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Summary 

 

Chronic obstructive pulmonary disease (COPD) is projected to be the third leading cause of death by 

2020 with cigarette smoke exposure being the main risk factor. Cigarette smoke leads to oxidative 

stress in the lung, resulting in protein damage and adaptive immune responses. Also, smokers and 

COPD patients are more susceptible to viral infections often followed by acute exacerbations of COPD 

pathogenesis. Lungs of COPD patients exhibit increased numbers of innate and adaptive immune cells, 

among these CD8+ T cells, whose abundance correlates with disease severity. The proteasome 

degrades more than 90 % of intracellular proteins - including damaged ones - into small peptides and 

is important to protect the cell from proteotoxic stress. Furthermore, the immunoproteasome, a 

specialized proteasome subtype which is expressed by default in antigen presenting cells and induced 

during infection, is involved in shaping adaptive immune responses by enhancing antigen presentation 

via major histocompatibility complex (MHC) I to cytotoxic CD8+ T cells. The effects of cigarette smoke 

on (immuno-)proteasome function have not been investigated so far.  

The first publication included in this thesis (van Rijt et al. 2012) explored the effects of acute cigarette 

smoke exposure on proteasome expression and activity. We observed that short-term exposure of 

cells to extracts of cigarette smoke directly impaired proteasome activity, while proteasomal protein 

expression was not altered. Oxidatively modified and polyubiquitinated proteins accumulated, 

suggesting augmentation of oxidative stress in cigarette smoke-treated cells. In lungs of mice acutely 

exposed to cigarette smoke, a similar effect could be observed: one of the three proteasome activities 

was significantly reduced, and ubiquitinated substrates for the proteasome were found to be 

accumulated, while proteasome expression levels were not changed. 

The second publication in this thesis (Keller et al. 2015) shows for the first time the cell-specific 

expression of immunoproteasomes in the lung and their induction by interferon-ǅ in vitro and by 

murid herpesvirus 68 (MHV-68) infection in vivo. Within these experiments, activity-based probes were 

used to clearly define the kinetics of standard and immunoproteasome subunit incorporation. In 

human lungs from controls or early-stage COPD patients, immunoproteasome expression was not 

changed. Immunoproteasomes localized mainly to alveolar macrophages, but not to parenchymal cells 

in both donors and end-stage COPD. 

Results from recent experiments were accepted for publication in the meantime (Kammerl et al. 2016): 

we investigated MHC I antigen presentation in cigarette smoke extract-treated primary immune cells 

and bronchoalveolar lavage (BAL) cells from mice exposed to cigarette smoke for ten days. In vitro 
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treatment of primary immune cells with cigarette smoke extract led to a decrease in the presentation 

of an immunoproteasome-dependent “self”-epitope. With the help of activity-based probes, we 

observed a shift from immuno- to standard proteasome activity in isolated alveolar macrophages from 

smoke-exposed mice. This shift, however, was not sufficient to impact antigen presentation of an 

immunoproteasome-dependent epitope. The altered ratio of standard and immunoproteasome might 

be explained by transcriptional downregulation of immuno-, but not standard proteasomes by 

cigarette smoke in isolated alveolar macrophages of smoke-exposed mice, which was also observed in 

total BAL cells of early-stage COPD patients. In the lungs of end-stage COPD patients, activities of both 

standard and immunoproteasome subunits were significantly decreased, while total proteasome 

protein levels were not changed.  

Taken together, we show that cigarette smoke directly impairs proteasome function in vitro and in 

vivo, which may exacerbate oxidative stress resolution in response to cigarette smoke, since the 

degradation of oxidatively modified and misfolded proteins is impaired. In addition, we observed 

alterations in immunoproteasome-dependent MHC I antigen presentation, which may contribute to 

increased susceptibility to virus-induced exacerbations, prolonged infection and possibly result in 

autoimmune responses. 
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Zusammenfassung 

 

Die chronisch obstruktive Lungenerkrankung (chronic obstructive pulmonary disease, COPD) wird laut 

Hochrechnungen die weltweit dritthäufigste Todesursache im Jahr 2020 darstellen. Zigarettenkonsum 

gilt als Hauptrisikofaktor für die Entstehung der COPD. Das Rauchen von Zigaretten führt in der Lunge 

zu oxidativem Stress, welcher zu Beschädigung von Proteinen und Induktion einer adaptiven 

Immunantwort führt. Raucher und COPD-Patienten sind außerdem anfälliger für Virusinfektionen, die 

oft in einer akuten Exazerbation der COPD-Pathogenese resultieren. Die Lungen von COPD-Patienten 

weisen hierbei eine erhöhte Anzahl an Zellen des angeborenen und adaptiven Immunsystems auf, 

darunter befinden sich auch CD8+ T-Zellen, deren Häufigkeit mit dem Krankheitsstadium korreliert. 

Das Proteasom baut mehr als 90 % aller intrazellulären, einschließlich beschädigter Proteine zu kurzen 

Peptiden ab und schützt die Zelle so vor proteotoxischem Stress. Das Immunproteasom stellt eine 

besondere Proteasomform dar und ist in antigenpräsentierenden Zellen ständig exprimiert oder kann 

durch Infektion induziert werden. Es ist weiterhin maßgeblicher Bestandteil der adaptiven 

Immunantwort, da es die Antigenpräsentation über den Haupthistokompatibilitätskomplex (major 

histocompatibility complex, MHC) Klasse I zu CD8+ T-Zellen verbessert. Der Effekt von Zigarettenrauch 

auf die Funktion des (Immun-)Proteasoms wurde noch nicht untersucht. 

Die erste Veröffentlichung in dieser Dissertation (van Rijt et al. 2012) untersuchte die akuten Effekte 

der Zigarettenrauch-Exposition auf Proteasomexpression und -aktivität. Dabei konnten wir 

beobachten, dass kurzzeitige Exposition gegenüber Zigarettenrauch die Proteasomaktivität direkt 

beeinträchtigte, während sich die Proteasomexpression nicht änderte. Die Anreicherung 

oxidativ-modifizierter und ubiquitinierter Proteine legte eine Verstärkung des oxidativen Stresses in 

Zellen nahe, die mit Zigarettenrauch behandelt wurden. In Lungen von Mäusen, die akut 

Zigarettenrauch ausgesetzt waren, wurde ein ähnlicher Effekt beobachtet: Eine der drei 

Proteasomaktivitäten war signifikant reduziert, während ubiquitinierte Proteasomsubstrate 

akkumulierten, die Proteasomexpression jedoch unverändert war. 

Die zweite Veröffentlichung dieser Dissertation (Keller et al. 2015) zeigt erstmals die zellspezifische 

Expression von Immunproteasomen in der Lunge sowie ihre Induktion durch Interferon-ǅ in vitro und 

nach Infektion mit dem murinen Herpesvirus 68 (MHV-68) in vivo. Für diese Untersuchungen wurde 

von Aktivitäts-basierten Sonden Gebrauch gemacht, um die Kinetik der Inkorporation von Standard- 

und Immunproteasom-Untereinheiten genau zu beschreiben. In humanen Lungen von 

Kontrollpersonen oder Patienten mit COPD im Frühstadium wurde keine Änderung der 
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Immunproteasomexpression beobachtet. Außerdem wurden Immunproteasomen hauptsächlich in 

Alveolarmakrophagen von Organspendern und COPD-Patienten im Endstadium detektiert, jedoch 

nicht in deren parenchymalen Zellen.  

Neu erhobene Daten wurden vor kurzem zur Publikation angenommen (Kammerl et al. 2016): Wir 

untersuchten MHC I Antigenpräsentation in primären Immunzellen, die mit Zigarettenrauchextrakt 

behandelt wurden, sowie in Bronchoalveolär-lavagierten (BAL)-Zellen, die von Mäusen stammten, 

welche zehn Tage lang Zigarettenrauch ausgesetzt waren. Die in vitro Behandlung von primären 

Immunzellen mit Zigarettenrauchextrakt führte zur Verminderung der Präsentation eines 

Immunproteasom-abhängigen γSelbst“-Epitops. Mit Hilfe von Aktivitäts-basierten Sonden 

beobachteten wir eine Verschiebung von Immun- zu Standardproteasomaktivität in isolierten 

Alveolarmakrophagen von berauchten Mäusen. Jedoch war diese Verschiebung nicht ausreichend, um 

die Antigenpräsentation eines Immunproteasom-abhängigen Epitops zu verändern. Das verschobene 

Verhältnis von Standard- und Immunproteasom könnte durch die transkriptionelle Herabregulierung 

der Immunproteasom-Untereinheiten durch Zigarettenrauch in isolierten Alveolarmakrophagen erklärt 

werden. Die Standardproteasom-Untereinheiten blieben hierbei unverändert. Dieser Effekt wurde auch 

in BAL-Zellen von COPD-Patienten im Frühstadium beobachtet. Die Lungen von COPD-Patienten im 

Endstadium wiesen signifikant verminderte Standard- und Immunproteasomaktivitäten auf, während 

auf Proteineben die Proteasomexpression unverändert war. 

Zusammenfassend haben wir gezeigt, dass Zigarettenrauch die Proteasomfunktion in vitro und in vivo 

direkt beeinträchtigt, was möglicherweise die Beseitigung des Zigarettenrauch-induzierten oxidativen 

Stresses erschwert, da der Abbau oxidativ-modifizierter und fehlgefalteter Proteine beeinträchtigt ist. 

Außerdem konnten wir Veränderungen der Immunproteasom-abhängigen MHC I-Antigenpräsentation 

beobachten, was eventuell zu einer gesteigerten Anfälligkeit für Virus-induzierte Exazerbationen, 

verlängerter Infektionsdauer und zu Autoimmunprozessen führt. 
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1. Introduction1 

 

1.1 Pathogenesis of chronic obstructive pulmonary 

disease (COPD)  

Chronic obstructive pulmonary disease (COPD) affects more than 300 million people worldwide and is 

estimated to become the third leading cause of global deaths in 2020 (Decramer et al. 2012; Vos et al. 

2012). COPD is defined by progressive airflow limitation and airway inflammation, chronic activation of 

immune responses and chronic bronchitis, mucus hypersecretion and loss of alveolar septa, i.e. 

emphysema formation (Decramer et al. 2012). These hallmarks of COPD result in reduced lung 

function, impaired gas exchange and severely diminished quality of life. COPD is uncurable with 

available treatments only improving symptoms and slowing down disease progression (Decramer et al. 

2012). Risk factors for the development of COPD include, amongst others, genetic susceptibility, 

exposure to particles (cigarette smoke, air pollution), and age (Postma et al. 2015). COPD diagnosis 

was initially categorized by the “Global Initiative for Chronic Obstructive Lung Disease” (GOLD) into 

four stages (I – IV) according to spirometry of the patients, but only recently, a modified assessment 

for COPD has been released (GOLD Report 2015), which also takes symptoms and comorbidities into 

account (group A-D). Acute exacerbations of the disease are often associated with viral and bacterial 

respiratory infections and contribute to reduced quality of life, acceleration of decline in lung function, 

hospitalization, or even death (Donaldson et al. 2002; Sethi & Murphy 2008; Decramer et al. 2012). 

 

1.1.1 Tobacco smoke induces oxidative stress and is the main risk factor for 

COPD 

Tobacco smoking is the main risk factor for COPD. However, air-pollution and biomass fuel exposure 

are becoming more evident as risk factors, especially in low-income countries (Mannino & Buist 2007; 

Salvi & Barnes 2009). While 5 % of the general global population is affected by COPD, the prevalence 

goes up to 50 % in heavy smokers (Rennard & Vestbo 2006; Vos et al. 2012). Cigarette smoke consists 

of more than 4700 chemical compounds, including toxins, oxidants and carcinogens, and is a major 

source of oxidative stress which leads to reduced antioxidant capacities (Smith & Hansch 2000). The 

highly reactive compounds of cigarette smoke are known to cause DNA adducts, peroxidation of 

lipids, and protein modifications (Church & Pryor 1985; Cai et al. 2009; F. Liu et al. 2010). Protein 

modifications can result in misfolding, unfolding, and loss of function. Misfolded proteins have been 
                                                      
1 partially adapted from Meiners et al. 2014 
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shown to lead to endoplasmic reticulum (ER) stress and induction of the unfolded protein response 

(UPR). When production of misfolded proteins exceeds the cell’s capacity to degrade them, this can 

result in protein stress or even proteotoxicity (Wei et al. 2013). Perpetuated exposure to oxidative 

components of cigarette smoke thus challenges proteostasis in lung cells and can lead to apoptosis. 

Components of the UPR have been shown to be increased in healthy smokers (Kelsen et al. 2008) as 

well as COPD patients (Malhotra et al. 2009; Min et al. 2011), suggesting a role for proteostasis 

imbalance in COPD pathogenesis. 

While cigarette smoke might play an important role in initiating COPD pathogenesis, the disease is not 

reversible when patients quit smoking, although smoking cessation might slow down lung function 

decline and is highly recommended as a first therapeutic measure (Tashkin & Murray 2009; Decramer 

et al. 2012). The irreversibility might be partially explained with irreversible epigenetic changes induced 

by cigarette smoke (Stämpfli & Anderson 2009; Besingi & Johansson 2014; Schamberger et al. 2014), 

persistence of oxidative stress (Louhelainen et al. 2009), irreversibly altered microbiome colonization 

(Marsland & Gollwitzer 2014), and sustained activation of (autoreactive) adaptive immune responses, 

leading to self-propagation of inflammation and tissue destruction (Rutgers et al. 2000; Morissette et 

al. 2014). Importantly, cigarette smoke is harmful not only to the lung, but also to other organ systems, 

including the immune system (Kitamura 1987; Stämpfli & Anderson 2009).  

 

1.1.2 Immune responses in smokers and COPD patients 

The manifold components of cigarette smoke include both pro-inflammatory (e.g. LPS) and immune-

suppressive agents (Hogg 2003; Mehta et al. 2008; Stämpfli & Anderson 2009; Gonçalves et al. 2011; 

Larsson et al. 2012). Cigarette smoke directly damages the integrity of the airway epithelial cell layer, 

increases permeability of this physical barrier, and impairs mucociliary clearance of pathogens 

(Stämpfli & Anderson 2009). Cigarette smoking results in activation of epithelial cells to secrete 

“danger signals”, which act as Toll-like receptor (TLR) agonists contributing to the secretion of 

proinflammatory cytokines, and recruitment of macrophages and neutrophils (Cosio et al. 2009; 

Brusselle et al. 2011). Macrophages and neutrophils secrete proteases, leading to degradation of 

extracellular matrix and tissue injury and propagate inflammation (Kirkham & Barnes 2013). 

At the same time, cigarette smoke has been shown to impair monocyte and macrophage function (e.g. 

phagocytosis of apoptotic cells and bacteria; cytokine production) (Ouyang et al. 2000; McMaster et al. 

2008; Kollert et al. 2009; Bozinovski et al. 2011; Karavitis & Kovacs 2011; Minematsu et al. 2011; O’Leary 

et al. 2014; van Zyl-Smit et al. 2014) and possibly skewing their polarization state towards an 

anti-inflammatory M2 phenotype (Shaykhiev et al. 2009; Stämpfli & Anderson 2009; Hodge et al. 2011; 

Kaku et al. 2014).  
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The sustained presence of TLR agonists also leads to maturation of lung-residing immature dendritic 

cells and their trafficking to lymph nodes, where they present antigens, e.g. extracellular matrix 

degradation products, to T cells and an adaptive immune response is shaped (Cosio et al. 2009). 

Accordingly, the lungs of COPD patients exhibit not only increased levels of innate (neutrophils, 

macrophages), but also adaptive immune cells (cluster of differentiation (CD)8+ T cells, CD4+ T cells, 

B cells), highlighting the role of the immune system in the pathogenesis of COPD (Barnes 2008; 

Brusselle et al. 2011; Baraldo et al. 2012; Holloway & Donnelly 2013). 

It is well established that COPD lungs exhibit increased numbers of CD8+ T cells, which has been 

shown to correlate with disease severity (Saetta et al. 1998; Majo et al. 2001; Hogg et al. 2004; Tzanakis 

et al. 2004). Furthermore, it was demonstrated that the functionality of CD8+ T cells is altered in COPD 

(Freeman et al. 2010; Freeman et al. 2013; Grundy et al. 2013). Novel insight into the role of CD8+ 

T cells for COPD pathogenesis has been gained by using mouse models of COPD. Like in human 

COPD, CD8+ T cells accumulate in mice exposed to cigarette smoke for six months and persist upon 

smoking cessation (Motz et al. 2008). By diminishing CD8+ T cells with a specific depleting antibody, 

inflammatory and emphysematous responses in mice could be blunted compared to isotype-treated 

control mice (Podolin et al. 2013). Furthermore, CD8-deficient mice were protected from emphysema 

development after six months of cigarette smoke exposure and exhibited reduced inflammatory 

bronchoalveolar lavage (BAL) cells (Maeno et al. 2007). The lab of Michael Borchers showed that 

pulmonary T cells of mice exposed to cigarette smoke for six months are capable of recapitulating 

emphysematous changes in cigarette smoke naïve immunodeficient as well as immunocompetent 

mice (Motz et al. 2010; Eppert et al. 2013). In these studies, transfer of only CD8+ T cells was not 

sufficient, but required co-transfer of CD4+ T cells as well. However, they showed that the effect was 

dependent on major histocompatibility complex (MHC) class I antigen presentation, as the mice 

deficient for Ǆ2-microglobulin, a crucial component of the MHC I complex, did not develop 

emphysema after T cell transfer from cigarette smoke-exposed mice. These data suggest a role for 

CD8+ T cell-mediated immune response in COPD pathogenesis. 

 

Cigarette smoke increases susceptibility to infection 

Cigarette smoking has been associated with increased susceptibility to respiratory infections (Arcavi & 

Benowitz 2004; Stämpfli & Anderson 2009; Shang et al. 2011; Feldman & Anderson 2013; Sajjan 2013).  

Moreover, cigarette smoke has been shown to dampen the host’s immune system to combat bacteria 

and viruses. The molecular mechanism behind this effect involves reduction of interferon (IFN) 

signaling both in immune (Braun et al. 1998; Edwards et al. 1999; Mian et al. 2009) and parenchymal 

cells (Bauer et al. 2008; Modestou et al. 2010; Eddleston et al. 2011; Proud et al. 2012; Hudy et al. 2014) 

in response to smoke in vitro. 
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When mice were exposed to cigarette smoke prior to influenza infection, they exhibited increased virus 

titers in the lung (Gualano et al. 2008). Another study also showed an amplified inflammatory response 

in smoke-exposed mice that were either given a viral mimic, polyinosinic:polycytidylic acid (polyI:C), or 

were infected with influenza virus, characterized by increased levels of inflammatory cytokines and 

interferons in the lung (Kang et al. 2008). However, one study found reduced production of interferons 

in influenza infected and cigarette smoke-exposed mice, compared to virus-infection alone (Wu et al. 

2014). These differences might be explained by the different smoking protocols and durations of 

cigarette smoke exposure (two vs. six weeks in the latter). 

 

Virus-induced COPD exacerbations 

COPD patients, like smokers, are more susceptible to respiratory infections, have a more severe course 

of disease and need more time to resolve the infection (Stämpfli & Anderson 2009; Mallia et al. 2011; 

Beasley et al. 2012). Respiratory infections in COPD patients often result in acute exacerbations, but 

also non-infectious causes for exacerbations are known, such as pneumothorax, pulmonary embolism, 

or air pollution (Sethi & Murphy 2008; Decramer et al. 2012). Acute exacerbations in COPD are defined 

by short periods (at least 48 h) of increased cough, dyspnea, and production of sputum that can 

become purulent (Decramer et al. 2012). The frequency of acute exacerbations is directly linked with 

the outcome: frequent exacerbators exhibit a faster decline in lung function, and are more likely to be 

hospitalized than infrequent exacerbators, moreover, their mortality is increased (Wedzicha et al. 2013).  

The majority of acute exacerbations (60-80 %) is caused by infections and occurs one to two times per 

year in COPD patients, but frequency increases with severity of disease (Sethi & Murphy 2008). Typical 

pathogens found during exacerbations include bacterial strains of Haemophilus influenza (cause of 

20-30 % of exacerbations) and Streptococcus pneumoniae (10-15 %), but also rhinovirus (20-25 %), 

parainfluenza virus (5-10 %) and influenza virus (5-10 %) are frequently found (Sethi & Murphy 2008; 

Zwaans et al. 2014). Although the prevalence of influenza virus is low, this pathogen is associated with 

more severe exacerbations requiring hospitalization of COPD patients (Sethi & Murphy 2008). 

While it was thought for a long time that the lower airways are sterile in health, improved 

methodology for sampling, identification and quantification of bacteria has led to the insight that 

different regions of the lung can harbor diverse bacterial strains, the composition of the microbiome, 

however, changes with cigarette smoking and COPD (Marsland & Gollwitzer 2014; Sze et al. 2015). 

