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I. EINLEITUNG 

Epilepsien stellen eine heterogene Gruppe von Erkrankungen dar, denen eine abnormal 

gesteigerte Prädisposition Anfälle zu entwickeln zugrunde liegt (FISHER et al. 2005; BLAIR 

2012). Bei Hunden und Katzen gehören Epilepsien zu den häufigsten chronischen 

neurologischen Erkrankungen (CHANDLER 2006; SMITH BAILEY u. DEWEY 2009). Im 

Hinblick auf die Humanmedizin wird geschätzt, dass weltweit über 70 Millionen Menschen an 

der Epilepsieerkrankung leiden (DUNCAN et al. 2006). Die Behandlung epileptischer 

Patienten beschränkt sich dabei im Wesentlichen auf zwei Therapiemöglichkeiten: (1) 

Chirurgische Resektion der betroffenen Hirnregion (nur Patienten mit fokaler Epilepsie und 

identifizierbarem Lokus) (CASCINO 2004); oder (2) eine lebenslange Pharmakotherapie 

(symptomatisch). Bei 25-33 % der Patienten ist die Erkrankung jedoch pharmakoresistent und 

kann demnach nicht adäquat behandelt werden (DUNCAN et al. 2006). Hinsichtlich nicht-

invasiver Therapiemöglichkeiten, haben sich bis heute alle pharmakologischen Strategien zur 

Beeinflussung und/oder Verhinderung der Epilepsieentstehung (Epileptogenese) als klinisch 

unwirksam erwiesen (HOLTKAMP u. MEIERKORD 2007; LÖSCHER 2010). Die 

Entwicklung neuer präventiver, diagnostischer und therapeutischer Ansätze sowie die 

Identifikation zuverlässiger Biomarker setzt demnach ein besseres Verständnis der 

Mechanismen der Epileptogenese voraus. Molekularen Studien zufolge umfassen solche 

Mechanismen genetische Mutationen und Dysfunktionen von Signalwegen, die zu der Bildung 

eines hyperexzitablen Netzwerkes führen können (GOLDBERG u. COULTER 2013). In 

diesem Kontext stellen insbesondere inflammatorische Prozesse, welche infolge einer initialen 

Schädigung des Gehirns auftreten, Schlüsselkomponenten der Epilepsieentstehung dar 

(VEZZANI et al. 2013b). Die bisherige Erforschung dieser molekularen Veränderungen und 

im Besonderen der inflammatorischen Mechanismen, beruhte größtenteils auf der Analyse 

ausgewählter Proteine und Signalwege. Darüber hinaus haben Genom- und Transkriptom-

Studien zu unserem heutigen Verständnis über Epileptogenese-assoziierte Pathomechanismen 

beigetragen (CACHEAUX et al. 2009; OKAMOTO et al. 2010; WANG et al. 2014). Der 

Transfer dieser Studienergebnisse in zelluläre Proteinexpressionsmuster ist allerdings mit 

großen Einschränkungen verbunden. Demzufolge ist unser Wissen über molekulare und 

inflammations-assoziierte Mechanismen der Epileptogenese lückenhaft und unvollständig. 

Differentielle Proteomanalysen könnten dazu beitragen diese Lücken zu schließen. Im Rahmen 

des Dissertationsvorhabens wurde daher eine differentielle Proteomanalyse in einem 

Tiermodell der Epileptogenese durchgeführt. 
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II.  LITERATURÜBERSICHT 

1. Epilepsie 

1.1. Definition und Bedeutung 

Der Terminus „Epilepsie“ stammt aus dem Altgriechischen und bedeutet „Anfall“, bzw. 

„Übergriff“. Geschichtlich zählt Epilepsie zu den ältesten bekannten Erkrankungen 

(SCHNEBLE 2003). Bereits in babylonischen Keilschriften und ägyptischen Hieroglyphen 

finden sich Aufzeichnungen darüber (SCHNEBLE 2003). Die Epilepsieerkrankung beschreibt 

jedoch kein einzelnes oder einheitliches Krankheitsbild, sondern stellt vielmehr einen 

Überbegriff unterschiedlichster Funktionsstörungen des Gehirns dar (FISHER et al. 2005). 

Diese Störungen charakterisieren sich hauptsächlich durch das wiederholte und spontane 

Auftreten von epileptischen Anfällen (FISHER et al. 2005). Die Internationale Liga gegen 

Epilepsie definierte im Jahr 2005 epileptische Anfälle als das vorübergehende Auftreten von 

Anzeichen und/oder Symptomen exzessiver oder synchroner neuronaler Gehirnaktivität 

(FISHER et al. 2005). Die Epilepsieerkrankung wurde definiert als anhaltende Prädisposition 

Anfälle zu entwickeln, einhergehend mit den kognitiven, psychischen und sozialen 

Konsequenzen, die diese Erkrankung mit sich bringt. Voraussetzung war dabei das Auftreten 

von mindestens einem nicht provozierten Anfall (FISHER et al. 2005). Diese konzeptionelle 

Definition wurde 2013 von der Task Force der Internationalen Liga gegen Epilepsie um die 

nachfolgenden Bedingungen erweitert: (1) das Auftreten von mindestens zwei nicht 

provozierten Anfällen im Abstand von über 24 Stunden; (2) ein nicht provozierter Anfall, 

einhergehend mit der Wahrscheinlichkeit weitere Anfälle zu entwickeln oder (3) die Diagnose 

eines Epilepsie-Syndroms (FISHER et al. 2014). Demnach ist die Diagnose „Epilepsie“ 

abhängig von dem Auftreten von mindestens einem der genannten Zustände (FISHER et al. 

2014).  

Beim Menschen zählen Epilepsien zu den häufigsten chronischen neurologischen 

Erkrankungen. Die Prävalenz wird weltweit auf 0.4-1% geschätzt. (SANDER u. SHORVON 

1996; COWAN 2002). Im Hinblick auf die Veterinärmedizin wird vermutet, dass Epilepsien 

die häufigsten chronischen neurologischen Erkrankungen bei Hunden darstellen (CHANDLER 

2006) und mit einer Prävalenz von 1-2 % auftreten („epidemiologische Studie an einer 

Referenzpopulation“ (SCHWARTZ-PORSCHE 1986)). Das Risiko an Epilepsie zu erkranken 

geht dabei mit großen rassespezifischen Unterschieden einher (POTSCHKA et al. 2013). In 

diesem Zusammenhang zeigen bestimmte Hunderassen Prävalenzraten von 9-18 % (CASAL et 



II. Literaturübersicht  3 

al. 2006; BERENDT et al. 2009; HULSMEYER et al. 2010; GULLOV et al. 2011; WEISSL et 

al. 2012; POTSCHKA et al. 2013). Die Prävalenz in der weltweiten Hundepopulation ist 

allerdings nicht bekannt. Diesbezüglich besteht ein Mangel epidemiologischer Studien, die zur 

Einschätzung der Prävalenz sowie der Risikofaktoren an Epilepsie zu erkranken, herangezogen 

werden können (KEARSLEY-FLEET et al. 2013). Bei der Katze zählen Epilepsien ebenfalls 

zu den häufigsten neurologischen Erkrankungen, allerdings treten sie seltener auf als beim 

Hund (SMITH BAILEY u. DEWEY 2009). 

 

1.2. Klassifizierung  

Eine Klassifizierung der Epilepsien nach definierten Kriterien bildet die Grundlage für die 

Entwicklung therapeutischer Strategien und die damit einhergehende Prognosestellung. Die 

geschichtliche Entwicklung der Klassifizierung von Epilepsien beruhte größtenteils auf 

Beobachtungen und Expertenmeinungen (BERG et al. 2010). Demgegenüber basiert das 

aktuelle Klassifizierungsschema der Internationalen Liga gegen Epilepsie hauptsächlich auf 

modernen neurologischen Bildgebungsverfahren, Technologien der Genomforschung und 

Konzepten der Molekularbiologie (BERG et al. 2010). Diese Klassifizierung entspricht einer 

multidimensionalen Einteilung der Epilepsien (BERG et al. 2010). Vereinfacht dargestellt kann 

solch eine Einteilung erfolgen nach dem Anfallstyp/-Syndrom und der zugrundeliegenden 

Ursache (SHORVON 2011). Entscheidend für die Einteilung epileptischer Anfälle ist die 

Unterteilung in generalisierte und fokale Anfälle (BERG et al. 2010). Eine Übersicht dieser 

Klassifizierung ist in Tabelle 1 zu finden. Fokale Anfälle entstammen einem Netzwerk, das auf 

eine Hemisphäre begrenzt ist (BERG et al. 2010). Dieses kann entweder umschrieben oder 

weiträumig verteilt sein. Charakteristisch ist der für jeden Anfallstyp konstante Anfallsbeginn 

(BERG et al. 2010). Aufgrund des Fehlens einer natürlichen Klassifikation der fokalen Anfälle 

empfiehlt sich eine Beschreibung nach deren Manifestation (BERG et al. 2010). In einzelnen 

Fällen können fokale Anfälle sekundär generalisieren. Generalisierte epileptische Anfälle 

haben ihren Ursprung in einem Netzwerk, das beide Großhirnhemisphären betrifft (BERG et 

al. 2010). Es können sowohl kortikale als auch subkortikale Strukturen betroffen sein. Die 

Lokalisation des Anfallsbeginns ist dabei nicht konstant, zudem können die Anfälle 

asymmetrisch auftreten (BERG et al. 2010). Anhand ihrer motorischen Manifestation lassen 

sich generalisierte Anfälle in tonische, klonische, tonisch-klonische, atonische und 

myoklonische Anfälle unterteilen (ENGEL 2006).  
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Tab. 1 

Klassifizierung der Anfallstypen* 

a. Generalisierte Anfälle 
Tonisch-Klonisch (in jeder Kombination) 
Absencen 

Typisch 
Atypisch 
Absencen mit speziellen Eigenschaften 

Myoklonische Absencen 
Augenliedmyoklonien 

Myoklonisch 
Myoklonisch 
Myoklonisch-Atonisch 
Myoklonisch-Tonisch 

Klonisch 
Tonisch 
Atonisch 

b. Fokale Anfälle 
c. Unbekannt 

Epileptische Spasmen 
* Anfälle, die nicht eindeutig einer der angegebenen Kategorien  
zuzuordnen sind, sollten als “nicht klassifizierbar“ eingestuft  
werden bis weitere Informationen vorliegen.  

         (mod. nach BERG et al. 2010) 

 

Hinsichtlich der ätiologischen Klassifizierung von Epilepsien werden drei Kategorien 

unterschieden : (1) Genetische Epilepsien (hierbei stellen Gendefekte die primäre Ursache der 

Epilepsie dar) (2) Strukturell/metabolische Epilepsien (eindeutige strukturelle oder 

metabolische Ursache, welche mit einem erheblich erhöhten Risiko Epilepsie zu entwickeln 

assoziiert ist) und (3) Epilepsien unbekannter Ursache (BERG et al. 2010). 

  

1.3. Temporallappenepilepsie 

Die Temporallappenepilepsie (TLE) zählt zu den lokalisations-bezogenen symptomatischen 

Epilepsien (ILAE 1989). Sie beschreibt eine Vielzahl von Störungen, deren Gemeinsamkeit ein 

Anfallsbeginn im Temporallappen darstellt (BERTRAM 2009). Beim Menschen entspricht die 

TLE der häufigsten fokalen Epilepsieform (TÉLLEZ-ZENTENO u. HERNÁNDEZ-

RONQUILLO 2011). Etwa 60-70 % aller fokalen epileptischen Anfälle sind auf den 

Temporallappen zurückzuführen (RUGG-GUNN et al. 2011). Zu den pathologisch betroffenen 

Gehirnstrukturen des Temporallappens zählen vor allem Hippocampus (HC), Amygdala und 

der parahippocampale Cortex (PHC) (CHANG u. LOWENSTEIN 2003). In diesem 

Zusammenhang wird die Temporallappenepilepsie häufig von dem pathologischen Phänomen 

der HC-Sklerose begleitet, deren genaue Ursache unbekannt ist (LIU et al. 1995; MATHERN 

et al. 1997; BLÜMCKE et al. 1999). Bei Patienten mit TLE tritt die HC-Sklerose mit einer 
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Wahrscheinlichkeit von über 80 % auf (WILLIAMSON et al. 1993). Die HC-Sklerose 

entspricht dabei einer Kombination aus neuronalem Verlust, Atrophie und Gliose. Dieses 

Muster tritt insbesondere im Hilus und der Cornu ammonis (CA1)-Region auf (BERTRAM 

2009). Im Gegensatz zu anderen Epilepsieformen beschränkt sich die TLE auf Störungen, die 

bei den Betroffenen ein ähnliches Erscheinungsbild zeigen (MARGERISON u. CORSELLIS 

1966). Beim Menschen können die Symptome der TLE unter anderem olfaktorische und 

gustatorische Halluzinationen sowie epigastrisches Empfinden oder psychische Phänomene 

wie „déjà vu“ umfassen. Automatismen können infolge von generalisierten Anfällen auftreten 

(FRENCH et al. 1993; CHANG u. LOWENSTEIN 2003). Mit individueller Varianz entwickelt 

sich die TLE durchschnittlich siebeneinhalb Jahre nach ursächlicher Gehirnverletzung 

(initialem Insult) (FRENCH et al. 1993). Schweregrad, Lokalisation, räumliche Dimension der 

Verletzung sowie genetische Faktoren beeinflussen dabei das Risiko eine Epilepsie zu 

entwickeln (WALKER et al. 2002).  

 

1.4. Epileptogenese 

Bereits im Jahr 1881 entdeckte GOWERS, dass zwischen einer Gehirnverletzung und dem 

Auftreten symptomatischer Epilepsie ein anfallsfreies Intervall von Monaten bis Jahren liegen 

kann (GOWERS 1881). Dieses Intervall (Latenzperiode) deutet darauf hin, dass ein 

zeitaufwendiger Prozess zu Veränderungen führt, die letztendlich eine Epilepsie verursachen 

(LÖSCHER u. BRANDT 2010). Latenzperiode und Epileptogenese werden häufig synonym 

verwendet und verweisen als operationale Begriffe auf den Zeitraum zwischen initialem Insult 

und dem Auftreten erster spontaner Anfälle (PITKÄNEN u. LUKASIUK 2011a). Da Anfälle 

Ereignisse auf Netzwerkebene darstellen, erfordern sie die wiederholte Aktivierung von 

Neuronenpopulationen innerhalb der Gehirnschaltkreise; demnach ist Epilepsie als Phänomen 

auf Netzwerkebene zu verstehen (GOLDBERG u. COULTER 2013). Molekulare Studien 

lieferten Hinweise auf Mechanismen während der Latenzperiode, die zur Bildung eines Anfälle 

hervorrufenden (iktogenen) Netzwerkes führen können (GOLDBERG u. COULTER 2013). 

Genetische Mutationen oder Dysfunktionen molekularer Signalwege sind Beispiele solcher 

Mechanismen, die nur dann Epilepsie verursachen können, wenn dadurch die Funktion von 

Schaltkreisen verändert wird (GOLDBERG u. COULTER 2013). Demzufolge kann 

Epileptogenese als dynamischer Prozess verstanden werden, der mit progressiv veränderter 

neuronaler Erregbarkeit und der Ausbildung epileptogener Quervernetzungen zwischen den 

Neuronen einhergeht (ENGEL u. PEDLEY 2007). Möglicherweise bedarf es zusätzlicher 
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komplizierter struktureller Veränderungen bevor die ersten spontanen Anfälle auftreten 

(ENGEL u. PEDLEY 2007). Beispiele für solche Veränderungen sind: Neurodegeneration, 

Neurogenese, Gliose, Beschädigung oder Wachstum von Axonen, dendritische Plastizität, 

Schädigung der Blut-Hirn-Schranke, Rekrutierung inflammatorischer Zellen in das 

Gehirngewebe, Reorganisation extrazellulärer Matrix und der molekularen Architektur 

individueller neuronaler Zellen (LUKASIUK u. PITKÄNEN 2009). Da das Gehirn sich nach 

Verletzung wieder regeneriert, ist es entscheidend die Reparations- und 

Funktionswiederherstellungsmechanismen von den zellulären und molekularen Mechanismen, 

die direkt zur Epilepsieentstehung beitragen, abzugrenzen (DICHTER 2009; JACOBS et al. 

2009). In der Regel wird Epileptogenese assoziiert mit der Entwicklung von symptomatischer 

(erworbener) Epilepsie nach vorangegangener struktureller Verletzung des Gehirns (ENGEL 

2001). Epileptogenese kann allerdings auch bei genetischen Epilepsien auftreten, 

beispielsweise durch die Entwicklung eines veränderten Netzwerks bedingt durch eine 

genetische Mutation (ZARA u. BIANCHI 2009). Aktuelle Studien deuten darauf hin, dass 

molekulare und zelluläre epileptogene Veränderungen nach dem Auftreten des ersten Anfalls 

fortschreiten (PITKÄNEN u. SUTULA 2002; PITKÄNEN u. LUKASIUK 2009). Dies könnte 

bedeuten, dass die Epileptogenese nicht mit dem Auftreten des ersten Anfalls abgeschlossen 

ist, sondern progressiv verläuft (PITKÄNEN 2010).  

 

1.5. Biomarker der Epileptogenese 

Biomarker werden definiert als „messbare Parameter” krankhafter Veränderungen, die als 

Indikatoren pathologischer Prozesse wie Epileptogenese und Iktogenese objektiv gemessen und 

interpretiert werden können (PITKÄNEN u. LUKASIUK 2011b). Ein Epileptogenese-

Biomarker stellt daher ein objektiv messbares Merkmal dar, welches zuverlässig die 

Entwicklung, Anwesenheit, Schwere, Progression bzw. Lokalisation einer epileptogenen 

Veränderung identifiziert (ENGEL 2011; SIMONATO et al. 2012; ENGEL et al. 2013). 

Gegenwärtig existieren noch keine validierten Epileptogenese-Biomarker. Diese wären 

besonders hilfreich, um nach epileptogener Gehirnverletzung Patienten mit erhöhtem 

Epilepsierisiko zu identifizieren (LUKASIUK u. BECKER 2014). Des Weiteren wären 

molekulare Biomarker von Vorteil, welche die Präsenz, den Gewebetyp und den Grad von 

neuropathologisch geschädigtem Gehirngewebe mit epileptogenem Potential vorhersagen 

würden (ENGEL et al. 2013). In Anbetracht des fließenden Übergangs der Epileptogenese in 

spontane epileptische Anfälle, hätten insbesondere jene Biomarker eine große Bedeutung, die 
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eine Aussage über die dynamischen Veränderungen der Anfallsschwellenwerte erlauben 

würden (LUKASIUK u. BECKER 2014). Darüber hinaus könnten molekulare Biomarker der 

Epileptogenese die Vorhersage des Therapieerfolges beziehungsweise Überwachung 

medikamentöser Therapien ermöglichen (LUKASIUK u. BECKER 2014). Letztendlich 

könnten Biomarker auch Surrogatmarker für die Epileptogenese darstellen, die eine Vorhersage 

der Entwicklung spontaner Anfälle ermöglichen würden (ENGEL et al. 2013).  

Für die Evaluierung von Epileptogenese-Biomarkern schlugen ENGEL et al. (2013) sogenannte 

Proof-of-Concept-Studien in Tiermodellen vor: (1) Idealerweise sollte zu unterschiedlichen 

Zeitpunkten der Epileptogenese Gewebe von Tieren, die eine Epilepsie entwickeln, sowie von 

Kontrolltieren entnommen und analysiert werden. (2) Im nächsten Schritt sollte in 

verschiedenen Tiermodellen eine Überprüfung des potentiellen Biomarkers hinsichtlich der 

Kriterien „Sensititivät“ und „Spezifität“ stattfinden. (3) Erst im darauffolgenden Schritt erfolgt 

ein translationaler Versuch zur Vorhersage des Biomarker-Kandidaten an geeigneten 

Patientengruppen. 

Die idealen Biomarker sollten allerdings nicht nur spezifisch und sensitiv sein, sondern auch 

einfach zugänglich. Daher wären Epileptogenese-Biomarker von Vorteil, die auf 

Bildgebungsverfahren des Gehirns beruhen oder aus peripheren Geweben stammen 

(LUKASIUK u. BECKER 2014). In diesem Zusammenhang wird unter anderem eine 

Aufregulation inflammatorischer Signalkaskaden als Grundlage molekularer 

Bildgebungsverfahren diskutiert, um Biomarker der Epileptogenese identifizieren zu können 

(VEZZANI u. FRIEDMAN 2011; LUKASIUK u. BECKER 2014).  

 

1.6. Tiermodelle 

Um neue diagnostische, therapeutische und präventive Strategien entwickeln zu können, ist es 

essentiell, die grundlegenden Mechanismen der Epilepsieerkrankung zu verstehen. Der aktuelle 

Wissensstand über Epilepsien basiert größtenteils auf der Forschung mit Tiermodellen, da die 

Anwendung experimenteller Methoden am Humanpatienten aus ethischen Gründen nicht 

vertretbar ist (FISHER 1989). An Tiermodelle für Erkrankungen werden grundsätzlich drei 

Anforderungen gestellt: (1) die Symptomatologie zwischen Tiermodell und Erkrankung muss 

vergleichbar sein; (2) die pathologischen Mechanismen der Erkrankung müssen im Tiermodell 

reproduzierbar sein und (3) das Tiermodell soll Aussagen hinsichtlich der klinischen 

Wirksamkeit von Arzneimitteln ermöglichen. In der experimentellen Epilepsieforschung 

erfüllen Tiermodelle unter anderen folgende Aufgaben: die Untersuchung 
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pathophysiologischer Mechanismen, die Evaluierung und Entwicklung neuer anti-

epileptogener Behandlungsmethoden und das Studium Epilepsie-assoziierter 

Begleiterscheinungen (Komorbiditäten) (AUVIN u. DUPUIS 2001). Im Rahmen der 

Epilepsieforschung können Tiermodelle in Anfallsmodelle (akut) und Epilepsiemodelle 

(chronisch) unterteilt werden (SARKISIAN 2001). Bei Anfallsmodellen werden Anfälle 

induziert ohne nachfolgende Entwicklung der Epilepsieerkrankung (ENGEL 1992). Im 

Gegensatz zu den Anfallsmodellen entwickeln die Tiere in Epilepsiemodellen wiederkehrende 

spontane Anfälle und ermöglichen dadurch die Erforschung der Epileptogenese (LÖSCHER 

1999). Eine Übersicht häufig verwendeter Anfalls- und Epilepsiemodelle findet sich in 

Abbildung 1. 
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Abb. 1: 

 

 

 

Übersicht der häufig verwendeten Tiermodelle für Epilepsien und epileptische Anfälle (mod. nach LÖSCHER 

2011). Experimentelle Grundlage des vorliegenden Projektes war das SE-BLA-Modell. Abbildung mit 

freundlicher Genehmigung des Elsevier Verlages. SE = Status epilepticus, BLA = basolaterale Amygdala 
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1995). Bei Nagetieren führt die Applikation höherer Dosierungen, nach einer kurzen 

Latenzperiode, zur Entstehung wiederkehrender spontaner Anfälle (CAVALHEIRO 1995). 

Typische elektrische Modelle stellen das elektrische Kindling- sowie das Post-Status-

Epilepticus-Modell dar (GODDARD 1967; LÖSCHER 1999). Erstgenanntes Modell 

beschreibt die wiederholte Anwendung elektrischer Stimulation, um fokale und später 

generalisierte Anfälle hervorzurufen, die über die Zeit an Dauer zunehmen (GODDARD 1967).  

Bei dem elektrischen Post-Status-Epilepticus-Modell wird durch elektrische Dauerstimulation 

des HC bzw. der Amygdala ein sich selbst erhaltender Status epilepticus (SE) induziert. 

Charakteristisch für das Modell sind das Auftreten wiederkehrender spontaner Anfälle und 

neuropathologische Veränderungen, die der TLE ähnlich sind (GOODMAN 1998; LÖSCHER 

1999). Die ersten spontanen Anfälle treten gewöhnlich nach einer Latenzperiode von etwa drei 

bis vier Wochen nach Induktion des SE auf. Dabei ist die Dauer des induzierten SE von 

entscheidender Bedeutung (LÖSCHER 2002). Wird der SE zu früh durch die Applikation von 

Diazepam oder Pentobarbital unterbrochen, entwickeln die Tiere keine spontan auftretenden 

wiederkehrenden Anfälle (LEMOS u. CAVALHEIRO 1995). Im vorliegenden Projekt wurde 

das SE-basolaterale Amygdala-(BLA)-Modell (BRANDT et al. 2003) verwendet, um 

verschiedene Phasen der Epileptogenese und die frühe Phase der Epilepsie-Manifestation zu 

erforschen (LÖSCHER u. BRANDT 2010).  

 

2. Inflammation im Kontext der Epilepsieerkrankung 

2.1. Neuroinflammation 

Inflammation ist eine physiologische Antwort auf Verletzung, Infektion oder biologischen 

Stress, die durch das angeborene Immunsystem vermittelt wird (WALKER u. SILLS 2012). 

Eine Aktivierung des Immunsystems erfolgt durch eindringende Pathogene oder zellulären 

Schaden (MAROSO et al. 2011). Die inflammatorische Antwort umfasst die Mobilisation und 

Interaktion verschiedener Zelltypen und Signalmoleküle, die zu einer lokalen und unter 

Umständen, zu einer systemischen Reaktion führen (LYMAN et al. 2013). Aufgrund der Blut-

Hirn-Schranke, Implantationsakzeptanz, dem Fehlen einer lymphatischen Drainage und relativ 

niedriger Level von Monozyten und Lymphozyten wird das Zentralnervensystem (ZNS) als 

immunpriviligiert angesehen. Dennoch treten sowohl immun- als auch inflammations-

assoziierte Reaktionen auf, die entweder intrinsisch (vom Gehirn ausgehend) oder aus der 

Peripherie erworben sein können (CHOI u. KOH 2008). Der Begriff Neuroinflammation 
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beschreibt die Bandbreite der Immunantworten des ZNS, welche sich auf verschiedene Weise 

von peripheren Inflammationsprozessen unterscheiden (LYMAN et al. 2013). Im Vergleich zu 

den starken und teilweise destruktiven inflammatorischen Prozessen der peripheren Gewebe, 

werden Neurone mit ihrer geringen Regenerationskapazität durch die verhältnismäßig 

schwachen inflammatorischen Reaktionen im ZNS geschützt (XANTHOS u. SANDKÜHLER 

2014). Die angeborene Immunität des Gehirns ist hauptsächlich auf Mikroglia zurückzuführen, 

welche als residente Makrophagen des ZNS eine erste Verteidigungslinie darstellen (BECHER 

et al. 2000). Aktuelle Studien deuten allerdings darauf hin, dass bei der angeborenen 

Immunantwort des ZNS auch Neurone und Astrozyten eine bedeutende Rolle spielen 

(VEZZANI et al. 2011b). Mikroglia überprüfen, als sogenannte ruhende Mikroglia, 

kontinuierlich ihr Mikromilieu auf fremde Antigene. Darüber hinaus stellen sie wichtige 

Phagozyten des ZNS-Parenchyms dar und beseitigen so apoptotisches Gewebe (KIELIAN 

2014). Durch chemische Stoffe und endogene Gefahrensignale (Alarmine), werden Mikroglia 

in einen aktivierten Zustand überführt (Abbildung 2) (WALKER u. SILLS 2012). In der Folge 

kommt es zur Mikroglia-Proliferation und Freisetzung von Zytokinen und Chemokinen 

(WALKER u. SILLS 2012). Diese Botenstoffe initiieren eine pro-inflammatorische 

Signalkaskade, die letztendlich zu lokalisierter Vasodilatation, Extravasation, Rekrutierung von 

Leukozyten und der Aktivierung des angeborenen Immunsystems führt. Im weiteren Verlauf 

wirken Mikroglia als Antigen-präsentierende Zellen (ALOISI et al. 2000). In der Regel endet 

der inflammatorische Prozess nach Entfernung des verursachenden Stimulus. Astrozyten und 

Mikroglia setzen dann, im Rahmen von Reparaturaufgaben, anti-inflammatorische Zytokine 

frei und fördern das neuronale Wachstum (STOLL et al. 2000).  

  

2.2. Inflammations-assoziierte Mechanismen im Kontext der Epileptogenese 

Inflammatorische Signalwege spielen eine Rolle bei der Pathogenese neurologischer 

Erkrankungen wie Multiple Sklerose, Morbus Alzheimer und Epilepsie (GLASS et al. 2010; 

VEZZANI et al. 2013b). Eine besondere Form der inflammations-bedingten Epilepsie stellt die 

Autoimmunerkrankung „Rasmussen-Enzephalitis“ dar (CHOI u. KOH 2008). In diesem 

Kontext wurde bei Patienten mit Rasmussen-Enzephalitis erstmalig chronische 

Neuroinflammation mit Aktivierung von Mikroglia, Astrozyten, Endothelzellen der Blut-Hirn-

Schranke, der Einwanderung peripherer Immunzellen und Freisetzung von 

Entzündungsmediatoren beobachtet (RASMUSSEN et al. 1958). Weitere Hinweise über die 

Bedeutung inflammatorischer Prozesse im Rahmen der Iktogenese erbrachte der Einsatz von 
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Steroiden und anderen anti-inflammatorischen Medikamenten bei pharmakoresistenten 

Epilepsien. Infolge der Applikation konnten krampflösende (antikonvulsive) Effekte 

beobachtet werden (VEZZANI et al. 2011a). Inflammationsprozesse spielen jedoch auch eine 

zentrale Rolle bei Epilepsien ohne infektiöse oder immun-bedingte Ursache (VEZZANI et al. 

2013a). Aktuelle Studien deuten darauf hin, dass Neuroinflammation eine intrinsische 

Eigenschaft des übererregbaren Gehirngewebes von Epilepsien darstellt (VEZZANI et al. 

2011a; VEZZANI et al. 2011b; VEZZANI et al. 2013b). Inflammatorische Prozesse sind 

allerdings nicht nur im chronisch-epileptischen Gehirn vertreten. So konnte nachgewiesen 

werden, dass die Anfallsaktivität Neuroinflammation induziert und wiederkehrende Anfälle 

eine chronische Inflammation unterhalten können (VEZZANI et al. 2011a). In diesem 

Zusammenhang sind einige der inflammations-assoziierten Signalwege bereits nach 

epileptogenem Insult aufreguliert und bleiben auch während der Latenzphase bestehen 

(VEZZANI et al. 2013b). Dies führte zu der Hypothese, dass Neuroinflammation im Rahmen 

der Epilepsieerkrankung nicht nur bei der Iktogenese, sondern auch bei der Epileptogenese eine 

Rolle spielt (VEZZANI et al. 2013b).  

 

Inflammasom und Toll-like-Rezeptoren 

Die Antwort des angeborenen Immunsystems im ZNS wird über Pattern recognition-

Rezeptoren (PRRs) eingeleitet und durch eine Vielzahl von Signalwegen ausgelöst 

(HANAMSAGAR et al. 2012). PRRs werden primär von Mikroglia, Makrophagen und 

Oligodendrozyten exprimiert. Sie erkennen sowohl Pathogen associated molecular patterns  

als auch Danger associated molecular patterns (SINGHAL et al. 2014). Abbildung 2 zeigt eine 

schematische Darstellung der Aktivierung von Mikroglia. Grundsätzlich lassen sich Membran-

gebundene PRRs (Toll-like-Rezeptoren) von zytosolischen PRRs (Nod-like-Rezeptoren) 

unterscheiden (SINGHAL et al. 2014). Die Aktivierung der Nod-like-Rezeptoren (NLRs) führt 

zu der Zusammensetzung und nachfolgenden Aktivierung zytosolischer Proteinkomplexe, die 

auch als Inflammasome bezeichnet werden (SINGHAL et al. 2014). Aktuelle Studien deuten 

darauf hin, dass Inflammasome, insbesondere durch die Aktivierung von NLRP1 und -3, eine 

Rolle während dem Prozess der Epileptogenese spielen (MENG et al. 2014; TAN et al. 2015). 

Inflammasom-Komplexe setzen sich aus drei Hauptkomponenten zusammen: (1) einem 

zytosolischen PRR (beispielsweise ein Mitglied der NLR-Familie); (2) das Enzym Caspase 1 

und (3) ein Adapter-Protein für die Kommunikation zwischen Caspase und PRR (WALSH et 

al. 2014). Die Aktivierung der pro-inflammatorischen Caspase führt zu der Spaltung von Pro-

Interleukin-(IL)-1β, Pro-IL-18 und Pro-IL-33 in ihre aktiven Formen (CHAKRABORTY et al. 
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2010). Die aktiven Interleukine vermitteln dann die inflammatorische Reaktion und/oder 

Freisetzung von Toxinen durch Glia- und Endothelzellen (CHAKRABORTY et al. 2010).  

 

Abb. 2: 

 

 

Schematische Darstellung der Mikroglia-Aktivierung über Purinozeptoren und Toll-like-Rezeptoren durch 

Nukleotide bzw. Toll-like-Rezeptor-Liganden wie Hmgb1 (Abbildung mod. nach SAIJO u. GLASS 2011).  

Aktivierte Mikroglia führen zu einer Freisetzung pro-inflammatorischer Zytokine wie Interleukin-1β und 

Tumornekrosefaktor-α. TLR: Toll-like-Rezeptor, IL1β: Interleukin-1β, TNFα: Tumornekrosefaktor-α. Abbildung 

mit freundlicher Genehmigung der Nature Publishing Group.  

 

Aktuelle Studien zeigen, dass Toll-like-Rezeptoren (TLRs) in inflammatorischen Signalwegen, 

die mit Epilepsie assoziiert sind, eine Bedeutung zukommt (MAROSO et al. 2010; VEZZANI 

et al. 2011a; WALKER u. SILLS 2012; VEZZANI et al. 2013b). Es konnten bislang 11 
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mRNA-Analysen nachgewiesen werden (OLSON u. MILLER 2004; KETTENMANN et al. 

2011). Die Aktivierung dieser Rezeptoren durch Pathogen associated molecular patterns führt 

zur Rekrutierung von MyD88 (Adapter-Protein zwischen TLRs und dem IL-1-Signalweg) und 

TIR-domain-containing adapter-inducing interferon-β (TRIF, Adapter-Protein). Im weiteren 

Verlauf dieser Signalkaskade vermitteln IκB Kinasen und mitogen-aktivierende Kinasen 

(MAPKs) die transkriptionale Aktivierung von Inflammationsmediatoren (TAKEUCHI u. 

