 1H, C5H), 2.80 (brs, 1H, 

C9OH), 2.34 (dd, J = 18.9, 11.7 Hz, 1H, C2H), 2.072.03 (m, 2H, 2xC8H), 1.29 (t, 

J = 7.1 Hz, 3H, C19H3), 1.18 (s, 3H, C15H3), 0.74 (s, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 178.0 (C1), 174.5 (C17), 108.2 (C4), 101.4 (C11), 92.3 

(C9), 86.4 (C6), 77.3 (C12/C14), 77.0 (C12/C14), 74.6 (C7), 66.8 (C10), 63.1 (C18), 

41.7 (C5), 39.5 (C3), 35.5 (C8), 30.3 (C13), 30.2 (C2), 22.8 (C15), 21.4 (C16), 13.9 

(C19) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 439.1575; found: 439.1576 [M+Na

+
]. 

IR  𝜈 = 3454 (vw), 2957 (m), 2926 (m), 2855 (w), 1781 (m), 1727 (vs), 1463 (w), 1415 

(vw), 1378 (w), 1260 (s), 1227 (m), 1111 (s), 1109 (vs), 1073 (s), 1038 (s), 984 (vs), 

867 (vw), 791 (vw), 742 (w), 706 (vw) cm
1

.
 

2-((1R,7R)-7-((S)-(5,5-dimethyl-1,3-dioxan-2-yl)(hydroxy)methyl)-5-(ethoxycarbonyl)cyclohepta-

2,5-dien-1-yl)acetic acid (518)  

 

Lactone 506 (90 mg, 0.26 mmol) was dissolved in EtOH (2.0 ml) and a solution of LiOHOH2 in 

H2O (c = 0.11 M, 3 ml, 0.33 mmol, 1.3 eq.) was added over 3 h. After complete addition, the reaction 
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mixture was stirred for 15 min and then treated with aq. phosphate buffer (pH 5, c = 1 M, 10 ml). The 

aqueous phase was saturated with NaCl and extracted with EtOAc (3x20 ml). The combined organic 

phases were dried over Na2SO4 and concentrated under reduced pressure to afford the title compound 

as a colorless foam (90 mg, 95%), which could be used without further purification.  

The title compound was not purified by flash column chromatography due to insufficient mass 

recovery after purification. 

TLC Rf = 0.29 (5% MeOH/CH2Cl2). 

1
H NMR  (400 MHz, (D3C)2CO): δ 10.63 (brs, 1H, –COOH), 7.11 (dd, J = 7.1, 1.8 Hz, 1H, 

C2H), 5.78 (ddd, J = 11.6, 5.9, 2.7 Hz, 1H, C5H), 5.63–5.55 (m, 1H, C6H), 4.52 (d, 

J = 3.2 Hz, 1H, C11H), 4.15 (q, J = 7.1 Hz, 2H, 2xC18H), 3.74 (dd, J = 8.9, 3.2 Hz, 

1H, C10H), 3.633.58 (m, 2H, C12H, C14H), 3.513.43 (m, 2H, C12H, C14H), 3.343.17 

(m, 3H, C3H, C4H, C7H), 3.153.06 (m, 1H, C7H), 2.78 (dd, J = 15.8, 3.9 Hz, 1H, 

C8H), 2.12 (dd, J = 15.8, 11.0 Hz, 1H, C8H), 1.26 (t, J = 7.1 Hz, 3H, C19H3), 1.11 (s, 

3H, C15H3), 0.71 (s, 3H, C1kH3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 174.0 (C9), 167.1 (C17), 144.0 (C2), 134.5 (C5), 133.5 

(C1), 125.9 (C6), 103.3 (C11), 77.6 (C12), 77.4 (C14), 72.8 (C10), 61.0 (C18), 42.4 

(C3), 36.6 (C8), 33.9 (C4), 30.9 (C13), 27.2 (C7), 23.1 (C15), 21.8 (C16), 14.6 (C19) 

ppm. 

HRMS  ((–)-ESI, m/z): calc. [MH

]: 367.1757; found: 367.1764 [MH


]. 

IR  𝜈 = 3477 (br, w), 2956 (w), 2908 (w), 2869 (w), 1734 (m), 1704 (vs), 1651 (w), 1471 

(w), 1395 (w), 1371 (w), 1241 (vs), 1198 (m), 1151 (m), 1132 (m), 1087 (s), 1041 

(m), 1028 (s), 989 (m), 925 (w), 884 (w), 794 (w), 750 (vw), 689 (w) cm
1

.
 

OR  [α]D
21

 = –81.0° (2 mg/ml, EtOAc). 

2-((1R,7R)-7-((S)-((tert-butyldimethylsilyl)oxy)(5,5-dimethyl-1,3-dioxan-2-yl)methyl)-5-

(ethoxycarbonyl)cyclohepta-2,5-dien-1-yl)acetic acid (520)  

 

Acid 518 (dr 7.1:1, 76 mg, 0.21 mmol) was dissolved in DMF (0.3 ml) and the solution cooled to 

0 °C. Imidazole (67 mg, 1.0 mmol, 4.8 eq.), TBSCl (75 mg, 0.50 mmol, 2.4 eq.) and DMAP (5 mg, 
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0.04 mmol, 0.2 eq.) were added and the reaction mixture stirred for 7 h at rt. An aq. phosphate buffer 

solution (pH 5, c = 1 M, 5 ml) was added. The aqueous phase was extracted with EtOAc (3x10 ml). 

The combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by column chromatography (15x2.5 cm, 10–15–20–30–40–50% 

EtOAc/hexanes) to afford the title compound as a colorless oil (dr 7.1:1, 96 mg, 97%).  

TLC Rf = 0.40 (5% MeOH/CH2Cl2). 

1
H NMR  (400 MHz, CD2Cl2): δ 7.12 (dd, J = 6.8, 2.4 Hz, 1H, C8H), 5.77 (dddd, J = 10.9, 6.1, 

2.6, 0.9 Hz, 1H, C4H), 5.58 (dddd, J = 10.9, 7.1, 3.0, 0.7 Hz, 1H, C5H), 4.46 (d, 

J = 4.9 Hz, 1H, C11H), 4.14 (q, J = 7.1 Hz, 2H, 2xC18H), 3.80 (dd, J = 5.7, 4.9 Hz, 

1H, C10H), 3.643.57 (m, 2H, C12H, C14H), 3.453.37 (m, 2H, C12H, C14H), 3.383.33 

(m, 1H, C9H), 3.26 (dd, J = 19.5, 7.1 Hz, 1H, C6H), 3.163.07 (m, 1H, C6H), 

3.093.02 (m, 1H, C3H), 2.99 (dd, J = 15.9, 3.6 Hz, 1H, C2H), 2.20 (dd, J = 15.9, 11.3 

Hz, 1H, C2H), 1.27 (t, J = 7.1 Hz, 3H, C19H3), 1.11 (s, 3H, C15H3), 0.91 (s, 9H, C23H3), 

0.71 (s, 3H, C16H3), 0.14 (s, 3H, C21H3), 0.11 (s, 3H, C20H3) ppm. C1(=O)OH peak 

missing. 

13
C NMR  (100 MHz, CD2Cl2): δ 177.8 (C1), 167.2 (C17), 143.2 (C8), 133.2 (C4), 133.0 (C7), 

125.9 (C5), 103.0 (C11), 77.6 (C12), 77.3 (C14), 75.3 (C10), 61.0 (C18), 41.9 (C9), 

37.0 (C2), 33.4 (C9), 30.5 (C13), 27.2 (C6), 26.2 (C23), 23.1 (C15), 21.9 (C16), 18.7 

(C22), 14.4 (C19), 3.8 (C20), 4.9 (C21) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 505.2592; found: 505.2588 [M+Na

+
]. 

IR  𝜈 = 3023 (vw), 2953 (m), 2927 (m), 2853 (w), 1706 (vs), 1650 (w), 1471 (w), 1464 

(w), 1393 (w), 1362 (w), 1244 (vs), 1197 (m), 1141 (m), 1114 (s), 1092 (vs), 1031 (s), 

1002 (m), 936 (w), 834 (vs), 814 (m), 777 (s), 687 (w), 669 (w) cm
1

.
 

OR  [α]D
22

 = 85.6° (2.5 mg/ml, CH2Cl2). 

(3aS,4S,6aS)-4-((S)-((tert-butyldimethylsilyl)oxy)(5,5-dimethyl-1,3-dioxan-2-yl)methyl)-5-

hydroxytetrahydrofuro[2,3-b]furan-2(3H)-one (523)  
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Acid 520 (12 mg, 0.025 mmol) was dissolved in CH2Cl2 (2.0 ml) and the solution cooled to –

78 °C. Ozone was passed through the solution (15 sec) and excess ozone was removed by bubbling 

nitrogen through the solution (1 min). Dimethylsulfide (0.2 ml) was added to the reaction mixture and 

the solution was allowed to warm to 0 °C. Stirring was continued at this temperature for 3 h. The 

solution was concentrated under reduced pressure and the residue in CH2Cl2 (2.0 ml). The solution 

was cooled to –78 °C. Ozone was passed through the solution (17 sec) and excess ozone was removed 

by bubbling nitrogen through the solution (1 min). Dimethylsulfide (0.2 ml) was added to the reaction 

mixture and the solution was allowed to warm to 0 °C. After stirring for 3 h, the reaction mixture was 

concentrated under reduced pressure. The crude product was purified by preparative TLC (40% 

EtOAc/hexanes) to afford the product as a colorless oil (2 mg, 20%).  

TLC Rf = 0.38 (30% EtOAc/hexanes). 

1
H NMR  (400 MHz, (D3C)2CO): δ 6.04 (d, J = 6.0 Hz, 1H, C6H), 5.76-5.74 (d, J = 3.7 Hz, 1H, 

OH), 5.51 (dd, J = 3.9, 3.7 Hz, 1H, C5H), 4.56 (d, J = 3.0 Hz, 1H, C8H), 4.03 (dd, 

J = 10.0, 3.0 Hz, 1H, C7H), 3.69-3.60 (m, 2H, C9H, C11H), 3.54-3.44 (m, 2H, C9H, 

C11H), 3.36-3.26 (m, 1H, C3H), 2.88-2.84 (m, 1H, C2H), 2.61-2.53 (m, 2H, C2H, C4H), 

1.17 (s, 3H, C12H3), 0.91 (s, 9H, 3xC17H3), 0.16 (s, 3H, C14H3), 0.14 (s, 3H, C15H3) 

ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 176.8 (C1), 107.9 (C6), 103.3 (C8), 98.8 (C7), 77.6 

(C9/C11), 77.6 (C9/C11), 72.3 (C7), 49.2 (C4), 41.6 (C3), 31.5 (C2), 30.9 (C10), 26.5 

(C17), 23.6 (C12/C13), 21.8 (C12/C13), 18.8 (C16), –3.0 (C14/C15), –4.8 (C14/C15) 

ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+Na
+
]: 425.1966; found: 425.1963[M+Na

+
]. 

IR  𝜈 = 3444 (br, vw), 2954 (m), 2928 (m), 2856 (m), 1788 (s), 1472 (w), 1414 (vw), 1362 

(w), 1314 (vw), 1251 (m), 1172 (m), 1145 (m), 1099 (vs), 1030 (s), 991 (s), 976 (s), 

945 (m), 868 (w), 835 (vs), 810 (w), 778 (m), 665 (w) cm
1

.
 

ethyl (1aS,4aS,5S,8aS,8bR)-5-(hydroxymethyl)-7-oxo-1a,2,4a,5,7,8,8a,8b-octahydrooxireno 

[2',3':3,4]cyclohepta[1,2-c]pyran-3-carboxylate (526)  

 

Lactone 476 (dr 6.7:1, 10 mg, 0.038 mmol) was dissolved in CH2Cl2 (0.6 ml) and m-CPBA 

(≤77% purity, 13 mg, 0.041 mmol, 1.5 eq.) was added. After stirring for 18 h, an aq. sat. NaHCO3 
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solution (5 ml) was added and the aqueous phase extracted with EtOAc (3x10 ml). The combined 

organic phases were washed with NaHCO3 solution (3x20 ml), dried over Na2SO4 and concentrated 

under reduced pressure to afford the title compound as a mixture of diastereomers (dr = 3.2:1). 

Purification by preparative TLC (5% MeOH/CH2Cl2) afforded the title compound as a colorless oil (8 

mg, 75%) and its diastereomer (3 mg, 28%).  

Analytical data is only provided for the major diastereomer. 

TLC Rf = 0.18 (5% MeOH/CH2Cl2). 

1
H NMR  (400 MHz, (D3C)2CO): δ 6.89 (dd, J = 5.6, 2.5 Hz, 1H, C8H), 4.56–4.50 (m, 1H, 

OH), 4.40 (dd, J = 5.8, 5.8 Hz, 1H, C10H), 4.18 (q, J = 7.1 Hz, 2H, 2xC13H), 3.88–

3.77 (m, 2H, 2xC11H), 3.39–3.26 (m, 2H, C5H, C6H), 3.10–3.04 (m, 1H, C9H), 2.99–

2.90 (m, 2H, C3H, C4H), 2.72 (dd, J = 17.7, 5.1 Hz, 1H, C2H), 2.58–2.48 (m, 2H, C2H, 

C6H), 1.26 (t, J = 7.1 Hz, 3H, C14H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 168.8 (C1), 167.0 (C12), 140.6 (C8), 132.5 (C7), 83.0 

(C10), 63.0 (C11), 61.6 (C13), 55.9 (C4), 54.1 (C5), 36.2 (C9), 33.3 (C2), 32.3 (C3), 

27.5 (C6), 14.5 (C14) ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 282.1103; found: 282.1096 [M

+
]. 

IR  𝜈 = 3451 (br, vw), 2982 (vw), 2932 (vw), 1733 (vs), 1708 (vs), 1651 (vw), 1448 (vw), 

1419 (vw), 1370 (w), 1343 (vw), 1282 (m), 1251 (s), 1205 (m), 1173 (w), 1091 (w), 

1062 (m), 1019 (w), 987 (vw), 947 (vw), 917 (vw), 864 (vw), 832 (vw), 793 (vw), 757 

(vw), 716 (vw) cm
1

.
 

OR  [α]D
21

 = +9.3° (3 mg/ml, EtOAc). 

 ethyl (E)-4-((3aS,4S,7aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-3-hydroxy-6-oxohexahydro-

3H-furo[3,4-c]pyran-1-yl)-2-oxobut-3-enoate (530)  

 

Lactone 476 was dissolved in CH2Cl2 (0.9 ml) and cooled to 0 °C. m-CPBA (77 wt-%, 22 mg, 

0.096 mmol, 1.7 eq.) was added and the reaction mixture stirred at rt. After 23 h, an aq. sat. Na2S2O3 

solution (5 ml) and an aq. sat. NaHCO3 solution (4 ml) were added. The aqueous phase was extracted 
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with EtOAc (3x10 ml). The combined organic phases were washed with aq. sat. NaHCO3 (2x15 ml), 

dried over Na2SO4 and concentrated under reduced pressure.  

The crude product was dissolved in DMF (0.2 ml) and imidazole (9 mg, 0.1 mmol, 2.4 eq.), 

TBSCl (10 mg, 0.062 mmol, 1.1 eq.) and DMAP (1 mg, 0.01 mmol, 0.2 eq.) was added. The reaction 

mixture was stirred for 15 h, before an aq. phosphate buffer (pH 7, c = 1 M, 10 ml) was added. The 

aqueous phase was extracted with EtOAc (3x10 ml). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. 

The crude product was dissolved in CH2Cl2 (2.0 ml) and the solution was cooled to –78 °C. 

Ozone was bubbled through the solution for 20 s and excess ozone was removed by passing a stream 

of nitrogen through the solution. Dimethyl sulfide (0.2 ml) was added and the reaction mixture stirred 

at 0 °C for 6 h. Volatiles were removed under reduced pressure. 

The crude product was dissolved in Et2O (1.0 ml) and the solution cooled to 0 °C. H5IO6 (17 mg, 

0.11 mmol, 1.5 eq.) was added and the reaction mixtures stirred for 5 h at rt. An aq. sat. Na2S2O3 

solution (5 ml) was added and the aqueous phase was extracted with EtOAc (3x10 ml). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. Purification of the 

crude product by preparative TLC (30% EtOAc/hexanes) afforded the title compound as a colorless oil 

(dr: 2.3:1, 4 mg, 17% over 4 steps).  

Analytical data is only provided for the major diastereomer. 

TLC Rf = 0.23 (30% EtOAc/hexanes). 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.19 (dd, J = 16.0, 3.7 Hz, 1H, C9H), 6.83 (d, J = 16.0 Hz, 

1H, C10H), 5.62 (d, J = 4.0 Hz, 1H, C5OH), 5.49 (d, J = 4.0 Hz, 1H, C5H), 5.21–5.16 

(m, 1H, C4H), 4.33 (q, J = 7.2 Hz, 2H, 2xC13H), 4.28–4.23 (m, 1H, C7H), 3.97–3.89 

(m, 2H, 2xC8H), 3.08–2.96 (m, 1H, C3H), 2.79–2.73 (m, 1H, C6H), 2.36 (dd, J = 14.5, 

14.2 Hz, 1H, C2H), 2.16 (dd, J = 14.5, 5.3 Hz, 1H, C2H), 1.33 (t, J = 7.2 Hz, 3H, 

C14H3), 0.92 (s, 3H, C15H3), 0.12 (s, 3H, C16H3) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 184.3 (C11), 172.1 (C1), 163.1 (C4), 148.5 (C9), 125.9 

(C10), 100.6 (C5), 79.2 (C7), 78.1 (C4), 65.0 (C8), 62.8 (C13), 49.1 (C6), 39.4 (C3), 

29.8 (C2), 26.2 (C18), 18.9 (C17), 14.3 (C14), –5.2 (C15/C16), –5.3 (C15/C16) ppm. 

HRMS  ((+)-ESI, m/z): calc. [M+NH4
+
]: 446.2205; found: 446.2203[M+NH4

+
]. 