Bacterial colonialization affects virus entry and modulates immune responses and, vice versa, viral 

infections are capable of paving the way for the expansion of pathogenic bacteria (Papi et al. 2006; 

Wilkinson et al. 2006; Mallia et al. 2012; Sajjan 2013; Marsland & Gollwitzer 2014). 
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Autoimmune aspects of COPD 

Several lines of evidence support the assumption that COPD involves autoimmune processes that are 

facilitated by cigarette smoke (Agusti 2003; Grumelli et al. 2004; Taraseviciene-Stewart et al. 2005; 

Feghali-Bostwick et al. 2008; Stefanska & Walsh 2009; Arnson et al. 2010; Duncan 2010; Duncan 2011; 

Kheradmand et al. 2012; Tzouvelekis et al. 2012; Bieber et al. 2013). These include the presence of 

tertiary lymphoid follicles in COPD lungs, which consist of B and T cells as well as dendritic cells, 

indicating ongoing adaptive immune responses against a prevailing antigen. Furthermore, these 

follicles persist after smoking cessation (Morissette et al. 2014). Whether lymphoid follicles are 

beneficial or harmful in COPD, however, is still under debate (Brusselle et al. 2009; Brusselle et al. 2011; 

Hansbro & Knight 2013; Yadava & Marsland 2013; John-Schuster et al. 2014). Within lymphoid follicles, 

B and T cells are primed by antigen presenting dendritic cells and clonally expand in response to 

antigens (Brusselle et al. 2011). These antigens include microbial antigens, cigarette smoke-derived 

antigens or (modified) autoantigens such as extracellular matrix degradation products (Brusselle et al. 

2009). Indeed, autoantibodies against multiple self-antigens have been described in COPD patients, 

possibly correlating with disease severity and/or smoking status (Lee et al. 2007; Leidinger et al. 2009; 

Packard et al. 2013; Morissette et al. 2014). 

 

1.2 The proteasome system 

The proteasome is a 2.5 MDa protease complex and the main protein degradation system within the 

cell. More than 90 % of all cellular proteins are processed by the proteasome into peptides of 3-22 

amino acids in length. These can be used to recycle amino acids or are loaded onto MHC I molecules 

to communicate the intracellular protein composition to the immune system (Kisselev et al. 1999; 

Goldberg 2003; Kloetzel 2004; Finley 2009). However, less than 0.1 % of the peptides generated by the 

proteasome are presented at the cell surface (Yewdell et al. 2003). Due to the broad nature of 

substrates, the proteasome is involved in many essential cellular functions such as protein quality 

control, degradation of (oxidatively) damaged proteins, transcription, immune responses, cell signaling, 

and apoptosis (Finley 2009; Schmidt & Finley 2014). In the normal course of a protein’s lifetime, 

synthesis and degradation rate determine the half-life of both short- and long-lived proteins for 

cellular maintenance (Yewdell 2001). Controlled protein breakdown by the proteasome involves 

tagging of protein substrates with ubiquitin chains linked at the lysine at position 48 (K48) via a 

cascade of E1, E2 and E3 enzymes. However, ubiquitin-independent degradation by the proteasome 

has also been described (Kish-Trier & Hill 2013; Schmidt & Finley 2014).  

The proteasome consists of a central 20S catalytic core particle, which needs to be activated by 

proteasome regulators (Figure 1). Several regulators are known that bind to and thus mediate opening 

of the 20S for substrate entry (Meiners et al. 2014). The 19S is the best studied regulator: it consists of 
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Figure 1: Diversity of 20S proteasome complexes. (A) The 20S core particle is composed of four stacked 
heptameric rings. The outer α-rings close the pore and protect from uncontrolled substrate entry. The inner two 
Ǆ-rings comprise three catalytically active subunits each: the standard c20S proteasome contains Ǆ1, Ǆ2, and Ǆ5, 
the immunoproteasome (i20S) incorporates LMP2, MECL-1, and LMP7. In cortical thymic epithelial cells, the 
thymus-specific catalytic subunit Ǆ5t is expressed to form the thymoproteasome (t20S). Intermediate proteasomes 
containing a mixture of standard and immunosubunits have also been reported. (B) Proteasome substrate 
specificity and turnover are modulated through binding of regulatory particles to the 20S core particles. Four 
types of regulatory particles are known: 19S, the two 11S-types PA28α/Ǆ and PA28ǅ, PA200, and PI31. These 
regulators can bind to one or both sides of c20S and i20S. c20S, standard 20S proteasome; i20S, 
immunoproteasome; LMP, low molecular mass protein; MECL-1, multicatalytic endopeptidase complex-like 1: PA, 
proteasome activator; PI, proteasome inhibitor; t20S, thymoproteasome. Figures taken from (Meiners et al. 2014). 

at least 18 different subunits, including ubiquitin receptors, and is thus accountable for ubiquitin- and 

ATP-dependent degradation of substrates (Lander et al. 2012). Together with the 20S, it forms the 

26S/30S proteasome by binding to one or both sides, respectively. Two 11S-types of regulators are 

known: the IFNǅ-inducible heteroheptameric PA28α/Ǆ and the homoheptameric PA28ǅ, which can 

only be found in the nucleus. Furthermore, two monomeric regulators, PA200 as well as PI31, have 

been described. Proteasome regulators have been shown to determine substrate specificity and 

turnover rate. However, their function is not well understood. This is especially true for PA200 and PI31, 

and PI31 might even serve as an inhibitor for 20S activity (Li et al. 2014).  

 

1.2.1 The proteasome 20S catalytic core particle 

The 20S proteasome consists of a barrel-shaped core particle composed of four rings comprising 

seven subunits each (Figure 1A). Seven related, but distinct α-subunits form the two outer α-rings 

(Finley 2009). Because the N-termini of the α-subunits close the entry pore and inhibit substrate entry, 

the 20S core particle is rather inert in itself and needs regulators for activation (Finley 2009). Three of 

the seven Ǆ-subunits that constitute each of the two inner Ǆ-rings are catalytically active and mediate 

the proteolytic capacity of the 20S proteasome.  

These three Ǆ-subunits determine the species of the 20S core particle: depending on the cell-type, 

cytokine milieu or activation state of the cell, different Ǆ-subunits are expressed and incorporated into 

mature 20S. The standard 20S proteasome is expressed in every cell-type and integrates the Ǆ1, Ǆ2, 

A B 

 



Introduction 

    7 

and Ǆ5 subunits, which cleave after acidic, basic, or hydrophobic amino acids, respectively (Huber et al. 

2012). In lymphoid cells, however, three different Ǆ-subunits are constitutively expressed (Sijts & 

Kloetzel 2011): low molecular mass protein (LMP) 2, multicatalytic endopeptidase complex-like 1 

(MECL-1), and LMP7 (also called Ǆ1i, Ǆ2i, and Ǆ5i). In non-immune cells, these three so-called 

immunosubunits can be induced by IFNǅ or tumor necrosis factor (TNF) α signaling (Aki et al. 1994; 

Hallermalm et al. 2001). When immunosubunits are expressed, they are preferentially incorporated into 

newly assembled 20S immunoproteasomes (Kingsbury et al. 2000; Joeris et al. 2012). Furthermore, they 

exhibit altered cleavage preferences compared to standard proteasomes, with a strongly reduced 

post-acidic cleavage activity based on the Ǆ1/LMP2 exchange, leading to generation of peptides that 

are preferentially loaded onto MHC I molecules compared to peptides derived from standard 

proteasomes (Groettrup et al. 2001). In addition, mixed proteasomes have been described consisting 

of both standard and immunoproteasome subunits, increasing the peptide pool even more (Zanker et 

al. 2013; Dahlmann et al. 2000).  

A general overview of the role of immunoproteasomes and their regulation can be found in the recent 

review by Meiners and colleagues, in which the authors also highlight the known roles of 

(immuno-)proteasomes in lung diseases (Meiners et al. 2014). The manifold functions of 

immunoproteasomes that have emerged in the past years go far beyond their initial proposed function 

of improved generation of antigenic peptides (Figure 2) and include, amongst others, cytokine 

production, resolution of oxidative stress, NFκB signaling as well as T cell differentiation (summarized 

in the following reviews: Groettrup et al. 2010; Angeles et al. 2012; Ebstein et al. 2012; Basler et al. 

2013).  

A third proteasome species is the 20S thymoproteasome that incorporates the Ǆ5t-subunit and the two 

immunosubunits LMP2 and MECL-1. The Ǆ5t-subunit exhibits reduced post-hydrophobic cleavage, is 

exclusively expressed in cortical thymic epithelial cells and is important for positive selection of CD8+ 

T cells in the thymus (Murata et al. 2007; Klein et al. 2009; Xing et al. 2013; Klein et al. 2014). 

 

1.2.2 Function of proteasomes in oxidative stress responses 

The ubiquitin-proteasome system plays an important role in the degradation of damaged and 

misfolded proteins, which might aggregate and exhibit cytotoxic potential (Goldberg 2003; Meiners & 

Eickelberg 2012). Proteins can be damaged by reactive agents, such as present in cigarette smoke, or 

which are generated at conditions of oxidative stress and oxidatively modify amino acids, resulting in 

loss of protein function and rendering them prone for selective degradation by the proteasome 

(Goldberg 2003).  

It has been proposed that the 20S proteasome is able to degrade oxidatively-modified proteins in an 

ATP- and ubiqutitin-independent manner, which was shown by in vitro digestion of native or oxidized 
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proteins by isolated proteasomes (Davies 2001; Pickering et al. 2010; Pickering & Davies 2012; Jung et 

al. 2013). Within these studies, the role of several proteasome regulators was examined: while 20S 

proteasomes alone were not very efficient, addition of PA28α/Ǆ substantially increased degradation 

rate, while 19S and PA200 did not enhance or even inhibited degradation of oxidized substrate. The 

relevance of these results in a cellular context or in vivo has yet to be demonstrated.  

A special role for immunoproteasomes in the resolution of oxidative stress and turnover of oxidatively 

damaged proteins has been discussed. Firstly, immunoproteasome levels have been reported to 

increase in response to oxidative conditions in vitro by treatment of cells with hydrogen peroxide 

(Pickering et al. 2010) and in vivo in an experimental model of neurodegeneration induced by oxidative 

stress, which was reversible by treatment with antioxidants (Launay et al. 2013). Secondly, knock-out 

mice of immunoproteasome subunit LMP2 showed increased levels of carbonylated proteins 

compared to wildtype controls at both four and twelve months of age (Ding et al. 2006) and 

immunoproteasome-deficient cells needed more time to resolve IFNǅ-induced oxidatively modified, 

i.e. carbonylated, proteins (Seifert et al. 2010). In the latter publication, the authors suggested a specific 

role of immunoproteasomes in the oxidative stress response. However, these results, including an 

increase of polyubiquitinated proteins after IFNǅ induction, could not be reproduced by Nathan and 

colleagues (Nathan et al. 2013). Thus, the specific function of immunoproteasomes in response to 

oxidative stress remains controversial. 

 

1.2.3 Function of immunoproteasomes in MHC I antigen presentation 

Immunoproteasomes enable rapid resolution of viral infections 

Immunoproteasomes play an essential role at three crucial checkpoints of CD8+ T cell-mediated 

adaptive immune responses against intracellular infections (McCarthy & Weinberg 2015). Firstly, 

immunoproteasomes are important for negative selection of autoreactive CD8+ T cells in the thymus: 

immunoproteasomes are expressed in medullary thymic epithelial cells (mTECs), where they present 

the cellular “self” peptide repertoire to CD8+ T cells (Osterloh et al. 2006) and enable selection of only 

those T cells that do not bind to “self” peptide/MHC I complexes, as cells with a high affinity are 

eliminated (Anderton & Wraith 2002; Groettrup et al. 2010). The remaining naïve CD8+ T cells migrate 

to lymph nodes and persist until they are activated by antigen-presenting cells (APCs) in order to 

execute their effector function and combat infections. 

Secondly, APCs, especially dendritic cells, mainly express immunoproteasomes and are able to engulf 

apoptotic or necrotic particles of infected cells (Sijts & Kloetzel 2011). Subsequently, APCs mature and 

traffic to draining lymph nodes, where they present immunoproteasome-derived pathogen-peptides 

on MHC I together with co-stimulatory molecules to evoke a specific CD8+ T cell responses (so-called 

cross-presentation). With the help of APCs, intracellular viral or bacterial infections are thus 
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Figure 2: Immunoproteasome function in antigen presentation. Different proteasome populations contribute 
to antigen processing. Cytosolic and nuclear proteins have been shown to be degraded into peptides by standard 
(red), mixed, and immunoproteasomes (green) and may contribute to differential protein cleavage and epitope 
generation. In addition, the different catalytic subcomplexes can associate with several regulatory particles, for 
example, the 19S and PA28α/Ǆ complex. Less than 0.1 % of the generated peptides are translocated into the 
lumen of the ER by the TAP transporter and are loaded onto MHC I molecules. MHC I/peptide complexes traffic 
from the ER to the outer cell membrane, where they can be detected by CD8+ T cells. ER, endoplasmic reticulum; 
MHC, major histocompatibility complex; TAP, transporter associated with antigen presentation. Figure taken from 
(Meiners et al. 2014). 

communicated to naïve CD8+ T cells to induce a pathogen-specific adaptive immune response. After 

activation, the CD8+ T cells move to the site of infection and patrol the infected organ in search for 

their specific epitope bound to MHC I to kill the infected cell. 

Thirdly, to limit pathogen replication by selectively killing infected cells, cells need to signal their 

infection status to patrolling activated CD8+ T cells. In order to be recognized by CD8+ T cells, infected 

cells upregulate immunoproteasome expression to present the exact same immunoproteasome-

generated pathogen peptide as during CD8+ T cell activation by the APC (Khan et al. 2001; Shin et al. 

2006). 

For all these aforementioned processes, immunoproteasomes enhance antigen presentation by 

increasing the quantity (Deol et al. 2007; Mishto et al. 2014) and/or quality of peptides for MHC I 

antigen presentation (Fehling et al. 1994; Groettrup et al. 2001; Toes et al. 2001; Van den Eynde 2001; 

Dalet et al. 2011). Immunoproteasomes have been reported to shape the MHC I peptide repertoire, 

which was illustrated by the use of proteasome inhibitors or immunoproteasome knock-out mice, 

either of single or all three immunosubunits (Groettrup et al. 1995; Morel et al. 2000; Chen et al. 2001; 

de Verteuil et al. 2010; Guillaume et al. 2010; Kincaid et al. 2012). Accordingly, immunoproteasomes 

dictate generation of the T cell receptor (TCR) repertoire on CD8+ T cells after infection, which has 

been shown in several mouse models of viral or bacterial infections. In these models, and strongly 
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depending on the pathogen, immunoproteasome (subunit) deficiency effects ranged from no 

detectable differences in virulence (Nussbaum et al. 2005; Brosch et al. 2012), altered antigenic peptide 

presentation and CD8+ T cell response (Van Kaer et al. 1994; Sibille et al. 1995; Schwarz, de Giuli, et al. 

2000; Schwarz, van Den Broek, et al. 2000; Pang et al. 2006; Jäkel et al. 2009; Basler et al. 2011; de Graaf 

et al. 2011; Hutchinson et al. 2011; Zanker et al. 2013) to even increased morbidity and mortality (Tu et 

al. 2009; Opitz et al. 2011). These publications show the importance of immunoproteasomes during 

infection to enhance antigen presentation and to increase pathogen-derived peptides. It is, however, 

equally important to downregulate immunoproteasomes after the infection is resolved to limit 

autoreactive CD8+ T cells that might have been evoked during infection (Groettrup et al. 2001; 

Groettrup et al. 2010). 

 

Immunoproteasomes protect from autoimmunity 

Intriguingly, the cell type- and tissue-specific distribution of immunoproteasomes is important for 

protecting the organism from autoimmunity after infection. Immune cells such as APCs express 

immunoproteasomes constitutively, whereas parenchymal cells only express them in response to 

inflammatory cytokines such as IFNǅ or TNFα. During CD8+ T cell priming in the lymphatic tissues, 

both immunoproteasome-derived pathogen-, but also “self”-peptides are presented on MHC I by the 

APC. If a “self”-reactive CD8+ T cell, despite thymic selection, would be activated during infection by an 

APC, the same immunoproteasome-dependent “self”-peptide might be presented by an infected 

parenchymal cell, however, the epitope would cease to be presented by parenchymal cells after the 

infection is resolved, because immunoproteasomes are gradually replaced by standard proteasomes 

(Heink 2005). Certain immunoproteasome-derived “self”-peptides are thus presented to the immune 

system only during infection, thereby protecting from autoreactive immune responses (Groettrup et al. 

2001; Shin et al. 2006; Eleftheriadis 2012). 

Indeed, it has been shown that immunoproteasomes are expressed in human autoimmune disorders 

(Egerer et al. 2006; Krause et al. 2006; Mishto et al. 2010; Ghannam et al. 2014) and experimental 

models of autoimmunity (Basler et al. 2010; Belogurov et al. 2015). Furthermore, single nucleotide 

polymorphisms (SNP) of proteasome subunits have been associated with autoimmune diseases with 

partially conflicting results (an overview can be found in Supplementary Table S1 in Meiners et al. 

2014). Recently, several mutations in the human PSMB8 gene encoding the LMP7 immunoproteasome 

subunit have been identified that lead to autoinflammatory disorders (Agarwal et al. 2010; Arima et al. 

2011; Kitamura et al. 2011; Liu et al. 2012; McDermott et al. 2015).  

Accordingly, the use of immunoproteasome-specific inhibitors has been proposed for treatment of 

autoimmune disorders (Bird 2009; Bellavista et al. 2014; Kisselev & Groettrup 2014; Kniepert & 

Groettrup 2014; Verbrugge et al. 2015), as they have been proven to successfully counteract 
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autoimmune responses in several experimental models of autoimmune diseases (Muchamuel et al. 

2009; Basler et al. 2010; Zaiss et al. 2011; Ichikawa et al. 2012; Nagayama et al. 2012; Basler et al. 2014). 

In these models, immunoproteasomes have been shown to not only alter antigen processing, but also 

to modulate cytokine production and T cell differentiation as demonstrated previously (Kalim et al. 

2012). 

 

1.3 Objectives 

The main risk factor for the development of COPD is chronic exposure to cigarette smoke, which 

induces oxidative stress in the lung and evokes adaptive immune responses, both of which are 

hallmarks of COPD pathogenesis and are ongoing even after smoking cessation. In the course of 

COPD, viral infections exacerbate pathogenesis and worsen quality of life and prognosis of the 

patients.  

The proteasome is the main proteolytic system to degrade oxitatively modified proteins and is 

involved in shaping adaptive immune responses via MHC I antigen processing. While oxidative stress 

has been shown to impair the proteolytic activity of the proteasome, this has not been studied for 

cigarette smoke exposure. Moreover, the effect of oxidative stress in general and cigarette smoke in 

particular on proteasome-mediated MHC I antigen presentation is unknown. 

The aims of this thesis were: first, to comprehensively analyze the regulation of proteasome function in 

response to cigarette smoke in vitro and in vivo using expression analysis and activity assays; second, 

to investigate the function of immunoproteasomes, a specialized proteasome form for enhancing 

MHC I antigen presentation, in the lung; and third, to analyze how proteasome-mediated MHC I 

antigen presentation is altered in response to cigarette smoke. These results may explain the increased 

susceptibility to virus infections as observed in smokers and COPD patients. 
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2. Results: Publications originating from this thesis 

 

2.1 Summary of publications 

Acute cigarette smoke exposure impairs proteasome function in the lung: van Rijt et al. 2012 

The first publication included in this thesis examined the effects of cigarette smoke on proteasome 

activity by exposing lung cell lines to extracts of cigarette smoke and by exposing mice to mainstream 

cigarette smoke. In this study, we investigated the effect of cigarette smoke on general protein 

oxidative modifications and ubiquitination, but also the specific effects of cigarette smoke on 

proteasome function in vitro in lung cell lines and in vivo in the lung. Acute exposure of lung cell lines 

(2-24 h) to cigarette smoke extract (CSE) led to an increase of reactive oxygen species, oxidative 

protein modifications, and ubiquitinated proteins. The proteasome itself was not affected in terms of 

subunit expression, but proteasome activity was significantly reduced in a time- and dose-dependent 

manner. With native gel analysis and substrate overlay techniques, we could show that both 20S and 

26S activity were affected by CSE exposure.  

When mice were exposed to mainstream cigarette smoke, the trypsin-like (post-basic) activity was 

significantly reduced in whole lung tissue. At the same time, levels of ubiquitinated proteins were 

significantly increased. With the commercially available fluorogenic substrates used in this publication, 

however, it is not possible to distinguish between standard- and immunoproteasome activities, which 

leaves the question unanswered to which degree immunoproteasome activity is affected by cigarette 

smoke in particular. In summary, this study showed for the first time a direct impairment of the 

proteasome by cigarette smoke in vitro and in vivo. 

 

Regulation of immunoproteasome function in the lung: Keller et al. 2015 

The second publication included in this thesis explored the cell-specific expression of 

immunoproteasomes in the lung and their induction by IFNǅ in vitro and after murid herpesvirus 68 

(MHV-68) infection in vivo. While it was previously demonstrated that virus infection induces 

immunoproteasome subunits incorporated into 20S in the lung (Kremer et al. 2010), we here show that 

MHV-68 infection leads to incorporation of immunosubunits into both 20S and 26S proteasome 

complexes. Furthermore, with the use of fluorescently-labeled activity-based probes we dissected the 

kinetics of standard vs. immunosubunit activity up to 148 days post-infection. With this unique 

methodology, we have been able to show that the lung is capable of presenting immunoproteasome-
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dependent pathogen-derived antigenic peptides on MHC I, which is essential for rapid resolution of 

infection.  

In lung cancer resectates of non-smokers, smokers, and COPD GOLD stage I or II patients, we did not 

observe obvious alterations in immunoproteasome expression. When human lung explants from 

donors or end-stage COPD patients were examined, surprisingly no change in cellular distribution was 

observed: immunoproteasomes localized mainly to alveolar macrophages, but not to parenchymal 

cells, even though COPD is described as an inflammatory disorder with increased IFNǅ and TNFα levels 

(Barnes 2008; Brusselle et al. 2011).  

