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Inhaltsangabe

In dieser Doktorarbeit wurde die Wechselwirkung zwischen Elektronen in einem getriebenen Doppelquan-
tenpunkt und seiner Umgebung untersucht. Ein Quantenpunkt ist eine nanoskopische Struktur, in der
Elektronen in allen drei Raumrichtungen lokalisiert sind, sodass sie ähnlich wie in einem Atom ein diskretes
Energiespektrum aufweisen. Dieses System kann benutzt werden, um fundamentale Quanteneigenschaften
wie den Elektronenspin oder Superpositionszustände im Festkörper zu untersuchen. Die hier betrachteten
Quantenpunkte wurden mittels Feldeffekt elektrostatisch in einem zweidimensionalen Elektronensystem
basierend auf einer GaAs/AlGaAs-Heterostruktur defininiert. Diese Methode erlaubt Kontrolle über das
Einschlusspotential der Elektronen, da die Elektrostatik über Spannungen an metallischen Gattern während
des Experiments beeinflusst werden kann, sowie die direkte Messung von Elektronentransport durch die
Quantenpunkte. In dieser Arbeit wurde ein System von zwei zu einem Doppelquantenpunkt gekoppelten
Quantenpunkten studiert. Das theoretische Konzept des quantenmechanischen Zwei-Niveau-Systems kann
durch bestimmte Kombinationen der Molekülzustände im Doppelquantenpunkt in guter Näherung reali-
siert werden. Doppelquantenpunkte stellen daher ein mögliches System zur Implementierung von Qubits
im Kontext der Quanteninformationsverarbeitung dar. Da das Zwei-Niveau-System von seiner Umgebung
jedoch nicht völlig isoliert ist, spielen Wechselwirkungen für die Zeitentwicklung des Quantenzustands im
Festkörper eine wichtige Rolle.

Der erste Teil der Arbeit untersucht die Wechselwirkung von Zwei-Elektron-Spinzuständen in einem
inhomogenen, d.h. am Ort der beiden Quantenpunkte unterschiedlichen, Magnetfeld. Dieses inhomogene
Magnetfeld wurde erstmalig mit zwei eindomänigen magnetischen Gattern realisiert und mittels direkter
Strommessung sowie Elektronspin-Resonanz charakterisiert. Da die Atome des GaAs-Kristalls, in dem der
Doppelquantenpunkt realisiert ist, einen Kernspin aufweisen, können Elektronen in einem Quantenpunkt
mit typischerweise 106 Kernspins über Hyperfeinwechselwirkung interagieren. Unter bestimmten Bedin-
gungen können die Kernspins durch die Hyperfeinwechselwirkung dynamisch polarisiert werden, was im
Hinblick auf die Wechselwirkung mit den Elektronen in semiklassischer Näherung als effektives Magnetfeld
beschrieben werden kann. Wegen des komplexen elektronischen Spektrums der Quantenpunkte und der
Vielzahl an Kernspins ergibt sich hieraus eine bislang noch nicht vollständig verstandene Dynamik, die zu
verschiedenen Fixpunkten in der Polarisationsdynamik führt. Es gelang, verschiedene Fixpunkte durch
Messung des effektiven Magnetfeldes mittels Elektronspin-Resonanz zu charakterisieren und mit ihrer
Hilfe eine hohe Kernspin-Polarisation direkt nachzuweisen.

Der zweite Teil der Arbeit beschäftigt sich mit einem Qubit bestehend aus zwei gekoppelten Ladungszu-
ständen, die mithilfe einer periodischen Gatterspannungsmodulation durch Landau-Zener-Übergänge in
Superposition gebracht wurden. Die dadurch entstehenden Landau-Zener-Stückelberg-Majorana-Inter-
ferenzmuster wurden durch die Dekohärenz des Zwei-Niveau-Systems modifiziert. Es konnte gezeigt
werden, dass die Ladungszustände in Quantenpunkten in erster Linie an Ladungsfluktationen in ihrer
Nähe, sowie an das Phononenspektrum des Kristalls koppeln. Über ein theoretisches Modell, das die beiden
auf sehr unterschiedlichen Zeitskalen stattfindenden Wechselwirkungen berücksichtigt, konnten die Inter-
ferenzmuster im Detail analysiert und die Kohärenzzeit des individuellen Qubits und die Dephasierung des
Zeitensembles getrennt bestimmt werden, ohne dass auf eine experimentell kompliziertere Echomessung
zurückgegriffen werden musste. Darüber hinausgehend wurde der Einfluss von komplexeren Antrieben
auf das Interferenzmuster am Beispiel von bichromatischen Antrieben mit unterschiedlichen Frequenz-
verhältnissen und Phasenbeziehungen untersucht. Die Symmetrieeigenschaften der unterschiedlichen
Interferenzmuster konnten auf die des jeweils zugrunde liegenden Antriebs zurückgeführt werden.
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1 Introduction

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence
passed on to the next generations of creatures, what statement would contain the most infor-
mation in the fewest words? I believe it is the atomic hypothesis [...] that all things are made
of atoms – little particles that move around in perpetual motion, attracting each other when
they are a little distance apart, but repelling upon being squeezed into one another. (Richard
Feynman [1])

It is this sentence that Richard Feynman put in the beginning of his famous Lectures on Physics with
which he has influenced the perception of the world around us of a number of undergraduate students
including myself. While the concept of atoms goes back to ancient philosophy, the starting point of the
scientific atomic theory is often attributed to John Dalton in the early 1800s [2, p. 131]. In the following
years, many observations could be explained by theories following from the atomic hypothesis and the
classical Newtonian mechanics, such as the kinetic gas theory. However, a question which is not answered
by the atomic hypothesis as phrased by Feynman remains: why do atoms actually do what they do, how
do they interact, and do atoms consist maybe of other particles? In the beginning of the 20th century,
this question lead to what is among the most significant achievements in modern science: the theory of
quantum mechanics, which can describe physics on very small length scales comparable to the size of
atoms and molecules. It has since then lead to numerous advances in understanding the atomic nature of
matter and also shed light on the quantum world which continuously disappoints our intuitive expectations
drawn from classical mechanics in exciting ways.

As building blocks of bulk materials, the physics of atoms is highly relevant for macroscopic solid
state systems. The theory of quantum mechanics, which is able to predict the movement of electrons
in semiconductors, enabled the development of what is perhaps the most influential technology in our
everyday lives: the transistor. Its invention made a multitude of applications in electronic circuits possible,
from simple switches built from a single transistor to modern microprocessors, highly integrated circuits
composed of billions of transistors connected to a complex digital logic. Advanced fabrication techniques
allow us nowadays to engineer artificial structures with nanometre precision. At the heart of this thesis is
one of these artificial nano systems, the quantum dot. In a quantum dot, electrons are confined in all three
spatial dimensions similar to an atom, and the fundamental quantum mechanics for these so called artificial
atoms is the same as for actual atoms. Interestingly, we returned to a point similar to where quantum
mechanics started over a hundred years ago; but as the modern fabrication techniques provide control
over the confinement potential defining the quantum dots, their properties can be tailored. This makes
quantum dots excellent model systems to research fundamental quantum mechanics, such as the spins of
single electrons, superposition states, and multi-particle interactions in a solid state environment [3–5].
However, quantum dots are more than just model systems, as state-of-the-art experiments demonstrate
a high degree of quantum control which makes them possible candidates for quantum bits (qubits), the
analogue in quantum computing to the bit in boolean logic [6, 7].

While quantum dots exist in many realizations, the quantum dots investigated in this thesis are elec-
trostatically defined in a semiconductor crystal [3]. This type of quantum dot is particularly suited for
studying the transport of electrons through the quantum dot structure and offers a high degree of control
over the confinement potential during the experiment. The thesis is devoted to interactions of electrons in
a driven double quantum dot (DQD) with the solid state system the quantum dot is embedded in. It studies

7



1. Introduction

the impact on the electron transport through the double quantum dot system, which is a system of two
coupled quantum dots. More specific, I investigated the influence of an inhomogeneous magnetic field
across the DQD produced by an on-chip nanomagnet in the regime of spin-dependent transport (Pauli
spin blockade) by means of direct current measurements as well as electron spin resonance (chapter 5).
With these methods, I also studied the electron-nuclear hyperfine interaction between the electrons in the
DQD and the nuclei of the GaAs host crystal. Employing a dynamic polarization technique developed in a
preceding PhD thesis [8], the polarization of the ∼106 nuclear spins at the position of the double quantum
dot exceeded 50% and, as a novel aspect in this structure, was also significant in its surroundings (chapter
6). The understanding of the nuclear dynamics is of high interest for quantum information applications,
where the nuclear spins are the main decoherence source for spin qubits [9]. As a second part of this thesis,
I probed the quantum coherence of charge states in a periodically driven double quantum dot utilizing
Landau-Zener-Stückelberg-Majorana interference [10] of two-electron charge states. The charge states in
this system are mainly influenced by two interactions: On the one hand, Coulomb interaction with fluctuat-
ing charges in the environment of the quantum dot, and electron-phonon interaction on the other hand.
The applied method allows us to separate both contributions and identify the coherence time for the single
qubit as well as the dephasing time of the time ensemble (chapter 7). Furthermore, I investigated the influ-
ence of more complex bichromatic drivings on the symmetry of the Landau-Zener-Stückelberg-Majorana
interference patterns (chapter 8).

This thesis is written as a cumulative thesis, i.e. the main content of this work presented in chapters 5 to 8
consists of several articles published in peer-reviewed journals during the course of the PhD research. In
the beginning, each of these chapters provides an overview about the contents of the respective publication.
This overview is followed by a theory section which is intended to make the non-specialist reader familiar
with the main aspects of the particular physics discussed later on in this chapter, and a section describing
the measurement setup of the experiment. The complete list of publications is included in appendix D and
also provides detailed information about the contribution of each author. Preceding this main part of the
thesis is an introductory part structured as follows: First, I give an introduction to transport spectroscopy in
quantum dots with the main focus on double quantum dots in chapter 2. This chapter is written with a
broad readership in mind who might not be familiar with quantum dots or want to refresh their knowledge
about the concepts used to describe the principal quantum dot physics. Chapter 3 explains the basic
material system used to realize the double quantum dots studied in this thesis and contains an overview
about the fabrication process with details on the fabrication of the single-domain nanomagnets. Chapter 4
covers the low-temperature measurement setup and concludes this part.
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2 Transport spectroscopy of quantum dots

The confinement of a particle inside a potential with dimensions comparable to its De-Broglie wavelength
is a text book example of quantum mechanics. It leads to the quantization of the particle’s energy while the
details of the spectrum depend on the form of the confinement potential. Electrons in quantum dots (QDs)
are confined within all three spatial dimensions similar to an atom. In fact, even though there are quite
large differences for example in size (∼1 Å for an atom compared to ∼100 nm for a QD), they share a lot of
the electronic properties such as the shell-like filling according to Hund’s rules, so that quantum dots are
often referred to as artificial atoms [11].

2.1 Semi-classical description

2.1.1 Single quantum dots

While QDs exist in different realizations, the QDs investigated in this thesis are embedded in a semicon-
ductor crystal. They are coupled via tunnel barriers to electron reservoirs with which electrons can be
exchanged and which can be used to probe the electronic properties of the QD in transport experiments.
Furthermore, the QD is coupled capacitively to metallic gates which can be used to tune the electrostatic
energy inside the quantum dot with respect to the electron reservoirs. A straightforward approach to
the understanding of the main features of the system is given by the constant interaction model. This
model makes two assumptions [4]: First, the Coulomb interaction of electrons inside the dot with each
other as well as with other charges outside of the QD can be parametrized by a single capacitive constant
C . C is the sum of all capacitances between the dot and its environment, usually the source and drain
contacts and multiple gates. Even though there is typically more than one gate present, we will simplify our
model by capturing the influence of all gates in one representative gate. As the second assumption, the
quantum mechanical single-particle spectrum with the energies εn is independent of these interactions.
The electrostatic energy of n electrons in the quantum dot is given by

U (n) = [−en + (VGCG +VLCL +VRCR )]2

2C
, (2.1)

where e is the electron charge, and Vi are voltages to the gate and contacts which are coupled to the QD
by capacitances Ci , as depicted in the sketch 2.1(a) [3]. The chemical potential is a particularly useful
concept for determining the electron ground state of the system as a function of external parameters, since
the system to consider is the grand canonical ensemble of the QD connected to the leads. The chemical
potential µ(n) of the electron n in the QD can be defined based on (2.1) as

µ(n) = εn +U (n)−U (n −1) = εn + e2

C
(n −1/2)− |e|

C
(VGCG +VLCL +VRCR ), (2.2)

which is the energy needed to add the nth electron to the QD. Here, we included the quantum mechanical
single-particle spectrum εn . Note that µ(n) is a discrete function of the particle number n, in contrast to
the one of e.g. a Fermi liquid. A direct consequence of this relation is the possibility to modify the chemical
potential inside the QD by changing the voltages Vi in the system. Here, we introduce the concept of a lever
arm αi = ∂µ(n)/∂Vi to relate a change in voltage to the change in chemical potential. From equation (2.2),
we find αi =−|e|Ci /C . Only if the chemical potential of the dot is below or equal to one of the chemical

9



2. Transport spectroscopy of quantum dots
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Figure 2.1: Semi-classical model of a single quantum dot. (a) Equivalent circuit of a quantum dot (blue) coupled to a
gate (index G), a left (L) and a right (R) reservoir at voltages Vi . The capacitive coupling constants are denoted by
Ci . The reservoirs are also coupled resistively by Ri to the quantum dot which enables electron exchange under the
conditions sketched in (d, e). (b) Sketch of the quantum dot with the chemical potential of two electron levels µ1 and
µ2 and the tunnel barriers connecting the dot to the two reservoirs. Only the first level is occupied by an electron
(blue circle) since its chemical potential lies beneath the one of the reservoirs. (c) The same as (b) but with µL −µR > 0.
Electrons can be exchanged between the two reservoirs via the electron states n for which µL >µn >µR is valid. The
dashed gray line shows the confinement potential of (d), where the chemical potentials inside the dots are shifted by a
gate voltage VG . (d) Coulomb blockaded quantum dot, where no electron state is energetically available for transport.
(e) Reduced scheme of the (n) → (n +1) → (n) electron transport cycle, where n denotes the number of electrons in
the dot. In the reduced scheme, tunnel barriers are drawn as vertical lines and not necessarily all n states are shown.

potentials of the reservoirs, i.e. µ(n) ≤ µL,R , an electron will eventually tunnel from the correspondent
reservoir into the dot. Figure 2.1(b) shows an example of a few-electron dot with two electron states,
where µ(1) is occupied but µ(2) remains unoccupied. In the same spirit, if one of the reservoirs’ chemical
potentials is lower or equal compared to the one inside the dot, i.e. µ(n) ≥µL,R , the electron occupying the
nth level will move out of the quantum dot into the reservoir. By modifying the chemical potential of the
dot, the number of electrons inside the dot can be tuned from hundreds of electrons down to a single one
[12].

We define the charging energy EC as difference between the chemicals potentials of n and n +1 electrons
on the QD,

EC (n) =µ(n +1)−µ(n) = e2

C
+∆ε,

where ∆ε= εn+1 −εn is the contribution of the single-particle spectrum. For lateral QDs discussed in this
thesis, the Coulomb energy e2/C of around 1–10 meV is typically more than a magnitude larger than the
contribution of the single-particle spectrum and hence clearly dominates the level splitting [12] so that we
can neglect∆ε in most of our discussions such that EC is independent of n. To resolve the spectrum of a QD,
the broadening of the single electron levels in the QD has to be smaller than EC . For the conditions of the
experiment, this implies a low noise level, suitable tunnel barriers (lifetime broadening), and that the Fermi
edge in the leads is sufficiently sharp, i.e. kB T ¿ EC

(1), which means cryogenic temperatures T . 1K.
Electrons can be exchanged from one to the other reservoirs by sequential tunnelling through the QD,

if one or more electron states are energetically between the chemical potentials of the reservoirs, i.e.
µL >µ(n) >µR [figure 2.1(c)] or µL <µ(n) <µR . The size of this current is determined by the time scales of
the individual electron transfer processes from and to the reservoirs, modelled semi-classically by the size
of the resistors RL,R and capacitances in figure 2.1(a). A very distinct feature of the current is the so called
Coulomb blockade which is a direct consequence of the large charging energy EC . If the difference of the
chemical potentials of the reservoirs, realized by a bias voltage e(VL −VR ) =µL −µR 6= 0, is fixed and much
smaller than the charging energy, this condition is only satisfied at very distinct gate voltages. So whenever
|e|(VL −VR ) ¿ EC is valid, the system is in a blockaded state for most gate voltages, where no first-order
current will flow despite of an applied bias. Figure 2.2(a) shows a typical measurement of the gate voltage

(1)kB denotes the Boltzmann constant.
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2.1 Semi-classical description
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Figure 2.2: (a) Measurement of the gate voltage dependent current through a single QD. The inset numbers indicate
the numbers of electrons in the ground state. At most gate voltages, current is suppressed due to the Coulomb
blockade which is only lifted at the transition of the electronic ground states. The dot’s state at the position of the
markers is sketched in (b). (b) Chemical potentials at the voltages marked in (a). Circular and square markers: The
chemical potential of the electron is too low to find an unoccupied state, hence the electron cannot move into (square)
or out of (circle) the dot (Coulomb blockade). Triangular marker: The chemical potentials of the reservoirs and the
dots are aligned accordingly, such that the Coulomb blockade is lifted.
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Figure 2.3: Model of a double quantum dot. (a) The equivalent circuit of the single quantum dot (QD1) in figure
2.1(a) is extended by a second quantum dot (QD2) which leads to a series of two QDs connecting the two reservoirs.
The quantum dots are coupled by the capacitance CM and resistance RM which enables tunneling of the electrons
between the dots. (b) Scheme of the chemical potentials for a DQD and its leads similar to figure 2.1(e).

dependency of current through a QD. It shows the characteristic features of large regions of VG in which no
current flows due to the Coulomb blockade in addition to very distinct current peaks separated by ∆VG for
which holds αG∆VG = EC , as sketched in figure 2.2(b).

2.1.2 Double quantum dots

A straightforward extension of a single quantum dot is the combination of two quantum dots to a double
quantum dot (DQD) connecting the two reservoirs in series. Extending the single QD discussed above, each
quantum dot is now coupled to a gate, to one of the reservoirs and to the other quantum dot as depicted in
the equivalent circuit diagram 2.3(a). The derivation of the lengthy term for the electrostatic energy can be
found in many review papers, e.g. in reference [3, p. 20], and is omitted here. The chemical potential µi of
dot i (2) with the electron occupation (n1,n2) can be calculated to

µ1(n1,n2) =
(
n1 − 1

2

)
EC 1 +n2EC M − 1

|e| (CG1VG1EC 1 +CG2VG2EC M )

µ2(n1,n2) = n1EC M +
(
n2 − 1

2

)
EC 2 − 1

|e| (CG1VG1EC M +CG2VG2EC 2)

with ECi = e2

Ci

(
1− C 2

M

C1C2

)−1

, EC M = e2

CM

(
C1C2

C 2
M

−1

)−1

,

(2)i ∈ 1,2
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Figure 2.4: (a) Charge stability diagram of a GaAs-based double quantum dot investigated in section 5. (n1,n2)
denotes the number of electrons in the ground state. Charge transition lines at which electrons are exchanged with
the reservoirs are emphasized by dotted lines. (b) Triple points of a similar DQD as in (a) with a bias of 1 meV between
the two reservoirs. Solid and dashed black lines mark the resulting current triangle originating from the alignment of
the chemical potentials inside the quantum dot with the reservoirs. Labels for chemical potentials µi relate to the
ground state of the charge diagram’s section in which the labels are positioned. Gray lines mark the transition lines for
µ1 =V = 0. The brown arrow marks the detuning axis ε. (c) Alignment of chemical potentials µ1(n +1,n2 −1) and
µ2(n1,n2) for three special cases for the corresponding markers in (b). For the circle and the triangle markers, the
detuning ε is zero and the chemical potentials are resonant with the one of the reservoirs. At the square marker, the
detuning is equal to eV which is the largest detuning for which current can still be measured.

where Ci is the sum of all capacitances connected to dot i , e.g. C1 = CL +CG1 +CM . ECi is the charging
energy for each individual dot i , e.g. µ1(n1 +1,n2)−µ1(n1,n2) = EC 1. The capacitive coupling between the
quantum dots CM has two effects: First, the chemical potential of one dot is dependent on the number of
electrons in the other dot since electrons on the other quantum dot act like charges on a gate. Second, the
gate of one dot is effectively cross-coupled to the other quantum dot meaning the chemical potential in
each dot depends on both gate voltages. A finite CM enables a finite EC M , which is the electrostatic coupling
energy, i.e. the change of energy in one dot when an electron is added to the other dot [4, p. 29]. For CM → 0,
hence EC M → 0, all cross-coupling terms in (2.5) vanish and the relation (2.2) for the single dot is recovered.

The diagram showing the ground state configuration of the quantum dot in dependence of the gate
voltages is called charge stability diagram. A non-vanishing CM leads to a hexagonal pattern as depicted in
figure 2.4(a). The lines separate regions of different electronic ground states, e.g. (n1,n2) and (n1 +1,n2).
Along lines with negative slope, the charging lines, emphasized by dotted lines in figure 2.4(a), the respective
chemical potential inside one of the dots is equal that of the reservoir. The slope of the line gives information
about which dot is affected: Lines with a steeper slope in figure 2.4(a) indicate a stronger coupling to VG1

marking a transition in QD1, whereas lines with a small slope indicate a stronger coupling to VG2 and hence
mark transitions in QD2. The lines with positive slope at the narrowest region between two hexagons mark
interdot transitions – along these lines, the chemical potentials of both dots are aligned and electrons can
be exchanged between the dots. The size and the proportions of width and length of each individual cell
depend on the lever arms connected to the capacitive constants and therefore the charging energies of the
system and can be used to determine these constants for a real system. However, the exact procedure is
quite technical and gives no further insight into the physical properties of the system. References [3, 13, 14]
contain comprehensive summaries and step by step instructions how to carry out the energy calibration in
detail.

The most prominent points of the charge stability diagrams are the connecting points of three neigh-
bouring cells. At these so called triple points, the chemical potentials of both dots and both reservoirs
are aligned. Since the current condition is similar as for the case of a single dot, e.g. current can only
flow from the left to the right reservoir(3) if µL ≥ µ1 ≥ µ2 ≥ µR , current can only occur in the vicinity of
these triple points. Applying a bias between the two reservoirs will shift their chemical potentials and

(3)For a directed current, at least one condition must satisfy > if no other asymmetry exists in the system.
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2.1 Semi-classical description

therefore also the charging lines in the stability diagram. For the simplest and experimentally most relevant
case we consider a voltage V = −(µL −µR )/e and assume µR = 0 independent of V . This increases the
chemical potential connected to QD1 and shifts all lines with steep slopes in figure 2.4(a) to the left by
the energy eV = αG1∆VG1 while leaving the lines with smaller slopes untouched as they belong to the
dot connected to the other reservoir. This leads to triangular regions of allowed current around the triple
points, as shown in figure 2.4(b). Each triangle belongs to a transport cycle involving the three charge
configurations at the respective triple point; e.g. the lower triangle in figure 2.4(b) belongs to the cycle
(n1,n2) → (n1,n2 −1) → (n1 +1,n2 −1) → (n1,n2). Outside of the current triangles, the QD system remains
in Coulomb blockade.

To understand the triangular shape, we look at the alignment of the chemical potentials inside the dots.
Let us define the difference between the two chemical potentials inside the dots, µ1 −µ2 = ε, as detuning.
Along the baseline of the triangle, the chemical potentials in both dots are equal and hence ε= 0. Starting at
the lowest point of the baseline of a triangle (circle marker in figure 2.4(b)), µ1 and hence also µ2 is resonant
with µL = eV . By following the baseline, we shift µ1 as well as µ2 gradually down in energy by making both
VG1 and VG2 more positive until we reach the other tip (triangular marker), where µ2 =µR = 0 =µ1. At the
tip opposing the baseline, the lines for µ1 = eV and µ2 = 0 cross each other, marking the point of maximum
detuning ε = eV at which current is possible. The chemical potentials for the three configurations just
discussed are sketched in figure 2.4(c). In general, along each line connecting the baseline and the tip
the detuning increases linearly. For example, along the edge between the circle and the square marker
in fig. 2.4(b), µ2 is reduced from eV to 0 while µ1 remains at eV . However, the symmetric case in which
µ1 is increased, eV /2 → eV , and µ2 is decreased, eV /2 → 0, is often defined as the detuning axis ε. As a
consequence of the symmetry, the line crosses the baseline exactly at the center, as depicted in figure 2.4(b)
by a brown arrow. Note that only the transitions at ε= 0, i.e. the baseline of the current triangles, are elastic;
so it is essential that the system is connected to a dissipative bath to comply with energy conservation for
inelastic transitions at ε> 0.

2.1.3 Spin dependent transport

So far, we have neglected quantum mechanical properties to a large extent and reduced our considerations
mainly to the Coulomb interaction between electrons on the dot. In fact, many features of the DQD system
can be readily explained by this simplification, since the Coulomb interaction is by far the biggest energy
scale in the system. Indeed, one has to look more closely to discover the intriguing and surprisingly complex
influence of quantum mechanics. The first major step is to include the electron spin into the picture.
This already leads to a multitude of consequences for the QD physics about which reference [4] gives a
comprehensive overview. As a start, we focus on the phenomenon of Pauli spin blockade (PSB) which is
a main feature for transport in the few electron regime of a DQD and remains important throughout all
chapters of this thesis.

It is instructive to think again about QDs as artificial atoms. Just as real atoms form molecules, two QDs
which are coupled to each other form a DQD system which is different from two separate single QDs. At
this point, we focus on a DQD charged by two electrons, since this will be the relevant case for all our
experiments.

To model the spin properties of our DQD system, we will separate its total quantum state |Ψ〉 into an
orbital part and a spin part, such that |Ψ〉 = |Ψorbit〉⊗

∣∣Ψspin
〉

. |Ψorbit〉 is determined primarily by the con-
finement potential and therefore the Coulomb interaction, while all the spin physics is included in

∣∣Ψspin
〉

.
In the following, I will briefly recapitulate the main properties for a system of two indistinguishable spin-1/2
Fermions, such as the two interacting electrons inside a DQD. The derivation and a more comprehensive
discussion of these properties can be found in any standard text book of quantum mechanics, for instance
in reference [15, p. 997ff].

We use the expressions |↑〉 for a spin-up state, and |↓〉 for a spin-down state in Dirac notation. Two-particle
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2. Transport spectroscopy of quantum dots

spin states are mathematically described by the tensor product of the single spins; |↑〉⊗|↓〉 ≡ |↑↓〉 for example
denotes a spin-up state of the first particle and a spin-down state of the second particle. The quantum
mechanical operator associated with a spin-1/2 particle is si = h

2σi , where σi can be represented by a
vector of Pauli matrices in the Cartesian basis, which satisfy the standard commutation relations of a
momentum operator. Since the particles are indistinguishable and form a two-electron state, the accessible
commuting observables are not the individual spins, but the total spin of the system and its projection on
one axis, commonly to be chosen as z-axis. The operator for two spin-1/2 particles is just the sum of two
spin operators, each acting on the subspace of its own spin, s = s1 +s2. While the states |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉
are the eigenstates of the spin projection operator sz = s1,z + s2,z , where si ,z is the spin projection operator
for the electron i , the situation is more difficult for the total spin angular momentum, s2 = (s1 +s2)2. The
diagonalization of this operator, which is carried out as a part of appendix A.2, yields its four eigenstates,
namely

|T+〉 = |↑↑〉 ,

|T0〉 = 1p
2

(|↑↓〉+ |↓↑〉) ,

|T−〉 = |↓↓〉 ,

|S〉 = 1p
2

(|↑↓〉− |↓↑〉) .

(2.6)

The quantum number s commonly defined for each state is connected to the eigenvalue of the total spin
operator, s2

∣∣Ψspin
〉= s(s+1)~2

∣∣Ψspin
〉

. The three states |T±〉 and |T0〉 are called triplet states with s = 1, and
therefore have a finite total spin momentum. The state |S〉, a singlet, has the quantum number s = 0 and its
total spin therefore vanishes. In the same spirit, the quantum number m is connected to the eigenvalue of
the spin projection, sz

∣∣Ψspin
〉= m~

∣∣Ψspin
〉

. For |T+〉, both spins add up to m = 1, whereas |T−〉 with both
spins pointing in the other direction yields m =−1. For |T0〉, the z-components of the spin cancel each
other such that m = 0. For |S〉, the total spin momentum is 0 and therefore the projection onto the z-axis
also vanishes, m = 0.

The triplet states of equation (2.6) are symmetric with respect to the exchange of the two spins, while the
singlet state is antisymmetric. Since the entire wavefunction |Ψ〉 is always antisymmetric due to the Pauli
principle of Fermions, the symmetry of |Ψorbit〉 and the symmetry of

∣∣Ψspin
〉

depend on each other. If one is
symmetric, the other one must be antisymmetric to achieve antisymmetry in |Ψ〉. This directly implies an
exchange energy difference J between the singlet and the triplets due to their orbital wavefunctions. In the
systems discussed in this thesis, this exchange energy is positive such that triplets have a higher energy than
singlet states at zero magnetic field. In the following and throughout the thesis, we will denote the total
wavefunction just by their spin part, albeit that singlet has to be read as singlet state including its orbital
part.

In summary, the inclusion of spin to the system yields for each occupation configuration four different
two-electron spin states that make up the lowest-lying energy eigenstates: For two electrons, the orbital
part is either (2,0), (1,1) or (0,2), adding up to a total of 12 eigenstates. At zero magnetic field, the three
triplet states of each occupation configuration are degenerate and separated from the singlet state by the
exchange energy. The exchange energy of the (2,0) and (0,2) states, where both electrons are confined to a
single dot, is significantly larger than the one of the (1,1) states, since the exchange energy increases with
the overlap of the two-electron wavefunctions.

Even if no magnetic field is present, the existence of singlet and triplet states has a severe impact on the
electron transport. The main reason is the selection rule which forbids transitions between pure singlet
and triplet states in first order, because of spin angular momentum conservation. First, we consider the
transport cycle of a two-electron double quantum dot (2,0) → (1,1) → (1,0) → (2,0) as depicted in fig. 2.5(a).
Here, the current remains undisturbed compared to the case without spin discussed before, since the triplet

14



2.2 Quantum mechanical description of a two-electron double quantum dot
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Figure 2.5: (a) Transport cycle for a two-electron DQD for the sequence (2,0) → (1,1) → (1,0) → (2,0). Triplets T20 and
singlet S20 are separated by a large exchange energy J20. Left panel: T20 is not in the bias window µL −µR ; only singlet
states contribute to transport. Right panel: T20 is now inside the bias window and can contribute to the transport. (b)
Reverse bias as in (a) leading to the transport cycle (1,1) → (2,0) → (1,0) → (1,1). Left panel: Eventually the triplet
T11 is occupied blocking further transport since T20 are energetically not accessible and the transition between pure
singlet and triplet states is forbidden (Pauli spin blockade). Right panel: Lifting of the Pauli spin blockade when T20

has a lower chemical potential than T11. (c) Charge stability diagram similar to fig. 2.4(b) in the presence of Pauli spin
blockade (almost vanishing current in the lower region of the triangle). Markers correspond to the sketches of (b).
The exchange interaction of the singlet and triplet (2,0) states is marked by J20.

state T20 either is not accessible (left panel of fig. 2.5(a)) and the transport only involves singlet states or
can transition to the triplet T11 state due to the lower exchange energy J11 (right panel). The situation
changes drastically for the reverse transport cycle, namely (1,1) → (2,0) → (1,0) → (1,1). The initial (1,1)
occupation can either be S11 or T11 with equal probability in good approximation. If the initial state is S11,
it can transition to S20 and contribute to the current as before. However, if the initial state is T11, it can
neither transition to T20 due to the high exchange energy J20, nor to a singlet because of the selection rule
of spin conservation. Since the electron cannot leave the QD and no other electron can enter because of the
charging energy, T11 becomes a metastable state which will eventually block the current as shown in the left
panel of figure 2.5(b). This so called Pauli spin blockade is visible as a region of highly suppressed current at
the lower part of the stability diagram in 2.5(c) (marked by a circle). For higher detuning ε, T20 enters the
transport window and lifts the blockade [right panel in 2.5(b)] resulting again in a sizeable current in the
upper part of the current triangle in 2.5(c) (marked by a square). Since J20 À J11, the region of suppressed
current is mainly given by J20 as indicated in figure 2.5(c) by a grey arrow.

Importantly, there are mechanisms to lift the Pauli spin blockade even if T20 remains energetically
inaccessible. The main mechanisms include the presence of an inhomogeneous magnetic field across the
DQD [16], hyperfine interaction between the DQD’s electrons and the nuclei of the host material [17] , and
co-tunneling via the energetically forbidden T20 state [18]. In all presented experiments, the DQD was
tuned to be only weakly coupled to the leads, such that the latter is only a minor effect compared to the
others: The inhomogeneous magnetic field, which is provided by on-chip single-domain nanomagnets in
the vicinity of the DQD, is by far the largest contribution and will be discussed in section 2.2.2. The lifting of
PSB via hyperfine interaction provides the exciting possibility to manipulate the state of the nuclear spins
of the host material and is a topic of chapter 6.

2.2 Quantum mechanical description of a two-electron double
quantum dot

We will now discuss the quantum mechanical description of our two-electron DQD in the local basis
{|T+〉 , |T0〉 , |T−〉 , |S11〉 , |S20〉}. Here, the three triplet states are the triplet states of the (1,1) occupation and
we neglect the triplets (2,0) due to their large exchange energy as discussed before, because we only work
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Figure 2.6: (a) Term scheme of a two-level system where the basis states |S20〉 and |S11〉 are coupled to each other by a
coupling tc (see Hamiltonian (2.7)). Eigenstates in eq. (2.8) are shown in green and blue, the unperturbed levels are
shown in grey and form asymptotes to the eigenstates. (b) Projection of the eigenstate |S+〉 onto the basis states. For
|S−〉, the projections are equal with respect to the other eigenstate, e.g. |〈S11|S−〉|2 = |〈S20|S+〉|2.

in the regime of ε< J20. We will also approximate J11 ≈ 0 which otherwise would cause a small shift of the
triplet energies. We already introduced the detuning ε as difference between the two chemical potentials of
the quantum dot during the semi-classical description of the DQD. We now denote it more precisely as
the energy difference between the two singlet states, ε≡ E (S11)−E (S20) and will further choose our energy
scale such that E(S11) ≡ 0.

2.2.1 Tunnel coupling

First, we will take into account the possibility of electrons to tunnel from one dot to the other. This couples
the two singlet states by a (real) coupling constant tc , such that the two-level Hamiltonian in singlet
subspace reads

Hel =−ε |S20〉〈S20|+ tc

2

( |S20〉〈S11|+ |S11〉〈S20|
) .=

(
0 tc /2

tc /2 −ε
)

, (2.7)

where we chose the representation |S11〉 .=
(
1
0

)
and |S20〉 .=

(
0
1

)
. Diagonalizing this Hamiltonian yields the

two eigenstates |S±〉 with their respective eigenvalues ε±,

|S+〉 = sinθ |S20〉+cosθ |S11〉 , ε+ = 1

2

(
−ε+

√
ε2 + t 2

c

)
,

|S−〉 = cosθ |S20〉− sinθ |S11〉 , ε− = 1

2

(
−ε−

√
ε2 + t 2

c

)
,

(2.8)

and 2θ = arctan(tc /ε) (see appendix A.1 for details of the calculation). For a better understanding, these
results are visualized in figure 2.6. We find that both eigenstates become equal to the basis states at high
positive and negative detunings, e.g. for ε/tc ¿ 0 ⇒ θ→π/2, |S+〉→ |S20〉 and |S−〉→ |S11〉. We further find
that each eigenstate undergoes a transformation from one basis state to the other basis state by increasing
the detuning, e.g. |S+〉→ |S20〉 at high negative detuning becomes |S+〉→ |S11〉 at high positive detuning. At
ε= 0,⇒ θ→π/4, both eigenstates become superpositions with equal ratio of each basis state, as seen in
panel (b). At this value, the eigenstates are |S±〉 = 1/

p
2(|S20〉± |S11〉) and their energy splitting becomes

minimal and equal to tc .
In summary, the local basis states remain unperturbed for large detunings |ε|À tc and the coupling only

plays a major role at small detunings |ε|. tc , where the singlets form a so called avoided crossing and
the singlet eigenstates become superposition of the local basis states (which are resonant at ε= 0). These
avoided crossings are of crucial importance since they enable transitions between the local basis states, as
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2.2 Quantum mechanical description of a two-electron double quantum dot

we will further discuss later. The Hamiltonian (2.7) is a representative example of quantum mechanical
two-level systems, which are called qubits in the context of quantum computing.

2.2.2 Magnetic field

We will now introduce a magnetic field to our double quantum dot system. We allow the magnetic field to
be different in each quantum dot, which yields the total energy of the two-electron spin system

Hmag = gµB

~
(B1 ·s1 +B2 ·s2) = gµB

~
[
B·(s1 +s2)+∆B· (s1 −s2)

]
, (2.9)

where we defined B = (B1 +B2)/2 and ∆B = (B1 −B2)/2 and used the g-factor g and the Bohr magneton µB .
We can calculate the representation of Hmag in the singlet-triplet basis of the (1,1) state, which is carried out
in appendix A.2, and find

Hmag
.= gµB

|T+〉 |T0〉 |T−〉 |S11〉


B z B−/
p

2 0 −∆B−/
p

2 |T+〉
B+/

p
2 0 B−/

p
2 ∆Bz |T0〉

0 B+/
p

2 −B z ∆B+/
p

2 |T−〉
−∆B+/

p
2 ∆Bz ∆B−/

p
2 0 |S11〉

for the general case, where we used the abbreviations B± = B x ± i B y and ∆B± =∆Bx ± i∆By . As the most
important result, we find that the singlet and triplet subsystems are connected via the off-diagonal terms
∆B± and ∆Bz , i.e. the inhomogeneous components of the magnetic field. Hence, the singlet |S11〉 forms
avoided crossings with all three triplets depending on different components of ∆B. It is important to
understand that the triplet states chosen as basis were defined by the z-axis as the quantization axis of
the system. This leads to the direct conclusion that transitions between the different triplet states are
facilitated by B±. While this is true for chosen basis states, it can be misleading for the interpretation of
our experiments: There, the eigenstates are defined by the sum field B whose orientation might not be
parallel to the z-axis and remains fixed on the time scale of the measurement. Therefore, it is more intuitive
to define the quantization axis parallel to B, where the terms B± vanish and the triplet states of our new
basis are orthogonal. In this spirit, we can choose B as the canonical quantization axis, and for the case
of B1 = B2 reduce Hmag to the simple Hamiltonian of two spin-1/2 particles in a magnetic field, yielding
the singlet and triplet states of equation (2.6) as the eigenstates of the system. A finite ∆B, however, breaks
the symmetry and introduces off-diagonal elements to the Hamiltonian coupling |S11〉 to its triplets as
discussed.

2.2.3 Energy spectrum

The Hamiltonian for the DQD system accounting for the electron spin in a magnetic field and the tunnel
coupling between the dots is the sum of the two just discussed contributions Hel (2.7) and Hmag. In the
singlet-triplet basis, where we defined the quantization axis of the triplets parallel to B, the Hamiltonian
reads

H = Hel +Hmag
.= gµB

∣∣T̃+
〉 ∣∣T̃0

〉 ∣∣T̃−
〉 |S11〉 |S20〉




B z 0 0 −∆B−/
p

2 0
∣∣T̃+

〉
0 0 0 ∆Bz 0

∣∣T̃0
〉

0 0 −B z ∆B+/
p

2 0
∣∣T̃−

〉
−∆B+/

p
2 ∆Bz ∆B−/

p
2 0 tc /2gµB |S11〉

0 0 0 tc /2gµB −ε/gµB |S20〉

. (2.10)
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Figure 2.7: Eigenenergies of all energetically available states of a two-electron DQD calculated from Hamiltonian
(2.10) with g=-0.36 of GaAs. (a) In a homogeneous magnetic field with B = (0 0 200)T mT, ∆B = 0, tc =5µeV.

∣∣T̃±
〉

are
split by the Zeeman energy, but the singlets do not mix with the triplets. (b) In an inhomogeneous magnetic field with
B = (0 40 205)T mT, ∆B = (0 40 5)T mT, tc =5µeV.

∣∣T̃±
〉

are split by the Zeeman energy, and the singlets mix with all
triplets when their energies are close.