IR  𝜈 = 3438 (br, vw), 2953 (w), 2929 (w), 2857 (w), 1731 (vs), 1704 (m), 1681 (w), 1631 

(w), 1471 (w), 1464 (w), 1444 (vw), 1362 (w), 1303 (w), 1251 (vs), 1143 (s), 1107 (s), 

1071 (s), 1045 (m), 1014 (s), 976 (m), 835 (vs), 814 (w), 779 (s), 665 (w) cm
1

.
 

OR  [α]D
21

 = +3.0° (2 mg/ml, EtOAc). 
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6.2.4 Third Strategy: Formal (3+2) Cycloaddition and Desymmetrization 

5-methoxyfuran-2(5H)-one (542)  

 

Furfural (4.0 ml, 3.5 g, 36 mmol) was dissolved in MeOH (33 ml) and Rose Bengal (sodium salt, 

25 mg) was added. A stream of oxygen was passed through the solution while it was cooled with a 

water bath and irradiated with a sunlight lamp (150 W). Rose Bengal (20 mg, 30 mg respectively) was 

added after 6 h and 11 h of irradiation. After 24 h, the reaction was judged complete by 
1
H NMR 

analysis of an aliquot. The solution was diluted with MeOH (17 ml), PPTS (10 mg) was added and the 

solution heated to reflux for 21 h. The solution was concentrated under reduced pressure and the crude 

product was purified by vacuum distillation (p = 14 mbar, bp: 80 °C) to afford the product as a 

colorless oil (3.53 g, 86% over 2 steps). 

TLC Rf = 0.11 (10% EtOAc/hexanes). 

b.p.: 80 °C (p = 14 mbar). 

1
H NMR  (400 MHz, CDCl3): δ 7.20 (dd, J = 5.7, 1.2 Hz, 1H, C3H), 6.22 (dd, J = 5.7, 1.3 Hz, 

1H, C2H), 5.85 (dd, J = 1.3, 1.2 Hz, 1H, C4H), 3.56 (s, 3H, C5H3) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 170.4, 150.2, 125.3, 104.2, 57.1 ppm. 

HRMS  (EI, m/z): calc. [M–H
+
]: 113.0239; found: 113.0235 [M–H

+
]. 

IR  𝜈 = 3102 (vw), 2939 (vw), 2839 (vw), 1792 (s), 1758 (vs), 1448 (vw), 1371 (w), 1322 

(w), 1206 (w), 1165 (m), 1125 (s), 1081 (m), 1011 (s), 988 (m), 932 (m), 892 (m), 821 

(m), 791 (w), 694 (m) cm
1

.
 

rac-(3aR,6aS)-3-methoxy-5-methylenehexahydro-1H-cyclopenta[c]furan-1-one (541) 
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Furanone 542 (404 mg, 3.54 mmol), allyl acetate 572 (1.1 ml, 1.0 g, 5.3 mmol, 1.5 eq.) and 

Pd(OAc)2 (20 mg, 0.0089 mmol, 2.5 mol-%) were dissolved in deaerated toluene (10 min nitrogen 

stream through solvent, 40 ml). Tri-iso-propylphosphite (175 l, 148 mg, 0.71 mmol, 0.2 eq.) was 

added and the solution heated to reflux for 12 h. The solution was cooled to rt and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography (12x4.5 cm, 10–

15–20% Et2O/hexanes) to afford the product as a colorless oil (547 mg, 92%). 

TLC Rf = 0.32 (10% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 5.08 (s, 1H, C4H), 4.91–4.88 (m, 2H, 2xC9H), 3.48 (s, 3H, 

C5H3), 3.20–3.14 (m, 1H, C2H), 2.842.78 (m, 1H, C3H), 2.722.62 (m, 3H, C6H, 

2xC8H), 2.22 (dd, J = 16.3, 5.9 Hz, 1H, C6H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 179.5 (C1), 147.3 (C7), 108.9 (C4), 108.5 (C9), 56.7 (C5), 45.8 

(C3), 43.7 (C2), 36.3 (C6), 35.7 (C8) ppm. 

MS  (EI, %): 168.16 (4, M
+
), 137.13 (34), 109.12 (28), 92.09 (64), 80.08 (93), 79.07 (100), 

77.05 (32). 

HRMS  (EI, m/z): calc. [M
+
]: 168.0786; found: 168.0777 [M

+
]. 

IR  𝜈 = 3077 (vw), 2939 (vw), 2843 (vw), 1771 (vs), 1659 (vw), 1467 (vw), 1443 (vw), 

1431 (vw), 1378 (vw), 1353 (m), 1314 (vw), 1270 (vw), 1207 (w), 1160 (m), 1110 

(vs), 1068 (w), 1046 (m), 983 (m), 954 (m), 915 (vs), 835 (vw), 784 (vw), 741 (vw), 

690 (vw) cm
1

.
 

rac-(1R,3S,3aS,6aR)-1,3-dimethoxytetrahydro-1H-cyclopenta[c]furan-5(3H)-one (540) 

 

Olefin 541 (420 mg, 2.50 mmol) in CH2Cl2 (23 ml) was cooled to 40 °C and DIBAL (c = 1 M in 

CH2Cl2, 3.0 ml, 3.0 mmol, 1.2 eq.) was added slowly dropwise. The reaction mixture was stirred for 

1.5 h at the same temperature before a sat. aq. Rochelle salt solution (50 ml) and pH 7.2 phosphate 

buffer (c = 1 M, 20 ml) were carefully added. The aqueous phase was extracted with Et2O (3x100 ml), 

the combined organic phases dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was dissolved in MeOH (8 ml) and the solution cooled to 0 °C. BF3·OEt2 (62 l, 71 mg, 0.50 

mmol, 0.2 eq.) was added and the reaction mixture stirred at rt for 13 h. pH 7.2 Phosphate buffer (c = 

1 M, 20 ml) was added and the aqueous phase was extracted with Et2O (3x30 ml). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. The crude product 
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was dissolved in THF (25 ml) and OsO4 (4 wt-% in H2O, 0.80 ml, 0.80 g, 0.13 mmol, 0.05 eq.) was 

added. A solution of NaIO4 (1.60 g, 7.48 mmol, 3.0 eq.) in H2O (25 ml) was introduced slowly and the 

reaction mixture stirred for 5.5 h. A sat. aq. Na2S2O3 solution (50 ml) was added and the aqueous 

phase extracted with CH2Cl2 (3x70 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by flash column chromatography 

(12x4.5 cm, 1–1.5–2–3% acetone/CH2Cl2) to afford the title compound as a colorless solid (dr 9.7:1, 

293 mg, 63% over 3 steps). X-Ray suitable crystals were obtained by slow diffusion of hexanes into a 

solution of the title compound in EtOAc while allowing slow evaporation. 

TLC Rf = 0.36 (3% acetone/CH2Cl2). 

m.p.:  8687 °C. 

1
H NMR  (400 MHz, CD2Cl2): δ 4.87 (s, 2H, 2xC4H), 3.39 (s, 6H, 2xC5H3), 3.00–2.93 (m, 2H, 

2xC3H), 2.54–2.44 (m, 2xC2H), 2.25–2.17 (m, 2H, 2xC2H) ppm. 

13
C NMR  (100 MHz, CD2Cl2): δ 217.3 (C1), 112.0 (C4), 55.7 (C5), 46.1 (C3), 41.3 (C2) ppm. 

MS  (EI, %): 185.13 (MH, 5), 155.14 (56), 126.15 (100), 98.18 (42), 85.17 (45), 67.17 

(44). 

HRMS  (EI, m/z): calc. [MH
+
]: 185.0814; found: 185.0874 [MH

+
]. 

IR  𝜈 = 2955 (vw), 2912 (w), 2834 (vw), 1741 (vs), 1470 (vw), 1446 (vw), 1381 (w), 1301 

(vw), 1283 (vw), 1267 (vw), 1243 (vw), 1220 (w), 1188 (w), 1159 (w), 1107 (vs), 

1085 (s), 1059 (w), 1040 (w), 971 (vs), 939 (vs), 811 (vw), 771 (vw) cm
1

.
 

rac-(1R,2S)-1,2-bis(dimethoxymethyl)-4-methylenecyclopentane (545)  

 

Olefin 541 (53 mg, 2.50 mmol) in CH2Cl2 (3 ml) was cooled to 40 °C and DIBAL (c = 1 M in 

CH2Cl2, 0.38 ml, 0.38 mmol, 1.2 eq.) was added slowly dropwise. The reaction mixture was stirred for 

1 h at the same temperature before a sat. aq. Rochelle salt solution (10 ml) and pH 7.2 phosphate 

buffer (c = 1 M, 5 ml) were carefully added. The aqueous phase was extracted with CH2Cl2 (3x15 ml), 

the combined organic phases dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was dissolved in MeOH (1.0 ml) and the solution cooled to 0 °C. HC(OMe)3 (0.10 ml, 0.10 g, 

0.96 mmol, 3.0 eq.) and BF3·OEt2 (8 l, 9 mg, 0.06 mmol, 0.2 eq.) was added and the reaction mixture 

stirred at rt for 13 h. The reaction mixture was treated with pH 7.2 buffer (c = 1 M, 5 ml) and the 

aqueous phase was extracted with Et2O (3x10 ml). The combined organic phases were dried over 
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Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (14x2 cm, 5–7.5–10% Et2O/hexanes) to afford the title compound as a colorless oil 

(21 mg, 29% over 2 steps). 

TLC Rf = 0.49 (15% EtOAc/hexanes). 

1
H NMR  (400 MHz, CD2Cl2): δ 4.80–4.77 (m, 2H, 2xC1H), 4.34–4.31 (m, 2H, 2xC5H), 3.31 (s, 

6H, 2xC6H3), 3.28 (s, 6H, 2xC7H3), 2.45–2.23 (m, 6H, 2xC4H, 2xC3H2) ppm. 

13
C NMR  (100 MHz, CD2Cl2): δ 151.6 (C2), 105.5 (C5), 105.1 (C1), 54.1 (C6), 53.1 (C7), 43.1 

(C4), 34.2 (C3) ppm. 

HRMS  (EI, m/z): calc. [MOMe
+
]: 199.1334; found: 199.1323 [MOMe

+
]. 

IR  𝜈 = 3071 (vw), 2982 (vw), 2934 (w), 2910 (w), 2829 (vw), 2660 (vw), 1465 (vw), 

1444 (vw), 1392 (vw), 1367 (vw), 1312 (vw), 1282 (vw), 1248 (vw), 1217 (vw), 1189 

(w), 1156 (w), 1137 (m), 1113 (s), 1055 (vs), 974 (m), 931 (w), 904 (w), 873 (m), 748 

(vw) cm
1

.
 

rac-(1R,3S,3aS,6aR)-5-((benzyloxy)methoxy)-1,3-dimethoxy-3,3a,4,6a-tetrahydro-1H-

cyclopenta[c]furan (546)  

 

DIPA (23 l, 16 mg, 0.16 mmol, 3.0 eq.) in THF (0.55 ml) was treated with n-BuLi (c = 2.35 M 

in hexanes, 70 l, 0.16 mmol, 3.0 eq.) at 78 °C and the resulting solution stirred for 30 min. Ketone 

540 (10 mg, 0.054 mmol) and HMPA (0.2 ml) were added and stirring was continued for 25 min. 

BOMCl (30 l, 34 mg, 0.21 mmol, 4.0 eq.) was introduced and the reaction mixture allowed to warm 

to 35 °C. After 1.5 h, pH 7.2 phosphate buffer (c = 1 M, 10 ml) was added and the aqueous phase 

extracted with CH2Cl2 (3x10 ml). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by column chromatography 

(16x2 cm, 10–15–20% EtOAc/hexanes) to afford the title compound as a colorless oil (4 mg, 24%). 

The product partially decomposes during the purification. 

TLC Rf = 0.47 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 7.39–7.27 (m, 5H, 2xC11H, 2xC12H, C13H), 5.04 (d, J = 6.3 Hz, 

1H, C8H), 5.02 (d, J = 6.3 Hz, 1H, C8H), 4.92 (s, 1H, C4H), 4.81 (s, 1H, C5H), 4.68–
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4.66 (m, 1H, C7H), 4.66 (d, J = 11.9 Hz, 1H, C9H), 4.62 (d, J = 11.9 Hz, 1H, C9H), 

3.44 (s, 3H, C14H3), 3.42 (s, 3H, C15H3), 3.42–3.36 (m, 1H, C6H), 2.93–2.86 (m, 1H, 

C3H), 2.78–2.69 (m, 1H, C2H), 2.42–2.33 (m, 1H, C2H) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 157.0 (C1), 137.3 (C10), 128.6 (C11/C12/C13), 128.1 

(C11/C12/C13), 128.0 (C11/C12/C13), 114.5 (C4), 110.6 (C5), 97.5 (C7), 93.1 (C8), 

70.6 (C9), 55.7 (C14/C15), 55.4 (C14/C15), 54.7 (C6), 44.5 (C3), 36.8 (C2) ppm. 

HRMS  (EI, m/z): calc. [MH
+
]: 305.1389; found: 305.1315 [MH

+
]. 

IR  𝜈 = 3499 (br, vw), 2909 (w), 2831 (vw), 1744 (vw), 1651 (w), 1497 (vw), 1467 (vw), 

1453 (vw), 1376 (w), 1343 (w), 1288 (vw), 1255 (vw), 1228 (m), 1199 (w), 1190 

(vw), 1156 (w), 1100 (vs), 1082 (s), 1057 (m), 979 (vs), 816 (vw), 771 (vw), 739 (w), 

698 (w) cm
1

. 

rac-(1S,3R,3aS,4S,6aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-1,3-dimethoxytetrahydro-1H-

cyclopenta[c]furan-5(3H)-one (548)  

 

DIPA (42 l, 30 mg, 0.29 mmol, 1.1 eq.) in THF (1.5 ml) was treated with n-BuLi (c = 2.35 M in 

hexanes, 123 l, 0.28 mmol, 1.05 eq.) at 78 °C and the resulting solution stirred for 20 min. Ketone 

540 (50 mg, 0.27 mmol) in THF (1.0 ml) was added and stirring was continued for 25 min at the same 

temperature. Triazole 547 (42 mg, 0.28 mmol, 1.05 eq.) dissolved in THF (1.0 ml) was added and the 

reaction mixture further stirred for 55 min. An aq. phosphate buffer (pH 7.2, c = 1 M, 10 ml) was 

added and the aqueous phase extracted with EtOAc (3x20 ml). The combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was dissolved in 

CH2Cl2 (3.0 ml) and imidazole (129 mg, 1.89 mmol, 7.0 eq.), TBSCl (163 mg, 1.08 mmol, 4.0 eq.) 

and DMAP (3 mg, 0.027 mmol, 0.1 eq.) were successively added. The reaction mixture was stirred for 

17 h. An aq. phosphate buffer (pH 7.2, c = 1 M, 10 ml) was added and the aqueous phase extracted 

with EtOAc (3x20 ml). The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography (14x2 cm, 5–10–

15–20% EtOAc/hexanes) to afford the title compound as a colorless oil (52 mg, 59% over 2 steps).  
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TLC Rf = 0.51 (30% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 4.97 (s, 1H, C4H), 4.87 (s, 1H, C5H), 3.87 (dd, J = 9.7, 4.8 Hz, 

1H, C8H), 3.79 (dd, J = 9.7, 3.4 Hz, 1H, C8H), 3.45 (s, 3H, C13H3), 3.44 (s, 3H, 

C14H3), 3.05–2.97 (m, 2H, C3H, C6H), 2.56–2.44 (m, 1H, C7H), 2.37–2.29 (m, 1H, 

C7H), 2.28–2.22 (m, 1H, C2H), 0.85 (s, 9H, 3xC12H3), 0.03 (s, 3H, C9H3), 0.01 (s, 3H, 

C10H3) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 218.0 (C1), 112.4 (C5), 111.3 (C4), 62.8 (C8), 55.8 (C13/C14), 

55.4 (C13/C14), 53.7 (C2), 50.5 (C3), 44.2 (C6), 42.0 (C7), 25.8 (C12), 18.1 (C11), 

5.6 (C9/C10), 5.7 (C9/C10) ppm. 

MS  (EI, %): 299.26 (MOMe
+
, 6), 241.18 (60), 213.17 (50), 181.14 (100), 167.12 (19), 

107.07 (19), 89.05 (36), 75.03 (82), 73.05 (28). 

HRMS  (EI, m/z): calc. [MOMe
+
]: 299.1679; found: 299.1677 [MOMe

+
]. 

IR  𝜈 = 2954 (w), 2929 (w), 2897 (w), 2857 (w), 1743 (s), 1471 (w), 1445 (vw), 1406 

(vw), 1384 (w), 1361 (w), 1254 (w), 1223 (w), 1191 (vw), 1166 (vw), 1093 (vs), 1052 

(w), 1037 (w), 990 (s), 961 (s), 836 (vs), 814 (w), 778 (m), 744 (vw), 666 (vw) cm
1

.
 

rac-(1S,3R,3aS,4S,6aS)-1,3-dimethoxy-4-(((triethylsilyl)oxy)methyl)tetrahydro-1H-

cyclopenta[c]furan-5(3H)-one (549)  

 

DIPA (45 l, 33 mg, 0.32 mmol, 3.0 eq.) in THF (1.1 ml) was treated with n-BuLi (c = 2.35 M in 

hexanes, 137 l, 0.322 mmol, 3.0 eq.) at 78 °C and the resulting solution stirred for 25 min. Ketone 

540 (20 mg, 0.11 mmol) was added and stirring was continued for 25 min at the same temperature. 

Triazole 547 (32 mg, 0.21 mmol, 2.0 eq.) was added and the reaction mixture further stirred for 2.5 h. 

An aq. phosphate buffer (pH 7.2, c = 1 M, 10 ml) was added and the aqueous phase extracted with 

CH2Cl2 (3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was dissolved in CH2Cl2 (1.5 ml) and divided in three batches. 

One batch was treated with imidazole (7 mg, 0.11 mmol, 4.0 eq.), TESCl (18 l, 16 mg, 0.11 mmol, 

3.0 eq.) and a grain of DMAP successively. The reaction mixture was stirred for 13 h. An aq. 

phosphate buffer (pH 7.2, c = 1 M, 10 ml) was added and the aqueous phase extracted with CH2Cl2 
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(3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by preparative TLC (20% EtOAc/hexanes) to afford the title 

compound as a colorless oil (5 mg, 40% over 2 steps).  