With this work, we showed for the first time the cell-specific distribution and regulation of 

immunoproteasomes in the lung. 
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van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ,
Eickelberg O, Meiners S. Acute cigarette smoke exposure impairs
proteasome function in the lung. Am J Physiol Lung Cell Mol
Physiol 303: L814 –L823, 2012. First published September 7,
2012; doi:10.1152/ajplung.00128.2012.—Cigarette smoke mediates
DNA damage, lipid peroxidation, and modification and misfolding of
proteins, thereby inducing severe cellular damage. The ubiquitin
proteasome system serves as the major disposal system for modified
and misfolded proteins and is thus essential for proper cellular
function. Its role in cigarette smoke-induced cell damage, however, is
largely unknown. We hypothesized that the ubiquitin-proteasome
system is involved in the degradation of cigarette smoke-damaged
proteins and that cigarette smoke exposure impairs the proteasome
itself. Here, we show that treatment of human alveolar epithelial cells
with cigarette smoke extract (CSE) induced time- and dose-dependent
cell death, a rise in intracellular reactive oxygen species, and in-
creased levels of carbonylated and polyubiquitinated proteins. While
high doses of CSE severely impaired all three proteasomal activities,
low CSE concentrations significantly inhibited only the trypsin-like
activity of the proteasome in alveolar and bronchial epithelial cells.
Moreover, acute exposure of mice to cigarette smoke significantly
impaired the trypsin-like activity by 25% in the lungs. Reduced
proteasome activity was not due to transcriptional regulation of the
proteasome. Notably, cigarette smoke exposure induced accumulation
of polyubiquitinated proteins in the soluble and insoluble protein
fraction of the lung. We show for the first time that acute exposure to
cigarette smoke directly impairs proteasome activity in the lungs of
mice and in human epithelial cells at low doses without affecting
proteasome expression. Our results indicate that defective protea-
somal protein quality control may exacerbate the detrimental effects
of cigarette smoke in the lung.

ubiquitin proteasome system; cigarette smoke; protein quality control;
oxidative stress; chronic obstructive pulmonary disease

CIGARETTE SMOKE IS ONE OF the primary risk factors for the patho-
genesis of chronic obstructive pulmonary disease (COPD) (10).
COPD is a major and rapidly increasing cause of death and
morbidity worldwide (4). The pathology of COPD can be
regarded as a persistent inflammatory immune response to
oxidative and chemical injury by noxious particles such as
cigarette smoke (18). Cigarette smoke contains over 4,700
chemical components, including many reactive compounds
such as quinones and aldehydes. The highly reactive com-
pounds of cigarette smoke are known to induce DNA damage,
peroxidation of lipids, and protein modifications (7). Repeated
and persistent exposure to cigarette smoke thus mediates se-
vere damage in the cell and contributes to cell death, induction

of immune responses, and subsequent destruction of lung
tissue (36).

The ubiquitin proteasome system is the main protein waste
disposal and recycling system of the cell. Proper proteasome
function is essential for numerous cellular processes such as
proliferation and signaling, transcriptional regulation, and im-
mune responses (2, 21, 23). Before degradation, proteins are
tagged with polyubiquitin chains via an enzymatic cascade.
The structure and length of the polyubiquitin chains can be
highly diverse; however, ubiquitin chains conjugated through
the lysine at position 48 of ubiquitin (Lys48) specifically lead to
proteasomal degradation, whereas chains that are for instance
linked at Lys63 are implicated in signaling or trafficking events
(31). The 26S proteasome consists of one catalytic (20S) and
two regulatory (19S) particles. Polyubiquitinated proteins are
recognized by the regulatory particle (19S) of the proteasome
where the substrates are deubiquitinated and unfolded for entry
into the 20S catalytic core of the proteasome (12). The 20S
core proteasome is built of four staggered rings of seven related
but different �-subunits and seven distinct �-subunits that form
a ���� barrel-like structure (16). Inside the barrel-shaped 20S,
the three catalytically active subunits, caspase-like (�1), tryp-
sin-like (�2), and chymotrypsin-like (�5) activities, cleave the
proteins into small peptides that can be used for major histo-
compatibility complex (MHC) class I antigen presentation
(33). Proteasome function is not only essential for the normal
turnover of most cytoplasmic and nuclear proteins, it also
serves as the central quality control system to rapidly destroy
misfolded and modified proteins, among them oxidatively
modified proteins (13, 19, 27). Importantly, the proteasome
itself can be a target for oxidative and chemical modification
and inactivation (3, 5, 6, 9, 14, 32). It has been proposed that
impaired proteasome function can result in a vicious cycle of
detrimental accumulation of modified and ubiquitinated pro-
teins, cellular dysfunction, and cell death (8). Accordingly,
impaired proteasome function has been implicated in several
protein quality diseases such as neurodegenerative disorders,
cardiac and endothelial dysfunction, and cataract formation (8,
9, 17, 34). In the lung, reduced expression of proteasomal
subunits and diminished proteasomal activity has been found to
inversely correlate with lung function in COPD patients (25).

Surprisingly, not much is known about the role of the
proteasome in cigarette smoke-induced cellular damage or
whether the proteasome itself is affected by cigarette smoke.
We provide evidence that acute cigarette smoke treatment
induces accumulation and aggregation of polyubiquitinated
proteins in a lung epithelial cell line as well as in the lungs of
cigarette smoke-exposed mice. Moreover, cigarette smoke di-
rectly impairs proteasome activity, without affecting protea-
some expression. Specifically, the trypsin-like activity of the
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proteasome is inhibited in alveolar and bronchial lung epithe-
lial cells at nontoxic doses of cigarette smoke extract (CSE) as
well as in cigarette smoke-exposed mice lungs.

EXPERIMENTAL PROCEDURES

Cell culture. The A549 human alveolar epithelial and the 16HBE
human bronchial epithelial cell lines were obtained from ATCC
(American Type Culture Collection, Manassas, VA). A549 cells were
maintained in DMEM media (LifeSciences) and 16HBE cells in
MEM media (LifeSciences). Media was supplemented with 10% FBS.
All cells were grown at 37°C in a humidified atmosphere containing
5% CO2.

Preparation of CSE. Research-grade cigarettes (3R4F) were ob-
tained from the Kentucky Tobacco Research and Development Center
at the University of Kentucky (Lexington, KY). Stocks of CSE for
treatment of A549 cells were prepared by bubbling smoke from 29
cigarettes through 400 ml of DMEM cell culture media at puffing
speed in a closed environment with limited air flow. CSE was sterile
filtered through a 0.20-�m filter (Minisart; Sartorius Stedim Biotech),
separated into aliquots, and stored at �20°C for future use. This stock
was considered as 100% CSE extract. For cell treatment, CSE stock
was supplemented with FBS (to a final concentration of 10%) and
serially diluted to the stated concentrations with full media. The CSE
could be frozen and thawed again without loss of potency. For the
16HBE cells, 16 cigarettes were smoked by bubbling smoke through
400 ml of MEM media. For serial dilutions, the CSE concentrations
used for the 16HBE cells were calculated relative to the 100% CSE
stock used for the A549 cells.

Cytotoxicity assay. Cytotoxicity of CSE was assessed using the
2,5-diphenyltetrazolium bromide (MTT) assay. Briefly, 6 � 104 cells/
well were seeded in 24-well plates. After seeding (24 h), cells were
treated with CSE. After treatment, 100 �l of freshly prepared solution of
5 mg thiazolyl blue tetrazolium bromide per milliliter PBS (Sigma) were
added to each well and incubated at 37°C for 1 h. The supernatant was
then aspirated, and the blue crystals were dissolved in 500 �l isopropanol
� 0.1% Triton X-100. Absorbance was measured at 570 nm using a
Tristar LB 941 plate reader (Berthold Technologies).

Detection of intracellular oxidative stress. For the detection of
reactive oxygen species (ROS), the fluorescent probe carboxy-
H2DCF-DA (Invitrogen) was used. In short, 3 � 105 cells were
seeded per well in six-well plates. After seeding (24 h), cells were
treated with different concentrations of CSE and trypsinized after 2, 6,
or 24 h. After being washed with PBS, cells were incubated for 20 min
in a 5 �M carboxy-H2DCF-DA solution in PBS at 37°C. Cells were
then resuspended in ice-cold PBS and analyzed by fluorescence-
activated cell sorter (FACS) analysis (Becton-Dickenson LSRII).

Live/dead assay using annexin V. Induction of apoptosis or necrosis
was investigated in A549 cells using annexin V-fluorescein isothio-
cyanate (FITC) and propidium iodide (PI) double staining. For that,
3 � 105 cells were seeded per well in six-well plates and treated 24
h after seeding with CSE with the indicated concentrations. CSE-
containing media was then removed, and cells were washed,
trypsinized, and stained with annexin V-FITC and PI in binding buffer
(10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2, pH 7.4) at room
temperature for 15 min. Samples were then analyzed by FACS
analysis (BD LSRII) using FlowJo software (version 7.6.5).

Proteasome activity assay. The chymotrypsin-like, trypsin-like, and
caspase-like proteasome activities in cell and tissue lysates were assessed
using luminogenic substrates Suc-LLVY-aminoluciferin, Z-LRR-amino-
luciferin, and Z-nLPnLD-aminoluciferin, respectively (Proteasome-Glo
Assay System; Promega). For each assay, 3 � 105 cells were seeded per
well in six-well plates. After seeding (24 h), cells were treated with CSE.
Cells were then harvested by scraping and lysed under hypoosmotic
conditions by repeated freezing (liquid nitrogen) and thawing (37°C) in
distilled water containing protease inhibitor cocktail (Complete; Roche).
Whole lung tissue was homogenized using the Mikro-Dismembrator

(Sartorius Stedim Biotech) and lysed as described above. After removal
of cellular debris by centrifugation, supernatants were used for determi-
nation of protein concentration (Pierce BCA kit; Thermo Scientific) and
proteasome activity. The chymotrypsin-like, caspase-like, and trypsin-
like proteasome activities were determined in cell lysates using the
Proteasome-Glo 3 Substrate System (Promega) according to the manu-
facturer’s instructions. The luminescent signal was measured in a Tristar
LB 941 plate reader (Berthold Technologies). Enzymatic activity was
normalized to protein concentration. Data are expressed relative to the
activity of untreated control lysates; the average of all individual control
samples within an experiment was taken and set as one; individual
control samples and treated samples are shown relative to this average.

Native gel analysis. Chymotrypsin-like proteasome activity in cell
lysates was assessed using the synthetic peptide substrate Suc-LVVY
linked to the fluorescent molecule AMC (Enzo Life Sciences). For
native gel analysis, equal amounts of protein (25 �g) from hypoos-
motic lysates were subjected to electrophoresis (16 h, 50 V, 4°C) on
5% nondenaturing gels. Proteasome activity was detected by incubat-
ing the gels for 30–60 min at 37°C in an ATP-regenerating buffer (50
mM Tris, pH 7.5, 10 mM MgCl2, 1 mM ATP, and 1 mM dithiothre-
itol) containing 50 �M Suc-LVVY-AMC. Gels were analyzed using
the ChemiDoc XRS� (Bio-Rad) with an excitation wavelength of 380
nm and emission wavelength of 460 nm. Band intensity was quanti-
fied with the Image Lab software package (version 3.0.1 beta 2) from
Bio-Rad. Equal protein loading was assessed by PAGE-Blue (Fer-
mentas) staining of native gels after overlay assays according to the
manufacturer’s instructions.

In vitro proteasome activity. Purified 20S proteasome was kindly
provided by Burkhardt Dahlmann from the Institute of Biochemistry
of the Charité Berlin. To confirm the purity of the purified 20S batch,
10 ng of 20S were run on a 10% SDS gel. Silver staining confirmed
the typical band pattern of highly purified 20S proteasomes (data not
shown). We exposed 50 ng of purified 20S solution in 10 mM HEPES
buffer (pH 7.6) to CSE in 10 mM HEPES buffer for 15 min at room
temperature. The chymotrypsin-like, caspase-like, and trypsin-like
proteasome activities were determined using the Proteasome-Glo 3
Substrate System according to the manufacturer’s instructions. The
luminescent signal was quantified in a Tristar LB 941 plate reader
(Berthold Technologies). Enzymatic activity was expressed relative to
the activity of untreated controls.

Antibodies and western blot. Anti-�5 proteasome subunit antibody
was purchased from BostonBiochem, and anti-�1 and anti-�2 protea-
some subunit antibodies were purchased from Santa Cruz Biotech-
nology. The anti-polyubiquitin (FK1 clone) antibody was obtained
from Enzo Life Sciences, the anti-Lys48-polyubiquitin antibody was
obtained from Millipore, the �-actin antibody was obtained from
CellSignaling, and the OxyBlot protein oxidation detection kit was
purchased from Millipore. For Western blot analysis of cultured cells,
3 � 105 cells were seeded per well in six-well plates. After seeding
(24 h), cells were treated with CSE, trypsinized, washed with PBS,
and lysed in RIPA buffer (50 mM Tris·HCl, pH 7.5, 150 mM NaCl,
1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% SDS) sup-
plemented with protease inhibitor cocktail (Complete; Roche). Frozen
whole lung tissue was homogenized using the Mikro-Dismembrator
(Sartorius Stedim Biotech) and lysed in RIPA buffer. For detecting
ubiquitinated proteins in the insoluble fraction, cell or tissue lysate
pellets were resuspended in 8 M urea in Tris buffer (pH 7.6). Protein
content was determined in the supernatants using the Pierce BCA
protein assay kit (Thermo Scientific). To detect oxidatively modified
proteins, the OxyBlot kit was used according to the manufacturer’s
instructions.

For Western blot analysis, equal amounts of protein (10–20 �g)
were subjected to electrophoresis on 10 or 12% SDS-PAGE gels and
blotted onto polyvinylidene difluoride (PVDF) membranes. Mem-
branes were treated with antibodies using standard Western blot
techniques. The ECL Plus Detection Reagent (GE Healthcare) was
used for chemiluminescent detection, and membranes were analyzed
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using Kodak X-Omal LS films (Sigma-Aldrich) in a Curix 60 devel-
oper (Agfa) or with the ChemiDoc XRS� (Bio-Rad). Amido Black
staining (Sigma-Aldrich) of the PVDF membranes was performed for
protein loading control according to the manufacturer’s instructions.
Densitometry analysis was performed including all amido black-
stained bands.

Glutathione levels. Glutathione (GSH) levels in whole blood and in
tissue extracts were analyzed using the GSH-Glo Glutathione assay
(Promega) according to the manufacturer’s instructions. The lumines-
cent signal was measured in a Tristar LB 941 plate reader (Berthold
Technologies). Enzymatic activity was standardized to protein content
and expressed relative to the activity of untreated controls.

Animals and maintenance. Female C57BL/6 mice were obtained
from Charles River and housed in rooms maintained at constant
temperature and humidity with a 12:12-h light cycle. Animals were
allowed food and water ad libitum. All animal experiments were
conducted under strict governmental and international guidelines and
were approved by the local government for the administrative region
of Upper Bavaria.

Cigarette smoke exposure of mice. Mice were exposed to main-
stream cigarette smoke of a concentration of 500 mg/m3 total partic-
ulate matter for 50 min two times per day for 3 days. The smoke was
generated using 10 3R4F Research Cigarettes (Tobacco Research
Institute, University of Kentucky) per exposure cycle and was drawn
into the exposure chamber via a peristaltic pump. Control mice were
kept in a filtered air environment. Immediately after the last exposure,
mice were killed with an overdose of ketamine/xylazine followed by
exsanguination. Mice were dissected, and bronchoalveolar lavage
(BAL) fluid was obtained to perform BAL differential cell counts.
Blood was collected from the femoral artery. Lung tissue was shock-
frozen in liquid nitrogen and used for protein extraction or fixed by
intratracheal instillation of paraformaldehyde and embedded into
paraffin for hematoxylin-eosin staining.

Preparation of BAL. The lungs were lavaged using a cannula
inserted in the trachea and instilling the lungs with 4 � 0.5 ml aliquots

of sterile PBS (Life Technologies). Total cell counts were determined
in a hemocytometer via trypan blue exclusion.

Statistical analysis. The one-way ANOVA and Bonferroni posttest
was used for statistical analysis of the in vitro data and the Mann-
Whitney test for the animal data using GraphPad Prism software
(version 5.00). Outlier tests were performed on all datasets using
GraphPad Prism software (version 5.00).

RESULTS

CSE induces cell death and oxidative stress in human
alveolar epithelial cells. The effects of CSE on cell death and
oxidative stress were investigated in A549 human lung epithe-
lial cells. Exposure of A549 cells to increasing doses of CSE
resulted in a concentration-dependent decrease of cell survival
after 24 h as determined by MTT assays (Fig. 1A). Exposure to
100% CSE induced nearly complete cell death after 24 h,
whereas 50% CSE diminished cell survival by one-half. Ex-
posure to 25% CSE, however, did not significantly compro-
mise survival of A549 cells. Of note, even high doses of CSE
had only minor acute effects on viability of A549 cells as
observed in MTT assays after 2 and 6 h (Fig. 1A). To determine
the nature of CSE-induced cell death, we performed double
staining of cells with PI and annexin V-FITC. Annexin V is a
sensitive probe for identifying early apoptotic cells, whereas PI
is taken up by necrotic cells after breakdown of plasma
membranes. CSE induced necrosis in A549 cells in a dose-
dependent manner as observed by annexin V-negative and
PI-positive staining after 24 h (Fig. 1B). After 48 h, cells
exposed to 100% CSE had all died; however, cells exposed to
10 and 25% CSE had completely recovered, showing no
positive PI staining (data not shown). Because it is known that
cigarette smoke mediates oxidative damage in the cell (7),

Fig. 1. Cigarette smoke extract (CSE) causes cell death and oxidative stress in lung epithelial cells. A: CSE caused a concentration-dependent decrease in cell
survival in A549 cells after 24 h but not after 2 or 6 h of exposure as determined by MTT assays. B: 24 h of 25, 50, and 100% of CSE exposure induced
dose-dependent necrosis in A549 cells as assessed by annexin V-fluorescein isothiocyanate and propidium iodide (PI) double staining and fluorescence-activated
cell sorter analysis. C: exposure of A549 cells to CSE resulted in a concentration-dependent increase of reactive oxygen species (ROS) after 2, 6, and 24 h (n �

3 � SD for all experiments, *P 	 0.05).
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intracellular levels of ROS were assessed by FACS analysis
using the carboxy-H2DCF-DA fluorescent probe. Increased
levels of ROS were already observed at low CSE concentra-
tions and short exposure times of 2 and 6 h in A549 cells.
Furthermore, the increased amount of intracellular ROS was
concentration-dependent and persisted even with the low CSE
doses for at least 24 h (Fig. 1C). These data accord with
published data on the effect of CSE on epithelial cells (22, 24).

Accumulation of oxidatively modified and polyubiquitinated
proteins by CSE. Next, we determined whether the increased
levels of oxidative stress due to CSE exposure also led to the
accumulation of oxidatively modified proteins. CSE induced
time- and concentration-dependent accumulation of oxida-
tively modified proteins that was evident after 2, 6, and 24 h of
CSE exposure (Fig. 2A). Importantly, a transient accumulation
of polyubiquitinated proteins was also seen by Western blot-
ting (Fig. 2B), suggesting that ubiquitin-mediated degradation
contributes to the elimination of cigarette smoke-modified
proteins. Moreover, high CSE doses resulted in the accumula-
tion of insoluble ubiquitinated proteins already after 2 h of
exposure (Fig. 2C). These data indicate that, at high doses of
CSE, the ubiquitin proteasome system is unable to cope with
severely damaged proteins that accumulate in the cell in the
form of insoluble polyubiquitinated aggregates.

Inhibition of the proteasome by CSE. The above data suggest
that CSE challenges the proteolytic capacity of the ubiquitin
proteasome system. We thus investigated if the proteasome
itself is a target for inactivation by cigarette smoke exposure.
A549 cells were treated with increasing amounts of CSE for 2,
6, and 24 h, and proteasome activity was analyzed using
substrate-specific luminescent probes for the three different
activity sites. After only 2 h of CSE exposure, a significant
decrease of the chymotrypsin-like and a distinct increase of the
caspase-like activity site were observed for high concentrations
of CSE (Fig. 3A). After 6 h, reduced chymotrypsin-like activity
was observed also for lower CSE concentrations, and a repro-
ducible decrease of the trypsin-like activity was observed for
100% CSE (Fig. 3A). After 24 h, all three activities were
significantly impaired at high CSE concentrations of 50 and
100%. Importantly, the trypsin-like active site was also inhib-
ited at the lower and nontoxic CSE dose of 25%. The inhibition
of the chymotrypsin-like activity by CSE was confirmed with
a second method, i.e., native gel analysis. This method allows
the detection and discrimination of the two main proteasomal
complexes in the cell, the 26S and 20S proteasomes, based on
an activity assay. Band intensities of 26S and 20S complexes
were quantified and clearly showed a dose-dependent decrease
of the chymotrypsin-like activity for both subtypes of the

Fig. 2. Exposure to CSE leads to the accumulation of carbonylated and polyubiquitinated proteins. A: OxyBlot analysis of A549 cells exposed to increasing doses
of CSE showed an accumulation of oxidatively modified proteins after 2, 6, and 24 h. B: Western blot analysis of A549 protein extracts revealed accumulation
of polyubiquitinated proteins after 2, 6, and 24 h. C: Western blot analysis of the insoluble protein fraction (cell pellets) of A549 protein extracts showed
CSE-dependent accumulation of polyubiquitinated proteins after 2 and 6 h. Equal protein loading of blots was confirmed by amido black staining of membranes.
Representative Western blots of 3 independent experiments are shown.
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proteasome after 2, 6, and 24 h (Fig. 3B). The ratio between
proteolytically active 26S and 20S was not affected by CSE
treatment of A549 cells.