Without an inhomogeneous magnetic field, the terms with ∆B vanish, the singlets are not coupled to the
triplet subsystem, and the energies of singlets and triplets remain unperturbed as in the term-scheme
of figure 2.7(a). The degeneracy of triplets, however, is still lifted by the Zeeman energy gµB |B|. Figure
2.7(b) shows the term-scheme for a finite inhomogeneous field ∆B. Here, all triplets couple to the singlet
subsystem via |S11〉 and introduce avoided crossings. The avoided crossing between |S±〉 and

∣∣T̃0
〉

is
mediated by the z-component of∆B and causes a splitting for |ε|À tc . The x, y-components of∆B mix |S±〉
and

∣∣T̃±
〉

. For a given tc , the detuning ε at which these avoided crossings occur depends on the Zeeman
energy and can hence be tuned by B z . This fact can be harnessed experimentally to measure tc with a high
precision [19], see also section 7. The coupling of the singlet and triplet states in general is an important
property of the system and has lead to active research not only related to quantum information processing.
At the time of this thesis, a variety of robust quantum gate operations has been demonstrated rendering a
DQD system as one of the most important systems to explore the concepts of a quantum computer [20–22].
As a direct impact for the electron transport through a DQD, the Pauli spin blockade is partly lifted in the
vicinity of the avoided crossings, since the pure singlets and triplets are no longer the eigenstates of the
system. This leads to a complex dependency of the current on ∆B, B z , ε, and tc , because the actual mixing
depends on all of these parameters [17, 23], as will be discussed later in chapter 5.
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3 System and fabrication process

All nano structures studied during this PhD thesis are fabricated in a top-down process starting from a
semiconductor heterostructure. The band structure of the heterostructure is engineered to incorporate an
intrinsic two-dimensional electron system (2DES) in a layer parallel to the surface. This electron system can
be locally depleted by the field effect by applying voltages to gates on the wafer surface to build for instance
one-dimensional channels or zero dimensional constrictions, i.e. quantum dots. Since the growth of such
heterostructures itself is a complex research field and is constantly improved even after tens of years of
experience, the wafers originate from collaborating research groups in Regensburg and Zürich.

3.1 Electron confinement

The aim of combining semiconducting materials with different electronic properties is the targeted design
of a bandstructure with tailored properties. The main experiments presented in this thesis investigate
quantum dots based on the GaAs/AlGaAs heterostructure shown in figure 3.1(a). The bandgap of pure GaAs
(1.42 eV) can be increased by replacing a fraction of Ga with Al; in this case Al0.3Ga0.7As with a bandgap
of 1.79 eV is used [24]. Since the relative mismatch of the lattice constants is smaller than 10−3 [24], both
materials can be grown epitaxially on top of each other facilitating a mono-crystalline structure with a low
defect density.

The thus engineered conduction band forms a triangular confinement potential at the interface between
the AlGaAs layer to the pristine GaAs as depicted in figure 3.1(a). The system is designed in such a way
that the triangle potential’s first subband energy lies below the Fermi energy EF , is populated by charge
carriers from the nearby silicon δ-doping, and forms a two-dimensional electron system 85 nm below the
surface. Contact to the 2DES is provided by a eutectic AuGe composition deposited on the surface. The
material is heated up to enable thermal diffusion of the metal down to the 2DES as sketched in figure 3.1(b).
Inside the 2DES, local potential barriers can be created by applying negative voltages on nanometer-sized
gates on top by the electric field effect in the spirit of a field effect transistor. By applying a voltage, the
chemical potentials µL,R on both sides of the barriers can be different, enabling a tunnel current through
the barrier. The combination of barriers of various individual gates can confine the electrons to potentials
of designed shape. In particular, quantum dots with the properties discussed in chapter 2 can be defined as
small coupled islands (figure 3.1(c)). This type of electrostatically defined quantum dots is called lateral
quantum dots due to their 2D geometry. The shape of their electrostatic confinement potential is coarsely
predefined by the shape of the gates, but remains tunable by the actual value of voltages applied. Compared
to quantum dots which are primarily defined during the growth process, e.g. self-assembled quantum dots
[5], this type of quantum dots shows a higher degree of flexibility during the experiment and can be used to
explore a wide range in the parameter space (such as coupling parameters, different geometries, and more)
within one and the same structure.

3.2 Fabrication

The cleanroom fabrication process uses standard lithography procedures. All of those methods were highly
optimized during the last years of our group’s research in the field of nano structures. Since no new methods
have been developed during this thesis, this section only briefly outlines the process flow to provide an
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Figure 3.1: Electron confinement. (a) Sketch of the GaAs/AlGaAs based heterostructure used in this thesis. The
conduction band (blue) is bended at the semiconductors’ interface forming two-dimensional electron system (2DES)
with charge carriers from the nearby Si doping inside a triangular potential. (b) Schematic of the essential part of a
transport measurement: The 2DES (blue) is contacted by AuGe contacts (grey) diffused into the wafer. Gold gates
(yellow) on top provide local potential barriers for the electrons by the field effect. An applied voltage V shifts the
chemical potentials of the Fermi seas on both sides of the barrier µL,R in respect to each other and a tunneling current
will flow (lower panel). (c) Combination of barriers form quantum dots as small islands inside the 2DES.

overview to non-expert readers of how the samples were fabricated. For more advanced readers, details of
the fabrication including the process parameters are given in appendix B. References to previous theses
which significantly contributed to the establishment of methods and provide in-depth descriptions are
given at the appropriate passages.

There are five main steps from the wafer to the finished nanostructure. All of these steps involve a
separate lithography step during which a pattern is written into a resist layer on top of the sample surface.
A suitable resist is exposed locally either to UV light through a mask or to electrons of a controlled focused
beam. Coarse structures are typically created by UV photo lithography which reaches its limits at around
1µm, while smaller structures are written by an electron beam. After dissolving the exposed areas with a
development chemical, the structure is transferred onto the surface of the sample by either etching or by
depositing a metallic material which only remains at the patterned locations when finally removing the
resist (lift-off). The lithography process is sketched in figure 3.2, for a detailed step-by-step description, the
reader is advised to references [8, 13, 25].

An overview of the different lithography layers as well as a finished sample is shown in figure 3.3(a) and
(b). The first structure processed onto the unpatterned chip is the Mesa structure. The Mesa consists
of a squared area, where the nanostructures will be defined later on, as well as adjacent contact areas.
The contact areas are well separated from each other and only connected by the central square which
defines a pathway for electrons flowing between two contacts. The Mesa is defined by etching the surface
elsewhere down to the Si dopant layer which removes all free charge carriers from the 2DES. As the second
step, the contacts to the 2DES are fabricated. They consist of approximately rectangular pads with a
meander edge structure to ensure a lower resistance through a large contact area after thermal diffusion
[8]. The fabrication process of these Ohmic contacts is optimized to ensure a nearly linear I -V behaviour
at cryogenic temperatures for voltages up to ∼1 mV typically used in our quantum transport experiments.
The third layer consists of bondpads and microstrip lines with which the nano meter sized gates processed
in the subsequent step on the Mesa center are connected to the experimental setup. The design of the four
gates optimized for rf modulations located at the bottom in figure 3.3 differs from the others; these gates
have a large distance between each other as well as other gates to reduce cross-talk effects [8]. The last, but
most advanced steps are the fabrication of the nano meter sized gold gates and on-chip cobalt magnets
(details see below). Figure 3.3(c) shows a scanning electron micrograph of typical double quantum dot gate
layout which was investigated in chapter 7.
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3.3 Single-domain nanomagnets
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Figure 3.2: Standard lithography procedures. The clean sample (grey in 1) is spin-coated with a photo- or electron-
sensitive resist (red in 2). The resist is locally exposed (blue areas in 3) to either ultraviolet light through a mask or to a
controlled electron beam. The development (4) of the positive resist removes the resist at the exposed areas. The local
structure is then fabricated by either metal deposition or wet etching. The initially globally deposited metal (yellow in
5a) only remains at the previously exposed areas when removing the resist during the lift-off (6a). For wet etching
(5b), the etchant is selective, i.e. it does not etch the resist, so that the sample is etched only at the previously exposed
areas. The sample is ready for further fabrication after resist removal (6b).

3.3 Single-domain nanomagnets

The on-chip magnet is the newest addition to our chip designs and its fabrication process was initially
developed by G. Petersen [8] and further optimized by M. Mühlbacher [26].

The nanomagnets are designed to provide a strong inhomogeneous magnetic field at the site of the
quantum dots to enhance the coupling of certain electronic states inside the dot, as discussed in all detail
in chapters 5 and 6. As opposed to the concept of larger magnets with possibly many magnetic domains so
far used in such structures (e.g. [27]), our bar-shaped nanomagnets have a strong anisotropy in geometry:
While their length is around 2µm, their height (50 nm) and width (100–250 nm) are significantly smaller.
This leads to a single-domain magnetization along the long axis of the these magnets without the presence of
any external magnetic field(1). In our setup, where the external magnetic field is oriented along the long-axis
of the bar-shaped magnet, the single-domain magnet is always fully polarized and the external magnetic
field can only change the magnetization M as a whole; therefore, only two configurations, M = ±Mmax,
exist. The coercive field needed to reverse the magnetization of such a magnet depends on details in the
geometry, for example a smaller width (and otherwise unchanged geometry) leads to a higher coercive field,
since the anisotropy is increased. In multi-domain magnets, in contrast, the domains become aligned one
by one until the maximum polarization Mmax is reached, as sketched in figure 3.4(a) and (b). Compared to
multi-domain magnets, the full magnetization facilitates a sizeable inhomogeneous field across the two
QDs provided by the nanomagnet even at small external magnetic fields. Furthermore, its magnetization
is straightforward to control during an experiment, because of the particularly simple hysteresis where
the magnetization remains constant during a large range of external magnetic field values (even near zero
external magnetic field) and switches direction almost instantly at well defined magnetic field values. By

(1)For a more detailed discussion of the theory which leads to the single-domain character of the magnets, see [8, p. 29ff]
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3. System and fabrication process
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Figure 3.3: Example device structure. (a) Layout of the different lithographic layers of the micrometer-sized chip. (b)
Microscope image of the finished chip layout. (c) False-colored electron micrograph of the center area of (b) including
a double quantum dot layout with a nanomagnet investigated in chapter 7. Gold gates are colored in yellow, the
Cobalt nanomagnet in blue.

Multi-domain magnet Single-domain magnet

a) b)

Figure 3.4: Comparison of the magnetization behaviour of (a) a multi-domain magnet and (b) a bar-shaped single-
domain magnet in an external magnetic field along its long axis. (a) Before exposure to an external magnetic field H ,
the domains of a multi-domain magnet have no preferred magnetization axis and hence the overall magnetization M
of the magnet vanishes (square marker). When exposed to an external magnetic field, the magnet’s magnetization
increases as more and more domains become aligned. The magnetization eventually reaches its maximum Mmax

when all domains are aligned. When ramping back to zero external field, the magnetization exhibits a hysteresis
and shows a leftover magnetization, which is smaller than Mmax (triangular marker). (b) The bar-shaped single-
domain magnet is always fully magnetized, with the magnetization orientation along its long axis given by the shape
anisotropy. The magnetization is initially at one of the values ±Mmax (square and triangular markers), which remain
the only values exhibited depending on the hysteresis.

combining multiple magnets of different width, one can tailor their coercive fields and realize different
stable configurations of the magnets’ field, since the magnetization of each magnet switches at a different
field value. We realized two parallel magnets width the width of 100 and 230 nm, whose magnetizations
can be aligned parallel or anti-parallel to each other. Including the two different directions of an external
magnetic field, this facilitates four different configurations in the experiment, which are characterized
in chapter 5. A crucial step during the design of the nanomagnets is the calculation of their stray field.
The magnetic field of a homogeneously polarized bar-shaped magnet can be calculated analytically [28]
and was the basis for the design in reference [8]. However, a more advanced numeric treatment with the
OOMMF framework [29], revealed that the magnetization, even though single-domain, shows a bending
near the corners, and resulted in a non-negligible difference of up to 30 % [26, p. 15]. Details on the numeric
simulations can be found in chapter 5 and in reference [26, pp. 11ff.]

In the following, I will provide a short summary of the latest results regarding the fabrication of the
nanomagnets. Obviously, the effect of the magnets is larger the closer they are located to the DQD. However,
it is vital that the magnet does not interfere with the gate layout defining the DQD in the first place, e.g. by
shortening neighbouring gates. For larger magnets, this is commonly achieved by depositing an insulating
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3.3 Single-domain nanomagnets

layer on top of the gate layer and put the magnet right on top of the DQD [27], since there is not enough
space in the gate layer. For nanomagnets, this is not a suitable concept: First, the nanomagnets are thin
compared to the larger magnets (e.g. 250 nm [27]) and can break apart if placed across a step on the
surface(2). Second, due to far less magnetic material deposited, the overall stray field is smaller and would
be additionally reduced at the DQD due to the insulation layer. The initial concept to bring the nanomagnet
closer to the DQD gate layout was to put it as a whole on top of a gold gate [8]. On the particular sample
shown in 3.3(c), the nanomagnet is placed on the gate parallel to the axis connecting the dots. Though this
concept has proven to be successful [30], it is still not ideal in terms of field strength at the position of the
DQD, since the magnet and the QDs are separated not only by the depth of the 2DES but also additionally
by the thickness of the gate(3). A new concept developed during this thesis and described in reference [26]
involves the replacement of individual gold gates by cobalt gates of the same shape thus directly integrating
nanomagnets into the gate layout. This facilitates higher magnetic fields because of the reduced distance to
the quantum dots and also allows more complex field distributions while still providing a good scalability.
Both concepts require a lithographic positioning accuracy of around 10 nm which we achieved by usage of
special markers on the surface [13].

The main problem which already occurred during the fabrication of the first nanomagnets and still
remains, is the deformation of resist during the deposition of cobalt [figure 3.5(a)]. This leads to thin
residual films near the actual magnet after lift-off [fig. 3.5(b, c)], as well as to deviations of the magnets’
desired shape [fig. 3.5(d)]. The reasons for the deformation of the resist are so far still unknown: The initial
hypothesis [8, p. 13] of a thermal deformation by the heat of the evaporation process is supported by the
observations that a water-cooled aperture [8, p. 14] as well as a slow evaporation process (low deposition
rates, frequent pauses during the process) [26, p. 32] reduced the effect. However, a thermometer connected
to the substrate holder did not show an increased temperature compared to the evaporation of gold which
succeeded without any problems, and an improved thermal connection between substrate chip and its
holder via a copper tape did not yield any positive results. A transition from e-beam deposition, where
the target material is locally heated by an electron beam, to simple thermal evaporation, which should in
principle worsen the effect due to higher temperatures if the hypothesis is accurate, showed no significant
difference. In addition, lower pressures in the evaporation chamber also reduced the effect significantly,
which is not apparently connected to the sample’s temperature. Recent attempts during where we forced
a melting of the entire cobalt material inside the crucible during thermal evaporation showed the most
promising results. So far, we have not been able to reliably solve the problem; however, we were able to
remedy its symptoms. The residual films can be mechanically removed to a satisfying extent in an ultrasonic
bath at low powers [compare figs. 3.5(b) and (d)] and the desired shape of the nanomagnet can be recovered
by modifying the design to allow for the resist deformation, as depicted in figure 3.5(d).

(2)Note that the surface of the insulating layers mimics the profile of the underlying gates.
(3)40 nm compared to a typical 2DES depth of 85 nm
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Figure 3.5: Nanomagnets’ fabrication problems occurring during and after the evaporation of cobalt. (a) Scanning
electron micrograph of a cobalt test structure after evaporation but before lift-off. The PMMA resist is deformed at
the edges where it is bended upwards. This results in thin residual films after lift-off [panels (b) and (c)], but also a
deformation of the whole magnet [panel (d)]. (b) Top-down view of a nanomagnet after lift-off. Residues are visible
mainly as white regions near the actual magnet. (c) Side view on a test-structure of four magnets after lift-off. The
residues have a significant height exceeding the one of the actual magnets, but are almost transparent and very thin.
Ultrasonic cleaning removes most parts of the residues [compare magnets in (d)]. (d) The deformation of the resist
leads also to a deviation from the desired geometry of the magnet (design in blue, desired shape sketched with dotted
lines in the SEM pictures). The desired geometry is realized by reverse engineering, i.e. modifying the actual design in
a number of iterations until the result matches the initial design. Scale bars are 200 nm. Figures reproduced from [8,
26].
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4 Measurement setup

The purpose of this chapter is to give the reader an overview about the measurement setup and its most
crucial components. For a detailed characterization of the low temperature measurement setup, the reader
is advised to reference [25, p. 51–92].

4.1 Overview

The main requirements to perform coherent quantum transport measurements in DQDs are demanding.
First of all, the DQD needs to be electrostatically defined by applying dc voltages to the nano-metre sized
gates on top of the wafer. To ensure a high tunability and stability of the confinement potential, a high
resolution and stability of these voltages is needed. In our setup, we achieve a voltage resolution of 100µV at
gate voltages of around −1 V and a voltage stability of . 35µV during the measurement time of ∼200 ms (1).
To do so, we use a sophisticated wiring and low pass filtering scheme connecting high precision voltage
sources to the gates on the sample which we will discuss in detail in section 4.2. As the second requirement,
we want to probe and manipulate coherent electron dynamics by modulating some of the voltages defining
the electron levels in the DQD with rf voltages. This requires special lines which transmit frequencies
in the order of 1 GHz while not introducing noise compromising the overall voltage stability. The third
requirement is the capability to measure small currents down to 10 fA flowing through the nano structure.
To ensure a low noise floor, we again use an optimized wiring and filtering scheme (sec. 4.2) to connect the
needed electronic devices, such as an operational amplifier and a multimeter. Furthermore, to prevent
parasitic current flows via ground loops, all electronic devices are galvanically decoupled from the ground
of the power line and connected to a common ground.

Importantly, as discuss in chapter 2, the relevant energy scales ∼1µeV are exceeded by the thermal energy
at room temperature of 25 meV by far. Therefore, all experiments are carried out in a low-temperature
controlled environment, in our case a dilution refrigerator [31]. The base of the system is a commercially
available Oxford Kelvinox 100 which reaches a base temperature of 20 mK in the present setup. To provide
a tunable magnetic field during the experiment, the sample is placed at the center of a superconducting
magnet, which can supply a field up to 9 T parallel to the 2DES.

In the following section, we will focus on the general wiring and filtering scheme with which we are
able to meet the requirements of tunable and stable dc voltages, a high current sensitivity, and rf voltage
modulation. The specific setup of each experiment which makes use of these capabilities, is described
separately in each chapter.

4.2 Wiring and filtering

A central part of the electrical measurement setup are the lines which connect the electronic devices
controlling the experiment with the sample at low temperatures. The setup, schematically depicted in figure
4.1, provides three different types of wiring, each optimized for its special purpose. All the wires reach from
the coldest point of the cryostat, namely the sample thermally coupled to the mixing chamber temperatures
of around 20 mK by a silver rod, all the way up to room temperature. To minimize their heating effect on the

(1)Estimated from the inhomogeneous broadening of electron levels (3.5µeV, chapter 7) and the lever arm of 0.1 eV/V. Note that
the estimated value is only an upper limit for the voltage stability, since it neglects other contributions to the broadening.
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Figure 4.1: Scheme of the low-temperature transport setup used in all experiments. The sample inside the cryostat is
electrically connected to the room temperature measurement equipment by different types of wiring each optimized
for its purpose. All electronic measurement devices are galvanically isolated from the power lines and connected to the
common ground potential at the cryostat. Between the sample and the measurement devices are two stages of filtering,
the room temperature filters and the low-temperature filters inside the cryostat. All wires are thermally anchored at
different temperature stages of the cryostat to minimize heating effects and ensure low electron temperatures. The
sample inside the cryostat can be exposed to a magnetic field of a superconducting coil up to 9 T (not shown). The
scheme depicts capabilities rather than details of a particular experiment; not all wires are necessarily used in each
experiment. The details of the actual measurement schemes and which electronic devices have been used to realize
them are given separately in each chapter. Figure adapted from [8].
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4.2 Wiring and filtering

sample and cool down the wires themselves, they are thermally anchored at several points of the cryostat
(details in [8, 25]).

Low frequency gate lines

Up to sixteen low frequency gate lines (blue in fig. 4.1) connect the high precision voltage sources to the
gates to electrostatically define the nano structures. At room temperatures, double shielded coax cables are
used to prevent significant noise pick-up between the voltage sources and the cryostat. The cryostat itself is
shielded by a metallic dewar such that the wires inside, Cu and NbTi looms, are not additionally shielded.
The NbTi becomes superconductive at low temperatures and is a efficient thermal insulator. The line
consists of two low-pass filter stages, one at room temperature (cut-off frequency fC = 1/2πRC = 1.6Hz)
and the other one near the base temperature ( fC = 2.1Hz) of the cryostat. Since the voltages applied on
these lines are quasi-static, both filters are designed to restrictively damp any high frequency components,
i.e. noise. Since the resistance of the sample, > 10GΩ, is by far the biggest one in the line (∼ 430kΩ for
filters and wiring(2)), it is ensured that no significant voltage drop occurs before reaching the sample. In
principle, one could even lower the cut-off frequency further and still maintain this condition. However,
the cut-off frequencies determine the maximum voltage sweep rate during an experiments, where these
voltages are frequently swept. The chosen cut-off frequencies are a compromise between an efficient noise
filtering and a reasonable measurement time.

rf gate lines

To modulate the voltages on the gates with rf voltage signals, the setup includes four rf gate lines (purple
in fig. 4.1). The signal of each line is mixed with the one of a low frequency gate line on a bias tee at
low temperatures. These lines consist of 50Ω coax cables and impedance matched strip lines at the bias
tee to ensure a high signal transmission. As these lines should provide a broad frequency range (100 kHz
to 10 GHz), we cannot apply restrictive filters. Therefore, we apply an a priori strong modulation signal
and include several attenuators at different stages of the cryostat (overall −33 dB). With this method, we
can efficiently suppress noise which is significantly smaller than the initially strong output of the signal
generator(3).

Current lines

Similar to the low frequency gate lines, the six current lines (red in fig. 4.1) outside of the cryostat consist of
double shielded coax cables and feature in total two filter stages, one at room temperature and one at low
temperatures. In contrast, the cut-off frequencies ( fC = 31kHz at room temperature, fC = 318kHz at low
temperatures) are significantly higher. The higher cut-off frequencies arise from to conditions: First, the
resistance of the sample should be the largest one in the line (R = 2 ·3.4kΩ for wires and filters, see table
C.2) to ensure the current signal predominantly shows the response of the sample (and not, e.g. the thermal
noise of the filter). For DQDs (R & 1MΩ), the limit is not reached, but for other nano structures such as
quantum point contacts with R . h/e2 ≈ 26kΩ it is. Second, to measure currents in the order of 10 fA, we
use an operational amplifier which does not allow large capacitances to ground at its input [25, p. 57], which
restricts the allowed capacitances to a few nF. Consequently, the cables inside the cryostat are shielded
coax cables to avoid additional noise pick-up which might not be filtered out by the low temperature filter.

(2)See table C.1 for a detailed breakdown into each component.
(3)Note that noise scaling with the output level of the signal generator cannot be suppressed this way.
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5 A double quantum dot inside a strongly
inhomogeneous magnetic field

This chapter presents the results of

• Forster, F. et al. Phys. Rev. B. 91. 195417 (2015)

See section D for the contributions of each author.

5.1 Overview

The magnetic field at the position of the quantum dots plays a major role for its transport properties [16].
We already established in section 2.2.3 that an inhomogeneous magnetic field leads to couplings between
the singlet and triplet subspace in the Hamiltonian (2.10) partly lifting the Pauli-spin blockade (PSB). In the
following experiment, we introduce a double quantum dot incorporating two single domain nanomagnets
and investigate the complex physics in the PSB regime enabled by the non-trivial magnetic field distribution.
We discuss our dc transport spectroscopy as well as radio frequency electric-dipole-induced spin resonance
(EDSR) experiments and demonstrate the capability and advantages of hybrid devices containing multiple
single domain nanomagnets compared to devices with only one usually larger on-chip magnet. In dc
current measurements, we explore the four possible configurations of the nanomagnet magnetizations
(which can be polarized parallel or anti-parallel relative to each other and relative to an external field). Since
the coupling of the states involved in the electron tunneling depend on the details of the magnetic field and
thus the polarization of the nanomagnets, we are able to realize two very different coupling regimes in a
single well controlled experiment. In our EDSR measurements we find two resonances which correspond
to transitions in the two QDs. The combination of dc data and EDSR data compared to simulations of the
magnetic stray field of the nanomagnets allows us to localize the positions of our two QDs. We have done
this for two different double QDs corresponding to two different gate voltage configurations. A comparison
of these data with a second sample containing only one single domain nanomagnet reveals an important
advantage of multiple nanomagnets, namely a straightforward possibility to control spins in adjacent QDs
separately.

5.2 Theory

5.2.1 Electron dipole-induced spin resonance

A central new aspect introduced in this chapter is the method of EDSR. Here, an electron spin in one
quantum dot can be flipped, effectively driving transitions from |S11〉 to |T±〉 and thus lifting the PSB. In a
typical EDSR setup, each electron spin is exposed to a combination of a static magnetic field Bext, which
splits the electron levels by the Zeeman energy, and an oscillating field Bac perpendicular to Bext:

B(t ) = Bext +Bac(t ) = Bz

0
0
1

+B0

cosωt
sinωt

0

 . (5.1)
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5. A double quantum dot inside a strongly inhomogeneous magnetic field

In principle, the model for our system is the full five-state Hamiltonian (2.10), which leads to complex
time-dependent problem, especially because Bz and B0 are not necessarily equal in both dots. However,
in all relevant experiments, we perform EDSR in the (1,1) charge state at large detuning |ε| À tc in an
inhomogeneous magnetic field with −gµB∆Bz À J11. Here, the eigenstates become |T+〉 = |↑↑〉, 1p

2
(|T0〉+

|S11〉) = |↓↑〉, 1p
2

(|T0〉− |S11〉) = |↑↓〉, and |T−〉 = |↓↓〉, which are the single spin states of the DQD. We can

therefore consider each spin separately, substantially reducing the complexity of the problem to a single
spin in an oscillating magnetic field,

H(t ) = gµB

~
s ·B(t ) =ωz sz +ω0(cos(ωt )sx + sin(ωt )sy )

with ωi = gµB Bi /~. We can immediately see that the oscillating field with amplitude B0 introduces off-
diagonal terms to the Hamiltonian and couples |↑〉 and |↓〉 by a time dependent coupling constant. The
calculation of the time dependent solution

∣∣ψ(t )
〉

of the Schrödinger equation is covered in appendix A.3.1.
In the rotating frame, which rotates about the z-axis with the same frequency as Bac, i.e. ω, the Hamiltonian
becomes time-independent with a constant coupling. The Bloch vector of the system(1) then describes
Rabi oscillations around Bac which remains fixed on a constant direction, as depicted in figure 5.1(a). In the
stationary frame, the direction of Bac rotates and hence the Bloch vector describes a spiral precession on
the sphere, see 5.1(b). For resonant driving, i.e. ∆ω=ωz −ω= 0, the state vector can reach every point on
the Bloch sphere; in fact, coherent control of quantum states for quantum computing by EDSR has already
been demonstrated [27, 33, 34]. For the scope of this thesis, we are less interested on the exact position of
the state vector on the Bloch sphere, but more so on the possibility to flip the electron spin. Assuming no
decoherence, the transition probability from |↑〉→ |↓〉, when starting in the pure state

∣∣ψ(0)
〉= |↑〉, is given

by Rabi’s formula, also derived in appendix A.3.1:

∣∣〈↓∣∣ψ(t )
〉∣∣2 = ω2

0

ω2
0 +∆ω2

sin2
(

1

2

√
ω2

0 +∆ω2t

)
.

We find that the probability to measure a spin-flip oscillates in time and that the amplitude of these Rabi
oscillations is given by a typical Lorentz resonance: For ∆ω= 0, i.e. ~ω is equal to the Zeeman splitting of
the spin states, the maximum amplitude of 1 is reached. For ∆ω 6= 0, the amplitude decreases as shown in
5.1(c). In the typical experimental situation in this thesis, the driving field is weak compared to the static
field, i.e. |Bext| À |Bac|. This leads to a sharp resonance(2) which makes EDSR a useful tool to measure
the local magnetic field in a quantum dot to high precision, since ω is well controlled and a spin-flip
is in good approximation only measured for ~ω = gµB |Bz |. Since both quantum dots are independent
in this measurement scheme, we can determine B and ∆B of the Hamiltonian (2.10) for a complex field
distribution. Furthermore, because Bz includes the Overhauser field and thus the polarization state of
the nuclei, EDSR poses an elegant method to investigate the dynamics of the nuclei, which is the topic of
chapter 6.

5.2.2 Generation of the rf magnetic field

It is difficult to realize sizeable oscillating magnetic fields in the GHz regime in a low temperature experiment,
since a globally applied ac field leads to heating via eddy currents and mechanical instabilities of magnetic
parts in the cryostat. In quantum dots, the Oersted field of current through an on-chip conductor loop has
been successfully used to drive EDSR, but an undesired heating effect still remains [33]. Other approaches
harness the spin-orbit coupling [34] or the electron-nuclei hyperfine interaction [35] to provide an effective
magnetic ac field, but they pose additional requirements on the host material. In our approach, we adapt a

(1)Refer to section 7.2.3 for an introduction to the Bloch sphere representation of a quantum state.
(2)Note that in the extreme case of ω0 → 0, the Lorentz curve becomes the Delta distribution.
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Figure 5.1: Electron spin resonance of an electron in a static magnetic field Bext with a perpendicular driving field
Bac, rotating with a frequency ω, as in equation (5.1). (a) Time evolution of the state vector on the Bloch sphere in
the rotating frame, where Bac is a static vector and the state vector exhibits a Rabi precession about Bac. (b) The
same as a) for the stationary laboratory frame. The state vector spirals down over the surface of the Bloch sphere. (c)
Time-dependent probability of a spin-flip for a typical experimental situation, in which |Bext| = Bz ' 100|Bac| and
different resonance situations ω= r · gµB Bz /~. (a, b adapted from [4].)

method already successfully applied to DQDs with micromagnets [36]: We capitalise on the incorporated
inhomogeneous field, B = B(r), provided by our already present nano magnets and move the electron
periodically through their field gradient, i.e. r = r(0)+∆r(t). This is realised by applying a sine voltage
V∼(t ) at one of the quantum dot gates. Using a Taylor expansion to first order in ∆r explicitly carried out in
appendix A.3.2, the magnetic field becomes

B(t ) = Bext +Bac(t ) = Bz

0
0
1

+2B0

cos w t
0
0

 .

The difference between the ideal driving field Bac(t ) of (5.1) and the one here is two-fold: In the ideal case,
the driving field has a time-independent absolute value, |Bac(t )| = B0, but its orientation rotates about the
z-axis. Here, the absolute value is proportional to cosωt and hence oscillates in time, while its orientation
remains fixed in one direction. Therefore, the Hamiltonian is not time independent in the rotating frame we
used before, but consists of an additional time-dependent term (see appendix A.3.2 for details). However,
this additional term oscillates fast compared to all other dynamics such that it can be dropped within the
rotating wave approximation. The Hamiltonian then becomes identical to the one of the ideal driving and
therefore leads to the same Rabi oscillations discussed above.

5.3 Measurement setup

The experiment described below has three main requirements: First, we need to measure the single electron
leakage current in PSB. Second, we need to pulse the double quantum dot to the Coulomb blockade, i.e.
a large negative detuning ε, to minimize effects of other PSB lifting mechanisms during EDSR. We also
need to pulse back to the transport window if the EDSR drive flipped a spin, which yields an enhanced
current in PSB, and to reinitialize the system in the blocked state |T11〉. Third: We need to be able to
apply the driving field only when in Coulomb blockade. The basic setup which complies with all three
requirements is depicted in figure 5.2. The first requirement is fulfilled by using a highly sensitive I/V
converter, the Ithaco 1211, with an amplification factor of 1010. Together with the sophisticated filtering
and ground concept already discussed in chapter 4, we are able to measure down to a noise floor of ∼20 fA.
The second requirement is matched by using the arbitrary waveform generator Tektronix 5014B, which
can easily provide the slow pulses in the range of ∼MHz required for our measurement scheme. The final
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5. A double quantum dot inside a strongly inhomogeneous magnetic field

requirement is met by connecting the sine generator R&S SMP02 to one of the gates and modulate its
output by another pulse sequence from the waveform generator, which modulates the output of the sine
generator to 1 during the Coulomb blockade and to 0 during PSB, thus effectively switching on and off the
driving whenever needed. In our setup, the sine driving signal is mixed to the slow pulse sequence of one of
the gates via a Weinschel WA1515 resistive combiner, however this is not necessarily needed and was done
for convenience.

L

R

V

Ithaco 1211

I/V converter

Keithley 2010
Yokogawa 7651

Tektronix 5014B

waveform generator

sine
generator

R&S SMP02

resistive combiner

amplitude
modulation

ac+dc
bias tee

current carrying lines

low frequency gate lines

rf gate lines

connection to dc voltage source

grounded contact

dc voltage source

VR

V~

Figure 5.2: Electrical measurement setup for the EDSR experiment. The single electron tunneling current I through
the double quantum dot defined by dc voltage sources connected to all gates is measured by an I/V converter, which
amplifies current by a gain of 1010 and converts it to a voltage measured by a voltmeter. A waveform generator with
independent output applies rf pulses in the ∼1 MHz range to two high-frequency gates. The signal of one output is
combined with a sine signal of ∼1 GHz via a resistive combiner. A third output of the waveform generator modulates
the output of the sine generator which serves as a fast switch to turn on and off the sine signal at given times during
the pulse sequence of the waveform generator.
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Electric-dipole-induced spin resonance in a lateral double quantum dot incorporating two
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On-chip magnets can be used to implement relatively large local magnetic field gradients in nanoelectronic
circuits. Such field gradients provide possibilities for all-electrical control of electron spin qubits where
important coupling constants depend crucially on the detailed field distribution. We present a double
quantum dot (QD) hybrid device laterally defined in a GaAs/AlGaAs heterostructure which incorporates two
single-domain nanomagnets. They have appreciably different coercive fields which allows us to realize four
distinct configurations of the local inhomogeneous field distribution. We perform dc transport spectroscopy
in the Pauli-spin blockade regime as well as electric-dipole-induced spin resonance (EDSR) measurements
to explore our hybrid nanodevice. Characterizing the two nanomagnets we find excellent agreement with
numerical simulations. By comparing the EDSR measurements with a second double QD incorporating just
one nanomagnet we reveal an important advantage of having one magnet per QD: It facilitates strong field
gradients in each QD and allows us to control the electron spins individually for instance in an EDSR experiment.
With just one single-domain nanomagnet and common QD geometries EDSR can likely be performed only in
one QD.

DOI: 10.1103/PhysRevB.91.195417 PACS number(s): 73.63.−b, 03.67.−a, 73.63.Kv

I. INTRODUCTION

At cryogenic temperatures semiconductor based quantum
dots (QDs) can be used to create well defined quantum
states of arbitrarily few localized electrons. The electron
spins of these states provide a playground for exploring
quantum mechanics in an interacting solid state environment
and are heavily studied for possible applications in quantum
information processing [1–19]. The coherent dynamics of
electron spins can be accessed in an electron spin resonance
(ESR) experiment. To control a QD based spin qubit on a time
scale shorter than its dephasing time such an ESR experiment
would require a magnetic field modulated at radio frequencies
(rf) with an amplitude of a few millitesla. Combining such a
large rf modulation to an (externally applied) macroscopic
magnetic field with cryogenic temperatures of T � 1 K,
required for long spin lifetimes, is a major technical challenge.
Obstacles are oscillating strong mechanical forces between
macroscopic perpendicular magnets and eddy currents caused
by induction, both causing severe heating and mechanical
oscillations. To overcome these problems, on-chip methods
to locally manipulate electron spins have been developed. A
breakthrough in locally controlling QD based spin qubits was
based on the exchange coupling between two electrons located
in adjacent tunnel coupled QDs [2]. This all-electrical method
makes use of the direct dependence of the singlet-triplet
splitting on gate voltages, while the latter can be rf modulated
in a straightforward way [2,4,14–17]. Because the exchange
coupling between two electrons is subject to fluctuations of the
local potential, it is, however, desirable to be able to manipulate

*Present address: Paul-Drude-Institut für Festkörperelektronik,
Hausvogteiplatz 5–7, 10117 Berlin, Germany; ludwig@pdi-berlin.de

the spin of a single electron localized in a QD as well. In
a standard ESR approach this is, in principle, possible with
an on-chip magnetic antenna [4,6]. This approach has the
disadvantage of needing a relatively strong current through
an on-chip microwire which causes parasitic heating of the
sample. The capacitive coupling between the strongly driven
antenna and the QD leads can furthermore cause electron
pumping via an unwanted modulation of the leads chemical
potentials. Alternative methods are based on electric-dipole-
induced spin resonance (EDSR) where a periodic spatial
motion of an electron gives rise to an oscillating (effective)
magnetic field, an rf driving force. The rf spatial oscillation of
an electron is thereby induced by modulating the voltage of one
of the metal gates defining the QD. It has been demonstrated
that the necessary inhomogeneous effective magnetic field
can be provided by the spin-orbit interaction [8,11] or even
the spatial fluctuations of the hyperfine interaction between
the electron and many nuclei [7]. Unfortunately, both these
interactions also promote dephasing of the qubit; the spin-orbit
interaction via coupling electrons and phonons, while the
hyperfine interaction couples the electron spin dynamics to the
thermal fluctuations of nuclear spins [20,21]. Consequently, it
would be beneficial for spin qubit applications to use materials
combining a small spin-orbit interaction with no nuclear spins,
e.g., 28Si and 12C. However, this would require another
mechanism to facilitate EDSR.

An elegant option employs the inhomogeneous stray field
near the edge of an on-chip magnet. A spatial oscillation of
an electron localized in such an inhomogeneous field then
directly translates into a modulation of the magnetic field. In
past experiments, relatively wide (width of ∼1 μm) on-chip
magnets in the vicinity of double QDs have been used in
order to create a strong field gradient [5,7,10,12,13,18,19].
The disadvantage of such a large magnet are its multiple

1098-0121/2015/91(19)/195417(9) 195417-1 ©2015 American Physical Society
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FIG. 1. (Color online) Sample layout: (a) Scanning electron mi-
croscope image of the wafer surface. The GaAs surface is dark
gray, gold gates are shown in yellow, magnetic cobalt gates in
blue. Both magnets are �2 μm long and �60 nm high, the left
one (L) is �100 nm and the right one (R) �230 nm wide. Red
filled circles indicate possible QD positions in the two-dimensional
electron system 85 nm beneath the surface; actual positions depend
on gate voltages and disorder potential. The voltages applied to gates
R and ∼ are radio frequency modulated for EDSR measurements.
(b) Magnetic force microscopy measurement of the magnets before
the gold gates were processed; height profile in the upper panel
and out-of-plane magnetization in the lower panel indicating single-
domain magnetization of both magnets.

magnetic domains at zero external magnetic field Bext, which
lead to a small and rather uncontrolled stray field. A sizable
Bext on the order of a Tesla is then needed to align the
domains and thereby create a strong inhomogeneous magnetic
field at the QD. Multiple domains can be avoided by reduc-
ing the on-chip magnet’s lateral dimensions until its shape
anisotropy yields a single-domain ground state. In a previous
project we have already realized an on-chip single-domain
nanomagnet. It yields a sizable inhomogeneous stray field
Bnm independent of Bext and, therefore, provides interesting
possibilities for nanoelectronic circuits, in particular at Bext �
0. As an example we have demonstrated that this new regime
can be utilized for very efficient hyperfine induced nuclear
spin manipulation and have indeed reached much stronger
nuclear spin polarizations than previously reported for lateral
QDs [22].

Here we present an innovative double QD hybrid design
which incorporates two single-domain nanomagnets. We
replaced two of the usual gold gates with ferromagnetic
cobalt gates [Fig. 1(a)]. At small Bext, the two magnets can
be magnetized in a parallel [as in Fig. 1(b)] or antiparallel
configuration, giving rise to two very different inhomoge-
neous magnetic field distributions, an interesting possibility
for spintronics applications. The double QD is defined in
the two-dimensional electron system (sheet density: 1.19 ×
1011 cm−2, mobility: 0.36 × 106 cm2/V s) of a GaAs/AlGaAs
heterostructure 85 nm beneath its surface [Fig. 1(a)]. We
have prepared the double QD in the two-electron Pauli-spin
blockade regime with one electron in each dot, in order
to employ spin-to-charge conversion. To determine static
properties such as the coercive fields of the two magnets we
have used dc measurements and have explored the electron
spin dynamics with EDSR measurements.

