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Zusammenfassung

Die Annahme, dafl die Raumzeit-Struktur durch kontinuierliche Koordinaten be-
schrieben werden kann, ist ein sehr erfolgreiches Konzept in der Physik. Bei sehr
kleinen Absténden jedoch ist auch diese Struktur einer Quantisierung unterwor-
fen, und man mufl nach neuen physikalischen Modellen zu ihrer Beschreibung
suchen. Eine Moglichkeit ist es, den Raum durch eine nichtkommutative Algebra
darzustellen und auf diese Weise die entstehende Diskontinuitdt abzubilden. In
dieser Arbeit wird der ¢g-Minkowski Raum als ein konkretes Modell solch eines
"Quantenraumes” betrachtet. Das besondere dieser g-deformierten Raume ist,
dafl sie eine so genannte Quantengruppe als Hintergrundsymmetrie besitzen.
Dies macht es moglich sich die in der Physik duflerst wichtigen darstellungs-
theoretischen Aspekte auch fiir die g-deformierte Quantenridume zunutze zu
manchen.

In den zwei Teilen dieser Arbeit werden irreduzible Darstellungen der
g-deformierten Poincaré-Algebra berechnet. Im ersten Abschnitt werden wir sie
als unitdre Darstellungen in einem abstrakten Hilbertraum realisieren, wihrend
wir sie im zweiten Teil als Losungen der ¢g-deformierten Klein-Gordon und Dirac-
Gleichung erhalten werden.

Wir beginnen die Konstruktion der irreduziblen Hilbertraum Darstellungen mit
der Wahl eines maximalen Satzes von miteinander kommutierenden Operatoren.
Deren Eigenwerte repréasentieren die gleichzeitig beobachtbaren Mefigroflen und
die gemeinsamen Eigenvektoren spannen eine Basis des Hilbertraumes auf. Die
Bestimmung der Matrixelemente der Generatoren der ¢-Poincaré-Algebra erfolgt
durch sukzessives Auswerten der zwischen ihnen bestehenden Vertauschungs-
relationen. Dazu wird zuerst eine Darstellung fiir die Koordinaten des g-Minkowski
Raumes konstruiert, dann werden die Generatoren der Drehungen dargestellt,
um schliellich mit Hilfe dieser Ergebnisse auch die Darstellungen der Boost
Operatoren zu erhalten. Indem wir die Algebra der Ableitungen in die g-Poincaré-
Algebra einbetten, ist es am Ende auch moglich fiir diese die Matrixelemente zu
finden, und somit den kompletten g-Minkowski Phasenraum darzustellen.

Um die Klein-Gordon Gleichung auf dem ¢-Minkowski Raum 16sen zu kénnen, ist
es erst einmal notig beliebige Funktionen ableiten zu kénnen. Dies ist aufgrund
der komplizierten Algebra Relationen zwischen den Koordinaten und Ableitung-
en ein schwieriges kombinatorisches Problem. Wie wir zeigen werden kann man
es mit Hilfe von erzeugenden Funktionen losen. Dies erlaubt es uns dann den
Ruhezustand zu bestimmen, welcher die korrekte g-deformierte Verallgemeinerung
der zeitabhingigen Exponentialfunktion auf dem ¢-Minkowski Raum darstellt.
Durch Boosten dieses Zustandes wird anschlieend eine Basis fiir die gesamte irre-
duzible Darstellung gefunden, die den Losungsraum der Klein-Gordon
Gleichung umfasst. Dieselben Methoden kénnen nun auch dazu benutzt wer-
den die Dirac-Gleichung zu losen und Zustédnde mit einem Spin—% Freiheitsgrad
zu beschreiben.
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Chapter 1

Introduction

Two of the most fundamental principles to describe physical phenomena are the
strongly interrelated concepts of space and symmetry. Usually we model these
entities mathematically by differential manifolds and Lie groups, a formulation
which is confirmed to be very successful by experiment. Nevertheless we meet
profound difficulties, originating from the short distance behaviour of field theory,
if we try to quantise gravitation. Quantum gravity has an uncertainty principle
which prevents one from measuring positions to better accuracies than the Planck
length: the momentum and energy required to make such a measurement will
itself modify the geometry at these scales. This gives rise to the question, whether
a differential manifold, which imposes strong constraints on the local structure of
space, is really an adequate model at small scales or equivalently, at high energies.

One way to generalise the description of space is to postulate that the coordinates
form a non-commutative algebra, its intrinsic structure being encoded in the two
operations of the algebra: addition and multiplication. This is by no means a new
idea. In quantum mechanics one replaces the phase space, which is in classical
mechanics represented by a symplectic manifold, by the Heisenberg algebra. Here
a coordinate and its conjugate momentum do not commute any more, leading to
the position-momentum uncertainty. If we similarly assume that the coordinates
themselves no longer commute with each other, we naturally introduce also a
position uncertainty. H. Snyder was the first who gave a concrete model for such a
quantised space-time by postulating a Lie algebra structure for the coordinates [1].

5N

The starting point for this algebraic setup is the free associative algebra C[[z!, .., &
generated by the space coordinates 2!, 2%, ..., 2" Because we are only interested
in algebraic properties we will admit formal power series. The space algebra
M, is then constructed by factoring out a two sided ideal Z generated by the
commutation relations:
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In general the commutator for two coordinates is given by
[, 27] = 6" (2)

As additional condition we impose the so called Poincaré-Birkhoff-Witt property.
It says that the vector spaces generated by homogeneous polynomials with fixed
degree, should all have the same dimension as in the commutative case with
0 () = 0. This ensures that the relations defining the algebra allow us to
normal order the coordinates!.

We get the main examples of non-commutative spaces if we choose 6 to be con-
stant, linear or quadratic in the coordinates. The constant case with 6% € C is
called the canonical case, because it is well known from quantum mechanics. The
Lie algebras are described with a @ that is a linear function of the coordinates
0'(2) = ©Y1*, O € C, and quadratic relations with 6% () = 014! comprise
spaces that are representations of quantum groups.

In this thesis the model for the space will be the g-Minkowski space. This space is
a quadratic algebra which originates form the usual Minkowski space by a contin-
uous one parameter deformation. One characteristic feature of this kind of non-
commutativity is that we deform the space together with its symmetry structure.
This does not work in the category of Lie groups itself, but can be achieved, if we
change the mathematical description of symmetry and use Hopf algebras instead
of groups [3-5]. Since the invention of quantum groups by Drinfeld [6], a system-
atic procedure to deform Lie algebras [7,8] and matrix groups [9-11] within the
category of Hopf algebras has been developed. This led to the construction of the
g-deformed plane [12,13], the quantum Euclidean space [10] and the ¢-Minkowski
space [14-18], all spaces being representations of U,(sus), resp. U,(sl2(C)), the
g-deformed analogues of the classical symmetry algebras [16,19-22]. It is also
possible to define a covariant differential calculus on these spaces [17,23-25].

It is the aim of this dissertation to pave the way for the construction of a quan-
tum field theory based on the ¢-Minkowski space. The propagation of free par-
ticles in space is the most elementary process in field theory and therefore this
is the first thing that has to be generalised to the non-commutative world. In
classical physics the description of free particles on the Minkowski space is com-
pletely controlled by group theory. Free elementary particles are modelled as
irreducible, unitary representations of the Poincaré algebra [26,27]. Free wave
equations represent projectors which single out irreducible representations from
the space spanned by the wave functions. But this rigorous mathematical frame-
work is also present for the ¢-deformed spaces. The background symmetry of the
g-Minkowski space is the g-Poincaré algebra, consequently its irreducible, unitary
representations will model free ¢-particles.

'More precisely, we ask for algebra relations which form a “convergent reduction relation”
[2]. That is, every polynomial has a unique normal form, which can be found by performing
transformations with a finite set of rules.
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The two parts of this thesis are devoted to the construction of such represen-
tations. In the first part we will calculate irreducible Hilbert space representa-
tions and in the second part we will find the solutions of the ¢-Klein-Gordon and
g-Dirac equation, realising irreducible representations on the space of g-Minkowski
wave functions.

Let us give a more detailed outline:

In chapter 2, we start calculating the Hilbert space representations of the
g-Minkowski phase space. Like in ordinary quantum mechanics, we first have
to choose a maximal set of commuting operators, which will determine the quan-
tum numbers of a state in the representation. In our case the observables will be
the 4-dimensional length (X)?2, the time X, the coordinate X3, the third compo-
nent of angular momentum 7%, the helicity H and the spin Casimir €. This set
of operators differs from the one used in previous papers [28-32], which also deal
with the computation of Hilbert space representations. There, instead of X? the
square of the angular momentum 72 is used. But here we follow [33], where the
3-dimensional ¢g-Fuclidean space ]Rg was scrutinised and diagonalise an additional
space coordinate. Furthermore our representations are not limited to spin zero
as in [28-31] and different from [32], where only the case (X)? < 0 was treated,
we also consider the regions (X)? > 0 and (X)? = 0. The generic procedure to
compute the matrix elements of the various operators is to transform the rela-
tions defining the algebra into equations for the matrix elements by multiplying
them from both sides with state vectors. Then we plug in all the matrix elements
we already have determined and see what we find for the unknown expressions.
Usually we encounter a system of recursion relations which we try to solve by
successively eliminating the dependencies on the quantum numbers. In 2.3 we
begin with the space coordinates. Because by construction the coordinates X°
and X3 are already diagonal, we can easily solve for X+ and X~. Using these
results we proceed in 2.4 to the generators of rotations. The discrete spectrum
of the space observables is calculated in 2.5 and the evaluation of the matrix
element of H in 2.6 finally allows us to fix the representation of the ¢-Euclidean
subalgebra.

In chapter 3, we deal with the matrix elements of the boost generators. At first
we evaluate in section 3.1 and 3.2 the commutation relations of the boosts with
the coordinates and rotations. As a result, we find what transitions the boosts
induce on the state vectors and we can partially determine the dependency of the
matrix elements on the quantum numbers. To completely fix the matrix elements
we also have to consider the relations of the boosts among each other. This is
done in chapter 3.3. These relations allow us to deduce recursion relations for
the remaining unknown dependencies, which can be solved successively. In the
end, there is only one free constant left. As it is shown in chapter 3.4, where we
calculate the action of the spin Casimir, this constant is directly related to the
spin of the representation.
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In chapter 4, we calculate the representations of the derivatives. We show, that
one can express the derivatives by the coordinates and Lorentz generators. The
representations can then easily be obtained by inserting the previous results.

In the second part of this thesis we start in chapter 5 with the necessary prepara-
tions for our next task. We want to solve differential equations, so we have in any
case to be able to differentiate functions. Because of the complicated commuta-
tion relations between the derivatives and the coordinates the generalisation to
arbitrary functions amounts to a combinatorial problem. In section 5.1, we show
how one can overcome this difficulty by using generating functions. Applying the
same methods we calculate in 5.2 also the action of the Lorentz generators on
functions.

In chapter 6, we solve the free ¢-Klein-Gordon equation. Different from the
previously studied Hilbert space representations, we choose this time an angular
momentum basis and simultaneously diagonalise the operators (9)?, 9y, T® and T2
These eigenvectors will constitute the irreducible spin-0 representations of the
Poincaré algebra in the space of g-Minkowski space functions M,. In the classical
case they would correspond to solutions of the Klein-Gordon equation calculated
in spherical coordinates. To construct these states we first determine in section
6.1 the rest state, which shall be deemed as the ¢-deformed generalisation of the
exponential function. In section 6.2 this state is boosted to give us basis vectors
spanning the whole irreducible representation. In contrast to the formal solutions
given in [34,35] we will obtain here concrete expressions for the spherical waves.

Chapter 7 is devoted to the solution of the free g-Dirac equation. In section 7.1,
we construct the g-gamma matrices and examine their commutation relations
with the coordinates, derivatives and spin degrees. In section 7.2, we generalise
the methods used in the Klein-Gordon case to find irreducible representations
on the tensor product spaces M, ® D and M, ® D(O’%)7 giving us the Weyl
spinors. Finally, we combine them in section 7.3 to the solutions of the g-Dirac
equation.

Notation Throughout this work, we assume that the deformation parameter ¢
is real, with ¢ > 1. We frequently use the abbreviations

gt —q " n . —n 121
q_q_17 {n}q:q +q :[ ]q

A=q—q ", [n], =

with n € Z.
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Part 1

Representations
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Chapter 2

The matrix elements of the
coordinates and rotations

2.1 The algebraic setup

In this section we start to calculate the irreducible Hilbert space representations of
the g-Minkowski phase space. This algebra comprises the ¢-deformed Minkowski
space, the g-Lorentz algebra and the algebra of the g-derivatives'. With the help
of the R-matrices we can easily write down the covariant commutation relations
for the space, the derivatives and the g-deformed Leibniz rule:
X'XT=R7,XXT, 0,0, = RE000;, 0.X" =00+ RJf 1g X0,
The R-matrices can be found in section B.1 of the appendix and the explicit
list of resulting relations is given in paragraph B.4.1. The form of the ¢-Lorentz
algebra we will use here has been introduced in [16], [17]. It consists of seven
elements: T+, T, 7% generate an U, (suy) subalgebra interpreted as the rotations
and T2, 71,51, 0% are four additional generators for the Lorentz boosts. There is
an extra relation in the algebra which allows the elimination of one generator. If
we consider the quantity
7 = 7_10,2 o q2>\2T2S1

we find, that Z is central in the algebra and commutes with all of the coordinates.
Therefore we set Z = 1 and one could make for example the substitution 0% =
(71711 + ¢®>\2T2S"). Instead of introducing inverse powers of 7!, it will be
convenient in the following to keep all seven generators, having in mind that they
are not independent. The explicit commutation relations of these generators
among themselves and with the coordinates are again listed in the appendix,
paragraph B.5 and B.6. We prefer to work with this seven generator version

"'We can define hermitian momenta if we combine the derivatives with their conjugates.
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of the g-Lorentz algebra, because compared to other forms of the algebra, e.g.
the RS-form [16,19,20] defined in paragraph B.2, the commutation relations are
simpler.

2.2 The set of observables

The independent observables chosen to fix the basis of the representation are
the operators (X)?, X0, X3 73 together with the helicity? H = ¢;;L* X7 and the
spin Casimir® €. These hermitian elements of the g-deformed Poincaré algebra
constitute a maximal commuting set of operators. Therefore, our representation
will live on the Hilbert space spanned by their common eigenvectors:

(X)?|1,t,z,m, h) Ll t, z,m,h)
X0\t z,m,h) = tll,t,z,m,h)
X3t z,m,h) = z]|l,t,z,m, h)
™, t,z,m,h) = o(m)|l,t, z,m,h)
H|l,t,z,m,h) = hl|l,t,z,m, h)

C|l,t,z,m,h) c|l,t,z,m,h)

Note that the length (X)? is a Casimir of the whole Poincaré algebra, whereas X°
and H generate the centre of the Euclidean subalgebra, which is the semidirect
product of the space with the rotations, see [32]. In the following we will use the
light-cone coordinates defined in (B.21) for the g-Minkowski space, replacing X°
and X? by the diagonal operators C' and D:

2
t
Clitemny = TEED gy
Q[Q]q
t_
D|i,t, z,m,h) C=2) s e mon (2.1)
q[Q]q

Being the results for possible measurements, the eigenvalues of these operators
are all real. Anticipating later results we have already introduced an integer label
for the possible quantum numbers of 73 with the eigenvalue ¢(m) € R. The scalar
product for states with the same spin is defined as

<l/7 tla Zl? m,7 h’/“> ta Z,Mm, h> = 5[’,l5t’,t5z’,zam’,m5h’,h

2The components of the 4-vector L = (LT, L3, L=, W) are closely related to the operators
T+, T3, T~ and also generate the subalgebra of rotations, see (B.3). In (B.4) the helicity operator
is given in terms of our usual set of generators.

3see section 3.4
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Starting from the diagonal matrix elements of the observables, we will successively
determine the matrix elements of all the generators. For that we will evaluate
the algebra relations by multiplying them from both sides with arbitrary state
vectors and then try to solve for the unknown matrix elements.

2.3 The representation of the space

Let us first consider the algebra of the g-Minkowski space, defined in (B.20) and
look at the relations:

AD= LDA AC=CA+q AD

q2

We multiply from the left with the bra vector (I,¢,2',m’, h| and from the right
with ket vector |, ¢, z,m, h). The action of D is given in (2.1), so we find for the
operator A:

(Lt 2 m! hA|lLt, z,m, h) (Pt —2) — (' = 2)) =
(L, 2, m! hA|lt,z,m, h) (t — ') — Pt — 2)) =

From these equations we can see, that the matrix element of A can only be non-
zero if t = t' and 2/ = ¢*2 — g\t. We have already used that I’ = [, because the
Casimir (X)? as well as X° commute with A and therefore the operator A neither
changes the length [ nor the time t. As we will see later on, the transition rule
for z will lead to a discrete spectrum of X?. To account for these facts we write:

't 2 m' N|A|l, t,z,m,h) =
6[’,l5t’,t5h’,h(sz/,qQ,zfq)\t<la ta q2z - q)‘ta m/7 h’A“a tv <, M, h>

In exactly the same way we proceed with the coordinate B evaluating the rela-
tions:

A
BD = ¢*DB, BC =CB—-~=BD
q

They give us

('t 2, m' |B|l,t,z,m,h) =

z A
5llvl(st/,t(5h/yh52/7q—22+q—1/\t<l, t, - + —t, m/, h’B“, t, Z,m, h>
q q

Next we consider the relation:

1
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We insert the above results and find
(t — 2)(¢’t + 2)
3 ) = (2.2)
q [Q]q

A A
S Utz BAILE 5+ Stk B (Lt~ + Stk BB E 2 m, h)
? q ? q
k

(Sm/,m(l +

To eliminate B we use B = A, which means for the matrix elements

A )
Ut =+ 2t,m/ | Bl t, z,m, h) = (I, t, z,m, h|A|l t, = + Zt,m/, h)
?  q ?  q

If we take this into account and additionally perform a shift z — ¢?z — g\t in the
quantum number z, (2.2) becomes

(t —2)(t+q°2)

[
AAT = (I+ a2,

)

where A is a matrix with matrix elements
"= (l,t,q°z — q\t,m, h|A|l,t, z, k, h)

We can solve this equation, and the corresponding one for B, by setting:

_ 2
ALt 2om h)) = \/z+<t Z;[(Qt]+qZ>|l,t,q2z—q)\t,m+1,h> (2.3)
q

(t —2)(*t+ 2) z A
Bl|l,t,z,m,h)) = [+ lit,—+—t,m—1,h
| 2 \/ ¢*[2]q bt @ty >

2.4 The representation of the rotations

Let us continue with the generators of the rotations and first evaluate the relations
with the space coordinates, listed in (B.24). We start with the equations

1
TH*D—-DTT+-A=0
q

and ]
Tt — gTJrT3 =0 (2.4)
We insert the result of (2.3) and get?

1 (t —2)(t +¢°2) (2" = 2) .

i1+ Ot 10 g25—ang+ ezl t, 2/ ! BT Y| t, 2, m, h) =0

q\/ a2, ittt e " >
(2.5)

X)L TH =X, T+ =0 = U=1t=t
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and
1
<lv tu 2/7 m/v h’|T+’l7 ta Z,m, h><90<m/) - g@(m» =0 (26)

(2.4) shows that T|l,t,z,m,h) is again an eigenvector of 73. Therefore we
assume that the label m is chosen in such a way that this state is indexed by
m+ 1:

TH|l,t,z,m,h)y o< |l,t,2',m+1,h)

This means that the matrix element of 7" in (2.6) can only be non-zero, if

p(m+1) = q—ﬂsz)(m) —  p(m)=dg ™

with a constant d € R. As was shown in [33], we have to set d = 1 to describe a
representation of su,(2).

From relation (2.5) we read off the possible transitions for the quantum number
2. The equation is only true if either 2/ = z or 2’ = ¢*2 — ¢gt. This fact allows
us to make the following ansatz for the matrix element of T':

(A2 m/ W|TH,t,z,mh) =

q[2],0 + (t — 2)(t + ¢%2)
5[’,l6t’,t5h’,h5m’,m+1 <6z’,zrm+1,m(z) + 52’,q227q)\t \/ [ ]q q2)E(t _ 2):)

Because the conjugate of T is proportional to T—, T~ = ¢* T+, we immediately
get for the matrix element of 7'~

At 2 m' N|T7|lt, z,m,h) =

B2+ (t — 2)(¢g?*t + 2
81180 4O Ot a1 <q252,7zf‘m7m_1(z) + qéz,’zﬁzt\/ [2]4 + (t — 2)( )

At — 2)

assuming that all matrix elements are real.

To obtain information about the matrix I'(z), we evaluate the commutation re-
lation of T with 7 :

THT — T T + %(73 —1)=0

Abbreviating 7,,(2) := I'ynt1,m(2) we find two independent equations:
1 z A
Ym+1(2) 2zt (2.7)
1

—4m—>5 [Q]ql

q + e
2 2 (t—=2)
Tm1(2) = q—2<7m(2)+ A )
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The recurrence relations (2.8) for 72,(z) can easily be solved:

2 —2m 1 q3[2]ql —4m

v (2) =C(lt,z,h) g™ + 7 ((t e q ) (2.9)
Because it is a first order recursion, the set of solutions is parametrised by a free
parameter C'(l,t, z, h), which may depend on the remaining quantum numbers.
In the following it will we expedient to change the description of this parametrisa-
tion. We introduce the variable o := ¢~2™ and consider the right side of equation
(2.9) as a polynomial in z. Now we use a zero of the quadratic polynomial as
a free variable replacing the constant C(l,t,z,h). Defining x¢(l, h,t,z) by the
equation

zo(l,t,2,h)? — —lqu]‘;

(t=2) , zo(l,t,z,h) >0

C(l,t,z. h) =
(1.t 2,h) @*Nxo(l, hyt, 2)

we obtain

(z) = (¢>mxo(l,t, 2, h) — 1) (1g3+2m[2], + (t — 2)*wo(l, ¢, 2, 1))
" g 0tm) (¢ — 22 X2 (1, ¢, 2, h)

(2.10)

where we have factorised the polynomial to identify the newly introduced param-
eter xo(l,t, z, h) explicitly with a zero.

To evaluate equation (2.7) we insert (2.10) and find the following transformation

property of xy with respect to a shift z — ¢?>z — ¢\t and its inverse z — ¢ 2z —
-1

q At

%@a%+ﬁm>:q%W¢%m (2.11)
q q
1
xo(l,t,q2z—q)\t,h) = ?350(1775,2: h)

2.5 The space-time lattice

In this section we will reveal the discrete structure of the space. Because XY is
a singlet under rotations, it commutes with 7%, 73 and therefore we also have
to consider commutation relations containing boost generators to get transitions
changing the time eigenvalue. Here we start to examine the matrix element of
the boost 7!. First note that
(71, 7% =0

Hence 7! does not change the quantum number m. The first relation we evaluate
is

'D — qD1' =0
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We get
1

q [2] q
which means that

(t—z—qt' — N, 2, m/ B |7, t,z,m,h) =0

1
2=—(qt' —t+2) (2.12)
q
if the matrix-element of 7! is non zero. We proceed with the commutation relation
with the coordinate A:
A — qATY — g\’DT? =0
Because we can invert the coordinate D this relation allows us to express the
matrix element of 72 in terms of 7':
(LY, 2, m! W|T?|l,t, z,m,h) = (2.13)
1
gN* (' = 2')

\/t2 +qtz) + q ([20 — q22) {1t 2 m/ B |7 ¢* 2 — gAt, z,m + 1, h)

/

A
(L S St = Lz B = ) (@ 4 2) + P

Let us insert this expression into the relations
1
T%C — gAT! — qCT? =0 0 — =C1t — g\*BT? — ¢\’ Dr1!
q
In addition to (2.12) we find, that the transitions induced by 7! have to satisfy

N1+ q[2]y (gt =) (qt' =) =0 (2.14)

Having two equation for 2z’ and ¢’ we can express them in terms of z and ¢:

(2)-3 ) eamorseam (1) e

Now we can determine the lattice structure of the spectrum.

