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1. Introduction

As sardonically stated by Daniel Defoe, “nothing in life is as certain as death and taxes” [1]. While the 

Finanzamt ensures the latter, the leading contributor to the prior is cardiovascular disease, causing 1 

out of every 2.8 deaths [2]. Within this class, arterial hypertension is the most lethal and prevalent 

condition, endemic in 30 – 45 per cent of European population [3]. Arterial hypertension is defined 

as persistent systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg 

[4]. While the majority of the cases are due to unknown or insufficiently elucidated causes and 

designated as “essential hypertension”; several secondary forms of hypertension are identified. 

Chief among them is primary aldosteronism (PA), which is named after its classical cause of 

autonomous excess synthesis of the mineralocorticoid aldosterone [5]. The disorder is mainly 

comprised of Conn’s syndrome [6] of aldosterone producing adenomas and idiopathic aldosteronism 

[7] with uni- or bilateral hyperplasia of the adrenal cortex. Although idiopathy in Koine Greek means 

“one’s own suffering” and defined as “without a known cause” [8]; the fictional but esteemed 

diagnostician Dr. Gregory House gives an alternative definition: “"Idiopathic", from the Latin, 

meaning we're idiots 'cause we can't figure out what's causing it” [9]. This sarcastic comment 

however reflects the truth that the biomedical community has only recently began to emerge from 

the perplexity surrounding pathophysiology of this disorder. In this dissertation, a quest to explore 

the genetic and molecular pathophysiology of PA by combining epidemiological and functional 

studies is reported. 

1.1. The Mineralocorticoid Aldosterone 

Life was hard for early tetrapods trying to colonize land during the Paleozoic era. On top of 

necessary adaptations of mobility, respiration and reproduction to land life [10], they faced the 

threat of desiccation and maintenance of the “milieu intérieur” [8]. Although they were already 

equipped with a primitive salt retention apparatus with mineralocorticoid receptors, only after 

divergence of the mineralocorticoid hormone aldosterone [11] were they able to fully overcome the 

challenges presented by the Late Devonian extinction, where only sufficiently adapted land 

vertebrates were able to survive [12]. As such, aldosterone has a crucial and irreplaceable role for all 

vertebrate life on land. The main physiological role of aldosterone in maintaining homeostasis is 

through its actions on the renal tissues [13]. The conventional way to describe aldosterone 

physiology seems to be to categorize it by function, systemic endocrine regulation and molecular 

regulation of synthesis [14]. 

1.1.1. Mechanism of Action 

Aldosterone, in its capacity as the main mineralocorticoid in humans, exerts its actions through 
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genomic and non-genomic effects in the aldosterone sensitive cells of the distal nephron of the 

kidney, comprising the region from the distal convoluted tubule to the collecting duct (Fig 1.1) [13]. 

There is evidence, however, that the aldosterone sensitivity of the nephron may extend to the 

proximal tubule [15] on one side and inner medullary collecting duct [16] on the other. Still, the 

cortical collecting duct is the most thoroughly investigated part of kidney in relation to aldosterone 

activity. 

The principal cells of the cortical collecting duct, which are involved in sodium reabsorption from the 

glomerular filtrate it receives from the nephron, are especially sensitive to aldosterone stimulation. 

These cells form a monolayer that separate the internal and external environs, and facilitate 

reabsorption of sodium through an apical electrochemical potential and a basolateral active 

transport system [14]. The transcellular reabsorption of sodium to renal interstitium is then followed 

by paracellular chloride flux [17] and water diffusion through aquaporins [18]. The regulatory effect 

of aldosterone on the function of these cells is through its binding to cytosolic mineralocorticoid 

receptor (MR) of the nuclear receptor family. Normally bound to heat shock proteins, MR dissociates 

and dimerizes after binding to aldosterone and translocates to the nucleus, acting as a transcription 

factor for aldosterone sensitive genes [19]. Interestingly, aldosterone sensitivity of these cells does 

not stem either from exclusive expression of MR in these cells or exclusive affinity of MR to 

aldosterone, as it has a similar affinity to glucocorticoids. Instead, enzymatic activity of 11-β-

hydroxysteroid dehydrogenase 2 (11βHSD2) rapidly oxidizes cortisol to cortisone (or corticosterone 

to 11-dehydrocortisone) [20], for which MR does not have affinity, hence preventing glucocorticoid 

activation of the MR. Indeed, due to presence of an inhibitor of this enzyme, glycyrrhizin, excess 

licorice consumption may trigger pseudo-hyperaldosteronism. [21]. 

Through a plethora of effects including transcriptional or enzymatic activation of membrane 

transporters and their regulatory signals, the MR-aldosterone complex facilitates sodium 

reabsorption and potassium excretion [13]. Among these, upregulation and activation of the 

amiloride-sensitive epithelial sodium channel (ENaC) [22], the renal outer medullary potassium 

channel (ROMK) [23] and the thiazide-sensitive sodium-chloride cotransporter (NCC) [24] in the 

apical membrane and induction of sodium-potassium adenosine triphosphatase (Na+/K+ ATPase) 

activity [25] and sodium–hydrogen antiporter (NHE1) activation [26] in the basolateral membrane 

account for the major mineral balancing effects of aldosterone in the principal cell. The genomic 

regulation of these complexes by aldosterone is via direct transcriptional upregulation as in the case 

of ENaC subunit α, or secondary effects mainly due to upregulation of the serum and glucocorticoid-

regulated kinase 1 (SGK1) [27], and through the Kirsten Ras GTP-binding protein-2A (Ki-RasA), 
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Figure 1.1: Regulation of sodium reabsorption in the kidney principal cell. Aldosterone liberates 
the mineralocorticoid receptor from bound heat-shock proteins and relocalizes to the nucleus. 
Glucocorticoids are rapidly degraded by the 11β-hydroxysteroid dehydrogenase. Early actions 
include increased transporter activity and surface presentation. The late phase of aldosterone 
induction involves expression of transporter genes. Obtained from Booth, et al [31]. 

Corticosteroid hormone-induced factor (CHIF) or Phosphoinositide 3-kinase (PI3K) [14]. Through 

further interplay between SGK1 and “with no lysine” kinase (WNK) pathways, the exact nature of 

aldosterone action in the kidney, favoring either sodium reabsorption or potassium excretion 

depending on presence of angiotensin II, is determined [28]  

A multitude of non-genomic effects of aldosterone have also been observed, with involvement of 

protein kinase C activation or increases in second-messenger of cyclic adenosine monophosphate 

(cAMP), intracellular calcium ([Ca2+]i) and inositol 1,4,5-triphosphate (IP3) [14; 29; 30]. These 

mechanisms are fast acting, without the lag-time of genomic effects, and unaffected by transcription 

and translation inhibitors [31]. Furthermore, it is disputed whether these effects are due to MR-

aldosterone complex, or facilitated by a putative aldosterone specific membrane receptor long 

sought by Martin Wehling and his colleagues [30]. 

Alongside its effects on the principal cell, aldosterone also participates in the regulation of acid-base 

balance by its actions on type A intercalated cells that are dispersed through epithelial lining of the 

distal nephron [32]. Through genomic and acute pathways, aldosterone regulates activities of 
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luminal proton pump and basolateral chloride / bicarbonate exchangers [33]. 

Consistent with the presence of MR in the central nervous system and cardiovascular tissues, these 

organs are also targets of circulating aldosterone. In the central nervous system, aldosterone has a 

disadvantage against glucocorticoids for the activation of MR, as MR in this system is not protected 

by 11βHSD2 [34]. Together with the presence of much higher circulating glucocorticoids and the 

enzymatic activity of 11β-hydroxysteroid dehydrogenase (11βHSD1), which converts inactive 

cortisone to cortisol, MR in the central nervous system is disproportionately occupied by 

glucocorticoids [14]. As for the cardiovascular tissues, aldosterone has long been regarded to play 

pathological role due to the induction of hypertension; however, this opinion was much reinforced 

by the detection of MR and 11βHSD2 in cardiac blood vessels and a possible autocrine effect 

through cardiac production of aldosterone. By and large, current knowledge on normal physiology of 

aldosterone in the cardiovascular system is overshadowed by the focus on its pathophysiological 

effects. [31]  

1.1.2. Renin-Angiotensin System 

The crucial and multifaceted effects of aldosterone require a tight systemic control over its 

production, without which severe pathological conditions can and do arise. The renin-angiotensin-

aldosterone system (RAAS) is the main axis of blood pressure regulation in humans, and therefore 

responsible for regulation of aldosterone biosynthesis. It provides one of the two most potent 

physiological signals for aldosterone production, angiotensin II, the other being hyperkalemia. The 

cascade originates in the kidney, involves components from the liver, vascular epithelia, adrenal and 

the pituitary gland; ultimately acting on the kidney function (Fig 1.2). 

Most kidney anatomical depictions would show that the nephron starts at the glomerulum, where 

the afferent arteriole branches into many capillaries that effect ultrafiltration, and goes through a 

length of tubular structures that descend into the medulla and return to the cortex at the thick 

ascending limb, ultimately merging with other nephrons at the collecting duct. Not readily obvious in 

such a diagram is the fact that granular smooth muscle cells of afferent and efferent arterioles lay in 

close proximity to the macula densa cells of cortical thick ascending limb, as can be seen in a cross-

section histology staining. Granular smooth cells synthesize and store the hydrolytic enzyme renin in 

their granules, whereas the macula densa cells have the ability to sense the sodium, potassium and 

chloride concentrations of the glomerular filtrate through their luminal expression of the Na+-K+-2Cl- 

cotransporter (NKCC2) [35]. The close proximity of these two cell types lead to their designation as 

the juxtaglomerular apparatus, which functions as the sphygmomanometer of the body. The 

anatomical proximity of these sensor cells to the glomerulum allows for an intrarenal purinergic 
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signaling mediated by adenosine and / or adenosine-triphosphate (ATP) [36]. Through evoking this 

signaling, macula densa cells control the vasoconstriction or vasodilation of afferent arterioles, 

creating the tubuloglomerular feedback mechanism. Reduction of sodium concentration or 

glomerular filtration rate results in vasodilation of afferent arterioles, which triggers renin secretion 

from granular cells. Other factors also lead to vasodilation of afferent arterioles such as detection of 

arterial blood pressure / volume loss by baroreceptors mediated by β-adrenoreceptor activation and 

sympathetic nervous system activity via the same route [37]. Along with the systemic effect of renin 

secretion, reduction of arteriole vascular resistance also leads to immediate increase in glomerular 

filtration rate. 

The next stage in this multi-organ system is the hydrolysis of angiotensinogen, an α-2-globulin 

peptide which is constitutively produced by the liver. The product, 10 amino acid angiotensin I (AngI) 

is a substrate for further cleavage by the angiotensin-converting enzyme (ACE) [37]. ACE is highly 

expressed on the vascular endothelium in tissue bound form, with lung endothelium having the 

capacity to process whole of the plasma AngI in a single passage [38]. Removal of the two C-terminal 

amino acids of AngI mainly by the C terminal catalytic domain of ACE [39] produces the active 

octapeptide angiotensin II (AngII), the effector component of the cascade and a potent 

vasoconstrictor. Further synergistic effect is provided by ACE mediated metabolization of the 

vasodilators bradykinin and kallidin into inactive forms [40]. In tissues expressing aminopeptidase A 

and N, AngII is further lysed to angiotensin III and IV, which plays paracrine roles in these tissues 

[41]. 

Angiotensin II is one of the two most potent physiological inducers of aldosterone production by the 

adrenal cortex [42]. Alongside its steroidogenic effect on the adrenal cortex, it activates a wide range 

of synergistic responses through its receptors (mainly of type 1) found in the vascular, cardiac, renal 

and nervous systems [43]. Further effects of AngII include stimulation of the pituitary gland and 

secretion of anti-diuretic hormone (ADH) [44] and, under increased AngII concentrations by severe 

volume loss, adrenocorticotropic hormone (ACTH) [45]. In turn, ACTH acts as an acute, protein 

synthesis independent secretagogue of aldosterone [46], and ADH modulates aquaporin 2 of the 

principal cells in kidney to facilitate water retention [47]. 

As the circulating angiotensinogen and endothelial ACE activity are constant and due to the short 

plasma half-lives of its active components, the regulation of the RAA axis is modulated by a negative 

feedback loop at the stage of renin secretion. Vasoconstriction of glomerular arterioles by AngII [43] 

or by purinergic signals from macula densa in response to increased filtrate volume or sodium 

concentration [36] inhibits renin secretion, as well as by intrarenal α-adrenergic receptor stimulation 
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[48] and by atrial natriuretic peptide [49]. 

Partial or complete sets of components of the RAAS have been observed in cardiac, vascular, brain, 

renal and adrenal tissues. In contrast to the systemic endocrine RAAS, these tissues exhibit a 

paracrine / autocrine form of the system. This complementary “tissue RAAS”, maintaining localized 

and longer-term homeostasis, potentially adds another level of complexity to intervention to 

systemic axis in pathological situations [37]. 

1.1.3. Inside the Glomerulosa Cell: Aldosterone Steroidogenesis and Regulation 

The adrenal gland is in effect composed of two separated tissues, that of the medulla and the cortex, 

each developing from different embryonic origins. [51] Whereas the medulla function is focused on 

secretion of the cathecolamines epinephrine and norepinephrine, the adrenal cortex is responsible 

for corticosteroid production. Between the adrenal medulla and adrenal capsule, three zonal layers 

of the cortex have been described by morphology of constituent cells: innermost, the zona 

Figure 1.2: Systemic regulation of aldosterone secretion. Aldosterone secretion is under control 
of the renin angiotensin aldosterone system and plasma potassium concentration. Aldosterone 
function in the kidney inhibits further production through negative feedback loops. Stewart et al. 
(B) [50]. 
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Figure 1.3: The adrenal gland: A, Rat adrenal gland section immunostained for markers of zona 
glomerulosa (CYP11B2, blue) and zona fasciculata (CYP11B1, brown). B, Schematic diagram of the 
adrenal cortex. Obtained from Fumiko Mitani (A) [51] and Stewart et al. (B) [50]. 

A B 

reticularis (ZR), zona fasciculata (ZF) and the outermost zona glomerulosa (ZG) [52] along with an 

undifferentiated stratum of progenitor cells (ZP) between the ZF and ZG (Fig 1.3) [53]. A common 

steroidogenesis pathway (Fig 1.4) is shared in cells of these zones, with the end product depending 

on presence or absence of specific enzymes of this pathway [54]. ZR produces adrenal androgens, ZF 

produces glucocorticoids as part of the energy metabolism in response to ACTH, and ZG focuses on 

salt and water homeostasis via its production of aldosterone [50]. Although classically defined as a 

continuous layer, the zona glomerulosa has recently been shown by novel specific antibodies to 

consist of two units: dispersed cells and clusters. The physiological impact of this divergence is yet to 

be elucidated [55]. 

Adrenocortical cells do not have a mechanism for steroid deposition or secretary vesicles, and 

consequently, upon stimulatory signals, corticosteroids are to be produced de novo from 

cholesterol, primarily from uptake of plasma high-density lipoprotein [56]. Cholesterol stored in 

cytosolic lipid droplets is then translocated to the mitochondrial inner membrane by the 

steroidogenesis acute regulatory protein (StAR). This transport process is a common rate limiting 

step in all adrenocortical cells. In the mitochondria, P450 cholesterol side chain cleaving enzyme 

(CYP11A1) catalyzes its eponymous reaction, producing pregnenolone. Pregnenolone released to the 
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cytosol, and may be converted to other precursors of androgens or glucocorticoids, depending on 

the zonal type of the cells, by enzymes on the smooth endoplasmic reticulum (ER). Pregnenolone 

and its derivatives are common in their role as the substrates for the 3β-hydroxyl group 

dehydrogenation and 5-delta 4-isomerazation, by the isoforms of 3β-hydroxysteroid dehydrogenase 

(3βHSD) enzyme of smooth ER [14]. Traditionally, isoform 2 of the enzyme was thought to regulate 

this catalytic activity in the adrenal [57], but emerging evidence challenges this view, as HSD3B1 has 

been immunolocalized to the ZG, but in pathological aldosterone producing adenomas HSD3B2 has 

been detected predominantly [58; 59]. 

Production of progesterone from pregnenolone by 3βHSD activity is followed by steroid 21-

hydroxylase activity on the smooth ER of ZG and ZF cells, generating the immediate precursors of 

mineralocorticoids and glucocorticoids. The final reactions are mediated by the two members of 

cytochrome P450 11B family of enzymes, located in the inner mitochondrial membrane. Both of the 

93 % homologous isozymes have the 11β-hydroxylase activity, which produces cortisol by the ZF 

localized isoform 1 (CYP11B1). In the ZG, however, 11β-hydroxylation is followed by 18-

hydroxylation and 18-methyloxidation, all by P450 11B2, also known as aldosterone synthase 

(CYP11B2). The final CYP11B2 mediated steps of aldosterone is the last rate limiting step of the 

pathway [14]. 

Zona glomerulosa cells under basal conditions are hyperpolarized due to intricate modulation of 

membrane potential by a number of ion transporters and channels [60]. The ZG cell membrane 

maintains a selective conductance to potassium ion, with a negative membrane resting potential. 

This status is maintained by Na+/K+ ATPase and leak potassium current through “tandem of P 

domains in a weak inward rectifying K+ channel-like, acid-sensitive K+” channel (TASK). Modulation of 

this balance of currents is the main mechanism of action for aldosterone secretagogues, as 

depolarization of the cell is the principal signal that initiates aldosterone synthesis. The two principal 

depolarizing signals in physiological conditions are AngII and increase in extracellular potassium 

concentration ([K+]O). In both types of stimuli, cell depolarization leads to an intracellular calcium flux 

[61]. 

AngII effects the calcium rush by binding to its abundant G protein coupled receptors (AT1) on the 

membrane. Immediate effect of this is activation of phospholipase C (PLC), which generates the 

second messenger inositol 1,4,5-trisphosphate and 1,2-diacylglycerol (DAG)by phosphatidylinositol 

hydrolysis. IP3 then acts on IP3 gated Ca2+ channels of the ER, resulting Ca2+ release from intracellular 

stores to the cytosol. Simultaneously, AngII binding to its receptor inhibits Na+/K+ ATPase and TASK 

channels, leading to depolarization and increase in membrane potential towards positive. This 
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voltage reduction triggers an inward Ca2+ current through low voltage activated T-type Ca2+ channels, 

as the extracellular calcium concentration ([Ca2+]O) is manyfold higher than intracellular levels 

([Ca2+]I). Influx of extracellular calcium is further facilitated by channels that respond to intracellular 

store depletion. This total increase in the cytosolic Ca2+ ([Ca2+]I) also activates PLC, sustaining the 

initial IP3 and DAG production [14; 54; 61]. 

Extracellular [K+]O increase is also a very potent depolarization signal due to the glomerulosa cell’s 

unique potassium sensing ability [60]. This increase effectively prevents TASK mediated background 

current, resulting in a transmembrane T-type calcium influx. By extracellular concentrations of 

potassium above physiological levels, L-type high voltage channels are also activated. As the [K+]O 

continues to rise, T-type current is inactivated and supplanted by L-type channel activity [61]. 

Figure 1.4: Steroidogenesis in the adrenal cortex. Diagram obtained from Yasuhiro Nakamura et 
al. [54] (Rightslink licence No: 3561381142495). 
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The second messengers [Ca2+]I and DAG activate protein kinase C (PKC). High [Ca2+]I, PKC and DAG-

derived 12-Hydroxyeicosatetraenoic acid (12-HETE) in turn activates p38 [62] and p44/42 [63] 

mitogen-activated protein kinase (MAPK) pathways and calcium binding messenger protein 

calmodulin (CaM) [64]. CaM mediation is a requirement of calcium induced phosphorylation of 

calcium / calmodulin dependent kinases (CAMK) I and IV [65]. These pathways ultimately modulate 

the three rate-limiting steps of aldosterone synthesis, StAR, 3βHSD and CYP11B2. In the acute phase, 

without de novo enzyme production, the effects depend on StAR activation by PKC. Increased 

mitochondrial steroidogenic capacity by elevated formation of pyridine dinucleotide NADPH in 

response to [Ca2+]I increase may also play a role at this point [61]. Activation of p44/42 MAPK 

pathway activates steroidogenic factor 1 (SF1) which transcriptionally activates StAR when the 

inhibitor of this process DAX1 is repressed, also modulated by p44/42 MAPK [66]. CAMK activation 

leads to transcriptional activation of neuronal growth factor-induced clone B (NGFI-B) family of 

transcriptional factors (NR4A1 and NR4A2) as well as phosphorylating members of “activator 

transcription factor (ATF) / cyclic adenosine monophosphate response element (CRE) binding protein 

(CREB)” family of transcriptional factors [65]. NGFI-B factors can bind to regulatory cis-acting NGFIB 

response elements (NBRE-1 and Ad-5) in the 5’ promoter region of CYP11B2, along with CRE sites for 

ATF / CREB. NGFIB response elements are also identified upstream of HSD3B isoforms 1 [67] and 2 

[68]. Through activation of these transcriptional factors, de novo 3βHSD and CYP11B2 production 

occurs, effecting the long term response to stimulation. 

ACTH as a stimulator of aldosterone essentially acts by inducing second messenger cAMP system 

through binding to its G-protein coupled receptor [69]. Resultant activation of protein kinase A (PKA) 

is responsible for StAR phosphorylation alongside PKC [70]. However, long term stimulation by ACTH 

suppresses aldosterone production and reforms the adrenal cortex in favor of glucocorticoid 

production [71]. There is also a great deal of cross-play between the calcium and cAMP second 

messenger systems, such as calcium dependency of cAMP formation by ACTH signaling and cAMP 

dependent activation of L-type calcium current; hinting at the complexity of control behind these 

cellular events [60]. 

1.2. Primary Aldosteronism 

Just as Charles Darwin was considered the best qualified person for the post of naturalist of the 

second voyage of HMS Beagle, more than a century later, Jerome Conn was perhaps the best man to 

diagnose the 34-year-old hypertensive patient “MW”, due to his studies on body acclimatization to 

the tropics [72]. Unlike Darwin, who published his theory ahead of “Mendel’s peas”, Conn fatefully 

oversaw the removal of his patient’s tumor only a year after characterization of what the tumor was 
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found to overproduce. In his presidential address [6] at the Society of Clinical Research, he 

presented his case, “primary hyperaldosteronism”, with the clinical features of alkalosis, 

hypokalemia and hypernatremia, all due to the adrenal tumor; having his name given to a syndrome 

in the fashion of Addison or Crohn. Even as idiopathic cases of PA were reported with no associated 

tumor, he went on to demonstrate the renin independency of aldosterone production in the 

disorder [73]. The medical community’s approach to diagnosis of PA with considering hypokalemia 

as a sine qua non for the disease gave way to very low prevalence estimates for the next four 

decades. However, in the last twenty years, a switch to diagnosis based on renin independent 

aldosterone production as a screening marker sparked what was termed as a “renaissance of the 

syndrome” [74], as prevalence estimates soared up to 30 % of hypertensives, depending on the 

study cohort [75]. The current guideline in effect in Germany composed by the Endocrine society 

during this renaissance defines PA as “a group of disorders in which aldosterone production is 

inappropriately high, relatively autonomous, and non-suppressible by sodium loading” [76]. 

1.2.1. Pathogenesis 

As important as aldosterone is in an average mammalian diet, in humans, considering the modern 

salt consumption levels, excess of the hormone is severely damaging to the cardiovascular and renal 

systems. The most prominent symptom is arterial hypertension, usually resistant to anti-

hypertensive therapy and of higher stages. Higher aldosterone levels are found to be predictive of 

hypertension [77]. Indeed, 5 to 10 percent of total hypertensive population is estimated to be 

affected by PA, rendering this the prevailing cause of non-idiopathic hypertension [76]. In addition to 

hypertension, a wide range of cardiovascular (ischemic heart disease, arrhythmia, myocardial 

fibrosis, inflammatory invasion of vasculature) [14] and renal (nephrosclerosis, proteinuria) [78] 

complications are characteristic of the disease. Recent evidence also suggests that organ damage is 

aggravated by oxidative stress induced by excess circulating aldosterone [79]. 

Although the cutoff between low renin essential hypertension (LREH) and primary aldosteronism is 

recognized to be arbitrary, the effects of PA are most certainly of adrenal origin. 95 per cent of total 

PA cases are caused by a benign aldosterone producing adenoma (APA) or bilateral idiopathic 

adrenal hyperplasia (BAH). This medically correctly [80], but semantically misleadingly termed 

“benign” neoplasm was the original case described by Conn, hence named after him as Conn’s 

syndrome. They are estimated to represent ~1/3 of the PA cases, contrasted by a more common 

~2/3 of diffuse or micronodular bilateral hyperplasia of the adrenal [81]. The proportion of unilateral 

and bilateral disease is also debated, with different groups coming to varying conclusions [82]. Rarer 

forms of the disease include unilateral primary adrenal hyperplasia, and the three Mendelian forms 
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of the disease, familial hyperaldosteronism (FH) types I, II and III. An aldosterone producing adrenal 

carcinoma is also occasionally encountered, with one such case giving rise to the model cell line NCI-

H295R [83]. 

Genetics of PA, aside from the rare FH I, was largely unknown until recently. FH I was found to be 

due to a chimeric gene arising from the strong homology of aldosterone synthase and 11β-

hydroxylase, giving regulatory control of aldosterone production to ACTH [84]. The syndrome was 

therefore named as glucocorticoid-remediable hyperaldosteronism. In the last three years, however, 

several landmark studies established the causative somatic mutations of more than half of the APAs 

[85], as well as FH III [86]. The mutated genes in these adenomas encode membrane channels and 

transporters of potassium and calcium, and the mutations disrupt ion homeostasis of the cell [86-

89]. These findings arguably place the syndrome in a post-renaissance baroque era, drawing 

enhanced interest of the scientific community. 