Depending on the double QD geometry we have found
either one or two electron-spin resonances. Two resonances

corresponding to different Bnm in the two dots would allow
us to study coupled spin qubits in a double QD. However,
two resonances can only be resolved under three conditions:
(i) a sizable magnetic field difference between the dots,
(ii) a sufficiently large magnetic field gradient in each dot,
and (iii) a strong enough capacitive coupling between each dot
and an rf-driven gate. While (iii) is straightforward to fulfill,
in this article we demonstrate that the remaining conditions
(i) and (ii) can be met by employing two single-domain
nanomagnets. As we merely replace gold gates by magnetic
cobalt gates our scenario can be scaled up to multiqubit
systems. Because single-domain magnets are also useful at
Bext = 0 they allow spintronics experiments beyond the scope
of previous experiments with only one (usually multidomain)
on-chip magnet.

II. EXPERIMENTAL SETUP

Our measurements probe the dc current I [green arrow in
Fig. 1(a)] which passes through the double QD in response
to a constant voltage V = (μR − μL)/e = 1 mV applied
across it. Figure 2(a) illustrates the double QD configuration
by sketching the chemical potentials μL,R of the leads and
those of the relevant double QD states as horizontal lines,
while vertical lines indicate tunnel barriers. We denote (n,m)
the charge configuration of the double QD with n electrons in
the left and m in the right dot and consider the single electron
charge transfer characterized by the following tunneling
cycle: (1,0) → (1,1) → (2,0) → (1,0), where the transition
(1,1) → (2,0) constitutes a bottleneck: Both configurations,
(1,1) and (2,0), are composed of three triplets, collectively
denoted by T11 and T20, and one singlet, S11 and S20. We define
the detuning ε as the energy difference between S11 and S20.
For ε < 0 tunneling processes (1,1) → (2,0) are blocked by
energy conservation (Coulomb blockade) and I is close to zero.
The exchange splitting between singlets and triplets is much
higher if two electrons are in the same dot, J20 � J11. Hence,
at ε � 0 the T20 states are highly elevated compared to T11.
As a consequence, for 0 < ε < J20 the transition T20 → S11

is forbidden by the Pauli principle (Pauli-spin blockade),
as long as S11 and T11 remain decoupled. In our case the
inhomogeneous Bnm mixes S11 and T11 states near where their
eigenenergies are equal [22]. In the stability diagram plotted in
Fig. 2(b) this coupling gives rise to a narrow stripe of |I | > 0
near ε = 0. We stress that the hyperfine interaction, which also
couples S11 and T11, is only a weak perturbation compared
to the effect of Bnm. For ε � J20 the transition T11 → T20

lifts the Pauli-spin blockade and a sizable current flows (in
our double QD J20 � 300 μeV). The tiny but nonvanishing
current visible in Fig. 2(b) for 0 < ε < J20 is approximately
constant as expected for higher order processes such as the
cotunneling T11 → T20 → (1,0), where T20 is energetically
forbidden.

In the stability diagram in Fig. 2(b), the current carrying
region corresponding to the absence of Coulomb blockade
is composed of two overlapping triangles. Above we have
described the tunneling cycle which gives rise to the lower
left triangle; the second triangle corresponds to an alternative
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FIG. 2. (Color online) (a) Sketch showing the relevant two-electron levels of the double QD in Pauli-spin blockade and the lead chemical
potentials (μR − μL = 1 meV). All horizontal lines depict chemical potentials, vertical lines indicate tunnel barriers, blue areas correspond
to occupied states of the degenerate Fermi liquid in the leads. (b) Corresponding charge stability diagram at Bext = 0, presenting the current
through the double QD. The numbers of electrons charging the left, right dot in stable areas of the stability diagram are indicated in parentheses.
For our EDSR measurements the system was pulsed between the two red dots; details in main text. (c) Current at ε � 100 μeV as function of
Bext, which was swept at a rate of 30 mT/min. Arrows indicate the sweep directions. (d) Numerically calculated eigenenergies of the (1,1) states
of the system Hamiltonian (1) as a function of Bext. |ψ1,4〉 are almost identical to T± and |ψ2,3〉 are superpositions of T0 and S11. For the used
parameters, ε = 100 μeV and tc = 4 μeV, the (2,0) state has a much lower energy. Vertical steps at Bext � 50, 80 mT indicate discontinuities
of Bnm caused by the numerically included switching of the nanomagnets. (e) Overlap of the (1,1) eigenstates shown in (d) with the S20 state
(which would be zero for the T11 states in a homogeneous field): all four states in the inset. The main panel is a magnified view of the gray area.
It contains the two states with the smallest overlap, the current limiting bottleneck states (almost T±). (f) Sketch of the four current resonances
belonging to the four different magnets’ configurations. The red and blue line resemble the switching behavior of the actual current in (c)
(arrows indicate sweep directions).

cycle (2,1) → (1,1) → (2,0) → (2,1). Nevertheless, the
above explanations apply to both cycles, as they are both
bottlenecked by the same transition (1,1) → (2,0) [23].

In previous devices on-chip magnets were separated from
the heterostructure by a layer of metal gates and, with the
exception of Ref. [22], in addition by a second electrically
isolating layer. Here we simplify the structure and bring the
magnets closer to the QDs by replacing two gold gates [yellow
in Fig. 1(a)], used to define the double QD, by ferromagnetic
cobalt gates (blue). Based on simulations with OOMMF [24]
we have tailored the stray fields of the magnets and have
optimized their geometries and positions to maximize stray
field and field gradient between the two dots on the one hand
and to guarantee full tunability of the double QD by applying
gate voltages on the other hand. The advantage of using two
instead of just one magnet is twofold: First, two magnets
can be positioned to provide strongly inhomogeneous and
different magnetic fields in two adjacent dots [conditions (i)
and (ii) above] which facilitates EDSR measurements in both
dots. Second, at moderate Bext two separate magnets allow for
two very different stray field distributions across the double
QD corresponding to either parallel or antiparallel magneti-
zation of the two magnets (see Fig. 5). The magnetization
of each nanomagnet can thereby be reversed by sweeping

Bext beyond its coercive field and antiparallel to its present
magnetization. The different width of the two magnets gives
rise to individual coercive fields. Consequently, we can choose
between parallel and antiparallel magnetization at relatively
small Bext.

III. SYSTEM HAMILTONIAN

To model the dynamics of our double QD we assume
that an electron localized in the left respective right dot
experiences the local magnetic field BL,R = Bext + BL,R

nm . We
thereby neglect the hyperfine interaction between the electron
and nuclear spins, the spin-orbit interaction, and the exchange
interaction which in our case are all small perturbations
compared to the coupling induced by the inhomogeneous Bnm.
For simplicity we define the average field in the two dots B =
(BL + BR)/2, their difference field �B = BL − BR, and the
field operators B± = Bx ± iBy , �B± = (

�Bx ± i�By

)
/2

akin to spin raising and lowering operators. With the quanti-
zation axis ẑ defined parallel to Bext, the matrix representation
of the (semiclassical) total Hamiltonian in the basis spanned
by the diabatic singlet and triplet states {T+, T0, T−, S11, S20}
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is then

H = gμB

T+ T0 T− S11 S20

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

Bz B−/
√

2 0 −�B−/
√

2 0 T+ = |↑↑〉
B+/

√
2 0 B−/

√
2 �Bz/2 0 T0 = (|↑↓〉 + |↓↑〉) /

√
2

0 B+/
√

2 −Bz �B+/
√

2 0 T− = |↓↓〉
−�B+/

√
2 �Bz/2 �B−/

√
2 0 tc/2gB S11 = (|↑↓〉 − |↓↑〉) /

√
2

0 0 0 tc/2gB −ε/gB S20 = |0, ↑↓〉 ,

(1)

where tc denotes the interdot tunnel coupling between the two
dots. The matrix representation (1) illustrates that the x and
y components of the difference field �B±, mix T± with S11,
while the z-component �Bz mixes T0 (which has no spin
component along the z axis). The average field B yields the
Zeeman splitting of the spin-up versus spin-down states. Note
that the off-diagonal terms B±, which mix T± with T0, vanish
if the quantization axis is chosen parallel to B instead of Bext.

Hyperfine and spin-orbit interaction would both contribute
to various matrix elements including the singlet-triplet cou-
pling constants. In our case, however, the latter are far
dominated by the time independent difference field (and we
formally neglect the former contributions). In this way the
nanomagnets provide a stabilization mechanism for appro-
priate qubit implementations which could increase the qubit
coherence time in spite of the presence of nuclear spins
or spin-orbit interaction. To fully determine our double QD
hybrid system we need to know the nanomagnet’s strayfield as
a function of Bext at the position of the two dots, the interdot
tunnel coupling tc and the Lande g factor inside the dots g.
In the following we will employ dc current measurements and
EDSR experiments to achieve this goal.

IV. DIRECT CURRENT MEASUREMENTS

To experimentally determine the coercive fields of our
nanomagnets we have measured the leakage current I through
the spin-blockaded double QD while slowly sweeping Bext

at constant detuning ε � 100 μeV. The current at this
configuration is sensitive to the mixing of the singlet and triplet
states [3] and can be used to detect changes of the magnetic
field differences between the QDs [22].

In such a sweep experiment the current I (Bext) might
be influenced by dynamic nuclear spin polarization (DNSP)
which can give rise to hysteresis as a function of the sweep
direction of Bext [22,25,26]. However, it is also possible to
avoid DNSP effects by preparing a fixed point at very weak
polarization [22]. The presence of DNSP effects generally
gives rise to specific long time dependencies in the current
upon changing Bext, ε, or V [22,25,26]. We indeed found
intriguing DNSP effects under certain conditions in this sample
which will be the topic of a future publication. We carefully
assured that here and in the EDSR experiments discussed
below, DNSP is unimportant and the apparent hysteresis of
the measured I (Bext) visible in Fig. 2(c) has a different reason:
it is related to the four distinct configurations of the magnets,
each of which can be magnetized parallel or antiparallel to
Bext.

In Fig. 2(c) we present I (Bext) for two sweeps in opposite
directions (dBext/dt = ±30 mT/min). We have started the
sweeps at large |Bext| to ensure that both magnets are
magnetized parallel to Bext. The current maxima near Bext = 0
occur where all three T11 states are close to resonance with
S11. This is a consequence of Pauli-spin blockade where the
leakage current is governed by the singlet-triplet couplings: the
T11 triplets mix with S11 and because S11 is tunnel coupled to
the other singlet S20, the T11 triplets mix also with S20. These
mixings are strongest near the mutual resonances between S11

and T11 and zero far away from the corresponding resonances.
As |Bext| is increased the T+ and T− triplets are more and more
detuned from S11, their mixing with S20 also decreases, their
decay (T11 → S20) slows down and they become the current
limiting bottleneck states. Consequently, the current decreases.
To illustrate this connection we numerically diagonalized the
Hamiltonian in Eq. (1) and plot in Fig. 2(d) the energies of the
four relevant (1,1) eigenstates versus Bext for a sweep from
negative to positive fields. The apparent avoided crossing at
Bext � 20 mT marks the point of minimal Bext + Bnm, where
Bz = 0. This field coincides with the current maximum for
dBext/dt > 0 [blue in Fig. 2(c)], because here the T±-S20

mixing has its maximum. For dBext/dt < 0 the nanomagnets
would be magnetized in the opposite direction and the current
maximum would occur at Bext � −20 mT [as observed in the
according measurement, red in Fig. 2(c)].

Continuing the sweep, we further increase Bext beyond the
respective coercive fields of the two magnets where their
magnetizations reverse and become again parallel to Bext.
This change of magnetization instantly rearranges the overall
magnetic field at the QDs and causes a steplike characteristic
of the eigenenergies at the coercive fields. We show below
that because of the direct relation between the singlet-triplet
mixing and the nanomagnets’ configuration, this leads to the
sudden changes of the measured current observed in Fig. 2(c),
where we find coercive fields at Bext � 50 mT for the wider
and Bext � 80 mT for the narrower magnet. These coercive
fields are included in the numerics of Fig. 2(d).

We remark that the observed current jumps occur very
abruptly as a function of Bext. This underlines that the nano-
magnets are single domain and the single-domain switches as
a whole once the coercive field is reached.

To phenomenologically explain the current I (Bext) in
Fig. 2(c), we assume four distinct current maxima correspond-
ing to the four possible configurations of our nanomagnets.
By sweeping Bext we can switch between these configurations
which causes the actual current to jump between the four
maxima at the corresponding coercive fields. This simple,
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TABLE I. (Color online) Magnetic field components generated by the two nanomagnets (for parallel [⇒] vs antiparallel [�] magnetization)
at the approximate QD positions marked in Fig. 5 by corresponding circles. Field values are calculated with OOMMF [24]; field strengths
derived from measured EDSR resonances in parentheses.

Magnetiz. QD Bnm|x Bnm|y Bnm|z �Bx �By �Bz

Configuration I (single EDSR resonance)—Bnm (mT)
L −15 6 17 (19)⇒ −3 7 5
R −12 −1 22

L −2 −7 9 (12)� 1 2 8
R −3 −5 17

Configuration II (two EDSR resonances)—Bnm (mT)
L 14 19 10 (9)⇒ −1 7 40 (46)
R 13 26 50 (55)

L −10 −11 10� 18 30 38
R 8 29 48

yet reasonable model is displayed in Fig. 2(f), where we
plot two pairs of Lorentzians (gray) reflecting the symmetry
properties of the problem. The larger maxima correspond to
the parallel and the smaller ones to the antiparallel magnets’
configurations. For better comparability with our measure-
ments we have added two colored curves which mimic the
actual current jumps between the Lorentzians. The identical
curves are also shown in Fig. 2(c) as black lines, where
they reveal good agreement with the measured data. The two
Lorentzians describing the parallel or antiparallel magnets’
configurations, respectively, are equal in amplitude and width.
Most interesting is the observation that the overall current
through the QD is considerably smaller if the two magnets are
polarized antiparallel to each other compared to their parallel
configurations. It suggests that the antiparallel magnetization
causes a smaller singlet-triplet mixing of the bottleneck triplets
T± than the parallel configuration. From our Hamiltonian in
Eq. (1) we see that the coupling between the T± states and
the singlet subspace is proportional to the difference of the
magnetic field component perpendicular to the quantization
axis (approximately parallel to Bext) between the two QDs.
Thus it suggests that the perpendicular component of the field
difference between the two QDs is smaller when the magneti-
zation of the magnets is antiparallel compared to the parallel
configurations. To check this, we have approximately deter-
mined the location of the two QDs (as depicted in Fig. 5 below)
taking into account the numerically calculated Bnm combined
with results of the EDSR measurements (discussed below), the
gate voltage configuration (referred to as configuration I), and
the measurement in Fig. 2(c). This information provides the
magnetic field components in our Hamiltonian in Eq. (1) (see
Table I) and allows us to calculate its eigenenergies, shown in
Fig. 2(d), as well as the mixings between the four (1,1) states
and S20. The latter are visualized in the inset of Fig. 2(e) as a
function of Bext swept from negative towards positive fields.
The main panel is a magnification showing the mixings of the
two bottleneck states T± near the current steps in Fig. 2(c).
It also shows a steplike characteristic at the coercive fields of
the two magnets and is considerably reduced for the magnets
in their antiparallel configuration, namely between the two
coercive fields. This strengthens the Pauli-spin blockade and

explains the reduced current for the antiparallel configuration
of the nanomagnets in between the current steps in Fig. 2(c).
We close this section by noting that an accurate prediction of
the current which depends on Bnm, Bext, ε, and tc would require
a detailed density matrix calculation which goes beyond the
scope of this article.

V. ELECTRIC-DIPOLE-INDUCED SPIN
RESONANCE MEASUREMENTS

Mixing between any two singlet and triplet states is
strongly enhanced where their eigenenergies are nearly equal.
If detuned from this resonance, it is possible to actively
drive transitions between two levels in an EDSR experiment
which regains the resonance condition by applying a proper rf
magnetic field. We have performed our EDSR measurements
in the (1,1) configuration with ε � −100tc [lower red dot in
Fig. 2(b)], where the two electrons are strongly localized in
the two respective dots. Consequently, we expect to find two
distinct EDSR resonances at the respective Zeeman energies
in the two dots:

hf = |gμBBL,R| � gμB
(
Bext + BL,R

nm

∣∣
z

)
, (2)

where f is the modulation frequency, h is the Planck constant,
and BL,R

nm |z is the z component of |BL,R
nm |. The approximation in

Eq. (2) is fair for (Bext + BL,R
nm |z)2 > BL,R

nm |2x + BL,R
nm |2y . Bext and

BL,R
nm |z can have identical or opposite signs depending on the

magnets configuration. The resonance condition Eq. (2) allows
us to directly probe the g factor as well as the z component of
Bnm in the two dots and therefore also �Bz.

Our experimental EDSR sequence is sketched in Fig. 3(a).
We start at ε � 0 in the Pauli-spin blockade [upper red dot
in Fig. 2(b)], which initializes the double QD with equal
probabilities in one of the bottleneck states T+ or T−. [The
other two (1,1) states, T0 and S11, decay quickly if occupied
and eventually the system stalls in T+ or T−.] After 800 ns we
isolate the two electrons by pulsing the double QD deep into
Coulomb blockade to ε � −100tc [lower red dot in Fig. 2(b)]
by changing the gate voltages VR and V∼ [see Fig. 1(a)] within
�2 ns. To avoid pulse transients effects we next wait 200 ns
before we modulate V∼ for 500 ns with a sine wave which
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FIG. 3. (Color online) (a) EDSR measurement scheme, from left
to right: initialization in Pauli-spin blockade → separation of the QD
states from the leads (Coulomb blockade) → EDSR manipulation
by rf-modulation of gate voltage → read-out (I > 0 for EDSR
resonance) and re-initialization. (b) Current I (Bext,f ) through the
DQD (bottom panel) and position of current maxima at EDSR
resonance (top panel) while driving with the pulse sequence shown in
(a). (c) Same as (b) but high resolution measurement near the coercive
field of the left magnet BL

c ∼ 80 mT, where the resonance line forms
a step.

causes both electrons to oscillate in real space. Due to the
inhomogeneous Bnm this rf modulation directly translates into
oscillations of both BL and BR. Finally, we pulse back to our
starting point at ε � 0 for read-out. If the rf modulation in both
dots is off-resonant the double QD stays in Pauli-spin blockade
and no current flows. However, if the resonance condition
Eq. (2) is fulfilled for one of the two electrons during the
rf modulation, the S11 singlet state becomes occupied with a
finite probability. As a consequence the Pauli-spin blockade is
lifted during read-out. Performing a steady state measurement
by periodically repeating this sequence at a frequency of
�670 kHz we then measure a small leakage current.

Typical results of such measurements are presented in
Figs. 3(b) and 3(c), where the leakage current is plotted as
function of Bext and f . At Bext � 0 the Pauli-spin blockade is
lifted even without applying an rf modulation as already seen
in Fig. 2(c) and discussed there. This effect gives rise to the
broad frequency independent current maximum at Bext � 0.
The rf modulation, however, generates additional sharp but
weak current maxima along straight lines, where the resonance
condition in Eq. (2) is fulfilled. Whenever Bext causes one of
the nanomagnets to reverse its magnetization the resonance
frequency suddenly increases according to the increase of the
Zeeman energy. In Fig. 3(b) Bext was stepped from negative
towards positive fields and hence the nanomagnets reverse their
magnetizations at the positive fields, Bext � 50, 80 mT. Figure
3(c) shows a high resolution measurement of part of Fig. 3(b).
It reveals one of the expected jumps in resonance frequency
at Bext � 80 mT. Linear fits according to Eq. (2) suggest
|g| = 0.36 ± 0.01 and BL

nm|z = 19 ± 1 mT if both magnets

FIG. 4. (Color online) Coexistence of two EDSR resonances: (a)
I (Bext,f ) through the DQD as in Figs. 3(b) and 3(c) but for a
different gate voltage configuration (configuration II). (b) Position
of the current maxima at EDSR resonances in (a). Lines indicate fits
with Eq. (2). (c) Typical current trace at constant Bext along dashed
line in (a).

are magnetized parallel to Bext and BL
nm|z = 12 ± 1 mT if the

narrower magnet (with the larger coercive field) is aligned
antiparallel to Bext.

Technical remark: To hereby determine the values of |g| and
the fields of the nanomagnets we have applied the linear least
squares fitting method to our EDSR resonances as those shown
in the upper panels of Fig. 3, averaging the virtually identical
values for positive versus negative magnetic field. The slope
of these fits gives the g factor and the offsets the field of the
nanomagnets. From comparing measurements with mutually
opposite sweep direction of Bext and for various histories of
Bext(t) we exclude a possible hysteresis of the external magnet
that could, in principle, cause an additional horizontal shift of
the EDSR resonances.

We close the discussion of Figs. 3(b) and 3(c) with two
remarks: first, the switching of the large magnet cannot be
observed in this measurement because it is masked by the broad
current maximum around Bext = 0. Second, in Figs. 3(b) and
3(c) we find only one EDSR resonance for this particular gate
voltage configuration (configuration I). We will show below
that it belongs to the left QD and under which conditions a
second EDSR resonance can be observed.

In Fig. 4 we present a second EDSR measurement after
retuning the double QD such that each QD is situated in
close proximity to one of the two magnets. In this gate
voltage configuration (II) the antiparallel magnetization of the
nanomagnets did not result in clear EDSR resonances because
of strong effects of DNSP at the required weak Bext values.
Fortunately, the parallel magnetization of the nanomagnets
allows for EDSR measurements at higher magnetic fields
where DNSP is weak. In this regime we find two distinct
EDSR resonances as can be seen in the raw data in Fig. 4(a)
plotting I (Bext,f ), in Fig. 4(b) indicating the positions of sharp
current maxima in Fig. 4(a) and also in Fig. 4(c) presenting a
single frequency trace at constant Bext. The latter contains two
sharp current maxima clearly indicating two distinct EDSR
resonances. Fitting Eq. (2) yields the same |g| = 0.36 ± 0.02
as above, but BL

nm|z = 9 ± 2 mT and BR
nm|z = 55 ± 3 mT. The

assignment of the EDSR resonances to either the left (L) or
the right (R) QD is thereby based on our OOMMF simulations
of Bnm.

In Figs. 5(a) and 5(b) we plot the Bnm|z component which
is relevant for the T± ↔ S11 transitions considered here for
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FIG. 5. (Color online) OOMMF simulations of Bnm [24]. Mag-
netic field component Bnm|z along Bext (z axis) for (a) parallel and (b)
antiparallel magnetization of the two nanomagnets. Bnm|z is relevant
for the EDSR resonance condition, Eq. (2). (c) and (d) Absolute value
of the gradient of the perpendicular component B⊥

nm within the plane
of the 2DES; Bnm = Bnm|z + B⊥

nm. The EDSR signal strength scales
with |∇x,zB⊥

nm|. Colored circles in (a)–(d): Approximate QD center
positions for the two different gate voltage tunings. Arrows indicate
nanomagnets polarization directions.

the two cases, a parallel and an antiparallel magnetization of
the nanomagnets.

Comparing our numerical results with our EDSR measure-
ments we find the approximate center coordinates of the QDs,
which are marked as red circles in Figs. 5(a)–5(d). The used
gate voltages are in agreement with these locations, where
details also depend on the disorder potential. The yellow circles
in Figs. 5(a)–5(d) indicate the approximate positions of the
QDs for the previous gate voltage configuration (I) discussed
above.

The strength of each EDSR resonance [i.e., the height of
each current maximum in Fig. 4(c)] should scale with the
absolute value of the local gradient of the magnetic field
component perpendicular to Bext, i.e., B⊥

nm, along each electron
oscillation path caused by the rf modulation. As we do not
know the exact pathways we plot in Figs. 5(c) and 5(d) the
absolute value of the two-dimensional derivative within the
plane of the 2DES, |∇x,zB⊥

nm|. The red circles in Figs. 5(c) and
5(d) are clearly near derivative extrema while the situation is
not so clear for the yellow circles. This observation provides a
possible explanation for the missing second EDSR resonance
in our first gate voltage configuration (yellow circles). There
we can assign the observed resonance to the left QD as the
simulated Bnm at the position of the left QD fits to the EDSR
results for both magnet configurations but that of the right QD
does not.

Our numerical results at the marked QD positions are
summarized and compared to our experimental findings in
Table I. Interestingly, for the parallel magnetization of the
nanomagnets the difference fields �Bx and �By are quite
weak compared to �Bz, while �Bx and �By are also
sizable for the antiparallel magnetization. This implies that
the dynamics of the T± state is quite different for the two
cases, as the coupling between T± and S11 is mediated by
�Bx and �By . For instance, antiparallel magnetization would
be the better choice for defining a qubit based on the states

T± and S11, while the parallel magnetization would be a good
choice for a qubit based on T0 and S11.

VI. SAMPLES WITH ONE NANOMAGNET

In the following we discuss an EDSR measurement of a
sample of our previous generation of double QD designs [27].
It contains just one single-domain nanomagnet [see Fig. 6(a)]
located on top of a gold gate. The voltage on the same gate is
modulated to drive EDSR. This design is especially simple as
the magnet axis, the rf-modulated gate and the symmetry axis
of the QD (z axis) coincide. It is justified to assume that the gate
voltage modulation entails a motion of the QD electrons mostly
also along the z axis. Simulations of the nanomagnet shown in
Fig. 6(b) reveal a sizable magnetic field gradient at the left QD
while it almost vanishes at the right QD at a larger distance
to the magnet. Our measurements agree with the simulations
and reveal an average field of approximately |Bnm| � 22 mT
within the left QD and a coercive field of the nanomagnet
of 52 ± 2 mT. As in our EDSR experiments, the rf-magnetic
field modulation is produced by driving an electron along a
time-independent slanting magnetic field, only electrons in the
left QD can be manipulated by EDSR. Consequently, in this
sample only a single EDSR resonance corresponding to the
left QD is expected. This is in contrast to our sample with
two nanomagnets, which can be tuned such that a sizable
field gradient exists in two QDs giving rise to two EDSR
resonances associated with two separate QDs (see Fig. 4). As
expected, we find only a single EDSR line in the experiment
in Fig. 6(c). The g factor is identical to the one of our previous
sample, g = 0.36 ± 0.01, while both samples feature similar
QDs based on the same wafer.

FIG. 6. (Color online) Double quantum dot with one instead
of two single-domain nanomagnets reproduced from Ref. [27].
(a) Scanning electron microscope image; color coding analog to
Fig. 1(a). (b) OOMMF simulations of the perpendicular field gradient
along Bext aligned with the z axis. This is also the main direction of
the rf electron displacement. The lower panel is a horizontal cross
section of the color plot at x = 100 nm. (c) I (Bext,f ) through the
DQD as in Figs. 3(b) and 4(a) showing a single EDSR resonance at
a modulation amplitude of �15 mV. (d) Multiple EDSR resonances
at about twice the modulation power.
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In Fig. 6(d) we present a similar EDSR measurement as
in Fig. 6(c), but with about twice the modulation power. We
observe a transition from a single resonance at �ω = gμBBext

at small modulation powers in Fig. 6(c) to multiple reso-
nances at n�ω = gμBBext,n = 1,2, . . . for larger modulation
powers in Fig. 6(d). Such a behavior can be explained in
terms of higher order harmonics generation and has also
been observed to such a high order in comparable EDSR
experiments in an InAs nanowire based double QD [28] and
to second order in another GaAs based double QD [29]. A
related example of higher order harmonics generation are
Landau-Zener-Stückelberg-Majorana interference oscillations
[30,31]. The multiple resonances here (with variable slopes)
are fundamentally different from the two resonances (with
identical slopes) observed in our previous sample with two
nanomagnets discussed above. There they are caused by the
different magnetic fields in two QDs and, in contrast to the
higher harmonics, observable for low driving powers.

VII. CONCLUSIONS

In summary, we have explored a hybrid nanostructure
consisting of a double QD incorporating two single-domain
nanomagnets with different coercive fields. The magnets’
properties agree well with numerical simulations. By sweeping
an external field it is possible to reverse the magnet polar-
izations one-by-one and to directly measure their coercive
fields. The magnetization of each nanomagnet switches almost
instantly at its coercive field as expected for a single-domain
magnet at very low temperature. Each switching event modifies
the local magnetic field distribution and gives rise to a distinct
current jump in a dc transport measurement in the Pauli-spin
blockade regime. In a radio frequency EDSR experiment the
switching of a magnet generates a shift of the resonance
frequency. Compared to the larger multiple domain magnets

our single-domain magnets generate sizable field gradients
even at zero external field and therefore allow experiments
in a regime where the relative field difference between
adjacent QDs is stronger than the average field. In contrast
to magnets with multiple domains, the single-domain nature
guarantees a stable field distribution over a large range of
external field values. The disadvantage of a somewhat smaller
field gradient due to the smaller size of the magnet can be
compensated by using multiple single-domain nanomagnets.
The combination of several magnets provides a high degree of
control of the overall field distribution as the coercive fields
of each magnet can be predetermined by design. In summary,
coupled QDs including multiple single-domain nanomagnets
represent a promising approach for future spin qubit cir-
cuits desired for quantum information or related spintronics
applications.
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APPENDIX: METHODS

Magnetic field simulations were carried out with the 3D
solver oxsii 1.2a5 of the OOMMF toolkit [24]. A simulation
gridsize of 5 nm (in-plane) and 2.5 nm (out-of-plane) was cho-
sen, comparable to the magnetic exchange length of ∼3.5 nm
in cobalt. The exchange stiffness of cobalt, 30 × 10−12 J/m, as
well as the saturation magnetization, 1.4 × 106 A/m, enter the
simulation as external parameters. We included a reasonable
10◦ correction between the 2DES-plane and the direction
of Bext which provides the best fit to the measured sample
characteristics.
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6 Dynamic nuclear spin polarization:
Multistability and spin diffusion enhanced
lifetimes

This chapter presents the results of

• Forster, F. et al. Phys. Rev. B. 92. 245303 (2015)

See section D for the contributions of each author.

6.1 Overview

In this chapter, we analyse the complex dynamics of nuclear spins interacting with electrons in a DQD
in the presence of the highly inhomogeneous magnetic field distribution characterized in chapter 5. We
polarize the nuclear spin bath dynamically via hyperfine interaction by driving a current through the
DQD in PSB which causes the nuclear spins to arrange at one of a number of possible fixed points of their
polarization distribution. By increasing an external magnetic field we can increase and modify the nuclear
spin polarization. We use EDSR to directly measure the nuclear spin polarization and to monitor its decay.
Combining two on-chip nanomagnets with dynamic nuclear spin polarization and EDSR is a new approach
and our studies go well beyond previous experimental investigations of the nuclear spin dynamics in lateral
QDs. We present a number of interesting observations: We establish multiple (at least 4) stable fixed points
differing by their spatial nuclear spin distribution. The fixed points are stable but occur in subsequent
measurements with nominally identical settings in random order, the reason possibly being related to
random fluctuations in the initial conditions of the sweep related to charge noise or the residual nuclear
fields. Nuclear spin diffusion is slowed down by the strongly inhomogeneous magnetic field generated by
the nanomagnets. This leads to a quite stable cloud of nuclear spin polarization inside the dots but also in
their surroundings, substantially slowing down the decay of nuclear spin polarization.

6.2 Theory

6.2.1 Nuclear spin bath

So far we treated the DQD as an isolated system only tunnel coupled to electron reservoirs. In a real solid
state based DQD, the interactions with its environment can become crucial. If the atoms of the host material
carry a nuclear spin, which is the case for all isotopes of the III-V semiconductor GaAs, the electron spins
will interact with the nuclei via the hyperfine interaction [38]. In addition, the nuclei interact directly with
each other, most prominently through magnetic dipole-dipole interaction among nuclear spins [39]. The
quantum mechanical interaction of the electron with the multitude of nuclei can in principle lead to a
complex entanglement between all particles and can give rise to exciting and complex many-body quantum
physics involving both the electrons in the DQD and the nuclei (e.g. ref. [40–42]). However, the quantum
mechanical treatment of the complete problem is consequently challenging and still under active research
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in theory. To nevertheless make progress, we use a semi-classical model of the nuclear spin bath which can
already explain many key observations of the experiments [4].

Let us consider the contact hyperfine interaction of one electron localized in a single QD. Since the
confinement potential of the QD extents over many lattice positions of the host material, N ' 106 nuclei for
the lateral QDs discussed here, the Hamiltonian consists of the sum of the hyperfine interaction between
the electron and each individual nuclear spin [4, p. 1240],

HHF =
N∑
k

Ak Ik ·s, (6.1)

where s is the spin operator for the electron and Ik the one for the k-th nucleus. The amplitude of each
interaction Ak scales proportionally to the overlap squared of the wavefunction of the electron and the
one of the nucleus k and depends on the isotope of the specific nucleus [38]. This renders the hyperfine
interaction of electrons in GaAs important, since their s-like orbitals have a large overlap with the nuclei.
In contrast, the contact hyperfine interaction for holes in the same material is much weaker due to their
p-like orbital wavefunction [4, pp. 1240f]. Semi-classically, we neglect the quantum correlations between
the electron and the nuclei and replace the operators Ik in (6.1) by its expectation value Ik with I k = 3/2 in
GaAs. We then write the semi-classical Hamiltonian as

HHF =
(

N∑
k

Ak Ik

)
·s = gµB

~
Bnuc·s,

where the classical vector Bnuc describing the nuclear interaction regarding the electron is an effective
magnetic field, the so called Overhauser field [43]. Since the electron dynamics are much faster compared
to the dynamics of Bnuc, the mean field approximation of a quasistatic Bnuc is justified [44, 45]. Within the
mean-field approach, we replace the interaction constant of each individual nucleus Ak with an average
interaction constant A reflecting the natural abundance νi of the isotope type per nucleus (69Ga: 0.3; 71Ga:
0.2; 75As: 0.5) and the average overlap of the wavefunction for each isotope Ai (69Ga: 74µeV; 71Ga: 96µeV;
75As: 86µeV [46]). The averaged interaction constant A is then calculated as the averaged root mean square

of Ai , A =
√∑

i νi A
2
i = 85µeV [47]. The maximum value of Bnuc is reached, when all nuclear spins are

aligned (all Ik are equal). The Overhauser field is then

B max
nuc = I A

|g |µB
= 3/2 ·85µeV

0.36µB
= 6.1T.

We find that the size of the Overhauser field for a fully polarized nuclear spin ensemble is significant and
exceeds several Tesla in GaAs.

At Bext = 0, the mean value of the Overhauser field, 〈Bnuc〉, vanishes in thermal equilibrium, but the

effective strength of the Overhauser field determined by its fluctuations
√

〈B2
nuc〉 ∼ B max

nuc /
p

N ' 1mT
remains finite [16]. At Bext 6= 0, the thermal distribution of nuclear spins causes a non-vanishing 〈Bnuc〉, but
plays a negligible role considering the magnetic fields in our experiments: Even at cryogenic temperatures
of 10 mK, the thermal energy ∼1µeV exceeds the nuclear Zeeman energy splitting, e.g. ∼30 neV at 10 T, by
far.

In conclusion, we obtain a finite effective magnetic field in each quantum dot due to the fluctuations,
yielding the semi-classical hyperfine Hamiltonian for the DQD as

HHF = gµB

~
(
B1,nuc·s1 +B2,nuc·s2

)
,

where B1,nuc is the Overhauser field in the first, and B2,nuc the one in the second quantum dot. This
Hamiltonian is analogous to Hmag (2.9) and has similar consequences for the electronic term-scheme: Even
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Figure 6.1: a) Result of a simple phenomenological model describing the dynamics of nuclear spin polarization P . It
includes a polarization resonance at Pres and a constant decay rate and results in a stable fixed point (FP) defined by
Ṗ = 0 and P̈ < 0 at finite P alongside the trivial fixed point at P = 0. In this simple model, the change of polarization
depends only on a single variable, the polarization itself. b) Same as a, but for a different value of Pres. Here, only the
trivial FP exists. c) Sketch of a 2D phase space where Ṗ depends on two independent variables A and B . Dashed gray
lines separate regions, in which a different FP is most attractive. A trajectory towards FP 2 without fluctuations of the
dynamic variables is shown in black. Stochastic fluctuations of A and B induced by the environment can disturb the
trajectory and can lead to different ones, e.g. the ones in blue and red colour. Fixed points close to the undisturbed
trajectory can potentially be reached because of fluctuations as sketched for the red curve.

without the presence of a real magnetic difference field ∆B, the singlet and triplet subsystems are coupled
by the Overhauser field difference, and PSB is partially lifted.

In addition to the electron-nuclear interaction discussed above, the nuclear dipolar and quadrupolar
interactions influence the Overhauser fields in the DQD. These mechanisms cause flip-flop processes
between nuclear spins and can therefore lead to a spatial redistribution of nuclear spins [47]. In particular,
it opens a decay channel for polarized nuclear spins through nuclear spin diffusion [39]. In this thesis, we
apply a phenomenological rate model to describe a free decay of spin polarization (see below). We will,
however, also find that this simple model can only partly explain our observations in the experiment.

6.2.2 Dynamic polarization

For the electron dynamics it does not seem to make a difference if the PSB is lifted by a real magnetic field
or by an effective one, since both are captured equally in the semi-classical Hamiltonian. However, if the
spin blockade is lifted by a flip-flop process of an electron with a nucleus, the overall spin needs to be
conserved. As long as the system is completely symmetric, i. e. the spins in the left and in the right dot
have equal probability to be flipped either up or down, the net transfer of spin between the electrons and
the nuclear bath remains zero. If perfect symmetry is broken in the experiment, asymmetries in the DQD
lead to a preferred spin flip direction. This effect can cause a sizeable net-polarization of the nuclear spin
bath dynamically generated by a steady current flow through the DQD in PSB. This dynamic nuclear spin
polarization (DNSP) can generate sizeable Overhauser fields in the quantum dots which contribute to both
∆B and B and therefore lead to complex hysteretic dynamics [30, 48, 49], since both parameters act on the
current and therefore on the spin-flip rates themselves [50, 51]. At the same time, nuclear spin diffusion out
of the dot depolarizes the nuclear spin ensemble and eventually, a stable steady state is reached, where the
net-polarization rate is equal to the decay rate. In the most simple case, the existence of such fixed points
(FPs) can be described by a phenomenological model, where the polarization rate Γ is proportional to the
current I . When describing isolated current resonances, e.g. the resonance between |S+〉 and |T−〉 [30] or
the EDSR resonance during rf driving [52] at sufficiently large magnetic field, the polarization dependent
pump rate Γ(P ) is only different from zero near a resonance Pres, e.g. described by a Lorentzian resonance
curve [8]. In addition, a decay of P with a rate 1/τ is assumed which accounts for the diffusion of polarized
nuclear spins out of the DQD. Then the rate equation for the dynamics reads [52]

Ṗ = Γ(P )− 1

τ
P.

45



6. Dynamic nuclear spin polarization: Multistability and spin diffusion enhanced lifetimes

This simple model results in the prediction sketched in figure 6.1(a): As main feature, we find two stable
fixed points (Ṗ = 0 and P̈ < 0); the trivial one at zero polarization, but also another one at a finite polarization
near Pres. The non-trivial FP can vanish, for example if Pres is located at larger P as shown in 6.1(b). Here, a
larger peak value of Γwould reintroduce the fixed point. In the same spirit, the fixed point could be still
found for a longer τ, which determines the slope of Ṗ . While this simple model, in which Ṗ only depends
on the single variable P , successfully predicts the existence of FPs in the polarization dynamics, it is far
from complete: The current through the DQD and hence Ṗ in PSB depends crucially on the electronic
spectrum and thus the magnetic field distribution as discussed in chapter 5. In particular, we know that the
current is a function of B and ∆B, which indicates that a single variable might not be sufficient to capture
the dynamics of the full system, if B and ∆B are independent. Already the assumption of two independent
variables A and B leads to a far more complex phase space, where more than one non-trivial FP exists [53],
such as sketched in figure 6.1c. While the trajectory through the now 2D phase space is predefined by the
attractiveness of each FP, small stochastic fluctations of A and B (of potentially quantum mechanical and
classical kind induced by the environment) can lead to deviations between multiple experiments [black
and blue curves in fig. 6.1(c)] and can in principle even lead to different fixed points (red curve in 6.1c).
In the same spirit, if two or more FPs are very close to each other, blinking between these multistabilities
can occur [54]. A common phenomenon is the intrinsic stabilization of the effective magnetic field by the
polarization dynamics: Changes in the external (real) magnetic field can be compensated dynamically by
the Overhauser field, such that the overall magnetic field remains unchanged [30, 52] which we will use to
reach high Overhauser fields inside the DQD.

6.3 Measurement setup

The measurement setup is identical to the one of chapter 5, see section 5.3.
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The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit
their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin
polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD)
exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and
unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple
fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which
significantly stabilizes the nuclear spins inside the DQD.

