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Summary

Metabolic processes, signal transduction, gene regulation, as well as gene and protein expres-
sion are largely controlled by biological networks. High-throughput experiments allow the
measurement of a wide range of cellular states and interactions. However, networks are often
not known in detail for specific biological systems and conditions. Gene and protein anno-
tations are often transferred from model organisms to the species of interest. Therefore, the
question arises whether biological networks can be transferred between species or whether
they are specific for individual contexts. In this thesis, the following aspects are investigated:
(i) the conservation and (ii) the cross-species transfer of eukaryotic protein-interaction and
gene regulatory (transcription factor- target) networks, as well as (iii) the conservation of
alternatively spliced variants.

In the simplest case, interactions can be transferred between species, based solely on the
sequence similarity of the orthologous genes. However, such a transfer often results either in
the transfer of only a few interactions (medium/high sequence similarity threshold) or in the
transfer of many speculative interactions (low sequence similarity threshold). Thus, advanced
network transfer approaches also consider the annotations of orthologous genes involved in
the interaction transfer, as well as features derived from the network structure, in order to
enable a reliable interaction transfer, even between phylogenetically very distant species. In
this work, such an approach for the transfer of protein interactions is presented (COIN).
COIN uses a sophisticated machine-learning model in order to label transferred interactions
as either correctly transferred (conserved) or as incorrectly transferred (not conserved).

The comparison and the cross-species transfer of regulatory networks is more difficult than
the transfer of protein interaction networks, as a huge fraction of the known regulations is
only described in the (not machine-readable) scientific literature. In addition, compared to
protein interactions, only a few conserved regulations are known, and regulatory elements
appear to be strongly context-specific. In this work, the cross-species analysis of regulatory
interaction networks is enabled with software tools and databases for global (ConReg)
and thousands of context-specific (CroCo) regulatory interactions that are derived and
integrated from the scientific literature, binding site predictions and experimental data.

Genes and their protein products are the main players in biological networks. However,
to date, the aspect is neglected that a gene can encode different proteins. These alterna-
tive proteins can differ strongly from each other with respect to their molecular structure,
function and their role in networks. The identification of conserved and species-specific
splice variants and the integration of variants in network models will allow a more complete
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cross-species transfer and comparison of biological networks. With ISAR we support the
cross-species transfer and comparison of alternative variants by introducing a gene-structure
aware (i.e. exon-intron structure aware) multiple sequence alignment approach for variants
from orthologous and paralogous genes.

The methods presented here and the appropriate databases allow the cross-species trans-
fer of biological networks, the comparison of thousands of context-specific networks, and the
cross-species comparison of alternatively spliced variants. Thus, they can be used as a start-
ing point for the understanding of regulatory and signaling mechanisms in many biological
systems.



Zusammenfassung

In biologischen Systemen werden Stoffwechselprozesse, Signalübertragungen sowie die Regu-
lation von Gen- und Proteinexpression maßgeblich durch biologische Netzwerke gesteuert.
Hochdurchsatz-Experimente ermöglichen die Messung einer Vielzahl von zellulären Zustän-
den und Wechselwirkungen. Allerdings sind für die meisten Systeme und Kontexte biologi-
sche Netzwerke nach wie vor unbekannt. Gen- und Proteinannotationen werden häufig von
Modellorganismen übernommen. Demnach stellt sich die Frage, ob auch biologische Netz-
werke und damit die systemischen Eigenschaften ähnlich sind und übertragen werden kön-
nen. In dieser Arbeit wird: (i) Die Konservierung und (ii) die artenübergreifende Übertragung
von eukaryotischen Protein-Interaktions- und regulatorischen (Transkriptionsfaktor-Zielgen)
Netzwerken, sowie (iii) die Konservierung von Spleißvarianten untersucht.

Interaktionen können im einfachsten Fall nur auf Basis der Sequenzähnlichkeit zwischen
orthologen Genen übertragen werden. Allerdings führt eine solche Übertragung oft dazu,
dass nur sehr wenige Interaktionen übertragen werden können (hoher bis mittlerer Sequenz-
schwellwert) oder dass ein Großteil der übertragenden Interaktionen sehr spekulativ ist (nied-
riger Sequenzschwellwert). Verbesserte Methoden berücksichtigen deswegen zusätzlich noch
die Annotationen der Orthologen, Eigenschaften der Interaktionspartner sowie die Netz-
werkstruktur und können somit auch Interaktionen auf phylogenetisch weit entfernte Ar-
ten (zuverlässig) übertragen. In dieser Arbeit wird ein solcher Ansatz für die Übertragung
von Protein-Interaktionen vorgestellt (COIN). COIN verwendet Verfahren des maschinel-
len Lernens, um Interaktionen als richtig (konserviert) oder als falsch übertragend (nicht
konserviert) zu klassifizieren.

Der Vergleich und die artenübergreifende Übertragung von regulatorischen Interaktio-
nen ist im Vergleich zu Protein-Interaktionen schwieriger, da ein Großteil der bekannten
Regulationen nur in der (nicht maschinenlesbaren) wissenschaftlichen Literatur beschrieben
ist. Zudem sind im Vergleich zu Protein-Interaktionen nur wenige konservierte Regulatio-
nen bekannt und regulatorische Elemente scheinen stark kontextabhängig zu sein. In dieser
Arbeit wird die artenübergreifende Analyse von regulatorischen Netzwerken mit Software-
werkzeugen und Datenbanken für globale (ConReg) und kontextspezifische (CroCo) re-
gulatorische Interaktionen ermöglicht. Regulationen wurden dafür aus Vorhersagen, experi-
mentellen Daten und aus der wissenschaftlichen Literatur abgeleitet und integriert.

Grundbaustein für viele biologische Netzwerke sind Gene und deren Proteinprodukte.
Bisherige Netzwerkmodelle vernachlässigen allerdings meist den Aspekt, dass ein Gen ver-
schiedene Proteine kodieren kann, die sich von der Funktion, der Proteinstruktur und der
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Rolle in Netzwerken stark voneinander unterscheiden können. Die Identifizierung von kon-
servierten und artspezifischen Proteinprodukten und deren Integration in Netzwerkmodelle
würde einen vollständigeren Übertrag und Vergleich von Netzwerken ermöglichen. In die-
ser Arbeit wird der artenübergreifende Vergleich von Proteinprodukten mit einem multiplen
Sequenzalignmentverfahren für alternative Varianten von paralogen und orthologen Genen
unterstützt, unter Berücksichtigung der bekannten Exon-Intron-Grenzen (ISAR).

Die in dieser Arbeit vorgestellten Verfahren, Datenbanken und Softwarewerkzeuge ermög-
lichen die Übertragung von biologischen Netzwerken, den Vergleich von tausenden kontext-
spezifischen Netzwerken und den artenübergreifenden Vergleich von alternativen Varianten.
Sie können damit die Ausgangsbasis für ein Verständnis von Kommunikations- und Regula-
tionsmechanismen in vielen biologischen Systemen bilden.



Chapter 1

Introduction

In biological systems, genes, proteins, enzymes, and compounds influence and interact with
each other in complex networks (Barabási and Oltvai, 2004). Such networks can be modeled
(Karlebach and Shamir, 2008), visualized (Pavlopoulos et al., 2008), and compared (Sharan
and Ideker, 2006) using appropriate approaches. Advanced network models like Petri-nets
also allow for precise mathematical modeling and the simulation of biological systems (see
e.g. Reddy et al. (1993); Küffner et al. (2000); Koch et al. (2005)). Networks (on a small
scale) are intuitive representations of complex systems. They have been successfully used
for the prediction of protein function, the study of regulatory dynamics, and the explanation
of experimental data (Mitra et al., 2013). Thus, networks are commonly used in systems
biology to serve as frameworks for data integration and interpretation.

High-throughput techniques allow the measuring of a wide range of cellular states and
interactions. Protein interactions can, for example, be measured using Yeast-Two-Hybrid
(Fields and Song, 1989) and Co-ImmunoPrecipitation systems (Co-IP) (Kaboord and Perr,
2008). Various high-throughput Next Generation Sequencing (NGS) techniques like RNA
sequencing (RNA-seq) and Chromatin ImmunoPrecipitation sequencing (ChIP-seq) allow
measuring the expression of transcripts and the bindings of proteins to the DNA on a genome
wide level (Furey, 2012). Projects like ENCODE (ENCODE Project Consortium, 2012b),
modENCODE (Celniker et al., 2009), the TCGA Gene Cancer Atlas (Cancer Genome Atlas
Research Network, 2008), and Roadmap Epigenomics (Roadmap Epigenomics Consortium
et al., 2015) apply such NGS techniques on thousands of samples, under diverse biological
conditions, and provide resources of regulatory data for human, fly, and worm. Researchers
are now able to combine this data and model biological systems for various species and
conditions in detail.

Networks are an abstract representation of (high-throughput) experimental data. A reg-
ulatory and protein-interaction network can be represented in different levels of detail. A
simplified regulatory network includes genes and directed (binary) edges that represent the
regulatory effects of genes, whereas a simplified protein interaction network model consists
of proteins and edges representing bindings between proteins. Such representations can be
constructed using experimental-type specific workflows (for network definitions from ChIP,
protein interaction and digital genomic footprinting data see e.g. Pollack and Iyer (2002);
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Kim et al. (2005); Berggård et al. (2007); Neph et al. (2012a)). Further, more advanced
network models also include the interaction effect (e.g. activation or repression), context
information (e.g. in which tissue/cell-line an interaction occurs), transitions (e.g. which pro-
teins form a protein complex), and the involved gene products. The gene products can differ
due to the processes of alternative splicing, alternative transcription, and post-translational
modifications (Kelemen et al., 2013; Pal et al., 2011; Khoury et al., 2011). Alternatively
spliced variants may exclude, include or replace certain amino-acids and thus can affect
protein interfaces and DNA-binding domains (Resch et al., 2004; Kelemen et al., 2013).
Compared to another gene product (often the wild-type defined as the gene product with
strongest expression), this can result in different binding-affinities and the loss and gain of
interaction partners (Ellis et al., 2012; Buljan et al., 2012, 2013). Furthermore, so called
non-trivial spliced isoform (Birzele et al., 2008), isoforms which differ in essential parts from
the native structure, may even result in distinct protein structures which expose different
residues to the protein surface.

Global/static network modeling allows a first and simple representation of networks.
Such networks can, for example, be derived from one standardized laboratory condition
or be computationally predicted using binding site predictions. A first step towards the
analysis of dynamic changes in such networks offers the integration of context-specific data,
e.g. gene expression data from different cell-lines, and tissues (Ideker and Krogan, 2012).
Thereby, a given global network can be filtered in order to identify the ’active’ elements
(for example, edges involving not expressed genes can be removed). Thousands of context-
specific data sets for many diverse experimental settings are publicly available in repositories
like SRA (Leinonen et al., 2011), GEO (Edgar et al., 2002), and ArrayExpress (Kolesnikov
et al., 2015), which can be utilized to construct, model, and compare various context-specific
biological networks. Thus, differential and context-specific network analysis is now becoming
a prevalent tool, as it enables the identification of new interactions, complexes, and pathways
which would be obscured in a global network (Ideker and Krogan, 2012). This is of high
interest as it is now understood that gene regulation and expression is highly context-specific
(Thurman et al., 2012; Gerstein et al., 2012; Neph et al., 2012b,a). Furthermore, different
network types can also be integrated into a combined (global, or context-specific) network,
thereby, providing a more complete view on cellular dynamics and allowing the analysis,
interpretation, and predictions of various aspects (see e.g. Hwang et al. (2005); Chen and
Rajewsky (2007); Pesch et al. (2008); Warde-Farley et al. (2010)).

Many terabyte of context-specific experimental data has been generated to measure vari-
ous aspects of biological systems. But experimental measurements are often labor intensive,
expensive, and, sometimes, not feasible for a certain system due to certain technical prob-
lems and ethical conflicts. Therefore, model organisms are frequently used to study cellular
systems (Fields and Johnston, 2005). Only for these organisms sufficient data is available
to model meaningful (sub)-systems. Furthermore, there are many aspects that have only
been selectively studied (even for model organisms). For example, only for the (compara-
ble) simple unicellular bakers’ yeast nearly the complete protein interactome is measured
(Stumpf et al., 2008). For other (model) organisms such as human and fly, the measured
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binary protein interaction networks have by far not reached their estimated sizes (Hart et al.,
2006). A common practice in bioinformatics is the transfer of data between (closely) related
species (Bork et al., 1998; Matthews et al., 2001; Yu et al., 2004). This practice is based on
the observation that genes that stem from the same common ancestor (orthologous genes)
often possess a similar function, even though, at great evolutionary distance, there are cases
where the function of orthologous genes differs (Koonin, 2005). For almost all human genes
a strongly conserved gene in mouse can be identified (Waterston et al., 2002). Thus, a
transfer of functional descriptions and Gene Ontology (Gene Ontology Consortium, 2015)
annotations between such closely related species appears to be plausible. The transfer (inter-
polation) of information can also be applied to biological networks allowing the enrichment
of network models and the identification of conserved and species-specific interactions and
sub-networks.

The gene and protein sequence (dis)similarity between species only partially explains the
species divergences (noted already long before the rise of NGS methods by King and Wilson
in 1975). As proteins interact with each other (already small) differences in the coding and
non-coding area of a genome can have drastic (phenotypic) effects (Romero et al., 2012; Villar
et al., 2014). Already single amino acid substitutions in the binding region of a transcription
factor can lead to different binding affinities and, thus, to different regulations (Ihmels et al.,
2005; Alon, 2007; Villar et al., 2014). In contrast, remarkable similarities in regulatory
mechanisms for several essential regulatory sub-networks, even between phylogenetically
very distant species, have been observed — for example, the heart specification kernel in
fly and vertebrates (see Figure 1.1) shares many conservations (Davidson, 2006). A first
approach for the transfer of interactions can be based on the sequence similarity between
orthologous genes. But it remains unclear: (i) whether the (orthologous) transcription factor
still recognizes the binding motif in the promoter region of the target gene, and (ii) in which
conditions the orthologous regulation occurs in the target species. Furthermore, there is a
general agreement that alternative splicing —a quite species-specific process (Merkin et al.,
2012; Barbosa-Morais et al., 2012)— affects interactions (Resch et al., 2004; Ellis et al.,
2012; Buljan et al., 2012, 2013).

Problem Identification and Contribution

In this thesis, the three aspects: (i) cross-species transfer and conservation of biological
networks, (ii) context-specific comparison of networks, and (iii) the conservation of
alternatively spliced variants are investigated:

Cross-Species Transfer: Protein-protein interaction networks are typically simplified as
they are binary, global, and undirected, but (compared to other network types) many protein
interaction networks have been experimentally identified for eukaryotic model organisms like
yeast, fly, mouse, and human. Such networks are deposited in structured databases and can
be used for further research. Indeed, even though these networks are simplified, they have
been successfully used for many research questions; for example for the prediction of protein
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Figure 1.1. Pan-bilaterian kernel for heart specification in fly and vertebrates; adapted
from Davidson (2006). (Nearly) all animals with bilateral symmetry (i.e. animals having a
front and a back end, as well as an upside and downside) have a heart, even though the
organ is structured very differently in different clades. The regulatory sub-network
responsible for the specification of the heart progenitor field in (a) fly and (b) vertebrates
shares many similarities (orthologous genes are colored similarly). For example, the
auto-regulation of Tin (Nfk.2.5) and the regulation of Tin and Mef2 (Mef2C) and Pnr
(Gata4) are conserved.

functions and the interpretation of experimental data (Mitra et al., 2013). Thus, many
analyses can benefit from (more or less) complete protein-interaction networks. We present
an approach for the cross-species transfer of global protein interaction networks and apply
this approach for the enrichment of the interactome for many eukaryotic species (COIN,
Chapter 3).

Context-Specific Comparison of Networks: Similar to protein-protein interaction net-
works, regulatory (transcription factor- target) networks can be treated as global and binary
networks. Thus, again the question arises to which extent these networks are conserved
and can be transferred between species. In contrast to protein-protein interactions, there
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exists no comprehensive repository of regulatory networks for many eukaryotic species. Fur-
thermore, the conservation of regulatory networks remains mostly speculative. Regulatory
interactions are often only described in the scientific literature. Furthermore, regulatory
elements are strongly context-specific. Projects like ENCODE, TCGA and the Epigenomic
Roadmap provide resources of context-specific regulatory raw-data, which in turn allow the
definition and analysis of more realistic networks (compared to global networks). Thus, ap-
proaches are needed to collect, integrate, and to infer regulatory interactions from diverse
data sources in order to conduct cross-species and cross-context regulatory network com-
parisons. We present such approaches, data repositories, and software tools for the analysis
and comparison of global (ConReg, Chapter 4) and context-specific regulatory networks
(CroCo, Chapter 5).

Conservation of Alternatively Spliced Variants: Genes and proteins are the main
entities of biological networks. Alternative gene products produced via alternative splicing
and alternative transcription can affect interaction networks (Resch et al., 2004; Ellis et al.,
2012; Buljan et al., 2012, 2013). Therefore, a realistic network model should integrate alter-
native variants. The identification of conserved spliced variants and the integration of this
information with cross-species network transfers will allow for a more realistic transfer and
comparison of biological networks. The first step (identification of conserved spliced vari-
ants) is addressed in this thesis with a novel gene, isoform, and exon-intron structure aware
multiple sequence alignment approach based on partially ordered graphs (ISAR, Chapter
6).
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Chapter 2

Background

The transfer of eukaryotic protein interaction and regulatory networks and the cross-species
comparison of alternative isoforms are addressed within this work. In the following chapter, a
general description of these networks, the evolutionary relationships of genes and the effects
of alternative isoforms on networks is provided. The cross-species transfer of biological
networks is based on the evolutionary relationships of genes, therefore also the definition and
identification of orthologs and paralogs are briefly discussed. Moreover, a short literature
review of the influence on the structure of biological networks by: (i) alternative splicing,
(ii) alternative transcription, and (iii) post-translational-modifications (PTM) is provided.

2.1 Biological Networks

In biological systems genes, proteins, and (drug) compounds interact with each other. Sys-
tems biology studies the often complex interactions between those entities with the ultimate
goal of understanding how these interactions cause the observed changes in a system (Ideker
et al., 2001). Different network types like protein-protein interaction, gene regulatory (includ-
ing transcription factor- target), and signaling networks can be modeled and even combined
in order to get more complete views on a system. Surprisingly, the general architecture and
topology of such biological networks appears to share many organizational properties such as
scale-free, small world and high average clustering coefficient with numerous non-biological
networks (Albert, 2005). Furthermore, small recurring building blocks, so called network
motifs, could be identified in regulatory (Shen-Orr et al., 2002; Alon, 2007) and protein
interaction networks (Yeger-Lotem et al., 2004). In the following protein interaction and
regulatory networks are briefly introduced:

Protein-Protein Interaction Networks: Proteins are the cell’s building blocks carry-
ing out most of the function within a cell (Alberts et al., 2008). But proteins rarely act alone
(Berggård et al., 2007; Rao et al., 2014). Indeed, they interact (bind) together in order to per-
form, or to participate in various essential molecular processes like signal transduction, DNA
replication, muscular contraction, and transcription. The physical binding of proteins can be
measured with different methods such as Yeast-Two-Hybrid, Tandem Affinity Purification
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(TAP), protein microarrays, or directly derived from known molecular three-dimensional
structures (see Rao et al. (2014); Phizicky and Fields (1995) for reviews on protein interac-
tion detection methods). These methods have different advantages and disadvantages. For
example, a high-throughput method such as Yeast-Two-Hybrid allows the measurement of
many interactions simultaneously, but high false positive rates are reported (Rhodes et al.,
2005). Protein interactions derived from three-dimensional structures allow precise investiga-
tion of the protein interfaces, but structural identifications of protein complexes are still labor
intensive and not always feasible. Individual interactions derived from different methods can
be combined into a protein-protein interaction network. Databases like iRefIndex (Turin-
sky et al., 2010), BIND (Bader et al., 2001) and BioGRID (Chatr-Aryamontri et al., 2013)
provide such experimentally derived networks for many species with information about the
experimental methods used to measure the interactions, literature references and confidence
values.

Regulatory Networks: A gene regulatory network describes how molecular entities
interact with each other in order to control the abundance of gene products, and subse-
quently specific cell functions (Karlebach and Shamir, 2008). Transcription Factor (TF) -
Target Genes (TG) interactions represent the majority of such relations. The transcription
of the TG is mediated by the physical interaction between TFs and cis-acting regulatory
elements in the promoter region of the target genes (Janky et al., 2009). Transcription fac-
tor binding sites (TFBS) in the promoter region of a TG can be experimentally identified
with high-throughput techniques like ChIP-seq, DNaseI Footprinting (Furey, 2012) and in-
ferred from gene expression data (Karlebach and Shamir, 2008). Furthermore, bindings can
be predicted purely computationally using Position Weight Matrices (PWM) of TFs (see
Stormo (2013) for a review on computational TFBS prediction approaches). Experimentally
derived regulations are more realistic than computationally predicted regulations as they
represent regulations that have been actually observed in a specific system, but currently no
experimental technique allows the measurement of all TF bindings in a system/genome at
once. In contrast, computational TFBS predictions can be quickly computed for all factors
with associated PWM, but these predictions are typically very speculative and do obscure
the strong context-specificity of transcription factor bindings. Compared to protein interac-
tions, currently no comprehensive repository of regulatory interactions is available for many
eukaryotic species. Only some species-specific databases like REDfly (Gallo et al., 2011)
and YEASTRACT (Teixeira et al., 2006) provide a collection of experimentally derived
regulatory and manually curated interactions for fly and yeast, respectively. Furthermore,
resources like ORegAnno (Griffith et al., 2008) and TRANSFAC (Matys et al., 2006) provide
some manually curated regulatory information for selected model organisms.

2.2 Gene Conservation

The cross-species transfer of biological networks is commonly based on the evolutionary re-
lationship of genes between species. The availability of sequenced and annotated genomes
enables the reconstruction of the evolutionary history of genes, the identification of conver-



2.2 Gene Conservation 9

Figure 2.1. Hypothetical gene tree illustrating orthologous and paralogous relations of
three genes in three species; taken from Koonin (2005). A common ancestor has three
paralogous genes X, Y and Z. The different branches (1, 2 and 3) show hypothetical
evolutionary events of these genes. Due to the gene-duplication in the common ancestor,
the genes in the different branches in species A, B and C are all out-paralogous to each
other (XA, XB, XC to YA1, YA2, YB, YC, and so forth). In branch 1 the ancestor gene X
is only specialized in species A, B, C. Subsequently, genes XA, XB and XC are orthologous.
In branch 2 a lineage-specific duplication of gene Y occurs in species A. According to the
ortholog definition the in-paralogs in species A (YA1 and YA2) are still both orthologous
to YB and YC. The situation in branch 3 is similar (as the duplication is lineage-specific)
and thus the genes ZC1-ZC2 etc. are collectively orthologous (co-ortholog).

sations and species- and lineage-specific adaptions, and thereby the transfer of interactions
between species. Gene and protein products are often well conserved between species, but the
corresponding genomes often undergo quite complex rearrangements (see for example Fig-
ure 2.2 for the mapping of human and mouse orthologous genes on the respective genomes).
The evolutionary history of genes can be described with various evolutionary events. Koonin
(2005) listed the following events that allow the description of the evolutionary history of
related genes (according to their relative occurrence): (i) gene specialization, (ii) gene dupli-
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cation, (iii) gene loss, (iv) horizontal gene transfer, (v) gene rearrangement including fusion
and fission of genes. The history of evolutionary related genes can indeed be quite complex
and composed of many such events. A further complicating matter is that the genome of the
common ancestors is typically not preserved and thus, cannot be used for the evolutionary
event reconstruction.

Depending on the series of evolutionary events, genes in different species are called: (i)
homologous (genes, sharing a common origin), (ii) orthologous (genes, which arise via
specifications from a single ancestor gene in the least common ancestor), or (iii) paral-
ogous (genes, which arise via gene duplications) (Koonin, 2005). Homology is the most
general term, which can be used to describe the evolutionary relationship between genes,
independent, of the series of evolutionary events. The orthologous definition appears to
be well-defined (given the relationship with the common ancestor), whereas the paralogous
definition is imprecise. The paralogous definition does not define whether the duplication
is lineage-specific, or has occurred in an ancestor. A series of comments on the importance
and common misunderstandings of paralogs and orthologs by Petsko (2001), Koonin (2001)
and Jensen (2001) highlighted that precise and further definitions of evolutionary relation-
ships are needed. Indeed, the definition of ortholog and paralog can be further divided into
(adapted from Koonin (2005)): co-ortholog (two or more genes in one species are orthologous
to a group of genes in another species, due to lineage-specific gene duplications), pseudopar-
alog (genes which appear orthologous due to lineage-specific gene loss), out-paralog (gene
duplications preceding a specialization event), and in-paralog (gene duplications subsequent
to a specialization event). Ortholog relations are not necessarily one-to-one relations. In
fact, they can be rather complicated. See for example Figure 2.1, which depicts the rela-
tionships of three genes X,Y,Z from a common ancestor in three different species A,B,C. In
this example, the genes in the right branch are co-orthologous as the evolutionary event in
the common ancestor of the three species is a gene specification event (even though gene
ZC1-ZC2, ZB1-ZB2, ZA1-ZA3 are in-paralogous).

The Quest for Ortholog consortia (Gabaldón et al., 2009) lists (currently) over 40 different
ortholog databases: each using (slightly) different methods and parameters, and including
different sets of species. Such databases rely on different methods like reciprocal BLAST
best-hit results, graph-based methods that cluster orthologs, or tree-based methods. As
the evolutionary history between species often remains unknown, no comprehensive and
often only indirect evaluation of the quality of such detection methods can be performed.
Typical criteria used to benchmark the quality of such approaches are based on the functional
similarity of the identified orthologs, or the overlap with manually curated ortholog sets
(Altenhoff and Dessimoz, 2009).

The computational reconstruction of the evolutionary events including the classification
of genes in the different orthologous and paralogous classes enables the comparison of species
and the transfer of information between them. However, the functional entities in biological
systems are transcripts and proteins; therefore, the definitions of the previously described
evolutionary event classes could be adapted and extended to these entities as well (Zambelli
et al., 2010). With ISAR (see Chapter 6) we present a general approach for the cross-species
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Figure 2.2. Rearrangements of the human and mouse genome. The left side shows the
human genome with chromosomes 1-22 and X, Y. The right side shows the mouse genome
with chromosomes 1-19 and X, Y. The distribution of genes on the different chromosomes
is shown in green and blue for the two species. The lines between the two genomes indicate
the mappings of the positions of the orthologous genes. The line color is according to the
chromosomal location of the human gene. Some chromosomes like the X chromosome
appear to be well conserved between the two species with only inter-chromosomal
rearrangements (top of the figure; grey edges), whereas other chromosomes are subject to
more complicated rearrangements. The figure has been created using Circos (Krzywinski
et al., 2009) and gene and ortholog data from the ENSEMBL database (Flicek et al., 2014).

alignment and transfer of genes, transcripts, isoforms, exons and introns.