AKIRA 2010; HANAMSAGAR et al. 2012). TLRs erkennen jedoch nicht nur Pathogen 

associated molecular patterns sondern auch endogene Moleküle (SAIJO et al. 2013). Zu diesen 

Molekülen zählen unter anderem Hitzeschockproteine, die potentielle Liganden von TLR2 und 

TLR4 darstellen (ASEA et al. 2002; VABULAS et al. 2002a). Die Bindung endogener 

Liganden führt zu der Produktion pro-inflammatorischer Moleküle (Tumornekrosefaktor-α, 

IL1-β, IL-6, reaktiven Sauerstoff und NO; Abbildung 2) durch Mikroglia (LEHNARDT 2010; 

HANKE u. KIELIAN 2011). Eine Sekretion von IL-1β und IL-18 erfolgt dabei durch das 

Zusammenspiel von TLRs und Inflammasom (HANAMSAGAR et al. 2012).  

 

Weitere Mechanismen und Signalwege im Kontext der Epileptogenese 

Erste Daten, die eine potentielle Rolle von Inflammationsprozessen bei Epilepsie vermuten 

ließen, stammten aus Studien über das Zytokin IL-1β, seiner Bindungsstelle dem IL-1-Rezeptor 

Typ 1 und dem physiologischen kompetitiven Antagonisten IL-1β-Rezeptor-Antagonist 

(VEZZANI et al. 2011a). Beispielsweise führt ein chemisch oder elektrisch induzierter SE zu 

einer Aufregulation von allen drei genannten Molekülen (VEZZANI et al. 2008). Zusätzlich zu 

ihrer anfallsbedingten Aufregulation können sowohl IL-1β, als auch IL-1β-Rezeptor-

Antagonist die Sensitivität für anfallsinduzierende Stimuli modulieren (WALKER u. SILLS 

2012). Es wird vermutet, dass eine Vielzahl weiterer Moleküle, Signalwege und Mechanismen 

eine Rolle bei inflammatorischen Ereignissen spielen, die mit Anfällen und Epileptogenese in 

Verbindung gebracht werden können. Dazu gehören Tumornekrosefaktor-α, transformierender 

Wachstumsfaktor-β (TGF beta), Cyclooxygenase 2 und Störungen der Blut-Hirn-Schranke 

(CACHEAUX et al. 2009; FRIEDMAN et al. 2009; KULKARNI u. DHIR 2009; RIAZI et al. 

2010). Einige der Mechanismen könnten in die Präzipitation und das Wiederauftreten von 

Anfällen involviert sein, während bei anderen von einer Beteiligung bei dem Prozess der 

Epileptogenese ausgegangen wird (VEZZANI u. BARAM 2007). Diese Mechanismen stellen 

potentielle molekulare Ziele für die Entwicklung von Medikamenten dar (VEZZANI et al. 

2011a). 
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3. Proteomik 

3.1. Definition und Einführung 

Der Terminus Proteom wurde erstmalig von WILKINS et al. (1996) verwendet, um die 

Gesamtheit der Proteine zu beschreiben, die durch das Genom kodiert werden (TYERS u. 

MANN 2003). Letzteres liefert den Bauplan für Proteine, die als Funktionsträger einer Zelle 

ihre biophysischen und biochemischen Eigenschaften bestimmen (MISHRA 2011; LANGLEY 

et al. 2013). Die Summe der zu einem bestimmten Zeitpunkt transkribierten Gene 

(Transkriptom) verhält sich allerdings nicht linear zum Proteom (LANGLEY et al. 2013). 

Proteinisoformen, -modifikationen und Protein-Protein-Interaktionen resultieren in einer 

komplexen Dynamik des Proteoms, die dem verhältnismäßig statischen Genom gegenübersteht. 

Der Genotyp eines Organismus ist zwar in allen Zellen identisch, allerdings kann die 

Genregulation durch epigenetische Veränderungen, wie DNA-Methylierung und 

Histonmodifikation beeinflusst werden (WOLFFE u. MATZKE 1999; JAENISCH u. BIRD 

2003). Die Erkenntnisse der Dynamik des Proteoms führten zu einer Anpassung der von 

WILKINS et al. (1996) eingeführten Definition. Nach aktuellem Wissensstand beschreibt das 

Proteom die Gesamtheit der exprimierten Proteine sowie deren Modifikationen, die von einem 

Gewebe oder Organ zu einem bestimmten Zeitpunkt und unter definierten Bedingungen 

produziert werden (DERACINOIS et al. 2013). Das Studium des Proteoms wird als Proteomik 

bezeichnet (ANDERSON u. ANDERSON 1998). Die Proteomforschung lässt sich in die zwei 

Hauptbereiche „Profiling“ und „funktionelle“ Proteomik untergliedern (CHOUDHARY u. 

GRANT 2004). Letztere beschäftigt sich mit der Charakterisierung von Proteinaktivitäten, -

interaktionen und dem Vorhandensein posttranslationaler Modifikationen (CHOUDHARY u. 

GRANT 2004). In Analogie zu der Genomforschung befasst sich Profiling-Proteomik mit der 

Beschreibung des vollständigen Proteoms eines Organismus. Sie umfasst sowohl die 

Kartierung von Zellorganellen als auch die differentielle Messung von Expressionsraten 

zwischen Zellen oder Konditionen (CHOUDHARY u. GRANT 2004). Der Ansatz zur 

differentiellen Messung von Expressionsleveln stellt zugleich die Hauptanwendung in der 

Proteomforschung dar (LOVRIC 2011a). Ein Beispiel für einen differentiell proteomischen 

Ansatz ist der Vergleich von Gewebe zwischen einem gesunden und einem erkrankten 

Individuum (LOVRIC 2011a). Ziel ist es herauszufinden, welche Proteine in spezifische 

Funktionen involviert sind (LOVRIC 2011a). In der vorliegenden Studie wurde ein differentiell 

proteomischer Ansatz gewählt, um epileptogenes und gesundes Gehirngewebe im Zeitverlauf 

miteinander zu vergleichen.  
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3.2. Neuroproteomik 

Neuroproteomik stellt einen Teilbereich der Proteomik dar. Sie versucht proteom-assoziierte 

Fragestellungen im Hinblick auf das ZNS zu beantworten (MARCUS et al. 2004). Das Gehirn 

gehört zu den komplexesten und am höchsten entwickelten Organen (SWANSON 2003). 

Demzufolge gibt es mehr als 1000 Erkrankungen, die mit einer Dysfunktion des Nervensystems 

assoziiert sind (SOCIETY FOR NEUROSCIENCE 2002). Das Nervensystem ist charakterisiert 

durch einen hohen Grad an Heterogenität, der sich auch auf zellulärem Level ausprägt 

(BECKER et al. 2006). Durch Proteomanalysen können die molekulare Zusammensetzung 

subzellulärer Kompartimente erforscht und Veränderungen in der Verteilung von Proteinen 

zwischen den Kompartimenten erfasst werden (BECKER et al. 2006). Das Gebiet der 

Neuroproteomik lässt sich in vier Hauptkategorien untergliedern: (1) Expressions-

Neuroproteomik, die sich der qualitativen und quantitativen Katalogisierung des 

neurologischen Proteoms widmet; (2) Funktionelle Neuroproteomik, bei der funktionelle 

Eigenschaften individueller Proteine und ihre Organisation in Substrukturen, Komplexen und 

Netzwerken erforscht werden; (3) Klinische Neuroproteomik, die sich auf die Identifizierung 

von Biomarkern und Krankheitsmechanismen neurologischer Störungen konzentriert und die 

(4) Informatische Neuroproteomik, die mittels computergestützter Datenbanken und 

Werkzeuge proteomische Datensätze aufarbeitet (BAYÉS u. GRANT 2009).  

 

3.3. Massenspektrometrie-basierte Proteomik 

Unter den technischen Verfahren hat insbesondere die Massenspektrometrie (MS) an 

Beliebtheit gewonnen. Durch umfassende Proteinanalysen ist die MS in der Lage, die 

Komplexität des Proteoms zu bewältigen (HAN et al. 2008). Die drei primären Anwendungen 

der MS im Rahmen der Proteomik umfassen: (1) Katalogisierung der Proteinexpression; (2) 

Definierung von Protein-Interaktionen und (3) Identifikation von posttranslationalen 

Modifikationen (HAN et al. 2008).  

 

Grundlagen der Massenspektrometrie 

Im Wesentlichen misst die MS das Masse-zu-Ladungs-Verhältnis (m/z) von Ionen in der 

Gasphase (HAN et al. 2008). Elektrosprayionisation und Matrix-gestützte Laser-

Desorption/Ionisation sind die häufigsten Techniken, um Proteine und Peptide für die MS in 

die Gasphase zu überführen und zu ionisieren (FENN et al. 1989; PANDEY u. MANN 2000). 

Ein Massenspektrometer besteht aus drei Komponenten: (1) Ionenquelle; (2) Analysator (zur 
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Messung des m/z-Verhältnis), und (3) Detektor (für die Erfassung der Anzahl an Ionen zu 

jedem m/z-Wert) (AEBERSOLD u. MANN 2003). Der Analysator ist das Kernstück des 

Massenspektrometers (AEBERSOLD u. MANN 2003). Es werden vier unterschiedliche 

Analysator-Typen einzeln oder in Kombination (Hybride) miteinander verwendet: (1) 

Ionenfalle; (2) Time-of-flight (3) Quadrupol und (4) Fouriertransformation (AEBERSOLD u. 

MANN 2003).  

 

Probenanalyse und Proteinidentifikation 

Bei der Probenenalyse und Proteinidentifikation werden grundsätzlich zwei unterschiedliche 

Strategien unterschieden: (1) Top down und (2) Bottom up (BOGDANOV u. SMITH 2005). 

Top down-Analysen untersuchen die exakte Sequenz von Proteinen, unter größtmöglicher 

Vermeidung einer Veränderung der Probe (TIPTON et al. 2011). Diese Strategie funktioniert 

vor allem bei Proteinen mit bekannten Proteinsequenzen aber unbekannten posttranslationalen 

Modifikationen (LOVRIC 2011b). Die Bottom up-Strategie basiert auf der Vorverdauung von 

Proteinen (üblicherweise durch Trypsin), gefolgt von einer Analyse der Peptidfragmente 

(MESSANA et al. 2013). Die Peptidanalyse stützt sich auf zwei unterschiedliche 

Vorgehensweisen: (1) Einfache MS, bei der die Peptide direkt mit einer Genom- oder 

Proteindatenbank verglichen werden und (2) Tandem-Massenspektrometrie (MS/MS), die 

beispielsweise mithilfe der Kollisions-induzierten-Dissoziation Ionenfragmente für den 

Datenbankabgleich erzeugt (HUNT et al. 1986; CHEN u. PRAMANIK 2009). Wie der Name 

impliziert, umfasst MS/MS zwei Stadien der massenspektrometrischen Analyse. Im ersten 

Stadium werden Ionen mit gewünschtem m/z-Wert isoliert (GLISH u. VACHET 2003). Für die 

weitere Aufspaltung unterlaufen die isolierten Ionen anschließend eine chemische Reaktion 

(beispielsweise die kollisions-induzierte Dissoziation). Die so entstandenen Produkt-Ionen 

werden dann in der zweiten Phase der MS/MS analysiert (GLISH u. VACHET 2003). MS/MS-

Analysen führen unter anderem zu einer Verbesserung des Signal/Störgeräusch-Verhältnisses 

(GLISH u. VACHET 2003). Um die maximale Kapazitätsauslastung zu erhöhen, werden 

zusätzlich zur MS unterschiedliche Protein- und Peptidtrennungsverfahren eingesetzt 

(AEBERSOLD u. MANN 2003). Für Proteomstudien wird die Kombination der 

Flüssigkeitschromatographie (LC) mit Tandem-Massenspektrometrie am häufigsten benutzt. 

Sie ist für die Analyse komplexer Proteinproben unverzichtbar (HUNT et al. 1992). Die 

differentielle Proteomanalyse des Dissertationsvorhabens wurde, im Rahmen einer 

Kooperation mit der Abteilung Proteinanalytik des Helmholtz Zentrums München unter 

Leitung von Frau Doktor Hauck und der Arbeitsgruppe von Frau Professor Deeg am Institut 
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für Tierphysiologie der Ludwig-Maximilians-Universität in München, mittels LC-MS/MS 

durchgeführt (s. Kapitel IV 4.2). Der Massenanalysator war ein LTQ-Orbitrap XL (Hybride aus 

linearer Ionenfalle und Orbitrap). Dieser kombiniert die Stabilität, Sensitivität und MS/MS-

Fähigkeit des LTQ mit der Massengenauigkeit und dem hohen Auflösungsvermögen der 

Orbitrap (HAN et al. 2008). Eine schematische Darstellung eines LTQ-Orbitrap XL 

Massenspektrometers findet sich in Abbildung 3.  

 

Abb. 3: 

 

 

Schematische Darstellung eines LTQ-Orbitrap XL Massenspektrometers modifiziert nach Thermo Fisher1. Der 

LTQ Orbitrap ist ein Hybride aus linearer Ionenfalle und Orbitrap und ermöglicht so Tandem-

Massenspektrometrie (MS/MS) komplexer Protein-Proben. Mittels Nanospray-Ionisation werden die Peptide in 

die Gasphase überführt und ionisiert. Im ersten Schritt der Massenspektrometrie werden Ionen mit gewünschtem 

m/z-Wert isoliert. Anschließend werden diese durch kollisions-induzierte Dissoziation (HCD Kollisionszelle) 

fraktioniert. Die so entstandenen Produkt-Ionen werden dann in der Orbitrap analysiert. Abbildung mit 

freundlicher Genehmigung der Thermo Fisher Scientific GmbH. 

 

3.4. Bioinformatische Datenanalyse 

Biostatistik und die Nutzung bioinformatischer Instrumente sind unerlässlich für die 

Auswertung proteomischer Datensätze. Sie bilden die Grundlage für die Interpretation 

biologischer Daten und für die Extrahierung biologischer Relevanz aus der unüberschaubaren 

Menge identifizierter Proteine (KUMAR u. MANN 2009). Die Methoden zur Analyse 

proteomischer Daten können unterteilt werden in statistische und funktionelle Methoden 

                                                 

1 http://planetorbitrap.com/ltq-orbitrap-xl#tab:schematic 

Ionenquelle LTQ lineare Ionenfalle HCD Kollisionszelle 

Orbitrap 
Massen- 
analysator 

C-Falle 
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(BESSARABOVA et al. 2012). Erstgenannte dienen der Identifizierung und Quantifizierung 

von Proteindaten, sowie der Beschreibung zugrundeliegender Variablen. Letztgenannte 

Methoden nutzen Protein-Datenbanken und verschiedene Programme, um Proteindaten im 

biologischen Kontext zu analysieren (BESSARABOVA et al. 2012).  

 

Die funktionelle Datenanalyse nutzt den aktuellen Wissensstand über die Eigenschaften und 

Beziehungen von Proteinen in lebenden Zellen, um damit experimentelle Daten interpretieren 

zu können (BESSARABOVA et al. 2012). Den häufigsten Typ funktioneller Analysen stellt 

das Enrichment nach exakt definierten Vokabularien mit entsprechend definierten Relationen 

(ontologische Begriffe) dar (ASHBURNER et al. 2000; BESSARABOVA et al. 2012). 

Ontologische Enrichment-Analysen evaluieren die relative Repräsentanz biologischer 

Funktionen oder ontologischer Begriffe (Pathways, zelluläre Prozesse oder 

Krankheitsbiomarker) für das auszuwertende proteomische Profil bzw. die jeweilige 

Proteinliste (BESSARABOVA et al. 2012). Diese Analysen beruhen auf der Zuordnung 

experimentell gewonnener Daten (Proteinliste oder Proteinprofil) zu funktionellen Ontologie-

Begriffen (BESSARABOVA et al. 2012). Die Protein-IDs, Gensymbole der Proteine, usw. 

dienen dabei als Link zwischen den web-basierten Datenbanken (Ressource der ontologischen 

Begriffe) und den experimentellen Daten. Der Zuordnung folgt eine Einstufung (Ranking) der 

Ontologie-Begriffe, basierend auf dem Ausmaß der Übereinstimmung zwischen den jeweiligen 

Begriffen und der experimentellen Proteinliste, in Relation zu einem entsprechenden 

Bezugsproteom/-Genom (beispielsweise alle identifizierten Proteine aus der 

massenspektrometrischen Analyse) (BESSARABOVA et al. 2012). Das Bezugsproteom/-

Genom stellt die Grundlage für die statistische Berechnung dar. Hierbei wird die 

Wahrscheinlichkeit der beobachteten Übereinstimmung zwischen Proteinen/Genen des 

Experiments und den gewählten Ontologie-Begriffen ermittelt. Diese Wahrscheinlichkeit wird 

durch den sogenannten „p-Wert“ angegeben. In der Regel werden p-Werte < 0,05 als statistisch 

signifikant angesehen (HUANG DA et al. 2009).  

Es stehen verschiedene Web-Ressourcen für eine umfassende Datenbankabfrage von Meta-

Informationen und Enrichment-Analysen zur Verfügung (OVELAND et al. 2015). Eine dieser 

Ressourcen stellt die Gene Ontology- Datenbank dar. Diese lässt sich in drei unterschiedliche 

Ontologien untergliedern: (1) Biologischer Prozess (bezieht sich auf eine biologische 

Zielsetzung zu der das Gen bzw. das Genprodukt beiträgt), (2) Molekulare Funktion (definiert 

nach der biochemischen Aktivität eines Genprodukts) und (3) Zelluläres Kompartiment 

(bezieht sich auf die Lokalisation biologischer Akvitität des Genprodukts innerhalb der Zelle) 
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(ASHBURNER et al. 2000; BLAKE u. HARRIS 2008). Ziel des Gene Ontology-Konsortiums 

ist ein strukturiertes, genau definiertes, gemeinsames und kontrolliertes Vokabular zu schaffen, 

das die Beschreibung von Genen und ihrer Produkte in allen Organismen ermöglicht 

(ASHBURNER et al. 2000).  

 

Pathway-Analysen 

Das Ergebnis der MS im Verlauf einer differentiellen Proteomanalyse sind oft umfangreiche 

Proteinlisten, die häufig nur wenig Rückschlüsse über die zugrundeliegenden biologischen 

Vorgänge erlauben. Ein möglicher Lösungsansatz für diese Problematik ist die Unterteilung der 

langen Proteinlisten in kleinere Gruppen funktionell zusammenhängender Proteine (KHATRI 

et al. 2012). Diese Gruppierung kann durch Enrichment-Analysen (s.o.) nach Gene Ontology-

Gruppen, oder auf Basis der Proteinzusammengehörigkeit innerhalb biologischer Pathways 

erfolgen (KHATRI et al. 2012). Die Zuordnung funktioneller Informationen aus Pathway-

Ressourcen dient der Bestimmung biologischer Funktionen und Interaktionen und somit der 

biologischen Relevanz für die zugrundeliegende Erkrankung (LANGLEY et al. 2013). Für die 

Erforschung biologischer Pathways können öffentliche Datenbanken wie Gene Ontology und 

Kyoto Encyclopedia of Genes and Genomes (KEGG) genutzt werden (KHATRI et al. 2012). 

Dabei werden durch korrelierende Informationen aus mindestens einer Pathway-Datenbank 

und der experimentellen Proteinliste die Pathways identifiziert, die in der zu untersuchenden 

Erkrankung eine mögliche Rolle spielen (KHATRI et al. 2012). Der Terminus Pathway wird 

allerdings nicht einheitlich verwendet und kann Datenbank abhängig variieren. 

Signaltransduktionswege, die von Phosphorylierungsreaktionen abhängig sind, fallen ebenso 

unter die Definition Pathway, wie enzym-abhängige metabolische Reaktionen (GREEN u. 

KARP 2006). Entsprechend sollten unterschiedliche Pathway-Ontologien für unterschiedliche 

Fragestellungen verwendet werden. Die parallele Nutzung verschiedener Pathway-Ontologien 

kann hingegen zu komplementären Ergebnissen führen (GREEN u. KARP 2006). Im 

Allgemeinen können drei Methoden (Generationen) der Pathway-Analyse unterschieden 

werden: (1) Over-Representation Analysis; (2) Functional Class Scoring und (3) Pathway 

Topology (KHATRI et al. 2012). Da für die vorliegende Studie eine Pathway-Analyse der 

ersten Generation durchgeführt worden ist, wird im Folgenden genauer auf das Prinzip der 

Over-Representation Analysis eingegangen.  

Die Over-Representation Analysis evaluiert statistisch die Fraktion von Proteinen/Genen aus 

der Gesamtzahl der differentiell exprimierten Proteine/veränderten Gene, die einem 

bestimmten Pathway zugeordnet werden kann (KHATRI et al. 2012). In der Literatur wird sie 
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auch als „2x2 table method“ bezeichnet (GOEMAN u. BÜHLMANN 2007). Der Over-

Representation Analysis liegt folgende Strategie zugrunde: Zuerst wird eine Proteinliste 

(beispielsweise aus den experimentell gewonnen Daten) nach spezifischen Kriterien erzeugt 

(KHATRI et al. 2012). Im darauffolgenden Schritt werden für jeden Pathway die mit der 

Proteinliste übereinstimmenden Proteine gezählt. Dieser Prozess wird für ein entsprechendes 

Referenzproteom (beispielsweise alle identifizierten Proteine der Analyse) wiederholt 

(KHATRI et al. 2012). Im Anschluss wird jeder Pathway auf Über- oder Unterrepräsentation 

in der Proteinliste überprüft. Die für diese Überprüfung am häufigsten benutzten Tests 

umfassen den chi-square, die Binominalverteilung und den hypergeometrischen Test (KHATRI 

et al. 2012). 
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III. ARBEITSHYPOTHESEN UND ZIELSETZUNG 

Sowohl Krankheiten im Allgemeinen als auch Epilepsien im Besonderen manifestieren sich im 

Phänotyp eines Organismus. Die Ausprägung des Phänotyps ist dabei auf das 

Expressionsmuster und die Interaktion von Proteinen zurückzuführen. Das Verständnis 

molekularer Pathomechanismen hängt demzufolge weitestgehend von der Erforschung des 

zellulären „Proteincocktails“ ab. In diesem Zusammenhang kommt insbesondere der 

vergleichenden (differentiellen) Proteomanalyse zwischen erkranktem und gesundem Gewebe 

eine besondere Bedeutung zu.  

Epilepsien gehören zu den häufigsten chronischen neurologischen Erkrankungen bei Hund und 

Katze sowie beim Menschen (SANDER u. SHORVON 1996; COWAN 2002; CHANDLER 

2006; SMITH BAILEY u. DEWEY 2009). Sie resultieren aus einer Kaskade molekularer 

Veränderungen, die bisher noch größtenteils unerforscht sind. Molekularen Analysen zufolge 

umfassen solche Mechanismen genetische Mutationen und Dysfunktionen von Signalwegen, 

die zu der Bildung eines iktogenen Netzwerkes führen können (GOLDBERG u. COULTER 

2013). Diesbezüglich stellen insbesondere inflammatorische Prozesse, die infolge einer 

initialen Schädigung des Gehirns auftreten, Schlüsselkomponenten der Epilepsieentstehung dar 

(VEZZANI et al. 2013b). Die Entstehung eines übererregbaren Netzwerkes kann demnach die 

Folge molekularer Veränderungen sein, die durch inflammatorische Mediatoren ausgelöst 

wurden (PITKÄNEN u. SUTULA 2002; VEZZANI u. GRANATA 2005; VEZZANI et al. 

2008). Ein besseres Verständnis dieser molekularen Mechanismen könnte zu der Entwicklung 

neuer präventiver, diagnostischer und therapeutischer Ansätze führen. Diese Entwicklung 

würde von Epileptogenese-Biomarkern erheblich profitieren. In diesem Kontext könnten 

Epileptogenese-Biomarker unter anderem die Kosten der Entdeckung und Validierung 

antiepileptischer Therapeutika reduzieren sowie anti-epileptogene Interventionen ermöglichen 

(ENGEL et al. 2013; PITKÄNEN u. ENGEL 2014).  

Im Rahmen des Dissertationsvorhabens sollen daher die Veränderungen der molekularen 

Mechanismen während dem Prozess der Epileptogenese untersucht werden. Hierfür wird eine 

differentielle Proteomanalyse in der Post-Insult-Phase, Latenzphase und der chronischen Phase 

mit spontanen wiederkehrenden Anfällen durchgeführt. Durch die anschließende funktionelle 

Auswertung der Ergebnisse aus der differentiellen Proteomanalyse, werden die molekularen 

Veränderungen im Kontext biologischer Funktionen analysiert. Das zu untersuchende Gewebe 

umfasst die Gehirnareale HC und PHC. Diese sind Gehirnstrukturen, denen bei der TLE-

Entstehung eine besondere Bedeutung zukommt. Ziel der Arbeit ist es, Einblicke und damit 

verbunden ein besseres Verständnis der veränderten Pathomechanismen im Kontext der 
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Epileptogenese zu bekommen. Zusätzlich wird eine hypothesengestützte fokussierte 

Auswertung der immun- und inflammations-assoziierten Mechanismen durchgeführt, um deren 

Bedeutung im Kontext der Epileptogenese bedingten Veränderungen zu evaluieren. Darüber 

hinaus soll die Studie eine Grundlage liefern, potentielle Biomarker für molekulare 

Bildgebungsverfahren und mögliche Zielstrukturen für die Prävention und Therapie der 

Epileptogenese zu identifizieren. 
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IV. MATERIAL UND METHODEN 

1. Versuchstiere 

Alle Untersuchungen wurden im Rahmen einer Tierversuchsgenehmigung (Gz.55.2-1-54-

2532-94-11) durchgeführt. Bei den Tieren handelte es sich um weibliche Ratten des Stammes 

Sprague Dawley (Harlan Laboratories GmbH, Udine, Italien). Die Tiere wiesen bei Ankunft 

ein durchschnittliches Gewicht von 200-224 g auf. Die Tierhaltung erfolgte einzeln in 

„Makrolonkäfigen Typ III hoch“. Als Einstreu diente Weichholzgranulat (Grade 5; Altromin 

GmbH, Lage, Deutschland). Leitungswasser und Ssniff Rattenfutter (Ssniff R/M Haltung 

Spezialdiäten GmbH, Soest, Deutschland) wurden ad libitum zur Verfügung gestellt. Das Futter 

wurde einmal pro Woche und das Wasser zweimal pro Woche erneuert. Das Umsetzen der 

Tiere in saubere Käfige erfolgte einmal pro Woche. Dabei wurde darauf geachtet, dass dieses 

mindestens ein bis zwei Tage vor Versuchsphasen stattfand. Die Haltung der Tiere erfolgte bei 

einem zwölfstündigen Hell-Dunkel-Zyklus (Licht an 07:00 Uhr; Licht aus 19:00 Uhr MEZ). 

Die Umgebungstemperatur betrug durchschnittlich 20-24°C und die Luftfeuchtigkeit 45-60 %. 

Nach ihrer Ankunft konnten sich die Tiere mindestens eine Woche an die neuen 

Haltungsbedingungen gewöhnen. Vor Beginn der Untersuchungen wurden die Tiere ausgiebig 

an den Experimentator und sofern notwendig an die Versuchsräume und Versuchsgeräte 

gewöhnt. Die Versuche erfolgten immer zwischen 07:00 Uhr und 09:00 Uhr MEZ. Dadurch 

konnten circadiane Einflüsse so gering wie möglich gehalten werden (STEWART et al. 2001).  

 

2. Post-Status-Epilepticus-Modell 

2.1. Elektrodenimplantation 

Im Rahmen des elektrischen SE-Modells wurde den Tieren eine bipolare Ableitungs- und 

Stimulationselektrode (Tiefenstimulationselektrode aus rostfreiem, Teflon ummanteltem Stahl) 

in die BLA implantiert (Abbildung 4). Grundlage hierfür war eine stereotaktische 

Operationstechnik. Als Narkotikum wurde den Tieren vor der Operation 360 mg/kg 

Chloralhydrat (Merck Millipore, Darmstadt, Deutschland) gelöst in 10 ml 0,9 %-iger NaCl-

Lösung, intraperitoneal (i.p.) appliziert. Die Überprüfung der Narkosetiefe erfolgte anhand der 

Lid-, Zwischenzehen- und Kornealreflexe. Bei Ratten mit ausgefallenem Lid- und 

Zwischenzehenreflex aber noch erhaltenem Kornealreflex, wurde von einer chirurgischen 

Toleranz ausgegangen. Die peri- und postoperative Analgesie erfolgte 30 min prä operationem 
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und 24 h post operationem durch subkutane (s.c.) Applikation von 1 mg/kg Meloxicam 

(Metacam® Injektionslösung, Boehringer Ingelheim, Deutschland). Für die örtliche Betäubung 

wurde 1 ml Bupivacain 0,5 %, (JENAPHARM®, mibe GmbH Arzneimittel, Brehna, 

Deutschland) unter die Kopfhaut injiziert. Zum Schutz der Augen vor Austrocknung wurde 

Bepanthen Augensalbe (Bepanthen®, Bayer Vital GmbH, Leverkusen, Deutschland) 

aufgetragen. Die genaue Positionierung der Elektrode erfolgte mithilfe eines stereotaktischen 

Apparates (TSE Systems GmbH, Bad Homburg, Deutschland). Als Orientierungshilfe diente 

der stereotaktische Atlas von PAXINOS u. WATSON (2006), der die topografische Beziehung 

der Hirnstrukturen zu Bregma (vorderer Kreuzungspunkt der Knochennähte) abbildet 

(Abbildung 4). Voraussetzung für eine exakte Elektrodenimplantation ist demnach die Lage 

von Bregma und Lambda (hinterer Kreuzungspunkt der Knochennähte) auf derselben 

horizontalen Ebene (Abbildung 4). Hierfür wurde die Oberkieferhalterung auf -3,9 mm ventral 

der Interaurallinie eingestellt. Die genaue Überprüfung der Lokalisationsdaten erfolgte im 

Rahmen von Vorversuchen. Folgende Koordinaten wurden in Bezug auf Bregma angewandt: 

anterioposterior -2,2 mm, lateral +4,7 mm und dorsoventral -8,5 mm. Für die Befestigung der 

Elektrode wurde jeweils eine Fixationsschraube aus rostfreiem Stahl rostral und kaudal des 

Elektrodenbohrlochs angebracht (Abbildung 4). Die Ableitung der Erdungselektrode erfolgte 

mithilfe eine Schraube, die gegenüberliegend der Elektrode angebracht wurde (Abbildung 4). 

Kaltpolymerisierender Kunststoff (Paladur®, Fa. Heraeus, Hanau, Deutschland) diente dabei 

der dauerhaften Fixierung der Elektrode. Dieser wurde in zwei Schichten aufgetragen. Die erste 

Schicht Paladur enthielt zusätzlich 2,1 %-iges Gentamicinsulfat (Sigma-Aldrich, München, 

Deutschland), wodurch eine Wundinfektionsprophylaxe erreicht wurde. Die antibiotische 

Versorgung der Tiere erfolgte für einen Zeitraum von insgesamt acht Tagen (einen Tag prä 

operationem; sechs Tage post operationem) zweimal täglich im Abstand von sechs Stunden. 

Hierfür wurde jedem Tier 0,1 ml Marbofloxacin (Marbocyl®, Vétoquinol, Ravensburg, 

Deutschland) s.c. appliziert. Stärkere Blutungen während der Elektrodenimplantation wurden 

mit 1-3 Tropfen Suprarenin (Suprarenin®, Henry Schein Vet, Stuttgart, Deutschland) 

behandelt. Im Anschluss an die Operation folgte eine sechswöchige Phase der Regeneration.  
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Abb. 4: 

 

 

Schematische Darstellung eines knöchernen Rattenschädels. Die Implantation der Stimulationselektrode erfolgte 

anhand des stereotaktischen Atlas von PAXINOS u. WATSON (2006). Bregma und Lambda (Kreuzungspunkte 

der Knochennähte) dienten hierbei als Orientierungshilfe. Die Abbildung wurde freundlicherweise von Thomas 

Licko zur Verfügung gestellt. 

 

2.2. SE-BLA-Modell 

In der vorliegenden Studie wurde das SE-BLA-Modell verwendet (vgl. Kapitel II.1.6). Dabei 

wird durch 25-minütige Dauerstimulation der BLA ein SE induziert. Zu Versuchsbeginn 

erfolgte für jedes Tier eine Bestimmung des Körpergewichts. Zudem wurde von jedem Tier ein 

basales Elektroenzephalogramm (EEG) abgeleitet. Hierfür wurden die Elektroden der Tiere 

über ein zweiadriges isoliertes Kabel mit der Elektrodenanschlussbox des 

Elektroenzephalographen verbunden. Im Anschluss erfolgte ein Umsetzen der Ratten in 

ausgepolsterte Sichtkästen. Dort wurden sie an das Stimulationsgerät (Stimulus Isolator A365 

und Accupulsor A310C, World Precision Instruments, Berlin) angeschlossen. Es folgte eine 

25-minütige elektrische Stimulation der Tiere durch biphasische Einzelpulsserien (alternierend 

positiv-negativ geladene Rechteckimpulse) mit einer Frequenz von 50 Hz und einer 

Stromstärke von 700 µA. Die Anfallsschwere wurde nach dem in Tabelle 2 dargestellten 

Schema protokolliert. Nach der elektrischen Stimulation erfolgte eine erneute EEG-Ableitung. 

Mithilfe dieses EEGs wurde kontrolliert, ob sich die Tiere im SE befinden. Ein SE bestätigte 

sich durch eine Veränderung des EEGs von circa 3 Hz und mindestens doppelter 

Bregma 
Lambda 

Stimulationselektrode 
Fixationsschraube 
Erdungselektrode 
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Amplitudenhöhe im Vergleich zum Basal-EEG. Im Anschluss wurden die Versuchstiere erneut 

in gepolsterte Sichtkästen gesetzt und weitere 3 h und 35 min beobachtet. Innerhalb dieses 

Zeitraums erfolgte eine Protokollierung der Anfallsaktivität. Nach einer Beobachtungszeit von 

insgesamt 4 h wurde der SE durch die Applikation von 20 mg/kg Diazepam i.p. (Diazepam-

ratiopharm®, ratiopharm GmbH, Ulm, Deutschland) beendet. Bei den nicht stimulierten 

Kontrolltieren erfolgte ebenfalls eine Applikation derselben Menge Diazepam. Bis zum 

Wiedererlangen des Bewusstseins wurden die Tiere auf beheizte Wärmematten gelegt und ihre 

Vitalfunktionen regelmäßig kontrolliert. Im Anschluss daran wurde ein weiteres EEG abgeleitet 

und mit dem Basal-EEG sowie dem EEG nach Statusinduktion verglichen. Wenn bei den Tieren 

keine elektrographische Anfallsaktivität mehr feststellbar war, wurden ihnen insgesamt 7,5 ml 

körperwarme Ringerlactat-Lösung (Ri-Lac®, Hartmann B.Braun Vet Care, Metsungen, 

Deutschland) s.c. und i.p. injiziert. Die Injektion von Ringerlactat erfolgte wiederholt am 

Morgen des darauffolgenden Tages, sowie im Einzelfall (abhängig vom Gesundheitszustand 

des Tieres) auch über diesen Tag hinaus. Bis zur selbstständigen Futteraufnahme und 

vollständigen Genesung der Tiere wurden diese zweimal täglich mit Babybrei und 

aufgeweichten Pellets gefüttert. Dabei erfolgte eine ständige Kontrolle des 

Gesundheitszustandes und Protokollierung von Gewicht und Futteraufnahme. Die Beurteilung 

des Gesundheitszustandes erfolgte anhand eines modifizierten Irwin-Scale (IRWIN 1968). 