TLC Rf = 0.29 (15% EtOAc/hexanes). 

1
H NMR  (400 MHz, CD2Cl2): δ 4.95 (s, 1H, C4H), 4.85 (d, J = 2.1 Hz, 1H, C5H), 3.85 (dd, 

J = 9.8, 5.0 Hz, 1H, C8H), 3.78 (dd, J = 9.8, 3.7 Hz, 1H, C8H), 3.41 (s, 3H, C11H3), 

3.39 (s, 3H, C12H3), 2.97–2.89 (m, 2H, C3H, C6H), 2.50–2.41 (m, 1H, C7H), 2.34–2.27 

(m, 1H, C7H), 2.24–2.19 (m, C2H), 0.93 (t, J = 8.0 Hz, 9H, 3xC10H3), 0.58 (q, J = 8.0 

Hz, 6H, 3xC9H2) ppm. 

13
C NMR  (100 MHz, CD2Cl2): δ 217.8 (C1), 112.7 (C5), 111.4 (C4), 62.6 (C8), 55.9 (C11/C12), 

55.4 (C11/C12), 54.0 (C2), 50.8 (C3/C6), 44.5 (C3/C6), 42.1 (C7), 6.8 (C10), 4.5 (C9) 

ppm. 

HRMS  (EI, m/z): calc. [MOMe
+
]: 299.1679; found: 299.1677 [MOMe

+
]. 

IR  𝜈 = 2954 (m), 2912 (m), 2877 (m), 2828 (vw), 1744 (s), 1459 (w), 1410 (vw), 1382 

(w), 1293 (vw), 1224 (w), 1193 (w), 1166 (w), 1095 (vs), 1052 (w), 1037 (w), 1016 

(m), 990 (s), 961 (s), 864 (vw), 817 (vw), 786 (w), 745 (m), 729 (m), 673 (vw) cm
1

.
 

rac-(1S,3R,3aS,4S,7aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-1,3-dimethoxytetrahydro-3H-

furo[3,4-c]pyran-6(1H)-one (559)  

 

Ketone 548 (44 mg, 0.13 mmol) was dissolved in CH2Cl2 (2.0 ml) and NaHCO3 (56 mg, 0.67 

mmol, 5.0 eq.) and m-CPBA (≤77% purity, 51 mg, 0.23 mmol, 1.7 eq.) were added. The reaction 

mixture was stirred for 7 d before more m-CPBA (≤77% purity, 24 mg, 0.11 mmol, 0.8 eq), NaHCO3 

(28 mg, 0.33 mmol, 2.5 eq.) and CH2Cl2 (0.5 ml) were added. After stirring for 18 h, an aq. sat. 

NaHCO3 solution (5 ml) and an aq. sat. Na2S2O3 solution (5 ml) were added. The aqueous phase was 

extracted with EtOAc (3x10 ml). The combined organic layers were washed with aq. sat. NaHCO3 

(3x20 ml), dried over Na2SO4 and concentrated under reduced pressure to afford the title compound as 

a colorless oil (45 mg, 98%). 
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TLC Rf = 0.33 (30% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 5.02 (s, 1H, C5H), 4.84 (s, 1H, C4H), 4.16 (ddd, J = 9.2, 4.4, 4.4 

Hz, 1H, C7H), 3.87–3.84 (m, 2H, 2xC8H), 3.44 (s, 3H, C14H3), 3.43 (s, 3H, C13H3), 

2.85–2.67 (m, 3H, C2H, C3H, C6H), 2.31 (dd, J = 15.1, 11.5 Hz, 1H, C2H), 0.90 (s, 

9H, 3xC11H3), 0.09 (s, 3H, C9H3), 0.09 (s, 3H, C10H3) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 171.1 (C1), 111.0 (C4), 109.1 (C5), 78.7 (C7), 64.8 (C8), 56.1 

(C14), 55.6 (C13), 46.1 (C6), 42.2 (C3), 31.2 (C2), 26.0 (C11), 18.5 (C12), –5.3 

(C9/C10), –5.3 (C9/C10) ppm. 

MS  (EI, %): 315.25 (1, M–OMe
+
), 257.18 (20), 197.15 (22), 117.07 (90), 89.015 (28), 

58.04 (27), 43.03 (100). 

HRMS  (EI, m/z): calc. [M–OMe
+
]: 315.1628; found: 315.1646 [M–OMe

+
]. 

IR  𝜈 = 3460 (br, vw), 2949 (m), 2928 (m), 2856 (w), 1751 (s), 1471 (w), 1443 (w), 1386 

(w), 1359 (w), 1306 (w), 1253 (s), 1227 (m), 1196 (w), 1127 (s), 1096 (vs), 1065 (s), 

1045 (s), 1008 (m), 985 (s), 947 (m), 921 (w), 887 (w), 836 (vs), 813 (w), 779 (s), 734 

(w), 668 (w) cm
1

.
 

rac-(1S,3R,3aS,4S,7aS)-1,3-dimethoxy-4-(((triethylsilyl)oxy)methyl)tetrahydro-3H-furo[3,4-

c]pyran-6(1H)-one (560) 

 

Ketone 540 (5 mg, 0.02 mmol) was dissolved in CH2Cl2 (0.5 ml) and NaHCO3 (6 mg, 0.07 mmol, 

5.0 eq.) and m-CPBA (≤77% purity, 5 mg, 0.02 mmol, 1.5 eq.) were added. The reaction mixture was 

stirred for 26 h and more NaHCO3 (3 mg, 0.04 mmol, 2.5 eq.) and m-CPBA (≤77% purity, 3 mg, 0.01 

mmol, 0.9 eq.) were added. The reaction mixture was stirred for further 21 h. Sat. aq. NaHCO3 

solution (5 ml) and sat. aq. Na2S2O3 solution (5 ml) were introduced and the aqueous phase extracted 

with EtOAc (3x10 ml). The combined organic phases were washed with sat. aq. NaHCO3 solution 

(2x20 ml) and dried over Na2SO4 and concentrated under reduced pressure. The crude product was 

purified by preparative TLC (40% EtOAc/hexanes) to afford the title compound (1 mg, 19%) as a 

colorless oil. 

Major side product of this reaction was the alcohol from in situ TES deprotection of the title 

compound. 
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TLC Rf = 0.18 (20% EtOAc/hexanes). 

1
H NMR  (400 MHz, CDCl3): δ 5.02 (d, J = 1.5 Hz, 1H, C5H), 4.84 (s, 1H, C4H), 4.17 (ddd, 

J = 9.3, 4.5, 4.5 Hz, 1H, C7H), 3.87 (dd, J = 11.1, 4.5 Hz, 1H, C8H), 3.83 (dd, 

J = 11.1, 4.5 Hz, 1H, C8H), 3.44 (s, 3H, C12H3), 3.43 (s, 3H, C11H3), 2.85–2.67 (m, 

3H, C2H, C3H, C6H), 2.31 (dd, J = 15.0, 11.8 Hz, 1H, C2H), 0.96 (t, J = 8.0 Hz, 9H, 

3xC10H3), 0.63 (q, J = 8.0 Hz, 6H, 3xC9H2) ppm. 

13
C NMR  (100 MHz, CDCl3): δ 171.1 (C1), 111.0 (C4), 109.3 (C5), 78.7 (C7), 64.5 (C8), 56.1 

(C12), 55.6 (C11), 46.2 (C6), 42.3 (C3), 31.3 (C2), 6.8 (C10), 4.3 (C9) ppm. 

MS  (EI, %): 317.22 (2, M–Et
+
), 285.21 (27), 197.17 (28), 145.13 (100), 117.09 (42), 

83.98 (26), 43.03 (58). 

HRMS  (EI, m/z): calc. [M–Et
+
]: 317.1420; found: 317.1418 [M–Et

+
]. 

IR  𝜈 = 2955 (m), 2907 (m), 2875 (m), 1753 (s), 1459 (vw), 1443 (vw), 1414 (vw), 1381 

(vw), 1309 (vw), 1253 (m), 1245 (m), 1140 (m), 1127 (m), 1097 (vs), 1063 (m), 1046 

(s), 1003 (s), 985 (vs), 947 (m), 804 (w), 789 (w), 746 (m) cm
1

.
 

rac-(1S,3R,3aS,4S,7aS)-4-(hydroxymethyl)-1,3-dimethoxytetrahydro-3H-furo[3,4-c]pyran-6(1H)-

one (478)  

 

Lactone 559 (29 mg, 0.084 mmol) was dissolved in THF (0.7 ml) and the solution cooled to 0 °C. 

A solution of TBAF in THF (c = 1 M, 0.17 ml, 0.17 mmol, 2.0 eq.) was stirred at 0 °C for 25 min. An 

aq. phosphate buffer (pH 5, c = 1 M, 10 ml) was added and the aqueous phase extracted with EtOAc 

(3x10 ml). The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. Purification by preparative TLC (5% MeOH/CH2Cl2) gave the title compound as a colorless 

solid (4 mg, 21%). X-Ray suitable crystals were obtained by slow diffusion of hexanes into a solution 

of the title compound in EtOAc while allowing slow evaporation. 

The crude product is sufficiently pure for further transformations. Purification on silica gel should 

be avoided since it leads to the decomposition of the product. 

TLC Rf = 0.15 (50% EtOAc/hexanes). 

m.p.:  159–160 °C. 
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1
H NMR  (400 MHz, (D3C)2CO): δ 5.03 (s, 1H, C5H), 4.89 (s, 1H, C4H), 4.30–4.23 (m, 1H, 

C7H), 4.19 (dd, J = 6.1 Hz, 1H, C8OH), 3.82–3.68 (m, 2H, 2xC8H), 3.37 (s, 3H, 

C10H3), 3.33 (s, 3H, C9H3), 2.71–2.45 (m, 4H, 2xC2H, C3H, C6H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 171.6 (C1), 111.6 (C4), 110.1 (C5), 79.8 (C7), 63.5 (C8), 

55.7 (C10), 55.1 (C9), 46.0 (C6), 43.2 (C3), 31.6 (C2) ppm. 

MS  (EI, %): 201.17 (30, M–OMe
+
), 153.16 (36), 141.18 (94), 109.16 (47), 84.20 (100), 

81.18 (75), 69.19 (36), 55.18 (27). 

HRMS  (EI, m/z): calc. [M–OMe
+
]: 201.0763; found: 201.0769 [M–OMe

+
]. 

IR  𝜈 = 3359 (br, w), 2992 (vw), 2948 (w), 2917 (w), 2849 (vw), 1744 (s), 1717 (s), 1464 

(vw), 1446 (w), 1376 (w), 1367 (w), 1315 (w), 1292 (w), 1270 (m), 1253 (s), 1197 

(w), 1145 (w), 1092 (vs), 1060 (s), 1042 (s), 981 (vs), 961 (s), 941 (s), 915 (w), 885 

(vw), 847 (vw), 792 (vw), 765 (vw), 699 (vw) cm
1

.
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7. NMR SPECTRA 

7.1 PART I: Biomimetic Synthesis of Dibefurin and Epicolactone 
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Epicoccine (
1
H NMR, 400 MHz, (D3C)2CO) 
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Epicoccone B (
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Figure 50. Decomposition study with quinone 197 in acetone-d6 at rt. (1H NMR spectrum 1: quinone 197, spectrum 10: 

hemiacetal 238, timeframe spectrum 1 to 10: 18 h) 
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166 (
1
H NMR, 300 MHz, CDCl3) 

 

166 (
13

C NMR, 75 MHz, CDCl3) 

 



344  NMR SPECTRA 

167 (
1
H NMR, 600 MHz, CDCl3) 

 

167 (
13

C NMR, 150 MHz, CDCl3) 

 



NMR SPECTRA    345 

168 (
1
H NMR, 400 MHz, D3COD) 

 

168 (
13

C NMR, 100 MHz, D3COD) 
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259 (
1
H NMR, 300 MHz, CDCl3) 

 

259 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    347 

258 (
1
H NMR, 600 MHz, CDCl3) 

 

258 (
13

C NMR, 150 MHz, CDCl3) 
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169 (
1
H NMR, 400 MHz, CD2Cl2) 

 

169 (
13

C NMR, 100 MHz, CD2Cl2) 

 



NMR SPECTRA    349 

170 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

170 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



350  NMR SPECTRA 

260 (
1
H NMR, 400 MHz, CDCl3) 

 

260 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    351 

171 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

171 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



352  NMR SPECTRA 

567 (
1
H NMR, 400 MHz, CDCl3) 

 

567 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    353 

261 (
1
H NMR, 400 MHz, THF-d

8
) 

 

261 (
13

C NMR, 100 MHz, THF-d
8
) 
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263 (
1
H NMR, 600 MHz, CDCl3) 

 

263 (
13

C NMR, 150 MHz, CDCl3) 

 



NMR SPECTRA    355 

568 (
1
H NMR, 600 MHz, CDCl3) 

 

568 (
13

C NMR, 150 MHz, CDCl3) 

 



356  NMR SPECTRA 

262 (
1
H NMR, 300 MHz, CDCl3) 

 

262 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    357 

264 (
1
H NMR, 600 MHz, CDCl3) 

 

264 (
13

C NMR, 150 MHz, CDCl3) 
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257 (
1
H NMR, 600 MHz, CDCl3) 

 

257 (
13

C NMR, 150 MHz, CDCl3) 

 



NMR SPECTRA    359 

267 (
1
H NMR, 800 MHz, (D3C)2CO) 

 

267 (
1
H NMR, 200 MHz, (D3C)2CO) 

 



360  NMR SPECTRA 

288 (
1
H NMR, 300 MHz, CDCl3) 

 

288 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    361 

164 (
1
H NMR, 300 MHz, CDCl3) 

 

164 (
13

C NMR, 75 MHz, CDCl3) 

 



362  NMR SPECTRA 

289 (
1
H NMR, 400 MHz, CDCl3) 

 

289 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    363 

1
H NMR, 400 MHz, CDCl3 

 

13
C NMR, 100 MHz, CDCl3 

 



364  NMR SPECTRA 

1
H NMR, 400 MHz, CDCl3 

 

13
C NMR, 100 MHz, CDCl3 

 



NMR SPECTRA    365 

293 (
1
H NMR, 400 MHz, CDCl3) 

 

293 (
13

C NMR, 100 MHz, CDCl3) 

 



366  NMR SPECTRA 

291 (
1
H NMR, 400 MHz, CDCl3) 

 

291 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    367 

294 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

294 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



368  NMR SPECTRA 

295 (
1
H NMR, 400 MHz, CDCl3) 

 

295 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    369 

1
H NMR, 400 MHz, CDCl3 

 

13
C NMR, 100 MHz, CDCl3 

 



370  NMR SPECTRA 

296 (
1
H NMR, 400 MHz, CDCl3) 

 

296 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    371 

297 (
1
H NMR, 400 MHz, CDCl3) 

 

297 (
13

C NMR, 100 MHz, CDCl3) 

 



372  NMR SPECTRA 

298 (
1
H NMR, 400 MHz, CDCl3) 

 

298 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    373 

287 (
1
H NMR, 400 MHz, CDCl3) 

 

287 (
13

C NMR, 100 MHz, CDCl3) 

 



374  NMR SPECTRA 

299 (
1
H NMR, 400 MHz, CDCl3) 

 

299 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    375 

300 (
1
H NMR, 400 MHz, CDCl3) 

 

300 (
13

C NMR, 100 MHz, CDCl3) 

 



376  NMR SPECTRA 

1
H NMR, 400 MHz, CDCl3 

 

13
C NMR, 100 MHz, CDCl3 

 



NMR SPECTRA    377 

285 (
1
H NMR, 400 MHz, CDCl3) 

 

285 (
13

C NMR, 100 MHz, CDCl3) 

 



378  NMR SPECTRA 

301 (
1
H NMR, 400 MHz, CDCl3) 

 

301 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    379 

286 (
1
H NMR, 400 MHz, CDCl3) 

 

286 (
13

C NMR, 100 MHz, CDCl3) 

 



380  NMR SPECTRA 

309 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

309 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



NMR SPECTRA    381 

310 (
1
H NMR, 400 MHz, CDCl3) 

 

310 (
1
H NMR, 400 MHz, CDCl3) 
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311 (
1
H NMR, 400 MHz, CDCl3) 

 

311 (
13

C NMR, 100 MHz, CDCl3) 
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312 (
1
H NMR, 400 MHz, CDCl3) 

 

312 (
13

C NMR, 100 MHz, CDCl3) 
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7.2 PART II: Total Synthesis of Gracilin Natural Products 

 

 

 

 



NMR SPECTRA    385 

365 (
1
H NMR, 600 MHz, CDCl3) 

 

365 (
13

C NMR, 150 MHz, CDCl3) 
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356/366 (
1
H NMR, 600 MHz, CDCl3) 

 

356/366 (
13

C NMR, 150 MHz, CDCl3) 

  



NMR SPECTRA    387 

391 (
1
H NMR, 300 MHz, CDCl3) 

 

391 (
13

C NMR, 75 MHz, CDCl3) 

 



388  NMR SPECTRA 

393 (
1
H NMR, 300 MHz, CDCl3) 

 

393 (
13

C NMR, 75 MHz, CDCl3) 
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394 (
1
H NMR, 300 MHz, C6D6) 

 

394 (
13

C NMR, 75 MHz, C6D6) 
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396 (
1
H NMR, 300 MHz, CDCl3) 

 

396 (
13

C NMR, 75 MHz, CDCl3) 
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397 (
1
H NMR, 400 MHz, C6D6) 

 

397 (
13

C NMR, 100 MHz, C6D6) 

 



392  NMR SPECTRA 

399 (
1
H NMR, 400 MHz, CD2Cl2) 

 

399 (
13

C NMR, 100 MHz, CD2Cl2) 

 



NMR SPECTRA    393 

400 (
1
H NMR, 300 MHz, CDCl3) 

 

400 (
13

C NMR, 75 MHz, CDCl3) 

 



394  NMR SPECTRA 

401 (
1
H NMR, 300 MHz, CDCl3) 

 

401 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    395 

402 (
1
H NMR, 600 MHz, CDCl3) 

 

402 (
13

C NMR, 150 MHz, CDCl3) 

  