2.3 Alternative Gene Products and Biological Networks

The processes of alternative splicing, alternative transcription and post-translational protein
modification are ubiquitous in almost the complete eukaryotic domain. They affect almost
all genes and thereby increase the diversity of gene products (Pal et al., 2011; Merkin et al.,
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Figure 2.3. Average number of isoforms per gene for 66 species contained in the ENSMBL
database (Flicek et al., 2014). For human most isoforms are annotated (on average 4). Also
for mouse and fish and a few other species, on average more than two isoforms per gene are
known. But for many of the other species only around one isoform per gene on average is
annotated.

2012; Barbosa-Morais et al., 2012). With the sequencing of the human genome it became
clear that the human genome has only between 19,000 and 22,000 (protein-coding) genes
(Ezkurdia et al., 2014; Harrow et al., 2012; Flicek et al., 2014), which is just around four
times more genes than in baker’s yeast, a single-celled eukaryotic organism. But from these
19,000 to 22,000 (protein-coding) genes in human many more different (protein-coding) tran-
scripts can be generated (Harrow et al., 2012; Flicek et al., 2014), whereas in yeast typically
only one transcript for each gene is produced. And finally due to alternative splicing —
also a process, which is only rarely used by yeast— and post translational modifications,
maybe more than a million different proteins can be produced in human (Jensen, 2004).
In the following, the mechanisms of alternative splicing, alternative transcription and post
translational modification are defined and discussed with respect to their known impact on
biological networks.
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Alternative Splicing and Alternative Transcription: Transcription describes the
process of converting DNA segments from a gene to pre-mRNA via the RNA polymerase.
In eukaryotes this pre-mRNA consists of coding regions (exons) and non-coding regions (in-
trons). Via the spliceosome, a large molecular machine, different parts of the pre-mRNA are
joined together (Alberts et al., 2008). The splicing process can generate a range of different
variants by including different regions in the final mRNA (alternative splicing). A gene may
have several alternative transcription start sites giving rise to different pre-mRNAs (alter-
native transcription). These alternative transcripts can in turn again undergo alternative
splicing. Alternative spliced isoforms (defined via alternative splicing and alternative tran-
scription) can be found in eukaryotes ranging from yeast to human (Kim et al., 2007; Keren
et al., 2010; Grützmann et al., 2014). However, different mechanisms (exon definition vs.
intron definition) and different prevalence and types of alternative splicing can be observed
among species (see Ast (2004); Keren et al. (2010) for reviews on the evolution of alternative
splicing).

In humans 95% of the multi-exon genes undergo alternative splicing (Pan et al., 2008).
Many of these alternative products do have specific functions in specific contexts, but the
regulation and function of most of these products still remain unknown. A comprehensive
literature review of the functions of alternative spliced isoforms showed that splicing can
affect DNA binding domains (Kelemen et al., 2013). Furthermore, preliminary analyses of the
structure of spliced isoforms revealed that splicing often affects regions on the surface, within
coil regions, and disordered regions (Wang et al., 2005; Romero et al., 2006; Buljan et al.,
2013). It was also observed that splicing can affect structurally well-conserved regions of
the corresponding protein family (Birzele et al., 2008). The latter highlights that alternative
products (when folded) may have a distinct protein structure, which differs strongly from
the native structure.

As alternative splicing often affects disordered regions (Buljan et al., 2013) and disor-
der is common in protein complexes (Fong et al., 2009), one can speculate that alternative
splicing has an impact on protein interactions. Several analyses have been conducted in
order to investigate the effects of alternative splicing on protein interactions using linear mo-
tif predictions, known three-dimensional molecular structures and specialized experimental
protein-interaction detection methods (Offman et al., 2004; Resch et al., 2004; Ellis et al.,
2012; Buljan et al., 2012, 2013; Colantoni et al., 2013). Resch et al. (2004) identified many
sequence domain motifs — including some well-known protein-interaction domain motifs—
that are more frequently affected by alternative splicing than other sequence motifs. Further-
more, Ellis et al. (2012) and Buljan et al. (2013) were able to extend the analysis of spliced
isoforms to tissue-specificity and protein interaction networks. Ellis et al. (2012) observed
that the inclusion/skipping of neural cell specific exons —exons that are regulated by a neu-
ral cell specific splicing factors— rewires the protein-protein interaction network (see Figure
2.4). In addition, Buljan et al.; Ellis et al. found that proteins harboring tissue-specific
exons tend to occupy central positions in interaction networks. In contrast to the previously
summarized studies, preliminary analysis based on molecular-structured protein complexes
and confirmed spliced variants do not show a significant removal of protein-protein interac-
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tion surfaces (Offman et al., 2004; Colantoni et al., 2013). Offman et al. (2004) analyzed 42
alternatively spliced isoforms in 21 amino acid chains which participate in structurally re-
solved interaction complexes. Several examples could be identified where alternative splicing
almost completely removes protein interaction regions in the considered protein interaction
set. The authors tested the hypothesis that alternative splicing is correlated with contact re-
gions in protein-protein interactions. Based on that limited data set no statistical correlation
between positions of alternative splicing and protein interaction interfaces could be found.
A more recent study by Colantoni et al. (2013) of 431 heterodimeric and 763 homodimeric
protein interfaces derived from known protein structures revealed that (in the considered
sets) protein interfaces are in general avoided by alternative splicing. Similar to Offman
et al. (2004), the authors identify only few examples where an alternative isoform affects
the protein interaction surface (see for example Figure 2.5). The authors give some expla-
nations for their observation. For example, protein interactions derived from known protein
complexes are biased as disordered regions (which are often subject to alternative splicing)
are often not resolved in crystallized regions (Colantoni et al., 2013). Furthermore, so called
non-trivial spliced isoform (Birzele et al., 2008), isoforms which differ in essential parts from
the native structure, may result in changes of the spatial structure of the interaction domain
to a degree that prevents interactions (Offman et al., 2004).

Even though the sequencing of RNA fragments (RNA-seq) is an established technology,
the assembly of complete transcripts from high-throughput RNA-seq data is currently still
difficult (Steijger et al., 2013). Subsequently, the annotation of genomes is mainly based
on completely sequenced cDNA (for the species of interest). Therefore, for most eukaryotes
the annotation of spliced variants is still sparse. See for example Figure 2.3 for the number
of isoforms per gene for some eukaryotes extracted from the ENSEMBL database (Flicek
et al., 2014). Surprisingly, even for species, which are phylogenetically close to well anno-
tated species, as for example for chimpanzee, the annotation of isoforms is sparse in current
databases. Thus, a cross-species transfer of transcripts and isoforms could be used for the
completion of the transcript and protein annotation.

Post-translational Protein Modification: Post-translational modifications (PTM)
are (reversible, or irreversible) chemical modifications at the C-, N- termini, or on the
amino acid side chains of a protein, which allow to modify amino-acid properties ’on the
fly’ (Prabakaran et al., 2012). There are over 300 different types of PTMs (Zhao and Jensen,
2009) including very common modifications like phosphorylation, glycosylation and acety-
lation (addition of phosphate, glycan and acetyl to a protein). PTMs can act as functional
switches for proteins. They may: activate, deactivate, and influence the cellular location (Seo
and Lee, 2004), or dynamically alter interaction partner preferences for proteins (Woodsmith
and Stelzl, 2014). Advances in mass-spectrometry have resulted in a drastic increase in PTM
identification (Beltrao et al., 2012). Current annotation pipelines already identified and cat-
egorized over 85,000 experimentally and over 230,000 manually curated PTMs (Prabakaran
et al., 2012). Proteins are often modified by several PTM types simultaneously (Duan and
Walther, 2015). For example, the well-studied p53 tumor suppressor protein is affected by
three PTM-types, which influence its stability and function (Brooks and Gu, 2003). Although
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Figure 2.4. Experimentally derived PPI networks for mouse genes containing
nSR100-regulated exons with and without nSR-100-regulated alternative exons; taken from
Ellis et al. (2012). Green edges and red edges represent interactions that are promoted and
inhibited, respectively, whereas gray edges represent unaffected interactions by the
inclusion of nSR-100-regulated alternative exons. In a first step, 31 genes containing
nSR100/SRRM4 splicing regulated exons were identified, i.e. genes harboring exons that
are included in the presence/ absence of nSR100/SRRM4. After that, protein interactions
were measured using a co-immunoprecipitation procedure once with and once without
nSR100/SRRM4 regulated exons for the previously identified genes.

many PTMs have been studied, still little information is available concerning their function.
By linking known protein interfaces with phosphorylation, ubiquitylation and acetylation
many PTMs that regulate interactions could be identified (Xin and Radivojac, 2012; Beltrao
et al., 2012).

Thus, alternative variants can differ drastically with respect to sequence, molecular struc-
ture, molecular function, and role in biological networks. Therefore, alternative products
should be considered for network analysis and the cross-species network transfer. However,
alternative products are currently not included in biological networks, as experimental data
often does not allow the discrimination between different spliced isoforms.
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Figure 2.5. Protein interaction of DDB1 (white) and Cul4A (blue/red) affected by an
alternative isoform of Cul4A; adapted from Colantoni et al. (2013). Cul4A has an
alternative isoform where a huge fraction of the protein interface residues are missing (red).
At the top, the protein structure of the interacting proteins is shown (PDB: 2HYE). Below
that, the gene structure, i.e. exon-intron structure of the Cul4A wild type, an alternative
isoform of Cul4A and the covered region of the Cul4A gene in the PDB are shown. The
region that is missing in the variant is highlighted red in the gene structure and the protein
complex.
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Protein Interaction Transfer

Abstract: Protein interaction networks are important for the understanding of regulatory
mechanisms, for the explanation of experimental data and for the prediction of protein
functions. Unfortunately, most interaction data is available only for model organisms. As
a possible remedy, the transfer of interactions to organisms of interest using orthologs is
common practice, but it is not clear if and when interactions can be transferred from one
organism to another and, thus, the confidence in the derived interactions is low. Here, we
propose to use a rich set of features to train Random Forests in order to score transferred
interactions.

We evaluated the transfer from a range of eukaryotic organisms to S. cerevisiae using or-
thologs. Directly transferred interactions to S. cerevisiae are on average only 24% consistent
with the current S. cerevisiae interaction network. When, in addition, the interaction type
is also transferred, even only 11% of physical interactions and 15% of genetic interactions
are consistent. By using commonly applied filter approaches the transfer precision can be
improved, but at the cost of a large decrease in the number of transferred interactions.

Our Random Forest approach uses various features derived from both the target and the
source network as well as the ortholog annotations to assign confidence values to transferred
interactions. Thereby, we could increase the average transfer consistency to 85%, while
still transferring almost 70% of all correctly transferable interactions. If, in addition, the
interaction type is transferred we could achieve a transfer consistency of 72% and 68% for
physical and genetic interactions, respectively.

We tested our approach for the transfer of interactions to other species and showed that
our approach outperforms competing methods for the transfer of interactions to species
where no experimental knowledge is available. Finally, we applied our predictor to score
transferred interactions to 83 target species. We were able to extend the interactomes of B.
taurus, M. musculus and G. gallus with over 40,000 reliable interactions.

Our transferred interaction networks are publicly available via our web interface, which
allows to inspect and download transferred interaction sets of different sizes, for various
species, and at specified expected precision levels.
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Publication: The content of this chapter was presented at the German Conference on
Bioinformatics 2011 in Munich and is published in PLOS One (Pesch and Zimmer, 2013).
Here, I reformatted the text and included the supplement in the corresponding sections.
Furthermore, parts of the results and methods are described in a BIOspektrum article (Pesch
and Zimmer, 2014).

My contribution: I developed the method and the web interface, carried out the evalu-
ation and drafted the chapter.

Contribution of co-authors: Ralf Zimmer supervised the work and helped to revise the
manuscript.
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3.1 Introduction

Using high-throughput screening techniques such as Yeast-Two-Hybrid screens, mass spec-
trometry and protein microarrays large amounts of protein interaction data can be obtained.
A protein interaction consists of proteins which bind permanent or transient together in
order to carry biological functions. Interaction networks have for example been used to
study regulatory networks, to explain experimental data or to predict the functions of pro-
teins (Zhang, 2009). Researchers can query protein interactions from databases like IntAct
(Kerrien et al., 2012) and BioGrid (Chatr-Aryamontri et al., 2013). This databases include
interactions derived from large-scale experiments, from literature curations, from user sub-
missions, and interactions from protein structures. The current protein interaction networks
are mostly derived from high-throughput experiments and hypothesis-driven low-throughput
experiments applied to particular gene sets of interest (Sambourg and Thierry-Mieg, 2010).

The experimental identification of interactions is a time consuming and costly process,
so that high-throughput experiments have mostly been conducted on model organisms such
as S. cerevisiae (Gavin et al., 2002), H. sapiens (Ewing et al., 2007), A. thaliana (Ehlert
et al., 2006) and D. melanogaster (Uetz and Pankratz, 2004). The interaction networks
for other species are still extremely sparse (see Table 3.1). Furthermore, all experimental
protein interaction detection methods have different weaknesses and biases (Michaut et al.,
2008). For example false positive rates up to 50% are reported for Yeast-Two-Hybrid screens
(Rhodes et al., 2005), literature curations do often not agree (Turinsky et al., 2010), and
data from Tandem Affinity Purification (TAP) requires involved data processing in order to
infer physical protein interactions (Berggård et al., 2007; Friedel and Zimmer, 2009).

Numerous computational approaches have been developed to predict protein interactions
in order to enrich the interactome of species of interest. In particular, knowledge from
other (model) organisms can be used to predict protein interactions for a specific target
organism. But link attachments, link detachments, gene duplications and gene losses lead to
(evolutionary) changes in protein interaction structures (Berg et al., 2004). Gene duplications
lead also to the duplication of interactions and again nucleotide substitutions can lead to a
network rewiring.

Matthews et al. (2001) introduced the term interolog —an orthologous gene pair in-
teracting in at least one species. Many methods transfer interaction data employing such
interologs (Gandhi et al., 2006; Bork et al., 2004; De Bodt et al., 2009; Michaut et al., 2008;
Yu et al., 2004). Matthews et al. was able to experimentally validate between 16% to 32%
of transferred protein interactions from S. cerevisiae to C. elegans with different ortholog
identification techniques. Several features are commonly used to increase the reliability of
interaction transfers via interologs. The simplest approach is to require a certain interolog
quality, e.g. a minimum bootstrap score for orthologs from the InParanoid database (Gandhi
et al., 2006) or a minimum sequence similarity between orthologs in order to transfer an inter-
action. Yu et al. (2004) showed that protein interactions can be safely transferred if the joint
sequence identity between the orthologs involved in the transfer is larger than 80%. More ad-
vanced filter approaches use thresholds for the Gene Ontology (GO) (Ashburner et al., 2000)
annotation similarity, domain similarity, gene expression correlation or other features of the
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interologs (De Bodt et al., 2009; Michaut et al., 2008; Wiles et al., 2010; Garcia-Garcia et al.,
2012; Gallone et al., 2011). To achieve a specified performance, random protein pairs are
compared with known protein interaction partners to define thresholds for the different fea-
tures. Besides the inference of protein interaction from interologs, various other approaches
try to predict interactions using structural properties (Tuncbag et al., 2011), network topol-
ogy information (Pao-Yang Chen, 2008), and protein domain information (Luo et al., 2011).
The STRING database follows a different approach to score interactions by combining in-
formation from experiments, databases, text-mining and transfer information (Szklarczyk
et al., 2011).

Lewis et al. (2012) claimed that the transfer consistency cannot easily be improved.
Furthermore, they showed that the evolutionary change of interactions is too high to allow
the direct transfer of interactions for phylogenetically distant species unless a strict definition
of homology is used. In contrast van Dam and Snel (2008) showed that protein complexes
are highly conserved even between H. sapiens and S. cerevisiae. All network transfer studies
rely on homologies which can be identified with different ortholog detection methods like
simple bidirectional BLAST best hit results, graph-based methods that cluster orthologs, or
tree-based methods. Benchmarks of orthologs detection methods have shown that there is no
best method for ortholog detection (Altenhoff and Dessimoz, 2009). It is obvious that with
conservative ortholog detection approaches only relatively few interactions can be transferred,
but that these interactions are more likely conserved, whereas with cluster based and tree
based methods groups of orthologs are produced which allow the transfer of more interactions.
Thus, the usage of ortholog identification approaches, the choice of experimental data (only
physical interaction derived from Yeast-Two-Hybrid studies, or more relaxed interaction
data which includes interactions from TAP or Co-ImmunoPrecipitation experiments, or even
protein complexes) and the approaches used to deal with the incompleteness of current
networks result in different estimated protein interaction conservation rates.

In this paper, new features and successfully used features in the literature are exploited
to train Random-Forests-Filters (RFF ) for the reliable transfer of interactions to even phylo-
genetically distant species. The RFF models are trained with interactions transferred from
various eukaryotic species to S. cerevisiae using all available interactions from an integrated
database and orthologs from cluster based approaches. We train the models on yeast for the
only reason that the S. cerevisiae network is assumed to be the most complete one, which
allows to distinguish correct and incorrect transfers in the learning phase. Another assump-
tion we make is that the learned RFF models can be used for other species as well. This is
reasonable as the models learn the important features (e.g. sequence similarity, orthology,
network properties, functional similarities) and their appropriate weightings, which will hold
in a species-independent way (there are no particular S. cerevisiae specific features or param-
eters). The transfer performance on S. cerevisiae is taken as an estimate for the expected
performance on other species, especially for phylogenetically closer ones. We applied the
trained RFF predictor to transfer interactions on a large scale in-between various eukaryotic
species. This increases the available reliable interactions for non-model organisms manyfold
without inflicting too many false positives. The transferred networks are publicly available
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Table 3.1. Overview of protein interaction networks extracted from the iRefIndex
(Turinsky et al., 2010) database for the ten eukaryotic model species with the largest
protein interaction networks. Besides the total number of protein interactions, the number
of physical, genetic and interactions with an unknown interaction type is given. Only the
interaction network of S. cerevisiae, H. sapiens, D. melanogaster and S. pombe have more
than 2 interaction per gene (S. cerevisiae peaks with 28.19).

Species Genes Interactions

Physical Genetic Other Total Avg. number of
interactions per
gene (total)

S. cerevisiae 6,328 55,767 104,926 17,674 178,367 28.19
H. sapiens 28,383 43,412 71 20,992 64,475 2.27
D. melanogaster 14,321 19,088 2,118 17,265 38,471 2.69
S. pombe 4,958 1,943 9,665 804 12,412 2.5
C. elegans 20,184 5,483 1,785 4,208 11,476 0.57
M. musculus 24,865 3,513 3 2,596 6,112 0.25
A. thaliana 26,496 5,048 67 937 6,052 0.23
P. falciparum 5,503 2,215 0 4 2,219 0.4
R. norvegicus 24,770 804 0 867 1,671 0.07
D. rerio 24,352 173 11 13 197 0.01

at our web interface. Compared to competing approaches to predict protein interactions we
integrate a wide range of features and, instead of using fixed thresholds, employ a systematic
and conservative RFF approach with an associated performance estimate for the (distant)
transfer to S. cerevisiae.

3.2 Materials and Methods

3.2.1 Data Sources

We use iRefIndex (Turinsky et al., 2010), an integrated interaction database, for our study.
iRefIndex integrates interaction data for multiple species in a common format from the 13
different interaction databases: BIND (Bader et al., 2001), BioGRID (Chatr-Aryamontri
et al., 2013), CORUM (Ruepp et al., 2010), DIP (Xenarios et al., 2000), HPRD (Keshava
Prasad et al., 2009), InnateDB (Lynn et al., 2008), IntAct (Kerrien et al., 2012), MatrixDB
(Chautard et al., 2011), MINT (Chatr-aryamontri et al., 2007), MPact (Güldener et al.,
2006), MPIDB (Goll et al., 2008), MPPI (Pagel et al., 2005) and OPHID (Brown and Ju-
risica, 2005). All these databases include experimental validated data extracted from differ-
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Table 3.2. List of data sources used for this study.

Database Version Download date Used for

UniProt N.A July, 2011 Features, mapping, external references
KEGG N.A July, 2011 Features
OMA 2011 July, 2011 Orthologs
InParanoid 7 February, 2011 Orthologs
HomologGene 65 July, 2011 Orthologs
iRefIndex 8 July, 2011 Protein interaction data
STRING 9 May, 2011 Transferred human protein interaction

network for comparison
InteroPorc N.A May, 2011 Transferred human protein interaction

network for comparison
eggNog 3.0 January, 2013 Orthologs
TreeFam 7 January, 2013 Orthologs
EnsemblCompara N.A January, 2013 Orthologs

ent sources, besides OPHID which also makes use of transferred interactions. Therefore, we
excluded interactions from OPHID for our study. Furthermore, iRefIndex includes binary
interactions (physical and genetic) and few protein complexes. We transfer binary inter-
actions from iRefIndex (physical, genetic and other interaction types including ambiguous
or interactions without type annotation) to target species using publicly available ortholog
mappings. Orthologs are obtained from the Orthologs Matrix Project (OMA) (Schneider
et al., 2007), InParanoid (Remm et al., 2001) and HomoloGene (Sayers et al., 2009). These
databases are used due to their evaluation results in Altenhoff et al. (2011) and the coverage
of ortholog mappings for various eukaryotic species. The interaction partners and orthologs
are mapped to UniProt (The UniProt Consortium, 2011) as a common reference to obtain
annotations including GO terms, synonyms and mappings to external databases (see Table
3.2 for an overview of the used data sources). We consider all eukaryotes species for which we
could transfer at least one interaction given the interaction and ortholog databases. Thus,
we consider 83 out of the approximate 166 (until January 2013) fully sequenced eukaryotes
for the subsequent analysis.

3.2.2 Interaction Transfer

Protein interaction networks are modeled as graphs PPI = (P, I) consisting of a set of pro-
teins P and interactions I ⊆ P ×P . Given an interaction network PPI i = (P i, I i), a target
protein set P j and an ortholog mapping O : P i → P j, a directly interolog based transferred
interaction network consists of
PPIj = (P j, Ij) with (pjx, p

j
y) ∈ Ij ⇐⇒ (pix, p

i
y) ∈ I i ∧ pjx = O(pix) ∧ pjy = O(piy). Trans-
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ferred interactions (pjk, p
j
c) can be scored and filtered to obtain a filtered interolog based

transferred interaction network. In our case, a trained Random Forest Filter (RFF ) model is
used for the scoring of interactions. Its performance is estimated via the interaction transfer
to S. cerevisiae.

3.2.3 Random-Forest-Filter

For the scoring of transferred interactions we use Random Forests (RF) from the WEKA
(Hall et al., 2009) machine learning framework. Random Forests predict the outcome class
(correct, incorrect) of an instance (transferred interaction) by using a voting procedure on
several learned decision trees with different feature sets. Random Forests have shown good
evaluation results on similar learning tasks (Caruana and Niculescu-Mizil, 2006) and are con-
sidered more robust against noise than other ensemble machine learning methods (Breiman,
2001). RF rely on two parameters, the number of trees to learn and the number of features
to consider. We determine these parameters via a grid search. In addition to the output
class label, the WEKA Random Forest implementation provides a score value between 0 (low
confidence) and 1 (high confidence), which we use as score value for transferred interactions.

3.2.4 Features

As features we use the protein annotations of the interacting partners in the source and the
target network and of the orthologs from which an interaction is transferred. The features
can be classified into four categories: 1.) Features modeling Gene Ontology similarities
(Gene Ontology), 2.) features derived from the network structure (Network), 3.) features
describing the similarity between orthologs (Orthologs) and 4.) general features (General).

Gene Ontology

GO similarity: We compute the semantic GO similarity for two proteins based on Resnik
(Resnik, 1999) information content measure

IC(goi) = − log

(
Freq(goi)

Freq(goroot)

)
, (3.1)

with Freq as the number of proteins annotated with a given term goi, or its descendant
terms in the GO tree. For two GO terms gk, gl, we define the semantic GO term similarity
as the IC for their common ancestor. And for two proteins pi, pj ∈ P we define the semantic
GO similarity as the maximum of all combination of GO annotations for the two proteins.
Formally defined as

GOSim(pi, pj) = max
gok∈GO(pi),gol∈GO(pj)

IC (commonAncestor(gok, gol)) . (3.2)

Given that measure, the semantic similarity is computed for the interaction partners in the
source and target network and the orthologs. Besides a global semantic GO similarity, one
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feature is modeled for each of the GO categories cellular component, biological process and
molecular function (indicated with C, B, and M behind the feature name in the following)
to take the different types individually into account.

Network

Network overlap: The overlap of the neighborhood proteins for a given pair of proteins
in the source and target network. For this purpose the Jaccard Index is computed for the
direct neighbors of the interacting proteins with the equation

J(pi, pj) =
n(pi) ∩ n(pj)

n(pi) ∪ n(pj)
, (3.3)

where n(pj) and n(pi) are the adjacent proteins in the protein interaction network.
Network GO similarity: The average semantic GO similarity between the pair-wise neigh-
bors of the interaction partners in the networks computed with the equation

AVGSim(pi, pj) = avg
pk∈n(pi),pl∈n(pk)

GOSim(pk, pl). (3.4)

General

Source interaction database: The source database from which an interaction is extracted
as provided as additional information in the used integrated protein interaction database.
Edge support: The number of PubMed abstracts given as evidence for the source interac-
tion.
Source interaction type: The source interaction type (physical, genetic or other) is used
as discrete feature value. For this purpose the molecular interaction type (Côté et al., 2006)
is used.
Total support: The number of times an interaction is transferred from all other networks
to the target network as suggested by Mika and Rost (2006) for confidence scoring.
Gene expression correlation coefficient: Given a gene expression time series for two
genes the Pearson correlation coefficient is computed for the putative interacting partners in
the target network with the equations

Cor(X, Y ) =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )√
n∑

i=1

(Xi − X̄)2
n∑

i=1

√
n∑

i=1

(Yi − Ȳ )2
, (3.5)

where X and Y represent the expression values for the respective genes.

Ortholog

Sequence similarity: The sequence identity of the orthologs.
Harmonic sequence similarity: The harmonic mean of the sequence identities of the
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orthologs.
Synonym similarity (Token score): From the orthologs the function of the proteins is
extracted from the textual description using UniProt by tokenizing, stemming and filtering
stop words and to general words resulting in a set of tokens which are descriptive for the
proteins. Based on these function terms we define the similarity for two proteins pi and pj
from the set of all protein P as

TSim(pi, pj) = − log

(
| {pl ∈ P |Tokens(pi) ∩ Tokens(pj)} ⊆ Tokens(pl)|

|P |

)
, (3.6)

where Tokens(pi) and Tokens(pj) are the function terms of the proteins pi and pj.
Domain/Family similarity: The InterPro and PFAM annotations from UniProt are used
to compute the domain/family similarity of the orthologs. For two proteins we define the
domain/family similarity as

DFSim(pi, pj) = − log

(
| {pl ∈ P |DFam(pi) ∩DFam(pj)} ⊆ DFam(pl)|

|P |

)
, (3.7)

where DFam(pi) and DFam(pj) are the domain and family annotations.
KEGG Pathway score: Boolean indicator whether the orthologs are involved in the same
pathways or in different pathways.
Ortholog source: The database from which the orthologs used for the transfer are ex-
tracted.
Ortholog score: Given two orthologs gi and gj we define the ortholog score as

OScore(gi, gj) = isi × isj × bsi × bsj, (3.8)

where is is the inparalog score and bs the bootstrap score provided by InParanoid for each
gene in an orthologous gene cluster.
Ortholog support: The number of times the same ortholog relation between two genes
can be found in the different ortholog databases.
Phylogenetic distance: The distance of the source and the target species in a phylogenetic
tree provided by Schneider et al. (2007).
Transitive ortholog: The idea behind this feature is that more conserved orthologs can be
traced from a source species to a target species along the phylogenetic tree. For this purpose
a phylogenetic tree covering all species with ortholog mappings is used. Given such a tree,
a path from a source to a target species is computed by:

1. searching the shortest path between the two species and

2. searching the closest leaf nodes for all inner nodes on the shortest path.