Aufgrund der Belastung durch den SE konnten die Tiere vereinzelt reduzierte Futteraufnahme, 

Gewichtsverlust < 15 % und eine Abweichung vom Irwin-Scale zeigen. Nach sieben Tagen 

hätte jedoch jede Abweichung in der Einstufung „normal/unverändert (Irwin-Score = 2)“ zum 

Versuchsabbruch und zur Euthanasie des betroffenen Tieres geführt.  

  

Anfallsparameter 

Die Evaluierung der Anfallsaktivität erfolgte anhand der durch BARAN et al. (1995) 

modifizierten Einteilung von RACINE (1975) (Tabelle 2). Sie diente als Grundlage für die 

Beurteilung der im SE-BLA-Modell auftretenden Anfallstypen. Entsprechend der 

Anfallsaktivität wurde der beobachtete SE in drei Subtypen untergliedert: (1) Nicht-konvulsive 

fokale Anfälle, die sich durch stereotypes Verhalten äußern; (2) Fokale Anfälle, die von 

einzelnen generalisierten Anfällen immer wieder unterbrochen werden und in solche übergehen 

können, sowie (3) anhaltend generalisierte Anfälle (BRANDT et al. 2003). 
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Tab. 2 

Beurteilung der Krampfstadien 

Krampfstadium Parameter Anfallsform 

Stadium I 

 

Immobilität, schwache Fazialklonien  
(Schließen eines oder beider Augen, Zittern 

der Tasthaare, stereotypes Schnüffeln) 
 

Fokal 

Stadium II 

Schwere Fazialklonien in Form von 
klonischen Kaubewegungen bzw. Kopfnicken 

 

Stadium III 

 
Einseitiger Vorderextremitätenklonus 

Generalisiert 

Stadium IV 

 
Aufrichten und bilateraler rudernder 

Vorderextremitätenklonus 
 

Stadium V 

Aufrichten der Tiere mit anschließendem 
Verlust der Stellreflexe, Umfallen nach hinten 

oder zur Seite und generalisiert klonische 
Krämpfe 

 

Stadium VI 
Explosionsartiges Rennen und Springen 

(Running and bouncing) 
 (mod. nach RACINE 1975) 

 

3. Überwachung spontaner Anfälle 

In der chronischen Phase (sechs Wochen nach SE) erfolgte eine Video- und EEG-Überwachung 

der spontanen Anfallsaktivität für den Zeitraum von insgesamt 20 Tagen. Innerhalb dieses 

Zeitraums wurde das Verhalten der Tiere 24 h täglich und sieben Tage/Woche beobachtet. 

Hierfür wurden die Tiere in spezielle verglaste Sichtkästen (60 cm x 40 cm x 40 cm) gesetzt. 

Abtrennvorrichtungen innerhalb der Sichtkästen gewährleisteten dabei den dauerhaften 

Aufenthalt der Tiere im Überwachungsbereich der Kamera. Für die Zeit der Überwachung 

wurde ein spezielles Einstreu-Granulat (Rehofix, Ssniff GmbH, Soest, Deutschland) verwendet. 

Futter und Wasser wurden zweimal täglich kontrolliert und mindestens einmal wöchentlich 

erneuert. Die Entfernung der Einstreu erfolgte einmal wöchentlich. Vor der Überwachung 

wurden mehrere Probedurchläufe durchgeführt. Hierdurch konnte  eine optimale 

Bildeinstellung für die Videoüberwachung gewährleistet werden. Anfälle, die während einer 

Manipulation der Tiere sowie vor der Überwachung aufgetreten sind, wurden gesondert 

vermerkt. 
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3.1. EEG-Aufzeichnung 

Das EEG-Aufzeichnungssystem umfasste folgende Einheiten: (1) Analog-Digitalwandler 

(PowerLab/800s, ADInstruments Ltd, Hastings, UK); (2) Kanal-Verstärker (Animal Bio Amp, 

ADInstruments Ltd, Hastings, UK) und (3) Computer mit geeigneter EEG-

Auswertungssoftware (Chart 5 für Windows). Für die Ableitung der EEGs wurden die 

Elektroden der Tiere über ein zweiadriges ummanteltes Kabel mit den jeweiligen 

Datenerfassungseinheiten verbunden. Um den Tieren ausreichend Bewegungsspielraum zu 

gewährleisten und dabei ein Verdrehen der Kabel zu vermeiden, wurde ein Telefonkabel-

Entwirrer in die Ableitungseinheit eingebaut. Das Hintergrundrauschen der EEGs konnte durch 

den Einsatz einer Erdungs-Krokodilklemme am Verstärker reduziert werden. Die 

Signalverarbeitung des EEG-Systems erfolgte mit einer Abtastrate von 200 Hz. Als 

Filtereinstellungen wurden 0,1 Hz für den high pass-Filter und 60 Hz für den low pass-Filter 

gewählt. Die Einstellung des Filters für den Frequenzbereich des Netzstroms betrug 50 Hz. Dies 

wurde durch die Anwendung eines sogenannten „Notch-Filters“ ermöglicht. Durch eine 

anschließende manuelle Auswertung der EEGs konnte eine exakte Bestimmung des 

Anfallszeitpunktes ermittelt werden. Verifizierung und Klassifizierung erfolgten anhand der 

komplementären Videoaufzeichnungen.  

 

3.2. Video-Aufzeichnung 

Parallel zu den EEG-Aufzeichnungen erfolgte eine Videoüberwachung der Tiere. Hierfür 

wurden CCD-Kameras (Conrad Electronic GmbH, München, Deutschland) mit 

Infrarotempfindlichkeit verwendet. Die Aufzeichnungen erfolgten im Schwarz-Weiß-Bereich. 

Das Blickfeld einer Kamera erlaubte die parallele Beobachtung von maximal fünf Tieren. Im 

vorliegenden Versuch wurden für die Überwachung von insgesamt neun Tieren zwei Kameras 

verwendet. Die Speicherung des Datenmaterials erfolgte über eine interne RAID (Redundant 

Array of Independent Discs). Mithilfe des Programms Digi-Protect Searcher 6.275 beta (ABUS 

Security-Tech, Affing, Deutschland) konnten die Videoaufnahmen analysiert werden. Der 

komplementäre Abgleich von Videoaufnahmen und EEGs ermöglichte die genaue Feststellung 

von Anfallszeitpunkt, -dauer und -schwere.  
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4. Durchführung und Auswertung der differentiellen Proteomanalyse 

4.1. Gewebeaufbereitung für die massenspektrometrischen Analysen 

Die für die differentielle Proteomanalyse verwendeten Tiergruppen wurden zwei Tage, zehn 

Tage und acht Wochen nach SE euthanasiert. Im Anschluss an die Euthanasie erfolgte die 

Entnahme der Gehirnregionen HC und PHC. Die weitere Aufbereitung geschah in Kooperation 

mit dem Helmholtz-Zentrum München und der Arbeitsgruppe von Frau Professor Deeg am 

Institut für Tierphysiologie der Ludwig-Maximilians-Universität in München. Um 

tageszeitliche Einflüsse auf die Versuchsdurchführung zu limitieren, erfolgte eine 

abwechselnde Euthanasie von SE- und Kontrolltieren. Das Gehirn wurde aus dem knöchernen 

Schädel herauspräpariert und in eine eisgekühlte Petrischale überführt. Mithilfe eines Skalpells 

erfolgte die Trennung beider Hemisphären entlang der Medianen. Durch Pinzettenschläge 

wurde der entorhinale, perirhinale und posterior-piriforme Cortex des PHC von dem 

umgebenden Gewebe gelöst und anschließend freipräpariert. Die Präparation des HC erfolgte 

ebenfalls durch vorsichtiges Entfernen des umgebenden Gewebes. Sowohl die Hippocampi 

beider Hemisphären als auch die parahippocampalen Cortices wurden gepoolt und bis zur 

weiteren Aufbereitung in Falcons mit eisgekühlter phosphatgepufferter Kochsalzlösung (PBS, 

pH 7,2) aufbewahrt. Abbildung 5 zeigt schematisch die präparierten Gehirnregionen des 

Rattengehirns.  
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Abb. 5: 

 

 

 

 

 

 

 

 

 

Schematische Darstellung eines Rattengehirns (mod. nach FURTAK et al. 2007). In Grautönen dargestellt der HC 

sowie die entorhinalen, perirhinalen und postrhinalen Cortices. Sie umgeben den caudalen Pol des Sulcus 

rhinalis. Unterhalb des entorhinalen und perirhinalen Cortex findet sich der posterior-piriforme Cortex 

(schraffiert dargestellt). Die drei letztgenannten Strukturen entsprechen der Region des parahippocampalen 

Cortex. PER: perirhinaler Cortex, EC: entorhinaler Cortex, POR: postrhinaler Cortex, PPir: posterior-piriformer 

Cortex, HC: Hippocampus, rs: Sulcus rhinalis. Abbildung mit freundlicher Genehmigung des Wiley-Blackwell 

Verlages. 

 

Im weiteren Verlauf wurde eine Gewebehomogenisation und Proteinextraktion durchgeführt. 

Da die Probenaufbereitung inklusive subzellulärer Fraktionierung im Rahmen einer 

Kooperation mit der Arbeitsgruppe von Frau Professor Deeg am Institut für Tierphysiologie 

der Ludwig-Maximilians-Universität in München durchgeführt worden ist, werden im 

Folgenden nur die wesentlichen Schritte beschrieben.  

Die Gewebeproben wurden gewaschen und für 15 min bei 37°C in 0,05 % Trypsin-EDTA 

(Promega, Mannheim, Deutschland) inkubiert. Der enzymatische Verdau zum Aufschluss des 

Gewebes, wurde durch die Zugabe von 1 mg/ml Trypsin Inhibitor (Trypsin Inhibitor aus 

Glycine max, Typ I-S, Sigma-Aldrich, Deisenhofen, Deutschland) und 0,5 ml DNaseI (Sigma-

Aldrich, Deisenhofen, Deutschland) beendet. Durch vorsichtiges Zerreiben erfolgte eine 

mechanische Dissoziation der Zellen. Die Zellen wurden gewaschen, gezählt und anschließend 

lysiert. Der Gesamtproteingehalt wurde durch die Bradford-Methode (BRADFORD 1976) 

bestimmt. Als Probenaufbereitungsschritt für die massenspektrometrische Analyse erfolgte ein 

FASP-(filter aided sample preparation)-Verdau der Proteine der Proben wie bereits 

PPir 
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beschrieben von WISNIEWSKI et al. (2009). Hierbei wurden jeweils 10 µg Gesamtprotein der 

Proben mittels Trypsin (Promega, Mannheim, Deutschland) verdaut. Abschließend wurden die 

Eluate angesäuert und im Massenspektrometer gemessen.  

 

4.2. Massenspektrometrische Analyse 

Die massenspektrometrischen Analysen wurden im Rahmen des vorliegenden Projektes in 

Kooperation mit der Abteilung Proteinanalytik des Helmholtz Zentrums München 

durchgeführt. Die Durchführung der LC-MS/MS (Liquid-Chromatographie-Tandem-

Massenspektrometrie-Analyse) erfolgte, wie von HAUCK et al. (2010) bereits beschrieben, 

durch Nanosprayionisation mit einem Ultimate3000 nano HPLC-System (Dionex, Sunnyvale, 

CA, USA), das gekoppelt war an ein LTQ Orbitrap XL Massenspektrometer (Thermo Fisher 

Scientific GmbH, Bonn, Deutschland, vgl. hierzu Kap. II.3.3.).  

Es wurden 0,5 µg der Probenlösung bei einer Durchflussmenge von 30 µl/min in verschiedenen 

Puffern auf die Nano Trap Säule (100 μm i.d. × 2  cm, gepackt mit Acclaim PepMap100 C18 

Material, Durchmesser 5 μm, 100 Å, Dionex GmbH, Idstein, Deutschland) des HPLC-Systems 

geladen. Nach 5 min wurden die Peptide eluiert und auf der analytischen Säule (75  μm i.d. × 

15 cm, gepackt mit Acclaim PepMap100 C18 Material, Durchmesser 3 μm, 100 Å, Dionex 

GmbH, Idstein, Deutschland) voneinander getrennt. 

Aus dem hochauflösenden MS-Vorscan im Massenspektrometer wurden die 10 abundantesten 

Peptid-Ionen für die Fragmentierung in der linearen Ionenfalle ausgewählt. Die Peptid-Ionen 

mussten hierfür mindestens zweifach geladen sein und ein Signal-zu-Hintergrund-Verhältnis 

von über 200 aufweisen. Durch dynamischen Ausschluss wurde jedes Peptid-Ion, das für die 

Fragmentierung ausgewählt wurde, für 60 Sekunden von einer wiederholten Fragmentierung 

ausgeschlossen. Während der Fragment-Analyse wurde ein hochauflösendes MS-Spektrum mit 

einer Auflösung von 60.000 und einem Massenbereich von 300-1500 Da aufgenommen.  

 

4.3. Markierungsfreie Peptid-Quantifizierung 

Für die markierungsfreie Quantifizierung (vgl. hierzu HAUCK et al. 2010; HAUCK et al. 2012) 

wurde die Progenesis-Software (Version 2,5, Nonlinear Dynamics Limited, Newcastle upon 

Tyne, UK) verwendet. Hierfür wurden die Profildaten der MS-Scans und MS/MS-Spektren in 

Progenesis hochgeladen und in Peak-Listen transformiert. Im nächsten Schritt wurde eine Probe 

als Referenz ausgewählt, gefolgt von einer automatischen Ausrichtung der anderen Proben 
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anhand zuvor manuell gesetzter Markierungen. Nach Angleichung der Proben und dem 

Ausschluss einfach geladener Ionen, sowie Ionen mit Ladungen von mehr als 7-fach, erfolgte 

eine Unterteilung in die jeweiligen Gruppen (SE- und Kontrolltiere) sowie eine Normalisierung 

der Roh-Abundanzen aller Eigenschaften.  

 

4.4. Datenbanksuche und Proteinidentifikation 

Für die Peptid-Identifizierung erfolgte ein Export aller MS/MS-Spektren aus Progenesis als 

„Mascot-Datei“. Anschließend wurden diese mit dem Programm „Mascot“ (Version 2,4, 

Matrix Science Ltd., London, UK) in der Ensembl-Datenbank2 für Rattus norvegicus (Version 

69, 32971 Sequenzen) identifiziert. Folgende Parameter wurden hierfür verwendet: 10 ppm 

Peptid-Massentoleranz und 0,6 Da Fragment-Massentoleranz; eine verpasste Spaltung wurde 

erlaubt; Carbamidomethylation wurde als feste Modifikation gewählt; Methioninoxidation 

sowie Deamidierung von Asparagin und Glutamin wurden als variable Modifikationen 

zugelassen. Durch die mascot-integrierte Decoy-Datenbanksuche wurde, unter Benutzung des 

Percolator Algorithmus, eine durchschnittliche Falschpositivrate (False Discovery Rate) 

von < 2 % ermittelt. Hierbei lag die Grenze des Percolator score bei 13 und das 

Signifikanzniveau bei p < 0,05. Im Anschluss wurden die identifizierten Peptide erneut in die 

Progenesis-Software geladen. Die Protein-Quantifizierung erfolgte ausschließlich über die 

unique peptides eines identifizierten Proteins. Für die Berechnung der kumulativen 

normalisierten Abundanzen eines Proteins wurden die normalisierten Abundanzen aller Peptide 

aufsummiert, die dem jeweiligen Protein zugeordnet wurden. Die weitere Datenanalyse 

umfasste nur solche Proteine, die mit mindestens zwei unique peptides quantifiziert wurden (im 

Folgenden als „identifizierte Proteine“ bezeichnet). Ein Student´s t-test wurde durchgeführt, um 

die normalisierten Abundanzen der individuellen Proteine zu vergleichen. Des Weiteren wurde 

für jedes Protein das relative Verhältnis der durchschnittlichen Abundanzen von SE- und 

Kontrolltieren (Quotient aus dem Mittelwert der Abundanzen der SE-Tiere und dem Mittelwert 

der Abundanzen der Kontrolltiere, fold change) errechnet. Proteine mit einem p-Wert < 0,05 

und einem fold change ≥ 1,5 wurden als differentiell exprimiert betrachtet.  

 

                                                 

2 http://www.ensembl.org/index.html 
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4.5. Ergänzende Datenbanksuche von RGD-Symbolen und humanen Orthologen 

Für die weiteren Analysen, insbesondere die funktionelle Datenauswertung, wurden die 

Genbezeichnungen der identifizierten Proteine verwendet. Im Verlauf der MS-basierten 

Datenbanksuche konnte allerdings nicht jedem identifizierten Protein ein Gensymbol 

zugeordnet werden. Die ergänzende Suche der fehlenden Gensymbole erfolgte unter 

Anwendung eines eigens zu diesem Zweck geschriebenen Skriptes, welches von der Abteilung 

für Proteinanalytik des Helmholtz Zentrums München entwickelt wurde. Der Skript-

Suchdurchlauf erfolgte in der Ensembl-Datenbank. Das Suchraster umfasste dabei sowohl Rat 

Genome Database-(RGD)-Symbole, als auch humane Orthologe (HUGO Gene Nomenclature 

Committee-(HGNC)-Symbole). Einzelne Proteine, denen durch das automatisierte 

Suchprogramm weder ein RGD-Symbol noch ein entsprechendes humanes Ortholog 

zugeordnet werden konnten, wurden mithilfe der spezifischen Proteinsequenzen (FASTA-

Sequenzen) unter Verwendung des NCBI Blast Algorithmus3 recherchiert.  

 

4.6. Statistische Datenanalyse 

Die statistische Auswertung der Proteindaten erfolgte mithilfe der Programmiersprache „R“ (R 

CORE TEAM 2014). R4 ist eine freie Softwareumgebung (Open Source) für statistische 

Berechnungen und grafische Darstellungen (FIELD et al. 2012). Die Funktionalität von R kann, 

je nach Bedarf, durch Installation von verschiedenen R-Paketen erweitert werden. Das 

Herunterladen und Speichern dieser Pakete erfolgt dabei online über das Comprehensive R 

Archive Network (CRAN, FIELD et al. 2012). Die in der statistischen Analyse der 

Proteomdaten verwendeten Pakete werden in den einzelnen Kapiteln erläutert. Die Skripten mit 

dem jeweiligen R-Code für die einzelnen Auswertungen finden sich im Anhang. 

 

4.6.1. Principal Component-Analyse 

Die Principal Component-Analyse ist eine weitverbreitete Methode, welche multivariate 

Datensätze unter Beibehaltung des größtmöglichen Informationsgehaltes, auf wenige neue 

Variablen reduziert. Dies ermöglicht die explorative Analyse und grafische Darstellung 

komplexer Datensätze (JOLLIFFE 2002; JACKSON 2003; IVOSEV et al. 2008). Die neuen 

Variablen (Principal Components) stellen Linearkombinationen der ursprünglichen Variablen 

                                                 

3 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
4 http://www.r-project.org/ 
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dar und werden nach dem Grad an Datenvarianz (Informationsgehalt) den sie repräsentieren 

hierarchisch gegliedert (IVOSEV et al. 2008). Die Beiträge jeder Variablen zur jeweiligen 

Principal Component werden dabei als loading bezeichnet. Die Anzahl der Principal 

Components im untersuchten Datensatz nennt man scores (IVOSEV et al. 2008). Die 

Ergebnisse der Principal Component-Analyse lassen sich dann als Projektionen 

multidimensionaler scores und loadings in einer zwei-oder dreidimensionalen Grafik darstellen 

(IVOSEV et al. 2008). Im vorliegenden Projekt wurde eine Principal Component-Analyse 

durchgeführt, um Unterschiede zwischen SE- und Kontrolltieren anhand ihrer Proteinprofile zu 

untersuchen. Hierfür wurden die normalisierten Abundanzen der identifizierten Proteine von 

SE- und Kontrolltieren mittels R analysiert. Die Analyse mit R umfasste folgende Pakete: 

„FactoMineR5“, ein R-Paket für multivariate Datenanalysen (HUSSON et al. 2015) und „rgl6“,  

ein R-Paket für interaktive dreidimensionale Grafiken (ADLER et al. 2014). Da die 

Größenordnung, Verteilungsschiefe (Skewness) und Kurtosis der Daten das Ergebnis der 

Principal Component-Analyse beeinflussen, erfolgte vor der Analyse eine Transformation des 

Datensatzes: (1) log2-Transformierung; (2) Zentrierung, um den mittleren quadratischen Fehler 

der Datenangleichung zu reduzieren (MIRANDA et al. 2008) und (3) Skalierung, um die 

Variablen auf eine einheitliche Varianz zu normalisieren und damit zu verhindern, dass 

bestimmte Eigenschaften die Analyse aufgrund extremer Werte beeinflussen (DUDA u. HART 

1973; EKLUNDH u. SINGH 1993). Proteine mit fehlenden Werten bei mindestens einem SE- 

und/oder Kontrolltier (Abundanz = 0) wurden aus der Principal Component-Analyse 

ausgeschlossen.  

 

4.6.2. Volcano Plots  

Um die identifizierten Proteine in HC und PHC im Zeitverlauf grafisch darzustellen und die 

jeweils differentiell exprimierten Proteine optisch hervorzuheben, wurden Volcano Plots 

verwendet. Das Volcano Plot-Histogramm illustriert das Verhältnis von statistischer (p-Wert) 

und biologischer Signifikanz (fold change) in großen Datensätzen. Hierdurch werden Proteine 

mit hohem fold change und niedrigem p-Wert hervorgehoben.  

Die Erstellung der Graphen erfolgte mithilfe des R-Paketes „ggplot27“ (HADLEY 2009). 

Hierfür wurden die log2-transformierten fold changes (log2-Transformierung ermöglicht eine 

                                                 

5 http://CRAN.R-project.org/package=FactoMineR 
6 http://CRAN.R-project.org/package=rgl 
7 http://ggplot2.org/ 
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Unterscheidung zwischen Auf- und Herunterregulation) der Proteine gegen die negativ 

logarithmierten p-Werte (je kleiner der p-Wert desto größer der Skalenwert auf der y-Achse) 

aufgetragen. Die Verwendung einer Farbkodierung ermöglichte eine Differenzierung der 

regulierten Proteine von den identifizierten Proteinen. Zusätzlich wurden für die jeweils fünf 

am stärksten regulierten Proteine die entsprechenden Gensymbole angegeben.  

 

4.6.3. Venn-Diagramme 

Die Venn-Diagramme dienten der übersichtlichen Darstellung der gemeinsam regulierten 

Proteine von HC und PHC. Für die Erstellung der maßstabgetreuen Diagramme wurde das R-

Paket „VennDiagram8“ verwendet (CHEN 2014).  

 

4.6.4. Proteinexpressionsanalyse mittels Heatmaps 

Um die Proteinexpression ausgewählter Proteine im Zeitverlauf zu analysieren, erfolgte eine 

grafische Darstellung der tierspezifischen (individuellen) Proteinexpressionsunterschiede 

durch Heatmaps. Heatmaps dienen der Visualisierung zweidimensionaler Datensätze (m x n 

Matrix) mittels skalierter Farbauswahl. Hierdurch können Unterschiede in großen Datensätzen 

übersichtlich hervorgehoben werden. In diesem Zusammenhang wird eine m x n Matrix wie 

folgt verändert: (1) die Spalten und Zeilen der Matrix werden neu angeordnet, sodass ähnliche 

Profile näher beieinander liegen (clustern) und (2) jeder Wert des Datensatzes wird farblich 

(nach vorher festgelegtem Farbschlüssel) dargestellt, um die Unterschiede grafisch 

hervorzuheben (KEY 2012). Im vorliegenden Projekt wurden hierarchisch geclusterte (nur die 

Proteinprofile wurden geclustert) Heatmaps mittels heatmap.2-Funktion des R-Paketes 

„gplots9“ (WARNES et al. 2015) erstellt. Grundlage waren die log2-transformierten 

individuellen fold changes der SE- und Kontrolltiere. Die individuellen fold changes 

errechneten sich aus dem Verhältnis der Protein-Abundanzen des jeweiligen SE- bzw. 

Kontrolltieres und dem Mittelwert der Protein-Abundanzen aller Kontrolltiere. Für die 

Heatmaps wurde ein Rot-Blau-Farbschlüssel verwendet. Zusätzlich zum Farbschema wurden 

die nicht-logarithmierten individuellen fold changes angegeben. Abhängig vom analysierten 

Zeitpunkt erfolgte eine chronologische Nummerierung der SE- und Kontrolltiere.  

                                                 

8 http://cran.r-project.org/web/packages/VennDiagram/index.html 
9 http://cran.r-project.org/web/packages/gplots/index.html 
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4.7. Funktionelle Datenanalyse 

4.7.1. Klassifizierung der differentiell exprimierten Proteine 

Die Klassifizierung der differentiell exprimierten Proteine diente einer umfassenden 

Darstellung der biologischen Prozesse und molekularen Funktionen, welche durch den Prozess 

der Epileptogenese besonders beeinflusst werden. Die Einteilung der regulierten Proteine 

erfolgte durch das Klassifizierungssystem von PANTHER10 (Protein Annotation Through 

Evolutionary Relationship). PANTHER stellt eine öffentliche Datenbank dar, die 

Proteinfunktionen mit der Evolution von Proteinsequenzen verknüpft (MI et al. 2007). Das 

System besteht dabei aus drei funktionellen Modulen. Kernmodul ist eine große 

Proteinbibliothek die alle proteinkodierenden Gene von insgesamt 82 verschiedenen 

Organismen enthält. Die Bibliothek setzt sich aus Proteinfamilien (Zusammengehörigkeit auf 

Basis von Sequenzhomologien) und –Subfamilien (gemeinsame Funktionen) zusammen (MI et 

al. 2013).  

Die differentiell exprimierten Proteine wurden nach den Gene Ontology-Kategorien 

„Biologischer Prozess“ und „Molekulare Funktion“ klassifiziert. Hierfür wurden die 

Gensymbole der Proteine als humane Orthologe (größerer Informationsgehalt durch 

umfassendere Datenlage bei Homo sapiens) in PANTHER hochgeladen. Im Rahmen der 

Klassifizierung konnten einzelne Proteine mehreren Prozessen und Funktionen zugeteilt 

werden. Die grafische Darstellung der Ergebnisse erfolgte durch das R-Paket „ggplot2“. ZNS-

fremde biologische Prozesse (beispielsweise „Reproduction“) wurden nicht aufgeführt.  

 

4.7.2. Pathway-Enrichment-Analyse 

Um signifikant veränderte biologische Vorgänge und Pathways im Verlauf der Epileptogenese 

darzustellen, wurde mit den differentiell exprimierten Proteinen eine Pathway-Enrichment-

Analyse durchgeführt (s. Kap. II.3.4). Hierdurch war es möglich, die relative Repräsentanz 

biologischer Prozesse unter Berücksichtigung der Protein-Protein-Interaktionen zu evaluieren. 

Die Pathway-Analyse erfolgte mit zwei unterschiedlichen web-basierten Programmen: (1) 

Genomatix11 (Genomatix Software GmbH, München, Deutschland) und (2) 

ConsensusPathDB12 (eine Meta-Datenbank mit öffentlich zugänglichem Web-Interface 

KAMBUROV et al. 2011). In diesem Zusammenhang wurden die regulierten Proteine von HC 

                                                 

10 http://pantherdb.org/ 
11 https://www.genomatix.de/ 
12 http://consensuspathdb.org/ 
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und PHC als humane Orthologe in das „Genomatix Pathway System“, bzw. das 

„Überrepräsentations-Modul“ von ConsensusPathDB hochgeladen. Das Pathway-Enrichment 

erfolgte vor dem Hintergrund der gewebespezifisch identifizierten Proteine des jeweiligen 

Zeitpunktes. Als Signifikanzniveau wurde ein p-Wert von 0,05 gewählt. Die weitere Analyse 

umfasste nur solche Pathways, denen mindestens zwei regulierte Proteine zugeordnet werden 

konnten (Schnittmenge der Pathways und der regulierten Proteine). Redundante Pathways 

(infolge vergleichbarer Datenlage unterschiedlicher Datenbanken) mit übereinstimmenden p-

Werten wurden ineinander überführt und entsprechend gekennzeichnet. Bei den Ergebnissen 

wurden zusätzlich zu p-Wert, Proteinbezeichnung und Schnittmenge die Datenbanken (Quelle) 

angegeben, mithilfe derer die Pathways identifiziert wurden. Die Datenbankbezeichnung 

„Genomatix“ diente dem Verweis auf den proprietären Suchalgorithmus von Genomatix. 

 

5. Immunhistochemische Validierung der Proteomanalyse 

5.1. Gewebeaufbereitung perfundierter Proben 

Perfusion 

Die transkardiale Perfusionsfixierung wurde im Rahmen der vorliegenden Studie angewendet, 

um das Gehirngewebe in vivo zu fixieren. Bei dieser Methode wird das körpereigene 

Kreislaufsystem genutzt, um das Fixationsmittel gleichmäßig im ganzen Körper zu verteilen 

(JONKERS et al. 1984). Vor Durchführung der Perfusion erfolgte die Euthanasie der Tiere. Zu 

diesem Zweck wurde den Tieren 500 mg/kg Pentobarbital (Narcoren®, Sigma-Aldrich GmbH, 

München) in die Bauchhöle injiziert. Nach Eröffnen von Bauch- und Brustwand erfolgte die 

kardiale Punktion mittels einer Knopfkanüle, welche an das Perfusionssystem angeschlossen 

war. Dabei wurde die Kanüle durch die linke Herzkammer in den Aortenbogen vorgeschoben 

und mit einer Klemme fixiert. Um das Blut aus dem Kreislaufsystem zu entfernen, wurde dieses 

mit 300 ml 0,01 M phosphatgepufferte Saline (pH-Wert 7,6) durchspült. Das Anschneiden des 

rechten Herzohres diente hierbei dem Abfluss für Blut- und Perfusionsflüssigkeit. Danach 

wurde das System für 20 min auf 4 %-ige Paraformaldehydlösung (1:1 Gemisch aus 

8 % Paraformaldehydlösung und 0,2 M phosphatgepufferte Saline, Temperatur 4°C) 

umgestellt. Die Fixierung des Gewebes war dabei auf die Bildung von Aldehydbrücken 

zurückzuführen. Im Anschluss an die Perfusion wurde der Kopf des Tieres abgesetzt, die 

knöcherne Schädeldecke eröffnet und das Gehirn herauspräpariert.  

Für die nachfolgenden immunhistochemischen Untersuchungen wurden die Gehirne für 24 h 
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bei 4°C in 4 %-ige Paraformaldehydlösung verbracht. Anschließend wurden die Gehirne in 

30 %-iger Saccharoselösung versetzt mit 0,1 M Phosphatpuffer (pH 7,6) bei 4°C aufbewahrt. 

Die Saccharose diente hierbei dem nachhaltigen Gefrierschutz. 

 

Anfertigung von Kryostat-Schnitten 

Für die Anfertigung der 40 µm dünnen coronalen Gehirnschnitte wurde ein Kryostat 

(HM560M, Microm International GmbH, Walldorf, Deutschland) verwendet. Mittels 

Einbettmedium (Tissue freezing medium, Leica Biosystems, Nußloch, Deutschland) erfolgte 

die Fixation der perfundierten Gehirne auf dem Blockträger des Kryostaten. Anschließend 

wurden sechs Schnittserien á drei Unterserien bei einer Objekttemperatur von -21°C 

angefertigt. Die Aufnahme der Schnitte erfolgte in 0,1 M phosphatgepufferter Lösung (pH 7,6). 

Nach Beendigung des Schneidevorgangs wurden die Schnitte in 4 ml Gefriermedium (58,6 g 

Glukose-Monohydrat und 1,4 g Magnesiumchlorid-Hexahydrat in 500 ml 0,1 M 

Phosphatpuffer versetzt mit 500 ml 87 %-iger Glyzerin-Lösung) überführt und über Nacht bei 

-20°C zwischengelagert. Bis zur weiteren Verwendung erfolgte am darauffolgenden Tag eine 

Kryo-Konservierung der Gehirnschnitte bei -80°C.  

 

5.2. Gewebeaufbereitung von paraffinfixierten Proben 

Paraffinfixation 

Die Fixierung mit Paraffin (Paraplast®, Sherwood Medical, St. Louis, USA) diente der 

nachhaltigen Konservierung von Gehirngewebe. Hierfür wurden die Tiere mit 500 mg/kg 

Pentobarbital (Narcoren®, Sigma-Aldrich GmbH, München, Deutschland) i.p. euthanasiert. 

Daraufhin erfolgte bei jedem Tier das Absetzen des Kopfes mit nachfolgender 

Herauspräparation des Gehirns aus dem knöchernen Schnädel. Dieses wurde anschließend in 

4 %-iges Paraformaldehyd überführt und bei einer Temperatur von 4°C gelagert. Nach drei 

Tagen erfolgte, mithilfe eines Skalpells, das Schneiden der Gehirne in 0,5 cm dünne Blöcke. 

Diese wurden anschließend im Institut für Tierpathologie der LMU München für die 

nachfolgende Paraffineinbettung aufbereitet. Der Entwässerungs- und Einbettungsvorgang 

erfolgte dabei mittels eines Einbettungsautomaten (Histomaster Modell 2050/Di, Bavimed, 

Birkenau, Deutschland). Hierbei wurden die Gehirnblöcke für 1 h mit Leitungswasser gespült 

und anschließend in aufsteigener Alkoholreihe (Ethanol 70 % 2 x 2 h, Ethanol 96 % 2 x 2 h, 

Ethanol 100 % 2 x 1,5 h) entwässert. Nachfolgend wurde das Gewebe dreimalig für 1 h in 

Xylol-Lösung (Isomerengemisch, W. Gräen GmbH & Co, München) verbracht. Bis zur 
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Herstellung der Paraffinblöcke am darauffolgenden Tag wurden die Gehirne in 65°C heißem 

Paraffin (Spezialparaffin, SAV LP GmbH, Flintsbach a. Inn, Deutschland) aufbewahrt. Das 

Ausgießen der Paraffinblöcke erfolgte unter Zuhilfenahme einer Ausgießstation (TES 99, 

Medite Medizintechnik, Burgdorf, Deutschland)  

 

Zuschneiden der Paraffinblöcke 

Für die Anfertigung der Paraffinschnitte wurde ein Rotationsmikrotom (MICROM, Cambridge 

Instruments gmbH, Nußloch, Deutschland) verwendet. Die Schnittdicke betrug dabei 5 µm. 