1.2.2. Diagnosis and Treatment 

According to the current guidelines, PA is diagnosed with a three tiered procedure [76; 90]; that is 

screening, confirmation and subtype evaluation. Hypokalemia has long been abandoned as a case-

finding tool in the face of standardized aldosterone to renin ratio (ARR) measurements, and actual 

rate of hypokalemic individuals with PA represent now a minority. Plasma aldosterone concentration 

(PAC) under normal physiological conditions strongly correlate with plasma renin activity (PRA), and 

an increase of the ratio of the two is suggestive of the disease. As PRA measurements comes with 

interassay replicability challenges, higher throughput plasma renin concentration (PRC) assays, 

which basically quantify the same factor [91], has been adopted instead. However, as the renin 

denominator of the ratio is the main covariant, specificity of the test at low renin levels are 

challenged. In current practice, an ARR screening is recommended to drug-resistant, advanced stage 

or all hypertensives, depending on the advisory committee. Cessation of antihypertensive 

medication that affects the RAAS up to several weeks before testing is highly recommended, with an 

option to switch to blood pressure control via medications that doesn’t have a known impact on the 

system in life-threatening conditions. 

A positive ARR, while indicative, is not considered as diagnostic. PA is confirmed by one of the four 

suppression tests, depending on patient’s status and feasibility of a stationary versus ambulatory 

setting. Saline infusion & plasma aldosterone concentration, oral saline uptake and renal 

aldosterone excretion, and the more sensitive fludrocortisone suppression tests are recommended 

in most cases. These tests establish the relative autonomy of aldosterone production in the patients 

and considered to be diagnostic. In cases where salt loading compromises the patient, captopril 
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challenge is applied, suppressing renin but not aldosterone [76]. 

A confirmed case of PA requires subtype evaluation to aid the physician in deciding the therapy 

strategy. The first step in this direction is adrenal computed tomography. It is known that this 

method has very low sensitivity for smaller APAs and a lack of specificity for unilateral disease, but it 

can eliminate the possibility of larger masses such as carcinomas. In addition, adrenal CT provides 

valuable preparation for the next stage, adrenal vein sampling (AVS). This procedure is definitive, but 

both invasive and requires a specialist radiologist. Adrenal CT is very useful for providing a better 

success rate in the especially difficult catheterization of the right adrenal vein [76]. 

Treatment of PA depends on the lateralization of disease. For unilateral subtypes, a surgical 

approach with laparoscopic adrenalectomy always improves and often cures the condition. For 

bilateral hyperplasia, this prognosis is not achievable surgically, so a management with MR 

antagonists spironolactone or eplerenone is preferred [76]. The latter, being the newer and more 

specific aldosterone antagonist with fewer side effects, may be cost-inhibitory due to its manyfold 

price compared to the former [92]. Furthermore, eplerenone is not approved for the treatment of 

hypertension of PA in many countries. 

The main problems with current practices in diagnosis and management of PA are low specificity of 

ARR screening, inefficiency of adrenal CT both in specificity and sensitivity, invasiveness and inherent 

difficulty of AVS [93], and a therapeutic strategy in bilateral disease built on lifelong management of 

MR mediated aldosterone damage with only limited remission [94]. However, recent developments 

start to offer alternatives at every turn. ARR still is the established norm for screening, but 

regression based statistical approaches and independent determination of renin decrease and 

aldosterone increase has been proposed [95]. Subtype classification with a CT-AVS method is now 

challenged by an 11C-metomidate PET-CT [96]. Development of novel specific antibodies against 

CYP11B homologs, as well as against other markers of healthy and pathological aldosterone 

producing cells, as in the case of 3βHSD isozymes, may avail immunochemistry based diagnostic 

approaches [97]. The recent surge in elucidating the underlying genetics of PA identifies targets of 

novel drugs like digoxin (ATP1A1) or amlodipine (CACNA1D) [72], as well as enabling prospective less 

invasive genetic diagnosis methods [98]. 

1.3. Strategies for Elucidation of Genetic Mechanisms 

Primary aldosteronism is a very heterogeneous disease. In addition to its previously described 

subtypes, heterogeneity is becoming increasingly evident within subtypes based on molecular, 

morphological and genetic signatures. Obscured by this heterogeneity, however, lies a significant 
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heritable portion of the disease [77]. Although aiming in-depth elucidation of pathophysiological 

mechanisms of PA is a daunting task in the face of complexity to be overcome, researchers have 

several potent methods in their armamentarium to rise to the challenge ahead. 

1.3.1. Mouse Models 

Pharmacological approaches such as 11-desoxycorticosterone acetate (DOCA)-salt sensitive rats has 

long been used to generate animal models for endocrine hypertension [99]. In addition, 

development of embryonic stem cell based techniques to produce gene knockout mice has been a 

Nobel prize-worthy success [100]. This methodology enabled generation of genotype-driven mouse 

models, in which a particular genotypic change is characterized phenotypically. In the context of PA 

research, several such models have been generated. An angiotensin II receptor 1A mutant mice with 

constitutively active AT2 receptor developed hypertension. Targeting ion homeostasis by knockouts 

of leakage potassium channels TASK1, TASK3 or voltage- and Ca2+-activated K+ channel (BK) yielded 

varying levels of phenotypic similarity to PA in humans [101-105]. Although this kind of approaches 

greatly enhances the understandings of underlying basic physiology of aldosterone synthesis, 

without an epidemiological basis, they prove insufficient to explain human pathophysiological 

mechanisms of PA. In addition, some gene knockouts maybe particularly damaging, as the effects 

are present during developmental stages. A strategy to overcome this is inducible or tissue specific 

knockouts, which gives researchers spatial and temporal control over the effects of the genetic 

manipulation [106]. 

A reversal of direction in the generation of mouse models is possible through utilization of DNA 

damaging reagent of N-ethyl-N-nitrosourea (ENU). Treatment of male mice with ENU produces point 

mutations in the spermatozoa, and subsequent mating and cross-breeding gives rise to offspring 

that can be screened for a particular phenotype. One such mutagenesis screen has already produced 

eight separate mouse lines with heritable primary aldosteronism [107], and subsequent elucidation 

of causative mutations will presumably yield new interesting targets for further study. 

1.3.2. Exome Sequencing 

Towards the end of the last decade, two proof of concept studies established the feasibility of 

obtaining sequence data from whole exomes, as a compromise in the face of unattainability of 

whole genome sequencing [108; 109]. This methodology has been particularly impactful in PA 

research, as the already present large collections of APAs were sequenced to reveal novel causative 

mutations with wide-spread prevalence [110]. The seminal paper revealing KCNJ5 mutations as a 

common culprit in APAs [86] was followed by the identification of mutations in ATP1A1, ATP2B3 
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[87], CACNA1D and β-catenin [88]. Investigations into the prevalence of these mutations revealed 

the genetic basis of more than half of all APAs [111]. 

Notwithstanding its success in charactering genetics of surgically obtainable tumors, the 

methodology of exome sequencing is not well suited in the case of idiopathic bilateral hyperplasia, 

since the preferred method of MR antagonist treatment deprives researchers of large collections of 

adrenalectomy specimens to work on. Other shortcomings of the methodology is based on the fact 

that 99 % of the DNA, including regulatory sequences and miRNA sites, is left uncharacterized, as 

well as epigenetic modifications, which are known to be heritable across generations [112]. The 

exome datasets used to prepare the sequencing platforms do not always have to correlate with the 

actual transcriptome, which can be more faithfully analyzed by RNA sequencing techniques. As high 

throughput methods continue to develop, exome sequencing may presumably be supplanted by 

more advanced whole genome, epigenome and transcriptome probing technologies. 

1.3.3. Genome-Wide Association Studies 

Heritability of traits as a ratio of genetic variance to phenotypic variance has been put forth in the 

early twentieth century as the field of quantitative genetics was emerging [113]. Even though the 

value of twins in discerning effects of “nature versus nurture” was known for a long time [114], it 

took an additional fifty years, rediscovery of Mendelian genetics and an alumnus of LMU to 

successfully establish classical twin study [115]. In these studies phenotypic similarities are 

compared in both monozygotic and dizygotic twins; with any excess similarity in identical twins are 

attributed to greater genetic similarity and form the basis of an estimation of heritability [116]. 

Estimations of “narrow sense heritability” excluding non-additive genetic effects of epistasis, 

dominance and genotype-environment interactions, has been used as an indicator of the genetic 

contribution to phenotypic variation ever since [117]. 

Association of genetic variations with disease susceptibility is a long standing hypothesis dating back 

to initial observations of enzyme polymorphisms [118]. Although initially testing this hypothesis was 

limited by the availability of only a meager set of markers in the form of restriction fragment length 

polymorphisms; the advent of PCR enabled identification and utilization of short tandem repeats 

and single nucleotide polymorphisms in association studies. However, these early association 

studies, in general, overestimated the effect size of discovered associations and were largely non-

reproducible [119]. Simultaneously, development of genetic maps [120] allowed linkage analysis 

studies to identify with great success the genetics of traits with Mendelian inheritance. As the 

penetrance of the phenotype decreases or when the trait is multifactorial as in most common 
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diseases or quantitative traits, typical genome-wide linkage analysis with a 10 cM resolution has 

yielded only limited success [121] (Fig 1.5). Even if linkage to a susceptibility locus was detected, a 

burdensome task of pinpointing the causal gene remained [122]. On the other hand, purely 

hypothesis driven method of candidate gene approach [123] has very low odds of hitting the spot 

among 30000 genes in the human genome, along with millions of gene variants [124]. In the case of 

PA, insufficiency of both approaches is evident in the Framingham Heart Study as neither genome-

wide linkage analysis nor candidate gene association identified components of the estimated 

heritability [77]. 

This conundrum was overcome by advances on two fronts in the early 2000s as was foreseen by 

proponents of association studies [125]: Major innovations in genetics such as the completion of the 

Human Genome Project [126] and HapMap database of single-nucleotide polymorphisms (SNP) 

[127] presented scientists with dense genome-wide coverage of markers. Developments in DNA 

array technology in the last decade made “chips” a term of not only electronics and gastronomy, but 

biology as well [128]; thus enabling ever increasing number of simultaneous genetic tests with SNP 

arrays with affordability [129]. 

The observations of the large effect size of common ApoE-ε4 allele in late onset Alzheimer’s [130] 

substantiated the “common disease-common variant” hypothesis, which states that “common 

alleles with frequencies over 1 % constitute the majority of the genetic risk for common disorders” 

[131]. Equipped with this theoretical groundwork and advances in high-throughput genotyping, and 

encouraged by early success stories from use of SNPs [132], researchers rapidly adopted the 

genome-wide association study (GWAS) method. In less than a decade, over 1751 GWA studies and 

11912 SNP-trait associations were published [133]. Among these, numerous SNP-phenotype 

associations were reported for hypertension parameters of systolic and diastolic blood pressure 

[134-136]. Moreover, the power of GWA studies are immensely enhanced by implementation of 

genotype imputation methods [137] allowing for meta-analyses of multiple studies with various 

genotyping platforms, which often leads to identification of false negative associations that score 

below the typical threshold of p<5x10-8 for genome-wide association in individual studies [138]. 

In spite of the relatively short time that has passed, findings from the first GWA study, associating 

age-related macular degeneration [139] are already giving rise to new therapeutic approaches [140; 

141]. Translation of GWAS results to clinical strategies takes more time and effort in the case of 

metabolic or endocrine diseases. Rather than directly identifying therapeutic targets; the main value 

derived from these studies is new insights to etiology of the disorder at hand [142]. Considering that 

the estimated ARR heritability is quite substantial [77; 143], discovering the genetic components of 
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PA is a logical first step towards clinical advances. In this capacity, hypothesis-free methodology 

[144] of GWA studies and complementary functional research presents with a promising strategy in 

the quest for further understanding the pathophysiology of the disease [145].  

1.4. Objectives of the Study 

The genetics of primary aldosteronism is experiencing a revitalized interest, as more and more 

pathophysiological causes are identified. Even in this age of discoveries, the majority of PA etiologies 

remain obscure, although readily available methodology being exhaustively utilized. Genome-wide 

association studies, despite its under-delivery of clinically meaningful markers, can help biologists by 

signaling potential loci to investigate. The combination of population genetics with in vitro and in 

vivo functional investigations was put to use in this study to elucidate novel genes of particular 

relevance to PA pathophysiology. The specific objectives of the study was to identify an aldosterone 

to renin ratio associated locus by genome-wide association study and exhaustively investigate the 

genes hosted therein as potential components of aldosterone biosynthesis and regulation by 

functional studies conducted in relevant model cell lines and animals. 

Figure 1.5: Spectrum of allele frequency and effect size of variations. Top right set of variations 
gave credence to CDCV hypothesis. Effectiveness of linkage analysis and GWA studies are limited 
to region the within dotted lines. Bottom left group of variations possibly give rise to “missing 
heritability” phenomenon [XXX] (see in section 5.1) requires novel methodology to identify. 
Diagram obtained from Teri A. Manolio [146] (Rightslink license No: 3556991200117). 
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2. Materials & Methods 

2.1. Materials 

2.1.1. Reagents 

Material Product Number Company 
10 % SDS-PAGE gel 456-1033 Bio-Rad  
100 bp DNA Ladder N3231S New England Biolabs 
3,3’-diaminobenzidine (DAB) D4293 Sigma-Aldrich 
ACTH (Synacthen) 480881 Novartis 
Advanced DMEM/F12  12634 Gibco 
Agarose  35-1020 PeqLAB 
Aldosterone  A9477 Fluka 
Angiotensin II  A9525 Fluka 
Boric acid  100160 Merck-Millipore 
Bovine Serum Albumin fraction V (BSA) 5482 Sigma-Aldrich 
Bovine γ-Globulin G5009 Sigma-Aldrich 
Bromophenol blue B0126 Sigma-Aldrich 
Buffer RLT Plus lysis buffer 1053393 QiaGen 
Calcium chloride (CaCl2) 793639 Sigma-Aldrich 
Calmidazolium  C3930 Sigma-Aldrich 
Citric acid 251275 Sigma-Aldrich 
Collagenase II 17101 Gibco 
Complete protease inhibitor cocktail 11836153001 Roche 
ddH2O Central Warehouse 
Dexamethasone (Fortecortin) H02AB02 Merck-Soreno 
Dichloromethane 106050 Merck-Millipore 
Diethylenetriaminepentaaceticacid (DTPA) D6518 Sigma-Aldrich 
Di-sodium hydrogen phosphate (Na2HPO4 x 2 
H2O  71633 Fluka 

DL-Dithiothreitol (DTT) D0632 Sigma-Aldrich 
DMEM/F-12  31330 Gibco 
DNA Loading Dye, 6x  R0611 Fermentas 
Edathamil (EDTA-Na2) E5134 Sigma-Aldrich 
Eosin Y solution  HT110232 Sigma-Aldrich 
Ethanol, absolute (EtOH) 108543 Merck-Millipore 
Ethanol, technical (EtOH) Central Warehouse 
Ethidium Bromide (EtBr) 2218 Roth 
Ethylene diamine tetraacetic acid (EDTA) E6758 Sigma-Aldrich 
Europium labeled streptavidin 1244-360 Perkin-Elmer 
Fetal bovine serum (FBS) 10500064 Invitrogen 
Forskolin  F3917 Sigma-Aldrich 
Fura-2-AM ratiometric Ca2+ dye F-1201 Invitrogen 
Glacial acetic acid 137000 Merck-Millipore 
Glucose G0350500 Fluka 
Glycerol 104092 Merck-Millipore 
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Glycine 104169 Merck-Millipore 
GoTaq Green Master Mix  M7122 Promega 
H2O, sterile (Braun Aqua ad iniectabilia) Central Warehouse 
Hematoxylin  HHS32 Sigma-Aldrich 
HEPES buffer 15630-049 Gibco 
Hexadimethrine bromide H9268 Sigma-Aldrich 
HRP substrate Western Lightning Plus-ECL NEL103E001EA Perkin Elmer 
Human M-CSF 216-MC-005 R&D Systems 
Hydrocortisone N/A Pfizer 
Hydrogen peroxide (H2O2) 107298 Merck-Millipore 
Insulin–transferrin–selenium supplement (ITS) 41400 Gibco 
Isoflurane 05260-05 Abbott 
Isopropanol 100995 Merck-Millipore 
KCl  104936 Merck-Millipore 
KN-93  K1385 Sigma-Aldrich 
Magnesium chloride (MgCl2) M8266 Sigma-Aldrich 
Metafectene Pro transfection reagent  T040 Biontex 
Methanol 106009 Merck-Millipore 
Neomycin sulfate A2198 AppliChem 

Normal goat serum 005-000-001 Jackson Immuno 
Research 

Normal human serum  31876 Thermo Scientific 
PageRuler prestained protein ladder 26616 Thermo Scientific 
Paraffin 107337 Merck-Millipore 
Paraformaldehyde (PFA) P6148 Sigma-Aldrich 
Penicillin / streptomycin (Pen-Strep) 15140 Invitrogen 
Permount  SP15-500 Fisher Scientific 
Phenylmethanesulfonylfluoride (PMSF) P2721 DiaSorin 
Phosphate Buffered Saline (PBS) Dulbecco’s 14190-094 Gibco 
Phosphate Buffered Saline PBS P4417 Sigma-Aldrich 
PhosSTOP phosphatase inhibitor cocktail 4906845001 Roche 
Poly-d-lysine  P7886 Sigma-Aldrich 
Polyethylenglycol 10000 (PEG-10000) 821881 Merck-Millipore 
Potassium carbonate (K2CO3) 104928 Merck-Millipore 
Potassium-hydrogen-phthalate (KHP) 104874 Merck-Millipore 
Puromycin P9620 Sigma-Aldrich 
Renin substrate, plasma from 5/6  
nephrectomized rats  N/A CharlesRiver 

RIPA buffer  R0278 Sigma-Aldrich 
RNase-free water 129112 Qiagen 
RPMI 1640  61870 Gibco 
shRNA control transduction particles SHC202V Sigma-Aldrich 

shRNA SLC26A2 transduction particles SHCLNV-
NM_000112 Sigma-Aldrich 

siRNA CSF1R specific  sc-29220 Santa Cruz  
siRNA negative control 1022076 Qiagen 
Skim milk powder  70166 Sigma-Aldrich 
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Sodium azide (NaN3) 822335 Merck-Millipore 
Sodium chloride (NaCl) 1064040500 Merck-Millipore 
Sodium chloride, Braun NaCl 0.9 % Central Warehouse 
Sodium hydrogen carbonate (NaHCO3) 137013 Merck-Millipore 
Sodium lauryl sulfate (SDS) L3771 Sigma-Aldrich 
Sodium maleate 63260 Sigma-Aldrich 
SsoFast EvaGreen RT-PCR master mix  172-5200 Bio-Rad 
Thenoyltrifluoroacetone (TTFA) T27006 Sigma-Aldrich 
Tri-N-octylphosphinoxide (TOPO) 814868 Merck-Millipore 
Tris-hydroxymethylaminomethane (TRIS base) 252859 Merck-Millipore 
Trisodium citrate S1804 Sigma-Aldrich 
Triton X-100 X100 Sigma-Aldrich 
TURBO DNase  AM2238 Ambion 
Tween 20 P1379 Sigma-Aldrich 
Tween 40 P1504 Sigma-Aldrich 
Xylene 108661 Merck-Millipore 
 

2.1.2. Commercial Kits 

Material Product Number Company 
BCA protein assay 23227 Thermo Scientific 
Corticosterone EIA AC-14F1 Immunodiagnostic Systems 
ImmPRESS Anti-Mouse MP-7402 Vector Laboratories 
LIAISON Cortisol 13261 DiaSorin 
LIAISON Direct Renin 310470 DiaSorin 
RENCTK, angiotensin I RIA P2721 DiaSorin 
RevertAid First Strand cDNA Synthesis K1621 Fermentas 
RNeasy Plus Mini 74134 QiaGen  
Vectastain Elite ABC PK-6100 Vector Laboratories 
 

2.1.3. Labwares 

Material Product Number Company 
Centrifuge tubes Central Warehouse Sarstedt 
Hybond-P PVDF membranes  YA3236 Amersham 
hydrophilic PTFE membranes  PICM01250 Merck-Millipore 
Hyperfilm ECL photographic films 28-9068-36 GE Healthcare 
Lignocel wood fibre bottom covering C120  J.Rettenmaier & Söhne 
Maxisorp microtiter plates 439454 Nunc 
Micropipette tips Central Warehouse Sarstedt 
QIAshredder spin-columns  79654 QiaGen 
RNaseZap wipes  AM9786 Ambion 
Scalpel 200170011 PFM 
Standard pelleted chow 1314 Altromin 
Standard pelleted food 2018 Harlan Laboratories 
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Super PapPen liquid blocker pen MKP-1 G.Kisker 
Superfrost Plus microscope slides J1800AMNZ Menzel 
Tissuelyser 5 mm steel beads 69989 QiaGen 
Vacutainer Li-heparin coated tubes 366664 BD Bioscience 
Whatman filter paper Central Warehouse Schleicher & Schuell 
 

2.1.4. Instruments 

Material Product Number Company 
Analog microscope camera MPS52 Leica 
Analytical balance CPA225D Sartorius  
Automatic microtiter plate washer M8/2R TECAN 
Centrifuge, benchtop 75005521 Heraeus 
Centrifuge, benchtop 5415D Eppendorf 
Centrifuge, cell culture Ultra 2S Hettich 
Centrifuge, swing-bucket rotor 5804R Eppendorf 
CO2 incubator HeraCell Thermo Scientific 
HeraSafe laminar flow hood KS 15 Thermo Scientific 
Inverted microscope DM IL Leica 
LIAISON Analyser 9122290001 DiaSorin 
Microplate absorbance reader Sunrise Tecan 
Mini-PROTEAN II electrophoresis system 165-2940 Bio-Rad 
Mx3000P qPCR system  401512 Stratagene 
Nanodrop 1000 spectrophotometer ND1000 Thermo Scientific 
Phase-contrast microscope DM2500 Leica 
Photographic film developer  Curix 60 Agfa 
Pipetboy acu 2 pipettor 155 000 Integra Biosciences 
Pipetman micropipettes F167500 Gilson 
Powerpac 300 electrophoresis power supply 165-5050 Bio-Rad 
Primus 25 Advanced thermocycler  95-4002 PeqLab 
Rotary microtome HM335E Microm 
Spin tissue processor STP 120 Thermo Scientific 
Stereo microscope  ES2 Leica 
SubCell GT agarose electrophoresis system 170-4481 Bio-Rad 
TissueLyser LT  85600 QiaGen 
Trans-Blot SD semi-dry transfer cell 170-3940 Bio-Rad 
UV gel imaging system iX20 Intas 
VICTOR fluorometer 1420 Perkin-Elmer 
Vortex Genie SI-0256 Scientific Industries 
WALLAC DELFIA Plateshake horizontal shaker 1296-003 Perkin-Elmer 
Wallac Wizard gamma-counter 1470 Perkin-Elmer 
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2.1.5. Antibodies 

Material Product Number Company 
Biotinylated goat anti rabbit IgG  BA-1000 Vector Laboratories 
HRP conjugated goat anti-mouse IgG 31432 Pierce 
HRP conjugated goat anti-rabbit IgG 31460 Pierce 
Mouse anti human CYP11B2 antibody (CYP11B2-41-
17B)  

obtained from Celso Gomez-Sanchez 
[147] 

Mouse anti-aldosterone antibody obtained from Celso Gomez-Sanchez [55] 
Mouse anti-β-Actin antibody  A5441 Sigma-Aldrich 
Rabbit anti human SLC26A2 antibody HPA041957 Sigma-Aldrich 
Rabbit anti-phospho-CREB1 (pSer133) antibody  SAB4300040 Sigma-Aldrich 
Rabbit-anti-mouse immunoglobulin D0314 DAKO 
 

2.1.6. Electronic Resources 

DAVID database for annotation, visualization and integrated discovery [148] 

Encode project DNA methylation [149] 

Gene Ontology Project [150] 

GNF Gene Expression Atlas 2 [151] 

HapMap phase II [152] 

ImageJ image processing program [153] 

KEGG database [154] 

PathVar microarray analysis of pathway expression variance [155] 

PathVisio pathway drawing and pathway analysis tool [156] 

Primer3 primer design program [157] 

Prism 3.02 statistics (GraphPad Software) 

PubMed [158] 

Reactome pathway database [159] 

RefSeq database [160] 

TargetScan miRNA target prediction [161] 

UCSC Genome Browser [162] 

WikiPathways pathway database [163] 

 

2.1.7. Cell Lines 

Human principal collecting duct cells immortalized by SV4O virus [164] 

Adrenocortical carcinoma cell line NCI-H295R [83] (ATCC CRL-2128) 
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2.1.8. Buffer Formulations 

1 % agarose gel 1 % w/v agarose, 0.005 v/v EtBr in TBE 
Citrate buffer 1.8 mM citric acid, 8.2 mM trisodium citrate, pH 6.0 
Coating buffer 50 mM Na2HPO4 x 2 H2O pH=7.4  
DIN salt buffer 50 mM NaHCO3, 9.56 mM NaCl, 1.35 mM K2CO3 
Enhancement buffer 1 % v/v enhancement solution A, 10 % v/v enhancement 

solution B 
Enhancement solution A 100 mM TTFA, 10 mM TOPO, 20 % v/v Triton X-100 
Enhancement solution B 68 mM KHP, 6 % v/v Glacial acetic acid, pH 3.15 
Erythrocyte lysis buffer 0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM Na2EDTA, pH 7.2 
High calcium extracellular solution 5 mM glucose, 1 mM MgCl2, 6.3 mM CaCl2, 5 mM HEPES, and 5 

mM KCl; pH 7.4 
High potassium extracellular solution 5 mM glucose, 1 mM MgCl2, 1.3 mM CaCl2, 5 mM HEPES, and 20 

mM KCl; pH 7.4 
IHC CYP11B2 blocking solution 0.1 M Tris base, 0.5 % w/v SDS, pH 7.4 
IHC CYP11B2 primary antibody buffer 0.1 M Tris base, 0.1 % v/v Tween 20, 20 % v/v human serum, pH 

7.4 
IHC SLC26A2 blocking buffer 5 % goat serum in blocking solution 
IHC SLC26A2 blocking solution 3 % w/v BSA, 0.5 % v/v Tween 20  
In house wash buffer 0.05 % v/v Tween 20 in PBS 
LKC buffer 154 mM NaCl, 49.53 mM Tris base, 7.7 mM N₃Na, 0.01 % w/v 

Tween 40, 0.5 % w/v BSA, 0.05 % w/v Bovine γ-Globulin, 20 µM 
DTPA, pH 7.75 

Maleate buffer 200 mM sodium maleate, 5 mM PMSF, 10 mM EDTA, 0.1 % w/v 
neomycin sulfate, pH=6.0 

PFA solution 4 % PFA w/v in PBS 
Ringer-type extracellular solution 137 mM NaCl, 5 mM glucose, 1 mM MgCl2, 1.3 mM CaCl2, 5 mM 

HEPES, and 5 mM KCl; pH 7.4 
TBE 89.15 mM Tris base, 88.95 mM Boric acid, 2 mM EDTA-Na2, 

pH=8.2 
TBST buffer 20 mM Tris base, 125 mM NaCl, 0.1 % v/v Tween 20, pH 7.6 
Tris-EDTA buffer 10 mM Tris base, 1 mM EDTA, 0.05 % v/v Tween 20, pH 9.0 
WB 6X loading dye 350 mM Tris base, 10 % w/v SDS, 0.6 % w/v bromophenol blue, 

30 % v/v glycerol, 600 mM DTT, pH 6.8 
WB blocking buffer 5 % w/v skim milk powder in TBST 
WB running buffer 25 mM Tris base, 200 mM glycine, 0.1 % w/v SDS 
WB transfer buffer 25 mM Tris base, 200 mM glycine, 20 % v/v methanol 
 

2.2. Genome-Wide Association Study  

A genome-wide association study was performed on the participants of the population-based 

Cooperative Health Research in the Region of Augsburg (KORA) study of the Helmholtz Zentrum 

München [165]. 4261 subjects participated in the baseline S4 study, with 3080 of these further 

participating in the 7-year follow-up F4 survey. The study was conducted with written informed 

consents of all participants and approval of the ethics committee of the Bavarian Medical 
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Association. 10 hours fasting venous blood samples were obtained between 07:30 and 10:30 in a 

seated position from the F4 cohort subjects [166]. Blood samples were stored at -80°C after 

centrifugation. Plasma aldosterone concentration was assayed as described in section 3.3.1 by Jenny 

Manolopoulou and Ariadni Spyroglou (Medizinische Klinik und Poliklinik IV, University of Munich). 