The result is a list of species which are "between" the target and the source species. An
ortholog is defined as transitively consistent if a direct ortholog between the source and the
target species can also be reached when going along the pairwise ortholog mappings on the
estimated path.
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In the case that a feature cannot be computed because of missing annotation data, the
feature is replaced with a missing value indicator. Features are derived from different sources.
Thus, in the rest of this article we indicate with (T), (S) and (O) after the feature name
whether a feature is modeled between the protein pair in the target network, the source
network, or between the orthologs, respectively.

3.2.5 Evaluation Measures

To assess the quality of the learned models we compute the

Precision (s) =
#Correctly transferred interactions with score ≥ s

#All transferred interactions with score ≥ s
, (3.9)

Relative Recall (s) =
#Correctly transferred interactions with score ≥ s

#All correctly transferable interactions
, (3.10)

and

Regular Recall (s) =
#Correctly transferred interactions with score ≥ s

#All experimentally validated interactions in the target species
(3.11)

for a given score value assigned by the learned model. A precision of 1.0 for a given score
threshold s is obtained when all transferred interactions with a score value ≥ s can be
found in the experimentally validated network. The relative recall is 1.0 when all correctly
transferable interactions using the available ortholog relations are also transferred after the
filtering i.e. all transferred interactions have a score value ≥ s. We mostly use the relative
recall instead of the regular recall in order to assess the recall with respect to a direct transfer.
As overall measure for different score thresholds the area under the precision (relative) recall
curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC)
are computed (Davis and Goadrich, 2006). Furthermore, the Information Gain (IG) i.e. the
reduction of entropy of the data set given information about a feature (Mitchell, 1997), is
computed to estimate the impact of the different features.

Formally, for a data set D and feature F the IG is defined as

IG(D,F ) = E(D)−
∑

v∈Values(F )

|DF=v|
|D|

E(DF=v), (3.12)

where DF=v is the set of instances in D with value v for feature F . E(D) is defined as

E(D) = −ppositive log(ppositive)− pnegative log(pnegative), (3.13)

where ppositive and pnegative is the proportion of D belonging to the class of correctly (consis-
tently) and incorrectly (inconsistently) transferred interactions, respectively.
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Figure 3.1. Protein interactions for S. cerevisiae, H. sapiens, D. melanogaster and S.
pombe from iRefIndex (Turinsky et al., 2010) are classified into the categories: derived
from low-throughput studies (detected in studies which report between 1 and 10
interactions), derived from mid-throughput studies (detected in studies which report
between 10 and 100 interactions), derived from mid-high throughput (detected in studies
which report between 100-1000 interactions) and derived from high-throughput studies
(detected in studies which report ≥ 1000 interactions). See discussion in the main text.

3.3 Results

3.3.1 Current Protein Interaction Networks

Table 3.1 gives an overview of the protein interaction networks derived from the integrated
interaction database iRefIndex having the largest number of interactions.

Over 78% of the S. cerevisiae and over 90% of the D. melanogaster interactions stem
from high-throughput studies where over 1,000 interactions are reported, whereas for H.
sapiens only 43% of the interactions stem from high-throughput studies (see Figure 3.1).
Furthermore, most interactions for S. cerevisiae are detected with genetic interference and
affinity chromatography technology methods like Co-Immunoprecipitation or Tandem Affin-
ity Purification, whereas for D. melanogaster most interactions are detected within one
high-throughput Yeast Two Hybrid screen (see Figure 3.1 and 3.2).
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The total number of interactions consists of physical interactions, genetic interactions
and other protein interactions (no interaction type or ambiguous annotations).

With about 180,000 interactions the by far largest eukaryotic interaction network is
available for S. cerevisiae. The majority of interactions are genetic interactions. When we
only consider physical interactions the S. cerevisiae interaction network is still the largest.
Especially in comparison with the second largest protein interaction network from H. sapiens
it becomes clear how sparse the networks for the other species still are in current databases.
The H. sapiens network has fewer physical interactions, but more than four times more genes
in the network as compared to S. cerevisiae.

Furthermore, only the S. cerevisiae network consists of only one connected component.
It has been estimated that the complete S. cerevisiae network has between 37,800 and 75,500
protein interactions (Hart et al., 2006). Actually, 55,767 physical interactions are contained
in iRefIndex for S. cerevisiae. Therefore, for the following, we assume that the S. cerevisiae
network is almost complete and, thus, we use the S. cerevisiae network to evaluate the
performance of a protein interaction transfer.

It can be expected that more complex organisms also have a more complex network.
The number of genes (and maybe also the number of proteins) is not dramatically different
and, thus, most likely the number of interactions is different. Therefore, the extremely small
coverage of even the best investigated model organisms is apparent. For all other non-model
organisms the number of available interactions are neglegible.

3.3.2 Interaction Transfer

Experimental Settings

We transfer interactions from all eukaryotic species with interaction data used in this study
to S. cerevisiae to train our models. The S. cerevisiae interaction network is assumed to be
almost complete and possible false negatives in the gold standard are ignored. True positives
are defined as transferred interactions, which can be found in the S. cerevisiae network, and
false positives as transferred interactions, which cannot be found in the network.

Three experimental settings are considered to evaluate our approach:

All interaction setting (AllI ): All interactions are transferred to S. cerevisiae and only
the occurrence of the transferred interactions in the gold standard is checked.

Physical interaction setting (PhyI ): Only physical interactions are transferred to S.
cerevisiae and in addition to the occurrence of the interactions also the agreement
of the interaction type is checked.

Genetic interaction setting (GenI ): The same as the previous setting, but with genetic
interactions.

In total 19,785 interactions from all eukaryotic species considered in this study can be
transferred to S. cerevisiae. For AllI 4,745 interactions can be found in the gold standard and
the other 15,040 interactions are used as negative set. The physical, PhyI, setting consists of
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Figure 3.2. Overview of known protein-protein interactions by experimental detection
method for S. cerevisiae, H. sapiens, D. melanogaster and S. pombe derived from iRefIndex
(Turinsky et al., 2010). See discussion in the main text.

1,019 correctly transferred interactions and 8,174 incorrectly transferred interactions. The
genetic, GenI, setting consists of 901 correctly and 5,300 incorrectly transferred interactions.
The remaining 4,391 transferred interactions have an unknown, other, or an ambiguous
interaction type.

The features are modeled for the protein pairs involved in the transfer. In total four
proteins are considered for each transfer (two proteins from the source network and two
proteins from the target network). The features are defined between the different protein
pairings in the target network, in the source network and between the orthologs. In total 20
different features types are modeled where for the features used for the orthologs one feature
for each of the two orthologs pairs involved in the transfer is created. E.g. for the global GO
similarity one feature is modeled between the interaction partners in the source network, one
feature is modeled between the interaction partners in the target network and two features
are modeled between the orthologs involved in the transfer. For the gene expression feature
the compiled gene expression experiment set from Bhardwaj and Lu (2005) which includes
normalized intensity values from different cellular states and biological conditions is used.

Six feature sets are constructed for the training of the Random-Forest-Filter (RFF ) in
order to compare the performance and to estimate the feature contribution. This includes
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Figure 3.3. Overview of conserved protein-protein interactions, for six eukaryotic species
having the largest protein interaction networks. For the all interaction setting (allI ) only
the occurrence of a transferred interaction in the S. cerevisiae network is required, whereas
for the genetic (GenI ) and physical (PhyI ) interaction setting also the exact type of the
transferred interaction is checked. In addition to the precisions, the number of total
transferred interactions and consistent interactions for each species and type is shown on
top of the corresponding bar. Most interactions can be transferred from S. pombe to S.
cerevisiae. There the transfer precision is highest for physical and genetic interactions. For
the allI setting the highest transfer precision is observed for M. musculus to S. cerevisiae.
This is due to the small number of interactions, which are mostly involved in conserved
biological processes like DNA replication and chromosome organization.

two main sets, one in which all features are considered and one setting where only features
are used which can be assumed to be available for most of the species. Hence, features
containing information about the network structure and the gene expression correlation are
excluded in the reduced feature set. The other four feature sets (Network, Gene Ontology,
General and Orthologs) consists only of the features from the respective category. In Table
3.3 the composition of the different feature sets and protein pairings is given.
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Table 3.3. The table lists the modeled features in the categories "Network", "GO",
"General" and "Ortholog". In addition, the involved proteins for the feature are listed
(proteins in the target network, proteins in the source network, orthologs). Also the
configuration of the full (target network needs to be available) and the reduced feature set
(used in real prediction filtering) is shown. For example the feature GO Global is modeled
employing the interaction partners in the source network (SP), in the target network (TP)
and between the orthologs (OP). Furthermore, the GO Global feature is included in the
GO (GF), the reduced (RF) and the full feature set (FF).

Feature Feature pairing Feature set

SP TP OP NF GF GEF OF RF FF

Network overlap X X X X
GO Network X X X X
GO Global X X X X X X
GO (B) similarity
(GO Biological process)

X X X X X X

GO (C) similarity
(GO Cellular component)

X X X X X X

GO (M) similarity
(GO Molecular function)

X X X X X X

Source interaction database X X X X
Edge support X X X X
Source interaction type X X X X
Total support X X X X
Gene expression correlation X X X
Sequence identity X X X X
Token similarity X X X X
Domain similarity X X X X
KEGG pathway score X X X X
Ortholog source X X X X
Ortholog score X X X X
Ortholog support X X X X
Transitive ortholog X X X X
Phylogenetic distance X X X X

SP=Source network pairing; TP= Target network pairing; OP=Ortholog pairing; NF=Network
feature set; GF=GO feature net; GEF=General feature set; OF=Ortholog feature set;
RF=Reduced feature set; FF=Full feature set.
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Direct protein interaction transfer

Using the previously described interaction database and ortholog mappings, interactions
are directly transferred to S. cerevisiae. In Figure 3.3 the precisions of the interaction
transfers from six interaction networks using the previously introduced experimental settings
are shown.

We use orthologs from the well established cluster based ortholog detection approaches
InParanoid, OMA and HomologGene. Orthologs from these databases result in higher trans-
fer consistencies than orthologs from tree based approaches like EnsemblCompara (see Figure
3.4).

The overall precision of an interaction transfer from the different species to S. cerevisiae
for AllI is 0.24, whereas for GenI and PhyI the transfer precision is only 0.11 and 0.15,
respectively. With 4,745, 1,019 and 901 correctly transferred interactions, 3%, 2% and 1%
of the S. cerevisiae network can be predicted for the respective experimental settings AllI,
PhyI and GenI. The highest transfer precision of physical and genetic interactions can be
achieved with a transfer from S. pombe (the phylogenetically closest species in our tree with
experimentally validated interaction data).

Given complete interaction data for all species it would be expected that the highest
precision would be achieved with a transfer from the phylogenetic closest species. But since
the interaction data is incomplete and interologs of S. cerevisiae might be used as prior
knowledge for the interaction discovery, some phylogenetically more distant species show
higher interaction transfer precisions than phylogenetically closer species. Most notable is
the performance of a transfer from M. musculus to S. cerevisiae with an unusually high
precision of 0.36 in the AllI setting. A GO overrepresentation analysis (DAVID, Huang
et al. (2009)) of the proteins involved in the transfer from M. musculus to S. cerevisiae
exhibits that some highly conserved biological processes are overrepresented (like DNA-
dependent DNA replication, pre-replicative complex assembly, DNA replication initiation
and chromosome organization), which might explain the high precision of the interaction
transfer. By looking at the transfer precisions for each biological process it can be seen that
for these overrepresented biological processes the transfer precision from M. musculus to
S. cerevisiae is almost the same as the transfer precision from H. sapiens to S. cerevisiae.
E.g. 102 transferred interactions from H. sapiens to S. cerevisiae are associated with the
biological process DNA-dependent DNA replication from which 64 are consistent, for the
pre-replicative complex assembly process 30 out of 43 and for the DNA replication initiation
process 31 out of 45 are consistent.

For phylogenetically distant species ortholog clusters consist of more than two genes
which results in 1:n or even n:m mappings. Thus, with a direct transfer a single source
interaction can be inferred between different genes in the target network. For H. sapiens
and S. cerevisiae are for example on average 1.9 H. sapiens genes and 1.18 S. cerevisiae
genes in one cluster, whereas for H. sapiens and M. musculus the cluster contain 1.05 and
1.01 genes, respectively.
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Figure 3.4. Transfer consistencies of a protein interaction transfer from M. musculus, H.
sapiens, S. pombe, C. elegans and D. melanogaster to S. cerevisiae using orthologs from
OMA, InParanoid, HomoloGene, EnsemblCompara, TreeFam and eggNog for the all
interaction setting (allI). See discussion in the main text.

Transfer filter

We train our Random-Forest-Filters (RFF ) to score directly transferred interactions and to
identify possible conservations.

In Figure 3.5 the precision-(relative) recall curves of the Random-Forest-Filters (RFF )
trained with the full and reduced feature sets and the three experimental settings AllI, PhyI
and GenI using a 10-fold cross validation are shown. A simple interaction filter using the
harmonic sequence similarity between the orthologs and a filter based on the InParanoid
ortholog bootstrap score are evaluated as baseline comparisons.

The RFF trained with the full feature set in the AllI setting achieves the highest AUPRC
score of 0.86 and an AUPRC score of 0.82 with the reduced feature set. When in addition
to the occurrence of an interaction also an interaction type agreement is required, the per-
formance drops significantly. Physical interactions can be classified with an AUPRC score
of 0.60 and of 0.58 with the RFF trained with the full and reduced feature set, respectively.
Genetic interactions can be classified with AUPRC score of 0.60 and 0.48.
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Figure 3.5. Precision - (relative)Recall curves for the RFF (Random-Forest-Filter)
trained with the reduced feature set, the full feature set and different experimental setting
(only physical interactions (PhyI ), only genetic interactions (GenI ) and all interactions
(AllI )) using 10-fold cross validation. Interactions are transferred from all eukaryotic
species with interaction data to S. cerevisiae and filtered with the respective approaches.
In addition, the precision and relative recall is given for a simple sequence similarity filter
and a filter based on the InParanoid ortholog bootstrap score. The RFF for AllI trained
with the full (red) and reduced (red dotted) feature set perform best. The reduced feature
set performs somewhat worse than the full feature set. For the more strict PhyI and GenI
settings in which also the type of an interaction is transferred, the performance drops in
comparison to AllI. By comparing the different feature sets it can be seen that for physical
interactions (green, green dotted) almost the same performance for the full and reduced
feature set can be reached, whereas for genetic interactions (blue, blue dotted) a clear
difference in the performance can be observed. But again, for these two settings a huge
improvement of RFF to the baseline filters based on sequence similarity and ortholog
scores can be observed.
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Using a maximum InParanoid ortholog bootstrap score of 1.00, a transfer precision of 0.33
for AllI can be reached resulting in an AUPRC of 0.30. For physical and genetic interactions
the precision of a direct transfer can barely be improved resulting in an AUPRC of 0.15 and
0.18, respectively.

A high threshold has to be used for the sequence similarity filter in order to increase
the transfer precision resulting in a low AUPRC score of 0.28 for AllI. Even lower are the
AUPRCs for PhyI and GenI. This can be explained with the low sequence similarities of
the orthologs used for the transfer, which ranges between 33% and 38% on average for the
different species. For the full feature set the RFF for AllI yields a precision of 0.85 and a
relative recall of 0.69 (regular recall of 0.02) with a typical score threshold of 0.5. With the
same score threshold for PhyI a precision of 0.72 and a relative recall of 0.33 (regular recall
of 0.01) can be reached, whereas for GenI a slightly lower precision of 0.68, but a higher
relative recall of 0.40 is observed (0.003 regular recall) .

In general, the predictors for AllI achieve a better performance than the predictors for
the more strict setting in which also the interaction type has been transferred and predicted.
This is plausible as for AllI the gold standard is larger and as with a direct transfer a
consistency of 25% can be reached already. For the different feature sets (full and reduced)
a small drop in the AllI and PhyI setting and a large drop for the GenI setting is observed.

In the following we show examples of transferred physical interactions which receive high
and low score values by RFF. On one hand, the transferred interaction between LST8 and
TOR2 from WAT1 and TOR2 (in S. pombe) and also the transferred interaction between
SMX3 and LSM5 from SmF and CG6610 (in D. melanogaster) get a comparable high score
of ≥ 0.90. For the first, but not for the second example also an interaction is known between
the orthologs in S. cerevisiae. But for the second example, both orthologs (SMX3 and LSM5)
carry the Sm domain and the interaction between orthologs of SmF and CG6610 have been
found in S. pombe and H. sapiens, which suggests that SMX3 and LSM5 indeed interact,
but that they are not included in the S. cerevisiae gold standard. On the other hand,
the transferred interaction between CRZ1 and HAT2 from Sp3 and RBBP4 (in H. sapiens,
identified within a low-throughput study (Zhang and Dufau, 2002)) and the transferred
interaction between ARP6 and RPS1A from Actr13E and RpS3A (in D. melanogaster which
was identified in a Yeast Two Hybrid screen (Uetz and Pankratz, 2004)) gets a score of ≤
0.05. Both transferred interactions are not in the S. cerevisiae gold standard, therefore, they
are filtered correctly. Due to the low-throughput experiment, which was used to discover the
interaction between Sp3 and RBBP4 it can be assumed that this interaction indeed exists
for H. sapiens, but not in S. cerevisiae. In contrast, the interaction between Actr13E and
RpS3A could also be false positive due to the high-throughput Yeast Two Hybrid screen
which was used to identify the interaction in D. melanogaster. In Figure 3.6 the transferred
interactions together with their assigned RFF scores and their feature values in comparison
to the feature distributions of correctly and incorrectly transferred interactions are shown.
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Figure 3.6. Four examples of transferred interactions which get high and low scores by RFFs are shown including their
individual feature values for the most important transfer features in comparison to the overall feature distribution of
conserved (consistent transfers) and not conserved (inconsistent transfers) interactions (see discussion in the main text).
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Feature impact

To estimate the contribution of each feature to the performance of RFF, the Information
Gain (IG) is computed for the different experimental settings (Figure 3.7 d). The IG for
the different features differs among the experimental settings, but the sorting of the features
according to their IG value is similar. The strongest feature is the network overlap in the
target network (Network overlap (T)). But also the GO features yield a high IG. The
combined GO features have higher IGs than the category-wise GO features for biological
processes, cellular components and molecular functions. This can be explained by the fact
that more GO terms are considered for the global semantic GO similarity, so less often
a missing value indicator is assigned. From the individual GO term types, the biological
processes category has the highest IG. Biological processes have also been identified by
De Bodt et al. (2009) as a strong feature to define thresholds for an interaction transfer
filter. From the Ortholog features the synonym similarity (token score) and the ortholog
score feature contributes most to the prediction.

In contrast, the gene expression correlation, which was used in other studies for the
prediction of protein interaction, has a rather low IG. For the two features with highest IG
(Network overlap and GO similarity in the target network) also the score distributions of
correctly and incorrectly transferred interactions for AllI are shown in Figure 3.7. Clearly,
the fraction of correctly to incorrectly transferred interactions increases with the score value
for these two features. For a feature like the harmonic sequence similarity, which has a low
IG, only a small difference in the characteristics of the distribution can be observed, which
explains the weak performance of filters based on sequence similarity.

In Table 3.4 the performance of the different individual feature sets (Network, Gene
Ontology, General, Ortholog, Reduced set and Full set) is summarized in addition to the
filters based on the sequence similarity and the InParanoid bootstrap score. For the GO
features the highest feature category-wise AUPRC score can be reached for AllI and PhyI.
For PhyI a similar AUPRC score can be achieved with the ortholog features. Using a
combination of all introduced features an up to 0.08 higher AUPRC score can be obtained
for the different settings. For GenI the highest category-wise AUPRC score can be reached
with the network features, which is also higher than the score for the reduced feature set.
This explains the performance drop for the reduced feature set for this GenI setting.

Generalizability

A general transfer approach should be able to achieve a similar performance for the interac-
tion transfer to other species. Since the interaction networks for other species are currently
too sparse (see Table 3.1) RFFs can not be learned and evaluated for individual species
except for S. cerevisiae. Therefore, we investigate the applicability of the RFF fitted for
the interaction transfer to S. cerevisiae for the transfer of interactions to other eukaryotic
species. It has to be expected:

1. that the RFF scores transferred interactions between phylogenetically closer species
higher than transferred interactions between phylogenetically distant species,
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Table 3.4. Performance of the interaction transfer to S. cerevisiae with: the RFF
(Random-Forest-Filter) trained with different feature sets using a 10-fold cross validation,
InParanoid ortholog filter and the sequence similarity filter for different experimental
settings. Interactions are transferred from all eukaryotic species with interaction data to S.
cerevisiae. For each experimental setting and feature set the area under precision recall
curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC)
are computed. From the individual feature sets the RFF trained with the GO and Network
feature set perform best for the AllI and GenI setting. Whereas for physical interactions
the performance for the Network features are lower than for the GO and Ortholog feature
set.

Method Experimental
setting

Feature
set

AUPRC AUROC

RFF All Full 0.86 0.94
RFF All Reduced 0.82 0.91
RFF All Network 0.79 0.90
RFF All GO 0.79 0.89
RFF All Ortholog 0.62 0.82
RFF All General 0.50 0.68
InParanoid All - 0.30 0.59
Sequence All - 0.28 0.55
RFF Physical Full 0.60 0.89
RFF Physical Reduced 0.58 0.88
RFF Physical GO 0.50 0.85
RFF Physical Network 0.42 0.84
RFF Physical Ortholog 0.48 0.82
RFF Physical General 0.19 0.62
InParanoid Physical - 0.15 0.61
Sequence Physical - 0.14 0.55
RFF Genetic Full 0.60 0.87
RFF Genetic Reduced 0.47 0.82
RFF Genetic Network 0.51 0.86
RFF Genetic GO 0.45 0.80
RFF Genetic Ortholog 0.35 0.75
RFF Genetic General 0.19 0.53
InParanoid Genetic - 0.18 0.60
Sequence Genetic - 0.15 0.51
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Figure 3.7. Histogram of the score values for correctly (red) and incorrectly (green)
transferred interactions (without interaction type) for the features: a.) Network overlap,
b.) Semantic GO similarity and c.) Harmonic sequence similarity. d.) Information Gain
of the individual features and experimental settings. For ortholog protein features the
average Information Gain of the two orthologous partners is shown. For the features a.)
Network overlap and especially for b.) Semantic GO similarity a different distribution for
correctly and incorrectly transferred interactions can be observed resulting in a large
Information Gain of these features. In contrast, for the harmonic sequence similarity
feature only a small difference in the distributions can be observed, which explains the
small Information Gain and the filter performance based only on sequence similarity.
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Figure 3.8. Score distributions for transferred interactions with RFF from S. cerevisiae
and H. sapiens to the two target species (a.) M. musculus and (b.) B. taurus. Transferred
interactions from S. cerevisiae get significantly lower score values than transferred
interactions from H. sapiens to both target species. With a low score threshold of 0.2
almost all interactions from H. sapiens are transferred to the two target species, whereas a
huge fraction of the transferred S. cerevisiae interactions is filtered out.

2. that according to their importance, the ranking of features is similar for the interaction
transfer to different species even though the networks are to incomplete to train a model
and

3. that a comparable performance with competing transfer approaches should be achieved
when the RFF is applied for the transfer of interactions to other species.

In the following we investigate these three points.

Transfer scores: We use the RFF with the reduced feature set trained with transferred
interactions to S. cerevisiae to transfer protein interactions from the two largest interaction
networks H. sapiens and S. cerevisiae to both M. musculus and B. taurus and analysed the
score distributions. For physical and genetic interactions in the source network, the predictor
trained with the respective interaction type (PhyI and GenI ) is used and for interactions
with a different type the predictor trained with all data is applied (AllI ). As expected,
the scores for transferred interactions from the phylogenetically closer species, in this case
H. sapiens, are higher than the scores from the more distant species as shown in Figure
3.8. The score distribution of transferred interactions from S. cerevisiae to M. musculus
and B. taurus are very similar with a median score of 0.07 for both distributions. This is
comparable to the transfer of interactions to S. cerevisiae, where a median score between 0.03
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Figure 3.9. The average transfer scores for an interaction transfer from M. muscles, H.
sapiens, S. pombe, A. thaliana, C. elegans and D. melanogaster to S. cerevisiae using RFFs
in a cross-validation setting (see discussion in the main text).

and 0.09 can be observed (see Figure 3.9). In comparison, for the transfer of interactions
between phylogenetically closer species, a median score of 0.27 and 0.25 can be observed
for the transfer of interactions from H. sapiens to M. musculus and B. taurus, respectively.
Thus, as expected with higher score thresholds more interactions can be transferred from H.
sapiens to M. musculus as compared to H. sapiens to B. taurus. On the other hand, from S.
cerevisiae almost the same number of interactions is transferred to the two species B. taurus
and M. musculus with different score thresholds.

Cross-species feature importances ranking: We transfer all available interactions to
S. cerevisiae, H. sapiens, D. melanogaster, S. pombe and C. elegans and compute the Infor-
mation Gain (IG) of each modeled feature given the observed consistently and inconsistently
transferred interactions for the respective species. We observe that the similarity of the
feature ranking decreases with the IG i.e. that those features which are important for the
classifier are consistently ranked high and the ranking of those feature which are not that
beneficial to our classifier differ more. For example the Network overlap feature is ranked
first for all considered species expect for C. elegans. Also the feature which models the GO
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Figure 3.10. Comparison of interaction transfer sets from various methods for H. sapiens
with known H. sapiens interactions from iRefIndex. We compare interaction sets from
STRING (Szklarczyk et al., 2011), InteroPORC (Michaut et al., 2008), InterologFinder
(Wiles et al., 2010), BIPS:BIANA (Garcia-Garcia et al., 2012) and our
Random-Forest-Filter (RFF ). From the STRING database only interactions with
interaction transfer information from other species and a combined score over 0.7 are
included (STRING(1)). The combined score uses information from all information sources
including knowledge on experimental interactions for the respective species (direct
evidence). Therefore, an additional interaction set is created where the combined STRING
score is recomputed excluding the scores from the direct evidence of databases, experiments
and text-mining (STRING(2)). In general, the intersections between the different sets and
the known interactions are small. a.) With the RFF and with STRING(1) 10% of the
predicted interactions can be found in the experimental data. The modified STRING(2)
interaction set is 43% smaller and only 4% of the predicted interactions are consistent
with the experimental data showing a clear performance advantage of the RFF for species
with no experimentally determined interactions. b.) We compare the interaction sets of
RFF, STRING(1), a combined set of unique interactions from InteroPORC,
InterologFinder and BIPS:BIANA and a set of known H. sapiens interactions. With the
RFF 42% of predicted interactions can also be found in one of the other sets.
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Figure 3.11. The features employed for the protein interaction transfer are ranked
according their information gain for different experimental settings: transfer of interactions
to S. cerevisiae, H. sapiens, D. melanogaster, S. pombe and C. elegans. The information
gain ranking (importance ranking) is quite similar especially for the most important
features, whereas the ranking of the less important feature varies more.