Das Strecken und Aufziehen der Schnitte auf beschichtete Objektträger erfolgte im Wasserbad 

bei einer Temperatur von 40°C. Zur Trocknung wurden die Schnitte für 24 h in einen 

Brutschrank (38°C) verbracht. 

 

5.3. Immunhistochemie 

Im Rahmen der vorliegenden Studie wurde die Methodik der Immunhistochemie angewendet, 

um das histologische Expressions- und Verteilungsmuster ausgewählter Proteine zu 

untersuchen und die Ergebnisse der differentiellen Proteomanalyse zu validieren. Für den 

immunhistochemischen Nachweis der verschiedenen Proteine wurden sowohl polyklonale als 

auch monoklonale Antikörper verwendet. Erstgenannte Antikörper werden aus immunisierten 

Tieren gewonnen und stammen aus verschiedenen B-Zell-Klonen (polyklonal). Sie können 

daher an unterschiedlichen Stellen des Antigens (Epitope) binden. Monoklonale Antikörper 

werden aus einer gezüchteten B-Zell-Linie gewonnen und binden an nur ein einziges 

spezifisches Epitop. Die Verwendung monoklonaler Antikörper führt aufgrund ihrer höheren 

Spezifität zu einem eindeutigeren Ergebnis. Diese Spezifität fehlt den polyklonalen 

Antikörpern. Andererseits kann die Verwendung polyklonaler Antikörper auch dann noch zu 

einer Färbung führen, wenn ein Epitop (beispielsweise durch einen vorangegangenen 

Demaskierungsvorgang) zerstört worden ist (MONTERO 2003).  

 

Free floating-Verfahren und Standardprotokoll 

Bei dem free floating-Verfahren werden die Gehirnschnitte „frei schwimmend“ in verschiedene 

Färbe- und Waschlösungen überführt und am Ende des Färbeprozesses auf Objektträger 

aufgezogen. Die jeweiligen Färbungen wurden für alle Gehirnschnitte simultan und mit 

denselben Lösungen durchgeführt. Durch dieses Vorgehen sollte die methodisch bedingte 

Varianz der Farbintensität möglichst gering gehalten werden. Alle immunhistochemischen 
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Färbungen wurden anhand eines proteinspezifisch modifizierten Standardprotokolls 

durchgeführt. Zu Beginn jeder Färbung erfolgte ein dreimaliges Waschen der Gehirnschnitte in 

0,05 M Tris gepufferter Saline (TBS, pH 7,6). Im darauffolgenden Schritt wurden die Schnitte 

in Natrium-Citrat-Lösung (NaCitrat, pH 9,0) überführt und 30 min im heißen Wasserbad 

(80°C) demaskiert. Die Demaskierung wurde durchgeführt, um Epitope freizulegen (Antigen 

Retrieval), die durch den Fixierungsvorgang (s. Kap. IV.5.1) blockiert wurden (BOENISCH u. 

HENNE 2003). Nach einem weiteren Waschen der Schnitte in TBS, erfolgte eine Inaktivierung 

der endogenen Peroxidasereaktion durch Inkubation mit verdünntem Wasserstoffperoxid 

(H2O2). Im Anschluss wurden die Gehirnschnitte erneut in TBS gewaschen, um das H2O2 

vollständig zu entfernen. Danach wurden sie für 60 min in Blocking-Lösung (2 % bovines 

Serumalbumin, 0,3 % Triton-X 100 und 5 % Serum der Tierart des sekundären Antikörpers 

gelöst in TBS) überführt. Die Blocking-Lösung sollte unspezifische Bindungsreaktionen des 

primären Antikörpers verhindern. Eine Inkubation der Schnitte mit dem primären Antiserum 

erfolgte im darauffolgenden Schritt. Die Dauer der Inkubation war dabei abhängig von dem 

jeweiligen Protein. Durch nachfolgende wiederholte Waschschritte in TBS wurde noch 

ungebundener primärer Antikörper entfernt. Anschließend wurden die Schnitte für 60 min in 

biotinyliertem sekundärem Antiserum inkubiert. Das an den sekundären Antikörper gebundene 

Biotin diente der späteren Farbreaktion und deren Amplifizierung. Ungebundener sekundärer 

Antikörper wurde nach Ablauf der Inkubationszeit ebenfalls durch wiederholtes Waschen in 

TBS entfernt. Im letzten Schritt wurden die Schnitte für 60 min in eine Lösung mit Streptavidin-

Meerettich-Peroxidase-Komplex (Streptavidin/HRP, 1:1400, Dianova GmbH, Hamburg, 

Deutschland) verbracht und anschließend wiederholt in TBS gewaschen. Eine Visualisierung 

der Antigen-Antikörper-Konjugate erfolgte anschließend durch die Behandlung der Schnitte 

mit einer schwermetallverstärkten 3,3´Diaminobenzidin (DAB)-Lösung (pro Gehirnserie 1 mg 

DAB gelöst in 100 µl Aqua dest, 4 ml Tris/Ni-Lösung und 1 µl 30 %-iges H2O2). Die 

Farbreaktion wurde durch wiederholtes Waschen in TBS beendet. Abschließend wurden die 

Schnitte in Chrom-Gelatine auf Objektträger aufgezogen und getrocknet. Das Eindecken mit 

Entellan (Fa. Merck, Darmstadt, Deutschland) erfolgte am darauffolgenden Tag. Im Folgenden 

wird auf die Besonderheiten der spezifischen Färbungen eingegangen. Die hierfür verwendeten 

Antikörper, -konzentrationen und Herstellerinformationen sind der Tabelle 3 zu entnehmen. 
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P2X purinoceptor 7 

Das Protokoll für die immunhistochemische Färbung von P2X purinoceptor 7 (P2rx7) wurde 

im Rahmen der vorliegenden Arbeit etabliert. Die Demaskierung und einzelnen 

Behandlungsschritte erfolgten, soweit nicht anders erwähnt, gemäß dem oben beschriebenen 

Standardprotokoll. Für die Inaktivierung der endogenen Peroxidasereaktion wurden die 

Gehirnschnitte 7 min in eine 3 %-ige H2O2-Lösung verbracht. Im Anschluss an den Blocking-

Schritt wurden die Schnitte über fünf Nächte mit dem primären Antiserum (Tabelle 3) inkubiert. 

Die Inkubation in sekundärem Antiserum (Tabelle 3) dauerte 60 min. Für die Sichtbarmachung 

der Antigen-Antikörper-Konjugate wurde ein DAB-KIT (Vector Laboratories, Burlingame, 

USA) verwendet. Die Inkubation in DAB-Lösung dauerte dabei 2 min.  

 

P2Y purinoceptor 12 

Das Protokoll für P2Y purinoceptor 12 (P2ry12) wurde ebenfalls in der vorliegenden Arbeit, 

durch Modifikation des Standardprotokolls, etabliert. Im Anschluss an wiederholte 

Waschschritte und Demaskierung, wurden die Gehirnschnitte für 60 min in 0,3 %-ige H2O2-

Lösung verbracht. Nach dem Blocking-Schritt erfolgte eine Inkubation mit primärem 

Antiserum (Tabelle 3) für eine Nacht. In Analogie zu P2x7 wurden die Schnitte am 

darauffolgenden Tag nach wiederholten Waschschritten für 60 min mit sekundärem Antiserum 

(Tabelle 3) inkubiert. Die weiteren Schritte erfolgten gemäß dem Standardprotokoll; dabei 

wurden die Gehirnschnitte für eine optimale Anfärbung 1 min in schwermetallverstärkte 

3,3´DAB-Lösung verbracht.  

 

Heat shock 70 kDa protein 

Da auch für das Heat shock 70 kDa protein (Hsp70/ Hspa1a) noch kein Protokoll zur Verfügung 

stand, wurde dieses im Rahmen der vorliegenden Arbeit etabliert. Die Demaskierung, 

Inaktivierung der endogenen Peroxidasereaktion (60 min in 0,3 %-iger H2O2-Lösung) und das 

Blocking erfolgten gemäß dem Standardprotokoll. Im Anschluss wurden die Gehirnschnitte 

eine Nacht mit dem primären Antiserum (Tabelle 3) inkubiert. Die Dauer der Inkubation in 

sekundärem Antiserum (Tabelle 3) betrug 60 min. Alle weiteren Behandlungsschritte erfolgten 

in Analogie zum Standardprotokoll. Bezüglich der Sichtbarmachung der Antigen-Antikörper-

Konjugate wurden die Schnitte 1 min in schwermetallverstärkte 3,3´DAB-Lösung verbracht.  
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Tab. 3  

Übersicht der primären und sekundären Antikörper sowie der verwendeten Konzentrationen 

Primärer 

Antikörper  

Konzen-

tration Hersteller 

Sekundärer 

Antikörper 

Konzen-

tration Hersteller 

anti-P2x7-

Rezeptor 

(polyklonal, 

Kaninchen) 

1:4000 

Merck Chemicals 

Gmbh, 

Schwalbach, 

Deutschland 

biot. Ziege 

anti-

Kaninchen 

(polyklonal) 

1:1000 
Dako, Glostrup 

Dänemark 

anti-P2y12-

Rezeptor * 

(polyklonal, 

Kaninchen) 

1:500 

Department of 

Physiology, 

UCSF, San 

Francisco, USA 

biot. Ziege 

anti-

Kaninchen 

(polyklonal) 

1:1000 
Dako, Glostrup 

Dänemark 

Anti-Hsp70/ 

Hsp72 

(monoklonal, 

Maus)  

1:750 

Enzo Life 

Sciences GmbH, 

Lörrach, 

Deutschland 

biot. Ziege 

anti-Maus 

(polyklonal) 

1:1000 
Dako, Glostrup 

Dänemark 

* Der P2ry12-Antikörper wurde freundlicherweise von der Arbeitsgruppe um Professor Julius (Professor and Chair, 
Department of Physiology, UCSF, San Francisco, USA) für immunhistochemische Färbungen zur Verfügung 
gestellt. 

 

Im Anschluss an die immunhistochemischen Färbungen wurden mittels eines Lichtmikroskops 

(Olympus BH-2, Japan) das an eine Kamera (Zeiss Axiocam MRc, Göttingen, Deutschland) 

angeschlossen war, Aufnahmen von HC und PHC angefertigt. Die weitere Aufbereitung der 

Bilder erfolgte durch das Bildbearbeitungs-Tool von PowerPoint 2010 (Microsoft, Redmond, 

WA, USA). 

 

6. Versuchsdesign  

Im Rahmen des Dissertationsvorhabens wurde eine experimentelle Studie (Gz. 55.2-1-54-2532-

94-11) durchgeführt, um die Veränderung molekularer Mechanismen im Verlauf der 

Epilepsieentstehung (Epileptogenese) zu analysieren. In diesem Kontext wurde Hippocampus 

und parahippocampaler Cortex von Tieren, bei denen durch elektrische Stimulation 

Epileptogenese induziert wurde, und von elektrodenimplantierten Kontrolltieren zu drei 

unterschiedlichen Zeitpunkten (zwei Tage, zehn Tage und acht Wochen) nach Status epilepticus 

analysiert. Die Zeitpunkte reflektieren die Post-Insult-Phase und Latenzphase der 

Epileptogenese sowie den Zeitpunkt der Epilepsie-Manifestation (chronische Phase). Das 
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entnommene Gewebe diente zum einen der differentiellen Proteomanalyse und zum anderen 

der immunhistochemischen Validierung und Untersuchung der zuvor generierten 

Proteomdaten. In diesem Zusammenhang wurde das Projekt in zwei experimentelle 

Teilversuche untergliedert. Die experimentellen Versuche hinsichtlich der differentiellen 

Proteomanalyse zwei Tage und zehn Tage nach SE wurden dabei in Zusammenarbeit mit 

Joanna Goc am Institut für Pharmakologie, Toxikologie und Pharmazie der Ludwig-

Maximilians-Universität in München durchgeführt. Des Weiteren war Maruja Lucia 

Rettenbeck an den in vivo-Versuchen für die immunhistochemischen Analysen in der 

chronischen Phase beteiligt. Diesbezüglich erfolgte der immunhistochemische Proteinnachweis 

acht Wochen nach SE an Tieren aus einer weiteren Studie (Gz. 55.2-1-54-2532-94-11). 

Versuchsplanung und –ablauf beider Teilversuche, sowie der Tiere aus o.a. Studie waren 

identisch.  

 

Differentielle Proteomanalyse im Verlauf der Epileptogenese 

Für die differentielle Proteomanalyse  wurden, entsprechend der unterschiedlichen 

Untersuchungszeitpunkte, drei Tiergruppen verwendet. In diesem Zusammenhang erfolgte, 

analog der in Kapitel IV.2.1 beschriebenen Methode, eine Elektrodenimplantation an 

weiblichen Sprague Dawley Ratten (n = 59). Jede Gruppe wurde anschließend unterteilt nach: 

(1) elektrische Stimulation der basolateralen Amygdala (SE-Tiere) und (2) Schein-Stimulation 

(Kontrolltiere). Unabhängig von ihrem Einteilungsstatus (SE- und Kontrolltiere) erhielten alle 

Tiere eine zweimalige Diazepam-Applikation zur Beendigung des SE. Die ersten beiden 

Tiergruppen wurden zwei und zehn Tage nach SE euthanasiert. Nativ entnommes 

Gehirngewebe (Hippocampus und parahippocampaler Cortex) von jeweils fünf SE- und 

Kontrolltieren pro Gruppe diente der anschließenden differentiellen Proteomanalyse. Die 

Tiergruppe zur Untersuchung der differentiellen Proteinexpression in der chronischen Phase 

wurde sechs Wochen nach SE einer 19-tägigen Video- und EEG-Überwachung unterzogen. Im 

Anschluss an die Überwachung wurden die Tiere euthanasiert. Für die differentielle 

Proteomanalyse wurde HC und PHC von jeweils fünf SE- und Kontrolltieren entnommen. 

Dabei wurden nur solche SE-Tiere ausgewählt, die während der Überwachungsphase spontan 

auftretende Anfälle gezeigt hatten. Die Aufbereitung und Weiterverarbeitung des zerebralen 

Gewebes erfolgte durch die Arbeitsgruppe von Frau Professor Deeg am Institut für 

Tierphysiologie der Ludwig-Maximilians-Universität in München. Die 

massenspektrometrischen Analysen wurden in der Abteilung Proteinanalytik des Helmholtz 

Zentrum München, unter Leitung von Stefanie Hauck durchgeführt.  
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Immunhistochemische Validierung der Proteomdaten 

Die Immunhistochemie diente in erster Linie der Validierung der Proteomdaten. Weiterhin 

wurde das differentielle Expressionsmuster ausgewählter Proteine immunhistochemisch 

bestimmt. Der zeitliche Ablauf im zweiten Teilversuch stimmte exakt mit dem ersten 

Teilversuch zur differentiellen Proteomanalyse überein. Für die immunhistochemische 

Validierung wurden ebenfalls drei Tiergruppen verwendet (n = 106). Die 

Elektrodenimplantation an weiblichen Sprague Dawley Ratten und nachfolgende Unterteilung 

in SE- und Kontrolltiere erfolgten in Analogie zum ersten Teilversuch. Zwei Tage nach 

Induktion des SE wurden 16 SE- und sieben Kontrolltiere der ersten Tiergruppe perfundiert. 

Jeweils sieben SE- und Kontrolltiere aus der ersten Tiergruppe wurden für die Paraffinfixierung 

von HC und PHC euthanasiert. Zehn Tage nach SE erfolgte die Perfusion von zehn SE- und 

sieben Kontrolltieren der zweiten Tiergruppe. Aus derselben Gruppe wurden wiederum jeweils 

sieben SE- und Kontrolltiere für die nachfolgende Paraffinfixierung euthanasiert. Die 

immunhistochemische Validierung der chronischen Phase erfolgte an jeweils zehn SE- und 

Kontrolltieren aus einer weiteren Studie (Gz. 55.2-1-54-2532-94-11). In Übereinstimmung mit 

der dritten Tiergruppe des ersten Teilprojektes wurden diese Tiere, sechs Wochen nach SE, 

einer 19-tägigen Video- und EEG-Überwachung unterzogen. Nachfolgende 

immunhistochemische Analysen umfassten dabei nur solche SE-Tiere, die während des 

Überwachungszeitraumes spontane Anfälle gezeigt hatten. In diesem Kontext wurden jeweils 

fünf SE- und fünf Kontrolltiere euthanasiert, bzw. perfundiert.  

Im weiteren Verlauf des Projektes wurden an den perfusionfixierten Gehirnen der drei 

Tiergruppen free floating-Färbungen durchgeführt. Die paraffinfixierten Gehirne dienten der 

Konservierung des Gewebes für weitere immunhistochemische Untersuchungen in zukünftigen 

Studien.   
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Abb. 6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Übersicht des Versuchsdesigns im zeitlichen Ablauf   

Tiergruppe III  
8 Wochen nach Status 

epilepticus 

Tiergruppe II  
10 Tage nach Status 

epilepticus 

Entnahme von Hippocampus und parahippocampalem Cortex 

für differentielle Proteomanalysen und Immunhistochemie 

Post-Insult-
Phase 

Latenzphase Chronische 
Phase … 

Tiergruppe I  
2 Tage nach Status 

epilepticus 

Induktion 
eines Status 
epilepticus 

19-tägige Video- 
und EEG-

Überwachung 
6-wöchiges  Intervall 
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V. ERGEBNISSE 

1. SE-BLA-Modell 

Im vorliegenden Projekt wurden für die differentielle Proteomanalyse und 

immunhistochemischen Untersuchungen jeweils drei Tiergruppen elektrisch stimuliert, um 

einen sich selbst erhaltenden SE auszulösen. Die Dauerstimulation erfolgte dabei analog zu den 

Ausführungen in Kap. IV.2.2.  

 

SE der Tiere, die für die differentielle Proteomanalyse verwendet wurden 

Für die Untersuchung der Post-Insult-Phase wurde bei insgesamt sechs Tieren ein SE induziert. 

Davon zeigten fünf Tiere generalisierte Anfälle vom Typ III. Bei einem der sechs stimulierten 

Tiere konnten keine Anfälle beobachtet werden. Von den acht SE-Tieren der zweiten 

Tiergruppe zeigten fünf Tiere generalisierte Anfälle vom Typ III und zwei Tiere generalisierte 

Anfälle, die von fokalen Anfällen unterbrochen wurden (Typ II). Bei einem Tier konnten keine 

Anfälle induziert werden. Für die Untersuchung der chronischen Phase wurde bei insgesamt 

neun Tieren ein SE induziert. Hierbei konnten alle Tiere als Typ III klassifiziert werden. 

Zusammenfassend zeigten von den insgesamt 23 Tieren, bei denen ein SE induziert wurde, 

83 % (n = 19) generalisierte Anfälle vom Typ III. 

 

SE der Tiere, die für die immunhistochemischen Analysen verwendet wurden 

Für die immunhistochemische Analyse der Post-Insult-Phase wurde bei insgesamt 23 Tieren 

ein SE induziert. Davon zeigten 19 Tiere generalisierte Anfälle vom Typ III, vier Tiere zeigten 

während des SE generalisierte Anfälle, die von fokalen Anfällen unterbrochen wurden (Typ II) 

und ein Tier wies nur fokale Anfälle (Typ I) auf. In der zweiten Tiergruppe wurde ein SE bei 

19 Tieren induziert. Darunter ließen sich 16 Tiere als Typ III, zwei Tiere als Typ II und ein Tier 

als Typ I klassifizieren. Alle zehn Tiere, die für die immunhistochemische Untersuchung der 

chronischen Phase von Lucia Rettenbeck elektrisch stimuliert wurden, zeigten während dem 

SE generalisierte Anfälle vom Typ III. Zusammenfassend konnten von den insgesamt 52 

Tieren, bei denen ein SE induziert wurde, 87 % (n = 45) als Typ III klassifiziert werden. 
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Überwachung spontaner Anfälle  

Die Video- und EEG-Überwachung diente der Kontrolle und Untersuchung spontan 

auftretender Anfälle infolge einer sechswöchigen Latenzphase. Während der Überwachung 

wurden die Anfallsdauer und –frequenz der generalisierten Anfälle protokolliert. Die 

Überwachung der Tiergruppe, welche für die differentielle Proteomanalyse verwendet wurde, 

umfasste neun SE- und sechs Kontrolltiere. Fünf der neun SE-Tiere zeigten während der 19-

tägigen Überwachungsphase einen manipulations-bedingten Anfall und 14 spontane Anfälle. 

Die mittlere Anfallsfrequenz lag bei 0,8 Anfällen/Tag.  

Die Überwachung der Tiergruppe, welche für die Immunhistochemie verwendet wurde, 

umfasste zehn SE- und zehn Kontrolltiere. Insgesamt wurden bei allen zehn SE-Tieren während 

der 19-tägigen Überwachungsphase drei manipulations-bedingte und 54 spontane Anfälle 

nachgewiesen. Die mittlere Anfallsfrequenz lag bei drei Anfällen/Tag. Die Diskrepanz 

zwischen mittlerer Anfallsfrequenz und Anfallshäufigkeit ist hierbei auf starke individuelle 

Unterschiede zurückzuführen. 

 

2. Quantitative Proteomik 

Um die Veränderung der molekularen Mechanismen im Verlauf der Epileptogenese zu 

untersuchen, wurde hippocampales und parahippocampales Gehirngewebe 

massenspektrometrisch analysiert. Die differentielle Proteomanalyse von SE- und 

Kontrolltieren erfolgte zwei Tage, zehn Tage und acht Wochen nach SE.  

Insgesamt konnten jeweils zwei und zehn Tage nach SE 1851 Proteine im HC und 1803 

Proteine im PHC identifiziert werden. Die chronische Phase umfasste 1728 und 1966 

identifizierte Proteine im HC bzw. im PHC. 

 

2.1. Statistische Auswertung 

2.1.1. Darstellung der Proteinprofile von SE- und Kontrolltieren 

Die globalen Proteinexpressionsunterschiede zwischen SE- und Kontrolltieren wurden mittels 

Principal Component-Analyse (Kap. IV.4.6.1) untersucht. Die Principal Component-Analyse 

und grafische Darstellung der Ergebnisse erfolgten über das Programm R. Proteine mit 

fehlenden Werten bei mindestens einem SE- und/oder Kontrolltier wurden aus der Analyse 

herausgenommen. Von den 1851 identifizierten Proteinen im HC zwei Tage nach SE wurden 
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1839 Proteine analysiert. Zehn Tage nach SE umfasste die Principal Component-Analyse im 

HC 1845 der 1851 identifizierten Proteine. Die chronische Phase im HC, sowie alle 

untersuchten Zeitpunkte im PHC, zeigten keine fehlenden Werte. Demzufolge konnte eine 

Principal Component-Analyse im PHC und acht Wochen nach SE im HC, bei allen 

identifizierten Proteinen durchgeführt werden.  

Abbildung 7 illustriert die Ergebnisse der Principal Component-Analyse als dreidimensionale 

Graphen. Dabei beschreibt PC1 die größte Varianz des jeweiligen Datensatzes. Die 

Lokalisation der Tiere im dreidimensionalen Raum war abhängig von den detektieren 

Abundanzen der identifizierten Proteine. Demnach gruppierten sich die Tiere, welche ein 

vergleichbares Proteinprofil hatten. In den Geweben HC und PHC konnte eine deutliche 

Trennung zwischen SE- und Kontrolltieren beobachtet werden (Abbildung 7 A-D und F). Eine 

Ausnahme hiervon bildete die chronische Phase im HC. In diesem Gewebe zeigte sich acht 

Wochen nach SE keine räumliche Trennung zwischen SE- und Kontrolltieren (Abbildung 7 E). 

Im globalen Vergleich der beiden Tiergruppen zeigten die Kontrolltiere eine geringere Streuung 

als die SE-Tiere.  
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Abb. 7: 

 

 

Principal Component-Analyse der unterschiedlichen Proteinprofile von SE- und Kontrolltieren. Die 

dreidimensionalen Graphen zeigen die Ergebnisse der Principal Component-Analyse in den Geweben HC und 

PHC zwei Tage (A und B), zehn Tage (C und D) und acht Wochen (E und F) nach SE. PC1-3 entsprechen den 

Hauptkomponenten mit der größten Varianz der untersuchten Datensätze. Die Größe der kugelförmigen Tier-

Projektionen ist abhängig von der Lokalisation im dreidimensionalen Raum (größere Projektionen illustrieren eine 

geringere Distanz zum Betrachter). Für die Erstellung der Graphen wurde R verwendet.  
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2.1.2. Vergleichende Darstellung der identifizierten Proteine von HC und PHC 

Die grafische Darstellung der identifizierten Proteine in HC und PHC erfolgte über das Volcano 

Plot-Histogramm.  

Zwei Tage nach SE ließen sich im HC 152 und im PHC 227 regulierte Proteine darstellen 

(Abbildung 8). Dabei zeigte der überwiegende Anteil der differentiell exprimierten Proteine im 

HC eine Aufregulation (Abbildung 8 A). Dieses Proteinexpressionsmuster konnte im PHC 

nicht beobachtet werden (Abbildung 8 B). Die fünf am stärksten regulierten Proteine umfassten 

in der Post-Insult-Phase: Golgi-associated plant pathogenesis-related protein 1 (Glipr2), 

Hspa1a, Podocalyxin (Podxl), Chloride intracellular channel protein 1 (Clic1), Lactadherin 

(Mfge8), Family with sequence similarity 65, member B (Fam65b), Serine protease HTRA1 

(Htra1), CD44 antigen (Cd44) und Heat shock protein beta-1 (Hspb1). Letztgenanntes Protein 

zeigte in beiden Gehirnregionen zwei Tage nach SE eine Überexpression (Abbildung 8 A und 

B).  

 

Abb. 8: 
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B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volcano Plots der identifizierten Proteine des HC (A) und PHC (B) zwei Tage nach SE. Die Histogramme 

repräsentieren die zweidimensionale Verteilung der identifizierten Proteine nach fold change und p-Wert. Proteine 

mit einem p-Wert < 0,05 und einem fold change ≥ 1,5 (differentiell exprimierte Proteine) wurden in blau 

dargestellt. Die korrespondierenden Genbezeichnungen entsprechen den fünf am stärksten regulierten Proteinen. 

Für die Erstellung der Histogramme wurde R verwendet. 

 

Zehn Tage nach SE ließen sich im HC 297 und im PHC 432 regulierte Proteine darstellen 

(Abbildung 9 A und B). Für den überwiegenden Anteil der differentiell exprimierten Proteine 

im HC konnte in der Latenzphase eine Aufregulation nachgewiesen werden (Abbildung 9 A). 

Unter diesen Proteinen zeigten insbesondere Glipr2 und Fermitin family homolog 3 (Fermt3) 

eine > 32-fache Aufregulation (log2 fold change > 5). Das Protein Fibulin-1 (Fbln1) konnte im 

HC zehn Tage nach SE nicht dargestellt werden, da es lediglich bei drei der fünf untersuchten 

SE-Tiere identifiziert wurde. Das Expressionsmuster der regulierten Proteine des PHC stellte 

sich in den Volcano Plots zehn Tage nach SE weitestgehend symmetrisch dar (Abbildung 9 B). 

Allerdings zeigten im Vergleich der auf- und herunterregulierten Proteine des PHC 

Erstgenannte eine größere Streuung im fold change (Abbildung 9 B). Unter den jeweils fünf 
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am stärksten regulierten Proteinen beider Gewebe wurden folgende Proteine nachgewiesen: 

Fermt3, Actin-related protein 2/3 complex subunit 1B (Arc1b), Phospholipid transfer protein 

(Pltp), Tyrosine-protein phosphatase non-receptor type 6 (Ptpn6), Glial fibrillary acidic protein 

(Gfap), Annexin A3 (Anxa3), Hspb1, Glipr2, Htra1 und Mfge8 (Abbildung 9 A und B).  

 

Abb. 9: 
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B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volcano Plots der quantifizierten Proteine des HC (A) und PHC (B) zehn Tage nach SE. Die Histogramme 

repräsentieren die zweidimensionale Verteilung der identifizierten Proteine nach fold change und p-Wert. Proteine 

mit einem p-Wert < 0,05 und einem fold change ≥ 1,5 (differentiell exprimierte Proteine) wurden in blau 

dargestellt. Die korrespondierenden Genbezeichnungen entsprechen den fünf am stärksten regulierten Proteinen. 

Für die Erstellung der Histogramme wurde R verwendet. // = Skalierungswechsel. 

 

Acht Wochen nach SE ließen sich im HC 13 und im PHC 280 regulierte Proteine darstellen 

(Abbildung 10 A und B). Der überwiegende Teil der differentiell exprimierten Proteine des 

PHC zeigte eine Überexpression (Abbildung 10 B). Die jeweils fünf am stärksten regulierten 

Proteine beider Gehirnregionen acht Wochen nach SE umfassten: Glipr2, Capping protein 

(actin filament), Gelsolin-like (Capg), Gfap, Annexin A2 (Anxa2), Ribosomal protein L23a 

(Rpl23a), Hspb1, Clusterin (Clu) und CD38 molecule (Cd38, Abbildung 10 A und B). Glipr2 

(> 32-fach aufreguliert) und Gfap konnten in beiden Geweben nachgewiesen werden 

(Abbildung 10 A und B).  
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Abb. 10: 
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B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volcano Plots der identifizierten Proteine des HC (A) und PHC (B) acht Wochen nach SE. Die Histogramme 

repräsentieren die zweidimensionale Verteilung der identifizierten Proteine nach fold change und p-Wert. Proteine 

mit einem p-Wert < 0,05 und einem fold change ≥ 1,5 (differentiell exprimierte Proteine) wurden in blau 

dargestellt. Die korrespondierenden Genbezeichnungen entsprechen den fünf am stärksten regulierten Proteinen. 

Für die Erstellung der Histogramme wurde R verwendet. // = Skalierungswechsel.  

 

Schnittmenge der regulierten Proteine von HC und PHC 

Die Venn-Diagramme dienten der vergleichenden Darstellung der regulierten Proteine von HC 

und PHC. In der Post-Insult-Phase zeigte sich eine Schnittmenge von 36 differentiell 

exprimierten Proteinen (Abbildung 11 A). Zehn Tage nach SE konnten 105 der regulierten 

hippocampalen Proteine auch im PHC identifiziert werden (Abbildung 11 B). In der 

chronischen Phase ließen sich fünf der acht regulierten Proteine des HC auch im PHC 

nachweisen (Abbildung 11 C).  

  



V. Ergebnisse  57 

Abb. 11: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die Venn-Diagramme illustrieren die differentiell exprimierten Proteine von HC und PHC, zwei Tage (A), zehn 

Tage (B) und acht Wochen (C) nach SE. Für die Erstellung der Diagramme wurde R verwendet. 

 

2.2. Funktionelle Auswertung 

Funktionelle Analysen dienen der Identifikation molekularer Veränderungen im biologischen 

Kontext. Im vorliegenden Projekt wurden unterschiedliche bioinformatische Instrumente und 

Ansätze verwendet, um die Veränderung der molekularen Mechanismen im Verlauf der 

Epileptogenese zu erforschen. Die Auswertung und Interpretation der Daten erfolgte sowohl 

unspezifisch, als auch mit dem Fokus auf immun- und inflammations-assoziierte Vorgänge 

(literatur-gestützte Hypothese). Basierend auf diesem Vorgehen sind die Ergebnisse der 

funktionellen Datenanalyse in einen allgemeinen und einen spezifischen Teil untergliedert. 

A) B) 

C) 
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2.2.1. Regulierte biologische Prozesse und molekulare Funktionen 

Die Klassifizierung der differentiell exprimierten Proteine ermöglichte eine Darstellung der 

biologischen Prozesse und molekularen Funktionen, die im Verlauf der Epileptogenese 

reguliert sind. Die Einteilung der regulierten Proteine in funktionelle Gruppen erfolgte mithilfe 

des web-basierten Online-Programmes PANTHER (s. Kap. IV.4.7.1). Es konnte gezeigt 

werden, dass die Mehrzahl der regulierten Proteine beider Gewebe ähnlichen funktionellen 

Kategorien angehört (Abbildungen 12 und 13). Des Weiteren wurde in der Post-Insult-Phase, 

Latenzphase und chronischen Phase sowohl im HC als auch im PHC ein vergleichbares 

Klassifizierungsmuster beobachtet (Abbildungen 12 und 13). In diesem Zusammenhang konnte 

in beiden Gehirnregionen von der Post-Insult-Phase bis zur Latenzphase eine Zunahme in der 

globalen Regulation der funktionellen Gruppen nachgewiesen werden. Demgegenüber zeigte 

sich acht Wochen nach SE eine Abnahme in der Regulation dieser Gruppen (Abbildungen 12 

und 13). 

Abbildung 12 repräsentiert das Ergebnis der Klassifizierung nach biologischen Prozessen in 

den Geweben HC und PHC. Die Mehrheit der differentiell exprimierten Proteine beider 

Gewebe zeigte eine Beteiligung an metabolischen und zellulären Prozessen. Demnach waren 

im HC zwei Tage, zehn Tage und acht Wochen nach SE 81, 183 bzw. fünf regulierte Proteine 

in metabolische Prozesse und 53, 104 bzw. acht regulierte Proteine in zelluläre Prozesse 

involviert (Abbildung 12 A). Im PHC konnten zu den drei untersuchten Zeitpunkten jeweils 

123, 240 bzw. 158 regulierte Proteine metabolischen Prozessen und 84, 166 bzw. 93 regulierte 

Proteine zellulären Prozessen zugeordnet werden (Abbildung 12 B). Für immun- und 

inflammations-assoziierte Prozesse ließ sich die Kategorie Immune system process darstellen. 