2.5.1 The discretisation of z

From (2.3) we see that the action of A on a state vector shifts the quantum
number z by the rule z — ¢?2 — g\t. The inverse transformation is performed
by the action of B: z — q% + 315. Iterating these actions several times, z passes

through the sequence
2(V) =t + ¢ (2 — 1), veL (2.16)

where the operator A, resp. B, increases, resp. decreases, the quantum number
v by one unit. zy is not yet fixed and will be determined later.
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2.5.2 The discretisation of ¢

The case [ =0 The two possible transitions allowed by (2.15) simplify to:
1
t'=qt or t ==t
q

Therefore the spectrum of X is described by the sequence
t(n) =¢"1
with some constant 75. We insert this in expression (2.16) and find for z(v):
2(v) = ¢"(¢"20 = ¢"AlVlyo)

To ensure that the argument of the square root in the matrix element of the
coordinate A in (2.3) never becomes negative, we have to fix the constant z; in
the right way. The inequality we have to fulfil is:

(t —2)(t+ ¢°2)
Q[Q]q

Because for fixed time |z| can not become arbitrarily large, we have to restrict the
domain of the sequence z(v). To clarify this we plug the expression for z(v) and
t(n) into (2.17) and introduce the new variable z := ¢*. This gives the following
quadratic polynomial in x:

[+

>0 (2.17)

n 2 — n
q(q"10 — z)" (x_ gt [2]q70) >0
2], q"To — 20

V\ x
A
To terminate the series for z(v) we require that the zero x; coincides with ¢2("~1:

2(n—1) _ ¢ "2y

q "
q"To — 20

This fixes the constant zp to

20=q"(¢"" —q[2]y) 1o
and our sequence z(v) is

z(v) =¢q" ()\[n — V], — q2*”+”) To
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(2.17) simplifies to:
N2 e n—1-v], >0

Therefore, the square root is well defined for v < n, n € Z. For v = n — 1, the
operator A will annihilate the state vector and the series z(v) will terminate. We
can also check, that the matrix element of B is well defined.

Of course, you may choose zp in such a way that the series z(v) stops at any given
point n+u € Z. But this differs from the fixing above only by a renaming of the
label v: Vyew = v+ (u+ 1). Here we have used u = —1 to be in accordance with
the choice made in [31].

The case | = % > (0 We assume that there is a state with t = 0. Graphically

this state is depicted as the following point on the space like hyperboloid of
constant positive length®.

Iterating the time transformation in (2.15) for this initial value, we will produce
the sequence

Using the plus sign in (2.15) will increase n by one: t(n) = t(n + 1), whereas
t(n) = t(n — 1) for the minus sign.

Plugging this into (2.16) we get for z(v):

) =g (0720 - L)

Again we have to restrict the domain of the sequence z(v) to ensure that the
matrix element of A is well defined. This time the left side of (2.17) gives the
following polynomial in z = ¢?*:

_ (@l2ly20 — aAlllo)’ (H 7 "[2llo )(_ 4" Blylo >zo

ql2],’ gA[n]qlo — q[2]420 gA[nlqlo — q[2]420

5In this picture r denotes the 3-dimensional radius and ¢ the time.
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In the above figure we have marked the allowed region for x by a thick line.
Similarly to the the case | = 0 we fix the termination point of the series by

demanding the right zero z; to be ¢?®~1:

q2(n—1) _ q"[2]4lo
q)\[n]qlo - Q[Q]qzo

We solve for z

2 = [;—(])q (gAln —1]g—2¢7")

giving us

() = L (A — v af1+ v}

Furthermore, (2.17) reduces to

1—n+2y}\12
. 2y +1},n—1-v), >0
2,

Therefore the quantum number v is bounded by n: v < n with n € Z. This

ensures also that the matrix element of B is well defined.

2
The case | = ——2— < (0 Now we assume that there is a rest state with ¢ = to.

Q[Q]q

If we successively apply the transformation (2.15), we will produce the sequence

t(n) — M

2,

which gives for z(v):
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The inequality (2.17) is now given by

o (R N (@Rl
[Q]qg < {n+ 1}qt0 - [2](120) ( {n+ 1}th - [2]1120) =0

This inequality selects a finite range for v:

We choose
2n qn[2]qt0

{n+ 1},t0 — [2]420
leading to

o = qA[n]th

2]
and g
q n—+v "
z(v) = S L +n— vl — [1+],)

Now (2.17) is
¢ N — v 1 + vt
2]
and therefore the allowed region for v is: 0 < v < n, if we also take care that the
matrix element of B is well defined.

2
OZO

2.5.3 The discretisation of [

To obtain a discrete spectrum for the Casimir (X)?, we have to introduce the

scaling operator A. From its commutation relations with the coordinates it follows
Az l,t,z,m,h) ~ |¢*,qt,z,m,h)

As was shown in [30], we can represent A for [ # 0 just by replacing ty — tog™
and ly — lyg™ and setting

A%\M,n,y,m, h) = ¢*|M + 1,n,v,m, h)
For the case [ = 0 the representation of A is realised by

AﬂO,n,u,m,h) =¢*0,n+1,v+1,mh+1)
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The lattice

Let us summarise the results for the spectrum of the operators (X)?, X°, X3 and
the 3-dimensional length (X)?:

Forl=0:ne€Zandv<n
(X)?IM,n,v,m,h) = 0
XM, n,v,m,h) = q¢"10|M,n,v,m,h)
X*|M,n,v,m,h) = ¢ (Aln—v],— ¢ ") 70|M,n,v,m,h)
)

(X)2|M7n7 V7m7h = q2”7'02]M,n, v,m, h>

Forl:q:g]ig >0:n€Zandv<n
2M
(X)*M,n,v,m,h) = I5|IM,n,v,m, h)
Q[Q]q
hY -
XM, n,v,m,h) = [n]qulo|M,n,y,m,h>
2],
—n+v -
XM, n,v,m,h) = q[z] (" A — v], — ¢{1 + v}y) @ 1o M, n, v, m, )
q
72 AQ[”](E 2M 72
(X)* M, n,v,m, h) = 1+ 2] 5~ | ¢ lg IM,n,v,m, h)
q
Forl:—%<(): neNgand 0<v <n
M
(X)?M,n,v,m,h) = — £2 M, n,v,m, h)
Q[Q]q
1 ~
XM, n,v,m,h) = MthMM,n,V,m,m
2],

3 g M7
X°|M,n,v,m,h)y = o] (@"[1+n—v],—[14+v],)q" to|M,n,v,m, h)
)2 z? q 2M 72

(X)*IM,n,v,m,h) = m—g[n]q[n—l— 2, ¢ t5 IM, n,v,m, h)
q

To get an idea how these spectra look like, we draw the eigenvalues of X° versus

the values of 4/ ()2 )2. The resulting space-time lattice, where all three cases are
combined, is shown in figure (2.1). You can still recognise the hyperbolas of
constant length (dotted lines), which are now fixed by the quantum number M.
But this time they are set up by a discrete series of allowed spectral points. A
more detailed discussion of the spectrum is given in [31].

The matrix elements of the coordinates with discrete quantum numbers are given
in the appendix (A.2).



27

N

Figure 2.1: space-time lattice for ¢ = 1.07 and ¢ = 1.03
2.6 The matrix element of H

If we insert the discrete values for the quantum numbers in equation (2.11) we
get the v dependence of z((l,t, z, h):

xo(l,n,v,h) = q_QVxO(l, n, h)

Because H is a Casimir operator® of U, (suy) like X°, the possible eigenvalues of
H are the same as for X°. Therefore we know:

( q"10]0,n, v, m, h) forl =0
H|l,n,v,m,h) = [2] {h+1}4t0| — 2] ,n,v,m,h) forl <0
| bl v m b for I > 0
But H is given by
1 1 oy 1
H= 5 [D(T )7 + (C = ANAT~ + @A (A\DT~T* — BT*)) () }
q|2]q

So we can calculate its action also in terms of the matrix elements of the coordi-
nates and the rotations. Doing this we find:
q"10x0(0,m,h)|0,n,v,m, h) for [ =0

;

2
o G o PO
0

h) forl
H‘l7n7 V, m, h) = [2]41'0(_%,7%}” n l/ m > or < 0

q[2

(ol g "), ol 12

n,v,m,h) for [ >0
\ qr [2}(13?0( [2] m,h)

2],

6See [32,36]
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These two actions have to be equal, which allows us to solve for xy(l, n.h):

gt for [ =0
zo(l,n,h) =< ¢ or ¢ forl <0
gt or — g forl>0

We find for the case [ # 0 two possible solutions for xy. But inserting them in
(2.10), they both give the same expression for the function ~,, and therefore give
also the same final result for the rotations, which can be found in the appendix

A3
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Chapter 3

The representation of the boosts

3.1 The relations with the coordinates

Equation (2.15) shows the two possible transitions induced by the generator 7.
For the discrete quantum numbers these transitions reduce to the shifts: n’ = n+1
and v/  =vorn’ =n—1and v/ = v — 1. This enables us to make the following
ansatz for the action of 7!:

i, n,v,m,h) = (3.1)
Zﬁl(l,n,u,m, h,W)l,n—1,v—1,m, k) + 7 (,n,v,m, h,h)|l,n+1,v,m,h')
h/

Using this ansatz we reevaluate the commutation relations of 7! and T2 with the
coordinates. What we find are rules, that allow us to shift the arguments v and
m of the functions 7 /2 simultaneously about one unit. In the case [ = 0, we get

m(0,n,14+v,14+m,h ) = ¢71(0,n,v,m,h,R) (3.2)

[SIY)

[—1+n—v],

o, 75(0,n,v,m, h, h')

(0,n,14+v,14+m,h,bh) = ¢

and for [ # 0 the relations are listed in (A.2). This is all what we can deduce
from the commutation relations with the coordinates.

3.2 The relations with the rotations

Let us proceed with the relation

T =T = A% =0
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We rewrite T2 with the help of (2.13) in terms of 7! and insert the matrix elements
of the rotations and the ansatz for 7!. This time we can derive rules which
accomplish a shift in the quantum number m alone. Again, due to the length of

the expressions, we only show here the case [ =0

, [1+2m+n—2u+h’]
1—h+h —_—

Tll/z(O,n,V,l—i—m,h,h’) = gq 4\/ [h+2m3—n—21/] qul/z(O,n,y,m,h,h') (3.3)
3 g

2

and list the other cases in the appendix, see equation (A.3). Together with (3.2)
it is now possible to shift v and m separately.

The next relation we consider is

1
T — —QT_Tl +ASt=0
q

To evaluate it we plug in the ansatz for 7! and the known action for 7~. Because
St = —(73)%ﬁ and (2.13), also the matrix element of S* can be expressed by the
ansatz of 71. In the end we get for the case [ = 0 the following four independent
relations!:

0 = ¢r0,n,~1+v,—~1+m,h ) —7(0,n,v,m, h,h)

0 = q%\/[n—V]qul(O,n,—l+u,—1+m,h,h’)— [1+n—v],m0,n,v,m, h )

7+h+2m\/—2—|—h—|—2m+n—2y
0 —= q 4 [

]qul(O,n, v,—1+m,h,h')

2
oam [T W+ 2m 40— 2
T \/[ + —|—2m+n V]qul(O,n,V,m,h,h')
+¢7y/In = V] 73(0, =1 +n, 14 v,—1 4+ m, I, h)

—q¢ 1 \/[n—1-v];7(0,—1+n,v,m, I h)

0 = qr4 ,/[n—y]q(711(0,1+n,u,—1+m,h/,h)—711(0,1+n,1—|—1/,m,h’,h))
tehtom | —24+h+2m—+n—2v
+q 1 [
2
Wawm [ —1+H +2m+n—2v
—q 1 [ 5

la 7o (0,n, v, —1 +m, h, )

], 7 (0,n, v, m, by h)

These relations can now be further simplified, if we apply the rules (3.2) and
(3.3). We find that the left side of the first two equation give 0, therefore these

'Due to the length of the relations for the cases [ # 0 and because the procedure for their
evaluation is same as for the case [ = 0, we do not show them here.
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relations contain no new information. But the third relation allows us to express

75 in terms of 7

Oy m b ) = e [ e
s
mizntn’ B +1—h
(qéJFQV _ QW[_’_T]Q> 7-11 (07 1+ n,v,m, h/7 h)

Again, we list the results for the cases [ > 0 and [ < 0 only in the appendix,
see (A.4). Inserting this into the last equation, the left side turns out to be
proportional to [(h' —h — 1)][3(h — h + 1)]y * 7 (l,n + 1,v,m,h, h'). In fact,
this is also true for the cases | # 0. Therefore the function 7] (I, n, v, m, h, h’) can
only be non-zero for ' = h+1 or K’ = h — 1 and our ansatz (3.1) simplifies to

Mi,n,v,m,h) = (3.4)
Tf’fl(l,n,y,m,h)]l,n —lLv—1mh—-1) —|—T21771(l,n, v,m,h)|l,n+1,v,m,h —1)

Tll,l(l,n, v,m,h)|l,n—1,v—1,m h+1) +7'21,1(l,n, v,m,h)|l,n+1,v,m,h+1)

where we have used the abbreviation 7 (I, n,v,m, h) := 7/ (I,n,v,m,h,h + 1),
likewise for 7.

3.3 The relations with the boost generators

To get information about the function Tll,il(l,n,y,m,h), we now consider the
relations

7_17‘!2 o q2 T27_1 —
7_181 . SlTl

T10'2—0'2T1—Q)\3T251 = 0

The evaluation of these relations is a straight forward but lengthy calculation.
The procedure is clear. We plug in the ansatz (3.4) for the action of 7! and also
express T2, S* = —(7%)272 and 02 = (7%)271 through the matrix element of 1.
Then we use the rules in (A.4) to express the function 71 by 7 and the rules
(A.2) and (A.3) to eliminate any shift in the quantum numbers v or m in the
arguments of the functions 7{ ,(I,n, v, m, h).

We will find two sorts of relations. The first set of equations does contain the
function 7 (I, n, v, m, h) only linearly. They will give us rules, which translate
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a shift in the quantum number A to a shift in the quantum number n. Explicitly,
we get for the case [ =0

[N

[h+1+2m+n72y]
7_11,1(0777'7 V7m71+h) = dq : qul,l(Oan_ 177/’ m, h’) (35)

h—142m+4n—2v
[
2 q

71.-1(0,n,v,m,1+h) = q71,-1(0,1+n,v,m,h) (3.6)

and for the case [ # 0 we refer to the appendix (A.5) and (A.6).

The second set of relations contains the functions Tf’il(l, n,v,m, h) only quadrat-
ically. Here we treat the cases [ = 0 and [ # 0 separately:

The case | = 0 If we simplify the expressions we result in the following two
independent relations:

) ) ) 2> 2+h+27g+n72u]q . ) ) -
711(0,2+n,v,m, h)" = q7[h+2m+n_2y] 711(0,n,v,m, h) (3.7)
2 q

h+2m4+n—2v
2 ]q

O = @]

<7—11,—1(07 n+ 2a v, m, h)2 - q_67—11,—1<0a n,v,m, h)2>

You see that the second equation expresses 71, in terms of 7| ;. If we plug this
into the first relation we deduce a recursion relation for the n dependence of 7'117_1:

7—11,—1(07 n,v,m, h)z - q7[2]q7—11,—1(0a n+ 27 v, m, h)2 + q147—11,—1(07 n+ 47 v,m, h)2 =0
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The cases [ > 0 and [ < 0 Similar to the case [ = 0 we get relations which
allow us to eliminate the function 7 _;

(3.8)

7_1171( l02 9 n; V; m7 h/)2 - {1 + h}q{h_le_n _I_ V}q
’ Q[Q]q qh)‘g[h - n]q[h+2m;—n_2y]q[2+h+27g+n_2y]q{_1 + h}q{n}q
2

Q4+ h+2m+n—2w lo?
{_1+h}q{n}q2[ 9 ]qul,l(ﬁﬂ% V,Wl,h)
q

3 h+2m+n—2v. | I 2
—q*{h} {1 +nt {2+ nkl B ]qu,l(Mv n,v,m,h)
q

to? “l=hfo L Bl b gy — 1
Tffl(_LjnJ v,m, h)? = q 24 hlg[5 —m — 5 + 1],
, Q[Q]q [h]q[h - n]q[l + n]q

@1+ hly[2 +n],[3 + n]qu o’

m+n—2v (
[ M g2

[h]q[1+ n]qz 1

- m-rn—zav (_
[2+h+22+ 2 ]q 1,1 Q[Q]q

In addition we find recursion relations for the n dependence of 7} ;:

o - A= L b 2
[fezmgn=e], T g[2],

7n7 V? m’ h)

2

3 _ _ 2
_q[Q]q[ l+h—nlfn+2}{n+1};, | b .2+ n,v,m, h)

T1(
(=24 h = {n}g [P, gl
Flh—nln+3Yn+4}, | 1°
[_2 +h— n]q{n}q[4+h+27g+n—2u]q 1,1 q

+

2
7n7V>m7h7171)

[n], - to?
0 [2+h+2rg+n—2u]q 1,1< q[2]q
_ q3[2]q[—1 +h—nl2+n[3+n],

m+n—2v 1,1
[—2+h — n]q[l + n]q[4+h+2+2]q

b nl B tnl,
2+ b=l L+ o [, T

2

to?
,24+n,v,m,h,1,1)

(_Q[Q]q

2
A+mn,v,m, h,1,1)

am,
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These equations can be simplified a good deal more, if we perform the following
substitutions, defining the functions R(ly,n) and R(to,n):

(3.9)

5 S e R P o )

1 0 ql™]q 2 q
0 h R(l

n g o) 2ol 2~ 2, (o)

" 2 2 q%+m—37"+y[2+h+2m+n721/]

(== n,v,m,h,1,1) = — : L R(to, n)
B g[2], Alnlg[1 + nlq

Indeed, using these transformations we will end up with only one recursion rela-
tion, valid in both cases:

[h —n— 2]qR<l0/t0, n) — [Q]Q[h —n— ]_]qR(l()/to, 2+TL) + [h - n]qR(ZQ/to, 4+n) =0
(3.10)

Remember that the generators 71,72, 02 and S' are not independent. They are
related by the relation

1 =o' — \25iT? (3.11)

which can be used to find a second recursion relation for the n-dependence of
71.1(0,n,v,m, h) and R(ly/to,n).

For the case | = 0 equation (3.11) reduces to

1 = ¢ >l (0,n,v,m, h)2 + ¢ 2 (0, m, v,m, B) (3.12)

q7— % —3m+37" —v
)\[2+h+2m+n72u

+
5 lg

71171(0, 2 +n,v,m,h)?

and for [ # 0 we again refer to the appendix (A.7, A.8).

Now we are prepared to solve the various recurrence relations. We start with

the case [ =0 With the help of (3.12) we simplify (3.7) and obtain:

711,1(0,71, v,m, h)2 =
h+2m+n—2v
2

h 5n
—2—§+m—7—1/)\[

v 2
q ]q <q2+4 - qh+3n7_11’_1(0, n, v, m, h) >

0= ™+ qh+3"711771(0, n,v,m, h)2 — q8+h+3"7'11771(0, 2+ n,v,m, h)2
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It is easy to solve these equations:

T (0,n,vym h)? = (3.13)
+2q4n ((_1 + (_1)”) Cl<07 v,m, h) + (]- + (_1)”) 02(07 v,m, h))
1 —sthtom—rn-2 h+2m+n—2u
711’1(0,71, v,m,h)? = _iq—+ 27 Al ; lq

(=1 + (=1)") C1(0, v, m, h) + (1 + (—=1)") C5(0, v, m, h)]

The n independent functions C1(0,v,m,h) and Cs(0,v,m,h) parametrise the
possible solutions and are not fixed by the recursion relations. Even though we
have a first order recurrence, we get here two constants to determine the initial
value, because n is only coupled with n+2, giving us for the even and odd integers
independent sequences.

To determine the dependency of the functions C; and C5 on the other quantum
numbers, we refer to the relations (A.2) and (A.3). Inserting the expressions
(3.13) we are able to find the v and m dependence:

C1y2(0,v,m, h) = ¢ Cy5(h)
and from (3.6) we deduce a recursion relation for the h dependence

Ci(h+1) = ¢ 2Cy(h)
Co(h+1) = ¢ 2Cy(h)

The solution is

au) = ¢ (304 (160 + 51+ (-1G0)
Gt = a7 (514 (1G04 50+ (-1/)G0))

and gives us finally the following expressions for 7/, ;:

71 (0,n,v,m b)) = g M Jg2thtn — C(0,h + n) (3.14)

h+2 -2
71(0,n,v,m h) = q‘i“h‘?m””‘ﬁ”*“)\/ﬂ - m; L ,000,h+n)

with the abbreviation C(0, n+h) := —1 [(1 + (=1)"™)Cy(0) + (-1 + (—1)"+h)01<0)].

In a similar way we proceed with the other cases.
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The cases [ # 0 If we combine (3.10) with (A.7) and (A.8) we can simplify
the second order recurrences to a first order one:
¢"N[h —nl{v},
{htedh + 1}
¢"Alh — nlq[v],
[1+ h],[2+ A,
Again, we get for the even and odd integers two independent sets of solutions,
parametrised by the n independent functions C/(lo/to, v, m, h):

R(lo,?’L—f—Q) = R(lo,’fl)—

R(to,n + 2) = R(to,ﬂ) —

R(l,n) — %‘Un)@(zo,u m, h) — wc&uo,u,m, h)

¢“{v}q (( 1+( ") 1+ (=07
{h}e{l +n}q 2

0 CVY 6,41, 1) - )€ (g, v, m, ) +

¢Vl (— 1+( 1)") (I+(=1)")
LR A, < e ==

+

{h}, — {1+h}q+{1+h—n}q>

R(to, n) =

{1+h}q+{1+h—n}q)
Then we fix the v and m dependence of the functions C/, with the help of the
relations (A.2) and (A.3):

01/2(l0,V7m, h) = qV{V}qol/Q(lo,h)
Ciya(to,v,m,h) = Ag"[v]qCry2(to, h)

(A.5,A.6) is used to find a recursion relation for the h-dependence:

91 h
Colloh) = L2FMacgopiy)

{h}q
Clloh) = G ({h 2, Collo, h+ 1) — A{ }El *ﬁq )
Colto, h) = E’ 1 Zt(]l(to, h+1)

The solution is

AL+ 2], (1 (-1)")Cullo) = (=1 + (=1)")Callo) )
Gl = RTER

N[+ (2, (1 + (1)) Callo) = (=14 (-1)")C1 (b))
Cg(lo,h) -

{h}o{h + 1}
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2081+ 2, (1 + (-1")Calte) = (1 + (-1)")Cs ()
2[1 + Rh]4[2 + h],
20540, + 2, (1 + (=1)")Calto) = (=1 + (~1)")C1 (1))
2[1 4 hl,4[2 + R,

Ci(to,h) =

Cy(to, h) =

Altogether we have for R(ly,n) and R(to,n)

QV{V}q
Bllon) = Gy s 10,

LT, (1 () Call) ~ (<14 (1) )2
q"A[Vlq
2[1 + h)y[2 + Rl

[2[1 T+ (4 (~1)" )2l Calt) — (1 + <—1>“">[2]q01“0>}

Finally we can insert this in (3.9) and together with (3.8) we obtain:

(3.15)
1 ( l(2)

T (—=—,n,v,m,h) =
v GRly )

AR ) (),

qi(2+h+2m 3n+4v) \/
{h}q{h+1}q{n}q{n L}

L0
(= v,moh) =

Q[Q]q
h—2m—2
L(1_h 300, —5— t ViV h4+n—1
q2(1 g-f— 2+2 )\/{h { 2 }q{ }q } ({ }3_2C(l0’h+n))
q
2

1 o 2
(QC(ZO, h+ 1) + A2[— Z ap )

o Hh =1 {n}{n -1 2
L(— tO n,rv,m =
7-1,1( q[2]q7 » >h)
h+2m;3n+4u [W — V]q[l/]q 1+ h —-n 2
I \/[1 T (- )

2

t
Tll’_l(_Tg]q’n’ v,m,h) =

L1 by 3nig, ][5 + v 1+h+n ?
g )\/[mqum]q[n]q[umq ([ y ‘C(t““”))
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with
Clohtn) = 22 (14 (1 )0) — (14 (-1 1))
Clto htm) = =0 (14 (1)) Cilt) — (1 + (1)) (1))

3.4 The Casimir

Up to now, we have determined the matrix element of 7! except for the constants
C1/2(0/1p/ty). Here we will see that these constants will be fixed if we specify the
spin of the representation. For that we calculate the action of the spin Casimir €.
As it was shown in [32,36], this spin Casimir is given by the square of the Pauli-
Lubanski-vector 3, whose components, using our set of generators, are listed in
the appendix (A.9):

€ = ()2 = PuPy — %‘chp (3.16)

We will proceed in the same way and first calculate the representation of the
Pauli-Lubanski-vector. It can be found in the appendix A.5. Then we evaluate
the action of the Casimir, now expressed via equation (3.16) by the components of
the Pauli-Lubanski-vector, on an arbitrary state vector. Despite the complicated
looking expressions, we find in the end a very simple result:

( 2Tgqu(O, h+n)|l,n,v,m,h)  forl=0

q3)\2

263((144)*C(to,h+n)—q)
(14+9)°[2]q

¢|l,n,v,m, h) = |l,n,v,m,h)y forl <0

22 ((~1+q)+2¢C (lo,h+n))
\ ‘1>‘2[2}q

\l,n,v,m,h) forl >0

This allows us to write the constants in terms of the eigenvalue ¢ of the Casimir:

312
A
C0,h+n) = 270,
q [2](1
C(to,h+n) = + —5¢
Lo ) (1+q9)° 2t
(149 N2,
C(lo,h+n) = > + 1 c

What remains is to specify the possible eigenvalues of the Casimir. We can
proceed as in section 2.5, where we have determined the spectra of the space
observables. Again, we have to take care that the square roots appearing in the
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expression for the representation of 7! are well defined. That is, the arguments
of these roots have to be bigger than zero.