Similarity between the target interactions is ranked second by all considered species expect
for C. elegans. In Figure 3.11 we show the ranking of the features according to their IG for
the different species. As reference we use the ten features with highest IG for the interaction
transfer to S. cerevisiae.

Comparison with other interaction transfer methods: Most protein interaction
transfer methods predict interologs for H. sapiens and, in addition, quite many experi-
mentally validated interactions are available for human. Therefore, this network is chosen
to evaluate the intersections of predicted protein interactions from different data sets and a
set of experimentally discovered physical protein interactions.

Transferred interactions from InteroPORC (Michaut et al., 2008), the STRING database
(Szklarczyk et al., 2011), InterologFinder (Wiles et al., 2010), BIPS:BIANA (Garcia-Garcia
et al., 2012) and interactions predicted with RFF are used for the comparison. In order to
compare the sets, the protein identifiers are mapped to UniProt/Swissprot identifiers. The
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following prediction sets are constructed using the publicly available transferred networks
from the considered approaches for H. sapiens :

STRING(1) high confidence interactions with at least one evidence of an interaction trans-
fer from another species (interactions with a combined score below 0.7 are excluded);

STRING(2) The combined score of STRING incorporates evidence from many sources
including experimental knowledge for the respective species (direct evidence). Thus,
transferred interactions with also direct evidence are scored higher, which biases the
STRING set for this comparison. Therefore, an additional STRING interaction set
is created where the combined score is recomputed without the scores for the direct
evidence from databases, experiments and text-mining using the equation for the com-
bined score (Szklarczyk et al., 2011). Again for this set a combined score threshold of
0.7 is used to filter interactions.

InteroPORC all transferred interactions;

InterologFinder 15,795 transferred interactions with highest score (the score threshold is
set so that the same number of interaction as in the STRING(2) set are predicted);

BIPS:BIANA all transferred interactions in the online available precomputed prediction
set with domain interactions or shared GO terms;

RFF The RFF for physical source interactions (PhyI ) trained with the reduced feature set
and with transferred interactions to S. cerevisiae is used. All transferred interactions
with a score ≥ 0.18 for the transfer to H. sapiens from all species considered in the
study are used. The score value is experimentally chosen to yield roughly the same
number of transferred interactions as STRING(2).

In the entire InteroPORC prediction set 17,111 physical interactions and in the selected
BIPS:BIANA set 7,073 interactions are included. With 28,155 links between proteins the
interaction set from the STRING(1) is the largest, the STRING(2) set is only slightly larger
(15,795 interactions) than the set from RFF which includes 14,634 predicted physical interac-
tions. 35,628 experimentally validated physical interactions are taken from iRefIndex (7,784
interactions are excluded because the proteins are only mappable to UniProt/TrEMBL).

In Figure 3.10 the consistency with experimentally validated interactions (a.) and the
intersections between different H. sapiens protein interaction sets are shown (b.).

In general, the intersections between the sets are small. The highest consistency of 10%
between the predicted interaction sets and the experimental set can be reached with the
RFF and with the STRING(1) interaction set.

From the STRING(2) and BIPS:BIANA interaction set 4% and from the InteroPORC
and InterologFinder around 3% of the predicted interactions are consistent with the exper-
imental data. In total 42% of predicted interactions with the RFF can be found in at least
one other set whereas for the STRING(1) set only 26%, for the BIPS:BIANA set 18%,
for the InteroPORC set 17% and for the InterologFinder set 10% can be found in another
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interaction set. Besides BIPS:BIANA all methods transfer interactions from all available
interactions in public available databases. But BIPS:BIANA explicitly excludes interactions
from Tandem Affinity Purification experiments which explains the rather small interaction
set. In comparison to STRING(2), BIPS:BIANA, InteroPORC and InterologFinder a clear
performance gain of our RFF approach can be observed. Furthermore, RFF cannot be
outperformed by STRING(1) even with the integration of experimental knowledge (which
is not available for most species) via the combined score. Thus, for species without exper-
imental knowledge but also for model organisms with experimental protein interactions a
performance advantage of our approach in comparison to STRING can be expected.

3.3.3 Enriched Protein Interaction Networks

As shown above via the comparison with other state-of-the-art methods our RFF approach
has a decent performance for the transfer of interactions to species without experimental
interaction data. Therefore, we use our approach to obtain as comprehensive as possible
interaction networks for various eukaryotic species. For this we use all available experimental
interaction data for all 83 eukaryotic species for the transfer to all other eukaryotic species
whenever ortholog mappings of appropriate quality are available. We employ three RFFs
trained on S. cerevisiae: RFF, PhyI for physical source interactions, RFF, GenI for genetic
source interactions and RFF, AllI for interactions for the remaining interactions including
interactions without annotated interaction type. The same score threshold of 0.18 is used
for all models.

With a direct interaction transfer the interactome of 83 eukaryotic species can be extended
from currently 321,808 interactions to 5,751,775 interactions. With the RFF 1,248,609 pair-
wise interactions can be transferred (i.e. more than 78,% of transferred interactions are
filtered out as possible false positive). An overview of the resulting interactomes is shown
in Figure 3.12 using the Interactive Tree Of Life (Letunic and Bork, 2011) (only species are
shown for which at least 50% of the genes have associated GO annotations). For higher
vertebrates of interest such as the farm animals B. taurus, M. musculus and G. gallus each
interaction network can be enriched with over 40,000 interactions. After that, the resulting
interactomes have a decent coverage of more than 2 interactions per gene on average. Still,
with our method for some species only few interactions can be transferred. Examples are
plants like O. sativa or V. vinifera with an average of 0.35 interactions per gene. The reason
for the low coverage in these cases is the small number of available orthologs in the ortholog
databases.

It is clear that for the large scale interaction transfer with our RFFmethod the limitations
are: (i) the availability of ortholog relations, (ii) the mappings of the orthologs to UniProt
entries, (iii) and the annotations of the UniProt entries. This implies that for some species
only few interactions can be transferred. Of course, RFF will profit from the expected
improvements of protein annotations, ortholog mappings and further experimental protein
interactions.

The transferred interaction networks for the 83 species are available on our web service
and can be inspected and downloaded. The user can specify score thresholds corresponding
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Figure 3.12. The interactomes of 83 eukaryotic species can be increased from currently
321,808 interactions to 1,076,996 pair-wise interactions using the RFFs with reduced
feature set with a score threshold of 0.18. In the figure the enriched protein interactomes
are shown for all species where at least GO annotations for half of the genes are available.
Interactions are transferred from all eukaryotic species to all other species with available
ortholog mappings. The color of the species nodes indicates the average number of
interactions per gene and the associated bar chart indicates the fraction of physical
interactions (green), genetic interactions (blue) and other interaction types (red) in the
enriched interaction networks for the respective species. For species with rich annotation
information including M. musculus and B. taurus over 40,000 interactions can be
transferred resulting in an average number of interactions per gene larger than 2. For
species with sparse annotation information and few ortholog references only a small
number of interactions can be transferred. For example for the plants O. sativa and V.
vinifera only 0.35 interactions per gene on average can be obtained.
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Figure 3.13. Screenshot of the web interface for the transferred and scored protein
interactions. Transferred and experimentally validated interactions can be downloaded for
83 eukaryotic species for user specified score thresholds. For species of interest the transfer
profiles can be inspected in detail including the number of interactions for the different
interaction types, the number of uniquely transferred interactions, and the expected
performance of the transfer.

to the expected transfer precision of our models. In Figure 3.13 the web interface including
the ’transfer statistics view’ for M. musculus is outlined as an example.

3.4 Discussion and Conclusion

Years after high-throughput screening techniques for the identification of protein interactions
were introduced most interaction data still is available for only a few model organisms, in
particular for S. cerevisiae. Transferring protein interactions works best between phyloge-
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netically close species, but already between the two yeast species S. pombe and S. cerevisiae
only a consistency of 36% for transferred physical interactions can be observed. The transfer
consistency between more distant species is of course much lower. The transfer consistency
is also lower for genetic interactions between the two yeasts, which might be due to the
incompleteness of the S. cerevisiae genetic interaction network.

We observed that for only 3% of the S. cerevisiae interactions evidence of conservation
between orthologs in different species could be found. In order to improve the transfer
quality and to be able to also consider interactions from phylogenetically distant species,
e.g. from S. cerevisiae to M. musculus, we introduced a new method using Random Forests
(Random-Forest-Filter RFF ) to score and filter transferred interactions.

We trained the models with transferred interaction data from eukaryotic organisms to
S. cerevisiae. We did the training on yeast, as the S. cerevisiae network is currently the
largest eukaryotic interaction network and for most of the proteins in the network curated
functional annotations are available. We evaluated the models with different feature sets and
experimental settings and compared the models with commonly applied filter approaches
e.g. using the sequence similarity and the InParanoid bootstrap score. We showed that
for the task of transferring interactions to S. cerevisiae our approach performs better than
commonly applied filter approaches. Based on these results we assume that the performance
of the transfer to S. cerevisiae is a lower bound for the performance of the method for the
transfer between phylogenetically closer species.

But still, our observed results are limited with respect to different aspects:

1. Possible false negatives in the S. cerevisiae network result in lower transfer consisten-
cies, whereas false positives in the S. cerevisiae network may result in an overestimation
of the consistency.

2. Our method makes use of interaction data from various sources like Yeast two Hybrid,
or Tandem Affinity Purification and thus includes measured-binary and measured-
predicted binary interactions. We only address the interaction transfer on a general
level and currently only consider binary-interactions. Our method will benefit from
further discrimination of protein interactions e.g. discrimination between transient
or permanent protein interactions, or the pre-identification of conserved protein com-
plexes. And thus, stronger claims on the conservation rate and also a more complete
interaction transfer will be possible.

3. Low-throughput experiments are commonly hypothesis-driven (Sambourg and Thierry-
Mieg, 2010) and involve proteins of particular interest to the researcher performing the
experiments. These low-throughput experiments can also be based on the observation
that a conservation in a particular species exists, which could lead to an overestimation
of the consistency and to overfitting.

4. The ortholog and protein annotations quality have a direct influence on our models.
For example KEGG pathway information, or gene ontology and synonym annotations
are themselves often inferred using homology information ( directly or indirectly). For
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example the KEGG databases transfers pathway information from well studied species
based on manually defined ortholog groups. It is obvious that with solely transferred
annotations our approach can not improve the prediction performance.

5. We fitted our model for the transfer to S. cerevisiae only. Due to these reasons, we can
not give an accurate estimation on the performance for the protein interaction transfer
to species except for S. cerevisiae.

But we could show that our approach can be applied for the transfer of interactions to
species beyond S. cerevisiae as well. On one hand, we tested the generalizability of RFF
with transferred interactions to H. sapiens, M. musculus and B. taurus. We showed that (as
expected) transferred interactions from phylogenetically closer species get higher scores than
transferred interactions from phylogenetic more distant species. Furthermore, we showed
that those features which are most beneficial for the classification of interaction for the
transfer to S. cerevisiae are also most beneficial for the classification of interactions for other
species. On the other hand, we compared different protein interaction approaches. We
showed for H. sapiens that with our approach the highest consistency of transferred interac-
tions can be observed and that 42% of transferred interactions can be explained with high
confidence relations extracted from STRING, InteroPORC, InterologFinder, BIPS:BIANA
or the available experimental interactions. Furthermore, in an experimental setting where
we recomputed the STRING combined edge score for H. sapiens to mimic a species without
experimental knowledge, we showed that RFF predicts almost the same number of interac-
tion as STRING, but with our approach more than twice as many interactions are consistent
with the available experimental protein interaction network.
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Chapter 4

Regulatory Network Transfer and
Conservation

Abstract: Transcription factors play a fundamental role in cellular regulation by binding
to promoter regions of target genes in order to control their gene expression. Transcription
factors - target gene networks are widely used as representations of regulatory mechanisms,
e.g. for modeling the cellular response to input signals and perturbations.

As the experimental identification of regulatory interactions is time consuming and expen-
sive, one tries to use knowledge from related species when studying an organism of interest.
Here, we present ConReg, an interactive web application to store regulatory relations for
various species and to investigate their level of conservation in related species. Currently,
ConReg contains data for eight model organisms. The regulatory relations stored in publicly
available databases cover only a small fraction both of the actual interactions and also of
the regulatory relations described in the scientific literature. Therefore, we included regula-
tory relations extracted from PubMed and PubMedCentral using sophisticated text-mining
approaches and from binding site predictions.

We applied ConReg for the investigation of conserved regulatory motifs inD. melanogaster.
From the 471 regulatory relations in REDfly our system was able to identify 66 confirmed
conserved regulations in at least one vertebrate model organism (H. sapiens, M. musculus,
R. norvegicus, D. rerio). The conserved network contains among others the well studied
motifs for eye-development and the pan-bilaterian kernel for heart specification.

ConReg is publicly available and can be used to analyze and visualize regulatory net-
works and their conservation among eight model organisms. It also provides direct links to
annotations including literature references to possible conserved regulatory relations.

Publication: ConReg is published in the OpenAccess Series in Informatics (OASIcs)
(Pesch et al., 2012) and has been presented at the German Conference on Bioinformat-
ics 2012 in Jena. Here, I adapted the layout, restructured the sections and included Table
4.2 and Figure 4.6.
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My contribution: I implemented the software systems, defined the networks, performed
the conservation analysis and drafted the manuscripts.

Contribution of co-authors: Ralf Zimmer supervised the work and helped drafting the
published manuscripts. Matthias Böck provided the transcription factor binding site predic-
tions used for the ConReg system and helped drafting the manuscript.
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4.1 Introduction

The physical regulatory relationships of an organism can be described by gene regulatory
networks (GRNs). Transcription factors (TFs) and their respective targets (TGs) define the
majority of these regulations. GRNs can describe systems on the scale of a few genes, a
particular pathway or even on the whole set of available genes for an organism. The in-
ference of these GRNs is generally done from experimental data sets, like gene expression
data and additional prior information from available databases (Hecker et al., 2009). Even
though more and more high-throughput methods for the identification of TF-TG relations
have been recently developed, the data of experimentally validated relations is still sparse
for higher multi-cellular organisms (Rottger et al., 2012). Therefore, transferring knowl-
edge using orthologs from related species is typically done when studying an organism of
interest. Several approaches have been already proposed which are capable of transferring
physical protein-protein interactions even between phylogenetically distant species, like from
S. cerevisiae to A. thaliana or C. elegans (Yu et al., 2004). The conservation of a regulatory
relation requires, that at least the involved TF and the TG have to be conserved and that
the TF binds to the promoter region of the TG in two or more organisms. Depending on
the number of organisms in which the regulatory relation is conserved and the evolutionary
distance, relations between different organisms can be transferred with a certain confidence
(Baumbach, 2010; Sharma et al., 2011; Taher et al., 2011).

Different methods have already been proposed and used for the transfer of regulatory
networks from one organism to another. A well-known example is KEGG, which trans-
fers confirmed regulatory relations to (non-model) organisms based on ortholog definitions
(Kanehisa et al., 2012). For bacteria more advanced approaches have been successfully ap-
plied, which additionally incorporate conserved information of the binding site (Baumbach,
2010) and subfamily classifications (Sharma et al., 2011). Similar approaches exist for eu-
karyotes, which also make use of conserved transcription factor binding sites (Taher et al.,
2011). Taher et al. (2011) claimed that 88% of the orthologs between H. sapiens and D.
rerio retain their regulatory mechanisms. Nevertheless, it remains to be controversial to
which extend regulatory relations can be directly transferred between organisms (Baum-
bach, 2010). There are some well-known regulatory motifs, which appear to be conserved
among a group of quite distant species, supporting the transfer of conserved regulatory re-
lations. A famous example is the conservation of regulatory relations for the development
of the eye in D. melanogaster and vertebrates. It was shown that in M. musculus and other
vertebrates Pax-6, the ortholog of the eyeless (ey) gene —one of the central TFs controlling
the eye development in D. melanogaster — shares an extensive sequence identity and is even
capable of inducing ectopic eyes in D. melanogaster (Wawersik and Maas, 2000). Also other
motifs, like the pan-bilaterian kernel for heart specification (Davidson, 2006) or regulation
of apoptosis regulation in D. melanogaster and vertebrates (Zhai et al., 2012) appear to be
conserved. Studies revealing the similarity and the conservation of regulatory sub-networks
have been conducted for different species as well, like MAP kinase expression in C. elegans
and H. sapiens (Lee et al., 2007) or Toll-like receptor 4 regulated genes (Schroder et al.,
2012).
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Arabidopsis thaliana
Saccharomyces cerevisiae
Caenorhabditis elegans

Mus musculus
Rattus norvegicus

Homo sapiens
Danio rerio
Drosophila melanogaster

Figure 4.1. The eight species considered in our study and the associated taxonomic tree
as extracted from NCBI. Currently, ConReg contains six animal model organisms (H.
sapiens, M. musculus, R. norvegicus, D. rerio, D. melanogaster, C. elegans) as well as S.
cerevisiae and the model plant A. thaliana.

In the following we present ConReg, an interactive web application to investigate regula-
tory relations as well as evidence for their conservation in other eukaryotic model organisms.
For that purpose, we collected regulatory data for eight model organisms (H. sapiens, M.
musculus, R. norvegicus, D. rerio, D. melanogaster, C. elegans, A. thaliana and S. cere-
visiae). The data was obtained from general and species-specific regulatory databases, from
text-mining approaches applied to PubMed abstracts and PubMedCentral full text publica-
tions and from transcription factor binding site predictions (TFBS).

4.2 Materials and Methods
Data Sources

We collected regulatory relations for H. sapiens, M. musculus, R. norvegicus, D. rerio, D.
melanogaster, C. elegans, A. thaliana and S. cerevisiae (see Figure 4.1 for the taxonomic
tree of these species). Regulatory relations were extracted from the multi-species curated
databases TRANSFAC (Version 9.3) (Matys et al., 2006) and ORegAnno (Griffith et al.,
2008). Species-specific relations were extracted from YEASTRACT (Teixeira et al., 2006),
REDfly (Gallo et al., 2011) and AtRegNet (Palaniswamy et al., 2006) and from curated
pathways from Biocarta and NCI-Pathway (Schaefer et al., 2009). Transcription factors
were collected from these regulatory databases and the DBD database (Kummerfeld and
Teichmann, 2006). For the transfer of relations, we used orthologs from InParanoid (Remm
et al., 2001), EnsemblCompara (Vilella et al., 2009) and OMA (Schneider et al., 2007).
These databases were used due to their evaluation results in (Altenhoff et al., 2011; Hulsen
et al., 2006) and the coverage of ortholog mappings for all considered species. All genes were
mapped to ENSEMBL to obtain unique genomic locations and the associated annotations.
Relations involving genes which could not be mapped were not considered.

4.2.1 Regulatory Relation Extraction from the Scientific Literature

Abstracts from PubMed (20,766,340 abstracts) and the corresponding full text publications
from the PubMedCentral open access subset (389,322 documents) were used to search for
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Figure 4.2. Receiver operating characteristic (ROC) curve for the final shallow linguistics
(SL) SVM model which was used for the identification of regulatory relations. The
evaluation set consists of 100 examples including 33 positive regulatory relations and 67
negative regulatory relations. On this control set the model could reach an area under the
receiver operating characteristic (ROC) of 0.85 and an area under the precision-recall curve
of 0.72. Furthermore, with a typical used probability threshold of 0.5 for the SVM, a
precision of 0.56 and a recall of 0.75 could be reached.

regulatory relations in textual descriptions. In order to find relations in unstructured de-
scriptions two tasks have to be accomplished: the named entity recognition (NER) of gene
names and the correct identification of relations between genes. For example, consider the
following sentence: “There is evidence that the expression of Six3 is regulated by Pax6.”,
(Manuel et al., 2008). To infer a regulatory relation, the gene names Six3 and Pax6 need to
be found and the regulatory relation between Pax6 → Six3 has to be identified. We used
syngrep (Csaba, 2008), a dictionary based NER tool, for the gene name recognition and the
mapping of gene names to identifiers. Dictionaries were compiled by combining gene names,
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aliases and synonyms from UniProt, ENSEMBL, HGNC, MGI, RGD, Tair and FlyBase.
Regulatory relations between genes were initially identified with a simple Tri-occurrence ap-
proach. For this approach, a relation was assumed between all pairs of genes which were
found in a sentence, if a keyword indicating a regulatory relation was found and at least
one gene is annotated as a TF. For this task, we defined a list of keywords, which are sup-
posed to indicate regulatory interactions, like regulates, represses, or down regulates. Such
a Tri-occurrence approach provides a good recall, but produces also many false positives.
Therefore, we also used the following more sophisticated relation extraction approaches to
filter the discovered relations found with the Tri-occurrence approach:

RelEx (Fundel et al., 2007): RelEx is a rule based relation extraction tool using depen-
dency parse trees to find relations.

SL (Giuliano et al., 2006): SL is a shallow linguistics SVM kernel for the identification
of relations. Since no model was available for the identification of regulatory relations
with this kernel, we used the simple margin active learning (Tong et al., 2001) approach
to train a SVM model with probability estimations. A set consisting of 175 positive
and negative relations was used to learn an initial model. This model was refined by
applying the learned predictor on 10,000 randomly selected relations found by the Tri-
occurrence approach and used the 100 instances which were closest to the separating
margin of the SVM for the further training. The model was iteratively refined with
this approach until no further performance improvement on a control set consisting of
100 examples (including 33 positive regulatory relations) could be observed. A final
area under the receiver operating characteristic (ROC) of 0.85 and an area under the
precision-recall curve of 0.72 could be reached on the control set. Furthermore, with a
typical used probability threshold of 0.5 for the SVM, a precision of 0.56 and a recall
of 0.75 could be reached (see Figure 4.2 for the ROC curve of the final predictor).

We decided to use RelEx and SL due to their good performance on the task of identifying
undirected protein-protein interactions on different corpora (Tikk et al., 2010). The Tri-
occurrence and the SL kernel approach predict only undirected relations. We used our list of
TFs to set the direction from the transcription factor to the non-factor. In the case that both
genes are non-factors or both are factors the relations were omitted by default in our system.
Gene names between closely related species can highly overlap. Therefore, we identified the
species context in each abstract using a pre-defined set of possible names for the different
species.

4.2.2 Transcription Factor Binding Site Predictions

The promoter sequence for each gene was extracted using RSAT (Thomas-Chollier et al.,
2011). The same promoter size of 1 kilo base pairs upstream of the transcription start site
was chosen for all species. Binding motifs for the different TFs were taken from TRANSFAC
(Matys et al., 2006) and JASPAR (Mathelier et al., 2014). The matching of these motifs to
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the promoter sequences was predicted with the R package cureos (Westermann et al., 2008).
We used an empirically chosen threshold of 16 on the TFBS scores to filter out insignificant
binding sites.

4.2.3 ConReg System Design

ConReg was developed as object oriented Java application using the open-source Ajax Web
application framework ZK. The underlying data was unified in a structured MySQL database.

4.3 Discovery of Conserved Regulatory Relations with
ConReg

With our system conserved regulatory relations for a source species can be discovered in a
target species if these relations can be found between the respective orthologs in both species
(by default we do not require conservation of the transcription factor binding site in the two
species). ConReg searches regulatory relations of a source species which were extracted from
regulatory databases, in the specified target species. Several types of evidence for regulatory
relations of the target species can be considered based on the user’s selections. Currently,
regulatory information from publicly available databases like TRANSFAC (Matys et al.,
2006) or REDfly (Gallo et al., 2011), relations found with text-mining approaches (RelEx
(Fundel et al., 2007), SL (Giuliano et al., 2006), Tri-occurrence) in PubMed and PubMed-
Central and TFBS predictions can be selected (see Materials and Methods for details). The
Conservation Browser, where the entire predicted conserved network is shown and the Motif
Finder with which the user can search for conservations in a defined subset of genes are
the two main features of ConReg. For both features, the user can select the source species,
regulatory data sources for the target species and further constraints for the text-mining
approaches. Our system shows the conserved regulatory network as well as details for each
found conserved relation. This includes information about the orthologs, where our text-
mining approach found regulatory relations in the literature, the TFBS predictions and the
protein-protein interaction score from the STRING database (version 9) (Szklarczyk et al.,
2011). For further analysis the networks can be exported as tab separated file and used
in advanced network analysis tools. An example can be seen in Figure 4.3, which shows
a screenshot of the Conservation Browser with conserved relations for D. melanogaster as
source species. The detail view window in the front shows information about the regula-
tory relations in the target species including an example of a regulatory relation which was
discovered by RelEx between Pax6 and Six3 in H. sapiens.

4.3.1 Regulatory Data

For the source and target species, data from different data sources is available in our system.
Table 4.1 gives an overview of the collected data in ConReg. For S. cerevisiae and A.
thaliana, processed data from genome-wide chromatin immunoprecipitation experiments for
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Figure 4.3. Screenshot of ConReg for the interactive discovery of conserved regulatory
relations for a source species in user selected target species. Conservation of regulatory
relations for a species can be interactively discovered using ConReg. The system allows
searching for conservation in all provided species with different prediction methods for the
target species, whereas for the source species only reliable relations from databases are
considered. For an identified conservation of a regulatory relation details such as
text-mining results and binding site predictions can be visualized.

some TFs was additionally available. This explains why more regulatory relations were found
for these two species. For the other species only very few relations could be extracted which
emphasizes the need of text-mining approaches to get a more complete view on the currently
discovered regulatory networks. For instance, for D. rerio no relations were found in the
databases, but 16,219 putative relations were found using text-mining. Nevertheless, we
assume that data extracted from databases is reliable and use this data as source data for
the discovery of conservations, whereas also the predicted relations are considered for the
conservation search in the target species.

For our prediction methods, most relations were found with the Tri-occurrence text-
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Table 4.1. Overview of the model organisms from our database with the number of genes,
number of predicted and known transcription factors and the number of factors with
position weight matrices (PWMs). In addition, the number of regulatory relations collected
from databases and relations which were extracted from the scientific literature by using
different text-mining approaches (RelEx (Fundel et al., 2007), SL (Giuliano et al., 2006)
and Tri-occurrence) and from transcription factor binding site predictions (TFBS) are
shown. Most regulatory relations could be found for S. cerevisiae and A. thaliana which
originate mostly from genome-wide chromatin immunoprecipitation experiments. The
numbers of found text-mining relations and of predicted binding sites is quite different for
the model organisms.