Dieser Kategorie konnten im HC zehn Tage nach SE die meisten regulierten Proteine (n = 26) 

zugeordnet werden (Abbildung 12 A). Demgegenüber zeigte sich im PHC eine vergleichbare 

Anzahl regulierter Proteine zwei Tage (n = 17), zehn Tage (n = 25) und acht Wochen (n = 18) 

nach SE (Abbildung 12 B).  
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Abb. 12: 

 

A)  
 

 

 

B) 
 

 

Klassifizierung der regulierten Proteine von HC (A) und PHC (B) nach biologischen Prozessen. In beiden 

Gehirnregionen dominierten jeweils die funktionellen Kategorien Metabolic process und Cellular process (A und 

B). Die Einteilung der Proteine erfolgte durch das Klassifizierungssystem von PANTHER.  
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Im Hinblick auf molekulare Funktionen, ließ sich die Mehrzahl der regulierten Proteine von 

HC und PHC in die funktionellen Gruppen Catalytic activity, Binding und Structural molecule 

activity einteilen (Abbildung 13). In diesem Zusammenhang zeigten im HC zwei Tage, zehn 

Tage und acht Wochen nach SE 56, 128 bzw. drei regulierte Proteine katalytische Aktivität, 

sowie 45, 98 bzw. sieben regulierte Proteine adhäsive Funktionen (Abbildung 13 A). Im PHC 

konnten zu den drei analysierten Zeitpunkten jeweils 88, 196 bzw. 112 regulierte Proteine mit 

katalytischen Funktionen sowie 65, 131 bzw. 77 regulierte Proteine mit adhäsiven Funktionen 

in Verbindung gebracht werden (Abbildung 13 B).  

Strukturmolekulare Funktionen wurden im HC zwei Tage, zehn Tage und acht Wochen nach 

SE für 20, 75 bzw. fünf regulierte Proteine und im PHC für 43, 69 bzw. 40 regulierte Proteine 

nachgewiesen (Abbildung 13 A und B). 

 

Abb. 13: 

 

A)  
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B) 
 

 

Klassifizierung der regulierten Proteine von HC (A) und PHC (B) nach molekularen Funktionen. In beiden 

Gehirnregionen waren jeweils die funktionellen Kategorien Catalytic activity, Binding und Structural molecule 

activity am stärksten vertreten (A und B). Die Einteilung der Proteine erfolgte durch das Klassifizierungssystem 

von PANTHER. 

 

2.2.2. Ergebnisse der Pathway-Enrichment-Analyse 

Um die relative Repräsentanz biologischer Vorgänge und Pathways unter Berücksichtigung 

von Protein-Protein-Interaktionen zu evaluieren, wurde eine Pathway-Enrichment-Analyse 

durchgeführt. Hierfür wurden die regulierten Proteine von HC und PHC in das Genomatix 

Pathway System bzw. das Überrepräsentations-Modul von ConsensusPathDB hochgeladen. 

Das Pathway-Enrichment erfolgte vor dem Hintergrund aller identifizierten Proteine des 

jeweiligen Zeitpunktes und Gewebes.  

 

Top Ten der regulierten Pathways nach Genomatix 

Durch das Genomatix Pathway System konnten im HC zwei Tage, zehn Tage und acht Wochen 

nach SE 24, 27, bzw. sieben regulierte Pathways dargestellt werden. Im PHC wurden zu den 

drei untersuchten Zeitpunkten 29, 56 bzw. 37 regulierte Pathways nachgewiesen. Eine 

Übersicht der Top Ten der regulierten Pathways (Einstufung nach p-Wert) in HC und PHC 

findet sich in den Tabellen 4 und 5.  
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Zwei Tage nach SE wurden im HC die immun- und inflammations-assoziierten Toll like 

receptor-, Myeloid differentiation primary response gene (88)-, und p38 mediated by MAPKAP 

kinases-Pathways mit den p-Werten 1,29E-04, 1,78E-03 und 4,26E-03 identifiziert (Tabelle 4). 

Weiterhin zeigten Prozesse, die im Rahmen neurodegenerativer Vorgänge von großer 

Bedeutung sind (Antiapoptotic, Apoptosis und Regulation of telomerase mit den p-Werten 

7,84E-03, 9,86E-03 und 0,019), ein signifikantes Enrichment (Tabelle 4). Im PHC konnten 

zwei Tage nach SE sechs der zehn am stärksten regulierten Pathways mit immunologischen 

und/oder inflammatorischen Prozessen in Verbindung gebracht werden: Unc 51 like kinase 

(p = 1,38E-03), Inflammatory (p = 5,43E-03), Tyrosine protein kinase Src (p = 5,97E-03), TCR 

signaling in naive CD4+ T cells (p = 9,40E-03), Spleen tyrosine kinase (p = 9,90E-03) und 

CD19 (p = 0,014, Tabelle 5).  

Die Top Ten der regulierten Pathways des HC in der Latenzphase umfassten unter anderem die 

Ataxia telangiectasia mutated-, Rho cell motility signaling-, und Anaplastic lymphoma kinase-

Pathways mit den p-Werten 9,61E-03, 0,012 und 0,017, welche eine Rolle bei der molekularen 

und zellulären Plastizität spielen (Tabelle 4). Bezugnehmend auf Prozesse der zellulären 

Plastizität konnte im PHC zehn Tage nach SE der Cell division cycle 2, G1 to S and G2 to M-

Pathway (p = 1,53E-03) unter den Top Ten dargestellt werden (Tabelle 5). Des Weiteren wurde 

zu diesem Zeitpunkt im PHC ein signifikantes Enrichment der immun- und inflammations-

assoziierten Prozesse Chemokine (C C motif) ligand 2 und Spleen tyrosine kinase mit den p-

Werten 3,65E-03 und 2,99E-03 nachgewiesen (Tabelle 5). Eine ausgeprägte Regulation 

integrin-assoziierter Prozesse (Integrin mit einem p-Wert von 0,015 im HC sowie a6b1 and 

a6b4 Integrin signaling und Integrin family cell surface interactions mit den p-Werten 

9,17E- 05 und 7,20E-04 im PHC) konnte zehn Tage nach SE in beiden Gehirnregionen 

dargestellt werden (Tabellen 4 und 5). 

Aufgrund der geringen Anzahl differentiell exprimierter Proteine im HC in der chronischen 

Phase wurden acht Wochen nach SE nur sieben regulierte Pathways identifiziert. Unter diesen 

zeigte der Inflammatory-Pathway den niedrigsten p-Wert (p = 6,34E-04, Tabelle 4). 

Demgegenüber umfassten die Top Ten der regulierten Pathways im PHC zum einen 

neurodegenerative und proliferative Prozesse, wie beispielsweise Caspase cascade in apoptosis 

(p = 5,78E-04 bzw. p = 2,56E-03), Matrix metalloproteinase (p = 6,77E-04), Proliferation 

(p = 8,19E-04) und Ataxia telangiectasia mutated (p = 1,47E-03), und zum anderen 

inflammatorische Mechanismen, wie den Inflammatory-Pathway mit einem p-Wert von 

3,48E- 03 (Tabelle 5). Integrin-assoziierte Prozesse (Integrin linked kinase mit einem p-Wert 

von 5,52E-03 im HC sowie Integrin und Beta1 integrin cell surface interactions mit den p-
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Werten 1,81E-04 und 4,46E-04 im PHC) spielten, wie bereits in der Latenzphase, auch acht 

Wochen nach SE in beiden Gehirnregionen eine bedeutende Rolle (Tabelle 5). 
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Tab. 4 

Top Ten der regulierten Pathways im HC 

P-Wert Pathway Quelle Proteine 

2 Tage nach SE 

1,29E-04 Toll like receptor Genomatix TMED7, SSB, HMGB1, SARM1, KCNJ3, DDX1, TOLLIP, HSP90B1 

1,78E-03 p38 signaling mediated by MAPKAP kinases NCI-nature YWHAE, HSPB1, YWHAZ, YWHAG 

4,26E-03 Myeloid differentiation primary response gene (88) Genomatix TMED7, HMGB1, SARM1, DDX1, TOLLIP 

6,61E-03 Myotonic dystrophy kinase related CDC42 binding kinase Genomatix CDC42, MSN, TFRC 

7,84E-03 Antiapoptotic Genomatix HSPA5, CLU, HSPB1, ANKHD1, PLSCR3, HNRNPL, ANXA5, CD44 

8,40E-03 Minichromosome maintenance complex Genomatix HERC2, PPP5C 

9,86E-03 Apoptosis Genomatix 
TGM2, HSPA5, CLU, HSPB1, PHB, LMNA, CALR, PLSCR3, HSPA1A, HNRNPC, HSP90B1, 
SDHC, CTSB, EEF1A1, ANXA5, ANP32A 

0,012 Secretory Genomatix 
LAMP1, SRM, TMED9, HSPA5, ERP44, RCN2, TMED10, CLU, HMGB1, CALR, TMED2, 
CD151, SERPINH1, SEC23A, HSP90B1, CTSB, NUDC, CALU, RNPEP, NUCB1 

0,013 Inflammatory Genomatix TGM2, GPRC5B, HMGB1, EPRS, EHD4, TOLLIP, LTA4H, HSP90B1, CD44 

0,019 Regulation of telomerase NCI-nature YWHAE, HNRNPC, NCL 

10 Tage nach SE 

6,92E-04 Sphingomyelin phosphodiesterase 1, acid lysosomal Genomatix LAMP1, CTSD, ASAH1, RPSA, SORT1 

8,11E-03 Secretory Genomatix 
LAMP1, TMED9, LRP1, TMED10, OGT, PPIB, CALR, APOE, CTSD, TMED2, CYB5A, 
SEC31A, SCARB2, NSF, FTH1, SERPINH1, SEC23A, CP, HSP90B1, IPO5, CST3, ANXA1, 
SRM, P4HB, CLU, MLC1, NLN, ABCA1, COPG1, SORT1, CTSB, M6PR, ARHGEF2 

9,55E-03 
Erk and pi-3 kinase are necessary for collagen binding in 
corneal epithelia 

BioCarta PLCG1, ACTN1, PFN1, GSN, TLN1, MLC1, VCL 

9,61E-03 Ataxia telangiectasia mutated Genomatix ADSS, LMNB1, TGM2, PARP1, HNRNPK 

0,011 Amyloid beta (A4) precursor protein Genomatix 
GRM5, LRP1, GFAP, ITGAM, APOE, DDOST, SHANK1, CST3, DPYSL2, DBN1, CLU, 
APLP1, SORT1, CTSB 

0,012 Rho cell motility signaling pathway BioCarta TRIO, PFN1, GSN, TLN1, VCL 

0,015 Integrin Genomatix 
LCP1, ITGAM, CD9, HNRNPU, ITGAL, FLNA, ITGB2, PTK2B, TLN1, VCL, JAM3, CD63, 
FERMT3, CD44, FERMT2 

0,016 ATP binding cassette, sub family G (white) Genomatix ATIC, APOE, ABCA1 

0,016 Very low density lipoprotein receptor Genomatix LRP1, APOE, ABCA1 

0,017 Anaplastic lymphoma kinase Genomatix ATIC, PKM, SFPQ, HNRNPD, CDC37 
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Tab. 4 

Fortsetzung 

P-Wert Pathway Quelle Proteine 

8 Wochen nach SE 

6,34E-04 Inflammatory Genomatix ABI2, CAPG, EHD4 
2,03E-03 Glial cell line derived neurotrophic factor Genomatix GFAP, ITGB1 
5,52E-03 Integrin linked kinase Genomatix ITGB1, ANXA2 
8,22E-03 Paxillin Genomatix ITGB1, MARCKSL1 
0,014 Mixed lineage kinase Genomatix ABI2, ANXA2 
0,019 Caveolin 1 Genomatix ITGB1, ANXA2 
0,034 14 3 3 protein Genomatix GFAP, ABI2 

Die Pathway-Analyse erfolgte mittels Genomatix Pathway System. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von mindestens zwei regulierten Proteinen 
gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe. 

 

Tab. 5 

Top Ten der regulierten Pathways im PHC 

P-Wert Pathway Quelle Proteine 

2 Tage nach SE 

4,20E-04 Syndecan-2-mediated signaling events NCI-nature NF1, PRRT2, CDC42, EZR, ITGB1, RASA1, ITGA5, GNB2L1 
1,38E-03 Unc 51 like kinase Genomatix CDC37, SYNGAP1, YWHAZ, PIK3C3 
1,41E-03 ATP binding cassette, sub family A (ABC1) Genomatix PRKCA, CDC42, PLTP, CAMK4, APOE, SCP2 
3,81E-03 Syndecan-4-mediated signaling events NCI-nature PRKCA, ITGB1, ACTN1, ITGA5 
5,43E-03 Inflammatory Genomatix CAPG, AKR1B1, TGM2, ITGB2, EHD4, SRR, TOLLIP, ENTPD1, HSP90B1, CD44, ALB 

5,97E-03 Tyrosine protein kinase Src Genomatix 
PRRT2, CDC42, CTTN, EZR, ITGB1, PTK2B, PRKCE, KIFAP3, RASA1, STUB1, FHIT, 
PTPN6, ACTN1, ANXA2, ITGA5, GNB2L1, PTPRC, ALB, ARRB1 

9,40E-03 TCR signaling in naive CD4+ T cells NCI-nature PRKCA, CDC42, FLNA, PRKCE, PTPN6, PTPRC 
9,90E-03 Paxillin Genomatix CDC42, CTTN, FLNA, ITGB2, ITGB1, PTK2B, MCAM, GNB2L1 
9,90E-03 Spleen tyrosine kinase Genomatix CTTN, EZR, FLNA, ITGB2, PTK2B, RASA1, PTPN6, PTPRC 
0,014 CD19 Genomatix PTPN6, NCL, ENTPD1, ITGA5 
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Tab. 5 

Fortsetzung 

P-Wert Pathway Quelle Proteine 

10 Tage nach SE 

9,17E-05 a6b1 and a6b4 Integrin signaling NCI-nature PRKCA, ITGB1, ITGA6, YWHAG, YWHAZ, SFN, YWHAQ, GRB2, HRAS, YWHAB 

3,18E-04 Calcium Genomatix 

PRKCA, VSNL1, GFAP, RPS27A, ITPKA, ITGAM, CALB2, ISYNA1, GAP43, CALM1, 
RYR2, ITPR1, HPCAL1, MARCKS, ANXA2, ANXA6, PPIA, CD48, KCNMA1, HYOU1, 
ANXA1, AGRN, PRRT2, CACNA2D3, NEFM, ACY1, HADHB, MAP2, PTK2B, ERC2, 
CAMK4, NDUFC2, AKAP5, PLCD1, TPD52, NECAB2, CALB1, ANXA7, P2RY12, 
ATP2B2, CACYBP 

5,32E-04 Insulin receptor Genomatix RASA1, ACP1, ANXA2, HNRNPU, ACSL6, SYNCRIP, SLC2A1, GRB2, HRAS 
7,20E-04 Integrin family cell surface interactions NCI-nature ITGB1, ITGAM, ITGA6, ITGB8, ITGA1, ITGB2, ITGA5 

1,53E-03 Cell division cycle 2, G1 to S and G2 to M Genomatix 
PRDX6, TPPP, GFAP, MAP4, LMNA, NEFH, ITPR1, STMN1, LMNB1, NSFL1C, NEFM, 
TMPO, FLNA, MAP2, HIST1H1B, SFN, ABI1, MBP, TPM3, VIM, NCL, SLC9A3R1 

2,99E-03 Spleen tyrosine kinase Genomatix 
ITGAM, RASA1, SEMA4D, PTPRC, SH3KBP1, EZR, FLNA, ITGB2, PTK2B, PAK2, CLTB, 
PTPN6, GRB2 

3,65E-03 Chemokine (C C motif) ligand 2 Genomatix DDAH2, ITGAM, ALB, ACE2, MFGE8, PTK2B, VIM, ADRBK1 

3,76E-03 Casein kinase 2 Genomatix 
PACSIN1, RTN3, SLK, EIF2S2, GAP43, AQP4, MGEA5, APOE, MVP, CALM1, MYH9, 
HNRNPC, SNCA, NME1, HSP90B1, RPL12, NEFM, EIF5, CDC37, GMFB, SSB, SEPT2, 
DEK, USP7, RPS5, CLTB, RPL29, MBP, NCL, M6PR, COPS2 

4,50E-03 Transferrin receptor (p90, CD71) Genomatix LAMP1, CP, MYO6, SLC2A1, ACO1, TF, M6PR 
4,64E-03 Nuclear receptor subfamily 4, group A, member 2 Genomatix PARK7, SNCA, MIF, ANXA3 

8 Wochen nach SE 

1,81E-04 Integrin Genomatix 
LCP1, ITGB1, ITGA6, CD9, ITGAV, AGRN, RAP1A, HNRNPU, SLC3A2, FLNA, TLN1, 
SLC12A2, TNC, VCL, DAG1, JAM3 

4,46E-04 Beta1 integrin cell surface interactions NCI-nature ITGB1, ITGA6, ITGAV, CD81, TNC 

5,78E-04 Caspase cascade in apoptosis BioCarta LMNA, LMNB1, PARP1, LMNB2 

6,77E-04 Matrix metalloproteinase Genomatix 
LRP1, STOML2, ITGB1, CD9, ITGAV, HMGA1, NDRG2, CACNA2D3, SLC3A2, FLNA, 
CLU, JAM3, MIF 

8,19E-04 Proliferation Genomatix 
ITGB1, ANXA11, PNP, CD9, ANXA5, PSAT1, ITGAV, HMGA1, CD81, NF1, SLC3A2, 
SEPT2, HEPACAM, KRT5, TPM3, RPSA, MIF, SLC9A3R1, SHMT2 

1,39E-03 ATP binding cassette, sub family C (CFTR/MRP) Genomatix RDX, EZR, GSTA1, SLC16A1, GCLC 

1,47E-03 Ataxia telangiectasia mutated Genomatix KRT16, BTF3, VAMP2, ADSS, LMNB1, PRPF19, PARP1 

2,40E-03 Sphingomyelin phosphodiesterase 1, acid lysosomal Genomatix LAMP1, CTSD, ASAH1, RPSA 

2,56E-03 Caspase cascade in apoptosis NCI-nature LMNA, APP, LMNB1, GSN, PARP1, VIM, LMNB2 

3,48E-03 Inflammatory Genomatix HSDL1, GNG12, ALB, HMGA1, CAPG, FOLH1, PARP1, PSMC6, LTA4H, MIF, PLAA 

Die Pathway-Analyse erfolgte mittels Genomatix Pathway System. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von mindestens zwei regulierten Proteinen 
gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe. 



V. Ergebnisse  67 

Immun- und inflammations-assoziierte Pathways 

Die Auswertung der immun- und inflammations-assoziierten Pathways basierte auf den 

Ergebnissen der Pathway-Analysen von Genomatix und ConsensusPathDB. Hierdurch wurde 

eine umfassende Darstellung der regulierten immunologischen und inflammatorischen 

Mechanismen während dem Prozess der Epileptogenese ermöglicht (Tabellen 6.1–7.2). 

Bezugnehmend auf die regulierten Pathways konnten in der Post-Insult-Phase im HC sieben 

bzw. 18 und im PHC 17 bzw. 21 immun- und inflammations-assoziierte Pathways dargestellt 

werden. Zehn Tage nach SE wurden im HC sechs bzw. acht und im PHC 15 bzw. 19 regulierte 

Pathways identifiziert, die mit immunologischen und inflammatorischen Mechanismen in 

Verbindung stehen. Die immun- und inflammations-assoziierten Pathways zwei und zehn Tage 

nach SE umfassten unter anderem Mechanismen der transendothelialen Leukozytenmigration, 

TLR-vermittelte Signalwege, Signaltransduktion durch TGF beta, Signalvermittlungsprozesse 

durch inflammations-assoziierte Integrine, pro-inflammatorische Interleukine, Synthese und 

Regulation von Prostaglandinen, Prozesse des angepassten Immunsystems, sowie die 

Aktivierung und Regulation von Hitzeschockproteinen. 

In beiden Gehirnregionen wurde zwei Tage nach SE eine Überrepräsentation TLR-assoziierter 

Proteine und ein signifikantes Enrichment nachgeschalteter Signalwege wie Myeloid 

differentiation primary response gene (88) (p = 4,26E-03), p38 signaling mediated by 

MAPKAP kinases (p = 1,78E-03 bzw. p = 1,27E-03), MAPK Signaling Pathway (p = 0,015) 

und TNFalpha/NF-kB (p = 0,044) sowie TNFalpha (p = 0,030) nachgewiesen (Tabellen 6.1-

7.2). In diesem Zusammenhang zeigte sich auch eine Regulation der Interleukin 1 (p = 0,044)-

, Interleukin 1 receptor (p = 0,042 bzw. p = 0,034)- und Signal transduction through il1r 

(p = 0,047)-Pathways (Tabellen 6.1-7.2). Des Weiteren konnten zwei Tage nach SE die immun- 

und inflammations-assoziierten Pathways TGF beta, Leukocyte transendothelial migration und 

Chemokine (C C motif) ligand 2 mit den p-Werten 0,016, 0,017 und 0,015 im PHC dargestellt 

werden (Tabellen 7.1 und 7.2). Letztgenannter Pathway spielt eine bedeutende Rolle bei der 

Chemotaxis von Monozyten und neutrophilen Granulozyten.  

In der Latenzphase zeigte sich im HC unter anderem ein signifikantes Enrichment der Pathways 

Leukocyte transendothelial migration und Prostaglandin Synthesis and Regulation mit den p-

Werten 0,010 und 2,28E-03 (Tabelle 6.2). In Zusammenhang mit letztgenanntem Signalweg 

konnte im HC auch eine Regulation des Phospholipase A2-Pathways mit einem p-Wert von 

0,030 gezeigt werden (Tabelle 6.1). In beiden Geweben ließ sich zehn Tage nach SE eine 

anhaltende Überrepräsentation TLR-assoziierter Proteine darstellen (Tabellen 6.2 und 7.2). 

Darüber hinaus zeigte sich im PHC eine Regulation von Signalwegen die den TLRs 
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nachgeschaltet sind: p38 signaling mediated by MAPKAP kinases (p = 7,42E-03 bzw. 

p = 4,58E-03), p38 mapk signaling pathway (p = 0,022 bzw. p = 0,017), MAPK Signaling 

Pathway (p = 0,042) und Tank binding kinase 1 (p = 4,64E-03, Tabellen 7.1 und 7.2). Der 

Prostaglandin Synthesis and Regulation-Pathway wurde im Vergleich zum HC auch im PHC 

zehn Tage nach SE mit einem p-Wert von 4,99E-03 identifiziert (Tabelle 7.2). Des Weiteren 

konnte im PHC eine Überrepräsentation von Proteinen dargestellt werden, die mit den 

Pathways Il8- and CXCR1-mediated signaling events (p = 0,037) und Chemokine (C C motif) 

ligand 2 (p = 3,65E-03) assoziiert sind (Tabellen 7.1 und 7.2). Beide Pathways spielen im 

Rahmen der (transendothelialen) Leukozytenmigration eine bedeutende Rolle. Letztgenannter 

Signalweg wurde zudem zwei Tage nach SE im PHC nachgewiesen (s.o.).  

Während der chronischen Phase ließen sich im HC drei bzw. zwei und im PHC sechs bzw. 

sieben immun- und inflammations-assoziierte Pathways darstellen. Zu diesem Zeitpunkt 

wurden von den insgesamt 13 regulierten Proteinen des HC drei Proteine in der Gruppe 

Inflammatory (p = 6,34E-04) nachgewiesen (Tabelle 6.1). Die immun- und inflammations-

assoziierten Pathways des PHC umfassten acht Wochen nach SE unter anderem 

Signalvermittlungsprozesse durch inflammations-assoziierte Integrine und pro-

inflammatorische Interleukine sowie die Synthese und Regulation von Prostaglandinen. 

Bezugnehmend auf letztgenannten Prozess konnten die Pathways Prostaglandin Synthesis and 

Regulation und Phospholipase A2 mit den p-Werten 5,97E-04 und 0,027 dargestellt werden 

(Tabellen 7.1 und 7.2). Des Weiteren wurde im PHC eine Überrepräsentation von Proteinen 

nachgewiesen, die mit der Aktivierung und Regulation von Hitzeschockproteinen in 

Verbindung stehen (Tabelle 7.2). 
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Tab. 6.1 

Immun- und inflammations-assoziierte Pathways im HC - Genomatix 

P-Wert Pathway Quelle Proteine 
2 Tage nach SE 

1,29E-04 Toll like receptor Genomatix TMED7, SSB, HMGB1, SARM1, KCNJ3, DDX1, TOLLIP, HSP90B1 
1,78E-03 p38 signaling mediated by MAPKAP kinases NCI-nature YWHAE, HSPB1, YWHAZ, YWHAG 
4,26E-03 Myeloid differentiation primary response gene (88) Genomatix TMED7, HMGB1, SARM1, DDX1, TOLLIP 
0,013 Inflammatory Genomatix TGM2, GPRC5B, HMGB1, EPRS, EHD4, TOLLIP, LTA4H, HSP90B1, CD44 
0,041 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, PAK2, RASA1 
0,042 Interleukin 1 receptor Genomatix HMGB1, SARM1, TOLLIP 
0,044 Interleukin 1 Genomatix HSPB1, HMGB1, AQP4, TOLLIP, TMEM126A 

10 Tage nach SE 

0,017 Anaplastic lymphoma kinase Genomatix ATIC, PKM, SFPQ, HNRNPD, CDC37 
0,018 amb2 Integrin signaling NCI-nature KNG1, LRP1, ITGAM, ITGB2, TLN1, JAM3 
0,021 CD28 Genomatix PLCG1, NSF, ILF3, ITGAL, FLNA, PTK2B 

0,022 Inflammatory Genomatix 
KNG1, ITGAM, ENTPD1, HSP90B1, ANXA1, TGM2, ITGB2, EHD4, P2RX7, PARP1, PEPD, 
LTA4H, CD44 

0,030 Phospholipase A2 Genomatix KNG1, PTGES2, ANXA5, ANXA1, PRKCG, LTA4H 
0,034 T cell receptor Genomatix LCP1, PLCG1, RASGRF2, ITPR1, PTPRC, ITGAL, ITGB2, PTK2B, PTPRJ, ARHGEF2 

8 Wochen nach SE 

6,34E-04 Inflammatory Genomatix ABI2, CAPG, EHD4 
2,03E-03 Glial cell line derived neurotrophic factor Genomatix GFAP, ITGB1 
5,52E-03 Integrin linked kinase Genomatix ITGB1, ANXA2 

Die Pathway-Analysen erfolgten mittels Genomatix Pathway System. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von mindestens zwei regulierten 
Proteinen gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe. 
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Tab. 6.2 

Immun- und inflammations-assoziierte Pathways im HC - ConsensusPathDB 

P-Wert Pathway Quelle Proteine 
2 Tage nach SE 

1,27E-03 p38 signaling mediated by MAPKAP kinases PID YWHAZ, HSPB1, YWHAG, YWHAE 

1,65E-03 
Class I MHC mediated antigen processing & 
presentation 

Reactome SEC23A, HSPA5, CALR, HERC2, UBA3, UBE2V2, SAR1B, UBR4 

2,38E-03 
Antigen Presentation: Folding, assembly and peptide 
loading of class I MHC 

Reactome CALR, SAR1B, SEC23A, HSPA5 

2,69E-03 miR-targeted genes in lymphocytes  Wikipathways 
HSD17B12, TMED7, ANXA2, RCN2, PPP5C, SLC25A1, G6PD, SEC23A, ABHD11, ACAA2, 
NCL, TMED2, MPDU1, PTBP1, NUCB1, TMED10 

6,76E-03 Trafficking and processing of endosomal TLR Reactome CTSB, HSP90B1 
9,21E-03 Regulation of HSF1-mediated heat shock response Reactome HSPA1A, HSPB1, SERPINH1, YWHAE 
0,013 HSF1 activation Reactome EEF1A1, HSPA1A, SERPINH1, HSPB1 
0,013 Antigen processing and presentation  KEGG CALR, HSPA1A, CTSB, HSPA5 
0,014 TCR NetPath YWHAZ, ANXA2, LDHA, G6PD, RASA1, TFRC, NCL, FLNB, EPRS, LDHB 
0,015 MAPK Signaling Pathway Wikipathways HSPA5, HSPB1, PPP5C, HSPA1A, RASA1, PAK2, CDC42 
0,023 FAS pathway and Stress induction of HSP regulation Wikipathways LMNA, PAK2, HSPB1 
0,023 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, RASA1, PAK2 
0,023 mTOR signaling pathway PID YWHAZ, YWHAG, EEF2, YWHAE 

0,032 Immune System Reactome 
YWHAZ, CALR, SEC23A, TOLLIP, ARPC3, HMGB1, HERC2, HSP90B1, CTSB, DDOST, 
UBR4, UBA3, HSPA5, FLNB, UBE2V2, SAR1B, SARM1, PAK2, CDC42 

0,036 Scavenging by Class A Receptors Reactome CALR, HSP90B1 
0,043 amb2 Integrin signaling PID HMGB1, JAM3, TLN1 
0,043 Regulation of toll-like receptor signaling pathway Wikipathways TMED7, SARM1, TOLLIP 

0,044 Adaptive Immune System Reactome 
YWHAZ, SEC23A, HSPA5, CALR, HERC2, CTSB, UBA3, SAR1B, UBR4, UBE2V2, PAK2, 
CDC42 

10 Tage nach SE 

8,66E-04 Scavenging by Class A Receptors Reactome CALR, FTH1, APOE, HSP90B1 
2,28E-03 Prostaglandin Synthesis and Regulation Wikipathways ANXA1, ANXA3, ANXA2, ANXA5, ANXA4 

9,09E-03 
Binding and Uptake of Ligands by Scavenger 
Receptors 

Reactome APOE, HYOU1, CALR, HSP90B1, LRP1, FTH1 

0,010 Leukocyte transendothelial migration  KEGG 
ACTN1, ITGB2, JAM3, PRKCB, VCL, PTK2B, PRKCG, MSN, PLCG1, ITGAM, CTNNA1, 
CTNNA2 

0,017 amb2 Integrin signaling PID JAM3, LRP1, ITGAM, ITGB2, TLN1 
0,030 Trafficking and processing of endosomal TLR Reactome CTSB, HSP90B1 
0,034 FAS pathway and Stress induction of HSP regulation Wikipathways LMNA, LMNB1, PARP1, HSPB1 
0,034 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, LMNB1, PARP1, GSN 
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Tab. 6.2 

Fortsetzung 

P-Wert Pathway Quelle Proteine 
8 Wochen nach SE 

6,49E-04 Leishmaniasis  KEGG MARCKSL1, ITGB1 
0,043 miR-targeted genes in leukocytes  Wikipathways ANXA2, CAPG 

Die Pathway-Analysen erfolgten mittels Überrepräsentations-Modul von ConsensusPathDB. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von 
mindestens zwei regulierten Proteinen gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe. 
 