DOI: 10.1103/PhysRevB.92.245303 PACS number(s): 72.25.Pn, 03.67.−a, 73.63.Kv

In III-V semiconductors the weak hyperfine interaction
between nuclear and electron spins has a strong impact on
the electron spin dynamics owing to the fact that each con-
duction band electron interacts with a large number of nuclei
[1–4]. This situation can give rise to dynamic nuclear spin
polarization (DNSP) [5–14] and exciting many-body quantum
physics such as complex hysteretic dynamics [1,5,15], mul-
tistabilities [6,16], collectively enhanced transport [17], and
dissipative phase transitions [18,19]. However, the thermal
fluctuations of nuclear spins, even present at cryogenic temper-
atures, also cause decoherence of spin qubits [20,21]. Ignoring
correlations, the influence of the nuclei on the electron spin
dynamics is usually described within a semiclassical mean-
field approach, which expresses the nuclear spin polarization
in terms of an effective magnetic field for the electron spin,
Bnuc(r), the Overhauser field [22]. In a double quantum
dot (DQD) charged by one electron in each dot, thermally
fluctuating nuclear spins result in a field difference �Bnuc

in the order of a few mT between the two dots [23]. In
equilibrium, the time averages of Bnuc(r) and �Bnuc vanish.
This fluctuating field nevertheless causes a weak mixing of
singlet and triplet states [3,24,25] being explored for quantum
information processing [21,26]. To control this mixing, it
would be necessary to stabilize the difference of the effective
magnetic fields in the two dots, �Bnuc.

Here, we combine DNSP with electric dipole induced spin
resonance (EDSR) to study the dynamic polarization of nuclear
spins on the one hand, and the decay of the polarization on the
other hand. We demonstrate the existence of multiple attractive
fixed points (FPs) in the steady-state solution of the driven
system, where the decay of Bnuc(r) is exactly canceled by its
dynamical buildup [6,8,27]. Our results demonstrate that the
FPs differ from each other by their spatial distributions of
Bnuc(r). Relevant for spin qubit applications, the singlet-triplet
mixing of each FP can thereby be fine tuned by adjusting
external parameters such as the external field Bext [direction

as in Fig. 1(a)] or the energy detuning ε between the two
dots [i.e., the singlet configurations (1,1) and (2,0), where
(n,m) denotes the number of electrons in the left (n) and right
(m) dots]. Attractive FPs in DNSP are often characterized
by a narrow nuclear spin distribution, hence sharply reduced
nuclear spin fluctuations, which provides possible advantages
for the preparation of coupled dots for quantum information
applications [2,28]. Our measurements allow us to characterize
FPs by their nuclear spin distribution, and their dynamic and
static stability. In particular, we show that the diffusion of
nuclear spins outside the DQD has a strong influence on the
buildup and decay dynamics of their polarization inside the
DQD which it further stabilizes. Such an enhanced stability of
FPs promises positive impact on the coherence of the electron
and nuclear spin states.

I. EXPERIMENTAL SETUP AND TECHNIQUES

Our DQD design, presented in Fig. 1(a), incorporates two
single-domain nanomagnets. They generate an additional,
static inhomogeneous field Bnm(r), such that the total effective
field difference is �Beff = �Bnuc + �Bnm. In equilibrium,
the static |�Bnm| � 45 mT [29] exceeds the fluctuations of
�Bnuc of ∼2 mT [3] by far, degrading �Bnuc to a weak
perturbation. Important for qubit applications this stabilizes
the singlet-triplet splitting and yields advantages in controlling
the nuclear spin dynamics [8]. Furthermore, our sizable �Bnm

causes a corresponding separation of the Zeeman energy in
the two dots and allows us to resolve EDSR experiments in the
individual dots [29]. We operate our DQD in the vicinity of
the (1,1) ↔ (2,0) charge transition. In response to the applied
voltage V = (μR − μL)/e = 1 mV electrons tunnel one by
one through the DQD via the cycle (1,0) → (1,1) → (2,0) →
(1,0). We measure the resulting current which is, however,
strongly suppressed by Pauli spin blockade (PSB) of the
transition (1,1) → (2,0) [30]. In the stability diagram of our

1098-0121/2015/92(24)/245303(5) 245303-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Scanning electron microscope image
of a DQD defined in a two-dimensional electron system 85 nm
beneath the surface of a GaAs/AlGaAs heterostructure [29]: GaAs
surface in gray, gold gates in yellow, cobalt gates in blue. Red
circles indicate approximate quantum dot positions, green arrows
the physical current direction for μR > μL, and a white arrow the
direction of Bext. (b) Charge stability diagram I (V∼,VR). An arrow
marks the detuning axis, and a dotted line ε = 0. A double arrow
indicates pulsing of gate voltages V∼ and VR during an EDSR
experiment [see labels in (a)]; the modulation V∼ = V 0

∼ + v sin(ωt)
with v � 3 mV is applied at the red point labeled EDSR. (c) I (Bext)
as Bext is swept. Variations suggest the existence of multiple FPs.
(d) Distribution of current traces I (Bext) corresponding to FPs I–IV
and “others” (referring to traces which did not fit to types I–IV)
detected within 384 sweeps.

DQD in Fig. 1(b), an extended region of PSB is clearly visible
as reduced current at the base of the current-carrying double
triangle. Details are explained in Ref. [29] for the identical
sample.

We follow two complementary approaches to study the
nuclear spin dynamics. First, we actively polarize the nuclear
spins by sweeping Bext and driving electrons through the DQD.
We measure the background leakage current still flowing in
PSB, which grows with increasing singlet-triplet mixing being
proportional to the components of �Beff [8] (if we ignore
weak influences of cotunneling and spin-orbit interaction). In
our second approach, we let Bnuc(r) (produced as described
above) decay and directly measure it by performing EDSR.
We have experimented with several scenarios, but for better
comparability here we discuss only measurements taken under
the following conditions: we start with an initialization time
tinit = 180 s with Bext = V = 0 at ε � 0.1 meV [red dot in
Fig. 1(b) labeled “Drag”; the interdot tunnel coupling is tuned
to tc � 20 μeV] to let any remaining Bnuc(r) decay. Next,
we apply V = 1 mV (at otherwise identical settings) and
sweep Bext at the rate 0.67 mT/s to a finite value and then
sweep back to zero at −3.3 mT/s. To avoid complications by
long-time memory effects, before each measurement series we
preconditioned the system with a number of identical sweeps.

II. DYNAMIC NUCLEAR SPIN POLARIZATION –
MULTIPLE FIXED POINTS

Figure 1(c) shows I (Bext) during typical sweeps to Bmax
ext =

0.6 T. Even though we keep dot and sweep parameters
identical we find four different characteristic current traces,
each one occurring multiple times [Fig. 1(d)] but in arbitrary
order. Within each type I (Bext) is reproducible, even including
sudden current steps and the noise level [see Fig. 1(c)]. The
different curve types I (Bext) are stable over many minutes
(jumps between them occur very rarely at sizable Bext, not
more than in one out of 50 sweeps). They strongly depend
on Bext, and persist even for very slow sweeps, but are lost if
the sweep is performed too fast. We will show below, that the
magnetic field sweeps are accompanied by a buildup of sizable
(and type-dependent) nuclear polarizations.

Knowing that I scales with �Beff, this all points to
corresponding stable FPs with steady-state nuclear spin con-
figurations Bnuc(r,Bext). Traces II–IV contain sudden jumps
(within less than a second), which might indicate reproducible
transitions between some FPs at specific values of Bext. Before
each sweep we let Bnuc(r) decay by setting V = 0, hence
I = 0, where DNSP is absent [and only the trivial FP in
equilibrium with Bnuc(r) = 0 is left]. Our experiments indicate
that within the first few seconds of I �= 0 the nuclear spins
arrange themselves at one of the FPs (even at Bext = 0).
Figure 1(d) presents a statistics of the rate of different curve
types. It suggests that for our settings four FPs are almost
equally likely occupied under these conditions. Interestingly,
the order at which the different types occur is random, likely
being related to random fluctuations. In our case these could be
thermal fluctuations of Bnuc(r,Bext) [2,31] or random telegraph
noise in the local DQD potential, called charge noise [32–34].

Type I curves [see Fig. 1(c)] are characterized by a reduction
of the current from I � 1 pA at Bext � 0 to I < 80 fA at
Bext > 0.1 T. In Ref. [8], type I has been associated with
the resonance between the T+ triplet and the singlet state
(both for one electron in each dot). In our system, the strong
reduction of I (Bext) implies that especially the components of
�Beff perpendicular to Bext should be reduced to �B⊥

eff � 0.
Likewise, the other FPs with larger currents correspond to
more inhomogeneous Bnuc(r) at sizable Bext.

III. FREE DECAY OF NUCLEAR SPIN POLARIZATION

Utilizing EDSR experiments, we can measure the effective
magnetic field value to monitor Bnuc(r). Here, we measure its
decay in the two dots after we have built up Bnuc(r) by DNSP.
As sketched in Fig. 2(a), we start by sweeping Bext to Bmax

ext
within tsweep as described above. There, we hold Bext and V

constant during thold = 120 s. For the remainder of the experi-
ment we keep Bext = Bmax

ext . Next, at t = 0, we initiate the decay
of Bnuc(r) by switching V off to stop DNSP. After the waiting
period tw, we go back to V = 1 mV. If tw was long enough, the
FP is lost and Bnuc(r) continues decaying. To measure this, we
perform EDSR by periodically pulsing to ε � −0.5 meV [see
Fig. 1(b)] and applying an rf modulation at a fixed frequency
to the gate voltage V∼. Details of our EDSR procedure are
explained in Ref. [29]. At ε � −tc the electrons, confined in
the DQD and affected by EDSR, can be considered localized in
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FIG. 2. (Color online) (a) Measuring scheme and an example
current trace I (t) (type III); Bnuc(r) begins to decay at t = 0 (see
main text for details). (b) I (t) during the decay of Bnuc(r) for various
EDSR frequencies. Current peaks marked with red arrows indicate
EDSR resonances. (For clarity the upper traces are vertically offset
in steps of 50 fA.) (c) Initial current decay for various tw. (d) EDSR
resonance times t r

peak and t l
peak as a function of tw. Horizontal lines are

mean values.

the individual dots. As long as the rf bursts are off-resonance,
I remains small, but whenever hf = gμBBeff in one of the
two dots, PSB is lifted and we expect enhanced current.

Typical traces I (t) are plotted in Fig. 2(b) for the case of type
III curves for three different frequencies and Bmax

ext = 0.65 T.
The frequency-independent gradual decrease of I within the
first 250 s is related to the decay of Bnuc(r) away from the FP.
It indicates that the FP is close to a singlet-triplet resonance,
where I has a maximum. On top of this background, we
observe current spikes indicating EDSR resonances [arrows
in Fig. 2(b)]. Interestingly, we find two distinct resonances per
decay curve, the first occurring at t rpeak and the second at t lpeak,
which we assign to the right and left dots, respectively (see
below). A resonant EDSR experiment can also lead to DNSP
(more so at higher frequencies) [6,16,35–37]. The uppermost
I (t) curve in Fig. 2(b) measured at f = 2 GHz demonstrates
this effect, where the second EDSR spike repeats multiple
times and causes I to fluctuate strongly. Important for our
analysis, no DNSP is induced as long as f is off-resonant. This
is always the case in each dot before the corresponding current
peak occurs the first time, marking the relevant t lpeak and t rpeak.

For measuring the undisturbed decay of Bnuc(r), it would
be desirable to avoid any DNSP effects during the decay. As
a continuous V = 0 and no rf modulation are no option, we
carefully monitor and set up the experiments to avoid unwanted
DNSP effects. In particular, we found that the background
current does not cause any DNSP away from the FPs: for
instance, variations of tw (at V = 0) do not influence the
initial decay of I (t) [see Fig. 2(c)]. In addition, t rpeak and
t lpeak are independent of tw as demonstrated in Fig. 2(d).
However, a correlation is evident in the jitter between t rpeak

and t lpeak (the correlation coefficient is 0.87). Such a behavior
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FIG. 3. (Color online) (a) EDSR resonance frequency versus
time f (tpeak): t r

peak (blue, right dot) and t l
peak (green, left dot) for type

I (III) curves in the upper (lower) panel. Lines are fits according
to Eq. (1). (b) Type III decay curves f (t l

peak) for various Bmax
ext .

(c) Slowing down the decay of the nuclear spin polarization:
tpeak(thold).

is expected if the origin of the fluctuations is related to noise
occurring with frequencies small compared to 1/(t lpeak − t rpeak).
This favors charge noise, which has its weight at long-time
scales [32–34,38], over the thermal fluctuations of Bnuc(r),
which are fast compared to t lpeak − t rpeak [2]. Charge noise
modulates the geometry of the confinement potential. The
details of the latter determine parameters with a possibly
strong impact on the static and dynamic properties of the FPs,
including the detuning ε, the positions of the charge centers,
consequently �Bnm, and the decay of Bnuc(r).

To map out the decay of Bnuc(r) in the two dots, we present
t rpeak and t lpeak (x axis) of type I and III curves for various
frequencies (y axis) and Bmax

ext = 0.36 T in Fig. 3(a). The
solid lines are theory curves, where we assume that Bnuc(r)
is antiparallel to Bext (an assumption fully compatible with our
data [8]) and decays exponentially, such that

hf = ∣∣gμB

[
Bmax

ext + Bz
nm + Bz

nuc(t = 0) exp(−t/τ )
]∣∣, (1)

where we replaced vectors by their z components (along the
external field), a good approximation for the data in Figs. 3(a)
and 3(b) [39]. In accordance with EDSR measurements on this
sample [29], we use g = −0.36 and Bz

nm = 55 mT vs 10 mT
in the left vs right dot. Note that Bz

nm defines the long-time
limit of the EDSR frequencies in each dot, and hence also the
t lpeak − t rpeak in this limit. The knowledge of Bnm(r) allows us to
attribute the two EDSR resonances to the individual dots. We
find that both, decay times and Bnuc(r) generally differ from
FP to FP and between the two dots, see Fig. 3(a). In these
measurements, decay times range from 3 min to almost 8 min,
much longer than earlier findings in lateral dots [8,16].

For both types I and III, our measurements show the buildup
of a strong nuclear polarization which partially compensates
Bext and Bnm as evidenced by the small values of Beff [see
Fig. 3(a)]. FP I is characterized by a nuclear spin polarization
which tends to equalize Beff in the two dots: From the
small current, we already concluded that �B⊥

eff � 0. From
our EDSR measurements, we find Bz

nuc = −(270 ± 5) mT
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vs −(320 ± 9) mT in the left vs right dot, corresponding
to �B

‖
eff = (−5 ± 10) mT, hence �Beff � 0. This complete

compensation of Bext + Bnm(r) is surprising as the EDSR
measurement is performed at dot positions shifted by ∼10 nm
compared to where they are during polarization buildup. It
is a first indication that nuclear spin polarization diffuses
outside the dots. For FP III we find Bz

nuc = −(340 ± 25) mT
vs −(290 ± 20) mT in the left vs right dot, corresponding
to �B

‖
eff = (80 ± 30) mT (with statistical errors from the fit

procedure). Furthermore, FPs II and IV have similarly large
leakage currents as FP III, indicating that these three FPs have
in common a relatively large �Beff at finite Bext. Unfortunately,
we have not been able to reliably capture EDSR current peaks
following DNSP traces II and IV as these resonances turned
out to be too unstable.

In Fig. 3(b), we compare decay curves of the later occurring
current maximum corresponding to the left dot for FP III and
three different values of Bmax

ext . We find equal decay times
for relatively small Bmax

ext , namely, τ = 230 ± 20 s for Bmax
ext =

0.36 T and 0.65 T, but a longer τ = 400 ± 60 s for 1.48 T.
This points to a stabilization mechanism of the nuclear spin
polarization inside the dots for longer sweeps.

IV. LIFETIME ENHANCEMENT OF NUCLEAR SPIN
POLARIZATION

To further explore the long decay times observed in Fig. 3(a)
and the stabilization mechanism evidenced in Fig. 3(b) we
continued polarizing with V = 1 mV at a fixed Bmax

ext = 0.65 T
and measured t rpeak and t lpeak as a function of the additional
polarizing time thold. As shown in Fig. 3(c) we find that both
current maxima occur later in proportion to the increase of
thold. Similar lifetime enhancement of Bnuc(r) was previously
observed in bulk GaAs [40] and self-assembled quantum
dots [41,42]. Our long polarization lifetimes of many minutes
for large thold and the linear dependence of tpeak on thold confirm
a significant polarization of the surroundings of the dots. The
large and widely spread magnetic field inhomogeneity caused
by our two nanomagnets further increases the lifetime by
slowing nuclear spin diffusion via flip-flop processes. The
latter are restricted by energy conservation but the nuclear
spin state energies depend on the local magnetic and electric
(and strain) fields, all having varying gradients throughout
the DQD. In our system, the gradient of Bz

nm is around
0.2–1 mT/nm [29]. The ensuing difference in Zeeman energy
between closest homonuclear atoms is several times larger than

their nuclear spin dipole-dipole coupling and of the same order
as the Knight-field gradient caused by the inhomogeneous
electron wave function and estimated to reduce diffusion
coefficients by factors of 2–10 [43]. Since the magnetic field
gradient extends far beyond the dots [29], it also facilitates
the polarization of their surroundings. Increasing thold from 0
to 100 min causes t lpeak to be delayed by more than a factor
of 4 while t rpeak is only increased by 70 %. We ascribe this
difference to asymmetries in geometry and magnetic field in
the two dots.

V. CONCLUSION

In summary, we have dynamically polarized nuclear spins
at a DQD and combined transport spectroscopy with electric-
dipole-induced spin resonance to study the polarization and
decay dynamics of nuclear spins. Measuring the leakage
current through the DQD in Pauli-spin blockade, we find a
remarkably complex current behavior during magnetic field
sweeps. The statistical reoccurrence of four patterns in I (Bext)
establishes the existence of multiple fixed points, one of
which is always occupied as long as dynamical polarization is
maintained. Our EDSR measurements reveal long decay times
of the nuclear spin polarization, its stability being enhanced
by the strongly inhomogeneous magnetic field distribution
generated by two single-domain nanomagnets in an extended
area including the DQD. In addition, the EDSR measurements
confirm that the individual FPs substantially differ by their
polarizations and dynamics of the nuclear spins. On one hand,
our studies demonstrate that the existence of several FPs in
dynamical nuclear spin polarization complicates the desired
control of electron and nuclear spins in coupled quantum dots.
On the other hand, our experiments present a salient advance
in our understanding of the hyperfine induced dynamics in
nanoelectronic circuits and brings us closer towards the desired
fine control of the nuclear spins, important for quantum
information applications.
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[12] J. Iñarrea and G. Platero, J. Phys. D: Appl. Phys. 41, 195104
(2008).

[13] M. Gullans, J. J. Krich, J. M. Taylor, H. Bluhm, B. I. Halperin,
C. M. Marcus, M. Stopa, A. Yacoby, and M. D. Lukin, Phys.
Rev. Lett. 104, 226807 (2010).

[14] I. Neder, M. S. Rudner, and B. I. Halperin, Phys. Rev. B 89,
085403 (2014).
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7 Landau-Zener-Stückelberg-Majorana
interferometry

This chapter presents the results of

• Forster, F. et al. Phys. Rev. Lett. 112. 116803 (2014)

See section D for the contributions of each author.

7.1 Overview

In recent years Landau-Zener-Stückelberg-Majorana (LZSM) interferometry has been developed by research
groups into an established technique which mainly has been adopted in superconducting qubits as a proof
of concept to demonstrate, more than analyze, coherent properties of these qubits [55–58]. Here, we present
the first experiment in which LZSM interference is used as a practical tool beyond the mere measurement
of an interference pattern. Our method is based on straightforward rf-driven steady-state measurements
which are then analysed with a complete model using Floquet theory developed in collaboration with S.
Kohler from Instituto de Ciencia de Materiales de Madrid. Our method especially allows us to decipher the
details of the coupling of the qubit states to a noisy environment. We are able to determine the individual
values of the inhomogeneous decay time T ∗

2 and the true (single-shot) qubit coherence time T2. For the first
time we succeeded to measure T2 and T ∗

2 individually without the need of (much more difficult) pulsed-gate
echo experiments. We implement our method in a two-electron DQD charge qubit and demonstrate the
first direct determination of T2 for a QD based charge qubit. Surprisingly, we find coherence times more
than an order of magnitude longer than previously reported for similar devices. Further, we demonstrate
that the electron-phonon interaction is the relevant decoherence source for our charge qubit even at
cryogenic temperatures of 20 mK.

7.2 Theory

7.2.1 Landau-Zener-Stückelberg-Majorana physics

We already established the importance of the coupling of quantum states and showed how it leads to
avoided crossings of the local basis states (section 2.2.1), and how it enables transitions between them, with
the example of EDSR (section 5.2.1). We revisit the Hamiltonian of the singlet subsystem Hel (2.7), but we
now introduce an experiment in which the detuning ε is varied and hence modelled by a time-dependent
function ε(t ):

HLZ(t )
.=

(
0 tc /2

tc /2 −ε(t )

)
(7.1)

In the most simple case, we assume a linear function for the detuning, ε= v t , and look at the probability
PLZ to remain in the same quantum state while ε is varied from −∞ to ∞, e.g. PLZ = ∣∣〈S11

∣∣ψ(t →∞)
〉∣∣2, if∣∣ψ(t →−∞)

〉= |S11〉. Here, v = dε/d t has the interpretation of a sweep velocity. Intuitively, if the sweep
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a)

b)

ɛ = 0,
A = A1

ɛ < 0
A = A1

ɛ < 0,
A = 2A1

ϕ1 ϕ2

PLZ, ϕS

Detuning Detuning Detuning

Figure 7.1: Illustration of the phase pick-up in the adiabatic impulse model. a) Sketch of the avoided crossing reached
during the driving of the detuning parameter ε(t) = ε̄+ A cosΩt for different parameters A and ε̄. b) Sketch of the
energy levels over time for the parameters in a). The dynamical phases ϕ1 and ϕ2 corresponding to the area between
the energy levels originate from the regions of the corresponding colours in a) and depend strongly on the parameter
set. They contribute to the overall phase as well as the Stokes phase ϕS (impulse) at the avoided crossing.

is fast compared to the Rabi dynamics induced by tc and hence v large, we expect that the system will
remain in the state |S11〉. In the opposite case, i.e. for small v , we expect the system to be able to follow
adiabatically and thus to remain in the ground state at all times, which means a transition to |S20〉. In the
regime of intermediate v , we expect to find a solution in between the two extreme cases, i.e. to reach a
superposition state of the two adiabatic states. Historically, the problem just described is known as the
Landau-Zener problem, which is nowadays often called Landau-Zener-Stückelberg-Majorana problem to
acknowledge all four independent solutions of the problem, which were all presented in 1932 [59–62]. The
probability to remain in the same diabatic state is the Landau-Zener probability

PLZ = exp

(
−π t 2

c

2~v

)
. (7.2)

We see that PLZ → 1 in the limit of t 2
c ¿ ~v , and PLZ → 0 for t 2

c À ~v , confirming our intuitive expectation.
More interestingly, we indeed find a finite value between 0 and 1 for t 2

c ∼ ~v . It turns out that we can prepare
an arbitrary superposition state by going through the avoided crossing at a defined velocity v . This result
is independent from details of the avoided crossing itself, such as the coupling mechanism or the kind of
states involved; therefore it is a general result applicable to all coupled two-level systems. In fact, we will
apply this result not only to the just discussed charge qubit of |S11〉 and |S20〉, but also to the |S11〉-|T+〉 spin
qubit.

7.2.2 Landau-Zener-Stückelberg-Majorana interferometry

An extension to the classical LZSM problem, where the avoided crossing is passed once, is multiple passages
by a periodic drive. Here, we consider the driving ε(t ) = ε̄+A cos(Ωt ). An appealing approach to the physics
of multiple passages is provided by the adiabatic-impulse model [10, 63]. Here, we assume that the experi-
ment can be divided into two separate stages: First, at each passage a Landau-Zener transition changes the
occupation of the quantum state according to PLZ (7.2). This transition is treated as instantaneous, and
is hence the impulse part of the model. The Landau-Zener transition also introduces the Stokes phase,
which in the same spirit only depends on t 2

c /~v and is constant for each passage [64]. Second: Whenever
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Figure 7.2: Comparison of the adiabatic impulse model and the photon assisted tunnelling model. a) Adiabatic
impulse model. The detuning parameter ε(t ) = ε̄+A cosΩt is time dependent and the phase acquired during periodic
passages of the avoided crossing determines the interference pattern (see fig. 7.1). b) Photon assisted tunnelling model.
The detuning parameter itself is considered static and the driving enters as a photon source enabling absorption (c)
and stimulated emission (d), possible if the driving frequency is resonant with the detuning, ε̄= n~Ω, n ∈Z (grey
dashed lines). The specific case in black at n =−1 corresponds to a one photon process. c, d) Sketch of the charge
transition in energy space of the DQD enabled by the absorption (c) or stimulated emission (d) of photons with energy
~Ω.

the detuning is not at the avoided crossing, the time evolution of the superposition state generated by
the Landau-Zener transition is described by the adiabatic time evolution of the state vector. This can be
described by a phase pick-up at each side of the avoided crossing, which is called dynamical phase. This
phase is given by the area between the energy levels over time and depends strongly on the parameters A
and ε̄ as depicted in figure 7.1b. The overall phase consisting of the dynamical phase and the Stokes phase
can result in constructive or destructive interference depending on the aforementioned parameters. As a
straightforward implication, there is no interference expected if |ε̄| > A, since the avoided crossing is not
reached. This leads to an interference pattern within a triangular region as a function of A and ε̄. Note that
the adiabatic-impulse model is only applicable if passing the avoided crossing is sufficiently well described
by PLZ and the Stokes phase, i.e. transient dynamics [65, 66] are negligible(1).

For drivings ~Ω > tc , the photon assisted tunnelling (PAT) interpretation offers a straightforward al-
ternative description: In this model, the energy difference ε̄, which is assumed to be static, is overcome
by absorption and stimulated emission of n photons provided by the driving A cosΩt . In this picture,
transitions are allowed only at discrete ε= n~Ω, where n ∈Z, which is indeed observed. In the given regime,
this is fully equivalent to the LZSM picture, where constructive interference only occurs at discrete values of
ε̄.

Our theory approach to numerically calculate the interference patterns harnesses the time periodicity
of the Hamiltonian (7.1). Equivalent to the Bloch theorem for wavefunction of electrons of the periodic
potential of a crystal, the Hamiltonian can be decomposed into the Floquet basis which facilitates the
solution of the master equation of the system and is discussed at length in the supplement of the paper.
This powerful approach enables us to go well beyond the adiabatic impulse model: It allows to include a
dissipative environment and study its impact on the LZSM dynamics, which is the subject of the following
section.

7.2.3 Coherence of a qubit

The general representation of the charge qubit’s quantum state at a given time is

|Ψ〉 = c1 |S11〉+ c2 |S20〉 = |c1|exp(iφ1) |S11〉+ |c2|exp(iφ2) |S20〉 ,

(1)Formally, the applicability can be expressed in the condition A2 + t 2
c ÀΩ2; see reference [67] for a detailed discussion.
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Figure 7.3: Illustration of the influence of noise on the time evolution of a qubit. a) Bloch representation of the state
vector at the initialization t = 0. Equation (7.3) relates the polar angle θ to the population ratio of the quantum
superposition and the azimuth angle φ to the corresponding phase. b) Decoherence: A homogeneous broadening
of the electron levels causes a fluctuating Larmor frequency leading to different time evolutions of the state vector
regarding the phase φ (different colours). c) Energy relaxation. Energy exchange with the environment destroys the
superposition state (example in blue) and brings the Bloch vector to one of the poles of the sphere (dependening
on whether energy is absorbed or emitted). d) An ensemble of qubits with constant, but different level energies
(inhomogeneous broadening) [different colours] shows a stochastic distribution of phases. Note that each individual
qubit is also subject to a homogeneous broadening and that T ∗

2 includes both broadenings.

which is completely defined by the two complex coefficients c1,2. Since each complex number has two
degrees of freedom, i.e. its absolute value |ci | and its phase φi , there are in principle four variables which
define the quantum state. However, since the global phase has no physical meaning, we can eliminate
one of the variables by multiplying the state with a global phase, e.g. |Ψ〉 → exp(−iφ1) |Ψ〉 and define
φ= (φ2 −φ1) ∈ [0, 2π] as the (relative) phase. In addition, the normalization condition for a quantum state,
i.e. | 〈Ψ|Ψ〉 |2 = |c1|2 +|c2|2 = 1, removes another degree of freedom. We choose c1 = cosθ/2 with θ ∈ [0, π],
such that the quantum state reads

|Ψ〉 = cos
θ

2
|S11〉+exp(iφ)sin

θ

2
|S20〉 . (7.3)

Our choice allows us to interpret θ and φ as coordinates on a sphere, the Bloch sphere, and represent the
quantum state |Ψ〉 as a vector on this sphere as depicted in figure 7.3a. The time evolution of the quantum
state can be depicted on the Bloch sphere, for example Rabi oscillations correspond to oscillations of the
Bloch vector in longitudinal direction.

So far, we regarded the charge qubit as a perfectly isolated quantum system, where the dynamics of
the two-level system is fully determined by the parameters tc and ε in the 2x2 Hamiltonian (7.1). In an
experiment, the two-level system is exposed to an uncontrolled environment which influences the time
evolution of its state vector. In contrast to the coherent time evolution of the closed two-level system, we will
call changes of the state vector caused by the environment in longitudinal direction (θ) energy relaxation
and in transversal direction (φ) decoherence. Statistical fluctuations in tc and ε change the coupling of
the qubit as well as their energy levels and thus its Larmor frequency. A statistically fluctuating Larmor
frequency leads to an uncontrolled phase φ, and hence decoherence, as shown in 7.3c. Exchanging energy
with the environment, energy relaxation between the two qubit states become possible and cause transverse
transitions of the state vector to the poles of the Bloch sphere, figure 7.3b.

It is not possible to describe the dynamics of such an open quantum system with the Schrödinger
equation, whereas the density matrix offers an elegant and powerful formalism, which is able to capture
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relaxation as well as decoherence [68]. The density operator combines the quantum mechanical uncertainty
and the classical one and is defined as ρ =∑

i pi |Ψi 〉〈Ψi |, where each |Ψi 〉 is a given quantum state and pi

its classical probability [15, p. 295]. For a pure quantum state, such as (7.3), we find the density matrix in
the eigenbasis of the qubit

ρ
.=

(
ρ00 ρ01

ρ10 ρ11

)
=

(
cos2 θ

2 cos θ2 sin θ
2 exp iφ

cos θ2 sin θ
2 exp−iφ sin2 θ

2

)
. (7.4)

To motivate the physical meaning of the diagonal and off-diagonal terms of the density matrix in the
eigenbasis of the qubit, we compare the density matrix of the pure state (7.4) with a classical mixture, i.e.
|Ψi 〉 ∈ {|S11〉 , |S20〉}. For the pure state, ρ00 = |〈S11|Ψ〉 |2 and ρ11 = |〈S20|Ψ〉 |2 are the quantum mechanical
probabilities to measure the respective state, while in the mixed state ρ00 = pS11 and ρ11 = pS20 are the
corresponding classical probabilities. In both cases, the diagonal terms represent the populations of the
system. The off-diagonal terms for the classical mixture however vanish while the ones for the pure state
are finite. Therefore, these terms are a direct consequence of the quantum superposition of the pure state
and the ability to show interference effects [15, p. 303]. For complete decoherence, i.e. a completely random
phase between 0 and 2π, the (classical) expectation value of exp(±iφ) becomes 0 which implicates all
coherence terms are zero, and the system becomes identical to the classical mixture. We will denote the
time scale related to the decay of the off-diagonal coherence terms with T2. For an energy relaxation process,
where θ→π, the populations ρ00 → 0 and ρ11 → 1 change as expected. The time scale for energy relaxation
processes is denoted as T1. Note that while decoherence can occur without a change of populations,
relaxation always includes decoherence as relaxation processes will ultimately transform the pure state into
a classical mixture. This connection between the decay of population and coherence terms is a fundamental
property and one can show that T1 ≥ 2T2 always holds [69].

Since the fluctuations of the environment can occur at very different time scales, it is important to relate
these time scales to the time evolution of the qubit. In particular, we differ between the decoherence
during a single time evolution of the qubit, here described by parameters tc and ε fluctuating on the time
scale of a single qubit experiment (homogeneous broadening), and the dephasing of a time ensemble
of qubits, where in addition fluctuations of these parameters on longer time scales affect the averaged
measurement outcome of the qubit state (inhomogeneous broadening) [figure 7.3d]. In our experiments,
the measurement signal is the averaged result of typically ∼ 106 single events and the inhomogeneous
broadening is important. Since the inhomogeneous broadening is always on top of the homogeneous
one, the ensemble coherence time, denoted with T ∗

2 , cannot exceed the one of a single time evolution
and therefore T ∗

2 ≤ T2. While both broadenings cause dephasing of the qubit, it is possible to revert the
inhomogeneous broadening’s contribution by refocusing the state vector. This can be achieved by applying
an echo sequence which lets the state vector propagate contrary to the original direction on the Bloch
sphere thus compensating inhomogeneous broadening, a technique commonly applied in NMR imaging
[70] and more recently also spin qubit experiments [9, 19]. For this reason, we use the term decoherence
only for the single qubit, and dephasing as a more general term also for the ensemble.

While the T ∗
2 time of a charge qubit in a system such as ours has been successfully determined in the

past to <10 ns [71, 72], T2 remains elusive: An echo sequence requires a high degree of control over the
system and can be difficult to realize, if the clock speed at which the qubit is operated is very fast. This is
the case for our charge qubit, where the clock speed is in the order of several GHz(2). Looking at the Larmor
frequency,

ωL = (ES11 −ES20 )/~=
√
ε2 + t 2

c /~,

we find that the influence of fluctuations in ε is reduced near the avoided crossing itself, which poses a
sweet point in terms of a fluctuating detuning ε: Since the level splitting exhibits a minimum at this point,

(2)In principle, the clock speed is connected to the tunnel coupling of the DQD which can be tuned in a wide range; however the
coherence time limits the range of values useful for coherent qubit applications.
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∂εωL |ε=0 = 0, first order variations vanish and do not cause a change in ωL . Indeed, T ∗
2 has its maximum

value at this point [72]. However, since fluctuations in tc are still in effect, ∂tcωL |ε=0 6= 0, and higher order
terms of ε fluctuations are not necessarily negligible, one still has to expect T ∗

2 6= T2 for this detuning. In
fact, we find T2 in our system to be two orders of magnitude larger than T ∗

2 measured at the sweet point in
reference [72], which suggests that neglecting noise in tc and ε in higher order is not a good approximation.

The two main noise sources are known to be interaction with bulk phonons [73] and fluctuating charges
in the vicinity of the DQD which cause modifications of the local confinement potential, known as charge
noise [74]. In our case, the time scale of a single qubit experiment can be estimated by the time an electron
is typically inside the DQD, given by the tunnel rate between the quantum dot and its drain contact,
ΓL ' 10MHz. Since charge noise has its weight at time scales corresponding to frequencies of < 100kHz
[74], it mainly contributes to the inhomogeneous broadening of the qubit. Our approach to determine
both T2 and T ∗

2 is to decipher the information included in the LZSM interference pattern with the help of
a theoretic model capturing both noise sources. To model the phonon bath, we apply a Caldeira-Leggett
model [75] to couple the qubit to a bath of harmonic oscillators with an Ohmic spectrum. The validity of
this model is confirmed by the very good agreement with our measurements, as presented in the main
paper and discussed in more detail in section II D-F and III A of the supplement.

The key parameter of this model is a dimensionless coupling strength, αz , which we use to calculate the
T2 coherence time of the undriven charge qubit (see section III of the supplement for a detailed description).
The inhomogeneous broadening is captured by convolution of the numeric data obtained from the Caldeira-
Legett model with a Gaussian, whose standard deviation λ∗ gives direct access to T ∗

2 = ~/λ∗. The analysis
how to obtain these parameters from the experiment is in detail explained in section II of the supplement.
It involves the 2D Fourier transform of the interference pattern, a procedure suggested in reference [76]
which reduces the complexity of the pattern in real space to single Lemon-shaped lines in Fourier space.
The role of the Fourier transform and its dependence on the driving shape is a further topic of chapter 8.
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Figure 7.4: a) Electrical measurement setup for the LZSM experiment with the charge qubit. The single electron
tunnelling current I through the double quantum dot defined by dc voltage sources connected to all gates is measured
by an I/V converter, which amplifies current by a gain of 1010 and converts it to a voltage measured by a voltmeter.
The sine generator applies an rf sine voltage to one of the gates. b) Setup for the LZSM experiment with the spin qubit.
The average electron charge state in the DQD, which in our measurement scheme gives access to the spin state, is
measured by its response on the current through a nearby quantum point contact. We use a Lock-in amplifier to
measure the quantum point contact current by applying a bias modulated with a frequency of ∼37 Hz. The current
signal, which is pre-amplified by an I/V converter with a gain of 108, is processed by the Lock-In which only selects
the part of the current signal which carries the modulation frequency. Pulses in the 100 MHz range are applied to two
gates by an arbitrary waveform generator.

We employ two different measurements schemes: For the main experiment, where we measure LZSM
interference of a charge qubit, we continuously modulate the voltage at one of the gates with a sine with
a frequency of 2πΩ to drive the detuning of the DQD as depicted in figure 7.4a. At the same time, we
apply −1 mV dc bias to the DQD and measure the quantum dot’s single electron tunnelling current with
an Ithaco 1211 I/V converter similar to sections 5 and 6 and measure the steady state of the system. As an
experimental detail, the output of the Rohde&Schwarz SMP02 sine generator does not support linear scaling
of the output voltage. By using amplitude modulation with a dc voltage (not shown in the scheme), we were
able to conveniently realize an effective linear scale. In this experiment, we also vary the temperature of the
sample. This is achieved by using a heater in the mixing chamber connected to a PID loop of the Lakeshore
370AC resistance bridge used to measure the temperature in the mixing chamber via a calibrated resistor.

In the second measurement scheme, applied in the supplement to measure the Landau-Zener transition
of the S-T + avoided crossing, we measure the average charge state of the quantum dot by its response to a
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nearby QPC. We apply a low-frequency bias of 37 Hz with an amplitude of 50µeV to the QPC(3). Its resistance
is measured with a lock-in amplifier (model SRS 830), where only current of the reference frequency is
detected. The DQD is driven by a pulse scheme of rf voltages applied to two gates by the arbitrary waveform
generator shown in figure 7.4b. This allows – in contrast to the steady state measurement of the charge
qubit – clean initialization, manipulation, and read-out phases during the experiment (details in section I.C
of the supplement below).

(3)A voltage divider is used to increase the resolution of the sine output of the SRS 830 source.
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Controlling coherent interaction at avoided crossings and the dynamics there is at the heart of quantum
information processing. A particularly intriguing dynamics is observed in the Landau-Zener regime, where
periodic passages through the avoided crossing result in an interference pattern carrying information about
qubit properties. In this Letter, we demonstrate a straightforward method, based on steady-state
experiments, to obtain all relevant information about a qubit, including complex environmental influences.
We use a two-electron charge qubit defined in a lateral double quantum dot as test system and demonstrate a
long coherence time of T2 ≃ 200 ns, which is limited by electron-phonon interaction.

DOI: 10.1103/PhysRevLett.112.116803 PACS numbers: 73.63.Kv, 03.65.Yz, 03.67.-a

A qubit is a quantum mechanical two-level system
characterized by its tunnel coupling and the detuning from
its symmetry point at which the qubit levels form an
avoided crossing. Dynamic control can be achieved by
switching the detuning between finite values and zero at
velocities ranging from almost sudden to adiabatically slow
changes. A particularly intriguing dynamics was predicted
by Landau, Zener, Stückelberg, and Majorana (LZSM)
[1–4] for the intermediate (Landau-Zener) regime that is
hallmarked by quantum superpositions. These give rise to
interference for the case of periodic passages [5–11]. A
particular application is LZSM interferometry, a double-slit
kind of experiment that, in principle, can be realized with
any qubit, while the specific measurement protocol might
vary. Ours is based on two-electron states in a lateral double
quantum dot (DQD) embedded in a two-dimensional
electron system (2DES) (Fig. 1). Source and drain leads
at chemical potentials μS;D, each tunnel coupled to one dot,
allow current flow by single-electron tunneling. Applying
the voltage V ¼ ðμS − μDÞ=e ¼ 1 mV across the DQD
[Fig. 1(b)], we use this current to detect the steady-state
properties of the driven system. We take the singlet S11 (one
electron in each dot) and the singlet S20 (two electrons in
the left dot) as charge qubit states. They form an avoided
crossing [Fig. 1(c)], described by the Hamiltonian

Hqubit ¼
�

0 Δ=2
Δ=2 −εðtÞ

�
; (1)

where we consider a variable energy detuning εðtÞ and a
constant interdot tunnel coupling tuned to Δ≃ 13 μeV,
corresponding to a clock speed of Δ=h≃ 3.1 GHz, where
h is the Planck constant.