Species Genes TF PWM T D R SL TO TFBS

H. sapiens 21,673 1,416 300 6.5 3,230 20,391 29,422 103,511 220,245
M. musculus 23,497 1,431 276 6.1 932 10,682 15,616 51,729 130,456
R. norvegicus 22,503 1,181 20 5.2 321 5.950 8,905 33,857 3,050
D. rerio 21,322 1,081 0 5.9 0 2,930 4,322 16,219 0
D. melanogaster 14,076 570 139 4.0 471 2,433 3,802 11,635 6,054
C. elegans 19,992 688 6 3.2 128 102 149 385 1,308
A. thaliana 26,207 1,235 32 3.4 11,284 926 1,460 5,073 8,282
S. cerevisiae 5,884 233 170 4 29,716 812 1,446 4,036 6,075
TF=Transcription factors; PWM=Position weight matrices; T= 100×TF

Gene ; D=Database relations;
R=RelEx relations; SL=Shallow linguistics SVM kernel relations; TO=Tri-occurrence relations;
TFBS=Transcription factor binding site predictions

mining approach and the TFBS predictions, but probably with a large number of false
positives. Unfortunately, for some organisms the number of position weight matrices (PWM)
for the search of TFBS is very limited. For D. rerio no PWMs were available and for C.
elegans and A. thaliana only six and 20 PWMs could be found in the public domain. This
explains the comparably low number of binding site predictions for these three species. The
Tri-occurrence approach was used as pre-filter for the more sophisticated relation extraction
approaches RelEx and SL. By comparing the relations found with RelEx to known relations
extracted from databases a small overlap can be observed. For example for H. sapiens 22%
of the database relations could also be found with RelEx. A similar consistency could be
observed for R. norvegicus, M. musculus and D. melanogaster. For SL 21% of the known
relations from H. sapiens could be detected. By combining the two state-of-the-art relation
extraction approaches RelEx and SL, this rate could be increased to 28% for H. sapiens. For
those species with regulatory data from genome-wide chromatin experiments (S. cerevisiae
and A. thaliana), this fraction is much lower as can be seen on the number of found regulatory
text-mining relations. Furthermore, for A. thaliana and C. elegans only 34,729 and 31,325
species relevant abstracts could be found, whereas for H. sapiens andM. musculus 13,053,996
and 1,121,698 abstracts could be used. This explains the quite small number of relations for
A. thaliana and C. elegans extracted with our text-mining approaches.
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Most of the TFBS predictions could neither be confirmed with databases knowledge nor
with the text-mining results. For example for S. cerevisiae 84% of the predictions were
unique for this method. The number and quality of TFBS predictions strongly depends on
the available PWMs and their quality. Short PWMs for example produce many hits, but
only with low scores which were not considered for the predicted relations in ConReg.

The currently available regulatory data is distributed in many different databases and
stems from different data sources like manual literature curations or genome-wide chromatin
immunoprecipitation experiments. The collection and integration of data from different
sources and organisms is a difficult task and needs to be continued to make the most out of
the available knowledge.

4.3.2 ConReg for the Discovery of Conserved Relations in Fruit Fly

We used D. melanogaster as source species to outline the usability of our system to find
conserved regulatory relations for the 471 documented regulatory relations in REDfly (Gallo
et al., 2011). We selected as target species the vertebrates H. sapiens, M. musculus, R.
norvegicus and D. rerio and used all available data sources for these species. D. melanogaster
is phylogenetically distant from the other species, but several conserved motifs are described
in the literature as already mentioned in the introduction. We checked for the predicted
conserved relations if we could confirm them in the target species. We assume that relations
extracted from databases are correct and manually checked the relations found with our Tri-
occurrence approach by reading the provided literature reported for each found relation. The
Tri-occurrence relations are a super set of the relations extracted with our other text-mining
approaches so that the performance for these approaches could also be checked, whereas
the TFBS predictions were compared to the relations found in the databases and with the
text-mining approaches.

The entire predicted conserved network is shown in Figure 4.4. Manual annotations
where we could confirm a conserved regulatory relation between the orthologs in at least one
vertebrate are shown as red edges. The conserved D. melanogaster network also contains the
well-studied motifs for eye-development (Optix, ey, eya and shf, see Figure 4.6 and Table 4.2)
and conservations for the pan-bilaterian kernel for heart specification, including the genes
Tin, Mef2 and Mad.

Only seven conserved relations, involving nine different genes could be identified with tar-
get relations extracted from databases. From these seven relations four were auto-regulations
and the others were isolated edges. By using only the knowledge from databases, not even
the well-studied conserved motifs between D. melanogaster and the other organisms could be
rediscovered. With our Tri-occurrence approach 132 possible conservations could be found
from which we could confirm 66 relations in at least one species (50%). We compared the
different methods to each other with respect to the number of predicted and confirmed re-
lations. Furthermore, we compared the intersections of the predicted conserved regulatory
relations from the different approaches (see Figure 4.5). All of the 66 found conserved regu-
latory relations found with RelEx could be confirmed or were also found by SL or the binding
site predictions. With SL six additional conservations could be found. In addition, 124 pos-
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Figure 4.4. Network of conserved regulatory relations from the 471 documented
regulatory relations in REDfly for D. melanogaster in at least another vertebrate. The gray
edges represent all relations where we could find a possible conservation. Red edges
represent edges where we could confirm the relations between the orthologs in vertebrates
using the literature references provided by ConReg. In green, we highlighted the nodes
where at least two ortholog identification approaches found an ortholog mapping to another
vertebrate for the respective gene. The conserved network contains, among others, the well
studied motifs for eye-development and the pan-bilaterian kernel for heart specification.

sible conserved relations were discovered with the TFBS predictions. 33 of these relations
could be found with a different method including 25 confirmed Tri-occurrence relations. We
note, that with RelEx the best relation extraction performance could be achieved with 57
out of 67 confirmed conserved relations (85%). With SL a comparable performance could
be reached with 59 out of 76 confirmed conserved relations (78%).
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Figure 4.5. Venn-Diagram of found regulatory conservations between the 471
documented regulatory relations in REDfly for D. melanogaster and vertebrates.
Confirmed conservations are regulatory relations which could be transferred from
databases, or were correctly identified with our Tri-occurrence approach for at least one
vertebrate (relations were manually checked by reading the corresponding literature). All
relations found with RelEx could also be found with another method, whereas most of the
TFBS predictions were not reported with our text-mining approaches.
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Figure 4.6. D. melanogaster eye development sub-network with conservation evidence
(red edges could be confirmed with the scientific literature see Table 4.2).
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Factor Target Species Ortholog

factor
Ortholog
target

Sentence Type PMID

ey eya Rat/Mouse Pax6 Eya1/Eya2 "Previous studies have suggested that
Pax6 directly or indirectly regulates
expression of DNA-binding transcrip-
tion factors Six3, Sox2, Pitx3, Prox1,
Sox1, and c-Maf [7], Sox11 [69] as well
as transcriptional co-activators Eya1,
Eya2 [70] and a co-repressor Dach1
[71] during early stages of lens devel-
opment, i.e. lens placode and lens
vesicle formation."

Fulltext 19132093

ey Optix Fish Pax6a Six3a "However, we tested their function be-
cause of a previous study by Anders
Fjose’s lab that demonstrated that a
possible Pax6.1 binding site on mod-
ule F and a putative Brn3b binding
site on module E are important for
regulating six3a [33]"

Fulltext 20346166

Worm Vab-3 Ceh-32 "Our results suggest that VAB-3 acts
upstream of ceh-32 during head mor-
phogenesis and directly induces ceh-
32"

Abstract 11476572

Mouse Pax6 Six6 "We found that the Lhx2 and Pax6
transcription factors operate in a con-
certed manner during retinal develop-
ment to promote transcriptional acti-
vation of the Six6 homeobox-gene in
primitive and mature retinal progeni-
tors"

Abstract 19146846
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ey shf Rat/Mouse Pax6 Wif1 "Promoters from the chitinase 3-
like 3, Wnt inhibitory factor 1, and
fms-related tyrosine kinase 1/soluble
VEGF receptor genes were upregu-
lated five-, seven-, and threefold, re-
spectively, by Pax6 in transfected
COS7 cells."

Abstract 21447684

Optix ey Human/ Mouse Six3 Pax6 "Six3 activation of Pax6 expression is
essential for mammalian lens induc-
tion and specification"

Abstract 17066077

so so Human/Mouse Six1 Six1 "Positive autoregulation of Six1 is
achieved through the regulation of Six
protein-binding sites."

Abstract 21447684

Table 4.2. The table lists author statements for potential regulatory interactions.
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Comparison to Alternative Tools

Different tools also focus on the identification of conserved relations in eukaryotes. For
example with the UCSC Genome Browser (Fujita et al., 2011) bindings from ORegAnno
or other genome-wide chromatin immunoprecipitation experiments can be mapped on the
genome and information of conservations on the DNA level for different species can be dis-
played. Also the Genomatix suite1 allows uploading experimental data for further analyses
and for searching for conservations. Compared to prokaryotic genomes, eukaryotic genomes
are rich in non-coding sequences of unknown functions and promoters can lay several kilo-
bases upstream from the transcription start site. Nevertheless, different approaches have
been introduced to search for conserved binding site predictions (Loots and Ovcharenko,
2004; Berezikov et al., 2005). Furthermore, for microbial gene regulatory networks differ-
ent platforms exists for the storage and web-based analysis as reviewed by Baumbach et al.
(2009).

In comparison to these tools, ConReg focuses on eukaryotes and provides detailed in-
formation of putative conservations. The user is enabled to interactively explore the con-
servations in the underlying processed and unified data. ConReg does not only rely on
the knowledge from databases or predicted binding sites, but also strongly uses information
extracted from the literature which are currently only used to a minor extend by other tools.

4.4 Conclusion

We presented ConReg a novel interactive online system for the discovery of conserved reg-
ulatory relations in eight eukaryotic model organisms. Our system allows searching for
regulatory conservations among all possible sets of target species and gives rich information
details for possible conserved relations. We collected regulatory relations from structured
databases, via text-mining from unstructured textual descriptions and from binding site pre-
dictions. We observed the incompleteness of regulatory relations in databases which are not
even sufficient for the discovery of well-known conserved motifs. With the integration of in-
formation from state-of-the-art text-mining approaches and binding site predictions, several
conserved motifs could be found using D. melanogaster as source species. We were able for D.
melanogaster to identify conserved regulations for 14% (66 out of 461) of the relations from
REDfly in at least one vertebrate. But still it remains unknown to which extend regulatory
relations are conserved since only few regulatory relations are experimentally confirmed for
eukaryotes.

For our selected show case we noticed that even with the simple Tri-occurrence text-
mining approach 50% of the identified regulatory relations are correctly identified when also
experimentally validated regulatory relations between orthologs were known. Thus, with the
integration of additional background knowledge the relation extraction could be significantly
increased.

1http://www.genomatix.de
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We designed our system so that further information sources can easily be added. In
particular, we are planning to incorporate further information from the increasing number
of available chromatin immunoprecipitation experiments into ConReg. Furthermore, we are
going to provide a Cytoscape (Smoot et al., 2011) plug-in to access the data for follow-up
analyses in addition to our web interface.



Chapter 5

Context-Specific Regulatory Network
Framework

Abstract: The ENCODE, mouseENCODE and modENCODE projects have published
various genome-wide measurements for various human, mouse, fly, and worm cell lines. More
such data have been made available by the TCGA and Epigenomics Roadmap consortia.
From these measurements a wide range of global and context-specific functional features
and annotations can be derived. The analysis of these large data sets and the derived
features, in particular the differential analysis of two or more sets across conditions or even
across compendia is cumbersome and difficult.
Many of these context-specific regulatory features can be modeled as Transcription Factor
(TF) - Target Gene (TG) networks. Such networks provide intuitive views on the ENCODE
data and allow the comparative analysis of replicates, different contexts, different cell lines,
different cell types, and different species. But cross-species and cross-condition comparative
analysis on many and large networks still requires time consuming manual work. This
applies in particular for the identification of conserved and context-specific interactions with
currently available network analysis and visualization software solutions.

The Cross-species Conservation framework (CroCo) enables comparative network anal-
ysis on both standard conventional global networks and on context-specific regulatory net-
works derived from thousands of ENCODE regulatory experiments. CroCo provides both a
network repository and ontology of pre-computed networks as well as a software tool suite
to efficiently conduct networks analysis. The networks in the repository are derived from
all ENCODE regulatory ChIP-ChIP, ChIP-seq and open chromatin experiments (DNase-seq,
DGF and FAIR-seq), the scientific literature, binding site predictions and curated databases.
The CroCo tool suite includes a web interface for network property queries, a plug-in for
connecting the network repository with Cytoscape and an Application Programming Inter-
face (API) to support the development of tailor-made analysis workflows. Applications of
the CroCo framework range from simple evidence look-up for user-defined regulatory inter-
actions to the identification of conserved sub-networks in diverse cell lines, conditions, or
even species.

CroCo adds an intuitive unifying view on the data from the ENCODE projects via a
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comprehensive repository of derived context-specific regulatory networks and enables flexible
cross-context, cross-species and cross-compendia comparison by a basis set of analysis tools.

Publication: The CroCo system is briefly described in a BioSpektrum article (Pesch and
Zimmer, 2014). A manuscript describing the details of the CroCo framework is in prepara-
tion.

My contribution: I implemented the CroCo systems, defined the networks, performed
the conservation analysis and drafted the manuscripts.

Contribution of co-authors: Ralf Zimmer supervised the work and helped drafting the
published manuscripts. Madox Sesen implemented a prototype of the regulatory sub-network
overlap functionality in the croco-web application as a student helper.
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5.1 Introduction

In September 2012, the ENCODE project (ENCODE Project Consortium, 2012b) published
functional annotations for over 80% of the human genome. Thousands of genome-wide mea-
surements and features have been made publicly available. Also the mouseENCODE project
(Mouse ENCODE Consortium, 2012), started together with the ENCODE project, and the
modENCODE project (Celniker et al., 2009) provide similar information for the genomes
of mouse, fly and worm. Diverse experimental methods have been applied in ENCODE
projects to obtain (genome-wide) functional genome annotation for hundreds of cell lines
and conditions. Fortunately, the experimental methods employed by the ENCODE project
are standardized and follow common guidelines (Landt et al., 2012; ENCODE Project Con-
sortium, 2012a). This enables integration and combination of various data sets and eases
their comparison. Exploiting this huge data repository many different aspects can be inves-
tigated, like the comparative and cell-specific analysis or regulatory elements (Boyle et al.,
2014; Neph et al., 2012b).

With the ENCODE data a huge amount of regulatory data is provided. A standard
approach to analyze, interpret and visualize the underlying (context-specific) mechanisms of
cellular systems is via modeling of Transcription Factor (TF) - Target Gene (TG) regulatory
networks (Karlebach and Shamir, 2008). Regulatory network models (TF-TG networks)
are used in various contexts for generating and validating new biological hypotheses or for
explaining experimental data (Küffner et al., 2005; Van Landeghem et al., 2013; Faro et al.,
2012; Pesch et al., 2012). For example, we previously used regulatory networks from fly and
vertebrates mined from the scientific literature in combination with binding site predictions
to identify conserved regulatory sub-networks between them (see Chapter 4 and Pesch et al.
(2012)).

For various research questions either Context-specific networks (network that repre-
sent a specific state of a system), or Global networks (networks that represent context-
independent features of a system, i.e. features and interactions collected and combined from
several states and contexts) are used. Context-specific networks, for example, allow the
study of differential bindings for a specific factor, while a global network could summaries all
possible binding regions across contexts. Context-specific (regulatory) networks can be de-
rived from Chromatin immunoprecipitation sequencing (Johnson et al., 2007) (ChIP-seq), or
open chromatin experiments such as (i) DNase I hypersensitive sites sequencing (Boyle et al.,
2008) (DNase-seq), (ii) Digital Genomic Footprinting (DGF), or (iii) Formaldehyde-Assisted
Isolation of Regulatory Elements (FAIR-seq). In contrast to those context-specific networks
can standard conventional global networks be derived from binding site predictions, from
merging various condition-specific networks, or from text-mining the scientific literature.

Many context-specific networks for many system states can be modeled with the data
provided by the ENCODE projects. Initial analyses revealed that regulatory elements are
highly context-specific and complex (Neph et al., 2012b; Gerstein et al., 2012; Thurman
et al., 2012). Thus, only a fraction of regulations can be observed across many different cell
lines, or in any individual cell-line. This implies that it is essential to consider the context
for (cross-species) analysis of regulatory networks. But currently no comprehensive network
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repository exists for condition specific regulatory networks. Thus, for the (cross-species)
network analysis the raw data needs to be manually gathered, processed and networks need
to be constructed. The construction of TF-TG networks from experimental binding data
requires, for example, the identification of binding sites, and the prediction of possible targets
for the DNA binding protein in the respective context. With ChIP-seq experiments the
binding of a protein to the DNA is measured directly making the inference for regulatory
targets for the ChIP-ed factor possible for all genes with bindings within the promoter region.
This approach was for instance used by Kim et al. (2008) for several transcription factors
in mouse embryonic stem cells in order to induce cell type-specific regulatory sub-networks.
Advanced experimental techniques and computational predictions like the combination of
open chromatin data and transcription factor specific Position Weight Matrices (PWM)
allow the construction of networks for many factors at once. For example, Neph et al.
(2012b) combined Digital Genomic Footprinting (DGF) (Hesselberth et al., 2009) of DNase
I cleavages from 41 cell lines and tissues with transcription factor specific PWM to infer
TF-TF relations on a genome-wide scale for 475 transcription factors at once. Apart from
the methods required for the network construction the currently available software support
for the analysis of hundreds of networks as derived from context-specific ENCODE data is
limited.

Cross-species Conservation (CroCo) framework

With CroCo we present a repository of pre-computed regulatory networks and a
user-friendly tool suite for the efficient analysis of various aspects of both global and context-
specific networks derived from the ENCODE data sets and further data compendia. The
representation of the data as regulatory networks with a common set of nodes provides a
uniform handling of the available information derived from thousands data sets of heteroge-
neous types, various experimental techniques and from different sources. A common set
of nodes (CN) is maintained via appropriate mappings of the respective measured objects.
Thus, every context-specific network derived from individual or sets of primary data is a set
of edges defined of the CN. The uniform set of nodes CN allows simple means to combine
networks in a straightforward and easy to interpret way. Due to standardized procedures
followed in most large scale data compendia the mappings between the measured objects are
obvious, but there are also complications imposed by e.g. definitions of genes and gene or
isoform structures or by the incorporation of additional data sets not using standardized pro-
cedures. A challenging mapping between species can be obtained from orthology mappings
to allow mapping of networks across species. Ideally this establishes a one-to-one correspon-
dence between objects measured in different species thereby again realizing a common node
set between species. Unfortunately, due to parallels and weak homology the situation is not
as clear leading to quite some n:m relations. Apart from that any othology mapping allows to
transfer networks from one to another species in order to generate or validate regulatory hy-
potheses across species. In the ENCODE, TCGA, and Epigenomics Roadmap compendia,
the data sets are classified with respect to various criteria defined in the associated metadata.
This induces a multi-dimensional organization of the available data set into what is called the
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Figure 5.1. CroCo provides a uniform view on compendia of genome-wide measurements
along with global networks derived from structured databases and further resources. a)
Datasets in these compendia are classified into a high-dimensional data cube along the
dimension listed in b). c) Each dimension can be navigated via ontologies in any order. d)
CroCo uses default or user-defined procedures to define and extract networks resulting in a
high-dimensional cube of networks structured along the same dimensions. These networks
can be filtered, merged, and combined in various ways to produce new networks. Moreover,
networks can be transferred between species via orthology mappings of the network nodes.
This enables a prediction of regulatory interactions from one or a set of species to closely
related species. Via combination and transfer operations new networks are defined thereby
enabling a flexible construction of user-specified networks from the compendia.

data cube in the following (see also Figure 5.1). Typical classification criteria and dimen-
sions in this 7-dimensional data cube are: Compendium x Development stage x ChIP-Factor
x Experimental technique x Species x Tissue/Cell-line x Treatment (C x DS x CF x ET x S
x TC x T). CoCo systematically exploits this intuitive structure for representing, browsing,
and handling the available data sets and the associated networks in the software. Thereby,
CroCo GUI allows navigation through the data and networks in an intuitive way according
to the known classes imposed by the compendia and the implied data cube. Moreover, we
introduced more convenience for the user by allowing to navigate the dimensions of the data
cube in any order starting with an arbitrary dimension and continuing subsequently along
any other of the remaining dimensions (multidimensional browsing). Thereby, CroCo
provides an intuitive overview of all available data sets and tries to ease the search and
selection of particular individual data sets. Moreover, we systematically employ ontologies
to structure any dimension of the data cube. These ontologies are either provided by the
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metadata of the data compendia or are derived from additional information. Ontologies can
also be provided by the user to structure the data according to personal preferences or to
classifications derived from previous analyses.

The analysis of those networks is supported via a client side Cytoscape plug-in and a
server-side web-application. The client-side application is suited for in detail downstream
analysis. Networks are accessed via a publicly available web-interface, which supports basic
network operation such as union, intersection, merging as well as (cross-species) transfer
of many networks. The web-application gives an initial view on the networks available in
CroCo. For example, networks can be browsed, downloaded or compared according to the
out-degree of a transcription factor, or the overlap with previously identified annotated sub-
networks. Furthermore, regulatory evidence can be visualized including the exact binding
positions of a transcription factor within the promoter of target gene, literature evidence
and information from structured database.

5.2 Materials and Methods

5.2.1 System Architecture

CroCo consists of five components: (i) a network repository croco-repo, (ii) an Application
Programming Interface (API) croco-api, (ii) a Cytoscape plug-in croco-cyto, (iv) a web ap-
plication croco-web, and (v) a web-service for remote access to the central repository. In
Figure 5.2 the interplay of the different components is shown.

The network repository (croco-repo) is the central component of the CroCo system. It
consists of more than 7,500 pre-computed global and context-specific networks for human,
mouse, fly and worm together with gene annotations and ortholog mappings. Via the combi-
nation of the publicly available web-service and the croco-api the server-side data repository
can be accessed from the client-side. We structured the croco-api into: (i) a repository
query layer, (ii) a network operation layer, and (iii) the network construction workflows,
which derives networks from the raw ENCODE data. The query layer provides a low level
set of operations to access the croco-repo. Examples of such queries are: list networks in the
repository, read a network, or retrieve the metadata and the construction parameters for a
specific network. The croco-repo can either be accessed via a direct database connection us-
ing the Structured Query Language (SQL) or via the Hypertext Transfer Protocol (HTTP).
The web-services exposes the query operations on a web-server and tunnels the requests to
a server side croco-api instance with direct access to the croco-repo. On top of this API we
offer components for conducting network analyses. With croco-web we offer a web interface,
which allows —without the need of installing additional client-side software— to query and
compare network statistics or to look-up evidence for specific TF-TG relations via standard
web browsers. For downstream network analyses we developed a plug-in for the bioinfor-
matics network tool Cytoscape (Cline et al., 2007) in order to access the network repository
and to perform common operations.

The components have been implemented in Java in combination with MySQL for the
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Figure 5.2. The CroCo framework consists of a data repository (croco-repo), an
Application Programming Interface (API) (croco-api), an interactive web interface
(croco-web), and a Cytoscape plug-in (croco-cyto). The croco-repo is a central database
which includes derived condition specific and global networks, ortholog mappings and gene
annotations. Via the croco-web interface networks can be compared based on several
properties such as the number of total interactions, or the number of in-/out-interactions
(in-/out-degree) of specific genes. For Cytoscape we developed a plug-in (croco-cyto) for
downstream analysis. Finally, in order to assist the development of customized workflows,
the croco-api can be used to integrate CroCo in additional processing and analysis
pipelines.

croco-repo and the Open Source Community Edition of the ZKOSS Web Framework for
croco-web.

5.2.2 Network Definition

The croco-repo contains global and context-specific networks, ortholog mappings for 59 eu-
karyotic species from ENSEMBL Compara (Vilella et al., 2009), and gene annotations for
the organisms investigated in an ENCODE project (human, mouse, worm, and fly). The
networks are represented as nodes with ENSEMBL gene identifiers serving as common set of
nodes (CN) and edges as directed pair of nodes. This simple uniform representation of the
networks facilitates the comparison of species-specific networks between different contexts
(inter-context) and between species (inter-species). We use the following network definitions
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to create networks from binding site predictions, ChIP and open chromatin data:

Binding site predicted networks: We use FIMO (Grant et al., 2011) with Position
Weight Matrices (PWM) from TRANSFAC (Version 9.3) (Matys et al., 2006), JASPAR
Version 2014 (Mathelier et al., 2014), UniPROBE (Robasky and Bulyk, 2011), Wei et al.
(2010), Wang et al. (2012) and Chen et al. (2008) to scan for possible binding sites with
a p-value threshold of 10−5 in the genomes of human, mouse and worm. Regulations are
predicted between TF-TG if a PWM hit associated with the TF is located within ± 5 kilo
bases of the Transcription Start Sites (TSS) of the TG in human and mouse and 500 base
pairs in worm. Furthermore, we construct a high-confidence network by further filtering
the binding site predictions with a p-value threshold of 10−6. In addition, conserved TFBS
predictions in 12 Drosophila genomes are integrated from Kheradpour et al. (2007) for fruit
fly.

ChIP-chip/seq networks: ChIP peaks are provided by the ENCODE projects for thou-
sands of contexts with a median base pair (bp) peak length of 409 for worm, 671 for fly, and
150 for human and mouse. Regulations are inferred between the ChIP-ed protein and all
TGs with peaks within ± 5 kilo bases for human and mouse and 500 base pairs for worm
and fly of their TSSs.

Open chromatin network

1. We integrate the 41 human pre-computed cell-specific TF-TF networks derived from
Digital Genomic Footprinting (DGF) published by Neph et al. (2012b). They used
DGF footprints with a length of 6–40 bp and overlapped those footprints with pre-
dicted TRANSFAC motif-binding sites using FIMO with a p-value threshold of 10−5.
Regulations were inferred between TF-TF if an associated PWM for the first TF is
found within a footprint of the second TF.

2. Similar to Neph et al. (2012b) we use open chromatin peaks derived from all ENCODE
DGF, DNase and FAIR-seq experiments to predict regulations. The open chromatin
peaks have a length of 150 bp. We overlay those peaks with the above mentioned
binding site predictions.

In addition, we integrated networks from ConReg, a resource for global regulatory networks
(see Chapter 4 and Pesch et al. (2012) for the detailed network construction workflows).
ConReg provides the following network types:

1. Curated-database networks: Networks extracted from structured regulatory databases
like ORegAnno (Griffith et al., 2008) or REDFly (Gallo et al., 2011).

2. Literature-networks: Networks derived from the scientific literature (PubMed and Pub-
MedCentral) using a text mining approach. Triple occurrences, i.e. sentences with at
least two genes and a regulatory keyword are used to generate labeled edges between
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the two genes. (Undirected) relations are predicted between all found genes in those
sentences, i.e. each unique triple occurrence generates two directed relations. In or-
der to filter the networks and to generate more specific networks, versions of the text
mining network are produced using a species filter (species-specific relations) and an
approach to generate directed networks.

5.2.3 Network Operations

Since the croco-repo contains many and large networks, efficient network operations are
crucial to perform network analyses in a user-friendly and interactive way. Thus, the API
provides various common network operations optimized to work on the networks from the
repository. Each network operation takes as input one or more networks and additional
parameters in order to produce a new network. In addition to basic network operations
Union, Intersection and Set-Difference the following specific operations are provided:

Orthology Transfer: Transfers a network using orthologs from the croco-repo to another
species.