To assess if oxidative stress alone is responsible for the
observed impairment of the proteasome, cells were treated with
varying concentrations of hydrogen peroxide (H2O2) for 24 h
and checked for proteasome activity (data not shown). Treat-
ment (24 h) with lethal doses of H2O2 did not cause any
impairment of proteasome activity but rather resulted in in-
creased activity of the chymotrypsin- and caspase-like activity
sites.

To evaluate whether CSE can directly inhibit the protea-
some, purified 20S core particle was exposed to increasing
amounts of CSE, and proteasome activity was measured. A
dose-dependent inhibition of all three active sites was observed
after only 15 min of exposure to CSE (Fig. 3C). Surprisingly,
the caspase-like activity site was inhibited most effectively.
These results clearly indicate an acute effect of CSE on
proteasome activity.

Expression of the proteasome is not altered by CSE. Next,
we assessed whether the impairment of proteasome activity by
CSE is the result of expressional changes of the proteasome.
A549 cells were treated with low (25%) and high (100%) doses
of CSE for up to 24 h, and expression of several proteasomal

subunits was analyzed by Western blotting. As depicted in Fig. 4,

all three 20S proteasome core subunits analyzed, i.e., the

�5-subunit (outer ring), �1-subunit (caspase-like activity),

and �2-subunit (trypsin-like activity), were not affected by

CSE treatment.

CSE impairs proteasome activity in human bronchial epi-

thelial cells. Because bronchial epithelial cells represent the

first line of defense against cigarette smoke, we investigated

whether proteasome activity of human bronchial lung epithelial

cells is also affected by CSE. The 16HBE bronchial cells

showed a concentration-dependent decrease of survival after

24 h of CSE exposure as assessed by MTT assays (Fig. 5A).

16HBE cells were more sensitive to CSE treatment than A549

alveolar epithelial cells, since 25% CSE resulted in 
50% cell

death of the 16HBE cells, whereas it was nontoxic in A549

cells (Fig. 1A).

Importantly, proteasome inhibition was also seen in 16HBE

bronchial epithelial cells after 24 h of CSE exposure (Fig. 5B).

Inhibition of the chymotrypsin-like activity site was only

observed for high and toxic CSE doses of 25%. However, the

trypsin-like activity was significantly inhibited also at lower

and nontoxic concentrations of CSE. These data indicate that

inhibition of the proteasome due to acute smoke exposure is

Fig. 3. Exposure to CSE leads to proteasome inhibition in A549 cells. A: significant impairment of the proteasome was observed after 24 h for the
chymotrypsin-like (CT-L), trypsin-like (T-L), and the caspase-like (C-L) activity sites. The trypsin-like site was inhibited also at nontoxic CSE doses after 24 h.
B: dose-dependent impairment of the chymotrypsin-like site of the proteasome was confirmed by native gel analysis and overlay activity assay. PageBlue staining
confirmed equal protein loading. C: incubation of purified 20S proteasome with CSE led to a concentration-dependent inhibition of all three activity sites after
15 min (n � 3 � SD for all experiments, *P 	 0.05).
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not cell line specific but can be observed in bronchial and
alveolar epithelial cells.

Oxidative stress response upon acute cigarette smoke expo-
sure in mice. We next sought to determine the in vivo effects
of acute cigarette smoke exposure on ubiquitin-mediated pro-
tein quality control in the lung. For that, mice were exposed to
mainstream cigarette smoke for 50 min two times daily for 3
days. Analysis of BAL showed only a slight increase in total

cell counts in cigarette smoke-treated mice compared with
air-treated controls, indicative of a mild inflammatory response
(data not shown). Histological analysis revealed that lung
morphology was not affected by acute smoke exposure (data
not shown). We were unable to detect infiltration of inflam-
matory cells into the lung tissue of smoked mice (data not
shown). These data indicate that our model of acute cigarette
smoke exposure induced only a mild inflammatory response but
no detectable lung tissue alterations. Accordingly, mice showed a
mild and partial oxidative stress response to cigarette smoke as
assessed by quantifying GSH levels in blood and lung tissue
and by OxyBlot analysis. Although GSH levels in the blood of
smoked mice were significantly decreased compared with con-
trol mice (Fig. 6A), GSH levels in the lung remained un-
changed (Fig. 6B). Correspondingly, we were unable to detect
any increased levels of oxidatively modified proteins in the
lungs of CS-exposed mice (Fig. 6C).Fig. 4. Exposure of CSE does not lead to expressional changes of proteasome

subunits. The �5 (outer ring)-, �1 (caspase-like activity)-, and �2 (trypsin-like
activity)-subunits of the 20S core particle showed no altered expression after
2, 6, and 24 h of nontoxic (25%) and toxic (100%) CSE treatment as
determined by Western blot analysis. Representative Western blots of 3
independent experiments are shown. C, control.

Fig. 5. CSE causes cell death and impairs proteasome activity in human
bronchial epithelial cells. A: CSE caused a concentration-dependent decrease
in cell survival in 16HBE cells as assessed by MTT assay. B: significant
impairment of the proteasome was observed after 24 h for the CT-L and T-L
activity sites at high CSE doses but not for the C-L site. The trypsin-like
activity site was also inhibited at nontoxic CSE doses (n � 3 � SD, *P 	

0.05).

Fig. 6. Oxidative stress response upon acute cigarette smoke exposure in mice.
A: glutathione (GSH) levels in whole blood were significantly decreased (p �

0.04) in smoked mice compared with air-exposed control mice (n � 11 for
control group mice and n � 10 for smoked mice). B: no difference of GSH
levels in tissue extracts of smoked mice compared with control mice could be
detected (n � 11 for control group mice and n � 10 for smoked mice). C: no
accumulation of oxidatively modified proteins was observed in lungs of
smoked mice compared with control mice by OxyBlot (n � 6/group).
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Accumulation of polyubiquitinated proteins upon acute cig-
arette smoke exposure of mice. Despite low levels of oxidative
stress in the lungs of CS-exposed mice, we observed a signif-
icant accumulation of Lys48-linked polyubiquitinated proteins
in smoked vs. control lungs as determined by Western blot
analysis (Fig. 7A and for densitometric analysis Fig. 7B).
Furthermore, accumulation of Lys48-linked polyubiquitinated
proteins was also observed in the insoluble protein fraction for
low-molecular-weight proteins (Fig. 7C). This finding is fully
in line with our in vitro results and indicates that ubiquitin-
mediated degradation of proteins is part of the protein quality
control response to cigarette smoke. Accumulation of insoluble
polyubiquitinated protein aggregates suggests that the protea-
some is unable to degrade proteins in a timely fashion after
acute cigarette smoke exposure.

Impaired proteasome function upon acute cigarette smoke
exposure of mice. To assess whether the proteasome itself was
also affected by acute cigarette smoke in vivo, whole lung tissue
of cigarette smoke- or air-treated control mice was homogenized,
and protein extracts were analyzed for proteasome activity. Of
note, we observed significant inhibition of 25% of the trypsin-like
activity in the lungs of smoked mice (Fig. 8). The chymotrypsin-

and caspase-like activities of the lung proteasome were, however,
not affected by exposure to cigarette smoke, indicating only
partial inhibition of the proteasome. Proteasome activity was also
assessed in isolated peripheral blood mononuclear cells from
control and cigarette smoke-treated mice. A general trend for
decreased proteasome activity was observed for all three activity
sites (data not shown), however, not significant.

Proteasome expression is not affected by acute cigarette
smoke exposure of mice. To assess whether the decreased
proteasome activity in smoke-exposed lungs is the result of
transcriptional changes of the proteasome, expression of dif-
ferent proteasome subunits was analyzed by Western blotting.
Similar to our in vitro results, all three proteasomal subunits
(�5, �1, and �2) analyzed showed no alteration in expression
levels in lungs of smoked mice compared with control mice
(Fig. 9). RNA expression of these subunits was also not
affected, as analyzed by qRT-PCR analysis (data not shown).

DISCUSSION

Cigarette smoke mediates modification and misfolding of
proteins, DNA damage, and induces cellular (oxidative) stress.

Fig. 7. Accumulation of polyubiquitinated proteins upon acute cigarette smoke exposure of mice. A: Western blot analysis of whole lung protein extracts showed
accumulation of lysine at position 48 of ubiquitin (Lys48)-specific polyubiquitinated proteins in lungs of acutely smoked mice compared with lungs from control
mice with n � 12/group. MW, mol wt. B: band intensity analysis shows a significant increase (P � 0.008) of Lys48-specific polyubiquitinated proteins in smoked
mice. C: accumulation of low molecular polyubiquitinated proteins was also observed in the insoluble protein fraction of smoked mice with n � 6/group.
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In the present study, we investigated whether the bulk of
smoke-damaged proteins is disposed by the ubiquitin protea-
some system, the major protein quality control system in the
cell, and also whether the proteasome itself is affected by
cigarette smoke.

Cigarette smoke induced oxidative stress. Because cigarette
smoke is known to induce oxidative stress, we first analyzed if
cigarette smoke is also able to increase markers of oxidative
stress and oxidative protein modifications in our model sys-
tems, i.e., A549 lung epithelial cells exposed to CSE and mice
acutely smoked for 3 days. We are well aware of the limita-
tions of CSE. Because cigarette smoke is bubbled through
media and subsequently filtered, some reactive components
that are in the smoke gas phase may not be present in the CSE.
Our in vivo data, however, clearly indicate that the observed
in vitro effects with CSE are reproducible with full mainstream
cigarette smoke.

A549 cells exposed to CSE resulted in a rise of intracellular
ROS levels that was time- and dose-dependent. In accordance
with enhanced oxidative stress levels, a dose-dependent in-
crease in carbonylated (i.e., oxidatively modified) proteins was

observed after 2, 6, and 24 h of CSE exposure. Reduction of
GSH levels, another marker for oxidative stress, was observed
in the blood of mice exposed to cigarette smoke, indicating an
acute response to the CS. However, GSH levels in lung tissue
of smoked mice remained unaltered compared with the lungs
of control mice. Decreased GSH levels upon acute CS
exposure (5 h) in mice have been observed previously in
lung epithelial lining fluid, plasma, and liver, whereas,
similar to our findings, lung GSH levels remained un-
changed (15). The lack of detectable oxidative stress levels
in the lungs was further supported by our finding that
oxidatively modified proteins did not accumulate in protein
extracts of smoked lungs. Although a slight increase in total
cell counts indicative of a mild inflammatory response was
detected in BALs of smoked mice, we saw neither infiltra-
tion of inflammatory cells in the lung nor any morphological
changes of the lung. Taken together, these data clearly
indicate that the acute 3-day exposure of mice to cigarette
smoke had no toxic effects.

Cigarette smoke induced accumulation of polyubiquitinated
proteins. The proteasome serves, among many other functions,
as the central quality control system to rapidly degrade mis-
folded and modified proteins, among them oxidatively modi-
fied proteins. Before degradation, damaged proteins are polyu-
biquitinated with ubiquitin chains of varying length and struc-
tures. In particular, ubiquitin chains conjugated through Lys48

target proteins specifically for proteasomal degradation. CSE-
exposed human alveolar epithelial cells showed a time- and
concentration-dependent accumulation of bulk polyubiquiti-
nated proteins after 2 and 6 h with a persisting accumulation of
polyubiquitinated proteins after 24 h. Importantly, a significant
increase in Lys48-linked polyubiquitinated proteins was also
observed in lung tissue of smoke-exposed mice. To our knowl-
edge, our data are the first evidence for a specific role of
ubiquitin-mediated protein degradation in response to cigarette
smoke-induced cell damage. Our finding is fully in line with
observations made by others that cigarette smoke modifies
specific cellular proteins, thereby making them prone for ubiq-

Fig. 8. Impaired proteasome function upon acute cigarette smoke exposure of
mice. The trypsin-like activity site of the proteasome was significantly (P �

0.0008) inhibited in protein extracts of smoked mice lungs compared with
control lungs. The chymotrypsin-like and caspase-like activity sites remained
unaffected (n � 11 for the control group and n � 12 for the smoked mice
group).

Fig. 9. Proteasome expression is not affected by acute cigarette smoke exposure
of mice. Expression of the �5 (outer ring)-, �1 (caspase-like activity)-, and �2

(trypsin-like activity)-subunits of the 20S core particle for smoked and
nonsmoked mice lungs remained unaffected as shown by Western blot
analysis (n � 6/group).
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uitin-mediated proteasomal degradation (28). Accumulation of
ubiquitinated proteins in acutely cigarette smoke-exposed mice
has recently been shown by fluorescent microscopy (29).
However, the antibody used in that study did not discriminate
between free, mono-, or polyubiquitin and was therefore not
specific to detect ubiquitin-mediated protein degradation.

We also observed that acute cigarette smoke exposure re-
sulted in the accumulation of insoluble polyubiquitinated pro-
teins in human alveolar epithelial cells as well as in the lungs
of smoked mice. Similarly, Min et al. (29) detected increased
amounts of insoluble ubiquitinated proteins in lungs of COPD
patients with smoke history. These data suggest that cigarette
smoke has the potential to induce extensive damage of pro-
teins, resulting in misfolding and subsequent formation of
insoluble protein aggregates. Formation of such insoluble ag-
gregates is driven by extensive crosslinking of unstable mis-
folded proteins and has been implicated in several neurode-
generative and cardiovascular diseases as well as in age-related
macular degeneration. The formation of these aggregates can
be regarded as a hallmark of protein quality disease (8, 9, 17,
34). Here, we show that it can also be detected in lungs of mice
exposed to acute cigarette smoke.

Acute cigarette smoke exposure impairs proteasome activity.
Protein modification and subsequent loss of function may also
apply to the protein quality control system itself, the protea-
some. Indeed, the proteasome has been shown to be impaired
in response to oxidative and chemical stressors in vitro and
in vivo (11, 26). In addition, expression of the proteasome can
be deregulated in several diseases, such as in neurodegenera-
tive and cardiovascular diseases, cancer, cachexia, and COPD
(9, 25). Here, we report direct impairment of proteasomal
activities by cigarette smoke in the absence of transcriptional
deregulation. Exposure to high cigarette smoke doses resulted
in the pronounced inhibition of all three proteasomal activities
in human alveolar epithelial cells and in purified 20S protea-
somes. Importantly, only the trypsin-like activity site of the
proteasome was inhibited at low and nontoxic doses of CSE in
the alveolar epithelial cell line. A similar inhibition of only the
trypsin-like activity at nontoxic doses was observed in bron-
chial epithelial cells, which clearly demonstrates that protea-
some inhibition by cigarette smoke is not a cell type-specific
effect and is not related to cell toxicity. Bronchial epithelial
cells were more susceptible to CSE, with 25% CSE as a high
and toxic dose, indicating that different cell lines have different
susceptibilities to CSE. We cannot exclude, however, that this
may solely be an in vitro phenomenon.

Importantly, mice acutely exposed to low cigarette smoke
doses showed a very similar decrease of only trypsin-like
activity by about 25% compared with air-exposed controls in
the absence of toxicity. Proteasome expression was unaffected
by cigarette smoke exposure in both in vitro and in vivo
models. Our observation that partial and active site-specific
inhibition of the proteasome takes place in the absence of any
transcriptional regulation strongly argues in favor of a direct
effect of cigarette smoke components on the proteasome. This
argument is further supported by the fast and direct CSE-
dependent inhibition of purified 20S proteasomes and also by
the observation that high doses of H2O2 did not impair protea-
some activity in A549 cells (data not shown). The finding that
polyubiquitinated proteins accumulated in the absence of in-
creased levels of oxidative stress in smoke-exposed lungs of

mice also further strengthens this notion. Hence, cigarette
smoke either contains some (unknown) proteasome inhibitors
or it may induce chemical modifications to the proteasome,
inferring a structural change that renders the proteasome less
active. Cigarette smoke contains over 4,700 compounds, many
of which are still unknown, making the identification of spe-
cific compound(s) responsible for the observed proteasome
impairment challenging. Reactive �,�-unsaturated aldehydes,
such as acrolein and crotonaldehyde, present in cigarette
smoke can cause protein crosslinking (1) and may affect
proteasome structure and activity. Initial experiments using
acrolein did not reveal any inhibition of the proteasome at the
relevant concentrations in epithelial cells or in purified 20S
proteasomes (data not shown).

Most studies have assumed that the chymotrypsin-like ac-
tivity of the proteasome is most important for protein break-
down. Consequently, the relative contributions of the two other
active sites to protein degradation in mammalian cells are not
well studied (20, 30). This is surprising since these different
activity sites have evolved specifically in eukaryotes and show
different cleavage preferences. It has been reported that the
importance of the trypsin-like activity site in protein degrada-
tion varies strongly, depending on the substrate content of
basic residues (20). Consequently, impairment of one or more
of the proteasome activity sites does not only affect the rate of
protein degradation but will also result in qualitative changes
of protein processing and thus altered peptide products (20,
35). Partial inhibition of the trypsin-like site by cigarette smoke
may therefore result in the generation of an altered peptide
repertoire presented via MHC class I to the immune system.
Moreover, impaired proteasome activity in general may con-
tribute to increased stress and an exaggerated stress response
similar to what is seen in COPD.

In conclusion, we provide evidence that cigarette smoke-
modified proteins of the lung are disposed by the ubiquitin
proteasome system. Here, we show for the first time that acute
exposure to cigarette smoke directly impairs proteasome ac-
tivity in the lungs of mice and in human alveolar and bronchial
epithelial cells without affecting proteasome expression. Our
results indicate that defective proteasomal protein quality con-
trol may exacerbate the detrimental effects of cigarette smoke
in the lung. This finding not only adds to the understanding of
how the environmental pollutant cigarette smoke may contrib-
ute to the detrimental changes as seen in chronic lung disease
but also highlights the central pathophysiological role of pro-
teasomal protein degradation in human diseases.
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SUPPLEMENTAL DATA 

 

Isolation of PBMC’s from mouse blood: Whole blood collected from the femoral artery was 

diluted 5x in PBS. This was carefully transferred into a tube containing Biocoll (Biochrom AG) in 

a 2:1 (Biocoll:blood/PBS) ratio. This mixture was then centrifuged for 30 min at 800 x g. After 

centrifugation, the interphase was taken, and centrifuged for 10 min at 800 x g. The cell pellet was 

washed once with PBS and then analyzed for protein content and proteasome activity as described 

in the experimental section for cultured cells. 
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FIGURE S1. CSE induces necrosis in A549 cells. Cells treated with 25%, 50%, and 100% of 

CSE showed dose-dependent necrosis in A549 cells as assessed by Annexin-V-FITC and 

propidium iodide (PI) double staining using FACS analysis, in A: after 4h of CSE exposure and in 

B: after 48h of CSE exposure. Note, 100% CSE treated cells were dead after 48 h exposure. 
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FIGURE S2. Treatment of A549 cells with high doses of hydrogen peroxide (H2O2) for 24 h 

resulted in increased proteasome activity. A: Treatment with H2O2 caused a concentration 

dependent decrease of cell survival in A549 cells after 24 h of exposure as determined by MTT 

assays. B: A significant (* = p < 0.05) increase of chymotrypsin-like (CT-L) and caspase-like 

(C-L) activity was observed for cells treated with high (lethal) doses of H2O2. The trypsin-like 

(T-L) activity site remained unaltered. n = 3 ± S.D. 
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FIGURE S3. Mice were exposed to nontoxic doses of cigarette smoke. A: Total cell counts are 

slightly increased in BAL fluid isolated from lungs of smoked mice compared to air-exposed mice 

indicating a mild inflammatory response. B: Paraffin sections of lung tissue show no differences 

in lung morphology indicating that the lungs were not severely damaged by acute cigarette smoke 

exposure. 
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FIGURE S4. Proteasome activity in isolated PBMCs. Proteasome activity in isolated PBMCs 

show a trend to decreased activity of all three activity sites, however not significant. 
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Regulation of Immunoproteasome 

Function in the Lung
Ilona e. Keller1, oliver Vosyka1, 2, shinji takenaka1, Alexander Kloß3, Burkhardt Dahlmann3, 

Lianne I. Willems4, Martijn Verdoes4, †, Hermen s. overkleeft4, elisabeth Marcos5, 

serge Adnot5, stefanie M. Hauck2, Clemens Ruppert6, Andreas Günther6, 7, susanne Herold8, 

shinji ohno9, ‡, Heiko Adler9, oliver eickelberg1 & silke Meiners1

Impaired immune function contributes to the development of chronic obstructive pulmonary disease 

(CopD). Disease progression is further exacerbated by pathogen infections due to impaired immune 

responses. elimination of infected cells is achieved by cytotoxic CD8+  t cells that are activated by 

MHC I-mediated presentation of pathogen-derived antigenic peptides. the immunoproteasome, 

a specialized form of the proteasome, improves generation of antigenic peptides for MHC I 

presentation thereby facilitating anti-viral immune responses. However, immunoproteasome 

function in the lung has not been investigated in detail yet. In this study, we comprehensively 

characterized the function of immunoproteasomes in the human and murine lung. parenchymal 

cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and 

speciically expressed in alveolar macrophages. Immunoproteasome expression is not altered in 
whole lung tissue of CopD patients. Novel activity-based probes and native gel analysis revealed that 

immunoproteasome activities are speciically and rapidly induced by IFNγ  treatment in respiratory 

cells in vitro and by virus infection of the lung in mice. our results suggest that the lung is potentially 

capable of mounting an immunoproteasome-mediated eicient adaptive immune response to 
intracellular infections.

he lung is constantly exposed to acute environmental agents such as noxious gases, aerosols, and patho-
gens1. Eicient clearance and defense mechanisms are thus indispensable to protect the lung from injury 
and maintain lung function. Failure of these defense mechanisms results in sustained inlammation 
and activation of the immune system, contributing to chronic pulmonary diseases with impaired lung 
structure and function2. his is particularly evident for chronic obstructive pulmonary disease (COPD): 
lungs of COPD patients show increased levels of inlammatory cytokines such as tumor necrosis factor 
α  (TNFα ) and interferon-γ  (IFNγ ) as well as increased numbers of both innate and adaptive immune 
cells2,3. In addition, bacterial or viral infections in COPD patients oten result in acute exacerbations and 
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accelerate disease progression, suggesting that, amongst others, the adaptive immune system is unable to 
eiciently detect and eliminate infected lung cells to terminate pathogen ampliication. Intracellular anti-
gens are detected by pathogen-speciic activated CD8+  T cells that patrol the lungs for pathogen-derived 
peptides presented in complex with major histocompatibility complex (MHC) I on the cell surface of 
infected cells.

he ubiquitin-proteasome system is the major peptide provider for MHC I antigen presentation. It 
degrades more than 90 % of all cellular proteins - including old and damaged ones - into small pep-
tides4–6. he proteasome consists of a barrel-shaped 20S proteolytic core particle which is activated by 
diferent proteasome regulators to form for instance the 26S, which degrades poly-ubiquitinated proteins 
in an ATP-dependent manner, and hybrid proteasomes7. he 20S core is composed of four heptameric 
rings comprising α - and β -subunits with α 7β 7β 7α 7 structure. In standard proteasomes, three of the seven 
β -subunits - namely β 1, β 2, and β 5 - exhibit proteolytic activity. A replacement of these β -subunits by 
their immunosubunit counterparts, i.e. low molecular mass protein (LMP) 2, multicatalytic endopepti-
dase complex-like 1 (MECL-1), and LMP7, also termed β 1i, β 2i, and β 5i, respectively, results in formation 
of so-called immunoproteasomes. Immunoproteasomes are constitutively present in lymphoid cells but 
their synthesis can be induced rapidly also in non-immune cells by IFNγ , or TNFα , e.g. upon viral or 
bacterial infection8. he newly assembled immunoproteasomes have altered cleavage kinetics compared 
to their 20S standard counterparts and generate antigenic peptides that are preferentially presented by 
MHC I molecules9. As such, rapid and speciic induction of immunoproteasomes is required for eicient 
elimination of infected cells via the adaptive immune system. Increasing evidence suggests impairment of 
proteasome function by smoke exposure and in COPD10–13, however, until now it is not known whether 
immunoproteasome function is afected as well. Moreover, cell-speciic expression of immunoproteas-
omes in the lung has not been analyzed so far and it is unclear to which degree immunoproteasome 
activity can be induced upon virus infection in vivo.