This means for the [ = 0, if we look at (3.14), that we have two possibilities:

0 0
C(0,h+n) = = ¢ = i
g+ 2;% [;]q e
where s € Z with h+n > s and h +n > —2(m — v). Remember that in the
classical case ¢ = 0 [37] and therefore we also have to set C'(0,h+n) =c=0 to
correctly generalise to the ¢-deformed case.

For the case [ < 0 it follows from (3.15) that we have to choose
Lo
C(to,h+n) =[s+ §]q

which gives us for the Casimir

2t2
= m[s]q[s + 1], (3.17)

with s € %NO . The allowed region for the quantum numbers n and h is described
by the inequalities

g =l htnl

5 5 s,h—n>2m—v),h+n>-2m—-v+1) (3.18)

Note that (3.17) coincides with the expression given in [32] for the eigenvalues of
the spin-Casimir.

For the case [ > 0 we get

1 1
Cllo,h+n) == X[s + 5[5
and o2
¢ =~ [slyls + 1]
2l !

This time the region for the quantum numbers n and h is:

h—
M23,h—n22(m—l/),h—i—n2—2(m—V)

To complete the calculation of the matrix elements of the Lorentz boosts, we
listen the final results for the representations of the generators 7,72, 02 and S!
in the appendix A.6.
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Chapter 4

The representation of the
derivatives

In this section we will derive the representation of the derivatives. Different
from the method used previously, where we successively evaluated commutation
relations by acting on state vectors, we will here solve the problem algebraically
by expressing the derivatives in terms of the coordinates and ¢-Lorentz generators.
In [20] it was shown, how to realise the ¢-Lorentz algebra via the coordinates and

derivatives:
ij 1/2 pij  vkAl
Vi = AP XFO

where Pj{kl is the antisymmetric projector of the R-matrix, see (B.2). The decom-
position of V% into its selfdual and anti-selfdual components gives the vectorial
generators of the g-Lorentz algebra:

1
R* = PfngCda §4 = EPdeVCd

The explicit form of these relations can be found in the appendix (B.5) and
converted in our set of generators in (B.6). Looking at the first relation of (B.6)
we can immediately read off

&4 = DY (? AP — T?A2)
In the same way we can also express dB through P
1

N A 1 1
o = q—2D‘1(BaD - ?51(73)—51\—

=

)

Plugging this into (B.7) we find for d°:

o0 = Lp (qD (7' = 0?) + ABT? + ADCOP A — A (ADTQT* +AS! (73)‘%» A

A
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We can further simplify the expression for éc, if we make use of the equation U! =
U?, which is additionally satisfied by our realisation of the ¢-Lorentz generators.
As was shown in [19,20], this relation is related to the intuitive picture that V%
represents orbital angular momentum. The above expression for d° reduces to:

~ 1 ~ _1
¢ = —>\D_1 <7’1A_% +gA\CO” — o (1) ZA_%>
q
What is left is to determine OP. To this end we consider the relation

. 1 . .
0P A = —+ ?AOP — g DO
q

which gives the action of 9P on the coordinate A. If we multiply this relation
from the right with B, replace AB with (X )2+ ¢ 2CD and insert for 97 what
we have found above, we can solve it for O”:

9 = L (Db 42 (007 - pas?) (7)) ()2

Now we can insert our results for the action of the coordinates and ¢-Lorentz
generators. Because V% represents the orbital angular momentum, we have to
choose the spin zero representation for the generators. Notice that we have di-
vided by the square of the length (X)?, so the above derivation is only valid for
[ # 0. Indeed, it was shown [31], that it is not possible to construct a represen-
tation for derivatives on the light-cone. The explicit expressions for the action of
the derivatives on a state vector are listed in the appendix, paragraph A.7.

Above we have calculated the representation for the hatted derivatives, which we
have introduced in equation (B.18) to be proportional to the conjugated deriva-
tives. Therefore we can also easily get a representation for the 0;, by just trans-
posing the corresponding matrix elements of the d;. As an consistency check we
can finally evaluate the nonlinear relation (B.19), which relates the conjugate
derivatives with the ordinary ones. Indeed if we multiply the equation from both
sides with arbitrary state vectors and evaluate the actions, we can verify the
representation listed in A.7.

If we combine the derivatives with their conjugates, it is possible to define a
hermitian momentum [20]

7 ~
b = —5(32' +¢'9;)
with the same conjugation properties as the coordinates

FA:PB,FB:PA, ?C:PC and?D:PD

The representation for these momenta can be found in appendix A.8.
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Part 11

Solution of wave equations
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Chapter 5

Acting on functions

Before we can start to find solutions of wave equations on the g-Minkowski space,
we have to be able to differentiate functions. In this section we will show how
to cope with the complicated differential calculus on the ¢-Minkowski space. We
will present closed expressions for the action of the derivatives and ¢-Lorentz
generators on a function in one variable. Such representations for the derivatives
and symmetry operators on functions were already given in [38]. But there the
action on functions f(X° X+ X~ X?3) depending on all the space coordinates
were calculated, and therefore, due to the complexity of this problem, the re-
sults are given in power series expansions. Here we restrict ourselves to functions
depending on only one variable. This simplification and the introduction of a
matrix notation, which neatly encodes the braiding, allows us to use “generating
functions” to solve the combinatorial problem inherent in the commutation rela-
tions. With the help of these results it is then also possible to compute closed
forms for the derivatives of functions depending on more than one variable.

5.1 The derivatives of g-Minkowski space func-
tions

To have an efficient calculus for the derivatives of the g-Minkowski space, it is
expedient to assemble them in a vector and to perform the calculations using a
matrix notation. In tensor notation the Leibniz rule is given by

aaXb - 52 + RIbICadXdac

Let us define the matrix (Ly»)? := R}, X% and from now on write the com-
mutation relation as:

0X =00 X + Lyxd (5.1)
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with the 4-vector & = (9y,03,0,,0-)" and X € {X° X3 X+ X~} In this
equation Lx0 is the usual matrix multiplication of the vector 0 with the matrix
Lx, whereas the other operations are performed componentwise. The explicit
form of the matrices Lx can be found in the appendix, see (B.22).

The advantage of this notation is that it neatly encodes the braiding between
space functions living on M, and the derivatives. We just have to replace the
coordinates X with Lx if we commute it with a derivative. For example, we can
generalise equation (5.1) and write down the Leibniz rule for any two function F
and G as

Ov (F(XDG(XT)) = (95 F(X') G(XT) + (F(Ly:)d) > G(X7) (5.2)

which we may also depict graphically as:

d F(X)G(X) d F(X)G(X)

Next let us use this new notation and try to calculate the derivative of an arbitrary
function in one variable. The first step towards this goal is to consider only the
derivative of powers (X)™ of this coordinate. —— is the generating function of
the powers, so let us see what its derivative is like:

1
1—2X - a(1+ZX1—2X)
1
= 8+z[8>X+LX8]1_ZX
1 1
- (1—ZLX) al—ZX = 8+Z(81>X)m, SO
1 1 Z
al—zX_l—zLX (a—i_l—zX(aDX)) (5:3)

If we now expand in powers of z and compare the resulting coefficients, we will
find the result for 9(X*)". Of course, before we can make this expansion, we have

to find a explicit formula for 1_Z1LX.

5.1.1 Commuting the derivatives with space functions

To make use of the Leibniz-rule, we have to be able to calculate functions of
the Lx matrices. In fact, this is possible, because the matrices Lx satisfy the
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following finiteness conditions, which resemble characteristic equations found in
classical linear algebra:

s N 2 @ o Loy
L= (0P XL~ 5 (X0) (5.4)
(Lopl® = [Ba(X"%) (Loja)” — [Bla(XY)2(Logs) + (X3
(L) = X (L) - [3][ 1[4] (XHP(LL) 4 @l (XHP(Ly) — g (X
s Blav o Bl 1oy
oy = B -Broepn s Soo)
1
Lixye = ?()@)

Using these relations, it is a simple task to calculate arbitrary powers of the Lx
matrices. To demonstrate the procedure, consider for example

1 .
1—zLo"

=1+ 2L LY I —
1-— Z[@ talotz 01 —*Zl@

We insert (5.4) to eliminate L§ and use Lo =7 = ; (77 — 1). We find

o)
[2]4

=1+ 2(Lo - %X‘)) + E—z ( (X)* - (XO)Q) + Z[Q]qxo} !

1—2zLg q 1 —zLyg

1 .
1—2zLo"

and then solve for

1 q(24 (g + g2Lo — [2),X°2)
1—2Ly  [2],(¢®+ (X9)222 — ¢[2],X%2) — 22¢\?(X)?

(5.5)

Since the matrix Ly doesn’t appear any more in the denominator, we can expand
without problems in powers of z by making a partial fraction decomposition.

(5.6)

1 2" 2q 0 2 0
IS [ T

+ <)\W +\Jal2, (2aLo [Q]QXO)) Oﬁ]

with

212X° 4 gAy/q[2,W and W = \/4 )2¢2 + q(X9)2[2],

The coefficients of this power series are either constant or itself powers of n,
therefore we can also immediately read off the result for an arbitrary function



1

s g (0 )
F(2q3[*2]q) <>\W + \/@ (2¢Lo — [2]qX°))]

Functions of the other Lx matrices can be calculated in the same way. You
start with the generating function ﬁ7 separate from it the first terms of the
power series and insert the characteristic equation. After solving this equation
for ;—5—, the matrix Lx will appear only in the numerator and it is possible to
expand in powers of z. Again the results for general functions can easily be read
off:

File) = q6Ai[2]q[(q _AQZ)(QB];AAE)(Q —elpxey ()

(q4 - qu) (qﬁ - qu) (1-— AqQ) +
— X+A F(XT) Ly

P ) U8 pey 2

(@° — Ag2) (¢°

(X+)2A ;
(@A) (¢ — Ap) (1— Ap
2BMXﬂMZ
F(L,) _ % (1 —dq Aq;s)[é]lq_ 4q Aqu)F(Xi)
(1= Ay (1— g'Ay)

- e F(X)L_

) P(X*) (L)

] (X)?
1 [(q —Ap) (¢" — Ay
q3)\2[2]q Aq2
(¢ = M) (1 = A
- Q[2]q 1 X0/3Aq2
2(92 - Aq2> (1— AqQ)
(X0/3)2Aq2

F(L()/g) = )F(Xo/s)

>F<X0/3)L0/3

F(X)(Loys)?

F(Lixye) = F(

Here the scaling operator A, (A, F(X) = F(aX), Aia := A4/, ) acts only on the
function F', but not any more on the coordinates appearing in the L matrices.
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5.1.2 Calculation of the derivatives

After we know how to calculate functions of L matrices we can go back to equation
(5.3) and compute the derivatives of the powers (X*)". For that we only have to
expand ﬁl_zzx in a power series. l—zlLX was calculated in (5.5), resp. (5.7),
and a partial fraction decomposition again will yield the results:

o F(X%) = W([z[z]mﬂxo) (X° = ¢’Le) + (5.8
0> F(XT) = D1y, F(XT)(0>X")

)

X7) = D1y F(X7)(0vX)
) = DixosF(X"?) (0> X7)
) = Dq%(pr((X)Q)(aD(X)Q)

with
Ay = ([2]qW(q2L0 — X% £ 4/q2l; (2°NM(X)* + [2],X° (¢°Lo — XO))) .

The derivatives with respect to the coordinates X+, X~ and X%3 are the well
known Jackson derivatives'. Due to their simplicity they can also be deduced
directly from the commutation relations, without using generating function at
all. Only the time derivative can not be found so easily and it is necessary to go
through the procedure described in 5.1.1.

aX)—f(X
"Dax f(X) = HoE
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5.2 The action of the symmetry operators on
g-Minkowski space functions

5.2.1 The rotations

Again we first calculate the action on the generating function for the powers
and then generalise to functions. To demonstrate the method we only show the
calculations for T~ acting on a function F(X™):

1 1
77— = 1" T Xt ——M—
1—zX+ e 1—zXT
(B23) 2 _ 3 1 _
= Xt — 20, XP————+T
q> 1—2X++Z a2l 1—2X++
1 1 1 1
—_—T = T 9, [ X0 xO
1— X+ 1 5X* e q[]q( - ZX7 - ZX7

The expansion in z gives the result for a general function:

X+
T F(X*) =1/al2ly (X°Dpx+ — XPDgix+) F(XT) + F(=-)T~
q

The remaining relations can be found in the same way:

T-F(X"%) = F(X"T™ - q\/q[2)4 Dypxos F(X"?) X~
T F(X™) = F(@X )T~
T F(X° = F(X°T~

TTF(X™) = F(#X)TH + % (X°Dyex- — XPDpx-) F(X7)
q12lq

X

q2

T"F(X% = F(X"T*

T*F(XT) = F(&)T

. 2 .
THR(XY3) = F(X"3T+ - 2y D o F(X3) X+

av/al2ly
?F(X% = F(X°7
PR(X?) = F(XP)7®
T F(X7) F(¢'X™)r°
PRXY) = F( )
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5.2.2 The action of the boosts

We will proceed in an analogous manner as above, but now the calculations
will become a bit more involved, because we have to solve a coupled system of
equations. To illustrate the computation, we consider as an example the action
of 7t and 77 on the coordinate X° :

A 1
X’ = ¢XT° - —XPT* 4+ ——X"*7! (5.9)
q[2], q[2],
1 A X2
Slx0 —XOTl—i-[qTXO/g’Tl 4 5 -T2 (5.10)
q q 414lq

Plugging these relations into the expansion of the generating function ﬁ we
get:

1 1
T°——— = T?4:7*°X°———
1—2X0 te 1—2X0
(5.9 2 0o AA o) ge 1 z +1 1
=" T X' ——X T X —
i (qz a2, > S CRY PR S T
1 1 z 1
— T?—— _ = T2 + Xt rl—> (5.11)
ZA
1—ZX0 1—qZX0+mX0/3 ( q[2]q 1—ZXO
1 1
1 _ 1 1+v70
T—l—zXO = T+ZTX—1_ZXO
2
(10) 1 i (EX0+ @Xo/:a) -1 1 - qzA X -T2 1 _
q 2], 1—2X q[2], 1—2X
1 1 gz 2 1
1__— = T X 17— 5.12
e Tl—zXO 1 — 2X0 _ 922 x0/3 (T q[2] 1—2X0 ( )
q (2]q q
Now we can solve (5.11) and (5.12) for T?— and 7' —5:
.1 C (ql2)gX%2 — 2AgX O3 — [2]g) 71 4 222\ /q[2] X~ T?
T1o2x0 g2N2(X)2 — 2], (1 — 2X0 ([2], — 2X0))
T R P
1—2X0 q22A2(X)2 — 2], (1 — 2X0([2], — 2X9))

This can be expanded in a power series and then easily generalised to yield the
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commutation relations with a general function:

2 o 1 o Qt A 0/32 +.1
TRED) = 5w (”2&[213‘”2&[2}3)( TE P )
1

To, (F(2q2[2] A+ Pl )A‘) T

1 o gA a— 4 -2 q 0/3._1
PO = {5 (Figgg) ~ Fag) (X ! _/\\/_q[Q]qX/T>

1 oy o 1
o), (F(2q2[21q>A‘ ! F<2q2mq“*) "

Here we have defined Ay := (qW[Q]q +¢X°[2], q[Q]q>. ax and W are taken

from equation (5.6). Similarly we deduce for S! and o:

1 o _ 4 ay o gA 0/3 ol - 52
S F(X) = W (F(2q2[2]q) F(2q2[2]q)) ( q[?]qX /BSt X >

INE

JA_ + F(

1 Q.

o (P

2 oy _ 1 ay - +ql _ 1 0/3 ;2
PO = i (Pt~ Fiag) (X S )

1 oy 2
+2qW[2]q (F(z 2[2], JA+ +F(2q [2]q)A> ’

The formulas for the remaining operators follow again directly from the corre-
sponding relations with the coordinate:

TQF(X_) = F(lX_)T2— . 1 X0/3DqX_F(X_)7_1
g q2 [Q]q
TIF(X+) = F(qX+) X0/3D X+F(X )TQ
\/_ q

S'P(XY) = FXS'+ FxO/quXm( X*)o?

O'2F(X_) = F(qX_) X0/3D F( 2X )S
T*F(X?) F(1X0/3)T2 S'F(X3) = F(gX"/3)s!
q 1 L o
TlF(X0/3) _ F(qX0/3)7'1 O'2F(X0/3) _ F<5X0/3)0_2

_ 1_
TR = HGAOT PF(XY) = FEX)0
q
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Chapter 6

The solution of the free
¢-Klein-Gordon equation

In this chapter, we want to find irreducible spin-0 representations of the
g-Poincaré algebra in the space of g-Minkowski space functions M,. The ba-
sis vectors we are going to construct for the irreducible subspace are the common
eigenvectors of the operators (8)2, 8, T3, T2, which constitute in the spin-0 case,
a complete set of commuting observables. We will start by solving the ¢-Klein-
Gordon equation in the rest frame, the solution being the g-deformed gener-
alisation of the exponential function. The remaining states of the irreducible
representation can then be calculated by successively acting on this state with
the symmetry generators.

6.1 The ¢g-exponential function

Let us try to find a function being a common eigenvector of the derivatives with
only the time eigenvalue not being zero:

(80,0) > F(X°, X) = (aF(X°,X),0), aeC (6.1)
with X = (X* X+, X7) and 9 = (8,0,,0_). If we can find such a function it
would constitute the rest state, having the eigenvalues (—O‘—2 a, 0, 0) with respect

al2]q’
to our set of observables (9)? = ﬁgi‘j&ﬁj, Do, T3, T? [32,36].

(6.1) is a first order differential equation, so we must specify an initial value to
get a unique solution. We choose F(0,0) = 1, because then we get the usual
time dependent exponential function in the classical limit ¢ = 1 and the above
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state is a reasonable candidate for a q-deformed generalisation of the exponential
function in the g-Minkowski space.

First notice, that the function F can only depend on X° and (X)%:

To see this, we expand F with respect to a Poincaré-Birkhoff-Witt basis into
a power series. Choosing the polynomials (X%)"(X)*(X?){(X~)/ as the vec-
torspace basis of M, we can write:

FX°,X)= Y Cumpag(XO)" (XX (XY

n7k7i7j20

The initial condition sets Cp 000 = 1 and the first order! term is XY, exactly
as in the classical case. But what happens with the second resp. higher order
terms 7

To handle these terms, we will make use of the covariance of the differential cal-
culus with respect to the rotations. Consider for example the action of dy on
an U, (sup) irreducible subspace V; of M, with quantum number j. The highest
weight vector |7, 7) of this representation will be proportional to (X°)"(X?2)!{(X+)4,
for some n,l € N, and by successively applying 7~ we will get a basis of V;. Be-
cause the actions of the symmetry operators do not change the grading, all the
vectors |7, m) will have the same one, given by gr(|j,m)) = n+2l+j. 0y is itself
a singlet under the rotations, so if we act with it on V; we again get an irreducible
space V;, but of course with the grading diminished by one. Let us apply this
observation now to the second order term vy of F(X°, X ). We decompose it into
U, (suz) irreducible components and write vy = sy + r9, where sy contains all the
singlets and 75 the rest. The action of dy must give the singlet X° | hence we
have 0y >y = 0 and together with (6.1) (8y,d) > ry = 0, which means that the
function r4 is a constant. To fulfil the initial condition this constant has to be set
to zero, thus vy only depends on the singlets X° and (X?). In fact, because the
above consideration is also valid for higher order terms, induction on the grading
will give us the desired result.

Now we can apply the formulas from (5.8) in order to differentiate F'(X°, (X?)),

lwith respect to the natural grading: gr((X°)"(XT)*(X3) (X)) =n+k+i+]
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with the result:
os F(X0, (X)) =

1 3 ay  (X)? B a_ (X)? —-X'X3
N JaD (X W [2q 2l (F<2q3[2]q’ e ot ) XX

Plugging this into the differential equation (6.1) we will find only two independent
equations,
Oxo > F(X° (X)?) = aF(X°(X)?) (6.3)
Oxs > F(X° (X)%) = 0 (6.4)

because the relations for the space derivatives turn out to be equivalent. Explicitly
we get from (6.4):

2q1/q 2, A\ WF(X°,(X)?) + (6.5)
F(Qq?”TQ]q’ ()q(g) ) (QCIXO [Q]q - a+) - F(%{ﬂq? (;? ) (ZqXO [2]11 - 0‘*) =0

and from (6.3) together with (6.4):

AW AP (XP)~ay/a 2 (Pt S0 - g ) ) =0
(6.6)

At first sight, if one remembers the square roots in the definition of a4 (see
(5.6)), it seems, that these functional equations are very difficult to solve. But
it turns out, that we can get rid of the square roots by performing the following
coordinate transformation for the two central elements X and (X)?:

( (§§2 ) - ( %%E;) ) (6.7)

( 4 ) X X0 ()

Xo—i—\/(XO)Z—i-é—]qq(X?)

with the inverse:

—X3
qX~
1x+
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Notice, we have \/(X0)2 + é—]qq(X2) = ﬁ\/([Q]g — 4)(X0)2 +4X2, and therefore

the argument of the square root is bigger than zero. The classical limit ¢ — 1 of
the transformation is simply

( A ) [ VX2 XO
B A/ )?2 + XO ’
In the new coordinates A and B the equations (6.5) and (6.6) are:

(A+ B) F(%(B _ A),cAB) =

BF(%(B _ %),q—(;AB) +AF(%(§ ~4), 5 AB)
az—):](AJrB) F(%(B _A),cAB) =
F(3(B = 5). 5 AB) — F(G(5 — 4), 5 AB)
with ¢ := %. These equations can be further simplified if we introduce the

scaling operator A,, > f(x) = f(ax) and observe that the functions on the right
hand side of the relations can be rewritten in terms of the function on the left
side:

F(%(B - %), q—z AB) = Ayv F(%(B — A),cAB)
F(%(g — A), q—cz AB) = Ago F(%(B — A),cAB)
This allows us to write:
(A(l —Ag)+ B(1 —Aq%)) > F'(A,B) = 0 (6.8)

(a)\(A+B)—2q(A% —A%)> > F'(A,B) = 0

abbreviating F'(A, B) := F(3(B — A),cAB) = F(X°,(X)?). To bring this in

a more familiar form, let us replace the scaling operator A,, with the Jackson
derivative. We have D, f(z) = Lf&=See) — L (1 _A_y» f(x) and therefore

T—ax (1—a)z

Aoz = (@ — 1)z D, + 1. Plugging this into (6.8) we get

(Dy +Dp)>F(AB) = 0
A(a+2D4) +Bla—2D5)>F(A,B) = 0
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which is equivalent to

D%DF/<A,B) = —D%DF/(A,B) (6.9)
D> F(AB) = —%F’(A,B)

Dy > F(AB) = %F’(A,B)

These are well known differential equations for the g-exponential function in one
variable. The solution of (6.9) is:

~24 2B

F,(AvB) =€q " €q

Lek-1)
: T . q2 k : : : : ar __ azx
with ef =) k20 T L the g-exponential function satisfying Dq%xeq = aey”.

Transforming back to our original coordinates X® and (X)? we finally obtain:

F(XO, (X)Q) — eq% (XO_\/W)qu <XO+\/W) (610)

Even though square roots appear in the arguments of our g-exponential function,
they will all disappear, when we make an explicit expansion in powers of «:

g (0 [XOPRT AL () g (X0, /(X074 3L (X)2)
q

0 o [ gA 2 4q 0\2
3 q° g (146" —=2¢Y) N3]y o, o
o <1+2q2+2q4+q6(X ;- 2], XX )>

4 q*\? gy C(1+2¢%+3¢") N3]y, wova, v N3]y ona
TN x02(x2y 4 LA
([21q3[41q( T, O 0 )

+akzs

In the classical limit ¢ — 1 the spatial scalar Vv X2 cancels and we indeed end up
with the usual exponential function:

F(X° (X)?)=e 2V X2-X0) & (VX24X0) _ LaX?
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6.2 Boosting of the rest state

6.2.1 The highest weight vectors

The g-exponential function we have calculated in the previous section is the rest
state. To get a moving particle we have to boost it, or more precisely, we want
to construct the basis of the irreducible representation by using the rest state as
a cyclic vector.