Let us first discuss a single sweep through the avoided
crossing at ε ¼ 0: as shown back in 1932 independently by
Landau, Zener, Stückelberg, and Majorana, it brings the
qubit into a superposition state [1–4], the electronic analog
to the optical beam splitter [13–17]. The probability to
remain in the initial qubit state PLZ ¼ expð−πΔ2=2ℏvÞ
thereby grows with the velocity v ¼ dε=dt, here assumed to
be constant [1–4]. Because the relative phase between the
split wave packets depends on their energies, repeated
passages by a periodic modulation εðtÞ ¼ ε̄þ A cosðΩtÞ
give rise to so-called LZSM quantum interference [5–11].
We present a breakthrough that makes LZSM interferom-
etry a powerful tool: it is based on systematic measure-
ments together with a realistic model, which explicitly
includes the noisy environment. We demonstrate how to
decipher the detailed qubit dynamics and directly determine
its decoherence time T2 based on straightforward steady-
state measurements.
Keeping the experiment simple, we detect the dc-current I

through the DQD. It involves electron tunneling giving rise
to the configuration cycle ð1; 0Þ → ð1; 1Þ↔ð2; 0Þ → ð1; 0Þ,
where pairs of digits refer to the number of electrons
charging the (left, right) dot [Fig. 1(b)]. The energetically
accessible two-electron states include the singlets S11 and
S20 but also three triplets T11 [Figs. 1(b), 1(c)]. These triplets
are likely occupied during ð1; 0Þ → ð1; 1Þ, and their decay
via a spin flip T11 → S11 is hindered by a Pauli-spin
blockade [18,19]. This slows down the transition ð1; 1Þ →
ð2; 0Þ and thereby limits the current. To nevertheless quickly
initialize the qubit and generate a measurable current, we lift
the blockade using an on-chip nanomagnet [Fig. 1(a)] [12].
I is proportional to the occupation probability of S20 and
serves as destructive qubit detector.
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As it is possible to tune the relative couplings and the mean
detuning ε̄ of the singlet-singlet and singlet-triplet crossings
by gate voltages and magnetic fields, our two-electron DQD
opens two interesting perspectives: (i) LZSM interferometry
involvingmultiple avoided crossings [8,20–23] and (ii) coher-
ent Landau-Zener transitions between our charge qubit and
the recently very successful spin-based qubits [24]; see the
Supplemental Material [25], Sect. IIA for details.
Concentrating on the two-electron charge qubit, in

Figs. 2(a) and 2(b) we display LZSM interference patterns
measured at T2DES ≃ 20 mK for two different modulation
frequencies Ω=2π. Within the triangle defined by A≳ jε̄j,
the qubit is periodically driven through the avoided

crossing and the current oscillates between zero and distinct
maxima indicating destructive and constructive interfer-
ence [9,26]. An interpretation based on photon-assisted
tunneling, which is for ℏΩ≳ Δ fully equivalent to the
LZSM picture discussed above, facilitates quantitative
predictions: using Floquet scattering theory [27], we find
for Δ ≪ ℏΩ the current per spin projection

Iðε̄; AÞ ¼ e
ℏ
ΓinΓout

4γ

X∞
n¼−∞

Δ2
n

ðε̄ − nℏΩÞ2 þ Δ2
n þ γ2

; (2)

where Γin is the qubit initialization rate ð1; 0Þ → S11, Γout is
the decay rate ð2; 0Þ → ð1; 0Þ, and γ ¼ ð1=2ÞðΓin þ ΓoutÞ.

(a) (b) (c)

FIG. 1 (color online). Experimental setup. (a) Scanning electron micrograph showing Ti/Au gates, fabricated by electron-beam
lithography, on the surface of a GaAs/AlGaAs heterostructure, grown by molecular beam epitaxy (500 nm scale bar). 85 nm beneath the
surface it contains a 2DES with carrier density ne ¼ 1.19 × 1011 cm2 and mobility μ ¼ 0.36 × 106 cm2 V−1 s−1. Six of the Ti/Au gates
(light yellow) are biased with negative voltages to electrostatically define a DQD in the 2DES, and the other gates are grounded. A
cobalt single-domain nanomagnet (thick blue bar) produces an inhomogeneous magnetic field that slightly mixes singlet and triplet
states of the DQD [12]. (b) Typical situation in our two-electron DQD: vertical lines indicate tunable tunnel barriers, horizontal lines
mark the chemical potentials, blue areas are the degenerate 2DES leads. The voltage V ¼ ðμS − μDÞ=e causes a single-electron
tunneling current [green arrow in panel (a)]. (c) Energy diagram of the relevant two-electron DQD eigenstates. Singlets (the qubit states)
are represented as black and red lines; triplets, which are Zeeman split, are represented as gray lines. Rf modulation of the gate voltage
V∼ [panel (a)] results in a modulated detuning εðtÞ, indicated by gray shading.

(a)

(c)

(b)

(d)

(e) (f)

(g) (h)

FIG. 2 (color online). LZSM interference. Measured current through the DQD as a function of mean detuning ε̄ and modulation
amplitude A at T ≃ 20 mK for the modulation frequencies 2.5 GHz (a) and 4.5 GHz (b). [(c), (d)] Corresponding numerically calculated
current for realistic conditions. [(e)—(h)] Two-dimensional numerical Fourier transformed (A → τA, ε̄ → τε, I → Î) of measurements
(upper panels) and theory (lower panels). The shape of the sinusoidal branches of enhanced Î is determined by Ω; see Eq. (3). Their
decay with increasing τε encodes dephasing and decoherence. The horizontal and vertical lines of enhanced amplitude at τA ¼ 0 and
τε ¼ 0 are artifacts caused by the finite region of data being transformed.
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The interdot tunnel coupling is renormalized with the nth-
order Bessel function Jn of the first kind:Δn ¼ JnðA=ℏΩÞΔ.
Equation (2) predicts Lorentz-shaped current maxima of
width δε̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

n þ γ2
p

at ε̄ ¼ nℏΩ, which for Δ ≪ jε̄j
corresponds to the bare n-photon resonance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̄2 þ Δ2

p
¼

nℏΩ. The peaks are modulated by J2nðA=ℏΩÞ as a function
of A. This scattering approach provides an appealing
physical picture and describes the main features of the
measured LZSM patterns as can be easily seen for the
high-frequency limit ℏΩ ≫ δε̄ (see the Supplemental
Material [25], Fig. 5). For lower Ω, the distance between
current peaks is smaller and, hence, the broadened reso-
nances tend to merge [Fig. 2(a)].
The visibility of the LZSM pattern (i) depends on

frequency and amplitude via the Landau-Zener probability
PLZ [captured in Eq. (2) by Δn], (ii) is strongest for
Γin ≃ Γout, and (iii) is diminished for Δ < γ, where the
qubit decay is faster than its clock speed. However, Eq. (2)
fails to predict the qubit coherence time as it ignores
environmental noise. The nevertheless qualitative consent
indicates that environmental noise can be treated perturba-
tively. In this spirit, we developed a complete model that
goes beyond Eq. (2) by explicitly including all energeti-
cally accessible states of our driven DQD and, importantly,
decoherence within a system-bath approach.
An evident source of decoherence is the interaction

of the qubit electrons with bulk phonons [28], which
entails quantum fluctuations to the DQD level energies.
It enters our theory as dissipation kernel with a dimen-
sionless electron-phonon coupling strength αZ (see the
Supplemental Material [25], Sect. III) derived from a
system-bath approach, becoming the spin-boson model in
the qubit subspace [29]. We assume for the coupling an
Ohmic spectral density, which is justified by geometry
considerations (see the Supplemental Material [25], Sect.
III C) and also a posteriori by a surprisingly good
agreement with our experimental results.
The second environmental component of our model is

charge noise, well known to cause low-frequency fluctua-
tions of the local confinement potential in semiconductor
heterostructures [30,31]. Being slow compared to all
relevant time scales of our experiment, they can be treated

as static disorder leading in the ensemble average to an
inhomogeneous, Gaussian broadening of width λ⋆.
To determine the key parameters λ⋆ and αZ, we compare

our measurements with theoretical results obtained within a
Bloch-Redfield master equation which can be solved
efficiently after a decomposition into the Floquet basis
of the rf-driven DQD (see Supplemental Material [25],
Sect. IV). The optimized result is displayed in Figs. 2(c)
and 2(d) with λ⋆ ¼ 3.5 μeV and αZ ¼ 1.5 × 10−4. Below,
we illustrate the self-consistent fit procedure by first
determining λ⋆ based on the final value of αZ and then
evaluating αZ using the final value of λ⋆.
Figure 3(a) displays Iðε̄Þ for Ω=2π ¼ 2.75 GHz and

constant amplitude A, corresponding to a horizontal slice in
the presentations of Figs. 2(a)–2(d). The measured data
(dots) in Fig. 3(a) feature a beating of broadened and
overlapping current peaks. The gray line is calculated for
αZ ¼ 1.5 × 10−4 and λ⋆ ¼ 0. Compared to our measure-
ment, it shows a weaker broadening and a higher visibility.
Much better agreement is reached for λ⋆ ¼ 3.5 μeV (blue
line). This result is robust under moderate variations of αZ
and does not depend on frequency or temperature.
Figure 3(b) underlines the good agreement between
measured (dots) versus calculated (lines) data by presenting
IðAÞ at ε̄ ¼ nℏΩ for various n [vertical slices in
Figs. 2(a)–2(d)]. Owing to the electron-phonon interaction,
the visibility of the interference pattern drops with increas-
ing temperature [Fig. 3(c)].
To quantify αZ with high accuracy, we use this temperature

dependence and thereby capture global information of the
extended LZSM patterns [Figs. 2(a)–2(d)] by performing
two-dimensional Fourier transformations Iðε̄;AÞ→ Îðτε;τAÞ.
The results, featured in Figs. 2(e)–2(h), are simple, lemon-
shaped structures of local maxima Îðτε; τAÞjlemon.
Transforming Eq. (2) yields an analytic formula describ-
ing these lemon arcs

τA ¼ � 2k
Ω

sin

�
Ωτε þ 2πk0

2k

�
; (3)

with k ¼ 1; 2; 3;…, k0 ¼ 0; 1; 2;…, and k0 < k. Arcs for
k > 1 are a consequence of Δ≳ γ, a prerequisite for

(a) (b) (c)

FIG. 3 (color online). Raw data analysis. Dots are measured at Ω=2π ¼ 2.75 GHz, lines numerical data for αZ ¼ 1.5 × 10−4 and
λ⋆ ¼ 3.5 μeV, whereas the gray line in panel (a) is for λ⋆ ¼ 0. (a) Horizontal slice through a LZSM pattern: Iðε̄Þ for a constant A ¼ 130 μeV.
(b) Vertical slices through a LZSM pattern: IðAÞ for ε̄=ℏΩ ¼ 0, −2, −4, −6. (c) Measured data as in panel (a) for various temperatures.
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observing a pronounced interference pattern (see the
Supplemental Material [25], Sect. II.E). [Arcs for k > 1
are weakly seen in Figs. 2(e)–2(h). In superconducting
qubits they have been also observed but–considering
Δ ≪ γ [32]–not explained.] Concentrating on the princi-
pal lemon arc for k ¼ 1, we find a nonmonotonic behavior
of Îðτϵ; τAÞjlemon with maxima at the arc’s intersections at
τA ¼ 0 and τε a multiple of 2π=Ω. Regions of decays in
between have the form

Îðτε; τAÞjlemon ∝ e−λjτϵj=ℏe−1
2
ðλ⋆τε=ℏÞ2 ; (4)

where the exponential decay originates from the
Lorentzian broadening due to electron-phonon coupling
and the Gaussian term describes the inhomogeneous
broadening caused by charge noise. Notice that τε is a
Fourier variable rather than a real time variable, and thus,
λ should not be interpreted as physical decay rate. [Only
for Δ ≪ γ, all Lorentzians in Eq. (2) possess the same
width, so that Îðτε; τAÞjlemon is described by Eq. (4) with
simply λ ¼ γ as suggested in Ref. [32].] In Figs. 4(a)
and 4(c) we plot measured and calculated decays (dots),
respectively, for various temperatures between 18 and
500 mK. The solid lines in panels (a) and (c) are identical
and express Eq. (4) with λ as a fit parameter, while λ⋆ is kept
fixed at 3.5 μeV. Figure 4(b) compares λðTÞ obtained by this
procedure from our measurements (black dots) with the
numerical results using three different values of αZ. An
outstanding agreement between theory and experiments is
found at αZ ≃ 1.5 × 10−4 [blue in Fig. 4(b)]. This completes
our set of model parameters needed to calculate LZSM
patterns as in Figs. 2(c) and 2(d). λðTÞ increases linearly for
T ≳ 100 mK, whereas it is bounded by λmin ≃ 4 μeV at our
lowest temperatures. This bound marks the intrinsic decay of
Îðτε; τAÞjlemon present even in the low-temperature limit of
our transport measurement but is not related to the low-
temperature bound of the qubit coherence time T2.
To actually identify T2ðTÞ, we use its dependence on αZ

in the spin-boson model. In the absence of rf modulation, it
provides the analytical prediction [33]

T2ðT; αZÞ ¼
ℏ
παZ

�
2kBTε̄2

E2
þ Δ2

2E
coth

�
E

2kBT

��−1
: (5)

In the low-temperature limit kBT ≪ E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε̄2

p
our

undriven qubit has T2 ¼ 2ℏE=παZΔ2. Assuming ε̄ ¼ 0, we
find T2 ≃ 0.2 μs, which further increases at finite detuning.
Alternatively, T2 could be increased by decreasing Δ. This
would, however, reduce the clock speed of the qubit. In the
same spirit, the rf-induced renormalization of Δ → Δn
stabilizes the qubit’s coherence on the expense of a larger
gate operation time [34].
Summarizing, we demonstrated that steady-state LZSM

interferometry is a viable tool to fully characterize a qubit
including its coupling to a noisy environment. The quanti-
tative agreement between our experiments and our com-
plete system-bath model analyzed with Floquet transport
theory allows us to trace the origins of inhomogeneous
broadening and decoherence. Thereby we determined
the individual values of T⋆

2 ¼ ℏ=λ⋆ and T2 of the qubit.
Our steady-state method is remarkably simple compared
to the alternative pulsed gate experiments. Our two-electron
charge qubit is affected by slow charge noise limiting
T⋆
2 to ≃0.2 ns but a coherence time of T2 ≃ 0.2 μs, being

much longer than previously reported values in quantum
dot charge qubits [17,35,36]. The clock speed of our
qubit, Δ=h≃ 3.1 GHz, which limits T2 at T ≃ 20 mK
and ε̄ ¼ 0, would then provide enough time for > 600
quantum operations. At higher temperatures or sizable
ε̄, decoherence is dominated by the electron-phonon
coupling. Our method is simple, very general, and can
be applied to arbitrary qubit systems. An extension includ-
ing individually controlled Landau-Zener transitions and
a combination with nonadiabatic pulses will open up
alternative means of quantum information processing.
Our two-electron qubit experiments illustrate an interesting
approach for studying the interaction of qubits and complex
many body quantum systems.

We wish to thank R. Blattmann, E. Hoffmann,
M. Kiselev, J. Kotthaus, and P. Nalbach for valuable

(a) (b) (c)

FIG. 4 (color online). Electron-phonon coupling. (a) Decaying region of the measured Îðτε; τAÞjlemon for three temperatures (dots). Lines
are generated using Eq. (4) for λ⋆ ¼ 3.5 μeV and λ as a fit parameter. The inset shows a broader region including maxima at τε ¼ 0, 2π=Ω.
(b) Measured decay rate λðTÞ (black dots) and corresponding numerical data (colored circles) based on λ⋆ ¼ 3.5 μeV (indicated as
horizontal line) and αZ ¼ 1.0, 1.5, 2.0 × 10−4. (c) Analog to panel (a) but based on numerical calculations. Solid lines are identical to those
in (a). The numerical resolution is based on 100 data points sampling the Gaussian broadening in ε̄ of width λ⋆ ¼ 3.5 μeV.
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I. OVERVIEW

In the main article we demonstrated that LZSM
(Landau-Zener-Stückelberg-Majorana) interferometry is
a viable tool to measure standard qubit properties and,

∗These authors contributed equally to this work.

beyond, to determine its coupling to a noisy environ-
ment. In our specific case of a double quantum dot
(DQD) charge qubit we found two main noise sources:
(i) slow environmental fluctuations resulting in an inho-
mogeneous Gaussian broadening, and (ii) the heat bath,
resulting in a homogeneous Lorentzian broadening. In
Sec. II we provide additional experimental results to-
gether with numerical data, which underlie our inter-
pretations in the main article. Further, we detail our
quantitative data analysis based on a self-consistent fit-
ting procedure and numerical calculations resulting in the
qubit-environment coupling constants, namely the stan-
dard deviation λ? = ~/T ?2 of the inhomogeneous broad-
ening and the dimensionless dissipation strength αZ of
the coupling to the phonons.

In Sec. III we discuss the details of our model for the
DQD and its coupling to the leads as well as to the
phonons. Moreover, we sketch the Bloch-Redfield master
equation approach by which we compute the asymptotic
state of the DQD and the time-averaged current. This
includes a discussion of how we extract the qubit’s coher-
ence time T2 from αZ and under which conditions this
is an appropriate procedure. Note that we neglect a sec-
ond component of the electron-phonon coupling, namely
αX which would mainly cause additional energy relax-
ation between the qubit states. An estimate of αX and
a discussion, which justifies its negligence, is provided in
Sec. III.

Table I in Sec. IV summarizes all system parameters
extracted from various measurements and used for the
numerical calculations.

II. ADDITIONAL EXPERIMENTS AND DATA
ANALYSIS

A. Initial tuning of the double quantum dot

Our experiments start by tuning the DQD by means
of gate voltages. As an orientation, Fig. S1(a) displays a
charge stability diagram of the unbiased DQD (V = 0)
as function of the gate voltages V∼ and VR. It has
been measured using a quantum point contact (QPC)
as charge detector. The sharp lines of local minima in
its transconductance dIQPC/dVR are the charging lines
of the two dots which separate regions of stable charge
configurations ranging from (0, 0) to (2, 1). Figure S1(b)
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FIG. S1: Initial tuning of the qubit. (a) Charge stability diagram of the unbiased DQD (V = 0) as function of dc gate voltages
[the gates are marked in Fig. 1(a) of the main article], measured by charge detection [1] at T ' 20 mK. In detail, the color
scale displays the linear transconductance of a nearby almost pinched off quantum point contact. It has been defined in the
two-dimensional electron system by V∼ and the upper left gate [gray in Fig. 1(a) of the main article]. Sharp lines of minimal
transconductance are charging lines of the DQD which is empty [configuration (0, 0)] in the lower left half of the plot. (b)
Current I in the vicinity of the (1, 1) ↔ (2, 0) transition of the charge stability diagram for V = 1 mV applied across the
DQD [see Fig. 1(a) of the main article] while V∼ was modulated with frequency Ω/2π = 5 GHz and amplitude A ' 80µeV.
The dashed triangle marks the region of current via (1, 0) → (2, 0) ↔ (1, 1) → (1, 0). The black arrow indicates the detuning
axis ε̄ and its origin ε̄ = 0 at the intersection with the dashed line. (c) I(ε̄) measured along the black arrow in (b). (d)
Current around ε̄ = 0 corresponding to the region framed by a dashed box in (c). The current maxima close to ε̄ = n~Ω with
n = 0,±1,±2,±3,±4 (vertical lines) are caused by PAT.

details the region of the stability diagram near the tran-
sition (1, 1) ↔ (2, 0), but it plots the current I mea-
sured through the DQD as a response to V = 1 mV
applied across the DQD [see Figs. 1(a,b) of the main
article]. The finite current within the framed triangle
is a consequence of the single-electron tunneling cycle
(1, 0)→ (1, 1)↔ (2, 0)→ (1, 0), where the double arrow
accounts for the fact that the interdot tunnel coupling
is coherent and large compared to the dot-lead tunnel
couplings. The transition (1, 1) ↔ (2, 0) thereby divides
into S11 ↔ S20 and T11 ↔ T20 while the coupling be-
tween singlet and triplet subspaces is forbidden by the
Pauli principle. This is the configuration used for our
LZSM interferometry measurements. The black arrow in
Fig. S1(b) indicates the detuning axis. The current along
this arrow, i. e. as a function of the mean detuning ε̄, plot-
ted in Fig. S1(c), shows two interesting features: (i) I is
strongly suppressed for ε̄ < 400µeV, because there the
T20 state is beyond the transport window, while the tran-

sition T11 → S11 is hindered by Pauli-spin blockade [2, 3],
which makes T11 a metastable state. In our case the spin
blockade is partly lifted especially near ε̄ = 0 where the
inhomogeneous field of our nanomagnet mixes T11 and
S11; spin relaxation, provided by the hyperfine interac-
tion with nuclear spins [4] also contributes, but is weaker.
The strong current increase at ε̄ ' 400µeV marks the on-
set of the T20 state contributing to the transport which
then completely lifts the spin blockade via the triplet
channel (1, 0) → T11 ↔ T20 → (1, 0). (ii) In Fig. S1(b)
we have, in addition, applied an rf-modulation of V∼ at
the frequency of 5 GHz resulting in a modulation of the
detuning with amplitude A ' 80µeV. This gives rise
to a pattern of photon assisted tunneling (PAT) current
maxima appearing at ε̄ = n~Ω with n = 0,±1,±2, . . . .
These PAT peaks in I(ε̄), highlighted in Fig. S1(b), trans-
form into the LZSM patterns observed in our 2D plots
I(ε̄, A). Weaker PAT oscillations are also seen in panel c
where the T20-triplet starts to contribute to the current
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also for the triplets transition T11 ↔ T20 (right) a LZSM in-
terference pattern is observed. (b) Energy eigenstates of our
DQD neglecting the mixing between them (S11 is vertically
shifted to separate it from T0, similar as an exchange cou-
pling would do). At the intersections marked by black dots,
avoided crossings develop predominantly caused by the inter-
dot tunnel coupling and magnetic field gradients between the
two dots. The characteristic energy varies as it depends on
the details of the coupled states.

near ε̄ ' 400µeV. (The actual singlet-triplet splitting
in the (2, 0)-configuration is larger by the amplitude of
A = 80µeV and accounts to ' 480µeV.)

An example of measured LZSM interferometry is dis-
played in Fig. S2(a) using a logarithmic A-axis. It clearly
shows LZSM interference patterns involving both transi-
tions S11 ↔ S20 around ε̄ = 0 as well as T11 ↔ T20

at larger ε̄ where the T20 state contributes to transport.
In all other LZSM patterns presented in this article, the
color scale is chosen to optimize the singlet contributions
to the interference and the onset of the triplet channel is
only seen as an asymmetry in I(ε̄) at large A [increased
current in the upper right corner of e. g. Figs. 2(a,b) of
the main article].

With our setup it is also possible to perform LZSM
interferometry in a one-electron DQD [5] and, more-
over, to study the dynamics arising for two electrons
when sweeping through multiple avoided crossings [6–9].
These can include not only the combination of singlet-

singlet and singlet-triplet transitions around ε = 0 but
also avoided crossings at higher detuning where the T20-
triplet enters the transport window [see Fig. S2(b)]. The
LZSM patterns presented in Fig. S2(a) can be explained
by only considering two separate avoided crossings (S11-
S20 around ε = 0 and a single triplet-triplet transi-
tion at larger ε). One way to combine transitions at
several avoided crossings would obviously be to sweep
through both by matching the Landau-Zener condition
(~v ∼ π∆2) at each avoided crossing. This could be
done either by matching the characteristic energies (of
the avoided crossings) or by varying the sweep speed to
make up for different characteristic energies. Note, that
the relative position of the avoided crossings can also be
tuned via the magnetic field and the interdot tunnel cou-
pling. An interesting application that could be studied at
the avoided crossings involving the T20 triplets [at large
positive detuning in Fig. S2(b)] is SU(3) LZSM interfer-
ometry [9]. Furthermore, combining singlet-singlet with
singlet-triplet Landau-Zener transitions (charge qubit
with spin-based qubit) would provide new possibilities
for quantum information processing. Our experiments
are a first step towards the realization of such ideas.

B. Energy calibration

In this section we briefly explain how we determine the
detuning ε̄ and the modulation amplitude A from gate
voltages, the source-drain voltage V applied across the
DQD and the modulation frequency Ω/2π. The standard
method is to use the current triangles in Fig. S1(b) which
relate the known energy scale of the applied source-drain
voltage eV to changes in gate voltages V∼ and VR. The
relations are linear with the mutual gate-dot capacities
as proportionality factors [10]. Here, we can refine such
a standard calibration based on the well known modula-
tion frequency, which determines the LZSM interference
patterns, in the following way: (i) The current maxima
appear at ε̄ = n~Ω with n = 0, 1, 2, . . . which we use to
calibrate ε̄(VR, V∼). (ii) The positions of the minima of
the current as function of amplitude are also well known
[see e. g. Eq. (2)] and we use them to calibrate A(VR, V∼).
At small frequencies, where the interference patterns are
less clear, the positions of the outermost current maxima
(at A ' ε̄) framing the region of finite current I(ε̄, A)
[e. g. in Figs. 2(a,b)] can still be used for a calibration.
As the transmission of the rf modulation to the sample
depends on the frequency due to cable resonances in the
experimental setup, the calibration of A has to be done
separately for each frequency.

C. Determination of the system parameters

Using our model we aim at a quantitative prediction of
the measured current. This requires knowledge of various
system parameters such as the tunable tunnel barriers
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and transition rates between triplet and singlet states.
All parameters used in our numerical calculations are
summarized for convenience in Table I in Sec. IV. Hence-
forth, we describe our determination of those parame-
ters, which are neither trivial nor described elsewhere in
this article. The largest energy scales are the intradot
and interdot Coulomb interactions U ' 3.5 meV and
U ′ ' 0.8 meV. Knowing the energy calibration (see last
section) these values can be extracted from the charge
stability diagram. In detail, U corresponds to the dis-
tance between charging lines in Fig. S1(a) and U ′ to the
distance between the triangle tips in Fig. S1(b).

Next, we discuss the triplet-singlet coupling, which in
our case originates from the hyperfine interaction be-
tween the electrons and many nuclei on the one hand
and the inhomogeneous magnetic field of our nanomag-
net, shown in Fig. 1(a) of the main article, on the
other hand. The T11 triplets split into T+ = |↑↑〉,
T0 = (|↑↓〉+ |↓↑〉) /

√
2 and T− = |↓↓〉. The couplings

between T+ and S11 and between T− and S11 are iden-
tical and caused by field inhomogeneities parallel to
the effective magnetic field [approximately parallel to
Bext = 200 mT, see Figs. 1(a,c)] of the main article,
while T0 and S11 are coupled by the perpendicular field
inhomogeneities. We actually determine the T+-S11 cou-
pling by measuring the average charge occupation in a

continuously pulsed gate experiment. Here, we use a
quantum point contact as charge detector while no volt-
age is applied across the DQD, V = 0. As sketched
in the inset of Fig. S3(a) and in the energy diagram
in Fig. S3(d), we first initialize the DQD in S20 by ap-
plying a large positive detuning ε1 where the transition
T11 → S20 happens quickly via charge exchange with the
leads: T11 → (1, 0) → S20; see left panel in Fig. S3(c).
Next we prepare the DQD in the S11-state at ε = ε2

by sweeping the detuning from ε1 → ε2 at a constant
speed obeying ∆2 � 2~v/π � ∆2

ST,±. During this
sweep, the DQD is adiabatically transferred from the S20

to the S11 state while passing the S20-S11 avoided cross-
ing with coupling ∆. The DQD also passes the S11-T+

avoided crossing with coupling ∆ST,±; this passage is,
however, non-adiabatic because ∆ST,± � ∆ and, hence,
the DQD remains in the S11-state. After waiting a short
time at ε2 [center panel in Fig. S3(c)], we perform a
Landau-Zener passage within the ramp time tR through
the S11-T+ avoided crossing up to ε = ε3 where we spend
a relatively long time in order to read out the charge
state of the DQD [right panel in Fig. S3(c)]. We expect
to find the charge configuration (2, 0) in case of a slow
passage (with the DQD staying in the singlet subspace)
and (1, 1) in case of a fast passage bringing the DQD
into the T+ state, because the decay T+ → S11 → S20
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is hindered by Pauli-spin blockade. Figure S3(a) dis-
plays the probability to stay in the singlet subspace
Psinglet = α (1− PLZ) = α

(
1− exp

[
−π∆2

ST,±/2~v
])

as

a function of tR = (ε3−ε2)/v. Fitting this function [gray
line in Fig. S3(a)] to the measured singlet probability in-
dicates our S11-T+ coupling of ∆ST,± = (119 ± 10) neV,
produced by our nanomagnet. The prefactor α ' 0.43
accounts for the partial decay T+ → S11 and depends on
the duration of the readout period. Taking into account
the interdot tunnel coupling which results in a reduced
weight of S11 in the singlet eigenstate, this ∆ST,± cor-
responds to a magnetic field difference in the two dots
giving rise to gµB∆Bx ' 0.2µeV, smaller than previ-
ously measured in the same sample [4], which indicates
a degradation by oxidation of the single domain proper-
ties of our nanomagnet during six months of shelf stor-
age. Here, we used the g-factor |g| = 0.36 as determined
for our DQD in Ref. [4] and Bohr’s magneton µB. The
hyperfine induced coupling contribution in our DQD is
∆hyperfine ' 60 neV [4] and results in a corresponding in-
homogeneous broadening of the singlet-triplet coupling.

To determine the interdot tunnel coupling ∆ we per-
form a so-called spin funnel experiment [11]. Thereby
we repeat the same continuously pulsed gate measure-
ments as above but with a short and fixed tR = 1.1 ns
so that all passages through the S11-T+ crossing are now
equally non-adiabatic while the passage through the S11-
S20 crossing is still adiabatic [see inset of Fig. S3(a)].
Under this conditions, a pulse cycle ε1 → ε3 → ε2 → ε3

[Fig. S3(d)] will usually bring the system back to the
S20 singlet after preparing the S20 singlet at the detun-
ing ε1. A notable exemption occurs if ε2 coincides with
the singlet-triplet resonance, namely for ±gµBBext =
1
2 (±

√
ε2

2 + ∆2 − ε2), and if the system spends sufficient
time (> h/∆ST) there to allow for a singlet-triplet transi-
tion. As a consequence, we measure a deviation from the
S20 configuration at this resonance during the readout
at ε3, where the T11 triplet decays only slowly. To map
out this condition we plot in Fig. S3(c) the current IQPC

through the detector QPC (corresponding to the average
charge state of the DQD) as a function of gµBBext and

ε2. The two distinct lines of enhanced IQPC correspond
to a finite occupation of one of the T± triplets. By fit-
ting the resonance condition (above) we find our tunnel
coupling ∆ = (13± 1)µeV [black lines in Fig. S3(c)].

The initialization and decay rates Γin and Γout, re-
spectively, are finally reconstructed from measuring the
dc current through the DQD as a function of detuning
and as a function of source drain voltage in forward and
backward direction. An example of such a measurement
is shown in Fig. S1(c), where in this case an rf-modulation
was applied in addition. Since the current in backward
direction [for µD > µS in Fig. 1(b) of the main article] is
practically independent of the spin relaxation, it allows
us to determine the dot-drain coupling Γout = ΓL. In
turn, the magnitude of the current in forward direction
provides a faithful estimate for γσ and Γin.

D. Origin of the inhomogeneous broadening

Compared to the measured LZSM patterns, our
Floquet-Bloch-Redfield formalism, which already takes
into account the realistic electron-phonon coupling αZ
and the DQD parameters summarized in Table I such
as tunnel couplings, predicts a much higher visibility of
the interference pattern resulting in sharper current max-
ima. This is evident in Fig. 3(a) of the main article which
compares the measured interference at a constant modu-
lation amplitude with calculated data. We resolved this
caveat by introducing an additional Gaussian inhomoge-
neous broadening λ? [Fig. 3(a)], where the final values
αZ = 1.5 × 10−4 and λ? = 3.5µeV have been calcu-
lated self-consistently. Figure S4 demonstrates the con-
vergence by plotting three calculated curves (lines) us-
ing various values of λ? around its final value while the
electron-phonon coupling is kept fixed at αZ = 1.5×10−4

[as also in Fig. 3(a)] of the main article. The model curve
(blue line) in panel b using λ? = 3.5µeV fits best to the
measured data (dots).

The inhomogeneous broadening is a result of the com-
bination of slow charge noise and our time averaging dc
measurement: The spectrum of charge noise has been
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FIG. S5: Equation (2) versus full model. All data are calculated using Ω/2π = 2.75 GHz and system parameters as listed in

Table I. (a) Analytical solution of Eq. (2). The width of the current peaks as function of ε̄ is δε̄ =
√

∆2
n + γ2 (containing only

tunneling rates), see Eq. (2). (b) Analytical solution of Eq. (2), as in panel a, but additionally convoluted with a Gaussian
profile of width λ? = 3.5µeV to simulate the effect of an inhomogeneous broadening in a time ensemble measurement caused by
slow charge noise. (c) Numerical solution of our full model, including electron-phonon coupling, at T = 18 mK (with parameters
from Table I) but using λ? = 0. (d) Numerical solution of our full model as in panel c but using λ? = 3.5µeV. The similarity
between the analytical solutions and the low temperature result of our full model, if comparing panel a with c and panel b with
d, justifies our perturbative approach to treat the electron-phonon coupling.

measured in heterostructures similar to ours. It can be
described as 1/f -noise which typically occurs only at fre-
quencies below 10 kHz [12–15]. The longest time scale of
our experiment is the dwell time in the DQD of each elec-
tron, contributing to the measured current. It is in the
order of 1µs, much shorter than the highest frequency
components of charge noise. A single shot qubit mea-
surement and hence T2 are, consequently, unlikely to be
affected by charge noise. However, in our steady state ex-
periments each measured data point averages the dc cur-
rent over 200 ms. Such an effective time ensemble mea-
surement can be inhomogeneously broadened by charge
noise, slow compared to T2 but fast compared to the aver-
aging time. Assuming a Markovian statistics, this inho-
mogeneous broadening is well described using a Gaussian
distribution with standard deviation λ?.

E. Dissipation strength

In comparison, determining the dissipation parameter
αZ requires considerably more effort, experimentally and

even more in theory, where it enters in a rather com-
plex manner. We follow a route that is based on an
idea by Rudner et al. [16], who showed analytically that

the Fourier transformed Î(τε, τA) of the dc current pat-
tern exhibits a lemon-shaped structure, composed of si-
nusoidal branches. However, the treatment of Ref. [16]
neglects the impact of the tunnel matrix element ∆ on
the dynamical phase which finally yields an expression
similar to our Eq. (2), but with ∆2

n+γ2 in its denomina-
tor replaced by a phenomenological decay rate γ̃2. Thus,
the result is a simple Lorentzian broadening of width γ̃
giving rise to an exponential decay, ∝ exp(−γ̃|τε|), of the
Fourier transformed including the lemon structure. This
simplification allows an analytical solution of the problem
for the price of limiting our horizon to an unrealistically
weak inter-dot tunnel coupling and a convenient but just
phenomenologically introduced broadening.

In our DQD we have ∆n & γ for all relevant reso-
nances in the whole parameter range measured; more
precisely the interdot tunnel coupling exceeds all broad-
ening mechanisms including the initialization and decay
rates, Γin and Γout, but also the broadening caused by
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FIG. S6: Equation (2) versus full model — slices. Slices of the data in Fig. S5. Each panel compares the analytical predictions
of Eq. (2) (marked as “analytic”) with those of our full model for αZ = 1.5 × 10−4 and at T = 18 mK (“numeric”). The
modulation frequency is Ω/2π = 2.75 GHz. (a) I(ε̄) at A ' 130µeV using λ? = 0. (b) I(ε̄) at A ' 130µeV using λ? = 3.5µeV.
(c) I(A) for ε̄ = 0 using λ? = 0. (d) I(A) for ε̄ = 0 using λ? = 3.5µeV. For the agreement of the full model results with
measured data, see Figs. 3(a,b) of the main text.

environmental influences. This guaranties a sufficiently
long coherence time, T2 > ~/∆, which is a necessary
condition for qubit operation as ∆/~ is the qubit clock-
speed.

Interestingly, the finite ∆n in the denominator of
Eq. (2) has a direct manifestation in the Fourier trans-
formed of the measured LZSM patterns. It gives rise
to extra features described in Eq. (3) present in both
our measured and calculated data: cosine shaped arcs
in the Fourier transformed (marked by black arrows) in
Fig. 2(e,h) of the main article in addition to the principal
lemon structure. These extra arcs are also evident in the
measured data discussed in reference [16] but they have
not been reproduced in the calculations there.

The analytical expression in Eq. (2) serves as a sign
post for our analysis as it describes the main features of
our measurements correctly. This is evident in Fig. S5
and Fig. S6 which provide a direct comparison between
the predictions of Eq. (2) and our full model. The
detailed comparison between our numerical calculations
and measurements, provided in Figs. 3(a,b) of the main
article, further demonstrates that our full model fits con-
siderably better to our data than Eq. (2). The analyt-
ical expression in Eq. (2) only considers non-interacting
electrons and, hence, fails to predict decoherence effects.

A reliable physical interpretation including the observed
temperature dependence [see main text, Figs. 3(c) and
4] requires a detailed analysis: First, it is necessary to
explicitly consider all dot-lead and interdot tunnel cou-
plings and the relevant energy spectrum of the DQD.
Second, interaction effects have to be included which in
our case comprise: (i) Coulomb-interaction giving rise to
Coulomb blockade and the coupling to charge noise; (ii)
exchange interaction causing Pauli-spin blockade, hyper-
fine interaction causing spin-flips and the mixing between
singlet and triplet states by the inhomogeneous field of
the nanomagnet; (iii) electron-phonon interaction result-
ing in decoherence. We focus on the latter. Our master
equation formalism takes into account all these effects
and allows us to numerically calculate I(ε̄, A) in the range
in which we take our experimental data and compute
its two-dimensional discrete Fourier transformation. Fi-
nally, a Fourier transformation of our data causes cut-off
effects, because both measured and calculated data span
only finite ranges in ε̄ and A. Typical artefacts of the
discrete Fourier transformation are avoided throughout
our analysis as good as possible by using only data with
sufficiently high resolution.

Next, we discuss the details of our data analysis: after
calculating raw data resembling the measured LZSM pat-
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FIG. S7: Data analysis based on Fourier transformation. Analysis steps on measured data (a–c) versus theory (d–f) for
T ' 60 mK and Ω/2π = 2.75 GHz using the parameters listed in Table I for the numerical calculations. The numerical data in
panels d–f are without the inhomogeneous broadening, i. e. for λ? = 0. (a,d) LZSM interference patterns I(ε̄, A). The measured
data in panel a display a stronger asymmetry in ε̄ compared to the numerical data in panel d, which is discussed in Sec. II H.

(b,e) Two-dimensional Fourier transformed Î(τε, τA) of the raw data in panels a and d. Clearly visible are the principal lemon
arcs for k = 1 and those for k = 2 in Eq. (3). Horizontal and vertical lines at τε = 0 and τA = 0, respectively, are artefacts

caused by the discrete Fourier transformation. The color scales are in arbitrary units as the absolute amplitude of Î scales with
the number of data points in the raw data and has no physical meaning. The higher visibility of the numerical data in panel
e compared to the measured data in b is due to the negligence of the inhomogeneous broadening. (c,f) Decay of a quarter of
the principal lemon arc in the range 0 . τε . 2π/Ω. The dashed line in the lowest panel is the data (open circles) multiplied
by the Gaussian exp[− 1

2
(λ?τε/~)2] using λ? = 3.5µeV for direct comparison with the data in panel c. The region between the

two vertical (dotted) lines is then fitted with Eq. (4) to determine λ.

terns, using estimated values for αZ and λ? we apply the
identical analysis to experimental and numerical data.
Then, we compare the results and repeat calculation and
analysis of the numerical data with modified αZ and λ?

in a self-consistent way until we find best agreement with
the measured data. Figure S7 demonstrates the last step
of this procedure, exemplarily, for a typical set of mea-
sured data in panels a–c and the corresponding calculated
data, based on our model parameters listed in Table I, in
panels d–f. The numerical data shown here neglect the
inhomogeneous broadening, equivalent to using λ? = 0,
as this is sufficient for evaluating λ from the numerical
data. Measured and calculated data in Fig. S7, therefore,
imply differences (details in figure caption); for a direct
comparison including the inhomogeneous broadening in
the numerical data we refer to Fig. 2 and Fig. 3 of the
main article. Panels a and d of Fig. S7 show the measured
and calculated I(ε̄, A), respectively, panels b and e the

corresponding Fourier transformed Î(τε, τA). Since the
current is real-valued, the Fourier transformed pattern is
point symmetric, while the approximate mirror symme-
try at the A-axis relates the two independent branches.