In this study, we comprehensively characterized immunoproteasome function, i.e. activity, in the lung 
by dissecting IFNγ -mediated regulation of speciic catalytic activities of the immunoproteasome in dif-
ferent respiratory cell types in vitro and upon MHV-68 infection of the lung in vivo.

Results
Immunoproteasome expression in the murine lung. As immunoproteasome expression in the 
lung has not been investigated in detail so far, we irst examined total expression levels of immunoprotea-
some subunits in the murine lung compared to liver and spleen including tissues from LMP2 and LMP7 
deicient mice as controls (Fig. 1a). Wildtype lungs contained intermediate amounts of the immunopro-
teasomal subunits LMP2 and LMP7 compared to liver and spleen. While LMP7 levels were unchanged 
in LMP2 deicient mice, LMP2 protein levels were evidently decreased in LMP7 deicient mice and the 
unprocessed pro-form of LMP2 accumulated in spleens of LMP7 deicient mice. To conirm incorpo-
ration of immunoproteasome subunits into active 20S proteasomes and their relative distribution com-
pared to standard β -subunits, we next isolated active 20S proteasomes from the lungs of healthy wildtype 
mice via sucrose-gradient fractionation and separated them on a 2D gel (Fig.  1b and Supplementary  
Fig. S1). By mass spectrometry of excised spots, we detected all diferent 14 subunits of the 20S protea-
some. All three immunoproteasome subunits were present in addition to the three standard proteasome 
subunits β 1, β 2, and β 5. Each immunoproteasome subunit was identiied from three distinct spots, indi-
cating post-translational modiications of these subunits.

To specify the pulmonary cell types that contain immunoproteasomes, we stained murine lungs 
with LMP2- and LMP7-detecting antibodies using lungs of the respective knockout animals as con-
trols. Although we tested several commercially available antibodies, immunohistochemical detection of 
LMP7 proved to be unspeciic as controlled by lungs of LMP7 knockout mice while staining for LMP2 
was speciic (Fig.  1c): Alveolar epithelial and parenchymal cells of the lung expressed only very low 
amounts of LMP2, whereas alveolar macrophages were highly positive for this immunoproteasome sub-
unit. Individual cells in the vicinity of airways also exhibited prominent LMP2 staining.

Immunoproteasome expression is not altered between donor and CopD lungs. In a next 
step, we thoroughly investigated immunoproteasome expression in the human lung by using native 
PAGE and immunoblotting of human donor lung tissue. We unambiguously identiied the immuno-
proteasome subunits LMP2 and LMP7 mainly in active 20S but also to some extent in 26S fractions as 
conirmed by blotting for respective proteasomal 19S (Rpt5) and 20S subunits (α 1-7) (Fig. 2a).

Immunohistochemical analysis of LMP2 in end-stage COPD tissue (GOLD stage III and IV) from 
explanted lungs revealed no obvious alteration in cell-type speciic expression of LMP2 compared to 
lungs from human donors (Fig. 2b). We observed prominent but variable staining for LMP2 mainly in 
alveolar macrophages. While bronchial epithelial cells showed some positive staining, alveolar epithelial 
cells were negative for LMP2. In addition to alveolar macrophages, cells in the vicinity of airways also 
showed some LMP2 reactivity. However, our immunohistochemical staining was heterogeneous and did 
not allow a reliable quantiication of LMP2 expression levels in lung tissue samples of COPD patients 
compared to controls.

In human lung tissue homogenates from cancer resections of never-smokers, ex-smokers, and COPD 
GOLD stage I and II classiied patients, we again did not observe any signiicant diference in the levels 
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of LMP2 and LMP7 between these groups (Fig. 2c). Of note, expression of the 20S proteasome was also 
not altered in COPD tissue compared to non-COPD controls, indicating that the proteasome is not 
obviously dysregulated in these samples.

Active immunoproteasomes are induced by IFNγ in parenchymal cells of the lung. With the 
basal expression levels of immunoproteasomes being low in parenchymal cells, but high in immune cells 
of the lung, we next investigated to what extent immunoproteasomes can be induced in parenchymal 
cells by IFNγ , which has been shown as a major cytokine involved in acute virus infection and a major 
inducer of immunoproteasomes14. We conirmed IFNγ -mediated induction of immunoproteasomes in 
primary parenchymal cells of the murine and human lung: IFNγ  strongly induced immunoproteasomal 
gene expression in mouse primary alveolar type II cells (pmATII) ater 24 h of treatment (Fig. 3a). LMP2 
and LMP7 protein levels were both strongly induced in primary human (phLF) and mouse lung ibro-
blasts (pmLF) ater IFNγ  stimulation for 24 h (Fig. 3b). Similar to tissue homogenates shown in Fig. 1a, 
LMP7 was induced in ibroblasts from LMP2 deicient mice to the same degree as in wildtype mice, but 
the unprocessed pro-LMP2 accumulated in LMP7 deicient ibroblasts.

To deine the kinetics and activities of newly formed immunoproteasomes ater IFNγ  stimulation in 
detail, we treated the human alveolar epithelial cell line A549 from 2 up to 72 h with IFNγ . mRNA levels 
of all three immunoproteasome subunits were upregulated ater 2 h and further increased up to 24 h in 

Figure 1. Immunoproteasome expression in mouse lungs. (a) Immunoproteasome expression in 

homogenates of whole lung, liver, and spleen in C57BL/6 wildtype (wt), LMP2−/− or LMP7−/− mice. 

(b) Coomassie stained 2D-gel of puriied 20S proteasomes from C57BL/6 mouse lungs. Protein 

spots were identiied by mass spectrometry, immunoproteasome subunits are indicated in red. (c) 

Immunohistochemistry analysis of LMP2 expression in wildtype and LMP2−/− mice. Scale bar represents 

50 µ m.
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Figure 2. Immunoproteasome expression in human donor and COPD lungs. (a) Immunoproteasome 

expression in human donor lung lysate under native conditions. Native gels were blotted and LMP2, LMP7, 

α 1-7 subunits (20S), Rpt5 (19S) was detected with respective antibodies. (b) LMP2 staining of human lung 

sections from donors (n =  5) and COPD (n =  9) patients: (i) alveolar parenchyma, (ii) alveolar macrophages, 

(iii) bronchial epithelium with goblet cell hyperplasia in COPD. Scale bar represents 50 µ m. (c) Protein 

expression of immunoproteasome subunits LMP2 and LMP7 and total 20S (α 1-7) proteasomes in lungs of 

human organ donors (never-smoker or ex-smoker) and COPD patients.
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A549 cells upon IFNγ  treatment (Fig. 4a). Transcript levels of NLRC5, a recently identiied transactivator 
of LMP2 and MHC class I genes15, transiently peaked at 6 h but declined ater 24 h (Fig. 4a).

Protein levels of both LMP2 and LMP7, were upregulated already ater 6 h and stayed elevated until 
72 h ater IFNγ  treatment (Fig. 4b). he unprocessed pro-form of LMP2, which indicates that the protein 
is not yet incorporated into mature 20S proteasome complexes16, was detected between 6 and 24 h of 
IFNγ  treatment suggesting that LMP2-containing immunoproteasomes are only inally assembled 48 h 
ater IFNγ  stimulation. As total 20S proteasome levels, however, were not altered, these results indicate 
a shit from standard 20S towards immunoproteasome expression in IFNγ -exposed lung alveolar cells 
(Fig. 4b). De novo assembly of active immunoproteasomes was further proven by use of activity-based 
probes (ABP). ABPs covalently bind to and label only active catalytic β -subunits of the intact 20S cat-
alytic core17. Here, we made use of three distinct site-speciic ABPs that allowed us to discriminate the 
active standard and immunoproteasome subunits18. Native lysates of IFNγ -treated A549 were incubated 
with the respective ABPs and then separated under denaturing conditions to quantify the labeled cata-
lytic subunits of the proteasome: he activity of all three immunoproteasome subunits, LMP2, MECL-1, 
and LMP7, increased up to 24 h and slightly decreased at 72 h ater IFNγ  treatment while the standard 
catalytic subunits β 1, β 2, and β 5 were inversely regulated ater an initial 24 h activation burst (Fig. 4c). 
he novel technique of ABP detection in native gels revealed ABP labeling of ive diferent active 26S 
and hybrid proteasome complexes with a slight shit from active 26S to 20S proteasomes ater 72 h of 
IFNγ  treatment (Fig. 4d). LMP2 and LMP7 were incorporated into both, active 20S and 26S complexes, 
as shown by immunoblotting.

Active immunoproteasomes are induced by MHV-68 infection in the lung. As IFNγ -mediated 
induction of immunoproteasome is indispensable for eicient antigen presentation of viral proteins dur-
ing infection, we investigated the kinetics of immunoproteasome expression and activity in the lung ater 
murine gammaherpesvirus-68 (MHV-68) infection in vivo. MHV-68 infection strongly induced immu-
noproteasome expression: mRNA levels of all three immunoproteasome subunits were highest at day 
14 post infection and declined to control levels ater 148 days, even though IFNγ  and TNFα  transcript 
levels were still increased at that time point (Fig. 5a and Supplementary Fig. S3a). NLRC5 mRNA levels 
showed similar expression kinetics, but were still elevated ater 148 days. Expression of standard protea-
some subunits was not obviously altered upon infection and even slightly decreased over time (Fig. 5b).

On the protein level, immunoproteasomes were strongly induced ater 14 days and were still found 
to be slightly elevated 148 days ater infection (Fig.  5c). he α 3 as well as the β 1 and β 2 constitutive 
subunits were also increased ater 14 days of infection, although to a lesser extent (Fig. 5c). he inducible 
immunoproteasome subunits LMP2 and LMP7 were found in both, 20S and 26S, complexes, as deter-
mined by native gel immunoblotting (Fig.  5d). LMP2 staining of virus-infected mouse lungs revealed 
that the overall increase of LMP2 protein levels ater 47 days was mainly attributable to enhanced LMP2 
expression in alveolar epithelial cells and alveolar macrophages (Fig. 5e).

ABP labeling of native lung lysates of infected mice revealed that the speciic activity of LMP2 and 
MECL-1 was transiently increased during the course of infection and normalized to control levels ater 
148 days (Fig.  6a). In these mouse samples, we were not able to discriminate LMP7 and β 5 activities 
as both mouse subunits have a similar molecular weight (Fig S2), diferent from the human subunits 
(Fig. 4). Of note, activity of standard subunits β 1 and β 2 was also increased, but to a lesser extent than 
their respective immunoproteasome subunit counterparts LMP2 and MECL-1 (Fig. 6a). he pronounced 
rise in speciic immunoproteasome activity during the course of virus infection closely followed a tran-
sient increase in total proteasome activity with similar kinetics and resulted in a considerable shit from 
standard to immunoproteasome activity in these samples (Fig. 6b and Supplemental Fig. S3b).

Figure 3. Immunoproteasomes are induced by IFNγ in lung parenchymal cells. (a) mRNA fold change 

of 20S α 7-subunit and immunoproteasome subunits in primary mouse alveolar type II cells (pmATII) ater 

24 h of IFNγ  treatment compared to control. Results are combined data from three independent experiments 

(mean + /−  SEM, Mann-Whitney-U test, * =  p <  0.05). (b) Western Blot showing induction of LMP2 or 

LMP7 in primary mouse (wildtype (wt), LMP2−/−, or LMP7−/−; pmLF) and human donor lung ibroblasts 

(phLF) ater 24 h of IFNγ  treatment. Results are representative for two independent experiments.
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he increase in total proteasome activity was attributable to both 20S and 26S complexes by analysis 
of native PAGE of ABP-labeled lysates (Fig. 6c). Taken together, our data show prominent induction of 
active immunoproteasomes in the lung by IFNγ  in diferent alveolar cell types and by virus infection 
in vivo indicating that these cells are able to mount eicient immunoproteasome-mediated immune 
responses to infection. Of note, while the kinetics of speciic immunoproteasome activities were similar 
to the transcript kinetics of immunoproteasome subunits, activation of standard proteasome activity 

Figure 4. Immunoproteasome induction kinetics in alveolar epithelial cell line. (a) mRNA fold change 

of immunoproteasome subunits and their transcriptional activator NLRC5 in response to IFNγ  (75 U/ml) 

ater 2, 6, or 24 h in A549 cells. Results are the combined data of three independent experiments (mean + /−  

SEM, Kruskal-Wallis Test with Dunn’s Post Test, * =  p <  0.05, ** =  p <  0.01). (b) Time course of expression 

of immunoproteasome subunits LMP2 and LMP7 and total 20S α -subunits in native lysates of A549 cells 

from 6 up to 72 h ater IFNγ  treatment. Results are representative for three independent experiments. 

(c) Fluorescent ABP labeling of the same lysates as in (b) with MV151 (labeling all active β -subunits), 

LW124 (β 1 and LMP2 speciic) or MVB127 (β 5 and LMP7 speciic). Results are representative for three 

independent experiments. (d) Native gel analysis of A549 lysates + /−  IFNγ  treatment for 72 h: MV151-ABP 

analysis and Western Blot of native lysates with LMP2 and LMP7 antibodies. α 1-7 was used to detect 20S 

complexes, Rpt 5 (19S subunit) was used to detect 26S proteasome complexes. Results are representative for 

three independent experiments.
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upon acute virus infection did not involve transcriptional regulation but appears to take place on the 
post-transcriptional level.

Discussion
Immunoproteasomes play a pivotal role in MHC I antigen presentation. We thus investigated the func-
tion and plasticity of immunoproteasomes in human and mouse lungs as well as upon virus-infection.

Protein expression levels of immunoproteasomes in the mouse lung were comparable to those in the 
liver but lower than in mouse spleen. While we could speciically detect LMP2 and LMP7, immuno-
detection of the third immunoproteasome subunit MECL-1 was unspeciic with several commercially 
available antibodies. Biochemical puriication of lung 20S proteasomes revealed incorporation of both 
standard and immunoproteasome subunits into active 20S complexes. Of note, each of the three immu-
noproteasome subunits was found in three distinct protein spots indicating post-translational modiica-
tions or isoform expression in the mouse lung. However, our mass spectrometry analysis did not allow 
us to identify any modiications, which was beyond the scope of this project. Further analysis of native 
proteasome complexes in the lung by blotting of native PAGE gels revealed that 20S immunoproteasomes 
can be found both in the 20S and 26S proteasome fraction of mouse and human lungs (Figs. 2a, 4d and 
5d), implying that immunoproteasomes contribute to both ubiquitin-dependent (26S) and -independent 
(20S) degradation of proteins.

While other studies have examined total levels of immunoproteasomes in human tissue, whole rat 
lungs, and in LCMV-infected mouse lungs and other organs19–23, cell-speciic expression in the lung has 
not yet been investigated23,24. Here, we show that the immunoproteasomal subunit LMP2 is expressed 
at low basal levels in lung parenchymal cells (alveolar type I and II cells, ibroblasts) and the bronchial 
epithelium but strongly expressed in alveolar macrophages (Figs. 1c and 2b). Speciicity of our staining 
was conirmed in control lungs of LMP2 deicient mice (Fig.  1c). his is in line with a recent study 
that demonstrated expression of LMP2 and LMP7 in lung granulomas of sarcoidosis patients24. Our in 
vitro data show that primary alveolar type II cells and ibroblasts have the capability to express immu-
noproteasomes ater IFNγ  stimulation, thus enabling immunoproteasome-dependent antigen presenta-
tion. Interestingly, ibroblasts from LMP7 deicient mice express some unprocessed LMP2 compared to 
wildtype mice. It was previously shown that LMP7 is necessary for eicient incorporation of LMP225, 
which explains our observation of the presence of unprocessed LMP2 both ater stimulation with IFNγ  
in vitro (Fig. 3b) as well as in spleen homogenates of LMP7 deicient mice (Fig. 1a). In A549 cells, the 
pro-form of LMP2 was detected until 24 h ater IFNγ  treatment, while pro-LMP7 was not detectable 
at any time-point (even though the LMP7 antibody we used detects both the unprocessed and mature 
form of LMP7). his might be due to preferential incorporation of pro-LMP7 into 20S compared to its 
standard proteasome counterpart pro-β 5, as suggested previously26,27.

Using a novel and speciic set of activity-based probes18, we were able to dissect the six diferent 
active sites of the standard and immunoproteasome 20S, which speciied immunoproteasome function 
in the lung. his is not possible with commercially available proteasome substrates. A striking feature 
of these activity-based probes is that beyond quantiication of the three main proteasomal activities, we 
can speciically discriminate activities for the standard and the respective immunoproteasome subunit 
counterparts β 1/LMP2, β 2/MECL-1, and β 5/LMP7 as they are labeled within the same lysate (Fig. 4c). 
he novel combination of activity-based probe labeling of all catalytic active sites of the proteasome 
with native gel electrophoresis permitted us to assign newly assembled immunoproteasomes to active 
20S and 26S proteasome complexes (Fig. 4d). Using this innovative biochemical toolbox, we showed that 
IFNγ  can rapidly induce expression and assembly of active immunoproteasomes in parenchymal cells 
of the lung. his cannot be achieved with conventional and commercially available proteasome activity 
assays. With these techniques at hand, we also assessed immunoproteasome activity in the course of 
virus infection of the lung. For that, we used the model of MHV-68, since intranasal infection of mice 
leads to productive virus replication in the lung accompanied by virus-induced cell damage and sub-
sequent development of pulmonary ibrosis28,29. Viral infections induce immunoproteasomes via IFNγ  
as part of the adaptive immune response to infections30 thereby facilitating the speciic detection and 
targeted elimination of infected cells by the immune system: Pathogenic, e.g. viral, proteins are cleaved 
by immunoproteasomes into antigenic peptides for MHC I presentation14,31–34. MHC I epitopes are then 
recognized by speciic cytotoxic CD8+ T cell clones that kill infected cells. To raise a speciic clonal T 
cell response, antigen presenting cells (APC) in the lung take up pathogens and migrate to the lymph 
nodes to prime CD8+ T cells. Importantly, APCs and infected parenchymal cells need to present the same 
MHC I epitope to prime an eicient clonal CD8+ T cell response, respectively. As APCs constitutively 
express immunoproteasomes, IFNγ -mediated upregulation of immunoproteasomes in infected paren-
chymal cells is thus indispensable for mounting an eicient immune response against the pathogen14,31–35. 
In our MHV-68 infection model (Figs. 5 and 6), we were able to detect increased immunoproteasome 
transcript and protein levels which were highest 14 days ater viral infection. While mRNA transcripts 
were back at baseline at day 148, protein levels of LMP2 and LMP7 were still increased, suggesting pro-
teasome stabilization and extended half-life of proteasomes ater infection. his might also explain the 
observation of slightly increased standard proteasomes on the protein and activity levels at day 14, which 
cannot be explained by increased transcript levels (Figs. 5 and 6). Total proteasome activity, as assessed 
by luorescent activity-based probes, was transiently increased up to twofold during infection and was 
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Figure 5. Murine gammaherpesvirus-68 (MHV-68) infection induces immunoproteasomes in the lung. 