In fact, it is possible to find a closed formula for the action of powers (7T%)7 and
(S1)7 on our g-exponential. As an example, we apply the operator T? j-times?:
. . _ap ap 3 aj —¢7%A ¢'2B .
V;-] — (TQ)]Deq 272 :qJ(J 2)[ ]16‘1 2%l 2 (X-i-)J
2lq

Here we used the relation in (B.26) for the action of 7% and in addition simplified
the expression with the rule ef® = (1 — g \a ) eg%“’”, which is a consequence of
D%xeg‘m = aeg?, to have a common argument for all the g-exponential functions
q

appearing in the calculation.

What eigenvalues have these states with respect to our maximal commuting set
of observables (9)?, 0y, T® and T? ?

A and B are functions of the su,(2) scalars X° and (X)? and therefore it is only
(X*+)7 which determines the quantum numbers of 73 and T2. Of course (X )7 is

a highest weight vector and we find in accordance with (A.1):
T3 ij = ¢~ %[24], ij and (T)? > ij = qlilqlj + 1, ij

Because (9)? is by definition a Lorentz-scalar, 72 commutes with it, and therefore
(0)2V) = (T%)7 > ((0)* > g2 e2?) = —qf“;qujj Vj > 0. Remember that our
definition for the Klein-Gordon operator was (9)? = ﬁg”@i(‘?j, which is the

reason for the factor .
To calculate the action of dy, we use (B.27) giving us:

«

J _
Dr V=1,

{j+1},V}

These eigenvalues already appeared in section 2.5.3 on page 26 where we consid-
ered the space-time lattice of the Hilbert-space representation.

2For S* we get a similar formula with X~ instead of X+.
The action of (7)™ or (¢2)" is much more complicated.
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Altogether we see that when we successively apply the boost 72 on our rest state
we can generate states which pass through all possible time eigenvalues. They
are all of the same length, determined by the parameter o and all have, for a
given time, the greatest possible quantum numbers of T? and T3. To state this
result in a nice way, let us introduce the Dirac notation and write

ot )
S EEW VAW,
Q[2]q

= |-

where the quantum numbers correspond to (9%, 8y, T2, T?) as the set of our ob-
servables.

6.2.2 Irreducible representations of U, (sus) in M,

Next we calculate basis vectors spanning an irreducible representation of the
rotations. These are easy to construct, because we just have to act repetitively
with T~ on our highest weight vector. Each action will decrease the magnetic
quangtum number by one and therefore we pass through all possible eigenvectors
| (6]

—m Jsgsm), m € {j,...,—j}. Todo this explicitly we have to use the relations

in (B.23) and commute arbitrary powers (77)"(X*)™ of the generators. As
always, this is done with the help of generating functions. We start with

1 1 1 1 1
= +z + (6.11)
1—yT—1—2X+ 1—yT~ 1 —yT- 1—2zX+
To continue we need an expression for 1_y1T_X +
I +y b pex (6.12)
1—yT~ 1 —yT~
(B23) v+ Y tp— o 1
= X = XTT 2], yX
q21_yT_ + Q[ ]qy 1_yT_
1
2 0/3
Q[ ]q y 1 yT_
But what is 17;T_ X037 Again using the same method, we get:
1
X0/3 X0/3 7= x0/3
1—yT— + 1 —yT—
(B.23) 0/3 1 0/3— 1 -
= X —XT — 2,y —————X
YT vl ]qyl_yT_
1 1 1 1
= X0 X — g\ [q[2)y X~

1 —q?yT—1—yT-
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. . . . . 1 .
plugging this into relation (6.12) we can solve it for = X +
1 1 1 1
Xt = Xt—— ey X°
1 yT- 1 &T- 1oy 1—yT-1- 57~
1 1 1
+q2[2]q92

1—q2yT*1—yT*1—q%T*

Now we can proceed with equation (6.11) and find:

1 1 1 1 1
= X" 6.13
1—yT-1—2X+ Ty TN T ET 1 axt (6.13)
q
1 1 1
—\/q2]y2 X3
aR2ley> 1 —yT-1- 5T~ 12X+
1 1 1 1
+¢*2],y*2 X

1—q2yT*1—yT*1—%T*l—zXJr

We have to solve this equation for # <= In fact this is possible if we apply

a partial fraction decomposition to the products on the left side of the relation.
We have:

1 1 1 1 n q 1
1—yT—1—q%T— q)\l—q2 A —yT-
and
1 1 1 1 1 N 1 1 q 1
1—g?yT-1—yT~1- 5T~ N1 —yT- B2, 1% /\2[ g1 —q®yT—
Inserting this into (6.13) and rewriting ;— == with the help of the scaling oper-
ator as Ay T we finally get the result
1 1 B
1—yT—1—2X+
1 1
(®—Ay )(g* =Ny ) 1—yT~
z4/q(2] 22 _ Y
1 P2 = Ay ) XP — 25— X — 2N X

q2

This relation holds in the semidirect product algebra M, x U,(suz). To read
off the action we just have to apply the counit € to the second factor on the
right side. In our case ¢(T~) = 0 and therefore we get the following polynomials
with magnetic quantum number m, setting up an basis of an irreducible U, (suz)
representation in M,:

Vi, = (T7) e (XYY

(6.14)

= [yjfm] <A;/2X+—|——y Q[2] (q —AL)XS)
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The symbol [y"]f(y) denotes the coefficient of y™ in the series expansion of f(y).
Notice that the time coordinate X" does not appear in this formula. Since the
3-dimensional space algebra is obtained by setting X° = 0 in M,, we see that
(6.14) holds for the g-deformed 3-dimensional space® as well as for the g-deformed
Minkowski space M,,. Not until we start to normal order the polynomial in (6.14)
the coordinate X will reappear by using the commutation relations of M, [40].

Above we have constructed the basis by using (X )7 as the cyclic vector of the ir-
reducible representation. Of course we can also take (X )7 and act with (7+)/+™
to generate the basis vectors of the representation. To find these polynomials we
can repeat the previous calculation in the same way, giving us:

Vi = (T (X))
1 J
_ i+m Va2, 1 3 4 qy~ ( Aq?y)(q_4 - Aqu) _
= [ (Aqayx - P A X+ i X
The two bases are connected by the following factors:
m2—i(i— j —mll, =~
Vi, =q" 2)—b+m}!2 A (6.15)

In the end let us see, what happens in the classical limit ¢ — 1. Certainly
one expects, that the above polynomials are related to the ordinary spherical
harmonics. For example, if we compute the polynomials for j = 2 equation
(6.14) gives us

Vi = Xtxt (6.16)
V: o= Z?b (@EXEX* 4 XTXP)

Vi = % (XX + XTX™ 4+ ¢°[2,X°X?)

V3 = \/7 (X°XT+ 44X XP)

V2, = q'[2l []X X"

We don’t need to normal order the coordinates, because in the classical limit they
commute in any case. But be careful with the scaling operator Ay . It has to
q

be evaluated before* we set ¢ — 1. The classical values of the space generators,
transformed into spherical coordinates, are proportional to the ordinary spherical
harmonics [41]:

3For the general quantum Euclidean space Eé\' the harmonic polynomials are calculated
in [39].
q—1

For example: 1(¢* — Ay )y? = y? 1 (¢t — q—i) imd 4y? but +(¢* —1) =52
q
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— 1 ,
xt+ = —Ersin(ﬁ)e“p: \/grYll(gp,@)

x3 = rcos(f) =2 \/grYol(ap, 6)

— 1 A
x- = Ersin(Q)e_w: \/grY_ll(go,Q)

If we plug them into (6.16) we find that the )2 are for ¢ = 1 also proportional
to the normal spherical harmonics :

11 , 2
V3 2 Srteesing)” = 2y T2 i (e.0)

N ; 2
V= 2 cos(0) sin(0) = 4y 12 Y0, 0)

V3 2t o2 (1+ 3cos(20)) = 8\/§T2Y02(90a 0)
9 q—1 2 iy . o 67 22
V2, = 12rfe " cos(f)sin(h) =8 57 YZi(p,0)

- : /6
V2, i D sin?() = 16 % Y2, (¢, 0)
Of course, this is also valid for higher quantum numbers j: J7 = Y.

6.2.3 The solution of the ¢-Klein-Gordon equation

By using the Dirac notation for the states, we can summarise what we have found
so far by writing:

2

el il
with —j <m < jand j € NJ.
Our next task is to construct the states | — ﬁ, n,j,m) with 0 < j < n. Again
we restrict ourselves to the highest weight vectors of the U, (sus) representations,
that is we are looking for the states | — ﬁ, n,j,7) with 0 < j < n. We assert

that we can make the following ansatz for these vectors:

CKQ

a2l

- [Z] T POXO(X?) (XYY, (617)
q

n,7,7) = q"
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where P(X°, (X)?) = 3" io<n—j Cnm(X?)*(X)? is a polynomial whose mono-
mials have a grading smaller or equal than n — j. It is clear that this ansatz has
already the correct eigenvalues with respect to T2 and T3. What we have to take
care of is, that we also get an eigenvector of 9y and 9. Consider first the action
of the time derivative. For (6.17) to be an eigenvector of dy we have to fulfil:

2 2

Qo « o
C][Q]q7

n7j7j> - _{n+ 1} | - _7n7jaj>

2], T2,
If we plug in our ansatz and differentiate it with the help of (B.27), we end up
with a partial g-differential equation for the polynomial G(A, B) := P(X?, (X)?),
which we now write in the coordinates A, B introduced in (6.7). Defining the
operator

Oo| —

O(n,j) = (A+B)¢"Van — Jlq (6.18)

—(A+¢")B) (aAg"A+29) Da — (B+¢*"A) (aAg"B —2¢) D
which we will also need later on, the partial ¢-differential equation reads

O(n,j)>G(A,B) =0

In fact, it is possible to find the solution of this equation. Up to a constant factor
we get for fixed n and j a unique polynomial:

GnJ(A, B) =
Bl 5 () [] [P e e

You see, that this also fixes the state vector up to an overall normalisation con-
stant. We even didn’t need the eigenvalue equation for the Klein-Gordon operator
0?. Nevertheless, we have to check that our state possesses the correct eigenvalue
with respect to 9. For arbitrary functions g(A, B) and f(X*) we deduce with
the help of (B.27):

4q

O oA B X = Gl [DaDy (A4 B4 BFX)  (619)

- (Dg +Ds — Aat B)DADg) 9(A, B)X" Dt f(XT)

q P q a2

Here we insert our result for the vector | — ﬁ, n, j, 7) and indeed we can validate
q

a?

— s the desired eigenvalue.



64

The vectors | — -2 ,n,7,m) with m < j are constructed by acting with 7~ on
a2l M J y
]—%, n,j,7). Because T~ commutes with (9)?, these vectors are also eigenvector
q

of (9)? with the same eigenvalue —%.

Finally we can summarise our results:

The common eigenvectors of the operators (9)2,dy, 7%, T% in the space of
¢-Minkowski space functions M, are given by

2 n
(6% . _3) —q"%A q"$B ;
,Tl,j,m> = qn(n 2) n eq 2 €q : Gn:j(Aa B) y7jn

42, [2)2

They form a basis for the space of solutions of the Klein-Gordon equation
(0;0° — m?) ¢ = 0, where a = Fim.
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Chapter 7

The solution of the free ¢-Dirac
equation

In this section, we want to realise an irreducible spin—%—representation of the
g-Poincaré algebra by means of spinor wave functions. As in the classical case, we
consider a spinor field ¢ = e; ® 9" living in the tensor product space
(D(%’O) & D(O’%)) ® M, and use a Lorentz invariant projector which is only linear
in the derivatives to select an irreducible subspace. Indeed, we can formulate in
complete analogy to the undeformed situation the g-Dirac equation as [32,42]:

(m —~"0u) =0 (7.1)

But to give this equation also in the ¢-deformed case a precise meaning, we
carefully have to examine the different terms which appear in this equation. First
of all, we need to determine the gamma matrices. These matrices, defined on
(D(%’O) ® D(O’%)), must constitute a 4-vector operator in order to combine with
the derivatives to the scalar 7*9, and as we will see in the next section, this
property will fix them almost uniquely. Secondly we have to explain how the
action of the derivatives on a spinor field is defined.

Dyt =0, (e; ®Y")

In the classical case, we would simply commute 0, with the basis vectors e; to
let it act on the functions 1*. However in the g-deformed setting the swapping of
two tensor factors is no longer a covariant operation. Instead we have to use the
braiding to assure the right transformation property:

> (@) = (Rare)®(Ray>du) > 1) (7.2)
dy ¢ V!
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= h>(Oupv) = (hay>dy) > (he)>v))

You might think, that this is nothing else than a slight generalisation of our usual
Leibniz rule (5.2), if we set 0, > e; = 0, because the spin degrees are not space
dependent. Indeed this would be the case if we choose the second R-Matrix R;;
to accomplish the braiding. But as we will see later on, only if we use here the
first R-matrix R it is possible to solve the Dirac equation.

Keeping this modification in mind, the usual Dirac equation (7.1) has also in the
g-deformed setting a well defined meaning.
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7.1 The ¢-Gamma matrices

To construct the g-gamma matrices, we will proceed in this section in a similar
way as in [32,42]. The task is to find a 4-vector operator v* in the space of ma-
trices defined on the representation space (D(%’O) @ D(O’%)). On these matrices the
g-Lorentz algebra act via the adjoint action

1

1 1 2 3
B At = p(z’0)@(0’2)(h(l))’YM,O(Q’O)@(O’Q)(S(h(2)))

where the matrix representations for the ¢g-Lorentz generators can be found in the
appendix (B.9). On the other hand, we can read off the action of the generators on
a 4-vector operator from the relations with the space coordinates in (B.23,B.25).
Each of these relations provide us with an equation for the matrices +*. For
example, if we look at the zero component of the 4-vector, we see that it has to
fulfil the following four independent equations:

Tt =T"p/4"=T3~"=0

and 9, 1
(=t +qo?) by’ ="
4], q
Plugging in an arbitrary 4 x 4 matrix as an ansatz, we find that there are only

two variables not yet fixed

000—§
0 0 0 b 0
720—300
a 0 0 0

If we require in addition that we are consistent with our choice of the metric, we
have to set (7°)? = —1 and therefore b = £. Of course, our Dirac equation should
also be covariant under the parity transformation, that means 7° has to commute
with the parity operator P: [y°,P] = 0. In our basis, the parity operator, which
exchanges the left and right chiral part of the (D(%’O) <) D(O’%)) representation, is
given by the matrix

P =

o = O O
_ o O O
o O O
O O = O

This matrix commutes with 7°, if we choose a = V4

The zeros component of the 4-vector at hand, the other components can be found
in a straight forward way. In fact, by inspecting the relations for the action of
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the g-Lorentz generators, we can immediately read off:

1 2
1

\/ Q[Q]qT2 970 = 4

2
q

and after the evaluating of these actions we end up with

1 _ 1
0 0 0 —Z% 0 0 0 %
o | o 0o v o - 0 0 —qg3 0
T 0 =L 0 o T 0 —L 9 0
Vi . TV
Ji 0 0 0 g5 0 0 0
0 0 0 0 0o 0 - qflq 0
+_ 0 00 —/[2, - lo o 0 0
7= 2 Y
/2l 0 0 0 0 0 0 0
0 00 0 0 2], 0 0

With this matrix representation of the ¢-deformed gamma matrices it is now also
possible to specify the commutation relations they obey. We find!

vy =97+ Pty (7.3)
which also can be rewritten in the equivalent forms
Pguy* s =g7 or 4"+ RY M = ql2eg”

where the antisymmetric projector Pj{kl, the symmetriser Péjkl and the
R r-matrix are defined in (B.2, B.1). These relations generate the g-deformed
Clifford algebra.

The commutation relations with the coordinates, deriva-
tives and spinors

Next we want to calculate the square of the g-Dirac operator (y#9,)% = 49,70,
In order to simplify this expression by using the Clifford algebra relations (7.3), we
first have to commute the gamma matrices v with the derivatives 9, to have the

!The explicit form of these relations are shown in the appendix, equation (B.10)
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gammas side by side. Of course, you might expect that this swapping has to be
done via the braiding: 947 = ¢ R} v*6'. But which of the R matrices can we use
and what value has the prefactor ¢ 7 To answer these questions, we can proceed in
a straightforward manner. First we make an general ansatz for the commutation
relations: 9"/ = A ~4*9! with an arbitrary 16 x 16 matrix Ag;jl)) We want
covariant relations, so we require h > (9°47) — AY hi> (7#0") = 0, h € Uy(sl5(C)).
Because the tensor product of two four vectors splits into four different irreducible
components: DG3) g DE3) = DOO) g pLO) g DO gy DALY every morphism on
this tensor product is described by four variables. Therefore if we insert in the
above covariance equation for h our symmetry generators and use the formulas in
(B.23) and (B.25) to evaluate the relation, we can fix all but four coefficients of the
matrix AEZJZ)) The remaining entries are determined by demanding compatibility
with the various other algebraic structures.

Consider for example the relations in (B.11) showing the action of the gamma
matrices on the spinors, which at once follow from their matrix representation.
We want that the swapping of the derivatives with the gammas and spinors
commutes with the action of the gammas on the spinor. Graphically, we may
depict this as:

au Y5 au Ys;

S

So far, we are still missing the commutation relations of the derivatives with
the spinors. Therefore let us fix them now together with the relations for the
gammas. In equation (7.2), we have already anticipated that these relations are
also implemented by the braiding, but nevertheless let us make an general ansatz
Ol = B,Zjl s¥9' and require covariance. Here the composition into the irreducible
components again shows that we will end up with four coefficients not yet fixed:

D3 @ (D(%’O) ® D(O’%)> ~ DO3) ¢ DO2) @ DO @ DEY. So we in addition
require compatibility with the commutation relations between the derivatives and
the coordinates, which can be illustrated as

aX/}s ) aX)s y a’XJs ) 0 }X}s
N N -

Indeed, if we evaluate this condition we are left with only 8 different possibili-
ties for the remaining unknowns, listed in (B.12, B.13). Compatibility of these
solutions with the space and spinor algebra can then also be checked.?

sA A s A A
Thatisfor A=X or A=s \l\l = w
2 v [}

we want :
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After this we can go back to the consistency condition concerning the action of
the gammas on the spinors. This will give us in the end 16 different solutions,
representing all the possibilities to combine the dv-relations and ds-relations in
a consistent way:

( 1 :E(Vl, Vl)
cRy with c¢= if c=
—1 :l:(Vl, —Vl)
A(ij) _
(k1)
1 :|:<V2, Vg)
cR;! with ¢ = it c=
L —1 :l:(VQ, —V3>
(7.5)
( q :l:(v27 Vl)
cRir with c¢= if c=
) —q +(va, —v1)
Agy = L
q +(v1,vs3)
ch_Il with c¢= if c=
\ —é +(vo, —Vv3)

Here the vector ¢ = (a,b, ¢, d) names the coefficients from (B.12, B.13) and the
vectors vi = (1,0), vy = (%, —%) and vs = (%, ﬁ), the various values for
q q

these variables.

Now we have everything needed to calculate the square of the ¢-Dirac operator.
With the help of the Clifford algebra relations (7.3) we find:

(0)? for A} =R; and R’

(

302 for A = 1Ry}

) 2 _ i
(’Y M) q+3(8)2 fOI' A(k]l)) = qR[[
q (k1)
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7.2 Spinor fields

In this chapter, we shall generalise the considerations which lead us to the solution
of the ¢-Klein-Gordon equation and also incorporate spin degrees of freedom.
The fields are now elements of the tensor product space M, ® D0 , Tesp.
M, ® D(O’%), and again we try to find the common eigenvectors for a maximal
set of observables. This set of operators is ()2, 9y, T3, T2, as in the case of the
¢-Klein-Gordon equation, but now we also have to add the helicity-operator H
to correctly describe the spin degrees of freedom. Note, that we have placed
the space algebra M, in the first tensor factor, because then the action of the
derivatives is not affected by the spin part: (0®1)> (f(X)®v) = (0> f(X))®v
This can easily be changed to the original order, as will be described in section
7.3.

7.2.1 The highest weight vectors on M, ® DGO

Let us first consider the space M, ® D0, Using what we have learned in the
Klein-Gordon case, we make the following ansatz for a highest weight vector of
the rotations:

|__7h7n7j7j> = (76>
Q[Q]q
_TSTLJ'_nQOzn _ naA n o B
IR (Ga(A, B, XU)(X+)% @ y + GolA, B, X*P) (X )i @ 1)
q
Remember, that the magnetic quantum number of y and x is 3 and , respec-

tively, so (XT)772 ® y and (XT)*2 @ z indeed have j as thelr total magnetlc
quantum number. From relation (3.18) on page 39 we know already the possible
values of h and n, and the allowed region for j follows from the one in the Klein-
Gordon case if we take into account the coupling with the spin—%—representation.
Therefore the domain for the quantum numbers is

1
h=n+4+1: n>0 and j=—=,...,n+ = with m=—j,...,7. or

h=n—1: mn>1 and j=

l\DI>—‘l\DIH

1
,..,n—§ with m=—j,...,7J.

7.2.1.1 The action of 7"

First we have to make sure, that (7. 6) is really a highest weight vector. For that
to be true we must have T7 > | — } ,n,J,7) = 0 and therefore by using (B.26)



B [{q1—2j—32”4-7126712(147 B, X0/3)
—3-3n4n? 0/3 +\j—2
—q T 21D s Gi (A, B XU LY R @y

—q T E (204D yos Go(A, B, X*P) (X TV @ a
2

= 0
which means

Go(A, B, X*®) = ¢¥75,/[2],D cos G (A, B, X"F%)

D o3 Go(A, B, X% = 0
7

These differential equations can easily be solved, yielding
G1(A, B, X)) = X3F(A,B)+ H(A,B) (7.7)
G2(A, B, X"?) = ¢¥/q2],F(A,B)

with some arbitrary functions F' and H.

7.2.1.2 The eigenvector equation of J,

The eigenvalue equation for 0 is:

2 2

(0% (0% (6%
a — a1 0 _ahanajaj 7.8
o, a0

h7n7j7j> = m{n_{_ 1}q| -

To evaluate the left side, we need to differentiate a function of the form f(A, B, X3/0)(X*)k,
which can be done with the help of (B.27) and (B.28):

Ao [f(A, B, X3) (XK 1 <2q2 (A—B) f(A, B, X"3)

A2, AB
gAf(A, 5, XP) ([2],B — 2¢X°3) . f(4,B,X"3) (2¢*BX°/ + q[2],AB)

B(A+ B) X0/ A(A+ B)X0/3
F(4.B,52) (207 X08 — q[2),B)  f(A, 5,57 (272 X05 + q[21qA)> (X

»g? . q?’ ¢*

(A + B)XOP A+ B)X07
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Applying this to the state vector and inserting the result in (7.8), we get two
independent equations. The first relation, containing the spinor z, provides an
equation for the function F'(A, B). It is the same differential equation we have
also found in the case of the Klein-Gordon equation (see (6.18)):

1
O(n,j +5)> F(4,B) = 0

The only difference is that we have 7 + % instead of j, which is due to the factor
(X+)72 accompanying the spinor z. Therefore F(A, B) is given by

-

RN AB) = ({j]++2)'2"zj:2 ( >a+b{n_g—%}q{n_j;%—b}q

la+j+ 3]0+ 7+ 31!

A*B®
[a+b+2(5+ 1),

where N is a normalisation constant that will be fixed later.