396  NMR SPECTRA 

436 (
1
H NMR, 300 MHz, CDCl3) 

 

436 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    397 

437 (
1
H NMR, 300 MHz, CDCl3) 

 

437 (
13

C NMR, 75 MHz, CDCl3) 

 



398  NMR SPECTRA 

439 (
1
H NMR, 600 MHz, CDCl3) 

 

439 (
13

C NMR, 150 MHz, CDCl3) 

 



NMR SPECTRA    399 

438 (
1
H NMR, 300 MHz, CDCl3) 

 

438 (
13

C NMR, 75 MHz, CDCl3) 

 



400  NMR SPECTRA 

451 (
1
H NMR, 300 MHz, CDCl3) 

 

451 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    401 

451 (
31

C NMR, 162 MHz, CDCl3) 

  



402  NMR SPECTRA 

452 (
1
H NMR, 300 MHz, CDCl3) 

 

452 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    403 

454 (
1
H NMR, 600 MHz, CDCl3) 

 

454 (
13

C NMR, 150 MHz, CDCl3) 

 



404  NMR SPECTRA 

458 (
1
H NMR, 300 MHz, CDCl3) 

 

458 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    405 

457 (
1
H NMR, 300 MHz, CDCl3) 

 

457 (
13

C NMR, 75 MHz, CDCl3) 

 



406  NMR SPECTRA 

459 (
1
H NMR, 300 MHz, CDCl3) 

 

459 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    407 

455 (
1
H NMR, 300 MHz, CDCl3) 

 

455 (
13

C NMR, 75 MHz, CDCl3) 

 



408  NMR SPECTRA 

463 (
1
H NMR, 600 MHz, CDCl3) 

 

463 (
13

C NMR, 150 MHz, CDCl3) 

 



NMR SPECTRA    409 

460 (
1
H NMR, 300 MHz, CDCl3) 

 

460 (
13

C NMR, 75 MHz, CDCl3) 

 



410  NMR SPECTRA 

465 (
1
H NMR, 300 MHz, CDCl3) 

 

465 (
13

C NMR, 75 MHz, CDCl3) 

 



NMR SPECTRA    411 

466 (
1
H NMR, 400 MHz, CDCl3) 

 

466 (
13

C NMR, 100 MHz, CDCl3) 

 



412  NMR SPECTRA 

467 (
1
H NMR, 600 MHz, CDCl3) 

 

467 (
13

C NMR, 150 MHz, CDCl3) 

  



NMR SPECTRA    413 

470/564 (
1
H NMR, 400 MHz, CDCl3) 

 

470/564 (
13

C NMR, 100 MHz, CDCl3) 

 



414  NMR SPECTRA 

469 (
1
H NMR, 600 MHz, C6D6) 

 

469 (
13

C NMR, 150 MHz, C6D6) 

 



NMR SPECTRA    415 

471 (
1
H NMR, 600 MHz, C6D6) 

 

471 (
13

C NMR, 150 MHz, C6D6) 

 



416  NMR SPECTRA 

570 (
1
H NMR, 600 MHz, C6D6) 

 

570 (
13

C NMR, 150 MHz, C6D6) 

 



NMR SPECTRA    417 

475 (
1
H NMR, 600 MHz, CDCl3) 

 

475 (
13

C NMR, 150 MHz, CDCl3) 

 



418  NMR SPECTRA 

476 (
1
H NMR, 600 MHz, C6D6) 

 

476 (
13

C NMR, 150 MHz, C6D6) 

 



NMR SPECTRA    419 

481 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

481 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



420  NMR SPECTRA 

482 (
1
H NMR, 400 MHz, C6D6) 

 

482 (
13

C NMR, 100 MHz, C6D6) 

 



NMR SPECTRA    421 

483 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

483 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



422  NMR SPECTRA 

486 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

486 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



NMR SPECTRA    423 

487 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

487 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



424  NMR SPECTRA 

503 (
1
H NMR, 400 MHz, C6D6) 

 

503 (
13

C NMR, 100 MHz, C6D6) 

 



NMR SPECTRA    425 

571 (
1
H NMR, 400 MHz, C6D6) 

 

571 (
13

C NMR, 100 MHz, C6D6) 

 



426  NMR SPECTRA 

505 (
1
H NMR, 400 MHz, C6D6) 

 

505 (
13

C NMR, 100 MHz, C6D6) 

 



NMR SPECTRA    427 

506 (
1
H NMR, 400 MHz, C6D6) 

 

506 (
13

C NMR, 100 MHz, C6D6) 

 



428  NMR SPECTRA 

508 (
1
H NMR, 400 MHz, C6D6) 

 

508 (
13

C NMR, 100 MHz, C6D6) 

 



NMR SPECTRA    429 

509 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

509 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



430  NMR SPECTRA 

510 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

510 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



NMR SPECTRA    431 

518 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

518 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



432  NMR SPECTRA 

520 (
1
H NMR, 400 MHz, CD2Cl2) 

 

520 (
13

C NMR, 100 MHz, CD2Cl2) 

 



NMR SPECTRA    433 

523 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

523 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



434  NMR SPECTRA 

526 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

526 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



NMR SPECTRA    435 

530 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

530 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



436  NMR SPECTRA 

542 (
1
H NMR, 400 MHz, CDCl3) 

 

542 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    437 

541 (
1
H NMR, 400 MHz, CDCl3) 

 

541 (
13

C NMR, 100 MHz, CDCl3) 

 



438  NMR SPECTRA 

545 (
1
H NMR, 400 MHz, CD2Cl2) 

 

545 (
13

C NMR, 100 MHz, CD2Cl2) 

 



NMR SPECTRA    439 

545 (
1
H NMR, 400 MHz, CD2Cl2) 

 

545 (
13

C NMR, 100 MHz, CD2Cl2) 

 



440  NMR SPECTRA 

546 (
1
H NMR, 400 MHz, CDCl3) 

 

546 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    441 

548 (
1
H NMR, 400 MHz, CDCl3) 

 

548 (
13

C NMR, 100 MHz, CDCl3) 

 



442  NMR SPECTRA 

549 (
1
H NMR, 400 MHz, CD2Cl2) 

 

549 (
13

C NMR, 100 MHz, CD2Cl2) 

 



NMR SPECTRA    443 

559 (
1
H NMR, 400 MHz, CDCl3) 

 

559 (
13

C NMR, 100 MHz, CDCl3) 

 



444  NMR SPECTRA 

560 (
1
H NMR, 400 MHz, CDCl3) 

 

560 (
13

C NMR, 100 MHz, CDCl3) 

 



NMR SPECTRA    445 

478 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

478 (
13

C NMR, 100 MHz, (D3C)2CO) 

 



446  CRYSTALLOGRAPHIC DATA 

8. CHRYSTALLOGRAPHIC DATA 

8.1 Dibefurin (CCDC 1022042)  

 

 

Crystallographic data.  

  

net formula C18H16O8 

Mr/g mol
−1

 360.315 

crystal size/mm 0.172 × 0.156 × 0.151 

T/K 173(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Quest' 

crystal system monoclinic 

space group P21/c 

a/Å 8.0238(4) 

b/Å 12.6344(5) 

c/Å 8.0807(4) 

α/° 90 

β/° 114.8884(12) 

γ/° 90 

V/Å
3
 743.11(6) 

Z 2 

calc. density/g cm
−3

 1.61033(13) 

μ/mm
−1

 0.128 

absorption correction multi-scan 

transmission factor range 0.7024–0.7457 

refls. measured 17973 

Rint 0.0349 

mean σ(I)/I 0.0183 

θ range 2.80–28.37 

observed refls. 1650 
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x, y (weighting scheme) 0.0741, 0.3582 

hydrogen refinement mixed 

refls in refinement 1856 

parameters 123 

restraints 0 

R(Fobs) 0.0472 

Rw(F
2
) 0.1313 

S 1.094 

shift/errormax 0.001 

max electron density/e Å
−3

 0.395 

min electron density/e Å
−3

 −0.291 

 

C-bound H: constr, O-bound H: refall. 

 

Symmetry code in figure: i = −x, 1−y, −z. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 -0.088878 0.601752 -0.010777 x,y,z 

2 C2 0 C.3 0.017903 0.551291 0.176382 x,y,z 

3 C3 0 C.2 0.221569 0.585516 0.25295 x,y,z 

4 C4 0 C.2 0.304989 0.605358 0.124759 x,y,z 

5 C5 0 C.2 0.197289 0.604076 -0.054758 x,y,z 

6 C6 0 C.3 0.247342 0.63901 -0.204988 x,y,z 

7 H6A 0 H 0.32933 0.701479 -0.166719 x,y,z 

8 H6B 0 H 0.310751 0.581414 -0.238803 x,y,z 

9 C7 0 C.3 -0.078206 0.636239 -0.31956 x,y,z 

10 H7A 0 H -0.165419 0.592427 -0.420396 x,y,z 

11 H7B 0 H -0.14324 0.700402 -0.307831 x,y,z 

12 C8 0 C.3 -0.003532 0.573476 -0.14098 x,y,z 

13 C9 0 C.3 0.505326 0.634377 0.20387 x,y,z 

14 H9A 0 H 0.551109 0.62816 0.109368 x,y,z 

15 H9B 0 H 0.574566 0.586481 0.304988 x,y,z 

16 H9C 0 H 0.520838 0.707396 0.248803 x,y,z 

17 O1 0 O.2 -0.225219 0.653884 -0.050672 x,y,z 

18 O2 0 O.3 -0.059771 0.576468 0.295694 x,y,z 

19 H2 0 H 0.024744 0.594393 0.392921 x,y,z 

20 O3 0 O.2 0.302562 0.599267 0.416591 x,y,z 

21 O4 0 O.3 0.077047 0.665188 -0.3557 x,y,z 

22 C1 0 C.2 0.088878 0.398248 0.010777 -x,1-y,-z 
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23 C2 0 C.3 -0.017903 0.448709 -0.176382 -x,1-y,-z 

24 C3 0 C.2 -0.221569 0.414484 -0.25295 -x,1-y,-z 

25 C4 0 C.2 -0.304989 0.394642 -0.124759 -x,1-y,-z 

26 C5 0 C.2 -0.197289 0.395924 0.054758 -x,1-y,-z 

27 C6 0 C.3 -0.247342 0.36099 0.204988 -x,1-y,-z 

28 H6A 0 H -0.32933 0.298521 0.166719 -x,1-y,-z 

29 H6B 0 H -0.310751 0.418586 0.238803 -x,1-y,-z 

30 C7 0 C.3 0.078206 0.363761 0.31956 -x,1-y,-z 

31 H7A 0 H 0.165419 0.407573 0.420396 -x,1-y,-z 

32 H7B 0 H 0.14324 0.299598 0.307831 -x,1-y,-z 

33 C8 0 C.3 0.003532 0.426524 0.14098 -x,1-y,-z 

34 C9 0 C.3 -0.505326 0.365623 -0.20387 -x,1-y,-z 

35 H9A 0 H -0.551109 0.37184 -0.109368 -x,1-y,-z 

36 H9B 0 H -0.574566 0.413519 -0.304988 -x,1-y,-z 

37 H9C 0 H -0.520838 0.292604 -0.248803 -x,1-y,-z 

38 O1 0 O.2 0.225219 0.346116 0.050672 -x,1-y,-z 

39 O2 0 O.3 0.059771 0.423532 -0.295694 -x,1-y,-z 

40 H2 0 H -0.024744 0.405607 -0.392921 -x,1-y,-z 

41 O3 0 O.2 -0.302562 0.400733 -0.416591 -x,1-y,-z 

42 O4 0 O.3 -0.077047 0.334812 0.3557 -x,1-y,-z 
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8.2 6,7-dihydroxy-5-methoxy-4-methylisobenzofuran-1(3H)-one (196)  

 

 

Crystallographic data. 

  

net formula C10H10O5 

Mr/g mol
−1

 210.183 

crystal size/mm 0.156 × 0.135 × 0.108 

T/K 173(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group P21/c 

a/Å 8.0259(8) 

b/Å 9.7086(9) 

c/Å 12.0339(12) 

α/° 90 

β/° 98.220(3) 

γ/° 90 

V/Å
3
 928.05(16) 

Z 4 

calc. density/g cm
−3

 1.5043(3) 

μ/mm
−1

 0.122 

absorption correction multi-scan 

transmission factor range 0.9192–0.9590 

refls. measured 19139 

Rint 0.0345 

mean σ(I)/I 0.0199 

θ range 3.31–27.60 

observed refls. 1745 

x, y (weighting scheme) 0.0576, 0.5086 

hydrogen refinement mixed 

refls in refinement 2121 

parameters 146 

restraints 0 

R(Fobs) 0.0403 
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Rw(F
2
) 0.1140 

S 1.038 

shift/errormax 0.001 

max electron density/e Å
−3

 0.327 

min electron density/e Å
−3

 −0.287 

 

C-bound H: constr, O-bound H: refall. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 0.215156 0.732944 0.579573 x,y,z 

2 C2 0 C.2 0.267061 0.590099 0.565092 x,y,z 

3 C3 0 C.2 0.37401 0.505105 0.635301 x,y,z 

4 C4 0 C.2 0.407082 0.374702 0.594784 x,y,z 

5 C5 0 C.2 0.334343 0.331669 0.487877 x,y,z 

6 C6 0 C.2 0.224211 0.416617 0.417352 x,y,z 

7 C7 0 C.2 0.19412 0.545653 0.459038 x,y,z 

8 C8 0 C.3 0.089584 0.661294 0.40459 x,y,z 

9 H8A 0 H 0.129039 0.689222 0.333639 x,y,z 

10 H8B 0 H -0.030283 0.634046 0.388228 x,y,z 

11 C9 0 C.3 0.293416 0.090022 0.482103 x,y,z 

12 H9A 0 H 0.315088 0.080718 0.563988 x,y,z 

13 H9B 0 H 0.332031 0.006922 0.447217 x,y,z 

14 H9C 0 H 0.172399 0.102134 0.458104 x,y,z 

15 C10 0 C.3 0.147309 0.37151 0.301717 x,y,z 

16 H10A 0 H 0.025066 0.363226 0.298791 x,y,z 

17 H10B 0 H 0.194314 0.282123 0.284551 x,y,z 

18 H10C 0 H 0.172453 0.4398 0.246486 x,y,z 

19 O1 0 O.3 0.11172 0.772264 0.485834 x,y,z 

20 O2 0 O.2 0.248279 0.810869 0.65788 x,y,z 

21 O3 0 O.3 0.454304 0.534852 0.739376 x,y,z 

22 H3 0 H 0.442546 0.618589 0.760822 x,y,z 

23 O4 0 O.3 0.518945 0.290054 0.658656 x,y,z 

24 H4 0 H 0.565892 0.333069 0.715303 x,y,z 

25 O5 0 O.3 0.382199 0.207398 0.448482 x,y,z 
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8.3 Dibefurin mixed with isomer 184 (CCDC 1022043) 

 
 

Crystallographic data.  

  

net formula C18H18.30O9.15 

Mr/g mol
−1

 381.032 

crystal size/mm 0.170 × 0.040 × 0.030 

T/K 100(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group P21/n 

a/Å 10.1773(8) 

b/Å 6.1835(5) 

c/Å 12.7105(10) 

α/° 90 

β/° 90.823(2) 

γ/° 90 

V/Å
3
 799.81(11) 

Z 2 

calc. density/g cm
−3

 1.5822(2) 

μ/mm
−1

 0.129 

absorption correction multi-scan 

transmission factor range 0.9373–0.9985 

refls. measured 18459 

Rint 0.0541 

mean σ(I)/I 0.0275 

θ range 3.21–26.39 

observed refls. 1331 

x, y (weighting scheme) 0.0566, 0.5971 

hydrogen refinement mixed 

refls in refinement 1638 

parameters 150 

restraints 2 

R(Fobs) 0.0448 



452  CRYSTALLOGRAPHIC DATA 

Rw(F
2
) 0.1149 

S 1.061 

shift/errormax 0.001 

max electron density/e Å
−3

 0.361 

min electron density/e Å
−3

 −0.218 

 

C-bound H: constr, O-bound H: refall. 

Disorder handled by split model, sof ratio 0.9/0.1, figure shows main part only. 