Plasma renin concentration was measured using an automated chemiluminescence immunoassay 

(LIAISON Direct Renin, Germany) by the group of Martin Bidlingmaier (Medizinische Klinik und 

Poliklinik IV, University of Munich). Participants with a renin or aldosterone concentration of more 

than 1000 ng/L were excluded from the study. Single-nucleotide polymorphism genotyping of 1814 

individuals from the cohort was accomplished with Affymetrix Genome-Wide Human SNP 6.0 arrays 

in accordance with the manufacturer’s instructions by Rajesh Rawal and Christian Gieger (Institute of 

Genetic Epidemiology, Helmholtz Zentrum München). Birdseed2 clustering algorithm [167] was used 

in genotype determination. Positive and negative control DNA was applied every 96 samples for 

quality control purposes. Average genotyping efficiency was 98 % per chip after excluding subjects 

with less than 93 % overall genotyping efficiency. Genotype imputation with IMPUTE v0.4.2 [168] 

based on HapMap phase II [152] resulted in a total of ~2.7 million directly genotyped or imputed 

single-nucleotide polymorphisms. 28 individuals under hypertensive treatment were excluded as 

interference of anti-hypertensive agents with ARR screening is well documented [169; 170]. Analysis 

of genome-wide association between genotyped and imputed markers and aldosterone to renin 

ratios was performed on the remaining 1786 subjects, using a linear regression model adjusting for 

age and sex. 

2.3. Animal Experiments 

Mouse necropsy was performed for harvesting murine tissues to profile gene expression levels. All 

animal studies were performed according to protocols examined and approved by the Regierung von 

Oberbayern (Az. 55.2-1-54-2531-36-07, 55.2-1-54-2531-134-07) and according to the German 

Animal Protection Law. Three female C3HeB/FeJ mice from the same litter were raised in the animal 

house of the Medizinische Klinik und Poliklinik IV. Mice were kept on a 12 hours light / dark circle in 

an ambient temperature of 25±2°C with relative humidity of 60±5 %, in standard mouse cages (15 

cm x 27 cm x 42 cm) with wood fibre bottom covering (Lignocel Fa. J.Rettenmaier & Söhne). They 

were fed with standard pelleted chow #1314 (Altromin, Lage, Germany), ad libitum with free access 

to tap water. The chow diet was composed of 22.5 % crude protein, 5 % crude fat, 4.5 % crude fibre, 

6.5 % crude ash. At 12 weeks of age, animals were euthanized by isoflurane inhalation (Forene, 

Abbot). Adrenal glands, kidneys, lungs, heart, lean muscles, spleen, brain, fat and ovaries were 

collected. Adrenal glands were cleaned of adjacent fat with a stereo microscope. All collected tissues 

were immediately snap frozen in liquid nitrogen and stored at -80°C until further processing. 
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Stimulation and suppression of aldosterone production in mice were previously performed by 

Ariadni Spyroglou, Medizinische Klinik und Poliklinik IV, University of Munich [42]. 12-week-old 

female C3HeB/FeJ mice were given either intraperitoneal injections of 0.2 nmol angiotensin II (Fluka, 

Taufkirchen, Germany), 50 µl/g NaCl 0.9 % (B Braun, Melsungen, Germany) or 2 % KCl in water ad 

libitum. For each treatment, mice were euthanized by isoflurane inhalation at various time points 

(for angiotensin II and NaCl injections, 10, 20, 30, 40, 60 and 120 minutes; for KCl, 1, 4 and 7 days) 

with five mice per time point in addition to baseline group receiving no treatment. Adrenal glands 

were cleaned of adjacent tissue, snap frozen and stored at -80°C. 

Adrenal glands and plasma samples of SLC26A2 knock-in mutant mice were obtained from Antonio 

Rossi, Department of Molecular Medicine, University of Pavia. Animal studies were performed 

according to protocols examined and approved by the Animal Care and Use Committee of the 

University of Pavia. Generation of this mouse model was previously described [171]. Briefly, the 

A386V substitution found in a non-lethal form of DTD was introduced via a targeting vector into AB1 

ES cells. Male chimeras were generated by injecting recombinant ES cells in BDF1x C57Bl/6J mouse 

blastocysts, which were in turn mated with C57Bl/6J females to yield heterozygous animals. Through 

subsequent breeding, homozygous mutants were generated. 

Wild type and homozygous Slc26a2 mutant mice were grown in a pathogen-free animal facility with 

ambient temperature of 25±2°C, relative humidity 60±5 %, and a 12h-12h light-dark circle, fed with 

standard pelleted food #2018 (Harlan Laboratories, Udine, Italy) ad libitum with free access to tap 

water. Mice were sacrificed at 8 weeks of age. Adrenal glands of wild type (7 males and 9 females) 

and mutant (11 males and 4 females) were cleaned of adjacent tissue and snap frozen for RNA 

extraction. Trunk blood for hormone assays and adrenals glands for histology experiments were 

collected from another set of animals (5 male and 5 female wild types, 4 male and 5 female 

mutants). 0.25 ml of blood from each animal was collected to Li-heparin coated tubes and 

centrifuged (10000 x g, 10 min) to obtain plasma, stored at -20°C. Adrenal samples were fixed in 4 % 

formaldehyde solution overnight at 4°C and subsequently embedded in paraffin. 

2.4. Hormone Assays 

2.4.1. Aldosterone Measurement 

Aldosterone concentrations in plasma samples and cell culture supernatant were measured by an in-

house developed fluorescence immunoassay [172]. In principle, sample aldosterone and a 

biotinylated aldosterone tracer binds competitively to anti-aldosterone antibody on coated 

microtiter plates. Bound tracer is detected by addition of Europium labeled streptavidin. 
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Microtiter plates are coated in two steps for the assay. Polyclonal rabbit-anti-mouse 

immunoglobulin is diluted in coating buffer to yield 300 ng per well and incubated overnight at 4°C. 

Incubation is followed by 3X wash with an in house wash buffer. Anti-aldosterone antibody 

produced in mouse as previously described [147] is diluted 1:200000 in LKC buffer and added to the 

wells, incubating overnight at 4°C, after which the plates were ready for the assay. A standard curve 

is prepared by diluting 10 mg/ml aldosterone in ethanol down to several concentrations between 10 

pg/ml and 2000 pg/ml in DIN salt buffer. Control samples were obtained by pooling mouse samples 

with low (50 pg/ml) or high (200 pg/ml) plasma aldosterone concentration. Biotinylated aldosterone 

tracer was prepared previously as per described methods [173]. 

Cell culture supernatant was directly used in the assay, whereas aldosterone from plasma samples 

were extracted by adding 1 ml of 50 mg/L polyethylene glycol 10000 in dichloromethane solution to 

50 µl of sample and 30 minutes of low speed vortexing. The organic phase was separated and 

evaporated, reconstituted with 175 µl 5.9 % methanol in DIN salt buffer, yielding four-fold dilution of 

the original sample. 50 µl of the sample was added to assay plate wells, along with 5 pg / 100 µl 

tracer in LKC buffer, incubating overnight at 4°C. After incubation, wells were washed 3X, 200 µl 

europium labeled streptavidin diluted 1:1000 in LKC buffer was added for 30 minutes at room 

temperature. Following a 6X wash, wells were incubated with 200 µl of enhancement buffer for 15 

minutes at room temperature and fluorescence of biotinylated aldosterone was measured by a 

fluorometer (VICTOR, Perkin-Elmer), calculating concentration through use of standard curve 

generated from the on-plate standard concentration points. 

2.4.2. Plasma Renin Activity Assay 

Plasma renin activity of mouse plasma samples were measured by a commercial angiotensin I 

radioimmunoassay kit (RENCTK, Diasorin) using nephrectomized rat plasma as substrate, with a 

modified protocol [101]. Reaction mixes were set up containing 50 μl probe diluted with maleate 

buffer, 22.2 μl rat renin substrate from bilaterally nephrectomized male rats diluted 1:3 with 

maleate buffer, 27.7 μl of the generation buffer and 2 μl PMSF. Mixture was divided into two 51 μl 

volumes, incubated 90 minutes on ice or in a 37°C water bath. 45 µl of each was incubated for 23 

hours at room temperature in RIA coated tubes along with the calibrators. Tubes were then 

aspirated and radioactivity was measured with a gamma counter. Renin activity in ng/(ml*hour) 

units were calculated as per the formula provided by the kit’s instructions. 

2.4.3. Cortisol Measurement 

Cortisol concentrations of cell culture supernatants were measured using a commercial kit (LIAISON 
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Cortisol, Diasorin) as per kit instructions by Philipp Grimminger, Medizinische Klinik und Poliklinik IV, 

University of Munich. Unused cell culture media was initially tested for cross-reactivity, and 

measurements were performed with a LIAISON Analyzer (Diasorin). 

2.4.4. Corticosterone Measurement  

Corticosterone concentrations of mouse plasma samples were assayed with a commercial enzyme 

immunoassay kit (Corticosterone EIA, Immunodiagnostic Systems) as per manufacturer’s 

instructions. 30 µl of plasma per animal was used. Absorbance of each well at 450 nm was measured 

with a microplate reader (Sunrise, Tecan). Concentrations were calculated from absorbance values 

using formula provided with the kit’s instructions. 

2.5. Cell Culture 

All culture cells were grown in sterile conditions in a humidified atmosphere (95 % CO2). Media 

compositions for individual cell types were as follows:  

Human principal collecting duct cells immortalized by SV4O virus: (cell line generated by Domiqiue 

Prie and colleagues at INSERM, Paris [164], obtained from Wolfgang Neuhofer, Department of 

Physiology, University Clinic Munich): DMEM/F-12 (Gibco #31330) supplemented with 2 % fetal 

bovine serum (Invitrogen #10500064), 1 % insulin–transferrin–selenium supplement (Gibco #41400), 

1 % penicillin / streptomycin (Invitrogen #15140), and 50 nM dexamethasone (Merck-Soreno). Cells 

were passaged weekly with a seeding ratio of 1:10. Cells with passage numbers between 5 and 15 

were used for experiments. 

Adrenocortical carcinoma cell line NCI-H295R [83] (American Type Culture Collection, #CRL-2128): 

RPMI 1640 medium (Gibco #61870) supplemented with 10 % fetal bovine serum (Invitrogen 

#10500064), 1 % insulin–transferrin–selenium supplement (Gibco #41400), 1 % penicillin / 

streptomycin (Invitrogen #15140), and 100 nM hydrocortisone (Pfizer). Cells were passaged weekly 

with a seeding ratio of 1:7. Cells with passage numbers between 15 and 25 were used for 

experiments. 

Primary culture of human adrenal gland cells: Use of human tissue samples for this study was 

approved by the Ethics Commission of Klinikum der Universität München (Project No: 379-10; 

17.01.2011). Surgically obtained human adrenal gland tissue was treated with collagenase II (1 

mg/ml, Gibco #17101) and erythrocyte lysis buffer (150 mM NH4Cl, 1 mM KHCO3, 0.1 mM Na2EDTA, 

pH 7.2). Cells were cultured in Advanced DMEM/F12 media (Gibco #12634) supplemented with 10 % 

fetal bovine serum (Invitrogen #10500064) and 1 % penicillin / streptomycin (Invitrogen #15140). 
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Cells were kept in culture for 7 days before experiments. 

2.5.1. siRNA Mediated CSF1R Expression Knockdown 

NCI-H295R cells were seeded with 200000 cells per well in 24-well plates, and incubated 24 hours 

after seeding. Metafectene Pro transfection reagent (Biontex # T040) was used as per 

manufacturer’s instructions to transfect scrambled negative control siRNA (Qiagen #1022076) or 

CSF1R specific siRNA (Santa Cruz #sc-29220), with 200 pmol siRNA and 6.25 µl transfection reagent 

per well. Cells were incubated with the transfection complex for six hours. Cell media were renewed, 

and cells and culture supernatant was harvested for expression and hormone analysis 2 days after 

transfection. 

2.5.2. CSF1 Stimulation 

200000 NCI-H295R cells per well were seeded in 24-well plates and incubated for 24 hours. Media 

was replaced, with the fresh media containing 0, 16, 80, 400, 2000, 10000 or 50000 pg/ml 

recombinant human M-CSF (R&D Systems #216-MC-005). After 24 hours of incubation with M-CSF, 

media supernatant was harvested for aldosterone measurement. 

Human primary adrenal gland cells, seeded at 10000 cells per well in 48-well plates 7 days prior to 

experimentation, were given fresh media containing 0, 10 or 100 ng/ml M-CSF. After 24 hours of 

incubation, the supernatant was collected for aldosterone measurement. 

2.5.3. shRNA Mediated Knockdown of SLC26A2 

Knockdown of SLC26A2 expression in NCI-H295R and cortical collecting duct cells are achieved with 

lentiviral transduction of non-targeting control (Sigma Mission SHC202) and SLC26A2 specific shRNA 

expression vectors (Sigma Mission #SHCLNV-NM_000112). A set of five shRNA sequences expressed 

by the TRC2-pLKO-puro Vector were used, with the clone of highest silencing efficacy being selected 

for further experiments (Table 2.1). 

Protocol for transduction of the viral particles was obtained from The RNAi Consortium. For both 

NCI-H295R and cortical collecting duct cells, the same procedure was used, aside from the initial 

number of cells seeded. 10000 NCI-H295R cells or 5000 collecting duct cells per well were seeded in 

96-well plates in their respective normal growth media. After being let grow for 24 hours, cell media 

was refreshed, with the addition of 2 µg/ml hexadimethrine bromide (Sigma #H9268). Lentiviral 

particles were added to cells with a multiplicity of infection of 10, and plates were centrifuged at 

700x g for 30 minutes at 37°C. Media was changed after overnight incubation, and 48 hours after 

transduction, selection of recombinant cells with 7 µg/ml puromycin (Sigma #P9620) was initiated. 
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Cells were grown under selective pressure for three passages, after which antibiotic was applied at 

every third passage. After the third passage, samples from each clone were assayed for SLC26A2 

expression. 

TRC 
Number 

Targeted 
Region Clone ID Sequence 

TRCN0000
285035 CDS NM_000112.

3-2344s21c1 
CCGGTTCCCTAACCAACGGAGAATACTCGAGTATTCTCCG

TTGGTTAGGGAATTTTTG 
TRCN0000

273694 CDS NM_000112.
3-1262s21c1 

CCGGCCGATTCCTATTGAACTTGTTCTCGAGAACAAGTTC
AATAGGAATCGGTTTTTG 

TRCN0000
273695 CDS NM_000112.

3-1091s21c1 
CCGGCTCAACCTTCCTCGGACTAATCTCGAGATTAGTCCG

AGGAAGGTTGAGTTTTTG 
TRCN0000

273644 3' UTR NM_000112.
3-4199s21c1 

CCGGGCCCTTTCTATCCAGCCTTATCTCGAGATAAGGCTG
GATAGAAAGGGCTTTTTG 

TRCN0000
273646 CDS NM_000112.

3-1417s21c1 
CCGGTGTAGATGCAATAGCTATTTCCTCGAGGAAATAGCT

ATTGCATCTACATTTTTG 

Table 2.1: shRNA clones and coding sequences targeting SLC26A2. 

 

2.5.4. Aldosterone Stimulation of Collecting Duct Cells 

Wild type or lentivirally transduced (targeting and non-targeting) collecting duct cells were seeded in 

24-well plates with a density of 50000 cells per well in normal growth media. After 48 hours of 

growth, cells were switched to DMEM/F-12 without supplements or serum. Following 18 hours of 

serum starvation, 1 µM of aldosterone (Fluka) was given in fresh DMEM/F-12, and incubated for 24 

hours. Cells were then harvested for RNA extraction. 

2.5.5. Steroidogenic Stimulation or Suppression of NCI-H295R Cells 

Wild type or lentivirally transduced (targeting and non-targeting) NCI-H295R cells were seeded in 24 

well plates at 200000 cells per well and grown for 48 hours. For stimulation or suppression of 

aldosterone production, cells were given fresh media containing 10 mM KCl (Merck #104936), 100 

nM angiotensin II (Sigma #A9525), 2 µM ACTH (Novartis #480881), 10 μM Forskolin (Sigma #F3917), 

3 µM calmidazolium (Sigma #C3930) or 3 µM KN-93 (Sigma #K1385). Cells were incubated for 24 

hours, after which cell culture supernatant and cells were harvested for hormone, gene expression 

and protein assays. 

Stimulation experiments were repeated under serum-starved conditions for simultaneous assaying 

of cortisol and aldosterone production of NCI-H295R cells. After seeding and initial growth of 48 

hours, cells were incubated with serum and additive-free media for 24 hours, followed by 
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application of 10 mM KCl, 100 nM angiotensin II, 10 μM Forskolin for 48 hours before harvesting 

cells and supernatant. 

2.5.6. Steroidogenic Stimulation of Primary Adrenal Cells 

Human primary adrenal gland cells, seeded at 10000 cells per well in 48-well plates 7 days prior to 

experimentation, were given fresh media containing 10 mM KCl, 100 nM angiotensin II or vehicle. 

After 24 hours of incubation, cells were lysed for RNA purification. 

2.5.7. Quantification of Intracellular K+, Na+ and Cl- Concentrations  

Wild type or lentivirally transduced (targeting and non-targeting) cells were seeded on poly-D-lysine 

(Sigma # P7886) coated hydrophilic PTFE membranes (Millipore #PICM01250) in 24-well plates with 

a seeding ratio of 100000 collecting duct cells per well or 250000 NCI-H295R cells per well and 

grown for 48-hours in their respective normal growth media. Cells were then transferred to the 

facilities of Dr. Wolfgang Neuhofer (Department of Physiology, University Clinic Munich), who 

proceeded with shock freezing, cryosection preparation and electron microprobe analysis, as 

described before [174]. Briefly, after cells were grown into a confluent monolayer, filters were 

covered with a thin layer of 20 % w/v BSA containing growth media and frozen with -196°C 3:1 v/v 

propane-isopentane mixture. 1 µm cryosections were prepared and freeze-dryed. Electron 

microprobe analysis with an energy dispersive X-ray detector equipped scanning electron 

microscope and subsequent quantification was performed by previously established procedure 

[175]. 

2.5.8. Quantification of Intracellular Ca2+ Concentration in NCI-H295R Cells 

Intracellular Ca2+ concentrations of lentivirally transduced control and SLC26A2-knockdown NCI-

H295R cells were measured in the laboratory of Richard Warth (Medical Cell Biology, University of 

Regensburg) [176]. Briefly, cells grown on cover slips were loaded with 50 µM fura-2-AM ratiometric 

Ca2+ dye for 30 minutes at 37°C. Either Ringer-type (137 mM NaCl, 5 mM glucose, 1 mM MgCl2, 1.3 

mM CaCl2, 5 mM HEPES, and 5 mM KCl; pH 7.4) or high calcium or potassium (same as Ringer-type 

except for NaCl replaced with 5 mM CaCl2 or 15 mM KCl) extracellular solutions were used. Mean 

fluorescence values for single cells were calculated after measurements with a filter wheel–based 

imaging system (Universal Imaging Corporation) mounted on an inverted microscope (Zeiss, Axiovert 

200) at 37°C. 

2.6. Histological Procedures 

Use of human tissue samples for this study was approved by the Ethics Commission of Klinikum der 
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Universität München (Project No: 379-10, 17.01.2011). 

2.6.1. Paraffin Embedding of Tissue Samples 

Human and murine tissue samples for histology experiments were fixed immediately after collection 

in 4 % PFA solution overnight at 4°C. Tissues were then washed with PBS and dehydrated, cleared 

and infiltrated with paraffin by a spin tissue processor (Thermo Scientific #STP 120) (1X 30 % EtOH, 

1X 70 % EtOH, 1X 80 % EtOH, 1X 96 % EtOH, 3X 100 % EtOH, 2X Xylene, 2X liquid paraffin at 60°C). 

Samples were then embedded in paraffin blocks. 4 µm sections were cut by a microtome and slides 

were left to dry overnight at room temperature. 

2.6.2. Hematoxylin and Eosin Staining 

Slides were dewaxed and rehydrated with 2x3 min Xylene, 2x3 min 100 % EtOH, 2x3 min 95 % EtOH, 

3 min ddH2O. 3 seconds of hematoxylin (Sigma #HHS32) staining was immediately followed by 

rinsing briefly with ddH2O, then under running tap water for one minute. After rinsing with ddH2O, 

slides are counterstained for 10 seconds with 0.5 % glacial acetic acid containing eosin Y solution 

(Sigma #HT110232). Slides were dehydrated (2x30 sec 95 % EtOH, 2x30 sec 100 % EtOH, 2x30 sec 

Xylene) and mounted with Permount (Fisher #SP15-500) 

2.6.3. Immunohistochemistry 

Paraffin embedded human adrenal and aldosterone producing adenoma sections were stained with 

polyclonal rabbit anti human SLC26A2 antibody (Sigma-Aldrich #HPA041957) or monoclonal mouse 

anti human CYP11B2 antibody (CYP11B2-41-17B) obtained from Celso Gomez-Sanchez 

(Endocrinology, University of Mississippi Medical Center) [55]. Paraffin embedded murine adrenal 

sections were stained with a polyclonal rabbit anti mouse SLC26A2 antibody (Sigma #SAB2106645). 

Two different protocols were used for immunohistochemistry of SLC26A2 and CYP11B2: 

SLC26A2 Staining: Slides were rehydrated (2X 5 min xylene, 2X 5 min 100 % EtOH, 2X 5 min 95 % 

EtOH, 2X 5 min ddH2O) and heat induced epitope retrieval with citrate buffer (1.8 mM citric acid, 8.2 

mM trisodium citrate, pH 6.0) was applied. Endogenous peroxidases were blocked with 0.3 % H2O2 in 

PBS for 10 minutes. Samples were incubated with a blocking buffer composed of 5 % goat serum in 

blocking solution (3 % BSA w/v, 0.5 % Tween 20 v/v) for 30 minutes at room temperature, followed 

by overnight incubation at 4°C with primary antibody diluted in blocking buffer (1:40 for Sigma 

#HPA041957; 1:200 for Sigma #SAB2106645). After a 15 minute wash with PBS, biotinylated goat 

anti rabbit IgG (Vector Laboratories #BA-1000) diluted 1:200 in blocking buffer was applied for 30 

minutes at room temperature. For visualization of bound antibody complex, Vectastain Elite ABC kit 

(Vector Laboratories #PK-6100) was used as per manufacturer’s instructions, staining sections with 
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3,3’-diaminobenzidine (Sigma #D4293) for 1 to 5 minutes. Slides were washed with PBS, 

counterstained with hematoxylin, dehydrated (2X 1 min 95 % EtOH, 2X 1 min 100 % EtOH, 2X 5 min 

Xylene) and mounted with Permount. 

CYP11B2 Staining: Rehydration (2X 10 min Xylene, 2X 2 min 2-propanol, 2 min 95 % EtOH, 2 min 70 

% EtOH, 2 min 30 % EtOH, 5 min ddH2O) and heat induced epitope retrieval with Tris-EDTA buffer 

(10 mM Tris, 1 mM EDTA, 0.05 % Tween 20, pH 9.0) was applied to the sections. Endogenous 

peroxidases were blocked with 0.3 % H2O2 in methanol for 10 minutes. Samples were incubated with 

a blocking buffer composed of 20 % normal human serum (Thermo Scientific # 31876) in blocking 

solution (0.1 M Tris, 0.5 % SDS, pH 7.4) for 1 hour at room temperature, followed by overnight 

incubation at 4°C with primary antibody (CYP11B2-41-17B) diluted 1:200 in primary antibody buffer 

(0.1 M Tris, 0.1 % Tween 20, 20 % human serum, pH 7.4). After a 25 minute wash with PBS, 

ImmPRESS Anti-Mouse Kit (Vector Laboratories #MP-7402) was applied according to manufacturer’s 

protocol. Sections were stained with 3,3’-diaminobenzidine for 2 to 20 minutes and counterstained 

with hematoxylin, followed by dehydration (2 min 30 % EtOH, 2 min 70 % EtOH, 2 min 95 % EtOH, 2X 

2 min 2-propanol, 2X 10 min Xylene) and mounting with Permount. 