The part of the ansatz containing the y spinor gives us the following equation:
1

. A
PP, (A+ B) - SAB ((2q +aAg"A) Dy + (20 — a)g"B) DBQ>] F(A, B)

7.2.1.3 The eigenvector equation of H

Additional relations for the function H (A, B) can be derived from the eigenvalue
equations of the helicity operator® H:

a? a?
Hl— —— h=n+1n7j) = —{n+2},|—- ;n+1,n,7,7)
Q[Q]q H ! ‘1[2]q
o I :
H‘__7h:n_17n7j7j = 5 n __7n_17n7j7j
q[z]q [2](1 ! q[Z]q

To be able to calculate the action of H on our states, we first compute
Ho [f(A B, X¥) (X" @ x] and H > [f(A4, B, X¥°)(XT)* @ y] for some ar-
bitrary function f. This is done via the relations in (B.26) and (B.27), and yields
the formulas shown in the appendix (B.30) and (B.31). Utilising these formulas
for the state vectors, we finally end up with the following ¢-differential equations
for the two possible values of h:

3H is given explicitly in (B.29)
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h=n+1:

NP (A4 B) = Ofnj - 5)| F(ALB) =

2q2)\

[2] [(2q+Aq a)\)DA —|—(2q—Bq a)\)Dq%} H(A,B)

[2] 4(j+1) (A—l—B) F(A, B) + |:a)\ql+2j” (A—|— B) —i—O(n, 1 —|—j)1 H(A, B) =0

’ (7.10)
h=n—1:
M (A4 B) = Ol - 5)| F(AB) =
2[(53 [(2q+Aq aX) D4 + (2q — Bg"a)) %} H(A, B)

27 (A B) F(AB) + [aX¥" (A4 B) + On, 5 +)] H(A,5) =0
(7.11)

Together with relation (7.9), we now have three equations containing the function
H(A, B) at our disposal. They allow us to express H(A, B) in terms of F'(A, B).
The easiest way to do this, is to rewrite all the Jackson derivatives in their
explicit form again, D, f(x) = % because then we get three equations for
the three functions H(A, B), H( 2,B) and H (A, BQ) By eliminating H(q—Q,B)

and H(4, 7 B we find for the case h =n + 1:

H(A,B) = Oyb>F(A B):= (7.12)

1 2] 342n (o 3+2j 5425 94+2j+n :
da\[n + L — jl, | ¢ (a (A—B) (q (207 = 1) —q > +4q 2(1 +J)}q>

+q72 77 (A+ ¢*¥ B) (aAq"A +2q) [2],D

-1 342j n
—¢ 2 (B4 ¢ A) (aA"B = 29) [2,D 5 | F(A, B)

Here we can insert the result for F/(A, B), which gives us for H(A, B) the following
explicit expression



5

n+%fj

W) - 26+ 3l > (_1>b(a>\)a+b [n+§—jL[n+%_]—bL

G+ 37 2, 2 a
[CL +.] + %](I'[b—i_] + %](1' AaBb
2(j +3) +a+ b

The normalisation is fixed by demanding H,{’j(O, 0) = 1. If we compare this
polynomial with the expression for Fé\—ff—l, ;(A, B), we see that they are very similar.

The only difference is the g-factorial compared to [ 1 i

[2(j+1)+a+b]q!’ 2(j+1)+a+blg!

FY, (A B). Using the standard derivatives we can correct for this factor by
writing?:
1
H! (A,B) = ——————[A0a+ BOg +2(j + 1)],FY, (A, B
n,j( ) ) N[2(j+1)]q[ A+ B+ (J+ )]q n+1,j( ) )

Because of equation (7.10) the normalisation constant N for the function FY;(A, B)
is now also fixed. We get

gy Aty =l
21, 1207+ Dlq

and write F! ;(A, B) to indicate this normalisation.

I
Nh:n+1 =4q

In the case h = n — 1, we can proceed in the same way. We eliminate H (q%, B)
and H (A, q%) from the equations (7.9) and (7.11) and find

qj_% [Q]q [n + 1]!1.

2 [n+%_]]q

[j_”_%]q
U=n=sla|g o
G+n+3, | "

where Oy is the operator from (7.12). Therefore, we get

@22, [n+1],

H!' (A, B) = H. (A, B) +
n,j( ) n,]( ) 2 [Tl—i-%—i-j]q

(A— B)F!.(A,B)

Again, we have chosen the normalisation such that ng(0,0) = 1, which then
also determines the prefactor N'' of FI%(A, B):
Ly ad [n+ 5+l

S 2l 20+ Dl

n

4remember: 29,2 = nz™ and therefore [20,],2" = [n],x
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7.2.1.4 The eigenvalue of §?

Using the ansatz (7.6) as the starting point for our calculations, we were able to
fix the state vectors up to an overall normalisation constant without considering
the eigenvector equation of 02 at all. Because the space generated by functions of
the form of the ansatz is closed under the action of 9* and because 9? commutes
with the other observables, the unique eigenvectors from above must also be
eigenvectors of 92. The only thing left to check is whether these solutions have
the correct eigenvalue with respect to 9. But if we inspect the state vectors, we
see that the part containing the spinor component z is of the same form as the
solution of the Klein-Gordon equation

2 n o n o .
'_%Jun,j,ﬁ x e Pl P P(AB) (XY @
q|4]q

+ const. G4 (A4, B, X0/3)(X+)j_% ®y

Therefore, we know from the previous chapter that this will yield the desired

factor —ﬁ when we act with 0% on the state.

7.2.2 The representation on M, ® D0

In the same way we have done it for the Klein-Gordon equation, we obtain the
eigenvalues with m < j by successively applying the T~ operator, which lowers at
each step the magnetic quantum number by one. This time we have to compute
its action on tensor products of (X*)! with the spinor components:

(T e (XN o) = Y, 02 (7.13)
T o (XN @y = Vp@y+d " EI @ (7.14)

() > (XX ©y) = (XO/?’yfk - q’“\/q[z]q[k]qu;m) ©y
K, (q’“”XO/syim N 1quy;k+2) ¢

Here the polynomials Y? = (T7)/~™ (XT)/ are the basis vectors of the irre-
ducible U,(sug) representation, as they were defined in equation (6.14).
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Putting all things together we can write down the result for the common eigen-
N 1
vectors of the observables (0)2,dy, T%, T2 and H on the space M, @ Dz

For the two possible cases h = n + 1 we have:

7371
&2 q 2 =N 4 pn? Ck —g"2A "B

|——,h:n:i:1,n,j,m>(%70) = ——e; ‘e’ (7.15)

Q[Q]q

{<E%H“LB)Ci+fﬁJV%BUJi? —g qpr—wm#ﬁfﬁAJ%X‘yfz]®y

1 1
2 m+t3

g0 g — ), (B4 B) CF + H (A, B)) V)

m—&—%
g / FI/H A, B) ( 2(j+m)yi:é = mlgli—m = 1],X y %> Rz
with the abbreviation
ct = X% for h=n+1 (7.16)

¢ 22, [n+1],

C = X4 :
2 [n+3+4]

(A—B) forh=n—-1

7.2.3 The representation on M, ® D0:2)

The representation for the conjugate spinors can simply be obtained from the
previous one, when we replace in (7.15) x with —¢7 and y with Z. The reason for
this is, that this map constitutes an isomorphism between the module algebras
Uq(suQ)D(%’O) and Uq(suQ)D(O’%), where U, (sus) is the Hopf algebra generated by the
rotations. This can easily be seen when you inspect the relations in (B.8). If we
extend this map to the tensor product M, ® D(%’O), simply by setting it id ® 1,
if © denotes the map on DO and id is the identity map, we see that it also
commutes with the action of the observables, because these operators are built
up solely by the derivatives, which only act on the first tensor factor, and the
generators of the rotations. So this replacement immediately gives us the set of

common eigenvectors in the space M, ® D),
(7.17)

062

-

2

a
h=nE1n,j,m)e1 = (id@i)<|——,h:n:|:1,n,j,m)1 )
0,3) q[Q]q (5,0)
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7.3 The solution of the ¢-Dirac equation

In this section, we will assemble the irreducible representations on the tensor
1 1

products M, ® DGO and M, ® D®2) {0 a solution of the ¢-Dirac equation on

the space (D( 9 @ D)) @ M,

The first thing we have to do is to restore the original order of the tensor factors in
the spinor wave function. We started with spinor fields, where the space functions
were located in the first tensor factor, because in this case we don’t have to take
care of the spin part, if we calculate the action of the derivatives. To get a solution
were the spin degrees of freedom appear in the first tensor factor, we just swap
the two factors with the braiding, which means that we use one of the possible
relations shown in (B.12, B.13). Because of our definition for the action of the
derivative in (7.2) and the consistency condition (7.4), this swapping commutes
with the action of the derivatives. So for any function e(X') and spinor s we have:

0eX)s deX)s

/

8>(R(2)>3®R(1)>6(X)): 7 = (

(

= (R > s ©@ Ry > (9> e(X)))
Of course, this swapping is also covariant and therefore it establishes an isomor-
phism between the irreducible representations on M, ® D0 , resp. M, ® D(©:2)
and D0 @ M, , resp. D) g M,.
Now we can easily find the irreducible subspace in the direct summand
(D( )@D(0’2)) ®.M,, which contains the solutlons of the Dirac equatlon (7 1) If

ap

(7.18)

oA A
| [2] 71707;7%>(§,0) —Gq 642 XYy, resp. ’ [2] 71707§a%>(0 Ly _eq €q ®ZE
is the rest state in M, ® D0 ) resp. M, ® D! ’2), we make the following ansatz
for the rest state in (D(%’O) ) D(O’%)) ® My:

042 11 _a o
|_m’1’0’§’§>Dirac:ToR[> QQQAGIIQB@)(:U“'UJE)] (7.19)
q

We just take a linear combination of the states and map them via the braiding
into (D(%’O) &> D(O’%)) ® M,. Note that although we fix the linear combination
only for the rest states, the factor w will of course be valid for the other states
of the representation, too. Next, we insert this ansatz into the Dirac equation,
giving us ,

@ g0t
q[2], 272

because due to (7.18) the derivatives can immediately be evaluated. To solve
this matrix equation, we now have to calculate | — } .1,0,1 55 2>Dlrac explicitly.

(m—a7")| - YDirac = 0 (7.20)
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As you can see from the relations in (B.12,B.13), there are various possible ways
to commute the spmors with the coordinates and therefore we also get several
1,0,1 l>Dlmc Consider first the swapping for the states

2] ) ) Y 27 2
(0,1) and | — 2] , 1,0, ;, %> 10) separately. We find:

expressions for | —

1,0,

| 2]777272)

o o

ToRD> (egiAegBGQy) =

i (a,b)=(L,0): y®e el

;

q qo _ﬂA qo
e B (%[2]; — qaA (X' + @ X))+ —L—r®eq > ef Bx+

q+/4(2lq

(i (c,d) = (1,0) e e
, (M oy,
\ if (c,d) = (W’ q[2]q> ’
s s LA B
AT ®e * e (@°2lg — qaA (X0 + 2 X)) — \/_hy@eq B

where the parameters a,b, ¢ and d are the coefficients from (B.12,B.13) and we
have used the relations (B 14,B.15) to be able to commute the spinors with the

function e, Aeq 2P We dropped the cases with negative parameters a and d
because they would not give the correct classical limit. These possibilities can
then be combined to four different linear combinations in (7.19), but only two of
them will give us solutions of the Dirac equation:

( <yﬂ:\/iaf> ®e;% eq%B (7.21)
a? 11 or
- a1707_7_ irac — -GA 2B
| q[2], 2 2>D qg[l] (yﬂ:\[ >®eq 2 eq (q 2], — qaX (X0 + 2 X3))
TA %B +
\ + m(xq:z\/_y)@)eq X

where a = $z’m Only for the cases (a,b,c,d) = (1,0,1,0) and (a,b,c¢,d) =

(%, —%, EQ, o ) the coordinate functions in the second tensor factor cancel,
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when we insert the linear combinations into (7.20). If we compare this result with
the list (7.5), we see that this combination of the coefficients forces us to use the
Ry, resp. R; ', matrix in the yX-y0-relations and, to ensure consistency, also for
the sX-s0-relations.
Having found how to combine the states of /\/lq®D(%’0) and Mq®D(O’%) in the right
way to give a solution of the g-Dirac equation on the space (D(%’O) @D(O’%)) XMy,
the only thing that remains is to calculate the braiding between the spinors and
the space functions for the general solution:

a? o? 1 a?
|————, h,n, j, M)Dirac = TOR>|| — h,n, j,m) + —|

q[2], a2, 20

\/5 - Q[z]q

We will do this for the R ;-matrix, which corresponds to the first solution in (7.21)
and not for R;'. The reason for this is, that in this case the spinors and the
coordinates A, B commute and therefore the only functions appearing in (7.15),
resp. (7.17), for which we have to compute the braiding with the spinors are the
Vin-

Let us do this first for the barred spinor T and 7. If we apply to the equations
(7.13) and (7.14) the isomorphism id ® i from subsection 7.2.3 we get

(T e (XY ®y) = V., ®F (7.22)

(T)o (XY 07 = W, 07— K,V 07 (723
and furthermore we will need

(T e (XTY) = g,

(T)e (e (XYY) = ¢ 2oV, —qkl, g0V (7.24)

Using these actions and due to the simple commutation relations of the barred
spinors with X, X7 = ¢zX ™ and X7y = ¢ 'y X T, we now easily can compute:

ToR > (V] ,®Y) = 7ToRs>[((T7) > (X1)) @y

Jhon, j,m )(2

1o
27

(7.22) FoR, b [(T—>k b ((X+)j ® y)]
= (IT)e[roR>((XT)Y ®@7)]
B.17) i, _ ;
T [pe (XY
= ¢ye Vi i
and in the same way
roR> (V07 "2 (T ) eroRis (X1 @F)
+¢ k) T o Ry (y;—k+1 ®7)
— qj (T—)k > (f ® (X+>j) + q2k—3j—1[k]qy ® y]]';kJrl
(7.24)

¢ k_®yjk—)\q [k]q[2j+1_ ]qy®y —k+1
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The calculation for  and y can be done in analogous manner, if we use J?ﬂn =
(TH) ™ > (X~) instead of V7, see equation (6.15). We do this because we
can utilise the simple commutation relations with X—, X~2 = ¢ '2X~ and
X~y =qyX, instead of the more complicated one for X*. We have

(TH > (XY ey = V. oy (7.25)
(T (XY o) = V_ ertP K, 0y  (7.26)
(THe e (X)) = ¢ yedi, (7.27)
(TYe(@e (X)) = Fa@V, + Ky, (7.28)

and therefore

(K]
T2 (b-*=iG-2) [2j[l€_]!f]‘q (TH)" > (roRre (X7 @y))
_ gk=9)°=i-2) [Qj[k_]'k] L (THr > (yo (X))
q
(7.27),(6.15) F e y,i;j

and

| o [25 — k]! <
o RI > ( ]‘Z ; ® l') (6:15) q(k—])Z—](]_Q)% T O RI > ( ]‘ZJ*] ® {L’)
‘q
(7.26) (k—7)2—35(j—2) [2j B k]‘q T+ k R X~ J
= q L (T > (ToR> (XY ®@))
‘q

— R T o Ry b (ﬁiﬁ_j—l ® y)]

7.28),(6.15 s ; s ;
( ! ) qk Tr ® y]i_j - )\qk J Y y;i_j_l

In the end we can summarise the results and find for the two chiral parts of the
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Dirac spinor the following explicit expressions:

a2 q—;’m—l—n a™ _q"SA SB
TOR> [ Jh,n, 7, 1 } = ——e¢; e’
rEn ™o 2, ¢

g 2tm (F(A,B)C* + H(A, B)) y_éi;

(ve

+r &

+\/7F A, B) (q 2+2J+myj::n_ 14 j —mlylj —ml XV, 2+j)]>

—F(A, B)yJal2, (a A2 4+ qb L —m] X w“)]

¢ lj —ml, (F(A, B)C* + H(A, B)) &

—3n 2
a? g2 Ta" e greB
)

TOR> {] — ——, h,n,j,m)
Q[2]q (©

<m

Ty ®

1
2

¢ (F(AB)C* + H(A,B) VI —q 27\ [q2l,[j —ml,F(A, B)X _y;i;j]

g2 [—j +m),H (A, B)

q7%+] 2 + 0/3 2 . —l-Q—j
+— (q (2C +)\[2] (A+2X ))—q/\[2]qB>[—]+m]qF(A,B)y%jm
a2 (A B) (g H XY gy

+m

+q%+2j_m[j —1—m],lj — m]qygj;jX_ﬂ)

where C* are defined in (7.16).
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Appendix A

Representations

A.1 Representation of U,(sus)

The standard D’ representation of U, (suz) is given by

5 |j,
T |3,

= Q[j]q[j+1]q|j»m> (A1)
= ¢ *"[2mly|j,m)

_ . —ma3 . . .
T o ljm) = ¢ 3/l +mlglj = m+ 1, li,m - 1)

m)
m)
THoljm) = g3l me 1yl — ml ljm + 1)
m)
m> = q74m‘j7m>

>,

A.2 The representation of the coordinates

The case 1=0:

Cl0,n,v,m,h) = /\w/q[Q]qq” [n — I/]qTO 0,n,v,m, h)
D|0,n,v,m,h) = 4/q [2]qq2”_”7'0|0,n, v,m, h)
Al0,n,v,m,h) = q”’”\/q [Q]q\/q”+V+1)\[n—l/— 1,70(0,n,v+1,m+1,h)

B|0,n,v,m,h) = q”’”’l\/q[2]q\/q”+”)\[n—V]q70|0,n,y—1,m—1,h>
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The time-like case:

q—n (1 + qn+1+z/)\ [n + 1— V]q)

Cll,n,v,m,h) = to|l,n,v,m, h)
q2],
q2y—n
Dll,n,v,m,h) = to|l,n,v,m, h)
q[2],
q”_%)\\/[l + V]q [n — I/]q
All,n,v,m,h) = toll,n,v+1,m+1,h)
2],
qv—%—u\/[y]q [n+1- 1],
B|l,n,v,m,h) = toll,n,v—1,m —1,h)
2],
The space-like case:
ql—n
Cll,n,v,m,h) = (q”*”)\ [n—v], — 1) lo|l,n,v,m,h)
q[2],
q21/+1—n
Dll,n,v,m,h) = loll, n, v, m, h)
q[2],
ynzl
Alln,v,m By = & f\/[n_y_ 1, {v + glo [l n,v + 1,m + 1, 1)
2],
n+1
VT
Bll,n,v,m,h) = g n—v] {vilo|l,n,v —1,m —1,h)
2],

A.3 The representation of the rotations

?ll,n,v,m,h) = ¢ *"|l,n,v,m,h)
THl,n,v,m,h)y = t"(n,v)|l,n,v+1,m+1,h) +v(n,v,m,h)|l,n,v,m+1,h)
T |l,n,v,m, by = ¢t (n,v—1)|l,n,v—1,m—1,h)

+¢*y (n,v,m — 1,h) [l,n,v,m — 1,h)
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The case 1=0:
Lin—v-3)
q2
tt(n,v) = 5 n—v—1],
: ) qi(h+n—2(3n+v+4)) \/ 1 ( : )
v(n,v,m,h) = {— h4+n+2m-—v }
VA 2 ;

The time-like case:

t(ny) = @O 1], In -,

v (n,v,m,h) = q%<"—2<m+y>—3>\/B (h4+n+2(m—v+ 1))] q E (h —n —2(m — y))}

q

The space-like case:

n—2(v+2)
+ _ g >z
) = el =1, v+ 1
qn—z(yr;+u+2) 1 1
s = T [ 20| GO0 2m ),

A.4 Intermediate results for 7!

The rules following from the relations of 7! with the coordinates:

n(0,n,14+v,14+m,h k) = ¢r(0,n,v,m, h,h) (A.2)
7(0,n, 1 +v,1+m,h, 1) =

to?
T(———,n,1+v,1+m,h 1) =
Q[Q]q

to?
To(———,n,1+v,1+m,h, 1) =
Q[Q]q

lo”
T(——,n,14+v,1+m,hh) =
Q[Q]q

ly?
T2(—’n’]_+yj]_+m,h7h/) =
Q[Q]q
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The rules following from the relation 717+ — T 7! — \T? = 0:

— [1+2m+n 21/+h’]
(0, n, v, 1+ m h W) = ¢ 5 h+2m2+ =, 7150, v,m, h, ') (A.3)
q
—t 2 3+2m+n 21/+h’] [V 4 7172m7n+h’] —¢ 2
1 0 / 2 q 1 0 /
T (—,n,y,l—{—m,h,h) = mn v —2m—-n T (—,n,l/,m,h,h)
1/2 q[2]q 2+h+2 +n—2 ]q[h 22 + y] 1/2 q[g]q
l02 1+2m+n 21/+h’] {1+2m+n 2v— h’} l02
! 2(—,n,y,1+m,h,h/) = m+n—2v m2n v qT ( ,n,y,m,h,h’)
/ qmq h+2 + 2 ] { —h+2 2+ 2 }q 1/2 q[g]q
75 in terms of 77
RO b H) = g [ (A4)

[h+2m+n—2u]
2 q

1 m n ! 1 - h h//
(q2+211 . qh+44;42 +h [T—i_]q) 7-11 (0’ 1 + n’ V, m’ h/, h)
to? 1 1-h—2m—2v—n’ [1 +n — V]
1 0 / sohoemo sy h q
Ty (——=—,n,v,m,h,h') = —q 2 — o
2 Q[Q]q A [2+h+22+ 2 ]q[V]q[h 22 + V]
vk h—1—h 1 —h+H to?
q1+h+§1 e & [——]y — T [—+ lq 7'11(——0 1 +n,v,m, B h)
2 2 q[2],

l 2 —h—2m—2v—h' [n — I/]
1 0 / ZRTeMosV R q
Ty (—=,n,v,m,h,h') = ¢ P — ——
? q(2], [h+2 ; : ]q{’/}q{h 22 + vl

2 v / /_ 1 - ! 1 - / i
g g (L2 e LA O B0 ) )
7 2 q[2],

Shift of A translates into a shift of n:

5 [1+h+2m+n—2u]
71171(0,n,y,m, 1+ h) = q°? [h_1+2731+n_21,]q7—111(0 - 17V7m’h> (A5)
2 q
L b n,v,m,1 + h)
T a1 ' Y, ) =
bt Q[Q]q
{h}q{n_Q}q[anJﬂL%]q o ( l02 1,v,m, h)
q{2+ h}q{n}q[_1+h+2;1+n_gy]q b q[Q]q T

t
Tfyl(—L,n,V,m, 1+h) =

\/ [1+ hlgn — 1] [3tit2mtn=ze] = 2

T (—
q[3+ h]q[l + n]q[1+h+2n21+n_2y]q b q[z]q




1

1

71.-1(0,n,v,m,1+h) = qr_1(0,14n,v,m,h), (A.6)
7’1,_1(%22](1,n,u,m,1+h) =
h—1 1} {=l=h+2min—2v 2
q{{h - 1}]?(1{{7;4’_ 1}}:{{ 1h+27§+n2y }}: Tl’_l(q[(;]q’ 1+n,v,m,h)
T1,1(—J[L211,n,1/,m,1+h) =

’1+n7y7m7h)

\/q P2+l [0,
[2+ hlg[n]y[FE=Zpnize) R g,

Recursion relations resulting from the relation 1 = 027! — A2S'T? for the case

[ #0:

{h}q (q—l—h{n}q T q—n (qh)\ 4 q—2m+2u{1 4 n}q)) ;
X =y, ), Hillo:m) A0
N q7172h72m7n71/{h}q
M[=2+ h —nf[h —n]{n} v},

O e W R Y ) Y S R s I A

T (@A2] — {2} = {2 (14 n) ) + T2+ by | R(lon + 2)

h—2m—n

g TE b2 (£ 4 n}qR
A—2+h— n]q{n}q{y}q

gL B, (PO 4 L ], — R )

N2[h — n]g[1 4 n]q[V], R(to,n)  (A.8)

—4—h—2m—2n—v

(lo, n -+ 4)

q
M[2]4[2 + 2h]4[=2 + h — n]y[h — n][1 + n, V],

[ P (¢ 4 ¢ (21,02 + 28], 4¢P+ ), (q”?m*n[zm +41],

2+ 28], (@ (PAR) - [4,) + P NR) L+ A nl[2 + n]q)) R{to,n +2)

h—2m—n

_'_q 2 [1+h]q[2+n]q[wn+_2y]

Al=2+ h —n]g[1 + ][],

4 R(to, n -+ 4)
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A.5 The Pauli-Lubanski vector

Expressed in terms of our set of generators the components of the Pauli-Lubanski
vector are given by

(A.9)
2 2
Pa = TA—qOT7(): — @DT* + ¢ DI () - TA() ()3
HAB(T?)*(7%)2
1 1 1
Br = qz_)\B + q_30510'2(7'3)_% —q*DT™ — EDslaz(T?’)_?
1 1 A _1
—%3(02)2(73) 2+ ?A(Sl)Q(TS) 2
1 1 1
Po = —C—AT (7)) 2 + BT —qASir! - @BTH(r*) 2 + 1 C(r) 2
—ACS'T? + *ADS'T? + PADT T (%) 2
1 1 1
Po = —3D - BI04 qAs'r ¢ TD(T*): +ACS'T? — PADS'T?
The representation of the Pauli-Lubanski vector
The case [ = 0:
sB14|()7 n? V? m? h> -
q—%—Qh—Qm—n—&—QVTO
- - V(@4 — C(0, b+ ) C(0,h + n)[2]4]0, v, 1+ m, 2 + 1)
,1077h7(j1m73n+61/ [2](1[W]q
q 7o h\
6+3h+n h—n
<C(0,h+n)[2]q +q 2 A i ]q) 0,n,v,14+m,h) +