Symmetry code i = 1−x, 2−y, 1−z. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 0.530054 0.781392 0.535798 x,y,z 

2 C2 0 C.3 0.55426 0.84182 0.421802 x,y,z 

3 H2 0 H 0.660694 0.715882 0.322973 x,y,z 

4 C3 0 C.2 0.42751 0.803389 0.355054 x,y,z 

5 C4 0 C.3 0.299734 0.817525 0.407721 x,y,z 

6 C5 0 C.3 0.296256 0.856437 0.511674 x,y,z 

7 C6 0 C.3 0.415317 0.905691 0.580621 x,y,z 

8 C7 0 C.3 0.371734 0.82996 0.689578 x,y,z 

9 H7A 0 H 0.39542 0.676436 0.701197 x,y,z 

10 H7B 0 H 0.413405 0.918664 0.745657 x,y,z 

11 C8 0 C.3 0.181766 0.832328 0.583871 x,y,z 

12 H8A 0 H 0.114605 0.944092 0.568296 x,y,z 

13 H8B 0 H 0.140938 0.688033 0.575013 x,y,z 

14 C9 0 C.3 0.178264 0.768519 0.343963 x,y,z 

15 H9A 0 H 0.102068 0.765264 0.390211 x,y,z 

16 H9B 0 H 0.187873 0.627561 0.309678 x,y,z 

17 H9C 0 H 0.165457 0.880701 0.290327 x,y,z 

18 O4 0 O.3 0.232202 0.857416 0.688755 x,y,z 

19 C91 0 C.3 0.178264 0.768519 0.343963 x,y,z 

20 H9D 0 H 0.174347 0.616118 0.320257 x,y,z 

21 H9E 0 H 0.166564 0.867154 0.283196 x,y,z 

22 O41 0 O.3 0.078452 0.818679 0.436889 x,y,z 

23 C81 0 C.3 0.150815 0.870562 0.533067 x,y,z 

24 H8D 0 H 0.12725 0.767607 0.589383 x,y,z 

25 H8E 0 H 0.128144 101.833 0.556669 x,y,z 

26 C71 0 C.3 0.371734 0.82996 0.689578 x,y,z 
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27 H7C 0 H 0.387134 0.674129 0.696497 x,y,z 

28 H7D 0 H 0.277937 0.860294 0.697856 x,y,z 

29 H7E 0 H 0.42228 0.907062 0.744012 x,y,z 

30 O1 0 O.2 0.5942 0.650819 0.583935 x,y,z 

31 O2 0 O.3 0.659196 0.722344 0.384993 x,y,z 

32 O3 0 O.2 0.439076 0.758674 0.262355 x,y,z 

33 C1 0 C.2 0.469946 121.861 0.464202 1-x,2-y,1-z 

34 C2 0 C.3 0.44574 115.818 0.578198 1-x,2-y,1-z 

35 H2 0 H 0.339306 128.412 0.677027 1-x,2-y,1-z 

36 C3 0 C.2 0.57249 119.661 0.644946 1-x,2-y,1-z 

37 C4 0 C.3 0.700266 118.248 0.592279 1-x,2-y,1-z 

38 C5 0 C.3 0.703744 114.356 0.488326 1-x,2-y,1-z 

39 C6 0 C.3 0.584683 109.431 0.419379 1-x,2-y,1-z 

40 C7 0 C.3 0.628266 117.004 0.310422 1-x,2-y,1-z 

41 H7A 0 H 0.60458 132.356 0.298803 1-x,2-y,1-z 

42 H7B 0 H 0.586595 108.134 0.254343 1-x,2-y,1-z 

43 C8 0 C.3 0.818234 116.767 0.416129 1-x,2-y,1-z 

44 H8A 0 H 0.885395 105.591 0.431704 1-x,2-y,1-z 

45 H8B 0 H 0.859062 131.197 0.424987 1-x,2-y,1-z 

46 C9 0 C.3 0.821736 123.148 0.656037 1-x,2-y,1-z 

47 H9A 0 H 0.897932 123.474 0.609789 1-x,2-y,1-z 

48 H9B 0 H 0.812127 137.244 0.690322 1-x,2-y,1-z 

49 H9C 0 H 0.834543 11.193 0.709673 1-x,2-y,1-z 

50 O4 0 O.3 0.767798 114.258 0.311245 1-x,2-y,1-z 

51 C91 0 C.3 0.821736 123.148 0.656037 1-x,2-y,1-z 

52 H9D 0 H 0.825653 138.388 0.679743 1-x,2-y,1-z 

53 H9E 0 H 0.833436 113.285 0.716804 1-x,2-y,1-z 

54 O41 0 O.3 0.921548 118.132 0.563111 1-x,2-y,1-z 

55 C81 0 C.3 0.849185 112.944 0.466933 1-x,2-y,1-z 

56 H8D 0 H 0.87275 123.239 0.410617 1-x,2-y,1-z 

57 H8E 0 H 0.871856 0.98167 0.443331 1-x,2-y,1-z 

58 C71 0 C.3 0.628266 117.004 0.310422 1-x,2-y,1-z 

59 H7C 0 H 0.612866 132.587 0.303503 1-x,2-y,1-z 

60 H7D 0 H 0.722063 113.971 0.302144 1-x,2-y,1-z 
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61 H7E 0 H 0.57772 109.294 0.255988 1-x,2-y,1-z 

62 O1 0 O.2 0.4058 134.918 0.416065 1-x,2-y,1-z 

63 O2 0 O.3 0.340804 127.766 0.615007 1-x,2-y,1-z 

64 O3 0 O.2 0.560924 124.133 0.737645 1-x,2-y,1-z 

65 O5 0 O.3 0.108078 0.315873 0.479134 x,y,z 

66 H51 0 H 0.179861 0.32682 0.510143 x,y,z 

67 H52 0 H 0.103727 0.305472 0.413936 x,y,z 
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8.4 (Zn3C36H24I6N12 · C6H12)n 

 

 

Crystallographic data. 

  

net formula C63H78I6N12Zn3 

Mr/g mol
−1

 1960.97 

crystal size/mm 0.080 × 0.060 × 0.010 

T/K 100(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group C2/c 

a/Å 34.566(2) 

b/Å 15.0883(10) 

c/Å 29.304(2) 

α/° 90 

β/° 100.4193(18) 

γ/° 90 

V/Å
3
 15031.4(17) 

Z 8 

calc. density/g cm
−3

 1.73307(20) 

μ/mm
−1

 3.458 
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absorption correction multi-scan 

transmission factor range 0.7424–0.8620 

refls. measured 127561 

Rint 0.0454 

mean σ(I)/I 0.0480 

θ range 2.95–25.19 

observed refls. 9715 

x, y (weighting scheme) 0.0801, 500.8572 

hydrogen refinement constr 

refls in refinement 13400 

parameters 622 

restraints 0 

R(Fobs) 0.0721 

Rw(F
2
) 0.1932 

S 1.054 

shift/errormax 0.001 

max electron density/e Å
−3

 4.766 

min electron density/e Å
−3

 −2.400 

 

Cyclohexane refined isotropically. Large voids in the structure… 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 0.424841 0.998091 0.420221 x,y,z 

2 H1 0 H 0.411187 102.822 0.393658 x,y,z 

3 C2 0 C.2 0.455682 0.945317 0.414972 x,y,z 

4 H2 0 H 0.463617 0.9394 0.385731 x,y,z 

5 C3 0 C.2 0.475343 0.89999 0.454155 x,y,z 

6 C4 0 C.2 0.463299 0.911203 0.495017 x,y,z 

7 H4 0 H 0.47588 0.880306 0.521884 x,y,z 

8 C5 0 C.2 0.432145 0.968706 0.49738 x,y,z 

9 H5 0 H 0.424502 0.978807 0.526495 x,y,z 

10 C6 0 C.2 0.5077 0.837845 0.449216 x,y,z 

11 C7 0 C.2 0.557822 0.798189 0.414976 x,y,z 

12 C8 0 C.2 0.539885 0.710072 0.469598 x,y,z 

13 C9 0 C.2 0.584376 0.815558 0.382532 x,y,z 
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14 C10 0 C.2 0.576349 0.879437 0.348504 x,y,z 

15 H10 0 H 0.552561 0.912352 0.344916 x,y,z 

16 C11 0 C.2 0.602879 0.895233 0.319854 x,y,z 

17 H11 0 H 0.597345 0.940546 0.297101 x,y,z 

18 C12 0 C.2 0.644447 0.788445 0.356158 x,y,z 

19 H12 0 H 0.6687 0.75734 0.359664 x,y,z 

20 C13 0 C.2 0.619112 0.768835 0.38595 x,y,z 

21 H13 0 H 0.625459 0.723621 0.40863 x,y,z 

22 C14 0 C.2 0.544309 0.625329 0.495935 x,y,z 

23 C15 0 C.2 0.571893 0.563057 0.486823 x,y,z 

24 H15 0 H 0.586507 0.572664 0.462755 x,y,z 

25 C16 0 C.2 0.577273 0.488926 0.513046 x,y,z 

26 H16 0 H 0.595599 0.446183 0.506249 x,y,z 

27 C17 0 C.2 0.523309 0.606869 0.529661 x,y,z 

28 H17 0 H 0.503547 0.64666 0.535721 x,y,z 

29 C18 0 C.2 0.530913 0.529549 0.555189 x,y,z 

30 H18 0 H 0.51606 0.516926 0.5787 x,y,z 

31 C19 0 C.2 0.320756 0.942367 0.410121 x,y,z 

32 H19 0 H 0.338039 0.908796 0.432521 x,y,z 

33 C20 0 C.2 0.293258 0.898384 0.378171 x,y,z 

34 H20 0 H 0.291628 0.835563 0.378903 x,y,z 

35 C21 0 C.2 0.26863 0.944877 0.345809 x,y,z 

36 C22 0 C.2 0.271598 103.723 0.346383 x,y,z 

37 H22 0 H 0.254557 107.219 0.324415 x,y,z 

38 C23 0 C.2 0.29918 107.574 0.378796 x,y,z 

39 H23 0 H 0.301137 113.854 0.379003 x,y,z 

40 C24 0 C.2 0.238509 0.900655 0.309839 x,y,z 

41 C25 0 C.2 0.192435 0.909139 0.24567 x,y,z 

42 C26 0 C.2 0.206059 0.77851 0.282296 x,y,z 

43 C27 0 C.2 0.170116 0.95965 0.206562 x,y,z 

44 C28 0 C.2 0.143265 0.917715 0.173017 x,y,z 

45 H28 0 H 0.140731 0.855027 0.173195 x,y,z 

46 C29 0 C.2 0.120361 0.966937 0.139564 x,y,z 

47 H29 0 H 0.101747 0.937019 0.116956 x,y,z 
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48 C30 0 C.2 0.173957 105.027 0.202418 x,y,z 

49 H30 0 H 0.193026 108.161 0.223841 x,y,z 

50 C31 0 C.2 0.150052 109.521 0.167112 x,y,z 

51 H31 0 H 0.153238 115.739 0.164289 x,y,z 

52 C32 0 C.2 0.199703 0.680159 0.282615 x,y,z 

53 C33 0 C.2 0.175726 0.642214 0.244781 x,y,z 

54 H33 0 H 0.164065 0.677184 0.218975 x,y,z 

55 C34 0 C.2 0.169297 0.552871 0.245611 x,y,z 

56 H34 0 H 0.151831 0.527421 0.220236 x,y,z 

57 C35 0 C.2 0.217616 0.625943 0.317885 x,y,z 

58 H35 0 H 0.23536 0.649585 0.343557 x,y,z 

59 C36 0 C.2 0.209216 0.53572 0.315199 x,y,z 

60 H36 0 H 0.220802 0.498575 0.340132 x,y,z 

61 N1 0 N.2 0.412836 100.982 0.459885 x,y,z 

62 N2 0 N.2 0.529778 0.857221 0.4183 x,y,z 

63 N3 0 N.2 0.563735 0.72259 0.439614 x,y,z 

64 N4 0 N.2 0.511107 0.766581 0.477122 x,y,z 

65 N5 0 N.2 0.63668 0.848491 0.322875 x,y,z 

66 N6 0 N.2 0.55846 0.4724 0.547703 x,y,z 

67 N7 0 N.2 0.323916 102.998 0.410664 x,y,z 

68 N8 0 N.2 0.219913 0.950805 0.275618 x,y,z 

69 N9 0 N.2 0.183855 0.82237 0.247998 x,y,z 

70 N10 0 N.2 0.233327 0.813242 0.314834 x,y,z 

71 N11 0 N.2 0.122725 105.375 0.137001 x,y,z 

72 N12 0 N.2 0.185789 0.499524 0.279409 x,y,z 

73 ZN1 0 Zn 0.364019 108.954 0.462091 x,y,z 

74 ZN2 0 Zn 0.67214 0.865221 0.274433 x,y,z 

75 ZN3 0 Zn 0.079741 112.884 0.09416 x,y,z 

76 I1 0 I 0.379902 123.917 0.430036 x,y,z 

77 I2 0 I 0.340216 105.342 0.536355 x,y,z 

78 I3 0 I 0.628303 0.843569 0.195438 x,y,z 

79 I4 0 I 0.73338 0.774825 0.303515 x,y,z 

80 I5 0 I 0.027691 116.047 0.142347 x,y,z 

81 I6 0 I 0.116057 123.844 0.052042 x,y,z 
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82 N6 0 N.3 0.05846 10.276 0.047703 -1/2+x,1.5-y,-1/2+z 

83 N12 0 N.3 0.685789 0.999524 0.279409 1/2+x,1/2+y,z 

84 ZN2 0 Zn 0.17214 0.365221 0.274433 -1/2+x,-1/2+y,z 

85 ZN3 0 Zn 0.579741 0.371158 0.59416 1/2+x,1.5-y,1/2+z 

86 C37 0 C.3 0.219963 0.948289 0.06644 x,y,z 

87 H37A 0 H 0.218591 0.943936 0.099819 x,y,z 

88 H37B 0 H 0.24251 0.986716 0.063146 x,y,z 

89 C38 0 C.3 0.184455 0.985371 0.041573 x,y,z 

90 H38A 0 H 0.181634 104.622 0.053173 x,y,z 

91 H38B 0 H 0.162057 0.950008 0.048399 x,y,z 

92 C39 0 C.3 0.181791 0.989338 -0.010823 x,y,z 

93 H39A 0 H 0.155393 101.089 -0.025417 x,y,z 

94 H39B 0 H 0.201516 103.189 -0.018343 x,y,z 

95 C40 0 C.3 0.18887 0.899974 -0.030321 x,y,z 

96 H40A 0 H 0.165156 0.862871 -0.03096 x,y,z 

97 H40B 0 H 0.192858 0.907411 -0.062716 x,y,z 

98 C41 0 C.3 0.220975 0.856302 -0.005384 x,y,z 

99 H41A 0 H 0.244865 0.884969 -0.012754 x,y,z 

100 H41B 0 H 0.22052 0.794933 -0.017423 x,y,z 

101 C42 0 C.3 0.225907 0.850632 0.045777 x,y,z 

102 H42A 0 H 0.252506 0.828085 0.058827 x,y,z 

103 H42B 0 H 0.206306 0.809106 0.054522 x,y,z 

104 C43 0 C.3 0.137879 0.748495 0.366812 x,y,z 

105 H43A 0 H 0.124946 0.779246 0.338256 x,y,z 

106 H43B 0 H 0.166663 0.751854 0.368131 x,y,z 

107 C44 0 C.3 0.125879 0.655939 0.364328 x,y,z 

108 H44A 0 H 0.142613 0.623038 0.389749 x,y,z 

109 H44B 0 H 0.13059 0.630789 0.334612 x,y,z 

110 C45 0 C.3 0.082827 0.641332 0.367824 x,y,z 

111 H45A 0 H 0.077904 0.57744 0.371922 x,y,z 

112 H45B 0 H 0.06564 0.661537 0.338947 x,y,z 

113 C46 0 C.3 0.07345 0.693914 0.409536 x,y,z 

114 H46A 0 H 0.045059 0.68803 0.41036 x,y,z 

115 H46B 0 H 0.088274 0.667842 0.438493 x,y,z 
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116 C47 0 C.3 0.0829 0.784243 0.408053 x,y,z 

117 H47A 0 H 0.075432 0.815023 0.43501 x,y,z 

118 H47B 0 H 0.067876 0.811153 0.37944 x,y,z 

119 C48 0 C.3 0.127471 0.796122 0.408936 x,y,z 

120 H48A 0 H 0.133964 0.859901 0.40783 x,y,z 

121 H48B 0 H 0.142693 0.770718 0.437842 x,y,z 

122 C49 0 C.3 0.066033 0.769623 0.234104 x,y,z 

123 H49A 0 H 0.063564 0.790367 0.2655 x,y,z 

124 H49B 0 H 0.091929 0.789355 0.227983 x,y,z 

125 C50 0 C.3 0.064415 0.665195 0.232984 x,y,z 

126 H50A 0 H 0.087059 0.640227 0.254726 x,y,z 

127 H50B 0 H 0.039862 0.644007 0.242272 x,y,z 

128 C51 0 C.3 0.065765 0.637599 0.185736 x,y,z 

129 H51A 0 H 0.06556 0.572042 0.184306 x,y,z 

130 H51B 0 H 0.09074 0.658338 0.177359 x,y,z 

131 C52 0 C.3 0.031352 0.673398 0.150211 x,y,z 

132 H52A 0 H 0.00605 0.652411 0.157579 x,y,z 

133 H52B 0 H 0.033384 0.65286 0.118645 x,y,z 

134 C53 0 C.3 0.033651 0.776697 0.152865 x,y,z 

135 H53A 0 H 0.057614 0.796643 0.141759 x,y,z 

136 H53B 0 H 0.010623 0.801941 0.131868 x,y,z 

137 C54 0 C.3 0.034506 0.810803 0.199502 x,y,z 

138 H54A 0 H 0.008756 0.799504 0.208677 x,y,z 

139 H54B 0 H 0.038605 0.875739 0.199467 x,y,z 

140 C55 0 C.3 0.093414 0.045172 0.261089 x,y,z 

141 H55A 0 H 0.101424 -0.012626 0.249784 x,y,z 

142 H55B 0 H 0.0895 0.087244 0.234731 x,y,z 

143 C56 0 C.3 0.052219 0.033482 0.280407 x,y,z 

144 H56A 0 H 0.041583 0.092586 0.286074 x,y,z 

145 H56B 0 H 0.032689 0.002904 0.256744 x,y,z 

146 C57 0 C.3 0.058262 -0.015544 0.321548 x,y,z 

147 H57A 0 H 0.065638 -0.076919 0.314786 x,y,z 

148 H57B 0 H 0.033328 -0.018222 0.333629 x,y,z 

149 C58 0 C.3 0.088987 0.022099 0.357254 x,y,z 
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150 H58A 0 H 0.092886 -0.0165 0.385028 x,y,z 

151 H58B 0 H 0.08057 0.081189 0.366429 x,y,z 

152 C59 0 C.3 0.127229 0.030792 0.339822 x,y,z 

153 H59A 0 H 0.146739 0.059259 0.364336 x,y,z 

154 H59B 0 H 0.137031 -0.029409 0.334755 x,y,z 

155 C60 0 C.3 0.125336 0.079194 0.298958 x,y,z 

156 H60A 0 H 0.150973 0.075501 0.288516 x,y,z 

157 H60B 0 H 0.120249 0.142268 0.305071 x,y,z 

158 C61 0 C.3 0.235375 0.785039 0.454879 x,y,z 

159 H61A 0 H 0.209974 0.810327 0.45963 x,y,z 

160 H61B 0 H 0.238339 0.797857 0.422558 x,y,z 

161 C62 0 C.3 0.234808 0.693722 0.461257 x,y,z 

162 H62A 0 H 0.259372 0.667686 0.454265 x,y,z 

163 H62B 0 H 0.212436 0.667873 0.439439 x,y,z 

164 C63 0 C.3 0.230896 0.670052 0.511518 x,y,z 

165 H63A 0 H 0.205223 0.690877 0.517844 x,y,z 

166 H63B 0 H 0.232269 0.604983 0.515852 x,y,z 

167 C61 0 C.3 0.264625 0.714961 0.545121 1/2-x,1.5-y,1-z 

168 H61A 0 H 0.290026 0.689673 0.54037 1/2-x,1.5-y,1-z 

169 H61B 0 H 0.261661 0.702143 0.577442 1/2-x,1.5-y,1-z 

170 C62 0 C.3 0.265192 0.806278 0.538743 1/2-x,1.5-y,1-z 

171 H62A 0 H 0.240628 0.832314 0.545735 1/2-x,1.5-y,1-z 

172 H62B 0 H 0.287564 0.832127 0.560561 1/2-x,1.5-y,1-z 

173 C63 0 C.3 0.269104 0.829948 0.488482 1/2-x,1.5-y,1-z 

174 H63A 0 H 0.294777 0.809123 0.482156 1/2-x,1.5-y,1-z 

175 H63B 0 H 0.267731 0.895017 0.484148 1/2-x,1.5-y,1-z 
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8.5 rac-(6aR,12aR)-5-methoxy-4,10-dimethyl-1,12-dioxo-1,3-dihydro-7H-[1,4]dioxino[2,3-d:3,2-

d':6,5-e'']triisobenzofuran-11,12a(12H)-diyl diacetate (240) (CCDC 1022044) 

 

 

Crystallographic data.  