 

Tab. 7.1 

Immun- und inflammations-assoziierte Pathways im PHC - Genomatix 

P-Wert Pathway Quelle Proteine 
2 Tage nach SE 

1,38E-03 Unc 51 like kinase Genomatix CDC37, SYNGAP1, YWHAZ, PIK3C3 
5,43E-03 Inflammatory Genomatix CAPG, AKR1B1, TGM2, ITGB2, EHD4, SRR, TOLLIP, ENTPD1, HSP90B1, CD44, ALB 

5,97E-03 Tyrosine protein kinase Src Genomatix 
PRRT2, CDC42, CTTN, EZR, ITGB1, PTK2B, PRKCE, KIFAP3, RASA1, STUB1, FHIT, PTPN6, 
ACTN1, ANXA2, ITGA5, GNB2L1, PTPRC, ALB, ARRB1 

9,40E-03 TCR signaling in naive CD4+ T cells NCI-nature PRKCA, CDC42, FLNA, PRKCE, PTPN6, PTPRC 
9,90E-03 Spleen tyrosine kinase Genomatix CTTN, EZR, FLNA, ITGB2, PTK2B, RASA1, PTPN6, PTPRC 
0,014 CD19 Genomatix PTPN6, NCL, ENTPD1, ITGA5 
0,015 Chemokine (C C motif) ligand 2 Genomatix MFGE8, PTK2B, SLC38A2, VIM, ALB 
0,016 TGF beta Genomatix PLTP, GFAP, CLU, UBE2O, STUB1, HTRA1, NDRG1, SERPINH1, VIM, CST3, ALB 
0,019 Toll like receptor Genomatix ITGB2, SSB, SARM1, WDR34, TOLLIP, HSP90B1 
0,024 Focal adhesion kinase 1 Genomatix CDC42, CTTN, TGM2, EZR, ITGB1, PTK2B, MCAM, RASA1, ACTN1, CD44, ITGA5, GNB2L1 
0,030 Lymphocyte specific protein tyrosine kinase Genomatix PTK2B, RASA1, PTPN6, CD44, PTPRC 
0,034 Interleukin 1 receptor Genomatix IL1RAP, SARM1, WDR34, TOLLIP 
0,035 TCR signaling in naive CD8+ T cells NCI-nature PRKCA, PRKCE, PTPN6, PTPRC 
0,037 14 3 3 PROTEIN Genomatix NF1, FLNA, BSN, ITGB2, GFAP, MVP, YWHAZ, VIM, KPNA3, NEFL, PPP1R9B, YWHAB 
0,040 BCR signaling pathway NCI-nature PRRT2, RASA1, PTPN6, CAMK2G, PTPRC 
0,044 TNF alpha/NF-kB CellMap PSMD1, CDC37, FLNA, HSPB1, COPS3, YWHAZ, RPL30, KPNA3, GNB2L1, YWHAB 
0,047 Signal transduction through il1r BioCarta IL1RAP, TOLLIP 
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Tab. 7.1 

Fortsetzung 

P-Wert Pathway Quelle Proteine 
10 Tage nach SE 

3,65E-03 Chemokine (C C motif) ligand 2 Genomatix DDAH2, ITGAM, ALB, ACE2, MFGE8, PTK2B, VIM, ADRBK1 
4,64E-03 Tank binding kinase 1 Genomatix UCHL1, MTDH, CDC37, MAP1LC3A 
7,42E-03 p38 signaling mediated by MAPKAP kinases NCI-nature HSPB1, YWHAG, YWHAZ, SFN, YWHAQ, YWHAB 
7,42E-03 VEGFR3 signaling in lymphatic endothelium NCI-nature CRK, ITGB1, ITGA1, PRRT2, ITGA5, GRB2 
8,64E-03 TCR signaling in naive CD4+ T cells NCI-nature PRKCA, PRKCE, DBNL, PTPRC, CDC42, FLNA, PTPN6, GRB2, HRAS 
0,013 Glial cell line derived neurotrophic factor Genomatix GFAP, ITGB1, HSPB1, GAP43, SNCA, ENO2, CALB1, ITGA5 
0,022 T cell receptor Genomatix ITPR1, MFF, STMN1, ACP1, DBNL, PPIA, CD48, PTPRC, EZR, ITGB2, PTK2B, PTPN6, GRB2 
0,022 Il 3 signaling pathway BioCarta PTPN6, GRB2, HRAS 
0,022 p38 mapk signaling pathway BioCarta HSPB1, CDC42, H3F3A, HRAS 

0,029 Inflammatory Genomatix 
ITGAM, ENTPD1, HSP90B1, ANXA1, ALB, CAPG, TGM2, GMFB, ITGB2, EHD4, SRR, TOLLIP, 
MIF, CD44, SERPINA1 

0,033 CD19 Genomatix ENTPD1, CD48, PTPN6, NCL, ITGA5 
0,033 TCR signaling in naive CD8+ T cells NCI-nature PRKCA, PRKCE, PTPRC, PTPN6, GRB2, HRAS 
0,043 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, RASA1, LMNB1, GSN, PAK2 
0,044 Granulocyte colony stimulating factor Genomatix ITGAM, PTPN6, GRB2, HRAS 

0,044 
Role of Calcineurin-dependent NFAT signaling in 
lymphocytes 

NCI-nature 
PRKCA, FKBP1A, PRKCE, CALM1, YWHAG, CAMK4, YWHAZ, SFN, AKAP5, YWHAQ, 
YWHAB 

8 Wochen nach SE 

3,48E-03 Inflammatory Genomatix HSDL1, GNG12, ALB, HMGA1, CAPG, FOLH1, PARP1, PSMC6, LTA4H, MIF, PLAA 
0,018 Glial cell line derived neurotrophic factor Genomatix MAOB, GFAP, ITGB1, HSPB1, SLC1A3 
0,018 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, LMNB1, GSN, PARP1, LMNB2 
0,024 Interleukin 4 receptor Genomatix ITGA6, HMGA1 
0,027 Phospholipase A2 Genomatix SUCLG2, AQP4, ANXA5, LTA4H, MIF, PLAA 
0,030 Tnfr1 signaling pathway BioCarta LMNA, LMNB1, LMNB2 

Die Pathway-Analysen erfolgten mittels Genomatix Pathway System. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von mindestens zwei regulierten 
Proteinen gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe. 
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Tab. 7.2 

Immun- und inflammations-assoziierte Pathways im PHC - ConsensusPathDB 

P-Wert Pathway Quelle Proteine 
2 Tage nach SE 

6,04E-04 Pathogenic Escherichia coli infection# 
Wikipathways; 

KEGG 
YWHAZ, ITGB1, CTTN, PRKCA, ARPC1B, EZR, ARPC3, NCL, CDC42 

6,47E-03 AGE-RAGE pathway Wikipathways PRKCA, MSN, DDOST, EZR, CDC42 
0,012 Signaling by Interleukins Reactome YWHAZ, TOLLIP, PTK2B, YWHAB, UBE2V1, PTPN6 
0,015 TCR signaling in naive CD4+ T cells PID PRKCA, PTPRC, PRKCE, PTPN6, CDC42 
0,015 Nitric oxide stimulates guanylate cyclase Reactome ITPR1, PRKG2, GUCY1B3 
0,015 IKK complex recruitment mediated by RIP1 Reactome UBE2V1, RPS27A, SARM1 
0,016 IL3 NetPath YWHAZ, PRKCA, GNB2L1, PTPRC, YWHAB, PTPN6 
0,017 TCR signaling in naive CD8+ T cells PID PRKCA, PTPRC, PRKCE, PTPN6 
0,017 Regulation of toll-like receptor signaling pathway Wikipathways USP7, PTPN6, TOLLIP, SARM1 
0,017 Leukocyte transendothelial migration KEGG ITGB1, ACTN1, ITGB2, PRKCA, EZR, RAPGEF4, MSN, PTK2B, CDC42 

0,017 Immune System Reactome 
RPS27A, HSP90B1, RAPGEF4, PTK2B, DDOST, DNM3, YWHAZ, PIK3C3, STUB1, CAMK4, 
SARM1, ARPC3, YWHAB, ITGB1, ITGB2, PRKCA, CAMK2G, PRKCE, PRKAR1B, UBE2V1, 
ITPR1, PTPN6, TOLLIP, UBE2O, PTPRC, CDC42 

0,021 Shigellosis  KEGG ITGB1, CTTN, ARPC3, CD44, ITGA5, ARPC1B, CDC42 
0,021 Toll-Like Receptors Cascades Reactome ITGB2, RPS27A, HSP90B1, DNM3, UBE2V1, PIK3C3, SARM1 
0,021 Cytokine Signaling in Immune system Reactome YWHAZ, TOLLIP, CAMK2G, PTK2B, YWHAB, UBE2V1, PTPN6 
0,027 ATF-2 transcription factor network PID PRKCA, H2AFY, NF1 
0,030 TNFalpha NetPath YWHAZ, HSPB1, PRKCA, COPS3, PSMD1, RPL30, CDC37, GNB2L1, KPNA3, YWHAB 

0,031 Innate Immune System Reactome 
ITGB2, PRKAR1B, ITPR1, PRKCA, RPS27A, PRKCE, CAMK4, HSP90B1, ARPC3, DDOST, 
DNM3, YWHAB, UBE2V1, PIK3C3, SARM1, CDC42 

0,036 
Binding and Uptake of Ligands by Scavenger 
Receptors 

Reactome APOE, ALB, HSP90B1, HBA2 

0,040 Epstein-Barr virus infection KEGG YWHAZ, ENTPD1, HSPB1, CD44, PSMD1, VIM, HSPA1A, YWHAB, USP7 
0,047 DAG and IP3 signaling Reactome PRKCA, ITPR1, PRKCE, CAMK4, PRKAR1B 
0,049 Integrin-linked kinase signaling PID CDC42, ACTN1, NACA, CDC37 
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Tab. 7.2 

Fortsetzung 

P-Wert Pathway Quelle Proteine 
10 Tage nach SE 

4,58E-03 p38 signaling mediated by MAPKAP kinases PID YWHAZ, HSPB1, YWHAQ, SFN, YWHAB, YWHAG 
4,99E-03 Prostaglandin Synthesis and Regulation Wikipathways ANXA1, ANXA3, ANXA2, ANXA4, ANXA6 
9,80E-03 LKB1 signaling events PID YWHAZ, SFN, YWHAQ, CTSD, EZR, CDC37, MAP2, MAPT, YWHAB, YWHAG 
0,014 Signaling by Interleukins Reactome YWHAZ, TOLLIP, SKP1, HRAS, PTK2B, UBE2V1, YWHAB, CRK, PTPN6 
0,014 hiv-1 nef: negative effector of fas and tnf BioCarta LMNA, LMNB1, RASA1, PAK2, GSN 
0,017 p38 mapk signaling pathway BioCarta HRAS, CDC42, H3F3A, HSPB1 

0,023 Epstein-Barr virus infection KEGG 
YWHAZ, SND1, ENTPD1, HSPB1, CD44, YWHAQ, PSMD1, PSMD13, USP7, HSPA1A, VIM, 
PSMD4, YWHAB, PSMC1, PSMC3, YWHAG 

0,024 
Role of Calcineurin-dependent NFAT signaling in 
lymphocytes 

PID 
YWHAZ, AKAP5, CALM1, PRKCA, YWHAQ, PRKCE, CAMK4, SFN, FKBP1A, YWHAB, 
YWHAG 

0,024 Toll-Like Receptors Cascades Reactome DHX9, ITGB2, RPS27A, HSP90B1, DNM1, ITGAM, DNM3, DNM2, UBE2V1, PIK3C3, SARM1 
0,026 TCR Signaling Pathway Wikipathways DBNL, HRAS, VIM, PTK2B, CRK, ITPR1, CDC42 
0,026 TCR signaling in naive CD4+ T cells PID DBNL, PRKCA, HRAS, PRKCE, PTPRC, PTPN6, CDC42 
0,029 Leishmaniasis KEGG MARCKSL1, ITGB1, ITGB2, PTPN6, ITGAM 

0,032 Fc gamma R-mediated phagocytosis KEGG 
MARCKSL1, PPAP2B, PRKCA, ARPC1B, ARPC5L, PRKCE, MARCKS, PTPRC, DNM2, 
CRK, CDC42, ASAP1, GSN 

0,032 Pathogenic Escherichia coli infection# 
KEGG; 

Wikipathways 
ITGB1, YWHAZ, ARPC5L, PRKCA, ARPC1B, YWHAQ, ROCK2, NCL, EZR, CDC42 

0,037 IL8- and CXCR1-mediated signaling events PID RAB5A, PRKCA, PRKCE, DNM1, ARRB1, ADRBK1 
0,040 VEGFR3 signaling in lymphatic endothelium PID ITGB1, ITGA1, ITGA5, CRK 
0,040 Interleukin-3, 5 and GM-CSF signaling Reactome YWHAZ, CRK, HRAS, PTPN6 

0,042 MAPK Signaling Pathway Wikipathways 
MINK1, STMN1, PPP3R1, PPM1A, HSPB1, HSPA1A, MAPT, ARRB1, CRK, MAPK8IP3, 
RASA1, PAK2, CDC42 

0,044 DAG and IP3 signaling Reactome CALM1, PRKCA, PRKCE, CAMK4, PRKAR2A, PRKAR1B, ITPR1, ADRBK1 
8 Wochen nach SE 

5,97E-04 Prostaglandin Synthesis and Regulation Wikipathways ANXA3, ANXA2, ANXA5, ANXA4, ANXA6 
3,55E-03 Leukotriene metabolism EHMN HSD17B10, HADHB, ACOT2, GSTZ1, ALDH2, ACAA2, ALDH7A1, ALDH1B1, HSD17B4 
8,16E-03 FAS pathway and Stress induction of HSP regulation Wikipathways LMNB2, LMNA, LMNB1, PARP1, HSPB1 
8,16E-03 hiv-1 nef: negative effector of fas and tnf BioCarta LMNB2, LMNA, LMNB1, PARP1, GSN 
0,029 amb2 Integrin signaling PID JAM3, LRP1, RAP1A, TLN1 

0,033 miR-targeted genes in leukocytes - TarBase Wikipathways 
CAPG, LMNB2, ANXA2, RAB5C, FMNL2, PNP, TPM3, HMGA1, ACAA2, HNRNPM, TMED10, 
RHOG, CDIPT 

0,034 tnfr1 signaling pathway BioCarta LMNB2, LMNA, LMNB1 
#Pathways, die mit unterschiedlichen Datenbanken identifiziert wurden. 
Die Pathway-Analysen erfolgten mittels Überrepräsentations-Modul von ConsensusPathDB. Als Schwellenwerte wurden ein p-Wert von 0,05 und eine Schnittmenge von 
mindestens zwei regulierten Proteinen gewählt. Die Großbuchstaben der Gensymbole repräsentieren humane Orthologe..
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2.2.3. Hypothesen-gestützte Analyse TLR-assoziierter Proteine  

Die Pathway-Enrichment-Analyse zeigte in beiden untersuchten Gehirnregionen zwei Tage 

nach SE eine Überrepräsentation von TLR-assoziierten Proteinen (Toll like receptor, 

Trafficking and processing of endosomal TLR und Regulation of toll-like receptor signaling 

pathway mit den p-Werten 1,29E-04, 6,76E-03 und 0,043 im HC sowie Toll like receptor, 

Regulation of toll-like receptor signaling pathway und Toll-Like Receptors Cascades mit den 

p-Werten 0,019, 0,017 und 0,021 im PHC). In diesem Zusammenhang wurden neun regulierte 

Proteine im HC und 12 regulierte Proteine im PHC nachgewiesen (Tabellen 6.1–7.2). Während 

der Latenzphase zeigte sich ebenfalls eine Überrepräsentation von zwei und 11 TLR-

assoziierten Proteinen in HC und PHC (Trafficking and processing of endosomal TLR mit 

einem p-Wert von 0,030 im HC und Toll-Like Receptors Cascades mit einem p-Wert von 0,024 

im PHC, Tabellen 6.2 und 7.2). Für einige der regulierten TLR-assoziierten Proteine erfolgte 

eine Expressionsanalyse im Zeitverlauf der Epileptogenese (s. Kapitel IV.4.6.4).  

Abbildung 14 zeigt das Expressionsmuster dieser Proteine zwei Tage (Abbildung 14 A und B), 

zehn Tage (Abbildung 14 C und D) und acht Wochen nach SE (Abbildung 14 E und F). Das 

Ribosomal protein 27a (Rps27a) erreichte zwei und zehn Tage nach SE signifikant erhöhte 

Expressionslevel im PHC (Abbildung 14 B und D). Der Pathway-Datenbank Reactome zufolge 

spielt Rps27a eine Rolle bei dem MyD88-abhängigen, und –unabhängigen TLR-Signalweg 

(MILACIC et al. 2012; CROFT et al. 2014). Unter den differentiell exprimierten Proteinen 

zehn Tage nach SE ließen sich unter anderem die Integrine Integrin beta 2 (Itgb2) und Integrin 

alpha M (Itgam) nachweisen, welche in der Lage sind die TLR-abhängige Signalvermittlung in 

verschiedenen Zelltypen zu regulieren (YEE u. HAMERMAN 2013; LING et al. 2014). Für 

Itgb2 konnte eine Überexpression in der Post-Insult-Phase und Latenzphase nach SE im PHC 

nachgewiesen werden (Abbildung 14 B und D). Demgegenüber zeigte Itgam in beiden 

Gehirnregionen eine verzögerte Aufregulation zehn Tage nach SE (Abbildung 14 C und D).  

Die Oberflächenexpression verschiedener TLRs wird durch Dynamin GTPasen reguliert 

(BARTON u. KAGAN 2009). In den Listen der differentiell exprimierten Proteine wurden die 

Dynamine Dynamin 1 (Dnm1), -2 (Dnm2) und -3 (Dnm3) nachgewiesen. Im Hinblick auf 

Dnm1 wurden die Transkripte Dnm1-201 und Dnm1-202  (Ensembl-IDs: 

ENSRNOT00000047921 und ENSRNOT00000064039) identifiziert. Interessanterweise zeigte 

Dnm1-201 im PHC zehn Tage nach SE eine Herunterregulation, wohingegen für Dnm1-202 im 

HC eine Überexpression dargestellt werden konnte (Abbildung 14 C und D). Dnm2 zeigte nur 

im PHC zehn Tage nach SE eine Aufregulation (Abbildung 14 D). Demgegenüber wurde im 

PHC eine Herunterregulation für Dnm3 sowohl in der Früh- als auch in der Latenzphase 
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nachgewiesen (Abbildung 14 B und D).  

Der zelluläre Proteintransport von TLR4 wird unter anderem durch das Transmembrane emp24 

domain-containing protein 7 (Tmed7) reguliert (LIAUNARDY-JOPEACE u. GAY 2014). 

Eine deutliche Aufregulation dieses Proteins konnte zwei Tage nach SE im HC dargestellt 

werden (Abbildung 14 A).  

Die negativen Regulatorproteine WD40 domain repeat protein 34 (Wdr34), Toll-interacting 

protein (Tollip) und Ubiquitin specific peptidase 7 (Usp7) limitieren oder hemmen die TLR-

vermittelte Aktivierung des Transkriptionsfaktors NF-κB (DIDIERLAURENT et al. 2006; 

GAO et al. 2009; COLLERAN et al. 2013). Für Wdr34 und Tollip konnte eine frühe 

Aufregulation im PHC dargestellt werden (Abbildung 14 B). Zudem zeigten letztgenanntes 

Protein und Usp7 eine Überrepräsentation im PHC zehn Tage nach SE (Abbildung 14 D). 

Demgegenüber ließen sich im HC eine frühe Aufregulation von Tollip und eine verzögerte 

Aufregulation von Usp7 zwei und zehn Tage nach SE darstellen (Abbildung 14 A und C).  

Der gut charakterisierte TLR-Ligand High mobility group box protein 1 (Hmgb1) zeigte eine 

akute Aufregulation im HC zwei Tage nach SE (Abbildung 14 A). Des Weiteren war der TLR-

abhängige Bindungspartner Hsp90b1 in beiden Gehirnregionen sowohl in der Früh- als auch in 

der Latenzphase nach SE aufreguliert (Abbildung 14 A-D). 

Im Hinblick auf die besondere Bedeutung der TLR-abhängigen Signalvermittlung während 

dem Prozess der Epileptogenese wurde zusätzlich die differentielle Expression gut 

charakterisierter TLR-Liganden aus der Literatur bestimmt. Die Analyse umfasste insgesamt 

17 potentielle TLR-Protein-Liganden aus zwei Review-Artikeln (SLOANE et al. 2010; YU et 

al. 2010). Fünf der 17 TLR-Liganden konnten in den Proteinlisten nachgewiesen werden. Diese 

umfassten Hmgb1, Hsp90b1, Hspa1a/ Hsp70, Heat shock protein 60 kDa (Hspd1) und Tenascin 

C (Tnc). Tnc ist ein extrazelluläres Matrixprotein, das hauptsächlich nach Gewebeschädigung, 

bzw. infolge von Infektionen exprimiert wird (PAALLYSAHO et al. 1993; KAARTEENAHO-

WIIK et al. 2000; CHIQUET-EHRISMANN u. CHIQUET 2003). Eine Aufregulation von Tnc 

wurde acht Wochen nach SE im PHC beobachtet (Abbildung 14 F).  

Die Aktivierung von TLRs erfolgt unter anderem durch Hitzeschockproteine. Insbesondere  

Hspa1a spielt in diesem Zusammenhang als endogener TLR-Ligand eine bedeutende Rolle 

(ASEA et al. 2002; VABULAS et al. 2002a). In HC und PHC konnte zwei Tage nach SE eine 

deutliche Aufregulation von Hspa1a dargestellt werden (Abbildung 14 A und B). Zudem zeigte 

sich eine Überexpression von Hspa1a in beiden Gehirnregionen zehn Tage nach SE (Abbildung 

14 C und D). Im weiteren Verlauf der Auswertung wurde die differentielle Expression von 

Hspa1a immunhistochemisch validiert (Abbildung 17).  
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2.2.4. Aktivierung der inflammatorischen Antwort durch Purinozeptoren 

Nach epileptogener Gehirnverletzung existieren neben den TLRs weitere Mechanismen um 

Mikroglia zu aktivieren und eine inflammatorische Antwort hervorzurufen (VEZZANI et al. 

2013b). Diesbezüglich spielen vor allem die Purinozeptoren der Mikroglia eine bedeutende 

Rolle bei der Freisetzung von Zytokinen und der Chemotaxis (FARBER u. KETTENMANN 

2005). In den Listen der differentiell exprimierten Proteine konnten die Purinozeptoren P2rx7 

und P2ry12 nachgewiesen werden. Der purinerge Ionenkanal P2rx7 zeigte eine deutliche 

Aufregulation im HC zehn Tage nach SE (Abbildung 14 C). Im Gegensatz zu P2rx7 konnte 

eine Überexpression des G-Protein-gekoppelten Purinozeptors P2ry12 in beiden 

Gehirnregionen dargestellt werden. In diesem Kontext zeigte sich in der Latenzphase nach SE 

eine Aufregulation von P2ry12 in HC und PHC (Abbildung 14 C und D). Die differentielle 

Expression von P2rx7 und P2ry12 wurde ebenfalls immunhistochemisch validiert 

(Abbildungen 18 und 19).  

 

Abb. 14: 
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Expressionsanalyse TLR-assoziierter Proteine und Purinozeptoren in HC und PHC zwei Tage (A und B), zehn 

Tage (C und D) und 8 Wochen (E und F) nach SE. Die Spalten und Zeilen der Heatmaps zeigen die differentiellen 

Proteinexpressionsdaten der SE- und Kontrolltiere (chronologisch nummeriert) zu den jeweiligen Pathway-

Proteinen. Die Anordnung der Proteine folgt einem hierarchischen Cluster-Verfahren. Der Farbverlauf 

repräsentiert die individuellen fold changes der Proteine nach vorangegangener log2-Transformierung 

(blau = aufreguliert, rot = herunterreguliert). Die Zellenwerte illustrieren die tatsächlichen individuellen fold 

changes. Für die Erstellung der Heatmaps wurde R verwendet. Die differentiell exprimierten Proteine sind mit 

einem Sternchen (*) gekennzeichnet. 

 

C) D) 

E) F) 
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2.2.5. Hypothesen-gestützte Analyse der transendothelialen Leukozytenmigration 

Durch die Pathway-Enrichment-Analyse konnte im HC und PHC eine Regulation von 

Proteinen dargestellt werden, die eine bedeutende Rolle bei der transendothelialen Migration 

von Leukozyten spielen (Abbildung 15). In diesem Kontext zeigte der Leukocyte 

transendothelial migration-Pathway im HC zehn Tage nach SE (p-Wert von 0,010) und im 

PHC zwei Tage nach SE (p-Wert von 0,017) ein signifikantes Enrichment (Tabellen 6.2 und 

7.2).  

 

Abb. 15: 

 

 

Differentiell exprimierte Proteine und deren Interaktionspartner im Leukocyte transendothelial migration-Pathway 

(Homo sapiens) modifiziert nach KEGG13 (KANEHISA u. GOTO 2000; KANEHISA et al. 2014). Die farbige 

Markierung repräsentiert die regulierten Proteine bzw. Proteinkomplexe in HC und PHC (blau = HC, 

orange = PHC). Die Pfeilsymbole illustrieren eine Auf- und/oder Herunterregulation der Proteine. Nicht regulierte 

Interaktionspartner wurden weiß unterlegt. Die Großbuchstaben repräsentieren humane Orthologe. 

 

                                                 

13 http://www.genome.jp/kegg/pathway.html 
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Basierend auf den identifizierten Proteinen beider Gehirnregionen wurde die differentielle 

Expression für die Proteine bestimmt, die eine Rolle bei der transendothelialen 

Leukozytenmigration spielen. Abbildung 16 zeigt die individuellen fold changes der Proteine 

zwei Tage (Abbildung 16 A und B), zehn Tage (Abbildung 16 C und D) und acht Wochen nach 

SE (Abbildung 16 E und F). Die regulierten Proteine umfassten unter anderem Moesin (Msn), 

Ezrin (Ezr) und Vinculin (Vcl). Diese Proteine werden für das Andocken von Leukozyten an 

Endothelzellen benötigt (BARREIRO et al. 2002). Msn zeigte sowohl zwei Tage als auch zehn 

Tage nach SE eine gesteigerte Expression in beiden Gehirnregionen (Abbildung 16 A-D). 

Darüber hinaus konnte eine Aufregulation für Msn acht Wochen nach SE im PHC 

nachgewiesen werden (Abbildung 16 F). Die Regulation von Ezr beschränkte sich 

ausschließlich auf den PHC. Nach frühzeitiger Induktion von Ezr in der akuten Phase der 

Epileptogenese wurde eine konstante Überexpression dieses Proteins zehn Tage und acht 

Wochen nach SE beobachtet (Abbildung 16 B, D und F). Vcl zeigte eine deutliche 

Aufregulation im HC zehn Tage nach SE sowie im PHC acht Wochen nach SE 

(Abbildung 16 C und F).  

In beiden Gehirnregionen wurde für das Zytoskelett-Protein Actinin alpha 1 (Actn1) eine 

deutliche Überexpression nachgewiesen. In diesem Zusammenhang zeigte sich in HC und PHC 

eine frühe und bis in die Latenzphase anhaltende Aufregulation von Actn1 

(Abbildung 16 A- D).  

Das Protein Cell division cycle protein 42 (Cdc42) gehört zur Familie der Rho-GTPasen und 

damit zu den wichtigsten Koordinatoren zellulärer Migration (RIDLEY 2001). In den Listen 

der differentiell exprimierten Proteine konnten die Transkripte Cdc42-201 und Cdc42-202 

dargestellt werden (Ensembl-IDs: ENSRNOT00000018118 und ENSRNOT00000029025). 

Beide Transkripte zeigten im PHC sowohl zwei Tage als auch zehn Tage nach SE eine 

Herunterregulation (Abbildung 16 B und D). Demgegenüber konnte im HC zwei Tage nach SE 

eine deutliche Aufregulation für Cdc42-202 dargestellt werden (Abbildung 16 A).  

Für das Junctional adhesion molecule 3 (Jam3) wurde in den analysierten Gehirnregionen ein 

unterschiedliches Proteinexpressionsmuster beobachtet. Demnach konnte für Jam3 im HC eine 

Überexpression zwei und zehn Tage nach SE gezeigt werden (Abbildung 16 A und C). Im PHC 

hingegen ließ sich eine Aufregulation für Jam3 nur bei Tieren mit spontanen Anfällen in der 

chronischen Phase nach SE beobachten (Abbildung 16 F).  

Die Proteine Cadherin-associated proteins alpha 1 und 2 (Ctnna1 und Ctnna2) zeigten im HC 

zehn Tage nach SE unterschiedliche Expressionsraten. In diesem Kontext ließ sich für Ctnna1 

eine Überexpression und für Ctnna2 eine Herunterregulation darstellen (Abbildung 16 C).  
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Zu den verschiedenen Zeitpunkten der Epileptogenese wurde eine Regulation mehrerer 

Leukozyten-Integrine beobachtet. Diese umfassten unter anderem die bereits erwähnten 

Proteine Itgb2 und Itgam sowie Integrin beta 1 (Itgb1). Für Itgb1 konnte im PHC eine 

Aufregulation zu allen drei untersuchten Zeitpunkten dargestellt werden (Abbildung 16 B, D 

und F). Demgegenüber wurde im HC acht Wochen nach SE nur eine temporäre Überexpression 

von Itgb1 nachgewiesen (Abbildung 16 E).  

 

Abb. 16: 
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Expressionsanalyse regulierter Proteine des Leukocyte transendothelial migration-Pathway in HC und PHC, zwei 

Tage (A und B), zehn Tage (C und D) und 8 Wochen (E und F) nach SE. Die Spalten und Zeilen der Heatmaps 

zeigen die differentiellen Proteinexpressionsdaten der SE- und Kontrolltiere (chronologisch nummeriert) zu den 

jeweiligen Pathway-Proteinen. Die Anordnung der Proteine folgt einem hierarchischen Cluster-Verfahren. Der 

Farbverlauf repräsentiert die individuellen fold changes der Proteine nach vorangegangener log2-Transformierung 

(blau = aufreguliert, rot = herunterreguliert). Die Zellenwerte illustrieren die tatsächlichen individuellen fold 

changes. Für die Erstellung der Heatmaps wurde R verwendet. Die differentiell exprimierten Proteine sind mit 

einem Sternchen (*) gekennzeichnet. 

 

2.3. Immunhistochemische Validierung 

Die Immunhistochemie diente der Validierung ausgewählter Proteomdaten auf zellulärer 

Ebene. Der immunhistochemische Nachweis umfasste die Proteine Hspa1a (Abbildung 17), 

P2ry12 (Abbildung 18) und P2rx7 (Abbildung 19) im HC und PHC zu den Zeitpunkten, an 

denen eine differentielle Expression der Proteine identifiziert werden konnte. 

Für Hspa1a wurde zwei Tage nach SE in SE-Tieren in beiden Gehirnregionen eine deutliche 

Immunreaktion nachgewiesen (Abbildung 17 D-F). Insbesondere konnten immunreaktive 

Zellen mit dornartig verzweigten Fortsätzen und Zellen mit langen, wenig verzweigten 

Ausläufern in der CA1 sowie CA3-CA4-Region des HC identifiziert werden (Abbildung 17 D 

und E). Darüber hinaus ließ sich bei allen SE-Tieren eine scharf umschriebene Grenze der 

Immunreaktion im Hilus der hippocampalen Formation nachweisen (Abbildung 17 D). Im PHC 

zeigten die perirhinalen, entorhinalen und posterior-piriformen Cortices eine deutliche 

E) F) 
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Immunreaktion in der Frühphase der Epileptogenese (Abbildung 17 F)  

Zehn Tage nach SE konnte Hspa1a lediglich in einzelnen Zellen mit langen, wenig verzweigten 

Ausläufern im Hilus der hippocampalen Formation und der CA1-Region dargestellt werden 

(Abbildung 17 G, H und I). In der chronischen Phase wurde bei den SE-Tieren 

immunhistochemisch keine Expression von Hspa1a nachgewiesen. Die Kontrolltiere zeigten zu 

keinem der anlysierten Zeitpunkte eine Immunreaktion des Hitzeschockproteins (Abbildung 17 

A-C).  
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Abb. 17: 

 

 

 

Immunhistochemische Färbung von Hspa1a in HC und PHC zwei und zehn Tage nach SE. Bei den SE-Tieren 

konnte in der Frühphase der Epileptogenese eine deutliche Expression von Hspa1a in beiden Geweben 

nachgewiesen werden (D-F). Zehn Tage nach SE ließen sich immunhistochemisch nur vereinzelte Zellen mit 

langen, wenig verzweigten Ausläufern im Hilus der hippocampalen Formation und in der CA1-Region (schwarze 

Pfeile) darstellen (G-I). Die Kontrolltiere zeigten keine nachweisbare Immunreaktion (A-C). Maßstab = 200 µm 

(obere und untere Bildreihe) und 50 µm (mittlere Bildreihe).  

 

Bei der immunhistochemischen Färbung von P2ry12 wurde eine erhöhte Expression nur in der 

Latenzphase der Epileptogenese nachgewiesen. Zu diesem Zeitpunkt wurde eine deutliche 

Immunreaktion in beiden Gehirnregionen beobachtet (Abbildung 18 D-F). Im HC zeigten das 

Stratum moleculare, die Regionen CA1-4 sowie der Hilus der hippocampalen Formation eine 
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erhöhte immunhistochemische Anfärbung P2ry12-positiver Zellen (Abbildung 18 D und E). 

Bei vergrößerter Darstellung des Hilus zeigten sich Zellen mit dornartig verzweigten 

Zellfortsätzen (Abbildung 18 B). Im PHC wurde eine Überexpression von P2ry12 in Zellen der 

perirhinalen, entorhinalen und posterior-piriformen Cortices nachgewiesen (Abbildung 18 F). 

Im Vergleich zu den SE-Tieren zeigten die Kontrolltiere zehn Tage nach SE nur eine schwache 

Immunreaktion des Purinozeptors (Abbildung 18 A-C). Zwei Tage und acht Wochen nach SE 

konnte zwischen SE- und Kontrolltieren immunhistochemisch kein Unterschied in der 

Expression von P2ry12 festgestellt werden. 
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Abb. 18: 

 

 

Immunhistochemische Färbung von P2ry12 in HC und PHC zehn Tage nach SE. Bei den SE-Tieren konnte 

immunhistochemisch eine deutliche Expression von P2ry12 dargestellt werden (D-F). Demgegenüber wurde bei 

den Kontrolltieren nur eine schwache Immunreaktion des Purinozeptors nachgewiesen (A-C). In der vergrößerten 

Darstellung des Hilus der hippocampalen Formation zeigten sich positiv gefärbte dornartig verzweigte Zellen (E). 

Maßstab = 200 µm (obere und untere Bildreihe) und 50 µm (mittlere Bildreihe).  
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Eine Überexpression von P2rx7 ließ sich immunhistochemisch zehn Tage nach SE im HC 

nachweisen. Es wurde eine deutliche Immunreaktion des Purinozeptors im Stratum pyramidale, 

der CA1- und teilweise auch in der CA2-Region, im Stratum moleculare und dem Hilus der 

hippocampalen Formation dargestellt (Abbildung 19 C und D). Bei vergrößerter Betrachtung 

des Hilus zeigten sich P2rx7-positive Zellen mit dornartig verzweigten Fortsätzen (Abbildung 

19 D). Bei den Kontrolltieren wurde vergleichsweise nur eine schwache Immunreaktion von 

P2rx7 nachgewiesen (Abbildung 19 A und B). Zwei Tage und acht Wochen nach SE im HC, 

sowie zu allen untersuchten Zeitpunkten im PHC, zeigte sich zwischen SE- und Kontrolltieren 

kein Unterschied in der Expression von P2rx7.  

 

Abb. 19: 

 

 

Immunhistochemische Färbung von P2rx7 im HC zehn Tage nach SE. Bei den SE-Tieren konnte 

immunhistochemisch in der Latenzphase der Epileptogenese eine deutliche Überexpression von P2rx7 dargestellt 

werden. (C und D). In der vergrößerten Darstellung des Hilus der hippocampalen Formation ließen sich P2rx7-

positive Zellen mit dornartig verzweigten Fortsätzen nachweisen (D). Die Kontrolltiere zeigten nur eine 

vergleichsweise schwache Immunreaktion von P2rx7 (A und B). Maßstab = 200 µm (obere Bildreihe) und 50 µm 

(untere Bildreihe).  
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VI. DISKUSSION 

Epilepsien gehören zu den häufigsten chronischen neurologischen Erkrankungen bei Hund und 

Katze sowie beim Menschen (SANDER u. SHORVON 1996; COWAN 2002; CHANDLER 

2006; SMITH BAILEY u. DEWEY 2009). Mit etwa 60-70 % aller fokalen epileptischen 

Anfälle entspricht die TLE der häufigsten Epilepsieform des Menschen (RUGG-GUNN et al. 

2011; TÉLLEZ-ZENTENO u. HERNÁNDEZ-RONQUILLO 2011). Bis heute haben sich alle 

therapeutischen Strategien zur Beeinflussung und/oder Verhinderung der Epileptogenese als 

klinisch unwirksam erwiesen (HOLTKAMP u. MEIERKORD 2007; LÖSCHER u. BRANDT 

2010). Die größte Hürde der Entwicklung präventiver anti-epileptogener 

Behandlungsstrategien ist dabei ein fehlendes Verständnis der Epileptogenese 

zugrundeliegenden Mechanismen (WALKER et al. 2015). In diesem Kontext stellen 

insbesondere inflammatorische Prozesse, welche infolge einer initialen Schädigung des 

Gehirns auftreten, Schlüsselkomponenten der Epileptogenese dar (VEZZANI et al. 2013b). 

Neben der gezielten Erforschung ausgewählter Strukturen und Signalwege haben unter 

anderem Genom- und Transkriptomstudien zu unserem heutigen Verständnis der 

epileptogenese-assoziierten molekularen Veränderungen beigetragen (CACHEAUX et al. 

2009; OKAMOTO et al. 2010; WANG et al. 2014). Der Transfer der Ergebnisse aus diesen 

Studien in zelluläre Funktionen ist allerdings mit Einschränkungen verbunden. Zelluläre 

Funktionen sind im Wesentlichen auf das Expressionsmuster und die Interaktionen von 

Proteinen zurückzuführen. Prä- und posttranslationale Protein-Modifikationen erschweren 

allerdings die Interpretation von Genexpressionsstudien auf Proteinebene (DE SOUSA 

ABREU et al. 2009; LANGLEY et al. 2013). In diesem Kontext könnten differentielle 

Proteomanalysen wesentlich zu unserem Verständnis der ursächlichen Proteine und damit 

molekularen Mechanismen der Epileptogenese beitragen. 