2.7. Western Blot  

Protein extraction and quantification: Cells in 24-well plates were harvested for protein by washing 

2X with ice-cold PBS and directly adding RIPA buffer (Sigma #R0278) supplemented with protease 

(Roche #11836153001) and phosphatase inhibitor cocktails (Roche #04906845001). Cells were lysed 

on ice for 15 minutes while shaking at 300 rpm, scraped from wells, collected to tubes and 

centrifuged at 13000 rpm for 10 minutes at 4°C. Supernatant was stored at -80°C after aliquoting to 

minimize freeze-thaw cycles. Protein concentration was quantified with BCA protein assay (Thermo 

Scientific #23227) according to supplied protocol. BSA standards (Sigma #05482) between 0.0625 

and 2 mg/ml were prepared in the same matrix as protein samples. Concentrations were calculated 

based on absorbance measurements at 562 nm with a microplate reader (Sunrise, Tecan). 

Protein samples were diluted to a uniform 1 µg/µl concentration. Samples were denaturated by 

adding an 6X SDS containing loading dye (350 mM Tris, 10 % SDS, 0.6 % bromophenol blue, 30 % 

glycerol, 600 mM DTT, pH 6.8) and incubating @95°C for 5 min. 20 µg of each sample was 

symmetrically loaded to two 10 % SDS-PAGE gels (Bio-Rad #456-1033) along with PageRuler 

prestained protein ladder (Thermo Scientific #26616). The gels were run for 25 minutes under 250 V 

in the Mini-PROTEAN II electrophoresis system (Bio-Rad) with 1X running buffer (25 mM Tris, 200 

mM glycine, 0.1 % SDS). Size-separated protein on gels were transferred to methanol activated 

Hybond-P PVDF membranes (Amersham # YA3236) in the Trans-Blot SD semi-dry transfer cell (Bio-
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Rad) in a “wet sandwich” of filter papers soaked in transfer buffer (25 mM Tris, 200 mM glycine, 20 

% methanol) under 15 V for 45 minutes. The membranes were blocked with 5 % skim milk powder 

(Sigma #70166) in TBST buffer (20 mM Tris, 125 mM NaCl, 0.1 % Tween 20, pH 7.6) for 1 hour. Rabbit 

anti-phospho-CREB1 (pSer133) antibody (Sigma #SAB4300040) was diluted 1:1000; mouse anti-β-

Actin antibody (Sigma #A5441) was diluted 1:5000 in blocking buffer. Each membrane was incubated 

with a primary antibody overnight at 4°C. After 1 hour TBST wash and 15 minute blocking, 

membranes were incubated with HRP conjugated secondary antibodies diluted 1:5000 in blocking 

buffer (goat anti-mouse IgG, Pierce #31432; goat anti-rabbit IgG, Pierce #31462). Detection was 

achieved by soaking the membranes with HRP substrate Western Lightning Plus-ECL (Perkin Elmer, 

#NEL103E001EA) and capturing the resulting chemiluminescence on Hyperfilm ECL photographic 

films (GE Healthcare #28-9068-36) and subsequent development of the film with Curix 60 developer 

(Agfa). Developed films were scanned with 2400 dpi resolution, and band intensities were quantified 

by ImageJ image processing program [153] as described previously [177]. 

2.8. Gene Expression Analyses 

2.8.1. RNA Purification and Reverse Transcription 

Purification of total RNA from tissue and cell culture samples were accomplished using silica column 

binding based methodology of RNeasy Plus Mini Kit (Qiagen #74134). Prior to extraction of RNA, 

working space was cleared of RNase contamination using RNaseZap wipes (Ambion #AM9786). 

Surgically obtained human tissue samples and murine tissues from sacrificed animals were weighed 

in centrifuge tubes before freezing in liquid nitrogen. Frozen tissues were cut down to below 30 mg 

pieces with a surgical knife on dry ice without letting thaw. In case of small tissue samples of murine 

adrenal glands and murine ovaries, both tissues from the same animal were processed together. 

Tissues were homogenized in lysis buffer using TissueLyser LT (Qiagen #85600) bead mill system with 

5 mm steel beads. Cells from cell culture experiments were twice washed with ice cold PBS, and 

lysed directly by adding lysis buffer, and homogenized using QIAshredder spin-columns (Qiagen 

#79654). Subsequent treatments of homogenized lysates until elution in RNase-free water were 

according to instructions of RNeasy Plus Mini Kit. 

Concentration and purity (260 / 280 and 260 / 230 nm absorbance ratios) of eluted samples were 

determined with Nanodrop 1000 spectrophotometer (Thermo Scientific). Integrity of the RNA was 

ensured by observation of sharp 18S and 28S RNA bands after 1.5 % agarose gel electrophoresis. 

DNA contamination in purified RNA was controlled by a PCR reaction using the primers for genomic 

human beta-actin (5’-TCATGAAGTGTGACGTGGACATCC-3’ & 5’-CCTAGAAGCATTTGCGGTGGACGATG-

3’) or murine CYP11B2 (5’-TGCATGGCATGGTATCAATC-3’ & 5’-CATCCGTCTTCCTTTTTCCA-3’) with 
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GoTaq Green Master Mix (Promega #M7122) with recommended reaction (0.4 µM primers, 1 µl 

template in 25 µl total volume) and thermocycler conditions (2 min 95°C initial denaturation; 35 

cycles of 30 sec 95°C, 45 sec 60°C, 45 sec 72°C; 5 min 72°C final extension) in a Primus 25 Advanced 

thermocycler (Peqlab #95-4002). In the case of observable DNA contamination, RNA samples were 

treated with TURBO DNase (Ambion #AM2238) as instructed by manufacturer. 

2.8.2. Quantitative Real-Time Polymerase Chain Reaction 

Purified total RNA was reverse transcribed with RevertAid First Strand cDNA Synthesis Kit 

(Fermentas #K1621) using oligo(dT)18 primers according to kit instructions (1 µg RNA per 20 µl 

reaction). Gene expression levels were quantified by Mx3000P quantitative polymerase chain 

reaction system (Stratagene #401512). Amplification reactions were set up in duplicates using 

SsoFast EvaGreen RT-PCR master mix (Bio-Rad #172-5200) with 400 nM of each primer in 12 µl total 

volume and ran with a 2-step amplification program consisting of 3 minute initial denaturation at 

95°C, 40 cycles of 10 seconds denaturation at 95°C followed by annealing / extension at primer 

melting temperature. At the end of amplification, a melting curve was generated by incremental 

fluorescence readings with 0.5°C steps from 55°C to 95°C. Primers were designed using reference 

sequences from RefSeq database [160] with the aid of Primer3 oligonucleotide design tool [157]. 

Primer sequences and melting temperatures are listed in table 2.2. For each primer pair, 

amplification efficiency was determined using serial dilutions of target tissue or cell cDNA. Only 

primers with amplification efficiencies between 1.90 and 2.05 were used. Primer specificity was 

confirmed by the amplification product size via 1 % agarose gel electrophoresis. A calibrator was 

prepared by pooling all samples of each assay, and expression level of target gene in each sample 

was calculated relative to this calibrator. Target gene expression levels were normalized by HPRT1 in 

human adrenal tissues and NCI-H295R cells, 18S RNA in human collecting duct cells and Actb in 

murine tissues. Normalized gene expression levels are presented as percentages of control samples. 

Quantification of SLC14A2 expression in collecting duct cells was carried out by Wolfgang Neuhofer 

(Department of Physiology, University Clinic Munich) by RT-PCR. 

2.8.3. Microarray Analyses 

Transcriptome analysis and KCNJ5, ATP1A1 and ATP2B3 mutations genotyping of 91 aldosterone 

producing adenoma and 11 control adrenal samples along with were conducted by the research 

group of Maria-Christina Zennaro (Institut National de la Santé et de la Recherche Médicale, Paris). 

Samples were collected from patients of the Hypertension Unit at Hôpital Européen Georges 

Pompidou in Paris between 1994 and 2008, with approval from local ethics committee. 
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Methodology of sample phenotyping, microarray hybridization and data analysis were described 

previously [110]. 

Gene 
(Accession) 

Specie
s 

Strand
  

Sequence (5' > 3') Annealing 
Temperature 

CAMK1  
human 

fwd CATCGCCTACATCTTGCTCTG 
60°C (NM_003656.4) rev TTCTTCTTGATCTGCTCACTCAC 

CYP11B1 
human 

fwd GGGTGGCCTACAGACAACATC 
60°C (NM_000497.3) rev GGCGACAGCACTTCTGGATT 

CYP11B2  
human 

fwd ACTCGCTGGGTCGCAATG 
60°C (NM_000498.3) rev AGTGTCTCCACCAGGAAGTGC 

HPRT1  
human 

fwd TGCTGACCTGCTGGATTACA 
60°C (NM_000194.2) rev CCTGACCAAGGAAAGCAAAG 

HSD3B1  
human 

fwd AGAAGAGCCTCTGGAAAACACATG 
60°C (NM_000862.2) rev TAAGGCACAAGTGTACAGGGTGC 

HSD3B2  
human 

fwd AGAAGAGCCTCTGGAAAACACATG 
60°C (NM_000198.3) rev CGCACAAGTGTACAAGGTATCACC

A 
NFAT5 

human 
fwd TCAGCTTACCACGGACAACA 

60°C (NM_138714.3) rev ATGGCCTTCCAGCTTTACTGT 
NR4A1  

human 
fwd TCGGGGATACTGGATACACC 

60°C (NM_002135.4) rev TGTTCGGACAACTTCCTTCA 
NR4A2  

human 
fwd AGTCTGATCAGTGCCCTCGT 

60°C (NM_006186.3) rev CTGGGTTGGACCTGTATGCT 
SCNN1A 

human 
fwd CAACCAGGTCTCCTGCAAC 

60°C (NM_001038.5) rev GGGTTTCCTTCCTCATGCT 
SLC26A2  

human 
fwd CAATGCCCATAGTGCTCCTT 

60°C (NM_000112.3) rev ATCCACTCAGCAAGGCATCT 
Actb  

mouse 
fwd ACCCGCGAGCACAGCTTCTT 

60°C (NM_007393.3) rev TCTGGGCCTCGTCACCCACATA 
Cyp11a1  

mouse 
fwd GCTGGAAGGTGTAGCTCAGG 

60°C (NM_019779.3) rev CACTGGTGTGGAACATCTGG 
Cyp11b2  

mouse 
fwd CAGGGCCAAGAAAACCTACA 

60°C (NM_009991.3) rev ACGAGCATTTTGAAGCACCT 
Hsd3b1  

mouse 
fwd AAGGAGGAATTCTCCAAGCTG 

60°C (NM_008293.3) rev GAGCTGCAGAAGATGAAGGC 
Hsd3b6  

mouse 
fwd ATCAGAACCAGCCATTCCAA 

60°C (NM_013821.3) rev AAAACCCTCCTGCTCCAGTT 
Slc26a2  

mouse 
fwd CTGCCCTGACACTGATGCTA 

60°C (NM_007885.2) rev ACGTGAGGATGGTGAAGGAG 
Star  

mouse 
fwd GACCTTGAAAGGCTCAGGAAGAAC 

63°C (NM_011485.4) rev TAGCTGAAGATGGACAGACTTGC 

Table 2.2: Real-time PCR primer sequences and melting temperatures. 
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Whole-transcript gene expression microarray analysis covering 36,079 RefSeq transcripts was 

conducted to investigate differential expression of genes between control and SLC26A2 knockdown 

NCI-H295R cells. Mock and SLC26A2 knockdown cells were seeded in 6-well plates in triplicates, 

1000000 cells per well, and incubated with normal growth media for 48 hours. Subconfluent cell 

monolayer was lysed and RNA was purified as described in section 2.8.1. Subsequent cRNA 

synthesis, microarray hybridization and data analysis were carried out by Kompetenzzentrum für 

Fluoreszente Bioanalytik (KFB, Regensburg) using GeneChip Human Gene 1.0 ST Arrays (Affymetrix 

#901086). Functional annotation of differentially expressed genes was carried out using DAVID 

[148], and pathway mapping was accomplished by PathVisio [156] using pathway maps from 

WikiPathways [163]. 

2.9. Statistical Analyses  

Values are presented as mean ± standard error of the mean. Statistical significance of RT-PCR and 

hormone assay results was determined by unpaired, 2-tailed Student’s t test or one-way analysis of 

variance (ANOVA) with the Prism3.02 package (GraphPad Software). Statistical significance in graphs 

was denoted by asterisks as *: P<0.05, **: P<0.01, and ***: P<0.001. Statistical significance in 

microarray gene expression analyses were determined by the Mann-Whitney test. Pathway 

association of genes differentially expressed in SLC26A2 knockdown cells was determined by Fisher 

Exact test. 
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3. Results

3.1. Genome-Wide Association Study 

A genome-wide association study was conducted with participation of 1786 subjects of the 

Cooperative Health Research in the region of Augsburg F4 cohort [165]. The individuals were 

genotyped with Affymetrix Genome-Wide Human SNP 6.0 arrays, and their plasma aldosterone and 

renin concentrations were determined to calculate their aldosterone to renin ratio phenotypes 

[166]. Subsequent association analyses demonstrated a strong linkage of aldosterone to renin ratio 

to a locus at 5q32 with genome-wide significance (P=6.78×10–11) (Fig. 3.1A). The associated locus 

contained four genes: solute carrier family 26 (anion exchanger), member 2 (SLC26A2), tigger 

transposable element derived 6 (TIGD6), HMG box domain containing 3 (HMGXB3) and colony 

stimulating factor 1 receptor (CSF1R) (Fig. 3.1B). CSF1R and SLC26A2 were chosen for functional 

characterization based on an evaluation of the literature on PubMed [158] and publicly available 

expression data [151], as discussed in section 4.2. 

3.2. Colony Stimulating Factor 1 Receptor (CSF1R) 

3.2.1. Adrenal Expression Levels 

The locus that was found to be associated with high aldosterone to renin ratio by genome-wide 

association study contained colony stimulating factor 1 receptor (CSF1R). Among the four genes in 

the locus, this was the most thoroughly studied one in the literature. Although screening for reports 

on this gene’s possible function in aldosterone biosynthesis yielded no particular leads, it was 

considered prudent to be investigated further. Therefore, the expression level of the gene was 

measured with RT-PCR, comparing normal (100±18 %) and diseased human adrenal tissues 

(adenoma: 130.4±39.8; carcinoma: 69.8±31.3 %), along with the cell line NCI-H295R (0.021±0.006 %) 

(Fig. 3.2). The results indicated no significant difference in tissue samples (normal vs. adenoma 

P=0.53; normal vs. carcinoma P=0.44). It was also shown that the expression in the adrenal cancer 

cell line was detectable, yet at very low levels (5000-fold less than in adrenal tissue). 

3.2.2. Expression Knockdown 

In an attempt to eliminate the residual expression of CSF1R, NCI-H295R cells were transfected with 

siRNA specific to CSF1R. The gene silencing had an efficacy of 65 % of the controls (100±26.1 vs 

65.4±21.6 %) (Fig. 3.3A), but did not to give rise to any difference in aldosterone production of the 

cells (100±6.7 vs 108±2.4 pg/ml; P=0.32) (Fig. 3.3B). 
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3.2.3. Ligand Induction 

The CSF1 receptor is normally found in an auto-inhibited state before binding to the ligand and 

subsequent auto-phosphorylation [178]. As a possible strategy to elevate the CSF1R activity in NCI-

H295R and to better elucidate whether it has any functional impact in aldosterone production, the 

receptor was stimulated by incubating the cells with its ligand, CSF1. However, measuring 

aldosterone output of the cells treated with various concentrations of CSF1 revealed that stimulation 

Figure 3.2: CSF1R expression in human adrenal tissue and cell line samples as percentage of 
normal adrenals. CSF1R expression in adrenocortical cell line NCI-H295R was three orders of 
magnitude less than normal adrenals. * depicts significant differences compared to control group 
(Normal Adrenal). 

Figure 3.3: Aldosterone output of NCI-H259R cells after CSF1R knockdown. A, CSF1R expression 
of NCI-H295R cells transfected with scrambled or specific siRNA yielded a low knockdown 
efficacy. B, Aldosterone output difference of cells after knockdown was statistically not 
significant. For all groups, n=3. 
 

A B 
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of CSF1R does not affect 

aldosterone production in NCI-

H295R (baseline: 39.6±2.7; 0.016 

ng/ml: 34.8±0.1; 0.08 ng/ml: 

36.8±1.7; 0.4 ng/ml: 37±1.8; 2 

ng/ml: 37.6±2.9; 10 ng/ml: 36.6±1; 

50 ng/ml: 39.7±2.5 pg/ml) (Fig. 

3.4). 

Lack of any relation between 

CSF1R induction and adrenal 

aldosterone production was also 

confirmed by replicating the 

treatment in primary adrenal cell 

cultures,  as adrenal tissue had 

manyfold higher expression of the gene. After 

establishing primary cell cultures from human 

adrenal gland samples obtained from 

adrenalectomy, low (10 ng/ml) and high (100 

ng/ml) doses of CSF1 was used to stimulate its 

receptor, and the aldosterone accumulation in 

the culture media was assayed (baseline: 

732.7±47.8; low: 701.6±7.5; high: 741.2±39.2 

%). Again, comparison of the treatment 

conditions revealed no significant difference of 

aldosterone concentration (baseline vs low 

P=0.56; baseline vs high P=0.9) (Fig. 3.5). 

3.3. Solute Carrier Family 26 (Anion 

Exchanger), Member 2 (SLC26A2) 

SLC26A2, also known as diastrophic dysplasia 

sulfate transporter (DTDST) after its role in the 

pathophysiology of the synonymous disorder (DTD), is an anion transporter with affinity to sulfate, 

oxalate and chloride [179]. These properties suggested a possible role for the transporter in the 

nephron ion recycling. 

Figure 3.4: Aldosterone output of NCI-H295R cells after 24 
hours of incubation with various concentrations of CSF1. 
Aldosterone production in H295R cells are not affected by 
M-CSF dosage. For all groups, n=2. 

Figure 3.5: Aldosterone output of human 
adrenal gland primary culture cells after 
incubation with vehicle, 10 or 100 ng/ml CSF1 
for 24 hours. Aldosterone production of 
primary adrenal cells from cortex adjacent to 
an adenoma is not regulated significantly by 
CSF1. For all groups, n=3. 
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3.3.1. SLC26A2 in Aldosterone Function on Kidney 

The mineralocorticoid aldosterone, the dysregulation of which gives way to PA, acts on distal tubule 

of the kidney to facilitate Na+ 

reabsorption. As there was the possibility 

of high ARR associated locus having an 

impact on aldosterone function as 

aldosterone production, the cortical 

collecting duct was also investigated with 

regard to the genes present in the locus. 

After obtaining and growing a culture line 

of human principal kidney cortical 

collecting duct cells [164], baseline 

expression level of SLC26A2 gene was 

determined. SLC26A2 was found to be 

expressed in these cells in the same order 

of magnitude as adrenal tissue (adrenal: 

100 vs collecting duct cells: 24.7 %) (Fig. 

3.6). 

3.3.2. Collecting Duct Cells Response to Aldosterone  

Aldosterone’s mechanism of action includes transcriptional upregulation of the epithelial sodium 

channel alpha subunit (SCNN1) to increase Na+ permeability of the apical membrane. SLC26A2 

expression changes due to and during this process was investigated by inducing the 

mineralocorticoid receptors of the kidney cells by aldosterone incubation. Transcript levels of CSF1R, 

SLC26A2 and SCNN1A were determined under serum starved conditions. Along with the expected 

upregulation of SCNN1A in response to aldosterone (baseline 100±14.2 vs aldosterone 338 ±20 %; 

P<0.001) (Fig. 3.7A), a significant, 1.5-fold increase of SLC26A2 was also detected (baseline: 

100.0±10.8 vs aldosterone: 158.1±14.6 %; P=0.03) (Fig. 3.7B). 

3.4. SLC26A2 Gene Silencing in Collecting Duct Cells 

3.4.1. Effect of Gene Silencing on Aldosterone Response 

The observation of increased SLC26A2 expression during the regulation of epithelial sodium channel 

by aldosterone led us to investigate of whether SLC26A2 has a function in the pathway from 

aldosterone receptors to SCNN1A upregulation. To this end, the SLC26A2 expression was knocked 

Figure 3.6: Baseline expression of SLC26A2 in 
collecting duct cells. SLC26A2 is expressed in 
collecting duct cells, albeit less than human adrenal 
tissue levels. For all groups, n=1. 
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down in collecting duct cells. Lentiviral delivery of shRNA was chosen as the method of gene 

silencing for the benefit of a constitutive expression of shRNA, which yields a long term suppression 

of gene expression. 

Using lentiviral particles encapsulating viral vectors with shRNA specific to SLC26A2, a collecting duct 

cell line with suppressed SLC26A2 expression was established, along with a control cell line with 

nontargeting shRNA expression. Employment of shRNA expression suppressed approximately two-

thirds of gene expression, with a higher efficacy in aldosterone stimulated cells (baseline: 100±5.6 vs 

35.4±0.7; aldosterone: 120.5±15.5 vs 30.6±2.5 %) (Fig. 3.8A). No upregulation of SLC26A2 was 

observed upon aldosterone stimulation neither in control cells (P=0.28) nor upon silencing of 

SLC26A2 (P=0.14). Quantification of SCNN1A levels revealed that the knockdown did not cause a 

significant alteration in sodium channel expression in cells with or without aldosterone stimulation 

(baseline: 18.6±3 vs 25.5±0.3; aldosterone: 100±25 vs 80.4±4.6 %) (Fig. 3.8B). However, the 

aldosterone induced increase of SCNN1A expression was less profound in the knockdown cells, 

although this difference did not achieve statistical significance (mock: 5.4±1.3-fold vs KD: 3.2±0.2-

fold; P=0.18). 

3.4.2. Osmotic Stress Genes 

The need to maintain a high osmotic gradient in principal collecting duct cells to reabsorb sodium in 

hypertonic conditions puts the cells in osmotic stress. NFAT5 is a transcription factor that directs 

multiple responses of these cells: it regulates uptake and synthesis of organic osmolytes that 

Figure 3.7: Collecting duct cell expression levels of A, SCNN1A and B, SLC26A2 after 24 hour 
incubation with 1 µM aldosterone. Aldosterone displays its well characterized upregulating effect 
on ENaCα, as well as leading to an increased SLC26A2 expression. * depicts significant differences 
between baseline and stimulated cells. For all groups, n=3. 
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increase intracellular tonicity while lowering the ionic strength, therefore preventing disruption of 

protein structure and function. NFAT5 also protects the cells against urea by promoting expression 

of HSP-70 and urine transporter SLC14A2 (UT-A) and water channel AQP2, which contributes as well 

to urea concentrating process [180]. After failing to observe any significant direct alterations in 

principal cell response to aldosterone by SLC26A2 knockdown, it was suspected that the knockdown 

may upset the interplay between sodium and water reabsorption processes and cellular defenses 

against osmotic stress. In fact, SLC26A2 knockdown was observed to reduce the expression of NFAT5 

under baseline or aldosterone stimulated culture, and the reduction in baseline condition satisfied 

statistical significance criteria (baseline: 100±4.2 vs 58.6±3.3 %; P=0.001; aldosterone: 59.5±19 vs 

38.9±4 %; P=0.35) (Fig. 3.9A). As expected, a subsequent decrease in SLC14A2 levels in SLC26A2 

knockdown cells was also observed (baseline: 100±14.1 vs 69.6±28.9 %; P=0.4; aldosterone: 

109.3±22.1 vs 68.5±11.8 %; P=0.18) (Fig. 3.9B). 

3.4.3. Intracellular Ion Content 

SLC26A2 knockdown collecting duct cells were further studied to determine their intracellular 

electrolyte levels by electron microprobe analysis, in order to observe whether the osmotic stress 

response differences in knockdown cells affect Ion concentrations. In comparison to wild type or 

nontargeting shRNA controls, knockdown cells presented no significant changes in levels of sodium 

(WT: 14.9±0.9; mock: 15.9±1; KD: 14.8±1.6 mmol/kg; mock vs KD P=0.6) (Fig. 3.10A), chloride (WT: 

Figure 3.8: shRNA mediated SLC26A2 knockdown in aldosterone stimulated collecting duct cells. 
A, The efficacy of the knockdown was similar in baseline and stimulated conditions. B, SCNN1A 
expression upregulation by aldosterone was not prevented by knockdown, but was reduced in 
intensity. * depicts significant differences between Mock and SLC26A2 Knockdown cells of the 
same treatment; # depicts significant differences between baseline and stimulated Mock 
Knockdown cells; § depicts significant differences between baseline and stimulated SLC26A2 
Knockdown cells. For all groups, n=3. 
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34±1.5; mock: 34.7±2.1; KD: 34.7±1.2 mmol/kg; mock vs KD P=1) (Fig. 3.10B) or potassium (K+) (WT: 

131.7±5.5; mock: 125.4±5.6; KD: 137.9±4.6 mmol/kg; mock vs KD P=0.1) (Fig. 3.10C). 

 

 

A B 

Figure 3.9: Expression of osmotic stress genes in SLC26A2 knockdown collecting duct cells. A, 
osmotic stress regulator NFAT5 was expression decreased in response to both aldosterone and 
SLC26A2 suppression. B, Mean SLC14A2 expression expression was lower in knockdown cells, but 
did not respond to stimulation of cells by aldosterone. * depicts significant differences between 
Mock and SLC26A2 Knockdown cells of the same treatment; § depicts significant differences 
between baseline and stimulated SLC26A2 Knockdown cells. For all groups, n=3. 
 

Figure 3.10: Monovalent ion content of collecting duct cells. No significant differences in sodium 
(A), chloride (B) and K+ (C) contents between wild type, control and SLC26A2 knockdown cells 
were observed. For all groups, n=3. 

A B C 
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3.5. Adrenal SLC26A2 Expression 

A literature scan for this gene failed to identify any reports on its potential role in adrenal function. 

However, evaluation of publicly available microarray based expression data from GNF Gene 

Expression Atlas 2 [151] indicated a high adrenal and adrenocortical expression of the gene (Fig. 

3.11). 