Therefore it is sufficient to restrict the analysis to the
upper-right quarter as indicated in Figs. S7(c,f). The
Fourier transformed of the current along the lemon arcs

Î(τε, τA)
∣∣
lemon

incorporate a decay between two maxima
at the arcs intersections at τε = 0 and τε = 2π/Ω. These
maxima indicate a fast intrinsic decay and are related
to ∆2

n dominating the denominator of Eq. (2) near the
n-photon resonances. They are not a measure of the
qubit decoherence. Note that finite range cut-off effects

of the Fourier transformations cause the finite Î(τε, τA)
along τε = 0 and τA = 0 in Figs. S7(b,e), which addi-

tionally obscure the maxima in Î(τε, τA)
∣∣
lemon

. For our
further analysis we therefore only consider the decay of

Î(τε, τA)
∣∣
lemon

in the regions marked in Figs. S7(c,f). To

determine λ the measured Î(τε, τA)
∣∣
lemon

in Fig. S7(c) is
fitted with Eq. (3) using λ? = 3.5µeV while the calcu-
lated data in Fig. S7(f) are just fitted with the exponen-
tially decaying term in Eq. (3) using λ? = 0.

To accurately determine the electron-phonon coupling
we consider the temperature dependence of λ(αZ , T )
rather than relying on a single LZSM pattern at low tem-
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FIG. S8: Analysis of the Fourier transformed — electron-phonon coupling. (a) Decay rate λ(αZ) for three different temperatures.
The curves are numerically calculated using the fixed λ? = 3.5µeV but various values of αZ . Horizontal lines indicate λ
determined from our measured data for the same three temperatures. The vertical dashed line and the gray region indicate
the best fitting αZ and its accuracy. Also compare to Fig. 4(b) of the main article. (b) Numerically calculated decay of the
principal lemon arc for T = 295 mK using the fixed λ? = 3.5µeV but various values of αZ [same as those in Fig. 4(b) of the
main article]. (c) Numerically calculated decay of the principal lemon arc for T = 295 mK using the fixed αZ = 1.5× 10−4 but
various values of λ?.

perature. This procedure allows us to properly separate
the two main noise sources, the temperature independent
charge noise giving rise to the inhomogeneous dephasing
time T ?2 and the temperature dependent homogeneous
broadening λ, which is directly related to αZ and deter-
mines the qubit decoherence time T2. (There are no indi-
cations for a temperature dependence of the charge noise
for T < 1 K). The details of this procedure are discussed
in the main article around Fig. 4. In Fig. S8(a) we pro-
vide additional data on the determination of the electron-
phonon coupling presenting λ(αZ) for various tempera-
tures. Each data point has been determined from fitting
Eq. (4) to a principal lemon arc as the one in Fig. S7(f)
calculated using the fixed λ? = 3.5µeV but various values
of αZ . Horizontal lines indicate λ determined from our
measured data for the same three temperatures. Assum-
ing a temperature independent αZ we find best agree-
ment to our data for αZ = (1.5 ± 0.2) × 10−4 (vertical
dashed line and gray region). Note that a similar in-
formation is contained in Fig. 4(b) of the main article.
The saturation of λ(T ) for low temperatures at a value
λmin ' 4µeV is a consequence of measuring PAT cur-
rent peaks which possess the intrinsic width

√
∆2
n + γ2

of I(ε̄, A) as a function of ε̄ expressed in Eq. (2). As is ev-
ident from Fig. 4(b) of the main article the lower bound
λmin is also observed in our experiments. Figs. S8(b,c)
demonstrate the robustness of our main model parame-
ters αZ and λ?, respectively, by varying each of the two
parameters separately and comparing the decay of the
principal lemon arcs.

F. Summary of data analysis

Summarizing our data analysis, we started by deter-
mining all important physical constants such as tunnel
couplings and spin-flip rates based on a number of in-
dependent measurements on our double quantum dot

device already tuned to the configuration used for the
LZSM interferometry experiments. To determine the
remaining key-parameters λ? and αZ we used a self-
consistent approach within our model. It turned out that
αZ could be best determined from the two-dimensional
Fourier transformed of LZSM interference patterns at
various temperatures. In contrast, λ?, which causes
a strong but temperature independent inhomogeneous
broadening, could be equally well determined from the
raw data. This allowed us to avoid a third fit parame-
ter (besides λ and a prefactor) by which we would loose
precision in finding αZ . Specifically, by comparing the
resulting decay rates λ(T, αZ) with those extracted from
our measurements [see Fig. 4(b) of the main article], we
find that in our setup, decoherence can be described by a
Caldeira-Leggett model with Ohmic spectral density and
the dimensionless dissipation strength αZ ' 1.5× 10−4.

G. LZSM interference at various frequencies

In the main article we already demonstrate that the
LZSM interference pattern depends on frequency. In
Fig. S9 we extend the frequency range presenting data
between 1.5 GHz ≤ Ω/2π ≤ 5.5 GHz all measured (upper
line) or numerically calculated (lower line) at T ' 20 mK.
At the highest frequencies we observe clear PAT patterns
as expected from Eq. (2) which distort increasingly as the
frequency is lowered and neighbored PAT current peaks
overlap. At Ω/2π = 1.5 GHz all interference signatures
are (almost) lost as ~Ω ' 6µeV is close to the broaden-
ing caused by the combination of our λ? ' 3.5µeV and
λ(T = 20 mK) ' 4µeV.

It is instructive to estimate the Landau-Zener proba-
bility PLZ = exp(−π∆2/2~|v|) [17–21] for the Hamilto-
nian (6) with onsite-energy difference ε(t) = ε̄+A cos(Ωt)
for the frequencies of the experiment and an intermediate
amplitude, say A = 100µeV. Then the sweep velocity at
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FIG. S9: LZSM interference patterns for various modulation frequencies. The upper row contains measured and the lower row
calculated data, both for T ' 20 mK. Model parameters according to Table I.

the avoided crossing is |v| = Ω
√
A2 − ε̄2. Thus we find for

the frequencies used in Fig. S9 and ε̄ = 0 Landau-Zener
transition probabilities in the range 0.65 . PLZ . 0.89
and PLZ ' 0.79 for Ω/2π = 2.75 GHz where we per-
formed our temperature dependent measurements. For
non-vanishing ε̄, PLZ is smaller, so that the average over
all relevant crossings becomes of order PLZ ' 1/2 which
ensures good visibility. For frequencies Ω/2π . 2 GHz,
the analytic estimate of Eq. (2) based on PAT becomes
increasingly inaccurate and, consequently, our interpre-
tation of the lemon arc decay given by Eq. (4) is not
guaranteed.

H. Influence of dynamic nuclear polarization

The measured data, e. g. in Figs. 2(a,b) of the main
article and in Figs. S9(a–e) contain two distinct features
not included in our model. The first one is a pronounced
asymmetry in I(ε̄) in the limit of large amplitudes. It
is considerably smaller in the theoretical data, which ne-
glect the influence of the T20 triplet. The stronger asym-
metry observed in measured data is indeed caused by
the influence of the T20 state which grows with increas-
ing positive detuning. The effect is clearly seen in Fig. S2
and has been discussed at the end of Sec. II A. The sec-
ond feature occurs at very small amplitudes and appears
as if the tip of the current triangle was shifted to slightly
positive values of ε̄. It is a signature of dynamic po-
larization of the nuclear spins caused by the hyperfine
interaction between the current carrying electrons and
the nuclear spins in the DQD. At very small A, the rf-
modulation is practically off and we simply measure the
current through the DQD while sweeping ε̄ from posi-
tive towards negative values. As explained in detail in
Ref. [4], the current maximum occurs at the value of ε̄
that marks the resonance between the T− and the singlet
state. This resonance is shifted towards positive ε by dy-
namic nuclear polarization [4]. The fact that the shift
only occurs at very small A indicates that the contin-

uous rf-modulation effectively prevents the polarization
of nuclear spins. We therefore, do not have to include
this in our model as long as we concentrate on data with
A & 20µeV.

I. Temperature dependence and limitations of our
model

The temperature dependence of the LZSM patterns
discussed in the main article in Fig. 3(c) and Fig. 4 is at
the heart of our model as it is used to accurately deter-
mine the electron-phonon coupling and finally the qubit
coherence time T2. So far we have mostly concentrated on
the temperature dependence of the principal lemon arc
in the Fourier transformed of the LZSM patterns. Fig-
ure S10(a) shows LZSM patterns measured (upper line)
versus calculated (lower line) at various temperatures.
Figure S10(b) shows horizontal slices at A = 130µeV
(dots are measured and lines present numerical data).
To facilitate a quantitative comparison, we extract the
visibility as well as the average current Ī in the region
defined by −70µeV ≤ ε̄ ≤ 70µeV and plot the tem-
perature dependences of experimental versus numerical
data in Fig. S10(c). The temperature dependence of the
calculated visibility resembles the measured ones. How-
ever, the measured mean current is roughly temperature
independent while the predicted mean current increases
with temperature. Interestingly, the decay of the prin-
cipal lemon arc of the Fourier transformed is strongly
related to the visibility of a LZSM pattern but not at
all to the mean current. Our model, therefore, describes
the decoherence of the qubit correctly while it predicts
an increase of the mean current with temperature that
is stronger than in the measurements. A possible expla-
nation for this discrepancy is that in the experiment, the
spectral density of the phonons is not strictly ohmic as
is assumed in our model, see Sec. III A 3. Consequently,
our theoretical description may overestimate the thermal
activation of some singlet-triplet transitions.
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FIG. S10: Temperature dependence of raw data versus model. (a) LZSM interference patterns at Ω/2π = 2.75 GHz and various
temperatures. The upper plots have been measured, the lower plots calculated using our full model with the parameters listed
in Table I. (b) Horizontal slices from plots like those in panel a at A = 130µeV. Dots correspond to measured and lines to
numerical data. (c) Average current Ī (upper panel) and visibility ν = (Imax − Imin) / (Imax + Imin) (lower panel), extracted
from the slices presented in panel b and similar data, as function of temperature. The data points are taken in the region
−100µeV ≤ ε̄ ≤ 30µeV; this avoids the region of ε̄ > 100µeV where experimental data are influenced by the T20 triplet which
is neglected in our model. Black dots are measured while blue open circles are calculated.

III. THEORETICAL MODELLING

Our aim is to compute the LZSM interference patterns
using a realistic model and to compare the results with
the measured ones. Therefore we need to consider besides
our DQD also its coupling to electron source and drain
contacts, as well as to environmental fluctuations. In or-
der to realistically describe our measurements, performed
in the regime of Pauli-spin blockade which is partly lifted
by an inhomogeneous Zeeman field of an on-chip nano-
magnet, we further include spin relaxation. Our model
considers all energetically accessible DQD states and all
processes which play a noticeable role in our experiment.
Comparing our theoretical and experimental data we find
two main contributions to a noisy environment: the first
is slow charge noise [12–15] and can be described as an in-
homogeneous broadening λ?, the second is the heat bath
and contributes via the electron-phonon coupling αZ . It
is straightforward to independently extract other relevant
system parameters from transport measurements, so that
λ? and αZ are the only fit parameters left.

A. System-lead-bath model

1. Double quantum dot Hamiltonian

We include the single-particle energies εL and εR in
the left / right dot, the electron-electron interactions ne-
glecting the small exchange terms, inter-dot tunneling,
and the inhomogeneous Zeeman field to obtain in second
quantization the DQD Hamiltonian

HDQD =
∑

`=L,R

ε`n` + U
∑

`=L,R

n`(n` − 1) + U ′nLnR

+
∆

2
√

2

∑

m=↑,↓
(c†LmcRm + c†RmcLm)

+
gµB

2

∑

`=L,R

(c†`,↑, c
†
`,↓)(

~B` · ~σ)(c`,↑, c`,↓)
T ,

(1)

where n` =
∑
m=↑↓ c

†
`mc`m is the occupation of dot

` = L,R expressed with the usual fermionic creation
and annihilation operators. The largest energy scales are
the intra- and inter-dot Coulomb interactions U and U ′,
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which define the diabatic basis states of our charge qubit
with energies ε(S20) = 2εL+U and ε(S11) = εL+εR+U ′

and their mutual detuning ε̄ ≡ ε(S20) − ε(S11) = εL −
εR+U−U ′. The fourth term describes tunneling between
the dots with the matrix element ∆ defined such that it
equals the energy splitting of the charge qubit formed by
the singlets. The final Zeeman term affects the triplet
states and, because of the inhomogeneous field contri-
bution of our on-chip magnet, also mixes singlets with
triplets. This mixing enables transitions between singlet
and triplet states and may be rather sensitive to ther-
mal exitations [22]. If a source-drain voltage is applied
across the DQD, it causes a finite average current. Notice
that also the hyperfine interaction causes electron spin-
flips, which we capture by a phenomenological spin-flip
rate γσ.

2. Dot-lead Hamiltonians

To model the single electron tunneling current through
the DQD we have to consider its interaction with the two-
dimensional leads. Starting from the configuration (1,0),
the right quantum dot is loaded via the tunneling process
(0, 1)→ (1, 1) from the source contact, i. e. the right lead.
The latter is modeled as non-interacting electrons with
the Hamiltonian Hlead =

∑
q,m=↑↓Eqc

†
q,mcq,m while the

dot-lead coupling terms reads

Hdot–lead =
∑

q,m=↑↓
Vq(c

†
R,mcq,m + c†q,mcR,m). (2)

Here, the lead-to-dot tunnel probability into a specific
electronic dot state with energy Eq is proportional to the
equilibrium population 〈c†q,mcq,m〉 = f(Eq − µR) with
the source contact characterized by the Fermi function
f(E − µR) = [e(E−µR)/kBT + 1]−1 at temperature T and
chemical potential µR. For simplicity, we assume within a
wide-band approximation that the spectral density of the
source contact is energy independent and find the tunnel
coupling ΓR(E) = 2π

∑
q |Vq|2δ(E − Eq) ≡ ΓR between

the right dot ond the source contact. The tunnel coupling
between the left dot and the drain contact (left lead) is
defined accordingly. Since the coupling term Vq is sample
dependent and not a priory known (it can be tuned by
gate voltages), we have determined the effective dot-lead
tunnel couplings, ΓL and ΓR, experimentally by indepen-
dent dc-measurements without applying an rf-field. Note
that the decay rate used in the main article is Γout = ΓL,
while the initialization rate Γin combines ΓR with the
singlet-triplet couplings in the last term of the Hamilto-
nian in Eq. (1).

3. System-bath Hamiltonian

A central aim of our study is to investigate our two-
electron charge qubit and its decoherence, caused by the

coupling to a dissipating environment, which is encoded
in the LZSM pattern and its visibility. The details in the
experimentally observed fading of the LZSM pattern with
increasing temperature reveal two main environmental
influences captured by λ? and αZ : the first one is an
inhomogeneous broadening most likely caused by slow
charge noise; the second influence is the phonon bath
[23, 24] which yields quantum dissipation and direct de-
coherence. Another possible decoherence source is the
coupling to circuit noise which is important for typically
impedance matched superconducting qubits [25]. In our
case, however, we expect this external noise source to
be of minor relevance owing to a strong impedance mis-
match.

For the inhomogeneous broadening, we assume that
it stems from practically temperature independent slow
fluctuations of the local potential that remain constant
during the typical dwell time of an electron in the DQD.
Therefore we can capture these fluctuations by convolut-
ing their amplitude distribution with I(ε̄, A).

For describing decoherence that stems from the inter-
action between the DQD and bulk phonons, we employ
a system-bath approach in the spirit of the Caldeira-
Leggett model for the dissipative two-level system. This
means that we couple the DQD to an ensemble of har-
monic oscillators described by the Hamiltonian Hbath =∑
ν ~ωνa†νaν , where a†ν and aν are the usual bosonic cre-

ation and annihilation operators for a phonon of fre-
quency ων . The position operators of the bath oscillators
couple to the occupation difference between the left and
the right dot, Z = nL − nR, according to

Hdot–bath =
∑

ν

λν(a†ν + aν)Z . (3)

This electron-phonon coupling Hamiltonian describes the
interaction of the DQD with environmental degrees of
freedom. Its immediate effect is that fluctuations in the
environment detune the electronic states which, in turn,
results in a randomization of the relative phase in a su-
perposition of states with distinct charge distribution, in
particular of the singlets representing our qubit. The
latter is therefore subject to decoherence. An important
characteristic of a dissipating bath is its spectral density
J(ω) = π

∑
ν |λν |2δ(ω−ων). As for the leads, we assume

also for the phonon bath a continuum limit and replace
J(ω) by the Ohmic spectral density J(ω) = παZω/2.
The dimensionless electron-phonon coupling strength αZ
reflects the dissipation strength, which together with the
temperature parametrizes the decoherence due to the
phonon bath. The Ohmic spectral density represents the
natural choice which we have tested by performing ad-
ditional numerical calculations using super-Ohmic spec-
tral densities J(ω) ∝ ωs+1 with s > 0, which however
failed to reproduce the experimentally observed fading
of the LZSM pattern with increasing temperature. A
possible explanation for the good agreement of our data
with an Ohmic spectral phonon density is the quasi one-
dimensional character of the electron-phonon interaction
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in our DQD sample: decoherence is mainly caused by the
one-dimensional subset of phonons with wavevector par-
allel to the line connecting the two quantum dots. For
one-dimensional problems, the Ohmic spectral density of
the electron-phonon coupling is microscopically justified
[26].

While αZ couples to the diagonal of the Hamiltonian
in Eq. (1), one may in addition consider the off-diagonal
coupling term, namely the coupling between phonons and
the interdot tunnel barrier. For this purpose, one in-
troduces a further dot–bath Hamiltonian like that in in
Eq. (3) but with Z replaced by X =

∑
m=↑,↓(c

†
LmcRm +

c†RmcLm) and the coupling strength denoted by αX . Un-
like the bath-coupling via Z, the bath now entails a fluc-
tuating tunnel matrix element. Therefore, αX , much
more than αZ , drives transitions between the quantum
dots by phonon emission or absorption. Analyzing this
effect, we found a significant asymmetry of the current
as function of the detuning, which is in contrast to our
experimental results. The quantitative comparison with
our measurements revealed that αX is roughly two or-
ders of magnitude smaller than αZ . In summary, αX is
of minor relevance for the qubit decoherence and need
not be taken into account.

B. Charge qubit formed by two-electron singlet
states

The simplest implementation of a DQD charge qubit
is a single electron that tunnels between two dots. Nev-
ertheless, here we consider the more complex case of two
electrons charging a DQD. For the sake of applications,
the two-electron state has the important advantage that
it allows one to utilize both, charge and spin degrees of
freedoms in a single DQD. This opens up a number of
interesting possibilities, such as using either the singlet-
singlet or one of the singlet-triplet transitions to define
a qubit or even to combine both by subsequently sweep-
ing through adjacent avoided crossings. Furthermore, the
two-electron configuration constitutes the simplest possi-
ble many-body problem which yields a theoretically more
interesting system compared to a single electron. Here,
we focus on the two singlet states

|S20〉 = c†L↑c
†
L↓|0〉, (4)

|S11〉 =
1√
2

(c†L↑c
†
R↓ + c†L↓c

†
R↑)|0〉, (5)

which span the Hilbert space of our qubit, where |0〉 is
the uncharged state of the DQD. In this singlet subspace,
the double dot Hamiltonian defined in Eq. (1) reads

Hqubit =
∆

2
σx +

ε

2
σz −

ε

2
1, (6)

[which is equivalent to Eq. (1)] with the unity matrix 1.
The electron-phonon coupling operator defined in Eq. (3)

then contains Z = σz. This leads us to the well-known
spin-boson model with energy splitting E =

√
∆2 + ε2

and dissipation strength α = αZ defined in the usual
way [27].

1. Qubit decoherence

The qubit reaches thermal equilibrium within the en-
ergy relaxation time T1 while in the limit of weak dissi-
pation, αzkBT � E, its pseudo-spin performs coherent
oscillations which decay exponentially within the coher-
ence time T2 (assuming that the electron-phonon cou-
pling is the main decoherence mechanism). From a cor-
responding Bloch-Redfield master equation (see below),
both decay times can be determined [25, 28]:

T−1
1 =

παZ
~

∆2

E
coth

( E

2kBT

)
, (7)

T−1
2 =

1

2
T−1

1 +
παZ
~

2kBTε
2

E2
. (8)

In the high-temperature limit, kBT � E, the decoher-
ence rate is proportional to the temperature: T−1

2 =
παZ [1 + ε2/E2]kBT/~. In the low-temperature limit,
kBT � E, quantum fluctuations take over and the co-
herence time becomes temperature independent, T2 =
2T1 = (2~/παZ)(E/∆2). For temperatures T & ~∆/kB ,
decoherence is weakest near ε = 0, while for |ε| � ∆,
the dephasing time decays proportional to 1/ε. Thus, at
these relatively high temperatures ε = 0 defines a sweet
point for quantum operations provided that the environ-
ment predominantly couples via the occupation operator
Z = σz, i. e., for αX � αZ as assumed in Eqs. (7) and
(8). In the opposite limit αX � αZ a likewise spin-boson
model would result in Eqs. (7) and (8), but with the pa-
rameters ∆ and ε interchanged and αZ replaced by αX .

Equation (8) overestimates the coherence time of our
specific charge qubit based on two-electron states in a
DQD as it uses a two-level approximation which neglects
spin flips and the triplet states. In order to determine the
qubit dephasing beyond the two-level approximation, we
follow the lines of Ref. [29] and employ the Bloch-Redfield
formalism (see Sec. III C). In contrast to our transport
calculations, we here disregard the dot-lead couplings and
consider a qubit in a closed DQD configuration. We aim
at obtaining the Liouville operator for the DQD cou-
pled to the phonon bath and further including spin flips.
Decoherence is manifest in the transient decay of off-
diagonal density matrix elements. The coherence time,
T2, is straightforwardly found by computing the eigenval-
ues of the Liouville operator. To compute T2 we, hence,
evaluate the equation of motion of the total density oper-
ator beyond the rotating-wave approximation [see below
and Eq. (10)], albeit using a time-independent Hamil-
tonian. One finds a pair of eigenvalues with imaginary
parts close to ±E which correspond to coherent qubit os-
cillations. Their real parts are equal and can be identified
as T−1

2 .
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FIG. S11: Temperature dependence of the qubit coherence.
Decoherence time T2 for our S20-S11 qubit for various values
of the detuning ε. The dashed lines visualize Eq. (8) consider-
ing the electron-phonon coupling in a two-level model, while
the solid lines are computed numerically for the full DQD
Hamiltonian which, in addition, takes the triplet states and
e. g. spin-flips into account.

In Fig. S11 we compare the coherence time T2 as
a function of temperature calculated analytically with
Eq. (8) (weakly dissipative spin-boson model, two-level
approximation), on the one hand, and the numerical re-
sult of the complete problem, on the other hand. This
reveals that the two-level approximation overestimates
T2 by about 15% since it cannot capture incoherent
singlet-triplet transitions induced by spin-flips and de-
phasing. For the temperature range of the experiment,
T & 20 mK, the sweet point at ε = 0 is most favorable
and predicts T2-times up to 200 ns which, however, be-
come significantly smaller with increasing temperature
and bias. In the sub milli-Kelvin regime, we observe
the opposite. There the strongly biased situation cor-
responds to pure phase noise for which the spin-boson
model predicts T2 ∝ 1/kBT . This leaves some room for
speculating about a coherence gain by further cooling.
With such extrapolation, however, we leave the range in
which our experiments justify the ohmic bath model.

2. Advantage of a steady state experiment

Previous measurements of the dephasing time [30, 31]
relied on an explicit time-trace of Ramsey fringes, where
for each instance of time a probability was reconstructed
from a large number of destructive measurements of
a transient. Such an averaging technique requires re-
peated identical preparation. Owing to the inhomoge-
neous broadening caused by slow noise, the time-trace of
the averaged probability oscillations obtained typically
decays on a much smaller time scale T ∗2 , hence T2 is not
directly accessible. Our data, by contrast, are measured
in the stationary state of a much simpler experiment. In
the resulting LZSM pattern, inhomegeneous broadening

and decoherence are manifest in separate ways. Cru-
cially, as a consequence, T ?2 and T2 can be distinguished
in the analysis described in Sec. II and the main article.

C. Bloch-Redfield-Floquet theory

We aim at computing the time-averaged steady-state
current through our strongly driven DQD including an
appreciable number of levels coupled to the various envi-
ronments, namely (i) the leads, (ii) slow charge noise,
and (iii) the heat bath. Moreover, dealing with two-
electron states we have to include spin flips which al-
low transitions between the triplet and singlet sub-spaces
and resolve spin blockade. Our experimental results are
consistent with the assumption that all these incoherent
processes occur on time scales much larger than those of
the coherent DQD dynamics, as is indicated by the fol-
lowing experimental observations: (i) the coupling to the
leads and the spin relaxation rate ultimately determine
the maximal current that we may observe. The latter is
significantly smaller than the inter-dot tunnel frequency
multiplied by the elementary charge, i. e., ΓL/R � ∆.
(ii) Charge noise is rather slow as compared to all these
tunneling processes. Therefore we can treat it as disor-
der that is constant during the dwell time of an electron
in the DQD. In other words, it leads to an inhomoge-
neous broadening that does not affect the decoherence
dynamics of the electrons. (iii) The appearance of an in-
terference pattern indicates that the inter-dot tunneling
must be predominantly coherent which excludes strong
coupling to a heat bath. This is confirmed by our find-
ing that the dimensionless dissipation strength is several
orders of magnitude below the crossover to the so-called
incoherent tunneling regime [28]. We can not a-priory ex-
clude stronger coupling to a small number of individual
(tunneling) defects, but the fact that we did not find any
memory effects makes such a strong coupling scenario
unlikely.

1. Floquet ansatz

To cope with the complex problem outlined above we
use a reduced density matrix approach with the Floquet
states of the driven system in the absence of the environ-
ments as basis states. These basis states already incorpo-
rate the rf-modulation and, therefore, allow us to apply a
rotating-wave approximation, conveniently resulting in a
time independent Liouville equation. This perturbative
approach is reliable under the assumption of only weakly
coupled environments. It has been applied in the past
to both rf-driven dissipative quantum systems [32] and
rf-driven quantum transport [33].

Floquet theory exploits the fact that a periodi-
cally time-dependent Schrödinger equation of the type
i~∂t|ψ〉 = HDQD(t)|ψ〉 possesses a complete set of solu-
tions of the form |ψ(t)〉 = e−iωt|φ(t)〉, where ~ω is called
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quasienergy. The Floquet state |φ(t)〉 = |φ(t+ 2π/Ω)〉 ≡∑
k e
−ikΩt|φk〉 is characterized by shareing the time-

periodicity of the Hamiltonian. Therefore, it can be rep-
resented as Fourier series which, importantly, allows an
efficient numerical treatment. In analogy to quasimo-
menta in Bloch theory employed for spatially periodic
potentials, in Floquet theory the quasienergies can be
divided into Brillouin zones of equivalent states. Thus,
it is sufficient to solve the eigenvalue problem within one
Brillouin zone, e. g. for −Ω/2 ≤ ω < Ω/2. By insert-
ing the Floquet ansatz into the Schrödinger equation, we
obtain the eigenvalue equation

(
HDQD(t)− i~ ∂

∂t

)
|φ(t)〉 = ~ω|φ(t)〉 (9)

from which we compute a complete set of Floquet states,
{|φn〉}, and the corresponding quasienergies ~ωn .

2. Bloch-Redfield theory

An established technique for studying a quantum sys-
tem in weak contact with an environment is Bloch-
Redfield theory. It is based on a treatment of the system-
environment coupling operator V within second-order
perturbation theory by which one finds for the total den-
sity operator the equation of motion [34]

Ṙ = − i
~

[HDQD(t)+Henv, R]− 1

~2

∞∫

0

dτ [V, [V (t−τ, t), R]] .

(10)
The particular form of the coupling operator in the inter-

action picture, V (t−τ, t) = U†DQD(t−τ, t)V UDQD(t−τ, t),
stems from the explicit time-dependence of the central
quantum system. By tracing out the environmental de-
grees of freedom, one obtains an equation of motion for
the reduced density operator of the system, ρ. This
step requires one to specify the state of the environment.
Here, we assume that it is in the grand canonical state

ρ
(eq)
env and that it is uncorrelated with the system, such

that the total density operator factorizes into a system

and an environment part, R ' ρ⊗ ρ(eq)
env . Under this con-

dition the decomposition into the Floquet basis provides
a master equation of the form ρ̇ = −i(ωn − ωm)ρmn +∑
n′m′ Lnm,n′m′ρn′m′ , where the Bloch-Redfield tensor

Lnm,n′m′ follows in a straightforward way from Eq. (10).
In the last step we assume that all matrix elements ρnm
evolve much slower than the rf-field, which allows us to
replace the Bloch-Redfield tensor by its time average. In
this way we obtain a time-independent master equation
describing the time evolution of the population of the
(time dependent) Floquet states.

We are exclusively interested in the steady state of this
master equation, which for weak dissipation eventually
becomes diagonal in the Floquet basis. Exploiting this
knowledge, we set the off-diagonal matrix elements to

zero and arrive at a master equation of the form

ρ̇nn =
∑

n′

(
Wn←n′ρn′n′ −Wn′←nρnn

)
, (11)

where ρnn are the populations of the Floquet states.
In the following we present the results for the transi-
tion rates Wn←n′ which have been evaluated as sketched
above.

3. Coupling between the double quantum dot and the leads

To calculate the tunnel coupling between the right lead
and the right quantum dot, we evaluate the coefficients
of the master Eq. (11) by replacing V in Eq. (10) with
the tunnel coupling between the right dot and the right
lead given by Eq. (2). After some algebra, we arrive at
the transitions rates

W leads
n←n′ =

ΓR
~
∑

k

∣∣∣
∑

k′

〈φn,k′+k|c†R|φn′,k′〉
∣∣∣
2

× f(ωn − ωn′ + kΩ− µR)

+
ΓR
~
∑

k

∣∣∣
∑

k′

〈φn,k′+k|cR|φn′,k′〉
∣∣∣
2

× (1− f(ωn − ωn′ + kΩ− µR)),

(12)

where the first term describes tunneling from the right
lead to the right dot, while the second term refers to
the opposite process. The corresponding Liouvillian for
coupling to the left lead is obtained in the same way with
the accordingly modified dot-lead Hamiltonian. Owing
to charge conservation, the time-averaged currents are
the same at all interfaces. Here we evaluate it at the right
dot-lead barrier and obtain it as the difference between
the terms that describe in Eq. (12) tunneling from the
lead to the dot and those describing the opposite process:

Jn←n′ = − ΓR
~
∑

k

∣∣∣
∑

k′

〈φn,k′+k|c†R|φn′,k′〉
∣∣∣
2

× f(ωn − ωn′ + kΩ− µR)

+
ΓR
~
∑

k

∣∣∣
∑

k′

〈φn,k′+k|cR|φn′,k′〉
∣∣∣
2

× (1− f(ωn − ωn′ + kΩ− µR)),

(13)

where Jn←n = 0 due to vanishing matrix elements. Note
that this expression can also be derived in a more formal
way by introducing a counting variable for the lead elec-
trons before tracing them out and, thus, it does not rely
on any specific interpretation of the tunneling terms.

4. Coupling between the qubit states and the heat bath

A Liouvillian that describes the influence of the dissi-
pating environment on the DQD is derived by the same
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procedure, but using for V the electron-phonon Hamil-
tonian Eq. (2). We obtain

W decoherence
n←n′ =2

∑

k

∣∣∣
∑

k′

〈φn,k′+k|Z|φn′,k′〉
∣∣∣
2

×N(ωn − ω′n + kΩ),

(14)

where N(ω) = J(ω)nth(ω) with the bosonic thermal
occupation number nth(ω) = [e~ω/kBT − 1]−1. In or-
der to arrive at this convenient form, we have defined
J(−ω) = −J(ω), while the Bose function was extended
by analytic continuation.

As already mentioned, a coherent tunnel process be-
tween the charge configurations (1,1) and (2,0) requires
that the spin configuration of both states is equal, and
in our case this includes only the singlet states S11 and
S20. The reason is, that the triplet T20 is too high in
energy owing to the large intradot exchange interaction.
In turn, a direct transition of the triplet states with (1,1)
charge configuration to S20 is inhibited. As a conse-
quence the transport process comes to a standstill until
a transition to the S11 singlet occurs. In our setup, this
spin blockade is resolved by two mechanisms. First, the
Zeeman field of the nanomagnet close to the DQD pos-
sesses an inhomogeneity by which singlets and triplets
mix. They form narrow avoided crossings at which spin
blockade is resolved and a current peak emerges. This
effect is fully coherent and contained in our DQD Hamil-
tonian, Eq. (1). Second, spin flips are induced by the
hyperfine interaction with nuclear spins in the GaAs ma-
trix, which we treat as incoherent relaxation. There-
fore, thermal motion of the nuclear spins coupled via
the hyperfine interaction represents a further dissipative
environment. Our LZSM measurements do not provide
clear experimental hints on memory effects (besides for
very small modulation amplitudes A, where we find in-
dications for dynamic nuclear spin polarization, see Sec.
II H) or a significant temperature dependence of the spin
flip rate within the probed temperature range. This

allows us to avoid the theoretical difficulties of choos-
ing a particular microscopic model and to capture spin
flips by a Lindblad form with a rate γσ. Therefore,
we add to the master equation the Liouvillean L[ρ] =
1
2γσ

∑
`,m=↑↓(2S`,mρS

†
`,m−S

†
`,mS`,mρ−ρS

†
`,mS`,m) with

the spin flip operator S`,m = c†`,m̄c`,m for an electron on
dot `, where m = ↑, ↓ and m̄ 6= m. Decomposition into
Floquet states followed by rotating-wave approximation
yields the rate

W spinflip
n←n′ = γσ

∑

m=↑↓

∑

k

∣∣∣
∑

k′

〈φn,k′+k|SL,m|φn′,k′〉
∣∣∣
2

.

(15)

In our numerical approach to the steady-state average
current, we first compute the Floquet states which allows
us to evaluate the transition probabilities:

Wn←n′ = W leads
n←n′ +W decoherence

n←n′ +W spinflip
n←n′ , (16)

so that we obtain a specific expression for the master
equation Eq. (11). The steady-state solution of this mas-

ter equation, ρ
(∞)
nn , follows straigtforwardly from the con-

dition ρ̇
(∞)
nn = 0 =

∑
n′(Wn←n′ρ

(∞)
n′n′ − Wn′←nρ

(∞)
nn ) to-

gether with the trace condition
∑
n ρ

(∞)
nn = 1. Finally we

arrive at the dc current I =
∑
nn′ Jn←n′ρ

(∞)
n′n′ .

IV. SYSTEM PARAMETERS

Table I summarizes the most important parameters
which characterize our DQD, the two-electron qubit and
its coupling to the environment that we used in our nu-
merical calculations. For applying the scattering formula
Eq. (2), we identified the initialization rate Γin for the
process (1, 0) → S11 with the spin relaxation rate γσ,
while the decay (2, 0) → (1, 0) occurs at the dot-drain
rate so that Γout = ΓL.
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DQD parameter value in µeV determined by
bias voltage V 1000 externally applied voltage

intra dot Coulomb energy U 3500± 350 charging diagram
inter dot Coulomb interaction U ′ 820± 80 charging diagram

inter-dot tunnel coupling ∆ 13± 1 spin funnel, see Fig. S3(c)
source-dot tunnel rate ΓR 0.1 estimated from current, of minor relevance
dot-drain tunnel rate ΓL 2× 10−3† from current without spin blockade

spin relaxation γσ 10−3 from current with spin blockade
T± − S11 splitting 0.12‡ Landau-Zener transition, see Fig. S3(a)

external parameters value in µeV determined by
photon energy ~Ω 6.2/11.4/18.7 at modulation frequency of 1.5/2.75/4.5 GHz

mean Zeeman splitting gµBB 4.2 gµBBext; |g| = 0.36 and Bext = 200 mT
thermal energy kBT 1.7 – 40 cryostat and electron temperature

environmental influences value determined by
inhomogeneous broadening λ? 3.5± 0.5µeV from broadening in I(ε̄) peaks
Caldeira-Leggett parameter αZ (1.5± 0.5)× 10−4 decay of lemon arcs, temperature dependence
Caldeira-Leggett parameter αX < 5× 10−6 asymmetry of LZSM pattern

TABLE I: Parameters used for the numerical calculations. † The data of Fig. 2 of the main article and Fig. S9 were measured
with a slightly smaller dot-drain rate and, accordingly, the numerical data were computed with ΓR = 1.2 × 10−3 µeV. ‡ Note
that the S-T splittings are reduced compared to gµB∆Bx,z according to the weight of S20 in the singlet state. In our case we
have gµB∆Bx ' 0.2µeV which reduces to the T±-S11 splitting of 0.12µeV.
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8 Landau-Zener-Stückelberg-Majorana
interferometry with bichromatic driving

This chapter presents the results of

• Forster, F. et al. Phys. Rev. B. 92. 245422 (2015)

See section D for the contributions of each author.

8.1 Overview

In this chapter, we expand the experimental technique of LZSM interferometry developed in chapter 7 to
two driving frequencies applied simultaneously, i.e. a bichromatic drive, and investigate experimentally
and theoretically the electron transport through a double quantum dot under this condition. In this
collaboration, S. Kohler from Instituto de Ciencia de Materiales de Madrid developed a generalized Floquet
formalism to address the effects of bichromatic driving. In particular, we reveal the importance of the ratio
of the two frequencies, which can be commensurable or incommensurable, for the symmetry properties of
the interference pattern, and provide experimental evidence for the predicted effects.
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8.2 Measurement setup
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Figure 8.1: Electrical measurement setup for LZSM experiment using a bichromatic drive. The setup is extended
compared to the one in 7.3 by combining the signal of a second sine generator (HP 83605B) synchronized in phase
with the first one.

To apply a bichromatic drive, we extend the setup described in section 7.3 with a second sine generator
and mix their outputs with a resistive combiner. To ensure the relative phase stability between the signal of
both devices, we synchronize them by feeding the signal of the internal 10 MHz oscillator of one device
to the other as depicted in figure 8.1. Since the output phase of the R&S SMP 02 can be tuned between 0
and 2π, we are able to achieve any relative phase value in the experiment. Even though the devices are
synchronized and their outputs can be tuned to be in-phase, the phase at the sample is a priori unknown
because of the unknown dispersion of the transmission lines. In section IV B of the paper, we present a
method how to calibrate the value of the phase.
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We investigate experimentally and theoretically the interference at avoided crossings which are repeatedly
traversed as a consequence of an applied ac field. Our model system is a charge qubit in a serial double
quantum dot connected to two leads. Our focus lies on effects caused by simultaneous driving with two different
frequencies. We work out how the commensurability of the driving frequencies affects the symmetry of the
interference patterns both in real space and in Fourier space. For commensurable frequencies, the symmetry
depends sensitively on the relative phase between the two modes, whereas for incommensurable frequencies the
symmetry of monochromatic driving is always recovered.

DOI: 10.1103/PhysRevB.92.245422 PACS number(s): 73.63.Kv, 03.67.−a, 03.65.Yz

I. INTRODUCTION

Landau-Zener-Stückelberg-Majorana (LZSM) interference
protocols have been explored experimentally in various solid-
state implementations ranging from Josephson junctions [1–8]
to quantum dot based devices [9–12]. Besides demonstrating
quantum coherence, LZSM interference allows one to explore
dissipative effects in a predominantly coherent dynamics and
determine system parameters such as the coherence time T2 or
the inhomogeneous decay time T ∗

2 [4,10,12]. Previous studies
considered monochromatic driving, in one case with an addi-
tional sudden parameter switching at a low rate [8], which may
be an insignificant restriction if one merely aims at studying the
coherence and decoherence of solid-state qubits. Driving with
two or more frequencies of the same order and different phases,
however, allows the creation of doubly dressed states [13,14]
and opens up a multitude of additional possibilities, which are
worthwhile exploring, for instance, in the context of quantum
simulations [15,16]. Since the phase between the components
affects time-reversal symmetry, LZSM interference can mimic
universal conductance fluctuations [17].

Building on two recent projects, one studying LZSM
interference in a double quantum dot (DQD) charge qubit
[12] and one applying bichromatic driving to a single dot
realizing a Lissajous rocking ratchet [18], here, we combine
bichromatic driving with LZSM interference in the DQD
shown in Fig. 1(a) and explore the cases of commensurable
versus incommensurable frequencies. Depending on the phase
between its two components, bichromatic driving with com-
mensurable frequencies may break time reversal symmetry,
which is particularly visible in the Fourier transform of the
LZSM interference pattern [19]. For the quasiperiodic driving
with two incommensurable frequencies, by contrast, we find
irrespective of the phase difference the symmetry properties
of the monochromatic case.