  

net formula C23H20O11 

Mr/g mol
−1

 472.398 

crystal size/mm 0.100 × 0.050 × 0.040 

T/K 100(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group P21/n 

a/Å 14.330(2) 

b/Å 8.4955(13) 

c/Å 16.966(3) 

α/° 90 

β/° 93.780(5) 

γ/° 90 

V/Å
3
 2060.9(5) 

Z 4 

calc. density/g cm
−3

 1.5225(4) 

μ/mm
−1

 0.123 

absorption correction multi-scan 

transmission factor range 0.8102–0.9579 

refls. measured 21166 
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Rint 0.1429 

mean σ(I)/I 0.0895 

θ range 3.00–25.05 

observed refls. 2334 

x, y (weighting scheme) 0.0553, 8.5329 

hydrogen refinement constr 

refls in refinement 3651 

parameters 312 

restraints 0 

R(Fobs) 0.0899 

Rw(F
2
) 0.2099 

S 1.135 

shift/errormax 0.001 

max electron density/e Å
−3

 0.442 

min electron density/e Å
−3

 −0.297 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 -0.044602 0.811774 0.477745 x,y,z 

2 C2 0 C.2 0.033512 0.73486 0.524538 x,y,z 

3 C3 0 C.2 0.129782 0.748695 0.521062 x,y,z 

4 C4 0 C.2 0.186468 0.67186 0.578189 x,y,z 

5 C5 0 C.2 0.148524 0.572868 0.633731 x,y,z 

6 C6 0 C.2 0.052338 0.548711 0.634746 x,y,z 

7 C7 0 C.2 -0.002497 0.637186 0.580797 x,y,z 

8 C8 0 C.3 -0.105729 0.64776 0.571081 x,y,z 

9 H8A 0 H -0.133186 0.543534 0.55748 x,y,z 

10 H8B 0 H -0.131465 0.685237 0.620464 x,y,z 

11 C9 0 C.3 0.008934 0.438115 0.691403 x,y,z 

12 H9A 0 H -0.02726 0.35742 0.661579 x,y,z 

13 H9B 0 H -0.032493 0.497389 0.724261 x,y,z 

14 H9C 0 H 0.05834 0.387637 0.725201 x,y,z 

15 C10 0 C.3 0.263025 0.840397 0.462071 x,y,z 

16 C11 0 C.2 0.303242 0.698119 0.419062 x,y,z 

17 C12 0 C.2 0.404969 0.680396 0.428519 x,y,z 

18 C13 0 C.2 0.460165 0.743198 0.489292 x,y,z 

19 C14 0 C.2 0.413266 0.83961 0.545749 x,y,z 

20 C15 0 C.3 0.309499 0.837639 0.546762 x,y,z 

21 C16 0 C.3 0.290951 0.981221 0.599249 x,y,z 

22 H16A 0 H 0.262707 106.829 0.567056 x,y,z 
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23 H16B 0 H 0.24804 0.952717 0.640372 x,y,z 

24 C17 0 C.2 0.447464 0.945685 0.598589 x,y,z 

25 H17 0 H 0.512672 0.961828 0.609283 x,y,z 

26 C18 0 C.3 0.562635 0.715714 0.499773 x,y,z 

27 H18A 0 H 0.59493 0.816621 0.508104 x,y,z 

28 H18B 0 H 0.584166 0.664772 0.452428 x,y,z 

29 H18C 0 H 0.576394 0.647622 0.5457 x,y,z 

30 C19 0 C.2 0.261064 101.346 0.349049 x,y,z 

31 C20 0 C.3 0.298901 116.022 0.321862 x,y,z 

32 H20A 0 H 0.269378 118.622 0.269742 x,y,z 

33 H20B 0 H 0.366565 114.949 0.318168 x,y,z 

34 H20C 0 H 0.286382 124.432 0.359264 x,y,z 

35 C21 0 C.2 0.44947 0.631807 0.299256 x,y,z 

36 C22 0 C.3 0.498593 0.516833 0.251553 x,y,z 

37 H22A 0 H 0.503018 0.558187 0.198006 x,y,z 

38 H22B 0 H 0.463778 0.417473 0.249102 x,y,z 

39 H22C 0 H 0.561589 0.498519 0.275886 x,y,z 

40 C23 0 C.3 0.245553 0.355411 0.668218 x,y,z 

41 H23A 0 H 0.286653 0.314075 0.711838 x,y,z 

42 H23B 0 H 0.281397 0.369317 0.621476 x,y,z 

43 H23C 0 H 0.194253 0.281195 0.656075 x,y,z 

44 O1 0 O.3 -0.126526 0.759239 0.507344 x,y,z 

45 O2 0 O.2 -0.046473 0.903464 0.423591 x,y,z 

46 O3 0 O.3 0.16515 0.841389 0.462826 x,y,z 

47 O4 0 O.3 0.290864 0.98376 0.427654 x,y,z 

48 O5 0 O.2 0.209969 0.922422 0.311289 x,y,z 

49 O6 0 O.2 0.25321 0.604581 0.381691 x,y,z 

50 O7 0 O.3 0.446316 0.578549 0.376116 x,y,z 

51 O8 0 O.2 0.416626 0.755992 0.279466 x,y,z 

52 O9 0 O.3 0.283217 0.690403 0.581328 x,y,z 

53 O10 0 O.3 0.382647 102.771 0.635415 x,y,z 

54 O11 0 O.3 0.20809 0.503903 0.69052 x,y,z 
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8.6 rac-((6S,10aS,10bR)-6,7-dihydroxy-9-methoxy-4,10-dimethyl-5,8,11-trioxo-3,5,6,8-

tetrahydro-1H,10aH-6,10b-methanobenzo[3,4]cyclohepta[1,2-c]furan-10a-yl)methyl acetate 

(267) 

 

 

Crystallographic data.  

  

net formula C20H20O9 

Mr/g mol
−1

 404.36 

crystal size/mm 0.100 × 0.090 × 0.080 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group 'P 21/n' 

a/Å 12.4719(4) 

b/Å 10.4198(3) 

c/Å 14.7987(5) 

α/° 90 

β/° 109.9144(10) 

γ/° 90 

V/Å
3
 1808.16(10) 

Z 4 

calc. density/g cm
−3

 1.485 
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μ/mm
−1

 0.118 

absorption correction multi-scan 

transmission factor range 0.9259–0.9585 

refls. measured 43959 

Rint 0.0356 

mean σ(I)/I 0.0172 

θ range 2.442–26.43 

observed refls. 3097 

x, y (weighting scheme) 0.0453, 1.1557 

hydrogen refinement mixed 

refls in refinement 3711 

parameters 274 

restraints 0 

R(Fobs) 0.0379 

Rw(F
2
) 0.1001 

S 1.045 

shift/errormax 0.001 

max electron density/e Å
−3

 0.304 

min electron density/e Å
−3

 −0.279 

 

C-H: constr, O-H: refall. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 0.15802 0.48743 0.493802 x,y,z 

2 C2 0 C.2 0.153128 0.494621 0.392519 x,y,z 

3 C3 0 C.2 0.210428 0.38984 0.358674 x,y,z 

4 C4 0 C.2 0.246097 0.285861 0.412974 x,y,z 

5 C5 0 C.3 0.33136 0.188454 0.402608 x,y,z 

6 C6 0 C.2 0.447135 0.261039 0.438561 x,y,z 

7 C7 0 C.2 0.487265 0.298146 0.540839 x,y,z 

8 C8 0 C.2 0.429617 0.254467 0.595986 x,y,z 

9 C9 0 C.3 0.465468 0.263791 0.702898 x,y,z 

10 H9A 0 H 0.544734 0.232795 0.733012 x,y,z 

11 H9B 0 H 0.461505 0.35391 0.722715 x,y,z 

12 C10 0 C.3 0.325027 0.104354 0.652495 x,y,z 
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13 H10A 0 H 0.246784 0.090534 0.653204 x,y,z 

14 H10B 0 H 0.362879 0.01994 0.656799 x,y,z 

15 C11 0 C.3 0.321749 0.174398 0.561068 x,y,z 

16 C12 0 C.2 0.339183 0.090944 0.481755 x,y,z 

17 C13 0 C.3 0.217459 0.261356 0.502784 x,y,z 

18 C14 0 C.2 0.191456 0.382277 0.548677 x,y,z 

19 C15 0 C.3 0.104398 0.185198 0.473909 x,y,z 

20 H15A 0 H 0.085229 0.162839 0.531627 x,y,z 

21 H15B 0 H 0.041332 0.236958 0.430312 x,y,z 

22 C16 0 C.2 0.027344 0.000281 0.381469 x,y,z 

23 C17 0 C.3 0.055898 -0.116356 0.336216 x,y,z 

24 H17A 0 H -0.005507 -0.133853 0.275389 x,y,z 

25 H17B 0 H 0.064602 -0.189773 0.379526 x,y,z 

26 H17C 0 H 0.127403 -0.102248 0.323932 x,y,z 

27 C18 0 C.3 0.204724 0.68852 0.569008 x,y,z 

28 H18A 0 H 0.234582 0.721004 0.520111 x,y,z 

29 H18B 0 H 0.266765 0.64914 0.621456 x,y,z 

30 H18C 0 H 0.171999 0.759661 0.594311 x,y,z 

31 C19 0 C.3 0.596101 0.372678 0.579197 x,y,z 

32 H19A 0 H 0.607762 0.422259 0.527035 x,y,z 

33 H19B 0 H 0.660022 0.313294 0.606015 x,y,z 

34 H19C 0 H 0.591737 0.431252 0.62964 x,y,z 

35 C20 0 C.3 0.183155 0.377959 0.647956 x,y,z 

36 H20A 0 H 0.137586 0.45075 0.656202 x,y,z 

37 H20B 0 H 0.259812 0.382767 0.696123 x,y,z 

38 H20C 0 H 0.146673 0.297555 0.65605 x,y,z 

39 O1 0 O.3 0.118077 0.594447 0.526755 x,y,z 

40 O2 0 O.2 0.111882 0.586354 0.340765 x,y,z 

41 O3 0 O.3 0.231081 0.405477 0.275456 x,y,z 

42 H3 0 H 0.208852 0.478367 0.252091 x,y,z 

43 O4 0 O.3 0.312335 0.137191 0.311612 x,y,z 

44 H4 0 H 0.364803 0.170056 0.294332 x,y,z 

45 O5 0 O.2 0.496971 0.281989 0.382747 x,y,z 

46 O6 0 O.3 0.388741 0.185582 0.731374 x,y,z 
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47 O7 0 O.2 0.363312 -0.020623 0.483597 x,y,z 

48 O8 0 O.3 0.121217 0.070796 0.426127 x,y,z 

49 O9 0 O.2 -0.065754 0.031069 0.380747 x,y,z 
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8.7 7-hydroxy-5,6-dimethoxy-4-methylisobenzofuran-1(3H)-one (291) 

 

 

Crystallographic data. 

  

net formula C11H12O5 

Mr/g mol
−1

 224.21 

crystal size/mm 0.140 × 0.060 × 0.040 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group 'P 21/c' 

a/Å 9.7456(6) 

b/Å 14.7151(10) 

c/Å 7.3781(5) 

α/° 90 

β/° 110.408(2) 

γ/° 90 

V/Å
3
 991.66(11) 

Z 4 

calc. density/g cm
−3

 1.502 

μ/mm
−1

 0.120 

absorption correction multi-scan 

transmission factor range 0.9005–0.9585 



470  CRYSTALLOGRAPHIC DATA 

refls. measured 18453 

Rint 0.0559 

mean σ(I)/I 0.0317 

θ range 3.255–26.39 

observed refls. 1500 

x, y (weighting scheme) 0.0570, 0.5092 

hydrogen refinement mixed 

refls in refinement 2032 

parameters 152 

restraints 0 

R(Fobs) 0.0442 

Rw(F
2
) 0.1163 

S 1.029 

shift/errormax 0.001 

max electron density/e Å
−3

 0.306 

min electron density/e Å
−3

 −0.277 

 

C-H: constr, O-H: refall. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 
1 C1 0 C.2 -0.030692 0.331801 -0.033259 x,y,z 
2 C2 0 C.2 0.104002 0.297449 0.105844 x,y,z 
3 C3 0 C.2 0.22461 0.344875 0.226239 x,y,z 
4 H3 0 H 0.152746 0.461128 0.163804 x,y,z 
5 C4 0 C.2 0.343218 0.293502 0.343344 x,y,z 
6 C5 0 C.2 0.337471 0.198079 0.335329 x,y,z 
7 C6 0 C.2 0.213118 0.150281 0.218101 x,y,z 
8 C7 0 C.2 0.098458 0.202925 0.105058 x,y,z 
9 C8 0 C.3 -0.048201 0.175763 -0.035602 x,y,z 

10 H8A 0 H -0.037105 0.135764 -0.137505 x,y,z 
11 H8B 0 H -0.105913 0.143326 0.03117 x,y,z 
12 C9 0 C.3 0.549804 0.393119 0.413967 x,y,z 
13 H9A 0 H 0.601504 0.356641 0.346933 x,y,z 
14 H9B 0 H 0.621208 0.424239 0.524162 x,y,z 
15 H9C 0 H 0.488177 0.438226 0.32452 x,y,z 
16 C10 0 C.3 0.595012 0.165691 0.449784 x,y,z 
17 H10A 0 H 0.65079 0.109052 0.464801 x,y,z 
18 H10B 0 H 0.644674 0.206618 0.557513 x,y,z 
19 H10C 0 H 0.588185 0.194848 0.32752 x,y,z 
20 C11 0 C.3 0.207287 0.048566 0.214804 x,y,z 
21 H11A 0 H 0.159533 0.027575 0.081475 x,y,z 
22 H11B 0 H 0.15151 0.027425 0.294455 x,y,z 
23 H11C 0 H 0.307001 0.024141 0.266323 x,y,z 
24 O1 0 O.3 -0.1187 0.260419 -0.117886 x,y,z 
25 O2 0 O.2 -0.069432 0.409708 -0.078254 x,y,z 
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26 O3 0 O.3 0.231044 0.436635 0.242175 x,y,z 
27 O4 0 O.3 0.459476 0.334716 0.481973 x,y,z 
28 O5 0 O.3 0.449961 0.145917 0.449079 x,y,z 
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8.8 ethyl 3-cinnamoyl-1H-pyrazole-5-carboxylate (454) 

 

 

Table 1. 

1. Crystallographic data. 

 1 

net formula C15H14N2O3 

Mr/g mol
−1

 270.283 

crystal size/mm 0.48 × 0.22 × 0.15 

T/K 173(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system triclinic 

space group P1bar 

a/Å 6.9637(10) 

b/Å 8.9276(11) 

c/Å 11.1074(11) 

α/° 89.958(9) 

β/° 89.797(10) 

γ/° 78.677(11) 

V/Å
3
 677.09(14) 

Z 2 

calc. density/g cm
−3

 1.3257(3) 

μ/mm
−1

 0.094 

absorption correction 'multi-scan' 

transmission factor range 0.95513–1.00000 

refls. measured 3940 

Rint 0.0291 

mean σ(I)/I 0.0524 
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θ range 4.35–28.80 

observed refls. 2349 

x, y (weighting scheme) 0.0399, 0.1197 

hydrogen refinement mixed 

refls in refinement 2951 

parameters 186 

restraints 0 

R(Fobs) 0.0462 

Rw(F
2
) 0.1179 

S 1.073 

shift/errormax 0.001 

max electron density/e Å
−3

 0.173 

min electron density/e Å
−3

 −0.192 

 

C-bound H: constr, N-bound H: refall. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 O1 0 O.3 0.664924 0.309287 0.356097 x,y,z 

2 O2 0 O.2 0.834319 0.110279 0.251051 x,y,z 

3 O3 0 O.2 -0.078205 0.424565 0.128975 x,y,z 

4 N1 0 N.3 0.504733 0.114326 0.107097 x,y,z 

5 H1 0 H 0.60344 0.033906 0.082127 x,y,z 

6 N2 0 N.2 0.332494 0.136301 0.050858 x,y,z 

7 C1 0 C.3 0.837013 0.308823 0.430349 x,y,z 

8 H1A 0 H 0.943909 0.33655 0.381416 x,y,z 

9 H1B 0 H 0.883877 0.206122 0.465224 x,y,z 

10 C2 0 C.3 0.777048 0.424015 0.52852 x,y,z 

11 H2A 0 H 0.73441 0.525513 0.492903 x,y,z 

12 H2B 0 H 0.888571 0.425072 0.581861 x,y,z 

13 H2C 0 H 0.668993 0.396705 0.574922 x,y,z 

14 C3 0 C.2 0.687741 0.204929 0.268862 x,y,z 

15 C4 0 C.2 0.509351 0.2163 0.196718 x,y,z 

16 C5 0 C.2 0.328496 0.311814 0.198433 x,y,z 

17 H5 0 H 0.284816 0.396045 0.250536 x,y,z 

18 C6 0 C.2 0.222496 0.257567 0.106283 x,y,z 
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19 C7 0 C.2 0.01803 0.318936 0.070662 x,y,z 

20 C8 0 C.2 -0.061114 0.24968 -0.033493 x,y,z 

21 H8 0 H 0.018 0.165482 -0.073535 x,y,z 

22 C9 0 C.2 -0.242268 0.303481 -0.072402 x,y,z 

23 H9 0 H -0.314507 0.388406 -0.029645 x,y,z 

24 C10 0 C.2 -0.343202 0.247535 -0.172966 x,y,z 

25 C11 0 C.2 -0.539702 0.311916 -0.192918 x,y,z 

26 H11 0 H -0.603401 0.393174 -0.143036 x,y,z 

27 C12 0 C.2 -0.643311 0.258824 -0.284654 x,y,z 

28 H12 0 H -0.777429 0.302894 -0.297027 x,y,z 

29 C13 0 C.2 -0.550658 0.141726 -0.35783 x,y,z 

30 H13 0 H -0.621016 0.105006 -0.420796 x,y,z 

31 C14 0 C.2 -0.354426 0.077401 -0.339519 x,y,z 

32 H14 0 H -0.290739 -0.002757 -0.390409 x,y,z 

33 C15 0 C.2 -0.252001 0.129421 -0.247904 x,y,z 

34 H15 0 H -0.118132 0.084457 -0.235675 x,y,z 
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8.9 ethyl (3S,4S)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2-methoxy-2-oxoethyl)cyclohepta-

1,5-diene-1-carboxylate (471)  

 

 

 

Table 1. 