3.5.1. Tissue Specific Expression 

Confirmation of the microarray data from the literature, indicating above-median expression of 

SLC26A2 in adrenal tissue, was the initial step of confirming the hypothesis that this locus could be 

involved in the pathogenesis of primary aldosteronism. Using primers targeting the SLC26A2 gene, 

relative expression levels in human reference RNA mix (100±16.7 %), liver (73±14.5 %) and pancreas 

(744±115.6 %) were quantified and compared with normal adrenal (3365±367 %) and Conn’s 

adenoma tissues (2831±1013 %), depicting a profile of differential expression levels throughout the 

organism (one-way ANOVA P=0.035) (Fig. 3.12). 

As a genetically modifiable model organism, mice play an important role in studies of aldosterone 

physiology and hyperaldosteronism [102; 105]. Therefore, Slc26a2 expression in murine tissues was 

profiled. Expression was quantified in adrenal, kidney, lung, heart, liver, muscle, spleen, brain, ovary 

and fat tissues (Fig. 3.13). Slc26a2 levels in adrenal glands were found to be significantly higher 

compared to the other tissues (adrenal : 100±4.3 %; kidney: 40.1±3 %, P<0.001; lung: 35.5±2.4 %, 

P<0.001; heart: 51.7±0.9 %, P<0.001; liver: 19.4±1 %, P<0.001; muscle: 62.6±11.7 %, P=0.04; spleen: 

5.6±0.1 %, P<0.001; vs brain: 12.9±1.5 %, P<0.001; vs ovary: 34.1±4.6 %, P<0.001; vs fat: 68.3±6.7 %, 

P=0.016). 

3.5.2. Adrenal Expression by Disease State 

The high adrenal SLC26A2 expression opened up the possibility of altered expression profile of this 

gene in adrenal disease. To address this question, expression levels in 11 control adrenals and a large 

set of 91 APAs were quantified and compared. Interestingly, a significant decrease in SLC26A2 levels 

in APAs was observed (31.2±4.2 vs 12.4±1.1; P<0.001) (Fig. 3.14A). However, within the adenomas, 

there were no significant differences between the mutation status of recently identified [86; 87] 

causative genes KCNJ5, ATP1A1 or ATP2B3 (-/-: 10±1.2; KCNJ+: 15.2±2.1; ATPase+: 10.2±2.4; P=0.22) 

(Fig. 3.14B) or between sexes (females: 12.8±1.6 vs males: 11.8±1.6; P=0.77) (Fig. 3.14C). 

Lowered mean transcript levels of SLC26A2 in aldosterone producing adenomas were validated on 

the protein level by immunohistochemistry. Normal human adrenal samples and adrenal adenomas 
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Figure 3.11: Microarray based expression levels of SLC26A2 among human tissues in the Gene 
Atlas platform data. 
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were screened with anti-CYP11B2 antibodies and visualized by peroxidase reaction. No staining was 

observed in negative controls lacking the primary antibodies (Fig. 3.15A,B). Intensive CYP11B2 

expression was evident in adenomas (Fig. 3.15D) whereas in normal adrenals, CYP11B2 was localized 

to a thin sub-capsular region and islets as expected [55] (Fig. 3.15C). Immunohistochemical detection 

of SLC26A2 expression in these samples was carried out using a polyclonal rabbit anti-human 

SLC26A2 antibody. Subsequent visualization revealed SLC26A2 expression throughout the cortex of 

normal adrenals (Fig. 3.15E). In comparison, staining was diminished in APAs (Fig. 3.15F). 

Figure 3.12: SLC26A2 expression in human tissue samples. Expression in adrenal tissues was 
significantly higher compared with other reference, liver or pancreas samples (P<0.05). * depicts 
significant differences compared to control group (Human Reference RNA). For all groups, n=2. 
 

Figure 3.13: Slc26a2 expression in murine tissues. Expression in adrenal glands was significantly 
higher than each of the screened tissues. * depicts significant differences compared to control 
group (Adrenal). For all groups, n=3. 
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Figure 3.15: Immunohistochemical detection of CYP11B2 (C,D) and SLC26A2 (E,F) expression in 
adrenal tissue. No unspecific staining in the lack of primary antibody was detected (A,B). CYP11B2 
staining was localized to ZG in normal adrenals (C) compared to more intense and broad 
immunopositivity in APA (D). In contrast, SLC26A2 was detected throughout the adrenal cortex 
with a higher intensity in normal adrenal (E) in comparison with APA (F). Bars represent 125 µm. 
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3.6. Effects of Aldosterone Regulators on Adrenal SLC26A2 Expression 

3.6.1. in vivo 

Observations of high adrenal and decreased 

APA expression of SLC26A2 led us to suspect a 

potential effect of the solute carrier on 

aldosterone production. Initially, coregulation 

of Slc26a2 expression with aldosterone was 

investigated. Therefore, mice were treated 

with secretagogues of aldosterone, and the 

adrenal Slc26a2 expression was measured. As 

high blood K+ levels are the most potent factor 

in aldosterone, effects of K+ were investigated. 

Mice on a high K+ diet through their water 

supply were tested at four time points showed 

a significant decrease in gene expression 

(baseline:  

100±14.4; day 1: 58.6±2.7 %; P=0.015; day 4: 

49.8±15.6 %; P=0.054; day 7: 81.6±11.7 %; 

P=0.34), within days, tending to recover as the decrease being reduced to non-significant levels 

within a week (Fig. 3.16). 

Figure 3.16: Regulation of Slc26a2 expression 
in vivo by K+. Expression in adrenal glands of 
mice fed with a high K+ diet was initially 
significantly lowered, with recovering after 
seven days. * depicts significant differences 
compared to control group (Baseline). Baseline, 
n=4; treatment groups, n=5. 
 

Figure 3.17: Regulation of Slc26a2 expression in vivo by AngII. Expression in adrenal glands of 
mice injected with AngII decreased within 40 minutes. After two hours, the downregulation was 
statistically significant. * depicts significant differences compared to control group (Baseline). 
Baseline, n=4; treatment groups, n=5. 
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As described previously, angiotensin II exerts control of the RAA system on aldosterone production 

by initiation of the signaling cascade in zona glomerulosa cells to express Cyp11b2 and therefore to 

secrete aldosterone. In this context, acute effects of AngII treatment in murine adrenal glands in 

relation to Slc26a2 expression were observed. Expression changes were determined within a 2-hour 

time period. Slc26a2 expression began to decrease after 40 minutes (baseline: 100±14.4 vs 40’: 

77.3±13 %, P=0.28), with a significant reduction being observed after 2 hours (48.8±7.3 %, P=0.012) 

(Fig. 3.17). 

Intravenous sodium loading is a regularly employed clinical test in the diagnosis of PA. By elevating 

the plasma sodium levels, renin production in the kidney is inhibited, which in turn leads to 

inhibition of aldosterone production in the adrenals via the RAAS. Slc26a2 expression in adrenal 

glands was observed after suppression of RAAS by this method in mice. Even though a decrease in 

expression was observed within twenty minutes (100±14.4 vs 59.6±11 %, P=0.057), overall, the 

treatment yielded no statistically significant changes in the expression profile (P=0.48) (Fig. 3.18). 

3.6.2. in vitro 

The model cell line for studies on aldosterone biosynthesis and metabolism is the human 

adrenocortical cancer cell line NCI-H295R [181]. Interestingly, incubation of these aldosterone 

producing cells with elevated K+ concentration in their growth medium led to an increase in their 

expression of SLC26A2 (100±6.7 vs 163.8±16.8 %, P=0.027) (Fig. 3.19). Incremental increase of K+, 

however, had no effect on the magnitude of this increase. 

Figure 3.18: Suppression of renin by injecting mice by sodium loading did not affect adrenal 
Slc26a2 expression. Baseline, n=4; treatment groups, n=5. 
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The NCI-H295R cells are sensitive 

to signals stimulating the 

aldosterone production, mainly 

AngII, K+ and forskolin. These 

stimulators of aldosterone 

production were utilized for better 

elucidation of aldosterone - 

SLC26A2 coregulation. As 

compared to cells grown with 

regular media, those with 

angiotensin added to the media 

displayed a less-than-significant 

reduction in the SLC26A2 

transcript levels (79.6±5.4 %, 

P=0.076). Low ACTH 

responsiveness [182] of H295R cells were demonstrated as synachten had no observable effects to 

SLC26A2 expression (106.4±3.6 %, P=0.45), whereas elevation of cyclic AMP levels independently 

using forskolin yielded a significant upregulation (196.8±11.6 %, P=0.002) (Fig. 3.19). 

A cancer-derived cell line may provide an easily 

handled and versatile tool to perform 

experiments, but the origins of the line may 

cause problems and artifacts in comparison to 

physiological conditions. It may, therefore, be 

deemed prudent to use primary cell lines when 

possible. Using the small amount of tumor 

adjacent normal adrenal tissue attached from 

adrenalectomy samples, primary cultures were 

prepared and treated with increased K+ or 

AngII. The effects of these stimulators on the 

primary adrenal culture cells replicated that of 

NCI-H295R cells, the increase by K+ (100±47.1 

vs 153±57.7 %, P=0.55) and the decrease by 

AngII (75.5±31.9 %, P=0.71) (Fig. 3.20). 

Statistical tests, however, yielded no 

Figure 3.19: In vitro transcriptional regulation of SLC26A2. 
NCI-H295R cells were stimulated with aldosterone 
secretagogues K+, AngII, synthetic ACTH and forskolin. 
SLC26A2 expression was upregulated significantly by K+ and 
forskolin, unaffected by ACTH and mildly decreased by 
AngII. * depicts significant differences compared to control 
group (Baseline). For all groups, n=3. 

Figure 3.20: Transcriptional regulation of 
SLC26A2 in adrenal cells. SLC26A2 levels of the 
primary adrenal cell culture was elevated by K+ 
and slightly lowered by AngII, mimicking H295R 
cell response. For all groups, n=2. 
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significance due to intragroup variation, possibly due to heterogeneous cell composition in the 

source tissue sample. 

3.7. Adrenal SLC26A2 Gene Silencing  

The evidence derived from observing the effects of aldosterone stimulators on SLC26A2 expression 

indicated a potential regulatory role of the SLC26A2 itself on the production of mineralocorticoids. 

To test this hypothesis, a suppression of SLC26A2 expression using RNA interference was aimed. 

Using lentiviral delivery of expression vectors encoding non-targeting or SLC26A2-specific shRNA, 

cell lines with decreased expression and control lines were established. Non-targeting shRNA did not 

significantly alter SLC26A2 expression compared to wild type cells (107.1±4. 2 vs 100±4.3 %, P=0.3). 

Expression levels of SLC26A2 were reduced four-fold compared to control cells (100±4.3 vs 23.5±2.3 

A 

B 

Figure 3.21: shRNA mediated SLC26A2 knockdown in NCI-H295R cells. A, SLC26A2 expression was 
silenced with lentivirally delivered constitutively expressed shRNA. SLC26A2 expression was 
suppressed to 23 % of controls, whereas unspecific shRNA did not alter SLC26A2 levels. B, 
Supression of SLC26A2 expression remained at similar potency after treatment of cells with 
aldosterone agonists. * depicts significant differences between Mock and SLC26A2 Knockdown 
cells of the same treatment; # depicts significant differences between baseline and stimulated 
Mock Knockdown cells; § depicts significant differences between baseline and stimulated 
SLC26A2 Knockdown cells. For all groups, n=3. 
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%, P<0.001) (Fig. 3.21A), with this ratio remaining in the range of 3 to 4-fold across passages 

(100±7.9 vs 37.7±1.9 %) (Fig. 3.21B). Knockdown efficacy was similar in culture conditions 

stimulating aldosterone production, i.e. with increased K+ (3.2±0.2-fold), with AngII (2.8±0.2-fold) 

and with elevated cAMP levels by forskolin (3.2±-0.3-fold). 

3.7.1. Steroidogenesis 

Initially, any possible effects of SLC26A2 knockdown on aldosterone production of the cells were 

investigated. In comparison to unspecific control shRNA expressing cells, which did not affect 

aldosterone production (WT: 129.8±24.8 vs mock: 100±18.9 %, P=0.12) (Fig. 3.25B), the knockdown 

line demonstrated a profound increase in aldosterone output (64.6±1.1 vs 432.7±23 pg/ml, P<0.001) 

(Fig. 3.22). The increase in aldosterone production upon knockdown was also observed in 

stimulating conditions provided by presence of increased KCl (1419.8±15.4 vs 1950.5±20.1 pg/ml, 

P<0.001), AngII (98.9±2.8 vs 778.8±43.3 pg/ml, P<0.001) or forskolin (800.6±35.6 vs 1630.6±14.6 

pg/ml, P<0.001). 

Although SLC26A2 expression was not affected by induction of NCI-H295R cells by synachten, 

possibly due to low ACTH responsiveness of this cell line (Fig. 3.19), aldosterone production was 

increased by ACTH, and the reaction of SLC26A2 knockdown cells to ACTH stimulation was 

significantly more pronounced (mock: 31.2±1.8 vs 80±6.1 pg/ml, 2.6±0.2-fold; KD:224.8±27.6 vs 

802±65.9 pg/ml, 3.6±0.3-fold, P=0.04;) (Fig. 3.23). 

Figure 3.22: Aldosterone production of SLC26A2 knockdown NCI-H295R cells. Aldosterone output 
of knockdown cells were significantly higher in cells with suppressed SLC26A2 expression in both 
baseline and aldosterone stimulating culture conditions. * depicts significant differences between 
Mock and SLC26A2 Knockdown cells of the same treatment; # depicts significant differences 
between baseline and stimulated Mock Knockdown cells; § depicts significant differences 
between baseline and stimulated SLC26A2 Knockdown cells. For all groups, n=3. 
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The NCI-H295R cell line has the capability of producing cortisol in addition to aldosterone. In order 

to clarify whether the elevated steroidogenetic effect of SLC26A2 knockdown is specific to 

aldosterone, cortisol and aldosterone outputs of the cells in serum starved conditions were 

determined. Synthesis of both steroids increased in knockdown cells under baseline conditions 

(aldosterone: 8.1±0.6 vs 96.9±12.2 pg/ml, P=0.002; cortisol: 76.2±0.3 vs 233.6±22.4 ng/ml, P=0.002) 

(Fig. 3.24A&B); ratio of aldosterone increase over shadowing that of cortisol (aldosterone: 12±1.5-

fold vs cortisol: 3.1±0.3-fold, P=0.004). Moreover, cortisol output change remained less prominent in 

presence of stimulators K+ (aldosterone: 30.9±3.1-fold vs cortisol:3.7±0.5-fold, P<0.001), AngII 

(aldosterone: 13.8±0.6-fold vs cortisol:2.7±0.2-fold, P<0.001) and forskolin (aldosterone: 16±0.5-fold 

vs cortisol:2.1±0.1-fold, P<0.001). 

3.7.2. Steroidogenic Enzymes 

CYP11B2, the rate limiting enzyme of aldosterone biosynthesis, catalyses the last step of the 

mineralocorticoid production pathway by oxidation of corticosterone to aldosterone in the ZG. 

CYP11B2 expression and aldosterone output of knockdown cells were simultaneously quantified. 

Lentiviral transduction alone, in accordance with its effects on aldosterone production (WT: 

129.8±24.8 vs mock: 100±18.9 %, P=0.12) (Fig. 3.25B), did not affect CYP11B2 expression (WT: 

119.2±4.9 vs mock: 100±27.7 %, P=0.56) (Fig. 3.25A). Comparison of transcript levels between 

control and knockdown cells revealed that the increases in aldosterone production after SLC26A2 

Figure 3.23: Aldosterone production of SLC26A2 knockdown NCI-H295R cells treated with ACTH. 
Increase in aldosterone production by ACTH stimulation was more pronounced (3.5-fold) in 
comparison to control cells (2.5-fold). * depicts significant differences between Mock and 
SLC26A2 Knockdown cells of the same treatment; # depicts significant differences between 
baseline and stimulated Mock Knockdown cells; § depicts significant differences between 
baseline and stimulated SLC26A2 Knockdown cells. For all groups, n=3. 
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knockdown (100±18.9 vs 767.9±70.4 %, P<0.001) were effected by upregulation of this enzyme 

(100±27.7 vs 553.1±30.1 %, P<0.001). 

As the CYP11B2 found in ZG cells catalyzes late pathway of mineralocorticoid synthesis, CYP11B1 

similarly facilitates glucocorticoid production in the zona fasciculata. Expression levels of these two 

enzymes in SLC26A2 knockdown NCI-H295R cells were quantified at baseline and aldosterone 

stimulating conditions. Expression of both steroidogenic enzymes were elevated in baseline 

conditions, with CYP11B2 increase being more prominent (CYP11B2: 2.2±0.1 vs CYP11B1: 1.5±0.1-

Figure 3.24: Comparison of aldosterone and cortisol production of serum-starved SLC26A2 
knockdown NCI-H295R cells. Aldosterone production increased 12-fold in knockdown cells in 
baseline conditions (A) in comparison to the threefold increase in cortisol output (B). Incubation 
of cells with KCl, AngII and forskolin further increased thealdosterone production change, 
whereas ratio of cortisol output increase was not affected by the presence of these aldosterone 
agonists. Values are plotted in base 10 logarithmic scale. * depicts significant differences 
between Mock and SLC26A2 Knockdown cells of the same treatment; # depicts significant 
differences between baseline and stimulated Mock Knockdown cells; § depicts significant 
differences between baseline and stimulated SLC26A2 Knockdown cells. For all groups, n=3. 
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fold, P=0.004) (Fig. 3.26A&B). It was also observed that the SLC26A2 suppression had a more 

pronounced effect on CYP11B2 expression compared to CYP11B1 after stimulation with K+ (1.4±0.1 

vs 1.1±0.1-fold, P=0.03) or AngII (2±0.1 vs 1.5±0.1-fold, P=0.03). Forskolin induced elevation of cAMP 

levels increased transcription of both enzymes in a statistially indistiguishable manner (1.3±0.1 vs 

1.4±0.05-fold, P=0.47). 

Upstream of the latter steps of corticosteroid genesis catalyzed by P450 cytochromes, conversion of 

pregnenolone to progesterone, a precursor to all adrenal steroid production is catalyzed by the 3β 

hydroxysteroid dehydrogenase enzymes. After confirmation of detectability of both types in NCI-

H295R cells by RT-PCR, their transcript levels were quantified in knockdown cells grown in normal 

and stimulatory conditions. Aldosterone agonists regulated the expression levels of HSD3B2 

(baseline: 100±5.5, KCl: 277.2±25.2, angII: 173.0±19.1, forskolin: 509.4±49.4 %) (Fig. 3.27A), but not 

of HSD3B1 (baseline: 100±3.6, KCl: 101.9±15.7, angII: 107±12.4, forskolin: 100.5±3 %) (Fig. 3.27B), in 

control cells. Inreased expression of HSD3B2 in SLC26A2 knockdown cells compared to control cells 

was observed in all culture conditions (baseline: 100±5.5 vs 181.4±4.2 %, P<0.001; KCl: 277.2±25.2 vs 

557.5±7.3 %, P<0.001; angII: 173.0±19.1 vs 266.8±8.9 %, P=0.011; forskolin: 509.4±49.4 vs 

924.1±107.9 %, P=0.025). However, suppression of SLC26A2 did not alter HSD3B1 expression  

(baseline: 100.0±3.6 vs 91.8±4.6 %, P=0.234). 

Aldosterone, same as other steroids, ultimately derives from cholesterol, after a chain of enzymatic 

convertions. The first link of this chain is the cleavage of the side chain of cholesterol at C20, 

catalyzed by CYP11A1 in the inner mitochondrial membrane. In SLC26A2 knockdown cells, transcript 

Figure 3.25: CYP11B2 expression of SLC26A2 knockdown NCI-H295R cells. Suppression of 
SLC26A2 expression increased CYP11B2 expression by 5.5-fold in knockdown cells (A) yielding a 
7.6-fold aldosterone production increase (B). No significant differences between wild type and 
unspecific shRNA expressing cells were observed. * depicts significant differences between Mock 
and SLC26A2 Knockdown cells of the same treatment. For all groups, n=3. 

A B 
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levels of CYP11A1 were found to be increased in comparison to control cells in baseline conditions as 

well as upon stimulation by aldosterone secretagogs (baseline: 100±12 vs 189.1±48.7 %, P=0.15; KCl: 

150.8±17.7 vs 332.8±152.8 %, P=0.3; angII: 78.4±19 vs 271.4±30.2 %, P=0.006; forskolin: 150±15.9 vs 

237.9±69.4 %, P=0.285) (Fig. 3.28). 

On the acute level, the rate of adrenocortical steroid production is limited by the availability of 

cholesterol as the substrate of the reaction catalyzed by CYP11A1. Steroidogenic acute regulatory 

protein (STAR) facilitates transport of cholesterol from outer to inner mitochondrial membrane. The 

increase in aldosterone production upon SLC26A2 knockdown in NCI-H295R cells was found to be 

Figure 3.26: Comparison of CYP11B2 (A) and CYP11B1 (B) expression in SLC26A2 knockdown NCI-
H295R cells. CYP11B2 expression is 2.2-fold higher in knockdown cells under baseline conditions 
in contrast of the 1.4-fold increase in CYP11B1. The magnitude of increase was remained higher 
for CYP11B2 in presence of increased K+ and AngII. Values are plotted in base 10 logarithmic 
scale. * depicts significant differences between Mock and SLC26A2 Knockdown cells of the same 
treatment; # depicts significant differences between baseline and stimulated Mock Knockdown 
cells; § depicts significant differences between baseline and stimulated SLC26A2 Knockdown 
cells. For all groups, n=3. 
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not due to the elevated STAR expression, since levels of STAR transcript in knockdown cells were not 

significantly different than controls in any growth condition aside from AngII induction (60.5±0.6 vs 

107.5±2.2 %, P<0.001) (Fig. 3.29). 

3.7.3. CAM Kinase Cascade 

Calcium signalling in ZG cells acts as the main hub for mineralocorticoid production. Calcium / 

calmodulin dependent kinase 1 (CAMK1) has been shown to drive the upregulation of CYP11B2 in 

response to increased cytosolic calcium concentrations. Activation of CAMK1 effects increased 

expression of nuclear factors NR4A1 and NR4A2, which subsequently bind to cis elements in 

A 

B 

Figure 3.27: 3βHSD expression in SLC26A2 knockdown NCI-H295R cells. A, HSD3B2 expression 
was regulated by K+, AngII and forskolin, as well as being upregulated in knockdown cells in all 
culture conditions. B, isozyme HSD3B1 expression was not regulated by SLC26A2 knockdown or 
aldosterone secretagogs. * depicts significant differences between Mock and SLC26A2 
Knockdown cells of the same treatment; # depicts significant differences between baseline and 
stimulated Mock Knockdown cells; § depicts significant differences between baseline and 
stimulated SLC26A2 Knockdown cells. For all groups, n=3. 
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CYP11B2 promoter, activating its trascription. NCI-H295R cells with the SLC26A2 knockdown was 

found to have almost two-fold increased CAMK1 mRNA levels under normal growth conditions, and 

similar increase with agonist induction (baseline: 100±2.5 vs 180.7±4.1 %, P<0.001; KCl: 94.4±2.9 vs 

154.7±7.5 %, P=0.002; angII: 106.2±5.4 vs 239±10.6 %, P<0.001; forskolin: 45.2±3.4 vs 77.7±12.5 %, 

P=0.067) (Fig. 3.30A). Correspondingly, the nuclear factors NR4A1 and NR4A2, under transcriptional 

regulation of CAMK1, also showed increases in expression levels (baseline, NR4A1: 100±1.6 vs 

131.4±3.4 %, P=0.001; NR4A2: 100±6.1 vs 154.1±6.2 %, P=0.003) (Fig. 3.30B&C). Only in the case of 

Figure 3.29: Steroidogenic acute regulatory protein (STAR) expression in SLC26A2 knockdown 
NCI-H295R cells. Expression levels remained in the same levels between knockdown and control 
cells, except for an upregulation in knockdown cells upon stimulation with AngII. * depicts 
significant differences between Mock and SLC26A2 Knockdown cells of the same treatment; § 
depicts significant differences between baseline and stimulated SLC26A2 Knockdown cells. For all 
groups, n=3. 
 

Figure 3.28: Side chain cleavage enzyme P450SCC (CYP11A1) expression in SLC26A2 knockdown 
NCI-H295R cells was elevated compared to control cells. * depicts significant differences between 
Mock and SLC26A2 Knockdown cells of the same treatment. For all groups, n=3. 
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Figure 3.30: CAM kinase cascade in SLC26A2 knockdown cells. Expression levels of CAMK1 in 
knockdown cells were higher than in control cells in baseline and stimulating conditions (A). 
Transcription factors NGFIB (NR4A1) (B) and NURR1 (NR4A2) (C) were also upregulated in the 
knockdown cells. * depicts significant differences between Mock and SLC26A2 Knockdown cells 
of the same treatment; # depicts significant differences between baseline and stimulated Mock 
Knockdown cells; § depicts significant differences between baseline and stimulated SLC26A2 
Knockdown cells. For all groups, n=3. 
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NR4A2 expression in cells stimulated with AngII, a difference between control and knockdown cells 

was not observed (107.2±16.9 vs 102.0±29.6 %, P=0.885). 

A western blot analysis was conducted to deduce changes in phosphorytation levels of CREB1, a 

CAMK1 activated transcription factor which binds to cAMP response elements upstream of CYP11B2. 

20 µg of total protein from lysates of control and knockdown cells under baseline and stimulating 

conditions were loaded on the gels. Upon application of antibodies against phosphorylated CREB1 

and beta actin and subsequent visualization of peroxidase activity, increases in phosphorylated 

CREB1 levels in knockdown cells were observed in baseline (100 vs 133 %), AngII (78 vs 151 %) and 

forskolin (140 vs 181 %) treatments (Fig. 3.31A&B). 