The theoretical approaches exploring driven dissipative
systems often rely on the time periodicity of the external field.
Such methods applied in the context of LZSM interference

include the mapping to a time-independent problem via a
rotating-wave approximation [19–22], the computation of
stationary phases [4,23], and the decomposition of a quantum
master equation into the Floquet states of the central system
[22,24]. For transport problems, LZSM patterns have been
calculated ignoring interactions with Floquet scattering theory
[25,26]. Taking into account two-particle interactions or a
quantum heat bath, transport experiments can be described
with a more realistic Floquet master equation approach [12].
While a Floquet ansatz can be generalized to bichromatic
driving straightforwardly [27,28], the resulting scheme may
be numerically demanding and only a few explicit results
can be found in the literature [28]. Here, we develop a
more efficient method including the case of driving with
two incommensurable frequencies. It combines two known
methods, namely a Floquet matrix representation [29] and the
solution of a recurrence equation by matrix continued fractions
[30].

This paper is arranged as follows. In Sec. II, we present our
experimental setup. In Sec. III, we introduce our theoretical de-
scription and derive a Floquet method for the solution of master
equations with two incommensurable drivings. Section IV is
devoted to the analytical and numerical computation of LZSM
interference patterns, their symmetries, and the comparison
to the experimental results. Additional measured data can be
found in Appendix A. Moreover, in Appendix B, we sketch
the two Floquet methods for single-frequency driving that we
combine to obtain our numerical scheme.

II. EXPERIMENT

In our experiments, we measured LZSM interference
patterns at the avoided crossing of two charge states in the DQD
presented in Fig. 1(a). The states are the singlets formed by
(2,0) and (1,1), where (n1,n2) denotes the number of electrons
in the left (n1) and right (n2) dot. The avoided crossing,
sketched in Fig. 1(b) as a function of the detuning energy

1098-0121/2015/92(24)/245422(12) 245422-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Scanning electron micrograph of the
wafer surface. The GaAs surface is dark gray, gold gates are shown
in yellow and cobalt gates in blue. Red filled circles sketch the
approximate quantum dot positions in the two-dimensional electron
system 85 nm beneath the surface. The voltage on the lower right gate
is radio frequency modulated with the function f (t). (b) Avoided
crossing of the eigenstates (solid lines) composed of the singlets
(dashed lines) with charge configuration (1,1) and (2,0) (visualized
in double well sketches), which mix via the interdot tunnel coupling
�. (c) Measured LZSM pattern I (ε0,A) for monochromatic driving
with frequency 6 GHz. (d) Corresponding Fourier transformed LZSM
pattern (plotted with a logarithmic color scale).

ε between the two singlets, is formed by the interdot tunnel
coupling �. By modulating the voltage on one of the quantum
dot defining gates, we modulate the detuning with a periodic
function such that we repeatedly drive the system through the
avoided crossing resulting in LZSM interference. The detuning
thereby consists of a static component ε0 and a time-dependent
contribution with amplitude A,

ε(t) = ε0 + Af (t). (1)

Its shape is given by a bounded periodic or quasiperiodic
function f (t) with zero mean. To detect the electron charge
state, we apply a constant voltage V = (μR − μL)/e = 1 mV
across the DQD, where μL,R are the chemical potentials
of the leads and measure the steady state current resulting
from the combination of V and the rf modulation. We
tuned our DQD such that the current is virtually exclusively
caused by tunneling of single electrons via the configuration
cycle (1,0) → (1,1) ↔ (2,0) → (1,0). The current I is then
proportional to the occupation of (2,0) and the current maxima
and minima in Fig. 1(c) are a signature of the interference
of the (2,0) and (1,1) singlet states as we periodically drive
our DQD through their avoided crossing. Note that the
transition (1,1) → (2,0) is initially slowed down by Pauli-spin
blockade [31], i.e., as long as a (1,1) triplet is occupied
no current flows. Primarily due to the inhomogeneous field
of on-chip nanomagnets [marked blue in Fig. 1(a)] [32] the
triplet eventually decays into the (1,1) singlet and sets off the
interference dynamics observed here. The interference pattern
as a function of ε0 and A in Fig. 1(c) is a typical example
for monochromatic driving of the form f (t) = sin(�t), which
is well understood and has been observed in various physical
systems [1–10,12]. The interference pattern and even more

its two-dimensional Fourier transform presented in Fig. 1(d)
[4,5,12] exhibit a high degree of symmetry.

This paper is devoted to bichromatic driving of the form

f (t) = sin(�t) + η sin(�′t + φ), (2)

i.e., we augment monochromatic driving by a further contri-
bution with relative strength η, frequency �′, and a phase shift
φ. Our main focus lies in two very different cases, namely
commensurate versus incommensurate frequencies � and �′.
The first corresponds to a rational �′/� and, thus, periodic
driving, while the latter corresponds to an irrational �′/�

and quasiperiodic driving. We will find that the two cases
have quite different symmetry properties. Experimentally, one
of the main challenges beyond monochromatic driving is to
control the relative phases of different frequency components,
a consequence of the dispersion of the transmission lines at
radio frequencies. We will, however, present a straightforward
method to calibrate relative phase differences by means of
symmetry considerations. Before we present our experimental
results, let us sharpen our expectations by introducing a general
theory for bichromatic driving.

III. THEORETICAL DESCRIPTION

In our experiment, the electron transport from source
to drain occurs via the DQD configuration cycle (1,1) →
(2,0) ↔ (1,0) → (1,1). Owing to the possible spin configu-
rations, it consists of seven states. This makes the Floquet
decomposition of the density operator a demanding task
for bichromatic driving, where coherences described by
off-diagonal density matrix elements play a decisive role.
However, the coherent interdot tunneling relevant for the
LZSM interference studied here is restricted to the singlet
subspace [12] in which the left dot is always occupied and a
single electron charge tunnels between the two dots. For our
purposes, a simplifying description based on a single spinless
electron tunneling between the two dots is sufficient. It is
described by the Hamiltonian

H = ε0 + Af (t)

2
(c†1c1 − c

†
2c2) + �

2
(c†1c2 + c

†
2c1) + Un1n2

(3)
with the electron creation operators c

†
1,2. The last term contains

the dot occupation numbers ni = c
†
i ci and expresses Coulomb

blockade, where we assume that the Coulomb repulsion U is
so strong that charge states different from those mentioned
above are inaccessible.

A. Master equation

The DQD is coupled to a source and a drain, which we
describe as a canonical ensemble of free electrons with chem-
ical potentials that depend on the applied voltage. A tunnel
coupling between the leads and the respective dot completes
the model. With a standard second-order approach for the
coupling, we eliminate the leads and obtain a Bloch-Redfield
master equation for the reduced DQD density operator ρ

[33,34]. Its incoherent terms typically depend on the details of
the system and the leads such as the temperature, the chemical
potentials μL,R of the left and right leads, the overlap between
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the DQD eigenstates and the localized states, as well as the
DQD eigenenergies [35].

If all DQD chemical potentials (which here are the energies
of the single-particle states) are larger than μL and smaller
than μR , the incoherent tunnel terms assume the convenient
Lindblad form such that the master equation becomes [36]

ρ̇ = Lρ ≡ − i

�
[H (t),ρ] + �LD(c1)ρ + �RD(c†2)ρ, (4)

with the Lindblad superoperator

D(x)ρ = 1
2 (2xρx† − x†xρ − ρx†x) (5)

and the dot-lead rates �L,R . The first term in Eq. (5) describes
incoherent transitions induced by the operators c1 and c

†
2, i.e.,

tunneling between the DQD and the leads. This implies that
the current superoperators are given by JLρ = �Lc1ρc

†
1 and

JRρ = �Rc
†
2ρc2, respectively. Owing to charge conservation,

both yield the same time-averaged expectation value.
In quantum dots such as ours, the electrons are subjected to

environmental fluctuations which affect the coherence of the
DQD electrons. The environment can be described as a bath
of harmonic oscillators that couple to an appropriate DQD
degree of freedom. Formally, this coupling can be treated with
Bloch-Redfield theory as the dot-lead coupling above. Then
we obtain a further Liouvillian with temperature dependent
coefficients, which allows one to determine the effective
DQD-environment coupling strength by analyzing the fading
of LZSM patterns with increasing temperature [12]. However,
since such computation of the dissipative kernel is rather time
consuming and beyond the present scope, we take a simpler
route: within a standard approximation scheme [37], one can
bring dissipation kernels to the Lindblad form

Ldiss = γ

2
D(x), (6)

where x is the operator that induces dissipative transitions. In
our system the relevant noise stems from charge fluctuations
that couple to the DQD dipole moment. Therefore the
coupling operator is proportional to the population imbalance
x = (n1 − n2)/2 [38], while the effective rate γ collects all
prefactors. For relatively low temperatures, γ depends on the
detuning and the tunnel coupling and can be estimated as
γ = πα�2/(ε2

0 + �2)1/2 [39]. The dimensionless dissipation
strength in a similar system has been determined as α =
1.5 × 10−4 [12]. We replace the decoherence rate by its
average in the relevant range and use the value γ = 1 neV/�.

The coupling to the dissipative environment via the operator
n1 − n2 is of the “longitudinal” type investigated in Ref. [19].
Purely “longitudinal” coupling results in triangular structures
in I (ε0,A) and antisymmetric line shapes in I (ε0), in contrast
to Lorentzians found in our data, e.g., for horizontal slices in
Fig. 1(c). However, the Lorentzians are restored already by
small additional decoherence such as a “transverse” coupling
[19] or dot-lead tunneling [12]. In our case, the latter governs
the shape of the peaks so that a possible tiny “transverse”
coupling can be neglected.

B. Two-mode Floquet transport theory

From a formal perspective, we are interested in the solution
of a master equation of the form Ṗ = L(t)P , where P may
be a reduced density operator or a distribution function. For
single-frequency driving of the form L1 sin(�t), one can make
use of the time-periodicity of the long-time solution and
employ the ansatz P (t) = ∑

k eik�tpk with the trace condition
tr pk = δk,0. The resulting equation for the pk can be solved
in various ways. In particular, one may write it as a so-called
Floquet matrix and numerically compute its kernel. Alterna-
tively, one may exploit the tridiagonal block structure of the
equations and solve them with matrix-continued fractions. For
a short summary of each method, see Appendix B. Here we
extend the first method to the case of bichromatic driving
with commensurable frequencies for which the Liouvillian
is still periodic. For the quasiperiodic with incommensurate
frequencies, we combine both methods and thereby obtain an
efficient numerical scheme.

1. Single-frequency driving and commensurable frequencies

Let us start the discussion for the limiting case of periodic
and monochromatic driving with just one frequency �. Since
in the Liouvillian in Eq. (4), the time dependence is fully
contained in the DQD Hamiltonian, one possibility to make use
of the Floquet theorem would be to compute the Floquet states
of the Hamiltonian (3) and to use them as a basis [12,26]. This
procedure is general and would allow us to consider a driving
that shifts the DQD levels repeatedly across the chemical
potentials of the leads, but it is numerically expensive. Since
our experiment is operated with a large bias, so that such
effects can be excluded we can take a more efficient route and
employ the ideas of a Floquet approach directly to the master
equation (4) [28]. The corresponding decomposition solution
of the master equation is straightforward and is summarized
in Appendix B 1. It yields a tridiagonal block matrix whose
kernel corresponds to the steady-state solution of the master
equation.

If one adds a nth harmonic to the system, i.e., a contribution
with the time-dependence sin(n�t + ϕn), the system remains
2π/� periodic and one can still proceed as sketched above.
Essentially, the Floquet matrix acquires a contribution in the
nth diagonal of the block matrix, while the computation of the
time-averaged steady state remains the same.

2. Incommensurable frequencies

We consider a master equation Ṗ = L(t)P with bichro-
matic driving for which the Liouvillian is of the form

L(t) = L0 + L1 cos(�t) + L′
1 cos(�′t), (7)

with nonrational �′/�. As we will argue below, for in-
commensurable frequencies the time-averaged steady-state
solution does not depend on the relative phase between the
two components of the driving. Thus, for convenience and in
contrast to the rest of this work, we choose here particular
phases such that the driving is given by cosine functions.
Moreover, L(t) is quasiperiodic rather than periodic and the
usual Floquet ansatz with a periodic long-time solution is not
justified. To circumvent this problem, we employ an idea on
which a propagation scheme known as t-t ′ formalism [27,40]
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is built. We replace in the last term of L(t) the time variable
by t ′ which we will treat as an independent angle variable, i.e.,
we assume that all functions of t ′ are 2π/�′ periodic. In doing
so, we obtain the generalized Liouvillian

L(t,t ′) = L0 + L1 cos(�t) + L′
1 cos(�′t ′) (8)

and postulate the generalized master equation(
∂

∂t
+ ∂

∂t ′

)
Q(t,t ′) = L(t,t ′)Q(t,t ′). (9)

From the chain rule of differentiation follows directly that
if Q(t,t ′) is a solution of the generalized master equation,
then P (t) = Q(t,t ′)|t ′=t solves the original master equation.
By rewriting Eq. (9) as

∂

∂t
Q(t) = L(t)Q(t), (10)

L(t) = L0 + L′
1 cos(�′t ′) − ∂

∂t ′
+ L1 cos(�t), (11)

we suppress the new coordinate t ′ in the master equation. In
this way, we have obtained a time-periodic master equation
with a periodic Liouvillian L(t) = L(t + 2π/�) for the price
of an additional degree of freedom, namely t ′. Accordingly,
the generalized density operator Q can be decomposed as

Q(t) =
∑

k

e−ik�tQk =
∑
k,n

e−ik�t e−in�′t ′qn,k, (12)

which corresponds to the ansatz proposed in Ref. [28]. In a
formal consideration, Q is an element of the Sambe space
P(H) ⊗ T ′, which here is composed of the projective Hilbert
spaceP(H) for the density operator and the space T ′ of 2π/�′
periodic functions.

The above transformation has a useful consequence, namely
that L defines a time-periodic problem for which the common
Floquet tools known from the literature apply. In particular, we
can employ the matrix-continued fraction method summarized
in Appendix B 2. For the generalized Liouvillian L, the
matrices An and B defined in Appendix B 2 become

Ak = L0 ⊗ 1 + 1
2L′

1 ⊗ X + i�′1 ⊗ Z + ik�1 ⊗ 1, (13)

B = 1
2L1 ⊗ 1, (14)

where 1 denotes the unit matrices in the space indicated by the
operator order. The matrices X and Z are defined by their
elements Xkk′ = δk+1,k′ + δk−1,k′ and Zkk′ = kδkk′ . The last
term in Eq. (13) corresponds to the decomposition of −∂/∂t .
With Ak and B, the recursion in Eqs. (B7)–(B9) provides qn,0

and, finally, the time-averaged distribution P (t) = Q(t,t) =
q0,0.

Let us argue why q0,0 does not depend on possible phases or
time offsets in L(t). A phase in the first time-dependent term of
the Liouvillian (7) affects the recurrence relation on which the
matrix-continued fractions are based. As such, it is not relevant
for the iteration scheme, as shown rigorously in Appendix B 2.
A phase ϕ′ in the driving L′

1 cos(�′t) enters viaAk such that its
second term becomes L′

1(eiϕδk+1,k′ + e−iϕδk−1,k′)/2. It can be
removed by the transformation qn,k → qn,ke

−ikϕ , which does
not change q0,0.

One might be tempted to employ the ansatz (12) also
for commensurable frequencies. Then, however, the time-
dependent exponential functions on the right-hand side of
Eq. (12) lose their linear independence. As a consequence,
the Floquet representation is no longer unique and relations
based on the orthogonality of the Floquet solutions will not
hold. This is also manifest in the time-average of e−in�t−ik�′t ,
which would be finite not only for n = k = 0, but also for
other combinations of n and k.

IV. INTERFERENCE PATTERNS

Electron transport across the DQD requires interdot tun-
neling which is most pronounced when the DQD levels are
in resonance with each other (and the electron tends to be
delocalized between the two dots). At the resonance the
adiabatic eigenstates form an avoided crossing. Our system
reaches this resonance at times for which ε0 + Af (t) = 0 and
traverses the resonance repeatedly for sufficiently large A such
that

A min[f (t)] < −ε0 < A max[f (t)]. (15)

At the crossings, the transitions follow the scenario considered
by Landau, Zener, Stückelberg, and Majorana [41–44] in
which the electron wave function is split into a superposition.
Repeated sweeps through the crossing lead to interference,
which may be constructive or destructive depending on the
phase accumulated in between. Consequently, the current
I (ε0,A) exhibits an interference pattern in the triangle deter-
mined by Eq. (15). Analyzing this interference pattern and its
Fourier transform can provide the complete information about
the coherence properties of the DQD [12].

A measured example of the interference pattern and its
Fourier transform for monochromatic driving f (t) is presented
in Figs. 1(c) and 1(d). The Fourier transform exhibits a
characteristic arc structure with reflection symmetry at both the
τε axis and the τA axis and, consequently, with point symmetry
at the origin. For the case of periodic bichromatic driving,
i.e., with commensurable frequencies, the mirror symmetry is
generally broken and the details of the symmetry properties
depend on the phase difference between the two frequency
components of f (t), see, e.g., Fig. 4. For quasiperiodic
bichromatic driving with incommensurable frequencies, by
contrast, it turns out that the interference pattern and its
Fourier transform regain the full reflection symmetries of the
monochromatic case, see Fig. 5. Theoretically, the case of
periodic driving can be treated correctly with the method
presented in Ref. [19], while the quasiperiodic case (of
incommensurable frequencies) reveals peculiarities which
require the more general approach developed above.

A. Fourier transformed interference pattern: analytical
approach to the arc structure

In the absence of interaction, Floquet scattering theory
[26,45] can be employed to find an analytic expression for
the dc current I (ε0,A) through a driven DQD [25], which
exhibits the main features of the characteristic interference
pattern apparent in Fig. 1(c). Further, dissipation has been ap-
proximately taken into account in several analytic expressions
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of the interference pattern [4,19,22]. Computing the Fourier
transform of these expressions provides the arc structure. A
solution for monochromatic driving has been obtained in a
stationary-phase calculation [4] and a more general solution
for arbitrary periodic driving has been derived recently using
the Floquet ansatz [19]. These analytic solutions are all based
on the condition � � �, i.e., so weak interdot tunneling that
it provides the bottleneck for electron transport. As a con-
sequence they typically describe the principal arcs correctly
but all fail to predict additional higher-order arcs, which are
seen in experiments and found in complete numerical models
[12,19].

Within the limit � � �, we next generalize the approach
introduced in Ref. [19] to include quasiperiodic driving.
To describe the relevant interdot tunneling, it is sufficient
to consider one-electron states of the DQD for which the
second quantized Hamiltonian (3) in the localized basis
reads

H (t) = �
2

(
ε0 + Af (t) �

� −ε0 − Af (t)

)
. (16)

Assuming � � �, we treat the interdot tunneling �

within perturbation theory while considering the diag-
onal part, H0(t) = �[ε0 + Af (t)]σz/2, exactly. The cor-
responding interaction-picture Hamiltonian reads H̃ (t) =
U

†
0 (t)H1U0(t) = ��̃(t)σ−/2 + H.c., with H1 = �σx/2, U0(t)

being the propagator corresponding to H0(t), and H.c. the
Hermitian conjugate. The emerging time-dependent tunnel
matrix element

�̃(t) = e−iε0t−iAF (t)� (17)

is governed by the dynamic phase ε0t + AF (t) of the time
evolution where dF/dt = f . For convenience, we choose the
integration constant such that F (t) vanishes on average.

For the analytic analysis we assume that the tunnel pro-
cesses are much slower than the driving (i.e., the nonadiabatic
limit which does not influence the course of the principle arcs)
and replace �̃(t) by its time average �̄. Then according to
Fermi’s golden rule, we expect interdot tunneling with a rate
γ ∝ |�̄|2/�, where the effective density of final states ∝1/�

reflects the broadening of the DQD states due to the dot-lead
coupling �. Consequently, for γ � �, the current through the
DQD obeys the proportionality

I (ε0,A) ∝ |�̄|2 ∝
∫

dt dt ′eiε0(t−t ′)+iAF (t)−iAF (t ′), (18)

where the integral may have to be regularized by an appropriate
cutoff.

Notice that for a rigorous application of Fermi’s golden rule,
the final states must have a continuous spectrum. We achieve
this by considering the relevant states of the still separate
quantum dots after coupling them to the respective lead which
yields a Lorentzian spectral density with a peak value 2/π�.
For an explicit calculation of a time-averaged current in this
spirit, see Sec. 5.2 of Ref. [26]. Here, we do not attempt to
compute the prefactor, because it is irrelevant for the structure
of the LZSM pattern.

To obtain the Fourier transformed pattern

Î (τε,τA) =
∫

dε0 dA e−iε0τε−iAτAI (ε0,A), (19)

we insert Eq. (18) and notice that both the ε0 integration and
the A integration yield δ functions. One of them reads δ(τε −
t + t ′) and allows us to directly evaluate the t ′ integral so that
we remain with the expression

Î (τε,τA) ∝
∫

dt δ(τA − F (t + τε/2) + F (t − τε/2)) (20)

∝
∑

i

1

|f (ti + τε/2) + f (ti − τε/2)| . (21)

The sum has to be taken over all times ti for which the argument
of the δ function in Eq. (20) vanishes.

The two alternative expressions for Î (τε,τA) in Eqs. (20)
and (21) provide the desired information about the interference
pattern in Fourier space. First, Eq. (20) specifies the times ti
at which the δ function contributes. Second, Eq. (21) lets us
conclude that the most significant contributions stem from
regions in which the denominator vanishes. Thus the structure
in Fourier space is peaked on manifolds (τε,τA) on which the
conditions

τA = F (t + τε/2) − F (t − τε/2), (22)

0 = f (t + τε/2) − f (t − τε/2) (23)

are fulfilled. While these conditions are formally the same
as those in Ref. [19], we like to emphasize that the present
derivation extends their range of validity from periodic driving
to quasiperiodic driving. Henceforth we restrict ourselves to
bichromatic driving as defined in Eq. (2).

1. Commensurable frequencies

Commensurable frequencies generally result in periodic
driving, f (t) = f (t + T ), where T is determined by the great-
est common divisor of the frequencies. The corresponding
solution of Eqs. (22) and (23) has been addressed in Ref. [19].
For later reference, we outline its main aspects. First, the
T periodicity of f implies that if t1 solves Eq. (23), then
t2 = t1 + T/2 fulfills this condition as well. Therefore the
arcs come in pairs shifted by T/2, as is visible in Fig. 1(d).
Second, generally Eq. (23) is transcendental and one has to
resort to a numerical solution. Nevertheless, there exists a
particular case that can be solved analytically. For a driving
symmetric at t = t0, i.e., for f (t0 + t) = f (t0 − t), one finds
the roots t1 = t0 and t2 = t0 + T/2. They provide the arcs
τ

(1)
A = 2F (t0 + τε/2) and τ

(2)
A = 2F (t0 + T/2 + τε/2).

As in our experiment, we focus on the case

�′ = n� (24)

with integer n. Then f (t) is symmetric at t0 = T/4 for φ =
(±1 − n)π/2 and one finds the arcs

τ
(1,2)
A = ± 2

�
sin

(
�τε

2

)
+ (−1)n

2η

n�
sin

(
n�τε

2

)
. (25)

As we will see in both our numerical and in our measured
data, the solution presented by Eq. (25) is incomplete even
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within the approximation � � �. Depending on the value of
the amplitude ratio η one may find further solutions [19].

2. Incommensurable frequencies

When � and �′ are incommensurable, one cannot exploit
symmetries such as periodicity and time reversal. To never-
theless make progress, we insert the driving shape (2) into
Eqs. (22) and (23) to obtain with the functional relations of the
trigonometric functions the conditions

τA = 2

�
sin(�t) sin

(
�τε

2

)
+ 2η

�′ sin(�′t + φ) sin

(
�′τε

2

)
,

(26)

0 = cos(�t) sin

(
�τε

2

)
+ η sin(�′t + φ) cos

(
�′τε

2

)
.

(27)

While it is practically impossible to determine all roots ti of the
second equation, we can restrict ourselves to those ti for which
both terms in Eq. (27) vanish individually. This happens when
in each term the cosine becomes zero. Then the corresponding
sines in Eq. (26) assume the values ±1. Therefore we can
conjecture four arcs

τ
(±,±)
A = ± 2

�
sin

(
�τε

2

)
± 2η

�′ sin

(
�′τε

2

)
, (28)

where both ± signs are independent of each other. Moreover,
in accordance with the general deliberations below, the arcs
turn out to be independent of φ.

Thus, in contrast to the commensurable case, we find four
independent arcs. While this reasoning does not exclude the
existence of further solutions, our numerical and experimental
results for Î (τε,τA) below confirm that the main structure of
the Fourier transformed LZSM patterns for incommensurable
frequencies is well described by Eq. (28).

3. Symmetries of the LZSM patterns

We start our symmetry considerations by noticing that the
analytically predicted arcs for periodic driving in Eqs. (25)
and quasiperiodic driving in Eq. (28) are all point symmetric
with respect to the origin, i.e., they are invariant under the
simultaneous inversion of the τε and τA axes—a feature that
extends beyond these two special cases. Indeed, both the
numerical and the measured Fourier transforms Î (τε,τA) of
the interference patterns possess point symmetry, as can be
appreciated in Figs. 3–5.

Theoretically, the point symmetry at the origin, Î (τε,τA) =
Î (−τε,−τA), is evident from the definition of Î (τε,τA) in
Eq. (19) together with the analytic approximation (18) for
the current: inverting in the definition the signs of τε and τA

can be compensated by inverting in Eq. (18) the signs of ε0

and A together with interchanging the integration variables
t and t ′. This is also seen in Eq. (20) which, owing to the
symmetry of the δ function, is invariant under inverting the
signs of both τε and τA. For the curves τA(τε) defined as the
solutions of Eqs. (22) and (23), the point symmetry is manifest
in the relation τA(−τε) = −τA(τε) which is obviously fulfilled
by the explicit analytical predictions of the arcs in Eqs. (25)
and (28).

For antisymmetric driving with commensurable frequen-
cies (e.g., for �′ = 2� with φ = 0 or π ), we find in addition
reflection symmetry at the τA axis, see Fig. 4. Together with
the point symmetry discussed above, this implies reflection
symmetry at the τε axis as well. In these specific cases, periodic
bichromatic driving recovers the symmetry properties found
for monochromatic driving. For a proof, we notice that an
antisymmetric driving shape f (t) = −f (−t) corresponds to
a symmetric F (t) = F (−t). Then the integral in Eq. (20) is
invariant under τε → −τε since the sign of the integration
variable t can be changed by substitution. With the same
argument, we can invert in Eq. (18) the sign of the detuning ε0.
Thus, in the validity regime of our analytical approximation,
for antisymmetric driving the interference pattern in real space,
I (ε0,A), must be symmetric with respect to the A axis at ε0 = 0
[46].

For driving with incommensurable frequencies, we will see
below that reflection symmetry in τε and τA is fully recovered.
Our analytic conjecture (28) yields the striking result, that
the arcs in Fourier space do not dependent on the phase φ

between the driving components (we used this fact for testing
the numerical implementation). This conjecture is confirmed
by general considerations based on the fact that in ergodic
systems time-averaged expectation values do not depend on a
time offset. To demonstrate the independence of φ, we consider
a time delay by 2π�/� with integer �. This does not affect the
first term in Eq. (28), while the second term acquires a phase
φ(�) = 2π��′/� (mod 2π ). For incommensurable � and �′,
there always exists an integer n that brings φ(�) arbitrarily close
to a given 2π − φ for 0 � φ < 2π . This means that any phase
φ in f (t) can be compensated by a proper time shift, hence the
time averaged expectation values are phase independent.

In the commensurable case, by contrast, the phase φ(�) =
2π��′/� (mod 2π ) assumes only a finite number of values
given by the denominator k that appears when expressing the
frequency ratio as a fraction of integers, �′/� = k′/k (for
�′ = n�, we have k = 1, which implies φ(�) = 0 for all �).
Therefore the phase in f (t) generally cannot be compensated
by a time shift so that the interference patterns for periodic
driving will depend on φ.

This phase independence for incommensurable frequen-
cies readily explains the reflection symmetry observed in
Figs. 5(b) and 5(d), which fully resembles the symmetry
properties obtained for monochromatic driving. For φ =
π�′/2�, the driving shape f (t) is antisymmetric. Therefore,
according to the above reasoning for antisymmetric driving
(which did not make use of the commensurability), we
can immediately conclude that the LZSM pattern must be
reflection symmetric. Since the pattern does not depend on
φ, this symmetry for incommensurable frequencies must be
generic.

Finally, let us emphasize that our symmetry considerations
are based on the assumption that the two-level Hamiltonian
(16) describes the relevant part of the transport process. In
practice, the reflection symmetry with respect to the detuning
may be compromised by dissipative processes or the influence
of states not considered in our model. However, as we will
see below, our measured results substantiate our simplifying
approach by displaying a convincing agreement with our
predictions.
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FIG. 2. (Color online) (a) Shape of the ac driving, f (t) =
sin(�t) + 1.25 sin (2�t + φ), for various phases φ. For φ = π/2 and
3π/2, f (t) possesses reflection symmetry at specific times, for φ = 0
and π , f (t) is antisymmetric in time, while for other phases in the
range 0 � φ < 2π symmetry is lost. (b) Phase dependent LZSM
interference for f (t) as in (a), constant amplitude A = 57 μeV,
η = 1.25, and �/2π = 4 GHz (�′ = 2�). (c) Interference patterns
I (ε0) at the phases of enhanced symmetry along horizontal lines in
(b) [color coded]. The gray line in the lower panel of (c) is the blueish
curve after reflection at the ε0 = 0 axis. (d) and (e) Theory data
corresponding to the measurements in (b) and (c) for interdot and
dot-lead tunnel couplings � = 8 μeV and �L = �R = 0.002 μeV,
decoherence rate γ = 0.001 μeV, and inhomogeneous broadening
γ ∗ = 5 μeV. Colorscales in panels (b) and (d) as in Fig. 1(c).

B. Results for commensurable frequencies

To test our general considerations above, we next consider a
representative case of two commensurate frequencies, namely
a fundamental mode and its second harmonic, i.e., �′ = 2�.
In our experiment, the phase difference between the harmonics
acquired along the dispersive transmission line through which
we drive the gate voltages is not a priori known and has to be
calibrated. With this purpose we display in Fig. 2(b) the current
as a function of the static detuning ε0 and the phase φ for the
amplitude ratio η = 1.25. I (ε0,φ) has maxima of constructive
and minima of destructive interference. Closer inspection
reveals varying symmetry properties of the interference pattern
I (ε0) as function of φ as expected from the symmetry
considerations above.

To explore, how the symmetry of the interference is related
to that of the driving function, in Fig. 2(a), we sketch f (t)
at five different phases. Generally, f (t) is asymmetric but it
has enhanced symmetry at four special phases in the range
0 � φ < 2π : f (t) is reflection symmetric for φ = π/2 or
3π/2 and antisymmetric for φ = 0 or π (with respect to
distinct points along the time axis). For a direct comparison
we present in Fig. 2(c) also I (ε0) at these four special phases,
i.e., along the (color coded) horizontal lines in Fig. 2(b). The
point symmetries of f (t) at φ = 0 or π expresses itself in

FIG. 3. (Color online) Measured and computed LZSM pattern in
real space (a) and (c) and in Fourier space (b) and (d) for the phase
φ = π/2 and the amplitude ratio η = 2. All other parameters are as
in Fig. 2, the color scales are as in Fig. 1(c). The enhanced resolution
of the theory data in Fourier space is achieved by considering data
beyond the range shown in (c).

I (ε0) as reflection symmetries, see upper panel of Fig. 2(c). In
contrast to this antisymmetric driving, reflection symmetry in
f (t) at φ = π/2 or 3π/2 does not lead to a symmetric I (ε0),
see lower panel of Fig. 2(c). Moreover, the current traces are
identical for φ = 0 and π but not for φ = π/2 and 3π/2.
However, I (ε0) at φ = 3π/2 matches that at φ = π/2 after
reflection at ε0 = 0 (gray curve). These differences are directly
related to the symmetry properties of f (t) as we discussed in
more detail in Sec. IV A 3 above. [Note that the measured
I (ε0) curves are subject to a global asymmetry caused by
higher-order contributions to transport, such as co-tunneling
via triplet states. This explains specifically the differences
between the red curve (at φ = π/2) and the gray curve (at
φ = 3π/2 and mirrored).]

Shifting the φ axis in panel (b) such that the symmetry
properties match the corresponding phases concludes our
phase calibration. Figures 2(d) and 2(e) display comparable
theory data calculated as described in Sec. III B. The fit
procedure allows us to determine important experimental
parameters, namely the interdot and dot-lead couplings as well
as decoherence and inhomogeneous broadening, see Ref. [12]
for a discussion of a very similar fit procedure and the caption
of Fig. 2 for fit parameters. The encountered parameters agree
with our expectations from transport measurements and the
agreement between the theory and experimental data is very
good.

As an example of a LZSM interference pattern for bichro-
matic driving we present in Fig. 3 the current as a function
of the driving amplitude A and the averaged detuning ε0 for
�/2π = 4 GHz, �′ = 2�, η = 2, and φ = π/2. Measured
data and their Fourier transform are presented in the upper
panels and compared to numerical data below. In contrast to
monochromatic driving (see Fig. 1) neither the data in real
space (left) nor the Fourier transform (right) obey reflection
symmetry but the Fourier transform has point symmetry, all
in good agreement with theory [bottom panels] and with our
expectations from Sec. IV A 3.
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FIG. 4. (Color online) Theoretical LZSM patterns in Fourier representation for bichromatic driving with commensurable frequencies for
various relative phases. The driving frequencies are �/2π = 4 GHz and �′/2π = 8 GHz, while the amplitude ratio is η = 1.25. The gray lines
are the solutions of Eqs. (22) and (23). The phases φ = π/2 and φ = 3π/2 correspond to symmetric driving for which part of the structure is
given by the analytic expression (25).

In real space [Figs. 3(a) and 3(c)], the patterns show clear
resonance peaks which are located at detunings at which the
energy quanta of the driving match the level splitting, i.e., when
the condition (n�)2 = �2 + ε2

0 is fulfilled for any integer n.
The triangle in which the current assumes an appreciable
value confirms the prediction given in Eq. (15), which follows
from the condition that the amplitude must be so large that
the time-dependent detuning ε0 + Af (t) reaches at least one
avoided crossing. Since generally | min f (t)| 
= | max f (t)|,
the parameter region in which interference takes place is
asymmetric. In panels (a) and (c) of Fig. 3, we observe a
clear tilt of the triangle to the left. This is a direct consequence
of the asymmetry in driving with |minf (t)| > |maxf (t)|, see
Fig. 2(a). Within the triangle, the resonance lines are vertical
and modulated. The physical pictures of the vanishing current
at the minima is that of coherent destruction of tunneling
[47,48], which occurs when the time-average of the tunnel
matrix element defined in Eq. (17) vanishes.

Figure 4 shows theoretical LZSM patterns in Fourier
space for distinct phases chosen to emphasize the symmetry
properties. As expected, we always find point symmetry
independent of the phase and, in addition, reflection symmetry
for φ = 0 and π corresponding to antisymmetric driving
f (−t) = −f (t). Gradually increasing the phase from 0 to π

(or from π to 2π ) first distorts the patterns and then brings
them back to their original shape.

Concerning the semi-analytical calculation of the arcs
structure (gray lines), these results confirm the predictions
of Ref. [19]. There, however, the patterns depict the nonequi-
librium population of a driven spin-boson model, while the
present results stem from a transport theory for an open DQD,
which allows for particle exchange between the system and
fermionic reservoirs. Therefore we can conclude that a simple
description with a closed two-level model provides a valid
prediction of LZSM patterns also for open systems.

C. Results for incommensurable frequencies

Finally, we present our results for the case of incom-
mensurate frequencies. Because of the finite broadening one
might ask the question of how well we can experimentally
(and numerically) differentiate between the periodic and the
quasiperiodic case. For practical purposes, the numerical
calculations are performed with rational approximations with
a finite number of digits. We nevertheless use the terms
“irrational” and “incommensurable.” The differences to the
commensurable case is typically best visible if one chooses
for �′/� the “most irrational number,” namely, the golden
ratio g = (1 + √

5)/2 � 1.618 [49].
In Fig. 5, we present measured and calculated data for

�′/� = g. As expected from our discussion in Sec. IV A 3 for
incommensurable frequencies the data in real space recover
reflection symmetry in respect to the A axis at ε0 = 0,
while the Fourier transform exhibits reflection symmetry in
regard to both axis. A further remarkable difference to the
commensurable case with vertical resonance lines of enhanced
current in the real space interference pattern is that the latter are
tilted while the pattern nevertheless shows a regular structure.
The agreement between theory and experiment is good even
on a quantitative level.

In Fourier space [see Figs. 5(b) and 5(d)], the arcs follow
by and large the prediction in Eq. (28) (gray lines). Taking
into account that the analytical derivation of the structure was
based on the ad hoc assumption that the main contribution
stems from those roots of Eq. (27) for which both terms
vanish individually, the agreement between measured and
calculated data in Fourier space is surprisingly good. Note
that the stronger broadening of the measured data in Fourier
space compared to the calculated ones is mainly caused by
the smaller range probed for ε0 and A in real space, which
determines the resolution in Fourier space.
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FIG. 5. (Color online) Experiment [(a) and (b)] and theory [(c)
and (d)] for the driving frequencies � = 3.708 GHz, �′ = 6 GHz,
and the amplitude ratio η = 0.9. The frequency ratio approximates
the golden mean with a precision of 10−4. All other parameters are as
in Fig. 2, the color scales are as in Figs. 1(c) and 1(d). Dashed lines
visualize the analytical prediction in Eq. (28).

V. CONCLUSIONS

We have extended theoretically and experimentally LZSM
interference from the already known monochromatic case
to bichromatic driving. Studying quantum transport through
a strongly biased DQD (V = 1 mV), we measured the dc
current in the steady state and explored LZSM interference as
a function of the DQD detuning and the driving amplitude.

The interference patterns in our measurements and their
two-dimensional Fourier transforms exhibit characteristic
symmetry properties, which we have confirmed in our
analytical and numerical predictions: bichromatic driving
with commensurable frequencies causes a reduction of the
symmetry compared to the monochromatic case (except for
two specific phase relations, only point symmetry in Fourier
space survives). Interestingly, for driving with incommensu-
rable frequencies, the full reflection symmetries observed for
monochromatic driving are retained, although the interference
patterns are more complex.

Our theoretical approaches exploit the Floquet theorem for
time-dependent master equations that include the incoherent
dot-lead tunneling. For the periodic driving with commensu-
rable frequencies, the long-time solution obeys the periodicity
of the Liouvillian and, thus, can be decomposed into a Fourier
series. Then the master equation can be written with the help of
a block-diagonal Floquet matrix. For the quasiperiodic driving
with two incommensurable frequencies, we have developed
an efficient numerical scheme for the computation of the
long-time solution. It is based on a two-color Floquet theory
for which we have combined a Floquet matrix decomposition
with ideas adopted from the t-t ′ formalism. In doing so,
we have mapped the bichromatically time-dependent master
equation to a monochromatically driven problem in a higher
dimensional space. This allowed us to find a solution based on
known Floquet methods for periodic driving.

Experimentally, the phase dependence of the interference
patterns for bichromatic driving with commensurable frequen-

cies can be used to accurately calibrate phase differences
caused by frequency dispersion. This is an important advantage
for quantum measurements and related applications in quan-
tum information where accurate knowledge of phase relations
is crucial. To properly fit our measured interference patterns
in our model, we needed to take into account decoherence
and an inhomogeneous line broadening. Our results here
quantitatively confirm our earlier findings in a similar system
[12].

We have theoretically predicted and experimentally con-
firmed a strong relevance of commensurability effects in
coherent nanoelectronics. Our results will be relevant for
applications based on coherent driving with more than one
frequency.
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APPENDIX A: ADDITIONAL DATA

1. Commensurate frequencies for various phases

In Fig. 6, we present additional measured data for three
different phases at �′ = 2�. The data clearly confirm the
predicted point symmetries, albeit the Fourier transformation
causes an additional broadening due to the relatively small

FIG. 6. (Color online) Measured LZSM pattern in real space and
in Fourier space for commensurable frequencies �/2π = 4 and
8 GHz and the phases and amplitude ratios displayed in the graphics.
The gray lines indicate the arcs predicted by Eqs. (22) and (23).
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FIG. 7. (Color online) Measured LZSM pattern in real space and
in Fourier space for the incommensurate frequencies with ratios g (the
golden mean) and 2g and amplitude ratios displayed in the graphics.
The gray lines indicate the arcs predicted by Eq. (28).

amount of data points. The theoretical predictions for the arcs
result from a numerical solution of Eqs. (22) and (23). They
are in accordance with the structure observed in the measured
data.

2. Further combinations of incommensurate frequencies

Figure 7 depicts further experimental data for incommen-
surable frequencies. In the upper row, the frequency ratio
is the golden mean, �′/� = g. As compared to Fig. 5, the
frequencies are slightly smaller, while the amplitude ratio
η is significantly larger. In the lower row, the frequency
ratio is twice the golden mean, �′/� = 2g. The findings
are consistent with the predictions in Sec. IV C: they confirm
the symmetry in real space (left column), and the theoretical
prediction (28) for the arcs in Fourier space (right column).
Moreover, the Fourier transform of the pattern is most
pronounced when two arcs cross each other.