Binding Site Ortholog Transfer: Transfers measured and predicted binding sites avail-
able as additional information for some networks to other species using genome wide
chained BLASTZ alignments (Schwartz et al., 2003) provided by ENCODE for many
different species.

Shuffle: Shuffles the edges in a given network, but keeps the same in- and out-degree for
the genes.

Gene Set Filter: Creates an induced network only consisting of genes with a particular
Gene Ontology (GO) annotation, or genes from a user-defined gene set.

Support Filter: Removes edges which have been observed in less than a user-defined num-
ber of times in a merged network.

Binding Site Filter: Filters interactions based on the distance between the TF and TG
or the associated p-value of the predicted binding.

The network operations can be chained and hierarchically organized, which results in a top-
down processing by automatically retrieving the necessary data i.e. the networks, ortholog
mappings and gene name information from the network repository. By combining several
network operations typical tasks such as the identification of similarities and differences in
networks derived from different cell lines or even from different species can be performed.
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Table 5.1. Global networks and context-specific networks derived from the ENCODE
data are integrated into the CroCo repository. Database derived networks stem from
different curated sources (e.g. TRANSFAC and ORegAnno for mouse), whereas different
binding site predicted networks result from different PWM collections and a sensitive and a
specific PWM match threshold. For each species four different (filtered) literature derived
networks are included in the repository. The majority of networks in the repository is
inferred from context-specific ChIP and open chromatin experiments.

Species Global Context-specific Total

Data-
bases

Litera-
ture

Binding
site

ChIP Open chromatin

N N N CO AB E N CO E N N

Human 4 4 12 103 192 1,206 1,206 105 248 3,617 4,843
Mouse 2 4 12 28 50 162 162 39 123 1,800 1,980
Worm 2 4 4 15 91 561 561 — — – 575
Fly 3 4 22 23 59 119 119 — — – 148
Total 11 16 54 169 392 2,048 2,048 144 371 5,417 7,546
N=Number of networks; CO=Number of different contexts (cell lines for human, cell lines or tissues
for mouse, development stages for worm and fly); AB=Number of different antibodies; E=Number of
experiments.

5.3 Results

5.3.1 Comprehensive Context-Specific Regulatory Network Repos-
itory

croco-repo contains context- and species-specific networks for every ChIP and open chromatin
ENCODE data set, which allows the analysis of different tissues, cell lines and replicates.
In addition, 81 global networks are integrated in the repository yielding 7,546 networks in
total.

The availability of experimental data differs across the considered species in the croco-
repo. For instance open chromatin derived networks are only available for human and mouse,
whereas literature derived and binding site derived networks are available for all species. For
human 4,843 networks are contained in the repository; including 4 networks from curated
databases, 12 networks predicted with different PWM collection sets, 4 literature derived
network, 1,206 ChIP-derived factor-specific networks for 103 different cell lines, and 3,617
open chromatin derived networks. ChIP experiments have been conducted for different con-
ditions and with different antibodies. For example, for the human cell K562, the binding of
116 different TF have been measured, whereas for the human cell line WI-38 only the binding
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Figure 5.3. The croco-ontology is structured according to seven dimensions. Each
dimension can be further structured according to dimension-specific ontologies e.g. the
Brenda Tissue Ontology for the Tissue/Celll-line dimension. Via the components of the
CroCo system the croco-ontology can be browsed in a recursive manner. The left figure
shows the entire croco-ontology and the first recursion step, where all not yet selected
dimensions are appended to the ’leave’ node ’Human’ in the Species dimension. The right
screenshot shows a specific realization of the recursive browsing in croco-web. In croco-web
and croco-cyto only dimensions are visualized, which further separate the data.

of CTCF was investigated. The different human open chromatin networks stem from 207
DNase-seq, 54 DGF, 37 FAIR-seq experiments in combination with the 12 different binding
site predicted networks and the 41 networks from Neph et al. (2012b), i.e. (207+54+37)
Experiments × 12 binding site networks + 41 = 3,617 different open chromatin networks.
In Table 5.1 we summarize the available network for the considered species in the croco-repo.

The repository includes for each network the detailed meta data and parameterization,
which is used for network construction. For example for text mining networks the sentence
from the scientific literature, which supports a particular regulation can be retrieved.

5.3.2 Context-Specific Network Ontology

In order to enable flexible navigation and selection of networks from the CroCo network
repository, we organized the data according to various dimensions (annotations). We iden-
tified the following dimensions:

Compendium: Data compendia: ENCODE, modENCODE, mouseENCODE

Species: Species with corresponding ENCODE project.

ENCODE gene name: Transcription factors with corresponding ENCODE ChIP-seq ex-
periments.

Development stage: Development stage of a sample (experiment).
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Treatment: Treatment of a sample(experiment).

Experimental technique: Experimental technique such as ChIP-seq.

Tissue/Cell line: Tissue/cell-line of a sample.

Each dimension can be further structured according to simple value lists, or even according
to specific ontologies. Networks are assigned to node(s) in the dimension-specific value lists
and ontologies based on their meta-information. For example, a network derived from a
human ChIP-seq experiment performed by ENCODE for CTCF in K562 cells is assigned to:
ENCODE in the Compendium dimension, Human in the Species dimension, CTCF in the
ENCODE gene name dimension, ChIP-seq in the Experimental technique dimension
and K562 in the Tissue/Cell line dimension. Note, however, that not all networks must
be organized according to all dimensions. We build a meta-ontologie (croco-repo), which
includes the seven dimensions including their categorizations. In the components of the
CroCo system, users can start at any of our specified dimensions e.g. Species and browse
for attributes of interest in the corresponding value list and ontologies (see Figure 5.3). As
soon as a leaf node within the specific dimension is reached (e.g. human for the Species
dimension) the user can select a further dimension to browse the remaining data according
to the not yet selected dimensions (note: only those dimensions are shown, which further
separate the remaining data). That way it is possible to first select a species and than to
select an experimental technique, or vise versa.

5.3.3 Network Conservation Analysis with Cytoscape

The networks contained in the croco-repo together with the available operations in the croco-
api can be accessed directly via croco-cyto, a plug-in for the bioinformatics networks analysis
tool Cytoscape. Result networks, for example shared conserved networks of the analogous
leukemia cell lines in mouse and human for genes involved in the KEGG leukemia pathway
can be produced by selecting the desired networks and applying/stacking network operations.
croco-cyto uses the croco-api to retrieve the pre-computed networks, ortholog mappings and
gene descriptions from the server-side croco-repo via the publicly available web service. Thus,
networks of interest can be easily defined, e.g. shared sub-network between cell lines or
conserved sub-networks among different species.

In Figure 5.4 we show an example network generated with croco-cyto for the analogous
leukemia cancer cell-lines MEL and K562 in human and mouse for genes involved in the
KEGG Leukemia pathway. The cross-species comparison is archive by using the network
transfer operation. The left screenshot shows a unified network of the two species consisting
of 597 interactions, and the right screenshot shows the intersected network between the
two cell lines and species consisting of 52 consistently observed regulations. Furthermore,
the literature networks are used to highlight regulations with additional evidence from the
scientific literature.
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Figure 5.4. The screenshot shows: (i) the union of the orthology-transferred network
derived from three MEL mouse experiments and two human K562 networks consisting of
597 interactions (left screenshot), and (ii) the conserved network between the two networks
consisting of 52 consistently inferred interactions (right screenshot). The edges are colored
according to the available evidence for an interaction. Grey edges represent interactions
only inferred from human, blue edges represent interactions only inferred from mouse,
green edges represent conserved interactions (inferred from human and mouse), red edges
represent conserved interactions with literature evidence.

5.3.4 Network Metric and Evidence Look-up

The web service croco-web gives a first view on the networks in the croco-repo and enables
several network queries without the need of installing additional software. croco-web con-
sists of three analysis tools Evidence-Lookup, Geneset Overlap Browser and Network/Metric-
Browser. The Evidence-Lookup allows to investigate regulatory bindings and literature ref-
erences from the croco-repo for a given TF-TG pair. Figure 5.5 shows an example output of
the Evidence-Lookup tool for the regulation of the Early growth response protein 1 (EGR1)
and the Myc proto-oncogene protein (MYC). For that particular example, several binding
site predictions within open chromatin peaks and ChIP bindings are detected within ± 5
kilobase of the five transcription start site (TSS) of MYC. The bindings site can be further
filtered by certain criteria like the cell line or tissue. In addition, literature references are
given describing regulatory mechanisms between the selected TF and TG and orthologs are
provided allowing the investigation of the selected regulation in other species.

The second main feature, is the Gene-Set Overlap Browser, which allows to navigate the
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Figure 5.5. The Evidence-Lookup shows predicted and experimental binding sites and
literature references for a given TF and TG. The screenshot shows the TFBS predicted,
ChIP and open chromatin identified binding sites (red rectangles) of EGR1 within ± 5
kilobase of the five annotated transcription start site (TSS) of MYC, the available literature
references for that particular regulation, and regulatory evidence between orthologs.

croco-network ontology according to the number of interactions between a user-defined set
of genes.

Finally, the Network/Metric-Browser allows to perform cross-species comparisons of net-
works according to several network metrics and to download the networks. With the Metric-
Browser the

1. network size, represented as the number of inferred interactions,

2. the number of nodes in the derived networks,
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Figure 5.6. Four embryonic stem cell (ES) and four T-cell networks derived from the
mouseENCODE open chromatin experiments with two to four replicates are: (i) compared
according to the transcription factor out-degree of the cellular tumor antigen p53 (TRP53),
and (ii) intersected with a well studied regulatory sub-network consisting of four
pluripotency transcription factors. (a) The network from the croco-repo are organized in an
ontology and can be selected for network comparisons. In the particular example ES and
T-Cells are selected from the repository. (b) Currently, five metrics are available in
croco-web and can be used to compare previously selected networks. In the example the
number of regulatory interactions of the transcription factor TRP53 is selected. The
screenshots (c) and (d) show the results produced according to selected metrics: (c) shows
the transcriptional activity of TP53 in ES-Cells and T-Cells, and (d) shows the fraction of
common interactions of the selected networks and that of a (stem cell related) sub-network.
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3. the in-, out- and total-degrees of specific genes,

4. the overlap of interactions with a user-defined regulatory sub-network

can be compared between networks. The results of such a network comparison are visualized
as boxplots, barplots and lineplots. Any combination of networks from the croco-repo can
be selected for metric comparisons and if desired the network operation union and intersect
can be applied to the selected networks (as the web-application is designed for giving a (fast)
first impression on the networks in the croco-repo, we limit the complexity of the network
operations). Furthermore, selected networks can be organized into groups. This feature
supports the structured comparison of sets of networks, for example a collection of stem cells
networks can be assigned to one group and a collection of T-Cell networks can be assigned
to another group. Furthermore, for the special case that exactly two groups are defined,
a t-test between the two groups is performed according to the selected metric value. The
required ortholog mappings for the comparison of some features are automatically retrieved.
This allows, for example, the comparison of node degrees of specific genes between networks
across different species. The regulatory sub-network overlap function allows to investigate the
occurrence of regulatory interaction, e.g. regulations between major pluripotency factors,
in different contexts. With the croco-web tool such regulatory sub-network can either be
manually defined, or selected from a pre-defined set of motifs from the croco-repo motif
repository. As overlap measure for the sub-network overlap metric we use:

Overlap(N, Sub-Network) =
Number of common interactions between N and Sub-Network

Number of interactions in Sub-Network
.

Networks can be ranked according to the overlap of interactions with the sub-network. The
feature is inspired by Neph et al. (2012b), who showed that several regulatory sub-networks
are highly context-specific.

In Figure 5.6 we use the Metric-Browser to compare the transcription factor out-degree
and network overlap for several open chromatin experiments derived networks of mice em-
bryonic stem cells (ES-cells) and T-cells. The screenshots shows (a) the steps required for
the selection of networks from the croco-repo, (b) the selection of a metric and (c,d) re-
sults produced for the selected network and comparison feature. For the transcription factor
out-degree comparison we selected the Cellular tumor antigen p53 (TRP53). And for the
network overlap comparison we selected a regulatory sub-network consisting of four major
pluripotency factors with 13 regulatory interactions from Kim et al. (2008). The results
produced with the Metric-Browser show that the cells cluster, as expected, according to
their biological similarity. For example, in T-Cells a lower transcription factor out-degree of
TP53 is observed than in ES-cells. Furthermore, a significant overlap with the regulatory
sub-networks for the pluripotency factors is only observed in the embryonic stem cells. A
selection in a list below the network-overlap statistics allows the visualization of the inter-
section of the selected sub-network with the select network (not shown in the sceenshot).
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Figure 5.7. The histogram shows the cell specificity of the inferred relations from 105
human cell lines (red) and 42 mouse cell lines (blue). In b.), the inferred conserved network
between the two species with relations that are observed in at least 75% of the networks
for each species is shown. Furthermore, in c.) the number of relations for the most highly
connected transcription factors in the conserved network from the network in (b) is shown.

5.3.5 Cell-Specificity of Regulatory Interactions

As a simple use-case, the cell-specificity of regulatory networks is analyzed, i.e. how often a
regulatory interactions is observed in a fraction of networks. We reproduce and extend the
analysis by Neph et al. (2012b); we use derived context-specific networks for both human and
mouse (228 networks derived from 105 different human cell-lines, and 123 networks derived
from 38 different mouse cell-lines/tissues). We observe that the majority of interactions are
only observed in a small number of experiments (Figure 5.7a). But also some regulations
can be inferred from almost all experiments. This observation is consistent with Neph et al.
(2012b), who observed that human TF networks are highly cell selective. The conserved
network between human and mouse for relations that could be found in at least 75% of the
experiments for both species is dominated by few transcription factors such as SP1, a known
house keeping factor, and CTCF, which is known to be strongly conserved (see Figure 5.7b
and c).

As another use-case, we overlap global (literature derived and binding site predicted net-
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Figure 5.8. Overlap of the regulatory sub-network for major pluripotency factors defined
experimentally in mouse ES cells (Kim et al., 2008) with context-species and global
regulatory networks from the croco-repo.

works) and context-specific networks (DNase-seq derived networks) with an annotated and
well characterized regulatory sub-network consisting of interactions between four strongly
connected pluripotency factors, which were experimentally validated in mouse embryonic
stem cells (ES-cells) (Kim et al., 2008). In Figure 5.8 the overlap of the selected sub-network
with the selected global and context-specific networks from the croco-repo network reposi-
tory is shown. In the global literature derived networks evidence for all interactions from
the given sub-networks are found. Also 90% of the interactions from the sub-network are
included in the selected computational binding site predicted network. Furthermore, in the
context-specific networks derived from different ES cells over 70% of the interactions from
the sub-network can be found. This is of course plausible as the sub-network consists of
regulations between pluripotency factors also derived from ES cells. In the majority of the
other cell-lines this sub-network is not inferred. In particular no interaction from the given
network is found in the two leukemia cell lines MEL and mGER. Analyses like this highlight
the strong context-specificity of networks. Also they allow distinguishing between ’house-
keeping’ sub-networks, i.e. regulatory sub-networks observed in many diverse cell lines, and
context-specific sub-networks, i.e. sub-networks only observed in networks derived from
specific tissues/cell-lines/conditions.
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5.4 Discussion
The different components of CroCo have been designed to: (i) support the identification of
possible conservations as well as differences between networks from different species and from
different cell lines, (ii) provide a uniform collection of networks for several model organism,
and (iii) allow the straightforward navigation through thousands of context-specific networks.
CroCo has a particular focus on the ENCODE projects and is tailored to work efficiently
with the raw ENCODE data. Use cases for CroCo range from the general comparison of
network properties to the validation of hypotheses such as the identification of sub-networks
that are conserved or unique in a set of cell lines or species.

CroCo supports the following key functionalities, which we identified to perform the
outlined use cases:

ENCODE data: Availability of ENCODE condition-specific regulatory networks in (i) a
unified format and a (ii) structured ontology.

Comparative analysis: Fast and efficient network operations on many and large networks
for the collection of ENCODE networks to enable comparative network analysis.

Downstream analysis: Downstream network analysis such as network clustering or sig-
nificant sub-network identification on derived networks from different ENCODE data
sets.

Network property look-up: Comparative network property analysis in order to get a first
overview on the networks.

Additional information: Query of additional evidence for a particular regulatory relations
e.g. query literature evidence for a specific regulation.

Databases like the NCBI SRA and the GEO database (Sayers et al., 2009), modMine
(Contrino et al., 2012) and the ENCODE genome browser (Meyer et al., 2013) only provide
the raw data itself. Thus, making computational and labour intensive work necessary in
order to collect the data and derive networks from them.

In the supplement of the Neph et al. (2012b) publication an interactive web application is
presented that allows to visually compare derived regulatory networks for 41 human cell lines.
Even though the interactive web site gives a nice overview of the networks, its functionality
is limited with respect to comparative analysis and the number of available networks.

Cytoscape in combination with additional plug-ins comes close to implement the needed
functionalities provided by CroCo. With the Cytoscape Advanced Network Merge and ID
Mapping option networks can be intersected, set-differenced and merged. Available plug-ins
allow to perform various downstream analysis including ortholog networks transfers using
the Homecat plug-in (Zorzan et al., 2013) and literature queries for protein interactions
using the Agilent Literature Search plug-in. Finally, via the Network Analysis feature net-
work properties can be visualized. But there are shortcomings, which limit the usability of
currently available Cytoscape plugins for the analysis of many and huge condition-specific
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regulatory networks. For example, each network needs to be loaded into Cytoscape before
network operations can be performed, thus network operations on a large number of net-
works requires tedious and error-prone manual work. Furthermore, since no comprehensive
ENCODE network repository exist, networks need to be manually created, which requires
knowledge of the ENCODE data structure and resource intensive computation in order to
derive networks.

With CroCo we provide a collection of pre-computed networks (croco-repo) derived from
ENCODE (ENCODE data) and further external databases organized in an easy to navigate
network ontology. Network operations including the transfer of many and large networks
from the croco-repo can be processed at once. This can be done via the croco-cyto plug-in,
which makes the repository and the CroCo API functionality available within Cytoscape.
Or it can be done directly via the croco-api (Comparative analysis; Downstream analysis).
Also several network queries including the comparison of network features and the query of
regulatory evidence for user-specified TG-TG pairs can be performed directly via croco-web,
without installing additional software (Network property look-up; Additional information).

The raw data processing workflow, the choice of thresholds and the used data processing
tools have an impact on the network model. Currently, the networks in the croco-repo are
pre-processed, which allows on the one hand side a fast retrial of networks, but limits on the
other hand side the network re-definition. In order to provide a higher flexibility, the network
construction workflows are included in the croco-api, which allows to generate entirely new
networks with desired parameters and input data. Additionally, interactions can be filtered
using different criteria like the PWM p-value threshold, and the distance to a TSS.

The CroCo system implies several avenues for further research. Possible extensions are
the integration of networks from further sources i.e. networks derived from the Roadmap
Epigenomics Project (Bernstein et al., 2010), from protein-protein interaction networks, or
from proteomics data. Other types of extensions involves the development of approaches
for fast, flexible and resource saving redefinition of the networks included in CroCo network
repository, i.e. flexible variation of parameters.

5.5 Conclusion

The ENCODE projects (ENCODE, mouseENCODE, modENCODE) and other large-scale
compendia such as TCGA and Epigenomics roadmap provide genome-wide annotations for
hundreds of cell lines, tissues and treatments using standardized experimental protocols
for the model organisms human, mouse, fly and worm. The importance of the ENCODE
projects for the scientific community has already been demonstrated in 30 high-impact ar-
ticles at the end of the second funding phase (Sep 2012) in Nature, Genome Biology and
Genome Research. Due to the large amount of data the use and the systematic analysis of
ENCODE data is not straightforward as systematic cross-species and cross-condition com-
parative analysis requires a lot of cumbersome work as well as local storage to download and
process the data. Network representations can be employed yielding intuitive abstracted
views on the data and allowing the investigation of regulatory mechanisms. Available tools
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such as Cytoscape contain a wide range of interesting network analysis functionalities. In
order to use them in combination with ENCODE data, some time-consuming manual work
is required for downloading, preprocessing, and deriving of network models. With the CroCo
system systematic analysis of networks is supported via a network repository, which contains
thousands of global and context-specific networks. An accompanying software tool suite im-
plements access and network analysis feature to those networks, which can be a starting
point for further downstream analyses. The modular design of CroCo and the wide-range of
query operations directly via the web application (croco-web), via Cytoscape (croco-cyto),
and via an Application Programming Interface (croco-api) provides access to networks and
analysis tools to a broad community. Finally, CroCo features the data cube paradigm, which
allows for: (i) convenient multi-dimensional navigation in any order of the dimensions, (ii)
the ontology-supported browsing of the data cube dimensions, (iii) combination, and (iv)
comparison of networks including cross-species transfer of regulatory network models.
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Chapter 6

Isoform Structure Alignment
Representation

Abstract The structure of eukaryotic genes is complex. Many coding sequences have been
observed and are being observed through various experimental techniques. A convenient and
comprehensive cross-species representation of genes, their isoforms, and their exon-intron
structure is needed for understanding the function(s) and evolution of genes. State-of-the-
art Multiple Sequence Alignment (MSA) approaches fail to produce such a representation, as
they are unaware of the interrelationships between isoforms, thereby producing misleading
alignments. We address this issue by introducing the Isoform Structure Alignment Represen-
tation (ISAR), a gene, isoform, and exon-intron structure aware representation of isoforms
from sets of orthologous and paralogous genes. An efficient algorithm constructs such a rep-
resentation from large sets of gene and isoform sequences by successively integrating highly
confidence alignments and constraints in the alignment process. The approach is based on
partially ordered sets and novel operations to query aligned and not aligned regions, allowing
to represent maximal consistent alignments in a sparse graph data structure. We compute
a comprehensive collection of 16,066 ISARs containing isoforms of orthologous and paralo-
gous genes from 10 species ranging from yeast to human. An analysis of the gene structure
conservation of exon skipping events reveals conserved, lineage- and species-specific alter-
native splicing events. ISARs allow for the systematic analysis and in detail exploration of
the exon-intron structure across large set of phylogenetic taxa and the efficient prediction
of new isoforms across phylogenetically distant species. Finally, ISAR is fast enough to be
practically applied to very large gene isoform/transcript sets.

Publication: A manuscript of this chapter is in preparation.

My contribution: I developed the ISAR algorithm, performed the event conservation
analysis and drafted the manuscript.
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Contribution of co-authors: Ralf Zimmer inspired the work by suggesting the recur-
sive dynamic programming approach for the isoform alignment problem and drafted the
manuscript. Gergely Csaba implemented the ISAR partial order data structure, and as-
sisted with the event conservation analysis.
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6.1 Introduction

The gene structure of eukaryotic genes appears to be much more complex and complicated
as previously thought. Due to the increasing number of sequencing reads from various high-
throughput techniques, it can be observed that for almost any gene many gene products
are possible and are actually being produced in various expression contexts. Several pro-
cesses such as alternative transcription and alternative splicing are sources of a high diversity
of gene products, called (alternative) isoforms (Pal et al., 2011; Kelemen et al., 2013).
Many of these products do have specific functions in specific contexts. Alternatively spliced
isoforms may lead to different cell specializations, regulations, and differences in the protein-
protein-interaction networks in various contexts and/or species (Barbosa-Morais et al., 2012;
Ellis et al., 2012; Kelemen et al., 2013). Even highly improbable, non-trivial splicing isoforms
yielding very different protein structures with diverse functions are much more likely than
expected (Birzele et al., 2008). However, the regulation, function, and evolution of isoforms
remain largely unknown (Merkin et al., 2012). As alternative splicing is prevalent in almost
the entire eukaryotic domain and strongly affects the regulation of cells, it is important
to understand the extent, distribution, and evolution of alternative splicing. Alternative
splicing appears to occur during relatively short evolutionary periods of time (a few million
years) and, thus, is frequently lineage-specific and well conserved in only a subset of tissues
(Barbosa-Morais et al., 2012; Merkin et al., 2012). Nevertheless, conserved exon skippings in
fungi and multiple vertebrates — species separated by over one billion years of evolution—
could be experimentally identified (Awan et al., 2013). Specific estimations of the conser-
vation of alternative isoforms are subject to the used data set and the protocol to identify
conserved isoforms. In order to analyze the conservation of gene structures, isoforms, splic-
ing events, and evolutionary changes of the exon-intron structures of genes, a comprehensive
representation of all known isoforms for a group of related genes is needed.

We define such a representation as Isoform Structure Alignment (ISA), which is a
multiple alignment (or equivalent) representation of a set of isoform sequences from a set
of genes and species, which defines and exhibits all the relationships between the regions
of the isoforms implied by the processes of producing alternative gene products (isoform
consistency). Typically, the set of isoforms to be aligned is large, and thus, the underlying
structures are complex. Therefore, highly efficient and practically applicable methods pro-
ducing interpretable results are required. Even a perfect multiple alignment would not be
enough, tools facilitating the understanding of gene and isoform structures are required, for
example, tools for visualization, statistical analyses, and exploration.

The ISA problem exhibits a number of characteristics, which demand tailor-made so-
lutions: First, due to the processes of generating (alternative) isoforms, shared regions are
often highly similar or even identical if they stem from the same gene or a close paralog. Sec-
ond, large parts might be missing (gapped out) due to alternative splicing of transcripts and
lineage-specific exons. And, third, the relationships in-between the input isoform sequences
are often known due to known gene, paralog, ortholog, and phylogenetic annotations derived
from genome databases.

Practical solutions to the problem hardly exist. The closest current approaches to the
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Figure 6.1. Example of a problematic multiple sequence alignment of isoform structures
from orthologous of Alpha-1,3/1,6-Mannosyltransferase (ALG) in human, mouse and
bovine. In (a) and (b), the gene structure of the two isoforms from the human gene and the
expected multiple alignment of the orthologs in human and mouse given the relationship
between the alternative human isoforms is shown. Exon 1 and exon 3 are apparent in all
three genes with almost identical sequence. Only exon 2 is unique for human. In (a) the
expected multiple alignment projected to the exons of the genes is shown, and in (b) the
expected alignment as Hasse diagram, a summarized representation of the associated
between regions in the alignment, is shown. As multiple alignment methods are not aware
of the relationship between the isoforms, an incorrect isoform alignment is typically
constructed (c) and (d). Exon 2 is aligned with exon 1 and exon 3 and not as it should be
gapped-out.

problem are complex workflows that try to enhance annotation confidence (Yandell and Ence,
2012). A recent approach addressing the ISA problem (at least to some extent) is the gene-
structure-aware extension of the Multiple Sequence Alignment (MSA) tool PRRN (Gotoh
et al., 2014), which additionally scores for aligned exon boundaries. However, MSA methods
(Gotoh et al., 2014; Thompson et al., 1994; Notredame et al., 2000; Edgar, 2004; Löytynoja
et al., 2012; Katoh and Standley, 2013) do not guarantee isoform consistency, as they consider
each input sequence individually (including the previously mentioned gene-structure-aware
method). In Figure 6.1, a symptomatic problem of multiple alignment approaches is apparent
for the simple setting of aligning two isoforms from a human gene and one isoform from an
orthologous bovine and mouse gene. Because of the peculiarities of scoring and gap penalties,
the first and second human mutually exclusive exons are aligned to each other. Although
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exon 2 is quite short, it considerably distorts the alignment in this region and conceals
the correct isoform structure alignment. Such errors are symptomatic and can be expected
quite often with currently used alignment approaches as these approaches are not aware of
the relationships between the isoforms (see Figure 6.7 for a comprehensive analysis of such
conflicts). In order to avoid such problems, alternative isoforms are typically not considered
for the MSA computations (Villanueva-Cañas et al., 2013). Furthermore, it remains unclear
whether exon 2 is specific for human or just not annotated for the bovine and mouse gene.
Spliced aligners such as EXALIGN (Zhang and Gish, 2006) and SPALN2 (Iwata and Gotoh,
2012) align a query sequence to a target genome and are, thereby, theoretically capable
of mapping entire gene structures and completing the gene and isoform annotations. But
these methods suffer from severe limitations as they transfer isoforms based on the input
sequences alone, that is, they do not incorporate (often reliable) available annotations and
perform only a pairwise transfer. Therefore, they suffer from multi-species inconsistencies.
The same (with even greater impact) holds true for entire genome alignments as integrated
in the UCSC Genome Browser (Miller et al., 2007).