_4_3h_ o m_, h+2m+n—2v. 24+ h+2m+n—2v
R AT ] e A N TR T}

V(g — C(0,h +n)) C(0,h+n)|0,n,v,1 +m,2+ h)
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PBrl0,n,v,m,h) =

q7%72h72m7n+21/7_0 "

_ T (g*thtn —(0,h +n)) C(0,h 4+ n)[2]4]0,n,v,—1 +m,2 + h)
—Th—3(4+2m+n—2v) [Q]Q[W]q
—q 4 T0 )\
n. h—

(C(O’ htn)[2l + q%)\[ 9 n]q) |0,n,v,—=14+m,h)

—2--m—G4v —A4+h+2m+n—-2v, —24+h+2m+n—-2v
+q 22 7+ 7'0\/[2]q[ 5 Tl . 1,

V(g2 — C(0,h +n))C(0,h+n)|0,n,v, =1 +m, =2 + h)
Bel0,n,v,m,h) =
—4-Th—6m—3n+6v [2],] —24+h+2m+n—2v
q 4 70 T[ 5 ]q
V(@2 — C(0,h +n)) C(0,h+n)|0,n, v,m, —2 + h)
—7Th—3(6+2m+n—2v) [Q]q h+2m+n—2v
+q 4 To T[ 2 ]q
\/(q4+h+" —CC(0,h+n))CC(0,h+n)|0,n,v,m,2+ h)

— % —2h—2m—n+v

—T0 )\ [Q]Q
[C(O,h—i—n) (q2+1/_qh+22+ /\[ + m;—n V]q)
h — h+2 -2
gt Lt (AT ”Jq] 0., v.m, 1)
Bpl0,n,v,m,h)y =
—4-Th—6m—3n+6v [2]q —24+h+2m+n—2v
—q 4 To T[ B lq

V(@ —C0,h +n)) C(0, h +1)|0,n, v,m, —2 + h)
—Th—3(6+2m+n—2v) \/[Q]Q h+2m+n—2v

—q 4 To T[ ) ]q

V(g — C(0,h +n)) C(0,h +n)|0,n,v,m,2 + h)

I _oh—2m—n+tv
q 2 To s43hintzy N — N
+ \ [2]q [q 2 A[ 2 ]q
N (q2+”—qh+22+)\[ + m;—n I/]q) C(0,h+n)||0,n,v,m,h)
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The case [ < 0:

to?
C][Z]q7
2+h 2m "—l—u)\\/[2+h+2’rg+n—2v]q[4+h+2m+n—2u]q

2+ hj vphu+hM3ﬁmq

PBal -

n,v,m,h) =

to

[
1+h—n1 2 3+h+n 2_ _t(2)
\/( (to, b+ ) — [L5=2],") (22522, C’(to,h+n)>|q[2]q,n,y,1+m,2+h>

_q%h,m,%+y>\t0 [72+h;2m7'n+y} [h 2m n+1/]q
[hlq /\Z[Q}q[—1+h]q[1+h]q

\/<C(to, h+n)— [%]f) ([Hh%]‘f — C(to,h + n)) ’q_[gi ,n,v, 14+ m, =2+ h)

q _9_ 3hmn+yt0\/[2+h+2n§+n2u]q[h2;7171_'_”](1
TN 2l

q2(2+h+n)[ (1+h)], 3h+n( 5
[1+ A, -

& — @NClto b+ m)[2y + L Mq)

h—n satmy2th+n to?
_ T _ 0 1
+A ([ 5 le — ¢ [ 5 la )11 q[2]q’n’ v,1+m,h)

to?
q [2] q 7
q7_3+h52m_"+"t0 \/q[—2+h+22m+n—2y]q[h+2m;—n—2y]q

op BA R
(Gt - (2527) (10),” — Clto, )

tO

,M

q[Q]q

¢ R \/ g[Hhgmen 4y [Hhgmen ]
2+ hlg [2]4[1 + hlq[3 + 2],

n,v,m,h) =

Pl —

2

v,—14+m,—2+h)

2

\/ (C(to, h+n)— [WT—n]qz) <—C(to, h+n) + [3+g+n]q2) =50y 14 m, 24 b
q[2],
q —3— @,m,nJﬂ/tO \/[h+2m2+n2u]q[2+h22mn + V]q
LR, 2l

q2(2+h+n)[ (1 —i—h)]q +q3h+n ( 2 —
T 7,

& — Nt b+ m)[2, + L Mq)

h—n satmy2th+n to?
_ - - - -1
+)\ ([ D) ]q q [ 2 ]q ’ q[2]q?n’ v, +m7 h)
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B t02 _ q—%—m—%-i-uto \/[h+2m;—n—2u]q[h—2;n—n + V]q
[2]61[_1 + h]q[l + h]q

\/(C(to,h+n) — [%]f) ([M%Lf _c(to,h+n))| [2} ,n,vym, —2 + h)

qiéimi%Jﬂjto \/[2+h+2rg+n2u]q[2+h22mn + V]q
[2]4[1 + hg[3 + R,

\/<C(t0,h +n)— [M%]q2> ([M%]qz — C(to,h + n)>| [2] 0= n,v,m,2+ h)

3n
—2(Lthtm) =5 g Abdhintdy

q B (2[2](1)\2[2 + h]q[h]q) + q1+h+2m+g

A3 Q[z]q[h]q[z + h]q

{qn (2= @A+ @0 (24 0) + gA ([2 + kg + ¢ (g[2 + n], + A[3 + 20]4[h],)) }
4 q1+ +m+1/)\{ . E’;:;]Z"[ (1 + h)]q[2+h+27’g+n72y]q . q1+h[4+3h+272n+n72u]q

+qn ()\20@0’ h+ Tl) (q2+h[h+2m2+n72u]q . [h72;nfn 4 V]q) + q[3h72m;3n+21/]q) }]

’ L7n7 V? m7 h)
Q[z]q
B R m+n—2v —2m—n
sBD| - t02 7n7V7m7 h) — _q : 2+ to\/[h—’—2 ;_ : ]q[h 22 +I/]q
Q[Q]q [h]q [2]q[_1 + h]q[l + h]q
to
\/(C(to, hotm) = [F=2) ) (522, — Clto, b+ m)) | - 2R
q
_qf%fm*%Jrl/tO \/[2+h+21721+n21/]q[2+h22mn + l/]q
24+ hlq [2]¢[1 + hlq[3 + R,
t 2
\/<C(t0, h+n)— [1+/;fn]q2> ([3+i2z+n] — C(to,h + n))\ q[%] ,n,v,m, 2+ h)
q
P e 20" 8" (g2 [2)g[1Hhlg—g? 214 h)],) T iy (g [hn] _ [2ehkn] )
33 /121q[h]q[2+h]q [1+hlg 2 2
_|_qh+m+z/>\{[ m2 n V]q+q2+h2+3 (q3[m+n—u]q+[1+m+n—u]q)

_ q1+n)\20(t0, h+ Tl) (q2+h[h+2m2+n72u]q _ [h72;nfn 4 V]q) _ q2+h[h72£nfn 4+ V]q}

to?

’_M7

n,v, m,h)
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the case [ > 0:

2

ql2l,’

2+h—2m—n+2v h+2m+n—2v] [2+h+2m+n—2v
: \/[ Lol la

‘BAl

,n,v,m,h) =

log

e, A Th 2,

\/(20(10,h+n)+A2[1+h n2) (- 20(zo,h+n)+{1+h+"}2)\ql[2]
log! =4+ \/{— men g ), (BB 4 v),

Mh =1}, 2l {hte{h — 2}q
\/(20(10 h+n) + N[22y (220 (lg, h + n) + {=H]42)2))| bo v, 1 +m,—2+h)

q [Q]q
loqg—m— \/[h+2m+n 2v { h— 2m2 n+2v }

(Q[ ]q) [Zh]q{ 1+ h}q{l + h}q

([2]q[4h]q + [2h], (_2[2]q2 +2C(lo, h + n)qu + 4], - )‘Q[Q]Q[h]q[n]q)ﬂql[o_z]q? n,v, 14 m,h)

2

v, 1 +m,2 4 h)

b
Q[Q]q

=2th=2m-nt2v \/[—4+h+2m+n—2u] [~Ztht2min=2v]
q q

{h =1} 2lg{=2+ h}tq{h},

. 1+h n n 1+h+n 2 lo
V (200, ) + X [Z=212) (=20, bt m) +{= )

Bl

7n7ljﬂm7h> =

log

2

n,v,—1+m,—2+ h)
loqigigimigﬂl (T+q [Q]q) 2n]y[3n], + ¢ [n]q[Gn]q)
Al2n]y[3n] {1 + Rt {—1+n} {1 +n},
\/ {Ehpnen 4y, (Mg 4 ),
2]¢{h}e{2 + h}q

\/(QC(ZO h+n) + \2[Lth=n]2 )( 2C(lg, h +n) + {1+g+"}3)\ql[g] ;v —14+m, 2+ h)

) fogh - \/ () (1 44— — 3+ vy
3
(q[2]g)2 [2h]{—1 + R} {1 + R}, gA

([Q]q[4h]q + [Qh]q (_2[2](12 +2C(lo, b + n)mq2 + [4]11 - >‘2[2]q[h]q[n]q))‘

ly?

—,n,v,—1+m,h)
Q[z]q
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L
¢ (1[2]617

n,v,m,h) =

loq—%—2m—n)\2

(A2[2],)2 [2h] {1 + h}o {1+ h},

2C(lo, h+ n)[2]y (=g [2)g + """ AlR]y) [2h],

—*™ X ([h], ((2[2]g — al4y) [2h], — a[2]4[4h]e) + a[2], (gA[2R], + [4R],) [n],)

g2 (= (2040, + (28], (202" — [+ N RLa[Rlall)) | 1w )

+

loq%_m_g”\/ [72+h+22m+n72u]q{h72£nfn +ul,
{h—=1}, Y (=1+q) (1 +q) [2]o{n}{h -2},

\/(ZC(ZO h+n) + N [=H=m12) (=20 (lg, b+ n) + {= 1+h+n}2)|ql[022] ,n,v,m, —2 + h)

[h+2m+n72u]q{ 24+h—2m—n +V}q

logz ™5+ [1 + h]q\/ e Ry R

i 21 20,
2
\/(20(10 h+n) 4+ X2 [H=212) (—2C(lg, h + n) +{1+h+“}2)|ql[2] n,v,m, 2+ h)
q
lo?
—.n,v,m,h) =
Polim, >
loq—§—2m n>\2

(A220)2 [2h] {1 + W}, {1+ R},

2C(lo, h +n) [Q]q (q1+2y[2]q - q2m+n)‘[h]q) [Qh]q - q2m+n)‘[2]q[2h]q (_2[h]q + [2]61[”](1)

+q' T ([21g[4h]g + 2], (=2(2)," + [4lg — N[2g[hlg[n)y)) |15 m, vim, h)

q2l,’

i, [
[—2+2h], (=1+4q) (1 +q) 2l {2+ h}o{h},

\/(ZC(ZO h+n) 4+ X [=H=212) (=2C(ly, h + n) + {=H42}2)] [02] ,n,v,m, —2+ h)

[h+2m+n 2v ] {2+h 2m— n+1/}q

1l _m—nay
logz™" 21 +h]4\/ T (T 2 ) 1270,
2+ 2h],

\/ (2C (lo, b+ n) + N2[HE=212) (—2C(lp, h +n) + {1+h+”}2)|ql[2]

2

,n,v,m, 2+ h)
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A.6 The final result for the representation of
the boosts

The case [ = 0:

710, n, v, m, h)y =
q "I |0, 1 4+ n, —1 + v, m, —1 + h)
—h+2m—3n+4v \/ h + 2777, + n — 2]/

¢ M/

lgln = v]410,1 +n,v,m, 1+ h)

2
T20,n,v,m,h) =
%qw\/)\[—1+n—V]q|0,—1+n,u,1+m,—1+h>
%qw\/)\[h+2m;n_QV]q|0,1+n,1+V,l—|—m,l+h>
SH0,n,v,m,h) =
—iq!wnw\/)\[_2+h+2m+n_QV]q|O,—1+n,—1+y,—1—|—m,—1+h)

4
2
_q27h747r;72n+31/ / [n —)\l/]q |0’ 1 + n’ ]/’ _1 + m7 1 + h>

o?|0,n,v,m,h) =

B G 3n iy \/ 24+ h+2m+n—2w
—q z M/

2 ]q[_l—l—n_V]q|07_1+n7]/ama_1+h>

+q—1—h—2m—2n+27/\/q4+W|07 I14+n,14+v,m,1+ h)
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The case [ < 0:

1 t02
|__ana1/7m’h) =
Q[Q]q
“2-hidmosnidy (B 4 % — o] [HEAERS] [] (BB,
! [R]g[1+ Ry fn], [+ 7],
2
|—i,—1+n,—1+y,m,—1—|—h)
C][Q]q
n h+2m23n+4v [1 + % — % + S]q[%h + g + S]q[W]q[V]q
! [T+ Al 2+ Ry, [T+ 1,
2
|—L,—1+n,—1—i—y,m,1+h>
C][Z]q
+ 7h+2wz;n+4v [% - g + S]q[l - % + % + S]q[l + n-— V]q[%]q
! (g1 + Ry + nl,2 + 7],
2
| — tL,l—l—n,l/,m,—quh)
C][2]q
2+h+2727n+4y [1 + % + g — S]q[4+h—;n+2s]q[2+h+27g+n—2y]q[1 +n— V]q
1 [+ 1,2 + AL+ n],[2 + ],
t 2
|_ L,l—}-n,y,m,l—i—h)
Q[Z]q
2 — i n,v,m,h) =
q|:2]q’ ) b )
QM [}_QL + g o s]q[2+h-;n+25]q[n o V]q[h—2m2—n+2u]q
A [h]q[1+h]q[n q[1+n]q
2
|—£,—1+n,y,1+m,—1+h>
C][Z]q
+qh+2mzn+4u [1 + % o % + S]q[%h + g + S]q[2+h+2rg+n—2u]q[n _ V]q
A 1+ h]q[z + h]q[n]q[l + n]q
2
|—i,—1+n,y,1+m,1+h>
C][Q]q
g e b g b ol e,
A [h]q[l + h]q[l + ”]q[Q + n]q
2
|—i,1+n,1+y,1+m,—1+h)
Q[Q]q

+

qw [1 + % + % . S]q[4+h—gn+2s]q[2+h+27§+7’b—21’]q[1 + y]q
A [1+ hly[2 + hl4[1 + n]y[2 + n],
to?

| ———,1+n,1+v,1+m,1+h)
C][Z]q
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Sl|——,n,y,m,h) =
q[2]q
_qw \/[% + % - S]q[?—‘rh—;n-l-?s]q[h+2m;-n—2u]q[y]q
A [h]q[l + h]q[n]q[l + n]q
2
| — to ,—1l4+n,—14v,—1+m,—1+h)
a2’
_ﬂ%WTW“¢u+g—g+ﬂ¢;+§+ﬂw%u+g—m—g+ﬂq
A 1+ h]q[2 + h]q[n]q[l + n]q
2
= 14w, —14m,1+h)
a2y’
W \/ 5= 5+ ololl = 5+ 5 + sl [T — 0,
A [h]q[l +h]q[1 +n]q[2+n]q
t 2
| — 1+n,v,—1+m,—1+h)
a2y’
_qw [+1+ % +3 - S]q[4+hzn+2s]q[1 +n —vl[l + % —m—3+ Vg
A [1+ h),[2+ h]4[1 + )42+ n],
t 2
| — 1+n,v,—14+m,1+h)
a2y’
2 02
— —— n,v,m,h)
| q[2],’
. 2+h 6m n+4v \/[2 q 2+h'gn+25]q[h+2m;‘”_2’/]q[n - V]q
[1 + h]q[n]q[l + n]q
to?
| — ——,—1+n,v,m —1+h)
Q[Q]q
T 1+ % — %+ slg[F+ 5 +slyln—v]1+5—m—%+1],
[1+ h]y[2 + hlyn]4L + 7],
to?
| — —1+n,v,m,1+h)
a2’

—i—q% [% — 5+ sl - 5 +5+ S]Q[W]Q[l + v
[h]q[l + h]q[l + n]q[2 + n]q
t 2
| -
2],
L s [[L4 5 45 — sl [P (Lo L+ 5 —m -5+
4 [+ 1] 2 + Al (1 + n),[2 + nl,

2

[2]q

1+n,1+v,m,—1+h)

1+n,1+v,m,1+h)
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The case [ > 0:
l2
1|L7nvy>m7 h) -
(J[Q]q

2—h+2m—3n+4v
4

{1- % — % + S}q{IHnQJFZS }q{V}q{}ka;nJﬂy}q
{=1+h}e{hto{—1+n}e{n,
l 2
| —1+4n,—1+v,m,—1+h)

h+2m+n—2u]q{y}q

q72+h+2”;3"+4v \//\3[1 + % —5 S]q[% — 5 — sl 2
{h}q{l + h}q{_l + n}q{n}q

l2
0 14n,—14+v,m,1+h)

9[2]q
QWAQ\/[% — 2|14+ 2 -2 — ) n — v {2t}
)‘{_1 + h}q{h}q{n}q{l + n}q
ly?
|——,1+n,v,m,—1+h)
(J[Q]q

_QWA\/[Wm—;m—%]q[n _ V]q{_Th _ % + 8}q{2+h+2n+2s}q
{h}{l + hg{nt {1 +n}y

lo?

——,1+n,v,m,1+h)

Q[Q]q

|
ly?
T?|——, n,v,m,h) =
[2]q7 ) ) )
q7h+27rif’n+4u )\[_1 +n— V]q{l - ]51 . % + S}q{h+r;+23 }q{h72m5n+2u}q
A {—1+ h}q{h}q{_l + n}q{n}q
l 2
O —l+4nuvl4+m —1+h)

Q[Q]q
]q[W]q[_l +n— v,

qh+2m4n+4u)\\/[1+%—%+s]q[%—%—s

{Ry {1+ Ry {—1+n}{n},

l2
A4 nul+m1+h)
q[2],

\/ 5~ 5 +shl-1+5— 5 — sl {1+ v} {2mgm2y,

_q 4
{_1 + h}q{h}q{n}q{l + n}q
l 2
O 1+4nl+v,1+m,—1+h)

Q[Q]q

+q% \/)\[h+2m;n—2u]q{—7h — B} s}, {2hEnt2ey £ 4y,
A {hte {1+ h}g{n}e {1 +n}q

2
0

JA4n,14+v,14+m,1+4h)
Q[Q]q
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l2
SU—"n,v,m,h) =
q[2],
—gtTTE N[ {1 - § g 4 s { M ()
A {=1+nh}{h}e{—1+n}t{n},
2
|l0—,—1+n,—1+y,—1+m,—1+h>
q[2l,
I L+5 -5+l — 5 —sl{v}{l+5—m—5+v}
{h} {1+ h}{—1+n}{n}
2
|lo—,—1+n,—1+u,—1—|—m,1+h>
q[2],
_q4+h_6T_n+4yA\/[g — D1+ b n ) [Rhemen) [y
{=1+hj{h}o{nto{l +njy
l 2
|- 1+n,v,—14+m,—1+h)
q[2],
_q4_h_672_n+4u Aln — V]q{%h -5t S}q{w}q{l + % —m— 5+l
A {ht {1+ h}e{n}o {1+ n}q
2
|l0—,1+n,y,—1—|—m,1—|—h>
q[2],
02|£ n,v,m,h)y =
q[2]q7 Y Y 7

W%M”)\ [w]fﬂ_l 4+n— V]q{l _ % _ % + S}q{h—l—f;—i—Zs}q
—q
{=1+h}{ht{—1+n}t{n},
K
Q[Q]q
+qux2\/“+%_%+sb[%—%—s]q[—1+n—u]q{1+%—m—g+u}q

,—1+4+n,v,m,—1+h)

/\{h}q{l + h}q{_l + ”}q{”}q
lp?
——,—1+n,v,m,1+h)
I
+q2+h—67r2—3n+4u )\3[% — % + S]q[—l + % — % — S]q[W]q{l + V}q
{=1+ h}q{h}q{n}q{l + n}q

2
|—l0 1 4+n,14+v,m,—1+h)
Q[z]q
+qw¢ {%h -5+ S}q{w}q{l + vl {1+ % —m— 5+ v},
{h} {1+ h}e{n} {1+ n},
Iy

| ——,14+n,14+v,m,1+h)
Q[Q]q
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A.7 The representation of the derivatives

The case [ < (:

. —3—M—n+2v 2
0P M) = TV
—54+m—2M—2n v
_4 : i q[2]q[n_y]Q[m+n_V]q|M—1n—lym>
tON [n]q[l + n]q , o
73+m72M+V
q 2 q[2]g[1 + V][l —m + 1],
M—-1 1 1
i \/ T 2ral, o hrhbyaLm
—5+m—2M+n—2v
5A|M n,v,m) = _4d ’ \/Q[z]Q[n_”]Q[_m+”]q| —14+M,—1+n,v,1+m)
7 1O\ [n]q[1+n]q ' »

—5+m—2M—n

_a \/q[2]q[—1+n—v}q[n—v]q[m+n—v}q[1+v]q| 1M, ~14n1+v 1+ m)

t0 [n]q[1+n]q
—5+m—2M4n—2v
Tz 2|11 — 1
_4 2 q2][1 +m+n —v]y] +V]q|—1+M,1+n,1+y,1+m>
I3\ (14 n],[2+ n],
qw
[2]q[n—r]q[14V]q[24V]q[1—m+V]
T $0 \/q ! (I[1+n]qq[2+n]qq L —14+M,1+n,24+v,1+m)
g3 M-3+v
+t—o\/q[2]q[n — V][l +v]y|M;n, 14+ v,1+m)
—Z—M—%—i—y

A~ q 2
OP|M,n,v,m) = +t—0\/q[2]q[1 +n — v,V |M,n,—1+v,—1+m)

g \/qmqu +n— V][l —m+ v,

+ | =1+ M, 14+n,v,—1+m)

oA 1+ n],2+ n,

—T+m—2M=3n__,
¢ +\/q[z]q[m+n—u1q[u]q|_1+M_Hn_HV_Hm)

0N [n]y[1 + n],
—3+m—2M—2v
: s [oo) Wlgl—m + 7]
&°|M _ 4 4R2lalV]q U1+ M ~1+n,—1
|M,n,v,m) Y \/ nl, (L + 7, | +M,-1+n,—1+wv,m)

TR (q2eln = v]glm 40— ]
+4 ¢, |92 1 =1+ M,—1+n,v,m)
t0 [n]q[1 + nl

—1+m—2M+42n—2v
2 g2l +n—-v],1 -
g~ \/quq[ Fnovflamen vl

oA [1+n],2+ n,

I =14+ M,1+n,1+v,m)

W ) \/qmqu o[l —m+ v

1 [T+ ), 2 + n,

—3-M-—-n 1 1+n+1/)\1 _
PR et v
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The case [ > 0:

R q—Q—M—n+2V
OP|M,n,v,m) = —T\/q[ZMM,n, v, m)
73+M72M+V
2 1,41 —
_q 20 q[ ]q{y+ }q{ m+V}Q|_1_’_M’1_’_n71+V’m>
1o\ {n}{n+1},
_q—3+m—22M—2n’ q[2]q[71+n,,/]q[—1+m+n*l/]q’ -1 + M -1 + v >
0 {n}aln—1)q ) n,v,m
q—%—M—ﬁ—i-u
M, n,v,m) = —\/)\ ldv+ 1} ]-14+n—v]|, M,n,1+v,1+m)

75+m 2M+n 2v

2fr —mby[-Ln=v],
Mn — 1}q{n}q
q3”2M"¢ o+ 1o[=2 4+ 1 = V] (=1 +n — V], [~1 +m +n -],
[0 {n}q{n— l}q
|—1+M,—14+n,14+v,14+m)

—14+M,—1+n,v,1+m)

-1+ M1+n1+v,1+m)

Mnl {n+ 1},

_q_3+m S q2l{v + 1} {v + 2}, {1 —m+ v} [-1+n -1,
0 gMntqe{n + 1},

g 2“\/[2 Av+ 1} m+n— v

| =1+ M,14n,24+v,14+m)

,E,M,,

O%|M,n,v,m) = —q2l—\/x\ Avlen — v M,n,—1+v,—1+m)
m72M73(1+n)+
gz 7 R2ldvld]-1+m+n—v,
-1+ M, -1 —1 -1
lO \/ )\{n}q{n—l}q ‘ =+ ) +Tl, +V7 +m>
—34m—2M+n |,
q 2 [2]q{1_m+y}q[n_’/]q
— —14+M,1 -1
lO \/ A{n} {n+1}q | + ) +n7 v, +m>