Figure 3.31: Phosphorylated CREB1 levels of SLC26A2 knockdown cells. A, Western blot analysis 
reveals increased intensity of phosporylated CREB1 bands in knockdown cells under baseline 
condition and AngII or forskolin stimulation. B, Quantification of band intensities and 
normalization with β-actin levels are plotted. For all groups, n=1. 
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3.7.4. Intracellular Ion Content 

The expression changes in the components of calcium signalling cascade led to investigation of 

intracellular Ca2+ levels. Mean fluorecense ratios (mfr) were calculated for control and knockdown 

cells using the radiometric Ca2+ indicator Fura-2-AM with Ringer’s type or increased Ca2+ and K+ 

extracellular solution. Intracellular calcium levels were significantly elevated in SLC26A2 knockdown 

cells compared to controls (Ringer’s: 1.262±0.014 vs 1.334±0.013 mfr, P<0.001; Ca2+: 1.387±0.02 vs 

1.509±0.021 mfr, P<0.001; KCl: 1.365±0.026 vs 1.452±0.016 mfr, P<0.001) (Fig. 3.32). Investigating 

levels of the electrolytes Na+ (WT: 21.0±1.6, mock: 17.4±1.2, KD: 22.9±2.0 mmol/kg) (Fig. 3.33A), Cl- 

(WT: 36.9±2.3, mock: 32.7±1.2, KD: 35.1±1.7 mmol/kg) (Fig. 3.33B) and K+ (WT: 132.2±6.4, mock: 

118.8±3.8, KD: 130±2.9 mmol/kg) (Fig. 3.33C) by electron microprobe analysis revealed a decreasing 

effect of lentiviral transduction and a slight increase in knockdown cells compared to controls. 

3.7.5. Pharmacological Inhibition 

As chronic response to agonists of aldosterone production in ZG cells is achieved by upregulation of 

CYP11B2 expression, mediated by Ca2+/CaM dependent kinases, increased expression of CAMK1 and 

related nuclear factors in SLC26A2 knockdown cells necessitated further investigation of calcium 

signalling events. Effects of intracellular Ca2+ are beared to Ca2+ dependent enzymes via the 

ubiquitous calcium binding protein calmodulin. Using the CaM inhibitor calmidazolium, the elevating 

effect of knockdown on the aldosterone production of cells (100±12.9 vs 151.5±7.5 %, P=0.026) were 

Figure 3.32: Intracellular calcium levels of SLC26A2 knockdown cells. Calcium levels in knockdown 
cells were elevated in normal, high calcium or high K+ extracellular solutions. * depicts significant 
differences between Mock and SLC26A2 Knockdown cells of the same treatment; # depicts 
significant differences between baseline and stimulated Mock Knockdown cells; § depicts 
significant differences between baseline and stimulated SLC26A2 Knockdown cells. For Mock 
Knockdown, n=30; for SLC26A2 Knockdown, n=33. 
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reduced to levels below statistical significance (74.6±9.6 vs 90.7±4.1 %, P=0.197) (Fig. 3.34). 

Furthermore, competitive inhibition of Ca2+/CaM dependent protein kinases against calmodulin by 

the compound KN-93 completely nullified the phenomenon of increased aldosterone production in 

response to SLC26A2 knockdown (34.6±2.4 vs 22.7±1.4 %, P=0.013). 

Figure 3.33: Sodium (A), chloride (B) and K+ (C) contents of SLC26A2 knockdown NCI-H295R cells. 
Lentiviral transduction had a lowering effect on these ions; with SLC26A2 suppression elevating 
them to wild type levels.However, these differences were not statistically significant. For all 
groups, n=3. 

A B C 

Figure 3.34: Pharmacological inhibition of CAM kinase cascade. The SLC26A2 suppression induced 
increase of aldosterone production was reduced by inhibition of calmodulin with the drug 
calmidazolium and completely negated by arresting the activation of CAM kinases with the 
inhibitor KN-93. * depicts significant differences between Mock and SLC26A2 Knockdown cells of 
the same treatment; # depicts significant differences between baseline and stimulated Mock 
Knockdown cells; § depicts significant differences between baseline and stimulated SLC26A2 
Knockdown cells. For all groups, n=3. 

70 

 



3.7.6. Gene Expression Analysis 

Investigation of the mechanisms by which the SLC26A2 knockdown affects calcium signaling cascade 

to effect increased aldosterone production was carried on by microarray whole transcriptome 

expression profiling on Affymetrix Human Gene 1.0 ST Arrays. Preparations from control and 

SLC26A2 knockdown NCI-H295R total RNA extracts were hybridized to arrays, with three separately 

handled samples per group. Fold-change calculations revealed that 58 genes were above the 2-fold 

change cutoff, with 20 being up-regulated and 38 being down-regulated in knockdown cells (Table 

3.1). 

The microarray data set was validated for the genes CYP11B2, CAMK1 and MC2R by RT-PCR. The 

array data for these genes yielded 1.17-fold, 1.23-fold and 2.82 fold increase in knockdown samples, 

respectively. Validation by RT-PCR using the same RNA samples, however, yielded 4-fold increase for 

CYP11B2 (100.0±14.7 vs 414.4±27.8 %, P<0.001), 1.5-fold increase for CAMK1 (100.0±4.2 vs 

153.7±2.7 %, P<0.001) and 3.6-fold increase for MC2R (100.0±14.5 vs 364.4±59.2 %, P=0.012) in 

knockdown cells (Fig. 3.35). The discrepancy between data from two methods indicates an 

underrepresentation of differential gene expression regulation by the microarray method. 

The microarray data was used to analyze which pathways and processes were affected the most by 

the knockdown of SLC26A2. Functional annotation enrichment was applied on genes 2-fold up or 

down regulated. The meager number of genes passing this criterion indicated only two pathways 

(Table 3.2). Transmembrane transport of small molecules was enriched by upregulated genes, and 

integrin cell surface interactions were enriched by the downregulated genes. Upregulated genes also 

indicated the ontology process terms of organic acid transport, cytokine production, along with 

cellular compartment term plasma membrane and functional term amino acid transport. 

Downregulated genes enriched process terms cell surface receptor linked signal transduction and 

fatty acid metabolic process, as well as cellular compartment term plasma membrane, but no 

molecular function terms. 

All of these pathways and ontology terms were weakly enriched by a small number of hits from the 

limited set of 2-fold regulated genes (Table 3.2). Using the whole transcriptome data, heat maps 

were generated for Gene Ontology terms [150] (Fig. 3.36A) and KEGG pathways [154] (Fig. 3.36B). 

Also a list of genes with relevance to aldosterone biosynthesis and function or to SLC26A2 was 

compiled (Table 3.3). Finally, the genes with significantly different expression levels between control 

and knockdown cells (P<0.05) were used to enrich Wikipathways [163] and Reactome pathways 

[159], using the Pathvisio pathway analysis program [156]. Top three scoring pathways were insuling 

signaling (Z score: 5.43), cardiac hypertrophic response (Z score: 5.05) and MAPK cascade (Z score: 
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HUGO Gene 
Symbol Gene Description Gene Accession 

Knockdown 
vs Control 

Fold Change 

Knockdown 
vs Control 

P-value 
PDE3A  phosphodiesterase 3A, cGMP-inhibited  NM_000921 2.9348 3.91E-04 
MC2R melanocortin 2 receptor (adrenocorticotropic hormone)  NM_000529 2.8199 6.04E-05 
PLK2 polo-like kinase 2  NM_006622 2.7618 4.51E-06 
TSPAN8 tetraspanin 8  NM_004616 2.7081 4.93E-05 
TRIB3 tribbles homolog 3 (Drosophila)  NM_021158 2.5743 1.23E-04 
DPP4 dipeptidyl-peptidase 4  NM_001935 2.4798 4.53E-06 
INHBE inhibin, beta E  NM_031479 2.4134 1.19E-03 
NFATC2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2  NM_012340 2.3926 1.47E-05 
SLC16A6 solute carrier family 16, member 6 (monocarboxylic acid transporter 7)  NM_001174166  2.3549 1.39E-04 
BEST1 bestrophin 1  NM_004183 2.2896 1.15E-03 
SLC43A1 solute carrier family 43, member 1  NM_003627 2.2831 7.63E-05 
ETV5 ets variant 5  NM_004454 2.2773 2.39E-05 
TNFAIP3 tumor necrosis factor, alpha-induced protein 3  NM_006290 2.1585 2.54E-05 
LPPR1 lipid phosphate phosphatase-related protein type 1  NM_207299 2.1339 1.56E-05 
C9orf84 chromosome 9 open reading frame 84  NM_173521 2.1336 4.51E-06 
CHAC1 ChaC, cation transport regulator homolog 1 (E. coli)  NM_024111 2.1202 4.84E-04 
TNFSF4 tumor necrosis factor (ligand) superfamily, member 4  NM_003326 2.1023 3.19E-05 
LOC644714 hypothetical LOC644714  BC047037 2.0756 2.26E-02 
DDIT3 DNA-damage-inducible transcript 3  NM_001195053  2.0051 1.48E-04 
SLC7A1 solute carrier family 7 (cationic amino acid transporter, y+ system), member 1  NM_003045 2.0016 1.34E-05 
ZNF486 zinc finger protein 486  NM_052852 -2.0199 6.83E-04 
FLJ38894 hypothetical protein LOC646029  AK096213 -2.0224 2.90E-06 
PTPRZ1 protein tyrosine phosphatase, receptor-type, Z polypeptide 1  NM_002851 -2.0297 1.39E-05 
INA internexin neuronal intermediate filament protein, alpha  NM_032727 -2.0505 3.31E-04 
GFRA2 GDNF family receptor alpha 2  NM_001495 -2.0619 1.93E-03 
EPCAM epithelial cell adhesion molecule  NM_002354 -2.0620 6.43E-05 
SPP1  secreted phosphoprotein 1  NM_001040058  -2.0712 6.16E-05 
HAVCR2 hepatitis A virus cellular receptor 2  NM_032782 -2.0748 1.93E-04 
PLP1 proteolipid protein 1  NM_000533 -2.1305 2.28E-06 
PCDH20 protocadherin 20  NM_022843 -2.1667 7.53E-05 
LPPR4 lipid phosphate phosphatase-related protein type 4  NM_014839 -2.1709 3.23E-05 
RALYL RALY RNA binding protein-like  NM_173848 -2.1952 1.33E-04 
AKR1C3 aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II)  NM_003739 -2.2265 1.75E-05 
NDP  Norrie disease (pseudoglioma)  NM_000266 -2.2524 1.68E-05 
PCDHB17 protocadherin beta 17 pseudogene  NR_001280 -2.2724 1.16E-03 
ITGA8 integrin, alpha 8  NM_003638 -2.2859 4.55E-04 
CADPS Ca++-dependent secretion activator  NM_003716 -2.3034 3.52E-05 
CNTN1 contactin 1  NM_001843 -2.3630 4.85E-04 
GPR183 G protein-coupled receptor 183  NM_004951 -2.3844 1.01E-04 
FGFR2 fibroblast growth factor receptor 2  NM_000141 -2.4042 1.91E-05 
RAB3C RAB3C, member RAS oncogene family  NM_138453 -2.4046 1.71E-06 
SLC26A2 solute carrier family 26 (sulfate transporter), member 2  NM_000112 -2.4206 4.51E-06 
SEZ6L  seizure related 6 homolog (mouse)-like  NM_021115 -2.4440 3.44E-05 
C11orf92 chromosome 11 open reading frame 92  NR_034154 -2.5139 3.58E-05 
ZNF737 zinc finger protein 737  NM_001159293  -2.5383 6.46E-04 
FAM102B family with sequence similarity 102, member B  NM_001010883  -2.5603 5.81E-06 
MYOT  myotilin  NM_006790 -2.6300 1.06E-06 
SLC36A2 solute carrier family 36 (proton/amino acid symporter), member 2  NM_181776 -2.6479 3.55E-05 
ZNF676 zinc finger protein 676  NM_001001411  -2.6917 1.66E-03 
SFRP1 secreted frizzled-related protein 1  NM_003012 -2.6919 1.13E-05 
ELOVL2 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2  NM_017770 -2.7390 2.04E-04 
CD109 CD109 molecule  NM_133493 -2.7587 2.29E-04 
LMLN leishmanolysin-like (metallopeptidase M8 family)  NM_001136049  -2.8253 6.66E-05 
EPCAM epithelial cell adhesion molecule  NM_002354 -3.2090 1.36E-03 
CALB1 calbindin 1, 28kDa  NM_004929 -3.4670 2.12E-06 
PRUNE2 prune homolog 2 (Drosophila)  NM_015225 -3.7422 7.41E-05 
NPY1R neuropeptide Y receptor Y1  NM_000909 -4.8297 3.72E-06 
GABRG1 gamma-aminobutyric acid (GABA) A receptor, gamma 1  NM_173536 -6.5800 5.64E-07 

Table 3.1: List of genes with over 2-fold change in expression between control and SLC26A2 knockdown NCI-H295R 
cells. 

72



4.6). Of these, the regulation of Map kinase components were plotted on a pathway map with 

knockdown vs control cell expression fold changes depicted in values and a color gradient (Fig. 3.37). 

Figure 3.35: Validation of microarray gene expression analysis by RT-PCR. Quantification of 
CYP11B2, CAMK1 ad MC2R expression with PCR presented a higher level of change between 
knockdown and control cells compared to microarray analysis. * depicts significant differences 
between Mock and SLC26A2 Knockdown cells. For all groups, n=3. 
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Table 3.2: Reactome pathway and Gene Ontology term enrichment scores for genes with over 2-
fold expression difference between control and SLC26A2 knockdown cells. Count of involved 
genes per term, % of involved genes / total genes, modified Fisher Exact P value and Benjamini 
scores are listed. 
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Figure 3.36: Gene expression microarray data heat maps for Gene Ontology terms (A) and KEGG 
pathways (B). Samples 1,2 and 3 are control cells; 4,5 and 6 are SLC26A2 knockdown cells. 

B 

76 

 



 Ta
bl

e 
3.

3:
 S

LC
26

A2
 k

no
ck

do
w

n 
vs

 c
on

tr
ol

 e
xp

re
ss

io
n 

fo
ld

 c
ha

ng
e 

va
lu

es
 a

nd
 s

ig
ni

fic
an

ce
 l

ev
el

s 
of

 g
en

es
 r

el
at

ed
 t

o 
SL

C2
6A

2 
or

 a
ld

os
te

ro
ne

 p
ro

du
ct

io
n 

an
d 

fu
nc

tio
n.

 

77 



Fi
gu

re
 3

.3
7:

 S
LC

26
A2

 k
no

ck
do

w
n 

in
du

ce
d 

ex
pr

es
sio

n 
ch

an
ge

s 
of

 M
AP

 k
in

as
e 

pa
th

w
ay

 g
en

es
 in

 N
CI

-H
29

5R
 c

el
ls.

 G
re

en
 d

ep
ic

ts
 d

ow
nr

eg
ul

at
io

n 
an

d 
re

d 
de

pi
ct

su
pr

eg
ul

at
io

n 
of

 t
he

 g
en

e 
in

 k
no

ck
do

w
n 

ce
lls

. C
ol

or
 in

te
ns

ity
 is

 p
ro

po
rt

io
na

l t
o 

fo
ld

-c
ha

ng
e 

of
 t

he
 g

en
e.

 F
ol

d 
ch

an
ge

 v
al

ue
s 

ar
e 

gi
ve

n 
to

 th
e 

le
ft 

of
 e

ac
h 

da
ta

 n
od

e.
 

78 



3.8. Targeting SLC26A2 in vivo 

3.8.1. SLC26A2 Knock-In Mutant Mice 

Ever since the demonstration of anthrax toxin’s lethality changes depending whether it is obtained 

in culture or from an infection [183], complementing in vitro findings with in vivo studies has been 

consensus in the scientific community. Therefore, substantiation of the effects seen in NCI-H295R 

cells upon SLC26A2 knockdown by observations from live organisms was sought. To this purpose, an 

Slc26a2 knock-in mutant mouse model was employed. These mice harbored A386V substitution in 

the Slc26a2 gene, a mutation detected in a patient with non-lethal diastrophic dysplasia. Along with 

this mutation, the knock-in process caused impaired splicing of intron 2 of the gene. Homozygous 

animals had diminished sulfate uptake by chondrocytes, giving way to impaired growth and reduced 

body weight and motor function as well as sharply decreased lifespan. 

In order to evaluate endocrine profile of the Slc26a2 mutant mouse model, adrenal glands of wild 

type and mutant animals, along with plasma samples, were obtained. Formalin fixed-paraffin 

embedded adrenal gland samples were investigated by H&E staining. Comparison of wild-type and 

mutant samples from both sexes did not reveal any morphological differences (Fig. 3.38A-D). 

As the disease conditions these mice modelled did not contain a total eradication of Slc26a2 

expression, determination of the actual level of Slc26a2 transcript present in the adrenal tissue was 

necessitated. The adrenal gland samples were obtained from 45 days old mice leading to a limitation 

on the size of the samples for RNA extraction, so both adrenals of the same animal were combined 

to produce the cDNA. The subsequent quantification of transcript levels revealed a marked decrease 

in Slc26a2 in mutant animal adrenals (male: 100±12.1 vs 17.4±2.9 %, P<0.001; female: 177.8±21.1 vs 

11.9±1.4 %, P=0.001) (Fig. 3.39). 

The severe decrease in Slc26a2 mRNA levels in mutant mice were confirmed also on the protein 

level. Staining of adrenal tissue sections from wild type and mutant animals with an antibody raised 

against Slc26a2 reveal lessened chromogenic intensity in mutants throughout the adrenal cortex. As 

the antibodies specificity for Slc26a2 could not be confirmed with certainty, partial immunopositivity 

in the medullary regions were also observed (Fig. 3.40A-D). 

3.8.2. Steroidogenic Gene Expression Profile 

After establishing the Slc26a2 reduction in the adrenals, the cDNA from the samples were used to 

quantify components of steroidogenic apparatus. In male animals, there was an increase of Cyp11b2 

expression in mutants compared to wild type. A less pronounced similar trend was also observed for 

females, but in both sexes, intragroup variability and small samples sizes denied this difference 
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statistical significance (male: 100±14.5 vs 215.7±64.4 %, P=0.182; female: 106.6±14.0 vs 120.5±42.4 

%, P=0.687) (Fig. 3.41). 

3β-hsd expression levels of the mutant adrenals were quantified; showing that the isozyme 

functional in aldosterone production, Hsd3b6 [184], had increased levels in mutant adrenals 

compared to wild type in both males (100±19.2 vs 173.5±19.6 %, P=0.025) and females (75.5±8.3 vs 

152.6±35.9 %, P=0.009) (Fig. 3.42A). The isozyme Hsd3b1, broadly expressed in the adrenal rather 

than being ZG specific, was either unaffected, as in the case of males (100±8.4 vs 90.3±7.9 %, 

P=0.431), or decreased, as observed in females (132.9±11.4 vs 81.9±1.4 %, P=0.032) (Fig. 3.42B). 

Investigation of the enzymes acting at the rate limiting step of adrenocortical steroidogenesis, 

Figure 3.38: Hematoxylin and eosin stain of adrenal glands from wild type and Slc26a2 mutant 
mice. No morphological differences between wild type and mutant animals were observed. Bars 
represent 50 µm. 
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cholesterol side chain cleavage, was performed next. In both side chain cleaving enzyme Cyp11a1 

(Fig. 3.43A) and the cholesterol transporting Star (Fig. 3.43B), a reduction in mutants was observed, 

falling short of statistical significance only in the case of Star in females (Cyp11a1, male: 100±8.6 vs 

70.8±3.3 %, P=0.002; female: 93.9±7.2 vs 50.2±4.5 %, P=0.007; Star, male: 100±9.3 vs 66.2±8.9 %, 

P=0.023; female: 86.4±9.5 vs 71.2±2.6 %, P=0.393). 

3.8.3. Renin-Angiotensin-Aldosterone System 

After discerning that the expression profiles of the components of adrenal steroidogenic apparatus 

were modified in the mutant line in an aldosterone favoring manner, circulating aldosterone levels 

were quantified using plasma samples. A major elevation in aldosterone levels were witnessed in 

female muntant animals compared to wild types (22.5±2.0 vs 242.2±57.8 pg/ml, P=0.005) (Fig. 3.44). 

However, in male animals, although an increase in mutants was also observed, it was of lesser 

magnitude and not statistically significant (62.2±11.2 vs 84.9±10.6 pg/ml, P=0.191). 

Inasmuch as the in vitro observations in NCI-H295R cells established a causality between low 

SLC26A2 expression and elevated aldosterone synthesis, in a living system, aldosterone levels cannot 

be evaluated independently from circulating renin. Accordingly, renin activity in the plasma samples 

were evaluated. An elevation in average renin activity in samples from mutant animals was 

observed, albeit with a large variability between mutant animals (male: 3±1.6 vs 22.9±14.8 

ng/(ml*hour), P=0.172; female: 0.7±0.2 vs 4.9±1.7 ng/(ml*hour), P=0.04) (Fig. 3.45). 

Figure 3.39: Expression level of Slc26a2 was significantly lower in Slc26a2 mutant adrenals in 
both male and female animals, with a more profound decrase in females due to their increased 
wild type Slc26a2 expression (P= 0.01). * depicts significant differences between wild type and 
Slc26a2 mutant mice of the same sex; # depicts significant differences between male and female 
wild type mice. Male wild type, n=7; male mutant, n=11; female wild type, n=9; female mutant, 
n=3. 
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Quantification of plasma renin activity and aldosterone concentration enables the calcutation of 

aldosterone to renin ratio, an important screening tool for primary aldosteronism. The overall mean 

of the ratio for each group depict an increase for mutant animals in both males (37.3±9.5 vs 

159.5±139.9 pg/ml per ng/(ml*hour), P=0.355) and females (53.5±19.2 vs 825.5±772.4 pg/ml per 

ng/(ml*hour), P=0.347) (Fig. 3.46). However, the plasma renin activity values, which are the 

covariants in ARR with a dominating effect on the ratio [95], having very large margins of variability, 

prevented the data from presenting a definitive conclusion. 

Figure 3.40: Immunohistologocal detection of Slc26a2 in wild type and Slc26a2 mutant mice 
adrenals. Mutant adrenals from both sexes stained against Slc26a2 with less intensity throughout 
the cortex. Bars represent 125 µm. 
 

82 

 



In order to attain a more complete picture of the endocrine phenotype of the mutant animals, their 

stress levels as a function of hypothalamic–pituitary–adrenal axis activation were investigated by 

quantifying corticosterone levels in plasma samples. Quantification by enzyme immoassay revealed 

highly elevated corticosterone levels in mutant animals, but no significant sex specific differences 

(male: 151.5±21.1 vs 645.3±154.4 ng/ml, P=0.009; female: 158.8±44.2 vs 810.7±112.9 ng/ml, 

P<0.001) (Fig. 3.47).  

Figure 3.41: Adrenal expression level of Cyp11b2 in wild type and Slc26a2 mutant mice. An 
increase below significance levels was observed in male mutants. Male wild type, n=7; male 
mutant, n=11; female wild type, n=9; female mutant, n=3. 

Figure 3.42: Adrenal expression level of 3β-HSD isozymes in wild type and Slc26a2 mutant mice. 
In mutant animals Hsd3b6 was increased (A), in contrast of lowered Hsd3b1 transcription (B). * 
depicts significant differences between wild type and Slc26a2 mutant mice of the same sex; # 
depicts significant differences between male and female wild type mice. Male wild type, n=7; 
male mutant, n=11; female wild type, n=9; female mutant, n=3. 

A B 
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Figure 3.43: Adrenal expression level of cholesterol sidechain cleavage components Cyp11a1 (A) 
and Star (B) in wild type and Slc26a2 mutant mice. Expression of both enzymes were 
downregulated in knockdown animals. * depicts significant differences between wild type and 
Slc26a2 mutant mice of the same sex; § depicts significant differences between male and female 
mutant mice. Male wild type, n=7; male mutant, n=11; female wild type, n=9; female mutant, 
n=3. 

Figure 3.44: Plasma aldosterone concentration of wild type and Slc26a2 mutant mice. Female 
mutants had a profound increase in circulating aldosterone levels, along with observed sex-
dependent differences in wild type animals. * depicts significant differences between wild type 
and Slc26a2 mutant mice of the same sex; # depicts significant differences between male and 
female wild type mice; § depicts significant differences between male and female mutant mice. 
Male wild type, n=5; male mutant, n=4; female wild type, n=5; female mutant, n=5. 
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4. Discussion 

Ever since the realization that a steroid other than cortisol is responsible for the main 

mineralocorticoid activity [185], and costly extraction and crystallization of electrocortin (21 mg 

from 500 kg of beef adrenals) by the Taits-Reichstein collaboration [186], much research has been 

devoted to elucidation of aldosterone synthesis and function [61; 187] especially in regard to its 

essential role in the pathogenesis of Conn’s Syndrome [188]. Identification of familial forms of 

primary hyperaldosteronism and their causative genetics illuminated many aspects of aldosterone 

regulation [84; 189; 190]. Although initially considered as a minor contributor to hypertension due 

to diagnosis based on hypokalemia [191], the syndrome received renewed attention as increasing 

utilization of plasma aldosterone concentration to plasma renin activity ratio as a case finding tool 

verified [192] Dr. Conn’s claims of higher incidence within hypertensive population [193]. This, as a 

result, brought about major breakthroughs in the identification of somatic mutations in potassium 

channel KCNJ5 [86] and cation transport ATPases [87] with high prevalence in aldosterone producing 

adenomas [111], establishing crucial role of ion homeostasis of zona glomerulosa cells in regulation 

of aldosterone biosynthesis. In this study, using the hypothesis-free approach of genome-wide 

association studies [194], a locus associated with high aldosterone to renin ratio in a well-

phenotyped population [166], hosting an anion carrier with previously unknown but strongly 

evidenced role in regulation of aldosterone biosynthesis. In this section the relevance of the 

methodology and obtained evidence to the conclusion that SLC26A2 plays a role in aldosterone 

regulation is discussed under several topics. 