(a) and (b) relative mRNA levels of standard proteasome subunits α 7, β 1, β 2, β 5 and immunoproteasome 

subunits LMP2, MECL-1, LMP7 and MHC I gene transactivator NLRC5 in the lungs of MHV-68 

infected mice (day 14, 48 and 148 post infection) compared to mock-infected controls, Rpl19 served as 

housekeeping gene, n =  3 per group (mean + /−  SEM, Kruskal-Wallis Test with Dunn’s Post Test, * =  

p <  0.05, ** =  p <  0.01). (c) Western Blot analysis of LMP2, LMP7, α 3, β 1 and β 2 protein expression 

of whole lung homogenate of MHV-68 infected mice (day 14, 48 and 148) compared to uninfected 

controls. (d) Native Western Blot of lung lysates from uninfected or MHV-68 infected mice ater 14 days. 

(e) Immunohistochemistry analysis of LMP2 expression in wildtype lung slices at 47 dpi. All results are 

representative for two independent experiments. dpi, days post infection.



www.nature.com/scientificreports/

9Scientific RepoRts | 5:10230 | DOi: 10.1038/srep10230

back at baseline ater 148 days. he increase in proteasome activity was attributed to an increase in both 
20S and 26S activities which both comprised the virus-induced immunoproteasome subunits LMP2 and 
LMP7. hese data suggest ubiquitin-dependent and -independent degradation of proteins by immuno-
proteasomes during infection.

Over the course of infection, we observed a shit in standard versus immunoproteasome activity in 
MHV-68 infection, which was resolved for the catalytic subunit pair MECL-1/β 2, but not for LMP2/β 1 
subunits (Fig.  6b). his indicates that virus infection has a long-term efect on antigen processing by 
immunoproteasomes. In part, this might be explained by the nature of MHV-68 infection, which can 
persist latently in lung epithelial cells and macrophages36,37 and can be spontaneously reactivated. An 
indicator for such reactivation is the still increased level of IFNγ  148 days post infection.

Figure 6. Immunoproteasome and standard proteasome activities in the lung during course of  

MHV-68 infection. (a) Activity-based probe labeling of native whole lung lysates of infected mice (mock, 14, 

48, 148 dpi) with MV151 (labeling all active β -subunits), LW124 (β 1 and LMP2 speciic) and densitometric 

analysis of MECL-1, β 2, LMP2 and β 1, depicted as fold increase over uninfected mice. (b) Activity ratios 

of intensities of MECL-1/β 2 and LMP2/β 1. (c) Native gel analysis of lung lysates labeled with activity-based 

probe MV151. (mean + /−  SEM, Kruskal-Wallis Test with Dunn’s Post Test, * =  p <  0.05, ** =  p <  0.01). All 

results are representative for two independent experiments. dpi, days post infection.
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COPD is characterized by loss of parenchymal tissue, chronic bronchitis, and bacterial colonization 
of the lower airways2. Respiratory infections exacerbate COPD pathology. Smokers and COPD patients 
sufer longer from respiratory infections and need more time to resolve them38. Accordingly, it has been 
shown that cigarette smoke, the main risk factor for COPD, generally dampens the host’s immune system 
in response to infections as it interferes with STAT-1 and IRF-3 immune signaling39–43. Cigarette smoke 
has also been shown to afect adaptive immune responses such as MHC II antigen presentation2,44. he 
role of the MHC I antigen presentation machinery in COPD in general and in viral exacerbations in 
particular has not been investigated so far. In this study, we did not detect increased levels of immuno-
proteasomes in early-staged COPD lungs (Fig.  2c). While Fujino et al. observed increased LMP2 and 
LMP7 transcript levels in primary alveolar type II cells of patients with early COPD stages, a recent 
study observed no diferential expression of immunoproteasomes in lungs of end-stage COPD patients 
compared to controls23,45. his accords with our immunohistochemical analysis of end-stage-diseased 
COPD tissue, which did not reveal upregulation of the immunoproteasomal LMP2 subunit in alveolar 
epithelial cells. High immunoproteasome expression in alveolar macrophages, as observed here, may also 
account for extracellular immunoproteasomes in the BAL luid of patients with acute respiratory distress 
syndrome46. We also did not observe any consistent change in standard versus immunoproteasome activ-
ities in early and late stage COPD lungs (data not shown). Overall proteasome activity has been assessed 
previously in COPD lungs using conventional proteasome activity assays with conlicting results: While 
Baker et al. did not observe signiicantly altered levels and activities in COPD lungs, Malhotra et al. 
reported that proteasome expression and activity declined and strongly associated with the severity of 
lung dysfunction in COPD patients12,23. However, as the corresponding author has recently expressed his 
concern on anomalies in igures in this article, this study has to be considered with caution47. It is well 
established though that proteasome activity can be impaired by cigarette smoke which may then add to 
development and progression of COPD10,11.

In this study, we show that lung parenchymal cells express immunoproteasomal subunits at low basal 
levels, but they can be rapidly induced to form active immunoproteasomes upon IFNγ  stimulation in 
vitro or MHV-68 infection in vivo. his suggests that the lung is potentially capable of mounting an 
eicient adaptive immune response to intracellular infections.

Methods
Human lung tissue. For protein extraction, human lung tissue from never-smokers (n =  3), ex-smokers 
(n =  4), and COPD patients (n =  6) undergoing lung resection surgery for localized lung tumors was col-
lected as previously described48. his study was approved by the institutional review board of the Henri 
Mondor Teaching Hospital (Créteil, France; AFSSAPS reference number B90895-60). All patients and 
control subjects signed an informed consent document before study inclusion. Parain-embedded lung 
sections of human lung transplant donors (n =  5) or COPD patients (n =  9) with end-stage disease were 
obtained from the Department of horacic Surgery in Vienna, Austria, as described elsewhere49. he 
study protocol was approved by the Ethics Committee of the Justus-Liebig-University School of Medicine 
(No. 31/93, 84/93, 29/01) and the University of Vienna Hospital ethics committee (EK-Nr 076/2009).

Animals. Tissues or cells were isolated from C57BL/6 wildtype (Charles River Laboratories), LMP2−/− 
(Psmb9tm1Stl, 50), or LMP7−/−(Psmb8tm1Hjf, 51) mice. All animal procedures were conducted according to 
international guidelines and with approval of the Bavarian Animal Research Authority in Germany. 
All surgery was performed under ketamine/xylazine anesthesia, and all eforts were made to minimize 
sufering.

Virus infection of mice. 8-12 week old female C57BL/6 mice were anesthetized using ketamine/xyla-
zine and infected intranasally with 5 ×  104 plaque forming units (PFU) of murine gammaherpesvirus-68 
(MHV-68) as described elsewhere52. Animals were sacriiced ater 14, 48, or 148 days, uninfected mice 
served as controls and were sacriiced together with the 14 days infected mice, the group size was three 
per group. Mice were housed in individually ventilated cages during the MHV-68 infection period. All 
animal experiments were in compliance with the German Animal Welfare Act, and the protocol was 
approved by the local Animal Care and Use Committee (District Government of Upper Bavaria; permit 
number 124/08).

Cell culture and reagents. he human A549 alveolar epithelial cell line was obtained from ATCC 
(ATCC® CCL-185™, American Type Culture Collection, Manassas, VA, USA). Cells were cultured in 
DMEM (21885025, Life Technologies, Carlsbad, CA, USA) supplemented with 10 % fetal bovine serum 
(FBS, P30-3702, PAN Biotech, Aidenbach, Germany) and 100 U/ml of Pen/Strep (15070063, Life 
Technologies) and cells were grown at 37 °C in a humidiied atmosphere containing 5 % CO2. Human 
or mouse recombinant IFNγ  (11040596001/11276905001, Roche, Basel, Switzerland) was used at con-
centrations of 75 U/ml.

Activity-based probe labeling. Activity of the constitutive and immunoproteasome subunits was 
monitored by using a set of activity-based probes (ABP)53. he pan-reactive proteasome ABP MV15117 
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was used for assessing of β 2/MECL-1 activities, LW124 for β 1/LMP2 activity, and MVB127 was used to 
label β 5/LMP718. Hypoosmotic native lysates of total lung or A549 cells were diluted to a total protein 
concentration of 0.5 µ g/µ l with reaction bufer (50 mM HEPES pH 7.4, 100 mM KCl, 10 mM MgCl2). By 
shaking at 37 °C for 1 h, 30 µ l of sample was incubated with 0.5 µ M MV151, 0.25 µ M LW124 or 1 µ M 
MVB127, respectively, and subsequently quenched by the addition of 6x Laemmli (50 % v/v glycerol, 
300 mM Tris·HCl, 6 % w/v SDS, 325 mM DTT, 0.1 % w/v bromophenol blue, pH 6.8) or 5x native loading 
bufer (50 % v/v glycerol, 250 mM Tris, 0.1 % w/v bromophenol blue, pH 7.5) to a inal 1x concentra-
tion. Samples were separated on 15 % Tris-glycine SDS polyacrylamide gels or non-denaturing 3–8 % 
Tris-Acetate gels (Life Technologies) and active proteasome subunits were visualized using a luorescent 
scanner (Typhoon TRIO+ ; Amersham biosciences). Images were taken at 450 PTM and 50 µ m pixel 
resolution with luorescence Cy3/TAMRA for ABPs MV151 and MVB127 while the Cy2 lorescent chan-
nel was used for LW124 and analyzed by using ImageJ sotware. Equal sample loading was veriied by 
staining gels with PageBlueTM (24620, Fisher Scientiic, Schwerte, Germany).

statistics and software. Data were analyzed with Image LabTM (Version 3.0.1., Bio-Rad, Hercules, 
CA, USA), ImageJ (ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA), or Prism5 
(Version 5.0, GraphPad Sotware, Inc., La Jolla, CA, USA). Statistics were performed using Prism5 with 
non-parametric tests and appropriate post hoc-analysis. P-values <  0.05 were considered statistically sig-
niicant.

Additional detail on the methods is provided in an online data supplement.
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SUPPLEMENT METHODS 

Primary lung fibroblast isolation: 

Primary mouse or human lung fibroblasts were isolated as described
1
. Mouse fibroblasts were 

used between passages 2-4, human fibroblasts before passage 6. 

Mouse alveolar epithelial cell isolation and culture: 

Primary alveolar type II cells (pmATII) were isolated from C57BL/6 mice as described 

previously
2
. 

Protein extracts and Western Blotting: Cells or dismembrated frozen tissue was lysed in 

ice-cold RIPA buffer (50 mM Tris·HCl, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium 

deoxycholate, and 0.1% SDS, pH 7.5), supplemented with protease inhibitor cocktail 

cOmplete (Roche, Basel, Switzerland). After 20 min incubation on ice, lysates were 

centrifuged at maximum speed for 20 min at 4°C and supernatants were used for further 

analysis.  

To prepare native lysates, samples were resuspended in distilled water containing cOmplete 

protease inhibitors and subjected to five cycles of freezing (liquid N2) and thawing (37°C 

waterbath). Cell debris was removed by centrifugation as described above. Protein 

concentrations were assessed using Pierce BCA kit (Thermo Fisher Scientific, Waltham, MA, 

USA). Western Blot analysis was performed as described
3
. Antibodies directed against LMP2 

(1:1,500, ab3328, polyclonal), LMP7 (1:1,500, ab3329, polyclonal), PSMA4 (3, 1:1,000, 

ab119419, clone 1H10) or 20S alpha 1+2+3+5+6+7 (1-7, 1:1,000, ab22674, clone MCP231) 

were from Abcam (Cambridge, UK). An HRP-coupled antibody detecting -Actin (1:40,000, 

A3854, clone AC-15) was purchased from Sigma-Aldrich (St. Louis, MO, USA), the antibody 

detecting the 19S subunit Tbp1 (Rpt5, 1:3,000, A303-538A, polyclonal) was purchased from 

Bethyl Laboratories (Montgomery, TX, USA). Antibodies detecting 20S proteasome subunits 
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1 and 2 were from Santa Cruz (1: 1:500, sc-67345, polyclonal; 2: 1:500, sc-58410, clone 

MCP165; Santa Cruz Biotechnology, Inc., Dallas, TX, USA) 

Quantitative real-time RT-PCR: Total RNA from cells was isolated using Roti
®
-Quick-Kit 

(Carl Roth, Karlsruhe, Germany). 100-1,000 ng per sample of total RNA were reverse-

transcribed using random hexamers (Life Technologies, Carlsbad, CA, USA) and M-MLV 

reverse transcriptase (Sigma-Aldrich). Quantitative PCR was performed using the SYBR 

Green LC480 System (Roche Diagnostics, Mannheim, Germany), gene-specific primer 

sequences are listed in Table S1.  

Immunohistochemistry: Human or mouse lung sections (3 µm) were deparaffinized in 

Xylene and rehydrated. Slides were incubated in solution containing 80% methanol and 1.8% 

H2O2 for 20 min to quench endogenous peroxidase activity. Heat-induced antigen retrieval 

was performed in 0.05% citraconic anhydride buffer (pH 7.4). Slides were washed with TBST 

buffer (20 mM Tris, 135 mM NaCl, 0.02% Tween, pH 7.6), blocked with Rodent Block M 

(Biocare, Concord, CA, USA) for 30 min, washed and incubated for 60 min with an LMP2 

specific antibody (1:600, ab3328, Abcam, Cambridge, UK). After another washing step, 

slides were incubated with rabbit-polymer coupled to alkaline phosphatase (Biocare) for 30 

min and washed again. Vulcan Fast Red (Biocare) was used as substrate and incubated for 12 

min. Hematoxylin counterstaining was performed, and slides were dehydrated and mounted in 

Eukitt
®
 (Sigma-Aldrich). Slides were evaluated using a MIRAX scanning system (Zeiss, 

Oberkochen, Germany). 

20S proteasome isolation from mouse lungs: Isolation and purification of proteasomes from 

lung tissue was performed essentially as described by Dahlmann et al.
4
, except for the fact 

that DEAE-Toyopearl was used for the initial step of anion exchange chromatography and 

Superose 6 instead of Sepharose for gel chromatography. After chromatography on arginine-

Sepharose, the enzyme preparation was concentrated by ultracentrifugation and the precipitate 
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dissolved in TSDG buffer (10 mM Tris/HCl, 25 mM KCl, 1.1 mM MgCl2, 0.1 mM EDTA, 1 

mM DTT, 1 mM NaN3, 10% glycerol, pH 7) containing 2 mM ATP. 20S and 26S 

proteasomes were then separated by centrifugation in a glycerol gradient (20% - 40% 

dissolved in TSDG buffer). Centrifugation was performed for 24 h at 25,000 rpm in a 

Beckman SW28 rotor and afterwards the gradient was fractionated into fractions of 0.5 ml. 

Determination of proteolytic activity was performed by use of fluorogenic peptide substrates 

as described by Dahlmann et al.
5
. 

For detection of proteasome activity by substrate overlay technique after non-denaturing 

polyacrylamide gel electrophoresis, the substrate Bz-VGR-MCA was used. This technique as 

well as non-equilibrium pH gradient and SDS-PAGE were performed as described by 

Dahlmann et al.
4
. 

2D gel electrophoresis / In-gel tryptic digest: Purified 20S proteasomes were sepaprated by 

two dimensional gel electrophoresis (protalys, Berlin, Germany) (1D: Nonequilibrium pH gel 

electrophoresis-IEF; 2D 2.6-15% SDS-polyacrylamide gel electrophoresis). After 

visualization of proteins (Colloidal Coomassie-G 250 staining), gel spots were excised for 

in-gel tryptic digest. Destaining of gel spots was done by washing in 200 µl nanopure water 

followed by dehydration in 200 µl 60% acetonitrile (each 3 x 10 minutes or until gel spots 

were completely destained). Acetonitrile was then removed and gel spots were rehydrated in 

10 µl digestion-buffer (1 mM Tris-HCl, pH 7.5) containing 0.01 µg/µl trypsin (Sequencing 

grade Modified Trypsin; Promega). Protein samples were digested over-night at 37°C.  

Mass Spectrometry: Proteins were identified using Matrix-assisted laser desorption 

ionization time-of-flight (MALDI-TOF) or liquid chromatrography electrospray-based 

(LC-MS/MS) mass spectrometry. Peptide mass fingerprints were obtained on a MALDI-

TOF/TOF tandem mass spectrometer (ABI 4700 ProteomicsAnalyzer, Applied Biosystems)
6
. 

The tryptic digest was diluted with one equivalent of MALDI matrix consisting of 
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2,5-dihydroxy-benzoic acid (Sigma-Aldrich) (20 mg/ml in 20% acetonitrile, 0.1% TFA) and 

2-hydroxy-5-bethoxybenzoic acid (Fluka) (20 mg/ml in 20% acetonitrile, 0.1% TFA) in a 9:1 

ratio (v/v), and spotted onto a steel target plate. Peptide mass fingerprint identification of the 

sample protein was done by comparing peptide masses of the tryptic digest to the virtually 

trypsinized Ensembl Mouse protein database (database downloaded from www.ensembl.org). 

The database search was performed using the MASCOT Database search engine v1.9 (Matrix 

Science Ltd.). Search parameter settings were 150 ppm peptide mass tolerance and one 

allowed missed cleavage. LC-MS/MS analysis was performed on an Ultimate3000 nano 

HPLC system (Dionex, Sunnyvale, CA) coupled to a LTQ OrbitrapXL mass spectrometer 

(Thermo Fisher Scientific) by a nano spray ion source. Samples from in-gel digest were 

acidified using TFA and automatically loaded to the HPLC system as described by Hauck et 

al.
7
. The acquired spectra (Thermo raw file) were exported to Mascot Deamon and searched 

against the Ensembl_Mouse protein database. Search parameters included fixed modification 

Carbamidomethyl (C) and variable modifications Deaminated (NQ) and Oxidation (M). 

Peptide tolerance was set to 10 ppm and MS/MS tolerance to 0.6 Da. Only 2, 3 and 4 fold 

charged peptides were selected for protein identification. Search results were viewed using the 

Scaffold software (Scaffold 3). 
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SUPPLEMENTARY FIGURES 
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Figure S1. Glycerol gradient analysis to isolate 20S proteasomes from mouse lung for 

mass spectrometry. (a) Proteasomes were subjected to glycerol gradient centrifugation and 

afterwards the gradient was fractionated into fractions of 0.5 ml. In each fraction, proteasome 

activity was measured by use of Suc-LLVY-MCA as substrate to detect the chymotrypsin-like 

activity of the proteasome. (b) Native PAGE of glycerol gradient fractions 29 and 41: 20 µl of 

each were subjected to non-denaturing PAGE and after the run proteasome activity was 

detected by substrate overlay technique (Suc-LLVY-MCA). (c) Coomassie stained SDS-

PAGE of 8 µg of each 20S proteasome (lane 1) or 26S proteasome (lane 2) separated by 

glycerol gradient centrifugation. (d) Coomassie stained 2D gel with annotated spots for mass-

spectrometry protein identification (for protein identities, see Supplementary Table S2). 
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Figure S2. Labeling specificities of activity-based probes. Native splenocyte lysates of 

wildtype, LMP2 k.o. or LMP7 k.o. mice were labeled with activity-based probes MV151 

(labeling all active -subunits), LW124 (1 and LMP2 specific) or MVB127 (5 and LMP7 

specific) and separated by SDS-PAGE. Bands originate from the same gel. The molecular 

weight of mouse 5 and mouse LMP7 is very similar and thus, these subunits separate only 

marginally on an SDS gel.  
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Figure S3. Characterization of MHV68-infected mouse lungs. (a) mRNA levels of 

inflammatory cytokines TNF and IFN during course of MHV-68 infection displayed as 

fold over uninfected controls, Rpl19 served as housekeeping gene (mean +/- SEM, Kruskal-

Wallis Test with Dunn’s Post Test, * = p<0.05, ** = p<0.01 ). (b) Densitometric analysis of 

total proteasome activity of ABP MV151 labeled native lung lysates of uninfected mice or 

MHV-68 infected mice (day 14, 48 and 148). (mean +/- SEM, Kruskal-Wallis Test with 

Dunn’s Post Test, * = p<0.05, ** = p<0.01 ).  