 

Im Rahmen der vorliegenden Studie wurden die molekularen und im Besonderen die 

inflammations-assoziierten Mechanismen der Epileptogenese mittels einer differentiellen 

Proteomanalyse an einem Tiermodell der TLE erforscht. Zudem sollte die Studie eine 

Grundlage liefern, potentielle Biomarker für molekulare Bildgebungsverfahren und mögliche 

Zielstrukturen für die Prävention und Therapie der Epileptogenese zu identifizieren.  
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Umfassende Proteomstudie zur Untersuchung molekularer Mechanismen in den 

Gehirnregionen HC und PHC während dem Prozess der Epileptogenese 

Im vorliegenden Dissertationsvorhaben wurde Gehirngewebe von Ratten in der Post-Insult-

Phase, Latenzphase sowie der chronischen Phase mit spontanen wiederkehrenden Anfällen 

mittels markierungsfreier LC-MS/MS analysiert. Bisherige Proteom-Studien erfolgten 

größtenteils an humanem Gewebe, um die Pathomechanismen der TLE zu erforschen (EUN et 

al. 2004; YANG et al. 2005; XIAO et al. 2009; MERIAUX et al. 2014). Die Analyse humaner 

Gewebeproben ist allerdings mit den Nachteilen verbunden, dass epileptogenese-assoziierte 

Veränderungen zum Zeitpunkt der Analyse bereits größtenteils abgeschlossen sind und 

adäquates Kontrollgewebe fehlt. Zudem führt die Untersuchung von humanem Post-mortem-

Gewebe zu einem großen Datenverlust, da viele Proteine zum Zeitpunkt der Analyse bereits 

abgebaut wurden.  

Um die molekularen Mechanismen der Epileptogenese zu untersuchen, ist es essentiell 

Veränderungen zu analysieren, welche nach initialem Insult und vor der Manifestation von 

Epilepsie auftreten (RAOL u. BROOKS-KAYAL 2012). In der Studie von LIU et al. (2008) 

wurde hippocampales Gehirngewebe von Ratten 12 und 72 Stunden nach Pilocarpin-

induziertem SE analysiert. Es erfolgten jedoch keine Untersuchungen zu späteren Zeitpunkten 

der Epileptogenese. Da epileptogenetische Veränderungen allerdings auch nach dem Auftreten 

der ersten Anfälle fortschreiten (PITKÄNEN u. SUTULA 2002; PITKÄNEN u. LUKASIUK 

2009) ist es wichtig, neben der Früh- und Latenzphase der Epileptogenese auch den Zeitpunkt 

der Epilepsie-Manifestation zu erfassen. Weiterhin zählt neben dem HC unter anderem der PHC 

zu den pathologisch betroffenen Gehirnstrukturen bei der TLE (CHANG u. LOWENSTEIN 

2003). In der vorliegenden Arbeit wurden daher HC und PHC in der Post-Insult-Phase, 

Latenzphase und chronischen Phase analysiert. Nach meinem aktuellen Wissensstand wurde 

bisher noch keine vergleichbare Zeitverlaufsstudie durchgeführt, um Epileptogenese-

assoziierte Veränderungen in unterschiedlichen Gehirnregionen zu untersuchen.  

 

Unterschiedliche Proteinprofile von SE- und Kontrolltieren bestätigen komplexe molekulare 

Veränderungen im Zeitverlauf der Epileptogenese 

Im Rahmen der massenspektrometrischen Protein-Identifikation wurde als initiales 

Einschlusskriterium eine Quantifizierung mit mindestens zwei Peptiden gewählt. Dieses 

Kriterium eignet sich, um die Reliabilität der Proteinidentifikation zu erhöhen (HERRMANN 

et al. 2013). Dies begründet sich darin, dass ein einzelnes Peptid in verschiedenen Proteinen 

und Protein-Isoformen gefunden werden kann, wodurch die Wahrscheinlichkeit der korrekten 
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Identifikation eines bestimmten Proteins vermindert wird (MALLICK u. KUSTER 2010; 

HERRMANN et al. 2013). Weitet man das Einschlusskriterium auf die Quantifizierung mit 

drei oder mehr Peptiden aus, wird hierdurch die Anzahl der Proteine auf die Hälfte der 

ursprünglich mit einem Peptid identifizierten Proteine reduziert (HERRMANN et al. 2013). Es 

kann daher davon ausgegangen werden, dass das gewählte Einschlusskriterium 

(Quantifizierung mit zwei Peptiden) geeignet ist, um die Reliabilität der Proteinidentifikation 

bei verhältnismäßig geringem Datenverlust ausreichend zu erhöhen.  

In Folge der massenspektrometrischen Analyse und Proteinidentifikation wurden die 

Abundanzen der identifizierten Proteine von SE- und Kontrolltieren mittels Principal 

Component-Analyse untersucht. Hierdurch konnte gezeigt werden, dass sich die Proteinprofile 

von SE- und Kontrolltieren zu den drei analysierten Zeitpunkten der Epileptogenese in beiden 

Gehirnregionen deutlich unterscheiden. Die Principal Component-Analyse ermöglicht eine 

explorative Erforschung komplexer Datensätze durch Dimensionalitätsreduktion multivariater 

Daten unter Beibehaltung des größtmöglichen Informationsgehaltes (JOLLIFFE 2002; 

JACKSON 2003; IVOSEV et al. 2008). Diese Form der Datenanalyse wurde bereits von vielen 

Autoren verwendet, um multivariate Daten aus Genom-weiten Genexpressionsstudien zu 

analysieren (ALTER et al. 2000; KHAN et al. 2001; RINGNER 2008; LUKK et al. 2010). Die 

Studie von LUKK et al. (2010) legt nahe, dass Proben mit ähnlichen physiologischen 

Eigenschaften vergleichbare globale Gen- bzw. Proteinexpressionsprofile aufweisen und 

folglich in den Graphen der Principal Component-Analyse Gruppen bilden (ZHENG-

BRADLEY et al. 2010). Demnach ist die fehlende Trennung der Proteinprofile von SE- und 

Kontrolltieren im HC acht Wochen nach SE vermutlich auf zu geringe 

Proteinexpressionsunterschiede zwischen den Tiergruppen zurückzuführen. Die im Vergleich 

zu den Kontrolltieren größere Varianz der SE-Tiere in den verschiedenen Phasen der 

Epileptogenese reflektiert größere interindividuelle Unterschiede in der Proteinexpression. Die 

Ergebnisse der Principal Component-Analyse tragen zur Validierung der Methodik bei indem 

gezeigt werden konnte, dass zwischen initialem Insult und dem Auftreten erster Anfälle 

komplexe molekulare Veränderungen stattfinden (ENGEL u. PEDLEY 2007; GOLDBERG u. 

COULTER 2013). Weiterhin deuten die Proteinprofile der SE- und Kontrolltiere drauf hin, dass 

in der chronischen Phase molekulare Veränderungen vorwiegend im PHC auftreten (deutliche 

Trennung der Proteinprofile von SE- und Kontrolltieren acht Wochen nach SE). Diese 

Ergebnisse sind jedoch mit Vorsicht zu werten, da „extreme“ Werte und geringer 

Stichprobenumfang die Principal Component-Analyse beeinflussen können.  

 



VI. Diskussion  91 

Während der Epileptogenese finden im HC und PHC verschiedene Prozesse statt, in die 

unterschiedliche Proteine involviert sind 

Im vorliegenden Projekt wurden die differentiell exprimierten Proteine anhand der Parameter 

„p-Wert“ (Ergebnis der ANOVA) und „fold change“ definiert. Der fold change, ein Maß für 

die Veränderung von Protein-Abundanzen (hier zwischen der SE- und Kontrollgruppe), stellt 

ein Kriterium zur Definition der differentiell exprimierter Proteine dar (HERRMANN et al. 

2013). In der Literatur werden häufig fold changes zwischen 1,3 und 2,0 verwendet (UNWIN 

et al. 2005; MANN 2006; LUNDGREN et al. 2010). Im vorliegenden Projekt wurde ein fold 

change von 1,5 gewählt, um neben dem statistischen auch ein biologisches Signifikanzniveau 

zu bestimmen. Dies macht deutlich, dass eine einheitliche Standardisierung bezüglich des fold 

change noch nicht gegeben ist.  

Die Ergebnisse unserer und anderer wissenschaftlicher Arbeiten sind im Wesentlichen 

abhängig von dem analytischen Verfahren der Proteinidentifikation, den durchgeführten 

statistischen Tests und den gewählten Kriterien zur Definition der differentiell exprimierten 

Proteine. Nur wenn diese Kriterien übereinstimmen, ist eine direkte Vergleichbarkeit zwischen 

den unterschiedlichen Studien möglich.  

Die Anwendung zusätzlicher herkömmlicher Verfahren (zum Beispiel die Immunhistochemie) 

ermöglicht es, in diesem Zusammenhang, sowohl die angewendete Methodik als auch einzelne 

Ergebnisse zu validieren (LIU et al. 2008; HAUCK et al. 2012; KUMAR et al. 2012) und 

erlaubt somit eine indirekte Vergleichbarkeit unterschiedlicher Studien.  

Durch die differentielle Proteomanalyse ließen sich im PHC zu jeder Phase der Epileptogenese 

mehr regulierte Proteine nachweisen als im HC. Im vorliegenden Projekt umfasste der PHC die 

perirhinalen, entorhinalen und posterior-piriformen Cortices. Über die rhinalen Cortices steht 

der HC im Informationsaustausch mit dem Neocortex (VAN HOESEN 1982; NABER et al. 

1999; KEALY u. COMMINS 2011). Dabei kommt dem entorhinalen Cortex eine besondere 

Bedeutung zu. Dieser stellt den Hauptein- und ausgang für Informationen dar, die im HC 

verarbeitet werden (KANDEL et al. 2000). Informationen, die über hippocampal-assoziierte 

Cortices zum HC weitergeleitet werden und solche, die vom HC ausgehen, konvergieren im 

entorhinalen Cortex (KANDEL et al. 2000). Weiterhin konnte durch diverse Studien gezeigt 

werden, dass der entorhinale Cortex maßgeblich an Anfallsentladungen des HC beteiligt ist 

(REN et al. 2014; SHI et al. 2014; VISMER et al. 2015). Bezugnehmend auf den perirhinalen 

Cortex wiesen BUMANGLAG u. SLOVITER (2008) in ihrer Epileptogenese-Studie im 

elektrischen SE-Modell eine erhebliche Schädigung in dieser Gehirnregion nach. 

BOLKVADZE et al. (2006) untersuchten im Kindling-Modell die zelluläre Zusammensetzung 
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verschiedener Schichten der anterioren, zentralen und posterioren piriformen Cortices. 

Einhergehend mit den Ergebnissen anderer Studien zeigten BOLKVADZE et al. (2006) eine 

deutliche Beteiligung des piriformen Cortex am kindling-induzierten Prozess der 

Epileptogenese (LÖSCHER u. EBERT 1996; GROOMS u. JONES 1997; KELLY et al. 2002). 

Die große Anzahl der regulierten Proteine im PHC während dem Prozess der Epileptogenese 

könnte auf die massive Veränderung unterschiedlicher Mechanismen in den verschiedenen 

Cortices zurückzuführen sein. Weiterhin impliziert der quantitative Unterschied regulierter 

Proteine zwischen HC und PHC, dass im PHC stärkere molekulareVeränderungen auftreten als 

im HC. In Anbetracht der deutlichen molekularen Veränderungen im PHC während dem 

Prozess der Epileptogenese, sollten diese Gehirnregion und andere HC-assoziierte 

Gehirnstrukturen in weiteren Analysen genauer untersucht werden.  

 

Im Rahmen der Epileptogenese ist die Mehrzahl der regulierten Proteine an metabolischen 

sowie zellulären Prozessen beteiligt und erfüllt strukturmolekulare, katalytische sowie adhäsive 

Funktionen  

Um eine Übersicht der quantitativen Beteiligung an biologischen Prozessen und molekularen 

Funktionen zu erhalten, wurden die differentiell exprimierten Proteine nach den entsprechenden 

Gene Ontology-Kriterien klassifiziert. In diesem Kontext zeigte sich bei allen Prozessen und 

molekularen Funktionen in beiden Gehirnregionen ein progressiver Verlauf während der 

Epileptogenese mit Rückgang zum Zeitpunkt der Epilepsie-Manifestation. Dies ist insofern 

interessant, da in der Post-Insult-Phase aufgrund ausgeprägter Neurodegeneration (SCHWOB 

et al. 1980; NEVANDER et al. 1985; DU et al. 1995; GORTER et al. 2003), eine stärkere 

Regulation der einzelnen Kategorien zu erwarten gewesen wäre. Des Weiteren wiesen 

OKAMOTO et al. (2010) in ihrer Transkriptom-Studie im Pilocarpin-Modell die 

prominentesten molekularen Veränderungen in der Frühphase der Epileptogenese (drei Tage 

nach SE) nach. Die Ergebnisse unserer Studie deuten darauf hin, dass in beiden Gehirnregionen 

die größten molekularen Veränderungen auf Proteinebene erst in der Latenzphase auftreten. 

Die Mehrheit der differentiell exprimierten Proteine in HC und PHC konnte den Prozessen 

Metabolic process und Cellular process zugeteilt werden. Letztgenannter Prozess wird durch 

das GENE ONTOLOGY CONSORTIUM (2015) als „jedweder Prozess der auf zellulärem 

Level stattfindet, aber nicht unbedingt auf eine Zelle beschränkt sein muss“ definiert. Im 

Hinblick auf molekulare Funktionen ließ sich die Mehrzahl der differentiell exprimierten 

Proteine beider Gehirnregionen den funktionellen Gruppen Structural molecule activity, 

Catalytic activity und Binding zuordnen. In der Metaanalyse von ARONICA u. GORTER 
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(2007) wurden die biologischen Prozesse aus verschiedenen Genexpressionsstudien humaner 

und experimenteller TLE miteinander verglichen. ARONICA u. GORTER (2007) zeigten, dass 

Glial activation, Immune response, Ion transport, Synaptic transmission, Signal transduction 

und Synaptic plasticity zu den am häufigsten identifizierten biologischen Prozessen bei TLE 

gehören. Die letztgenannten drei Gruppen entsprechen in Übereinstimmung mit der 

Dissertationsstudie zellulären Prozessen im Rahmen zellulärer Interaktion (Binding) und 

molekularer Plastizität (Structural molecule activity). In der Studie von OKAMOTO et al. 

(2010) wurden biologische Prozesse im Zeitverlauf der Epileptogenese (drei Tage und sieben 

Tage nach Pilocarpin-induziertem SE, sowie unmittelbar nach dem Auftreten erster Anfälle) 

analysiert. Hierbei zeigte sich, in Übereinstimmung mit der Klassifizierung unserer Studie, zu 

allen untersuchten Zeitpunkten eine Überrepräsentation zellulärer Prozesse. Diese waren 

bestimmt durch strukturmolekulare Aktivität sowie zelluläre Interaktionen. Demgegenüber 

konnte in der Studie von OKAMOTO et al. (2010) keine vergleichbare Klassifizierung in der 

Kategorie Metabolic process dargestellt werden. Die Ergebnisse der Klassifizierung deuten 

darauf hin, dass möglicherweise durch Reparatur- und Umstrukturierungsprozesse bedingte 

Veränderungen die Post-Insult-Phase und Latenzphase im HC sowie darüber hinaus die 

chronische Phase im PHC dominieren. Hierbei ist zu bedenken, dass der Klassifizierung kein 

statistischer Test zugrunde liegt und diese somit nur Rückschlüsse über die Quantität der 

biologischen Prozesse und molekularen Funktionen zulässt. Neben den beschriebenen 

Übereinstimmungen weichen die einzelnen Studien zum Teil erheblich in ihren Ergebnissen 

voneinander ab. Dies ist zum einen auf die Benutzung unterschiedlicher Programme und 

Analyse-Plattformen zurückzuführen, zum anderen hat die Verwendung verschiedener 

Tiermodelle oder von Patientengewebe Einfluss auf die Ergebnisse. Weiterhin handelt es sich 

bei den verschiedenen wissenschaftlichen Arbeiten größtenteils um Microarray-Studien, deren 

Ergebnisse auf Genexpressions- und nicht auf Proteinexpressionsanalysen beruhen.  

 

Die Pathway-Enrichment-Analysen lieferten Informationen über signifikant veränderte  

molekulare Mechanismen während der Epileptogenese und deuteten auf eine wesentliche Rolle 

immun- und inflammations-assoziierter Prozesse hin 

Pathway-Enrichment-Analysen ermöglichen die Identifikation veränderter Mechanismen im 

Kontext biologischer Fragestellungen basierend auf dem funktionellen Zusammenhang von 

Proteinen. Bisherige Pathway-Analysen zur Identifikation epileptogenese-assoziierter 

molekularer Mechanismen beruhten größtenteils auf Genexpressions- und Transkriptomstudien 

(GORTER et al. 2006; LUKASIUK et al. 2006; CACHEAUX et al. 2009). Neben bereits 
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beschriebenen Prozessen und Signalwegen lieferten die Pathway-Analysen unserer Studie neue 

und detaillierte Informationen zu regulierten Prozessen auf Proteinebene und in 

unterschiedlichen Gehirnregionen.  

Unter den Top Ten der regulierten Pathways in der Post-Insult-Phase dominierten im HC 

neurodegenerative Prozesse. Dies stimmt mit anderen Studien überein, die gezeigt haben, dass 

die größte Neurodegeneration im HC unmittelbar infolge von Anfällen auftritt (SCHWOB et 

al. 1980; NEVANDER et al. 1985; DU et al. 1995; GORTER et al. 2003). In geringerem 

Ausmaß konnte Neurodegeneration auch im PHC bei Tieren mit spontanen Anfällen dargestellt 

werden. Da in Folge des SE eine zum HC vergleichbare Regulation entsprechender Prozesse 

im PHC nicht nachgewiesen werden konnte, kann davon ausgegangen werden, dass 

Neurodegeneration in der Post-Insult-Phase vorwiegend im HC stattfindet.  

In beiden Gehirnregionen war die Latenzphase geprägt durch Prozesse der molekularen und 

zellulären Plastizität. Unter diesen zeigte der Rho cell motility signaling-Pathway, welcher eine 

bedeutende Rolle beim Neuritenwachstum spielt (NIKOLIC 2002), ein signifikantes 

Enrichment. Die Ergebnisse tragen zur Validierung der Methodik bei, da erneut gezeigt werden 

konnte, dass molekulare Veränderungen während der Latenzphase stattfinden, die zu der 

Bildung eines iktogenen Netzwerkes führen können (GOLDBERG u. COULTER 2013).  

In der Latenzphase und chronischen Phase konnte eine deutliche Regulation integrin-

assoziierter Prozesse unter den Top Ten der regulierten Pathways in HC und PHC nachgewiesen 

werden. Diverse Studien deuten auf eine funktionelle Korrelation zwischen der Lokalisation 

von Integrinen im HC und ihrer Rolle bei neuronalen epileptiformen Aktivitäten hin (CHANG 

et al. 1993; GROOMS u. JONES 1997). Die Integrin-Expression ist am stärksten in 

glutamatergen Neuronen und gering in GABAergen Neuronen sowie Glia-Zellen (GALL u. 

LYNCH 2004). Darüber hinaus konzentriert sich die Expression von Integrinen auf bestimmte 

Areale, wie beispielsweise die synaptische Membran (GALL u. LYNCH 2004). Die 

ausgeprägte Regulation integrin-assoziierter Prozesse, die in der Dissertationsstudie dargestellt 

werden konnte, unterstützt die Hypothese, dass Integrine am Prozess der Epileptogenese 

beteiligt sind (WU u. REDDY 2012).  

Bei Tieren mit spontanen Anfällen wurden im PHC sowohl proliferative als auch 

neurodegenerative Prozesse nachgewiesen. Eine mögliche Erklärung hierfür könnten 

fortgesetzte molekulare Veränderungen im PHC darstellen, die von anfalls-assoziierten 

neurodegenerativen Prozessen begleitet werden. Unter den Top Ten der regulierten Pathways 

im PHC konnte mitunter eine Regulation des Matrix metalloproteinase-Pathways gezeigt 

werden. Matrix-Metalloproteasen spielen eine wichtige Rolle bei der Umstrukturierung der 
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perizellulären Umgebung, indem sie extrazelluläre Matrixproteine spalten (YONG et al. 2001). 

Bei Patienten mit akuter Enzephalopathie und Dysfunktion der Blut-Hirn-Schranke konnten 

hohe Serum-Level von Matrix-Metalloprotease-9 mit prolongierten Anfällen in Verbindung 

gebracht werden (SUENAGA et al. 2008). Darüber hinaus haben Studien gezeigt, dass die 

synaptische Konzentration von Matrix-Metalloprotease-9 einen kritischen Faktor für die 

Entwicklung von Anfällen darstellt (WILCZYNSKI et al. 2008; MIZOGUCHI et al. 2011). Die 

Regulation des Matrix metalloproteinase-Pathways in unserer Studie impliziert eine Bedeutung 

von Matrix-Metalloproteasen-assoziierten Proteinen in der chronischen Phase.  

Analog zu der Studie von GORTER et al. (2006) und den Ergebnissen der Metaanalyse von 

ARONICA u. GORTER (2007) deuteten sowohl die Top Ten der regulierten Pathways als auch 

die spezifische Pathway-Enrichment-Analyse der vorliegenden Dissertationsstudie auf eine 

ausgeprägte Regulation immun- und inflammations-assoziierter Prozesse zu den drei 

untersuchten Zeitpunkten hin. Die Daten bestätigen eine frühe Induktion inflammatorischer 

Signalwege mit anhaltender Regulation während der Latenzphase. Bei Tieren mit spontanen 

Anfällen zeigte sich im Vergleich zum HC ein stärkeres Enrichment immun- und 

inflammations-assoziierter Prozesse im PHC. In Anbetracht der Vielzahl regulierter Pathways 

wird im Folgenden nur auf ausgewählte immunologische und inflammatorische Prozesse 

eingegangen: Signaltransduktion durch TGF beta, TLR-vermittelte Signalwege, leukozytäre 

transendotheliale Migration und die Synthese und Regulation von Prostaglandinen. 

In Folge einer epileptogenen Gehirnverletzung können Störungen der Blut-Hirn-Schranke und 

Albumin-(Alb)-Extravasation zu einer Aktivierung der TGF beta-Signaltransduktion in Glia-

Zellen führen und somit lokale Entzündungsreaktionen verursachen (IVENS et al. 2007; 

CACHEAUX et al. 2009; FRIEDMAN et al. 2009; HEINEMANN et al. 2012; VEZZANI et 

al. 2013b). Durch die kombinierte Pathway-Enrichment-Analyse konnte eine Regulation des 

TGF beta-Pathways im PHC in der Frühphase der Epileptogenese dargestellt werden. Ein 

vergleichbares Enrichment konnte zu diesem Zeitpunkt im HC nicht nachgewiesen werden. 

Dies deutet darauf hin, dass Störungen der Blut-Hirn-Schranke mit nachfolgender Alb-

Extravasation und Induktion der Signalvermittlung durch TGF beta im Rahmen der 

Epileptogenese gewebespezifisch unterschiedlich stark ausgeprägt sind.  

Aktuelle Studien zeigten, dass den TLRs im Kontext inflammatorischer Mechanismen, die mit 

Epilepsie assoziiert sind, eine große Bedeutung zukommt (MAROSO et al. 2010; VEZZANI et 

al. 2011a; WALKER u. SILLS 2012; VEZZANI et al. 2013b). In diesem Kontext bestätigt die 

in unserer Studie nachgewiesene Regulation TLR-assoziierter Proteine und nachgeschalteter 

Signalwege in der Post-Insult-Phase und Latenzphase eine Beteiligung von TLRs an der 
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Iktogenese und Epileptogenese (MAROSO et al. 2010; VEZZANI et al. 2013b). Darüber hinaus 

implizieren die Pathways Myeloid differentiation primary response gene (88), TNF alpha/NF-

κB und Interleukin 1, Interleukin 1 receptor sowie Signal transduction through il1r eine rasche 

Induktion des Myd88-abhängigen TLR-Signalweges in Folge eines epileptogenen Insults.  

Neben den TLRs scheint die transendotheliale Leukozytenmigration eine bedeutende Rolle bei 

der Iktogenese und Epileptogenese zu spielen (SOTGIU et al. 2010; FABENE et al. 2013). Im 

Rahmen der vorliegenden Studie wurde ein signifikantes Enrichment des Leukocyte 

transendothelial migration-Pathways im PHC nach epileptogenem Insult und im HC in der 

Latenzphase nachgewiesen. Darüber hinaus zeigte sich eine Regulation assoziierter Signalwege 

im PHC zehn Tage nach SE. Die verzögerte Regulation im HC könnte darauf hindeuten, dass 

in den untersuchten Gehirnregionen während der Epileptogenese unterschiedliche 

Mechanismen der transendothelialen Leukozytenmigration eine Rolle spielen. Auf der anderen 

Seite könnte die verzögerte Regulation der transendothelialen Leukozytenmigration im HC auf 

einen zum PHC unterschiedlichen Zeitverlauf zurückzuführen sein. 

Bei exzessiven inflammatorischen Prozessen nach epileptogenem Insult und im epileptischen 

Gehirn scheint unter anderem das Enzym Cyclooxygenase-2 eine bedeutende Rolle 

einzunehmen (GORTER et al. 2006; ROJAS et al. 2014). Des Weiteren zeigten TU u. BAZAN 

(2003) eine Aufregulation des Proteins Phospholipase A2 im Kindling-Modell. In diesem 

Kontext konnte in der vorliegenden Dissertationsstudie zehn Tage nach SE in beiden 

Gehirnregionen eine Regulation des Prostaglandin Synthesis and Regulation-Pathways sowie 

ein signifikantes Enrichment des Phospholipase A2-Pathways im HC dargestellt werden. In der 

chronischen Phase der Epileptogenese ließ sich der Prostaglandin Synthesis and Regulation-

Pathway nur im PHC darstellen. Auf der einen Seite könnten die Ergebnisse darauf hindeuten, 

dass die Cyclooxygenase-2 induzierte Prostaglandin-Synthese nicht nur traumatisch bedingt 

und anfalls-assoziiert auftritt, sondern auch eine Rolle bei der Epileptogenese spielt. 

Andererseits könnte die Aufregulation von Annexin A1 (Anxa1) durch Hemmung der 

Phospholipase A2 (LIU et al. 2007) in der Latenzphase protektive Funktionen erfüllen und 

damit zu einer Reduktion der Cyclooxygenase-2-Aktivität im epileptischen Gehirn beitragen.  

 

Expressionsmuster differentiell exprimierter TLR-assoziierter Proteine im Zeitverlauf der 

Epileptogenese 

Die funktionelle Datenanalyse deutete auf eine Regulation TLR-assoziierter Proteine hin, die 

in der Lage sind, die TLR-abhängige Signalvermittlung zu beeinflussen und zu modulieren. 

Eine gesteigerte Signaltransduktion der TLRs, insbesondere von TLR4, wird als 
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Schlüsselkomponente der inflammatorischen Antwort nach epileptogenem Insult und im 

epileptischen Gehirn angesehen (MAROSO et al. 2010; FALIP et al. 2013; VEZZANI et al. 

2013b). In diesem Kontext fokussierten bisherige Epilepsie- und Epileptogenese-Studien 

größtenteils auf TLR4-assoziierte Proteine, darunter Myeloid-Related Protein 8, Interleukin-1 

type 1 receptor, Il1β und im Besonderen Hmgb1 (MAROSO et al. 2010; MAROSO et al. 2011; 

WALKER u. SILLS 2012; GAN et al. 2014). Detaillierte Analysen zum Expressionsmuster 

TLR-assoziierter Proteine wurden bislang noch nicht durchgeführt. Die vorliegende Studie 

liefert in diesem Zusammenhang bedeutende Informationen über die chronologische 

Regulation von Proteinen, die in die TLR-abhängige Signalvermittlung involviert sind.  

Das Protein Rps27a spielt eine Rolle bei den MyD88-abhängigen und –unabhängigen TLR-

Signalwegen (Reactome, MILACIC et al. 2012; CROFT et al. 2014). Die Rekrutierung von 

Myd88 durch TLRs löst nachgeschaltete Signalwege aus, die zu der Freisetzung pro-

inflammatorischer Zytokine führen (AKIRA et al. 2006). Demzufolge könnten die signifikant 

erhöhten Expressionsraten von Rps27a im PHC mit einer gesteigerten Signalvermittlung durch 

TLRs in der Früh- und Spätphase der Epileptogenese zusammenhängen. Die Dynamine Dnm1, 

-2 und -3 gehören zur Familie der Dynamin GTPasen. Sie sind in der Lage, die Expression 

verschiedener TLRs an der Zelloberfläche zu regulieren (BARTON u. KAGAN 2009). 

HUSEBYE et al. (2006) beschrieben in ihrer Studie, dass eine Hemmung von Dynamin die 

LPS-induzierte NF-κB-Aktivierung über TLR4 deutlich erhöht. Darüber hinaus zeigten 

KAGAN et al. (2008), dass eine Internalisierung von TLR4 durch Dynamin nicht nur den 

TLR4-Signalweg herunterreguliert, sondern auch zu einer Aktivierung des TRIF-related 

adaptor molecule (TRAM)-TRIF-Signalweges und Induzierung von Type I interferon führt. 

Das in unserer Studie nachgewiesene unterschiedliche Expressionsmuster der Dynamine in HC 

und PHC scheint demnach mit einer komplexen Regulation und Feinregulation der TLRs sowie 

assoziierter Signalwege zusammenzuhängen. Ferner deutet das Expressionsmuster der 

Dynamin-Isoformen und im Besonderen der Dnm1-Transkripte auf eine spezifische Regulation 

von Transportmechanismen innerhalb bestimmter Zellkompartimente hin (URRUTIA et al. 

1997; ALTSCHULER et al. 1998). In Anbetracht der komplexen Auf- und Herunterregulation 

der Dynamin-Isoformen in beiden Gehirnregionen zu verschiedenen Zeitpunkten der 

Epileptogenese scheint es von besonderem Interesse zu sein, die Auswirkungen des 

intrazellulären Transportes und der oberflächlichen Expression von TLRs in weiteren Studien 

genauer zu untersuchen.  

Im Kontext des intrazellulären TLR-Transports konnte im HC in der Post-Insult-Phase eine 

Überexpression des Proteins Tmed7 dargestellt werden. Tmed7 reguliert unter anderem den 
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zellulären Proteintransport von TLR4 zur Membranoberfläche (LIAUNARDY-JOPEACE u. 

GAY 2014). Demnach könnte die rasche Aufregulation von Tmed7 die TLR-vermittelte 

hippocampale Signaltransduktion nach epileptogenem Insult begünstigen.  

Die Integrine Itgb2 und Itgam stellen Zelltyp spezifische Modulatoren der TLR-abhängigen 

Signalvermittlung dar (YEE u. HAMERMAN 2013; LING et al. 2014). Itgam ist in der Lage, 

den zellulären Transport sowie die Signalvermittlung von TLR4 zu modulieren (LING et al. 

2014). Demgegenüber konnte in der Studie von YEE u. HAMERMAN (2013) gezeigt werden, 

dass Itgb2 als negativer Regulator der TLR-Signalvermittlung fungiert, indem es den NF-κB-

Signalweg hemmt. Gleichzeitig aktiviert und fördert Itgb2 die inflammatorische Signalkaskade 

von P38 mitogen-activated protein kinases (YEE u. HAMERMAN 2013). Die Überexpression 

dieser Integrine in beiden Gehirnregionen unterstreicht die Bedeutung TLR-assoziierter 

Transportmechanismen sowie der Feinregulation inflammatorischer Signalwege in der Post-

Insult-Phase und Latenzphase.  

Die Proteine Wdr34, Tollip und Usp7 hemmen als negative Regulatorproteine die TLR-

vermittelte Aktivierung von NF-κB (DIDIERLAURENT et al. 2006; GAO et al. 2009; 

COLLERAN et al. 2013). Die Überexpression dieser Proteine in der vorliegenden Studie 

könnte auf zelleigene Gegenregulationsmechanismen zurückzuführen sein, die einer exzessiven 

Signaltransduktion durch TLRs entgegenwirken. In diesem Zusammenhang dient die 

Aufregulation von Tollip im HC und Wdr34 im PHC zwei Tage nach SE möglicherweise dem 

zellulären Schutz vor zusätzlicher Schädigung durch inflammatorische Prozesse nach 

epileptogenem Insult. Im Gegensatz zu der Überrepräsentation von Usp7 im HC zehn Tage 

nach SE, zeigte sich im PHC zwei und zehn Tage nach SE eine Herunterregulation von Usp7 

und Tollip. Dies könnte ein Versagen der zellulären Schutzmechanismen im PHC implizieren, 

wodurch die exzessive Signaltransduktion durch TLRs während dem Prozess der 

Epileptogenese weiter begünstigt wird. 

Zusätzlich zu den exogenen pathogen-assoziierten Molekülen wurden in der Literatur bereits 

zahlreiche endogene stress- und gewebeschädigungs-assoziierte Moleküle als Liganden der 

TLRs, insbesondere von TLR4, beschrieben (VABULAS et al. 2002b; PICCININI u. 

MIDWOOD 2010; PERI u. CALABRESE 2014). In diesem Kontext wird insbesondere die 

Rolle von Hspa1a wissenschaftlich kontrovers diskutiert. Verschiedene Autoren beschrieben 

eine agonistische Funktion von Hspa1a auf TLRs mit nachfolgender Freisetzung von Zytokinen 

(ASEA et al. 2000; ASEA et al. 2002; VABULAS et al. 2002a). Demgegenüber zeigten die 

Studien anderer Arbeitsgruppen eine antagonistische Rolle des Hitzeschockproteins auf die 

Signalvermittlung durch TLRs (SINGLETON u. WISCHMEYER 2006; FERAT-OSORIO et 
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al. 2014). Die frühe Induktion und anhaltende Aufregulation von Hspa1a in HC und PHC in 

der Latenzphase könnte demnach sowohl pro- als auch anti-inflammatorische Auswirkungen 

auf die Epileptogenese haben. Demnach sollten zukünftig weitere Untersuchungen 

durchgeführt werden, um die Funktionsmechanismen von Hspa1a im Zusammenhang mit TLR-

assoziierter Signaltransduktion zu untersuchen. Immunhistochemisch konnte die 

Überexpression von Hspa1a in der Post-Insult-Phase validiert werden. Allerdings ließen sich 

zehn Tage nach SE nur vereinzelte Zellen im Hilus der hippocampalen Formation darstellen. 