1. Crystallographic data. 

 

 1 

net formula C18H26O6 

Mr/g mol
−1

 338.395 

crystal size/mm 0.475 × 0.126 × 0.119 

T/K 200(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Quest' 

crystal system orthorhombic 

space group P212121 

a/Å 5.9270(2) 

b/Å 14.8998(5) 

c/Å 20.0765(8) 
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α/° 90 

β/° 90 

γ/° 90 

V/Å
3
 1772.98(11) 

Z 4 

calc. density/g cm
−3

 1.26776(8) 

μ/mm
−1

 0.094 

absorption correction multi-scan 

transmission factor range 0.6788–0.7456 

refls. measured 14983 

Rint 0.0328 

mean σ(I)/I 0.0313 

θ range 2.45–27.54 

observed refls. 3352 

x, y (weighting scheme) 0.0384, 0.2101 

hydrogen refinement constr 

Flack parameter −0.1(8) 

refls in refinement 4064 

parameters 221 

restraints 0 

R(Fobs) 0.0366 

Rw(F
2
) 0.0848 

S 1.032 

shift/errormax 0.001 

max electron density/e Å
−3

 0.189 

min electron density/e Å
−3

 −0.164 

 

Correct structure derived from synthesis. 

1711 Friedel pairs measured. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 O1 0 O.3 0.990331 0.318484 0.681435 x,y,z 

2 O2 0 O.3 0.675045 0.280794 0.623601 x,y,z 

3 O3 0 O.3 0.01844 0.207842 0.875351 x,y,z 

4 O4 0 O.2 0.354396 0.174242 0.917544 x,y,z 

5 O5 0 O.3 0.215119 0.012309 0.594403 x,y,z 
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6 O6 0 O.2 0.412237 -0.110893 0.621182 x,y,z 

7 C1 0 C.3 0.805501 0.331079 0.725468 x,y,z 

8 H1A 0 H 0.760559 0.395001 0.727713 x,y,z 

9 H1B 0 H 0.841717 0.30952 0.77087 x,y,z 

10 C2 0 C.3 0.621854 0.274131 0.693441 x,y,z 

11 H2 0 H 0.469618 0.300286 0.702623 x,y,z 

12 C3 0 C.3 0.896727 0.317584 0.616315 x,y,z 

13 C4 0 C.3 0.877175 0.412012 0.588457 x,y,z 

14 H4A 0 H 0.778301 0.447816 0.617174 x,y,z 

15 H4B 0 H 0.813539 0.409477 0.543443 x,y,z 

16 H4C 0 H 102.707 0.439684 0.586775 x,y,z 

17 C5 0 C.3 103.859 0.257428 0.573749 x,y,z 

18 H5A 0 H 119.428 0.279564 0.573242 x,y,z 

19 H5B 0 H 0.978785 0.256957 0.528242 x,y,z 

20 H5C 0 H 103.559 0.196381 0.591894 x,y,z 

21 C6 0 C.3 0.630289 0.175986 0.715191 x,y,z 

22 H6 0 H 0.790897 0.15596 0.711739 x,y,z 

23 C7 0 C.3 0.555833 0.16234 0.788719 x,y,z 

24 H7 0 H 0.635229 0.20888 0.815896 x,y,z 

25 C8 0 C.2 0.627288 0.071989 0.81527 x,y,z 

26 H8 0 H 0.626316 0.066654 0.862422 x,y,z 

27 C9 0 C.2 0.691054 -0.000876 0.782754 x,y,z 

28 H9 0 H 0.732983 -0.050381 0.809884 x,y,z 

29 C10 0 C.3 0.706611 -0.016486 0.708853 x,y,z 

30 H10A 0 H 0.855205 0.005269 0.693152 x,y,z 

31 H10B 0 H 0.70041 -0.081912 0.700454 x,y,z 

32 C11 0 C.2 0.525377 0.028266 0.668299 x,y,z 

33 C12 0 C.2 0.493368 0.116538 0.670388 x,y,z 

34 H12 0 H 0.380904 0.142658 0.642803 x,y,z 

35 C13 0 C.3 0.301446 0.177342 0.798132 x,y,z 

36 H13A 0 H 0.256471 0.232597 0.774181 x,y,z 

37 H13B 0 H 0.218531 0.126426 0.778018 x,y,z 

38 C14 0 C.2 0.234452 0.185858 0.870182 x,y,z 

39 C15 0 C.3 -0.071075 0.211727 0.942464 x,y,z 
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40 H15A 0 H -0.058669 0.15245 0.963297 x,y,z 

41 H15B 0 H -0.229966 0.229805 0.940918 x,y,z 

42 H15C 0 H 0.014878 0.255552 0.96856 x,y,z 

43 C16 0 C.2 0.381241 -0.030851 0.626091 x,y,z 

44 C17 0 C.3 0.065206 -0.042939 0.55443 x,y,z 

45 H17A 0 H -0.008467 -0.088654 0.582846 x,y,z 

46 H17B 0 H 0.152297 -0.074316 0.519383 x,y,z 

47 C18 0 C.3 -0.10788 0.015689 0.523511 x,y,z 

48 H18A 0 H -0.19047 0.047791 0.558449 x,y,z 

49 H18B 0 H -0.213347 -0.021095 0.497665 x,y,z 

50 H18C 0 H -0.034163 0.059099 0.493996 x,y,z 
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8.10 ethyl (1S,4aR,9aR)-1-(hydroxymethyl)-3-oxo-1,3,4,4a,7,9a-hexahydrocyclohepta[c]pyran-8-

carboxylate (476)  

 

 

Table 1. 

1. Crystallographic data. 

 

 1 

net formula C14H18O5 

Mr/g mol
−1

 266.290 

crystal size/mm 0.133 × 0.074 × 0.059 

T/K 100(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system orthorhombic 

space group P212121 

a/Å 5.0950(2) 

b/Å 14.2661(5) 

c/Å 17.6871(7) 

α/° 90 

β/° 90 

γ/° 90 

V/Å
3
 1285.60(8) 

Z 4 

calc. density/g cm
−3

 1.37583(9) 

μ/mm
−1

 0.104 
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absorption correction multi-scan 

transmission factor range 0.9510–0.9705 

refls. measured 40180 

Rint 0.0360 

mean σ(I)/I 0.0161 

θ range 3.08–27.59 

observed refls. 2777 

x, y (weighting scheme) 0.0369, 0.4087 

hydrogen refinement mixed 

Flack parameter 0.1(7) 

refls in refinement 2960 

parameters 176 

restraints 0 

R(Fobs) 0.0300 

Rw(F
2
) 0.0756 

S 1.060 

shift/errormax 0.001 

max electron density/e Å
−3

 0.292 

min electron density/e Å
−3

 −0.228 

 

C-bound H: constr, O-bound H: refall. 

Flack-Test meaningless, no anomalous scatterer, correct structure derived from synthesis. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 O1 0 O.3 0.089191 0.48513 0.46373 x,y,z 

2 H1 0 H 0.041149 0.430505 0.451609 x,y,z 

3 C1 0 C.3 0.349227 0.479957 0.492006 x,y,z 

4 H1A 0 H 0.42062 0.544252 0.496557 x,y,z 

5 H1B 0 H 0.45943 0.445551 0.455195 x,y,z 

6 O2 0 O.3 0.26903 0.336512 0.555806 x,y,z 

7 C2 0 C.3 0.368374 0.431805 0.568251 x,y,z 

8 H2 0 H 0.249399 0.464605 0.604612 x,y,z 

9 O3 0 O.2 0.292369 0.184136 0.56116 x,y,z 

10 C3 0 C.3 0.648687 0.432884 0.600363 x,y,z 

11 H3 0 H 0.7682 0.411739 0.558885 x,y,z 

12 O4 0 O.3 0.890732 0.709346 0.627405 x,y,z 
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13 C4 0 C.2 0.73026 0.531068 0.621172 x,y,z 

14 H4 0 H 0.754451 0.572573 0.579752 x,y,z 

15 O5 0 O.2 0.968741 0.698573 0.751116 x,y,z 

16 C5 0 C.2 0.773473 0.568235 0.689233 x,y,z 

17 C6 0 C.3 0.738136 0.523246 0.766207 x,y,z 

18 H6A 0 H 0.902798 0.490361 0.779608 x,y,z 

19 H6B 0 H 0.711216 0.573578 0.803952 x,y,z 

20 C8 0 C.2 0.484303 0.381191 0.727867 x,y,z 

21 H8 0 H 0.340291 0.340138 0.736081 x,y,z 

22 C7 0 C.2 0.514108 0.454541 0.7727 x,y,z 

23 H7 0 H 0.387228 0.464581 0.811216 x,y,z 

24 C11 0 C.2 0.387549 0.25855 0.579938 x,y,z 

25 C12 0 C.2 0.889395 0.664587 0.693694 x,y,z 

26 C10 0 C.3 0.629035 0.264638 0.628587 x,y,z 

27 H10A 0 H 0.784246 0.248763 0.597442 x,y,z 

28 H10B 0 H 0.615871 0.217322 0.669356 x,y,z 

29 C9 0 C.3 0.67165 0.360771 0.66421 x,y,z 

30 H9 0 H 0.854522 0.363249 0.684644 x,y,z 

31 C13 0 C.3 101.442 0.80103 0.623679 x,y,z 

32 H13A 0 H 106.534 0.821629 0.675078 x,y,z 

33 H13B 0 H 0.889373 0.847391 0.60277 x,y,z 

34 C14 0 C.3 125.292 0.795443 0.574222 x,y,z 

35 H14A 0 H 138.013 0.752075 0.596659 x,y,z 

36 H14B 0 H 133.219 0.857781 0.569705 x,y,z 

37 H14C 0 H 120.231 0.772821 0.523977 x,y,z 
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8.11 rac-(1R,3S,3aS,6aR)-1,3-dimethoxytetrahydro-1H-cyclopenta[c]furan-5(3H)-one (540)  

 

 

Table 1. 

1. Crystallographic data.  

 1 

net formula C9H14O4 

Mr/g mol
−1

 186.20 

crystal size/mm 0.150 × 0.050 × 0.030 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system monoclinic 

space group 'P 21/c' 

a/Å 9.0759(7) 

b/Å 11.1481(10) 

c/Å 9.3195(8) 

α/° 90 

β/° 104.767(2) 

γ/° 90 

V/Å
3
 911.79(13) 

Z 4 

calc. density/g cm
−3

 1.356 

μ/mm
−1

 0.106 

absorption correction multi-scan 
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transmission factor range 0.8913–0.9585 

refls. measured 10487 

Rint 0.0515 

mean σ(I)/I 0.0398 

θ range 2.954–26.43 

observed refls. 1377 

x, y (weighting scheme) 0.0340, 0.5210 

hydrogen refinement constr 

refls in refinement 1861 

parameters 120 

restraints 0 

R(Fobs) 0.0408 

Rw(F
2
) 0.0930 

S 1.033 

shift/errormax 0.001 

max electron density/e Å
−3

 0.258 

min electron density/e Å
−3

 −0.220 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 C1 0 C.2 0.391194 0.619451 0.015702 x,y,z 

2 C2 0 C.3 0.237896 0.557186 -0.018629 x,y,z 

3 H2A 0 H 0.244916 0.476559 -0.060919 x,y,z 

4 H2B 0 H 0.160765 0.60459 -0.090628 x,y,z 

5 C3 0 C.3 0.195085 0.547402 0.129707 x,y,z 

6 H3 0 H 0.0839 0.563339 0.115811 x,y,z 

7 C4 0 C.3 0.291527 0.643123 0.232738 x,y,z 

8 H4 0 H 0.234717 0.720371 0.229269 x,y,z 

9 C5 0 C.3 0.434001 0.658432 0.176245 x,y,z 

10 H5A 0 H 0.467405 0.743254 0.184628 x,y,z 

11 H5B 0 H 0.51804 0.608181 0.234631 x,y,z 

12 C6 0 C.3 0.240603 0.429861 0.21411 x,y,z 

13 H6 0 H 0.297706 0.378191 0.158988 x,y,z 

14 C7 0 C.3 0.140132 0.253997 0.292276 x,y,z 

15 H7A 0 H 0.044137 0.211425 0.28555 x,y,z 

16 H7B 0 H 0.195618 0.262429 0.396746 x,y,z 
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17 H7C 0 H 0.202289 0.208468 0.2394 x,y,z 

18 C8 0 C.3 0.320538 0.584485 0.383823 x,y,z 

19 H8 0 H 0.415697 0.61685 0.451992 x,y,z 

20 C9 0 C.3 0.198722 0.546854 0.575325 x,y,z 

21 H9A 0 H 0.111722 0.571242 0.612845 x,y,z 

22 H9B 0 H 0.29372 0.566833 0.648741 x,y,z 

23 H9C 0 H 0.194363 0.460152 0.557386 x,y,z 

24 O1 0 O.2 0.467222 0.635591 -0.072093 x,y,z 

25 O2 0 O.3 0.337087 0.460277 0.355995 x,y,z 

26 O3 0 O.3 0.108541 0.370262 0.226798 x,y,z 

27 O4 0 O.3 0.193417 0.608557 0.439787 x,y,z 
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8.12 rac-(1S,3R,3aS,4S,7aS)-4-(hydroxymethyl)-1,3-dimethoxytetrahydro-3H-furo[3,4-c]pyran-

6(1H)-one (478)  

 

Table 1. 

1. Crystallographic data. 

 

 1 

net formula C10H16O6 

Mr/g mol
−1

 232.23 

crystal size/mm 0.140 × 0.030 × 0.020 

T/K 100(2) 

radiation MoKα 

diffractometer 'Bruker D8Venture' 

crystal system orthorhombic 

space group 'P b c n' 

a/Å 29.0686(13) 

b/Å 5.3102(3) 

c/Å 14.1305(7) 

α/° 90 

β/° 90 

γ/° 90 

V/Å
3
 2181.19(19) 

Z 8 

calc. density/g cm
−3

 1.414 

μ/mm
−1

 0.117 

absorption correction multi-scan 
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transmission factor range 0.8915–0.9580 

refls. measured 19646 

Rint 0.0393 

mean σ(I)/I 0.0240 

θ range 2.967–25.38 

observed refls. 1595 

x, y (weighting scheme) 0.0282, 1.7957 

hydrogen refinement mixed 

refls in refinement 1993 

parameters 151 

restraints 0 

R(Fobs) 0.0374 

Rw(F
2
) 0.0857 

S 1.057 

shift/errormax 0.001 

max electron density/e Å
−3

 0.212 

min electron density/e Å
−3

 −0.221 

 

C-H: constr, O-H: refall. 

 

Number Label Charge SybylType Xfrac + ESD Yfrac + ESD Zfrac + ESD Symm. op. 

1 O1 0 O.3 0.291031 0.629851 0.535441 x,y,z 

2 O2 0 O.3 0.389321 125.052 0.500355 x,y,z 

3 O3 0 O.2 0.283118 0.413807 0.404626 x,y,z 

4 O4 0 O.3 0.447071 100.356 0.430511 x,y,z 

5 O5 0 O.3 0.417579 110.074 0.646658 x,y,z 

6 O6 0 O.3 0.31671 0.654483 0.726642 x,y,z 

7 H6 0 H 0.303798 0.635549 0.783756 x,y,z 

8 C1 0 C.2 0.299897 0.595213 0.443793 x,y,z 

9 C2 0 C.3 0.330878 0.785453 0.398566 x,y,z 

10 H2A 0 H 0.314115 0.946359 0.390625 x,y,z 

11 H2B 0 H 0.340244 0.725381 0.335102 x,y,z 

12 C3 0 C.3 0.373818 0.8287 0.459776 x,y,z 

13 H3 0 H 0.394513 0.678765 0.455184 x,y,z 

14 C4 0 C.3 0.400289 106.445 0.431349 x,y,z 
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15 H4 0 H 0.390342 1.122 0.367149 x,y,z 

16 C5 0 C.3 0.379 113.364 0.588293 x,y,z 

17 H5 0 H 0.354966 123.297 0.622508 x,y,z 

18 C6 0 C.3 0.360415 0.8723 0.56419 x,y,z 

19 H6A 0 H 0.375674 0.74321 0.605051 x,y,z 

20 C7 0 C.3 0.308627 0.860942 0.578173 x,y,z 

21 H7 0 H 0.294114 100.924 0.546379 x,y,z 

22 C8 0 C.3 0.293834 0.854242 0.680045 x,y,z 

23 H8A 0 H 0.301481 101.608 0.711066 x,y,z 

24 H8B 0 H 0.260134 0.829365 0.683924 x,y,z 

25 C9 0 C.3 0.475373 120.556 0.397675 x,y,z 

26 H9A 0 H 0.466449 125.051 0.332964 x,y,z 

27 H9B 0 H 0.507675 115.277 0.398423 x,y,z 

28 H9C 0 H 0.4714 135.192 0.439126 x,y,z 

29 C10 0 C.3 0.435513 13.334 0.681564 x,y,z 

30 H10A 0 H 0.448174 143.129 0.628855 x,y,z 

31 H10B 0 H 0.459866 12.992 0.727769 x,y,z 

32 H10C 0 H 0.410799 142.928 0.712008 x,y,z 
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ADDENDUM 

As a part of this thesis, the biosynthetic hypothesis presented in 2.2.1 General Biosynthetic 

Proposal was recently supported by the successful synthesis of epicolactone. According to the 

guidelines for oxidative pyrogallol dimerizations detailed in 2.1.3.4 Conceptualization of Substrate-

Dependent Reactivity Trends, a selectively protected phenol methyl ether A1 was employed (Scheme 

187). Oxidation of this compound under conditions similar to the oxidative dimerization of epicoccine 

to dibefurin, followed by slow addition of epicoccine afforded O-Me-protected epicolactone 236 in an 

isolated yield of 13% on m = 15 mg scale.  