—2-M-n ”""V
- g (L= g™ Al — v,
I°IM,n,v,m) = lO)\ F’M e
—34+m—2M—2v
a2 |q2ldv}dy —m},
14+ M -1 -1
- \/ ORCEETs |—1+M,—-1+n,—1+4v,m)
TRy gl n— vy -1+ mAn— ]
ZO[ ]q {n}q{n - l}q
= g2[n = v)yfm 0 — ]
10 {n}e{n + 1},

g "n—vlg [q2l v+ 1} A1 -m+v}, — n v, m
J OFrES

-1+ M,~1+n,v,m)

+

I — 1+ M, 1+n,v,m)
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A.8 The representation of the momenta

The case [ < 0

PAlM,TL7I/,m,TL> =

. m-2M-3n-2v 1 2],

T N\ Tl 2+l

P SR+l = vl [—m o+ A = 1+ M =1 v, 1+, =1+ n)

_|_q2+”+”)\\/[2 +nlg[—1+n—vln—v]m+n—v[1+v]
|—1+M,~1+n,1+v,1+m,~1+n)

+q2(1+n)\/[n]q[1+m+n—y]q[1+y]q| —1+M14n1+v,14+m,1+n)

_q3+2n+l/>\\/[n]q[n — V[l + V] [2+ V][l —m + v,
| =1+ M, 1+n,2+v,14+m,1+n)

+q2<1+"+v>\/[2 +nlg[n — v]g[—m+ V)|l + M, —1+n,v,1+m,—1+n)

+¢*\J[n]g1+m+n— v [l + V]l +M1+n14+v,1+m,1+n)

PB|M,n,v,m,n) =

. m—2M—-3n—2v [2]4

T\ Tl a2,

q1+2u\/[2+n]q[m+n_y]q[y]q‘ — 1+M,—1+n,—1+1/,—1+m,—1+n>

+q1+2n+2(1+u)\/[n]q[1 +n—vl=m+v]|—1+MI1+nv,-14+m1+n)

_q1+2n+l/>\\/[2+n]q[1 +n —v],[=1+ V], V] [-m + ],
14+ M,~1+n,—-2+v,—1+m,—1+n)

+q1+2n\/[2+n]q[m+n— l/]q[y]q‘l—i—M,—l +n,—-14+v -1 +m7—1+n>

0 Inl L n = V24 n = V[l m ot o,
|1+M71+n7—1+y,—1+m71+n>

12 gL+ 0 = V[l —m 4 Vgl + M, 1+ n,v, 1+ m, 1+ n)



102

PC|M,n,I/,m,n> =

. %L [2]q
i 2\ Tl 1 + 1,2 + 7,

q3+”\/[2 +nl [v]g—m+v) -1+ M, -14+n,—-1+v,m,—1+n)

+q2+V)\\/[2+n]q[n_ V]q[m+n_ V]q[”]q| - 1 +M7_1 +TL, V7m7_1 +n>

2\ Jlala 10— V[ = v = 1 ML, 1)

+q2+2(1+n)+'j}‘[1 +n-— V]q\/[n]q[l F gl =m+v]|M =1, 14+n,1+v,m1+n)

— PN 40— u]q\/[2 +nlg[v]g[=m+ vl + M,n—1,v—1,m,n—1)

+q2+2n\/[2+n] [’I”L-V] [m+n—]/]q|1—f—M,—].+7’L,V,m7_].+n>

—q”)\\/ 1+n—v)[l+m+n—v|v,l+M1+nrv,m1+n)

—an\/[n]q[l‘f‘V]q[l —m+v|l+M1+n1+v,m 1+n)

PD]M,n,l/,m,n) =

m_M—n+v 1 [2]61
—ar 200 \/ [l (L + n],[2 + 7],

— 124 nlyln — vyt n— vl 14 M, 14 n,vm, 14 n)

+q3+n\/[n]q[1+7/]q[1 —m+v—=1+M1+n1+v,m1+n)

+\/[n]q[1+n—u]q[l+m—l—n—y]q|1+M,1+n,1/,m,1+n)
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The case [ > 0

PA|M,n, v,m,n) =

i M72M273n72u 1 [Q]q
H 2\ M=1+n}{n}, {1+ n},

it n— {1k o1+ vd =14 M 10 14,14 m, 14 )

+qnq%+n\/[_1+n_ v{l+n}t{-m+v}l|—-1+M-1+nuv,1+m,—1+n)

+q%+u>\\/[_2+n_y]q[—l—i—n—V]q[—1+m+n—V]q{1+n}q{1~l—u}q
|—1+M,-14+n,14+v,14+m,—1+n)
g =1 = {1+ {1+ {2+ vhe{l —m 4 0},
| -1+ M,14n,24v,14+m,1+n)

_q%+n+21j\/[_1 +n—v{l+nt{-m+vil+M-14+nv,14+m,—1+n)

+q%+2”\/[m+n— v{-14+n}{1+v} 1+ M1+n1+v,1+m,1+n)

PB|M,n,V,m,n> =

. 14m—2M—-3n—2v 1 [2]
_Zq 2 J— q
20\ M—1+n} {n} {1 +n},

[q2(1+v)\/[_1+m+n—y]q{1+n}q{y}q|]\/[— ILn—1Lv—1,m—1n-—1)

_q2n+2(1+v)\/[n v {1 +n} {1l —m+ v} M —1,1+nv,m—1,1+n)

107 I = vl {1+ ndo =1+ vl {rhe{-m + vl
1+ M,—-1+n,-2+v,—1+m,—1+n)

+¢" [+ m+n = v {1+ n} v}l + Mn—1v—1,~1+mn—1)

4"l = L[ 0 = ol 0 = o1, {=1 + )0,
1+ M, 1+n,—1+v,—1+m,1+n)

+¢*"\/[n —v]{=-1+n} {1 —m+v} |1+ M1+nv,—1+m,1+n)
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P9 M,n,v,m,n) =

. m—2(—1<;M+n+u) 1 [2](]

" 21\ {=1+n}{n} {1 +n},

[‘ L o b{m + vkl = 1+ M. =1 40, —1 4+ v, 1+ )

AUk = Lm0 = {1+ (v,
|—1+M7_1+n71/7m7_1+n>

+q2+2”>\\/[n —v]gm+n—v|{-1+n},| -1+ M1+nv,m1+n)

+q2+2n+y/\[n - V]q\/{_l +n}q{1 + V}q{l —m+ V}q
| =1+ M,14+n,14+v,m,1+n)

—¢*" \[n — V]q\/{l +nt v {-m+rviJl+Mn—1v—1mn—1)
— W1 = 1 b m = V{1l Mo = Lv,m,n - 1)

+q”)\\/[n —v]gm+n—v|{-1+n},{v}1+M1+nv,m,1+n)

g (L b {1+ vh L —m v [L+ ML 0 14 vm, 14 )

PP|M,n,v,m,n) =

a1 2,
H 200\ {=1+n}{n}, {1 +n}q

q3)\2\/[—1 +n—vjg[=1+m+n—v|{l+n}|M—-1n—1v,mmn—1)

+q3+”)\\/{—1 +nt{l+vi{l—-m+v},|—1+M14+n1+v,m1+n)

—qH”)\\/{l +nt{vi {—m+rvi )1+ M —-1+n—-14+v,m,—1+n)

—3y/[n = Vlglm +n = V]o{ =1+ n}g[L+ M,1+n,v,m,1+n)
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Appendix B

Commutation relations

B.1 The R-matrices

In the following we use light-cone coordinates. All the matrices are block diagonal

in the basis that is labelled by:
AA, BB, DA, CA,AD, AC, CB,DB,BC,BD,

The projector decomposition of the R-matrices is:

1
R[ = P5+PT—q2P+——P_

q2
1 2
R]] = ?Ps—f—q PT—P+—P_
with

1 = Ps+Pr+ P+ P_
PA = P++P_

Every projector decomposes into four blocks:
p=pPWY 4 p@ 4 pB 4 pW

Explicitly the blocks are gives by

BA,DD,DC,CD,CC, AB

(B.2)
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—g\
1

0

—qA 0
1

0
e

0

g2
-1

<| =

q72
_q_2

1 g\
0 0
1 gA
_q2 _q3)\
q2 )\2

qA
—1

—1
0
Ve
1

0
0
0
0
0

0
-1
g2

A

q

q—2
_q_2 O

—1
0
Ve

-1
_q)\
1

_q)\

1 qA
0 0
_q2 _q3)\
gA
q2 )\2

1
qA
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1 10 1 0 0
PS():(O 1) p}>:<0 0)
¢ 0 g0 0000
per — L[ Aaa o | PV =g
S - L9 1 9
[Q]q q g0 0 00O
0 q ¢\ p
é >\ g 0
1 0o L o 1
p¥ - q q
S 2], % g 2 ¢ —\
0 ¢ 0 ¢
? —2+q¢Her 1 1 0 1
0 2], 0 0 0 0
P(4) . 1 q2 q?’)\ 1 1 0 1
ST RE| 4 i) 11 02 1
—qgA = ¢*N —o =7 2l a2+
1 g\ ¢ q¢* 0 q
q72 % _q72 _q72 0 1
0 0 0 0 0 0
P& _ 1 -1 —gX 1 1 0 —¢
r 22 -1 —gx 1 1 0 —¢
—g\ =@\ g\ gh 0 —¢3\
1 g -1 -1 0 ¢

The four-dimensional metric tensor g;; can be derived from Pr , the projector on
a singlet:

0¢ 0 0
(10 0 o
9i=1 0 0 0 -1

0 0 —1 g\

Written out, using the g-relations for the coordinates the Minkowski length of a
four vector is

q[2],
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B.2 The vectorial form of the ¢g-Lorentz algebra

The RS-form of the g-Lorentz algebra consists of two U, (sus) vector operators R

and S, see [32]. Explicitly the defining commutation relations are [19),

o O O O o o o O

R3R+ _ q2R+R3 . ﬁ
Q[2]q
1 p—
—¢*R*R™ + R R® — Ui
Q[Q]q
Ul R3
—¢(AR*R* -~ R"R"+R'R") —
q[2]q
20+
S36+ — 25tS° + vst
Q[Q]q
335— o UQS_ + qS_S3[2]q
3[2]
q-|4]q
2Q3
—AS383 4+ 8-St —STS™ + UQ—S
q [2]61
U'RT — RTU!
U'R— R U!
—RU'+U'R?
U2St — StU?
U2S— — S~ U?
—-S3U? +U%S3
Ultv? — Ut
— D+ o 1771
R3R3——R f —gqRTR™ + L-UU

q4>\2[2]42

o O

o O O O O

RS+ — q25+R+
1
—?S*]F + R*S™

~S*Rt + RTS?

—¢*R~ ST+ STR™

+qA[2], (S°R* + AS™RY)

R S~ —¢*S™R™

~S*R™+ R™S* - \S™R*[2],

RSt — STR? — \S*R*[2],

R3S~ — S™R?

R3G% _ G3R3 _ ASTRY[2],
q
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The semidirect product with the g-Minkowski space is defined via the relations

1
R3XO — _W(X3U1+q>\(AX3R3—X*R++X+R*) 2], — X R*[4],)
d|4lq
1
ROXY = oo (XU - AR R+ AX R, + g XOR [0
d|4lq
1
RTX? = q[z]z(—X*Ulﬂ(XSR*—qQX*RS) (2l + ¢ X RT[4],)
q
R X" = ¢gX R
R*XT = ¢gX*tR"
_ 1 _
frxm = q2[2]2(X°U1—X3U1+q[2]q (4 (X°R® = X°R®) + X" R*[2],))
q
T 1 0771 2( yv3r71
R X 4[Q]QXUJrq XUt +
qa-|4]q

2, (AR + R (20° — [2)) + g (PX R+ XTRO) [2)) )]
|
RX? = ———[XU! + XU
q3[2]q2 [ o "
+q[2], (¢ (\XPR® + 4X3R3 42X RT — AXTR™) + X R'[2],) + @*X*R? [4]q]
1

BXT = o (XU gl (DXOR X R 4 R (20 +(2))
RTX? = q[;]qQ (XU + 2], (AXORT +2XPRY + qX R (~2¢ + [2],)))
Bx+ — W;]f (XU +q[2), (= (AXRY) + 22X TR + X*R* (=24 ¢*[2],)))
RXY = — L (XU 4 qf2, (— (AXOR) +2¢°X°R + X R (~2+ ¢12),)))

¢ [2]112
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S™X~
Stx+
S—Xxt
S3Xt
SX3

StX~

+Q[2]q

83x3 _

S3X~

STX3 =

oL

[

L

QQ[Q]qQ
(gAX°S% + X25% (2 — ¢*[2],) + ¢® (X~ ST[2], + X+S™ (—2[2], + [4],))) ]

92[2]q2
2y (AXTS* + XTS5 (2 - g*[2)y)) + g XS (4[2], — [4],) )]

L (X307 1 ¢* (- (V(AXPS® — X5+ XHST) [2),) + XOS°[4],))

(XU + ¢ (— (¢PAXP57[2],) + AXS?[2), + ¢X S [4],))

——— (= XTU? + @ (AN (XPST — ¢* X+ 8°) [2], + ¢X°SF[4],))

(X°U? — XPU? + ¢°X (- XS + X*5%) [2],)

q? [2]q2

(=XFU% + ¢ (— (AX°ST) + AXPST +2¢XF5%) [2],)

—_

3[2),"
L (X0 4 (- (AXOS57) + 20X35 +AXSY) [2),)

\)

o

il
1 [q2X0U2+X3U2

1
X2 4 g = XOU? + 22X 05,

B @ (XU + (2], (2AX"S™ +2¢X~8* + X*S™ (—2¢° + [2],)))

% (XTU? +[2), (PAXOST +2¢X°ST + X+S8° (—=2¢° + [2],)))

2l
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U'X? = N (—¢X°R*+ X R"+¢X"R7) + —Xog]12[4]q
q
U'Xt = —g\ (X°R* + ¢ (X"R* — X*R%)) + —X+[[2]]12[4]q
q
U'X™ = =g (¢ (X°R™ = X°R7) + X R*) + —X[g]lz[ﬁ‘]q
q
U'X? = N (—¢X°RP+XX°R’ -~ X R+ X'R") + —ng]zwq
q
UPX? = @N(—gXPSP + X ST +¢XTS7) + —Xog]22[4]q
q
UPX*T = —g\* (X°5T — X°S* 4+ *X*5%) + —X+[[2]]22[4]"
q
UPX™ = —qN (X°S™ +¢*X°S™ - X78%) + —X[g]zmq
q
UPX? = —qN (XS +q(AX?5° = X~ ST+ X*57)) + %

q

The realisation of these operators in terms of our set of seven generators is given
by the relations

Rt =

q T27
\/q3[2]q3
1
R = ————(¢S"+7'T")
Q\/q3[2]q3
1

R} = R 5 (q02—q7'1+)\2T2T_)
q
1 1 _1
o= 3[2]3(“73)”2‘(73) ')
q°14lq
s = L () is
q3[2]q3
3 _ 1 3\"3 2 (3\3.1 , 3v2(-3\"3alp+
$ = () e ) ) T
q
Ul _ _q[;] (q202+71+q>\2T2T_)
q
2 — _qé] (q2(7_3)—%02+(73)%7_1_(]3)\2(73)—%5’1T+>
q
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and thereby establish an isomorphism between these two different forms. The
inversion of this isomorphism is given by [19]:

% = Q[2]q3R+

o= U - @R,

Sto= /@12 (%) ST

0? = ()07 + A2, (%) 25

T = by 12, (%)L (B.3)
T = —q2 [2](1(73)%[/

The vector L = (L*, L3, L™) together with the operator W generate the Uy (susz)
subalgebra of rotations. Written in terms of the & and S they are [31]:

o= (U'S* —U*R’ + ¢*Z°\[2],)
q
Lt = % (U'ST —U*R™ + ¢*A[2],27)
L~ = % (U'S™ = U’R™ + ¢*\[2],27)
W = UW?+¢N[2],° (—qR*S® + R-ST + ¢*R*S7)
Z? = —q(AR*S*— R ST+ R'S")
Zt = R3ST —¢’RTS3
77 = —¢*R}S"+R S°®

IfLoX = L3X® — gLt X~ — %X Y denotes the 3-dimensional scalar product
of the two 3-vectors L and X , we the helicity operator is defined by

H = LoX—XW (B.4)
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It commutes with the coordinates and the rotations, whereas the relations with
the boost generators are

HT® = (I°H — —2—Ac*(r%) "3 — —2_DT%(1%)s + L2 DT+ o2(73)

1 _  lgolpg_ _ 1 1(.3\% A — - 1(-3\% 2 1033
HS = <SH qquT (19)z + —q[2}qDT T(1%)2 4+ q[2]qDS (7°)

2 _ 1.2 A 2(-3\2 _ _ 2 2(.3\1 A3 —2/ 3\ 1
Ho* = g H + p q[2]qDU (1°)2 q[Q}qBT (1%)2 + q[2]qDT T4(7°%)2

We can realize the RS-form of the ¢-Lorentz algebra by means of coordinates and
derivatives in the following way:

(B.5)
[ (Xoé)?’ +q (—qX?’é)O FAXPH - XO + X+é—)>
q2[2]q2
A3 . . . .
+  vOATF 330+ 1 2 (v+A0 _ v+ A3
Rt = q2[2]q2( X004+ X004 ¢* (X1~ XT0))
Az . . R R
R = s (<X% = X0 X0+ X
q [2]q
Az . . R R R
$* = s (~PX°0 + X3+ q (AXF - X0+ XH0))
q2[2]q
Az . . R R
S+ — ~ (—q2xoa+ ~ X3 £ X0+ q2X+a3)
2
q [2]q
A3 . . . .
S = s (_(fxo(f)* FPXRO XD — X*a?’)
q [2]11
A3z R R . R
U= 1?2 = - (—qQ)\XO(?O FPAXRO — AX Y — PAXTH + [2]q)
q
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Rewriting these relations in terms of our set of generators, we obtain the equations

0 = T?— ?AOP Az + DH* Az (B.6)
0 = —¢*BOPA® +¢*DOPAs + §'(+) 2

0 = —AICN3 + QAAIPAZ + COINS + T2 (1) — qTH o2 (7) 2

0 = —¢S'+¢° (Béc —CHP + qADéB) A3 — T

0 = ¢\ (qMéB + BH — CHP — DI + qADéD) A% —q[2], (U - A%>

= q (02 - ’7'1) (B.7)
A (DéCA% +q (—AéB + BOA — COP + qAD5D> A3+ )\TQT’>
0 = —o? (73)_% + 71 (73)%

g (céDA% +q ((—AéB + BOA — D° + qADéD) Az — AT (73)7%»



115

B.3 The spinors

B.3.1 The relations between the spinors
The spinor algebra is defined by the following relations

Ty =qyr  Yyr =qry

xT = ITT — qQ Yy

Ty = qyx
yr = qry
vy = vy

B.3.2 The action of the symmetry generators on the spinors

(B.8)

Trx = y+qeT* THz = éjTjL
Tty = I* Thy = —r+ Tt
Tz = qxT~ T-7 = LT~ —qy

_ 1 _ q
Ty = x+ ayT T~y = qyT~
PBr = Qe By = @y
By = g2y PBr = ¢z
e = car! T'r = I+ (; - 20+ )T
Ty = qyr’ Ty = gt
T2z = 2T?+yr! T’z = qzT?
%y = yI? Ty = yT*
Sly = z51 Sz = yo?+ %fSl

1, _ ,al _ _
S2y = v 2 | (1 3y, a1 Sy = ws
oc’r = quo’+(; —2¢+)S' o2 = zo?
oty = lyo? o = go?

from these relations we get on (D(%’O) EBD(O’%)) the following matrix representation,
if we choose the basis x = (1,0,0,0), y = (0,1,0,0), = = (0,0,1,0), 7 =
(0,0,0,1):
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B.3.3 The Clifford algebra

The commutation relations of the g-gamma matrices are

Ty =0
’7+’}/+ = 0
A
A0t = 57+73 — a0
Pyt = _gyt?
_ A g _
77 = 5737 — %y
v = =gy
11
-—~t = - = 3.3
S AL
1 q2
+tA— = 3.3 1
vy 7Y =5
Pyt = -1

. S |
The action on the spinors is given by

0 ~ A0 1

Ver=g1"vy=—2"vz=qy P >y=—z,
q
3 2 — 3 1— 3 — 1 3 —
Ver =gy ey = BT =y ey =,
Yz =qy/q2,z, 7Ty =0,7">2=0,7" >y =—/q[2ley,
q[2], q2ly

Y rr=0,7ypy= Y,y pIT=———
q q

000 0 01 0 0 Z 0 0
100 0 |00 0 0| 4 0 ¢2 0
000 -] ~|loo0o o0 0] ~ |0 0 ¢
000 0 00 —q 0 0 0 0
0000 0000 %000

100 0 . _[ooo0o0 v ogqgoo g
oooo | loooo|" " |oo10l|7"
0000 0010 000 1

o O O

=)

)

(B.9)

O O O
S ORIk O

(B.10)

(B.11)

o= O O

_— o O O



117

B.3.4 The commutation relations with the coordinates
and derivatives

For (V,,V_, V3, Vy) equal to the coordinates (X, X_, X3, Xo) or the derivatives
(04,0—,05,0) we have:

b b2
Vor = axVp+ Vs + 2l yVy (B.12)
q q[2],
bA \/
Vax = b:cVo—l—(a—i-;) " q(b+q3)\ (a+0b))yVy
b2 \/ 2],
Vie = q(a+b)aV_ — Hq q£ (b+¢*N(a+b)) yVs
qmq q
1
Vie = E((f@ —b)zV,
2],b
Vou = ayVy—byVs — Q[2]q xV_
q
b bA b\/q[2
Vay = ——yWo+(a+ —)yVs+ qz[ ]qu-
q q q
L.y
Viy = E(q a—b)yV-
b\/q|2
Viy = (a+b)qyVy+ qg[ b, (Vo + V3)
with four possible choices for the constants a and b: (a,b) = (£1,0) or (a,b) =
4], A
:t( %2}2 ) [;] )
Vor = ciVo+ ¢*dzVs — qy/q(2]4dyV- (B.13)
2
Vs = dzVo+ (c+d—dg*)zVs — [ ][;] (d — cgh + dg*X) V-
q14lq
Vg = qc—¢d)zv_
B c+d_ 2 _ _
Vit = . TV, — [q—][‘;] (d — cgh + dg*X) §Vs + dgy/ (2], Vo
q
Voy = cjVo —dgVs + dy/q[2],2V4
Vag = —q*dyVp + (c+d —dg*)yVs — dy/q[2],dzV,

c+d
Vg = GV — Jal2l.dz (Vo + Vi
. 2],dz (Vo + V3)

Vig = qlc—@d)yvy
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again we have four possible choices: (¢,d) = (£1,0) or (¢,d) = i(%, ﬁ)

How to commute the spinors with space functions

To deduce commutation relations with space functions, we proceed in the same
way as we have done it in section 5.1 for the derivatives. We express the commu-
tation relations in a matrix notation and then make use of the fact, that these
matrices fulfil characteristic equations. Explicitly we write

X(N=eors x(0) =@

with X € {X° X3 X+ X~} and the L-matrices are in the case (a, b) = (%, —ax

and (¢,d) = (42 -2_) given by

12127 a2lq

: O : P X
X0 = _ Ay lXO—i-[Zq]—q)‘XOB X0 = Am X+ X0 " ]z Xx0/3
Vallq T T Va2l Eae) P
Xt 0 + g\ yo0/3
X+ = _@PA x0/3  x+ §(+ = X q[2}qX
ql2lq 0 X+
X- ——A_X3 _ X~ 0
Ly- = a+/a(2]q Ly- = A x0/3 x-
0 X Val2la
. 1x0/3 . gX%3 0
X083 = ( ! 0 ¢ X/ > X038 = ( 0 1x0/3 )
q
They fulfil the following finiteness conditions
s )2 o2, N 2 s 0
(Lyo)” = —(X7) +W(X> + [2g L0 X7,
q
(Lol = —(X°P) 4 [2, L X
2
(3 =~ + g xe
(Lx-)* = —a*(X7)* +q2Lyx-X"
The characteristic equations for the L®-matrices are the same.
The commutation with a space function is then given by
x s x _ 35
F(X) )~ (z,y)F(LY)  F(X) 7) = (@, 9)F (L) (B.14)

with

)
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(B.15)
(A - B 2qLf) F(PEA) — (A= Bg 4 2qL3f5) F(EL)
F(LS/S) _ 2q 2q
X0 (A+ B) g\
- 2 X0/3 — F(qX9/3 O F(gX9/3) _ | X0/3
F(Lii/g) _ ¢ F( q ) (g )+L§(/3/3 (g ) ( q )
qA X0/3)\
27 X+ +) _ (Xt
F(Ls/g) _ q F(Q_Q) B F(X+) + Ls/s q (F(X ) F( 7 )>
X qA AX+
3 PP(XT) - F(*X7) s (F(?X7) - F(X))
Py = 4 153
( X—) o + Ly X~
P L) — (A¢® — B) F(4, Bq) + (B¢* — A) F(Aq, Z)
ATE (A + B) g\
2(F(4,Bg) - F(4g, )
+LYE
X (A+B) A