APPENDIX B: FLOQUET THEORY FOR MASTER
EQUATIONS WITH MONOCHROMATIC DRIVING

We consider the periodically time-dependent master equa-
tion Ṗ = L(t)P with a Liouvillian of the form

L(t) = L0 + L1 cos(�t + ϕ). (B1)

In the case of a quantum master equation, the “distribution
function” is the reduced density operator, which generally
possesses off-diagonal matrix elements. We are interested in
its long-time limit, the steady-state solution P∞(t). Due to the
linearity of the master equation, the steady state solution obeys
the periodicity of the Liouvillian, i.e.,

P∞(t) = P∞(t + 2π/�) =
∑

k

pke
−ik�t . (B2)

The trace condition of the density operator leads for the
Fourier coefficients to the normalization tr pk = δk,0. Our main
interest lies in time-averaged expectation values where the

time-dependence is fully contained in the density operator
P∞(t). Hence P∞(t) = p0 contains all relevant information.

1. Master equation in Sambe space

A conceptually straightforward way to compute the pk is
to write the master equation in Fourier space where it reads∑

k′ Lkk′pk′ = 0, where L denotes the Fourier representation
of the superoperator L = L(t) − ∂/∂t with the components
[30]

Lkk′ = (L0 + ik�)δkk′ + L1

2
(eiϕδk+1,k′ + e−iϕδk−1,k′).

(B3)

It can be written as tridiagonal block matrix, the so-called
Floquet matrix. Its diagonal blocks are L0 + ik�, while its first
diagonals are given by the driving L1. The kernel of the Floquet
matrix is a vector that contains the Fourier coefficients pk of
the steady state solution. The Fourier representation of the
Liouvillian can be understood as extending the space in which
the density operator is defined by the space of 2π/�-periodic
functions (Sambe space) [29,50]. For numerical computations,
one has to truncate the Floquet matrix setting pk = 0 for all
k < −k0 and k > k0. For a driving amplitude A, the value at
which one reaches numerical convergence usually scales as
k0 ∝ A/�.

In the presence of higher harmonics L(t) → L(t) +
Ln cos(n�t + ϕn) with a phase lag ϕn, the nth secondary
diagonals become

Ln

2

(
eiϕnδk+n,k′ + e−iϕnδk−n,k′

)
. (B4)

For a generalization of this method to the case of two
commensurable driving frequencies �i , one works in the
Sambe space whose frequency � is a common divisor of the
�i such that �i = ni�. Then the secondary diagonals with
indices ni are nonvanishing.

2. Matrix-continued fraction

For large driving amplitudes or small frequencies, the
Floquet matrix can become quite large. Then a more efficient
way to compute the steady state p0 is the matrix-continued
fraction method widely applied in the context of Brownian
motion [51,52]. For the single-frequency driving underlying
the Floquet matrix (B3), it is based on the fact that the linear
equation for the Fourier coefficients pk corresponds to the
tridiagonal recurrence relation

eiϕBpk+1 + Akpk + e−iϕBpk−1 = 0, (B5)

where Ak = L0 + ik� and B = L1/2. The truncation of the
Floquet matrix (B3) corresponds to assuming pk = 0 for
|k| > k0.

The direct solution of the recurrence relation (B5) is
hindered by the fact that the matrix B generally does not
possess an inverse. This problem can be circumvented by
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defining transfer matrices Sk and Rk via

pk =
{
Rke

iϕBpk+1 for k < 0,

Ske
−iϕBpk−1 for k > 0.

(B6)

This allows us to substitute in the recurrence relation the terms
Bpk±1 by expressions proportional to pk . Compliance of this
ansatz with Eq. (B5) is ensured for

Sk = −(Ak + BSk+1B)−1, (B7)

Rk = −(Ak + BRk−1B)−1, (B8)

while p0 obeys

(BR−1B + A0 + BS1B)p0 = 0. (B9)

In a numerical calculation, one starts with
Sk0+1 = R−(k0+1) = 0 and iterates Eqs. (B7) and (B8) to obtain
S1 and R−1. Finally, one obtains p0 by solving Eq. (B9) under
the trace condition tr p0 = 1. Notice that the iteration scheme
and, thus, the time averaged steady-state distribution do not
depend on ϕ.
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9 Summary and conclusion

In this thesis, I presented the results of several electron transport experiments carried out in a driven
few-electron double quantum dot (DQD) with focus on two different aspects. On one hand, I investigated
the influence of a strongly inhomogeneous magnetic field across the DQD and the dynamic nuclear spin
polarization (DNSP) in such a sample. On the other hand, I probed the coherent Landau-Zener-Stückelberg-
Majorana dynamics of a two-electron charge qubit and presented a detailed analysis of the interference
patterns providing access to the decoherence mechanisms. In the following, I will give a summary of the
results of the experiments and connect them to the results of other recent experiments in this field.

The spin in quantum dots has been used to demonstrate a high degree of quantum control which is
one of the key requirements for quantum information applications [6]. As an example, coherent single
spin manipulation by electron dipole spin resonance (EDSR) has been demonstrated [33, 34, 36]. Various
techniques to employ the time-dependent magnetic fields to drive the electron spins in QDs were developed
[33, 34, 36]. As a globally applied ac magnetic field is unfavourable in a low-temperature setup due to
heating effects and mechanical instabilities, most techniques aim to employ a (real or effective) magnetic
field modulated locally at the QD site. Three successfully applied techniques are the usage of an Oersted
field of a current through a wire near the QD [33], the effective field created by the spin-orbit interaction
of a moving electron [34], and the periodic driving of an electron through a local magnetic field gradient
provided by an on-chip magnet [36]. The third technique has been of recent interest. As an advantage, on-
chip magnets can provide different static magnetic field values at the site of each individual QD facilitating
to address each qubit individually even when they are both subject to the driving [27, 35, 78]. In the case
of DQDs, two-electron spin states, i.e. singlet and triplet states, are of interest for qubit applications [19,
20, 79]. Here, the difference of the magnetic field at the sites of the two QD is essential, since it provides
the coupling between the involved singlets and triplets [16]. In GaAs based DQDs, the nuclear hyperfine
interaction of the localized electron with ∼ 106 nuclei provides an effective magnetic field, the Overhauser
field, whose thermal fluctuations are strong enough to provide a field difference of a few mT. In addition, we
can harness the inhomogeneous field of a nanomagnet to enhance the singlet-triplet coupling, especially
useful in materials whose main isotopes do not have a nuclear spin, such as SiGe or carbon based materials.

Previous realizations of on-chip magnet are large multi-domain magnets with laterial dimensions of
several microns on top of the QDs separated by an insulating layer [27, 36, 78, 80, 81]. This micromagnet has
the advantages of relatively easy fabrication and a potentially strong magnetic field, but the disadvantages
of multiple domains which makes it sensitive to changes in the external magnetic field(1) leading to a small
uncontrollable magnetization at small external magntic fields. The concept used in this thesis utilizes
the field of much smaller bar-shaped nanomagnets whose dimensions of ∼ 2µm×100nm×50nm lead
to a single magnetic domain even at no external magnetic field. The initial idea of the preceding PhD
thesis by G. Petersen (ref. [8]), where one single-domain nanomagnet on top of a DQD gate provided
the inhomogeneous field, was refined: First, we incorporated the nanomagnets directly into the existing
layout of the gates defining the DQD by replacing one the gold gates by a cobalt gate allowing for a stronger
field at the site of the QD. Second, we added a second nanomagnet of different width which leads to a
different coercive field compared to the other magnet. This allowed us to access two different magnetic
field regimes with very different singlet-triplet coupling constants, given by the parallel and the anti-parallel
magnetization configuration of the two magnets, in the same sample. In the experiment, we characterized

(1)in the field regime where not all domains are aligned, i.e. small external fields
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9. Summary and conclusion

the magnetic field distribution of our nanomagnets by EDSR, which gives direct access to the size of the
magnetic field inside each quantum dot, and measurement of the direct current through the DQD which
in the given regime of Pauli spin blockade is highly dependent on the coupling between the singlet and
triplet states. As a the main result, we found that our novel approach to integrate the nanomagnets as gates
into the device was successful. It was possible to reverse the magnet polarizations one-by-one by sweeping
an external magnetic field and to directly measure the coercive fields: As each switching event modified
the local magnetic field distribution, it gave rise to a distinct current jump in a dc transport measurement.
In a radio frequency EDSR experiment the sudden modification of the local magnetic field distribution
generated a shift of the resonance frequency. We also found a distinct individual resonance for each dot
and demonstrated that the disadvantage of a somewhat smaller field gradient due to the smaller size of
the single-domain magnet compared to the conventional multi-domain magnet can be compensated by
using multiple magnets. Overall, we managed to achieve a good agreement with numerically calculated
field distributions. The experiment carried out establishes a high degree of control of the overall field
distribution for future experiments. By designing the inhomogeneous field and thus the singlet-triplet
coupling strength, it is now possible to access the regime of qubit-clock speeds much higher than the one
given by the natural Overhauser field. Since the field gradient across the DQD provided by the nanomagnets
(we found up to 40 mT) can be more than a magnitude larger than the one provided by the Overhauser
field in GaAs, the nanomagnets provide a more robust coupling mechanism: as the fluctuations of the
Overhauser field, which are a major dephasing source in GaAs spin qubits [16, 21, 82], become just small
perturbations to a now much larger gradient, this coupling method should also prove beneficial in the
context of spin based quantum computing in reducing dephasing.

The Overhauser contribution is significant when the nuclear spins are polarized, as a fully polarized
nuclear bath corresponds to a magnetic field of around 6 T(2). An elegant way to polarize the nuclear spins
in a transport experiment is dynamic nuclear spin polarization (DNSP) by a current through a DQD in
the Pauli spin blockade regime. As the spin blockade can be lifted by the hyperfine interaction, semi-
classically described as flip-flop process between the electron and the nuclear spin, a net-polarization of
the nuclear spin bath can be build up [17, 30, 49]. In this case, the polarization rate is on the one hand
strongly dependent on the current and hence the electronic spectrum of the DQD. On the other hand, the
polarization built up modifies the electronic spectrum itself, such that a very complex dynamics arises even
when only considering the semi-classical description of the nuclear spins as Overhauser field.

For this thesis, I employed a polarization technique during which the external magnetic field is slowly
ramped up after locking the DQD onto a fixed point to a DQD with a strong inhomogeneous field provided
by two single-domain nanomagnets (see above). This technique was developed during the preceding PhD
thesis by G. Petersen (ref. [8]) and enables high nuclear spin polarizations exceeding 50% which is by far the
highest value reached in lateral DQDs [30]. Measuring the leakage current through the DQD in Pauli spin
blockade, I found a remarkably complex current behaviour during magnetic field sweeps. In particular, the
statistical reoccurrence of four distinct patterns in the current establishes the existence of multiple fixed
points, one of which is always occupied as long as dynamical polarization is maintained. While at nominally
the same starting conditions all of the fixed points were reached with roughly equal probabilities, the fixed
points proved remarkably stable during the magnetic field sweeps. In addition, I measured the Overhauser
field by means of EDSR during its free decay after the buildup. The EDSR measurements reveal long decay
times of the nuclear spin polarization, its stability being enhanced by the strongly inhomogeneous magnetic
field distribution generated by two single-domain nanomagnets. The nuclear polarization was even further
stabilized during the experiment by polarizing for an extended time. I found that this leads to an extended
area of polarization around the DQD. In addition, the EDSR measurements confirmed that the individual
fixed points differed substantially by their polarizations and, remarkably, dynamics of the nuclear spins.
The studies demonstrate that the existence of several fixed points in dynamical nuclear spin polarization

(2)See sec. 6.2.1.
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complicates the desired control of electron and nuclear spins in coupled quantum dots. However, the
experiments present an advance in the understanding of hyperfine induced dynamics in nanoelectronic
circuits. For future studies, an independent access to the nuclear spins could be desirable. For example by
introducing NMR techniques, one could influence the dynamical buildup of polarization and probe the
stability of the system. The full understanding and the control of nuclear spins in electric nanocircuits,
however, remains a desired and challenging goal.

A different approach to qubit physics in DQDs explored in this thesis is the charge qubit [71, 83]. Here,
the two qubit states are given by different charge configurations of the DQD, for instance a DQD charged
by a single electron which is localized in the left dot (first state) or in the right dot (second state) [72]
or, as realised in this thesis, two singlet states of a two-electron DQD. Unlike for the singlet-triplet spin
qubit, the coupling of the qubit states can be well defined and controlled by gate voltages during the
experiment, as it is given by the tunnel coupling between the two dots. This renders it a qubit system
interesting for applications, since it is relatively easy to define qubits with couplings in the order of a few
GHz, hence fast clock speeds. However, the charge qubit is also more prone to noise from the environment,
as fluctuating charges in the vicinity of the DQD deform the confinement potential and hence modify the
qubit [74], and the charge states couple to bulk phonons [73]. These interactions make it experimentally
significantly more difficult to achieve a high degree of quantum control comparable to spin qubits. In
fact, even the accurate determination of the coherence time for a single charge qubit (T2) had not been
achieved before this thesis, as past experiments only considered the dephasing of a (time) ensemble of
qubits (T ∗

2 ) which includes inhomogeneous line broadening of the qubit’s states [71, 72]. In principle, the
influence of inhomogeneous line broadening can be compensated by echo techniques known from NMR
imaging [70] and successfully applied to spin qubits [9, 19]. The relatively short coherence times in charge
qubits, however, demand very fast pulsing capabilities and echoes sequences have not yet been successfully
applied to charge qubits in GaAs. In this thesis, I presented a new and very general method applicable to
any qubit system to nevertheless quantify the influence of inhomogeneous broadening and determine the
coherence time for a single qubit experiment. By driving the biased qubit with a monochromatic drive
repeatedly through its avoided crossing and measuring the steady state current of the qubit, I measured
Landau-Zener-Stückelberg-Majorana (LZSM) interference [10, 59–62]. In contrast to sophisticated echo
sequences, only a simple sinusoidal driving is needed for this method (in addition to the dc voltage needed
here for the qubit read-out). The resulting interference patterns contain the coherence of the qubit, but the
coherence parameters are not accessible in a straightforward manner. However, the initial complexity of the
interference pattern can be significantly reduced by a two-dimensional Fourier analysis [76]. Furthermore,
we collaborated with S. Kohler from Instituto de Ciencia de Materiales de Madrid to develop a complete
system-bath model analyzed with Floquet transport theory and achieved a good quantitative agreement
between experiment and theory which allowed us to trace the origins of inhomogeneous broadening and
decoherence. We determined the individual values of T ∗

2 and T2 of the qubit and find that our two-electron
charge qubit is affected by slow charge noise limiting T ∗

2 to ' 0.2ns but a much longer coherence time of
T2 ' 0.2µs limited by the electron-phonon interaction even at cryogenic temperatures of 20 mK.

In a second step, we extended the previous LZSM technique of monochromatic driving (with a single fre-
quency) to bichromatic driving (with two concurrent frequencies) and also extended the theory to capture
the more complex driving. As before, we measured the dc current in the steady state and explored LZSM
interference as a function of the DQD detuning and the driving amplitude. The interference patterns in our
measurements and their Fourier transforms exhibit characteristic symmetry properties which were con-
firmed by our model’s predictions: bichromatic driving with commensurable frequencies causes a reduction
of the symmetry compared to the monochromatic case. Interestingly, for driving with incommensurable
frequencies the full reflection symmetries observed for monochromatic driving are retained, although
the interference patterns are more complex. In the case of commensurable frequencies, the interference
patterns are highly sensitive to the phase dependence which can be harnessed to accurately calibrate phase
differences caused by frequency dispersion. This is an important result for quantum measurements and
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related applications where accurate knowledge of phase relations is crucial.
For future experiments (aside from transfering this technique to other qubit systems), the LZSM technique

established here offers a variety of possibilities. For the charge qubit, one could further explore the electron-
phonon interaction by introducing a quantum point contact as a tunable non-thermal phonon source [25,
73] and investigate its impact on the coherent dynamics. In the same spirit, one could simulate additional
charge noise by applying noise to the gate voltages defining the confinement potential of the DQD and
study the influence of noise in the coupling and the detuning parameter separately. Furthermore, one
could combine the charge and spin qubit concepts by passing subsequent avoided crossings, e.g. a first one
formed by two singlets and a second one formed by one singlet and one triplet, in the electron term scheme.
The difference in coupling strength between the spin and charge states leading to different clock speeds of
the qubits can be partly remedied by enhancing the coupling of the spin states by the inhomogeneous field
of on-chip nanomagnets as discussed above.
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A Calculations

A.1 Diagonalization of a two-level Hamiltonian

The Hamiltonian for a two-level system is given by

H = E1 |1〉〈1|+ t |1〉〈2|+ t∗ |2〉〈1|+E2 |2〉〈2| .
Here, t is the coupling constant and E1 and E2 are the eigenenergies for the uncoupled system (t = 0). We

choose the representation |1〉 .=
(
1
0

)
and |2〉 .=

(
0
1

)
and a real coupling constant t = t∗ to explicitly write the

Hamiltonian as 2x2 matrix,

H
.=

(
E1 t
t E2

)
.

We will now carry out the analytic diagonalization of the Hamiltonian to obtain its eigenenergies and
eigenstates. We start by calculating

det(H − 1ε±) =
∣∣∣∣E1 −ε± t

t E2 −ε±

∣∣∣∣= ε2
±+ε±(E1 +E2)+E1E2 − t 2 = 0,

which directly yields the eigenenergy

ε± = 1

2

(
(E1 +E2)±

√
(E1 −E2)2 +4t 2

)
. (A.1)

For the eigenstate belonging to ε+, we choose the first equation of the two linear dependent rows of the
matrix, (

E1 −ε+ t
t E2 −ε+

)(
α

β

)
= 0 ⇔ (E1 −ε+)α+ tβ= 0, ⇒ β

α
= ε+−E1

t

and further choose α and β to be real. Since we also want the eigenstate to be normalized, i.e. α2 +β2 = 1,
we choose α = cosθ and β = sinθ which readily fulfils this condition. To determine θ, we just use the
previous expression and read

β

α
= tanθ = ε+−E1

t
, θ ∈

[
0,
π

2

]
.

We can find the useful representation of 2θ using ∆= E1 −E2 and Σ= E1 +E2 with

tan(2θ) = 2

cotθ− tanθ
= 2t (ε+−E1)

t 2 − (ε+−E1)2 = 2t · ε+−E1

t 2 −ε2++2E1ε+−E 2
1

= 2t · ε+− 1
2 (∆+Σ)

t 2 − 1
4

[
Σ2 +2Σ(2ε+−Σ)+∆2 +4t 2

]+ (∆+Σ)ε+− 1
4 (∆+Σ)2

= 2t · ε+− 1
2 (∆+Σ)

−1
4

[
2Σ∆+2∆2 −4∆ε+

]
= 2t · ε+− 1

2 (∆+Σ)

∆
[
ε+− 1

2 (∆+Σ)
]

= 2t

∆
(A.2)
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A. Calculations

Since H is a Hermitian matrix, its eigenvectors for distinct eigenvalues are orthogonal to each other, so
we can just construct the eigenstate for the eigenenergy ε− by satisfying

(
cosθ
sinθ

)
·
(
γ

δ

)
= 0.

We easily see that γ=−sinθ and δ= cosθ is a solution with the desired normalization to unity. By using the

basis representation |1〉 .=
(
1
0

)
and |2〉 .=

(
0
1

)
, we end up with the final result for the eigenstates

|+〉 = cosθ |1〉+ sinθ |2〉 ,

|−〉 =−sinθ |1〉+cosθ |2〉 .
(A.3)

Example: Hel We apply the results calculated above to find the eigenstates and eigenenergies of Hel (2.7)
of the main text. There, we have

E1 = 0, E2 =−ε, t = tc /2, |1〉 = |S11〉 , |2〉 = |S20〉 .

Using (A.1) and (A.3), we find

|S+〉 = sinθ |S20〉+cosθ |S11〉 , ε+ = 1

2

(
−ε+

√
ε2 + t 2

c

)
,

|S−〉 = cosθ |S20〉− sinθ |S11〉 , ε− = 1

2

(
−ε−

√
ε2 + t 2

c

)
,

with tan(2θ) = tc /ε (A.2).

A.2 Two spin-1/2 particles in a static magnetic field

In this section, we will sketch the calculation of the Hamiltonian of two spins in an inhomogeneous
magnetic field. We use the expressions |↑〉 for a spin-up state, and |↓〉 for a spin-down state in Dirac notation.

We choose the |↑〉 .=
(
1
0

)
and |↓〉 .=

(
0
1

)
representation to describe a single spin-1/2 particle. In this basis, the

spin operator for a single particle is given by si = ~
2

(
σx σy σz

)T
, where σi are the Pauli matrices

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.4)

Two-particle spin states are mathematically described by the tensor product of the single spin operators
acting on the subspace of a single spin; e.g.

|↑↑〉 ≡ |↑〉⊗ |↑〉 .=
(
1
0

)
⊗

(
1
0

)
= (

1 0 0 0
)T ≡ e1.

Similarly, we find the representation of the other basis states |↑↓〉 .= e2, |↓↑〉 .= e3, and |↓↓〉 .= e4. In this basis,
we find the single spin operators by calculating the tensor product with the 2x2 unit matrix in the correct
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A.2 Two spin-1/2 particles in a static magnetic field

order, e.g. s1x = ~
2σx ⊗ 1 and s2x = 1⊗ ~

2σx . Explicitly, this yields

s1x = ~
2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , s1y = ~
2


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , s1z = ~
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

s2x = ~
2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , s2y = ~
2


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 , s2z = ~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

(A.5)

We can also calculate s2
1 = s2

1x + s2
1y + s2

1z = s2
2 = 3

4~
21. Since si z and s2

i are diagonal in this basis, we find
that the single-spin basis states are the eigenstates of these operators. However, if we want to describe
our system in terms of the total spin, we need to look at the eigenvectors of the total spin operator,
s2 = (s1 +s2)2 = s2

1 +s2
2 +2(s1x s2x + s1y s2y + s1z s2z ). By using the matrices of (A.5), we obtain

s2 = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 ,

which is obviously not diagonal in the single-spin basis. The eigenvalues and -vectors of this matrix are

|T+〉 = |↑↑〉 .= (
1 0 0 0

)T
s = 1,m = 1;

|T0〉 = 1p
2

(|↑↓〉+ |↓↑〉) .= 1p
2

(
0 1 1 0

)T
s = 1,m = 0;

|T−〉 = |↓↓〉 .= (
0 0 0 1

)T
s = 1,m =−1;

|S〉 = 1p
2

(|↑↓〉− |↓↑〉) .= 1p
2

(
0 1 −1 0

)T
s = 0,m = 0.

Here, s(s +1)~2 is the eigenvalue of s2, and m~ is the eigenvalue of sz . As discussed in the main text in
section 2.1.3, these states are called singlet and triplet states of the system, which we want to choose for our
new basis.

The Hamiltonian for two spin-1/2 particles inside an arbitrary magnetic field is given by

Hmag = gµB

~
(B1 ·s1 +B2 ·s2) = gµB

~
[
B·(s1 +s2)+∆B· (s1 −s2)

]
,

where we defined B = (B1 +B2)/2 and ∆B = (B1 −B2)/2 and used the g-factor g and the Bohr magneton
µB . To calculate this Hamiltonian, for which we know the representation in the single-spin basis, in the
singlet-triplet basis, we use the transformation matrix U with Umn = 〈am |bn〉, where |am〉 are the single-spin
basis states represented by em and |bn〉 are the total-spin basis states in the order (|T+〉 , |T0〉 , |T−〉 , |S〉). This
yields

U
.=


1 0 0 0
0 1/

p
2 0 1/

p
2

0 1/
p

2 0 −1/
p

2
0 0 1 0

 .

We then use the operator representation of (A.5) to write Hmag in the single-spin basis and transform it to
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A. Calculations

the singlet-triplet basis by using U. We get the final result

Hmag =U †HmagU
.= gµB


B z B−/

p
2 0 −∆B−/

p
2

B+/
p

2 0 B−/
p

2 ∆Bz

0 B+/
p

2 −B z ∆B+/
p

2
−∆B+/

p
2 ∆Bz ∆B−/

p
2 0

 ,

where we used the abbreviations B± = B x ± i B y and ∆B± =∆Bx ± i∆By .

A.3 A single spin-1/2 particle in a time-dependent magnetic field

A.3.1 Ideal driving

We will now consider a single spin-1/2 particle in a time-dependent magnetic field,

B(t ) = Bext +Bac(t ) = Bz

0
0
1

+B0

cosωt
sinωt

0

 . (A.7)

The Hamiltonian of the system is therefore given by

H(t ) = gµB

~
s ·B(t ) =ωz sz +ω0(cos(ωt )sx + sin(ωt )sy ), (A.8)

where s is the spin operator of a single spin with its projections sx , sy , sz and we introduced the abbreviations
ωi = gµB Bi /~. The solution of the Schrödinger equation,

i~
∣∣ψ(t )

〉= H(t )
∣∣ψ(t )

〉
,

becomes simplest when going to the rotating frame, where H(t ) → H̃ is no longer time-dependent. With
the unitary rotational operator R(t ) = exp(iωt sz /~), which describes a time-dependent rotation around the
z-axis with the frequency ω [15, p. 698], we transform the Schrödinger equation to

i~∂t
∣∣ψ̃(t )

〉 = i~∂t
(
R(t )

∣∣ψ(t )
〉)

= i~R(t )∂t
∣∣ψ(t )

〉+ i~∂t (R(t ))
∣∣ψ(t )

〉
= R(t )H(t )

∣∣ψ(t )
〉−ωsz R(t )

∣∣ψ(t )
〉

=
[

R(t )H(t )R†(t )−ωsz

]
R(t )

∣∣ψ(t )
〉

≡ H̃
∣∣ψ̃(t )

〉
Expressing H(t ) and R(t ) in the Cartesian basis with the Pauli matrices (A.4), we find

H(t )
.= ~

2

(
ωz ω0 exp(−iωt )

ω0 exp(iωt ) −ωz

)
, R(t )

.=
(
exp(iωt/2) 0

0 exp(−iωt/2)

)
,

where we used exp(aσz ) = cos(a) 1+ i sin(a) σz to calculate the representation of R(t ) [15, p. 985]. In total,
this yields indeed a time-independent H̃ ,

H̃ = R(t )H(t )R†(t )−ωsz
.= ~

2

(
∆ω ω0

ω0 −∆ω
)

, (A.14)

with ∆ω=ωz −ω, which is a standard Rabi problem [15, p. 413]. We find the eigenenergies and eigenstates
according to (A.1) and (A.3)
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A.3 A single spin-1/2 particle in a time-dependent magnetic field

∣∣φ̃+
〉 = cosθ |↑〉+ sinθ |↓〉 , E+ = ~

2

√
(∆ω)2 +ω2

0∣∣φ̃−
〉 =−sinθ |↑〉+cosθ |↓〉 , E− =−~

2

√
(∆ω)2 +ω2

0

with tan2θ =ω0/∆ω (A.2). From these eigenstates of H̃ , we can construct the time-dependent solution of
the Schrödinger equation, ∣∣ψ̃(t )

〉= ∑
n∈{±}

exp(−i En t/~)cn(t = 0)
∣∣φ̃n

〉
We rewrite the solution in the basis of |↑〉 and |↓〉, and find∣∣ψ̃(t )

〉=[
exp(−i E+t/~)c+ cosθ−exp(−i E−t/~)c− sinθ

] |↑〉+[
exp(−i E+t/~)c+ sinθ+exp(−i E−t/~)c− cosθ

] |↓〉
= c̃↑(t ) |↑〉+ c̃↓(t ) |↓〉 ,

where c± depend on the boundary conditions at t = 0. Finally, we can transform back to our stationary
frame and get the time-dependent solution∣∣ψ(t )

〉= R†(t )
∣∣ψ̃(t )

〉
= exp(−iωt/2)c̃↑(t ) |↑〉+exp(iωt/2)c̃↓(t ) |↓〉 .

We are now interested in the dynamics of the system which is at t = 0 in a pure state, in our case |↑〉. For this
boundary condition, we determine c±∣∣ψ(0)

〉= c̃↑(0) |↑〉+ c̃↓(0) |↓〉
= [c+ cosθ− c− sinθ]︸ ︷︷ ︸

1

|↑〉+ [c+ sinθ+ c− cosθ]︸ ︷︷ ︸
0

|↓〉

⇒ c+ = cosθ ∧ c− =−sinθ.

We now calculate the projection of the spin direction |↓〉, which is opposite to our initial state |↑〉, and hence
describes the probability to measure a spin-flip at time t .∣∣〈↓∣∣ψ(t )

〉∣∣2 = ∣∣〈↓∣∣ψ̃(t )
〉∣∣2

= ∣∣exp(−i E+t/~)cosθ sinθ−exp(−i E−t/~)sinθcosθ
∣∣2

= ∣∣cosθ sinθ
[
exp(−i E+t/~)−exp(−i E−t/~)

]∣∣2

= 1

4
sin2 2θ

∣∣[1−exp(−i (E+−E−)t/~)
]∣∣2

= 1

4
sin2 2θ

[
(1−cos(E+−E−)t/~)2 + sin2(E+−E−)t/~

]
= 1

2
sin2 2θ [1−cos(E+−E−)t/~]

= sin2 2θ sin(E+−E−)t/2~

By using the explicit E+ and E− and using 2θ = arctan(ω0/∆ω), we obtain Rabi’s formula as the final result,

∣∣〈↓∣∣ψ(t )
〉∣∣2 = ω2

0

ω2
0 +∆ω2

sin2
(

1

2

√
ω2

0 +∆ω2t

)
.
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A. Calculations

A.3.2 Realistic driving

So far, we discussed the case that Bac(t) describes a rotation around the z-axis while its absolute value
remains independent of t . In our experiment, we provide an inhomogeneous magnetic field B = B(r) and
move the electron through the field gradient, i.e. r = r(0)+∆r(t). This is realised by applying a voltage
V∼(t ) =V0 sinωt at one of the quantum dot gates. The total magnetic field obtained by Taylor expansion is
given by

B(t ) = Bext(r(0)+∆r(t )) = Bext(r(0))+ [JB(r)]|r=r(0)∆r+O (∆r2),

where J is the Jacobian matrix [84, p. 535]. We can identify the first term as the static magnetic field and
second term as the driving field. We explicitly write the driving field as

JB(r)|r=r(0)∆r =
∂x Bx∆rx +∂z Bx∆rz

∂x By∆rx +∂z By∆rz

∂x Bz∆rx +∂z Bz∆rz

=V0 sin(ωt )

∂x Bxβx +∂z Bxβz

∂x Byβx +∂z Byβz

∂x Bzβx +∂z Bzβz

≡ sin(ωt )

∆Bx

∆By

∆Bz

 ,

where we used that movement of the electrons ∆r is restricted to the plane of the 2DES (x,z-plane) and
that ∆r = βV0 sin(ωt), where we assumed an anisotropic, but linear dependency of the displacement
∆r on the gate voltage. Here, ∆Bi has the meaning of a field difference between the static position of
the electron and its maximum displacement induced by the driving voltage. Since ∆Bz ¿ Bz for all
relevant cases, we approximate ∆Bz ≈ 0. By rotating the coordinate system around the z-axis, such that

∆B̃x =
√
∆B 2

x +∆B 2
y ≡ 2B0 and ∆B̃y = 0, we simplify the complete magnetic field to

B(t ) = Bext +Bac(t ) = Bz

0
0
1

+2B0

cos w t
0
0

 .

We also shifted the time by π/2ω for a stronger resemblance with (A.7). We then write the Hamiltonian H ′

as an analogue to (A.8),

H ′(t ) = ωz sz +2ω0 cos(ωt )sx =ωz sz +ω0
[
(cos(ωt )sx + sin(ωt )sy )+ (cos(ωt )sx − sin(ωt )sy )

]
= H(t )+ω0(cos(ωt )sx − sin(ωt )sy )

= H(t )+Hosc(t ).

We retrieved the Hamiltonian for the ideal driving H(t) (A.14) and a second term Hosc(t). Finally, we
transform it to the rotating frame as before, and find

H̃ ′(t ) = H̃ +R(t )Hosc(t )R†(t )
.= ~

2

(
∆ω ω0

ω0 −∆ω
)
+ ~

2

(
0 ω0 exp(i 2ωt )

ω0 exp(−i 2ωt ) 0

)
.

For a sizeable ω, especially near the Rabi resonance where ω∼ωz , H̃osc(t ) oscillates so fast that its impact
on the overall dynamics is negligible. By dropping this term, we perform a rotating wave approximation [85,
p. 99] and obtain the same solution for the remaining Hamiltonian as before for an ideal driving.
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B Process parameters

B.1 Sample Ziege

Used in chapters 5, 6, 8. See ref. [26, pp. 49ff.].

B.1.1 Material

Wafer: D080311D grown by D. Schuh and W. Wegscheider at the University of Regensburg.

Material Thickness (nm)
GaAs 5

Al0.3Ga0.7As 40
Si δ doping

Al0.3Ga0.7As 40

GaAs 500
GaAs /AlGaAs superlattice 3/7 (x 100)

GaAs 500

B.1.2 Mesa

• Shipley 1813 photoresist 3 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 115 ◦C

• Exposure: 22 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 30 s

• Etching: H2O:H2SO4:H2O2 (100:3:1) for 95 s @ 0.95 nm/s

B.1.3 Ohmic contacts

• MicroChem LOR 3B lift-off photoresist 3 s @ 800 rpm, 30 s @ 4000 rpm, bake 90 s @ 150 ◦C

• Shipley 1813 photoresist 3 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 115 ◦C

• Exposure: 22 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 30 s

• Metal deposition: 60 nm AuGe, 10 nm Ni, 60 nm AuGe

• Lift-off: 45 min DMSO @ 80 ◦C, afterwards rinsing with Acetone and isopropyl alcohol

• Annealing: 5 min @ 110 ◦C, 4 min @ 360 ◦C, 1.5 min @ 420 ◦C
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B. Process parameters

B.1.4 Coarse gates

• MicroChem LOR 3B lift-off photoresist 3 s @ 800 rpm, 30 s @ 4000 rpm, bake 90 s @ 150 ◦C

• Shipley 1813 photoresist 1 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 115 ◦C

• Exposure: 22 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 30 s

• Cleaning: 40 s O2 plasma etching @ 200 W (GigaEtch)

• Metal deposition: 10 nm Ti, 90 nm Au

• Lift-off: 45 min DMSO @ 80 ◦C, afterwards rinsing with Acetone and isopropyl alcohol

B.1.5 Nano magnets

• PMMA 950 K, 4% in MIBK, 1 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 170 ◦C

• Exposure: 5 kV, 10µm aperture, 90µC/cm2 (narrow magnet), 75µC/cm2 (larger magnet), 160µm×160µm
write field

• Development: MIBK (diluted with isopropyl alcohol 1:3) for 40 s

• Metal deposition: 50 nm Co (thermal evaporation, current 135 A → 1 Å/s growth rate; around 10
pauses of 30 s during evaporation process), 5 nm Au

• Lift-off: Acetone (several hours) followed by 1 min ultrasonic bath on low power to remove residues

B.1.6 Nano meter sized gates

• PMMA 950 K, 4% in MIBK, 1 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 170 ◦C

• Exposure: 5 kV, 10µm aperture, 100µC/cm2 (196µC/cm2 at the tips), 160µm×160µm write field

• Development: MIBK (diluted with isopropyl alcohol 1:3) for 45 s

• Metal deposition: 5 nm Ti, 35 nm Au

• Lift-off: Acetone (several hours)

B.2 Sample Barney

Used in chapter 7. Also see ref. [8, pp. 121ff.].

B.2.1 Material

Wafer: D080311D grown by D. Schuh and W. Wegscheider at the University of Regensburg. See B.1.1 for
further details.
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B.2 Sample Barney

B.2.2 Mesa

• Shipley 1813 photoresist 1 s @ 800 rpm, 30 s @ 6000 rpm, bake 90 s @ 115 ◦C

• Exposure: 25 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 25 s

• Etching: H2O:H2SO4:H2O2 (100:3:1) for 80 s @ 1.25 nm/s

B.2.3 Ohmic contacts

• Shipley 1813 photoresist 1 s @ 800 rpm, 30 s @ 4500 rpm, bake 90 s @ 115 ◦C

• Exposure: 25 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 25 s

• Metal deposition: 60 nm AuGe, 10 nm Ni, 60 nm AuGe

• Annealing: 5 min @ 110 ◦C, 4 min @ 360 ◦C, 1.5 min @ 420 ◦C

B.2.4 Coarse gates

• Shipley 1813 photoresist 1 s @ 800 rpm, 30 s @ 6000 rpm, bake 90 s @ 115 ◦C

• Exposure: 23 s, λ= 405nm (Karl Suss MJB3 mask aligner)

• Development: Shipley Microposit 351 B (diluted with purified H2O 1:3) for 15 s

• Metal deposition: 5 nm Ti, 90 nm Au

B.2.5 Nano meter sized gates

• PMMA 500 K, 4% in MIBK, 1 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 170 ◦C

• Exposure: 5 kV, 10µm aperture, 45µC/cm2, 160µm×160µm write field

• Development: MIBK (diluted with isopropyl alcohol 1:3) for 25 s

• Metal deposition: 5 nm Ti, 35 nm Au

B.2.6 Nano magnet

• PMMA 150 K, 4% in MIBK, 1 s @ 800 rpm, 30 s @ 4000 rpm, bake 90 s @ 170 ◦C

• PMMA 500 K, 4% in MIBK, 1 s @ 800 rpm, 30 s @ 5000 rpm, bake 90 s @ 170 ◦C

• Exposure: 5 kV, 10µm aperture, 45µC/cm2, 160µm×160µm write field

• Development: MIBK (diluted with isopropyl alcohol 1:3) for 25 s

• Metal deposition: 25 nm Co, 2 min pause, 25 nm Co, 5 nm Au (e-beam evaporation with water cooled
shutter)
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C Setup parameters for wiring and filtering

Table C.1: Resistances and capacitances in the lines optimized for gate voltages. The bias tee is present for four of the
16 lines.

Component Resistance (Ω) Capacitance to ground (F)
Double shielded coax 1 100 p

Filter box 100 k 1µ
Double shielded coax 1 100 p

Cu/NbTi loom <10 300 p
Low temperature filtering 330 k 230 n

(Bias tee) (2.2 k)
Σ 430 (432) k 1.2µ

Table C.2: Resistances and capacitances in the lines optimized for current flow.

Component Resistance (Ω) Capacitance to ground (F)
Double shielded coax 1 100 p

Filter box 2.2 k 2.36 n
Double shielded coax 1 100 p
Cu coax/Janis SS coax 200 250 p

Low temperature filtering 1 k 500 p
Σ 3.4 k 3.31 n
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D List of publications

This section provides a list with the publications used in this thesis and acknowledges the contribution of
each author.

• Chapter 5: Forster, F. et al. Phys. Rev. B. 91. 195417 (2015)

F. Forster carried out the experiment, analysed the data and prepared the data visualization for
publication. M. Mühlbacher fabricated and tested the sample. D. Schuh and W. Wegscheider provided
the wafer material. F. Forster, and S. Ludwig wrote the manuscript. S. Ludwig supervised the project.

• Chapter 6: Forster, F. et al. Phys. Rev. B. 92. 245303 (2015)

F. Forster carried out the experiment, analysed the data and prepared the data visualization for
publication. M. Mühlbacher fabricated and tested the sample. D. Schuh and W. Wegscheider provided
the wafer material. G. Giedke advised on the underlying theory. F. Forster, G. Giedke, and S. Ludwig
wrote the manuscript. S. Ludwig supervised the project.

• Chapter 7: Forster, F. et al. Phys. Rev. Lett. 112. 116803 (2014)

F. Forster and G. Petersen carried out the experiment and analysed the data. G. Petersen fabricated
the sample. F. Forster prepared the data visualization for publication. S. Manus provided essential
council regarding the rf measurement setup. P. Hänggi advised during the writing process. D. Schuh
and W. Wegscheider provided the wafer material. S. Kohler developed the theory and calculated the
interference patterns. F. Forster, S. Kohler, and S. Ludwig wrote the manuscript. S. Ludwig supervised
the project.

• Chapter 8: Forster, F. et al. Phys. Rev. B. 92. 245422 (2015)

F. Forster carried out the experiment, analysed the data and prepared the data visualization for
publication. M. Mühlbacher fabricated the sample. R. Blattmann advised on the experimental
parameters and helped developing the theory. D. Schuh and W. Wegscheider provided the wafer
material. F. Forster, S. Ludwig, and S. Kohler wrote the manuscript. S. Ludwig supervised the
experiment. S. Kohler developed the main theory, calculated the interference patterns and supervised
the project.
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