 

Scheme 187. Successful oxidative dimerization of epicoccine with benzyl alcohol A1. 

Further analysis of the reaction mixture showed the presence of two major byproducts A2 and A3 

of this dimerization reaction as judged by NMR and MS (Figure 51). Regioisomer A2 was hereby 

formed next to the desired product in a ratio r (236:A2)= 1.8:1 and conveniently separable by 

extraction into slightly basic medium. 

 

Figure 51. Byproducts of oxidative dimerization of epicoccine and benzyl alcohol A1. 

The formation of a structurally similar isomer alongside the desired product was also previously 

observed in the dibefurin synthesis (see 2.3.2.2 Oxidation of Epicoccine and Dibefurin Formation). 

Since the oxidative heterodimerization of epicoccine with another pyrogallol derivative is likely to 

occur in Nature, this result could have important implications. Potentially, isomer A2 also constitutes a 

natural product that has thus far eluded isolation. 

Mechanistically, it seems unlikely that the oxidative dimerization cascade proceeds through an 

intermediate such as 152 due to the side reactions observed in this thesis (see 2.2.1 General 

Biosynthetic Proposal and 2.3.4.5.4 Final Studies Toward the Synthesis of Epicolactone). It is possible 

that after oxidation, quinone 149 and benzyl alcohol A4 first dimerize to intermediate A5, a protected 
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version of diketone 151, in which the tautomerization to the enol tautomer of type 152, a two-step 

intermolecular process, would be slower than the intramolecular attack of C2O onto C4 (Scheme 188). 

Without the enol tautomerization, the high driving force for rearomatization would not exist and the 

cascade could proceed to Me-protected epicolactone 236 via intermediate 235. Employing protected 

versions of alcohol A1 such as catechols 170, 261 or 262 was therefore misleading since the C2O 

attack on C4 was impossible, eventually leading to the isolation of the thermodynamically more stable 

enol tautomer of type 152 that is prone to rearomatization. 

 

Scheme 188. Potential mechanism of oxidative dimerization to avoid intermediates such as 152 (1). 

As an alternative to this mechanistic proposal, epicoccine and benzyl alcohol A1 could first 

dimerize by MICHAEL-type addition of enol 149 to enone A4 to give intermediate A6. A bond between 

C2O and C4 could then be forged prior to the previously postulated aldol reaction to yield lactol A7 

(Scheme 189). This process would prevent the formation of intermediates such as 152. In analogy to 

the original biosynthetic proposal, hemiacetal A7 could undergo aldol addition to yield lactol A8 that 

would furnish the previously suggested intermediate 235 upon retro-DIECKMANN-type fragmentation. 

Final vinylogous aldol reaction would afford Me-protected epicolactone 236. 
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Scheme 189. Potential mechanism of oxidative dimerization to avoid intermediates such as 152 (2). 

The formation of isomer A2 can be rationalized by a different regioselectivity of the initial 

dimerization (Scheme 190). Instead of quinone 149, its tautomer 178 could dimerize to yield diketone 

A9 that would furnish isomer A2 by an analogous cascade process. 

 

Scheme 190. Rationale for the formation of isomer A2. 

The aromatic benzotropolone A3 can form because water has to be employed as a cosolvent due 

to the otherwise insoluble oxidant potassium ferricyanide. In principle, this product could arise from 

lactone hydrolysis of e.g. intermediate 235. Upon oxidation of the ene diol unit, the resulting product 

would be prone to decarboxylation and cleavage of formaldehyde to yield the aromatic benzotropolone 

core.  
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It was found that pentacycle 236 can be demethylated to furnish the natural product epicolactone 

by using MgI2 with 2,6-lutidine as a scavenger for MeI at slightly increased temperature (Scheme 

191). The final deprotection conditions as well as the purification protocol will require further 

optimization.  

 

Scheme 191. Successful epicolactone synthesis. 

In summary, a complex biosynthetic hypothesis was validated by the successful biomimetic 

synthesis of epicolactone. The oxidative dimerization cascade enables the formation of four adjacent 

tetrasubstituted carbon atoms, three of which are quaternary, with the correct diastereoselectivity from 

simple aromatic pyrogallol derivatives. 

5-(hydroxymethyl)-3-methoxy-4-methylbenzene-1,2-diol (A1) 

 

Benzyl alcohol 258 (500 mg, 1.37 mmol) was dissolved in MeOH (7.0 ml) and palladium on 

activated charcoal (10 wt-%, 30 mg, 0.027 mmol, 0.02 eq.) was added. The reaction vessel was 

evacuated and filled with hydrogen gas for three times and the reaction mixture was stirred under 

hydrogen gas atmosphere for 13.5 h at rt. The reaction mixture was filtered and the organic phase was 

concentrated under reduced pressure to afford the title compound as a colorless solid (237 mg, 94%). 

The product could be used in the subsequent steps without further purification. 

TLC Rf = 0.61 (100% EtOAc). 

m.p.:  159160 °C (decomposition). 

1
H NMR  (400 MHz, (D3C)2CO): δ 7.55 (s, 1H), 7.41 (s, 1H), 6.69 (s, 1H), 4.47 (d, J = 5.8 Hz, 

2H), 3.83 (t, J = 5.8 Hz, 1H), 3.71 (s, 3H), 2.12 (s, 3H) ppm. 

13
C NMR  (100 MHz, (D3C)2CO): δ 147.3, 144.1, 137.6, 132.0, 120.4, 111.6, 63.0, 60.3, 10.8 

ppm. 

HRMS  ((–)-ESI, m/z): calc. [M–H
–
]: 183.0657; found: 183.0663 [M–H

–
]. 
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IR  𝜈 = 3344 (br, w), 3202 (br, m), 2993 (w), 2936 (w), 2903 (w), 2832 (vw), 1619 (w), 

1518 (w), 1489 (w), 1461 (m), 1431 (m), 1408 (w), 1379 (w), 1306 (s), 1260 (m), 

1235 (s), 1216 (s), 1184 (m), 1093 (vs), 998 (s), 960 (s), 942 (vs), 879 (s), 864 (s), 832 

(m), 759 (m), 713 (s), 692 (s), 642 (m), 620 (s), 579 (s), 563 (s) cm
–1

. 

Epicolactone methyl ether 236  

 

Benzyl alcohol A1 (15 mg, 0.082 mmol, 1.0 eq.) was dissolved in MeCN (0.5 ml) and potassium 

ferricyanide (133 mg, 0.496 mmol, 6.0 eq.) and NaHCO3 (41 mg, 0.496 mmol, 6.0 eq.) dissolved in 

water (2.0 ml) were added dropwise. Subsequently, epicoccine (15 mg, 0.082 mmol) in MeCN/H2O 

(9:1, 0.5 ml) was added via a syringe pump over 2.5 h. After stirring for 0.5 h, pH 5 phosphate buffer 

(c = 1 M, 5 ml) was added and the aqueous phase extracted with EtOAc (4x10 ml). The combined 

organic phase was extracted with sat. aq. NaHCO3 solution (2x50 ml), dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by preparative TLC (5% 

MeOH/CH2Cl2) to afford the title compound as a colorless oil (4 mg, 13%). 

TLC Rf = 0.49 (5% MeOH/CH2Cl2). 

1
H NMR  (800 MHz, DMSO-d6): δ 8.51 (s, 1H), 6.00 (s, 1H), 4.53 (d, J = 9.7 Hz, 1H), 4.17 (d, 

J = 9.7 Hz, 1H), 3.91 (d, J = 9.7 Hz, 1H), 3.76 (d, J = 10.8 Hz, 1H), 3.66 (d, J = 9.7 

Hz, 1H), 3.57 (d, J = 10.8 Hz, 1H), 3.57 (s, 3H), 3.15 (s, 1H), 2.05 (s, 3H), 1.79 (s, 

3H) ppm. 

13
C NMR  (200 MHz, DMSO-d6): δ 192.7, 189.9, 175.6, 149.2, 146.7, 144.3, 127.3, 91.0, 72.9, 

70.1, 68.0, 67.9, 67.1, 66.5, 59.2, 49.8, 14.3, 13.6 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 362.1002; found: 362.0998 [M

+
]. 

IR  𝜈 = 3423 (br, w), 2986 (vw), 2936 (vw), 2876 (vw), 1770 (s), 1729 (m), 1671 (vs), 

1638 (s), 1475 (w), 1446 (w), 1392 (m), 1374 (m), 1356 (m), 1321 (w), 1289 (w), 

1242 (s), 1218 (s), 1175 (s), 1145 (m), 1101 (s), 1081 (s), 1044 (vs), 1020 (m), 1003 

(w), 982 (m), 967 (w), 952 (w), 933 (m), 885 (vw), 858 (vw), 803 (w), 789 (w), 744 

(vw), 717 (w), 689 (w), 625 (vw) cm
–1

. 

 



ADDENDUM   501 

Epicolactone 

 

Me-epicolactone 236 (24 mg, 0.065 mmol) was suspended in benzene (1.5 ml) and MgI2 (90 mg, 

0.23 mmol, 5.0 eq.) was added. The suspension was heated to 55 °C and the reaction was monitored 

by LC/MS. After 2 h, 2,6-lutidine (11 μl, 11 mg, 0.098 mmol, 1.5 eq.) was added. After further 6 h, 

more MgI2 (20 mg, 0.072 mmol, 1.1 eq.) was introduced. After further 11 h, more MgI2 (20 mg, 0.072 

mmol, 1.1 eq.) and 2,6-lutidine (10 μl, 10 mg, 0.093 mmol, 1.4 eq.) were added. The reaction mixture 

was stirred for 2 h before the temperature was increased to 65 °C. After further stirring for 28 h, pH 5 

phosphate buffer (c = 1 M, 5 ml) and sat. aq. Na2S2O3 solution (5 ml) were added and the reaction 

mixture was extracted with EtOAc (4x10 ml). The combined organic phases were dried over Na2SO4 

and concentrated under reduced pressure. The crude product was purified by preparative TLC (5% 

MeOH/CH2Cl2) to afford the natural product as a colorless solid (5 mg, 22%). 

TLC Rf = 0.37 (5% MeOH/CH2Cl2). 

1
H NMR  (800 MHz, DMSO-d6): δ 8.61 (s, 1H), 8.49 (s, 1H), 6.06 (s, 1H), 4.51 (d, J = 9.6 Hz, 

1H), 4.16 (d, J = 9.6 Hz, 1H), 3.91 (d, J = 9.6 Hz, 1H), 3.70 (d, J = 10.5 Hz, 1H), 

3.65 (d, J = 9.6 Hz, 1H), 3.53 (d, J = 10.5 Hz, 1H), 3.06 (s, 1H), 1.97 (s, 3H), 1.79 (s, 

3H) ppm. 

13
C NMR  (200 MHz, DMSO-d6): δ 192.7, 190.0, 175.9, 146.6, 145.8, 128.6, 127.3, 90.8, 73.0, 

71.2, 68.3, 67.6, 67.1, 66.6, 50.1, 14.3, 12.9 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 348.0845; found: 348.0829 [M

+
]. 

IR  𝜈 = 3410 (br, w), 2982 (vw), 2923 (w), 2852 (vw), 1769 (m), 1728 (m), 1670 (s), 1638 

(s), 1473 (vw), 1445 (w), 1392 (m), 1375 (m), 1354 (s), 1241 (vs), 1218 (s), 1177 (s), 

1143 (m), 1100 (s), 1076 (s), 1042 (vs), 1000 (m), 962 (w), 933 (m), 900 (w), 857 (w), 

802 (w), 787 (w), 755 (w), 716 (w), 689 (w) cm
–1

. 

  

 

 

 



502  ADDENDUM 

1
H NMR (DMSO-d6): 

chemical shift  

δ/ppm (natural sample)
[159]

 

chemical shift  

δ/ppm (synthetic sample)  

Δδ/ppm 

   

8.61 (s, 1H) 8.61 (s, 1H) 0.00 

8.50 (s, 1H) 8.49 (s, 1H) –0.01 

6.07 (s, 1H) 6.06 (s, 1H) –0.01 

4.51 (d, J = 9.6 Hz, 1H) 4.51 (d, J = 9.6 Hz, 1H) 0.00 

4.16 (d, J = 9.6 Hz, 1H) 4.16 (d, J = 9.6 Hz, 1H) 0.00 

3.90 (d, J = 9.8 Hz, 1H) 3.91 (d, J = 9.6 Hz, 1H) +0.01 

3.70 (d, J = 10.4 Hz, 1H) 3.70 (d, J = 10.5 Hz, 1H) 0.00 

3.65 (d, J = 9.8 Hz, 1H) 3.65 (d, J = 9.6 Hz, 1H) 0.00 

3.53 (d, J = 10.4 Hz, 1H) 3.53 (d, J = 10.5 Hz, 1H) 0.00 

3.06 (s, 1H) 3.06 (s, 1H) 0.00 

1.96 (s, 3H) 1.97 (s, 3H) +0.01 

1.79 (s, 3H) 1.79 (s, 3H) 0.00 

 

13
C NMR (DMSO-d6): 

chemical shift  

δ/ppm (natural sample)
[159]

 

chemical shift  

δ/ppm (synthetic sample)  

Δδ/ppm 

   

192.8 192.7 –0.1 

190.1 190.0 –0.1 

176.0 175.9 –0.1 

146.6 146.6 0.0 

145.9 145.8 –0.1 

128.7 128.6 –0.1 

127.5 127.3 –0.2 

90.9 90.8 –0.1 

73.0 73.0 0.0 

71.3 71.2 –0.1 

68.3 68.3 0.0 

67.7 67.6 –0.1 

67.2 67.1 –0.1 

66.6 66.6 0.0 

50.1 50.1 0.0 

14.4 14.3 –0.1 

13.0 12.9 –0.1 

Regioisomer A2 

 



ADDENDUM   503 

Benzyl alcohol A1 (30 mg, 0.16 mmol, 1.0 eq.) was dissolved in MeCN (1.0 ml) and potassium 

ferricyanide (266 mg, 0.991 mmol, 6.0 eq.) and NaHCO3 (82 mg, 0.991 mmol, 6.0 eq.) dissolved in 

water (4.0 ml) were added dropwise. Subsequently, epicoccine (30 mg, 0.16 mmol) in MeCN/H2O 

(4:1, 1.0 ml) was added via a syringe pump over 2 h. After stirring for 1 h, pH 5 phosphate buffer 

(c = 1 M, 10 ml) was added and the aqueous phase extracted with EtOAc (5x15 ml). The combined 

organic phase was extracted with sat. aq. NaHCO3 solution (2x50 ml) and the combined aqueous 

phase acidified with conc. aq. HCl solution. The aqueous phase was extracted with EtOAc (3x100 ml) 

and the combined organic phase dried over Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by preparative TLC (5% MeOH/CH2Cl2) to afford the title compound as a 

colorless solid (9 mg, 15%).  

This dimerization trial was conducted on larger scale and resulted in a better yield, which could 

represent a general feature of this cascade process. 

TLC Rf = 0.40 (5% MeOH/CH2Cl2). 

m.p.: 204–207 °C (decomposition) 

1
H NMR  (400 MHz, DMSO-d6): δ 9.00 (s, 1H), 6.29 (s, 1H), 4.64 (d, J = 10.2 Hz, 1H), 4.38 

(d, J = 16.1 Hz, 1H), 4.27 (d, J = 16.1 Hz, 1H), 4.22 (d, J = 10.2 Hz, 1H), 3.85 (d, 

J = 10.1 Hz, 1H), 3.75 (d, J = 10.1 Hz, 1H), 3.58 (s, 3H), 3.17 (s, 1H), 2.04 (s, 3H), 

1.08 (s, 3H) ppm. 

13
C NMR  (100 MHz, DMSO-d6): δ 193.7, 190.8, 176.3, 149.9, 149.0, 140.3, 136.8, 88.5, 68.1, 

67.8, 66.3, 65.6, 59.8, 59.6, 59.5, 51.2, 17.4, 14.4 ppm. 

HRMS  (EI, m/z): calc. [M
+
]: 362.1002; found: 362.0984 [M

+
]. 

IR  𝜈 = 3388 (w), 2991 (vw), 2929 (w), 2848 (vw), 1760 (m), 1695 (w), 1666 (vs), 1611 

(w), 1483 (vw), 1449 (w), 1376 (m), 1324 (w), 1273 (w), 1229 (w), 1211 (w), 1180 

(w), 1157 (w), 1143 (w), 1086 (s), 1042 (m), 1024 (m), 1014 (m), 976 (w), 915 (vw), 

902 (vw), 857 (vw), 821 (vw), 744 (vw), 626 (vw) cm
–1

.
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A1 (
1
H NMR, 400 MHz, (D3C)2CO) 

 

A1 (
13

C NMR, 100 MHz, (D3C)2CO) 
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236 (
1
H NMR, 800 MHz, DMSO-d6) 

 

236 (
13

C NMR, 200 MHz, DMSO-d6) 

 



506  ADDENDUM 

Epicolactone (
1
H NMR, 800 MHz, DMSO-d6) 

 

Epicolactone (
13

C NMR, 200 MHz, DMSO-d6) 
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A2 (
1
H NMR, 400 MHz, DMSO-d6) 

 

A2 (
13

C NMR, 100 MHz, DMSO-d6) 

 