Here we present the Isoform Structure Alignment Representation (ISAR) system, a so-
lution for the ISA problem, that is, for the elucidation of relationships within (large) sets of
isoforms from orthologous and paralogous genes. The system includes an efficient method
for the computation of isoform relations in the form of a partial order representation (the
ISAR) generalizing multiple alignments. An ISAR is built such that the genomic annota-
tions are observed, and within these restrictions, the sequence similarity between the input
sequences is optimized. We provide a general framework to convert any alignment into an
ISAR, so that even the incorrect alignment as shown in Figure 6.1 can be ’repaired’. Finally,
the system includes tools to visualize the resulting representations and to query aligned and
non-aligned regions. We apply the system for the identification and prediction of conserved
spliced events in a comprehensive set of genes from 10 eukaryotic species. Also we analyze
the CPU time for the computation of ISARs and compare the gene coverage of computed
MSAs with ISAR and state-of-the-art multiple alignment methods.

6.2 Materials and Methods

An Isoform Structure Alignment Representation (ISAR) is built from a given set of genes and
isoforms together with their genomic location and their exon-intron structure, and a set of
alignment oracles, i.e. state-of-the-art alignment algorithms, which produce suggestions for
alignments between the isoforms. The isoforms may stem from the same gene, from paralogos
within the same species and from orthologs and their paralogs in different species. ISAR is
based on a partial order set (poset) of the sequence positions (which have been proposed
for the MSA problem (Lee et al., 2002) and are used by some recent alignment approaches
such as PAGAN (Löytynoja et al., 2012)). The advantage of a poset representation is that
clearly matching regions can be aligned, whereas uncertain parts of the alignment can remain
unaligned. Thus, posets are well suited for representing isoform structure alignments, as it
presumably consists of clearly aligned/matched (unified) elements (e.g. conserved exons)



94 6. Isoform Structure Alignment Representation

and on unaligned (unordered, incomparable) elements otherwise (lineage-specific exons).
Starting with only the total orders of the individual input sequence positions and the

relationships between alternative isoforms, orderings and alignment constraints are induced
by successively matching positions in different sequences. Alignment suggestions are provided
by the alignment oracles, which are applied with respect to the alignment restrictions. These
suggestions are ranked and inserted in the poset. In the following, we describe our poset
framework, and the algorithm employed for the successive and constrain-based extension
of ISARs. Finally, we describe a general approach for the identification and conservation
classification of alternative splicing events using the proposed ISAR data structure.

6.2.1 Partially Ordered Sets

Formally, a (strict) poset PO = (P,<) consists of a set of elements (P ) and a binary relation
(<). A poset PO satisfies for all a, b, c ∈ P the following conditions:

• not a < a (irreflexivity),

• a < b then not b < a (antisymmetry),

• a < b and b < c then a < c (transitivity).

Elements x, y with either x < y or y < x are called comparable and incomparable otherwise.
In our poset realization, each gene is considered as linearly (totally) ordered sets of (local)
genomic positions. Alignments introduce matches of genomic positions, which as a result
introduce a unified set consisting of the matched positions. Both genomic positions and
unified sets of genomic positions are called elements and constitute the base set P of the
partial order. The unified sets in P inherit all the <-relations from its elements. Thus, only
incomparable genomic coordinates can be matched in order to maintain consistency. In the
following, we describe the (recursive) alignment process that constructs a chain of posets
(Pi, <i) where both Pi and <i change due to the matching of further positions.

6.2.2 Partially Ordered Sets Representation and ISAR Construc-
tion

For the ISAR, we implement such a partial order representation as a time and memory effi-
cient Directed Acyclic Graph (DAG) data structure based on a minimal edge representation
of the partial order. The data structure features constructions functions such as adding iso-
forms, merging of elements (extending the binary relations), adding of elements (extending
the set P ) and obtaining the as yet unmatched regions (retrieve incomparable regions) and
various output and visualization functions. The binary relations of the posets are represented
as edges and the elements of P are represented as nodes in the graph structure, accordingly.
A node (element in P ) represents (a set of matched) genomic positions.

An ISAR is initialized from a set of n genes with length 1 . . . L(Gi), i.e. 1 . . . Gend−Gstart for
genes located on the plus-strand and 1 . . . Gstart−Gend for genes located on the minus-strand.
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Figure 6.2. Gene structure and internal graph structure for essential ISAR operations.
On the left we show matched regions based on the gene structure and on the right we show
the corresponding internal ISAR graph structure at the initialization stage and after the
matching of regions. Furthermore, we show a schematic overview of the consistency check
performed before the matching of regions. (a) At the initialization stage, for each gene the
start and end points are added to the ISAR graph structure. (b) For matched regions, for
example, exons G, H, and I, a new poset for the start and the end positions of the region is
(transitively) extended or newly constructed and integrated in the current ISAR graph
structure. As not all matches are allowed, a consistency check is required before regions
can be matched in an ISAR. Consider for example an ISAR where exons D and E and
exons A and F are matched as depicted in (c). Due to transitive inconsistencies in this
graph structure the regions D and E cannot be matched.

In the following, we consider positions within 1 . . . L(Gi) as genomic positions. It is apparent
that these local positions can be converted back to the real global coordinates with the Gstart,
Gend, strand, and chromosome information. As we implement a sparse representation of the
poset, initially only the start (position 1) and end positions (position L(Gi)) for each gene
are added to P . Furthermore, only a total order of the individual genomic positions is given
without any edges between the genes. Thus, for example, for three genes G1, G2, G3 a graph
structure such as shown in Figure 6.2a is constructed. An isoform of gene Gi consists of one
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or multiple exons (regions) within the range 1 to L(Gi).
The ISAR is refined with matched regions between genes derived from the alignment of

the isoforms, i.e. alignments between (i) the coding regions and (ii) coding and intronic
regions between genes. A matched region may represent any region within the genes such
as an exon, an amino-acid, or a nucleotide. Following the sparse representation of posets,
we also only add the start and end positions of matched (aligned) regions to the ISAR
by default. However, also note that a complete matching of all aligned positions within a
regions is possible allowing to produce base-pair and amino-acid precise MSA outputs. For
two elements x1, x2 ∈ P , the match operation modifies P by adding a new element {x1, x2}
to P , which inherits all previous relations for x1 and x2 and removes the individual x1 and
x2 elements (just to keep the number of edges as small as possible). The effect of extending
the ISAR by such a match is shown in Figure 6.2b, where the matched elements (the aligned
regions) are unified in a set that inherits all the <-relations from its elements.

The extension of the ISAR by additional matches is in general straightforward, but the
new match has to be checked for consistency with the matches already represented in the
ISAR. For example, Figure 6.2c shows a hypothetical case of a match, which is inconsistent
with other matches; from the figure it is clear that A < B = C < D, and A = F holds, now
if we match D = E, this would imply A = F < D = E, i.e. F < E an obvious contradiction
to the linear order E < F . The consistency check in ISAR checks, whether the start and
end points (x1, x2) of the regions D and F can be matched.

Given the sets of preceding and succeeding elements for x1 (PRE1 = (x ∈ P |xi < x1),
SUC1 = (x ∈ P |x1 < xi)) and the analogous set PRE2 and SUC2 for x2 (see Figure 6.3), the
consistency check can be done via

(PRE1 ∩ SUC2 = ∅) ∧ (PRE2 ∩ SUC1 = ∅)∧
(x1 6∈ PRE2 ∪ SUC2) ∧ (x2 6∈ PRE1 ∪ SUC1),

i.e. checking that the respective PRE and SUC sets are disjunct (the respective sets would
be transitively consistent after matching x1 and x2) and that the elements x1, x2 are not
element in PRE2 ∪ SUC2 and PRE1 ∪ SUC11 (in which case either x1 or x2 would lead to a
direct inconsistency), respectively.

6.2.3 Extract Unmatched Regions

The operation to obtain yet unmatched (unordered) regions and the resulting possible con-
sistent matchings between these regions from the ISAR data structure allows the exten-
sion of ISARs in an isoform-consistent manner (in the following this operation is called
get_unmatched).

The basic mode of extracting yet unordered regions from an ISAR returns all regions
between consistent matches in the ISAR (see for example region R1 in Figure 6.4a). These
regions can then be aligned with the alignment oracles, but due to transitive relations induced
by matchings with further genes (the dashed lines in Figure 6.4) it is not guaranteed that
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Figure 6.3. Sets considered for the consistency check of a match of two points (x1,i, x2,j)
for genes G1 and G2. For the consistency check the set of elements before x1,i and x2,j

(PRE1,PRE2) and the set of elements after these points (SUC1,SUC2) are retrieved from
the ISAR data structure. The points can only consistency be matched when no (transitive)
relation is conflicted. That is, the PRE and SUC sets are disjunct
(PRE1 ∩ SUC2 = ∅) ∧ (PRE2 ∩ SUC1 = ∅) and x1,i and x2,j is not already matched in the
others PRE and SUC sets (x1 6∈ PRE2 ∪ SUC2) ∧ (x2 6∈ PRE1 ∪ SUC1).

the oracles produce alignments consistent with the already computed ISAR. For example a
match between (G1,1, G2,3) would be inconsistent as G1,1 precedes G2,3.

In order to allow for more sensitive matches, we therefore also provide a consistent
get_unmatched mode that computes all region pairs from the current ISAR for which any
alignment will be consistent with the ISAR. The rationale behind this partitioning is to
produce region pairs, which necessarily allow for consistent alignments. Thus, if acceptable
and consistent alignments are existent, they will be considered under this mode of opera-
tion. Therefore, this mode is used as a second phase in the ISAR algorithm. The query
and resulting unmatched regions (R2, R3, R4) for this mode is depicted in Figure 6.4b for
two query genes G1 and G2. In order to identify all possible consistently matching regions,
we first generate all transitive relations between G1 and G2 by enumerating all shortest
paths in the current ISAR starting at G1,0 and ending at G2,n or vice versa. Given such a
completed poset graph, consistently matched regions start at an incoming edge (extended
to the left up to the next point) in one gene and end at an outgoing edge towards another
gene (extended to the right up to the next point). Thus, the possible consistent alignment
regions are determined by the actual pattern of in and out-going edges. The result is not
symmetric such that the return value is an union of the two calls get_unmatched(G1, G2)
and get_unmatched(G2, G1). The maximal partner region is determined such that no < con-
straint is violated by an alignment of this region. Thereby, any alignment produced by an
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Figure 6.4. get_unmatched (unaligned regions) between two sequences from the ISAR
data structure. The figure shows two genes G1 and G2 with matched positions at
(G1,0, G2,0) and (G1,n, G2,n). Between these matched positions only transitive relations
(dashed lines) for the points between G1,0/G2,0 and G1,n/G2,n are given. a.) The basic
get_unmatched method just returns the entire regions between matched regions (R1). But
due to the transitive relations not all possible alignments/matchings within this region
would be consistent e.g. a matching between (G1,1, G2,3) would be inconsistent as G1,1

precedes G2,3. b.) The sensitive get_unmatched method takes into account the transitive
relations and returns instead three (partly overlapping) unmatched regions R2, R3 and R4,
where all alignments will be (individually, i.e. for each region) consistent with the current
ISAR.

oracle for this region pair will be consistent. This guarantees that even if all the oracles are
applied to the whole unmatched region and only produce inconsistent alignments, consistent
alignments for certain sub-regions are obtained nevertheless (any alignment in this region is
consistent, whether it is worthwhile to be included depends on the actual quality and score
of it). Of course, to determine these consistent region pairs requires effort, but also help to
maximize the consistent matches (avoid premature stop).

6.2.4 ISAR Algorithm and Alignment Oracles

The ISAR system is based on a simple approach (similar to the Recursive Dynamic Pro-
gramming (RDP) approach proposed for multiple protein threading (Thiele et al., 1999)):
starting from a set of genes with isoform annotations from different species but also from par-
alogs from the same species, several oracles are applied to generate initial (highly confident)
alignments. These alignments dynamically define regions and imply mappings of (some of
these) regions from (a subset of) the isoforms, thereby introducing further constraints for
the remaining alignment. Every mapping of these regions partitions the original isoform
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Listing 6.1. The ISAR algorithm. The algorithm constructs a ISAR from a set of
isoforms employing interchangeable oracles to generate candidate alignment regions.

1 /∗ i n i t ∗/
2 i s a r := new ISAR ;
3 R := False ;
4 SoG := s e t o f genes with i so form annotat ions ;
5 for a l l (SoG s )
6 /∗ i n s e r t r e turns t rue i f c on s i s t e n t ∗/
7 R := R or i n s e r t ( i s a r , s ) ;
8
9 /∗ phase I+I I : use s imple or s e n s i t i v e unmatched_regions ∗/
10 for bas i c in {true , fa l se } do
11 for o r a c l e in { o r a c l e s } do
12 while (R) do
13 begin
14 /∗ s t ep 1 : a l ignment s u g g e s t i on s ∗/
15 U = get_unmatched ( i s a r , ba s i c ) ;
16 A := o r a c l e (U, SoG ) ;
17 /∗ s t ep 2 : d e f i n e reg i ons ∗/
18 B := pa r t i t i o n (A) ;
19 BS := sco r e (B) ;
20 SBS := so r t (BS ) ;
21 /∗ s t ep 3 : modify ISAR ∗/
22 R := False ;
23 for a l l (SBS b)
24 R := R or i n s e r t ( i s a r , b ) ;
25 end
26 end
27 end

alignment problem into respective sub-problems, which can be obtained from the ISAR and
are handled recursively with the same procedure until no more confident region alignments
can be found for the remaining sub-problem instances. These remain as unmatched and
unordered regions.

With the previously introduced poset data structure and the implemented query opera-
tions, this procedure can be easily realized. The ISAR algorithm (see pseudo code in Listing
6.1) initializes the ISAR structure (i.e. the poset data structure) and then recursively ap-
plies the following three steps: (i) alignment suggestions (line 15-16), (ii) region definition
(line 18-20), and (iii) ISAR modification (line 22-25). The ISAR is initialized with a set of
genes harboring isoform annotations as shown in Figure 6.2a. As previously described, only
the start and end positions of each gene are inserted into the date structure, initially. The
alignment suggestions step consists of a get_unmatched call and subsequent alignment oracle
calls to generate suggestions for the yet unmatched regions. The get_unmatched call pro-
vides ranges of possible mapped regions for all genes including exonic and intronic regions.
As initially no region is matched between genes, the first get_unmatched call just returns
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for each pair of genes Gi and Gj the entire gene regions, i.e (1,1)-(L(Gi),L(Gj)). After that,
the alignment oracles are applied to compute alignment suggestions between the relevant
unmatched regions. The second step (region definition) partitions the alignment suggestions
from the oracles into small regions representing aligned (parts of) exons. These regions are
then scored, filtered, and sorted according to a quality score. Finally, in the last step (ISAR
modification), the ISAR is sequentially extended by matched regions with a prioritization ac-
cording to the selected strategy. Steps (i) - (iii) are repeated as long as new matches can still
be identified and inserted. The different steps allow for a range of variants influencing the
sensitivity/specificity of matches and/or the prioritization of inconsistent solutions. To allow
for more sensitivity, two different modi for obtaining the as yet unmatched regions from the
ISAR are applied: the basic method returns the maximal unmatched regions between two
matches, and the sensitive method partitions these regions into sub-region pairs for which
any new alignment will be consistent. By inserting the region pairs with the highest score
first, the ISAR is extended such that inconsistent edges are automatically discarded (not
inserted into the ISAR). Thereby, an ISAR as shown in Figure 6.1a and b is constructed
instead of the isoform inconsistent one in Figure 6.1c and d. So even ’wrong’ (inconsistent)
alignments can often be converted to an ISAR and, thereby, corrected with the proposed
algorithm.

The oracles are interchangeable components of the ISAR systems that are used to gener-
ate alignment suggestions of yet unmatched regions. The alignment suggestions are (filtered
and) partitioned into regions (function partion in Listing 6.1), and sequentially inserted into
the current ISAR according to a prioritization strategy (function sort in Listing 6.1). Parti-
tioning, filtering, and the order of insertion of alignments/matches into ISAR are subject to
different parameters, which can be modified for the ISAR computation. Here, the pairwise
alignments produced by the oracles are mapped to the exon structure of the isoforms and
partitioned into regions according to the exon annotations so that a region corresponds to
an alignment of a (part) of one exon in each sequence. Many aligned regions emerge from
each oracle iterations, which may include regions that are inconsistent with the current ISAR
(see e.g. Figure 6.1c and d). We rank these regions based on their harmonic mean of the
sequence identity and the normalized length in order to add the most reliable regions first
into the ISAR and filter the inconsistent alignments. We make use of the following oracles:

MSA initialization oracle: Multiple Sequence Alignments (MSAs) are computed using
one representative isoform per gene with PRRN (Gotoh, 1996; Gotoh et al., 2014) using
the PRRN gene-structure-aware feature by providing exon annotations for the isoforms.
We apply a phylogeny-aware selection of representative isoforms. That is, we traverse the
phylogenetic tree and select the isoforms for each species along the given tree, which maximize
the sequence similarity. This allows to select a core set of isoforms, i.e. the strongest related
genes in a given set of genes. For each remaining gene (genes not represented in this tree
traversal core set), we select the isoform with maximum sequence similarity to any isoform
in the core set.
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Free-shift pairwise oracle: Pairwise free-shift alignments with the Dayhoff matrix and
affine gap costs are computed for unmatched regions of the current ISAR. For two genes
Gi and Gj the oracle first intersects the unmatched region with the isoform annotations of
the two genes in order to derive coding sequences. In the next step, the actual pairwise
alignments between the coding sequences in the different genes are computed. Note that,
because of alternative exon usage, 3’ and 5’, intron retention and alternative frame usage,
many coding sequences can be defined from an unmatched region.

Spliced alignment oracle: Similar to the pairwise sequence alignment, SPALN2 (Iwata
and Gotoh, 2012) is used with cross-species settings to compute spliced alignments in order
to infer (not yet) annotated exons in intronic regions. The unmatched regions are intersected
in one gene with the isoform annotations and aligned to the target (unmapped) region in
the other gene.

6.2.5 Query of Conserved Alternative Splicing Events

ISARs computed as previously described can be used for a wide range of analysis like the pre-
diction of new isoforms, the identification of orthologous and paralogous spliced events and
isoforms, and the evolutionary study of exon-intron changes. Here, we describe a systematic
approach for the definition of (alternative) splicing events and for the identification and clas-
sification of conserved events using the ISAR data structure. We define an alternative splicing
event as a tuple of donor (d) and acceptor (a) sites (genomic locations), which are exclusively
used in one or the other isoform. Formally, a Splice Event (SE = ((d1, a1), (d2, a2))) is any pair
of donor (d) and acceptor (a) of an isoform, represented as the d/a genomic position within
the receptive gene. With this definition Alternative Splicing Events ASE = (SE1, SE2) are
tuples of overlapping SEs between isoforms of a particular gene. A Transferred Alternative
Splicing Event TASE = (m(gi, gj, SE1),m(gi, gj, SE2)) for a target gene Gj is the projected
(mapped) ASE defined for a gene Gi using the projection m, the mapping of positions from
one gene to another gene through a look-up in the poset elements P . In order to conduct a
comprehensive analysis of alternative splicing events, we classify the TASE according to the
following criteria for a source gene G1 and target gene G2 (see also Figure 6.5 for a graphical
representation of the classification):

Annotated (A): The TASE corresponds to an G2-annotated ASE.

Gene Structure supported ASE (GS): The mapped donor/acceptor (d/a) sites in G2

correspond to annotated d/a sites.

Predicted Gene Structure supported ASE (P_GS): The mapped d/a sites correspond
to sites flanking novel predicted exons.

Supported by a Novel Intron (NI): The mapped d/a sites lie within an annotated exon.
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Figure 6.5. Schema for the exon skipping conservation classification. Exon skipping
events are defined between alternative isoforms. We show the classification of an event
(derived from gene G1 harboring two isoforms) as: (i) annotated, (ii) predicted, (iii) gene
structure supported, and (iv) supported by novel intron in genes G2, G3, G4 and G5,
respectively. In the figure each row corresponds to an isoform, each gray box
correspondences to an exon and the blue lines indicate aligned positions. For gene G2 an
orthologous exon skipping event is depicted as for both genes G1 and G2 one isoform is
observed where the same exon (the second exon) is skipped in one isoform. In gene G3, the
event is not annotated, but the gene structure allows the event, as the exon-intron
boundaries are well aligned for this event. Gene G4 also supports the event, but the
boundary of one exon had to be inferred, i.e. the first exon is not annotated, but it could
be predicted in the intronic region. Finally, for gene G5 the event is classified as predicted
by novel intron as the event positions align to exonic regions.

For P_GS and NI we, conservatively, only accept predictions that result in canonical splice
sites (donor-acceptor = GT-AG), or fully conserved non-canonical splice site, i.e. the donor
and acceptor sides are the same for the ASE and the TASE.

6.3 Results

The ISAR approach has been implemented as a practically applicable tool for a very large
isoform and transcript sets. It is accompanied by analysis tools, which allow for the visual-
ization and query of the sometimes surprisingly complicated gene structures across various
species. Its intended use is also for the analysis of these structures for the forthcoming new
genomic, meta-genomic, and transcriptomic sequencing data sets. ISAR also allows for the
systematic visualization, analysis, and in detail exploration of splicing events across large set
of phylogenetic taxa. In the following, we build ISARs for a wide range of eukaryotes in order
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Table 6.1. Total number of genes and isoforms in the ENSEMBL database and in the
computed ISARs. Genes and isoforms from ten species derived from the ENSEMBL
database (Flicek et al., 2014) are clustered into Ortholog Gene Groups (OGG) based on
their sequence identity resulting in some genes which are not included in an ortholog
cluster and are therefore not included in an ISAR.

Species Common name PG G_OGG I_ISAR

S. cerevisiae Baker’s yeast 6,692 1,704 (25%) 1,704
S. pombe Fission yeast 5,143 1,379 (27%) 1,379
C. elegans Worm 20,541 3,896 (19%) 5,575
D. melanogaster Fly 13,937 4,525 (32%) 7,167
T. nigroviridis Pufferfish 19,602 16,004 (82%) 19,048
G. gallus Chicken 15,508 13,381 (86%) 14,072
B. taurus Cow 19,994 19,411 (97%) 21,415
M. musclus Mouse 23,119 20,266 (88%) 43,517
M. mulatta Rhesus monkey 21,905 19,940 (91%) 33,254
H. sapiens Human 23,393 19,493 (83%) 82,533∑

169,834 119,999 (71%) 229,664
PG=Protein coding genes; G_OGG=Genes in OGG; I_ISAR=Isoforms in ISARs

to demonstrate the large-scale applicability of our approach. We analyze the CPU time for
the ISAR computation and compare the gene coverage of the computed ISAR alignments
with alignments computed with different MSA tools. Finally, we employ the constructed
ISARs for the identification of conserved exon skipping events.

6.3.1 Experimental Settings

In order to apply the ISAR approach on meaningful sets of isoforms, we use the gene definition
from ENSEMBL (v.75) and cluster genes from 10 selected species based on ortholog and
paralogs information from ENSEMBL Compara (Flicek et al., 2014; Vilella et al., 2009) in
order to define Ortholog Gene Groups (OGGs) for all relevant genes (see Table 6.1). We
define an OGG as a set of n ≥ 2 (orthologous or paralogous) genes, where each gene has
at least one isoform with amino acid sequence identity of ≥ 40% to another isoform from a
different gene in the same OGG, i.e. we apply a single-linkage clustering of the orthologs.
Finally, we compute for each of the 16,066 OGGs one ISAR containing all isoforms for the
corresponding genes. In total, 119,999 genes with 229,664 isoforms are contained in the
computed ISARs. ISARs are computed with the PRRN MSA (Gotoh et al., 2014), free-shift
pairwise, and the SPALN2 spliced aligner oracle (Iwata and Gotoh, 2012). The MSA oracle
is used together with the free-shift pairwise oracle in order to generate alignment candidates
between the annotated isoforms. Only after these oracles are applied, the spliced aligner
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Table 6.2. CPU time for the individual steps needed for the ISAR computation. The
CPU time is divided into the time needed for the computation of alignment suggestions
with the oracles, and the time needed for maintaining the (poset) ISAR data structure.

Type Operation Time (h)

Oracles PRRN Multiple sequence alignment 8.52
Oracles Pairwise alignments 1.38
Oracles SPALN2 Spliced alignments 107.89
Data structure Update unmatched (basic=true) 0.16
Data structure Update unmatched (basic=false) 1.45
Data structure Insert regions (consistency checks) 2.18

oracle is applied to infer new exons in intronic regions in order to complete the isoform
alignment and gene annotation. As previously described, the MSA oracle is only used for
the computation of a MSA between one represented isoform for each gene in an OGG.
Thus, this oracle provides only at the first iteration alignment suggestions. The alignment
suggestions are partitioned, filtered, and sorted based on their normalized sequence identity
and the length. We require that a region must have a minimum sequence identity of 40%
between the (sub-)exon sequences. Additionally at least 10 amino acid matches must be
in the region, or at least 50% of one of the corresponding exons must be covered in the
alignment.

6.3.2 ISAR Computational Time

The entire computation of the 16,066 ISARs takes 121.58 hours. Most of the CPU time is
spent for the computation of alignment suggestions using the oracles. The computation of
alignments with the MSA oracle and the pairwise aligner takes 8.52 and 1.38 hours, respec-
tively. The by far most time-consuming operation is the computation of spliced-alignments,
i.e the inference of new exons with SPALN2 that takes 107.89 hours. In addition to that, the
overhead of maintaining the ISAR data structure including the query of unmapped regions,
the consistency checks and the insertion of mapped regions is comparable small and takes
(only) 3.79 hours.