Die Diskrepanz zwischen Proteomanalyse und Immunhistochemie könnte sich in 

Konformationsänderungen des Hspa1a-Moleküls während der Latenzphase begründen oder auf 

die geringere Sensitivität der Immunhistochemie im Vergleich zur differentiellen 

Proteomanalyse zurückzuführen sein. Neben Hspa1a wurde im Rahmen der vorliegenden 

Studie eine Aufregulation der TLR-Liganden Hsp90b1, Hmgb1 und Tnc zu unterschiedlichen 

Zeitpunkten der Epileptogenese nachgewiesen. Die Überexpression dieser Proteine könnte 

zusätzlich zu einer Aktivierung und Modulation der Signalvermittlung durch TLRs während 

der Epileptogenese führen. Informationen über die TLR-Liganden sind hinsichtlich der 

derzeitigen Bemühungen zur Entwicklung therapeutischer Strategien und Identifizierung von 

Biomarkern, welche die TLR-vermittelte Neuroinflammation widerspiegeln, von besonderer 

Bedeutung.  

 

Alternative Aktivierung von Mikroglia durch Purinozeptoren. Neue Erkenntnisse zur 

Regulation von P2ry12 während dem Prozess der Epileptogenese 

In Anbetracht der Tatsache, dass das funktionelle Stadium von Glia-Zellen durch 

Purinozeptoren moduliert werden kann (FARBER u. KETTENMANN 2005; MAGNI u. 

CERUTI 2014), wurde in unserer Studie das differentielle Expressionsmuster dieser 

Rezeptoren genauer analysiert. Der metabotrope Purinozeptor P2ry12 spielt eine wichtige Rolle 

bei der Motilität und Chemotaxis von Mikroglia (HONDA et al. 2001; FARBER u. 

KETTENMANN 2005; HAYNES et al. 2006). Die Expression von P2ry12 beschränkt sich 

hauptsächlich auf Mikroglia (SASAKI et al. 2003); allerdings wird diese in Folge einer 

Mikroglia-Aktivierung extrem reduziert (HAYNES et al. 2006; ORR et al. 2009). Es konnte 

nachgewiesen werden, dass Mikroglia von P2ry12-defizienten Mäusen nicht in der Lage sind 

Nukleotide zu polarisieren, diesen entgegen zu migrieren oder Fortsätze auszubilden 

(HAYNES et al. 2006). Darüber hinaus zeigten EYO et al. (2014) im Kainat-Modell eine 

Unterdrückung der anfalls-assoziierten Steigerung mikroglialer Fortsätze und verstärkte 

Anfallsaktivität bei P2ry12-Knockout-Mäusen. Nach aktuellem Wissensstand wurden noch 
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keine Studien durchgeführt, welche die Regulation von P2ry12 während dem Prozess der 

Epileptogenese analysiert haben. Durch die differentielle Proteomanalyse konnte eine 

verzögerte Induktion des Purinozeptors in beiden Gehirnregionen während der Latenzphase 

nachgewiesen werden. Hinsichtlich der Rolle von P2ry12 auf die Aktivierung von Mikroglia, 

könnte die Überexpression des Purinozeptors zu einer weiteren Sensibilisierung der Mikroglia 

führen und eine Veränderung ihres funktionellen Stadiums in den betroffenen Gehirnregionen 

während der Epileptogenese bedingen.  

Das Protein P2rx7 stellt einen weiteren Purinozeptor dar, der bei Mikroglia die Ausschüttung 

pro-inflammatorischer Zytokine wie Tumornekrosefaktor-α, IL-1β, Superoxid und NO 

induzieren kann (HIDE et al. 2000; GENDRON et al. 2003; PARVATHENANI et al. 2003). 

Eine epilepsie-assoziierte Regulation von P2rx7 wurde bereits in mehreren Studien im SE-

Modell nachgewiesen (HENSHALL et al. 2013). In der vorliegenden Studie konnte eine 

verzögerte hippocampale Induktion von P2rx7 während der Latenzphase dargestellt werden. In 

Anbetracht jüngster Ergebnisse, die eine Herunterregulation des α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptor-(AMPAR)-Transports und post-synaptischer Effizienz 

durch P2rx-Rezeptoren beschreiben (POUGNET et al. 2014), könnte die Überexpression von 

P2rx7 weitere Auswirkungen auf die Epileptogenese haben.  

Die immunhistochemische Analyse validierte das differentielle Expressionsmuster beider 

Purinozeptoren im HC und von P2ry12 im PHC in der Latenzphase. Die immunhistochemisch 

nachweisbare konstitutive Expression von P2rx7 im PHC zehn Tage nach SE sowie von beiden 

Purinozeptoren in den Gehirnregionen HC und PHC in der Post-Insult-Phase und chronischen 

Phase, konnte durch die differentielle Proteomanalyse nicht nachvollzogen werden. Mögliche 

Gründe der fehlenden Proteinidentifikation können methodische Komplikationen sein, wie 

überlappende Signale ko-eluierter Peptide, reduzierte Messwerte durch zu stark verdünnte 

Peptide oder Hintergrundrauschen welches durch chemische Einflüsse bedingt sein kann 

(LEVIN u. BAHN 2010; NEILSON et al. 2011). 

 

Expressionsmuster von Proteinen im Rahmen der transendothelialen Leukozytenmigration 

während der Epileptogenese 

Experimentelle Studien und Patientendaten lieferten Hinweise für eine erhöhte 

Leukozyteninfiltration in das epileptische Gehirn (FABENE et al. 2008; ZATTONI et al. 2011; 

FABENE et al. 2013). Die Hypothese einer funktionellen Relevanz der transendothelialen 

Leukozytenmigration für die Iktogenese und Epileptogenese begründet sich auf Studien an 

Nager-Modellen und Fallberichte von Patienten, welche die Wirkung einer anti-leukozytären 
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Adhäsions-Therapie bestätigten (SOTGIU et al. 2010; FABENE et al. 2013).  

In der vorliegenden Studie konnte eine Regulation von Proteinen nachgewiesen werden, die 

eine bedeutende Rolle bei der transendothelialen Leukozytenmigration spielen. Die Daten 

liefern neue Erkenntnisse zum Expressionsmuster dieser Proteine während dem Prozess der 

Epileptogenese. Interessanterweise zeigte die Analyse eine Regulation der Proteine Msn, Ezr, 

Vcl und Actn1, die eine wichtige Rolle bei der Bildung von endothelialen Docking-Strukturen 

spielen (GEIGER et al. 2001; BARREIRO et al. 2002). Diese Docking-Strukturen bilden Ringe 

aus Adhäsionsmolekülen, welche von endothelialen kuppelähnlichen Strukturen umgeben sind 

und damit die Adhäsion von Leukozyten an Endothelzellen ermöglichen (PETRI et al. 2008). 

Das globale Expressionsmuster der Proteine Msn, Ezr, Vcl und Actn1 zeigte im Rahmen der 

vorliegenden Studie eine frühe und anhaltende Aufregulation in beiden Gehirnregionen. Eine 

Ko-Regulation wurde allerdings nur für die Proteine Msn und Actn1 nachgewiesen, was darauf 

hindeutet, dass unterschiedliche Mechanismen zu einer gesteigerten Leukozytenadhäsion in HC 

und PHC führen. Darüber hinaus konnte nur im PHC acht Wochen nach SE eine differentielle 

Expression von Proteinen nachgewiesen werden, die bei der Bildung von Docking-Stukturen 

an Endothelzellen beteiligt sind. Dies könnte auf eine fortgesetzte Leukozytenmigration im 

PHC während der chronischen Phase zurückzuführen sein.  

Integrine stellen eine der zwei wichtigsten Rezeptor-Familien dar, die bei der 

Leukozytenadhäsionskaskade beteiligt sind (LEY et al. 2007). Durch die differentielle 

Proteomanalyse wurde eine deutliche Regulation der Leukozyten-Integrine Itgb1, Itgb2 und 

Itgam in beiden Gehirnregionen nachgewiesen. Im HC wurde eine verzögerte Aufregulation 

der Integrine in der Latenzphase beobachtet. Demgegenüber zeigte sich im PHC bereits eine 

frühe und anhaltende Aufregulation von Itgb1 und -2. Eine Überexpression von Itgb1 konnte 

in beiden Gehirnregionen auch in der chronischen Phase nachgewiesen werden. Das zeitliche 

Expressionsmuster der Integrine deutet auf eine progressive Zunahme der Leukozytenmigration 

in das Gehirnparenchym mit deutlicher Infiltration von Leukozyten zehn Tage nach SE hin. 

Zumindest teilweise scheint die Migration von Leukozyten auch während der chronischen 

Phase stattzufinden.  

Verletzungen des Gehirns und eine gesteigerte transendotheliale Leukozytenmigration können 

eine Dysfunktion der Blut-Hirn-Schranke verursachen und damit zu einer veränderten 

Expression von Tight Junction-Proteinen führen (MORIN-BRUREAU et al. 2011; KIM et al. 

2012; DEVINSKY et al. 2013). In der vorliegenden Studie zeigten die Tight Junction-Proteine 

Jam3, Ctnna1 und Ctnna2 ein gewebe- und zeitspezifisches differentielles Expressionsmuster. 

Die Regulation dieser Tight Junction-Proteine bestätigt die Ergebnisse aus vorangegangenen 
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Studien zu signifikanten Veränderungen der Blut-Hirn-Schranke in der Früh- und Latenzphase, 

welche in unterschiedlichen Reviews diskutiert wurden (HEINEMANN et al. 2012; KIM et al. 

2012; MARCHI et al. 2012; VAN VLIET et al. 2015). Insbesondere die Aufregulation 

verschiedener Tight Junction-Proteine könnte auf kompensatorische Mechanismen hindeuten, 

welche in Folge einer Dysfunktion der Blut-Hirn-Schranke nach epileptogenem Insult 

auftreten. Auf der anderen Seite existieren Hinweise darauf, dass eine Assoziation der α-

Catenine mit dem Cadherin-Catenin-Komplex die Voraussetzung für eine effiziente 

transendotheliale Leukozytenmigration darstellt (VAN BUUL et al. 2009). 
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VII. ZUSAMMENFASSUNG 

Bei Hund und Katze sowie beim Menschen zählen Epilepsien zu den häufigsten chronischen 

neurologischen Erkrankungen. Im Hinblick auf eine vollständige Prävention der 

Epilepsieentstehung (Epileptogenese) haben sich bis heute alle therapeutischen Strategien als 

klinisch unwirksam erwiesen. Ein besseres Verständnis der Mechanismen, die der 

Epileptogenese zugrunde liegen, stellt die Grundvoraussetzung für die Identifizierung von 

therapeutischen Zielstrukturen und Biomarkern dar. Differentielle Proteomanalysen könnten 

wesentlich dazu beitragen die komplexen epileptogenese-assoziierten molekularen 

Veränderungen zu erforschen. Daher wurde in der vorliegenden Dissertationsstudie eine 

differentielle Proteomanalyse in einem Tiermodell der Epileptogenese durchgeführt. Die 

Induktion der Epileptogenese erfolgte in einem elektrischen Post-Status-Epilepticus-(SE)-

Modell bei weiblichen Sprague-Dawley-Ratten. Hippocampales (HC) und parahippocampales 

(PHC) Gehirngewebe von SE- und Kontrolltieren wurde zu drei unterschiedlichen Zeitpunkten 

(zwei Tage, zehn Tage und acht Wochen nach SE) entnommen und mittels markierungsfreier 

Liquid-Chromatographie-Tandem-Massenspektrometrie analysiert. Die Zeitpunkte reflektieren 

die Post-Insult-Phase, die Latenzphase und die chronische Phase mit spontanen 

wiederkehrenden Anfällen. Unter Berücksichtigung der besonderen Rolle inflammatorischer 

Signalwege im Kontext der Epileptogenese, erfolgte neben der unspezifischen Datenanalyse 

eine fokussierte Auswertung immun- und inflammations-assoziierter Prozesse. Die 

anschließende immunhistochemische Untersuchung der Gewebe diente sowohl der Validierung 

der Methodik, als auch der Validierung des differentiellen Expressionsmusters ausgewählter 

Proteine.  

Durch die Studie konnte gezeigt werden, dass zu allen untersuchten Zeitpunkten im PHC mehr 

Proteine reguliert waren als im HC. Des Weiteren ließen sich in beiden Gehirnregionen die 

umfangreichsten molekularen Veränderungen in der Latenzphase nachweisen. Durch die 

Pathway-Enrichment-Analyse konnte im HC während der Post-Insult-Phase eine ausgeprägte 

Neurodegeneration dargestellt werden. Weiterhin zeigte sich in beiden Gehirnregionen eine 

Regulation Integrin-assoziierter Prozesse während der Latenzphase und der chronischen Phase. 

Ein signifikantes Enrichment neurodegenerativer und proliferativer Signalwege ließ sich im 

PHC acht Wochen nach SE darstellen. Im Hinblick auf immun- und inflammations-assoziierte 

Prozesse konnte eine Überrepräsentation entsprechender Pathways während der Post-Insult-

Phase und der Latenzphase nachgewiesen werden. Die regulierten Pathways umfassten unter 

anderem Toll-like-Rezeptor-(TLR)-vermittelte Signalwege, Synthese und Regulation von 

Prostaglandinen, leukozytäre transendotheliale Migration und die Signaltransduktion durch 
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transformierenden Wachstumsfaktor-β (TGF beta). Die inflammatorische Antwort während der 

chronischen Phase zeigte im PHC eine stärkere Regulation als im HC. 

Im Rahmen der immunhistochemischen Validierung konnte das differentielle 

Expressionsmuster der Proteine Heat shock 70 kDa protein (Hspa1a), P2Y Purinoceptor 12 

(P2ry12) und P2X Purinoceptor 7 (P2rx7) bestätigt werden, die eine bedeutende Rolle bei der 

Aktivierung von Mikroglia spielen.  

Die Ergebnisse der vorliegenden Studie liefern neue Erkenntnisse über die komplexen 

molekularen Veränderungen der Epileptogenese. Darüber hinaus deuten sie auf eine 

unterschiedliche Veränderung der molekularen Muster von HC und PHC während dem 

Zeitverlauf der Epileptogenese hin. Die Daten stellen zudem neue Informationen über das 

differentielle Expressionsmuster zahlreicher Proteine zur Verfügung, die bei wichtigen 

inflammatorischen Prozessen und Signalwegen eine Rolle spielen. Von besonderer Bedeutung 

ist hierbei die Regulation TLR-assoziierter Proteine und Purinozeptoren, die zu den essentiellen 

Modulatoren der inflammatorischen Antwort gezählt werden.  

Zusammenfassend trägt die vorliegende Arbeit wesentlich zu unserem Verständnis über die 

molekularen und im Besonderen die inflammatorischen Mechanismen der Epileptogenese bei. 

Die Ergebnisse liefern eine umfassende Grundlage für die zukünftige Identifikation und 

Entwicklung von therapeutischen Zielstrukturen und Biomarkern für molekulare 

Bildgebungsverfahren.  

Die funktionellen Einflüsse einzelner Proteine sollten in zukünftigen Studien (zum Beispiel in 

Knock-out-Maus-Modellen) bestätigt und genauer untersucht werden. 
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VIII. SUMMARY 

Epilepsies are one of the most common chronic neurologic disorders in dogs and cats as well 

as in humans. Regarding the prevention of the development of epilepsy (epileptogenesis), to 

date all therapeutic strategies have proved to be clinically ineffective. A better understanding 

of the basic mechanisms of epileptogenesis is a presupposition for the identification of 

therapeutic targets and biomarkers. Differential proteome analysis can provide substantial 

information about the molecular alterations during epileptogenesis. Thus, a differential 

proteome analysis was performed in an animal model of epileptogenesis. For this purpose, an 

electrical post-status epilepticus-(SE)-model was used to induce epileptogenesis in female 

Sprague Dawley rats. Hippocampal (HC) and parahippocampal cortex (PHC) tissue were 

collected from SE- and control animals at three different time points (two days, ten days and 

eight weeks after SE). Samples were subjected to label-free liquid chromatography-tandem 

mass spectrometry. The time points reflect the early post-insult phase, the latency phase and 

the chronic phase with spontaneous recurrent seizures. Considering the key role of 

inflammatory signalling during epileptogenesis, data analysis focused on processes linked with 

immune and inflammatory responses. Subsequently immunohistochemistry was performed for 

the validation of the methodology and selected proteins of interest.  

The study indicates, that in the PHC more proteins were regulated than in the HC at all three 

time points. Furthermore the most comprehensive molecular alterations were identified during 

the latency phase in both brain regions. Pathway enrichment analysis revealed a pronounced 

neurodegeneration in the HC during the early post-insult phase. In addition, both brain regions 

showed a regulation of integrin-associated processes during the latency phase and during the 

chronic phase. Eight weeks post-SE, a significant enrichment of neurodegenerative and 

proliferative signalling was identified in the PHC. With regard to processes linked with immune 

and inflammatory responses pathway enrichment analysis revealed an overrepresentation of 

respective pathways during the post-insult phase and during the latency phase. Among others, 

these pathways comprised pathways associated with Toll-like receptor-(TLR)-signalling, 

prostaglandin synthesis and regulation, leukocyte transendothelial migration and signalling of 

cytokine transforming growth factor beta (TGF beta). During the chronic phase inflammatory 

signalling in the PHC exceeded that in the HC.  

Immunohistochemistry confirmed differential expression of the proteins heat shock 70 kDa 

protein (Hspa1a), P2Y purinoceptor 12 (P2ry12) and P2X purinoceptor 7 (P2rx7) which play a 

major role in the activation of microglia.  

In summary, the data provide novel information about the complex molecular alterations during 
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epileptogenesis. The results point to different alterations of molecular patterns of hippocampal 

and parahippocampal cortex tissue during the time course of epileptogenesis. Moreover, novel 

information about the differential expression of numerous proteins was shown, which play an 

important role in major inflammatory signalling events. In this context the regulation of TLR-

associated proteins and purinoceptors is of particular importance, since these proteins are 

crucial modulators of the inflammatory response.  

The study contributes significantly to our current understanding of the molecular, and in 

particular the inflammatory mechanisms during epileptogenesis. The data sets provide a 

comprehensive basis for the future identification and development of therapeutic targets and of 

biomarkers for molecular imaging. 

The functional impact of individual proteins has to be confirmed in follow-up studies, for 

instance in knockout mouse models.  
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X. ANHANG 

1. Lösungen und Substanzen  

 

Blocking-Lösung 

• in Carrier-Lösung 

• 11 % Normalserum (Ziege) 

• 2 % Bovines Serumalbumin 

 

Carrier-Lösung 

• in TBS 

• 1 % Normalserum (Ziege) 

• 1 % Bovines Serumalbumin 

• 0,3 % Triton X 

 

Chrom-Gelatine-Lösung 

• 0,7 g Gelatine + 0,07 g Chrom III 

• mit 100 ml Aqua dest. vermischen 

• langsam auf 60 °C erhitzen, bis sich die Gelatine gelöst hat 

• langsam abkühlen lassen 

• eine Messerspitze Thymol dazu geben 

 

DAB-Lösung 

• 1 mg DAB x 4 HCL in 100 µl Aqua dest. lösen  

• 4 ml Tris/Ni-Lösung 

• 1 µl 30 %iges H2O2 frisch hinzufügen  

 

Gefriermedium 

• 4,28 g Glukose 

• 0,07 g MgCl2-Hexahydrat in 25 ml 0,1 M Phosphatpuffer lösen 

• ad 50 ml Glycerin 

 

 



X. Anhang  130 

30 % Glukose-Lösung 

• 6 g Glukose 

• ad 20 g 0,1 M Phosphatpuffer  

 

Natrium-Citrat-Puffer 

• 2,94 g tri-NaCitrat Dihydrat auf 1000 ml Aqua dest. 

• einstellen auf pH 9,0 mit NaOH 

 

4 % Paraformaldehydlösung 

• 100 ml 8 % Paraformaldehydlösung 

• mit 100 ml 0,2 M Phosphatpuffer verdünnen 

 

8 % Paraformaldehydlösung (Stammlösung) 

• 800 ml Aqua dest. auf 60-70 °C erhitzen  

• 80 g Paraformaldehyd zufügen 

• Tropfenweise 6 M NaOH zugeben bis die Lösung klar wird 

• abkühlen lassen 

• auf 1000 ml mit Aqua dest. auffüllen und anschließend filtrieren 

 

Phosphatgepufferte Kochsalzlösung (PBS, pH 7,2) 

• 8,0 g NaCl 

• 0,2 g KCl  

• 1,44 g Na2HPO4 

• 0,27 g KH2PO4 

• mit Aqua dest. auf 1000 ml auffüllen 

 

0,01 M Phosphatgepufferte 0,9 % Kochsalzlösung  

• 0,9 % NaCl 

• 0,2 M Phosphatpuffer 

• mit HCl auf pH 7,6 einstellen  

 

0,4 M Phosphatpuffer (Stammlösung) 

• 45,43 g/l Na2HPO4 (wasserfrei) 
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• 12,48 g/l Na2HPO4 x 2 H2O 

• in Aqua dest. und mit 1 M NaOH auf pH 7,4 einstellen 

 

0,05 M Tris gepufferte Saline (TBS) 

• 0,9 % NaCl  

• 0,05 M Tris[hydroxymethyl]-aminomethan 

• mit 32 %iger HCl auf pH 7,6 einstellen 

 

Tris-Nickel-Lösung 

• in 0,05 M TBS 

• 0,6 % Ammonium-Nickelsulfat-Hexahydrat 

• mit 2 M NaOH auf pH 7,6 einstellen 

 

 

Substanzen 

 

Substanz Bezugsquelle 

Ammonium-Nickelsulfat-Hexahydrat 
Sigma-Aldrich Chemie GmbH, München, 

Deutschland 

Anti-Hsp70/Hsp72 Antikörper (Maus, 

monoklonal) 

Enzo Life Sciences GmbH, Lörrach, 

Deutschland 

Anti-P2x7 Antikörper (Kaninchen, polyklonal) 
Merck Chemicals GmbH, Schwalbach, 

Deutschland 

Anti-P2y12 Antikörper (Kaninchen, polyklonal) 
Department of Physiology, UCSF, San 

Francisco, USA 

Augensalbe (Bepanthen®) Bayer Vital GmbH, Leverkusen, Deutschland 

Biot. Ziege anti-Kaninchen Antikörper 

(polyklonal) 
Dako, Glostrup, Dänemark 

Biot. Ziege anti-Maus Antikörper  

(polyklonal) 
Dako, Glostrup, Dänemark 

Bovines Serumalbumin 
Sigma-Aldrich Chemie GmbH, München, 

Deutschland 

Bupivacain (JENAPHARM®) mibe GmbH Arzneimittel, Brehna, Deutschland 

Chloralhydrat Merck KGaA, Darmstadt, Deutschland 
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Chrom(III)–Kaliumsulfat-Dodecahydrat Carl Roth GmbH & Co., Karlsruhe, Deutschland 

3,3´Diaminobenzidin (DAB) Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Diaminobenzidin-Reaktionslösung 

(DAB Kit SK-4100) 
Vector Laboratories, Burlingame, USA 

Diazepam (Diazepam-ratiopharm®) ratiopharm GmbH, Ulm, Deutschland 

DNaseI Sigma-Aldrich, Deisenhofen, Deutschland 

Einbettmedium (Tissue freezing medium®) Leica Biosystems, Nußloch, Deutschland 

Eindeckmittel (Entellan®) Merck KGaA, Darmstadt, Deutschland 

Ethacridinlactat-Monohydrat (Rivanol®) Dermapharm AG, Grünwald, Deutschland 

Ethanol 95 % und 99,9 % für Immunhistochemie AgrAlko AG, München, Deutschland 

Ethanol 99 % für Paraffinfixierung CLN GmbH, Niederhummel, Deutschland 

Gelatine, gepulvert Merck KGaA, Darmstadt, Deutschland 

Gentamicinsulfat Sigma-Aldrich, München, Deutschland 

Kaltpolymerisierender Kunststoff (Paladur®) Fa. Heraeus, Hanau, Deutschland 

Magnesiumchlorid-Hexahydrat Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Marbofloxacin (Marbocyl®) Vétoquinol, Ravensburg, Deutschland 

Meloxicam (Metacam®) Boehringer Ingelheim, Deutschland 

Natriumchlorid-Lösung (isoton) 
B.Braun Vet Care GmbH, Tuttlingen, 

Deutschland 

Natrium-Citrat-Dihydrat Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Natronlauge Merck KGaA, Darmstadt, Deutschland 

Paraformaldehyd Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Pentobarbital (Narcoren®) Sigma-Aldrich GmbH, München, Deutschland 

Ringerlactat-Lösung (Ri-Lac®) 
Hartmann B.Braun Vet Care, Metsungen, 

Deutschland 

Serum (Ziege) Vector Laboratories, Burlingame, USA 

Spezialparaffin SAV LP GmbH, Flintsbach a. Inn, Deutschland 

Streptavidin/Meerrettichperoxidase Dianova GmbH, Hamburg, Deutschland 

Suprarenin Henry Schein Vet, Stuttgart, Deutschland 

Thymol Carl Roth GmbH & Co., Karlsruhe, Deutschland 
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Tris[hydroxymethyl]-aminomethan Thermo Scientific, Rockford, USA 

Triton x – 100 Applichem, Darmstadt, Deutschland 

Trypsin-EDTA Promega, Mannheim, Deutschland 

Trypsin Inhibitor aus Glycine max (Sojabohne), 

Typ I-S 
Sigma-Aldrich, Deisenhofen, Deutschland 

Wasserstoffperoxid Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Xylol-Ersatzmedium (Rotihistol®) Carl Roth GmbH & Co., Karlsruhe, Deutschland 

Xylol-Isomerengemisch W. Gräen GmbH & Co, München, Deutschland 

 

 

2. Geräte 

 

Geräte und Software für die in vivo Versuche 

 

Geräte / Software Hersteller 

Analog-Digitalwandler PowerLab/800s ADInstruments Ltd, Hastings, UK 

Beobachtungskäfige (Glasaquarien) Domes Aquaristik, München, Deutschland 

Dentalbohrer Fa. Karl Fischer, Pforzheim, Deutschland 

Digi-Protect Searcher 6.275 beta software ABUS Security-Tech, Affing, Deutschland 

EEG- und Stimulationskabel Conrad Elektronik, München, Deutschland 

EEG-Auswertungssoftware Chart 5 ADInstruments, Spechbach, Deutschland 

Ein-Kanal-Verstärker Animal Bio Amp ADInstruments Ltd, Hastings, UK 

Personalcomputer Verschiedene Bezugsquellen 

Stereotaktischer Apparat 
TSE Systems GmbH, Bad Homburg, 

Deutschland 

Stimulationseinheit (Stimulus Isolator A365 und 

Accupulsor A310C) 

World Precision Instruments, Berlin, 

Deutschland 

Tierkäfige 
EHRET GmbH & Co. KG, Emmendingen, 

Deutschland 

Videoüberwachung (CCD-/ GCD-Kameras) Conrad Elektronik, München, Deutschland 
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Weitere Geräte und Software 

Geräte / Software Hersteller / URL 

Axiocam Mrc 
Carl Zeiss, Microimaging GmbH, Göttingen, 

Deutschland 

BH2-Lichtmikroskop Olympus, Japan 

Bildanalysesoftware KS 400 
Carl Zeiss, Microimaging GmbH, Göttingen, 

Deutschland 

ConsensusPathDB http://consensuspathdb.org/ 

Excel 2010/2013 Microsoft, Redmond, WA, USA 

Genomatix https://www.genomatix.de/ 

Kryostat HM560M 
Microm International GmbH, Walldorf, 

Deutschland 

LTQ Orbitrap XL 
Thermo Fisher Scientific GmbH, Bonn, 

Deutschland 

Mascot Software Version 2.4 Matrix Science Ltd., London, UK 

Nano Trap Säule und analytische Säule für 

HPLC-System 
Dionex GmbH, Idstein, Deutschland 

Objektträger Histobond 
Paula Marienfeld GmbH und Co. KG, Lauder-

Königshofen, Deutschland 

Paraffin-Ausgießstation TES 99 Medite Medizintechnik, Burgdorf, Deutschland 

Paraffin-Einbettungsautomat (Histomaster 

Modell 2050/DI) 
Bavimed, Birkenau, Deutschland 

PowerPoint 2010/2013 Microsoft, Redmond, WA, USA 

Progenesis Software Version 2.5 
Nonlinear Dynamics Limited, Newcastle upon 

Tyne, UK 

Plattformschüttler Unimax 1010 
Heidolph Instruments GmbH & Co. KG, 

Schwabach, Deutschland 

Programmiersprache R http://www.r-project.org/ 

PANTHER Classification System http://pantherdb.org/ 

Rotationsmikrotom (MICROM) 
Cambridge Instruments GmbH, Nußloch, 

Deutschland 

Ultimate3000 nano HPLC-System Dionex, Sunnyvale, CA, USA 
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3. R-Skripten 

 

Verwendete Pakete und Programmcodes für die statistische und funktionelle Datenauswertung 

mittels R. 

 

Heatmap 
 
################################### R-Paket(e) #################################### 
 
library(gplots) 
 
######################## Einlesen und Bearbeiten der Daten ######################## 
 
data <- read.csv("Dateipfad.csv") 
 
options(OutDec=",") #Dezimaltrennzeichen="," 
 
#log2-Transformierung und Datenkonvertierung in ein Matrixformat 
mat_data <- data.matrix(log2(data[,2:ncol(data)]))  
rownames(mat_data) <- data[,1] 
 
#Datenbearbeitung (Runden) für nachfolgende Zellenbeschriftung 
mat <- data.matrix(data[,2:ncol(data)]) 
mat <- ifelse(mat>0.05, round(mat, digits=1), round(mat, digits=2)) 
 
#Definierung der Farbskalierung für die Heatmap 
my_palette <- colorRampPalette(c("red", "white", "blue")) (n=299) 
 
############################## Erstellung der Heatmap ############################# 
 
heatmap.2(mat_data, cellnote=mat, notecol="black", notecex=0.80, scale="none", 
          key=FALSE, density.info="none", trace="none", margins=c(10,9),  
          col=my_palette, dendrogram="none", cexCol=1.0, cexRow=1.0,  
          Colv=FALSE) 

PCA 
 
################################### R-Paket(e) #################################### 
 
library(FactoMineR) 
library(rgl) 
 
######################## Einlesen und Bearbeiten der Daten ######################## 
 
data1 <- read.csv("Dateipfad.csv") 
 
data2 <- log2(data1[ ,3:ncol(data1)]) #log2-Transformierung der Daten 
 
#Zentrierung und Skalierung der Daten mit nachfolgender PCA 
pca1=prcomp(data2, scale.=TRUE) 
 
Tiergruppe <- data1$Tiergruppe 
 
############################## Matrix mit Eigenwerten ############################# 
 
pca2=PCA(data2, graph=FALSE) 
pca2$eig 
 
############################# Erstellung des 3D-Graphen ########################### 
 
plot3d(pca1$x, pca1$y, pca1$z, col=Tiergruppe, size=2, type='s', 
    xlab="x", ylab="y", zlab="z", box=FALSE, main="Titel")  
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Säulendiagramm 
 
################################### R-Paket(e) #################################### 
 
require(ggplot2) 
 
######################## Einlesen und Bearbeiten der Daten ######################## 
 
data1 <- read.csv("Dateipfad.csv")   
 
head(data1) #Wiedergabe der ersten Datenwerte 
 
tail(data1) #Wiedergabe der letzten Datenwerte 
 
#Definierung der zeitlichen Reihenfolge innerhalb des Diagramms 
data1$Zeitpunkt <- factor(data1$Zeitpunkt, levels=c("8 Wochen nach SE",  
                          "10 Tage nach SE", "2 Tage nach SE"))  
 
########################## Erstellung des Säulendiagramms ######################### 
 
#'~'=Biologischer.Prozess oder Molekulare.Funktion 
ggplot(data=data1, aes(x='~', y=Proteine,  
    fill=factor(Zeitpunkt))) +  
      geom_bar(position="dodge", stat="identity") + coord_flip() +  
      labs(y="Anzahl Proteine") + 
      scale_fill_grey(start=0, end=.8) + theme_bw() + 
      theme(panel.background=element_rect(fill="transparent", colour="gray"), 
      axis.line=element_line(colour="gray"), 
      panel.border=element_blank(), 
      panel.grid.major=element_line(colour="gray"), 
      panel.grid.minor=element_line(colour="gray"), 
      axis.text.y=element_text(size=28), 
      axis.text.x=element_text(size=24), 
      axis.title.x=element_text(size=24), 
      legend.position="none", 
      axis.title.y=element_blank())  

 

Venn-Diagramm 
 
################################### R-Paket(e) #################################### 
 
library(VennDiagram)  
 
########################## Erstellung des Venn-Diagramms ########################## 
 
#'~'=Zahlenwert abhängig vom jeweiligen Datensatz 
draw.pairwise.venn(area1='~', area2='~', cross.area='~',  
 category=c("PHC", "HC"), lty="blank", fill=c("blue3", "yellow1"),         
 alpha=0.5, cat.pos=c(0,0), cat.dist=0.025, cat.cex=2,                   
 fontfamily=rep("sans", 3), cat.fontfamily=rep("sans", 2), cex=2,              
 ext.text=TRUE, ext.line.lty=2, ext.line.lwd=1, ext.pos=rep(135, 1), 
 ext.dist=rep(0, 1)  
) 

 

Volcano-Plot 
 
################################### R-Paket(e) #################################### 
 
require(ggplot2) 
 
######################## Einlesen und Bearbeiten der Daten ######################## 
data1 <- read.csv("Dateipfad.csv")   
 
head(data1$logFC)   #Wiedergabe der ersten Werte der ausgewählten Spalte 
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head(data1$P.Value) #Wiedergabe der ersten Werte der ausgewählten Spalte 
 
#Regulierte Proteine 
data1$threshold=as.factor(abs(data1$logFC)>=0.536 & data1$P.Value<0.05)  
 
#Beschriftung der fünf am stärksten regulierten Proteine (Wert für data1$logFC 
#'~'=Zahlenwert abhängig vom jeweiligen Datensatz 
data_text=data1[(abs(data1$logFC)>='~') & (data1$P.Value<0.05),]  
                                                  
########################## Erstellung des Volcano-Plots ########################### 
 
g=ggplot(data=data1, aes(x=logFC, y=-log10(P.Value), colour=threshold)) + 
 geom_point(alpha=0.4, size=2.4) + 
 theme_bw() + 
 theme(legend.position="none") + 
 xlim(c(-5, 5)) + ylim(c(0, 7)) + #Begrenzung der x- und y- Achse 
 xlab("log2 (SE/Kontrolle)") + ylab("-log10 p-Wert") + 
 scale_colour_manual(values=c("firebrick", "navy"))  
 
#Beschrfitung der fnf am stärksten regulierten Proteine 
g + geom_text(data=data_text, aes(x=logFC - .01, y=-log10(P.Value) + .01, 
              label=ID), colour="black", hjust=0, vjust=0, size=4) 
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