Supplement: Regulation of immunoproteasome function in the lung 

57 

SUPPLEMENTARY TABLES 

Table S1: Primer sequences 

Name Acc. No. Forward Primer (5‘-3‘) Reverse Primer (5‘-3‘) 

Mouse    

Nlrc5 NM_001033207.3 AGGCTCCCACTGCTTAGACA CGGACAGCAAGAGTTTCTCC 

Rpl19 NM_001159483.1 CGGGAATCCAAGAAGATTGA TTCAGCTTGTGGATGTGCTC 

Psma3 NM_011184.4 TGAAGAAGGCTCCAATAAACGTCT AACGAGCATCTGCCAGCAA 

Psmb5 NM_011186.1 TGCTCGCTAACATGGTGTATCAGTA GGCCTCTCTTATCCCAGCCA 

Psmb6 NM_008946.4 AGACGCTGTCACTTACCAACTTGG AAGAGACTGGCGGCTGTGTG 

Psmb7 NM_011187.1 TGCCTTATGTCACCATGGGTTC TTCCTCCTCCATATCTGGCCTAA 

Psmb8 NM_010724.2 TGCTTATGCTACCCACAGAGACAA TTCACTTTCACCCAACCGTC 

Psmb9 NM_013585.2 GTACCGTGAGGACTTGTTAGCGC GGCTGTCGAATTAGCATCCCT 

Psmb10 NM_013640.3 GAAGACCGGTTCCAGCCAA CACTCAGGATCCCTGCTGTGAT 

Tnf NM_013693.3 CATCTTCTCAAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC 

Ifng NM_008337.3 ACGGCACAGTCATTGAAAGCCTA GTCACCATCCTTTTGCCAGTTCC 

Human    

NLRC5 NM_032206.4 CTGCAGCCAAGTTCTTAGGG TCAGCTGAGGGAGTTGAGGT 

RPL19 NM_000981.3 GAGACCAATGAAATCGCCAATG GCGGATGATCAGCCCATCTT 

PSMA3 NM_002788.3 ACAGTGTGAATGACGGTGCG GCAGCTTGCCTGGCTTTG 

PSMB5 NM_002797.4 AGGAATCGAAATGCTTCATGGA GTAAGCACCCGCTGTAGCCC 

PSMB6 NM_002798.2 ACACCTATTCACGACCGCATTT GTAGGTGACAGCATCAGCTACTGC 

PSMB7 NM_002799.3 CTTCAACGACCTGGGCTCC TCTTGTTGGGCACTGTGTATGG 

PSMB8 NM_148919.3 AGTACTGGGAGCGCCTGCT CCGACACTGAAATACGTTCTCCA 

PSMB9 NM_002800.4 CGTTGTGATGGGTTCTGATTCC GACAGCTTGTCAAACACTCGGTT 

PSMB10 NM_002801.3 TGCTGCGGACACTGAGCTC GCTGTGGTTCCAGGCACAAA 
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Table S2: Mass spectrometry analysis of 2D gel excised spots 

spot 

ID 
Protein Name Accession Number 

Protein 

MW 

Peptide 

Count 

Protei

n 

Score 

Total 

Ion 

Score 

Best 

Ion 

Score 

Total MS 

Ion 

Cluster 

Area 

MS Ion 

Cluster 

Area 

Matched 

% 

A2 

Psma5|MGI (curated)|Proteasome subunit alpha type-5 (EC 

3.4.25.1)(Proteasome zeta chain)(Macropain zeta chain)(Multicatalytic 

endopeptidase complex zeta chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U1]|3|ENSMUSG00000068749|ENSMUST00000090569 

ENSMUSP00000088057 26565 6 95 51 51 363064 26 

A3 

Psma5|MGI (curated)|Proteasome subunit alpha type-5 (EC 

3.4.25.1)(Proteasome zeta chain)(Macropain zeta chain)(Multicatalytic 

endopeptidase complex zeta chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U1]|3|ENSMUSG00000068749|ENSMUST00000090569 

ENSMUSP00000088057 26565 7 345 286 123 1119377 37 

A4 

Psma5|MGI (curated)|Proteasome subunit alpha type-5 (EC 

3.4.25.1)(Proteasome zeta chain)(Macropain zeta chain)(Multicatalytic 

endopeptidase complex zeta chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U1]|3|ENSMUSG00000068749|ENSMUST00000090569 

ENSMUSP00000088057 26565 7 205 150 79 328137 34 

A5 

Psma5|MGI (curated)|Proteasome subunit alpha type-5 (EC 

3.4.25.1)(Proteasome zeta chain)(Macropain zeta chain)(Multicatalytic 

endopeptidase complex zeta chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U1]|3|ENSMUSG00000068749|ENSMUST00000090569 

ENSMUSP00000088057 26565 7 246 186 76 149782 42 

A6 

Psma5|MGI (curated)|Proteasome subunit alpha type-5 (EC 

3.4.25.1)(Proteasome zeta chain)(Macropain zeta chain)(Multicatalytic 

endopeptidase complex zeta chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U1]|3|ENSMUSG00000068749|ENSMUST00000090569 

ENSMUSP00000088057 26565 5 228 196 86 135406 32 

A7 

Psmb6|MGI (curated)|Proteasome subunit beta type-6 Precursor (EC 

3.4.25.1)(Proteasome delta chain)(Macropain delta chain)(Multicatalytic 

endopeptidase complex delta chain)(Proteasome subunit Y) 

[Source:UniProtKB/Swiss-Prot;Acc:Q60692]|11|ENSMUSG0000 

ENSMUSP00000018430 25591 8 126 55 55 439117 43 

A9 

Psmb9|MGI (automatic)|Proteasome subunit beta type-9 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-1i)(Proteasome chain 7)(Macropain 

chain 7)(Multicatalytic endopeptidase complex chain 7)(RING12 

protein)(Low molecular mass protein 2)(LMP-2d) [Sour 

ENSMUSP00000075907 23482 5 130 95 77 225749 27 

A11 

Psma3|MGI (automatic)|Proteasome subunit alpha type-3 (EC 

3.4.25.1)(Proteasome component C8)(Macropain subunit C8)(Multicatalytic 

endopeptidase complex subunit C8)(Proteasome subunit K) 

[Source:UniProtKB/Swiss-Prot;Acc:O70435]|12|ENSMUSG00000060073| 

ENSMUSP00000071624 28615 12 321 226 61 459544 28 

A12 

Psma3|MGI (automatic)|Proteasome subunit alpha type-3 (EC 

3.4.25.1)(Proteasome component C8)(Macropain subunit C8)(Multicatalytic 

endopeptidase complex subunit C8)(Proteasome subunit K) 

[Source:UniProtKB/Swiss-Prot;Acc:O70435]|12|ENSMUSG00000060073| 

ENSMUSP00000071624 28615 11 411 327 96 924322 25 

A13 

Psma3|MGI (automatic)|Proteasome subunit alpha type-3 (EC 

3.4.25.1)(Proteasome component C8)(Macropain subunit C8)(Multicatalytic 

endopeptidase complex subunit C8)(Proteasome subunit K) 

[Source:UniProtKB/Swiss-Prot;Acc:O70435]|12|ENSMUSG00000060073| 

ENSMUSP00000071624 28615 11 399 316 103 1785503 28 

A14 

Psmb4|MGI (curated)|Proteasome subunit beta type-4 Precursor 

(Proteasome beta chain)(EC 3.4.25.1)(Macropain beta chain)(Multicatalytic 

endopeptidase complex beta chain)(Proteasome chain 3) 

[Source:UniProtKB/Swiss-Prot;Acc:P99026]|3|ENSMUSG0000000577 

ENSMUSP00000005923 29211 7 267 222 73 726792 34 

A15 

Psmb4|MGI (curated)|Proteasome subunit beta type-4 Precursor 

(Proteasome beta chain)(EC 3.4.25.1)(Macropain beta chain)(Multicatalytic 

endopeptidase complex beta chain)(Proteasome chain 3) 

[Source:UniProtKB/Swiss-Prot;Acc:P99026]|3|ENSMUSG0000000577 

ENSMUSP00000005923 29211 8 241 184 92 521272 32 

A16 

Psmb4|MGI (curated)|Proteasome subunit beta type-4 Precursor 

(Proteasome beta chain)(EC 3.4.25.1)(Macropain beta chain)(Multicatalytic 

endopeptidase complex beta chain)(Proteasome chain 3) 

[Source:UniProtKB/Swiss-Prot;Acc:P99026]|3|ENSMUSG0000000577 

ENSMUSP00000005923 29211 8 286 228 146 1916248 59 

A17 

Psmb3|MGI (curated)|Proteasome subunit beta type-3 (EC 

3.4.25.1)(Proteasome theta chain)(Proteasome chain 13)(Proteasome 

component C10-II) [Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P1]|11|ENSMUSG00000069744|ENSMUST00000103147 

ENSMUSP00000099436 23235 7 120 77 52 270844 13 

and 

Psmb4|MGI (curated)|Proteasome subunit beta type-4 Precursor 

(Proteasome beta chain)(EC 3.4.25.1)(Macropain beta chain)(Multicatalytic 

endopeptidase complex beta chain)(Proteasome chain 3) 

[Source:UniProtKB/Swiss-Prot;Acc:P99026]|3|ENSMUSG0000000577 

ENSMUSP00000005923 29211 6 102 65 27 270844 20 

A20 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 6 116 76 41 131208 54 

A21 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 9 223 161 92 492981 50 

A22 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 11 329 247 109 960792 74 

A23 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

ENSMUSP00000033008 29813 11 343 260 126 1488460 69 
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Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

A24 

Psmb7|MGI (curated)|Proteasome subunit beta type-7 Precursor (EC 

3.4.25.1)(Proteasome subunit Z)(Macropain chain Z)(Multicatalytic 

endopeptidase complex chain Z) [Source:UniProtKB/Swiss-

Prot;Acc:P70195]|2|ENSMUSG00000026750|ENSMUST00000028083 

ENSMUSP00000028083 30214 7 204 150 58 563024 50 

and 

Psmb10|MGI (automatic)|Proteasome subunit beta type-10 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-2i)(Proteasome MECl-1)(Macropain 

subunit MECl-1)(Multicatalytic endopeptidase complex subunit MECl-1) 

[Source:UniProtKB/Swiss-Prot;Acc:O35955]|8|E 

ENSMUSP00000034369 29330 1 48 44 44 563024 4 

A25 

Psmb7|MGI (curated)|Proteasome subunit beta type-7 Precursor (EC 

3.4.25.1)(Proteasome subunit Z)(Macropain chain Z)(Multicatalytic 

endopeptidase complex chain Z) [Source:UniProtKB/Swiss-

Prot;Acc:P70195]|2|ENSMUSG00000026750|ENSMUST00000028083 

ENSMUSP00000028083 30214 10 293 209 69 1700471 57 

and 

Psmb10|MGI (automatic)|Proteasome subunit beta type-10 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-2i)(Proteasome MECl-1)(Macropain 

subunit MECl-1)(Multicatalytic endopeptidase complex subunit MECl-1) 

[Source:UniProtKB/Swiss-Prot;Acc:O35955]|8|E 

ENSMUSP00000034369 29330 1 48 45 45 1700471 4 

and 

Psmb10|MGI (automatic)|Proteasome subunit beta type-10 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-2i)(Proteasome MECl-1)(Macropain 

subunit MECl-1)(Multicatalytic endopeptidase complex subunit MECl-1) 

[Source:UniProtKB/Swiss-Prot;Acc:O35955]|8|E 

ENSMUSP00000034369 29330 9 415 340 185 1365419 59 

A28 

Psma6|MGI (automatic)|Proteasome subunit alpha type-6 (EC 

3.4.25.1)(Proteasome iota chain)(Macropain iota chain)(Multicatalytic 

endopeptidase complex iota chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9QUM9]|12|ENSMUSG00000021024|ENSMUST00000021412 

ENSMUSP00000021412 27811 4 66 47 47 1365419 6 

A29 

Psma6|MGI (automatic)|Proteasome subunit alpha type-6 (EC 

3.4.25.1)(Proteasome iota chain)(Macropain iota chain)(Multicatalytic 

endopeptidase complex iota chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9QUM9]|12|ENSMUSG00000021024|ENSMUST00000021412 

ENSMUSP00000021412 27811 8 250 198 82 496373 52 

and 

Psma6|MGI (automatic)|Proteasome subunit alpha type-6 (EC 

3.4.25.1)(Proteasome iota chain)(Macropain iota chain)(Multicatalytic 

endopeptidase complex iota chain) [Source:UniProtKB/Swiss-

Prot;Acc:Q9QUM9]|12|ENSMUSG00000021024|ENSMUST00000021412 

ENSMUSP00000021412 27811 10 327 256 80 654306 61 

A30 

Mcm2|MGI (automatic)|DNA replication licensing factor MCM2 

(Minichromosome maintenance protein 2 homolog)(Nuclear protein BM28) 

[Source:UniProtKB/Swiss-

Prot;Acc:P97310]|6|ENSMUSG00000002870|ENSMUST00000058011 

ENSMUSP00000061923 102698 10 66 44 44 654306 37 

and 

Psma4|MGI (automatic)|Proteasome subunit alpha type-4 (EC 

3.4.25.1)(Proteasome component C9)(Macropain subunit C9)(Multicatalytic 

endopeptidase complex subunit C9)(Proteasome subunit L) 

[Source:UniProtKB/Swiss-Prot;Acc:Q9R1P0]|9|ENSMUSG00000032301|E 

ENSMUSP00000034848 29737 6 180 143 66 123819 35 

A31 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 6 62 25 25 123819 21 

A32 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 10 229 159 71 244083 52 

and 

Psma4|MGI (automatic)|Proteasome subunit alpha type-4 (EC 

3.4.25.1)(Proteasome component C9)(Macropain subunit C9)(Multicatalytic 

endopeptidase complex subunit C9)(Proteasome subunit L) 

[Source:UniProtKB/Swiss-Prot;Acc:Q9R1P0]|9|ENSMUSG00000032301|E 

ENSMUSP00000034848 29737 7 258 217 82 491609 39 

A33 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 3 47 34 34 491609 8 

A34 

Psma4|MGI (automatic)|Proteasome subunit alpha type-4 (EC 

3.4.25.1)(Proteasome component C9)(Macropain subunit C9)(Multicatalytic 

endopeptidase complex subunit C9)(Proteasome subunit L) 

[Source:UniProtKB/Swiss-Prot;Acc:Q9R1P0]|9|ENSMUSG00000032301|E 

ENSMUSP00000034848 29737 8 381 331 85 730769 41 

and 

Psma7|MGI (curated)|Proteasome subunit alpha type-7 (EC 

3.4.25.1)(Proteasome subunit RC6-1) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U0]|2|ENSMUSG00000027566|ENSMUST00000029082 

ENSMUSP00000029082 28009 9 204 127 61 88216 44 

A35 

Psma1|MGI (curated)|Proteasome subunit alpha type-1 (EC 

3.4.25.1)(Proteasome component C2)(Macropain subunit C2)(Multicatalytic 

endopeptidase complex subunit C2)(Proteasome nu chain) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P4]|7|ENSMUSG00000030751|ENSM 

ENSMUSP00000033008 29813 3 70 54 34 88216 22 

A37 

Psma7|MGI (curated)|Proteasome subunit alpha type-7 (EC 

3.4.25.1)(Proteasome subunit RC6-1) [Source:UniProtKB/Swiss-

Prot;Acc:Q9Z2U0]|2|ENSMUSG00000027566|ENSMUST00000029082 

ENSMUSP00000029082 28009 9 188 116 77 95074 40 

A38 

Psmb1|MGI (automatic)|Proteasome subunit beta type-1 Precursor (EC 

3.4.25.1)(Proteasome component C5)(Macropain subunit C5)(Multicatalytic 

endopeptidase complex subunit C5)(Proteasome gamma chain) 

[Source:UniProtKB/Swiss-Prot;Acc:O09061]|17|ENSMUSG0 

ENSMUSP00000014913 26583 11 381 288 106 491567 68 

A39 
Psmb1|MGI (automatic)|Proteasome subunit beta type-1 Precursor (EC 

3.4.25.1)(Proteasome component C5)(Macropain subunit C5)(Multicatalytic 
ENSMUSP00000014913 26583 11 377 284 103 698770 69 
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endopeptidase complex subunit C5)(Proteasome gamma chain) 

[Source:UniProtKB/Swiss-Prot;Acc:O09061]|17|ENSMUSG0 

A40 

Psma2|MGI (automatic)|Proteasome subunit alpha type-2 (EC 

3.4.25.1)(Proteasome component C3)(Macropain subunit C3)(Multicatalytic 

endopeptidase complex subunit C3) [Source:UniProtKB/Swiss-

Prot;Acc:P49722]|13|ENSMUSG00000015671|ENSMUST00000082305 

ENSMUSP00000106140 26024 7 246 186 97 458855 45 

A41 

Psma2|MGI (automatic)|Proteasome subunit alpha type-2 (EC 

3.4.25.1)(Proteasome component C3)(Macropain subunit C3)(Multicatalytic 

endopeptidase complex subunit C3) [Source:UniProtKB/Swiss-

Prot;Acc:P49722]|13|ENSMUSG00000015671|ENSMUST00000082305 

ENSMUSP00000106140 26024 9 430 350 146 1490688 66 

and 

Psmb2|MGI (curated)|Proteasome subunit beta type-2 (EC 

3.4.25.1)(Proteasome component C7-I)(Macropain subunit C7-

I)(Multicatalytic endopeptidase complex subunit C7-I) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P3]|4|ENSMUSG00000028837|ENSMUST00000030642 

ENSMUSP00000030642 23063 6 218 176 79 359746 49 

A42 

Psmb8|MGI (automatic)|Proteasome subunit beta type-8 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-5i)(Proteasome component 

C13)(Macropain subunit C13)(Multicatalytic endopeptidase complex 

subunit C13) [Source:UniProtKB/Swiss-Prot;Acc:P28063]|17|E 

ENSMUSP00000025196 30526 8 139 87 62 359746 14 

and 

Psmb8|MGI (automatic)|Proteasome subunit beta type-8 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-5i)(Proteasome component 

C13)(Macropain subunit C13)(Multicatalytic endopeptidase complex 

subunit C13) [Source:UniProtKB/Swiss-Prot;Acc:P28063]|17|E 

ENSMUSP00000025196 30526 10 218 131 86 387945 47 

A43 

Psmb2|MGI (curated)|Proteasome subunit beta type-2 (EC 

3.4.25.1)(Proteasome component C7-I)(Macropain subunit C7-

I)(Multicatalytic endopeptidase complex subunit C7-I) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P3]|4|ENSMUSG00000028837|ENSMUST00000030642 

ENSMUSP00000030642 23063 5 149 118 73 387945 19 

A44 

Psmb2|MGI (curated)|Proteasome subunit beta type-2 (EC 

3.4.25.1)(Proteasome component C7-I)(Macropain subunit C7-

I)(Multicatalytic endopeptidase complex subunit C7-I) 

[Source:UniProtKB/Swiss-

Prot;Acc:Q9R1P3]|4|ENSMUSG00000028837|ENSMUST00000030642 

ENSMUSP00000030642 23063 11 612 503 174 1853259 70 

and 

Psmb8|MGI (automatic)|Proteasome subunit beta type-8 Precursor (EC 

3.4.25.1)(Proteasome subunit beta-5i)(Proteasome component 

C13)(Macropain subunit C13)(Multicatalytic endopeptidase complex 

subunit C13) [Source:UniProtKB/Swiss-Prot;Acc:P28063]|17|E 

ENSMUSP00000025196 30526 13 407 293 96 1260507 60 

 

Psmb5|MGI (automatic)|Proteasome subunit beta type-5 Precursor (EC 

3.4.25.1)(Proteasome epsilon chain)(Macropain epsilon 

chain)(Multicatalytic endopeptidase complex epsilon chain)(Proteasome 

subunit X)(Proteasome chain 6) [Source:UniProtKB/Swiss-Pro 

ENSMUSP00000107118 22645 3 48 31 31 1260507 12 

 

Spots not significantly identified by MALDI-MS were analyzed by LC-MS/MS: 
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A8 

Psmb6|MGI Symbol|proteasome (prosome, macropain) subunit, beta type 6 Gene 

[Source:MGI 

Symbol;Acc:MGI:104880]|ENSMUSG00000018286|11|ENSMUST00000018430 

ENSMUSP00000018430 25591 12 3063 105 38 

A10 

Psmb9|MGI Symbol|proteasome (prosome, macropain) subunit, beta type 9 (large 

multifunctional peptidase 2) Gene [Source:MGI 

Symbol;Acc:MGI:1346526]|ENSMUSG00000024337|17|ENSMUST00000076602 

ENSMUSP00000075907 23482 15 2592 118 40 

A18 

Psmb3|MGI Symbol|proteasome (prosome, macropain) subunit, beta type 3 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347014]|ENSMUSG00000069744|11|ENSMUST00000103147 

ENSMUSP00000099436 

und 
23235 27 4586 121 60 

A18 

Psmb9|MGI Symbol|proteasome (prosome, macropain) subunit, beta type 9 (large 

multifunctional peptidase 2) Gene [Source:MGI 

Symbol;Acc:MGI:1346526]|ENSMUSG00000024337|17|ENSMUST00000076602 

ENSMUSP00000075907 23482 8 555 107 33 

A19 

Psmb3|MGI Symbol|proteasome (prosome, macropain) subunit, beta type 3 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347014]|ENSMUSG00000069744|11|ENSMUST00000103147 

ENSMUSP00000099436 

und 
23235 39 4577 122 61 

A19 

Psma6|MGI Symbol|proteasome (prosome, macropain) subunit, alpha type 6 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347006]|ENSMUSG00000021024|12|ENSMUST00000021412 

ENSMUSP00000021412 27811 5 218 94 21 

A26 

Psma6|MGI Symbol|proteasome (prosome, macropain) subunit, alpha type 6 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347006]|ENSMUSG00000021024|12|ENSMUST00000021412 

ENSMUSP00000021412 

und 
27811 12 899 116 41 

A26 

Psma3|MGI Symbol|proteasome (prosome, macropain) subunit, alpha type 3 Gene 

[Source:MGI 

Symbol;Acc:MGI:104883]|ENSMUSG00000060073|12|ENSMUST00000160027 

ENSMUSP00000125548 28615 14 740 114 28 

A35 

Psma7|MGI Symbol|proteasome (prosome, macropain) subunit, alpha type 7 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347070]|ENSMUSG00000027566|2|ENSMUST00000029082 

ENSMUSP00000029082 

und 
28009 21 1892 130 48 

A35 

Psma1|MGI Symbol|proteasome (prosome, macropain) subunit, alpha type 1 Gene 

[Source:MGI 

Symbol;Acc:MGI:1347005]|ENSMUSG00000030751|7|ENSMUST00000033008 

ENSMUSP00000033008 29813 19 850 90 34 
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3. Discussion 

 

Within the two presented publications, the role of standard and immunoproteasome activity was 

investigated in response to cigarette smoke, IFNǅ, or virus infection using in vitro and in vivo mouse 

models as well as lung tissue of COPD patients. In addition, the results of recent experiments, which 

were accepted for publication in the meantime (Kammerl et al. 2016), reveal a specific downregulation 

of immunoproteasome expression and activity in response to cigarette smoke and are partially 

integrated into the discussion part of this thesis. 