4.1. Genome-Wide Association Study 

As of present, GWA studies are the most wide-spread and successfully used technique in genetic 

epidemiology [133]. However seven years of intense utilization of these studies identified a 

substantial amount of pitfalls and shortcomings as well [144], with critics questioning the 

justification of hundreds of million dollars spent on funding [195]. Most prominent of these 

problems is the “missing heritability” phenomenon [145], after the fact that the massive amount of 

SNP-trait associations identified so far accounts for only a fraction of the estimated heritability of the 

phenotypes by classical methods such as twin studies. In the attempts to address this issue, many 

hypotheses were put forth, seeking the unaccounted heritability in low frequency-high effect 

variations [196], false-negative associations of small effect-common variants [197], epistasis due to 

rare combinations of common variants [198], gene-environment interactions [199], structural 

polymorphisms such as copy number variations [146], transgenerational epigenetic inheritance 

[112]; as well as even challenging the methods of heritability estimation [200]. Novel statistical 
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approaches on interpretation of GWAS data that take multi-trait association into account are also 

emerging [201-203]. It should also be noted that up until present, most GWA studies, including the 

one presented in this study, were conducted with SNP arrays of 1000K or less [133], and genotype 

imputation methods used the HapMap repository of a meagre 3.1 million variations [152] compared 

to more recent repositories of 38 million SNPs and more than a million other types of variation 

[204]. In any case, taking a snapshot of the genome by SNP arrays may soon be rendered irrelevant 

in the face of exponential development rate of next generation sequencing, which has already 

brought down the cost of a whole-genome sequencing run to an affordable thousand dollars [205]. 

Whether technological innovation will suffice to brute-force through this problem, or a fundamental 

change in the current understanding of genetic epidemiology is required remains to be seen. 

The primary use for GWA studies is investigation of biologic pathways of disease causation [144], as 

in the case of this study. In this regard, it is manifest that GWA studies will attain their full potential 

through combined-arms approach of follow-up functional studies. Therefore, design and 

implementation of GWA studies is of utmost importance. Most critical issues hereof are size and 

composition of sample population and considerations on phenotype suitability and quality. 

Earliest GWA studies had small sample sizes in the hundreds [139]. Later studies comprised of 

thousands [206], and meta analyses reached to over 100000 participants [207]. Successful 

associations from studies employing a gradient of sample size are due to the spectrum of effect sizes 

and variant frequencies [146], as detection of rarer or less effective associations necessitating a 

larger assembly of participants. Given that the median sample size in the association studies of 

quantitative traits listed in The NHGRI GWAS Catalog is 1345 as of present [208], the population of 

the GWAS presented here is in the typical range. For a minor allele frequency of 10 %, this sample 

size has power to detect associations of variants with a genotypic relative risk above 1.3 [209]. 

Population stratification may cause bias in interpretation of association studies [144]. In the present 

study, several factors abate the confounding effects of population structure. Chief among them is 

the standardized statistical genomic control tests applied by the genetic epidemiology team of the 

KORAgen platform [210], by whom the association analysis was carried out. Furthermore, the 

population of the KORA biobank, from the region surrounding Augsburg with 600000 inhabitants, 

reduces apprehensiveness over the topic due to its largely Caucasian ethnic composition with no 

detectable substructures within population [211], especially when taken together with the fact that 

the magnitude of the bias comprised from stratification itself is a debated issue [212]. 

GWA studies of quantitative traits usually follow a whole-spectrum focused approach, in contrast to 

case-control methodology based on arbitrary cutoffs [213-215]. In most cases, the latter approach 
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may simply be impossible, as with traits such as height [216] or body-mass index [217]. In 

accordance with these precepts, in this study association of genotypes to a whole spectrum of ARR 

was analyzed. Furthermore, the epidemiology focused design of the study did not allow 

confirmatory tests on subjects for hypertensiveness or presence of bilateral adrenal hyperplasia. In 

fact, epidemiological investigation into complex diseases via association studies with immediate 

endophenotypes is a trending approach among researchers [218]. 

In the case of primary hyperaldosteronism, ARR is the most feasible clinical marker [219], despite a 

number of criticisms directed against it. Although it is established that plasma aldosterone 

concentration is increased and plasma renin activity is decreased in primary aldosteronism, ARR 

itself is not of absolute reliability as the ratio is dependent on plasma renin activity [95]. This 

dependence may also lead to ARR levels being considered above cutoff values due to very low 

plasma renin activity, even though aldosterone levels are also too low for PA [220]. On the other 

hand, a novel understanding that PA and low renin hypertension is a continuum [221] is emerging, 

with redefinition of normal aldosterone levels [222] suggesting autonomous aldosterone secretion in 

low renin hypertension [221]. Even as understanding of aldosterone-renin interplay is improving, 

clinical guidelines still suggest employment of ARR as a screening tool [76; 90], providing justification 

for its use as the phenotype parameter in a GWAS for PA and RAAS. 

Further support for ARR as the choice determinant value for GWA study comes from the estimated 

heritabilities of RAAS components. Despite an early twin study asserted strong heritable 

components of basal state PAC and PRA [223], later studies contrasted these findings very low 

estimates for PAC heritability [116; 224]. PRA estimates varied, with a twin study estimating 66 % 

(h2) only in males [225], and a sib-pair study estimating similar levels (PRA h2, supine: 0.46, standing 

0.69) [224], the disparity between studies being possibly due to varying controls for salt intake and 

posture. A more recent estimate by the Framingham study showed substantial heritability for ARR 

(40 %), along with relatively lower heritabilities of PAC (11 %) and PRC (22 %) [77]. Similar results 

(ARR: 38.1 % PAC: 28.7 % PRC: 27.4 %) obtained by a group from University of Glasgow [143] 

consolidated the significantly higher estimated heritability of ARR compared to its constituent 

biomarkers. Taken together, these findings explain the logic of conducting a GWAS for ARR rather 

than only for PAC or PRC. 

One of the main justifications for the immense cost of undertaking GWA studies and the necessary 

infrastructure is the potential to identify susceptibility alleles, which would directly translate to 

advances clinical care and risk management [226]. In this regard, associations found in a discovery 

cohort should be replicated in an unrelated cohort [144]. Replication is indeed a litmus test for 

88 

 



GWAS [124] when the aim is identifying risk alleles [146]. Many prominent GWA studies used this 

approach [206], as well as complete replication of studies in other cohorts [227; 228] for traits that 

can be phenotyped with uniform clinical standards providing high replicability across research 

centers and clinics. Other GWAS studies with the KORA F4 cohort employs this method of statistical 

assurance as well [136]. In the case of RAAS components renin and angiotensin, however, such 

replicability is mostly out of reach, as wide range of inter-laboratory variations in absolute values has 

been demonstrated [229-231]. This predicament is further intensified by the variability of results 

depending on the conditions of sample retrieval from the subjects such as posture and fasting state. 

Ensuring intraassay consistency for all these parameters provides a measure of reliability in the 

GWAS findings. Moreover, in the time frame of this study, only one other GWAS for ARR was 

encountered in the public databases [232]. In this study, the authors report utilization of a 

replication cohort after initial analysis in a discovery cohort of 936 individuals. However, the 

replication cohort was not phenotyped for either PAC or PRA, presumably due to the same kind of 

confounding factors. Only recently the first ever meta-analysis of RAAS components was published, 

incorporating data from multiple European cohorts, including KORA-F4 [233]. As this study did not 

test for association to ARR, replicating the top ARR associated SNPs in KORA-F4 in the cohort would 

be most enticing; even more so when considering other highly significant loci at chromosomes 4, 8 

and 20 (Fig 3.1A). Indeed, when investigating their Manhattan plots for PRC association, the same 

locus at chromosome 5 seems to have high, though not genome-wide, significance. Regardless, the 

quality of data in the GWAS presented here certainly suffices to spotlight associated loci for further 

functional studies, as supported by the substantial body of evidence for functional implications 

reported in this study. 

4.2. Genes in Linkage Disequilibrium 

The GWAS data presented genome-wide significant association of ARR with the polymorphism 

rs1433010. Other variations in LD with this SNP indicated a locus containing the genes SLC26A2, 

TIGD6 and HMGXB3. Imputed SNPs, taken together with HapMap recombination rates, extended 

possible LD to include CSF1R as well. 

4.2.1. Tigger Transposable Element Derived 6 (TIGD6) 

Tigger transposable element derived 6 is a member of the tigger family of DNA-mediated 

transposons that encode a terminal inverted repeat binding transposase [234]. This family has been 

put for as putative redundant paralogs of centromere protein B, a presumably important yet 

functionally uncharacterized centromere-associated protein; the hypothesis was experimentally 

refuted in mammalians [235]. No other functional information on this particular transposon is 
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obtainable from the literature as of present, therefore this gene was excluded from further 

functional investigations. 

4.2.2. HMG Box Domain Containing 3 (HMGXB3) 

This gene belongs to the high mobility group box family. Members of this family have DNA binding 

ability by virtue of their HMG-box motifs, and manipulate chromatin structure, participating in 

nuclear processes of DNA repair, recombination and transcription [236]. HMGXB3 has also been 

shown to play a role in innate immune responses by nucleic acids mediated by the transmembrane 

Toll-like receptors and cytosolic receptors [237]. This protein was detected as a surface in pancreatic 

islet cells, colocalizing with insulin to some degree [238]. The lack of further functional knowledge, or 

of any particular relevance to the adrenal function inferred from publicly available Gene Atlas 

expression dataset [151] ruled out any rationale in carrying out functional investigation of this gene. 

4.2.3. Colony Stimulating Factor 1 Receptor (CSF1R) 

The protein product of CSF1R gene, the most extensively studied in the associated locus, is a 

transmembrane receptor tyrosine kinase with affinity to the cytokine colony stimulating factor 1 

[239]. Its expression was observed in several cell types, of immune system and others [240]. 

Primarily, CSF1R regulates mononuclear phagocyte production [241]. CSF1R dependent regulation 

was also evident in the female reproductive tract and fertility [242]. Mutations in the protein kinase 

domain of the gene are associated with gastrointestinal tumors and acute myeloid leukemia [243; 

244]. Myeloid malignancies presented overexpression of CSF1R [245]. 

In the context of the genome-wide association of the locus containing CSF1R gene to ARR, potential 

uncharacterized steroidogenic effects of this receptor were investigated. The adrenal steroidogenic 

model cell line NCI-H295R showed trace levels of expression of the gene, compared to more 

abundant mRNA levels from adrenal tissue samples. Unsurprisingly, application of transient gene 

silencing on this cell line yielded no observable effects on baseline aldosterone productivity. 

Induction of the receptor by its ligand, M-CSF, in H295R or primary adrenal cells also had no effect 

on aldosterone production. These findings suggest a lack of direct regulatory function of CSF1R on 

aldosterone production in adrenocortical cells. 

Before complete dismissal of a putative CSF1R modulated effect on adrenal steroidogenesis, it would 

be prudent to recall that resident testicular macrophages stimulate steroidogenesis in Leydig cells by 

supplying a StAR independent substrate (25-hydroxycholesterol) for pregnenolone production [246]. 

As the effects of CSF1R impairment include lowered resident mononuclear phagocyte density in a 

variety of cells [240], resident adrenal macrophages should be further investigated in respect to their 
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contribution to aldosterone production and the modulation of their generation via CSF1R. 

4.2.4. Solute Carrier Family 26 (Anion Exchanger), Member 2 (SLC26A2) 

The diastrophic dysplasia sulfate transporter gene encodes a transmembrane glycoprotein with 

electroneutral SO4
2-/2OH-, SO4

2-/2Cl-, SO4
2-/OH-/Cl- anion exchanger functions in an extracellular Cl- 

dependent manner, along with ability to exchange Cl- for I-, Br- or NO3
- [247]. Furthermore, it 

mediates bidirectional oxalate / SO4
2- exchange [248]. It was first identified as the gene causing 

diastrophic dysplasia [249]. A mouse model with a DTD mutation knock-in mimicked the disease 

phenotype, with impaired SO4
2- uptake in chondrocytes, resulting in proteoglycan undersulfation in 

the extracellular matrix [171; 250]. Additionally, cultured colon cancer cells had a lowered 

expression of SLC26A2, and suppression of SLC26A2 expression enhanced growth rate of cancer cells 

[251]. Expression of SLC26A2 was detected in cartilage along with a variety of tissues, including 

placenta [179], where it is one of the main sulfate providers to the embryo [252]. 

In addition to the strong linkage to the lead SNP of the GWA study and demonstration of its 

pathophysiological role in human disease, this gene also drew attention by the merit of its high level 

of expression in adrenal gland and cortex in the Gene Atlas dataset [151]. After confirmation of this 

phenomenon by RT-PCR, evidence of its co-regulation with aldosterone production in vitro and in 

vivo was found. Through its knockdown, modulatory effect of SLC26A2 on aldosterone was shown 

and backtracked to calcium signaling pathway. A germline in vivo knock-in model showed increased 

aldosterone production in female mutants, as well as upregulation of enzymes specific to 

aldosterone pathway. 

4.3. Zonal Localization SLC26A2 within the Adrenal Gland 

The coregulation of aldosterone production and SLC26A2 by potassium and AngII leads to an 

instinctive hypothetization of their colocalization in the adrenal as well. Initially, this hypothesis was 

not testable due to lack of a properly functioning immunohistochemistry suitable antibodies for 

either protein. Isolation of the zona glomerulosa also fell out of the technical scope of the project. As 

more precise antibodies became available, adrenal cortex sections were stained with both 

antibodies, revealing scattered and clustered CYP11B2 positive cells in the cortex and a ubiquitous 

immunopositivity to SLC26A2 throughout the cortical zones, with a slight emphasis on the zona 

fasciculata. 

Of the enzymes that have a direct effect on aldosterone synthesis, 3βHSD is the most disputed one 

in regards isoform specificity to zona glomerulosa. The second isoform was held responsible for 

steroidogenesis in the adrenal cortex [253] until homology inferred from a knockout mouse model 
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postulated zona glomerulosa specificity of HSD3B1 [184]. Subsequently this was verified by subtype 

specific antibodies [58] as well as demonstration of a NGFIB responsive element in HSD3B1 

promoter [67]. However, the same study demonstrated near exclusive presence of HSD3B2 in 

expense of HSD3B1 in APAs. Another study utilized immunostains of CYP11B1, CYP11B2 and 3βHSD, 

without distinguishing between 3βHSD isozymes; observing intense CYP11B2 and 3βHSD staining in 

APAs. Taken together, while aldosterone production in healthy adrenal is driven by HSD3B1, in 

pathological conditions HSD3B2 is the dominant isozyme. The only evidence to the contrary comes 

from colocalization of HSD3B1 and CYP11B2 in the same APA cells in one study [59], even as in this 

study HSD3B2 is more prevalent across the APA, and the aldosterone synthase staining is weaker 

compared to the prior studies as well as the staining in this study using the same antibodies 

provided by Gomez-Sanchez group [55]. 

Considering the example set by the 3βHSD isoforms, exclusive colocalization of aldosterone synthase 

and SLC26A2 may not be necessary for development of pathological conditions when the expression 

of the latter is suppressed. Indeed, a marked decrease in the intensity of SLC26A2 expression is 

readily observable in CYP11B2 positive APA in comparison to normal adrenal. This is also in 

accordance with the in vitro observation of increased aldosterone production in response to 

SLC26A2 knockdown in NCI-H295R cells and decreased SLC26A2 mRNA expression in APAs compared 

to control adrenals. Nevertheless, application of additional techniques may help clear the contention 

in the issue. In situ hybridization may provide a quick answer on the transcriptome level. A more 

definitive solution might be surface protein biotinylation and subsequent probing of the membrane 

proteins recovered by streptavidin for SLC26A2 immunopositivity in freshly isolated CD56 expressing 

zona glomerulosa cells [254]. 

4.4. Linking SLC26A2 to Aldosterone Regulation – in vitro 

Zona glomerulosa cell is hyperpolarized in its resting state, and this membrane potential is what 

keeps the cell steroidogenically inactive. Importance of cation currents in maintenance of resting 

membrane potential in zona glomerulosa cells had already been appreciated [61] when recent 

exome sequencing studies of APAs showed that disruption of this homeostasis leads to pathological 

aldosterone production [255]. Initial finding of mutations in KCNJ5 leads to a sodium leakage, 

perturbing the exclusivity of background potassium conductance [256]. Further mutations found in 

membrane sodium potassium pump ATP1A1, which also ultimately leads to sodium leakage into the 

cell [89]. These mutations therefore impair the polarized state of the membrane, which mimics the 

effects of AngII and potassium stimulation where membrane depolarization leads to calcium influx 

to the cytosol. Mutations found on ATP2B3, a membrane Ca2+ pump, presumably stops calcium 
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disposal to extracellular space and an accumulation of cytosolic calcium [87]. Finally, CACNA1D 

mutations hampering the L-type voltage gated potassium channel reduces the necessary activating 

voltage, and triggering the activation of L-type calcium influx [88], which normally reserved for 

supraphysiological extracellular potassium concentrations, or reinforcement of steroidogenic RAAS 

signal by ACTH in severe volume loss [45]. 

The emphasis on the role on cation homeostasis in aldosterone producing cells arguably stands on 

one leg, as any detailed characterization of anion balance is lacking. Epithelial anion transporters 

were extensively characterized in the last two decades of the last century, partially due to the 

interest generated by their role in cystic fibrosis etiology [257]. Findings from this era establish that 

chloride channels are important in maintaining membrane potential stability. In heart cells, chloride 

efflux results in activation of calcium channels. It was also observed in Leydig cells that Cl- efflux led 

to membrane depolarization and subsequent steroidogenesis [46] and Cl- channels were present in 

rat adrenal zona glomerulosa, with ACTH modulated cAMP independent early Cl- currents through 

Ras activation was shown [258]. 

SLC26A2 functions as a anion transporter, primarily a sulfate uptaker, and apparently the 

predominant mediator of this function, as severe forms of dysfunction in this gene is extremely 

damaging and even lethal [171]. It is also ubiquitously expressed throughout epithelia, on the apical 

membranes of various tissues [179]. Thus, SLC26A2 has to mediate sulfate uptake from both acidic 

and alkaline luminal environments. A recent study on SLC26A2 expressing xenopus oocytes 

demonstrated how this can be accomplished. Under acidic extracellular conditions, extracellular 

sulphate is exchanged for intracellular hydroxide, whereas under alkaline conditions of most 

endocrine glands, this uptake is via exchange of intracellular chloride [247]. Serum acidosis is a 

trigger of aldosterone production [259] and aldosterone action shifts the pH to more alkaline levels. 

In the normal physiological conditions, SLC26A2 may mediate activation of chloride efflux as 

extracellular pH increases as a result of aldosterone action, participating in homeostasis of chloride 

currents. Unlike the collecting duct cells, where its functionality and expression is disputed [260], 

SLC26A2 knockdown led an intracellular chloride built-up in H295R cells. Therefore repression of 

SLC26A2 expression may well deprive the cells from a negative feed-back mechanism for 

aldosterone production. 

NCI-H295R is a predominantly cortisol producing cell line with low levels of baseline aldosterone 

production when grown as a monolayer, even though it displays the zona glomerulosa specific 

potassium sensitivity as well [181]. In contrast the predominance of cortisol production, the NCI-

H295 cells have little or no ACTH response [182], which is the driving rationale behind development 
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of new adrenocortical cell lines such as HAC-15. As a further confirmation of this observation, in the 

results of this study, although SLC26A2 expression in wild type H295R cells were markedly 

upregulated by cAMP through forskolin stimulation, ACTH displayed no such modulation. H295R 

cells are very sensitive for potassium and spheroidal growth of the cells induces a potent increase in 

the aldosterone production. In the experiments carried out in this study, special care was taken to 

the growth of H295R cells as uniform monolayer, assisted by poly-d-lysine coating of culture 

surfaces. The potent increase of baseline aldosterone production of the cells by SLC26A2 knockdown 

mimics the spheroidal growth of wild-type cells, along with further similarity of elevated ACTH 

receptor (MC2R) expression. If this similarity of SLC26A2 KD and spheroidal H295R cells are valid, it 

may also explain the less potent increases in cortisol production of knockdowns cells, via decreased 

CYP17A1 expression. 

ACTH activates a Ras mediated calcium current in early stages independent of cAMP production 

[258]. Transcription of human Ras family members, NRAS, HRAS and KRAS were not significantly 

regulated by SLC26A2 knockdown. However, as the model cell line is derived from an adrenal 

carcinoma, a constitutively active Ras indigenous to the cell line might not necessitate an 

upregulation, and enzymatic activation of Ras pathway was not determined. Angiotensin II also may 

participate here, as it activates Src tyrosine kinase [261], presumably resulting in subsequent Ras 

activation. This pathway of Ras mediated chloride efflux leading to depolarization is an additional 

candidate through which SLC26A2 knockdown exerts its effects. 

In the lacking of any exome mutations [176], SLC26A2, as a putative pathogenic gene in PA, should 

modulate its effects on the plasma membrane potential and ion homeostasis, not through a gain of 

function mutation as in recently observed cation channels and pumps, but rather through regulatory 

changes leading to its transcriptional downregulation. A case of ion leakage due to functional site 

mutations is further unlikely because of its already established bidirectional transport capability and 

affinity to a variety of anions. Regardless of the exact effect of SLC26A2 knockdown on the ion 

homeostasis of the cell, this study demonstrates that aldosterone overexpression is mediated via 

intracellular calcium induced activation of CAM kinase pathway. Calcium influx is indeed a common 

convergence point of the effects of recently identified APA mutations in KCNJ5, ATP1A1, ATP2B3 and 

CACNA1D [85; 256]. Although available exome sequencing data from APA sets does not reveal any 

mutations in the SLC26A2 gene, the possibility of this gene’s role in PA pathogenesis cannot be 

readily dismissed. As this study demonstrated, a reduction of SLC26A2 expression may give rise to 

the PA phenotype, which could result from non-exomic regulatory sequence mutations. 

Furthermore epigenetic modifications might result in a similar repression: The upstream CpG island 
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of SLC26A2 gene was found to be partially methylated in HeLa-S3 cells in the Encode project [149]. 

Two non-synonymous common SNPs (rs76784312 and rs35919114) exist in the coding sequence of 

the first exon. The microRNA hsa-miR-9 expression is observed in both adrenal gland and kidney 

[262], and several hsa-miR-9 target sites has been predicted on the 3’ UTR of SLC26A2 by TargetScan 

[161], with one of them validated by immunoprecipitation [263] and one with a rare SNP nearby 

(rs180966130). Taken together with the large void in the knowledge of idiopathic 

hyperaldosteronism pathophysiology, even slight epigenetic and regulatory variations of SLC26A2 

may very well contribute to PA pathogenesis. 

In the attempt to further elucidate the downstream effects of SLC26A2 knockdown, a whole 

transcriptome expression analysis was carried out. This approach is very illuminating as it reveals a 

snapshot of the cell’s mRNA levels, but not sufficient to reveal every aspect of expression in the 

lacking of proteomics and metabolomics data. In the microarray results, two confounding factors are 

immediately obvious: the small number of differentially expressed genes, and the lack of correlation 

between microarray and RT-PCR results. The prior impedes ontology enrichment analyses greatly, 

which could otherwise be informative about the knockdown targeted processes and pathways. The 

latter, when evaluated together with the RT-PCR’s status as the gold standard for expression 

analysis, renders the cutoffs for differential expression arbitrary. For example, even though the 

aldosterone production and CYP11B2 upregulation in knockdown cells have been repeatedly 

confirmed by low-throughput methods; aldosterone synthase upregulation would be missed by even 

the most modest of cutoffs in microarray analysis. Nonetheless, the even though the magnitude of 

regulation differs between methods, its direction is essentially the same. This fact provides a wealth 

of information to be derived from the experiment. 

The modest number of highly regulated (2-fold or more) genes immediately reveal events at the cell 

membrane, as related ontology terms are enriched by both upregulated (carboxylic acid transport, L-

amino acid transport) and downregulated genes (cell adhesion, surface regulated signal 

transduction). Indeed, only two pathways are significantly enriched: transmembrane transport of 

small molecules is upregulated and integrin cell surface interactions are downregulated; in 

accordance of membrane localization and function of SLC26A2. SLC is originally implicated in 

extracellular matrix proteoglycan sulphation. The ~1.5-fold galectin-8 (LGALS8) upregulation, which 

implicated in matrix interaction [264] and a putative SLC26A2 interactant [265] is possibly related to 

these changes. Therefore, aldosterone producing phenotype of SLC26A2 knockdown cells may be 

the result of a simulation of cell-to-cell signaling characteristics of spheroidal H295R cell growth. 

The microarray data readily reveals that SLC26A2 knockdown puts the cells in stress conditions. 

95 



There seems to be an unfolded protein response and DNA damage induction outlined by GADD45A 

activated p38MAP Kinase [266], leading to upregulation of DDIT3, CHAC1 and polo-like kinase (PLK2) 

stress response proteins. As the knockdown cells were properly controlled for viral transduction and 

shRNA expression, these could be direct effects of the SLC26A2 repression. On the other hand, 

control cell, while expressing non-targeting shRNA, does not lead to RNA-induced silencing complex 

turnover, thus unavailing the elimination of the stress response as a secondary effect of RNA 

interference. 

Gene regulations with more direct relevance to aldosterone production include the significantly 

differentially-regulated MAP Kinase cascade. Upregulation of MAPK phosphatases are observed 

along with a repression of p44/42 MAPK expression. The upregulation of p38 path seems to be a 

DNA damage stress effect. Instead of MAPK driven aldosterone production, protein kinase C 

mediated effects are more likely, in consideration of strong PKCη subunit upregulation and 

upregulated FOS and JUN transcription factors without any apparent changes in their MAPK 

modulators [267]. The observed increases in intracellular calcium may be the driving force behind a 

likely enzymatic PLC activation (but not upregulation) and increase in DAG levels. These observations 

suggest a primary relevance of increased [Ca2+]I in SLC26A2 knockdown cells, rather than it being a 

secondary, enhancing effect of some other pathway. 

Historically, surgically removed aldosterone producing adenomas are known for their zona 

fasciculata like appearance. Improved detection methods now reveal that a spectrum of APA cell 

morphology exists [268], with APAs consisting predominantly of zona glomerulosa-like cells tending 

to be smaller and harder to detect, arguably lessening their availability in bio-bank repositories. 

Aldosterone producing H295R cells showed upregulated ACTH receptors [181], as did the SLC26A2 

knockdown cells, in contrast of the modest increase of AngII receptor. Although intense 

phosphodiesterase 3A (PDE3A) upregulation also inclines toward an ACTH responsive cAMP 

mediated aldosterone upregulation in knockdown cells, in which ACTH indeed effects a more 

pronounced response; DAG induced PKC upregulation, rather than cAMP responsive PKA, seems to 

be the prime mover of aldosterone production. Furthermore, ZG specific markers DKK3, DAB2, and 

CD56 expression profiles mimic that of stimulated ZG cells [254; 269; 270]. Although without 

statistical significance, non KCNJ5 mutant APA had a lower median SLC26A2 expression level. More 

importantly, a ZG-like APA feature, i.e. contrasting decrease of CYP17A1 and increase of KCNJ5, was 

observed in the knockdown cells. CYP21A2 upregulation possibly further leads cells toward an 

emphasis on aldosterone production. The substrate for this increased steroidogenic activity might be 

de novo cholesterol biosynthesis as opposed to normal HDL uptake [56], as indicated by the changes 

96 

 



in transcript levels of the relevant statin pathway genes (LPL, CETP, APOA1, SCARB1, ACSS1). 