If we choose (a,b) = (1,0) and (¢,d) = (1,0) in the relations (B.12,B.13) the

L-matrices are

s X0 - X% 0
X0 X0 = 0 X0
. ( qXJr 0 ) - < gXt 0 )
+ = 3 1 X+ = 1y+
X —q/\\/_X 1x X+ 0 X
L ( X0 > I X 0
x- = - -
0 q¢X~ * —2Val2lg X* X
X0/3 0
Lxos = ( Mql2l, X— X3 ) Ly, = X0 0
q q[ ]q X0/3 A q[2]qX‘ X0/3

The characteristic equation for L yo/s is
1 2 _
(Lors)® = —?(Xo/g)%r%@(ws X% and (Liors)® = —612(X0/3)2+Q[2] Sosa X0

and the calculation for F(L%. ), resp. F(L5%_), is done directly by considering
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powers of L+, resp. L5 _. We find:

F(Lko)
F(Loss)
F(L+)

F(L%-)

F(Ly, L)

F(Lo)

F(Loys)
F(Ly)
F(Ly-)

F(Ly, L)

(B.16)
F(X°)
/
PR - P (PO = )
g\ o X0/3)

F(gX™)

P@XH)-F(X) o(FC)—F(aXH) ,
= PO oy T ) o sty

(" )
q
F(gX™)
F(A, B)
(B.17)
F(X%
CEXP) ~ F@X?) 5 F@*X°) — (X
qA X0 g X /3
F(gX™)
F(1X)
F(iX™)
F(¢X™)~F(5X7) F(X-)-F(¢X™) _
\/:[E X o X0/3 + V qp]qqqx—*qu F(QX )
F(A, B)
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B.4 The coordinates and derivatives

B.4.1 The commutation relations of the coordinates

The algebra of the g-Minkowski space and its derivatives is defined by the relations

X0x3

X0X-
X0X+
X3X~
X3X+
XXt

9o X"
;X"
0_ X
9, X°

aOXO/:S
83X0/3
éLXO/?’
8+X0/3

Qo X+
Dy X+
o_ X+
0, X+

Do X~
9y X~
0. X~
9, X~

X3X0 003 = 030
X-X° 00— = 0_0y
X+XO° D0, 9.0,
¢2X X+ AX X0 030_ q?0_03 + q\O_0y
2X+X3 Q/\XJrXo (938+ = q_28+83 — 3a+ao
X+X7 AX3X0 + AX3X3 8_8+ = 8+8_ — )\8380 — )\6363
1= 2 X005 — 2 X0 — A X0, + 240 X090, + i X00,
09, _ 0 A 0/3 + A2y 0/3
B X0 [Q]Xao []X8_+2]$X 80+2[2X6++q[2]X 0
X%_ — 2[2] X039_ + [2] 2 X*0, + ] 2 X109,
q_2X06+ + [2] XO 38+ X 83 + X 80
1= 2X-0_ + 2 X030, + ﬁ X0/3a
q(2
i 2XT0-+ G X0y + L X0,
_2X0/38,
XO/%?+ +AX "0y + AX 04
AX°0_ + X+03 MXO/:S@ + P X+60
—AX9_ + ( 2 ) X0+ 2o X+ 05+ - X0y
XT0_
1 +q—2X+a+ _ %XOa A)(Oa3 ( -2 + [} )X0/383
+ X0 — (2 - G X0

— A X 83+q[2 X730, 4 5 X0
A 0/3
o, 0~ g X - []X O
1—|—q_2X o_ — H XY/ 3(90 }
X-0,

A consistent definition of conjugation for the coordinates is

X0=X0% X3=X3XT=

1
—gX, X =-—-X*

q
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The definition of conjugates for the derivatives is more involved, because there is
no linear relation between 0 and 0 anymore, see [20], [17], [18]. Instead we have

Do = —q4(§0, 03 = —q453, 5+ = q5(§,, - = q3é+ (B.18)

and the hatted derivatives can be expressed algebraically in terms of X and 0:

A A
0o = N1 |0 — = X4(0)? B.19
7, (1)
A is the scaling operator with the properties
1 A O
AX" == XN, AD, = PO\, N0y = ¢?0. N, A = A1
q
Similarly we can express the normal derivatives by the hatted ones:
A
0, —A{a + qX(@)]
2l

The commutation relations for the hatted derivatives are

518 le ak-al alé] - Rl_ll ZI;Z ék:al a X] - 52 + R_IZ]’Z; X 6k

131

Another basis for the ¢-Minkowski space are light-cone coordinates, which are
defined via the spinors by

I
< 8

@I &I

A y C
B D =

X

They satisfy the relations

1 1
AB = BA—--XCD+¢\D? BC = CB-—-\BD
q q
AC = CA+ g)\AD, BD = ¢*DB
AD = %DA, ¢D = DC
q

with the reality properties A= B, B=A, C=C, D = D.

The coordinates {X°, X = (X, X3, X )} constitute the decomposition into a
singlet and a triplet with respect to the U, (sus) subalgebra of rotations: DG3)
D@ D*

The basis transformation between these two bases is given by

1
A=-X* B=-X"
q

, C= (?X°+ X%, D=

q[2]

Q
]
)

Q

(B.20)
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B.4.2 The L-matrices for the coordinates

[4a_x0/3 A x0/3 0 _Ax-
Q[%]\qQ 0/3 [22]61 0/3 /\q
Lyoss = 7 X THEX 0 o (B.22)
AX AX— X3 0
0 0 0 ¢ 2X93
[4] - A - A v0/3
Ly = E Y meX T Tt 0
0 0 X~ 0
X~ X 0 ¢ X"
Lyo =
[4] 0 A 0 A 0/3 A + D) -
et T 7 o
_ 0 A y0/3 _2 voO 0/3 + A v—
[21quA+ B, < J;qmiX L B,
GO L A S
a2, X a2 0 X0 — o X
Ly =
e+ A v+ 0_ _\ y0/3
q[zAﬁQX {2214X 0 A(;X qmq)f 0
PR e X 0 —AXO+ (g — ) X
_AY0 A yvO0/3 __AyO -2 _ 2¢\vy0/3 —2v+ 2 v —
AX0+ A X X0~ (7 = ZL)XOB X A2X
0 0 0 X+

B.5 The commutation relations of 7+, 77

The U,(suz) algebra of rotations is defined via the generators 7=, 7% by the
relations

g\t — Tt = T3
q2T3T+ _ q72T+T3 — (q+q71)T+
CTT°—q°T°T" = (¢+q¢ )T~

The semidirect product algebra with the ¢-Minkowski space is given by
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T3 X3
T3X+
T3X~

T+X3
THX+
THX~

T-X3
T-X+
T-X~

T4, X°)

X373
q—4X+T3 =+ q_l(l + q—2)X+
XT3 —q(l+¢)X™

X3TH +¢72/1+ ¢2X T

q—2X+T+

q2X7T++qfl /1—|—q2X3

X3T™ +q/1+ 2 X~

¢ AXTT™ + 1+ @2XP

CX T

If we use the light-cone coordinates the relations are

TTA = ¢ 2AT*

TTC = CT"+q'A

T*B = ¢BT +¢D—q'C T™D = DTt —q¢'A

T°A = ¢?AT" +q¢'C—¢D T°C = CT"—q 'B

T-B = ¢*BT~

A = ¢ *AT
™B = ¢'B7r

with 72 = 1 — \T%.

T-D = DT~ +q¢'B

™C = O7°
»D = D7*

(B.23)

(B.24)
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B.6 Commutation relations of 72, 7!, S, o2

The relations for the boost generators are

T~ = 4 2T T 4 4
T+T? = ¢?727+

THSt = @St —sot 4 1rird
T-T? = T?T" — 37+ 1o’
T7-5' = S'T-

7.3T+ — q74T+7_3

=T~ = ¢T73

7371 - 1.3

7_30.2 0_27_3

7_3712 q_4T27'3

91 = 19173

T+
T
12
7_1f1'72
7_151
o?T+
o1~
o?T?
0.25«1

725t

THrt 4 \T?

q 2T 7'+ =\S!
ol 4 g\3S'T?
2T

517_1

T+o2 — q%T27_3
T 02 + ¢*\S?
g 2T

Slo?

SiT?

The relations defining the semidirect product with the ¢-Minkowski space are

X- = i1x-¢!
1y + qX+ 1 )2 X372 4 A2 02
T = T —
q[4] NP NCET
1yv0 _ Mg yvo 1 gx yv3.1 _ _qX —2
TXT = g XT T a2,
1v3 2 v3.1 A v0.1 g\ —2
X = [g]qX T q[2]qX T —q[Q]qX T
T2Xf _ 1X7T2_ 1 XO 1 X3 1
) q i Q\/Q[Q]q 4 +Q\/‘1[2}q g
T°X*t = ¢gX'T
2v0 A 32 1 +.1 . [4q yoq2
T-X° = qqu T —i——@X T+ quX T
2v3 2 yv372 . gA yOq2 1 +.1
T-X° = qu T + [Q]qX T —|——_q[2]qX T
(B.25)
02X~ = X o?— —_X0gl 4 2 x3gl
2q 2q
xh Ly v/ al2] v/ al2]
q
2v0 A y3, .2 A2 +a1 | Mg yo_2
o* X" = q[2]qX o +—_q[2]qX S+ [2]§X o
0’ X = X0+ B X004 A_X*S!
q q q(2]q
SiX_ - ({X_Si 1 3 2 1 0,2
Slx+ = ix+gl L X ——X
] i O
Slx0 — %XOSI_%X3sl_ 4 x-g2
q q Q[Q]q
1v3 _ 2 yv3cQl __ A yvO0Ql _ g - 2
StX° = qu S q[Q]qX S \/MX o
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In terms of the light-cone coordinates we get

T?A
T°B

STA
S'B

A
'B

o?A
o’B

qAT?
qleT2 + qleTl

¢ TAS' + ¢ 'Do?
qB*5?

qAT' + g\ DT?
q_lBTl

TC
T2D

e
S'D

ric
'D

o?C
a’D

qCT? 4 qAT!
qleTQ

(¢ 'C 4+ ¢)\’*D)S* + qBo?
gDS™!

(¢ 'C 4+ g\>D)1 + g\*BT?
qgD7?

qCo? + g)\?AS?
q—1D0_2
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B.7 The boosts in A B basis

The action of the Lorentz generators on a function depending on the new coor-
dinates defined in equation (6.7) and X°/3:

(B.26)
S'f(A, B, XP)
(A+ Ag? +2¢°X°3) f(4, Bq,qX°?) + (B + Bg® — 2¢>X°/?) f(Aq, Z,¢X")

(2, (A + B) i
B 2q é 0/3y _ E 0/3 —o?
L (A1 B) (f(q,Bq,qX ) f(Aq,q7qX )>X

T?f(A, B, X"7)
(B+ Bq? —2X°3) f(4, B, X2) + (A+ Ag® + 2X°) f(Aq, B, X2)

a2, (A+ B) T
2 A X0/3 B X0/3 L
+AJ@EOHJ%<ﬂEJM i OXTT

o’ f(A, B, X ")
(B+ Bg* — 2X°%) f(4,Bq, X°) + (A + Aq* + 2X°F) f(Aq, 2, X5

q q’ q

42, (A+ B) 7
20/ g\ A X0/3 B X0/3 o

T f(A, B, X"?)

(A+ A¢® +2¢°X°P) f(2,Bq,aX"?) + (B + B¢ = 2¢°X°P) f(Aq, Z,4X°P) |
T

q[2]4 (A+ B)
A
_q )\[22(]‘12‘1)4 B (f(g,Bq,qxo/:%) — f(Aq, quXO/:a)) X2

(A, B, X®) = f(A, B, X%

- _ (f(AB,X) = f(A,B,¢*X°)) \/q[2,  _
T f(A, B, X)) = f(AB XTI + uSL v

AaBa&;S - A,B,X0/3 2q

T+f<A,B,XO/3) _ f(A,B,XO/g)T+—|— (f( q ) f( ))[ ] X+

XO/?’)\\/ q[2]q
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B.8 The derivative of f(A, B) and f(X"?)

The derivative of a function f(A, B) or f(X°3) is given by:

(B.27)
1223[;]: —(A4+B
8¢ (F(A.5) = f(£.B) | i
af<A, B) - AB (A I B) )\2[2](1 (A*BQ)qX_
(A—J%)X+
2q
A-B
4q ((A +B)g\f(A,B) + (A= B¢®) f(A, B) + (B - A¢?) f(4, B)) X
AB (A + B) X\?[2], —qf{f
2q (f(q%, B) — f(A, q%)) LA Be®) f(A, B) + (B~ A¢) f(4.,B) )
* (A+B)A X0~ (A+ B)gh
Bf(X*) = F(X)d (B.28)
—|—D&2/3f(X°/3) (1 - ﬁ (X3 (9 — ¢%0s) + q[2]qX—a_))
B f(XO%) = f(X")d
—D oss f(X3) (1 — QL (X3 () — ¢*0s) + q[2]qX3_))
q2 q [2]11
0+ F(XOP) = F(XY®)0s + ADpxoss f(XO?) X (9o + 05)
X0/3
O_f(X) = f( )0
B.9 The action of H
The helicity operator is given by
H=
A - + 3—%_80"‘83 3L L 2y\2m— et 3y -1 95 — ¢°0o
T 0T ) ) SR (N ) 2
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Ho f(A,B,X* X or = (B.30)
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(al2))? BA+5)
q374k (A =+ Aq2 + 2q2X0/3) f(q%,B,XO/?’) (—2q2X0/3 + Bq1+2k[2]q)
A(A+B)
q3—4kf(A B X0/3) (2q2X0/3 +Aq1+2k[2] ) (_2q2X0/3 —l—BqH%[Q] )

. y AB q q ] (XJr)kfl ® y

(A+ae+56) fARS) (B +Be =4 ) 1B, 45
(A + B) X 3A2], (A+ B) X 3A[2],
N f(A, B, X3) (4¢°2* X3\ — 2(A — B) ¢*[2],)
AB@N2],”
q7272k (B + Bq2 _ 2q2X0/3) f(A E X0/3) (_2q3X0/3)\ + Aq1+2k[2]q)
B(A+ B) X0/3)[2],°
q—2—2k (A+Aq2 —|—2q2X0/3) f . B, X0/3 (2 3X0/3)\ + Bq1+2k[2]q)

A(A+ B) X03)[2],°

_|_

+

](Xﬂ’“@x

Ho f(A,B,X*) X ey = (B.31)

—4gf (A, B, XY%) | 20(A+AG + 28X f(3, B X") - 20f(A e
AB(q[2],)? A(A+ B) X3(q[2],)? (A+ B) X%3,/q[2],
20f (4, B, %) f(A B, X8) (48P X" — 2B¢[2],)
(A B)X05\/qf2], B(A+ B) X"3(g[2],)*
0 (A+ AP +250) f(ABXS) g (B+Be - 252) f(4.B. 55
(A+ B) X93)\[2], (A+ B) XB)[2],
| J(A B XOP) (—dg" XN - 2(A - B) ¢°[2],)
AB@N[2],”
q—2—2k (B + Bq2 _ 2q2X0/3) f(A, q%’XO/3) (2qX0/3)\ + Aq1+2(1+k) [Q]q)
B(A+ B) X%3)[2],
g 22k (A + Ag® + 2q2X0/3) f(4, B, X0/3) (_Qqu/i’))\ + Bg'+20+k) [Q]q)

_ 1A qu B) XA ] X ey

] (X-l-)l—i-k QT

+




130




131

Bibliography

1]
2]

H. S. Snyder, “Quantized Space-Time,” Phys. Rev. 71 (1947) 38-41.

F. Baader and T. Nipkow, “Term rewriting and all that,”. Cambridge
University Press (1998).

H. Hopf, “Uber die Topologie der Gruppenmannigfaltigkeiten und ihre
Verallgemeinerungen,” Ann. Math. 42 (1941) 22.

E. Abe, “Hopf algebras,”. Cambridge University Press (1980).
M. E. Sweedler, “Hopf algebras,”. Benjamin (1980).

V. G. Drinfel’d, “Quantum groups,” in Proceedings of the International
Congress of Mathematicians, edited by A.M. Gleason, pp. 789-820, Amer.
Math. Soc. (1986).

V. G. Drinfeld, “Hopf algebras and the quantum Yang-Baxter equation,”
Sov. Math. Dokl. 32 (1985) 254-258.

M. Jimbo, “A g-analogue of the of U(g) and the Yang-Baxter equation,”
Lett. Math. Phys 10 (1985) 63.

S. L. Woronowicz, “Compact matrix pseudogroups,” Commun. Math. Phys.
111 (1987) 613-665.

N. Reshetikhin, L. Takhtadzhyan, and L. Faddeev, “Quantization of Lie
groups and Lie algebras,” Leningrad Math. J. 1 (1990) 193.

M. Takeuchi, “Matrix bialgebras and quantum groups,” Israel J. Math. 72
(1990) 232.

S. Majid, “Quantum groups and noncommutative geometry,” J. Math.
Phys. 41 (2000) 3892—-3942, hep-th/0006167.

Y. I. Manin, “Quantum groups and non-commutative geometry,” preprent
Montreal University CRM-1561 (1988).



132

[14]

[15]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

U. Carow-Watamura, M. Schlieker, M. Scholl, and S. Watamura, “Tensor
representation of the quantum group SL,(2,C) and quantum Minkowski
space,” Z. Phys. C48 (1990) 159-166.

U. Carow-Watamura, M. Schlieker, M. Scholl, and S. Watamura,
“Quantum lorentz group,” Int. J. Mod. Phys. A6 (1991) 3081-3108.

W. B. Schmidke, J. Wess, and B. Zumino, “A q deformed lorentz algebra,”
Z. Phys. C52 (1991) 471-476.

O. Ogievetsky, W. B. Schmidke, J. Wess, and B. Zumino, “q deformed
Poincaré algebra,” Commun. Math. Phys. 150 (1992) 495-518.

O. Ogievetsky and B. Zumino, “Reality in the differential calculus on q
euclidean spaces,” Lett. Math. Phys. 25 (1992) 121-130, hep-th/9205003.

M. Rohregger and Wess, “q-deformed Lorentz algebra in Minkowski phase
space,” Eur. Phys. J. 7 (1999) 177.

A. Lorek, W. Weich, and J. Wess, “Non-commutative Euclidean and
Minkowski structures,” Z. Phys. C76 (1997) 375-386, q-alg/9702025.

P. Podles and S. L. Woronowicz, “Quantum deformation of lorentz group,”
Commun. Math. Phys. 130 (1990) 381-431.

S. Majid, “Braided momentum in the q poincare group,” J. Math. Phys. 34
(1993) 2045-2058, hep-th/9210141.

J. Wess and B. Zumino, “Covariant differential calculus on the quantum
hyperplane,” Nucl. Phys. Proc. Suppl. 18B (1991) 302-312.

U. Carow-Watamura, M. Schlieker, and S. Watamura, “SO,(N) covariant
differential calculus on quantum space and quantum deformation of
Schrodinger equation,” Z. Phys. C49 (1991) 439-446.

G. Fiore, “Realization of U,(so(IV)) within the differential algebra on
R,(N),” Commun. Math. Phys. 169 (1995) 475-500, hep-th/9403033.

E. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz
Group,” Annals Math. 40 (1939) 149.

W. Heisenberg, “Was ist ein Elementarteilchen ?,” Naturwissenschaften 63

(1976) 1.

M. Pilling, “Das g-deformierte relativistische Einteilchenproblem,”. Ph.D.
thesis, Ludwig-Maximilians-Universitdt Miinchen, Fakultat fiir Physik
(1994).



133

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Pillin, W. B. Schmidke, and J. Wess, “q deformed relativistic one
particle states,” Nucl. Phys. B403 (1993) 223-237.

B. L. Cerchiai and J. Wess, “q-deformed Minkowski Space based on a
g-Lorentz Algebra,” Fur. Phys. J. C5 (1998) 553-566, math.qa/9801104.

B. Cerchiai, “Hilbert space representations of a g-deformed Minkowski
algebra,”. Ph.D. thesis, Ludwig-Maximilians-Universitat Miinchen,
Fakultét fiir Physik (2001).

C. Blohmann, “Spin Representations of the g-Poincaré Algebra,”
math.QA/0110219. Ph.D. thesis, Ludwig-Maximilians-Universitét
Miinchen, Fakultét fiir Physik (2001).

B. L. Cerchiai, J. Madore, S. Schraml, and J. Wess, “Structure of the
three-dimensional quantum euclidean space,” Fur. Phys. J. C16 (2000)
169-180, math.qa/0004011.

U. Meyer, “Wave equations on q minkowski space,” Commun. Math. Phys.
174 (1995) 457-476, hep-th/9404054.

P. Podles, “Solutions of klein-gordon and dirac equations on quantum
minkowski spaces,” Commun. Math. Phys. 181 (1996) 569-586,
q-alg/9510019.

C. Blohmann, “Spin in the g-deformed poincare algebra,”
math.qa/0111008.

R. U. Sexl and H. K. Urbantke, “Relativity groups, particles. special theory
of relativity as the basis of field and elementary particle physics.
(in german),”. Wien 1976, 301p.

C. Bauer and H. Wachter, “Operator Representations on Quantum Spaces,”
math-ph/0201023.

N. Z. Torgov and A. U. Klimyk, “Harmonics on the quantum euclidean
space related to the quantum orthogonal group,” math.QA/0302119.

H. Wachter and M. Wohlgenannt, “x-Products on Quantum Spaces,” Fur.
Phys. J. C23 (2002) 761-767, hep-th/0103120.

S. Schraml, “Untersuchung nichtkommutativer Rdume als Grundlage fiir
physikalische Modelle,”. Ph.D. thesis, Ludwig-Maximilians-Universitét
Miinchen, Fakultat fiir Physik (2000),
www.theorie.physik.uni-muenchen.de/~schraml/paper /thesis.ps.gz.



134

[42] C. Blohmann, “Free q-deformed relativistic wave equations by
representation theory,” hep-th/0111172.



Danksagung

Ich mo6chte mich an dieser Stelle bei all jenen herzlich bedanken, die mir wéahrend
der Zeit meiner Doktorarbeit zur Seite gestanden sind.

Allen voran bei meinem Doktorvater Prof. Julius Wess, der mich in seine Ar-
beitsgruppe aufgenommen hat und fiir dieses hochinteressante Gebiet der theo-
retischen Physik begeistert hat.

Mein besonderer Dank gilt Herrn Prof. Schneider fiir die freundliche Ubernahme
des Zweitgutachtens.

Ich danke meinem Kollegen Christian Blohmann fiir unzéhlige Diskussionen und
wertvolle Ratschlidge. Meinem Kollegen Michael Wohlgenannt, der mit mir iiber
die Jahre hinweg das Biiro geteilt hat, gilt mein Dank fiir das ausgezeichnete
Arbeitsklima und die gute Kameradschaft. Beiden sei auch fiir das Korrekturlesen
dieser Arbeit gedankt.

Weiterhin danke ich Hartmut Wachter fiir viele aufschlufireiche Gespréche.

Allen Mitarbeitern, Doktoranden, Diplomanden und Gésten des Instituts danke
ich fiir die freundliche und offene Atmosphére.

Besonders will ich mich auch bei meinen Eltern bedanken, deren uneingeschrankte
Unterstiitzung diese Arbeit erst moglich gemacht hat.



Lebenslauf

22.04.1973 geboren in Miinchen als Sohn von Roman Bachmaier und Helga
Bachmaier, geb. Munzert

1979-1983 Grundschule, Unterhaching

1983-1992 Besuch des Gymnasiums Unterhaching

1992 Abitur

1992 Beginn des Studiums der allgemeinen Physik an der Technischen Uni-
versitat Miinchen

1994 Vordiplom

1998 Diplomarbeit am Lehrstuhl fiir theoretische Elementarteilchenphysik

bei Prof. M. Lindner
Titel der Arbeit: Baryogenese im Zwei-Higgsmodell

1999 Erlangung des Diploms fiir Physik an der Technischen Universitét
Miinchen

Aug. 1999 Beginn der Promotion in der Arbeitsgruppe von Prof. Julius Wess,
Ludwig-Maximilians-Universitat und Max-Planck-Institut fiir Physik
in Miinchen

2000-2002 Promotionsstipendium des Max-Planck-Instituts fiir Physik in Miinchen