6.3.3 Alignment Gene Coverage

A correct multiple alignment of genes with all known alternative isoforms reveals conserved,
species, and lineage-specific coding regions (inserted amino-acids, exons, and parts of exons).
And thus, allows (besides other) the identification of conserved and species-specific exons and
the transfer of isoforms across species. But, state-of-the-art MSA methods make it difficult to
perform such identifications as they are unaware of the interrelationships between isoforms,
tend to produce compact alignments, and are, thereby, often misleading. In order to further
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Figure 6.6. Gene coverage of aligned Ortholog Gene Groups with different MSA methods.
We show the gene coverage of 16,066 MSAs computed with different MSA methods, ISAR,
and extended ISAR for groups of orthologous genes. For each pair-wise gene combination,
the alignment coverage defined as the number of aligned amino-acids divided by the total
number of amino-acids in all coding regions for the respective gene is depicted. In (a) we
show the total gene alignment coverage including conflicting alignment positions. MSA
methods are not aware of the interrelationships between isoforms and typically tend to
produce compact alignments, thus a high gene coverage is achieved (> 0.9) for methods
such as CLUSTAL, T-Coffee, MUSCLE, PRRN, and MAFFT. However, a huge fraction of
the aligned positions is wrong, i.e. isoform inconsistent. In (b) we show the correct gene
coverage for the considered methods by excluding isoform inconsistent regions from the
alignment. Due to the multiple isoform consistent alignment, ISAR is able to produce a
more complete alignment.

asses this aspect, we compute MSAs for the previously defined OGGs with CLUSTALW
(Thompson et al., 1994), PAGAN (Löytynoja et al., 2012), PRRN (Gotoh et al., 2014),
MAFFT (Katoh and Standley, 2013), MUSCLE (Edgar, 2004), and T-Coffee (Notredame
et al., 2000) using standard parameters. We compare the MSA methods based on the

Gene Coverage(G1, G2) =
Aligned amino-acids ofG1 inG2

Total amino-acids inG1

between all pairwise genes contained in these 16,066 OGGs. In addition, we compute a
maximum extended ISAR by including speculative alignments in the ISAR computations,
that is, we omit the filter step after the definition of the regions. Compared to ISAR and
PAGAN, the considered MSA methods produce in general a higher and very uniform total
gene coverage of over 90%, even for the genes with a complex gene structure, i.e. for the
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genes with many different alternative isoforms (Figure 6.6a). However, when we correct the
alignments by removing isoform inconsistent regions, it becomes apparent that this uniform
gene coverage produced by most MSA methods is only an artifact (Figure 6.6b). Indeed,
ISAR and the Extended ISAR produce MSAs with significantly higher gene coverage. This
is expected as the MSAs from gene and isoform unaware methods do have many conflicts
(see also Figure 6.7).
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Figure 6.7. We compare the number of isoform-conflicts in 16,066 multiple sequence alignments computed with
CLUSTAL, MAFFT, PPRRN, T-Coffee, PAGAN and MUSCLE for ortholog gene groups containing 229,664 isoforms
stemming from 119,999 genes. We evaluate the number of isoform conflicts for alternative isoforms in the 16,066 MSAs.
We define a conflict as an aligned position of amino-acids from the same genes but located at different genomic
positions. The size of a conflict is the number of conflicting position between two isoforms. In (a), the distribution of
the sizes of such conflicts for the different MSA methods is shown. In (b), the fraction of MSAs with (at least 10)
conflicting amino-acid positions by the maximum number of isoforms per gene in the 16,066 MSAs is shown.
Furthermore, in (c), we show the number of conflicts for each gene contained in the MSAs by the number of isoforms
(again with a minimum conflict size of 10 amino-acids). PAGAN performs best in our evaluation, but still a huge
fraction of 65% of the MSAs having at least one alternative isoform are inconsistent.
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6.3.4 Isoform Structure Alignment Representation

Most isoforms are defined for human and mouse (82,533 and 43,517 isoforms, respectively).
For the other species, only comparable few isoforms per gene are annotated, even though
the prevalence of alternative splicing, i.e. the prevalence of alternative isoforms, is likely the
same for all mammals. Since ISAR gives a complete mapping of all isoforms (i.e. also a
complete mapping of the gene structure), a transfer of the isoforms is possible by projecting
the splice sites to other genes.

Consider, for example, the (reduced) Hasse diagram and exon-intron mapped MSA vi-
sualization of the ISAR for the Ras-related protein Rab-1A ortholog group consisting of 17
genes and 30 isoforms in Figure 6.8. In the Hasse diagram, the matchings of the different
exons or parts of exons are represented by the blue lines, whereas in the exon-intron mapped
MSA visualization, a complete alignment of the isoforms based on the exons is shown. The
first gene in this representation is the query Rab-1A gene from human. This gene consists of
eight annotated (black) and one inferred (red) exons. These eight different exons are used in
different combinations to produce six different isoforms of this gene in human. In addition,
the gene has a close human paralog with two isoforms. This particular example shows a
multiple alignment/Hasse diagram for a relatively small and clearly aligned set of isoforms,
which indicates that the overall picture can be quite complicated.

This kind of representation enables the formulation of hypotheses of the evolution of
gene and isoform structures. In particular, splicing events can be compared and transferred
between species, allowing the identification of orthologous and paralogous splicing events and
the prediction of additional isoforms by projecting splicing events between species and genes.
Consider, for example, the first and second human isoforms in Figure 6.8. The third exon
of the second isoform is skipped in the first isoform. The boundaries of this skipped exon
are mapped to other genes as well and thereby isoforms that lack this specific exon can be
predicted for some of the other genes. As a simple step towards this direction, we investigate
the conservation of exon skipping events using the computed ISARs.

6.3.5 Conservation of Exon Skippings

Alternative splicing events (ASEs) like the previously described exon skipping event for two
isoforms of the human Rab-1A gene can be inferred and classified across the genes contained
in the ISARs. In Figure 6.9 examples of a transferred and classified alternative splicing
event are shown. The input exon skipping event from human is classified as gene structure
conserved (GS) in worm as the splice event in worm is unknown, but all mapped splice sites
are annotated, i.e. no alternative isoform exists with the mapped acceptor and donor site
(Figure 6.9b). In fly, however, one acceptor site is mapped within an exon and a canonical
acceptor pattern (AG) is observed downstream (Figure 6.9c). Thus, the gene structure is
considered to be conserved with respect to the analyzed ASE, and the event is predicted as
conserved through a novel intron (NI) for fly.

As shown in Figure 6.9 the conservation levels of ASEs across the taxonomy tree can ex-
hibit complex situations. In the sample shown, besides the bony vertebrates (Euteleostomi)
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Figure 6.8. Multiple sequence alignment of 17 genes with 30 isoforms from 10 species for
the RAB1 gene family. For each gene, we show the gene structure as the union of all exons
for all isoforms (first isoform for a gene labeled with the species name), and in the
associated rows, we show the isoforms (when more than one is annotated). We show two
visualizations (print options of the ISAR): on the left, the ISAR as a partial order graph
(Hasse diagram); on the right, the implied ISAR multiple alignment. Vertical blue lines
indicate matched positions in the ISAR partial order graph. Red exons indicate inferred
exons from other genes.

also protostome animals (Ecdysozoa) support the ASE on the GS level using worm as evi-
dence. The most likely explanation in terms of intron loss/gain events for this case would
be that the (unlikely) gain of an intron at that very position occurred once in a common
ancestor and that the intron afterwards has been removed in sub-trees, for example, for the
fly lineage.

Thus, to highlight this, for an ASE and an inner taxonomy node, the maximum conser-
vation level observed in two different branches is assigned in the tree visualization. In our
case, we assign GS to protostome animals as any leaf from the bony vertebrates and worm
is GS. The event is also classified as GS in fungi (S. pombe) and, thus, also classified as GS
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a)

b)

c)

Figure 6.9. Classification of a human Alternative Splicing Event (AES). (a) For the
analyzed set of isoforms and species the classification of the event is shown along the
phylogenetic tree. Classifications for inner nodes of the tree are inferred according to the
most likely explanation (see main text). (b, c) For both worm and fly the evidence for the
classification is also shown in form of the respective alignment of the ASE as extracted
from the respective ISARs. For the particular examples in (b) and (c) the alignment of the
start and the end positions of the AES is shown via the red and blue lines between the
source isoforms (wildtype/ variant) to the ortholog genes in fly and worm.

for Ascomycota as well as for Bilateria and consequently also for Opisthokonta.
We identify exon skipping events between all genes in the 16,066 computed ISARs for

the 10 selected eukaryotic species and classify their conservation level. In total, we consider
25,788 ASEs. Most events are defined for human, mouse, and rhesus monkey with 14,205,
5,346, and 4,266 events, respectively. We estimate for each species and inner taxonomy node
the maximum classification of the transferred splicing event (TASE). In general, we observe
that most events seem plausible for the higher mammals such as human and mouse (see
Figure 6.10 for the classification of the human events). This is not very surprising as most
events are derived from these two closely related species. For example, 2,344 of the 14,205
(17%) events defined for human are also classified as annotated for mouse, i.e. there exists
clear evidence of an orthologous ASE. Additionally, 8,654 (61%) of the human events are
supported by the mouse gene structure. That is, the splicing event could be mapped to
known donor and acceptor sites. Only a small number of 102 and 184 of these events are
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Figure 6.10. Classification of human alternative splicing events along the phylogenetic
tree. We classified 25,789 exon skipping events derived from the alternative isoforms in the
16,066 computed ISARs containing 247,960 isoforms for 10 species. Here, we show the
classification of the 14,205 exon skipping events annotated for human. These events are
transferred to the genes/species contained in ISAR and classified as: (A) annotated, (GS)
gene structure supported, (NI) supported by novel intron, (P_GS) supported by predicted
gene structure, and (NT) the gene for which an event is defined is conserved (i.e. for the
respective species, an orthologous gene is in the same OGG), but the event could not be
transferred. For each specie we show the highest classification class for all its genes and for
the inner-node we perform a maximum parsimony classification (see main text). Most
events are annotated, or possible for the considered mammals. Surprisingly, also several
instances of gene structure supported events in fission yeast (S. pombe) could be identified.

classified as P_GS and NI, respectively. Furthermore, 2,619 (18%) of these events could not
be transferred with the given ISARs. Surprisingly, we could also identify conserved events
between phylogenetically distant species. In total, we classified 12 events as gene structure
conserved for fission yeast (with 10 events conserved from human to yeast). In Figure 6.11
we show such an example for orthologs of the human DNA-directed RNA polymerase III
subunit RPC8 (POLR3H) (another example is shown in the previously discussed ISAR for
RAB1 in Figure 6.8). In human and rhesus monkey, an exon skipping is annotated (the
blue exon is skipped in one isoform). The acceptor and donor sides — the boundaries of this
event— are well aligned to other species (except for fly and worm) and thereby plausible for
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Figure 6.11. Possible conserved exon skipping in multiple species for orthologous genes of
the human DNA-directed RNA polymerase III subunit RPC8 (POLR3H). (a) The blue
exon is skipped in a human and rhesus monkey isoform. The boundaries of this exon
skipping are well conserved across the phylogenetic tree (with exceptions for the fly and
worm group). In (b) the implied amino-acid sequence alignment derived from the ISAR
between the human wild type (the isoform with the highlighted exon) and the S. pombe
isoform is shown. The rows on top and bottom of the isoforms indicates the exon number
for each amino-acid in the respective gene.

many species.
Our analysis reveals that many currently not annotated events are conserved with respect

to the gene structure. Thus, ISARs can be used for the systematic cross-species analysis of
spliced isoforms, the prediction of new isoforms (e.g. via the transfer of gene structure
conserved events), and the cross-species analysis of exon-intron structure changes.

6.4 Discussion

Given a set of genes with isoform annotations from several species, i.e. sequence variants
of genes, paralogs and orthologs, our goal is to represent this set such that all the relations
between parts of the sequences are exhibited and easy to access. Such a representation
has many practical applications ranging from the study of the evolution of isoforms, and
spliced events (as for example addressed in this paper) to the (cross-)species interpretation of
sequencing data-sets. We assume that the genomic positions and the exon-intron structure of
genes and its isoforms are known, which is typically the case for all isoforms stemming from
sequenced genomes. Subsequently, the relations between alternative isoforms are known.
Characteristic for a set of isoforms is that the sequences are very similar, in the case of
alternative isoforms even identical, in large parts, but that other (sometimes also large)
parts are simply missing in some or many of the sequences.
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Thus, the ISA problem demands tailor-made solutions. We adapt partial order sets
(posets) as well as the concept of Recursive Dynamic Programming (RDP) for the repre-
sentation of isoform consistent alignments. We extend the poset data structure with unique
query operations like the get_unmatched operation, which enables the constraint based ex-
tension of alignments. That is, this operation allows to align highly reliable regions first and
then to successively extent the alignment considering the already introduced constraints.
As a consequence, the ISAR graph structure can be consistently (i.e. consistent with the
current ISAR and the isoform/gene structure) extended with new alignments, e.g. newly
identified isoforms from next generation sequencing experiments can be inserted into an
ISAR. Furthermore, regions, which are not conserved, can remain unaligned in the align-
ment representation. This is of particular interest for the problem of isoform alignment as
alternative products often exhibit species and lineage-specific, or not yet annotated exons in
related genes.

Thus, the advantages of ISAR are manifold; the loosely coupled alignment oracles can be
easily exchanged enabling a flexible choice of alignment tools for the generation of alignment
suggestions used for the ISAR construction. This includes, that any pre-computed alignment
can be converted to an ISA representation and, thereby, isoform inconsistent regions are
corrected in the given alignment. As ISAR is aware of the gene and isoform structure only
alternative (i.e. not yet aligned) regions of isoforms need to be matched. Thus, alignment
extension, i.e. the insertions of further isoforms and genes to an existing ISAR, can be
easily performed. Also, typical post-processing steps, e.g. the filtering of suspicious aligned
positions, are not necessary as only alignment regions with a certain quality are considered
(e.g. region with a certain length and sequence identity). Finally, the alignment can be
nicely represented by a partial ordering of these regions (which along their isoform sequence
are of course totally ordered), where some sets of regions are mapped to each other.

6.4.1 Multiple Sequence Alignments

One obvious solution for the ISA problem would be to solely rely on the computation of an
optimal Multiple Sequence Alignment (MSA) of the set of isoforms. Already, over 100 dif-
ferent MSA methods have been published (Kemena and Notredame, 2009). But (to the best
of our knowledge) the available MSA methods fail for our goal of exhibiting and respecting
the gene and isoform structures. Moreover, as often (but in particular here), the choice of
an appropriate scoring function is not obvious. For example for the very large alternative
regions (gaps) and the large identical regions in isoform alignments the scoring does not
really help much. Computing optimal multiple alignments of many long sequences is not
easy and computationally expensive. Thus, heuristics and approximations are often used
for the multiple alignment problem. Another solution might be to rely on pairwise align-
ments, which can be computed efficiently, and then construct a consistent multiple alignment
from these pairwise alignments. There are many approaches based on this idea: progressive
alignments with guide trees, phylogeny reconstruction methods, profile based methods, and
HMMs. Iterative profile based methods approximating multiple alignments try to remedy
the consistency problem, but have problems with the profile definition and the appropriate
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scoring of profile alignments, which might not perfectly fit to the context of aligning a large
set of isoforms. In practice, we observe examples where the mentioned problems lead to
suboptimal solutions, which induce inconsistent and biologically misleading interpretations
as for example shown in Figure 6.1. Furthermore, different reading-frames for genomic po-
sitions (frame-shifts) makes it for many cases impossible to represent the ISA problem as
simple alignment problem of many amino-acid sequences (typically used as input for MSA
programs). To avoid all these problems it is common practice that only one isoform per gene
is selected (typically the longest isoform, or the set of isoforms that are most similar to each
other) for currently available multiple sequence alignments tools (Villanueva-Cañas et al.,
2013), i.e. the entire ISA problem is currently ignored.

Another possible solution for the ISA problem would be to perform a multiple DNA
aligning of all (coding) regions. But this results in a huge information loss as the scoring
is only based on nucleotides rather than amino-acids. Furthermore, the integration of pre-
dicted exons from orthologous and paralogous genes in the computed alignment cannot be
automatically performed with available MSA programs (as we did with the spliced-alignment
oracles). The predicted exons complete the gene and isoform annotation as they highlight
not yet annotated isoform and regions which are still conserved (to some extend), but not
anymore used by a species.

6.4.2 ISAR Mapped Regions

We construct a multiple alignment representation of all the sequences exhibiting all the
mappings between the alternative isoform structures. With respect to the elements, it is
clear that the basic elements are the letters/nucleotides which are totally ordered along the
isoform sequences. Apart from that, no other <-relations are implied at the beginning. By
introducing aligned matches additional <-relations are induced (inherited via the matching).
The best representation (partitioning) of isoform sequences with mapped and not mapped
regions is defined by the ultimate alignment. In principle, any base position can establish
the start or end of a region, but of course dealing with nucleotide elements is inconvenient
as their number is large, thus, typically elements can also be chains of letters (defined by
the first and last letter in a region). The size of these regions is defined by the extent of the
reliable matches between isoform sequences. Typically, isoform sequences are partitioned
into a relatively small number of these regions (comparable in size and number with the
exons of the gene), which reduce the computational effort and makes the resulting structure
and solution/alignment much more comprehensible.

Another choice to be made concerns the representation of the transitive <-relation. In
principle, one can try to represent all the pairs (x,y) for which x < y holds such that all <
queries can be answered immediately in constant time (i.e. directly in one computational
step). The other extreme is to represent as few edges as possible such that still all true
x < y can be derived (representation with the minimal number of edges). In the latter case,
an edge (x, y) is represented in the ISAR if and only if x < y and there is no z such that
x < z < y.

Here, we choose the ISAR to be built from a poset with: (i) as large as possible elements,
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and (ii) as few edges for the <-relation as possible. This makes the representation as sparse
(and we think as interpretable) as possible. This comes at the cost of computing transitive
<-relations between some elements if necessary. On the other hand, having fewer edges
can significantly reduce the effort for consistency checks (e.g. for the case that additional
matches have to be introduced into the ISAR).

6.4.3 Selection of Regions

Given a scored list of aligned regions the ISAR algorithm builds an as large (maximal) as
possible ISAR in a greedy fashion, i.e. the ISAR is extended by matched regions that are
ordered by the region score until no further extension is possible. Note, that this procedure is
heuristic and neither guarantees optimality nor a relative performance factor (approximation
quality guarantee). It is of course possible that not all matches can consistently be satisfied
in the ISAR at the same time. In this case, maximal consistent posets will be produced.
Of course, ’maximal’ needs to be defined and there are several options for the objective
function, e.g. the number of matches, the sum of match weights (alignment scores), and the
accumulated p-values of all represented matches. Here we adopt a straightforward approach
by first initializing the ISARs with highly reliable alignments and then successively extend the
ISAR with further alignments ranked by their sequence identity and length. We think, the
greedy approach is sufficient for problem instances arising in practical problem instances.
Thus, we choose this simple and highly efficient strategy. Another reason for the greedy
strategy is that it can easily be extended to produce allmaximal consistent ISARs. Moreover,
remaining alignments not consistent with the ISAR can be obtained for special treatment
and subsequent analysis.

6.5 Conclusion

ISAR is a new poset based approach for the isoform structure alignment problem. The
representation on its own is no multiple sequence alignment method, but a general framework
to integrate alignments from state-of-the-art tools in a gene and isoform consistent manner
with the ability to recursively divide the alignment task into sub-problems. The ISAR
algorithm constructs a data structure representing the gene structures and their mappings
for a (possibly large) set of input (alternative) isoform sequences. The data structure allows
to output a multiple alignment of the set of isoform sequences. As the alignment can be large
and complicated, a graphical visualization of the alignment based on the exons and introns
can be more appropriate. Thus, the core of the ISAR algorithm and also its main result is
a graph representation (ISAR) of (partial) isoform alignments, which are all consistent with
the annotated gene structures.

The ISAR algorithm can be quite flexibly customized and extended with new/additional
oracles and optimization strategies. Moreover, a detailed analysis of splicing events between
smaller subsets of sequences can be conducted. ISAR is fast enough to allow for genome-
wide analyses, e.g. for the investigation of all human genes together with its orthologs and
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paralogs across large taxonomies in order to statistically analyze splicing patterns. Thus,
ISARs of many genes facilitate the analysis of conserved spliced patterns, the transfer of
isoforms across species, and the study of gene structure evolution.



Chapter 7

Conclusion and Outlook

In this thesis, the cross-species transfer and the context-specific analysis of networks as well
as the identification of conserved alternative isoforms were addressed. In the following section
the main findings will be summarized.

Protein-Protein Interaction Transfer: Global binary protein-protein interaction net-
works are available for some eukaryotic model organisms. Such networks have been success-
fully used for the prediction of protein functions and the interpretation of experimental data.
But still the interactome for most species is sparse (especially for non-model organisms).

With COIN, we enabled the cross-species protein-protein interaction network transfer
(see Chapter 3 and Pesch and Zimmer (2013)). COIN combines diverse novel features from
orthologous genes and the network structure in order to score the likelihood of a conserved
interaction in a given target species. This approach outperforms competing methods for
the transfer of interactions to species where no or only little experimental data is available.
The sets of transferred interactions for 83 eukaryotic species can be interactively filtered and
downloaded via a web-service. Thereby, reliable protein-protein interaction networks are
made available for many species.

Cross-Species and Cross-Context Regulatory Networks: It remains unclear to which
extent regulatory networks (transcription factor-target networks) are conserved between
species. Some well-studied regulatory sub-networks suggest remarkable cross-species sim-
ilarities of regulatory mechanisms. With the ConReg system, we present a comprehensive
collection of global regulatory networks for eukaryotic model organisms and a system to
query conserved regulatory (sub)-networks (see Chapter 4 and Pesch et al. (2012); Pesch
and Zimmer (2014)). For ConReg networks were derived, integrated, and constructed from
the scientific literature, curated databases and computationally binding site predictions. We
have successfully applied the system for the identification of many conserved regulations in
fly and vertebrates.

Regulatory interactions are strongly context-specific. Therefore, besides the identification
of conserved interactions in a target species (as done with COIN and ConReg) the context
of an interaction should also be considered. Projects like ENCODE, mouseENCODE, and
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modENCODE represent a rich resource of context-specific regulatory data for hundreds of
different cell-lines.

We systematically derived regulatory networks from this data, mapped the network en-
tities to a common node set, and developed CroCo, a novel context-specific regulatory
network framework (see Chapter 5 and Pesch and Zimmer (2014)). This framework allows
performing various cross-context and cross-species network comparisons via the integration
of orthology information and feature-rich network analysis tools. Thereby, context-specific
networks can be transferred between species (similar to COIN). Flexible browsing and ag-
gregation of networks of interest is enabled via the organization of networks into ontologies
according to their meta-data. Thus, CroCo adds a unifying network-oriented view on the
data from the ENCODE projects and provides several ways to compare networks in a cross-
species and cross-context manner.

Conservation of Alternatively Spliced Variants: Network models typically neglect
alternative splicing, as experimental data often does not allow the discrimination between
different spliced isoforms. But alternative splicing can have (drastic) effects on the protein
structure, the protein function and subsequently on the networks. The analysis of alternative
splicing induced effects on the cross-species network transfer requires (besides others) the
identification of conserved, lineage- and species-specific isoforms. Correct Multiple Sequence
Alignments (MSA) allow the identification of such conserved spliced isoforms, but state-of-
the-art MSA methods produce inconsistent alignments as they ignore the interrelationships
between different alternative isoforms. With ISAR we introduced an isoform-consistent
multiple sequence alignment approach for the alignment of isoforms from orthologous and
paralogous genes (see Chapter 6). We employed ISAR for the representation of hundreds of
thousands of isoforms from ten species ranging from human to yeast. Using these ISARs,
we were able to identify conserved spliced events between phylogenetically distant species.

ISAR allows to identify similar spliced isoforms in different genes and species, and also to
perform a cross-species isoform transfer. Thereby, the evolution and origin of (alternatively)
spliced isoforms can be studied.

Perspectives for Future Research
The approaches, data repositories, and software applications devolved in this thesis offer
multiple avenues for further research:

Comprehensive Cross-Species Networks Comparison: GEO, SRA, and ArrayEx-
press provide tens of thousands of further transcription factor-binding site experiments for
diverse species and experimental settings. The integration of this data into the presented
regulatory network repositories will provide a more complete view on the experimentally
identified binding sites. Furthermore, the user-defined specification and extraction of net-
works via custom procedures could be integrated in order to account for different parameters
for the network definition. The on-demand comparison and overlap of user-defined networks
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with networks from the same species and transferred networks could be supported in order
to enable the comprehensive, cross-species, differential, and interactive analysis of context-
specific networks.

Isoform Structure Representation and Protein Interactions: Protein interfaces de-
rived from structurally resolved interacting proteins —e.g. from the PDBePISA database
(Krissinel and Henrick, 2007)— provide a set of protein interactions with precise interaction
region positions on the isoforms. Such a dataset can be used together with ISAR in order
to study the conservation of protein interactions and the alternative splicing induced effects
on interaction regions, simultaneously.

Furthermore, gene and protein expression data can be mapped to the genes and isoforms
represented in the ISARs in order to perform cross-species expression analysis and to check
the cross-species transferred isoforms in the experimental data.

Outlook

The definition of networks from (high-throughput) data can be used as starting point for the
understanding of regulatory mechanisms. But the construction of networks requires some
simplified assumptions and subsequently may not yet capture the entire complexity of reg-
ulatory mechanisms. This includes that the current network models are mostly binary and
gene centered (e.g. only one single representative isoform for each gene is considered). An
integrated (regulatory) network model for a species could include: genes, transcripts, pro-
teins, protein complexes, protein modifications, histone modifications, and microRNAs with
precise (context and conservation) annotations of the entities and interactions. Furthermore,
the user-defined extensions and modifications should be supported in order to account for
future data sets. Such an integrative network will be more realistic than current network
models and be straightforward to transfer between species as all information is at hand.
Sophisticated network analysis tools will be required to handle such a potentially very huge
and complex network. The analysis tools and networks presented within this work could be
used as building blocks to construct such an integrated network model.

Conclusion

Systems biology seeks to achieve a comprehensive understanding of interactions in biologi-
cal systems with the ultimate goal of understanding how these interactions are responsible
for the observed changes in a system. An overwhelming amount of genomic and proteomic
data is generated in various huge consortia projects and presented to the scientific com-
munity, but still for many contexts, systems and species either little or no experimental
data is available. Furthermore, it appears that everything in a cell is context-dependent:
chromatin conformation, open chromatin regions, RNA splicing, and thus subsequently, also
the gene expression and the protein interaction, and regulatory networks. Networks are an
abstract representation of experimental data. They have been successfully used to study
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regulatory dynamics, to predict protein function, and to interpret experimental data. The
transfer of networks using orthologous and paralogous genes allows the prediction of networks
even for species without experiment data. However, networks (especially derived from high-
throughput experiments) often have hundreds of thousands of interactions and are difficult
to be interpreted and compared. With ConReg, CroCo, and COIN comprehensive network
resources and software tools for the differential and context-specific network analysis and the
cross-species network transfer are presented. In addition, the ISAR approach allows to take
a step towards the cross-species analysis of the effects of alternative splicing on networks, by
providing evolutionary relationships between isoforms of orthologous and paralogous genes.
Thus, the approaches presented in this work can be used as a starting point for the under-
standing of (species-specific and conserved) regulatory and signaling mechanisms in many
biological systems.
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