The convergence of observations from low and high-throughput assays in this study suggests that 

SLC26A2, hitherto without a known adrenal of steroidogenic role, may act as a regulator of 

membrane potential and cell polarity. It is observable that SLC26A2 modulates anion and, indirectly, 

cation homeostasis of the cell. Repression of SLC26A2 expression leads to aldosterone 

overproduction in vitro through a ZG-like pattern of events. Substantiation of these potential 

mechanisms necessitates further experimentation, especially in the membrane transport kinetics 

and proteomics of SLC26A2 knockdown cells, ideally in a primary adrenal culture with enriched ZG 

population. 

4.5. Linking SLC26A2 to Aldosterone Regulation – in vivo 

SLC26A2 expression in the adrenal gland was not detected on the mRNA or protein level hitherto 

this study, except for microarray based transcriptome screenings. Confirmation of this expression in 

human tissue and corresponding expression profile in female C3HeB/FeJ murine tissues established 

mouse as a model organism fit for this investigation. Aldosterone biosynthesis regulation by 

secretagogues potassium and angiotensin II also regulated adrenal SLC26A2 expression in vivo, 

further confirming the initial hypothesis of a relation between the hormone and the gene. 

Regulation of aldosterone production in healthy mice and adrenocortical tumor cells are found to be 

contrasting each other. The stimulants AngII and KCl caused adrenal SLC26A2 down regulation, in 

accordance with the phenomenon of SLC26A2 repression associated with aldosterone production. In 

the model cell line, only potassium had an effect of upregulation. This contradiction can be 

attributed to potassium hypersensitivity of NCI-H295R cells, along with the supraphysiological 

potassium concentration applied. A more intuitive explanation would be the essential differences 

between in vivo and in vitro systems. Murine adrenal glands are comprised of both medulla and the 

whole cortex, and only a small proportion of the cells are expected to be aldosterone producing, in 

contrast with the uniformity in an NCI-H295R culture. Moreover, wild-type mice used for co-

regulation experiments have an intact endocrine and paracrine system, with real-time modulation of 

the adrenal interstitial fluid composition; whereas only autocrine effects are active in vitro. Primary 

culture of adrenal cells, from outer cortical zones after an adrenalectomy, showed similar SLC26A2 

expression profile with the H295R cells, further evidencing this line of articulation. 

Mouse mutant models of genes with suspected pathophysiological roles in aldosterone biosynthesis 

have been previously employed, successfully elucidating physiological mechanisms. The targeted 

genes so far were the potassium channels Task1 (Kcnk3), Task3 (Kcnk9) [101-104] and Kcnma1 (BK) 
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[105], the Wnt signaling component Dkk3 [269] and the circadian clock regulators cryptochrome 1 

(Cry1) and 2 (Cry2) [184]. The mutant mice showed varying degrees of autonomous aldosterone 

producing phenotype, depending on diet and sex. Task1-/- mice showed exhibited salt intake 

independent primary (low renin and hypokalemic) hyperaldosteronism in females but not in males. 

This was found to be ZF localized CYP11B2 expression in females [101; 259], rendering the effects 

glucocorticoid remediable, although in a different mechanism than human FH1 patients, whose 

CYP11B2 production is under CYP11B1 promoter control. The ectopic CYP11B2 expression of the 

mice was also age dependent, as pre-puberty male mice also showed CYP11B2 expression in the ZF. 

Extension of the hyperaldosteronic phenotype to males was achieved by targeting Wnt signaling in 

Task1-/- mice by generating double Task1-/-/Dkk3-/- mice [269]. These animals showed primary 

hyperaldosteronism with normal adrenal zonation in males. Such sex and age dependent variations 

in penetrance were observed in other mutant mice as well. A double knockout of Task1-/-/Task3-/- 

male mice, although with normal adrenal zonation, exhibited renin independent hyperaldosteronism 

by virtue of their depolarized ZG cells [102]. Germline Task3-/- mice did not display the 

hyperaldosteronism of Task1-/- and Task1-/-/Task3-/- mice, but their ARR was elevated due to low 

renin levels in both sexes [104], albeit to a lesser degree than double knockouts as shown by males 

of a another Task3-/- strain [103], providing a model for low renin essential hypertension side of the 

PA/LREH spectrum. BK channel α subunit deficient mice of both sexes had increased aldosterone 

production without corresponding increase in renin activity [105]. A further model of 

hyperaldosteronism resulted from circadian clock dysregulation in Cry1–/–/Cry2–/– double mutant 

male mice, with chronic Hsd3b6 overexpression in the ZG. Finally, another gene of interest in PA, 

disabled-2 (Dab2) [270], shows sex dependent effects on embryonic lethality in on Dab2+/-/p53-/- 

heterozygotes [271]. 

The sex and age specific penetrance of the mouse models are in accordance with the studies that 

establish dependence of adrenocortical development [272; 273] and RAAS parameters [274] on the 

same factors. Females of NMRI - C57BL/6 crossbred strain mice showed increased adrenal weight 

along with adrenocortical and ZG volume in comparison to males after 7 weeks of age [272], 

seemingly due to differential of p38 and p44/42 MAPK activation levels between sexes [273]. 

Regardless of the adrenocortical size, the components of RAA system were higher in males of pure 

and crossbred C57BL/6J and C3HeB/FeJ mice strains [274]. It was also observed that, although 

female adrenals had more volume, male ZG comprised larger percentage of the adrenal glands. The 

greater extent of paternal black-6 heritage yielded higher aldosterone levels in both sexes. For renin 

activity, females did not show strain dependent changes, but males with greater extent of paternal 

black-6 heritage had higher levels. As a resulting black 6 heritage conferred similar ARR levels 
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between sexes, whereas C3HeB/FeJ heritage reduced ARR of females. 

The sex dependent differences of aldosterone regulation and production are also evident in humans. 

The Framingham study reveals that higher blood pressure and PRC in men, and higher PAC and ARR 

in women [77]. ARR was also shown to be positively correlated with female sex in another cohort as 

well [143]. Old age and female sex have shown a tendency for higher PAC and ARR values in the 

KORA F4 survey [166], from which the cohort of this study was derived. These findings are in 

agreement with higher prevalence of the newly identified pathogenic somatic APA mutations of 

KCNJ5 in women and at younger age [110; 275]. ATP1A1,ATP2B3 and CACNA1D mutations either did 

not show this female bias [88; 111] or had a male predominance [87; 276], as well as presenting 

increased age of diagnosis and smaller adenoma diameter [89]. Given these findings it is tempting to 

speculate on a protective role of androgens against hyperaldosteronism, especially in light of 

castrated male Task1-/- mice showing the female specific dezonation and rescuing effect of 

testosterone treatment in females [101; 259]. 

Given the significant sex related differences in aldosterone and ARR values in both humans and 

mice, the SLC26A2 knock in mice with black-6 background [171] unsurprisingly showed differential 

steroidogenic gene expression and hormone production, with more pronounced effects in female 

mutants. When the steroidogenic genes in the adrenal are categorized by their focus on ZG / 

aldosterone production or ZF / early steroidogenesis, the prior group showed overexpression in a 

sex dependent manner, whereas the latter group was downregulated. The most striking example of 

this comes from 3βHSD isozymes, where the ZG specific Hsd3b6 is elevated in knockdown animals, 

as opposed to the downregulated Hsd3b1. The rate limiting enzyme of aldosterone production was 

significantly elevated in male mutants, with no difference in wild type sexes. In contrast, the increase 

in aldosterone was most emphasized in female mutants, with lower female wild type levels in 

accordance with the earlier work described above [274]. Renin levels were found to be higher in 

male vs female and mutant vs wild type comparisons. However, the standard deviation of the renin 

activity measurements proved to be too high, even among wild type animals, to derive definitive 

conclusions from. As a direct result of this confounding factor, ARR measurements, in which the 

renin activity is the covariant, are also compromised. 

The confounding results from renin activity measurements are most likely due to cryoactivation of 

prorenin during plasma storage and handling; as enzymatic assay internal controls did not suggest a 

discrepancy in that end. Such issues of renin cryoactivation has been observed in the past when the 

centers of collection and assaying are spatially distant [277]. There is also no evidence for differential 

stress levels in animals of the same group, as the corticosterone assay results presented similar 
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levels wild-type males and females low standard errors. However, it is obvious from the same assay 

that the mutant animals were under intense stress. This would be only natural, given their extreme 

disease condition of diastrophic dysplasia, causing increased morbidity and 50 % mortality by day 21 

[171]. This mouse model was developed as a model for Mendelian diastrophic dysplasia syndrome, 

and as a result this setting poorly translates to studies of PA, a multifactorial, heterogeneous 

disease. The germline mutation of SLC26A2, in addition to the chondrodysplasia, may be especially 

impactful on developing embryo, as SLC26A2 is the main sulfate transporter responsible for 

supplying sulfate in the placenta [252]. The experience obtained in this study also indicates an 

increased lethality of homozygous females, which hampered availability of an adequate set of 

samples from this group for the endocrine characterization. Given the difficulties in endocrine 

phenotyping of SLC26A2 mutant mice, a tissue specific knockout model [106] through a ZG specific 

Cre deleter strain, similar to the promising model developed for studying mineralocorticoid target 

tissues [278], might be a great deal more illuminating for in vivo effects of SLC26A2 suppression, free 

from the many secondary effects seen on germline mutants. 

4.6. SLC26A2 in the Kidney 

Aldosterone acts through mineralocorticoid receptors found in many cell populations, but its 

primary target in ion and water homeostasis is the cortical collecting duct. In light of this knowledge, 

collecting duct cells were employed in investigating possible SLC26A2 interaction with aldosterone 

mediated renal function. SLC26A2 had been previously reported to be detected in the kidney [179], 

and RT-PCR confirmed its expression in the collecting duct cell line. Most functional studies 

described here presented mild and below-significant effects, with the exception of osmoprotective 

gene expression in SLC26A2 knockdown cells. A report published as this study was being conducted 

reported that SLC26A2 expression was exclusive to proximal tubule in the kidney [260]. Moreover, it 

was also reported that proximal tubule is an aldosterone target as well [15]. These publications 

presented compelling evidence against the use of collecting duct cells in this study, especially when 

combined with the results from aldosterone treated wild type or SLC26A2 knockdown cells. 

However, another explanation is also possible in that detection of membrane SLC26A2 is highly 

dependent on the epitope retrieval method used [179], with harsh heat induced epitope retrieval 

treatment of tissues yielding false negative results. The lack of collecting duct immunopositivity was 

reported after exactly that kind of tissue pretreatment, and therefore harboring a potential error. 

Using a method as described in section 5.3 for better elucidation of adrenal localization with surface 

protein immunoprecipitation of collecting duct cells would be more reliable. In the case that 

SLC26A2 expression indeed does not lead to protein synthesis and function in the collecting duct, an 

interesting possibility of post-transcriptional regulation by miRNAs would come to attention. Also, a 
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proximal tubule deficient in SLC26A2 may trigger RAAS signaling through detection of increased 

luminal sodium concentrations by the macula densa; as lack of SLC26A2 activity may force the 

nephron to over-reliant on sodium dependent sulfate uptake through SLC13A1 [260; 279]. It has also 

been proposed that SLC26A2 may take part in the Na+, Cl-, sulfate and oxalate recycling in the 

proximal tubule, and its repression may derail the interplay of these co-dependent exchange 

mechanisms, leading to higher sodium concentrations in the ascending limb lumen [260; 280]. These 

possibilities render a study of SLC26A2 on proximal tubule worthwhile from an aldosterone focused 

point of view. 

4.7. Perspectives 

This study presents an application of genetic epidemiological methodology as a scout for biological 

functional studies, which are too often restricted by the current knowledge in their hypothesis 

driven approach. However, the findings of the experiments seemingly lead to more questions than 

answers. Future investigation into these loose ends can be summarized in three broad categories: 

Renal SLC26A2 function: As discussed above, a definitive localization of the SLC26A2 within kidney is 

necessary to explain the collecting duct expression of the gene. Depending on the findings, 

nephrological studies could be carried out to elucidate the function of SLC26A2 in the kidney, either 

in the collecting duct or the proximal tubule of the nephron. 

In vitro aldosterone overproduction via SLC26A2 repression: The main effort of this study in 

illumination of the links between SLC26A2 knockdown and aldosterone overproduction observed in 

adrenocortical carcinoma cells. Although it can be stated with reasonable confidence that the effect 

is carried through calcium signaling, how this is effected by the knockdown remains elusive. A 

thorough investigation of the electrophysiological properties of the knockdown cell membranes and 

the currents of ions that SLC26A2 has an affinity for would be most interesting. The confounding 

effects of a cortisol producing carcinoma cell line may even be overcome by replicating knockdown 

effects in a ZG enriched primary adrenal culture, providing more clear explanations into SLC26A2 – 

aldosterone interplay. 

Slc26a2 knock-in mutation in black 6 mice showed a sex dependent hyperaldosteronism, but this 

finding was convoluted by the extremely morbid phenotype of the animals. It may be impossible to 

derive a better view of the adrenal effects from immediate post-natal animals, where their DTD 

symptoms are less pronounced, due to unattainably small adrenal size and blood volume, but the 

blood pressure measurements of older animals would be informative even in their distorted 

endocrine phenotype. As proposed in the previous section, a conditional or tissue specific knockout 
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animal would be a much more suitable model for studying SLC26A2-hyperaldosteronism relation. 

Finally, one can always wish for the then impossible, only to see it come true by virtue of advances in 

biotechnology. Recent progress in “big data” generation may soon make scanning Conn’s and IPA 

patients for genetic and epigenetic changes feasible, which may even identify SLC26A2 as a common 

culprit in development and progression of primary hyperaldosteronism, at least in subpopulations 

such as the KORA cohort. 

Regardless of the outcomes of future studies, it is likely that current understanding of multifactorial 

diseases will be further challenged by technical innovation, reaffirming the notion that “life is 

complicated” [281]. This situation may well lead to a historical repetition of what transpired in the 

field of Newtonian physics over a century ago, bringing about another annus mirabilis in biology. 
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5. Summary 

Arterial hypertension is the most prevalent risk factor for cardiovascular disorders. Most cases of 

hypertension are due to unknown etiology, with only 5-15 per cent being secondary effects. Primary 

aldosteronism (PA) is the single most prevalent form of secondary hypertension, and is defined by 

autonomous aldosterone secretion independent of the plasma renin activity. Routine usage of 

aldosterone to renin ratio (ARR) for screening PA has revealed greater prevalence of the disorder, 

especially in resistant or advanced forms of arterial hypertension. The two most common causes of 

PA are aldosterone producing adenomas (APA) and bilateral adrenal hyperplasia (BAH). Rare 

Mendelian forms of familial hyperaldosteronism are also described. Until recently, genetic 

background of only glucocorticoid-remediable familial PA was elucidated in detail. Utilization of the 

exome sequencing techniques since 2011 identified somatic mutations in the cation transporter 

genes KCNJ5, ATP1A1, ATP2B3 and CACNA1D as the causative factors for circa 50 % of APAs. The 

underlying genetic causes of BAH cases remain to be determined. 

Genome-wide association studies (GWAS) have been the predominant methodology in genetic 

epidemiological research in the past ten years, under the hypothesis of “common disease – common 

variant”. Its prevalent application identified many risk loci, containing targets for functional 

investigation. In this study ARR was used as a phenotypic parameter in a GWAS in the German KORA-

F4 cohort of 1876 individuals, leading to genome-wide significance of a locus in chromosome 5q32. 

The four genes in this locus (SLC26A2, TIGD6, HMGXB3 and CSF1R) were evaluated by their known 

characteristics and functions, and functional studies investigating their relevance to aldosterone 

biosynthesis and function were carried out for SLC26A2 and CSF1R. SLC26A2, a ubiquitously 

expressed solute carrier with mainly sulfate, oxalate and chloride affinities, was found to be co-

regulated with aldosterone production in vivo and in vitro. RNA interference in a model 

adrenocortical cell line resulted in significantly higher rate of aldosterone production and 

aldosterone synthase expression, as well as increased overall steroidogenic capacity. Subsequent 

studies identified calcium signaling dependent pathways as the mediator of this effect. A germline 

SLC26A2 knock-in mouse model also showed confirmatory endocrine and adrenal phenotype in a 

sex-specific manner, with elevated plasma aldosterone concentration and ARR in females. The 

evidence derived from these findings suggests a possible role of SLC26A2 function in the 

pathophysiology of PA, which requires further epidemiological and functional experiments to 

confirm and elucidate. 
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Zusammenfassung 

Die arterielle Hypertonie gilt als wichtigster Risikofaktor für kardiovaskuläre Erkrankungen. Während 

in den meisten Fällen eine essentielle Hypertonie angenommen werden kann, liegt in 5-15 % der 

Patienten dem Bluthochdruck eine andere Erkrankung zugrunde. Mit dem Einsatz des Aldosteron-

Renin-Quotienten (ARQ) konnte der primäre Hyperaldosteronismus als die häufigste Form des 

sekundären Bluthochdrucks eingeordnet werden. Die beiden häufigsten Ursachen des primären 

Hyperaldosteronismus sind das Aldosteron-produzierende Adenom (APA) und die beidseitige 

Nebennierenrindenhyperplasie (BAH). Monogenetische, familiäre Formen sind hingegen insgesamt 

sehr selten. Mit dem Einsatz moderner Sequenziertechniken konnten seit 2011 somatische 

Mutationen in Ionenkanälen und Transportern (KCNJ5, ATP1A1, ATP2B3 und CACNA1D) in etwa 50 % 

der APAs identifiziert werden. Die genetische Ursachen der BAH sind dagegen in der überwiegenden 

Mehrzahl der Fälle unbekannt. 

Unter der “common disease – common variant” Hypothese sind Genomweite Assoziationsstudien 

(GWAS) in den letzten zehn Jahren zur vorherrschenden Methode der genetischen 

epidemiologischen Forschung geworden. Ihr weit verbreiteter Einsatz hat zur Identifizierung vieler 

genetischer Risiko-Loci geführt, die dann funktionellen Untersuchungen zugeführt werden konnten. 

In der vorliegenden Arbeit wurde der ARQ als phänotypische Parameter in einer GWAS der 

deutschen KORA-F4 Kohorte von 1.876 Personen verwendet. Hierdurch fand sich eine genomweite 

Signifikanz eines Locus auf Chromosom 5q32. Die vier in diesem Locus enthaltenen Gene (SLC26A2, 

TIGD6, HMGXB3 und CSF1R) wurden anhand bekannter Eigenschaften und Funktionen eingeordnet 

und weitergehende funktionelle Studien für SLC26A2 und CSF1R durchgeführt. Für SLC26A2 – einem 

Transporter mit bekannten Affinitäten zu Sulfat, Oxalat und Chlorid - konnte in vivo und in vitro eine 

gemeinsame Regulation der adrenalen Expression mit Aldosteron gefunden werden. Ein knock-down 

von SCL26A2 in einem in vitro Modell durch siRNA führte zu einer relevanten Erhöhung der 

Aldosteron-Sekretion und transkriptionellen Veränderungen des Steroidbiosynthese-Apparats. 

Weitergehenden Untersuchungen identifizierten vor allem Kalzium-abhängige Signalkaskaden als für 

diesen Effekt ursächliche Mechanismen. In einem Slc26a2 knock-in Mausmodell konnten 

geschlechtsabhängig ein entsprechender endokriner Phänotyp mit einem erhöhten ARQ 

nachgewiesen werden. Zusammengenommen ergeben sich aus diesen Untersuchungen gute 

Hinweise für einen Einfluss von SLC26A2 in der Regulation der Aldosteronsekretion und in der 

Pathophysiologie des primären Hyperaldosteronismus. Weitere funktionelle, epidemiologische und 

genetische Untersuchungen werden notwendig sein, diese Ergebnisse weiter zu vertiefen und in 

ihrer potentiellen klinischen Wertigkeit einzuordnen. 
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7. Appendix 

7.1. Abbreviations 

[Ca2+]I intracellular calcium concentration 

[Ca2+]O extracellular calcium concentration 

[K+]O extracellular potassium concentration 

°C degree Celsius 

µl microliter 

µM micromolar 

11βHSD 11-β-hydroxysteroid dehydrogenase 

12-HETE 12-Hydroxyeicosatetraenoic acid 

3βHSD 3-β-hydroxysteroid dehydrogenase / Δ-5-4 isomerase 

ACE angiotensin-converting enzyme 

ACTH adrenocorticotropic hormone 

ADH anti-diuretic hormone 

AngI angiotensin I 

AngII angiotensin II 

ANOVA analysis of variance 

APA aldosterone producing adenoma 

ARR aldosterone to renin ratio 

AT1 angiotensin II receptor type 1 

AT2 angiotensin II receptor type 2 

ATF activator transcription factor 

ATP adenosine triphosphate 

ATPase adenosine triphosphatase 

AVS adrenal vein sampling 

BAH bilateral adrenal hyperplasia 

BCA bicinchoninic acid 

BK Ca2+-activated K+ channel 

BSA bovine serum albumin fraction 

CaM calmodulin 

CAMK calcium / calmodulin dependent kinases 

cAMP cyclic adenosine monophosphate 

CDCV common disease - common variant 

cDNA complementary DNA 
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CHIF corticosteroid hormone-induced factor 

cm centimeter 

cM centimorgan 

CRE cAMP response element 

CREB CRE binding protein 

cRNA complementary RNA 

CT computed tomography 

CYP11B 11β-hydroxylase 

DAB 3,3’-diaminobenzidine 

DAG 1,2-diacylglycerol 

DIN Deutsches Institut für Normung 

DMEM Dulbecco’s modified Eagle's medium 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

DOCA 11-desoxycorticosterone acetate 

DTD diastrophic dysplasia 

DTDST diastrophic dysplasia sulfate transporter 

DTPA diethylenetriaminepentaaceticacid 

DTT dithiothreitol 

ECL enhanced chemiluminescence 

EDTA ethylene diamine tetraacetic acid 

EIA enzyme immunoassay 

ENaC amiloride-sensitive epithelial sodium channel 

ENU N-ethyl-N-nitrosourea 

ER endoplasmic reticulum 

ES embryonic stem (cell) 

EtBr ethidium bromide 

EtOH ethanol 

FBS fetal bovine serum 

FH familial hyperaldosteronism 

GO Gene Ontology 

GTP guanosine triphosphate 

GWA genome-wide association 

GWAS genome-wide association study 
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h2 narrow-sense heritability 

HDL high-density lipoprotein 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP horseradish peroxidase 

HSP heat shock protein 

IgG immunoglobulin G 

IHC immunohistochemistry 

IP3 inositol 1,4,5-triphosphate 

IQR interquartile range 

ITS insulin–transferrin–selenium 

KD Knockdown 

kg kilogram 

KHP potassium-hydrogen-phthalate 

Ki-RasA Kirsten Ras GTP-binding protein-2A 

KORA Cooperative Health Research in the Region of Augsburg 

L liter 

LD linkage disequilibrium 

LDL low-density lipoprotein 

LKC immunoassay buffer 

LREH low-renin essential hypertension 

M molar 

MAPK mitogen-activated protein kinase 

M-CSF macrophage colony-stimulating factor 

mg milligram 

min minute 

miRNA microRNA 

ml milliliter 

mM millimolar 

mmol millimole 

MR mineralocorticoid receptor 

mRNA messenger RNA 

NCC thiazide-sensitive sodium-chloride cotransporter 

NCI National Cancer Institute 

ng nanogram 
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NGFI-B neuronal growth factor-induced clone B 

NHE1 sodium–hydrogen antiporter 

NKCC2 Na+-K+-2Cl- cotransporter 

nm nanometer 

nmol nanomolar 

NURR1 nuclear receptor related 1 

oligo(dT)18 18-mer deoxythymidine 

PA primary aldosteronism 

PAC plasma aldosterone concentration 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDE3A phosphodiesterase 3A 

PEG polyethylenglycol 

Pen-Strep penicillin / streptomycin 

PET positron emission tomography 

PFA paraformaldehyde 

pg picogram 

PI3K phosphoinositide 3-kinase 

PKA protein kinase A 

PKC protein kinase C 

PLC phospholipase C 

pmol picomole 

PMSF phenylmethylsulfonyl fluoride 

PRA plasma renin activity 

PRC plasma renin concentration 

PTFE polytetrafluoroethylene 

PVDF polyvinylidene fluoride 

qPCR quantitative polymerase chain reaction 

RAAS renin-angiotensin-aldosterone system 

Ras rat sarcoma 

RIA radioimmunoassay 

RIPA radioimmunoprecipitation assay 

RNA ribonucleic acid 
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RNAi RNA interference 

RNase ribonuclease 

ROMK renal outer medullary potassium channel 

RPMI Roswell Park Memorial Institute 

RT-PCR real-time polymerase chain reaction 

SDS sodium dodecyl sulfate 

SF1 steroidogenic factor 1 

SGK1 serum and glucocorticoid-regulated kinase 1 

shRNA short hairpin RNA 

siRNA short interfering RNA 

SNP single-nucleotide polymorphism 

TASK TWIK-like, acid-sensitive K+ channel 

TBE tris / borate / EDTA 

TBST tris-buffered saline - Tween 20 

TOPO tri-N-octylphosphinoxide 

TRIS tris-hydroxymethylaminomethane 

TTFA thenoyltrifluoroacetone 

TWIK tandem of P domains in a weak inward rectifying K+ channel 

UT-A urine transporter SLC14A2 

v/v  volume per volume 

w/v  weight per volume 

WB Western blot 

WNK with no lysine kinase 

WT wild type 

x g relative centrifugal force 

ZF zona fasciculata 

ZG zona glomerulosa 

ZP progenitor zone 

ZR zona reticularis 
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