 

3.1 Cigarette smoke induces oxidative stress and reduces 

proteasome activity 

The gaseous and particulate compounds found in cigarette smoke comprise many reactive 

compounds including oxidants that directly react with and modify lipids, nucleic acids, and proteins 

(Church & Pryor 1985). Oxidative modifications of proteins might lead to misfolding and loss of 

function, and make them prone to aggregate, resulting in proteotoxic stress. To prevent accumulation 

of aggregation-prone proteins, these misfolded and malfunctioning proteins are either refolded with 

the help of heat shock proteins (Hsp) or tagged with ubiquitin by E3 ligases, which are then recognized 

by the 19S regulatory particle of the 26S proteasome and subsequently degraded (Goldberg 2003). 

The major ubiquitin E3 ligase for misfolded proteins is carboxyl terminus of the Hsc70-interacting 

protein (CHIP), a co-chaperone of Hsp70, thus enabling degradation of misfolded proteins by the 

proteasome (Rosser et al. 2007). While lung cells might be able to cope with acute and transient 

impairment of proteasome function in response to cigarette smoke, repetitive injury of the 

proteasome and continuous imbalance of protein homeostasis might lead to aggregation of proteins 

which cannot be degraded (Goldberg 2003; Weathington et al. 2013; Balch et al. 2014). Min and 

colleagues found increased levels of insoluble ubiquitinated proteins in COPD lung tissue and pointed 

thus indirectly to decreased proteasome activity (Min et al. 2011). Our results also indicated increased 

levels of ubiquitinated proteins, both in detergent-soluble and insoluble fractions derived from lungs 

of mice exposed to cigarette smoke (van Rijt et al. 2012). 

Increasing evidence suggests impairment of proteasome function by acute smoke exposure in vitro 

(van Rijt et al. 2012; Somborac-Bacura et al. 2013). Not only cigarette smoke has been shown to 

interfere with proteasome activity, also other combustion products, i.e. diesel exhaust and secondary 

organic aerosols, have been shown to impair the proteasome system in human white blood cells 
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(Kipen et al. 2011). It is, however, not known whether biomass smoke exposure, which is also a risk 

factor for COPD development, or other kinds of air pollution impact the proteasome system in a 

similar fashion.  

Furthermore, the proteasome might be a target for protein modifications itself (Meiners et al. 2014): in 

vitro treatment of purified 20S proteasomes with cigarette smoke extract resulted in a dose-dependent 

reduction of activity, indicating a direct effect of cigarette smoke on the proteasome (van Rijt et al. 

2012). It was shown that upon proteasome inhibition by small molecule inhibitors, a positive 

feedback-loop leads to concerted upregulation of all 20S and 19S proteasome subunits (Meiners et al. 

2003). However, it is currently not fully understood how damaged proteasomes themselves are 

disassembled and degraded. Due to their long half-lives of approximately two weeks in vivo (Tanaka & 

Ichihara 1989), slightly malfunctioning proteasomes would be present inside the cell for a long time 

and de novo assembly of fully functioning proteasome complexes requires timely effort.  

Cigarette smoke might also impact on another layer of proteasome regulation: Complex formation of 

20S proteasomes with proteasome regulators, i.e. 19S, PA28α/Ǆ, PA28ǅ, PA200 or PI31, might be 

affected. The stability of the 26S complex has been shown to be sensitive to the redox state of the cell, 

which is influenced by cigarette smoke (Wang et al. 2010; van Rijt et al. 2012; Livnat-Levanon et al. 

2014; Tsvetkov et al. 2014). While 26S proteasome biology during oxidative stress is well established, 

another proteasome activator, PA28α/Ǆ, was recently described to protect from oxidative stress and 

might even assemble with 20S proteasomes originating from disassembled 26S proteasomes, but little 

is known about other activators (Pickering et al. 2010; Li et al. 2011; Pickering et al. 2012; Pickering & 

Davies 2012; Freudenburg et al. 2013; Hernebring et al. 2013). Cigarette smoke components evoke 

many more cellular responses than simple oxidative stress inducers such as H2O2 alone, which was 

used in several of the aforementioned studies. We could show that 26S and 20S activity is also reduced 

in cigarette smoke extract-treated cells already after two hours (van Rijt et al. 2012). The acute 

reduction in activity was not due to reduced protein levels of proteasome subunits. Whether this effect 

was due to inhibition of the catalytic active sites or disassembly of the proteasome by cigarette smoke 

remains to be elucidated. Also, the effect of cigarette smoke on assembly/disassembly of the 20S 

proteasome with other regulators has not been investigated so far. It would also be interesting to 

know whether the same effects can be observed in vivo after acute smoke exposure of mice. 

It has been debated whether 26S proteasomes containing standard or immunoproteasome subunits 

are better capable of degrading oxidatively modified proteins (Seifert et al. 2010; Nathan et al. 2013) 

and a protective role of immunoproteasomes in oxidative stress response has been proposed 

(Pickering et al. 2010; Jung et al. 2013). Our own and unpublished data do not support a protective 

role of immunoproteasomes in response to cigarette smoke: basal RNA and protein levels of 

immunoproteasome subunits in lung parenchymal cell lines (A549 and HFL-1) were reduced after three 
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days of cigarette smoke extract-treatment (data not shown). However, it was not tested whether this is 

a reversible effect. 

A recent study by Yamada and colleagues pointed towards a causal role of decreased proteasomal 

function (i.e. chymotrypsin-like activity) and the development of emphysema in a murine model of 

COPD (Yamada et al. 2015). The authors associated this effect with in vitro results showing higher 

susceptibility to cigarette smoke-induced apoptosis of primary cells from transgenic mice that express 

the thymoproteasome subunit Ǆ5t.  

In COPD patients, one study showed decreased RNA and protein expression of proteasome subunits 

as well as reduced activity of proteasomes in lungs of patients with moderate and severe COPD 

(Malhotra et al. 2009). However, the authors have recently raised concern about some of the published 

figures (2014)2, so these results should be considered with caution. Fujino and colleagues found 

increased levels of LMP2 and LMP7 transcripts in isolated alveolar type II cells from early-stage COPD 

patients, nonetheless, all patients included in this study also suffered from lung cancer (Fujino et al. 

2012). Our immunohistochemical analysis did not indicate increased LMP2 staining in alveolar 

epithelial cells in cancer-free end-stage COPD patients (Keller et al. 2015). 

Two recent studies found no difference in total proteasome content in end-stage COPD (Baker et al. 

2014; Tomasovic et al. 2015) and no differences in chymotrypsin-like activity of the proteasome (Baker 

et al. 2014). Our own data on proteasome expression and activity in lungs from end-stage COPD 

patients exhibited differences: while there was no difference in expression of single subunits (RNA and 

protein), we observed a clear decrease in active subunits as detected by activity-based probe labeling 

of native lysates and assembled 20S and 26S complexes as examined by native gel-analysis and 

chymotrypsin substrate overlay (Kammerl et al. 2016). The decrease in activity was found in both 

standard and immunoproteasome subunits, implying that cigarette smoke/oxidative stress/other 

mechanisms decreasing proteasome activity are not selective for one over the other. However, as 

group size was limited, these experiments should be confirmed in an independent cohort and with 

larger numbers of patient samples. 

 

3.2 Functional consequences of decreased 

(immuno-)proteasome activity in COPD pathogenesis 

Cigarette smoke is the main risk factor for the development of COPD and has been shown to affect the 

microbiome in the lung and immune responses to bacterial and viral infection (Stämpfli & Anderson 

2009). We have shown that parenchymal primary cells of mouse and human origin respond to 

IFNǅ-treatment with rapid upregulation of immunoproteasomes. Furthermore, lungs from MHV-68 

                                                      
2 URL: http://www.atsjournals.org/doi/full/10.1164/rccm.190101200#.VYFsAEY3RXU; (Anonymous 2014) 
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infected mice exhibited increased levels of immunoproteasomes, suggesting that the lung is fully 

capable of mounting an immunoproteasome-dependent MHC I-mediated antiviral response (Keller et 

al. 2015). Our recently published data (Figure 3, (Kammerl et al. 2016)) imply that impaired MHC I 

antigen presentation, as caused by cigarette smoke, might add on severity and duration of respiratory 

infections, as observed in smokers and experimentally shown in controlled rhinovirus infection in 

COPD patients (Stämpfli & Anderson 2009; Mallia et al. 2011). Severe exacerbations often require 

hospitalization of the patient and lead to accelerated disease progression with loss of lung function 

and reduced quality of life (Decramer et al. 2012). Clinically relevant viruses in COPD exacerbations 

include rhinovirus, parainfluenza virus, and influenza virus, with influenza virus infection being less 

frequent, but more severe in terms of clinical course (Sethi & Murphy 2008). For this reason, annual 

influenza vaccination is recommended for all COPD patients (Decramer et al. 2012). The GOLD stage of 

patients is strongly associated with exacerbation frequency, however, the best predictor for frequent 

exacerbations is a history of frequent exacerbations (Decramer et al. 2012). Importantly, exacerbation 

frequency has been directly linked with long-term lung function decline (Donaldson et al. 2002). 

Therefore, it is important to understand the molecular mechanisms of reduced antiviral immune 

responses in COPD patients to find new therapeutic targets to possibly prevent exacerbations. 

It has been shown that rhinovirus-infected primary airway epithelial cells of COPD patients exhibited 

increased levels of inflammatory cytokines, additionally, downstream targets of IFNs were increased. 

Viral titers, however, were elevated in COPD epithelial cells compared to normal donors (Schneider et 

al. 2010). In serum samples of COPD patients hospitalized with an acute exacerbation, levels of IFNǅ, 

the main inducer of immunoproteasomes, were associated with virus infection, but inversely correlated 

with clinical outcome, implying that the antiviral immune response in COPD exacerbations is strongly 

dependent on IFNǅ-signaling (Almansa et al. 2012). This would also affect immunoproteasome 

induction for efficient antigen presentation.  

 

Figure 3: Cigarette smoke extract decreases immunoproteasome-dependent UTY246-254-peptide 

presentation in antigen presenting cells of the lung. Ǆ-galactosidase-activity of UTY reporter cell line 
co-incubated with (A) MACS-sorted CD11c+ lung cells or (B) BAL cells (>95 % alveolar macrophages) from male 
mice that had been treated with increasing CSE concentrations for 24 h. Data are combined results of three to four 
independent experiments normalized to the signal of maximum induction of untreated cells co-incubated with 
UTY cells (= 100 %), (mean + SEM, one-sample t-test (compared to 100 %), * = p<0.05,). Ǆ-gal, Ǆ-galactosidase; 
BAL, bronchoalveolar lavage; ctrl, control; CSE, cigarette smoke extract; MACS, magnetic-activated cell sorting; 
UTY, UTY246-254 hybridoma cell line. 
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3.2.1 Susceptibility to respiratory virus infection 

Reduced (immuno-)proteasome activity induced by cigarette smoke might have a substantial effect on 

MHC I-dependent antiviral immune responses: the proteasome is the main peptide supplier for MHC I 

antigen presentation, with the immunoproteasome being superior over the standard proteasome to 

generate MHC I-suitable peptides. The outcome of efficient clearance of a respiratory viral infection via 

(immuno-)proteasome-dependent MHC I antigen presentation might be strongly dependent on the 

virus itself. Different viral epitopes can be divided into immunodominant or subdominant epitopes, 

according to the hierarchy of CD8+ T cell clones (Yewdell 2006; Akram & Inman 2012). The number of 

epitopes depends on the type of virus as well as on the MHC I genotype of the host. Every nucleated 

cell in the human body expresses up to six different MHC I molecules, two from each of human 

leukocyte antigen (HLA)-A, -B- and -C, and for each MHC I locus, several thousand alleles are known. 

However, one MHC I molecule can bind to multiple ligands sharing biochemical properties of the 

so-called anchor residues of the peptide that enable binding to the MHC I groove (Klein & Sato 2000). 

Several viral epitopes have been shown to be generated or destroyed by the standard or 

immunoproteasome, respectively. These viruses include influenza virus, a clinically relevant virus in 

respiratory infection and COPD exacerbation (Van Kaer et al. 1994; Sibille et al. 1995; Pang et al. 2006; 

de Graaf et al. 2011; Zanker et al. 2013). As most of these studies were conducted in mice, it is not 

known to which degree these findings can be transferred to the human situation. Our results showed 

both reduced immuno- and standard proteasome activities in end-stage COPD whole lung tissue, 

suggesting restrained peptide generation for efficient MHC I antigen presentation (Kammerl et al. 

2016). Indeed, it has been demonstrated that mere proteasome inhibition with the Food and Drug 

Administration (FDA)-approved proteasome inhibitor bortezomib increased susceptibility of mice to 

lymphocytic choriomeningitis virus (LCMV) infection, accompanied by reduced CD8+ T cell responses 

and increased viral titers (Basler et al. 2009).  

The effect of decreased (immuno-)proteasome activity, however, might differ between diverse cell 

types and may critically depend on the type of proteasome present in the cell. This demands to 

distinguish the effects of cigarette smoke on parenchymal and immune cells. 

 

Effect on parenchymal cells 

Epithelial cells and fibroblasts in the lung mainly express standard proteasomes, but rapidly upregulate 

immunoproteasomes in response to IFNǅ or during viral infection. In epithelial cells of end-stage 

COPD patients, immunoproteasomes were not found to be upregulated (Keller et al. 2015). Airway or 

alveolar epithelial cells are the entry and replication site for several respiratory viruses (Braciale et al. 

2012; Yoo et al. 2013). To efficiently eliminate virus-infected cells and thus terminate viral replication, 

infected respiratory cells need to communicate their infection status to CD8+ T cells via MHC I antigen 



Discussion 

68 

presentation. Reduced proteasome activity triggered by cigarette smoke might lead to reduced 

antigen presentation of virus-derived peptides and thus contribute to impaired clearance of 

virus-infected cells (Figure 4). 

Joeris and colleagues have shown that presence of immunoproteasome subunit LMP7 during infection 

increases total 20S proteasome abundancy, possibly allowing the cell to cope with changed proteolytic 

needs during infection and increasing MHC I cell surface expression (Joeris et al. 2012). Actually, LMP7 

incorporation to 20S proteasomes has been shown to be the limiting factor for MHC I peptide supply 

for antigen presentation (Fehling et al. 1994). Reduced levels of LMP7 in response to cigarette smoke 

might also affect incorporation of the other two immunosubunits: Kingsbury and colleagues have 

shown that the propeptide of LMP7 is responsible for its favored incorporation into 20S proteasomes 

over Ǆ5, leading to preferred incorporation of LMP2 and MECL-1 as well (Kingsbury et al. 2000), which 

was confirmed by another group (Joeris et al. 2012). In LMP7-deficient mice, we showed that the 

pro-form of LMP2 accumulated already at basal conditions and levels of processed and thus 

incorporated LMP2 were decreased, which was even more evident after IFNǅ-treatment of 

LMP7-deficient cells (Keller et al. 2015).  

Several groups reported decreased responsiveness of epithelial cells to interferons/viruses when they 

were exposed to cigarette smoke extract (Bauer et al. 2008; Modestou et al. 2010; Eddleston et al. 

2011; Proud et al. 2012; Hudy et al. 2014). Our own unpublished results expand these findings: the 

alveolar epithelial cell line A549 exhibited reduced immunoproteasome expression levels after 

IFNǅ-stimulation in the presence of cigarette smoke extract, implying that not only basal levels, but 

also inducibility of immunoproteasomes are affected by cigarette smoke (data not shown). Reduced 

immunoproteasome abundancy in infected respiratory epithelial cells might thus add on reduced 

presentation of viral epitopes or increase presentation of standard proteasome-derived epitopes and 

lower the possibility of infected epithelial cells to be detected by CD8+ T cells (Figure 4). This may then 

ultimately limit virus elimination resulting in prolonged infections, as observed in smokers. Indeed, it 

has been shown that membrane MHC I is reduced in primary keratinocytes exposed to cigarette 

smoke extract, which could be restored by overexpressing transporter associated with antigen 

processing (TAP) 1, a crucial integral part of MHC I antigen presentation (Fine et al. 2002).  

 

Effect on immune cells 

Immune cells in the lung, such as macrophages and dendritic cells, are the main cell types expressing 

immunoproteasomes (Keller et al. 2015). In professional APCs of the lung, e.g. dendritic cells, 

immunoproteasomes are important for evoking adaptive immune responses. At steady state 

conditions, dendritic cells mainly comprise immunoproteasomes (Macagno et al. 2001). After 

phagocytosis of viral particles or infected cells, dendritic cells process and cross-present virus-derived 
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epitopes on MHC I to naïve CD8+ T cells in the lymph node (Figure 4A). Cigarette smoke might have 

different effects on distinct dendritic cell subsets in the lung: resident dendritic cells might be more 

affected by cigarette smoke than infiltrating dendritic cells after infection. 

It has been shown that cigarette smoke leads to accumulation of immature (Langerin+) dendritic cells 

 

Figure 4: Proposed consequences of decreased immunoproteasome function in infected parenchymal lung 

cells. (A) Immunoproteasomes in antigen-presenting cells (APCs) degrade viral proteins into peptides, which are 
translocated into the ER and loaded onto MHC class I molecules. These are transported to the cell surface and 
presented to naïve CD8+ T cells in the lymph node. Upon activation and clonal expansion, effector CD8+ T cells 
(also called cytotoxic T lymphocyte (CTL)) infiltrate the lung in search for their specific epitope bound to MHC I to 
kill infected cells. (B) Infected cells in the lung upregulate immunoproteasomes which degrade viral proteins into 
the same peptides as the APC did to evoke the CD8+ T cell response, these immunodominant epitopes are 
presented on MHC I proteins. Infected cells are recognized and killed by immunoproteasome-dependent CD8+ 
T cells to resolve infection. (C) If immunoproteasome function is impaired in infected cells, the pathogen epitopes 
presented on MHC class I differ in quantity or quality from the ones that were presented by APCs for CTL 
activation. Thus, pathogen-specific CD8+ T cells do not recognize infected cells and infection is not resolved. APC, 
antigen-presenting cell; CTL, cytotoxic T lymphocyte; ER, endoplasmic reticulum; IP, immunoproteasome; MHC I, 
major histocompatibility complex class I; SP, standard proteasome; TCR, T cell receptor. 
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in the lung, which was also observed in COPD patients with cell numbers correlating with disease 

severity (Freeman et al. 2009). Interestingly, these Langerin+ cells have been linked with induction of 

CD8+ T cell responses through cross-presentation (Heath & Carbone 2009; Brusselle et al. 2011). While 

it has been shown that dendritic cells do not fully mature in response to cigarette smoke and have 

lower capacity of priming CD4+ T cells (Robbins et al. 2008), the effect of cigarette smoke on 

cross-presentation capacity of dendritic cells to evoke CD8+ T cell responses has not been investigated 

yet. Our unpublished data give first insights on reduced capacity of bone marrow-derived dendritic 

cells (BMDCs) to cross-present SIINFEKL peptide (derived from full-length ovalbumin) in the presence 

of cigarette smoke extract (Angela Dann, unpublished). Whether this effect can also be observed in 

vivo needs to be determined in future studies. In this sense, it would be very interesting to evaluate 

immunoproteasome expression in APCs derived from lung or lymph nodes of cigarette 

smoke-exposed mice. In addition, cross-presentation in vivo and the impact of cigarette smoke 

exposure on the number, clonality or specificity of CD8+ T cells after respiratory virus infection should 

be tested. In vitro treatment of dendritic cells with cigarette smoke extract has been shown to induce 

CD8+ T cell proliferation, while CD4+ T cell proliferation was impaired (Mortaz et al. 2009). We 

evaluated the presentation of an immunoproteasome-dependent epitope as a functional readout for 

immunoproteasome activity and showed that isolated CD11c+ cells of the lung, mainly consisting of 

macrophages and dendritic cells, as well as BAL alveolar macrophages exhibited decreased 

immunoproteasome-dependent antigen presentation when cultured in cigarette smoke-conditioned 

medium (Figure 3 (Kammerl et al. 2016)). Cigarette smoke extract led to reduced immunoproteasome 

activity and antigen presentation in primary immune cells of the lung and spleen. However, BAL cells 

ex vivo did not exhibit a reduction in both immunoproteasome activity and antigen presentation after 

ten days of smoke exposure (Figure 5 (Kammerl et al. 2016)). Within these experiments, 

immunoproteasome activity and antigen presentation were directly correlated. Transcript levels of 

immunoproteasomes were reduced in response to smoke after ten days, yet we observed a slight 

increase of LMP7 in macrophages from smoke-exposed BALB/c mice, while C57BL/6 mice exhibited 

reduced levels of both LMP2 and LMP7 subunits (Figure 5). In both mouse strains, however, we 

observed a clear shift towards standard proteasome activity by using activity-based probes. 

Nevertheless, the effects might be different after longer cigarette smoke exposures, as ten days might 

not represent a typical chronic exposure.  
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In BAL cells from COPD patients, we found all three immunosubunits to be decreased on the mRNA 

level compared to controls (Figure 6 (Kammerl et al. 2016)). These results were confirmed in an 

independent cohort by analysis of a set of publicly available microarray data (GSE13896), which 

included purified alveolar macrophages of healthy non-smokers, smokers, and early-stage COPD 

patients (Shaykhiev et al. 2009). In line with this, Hodge et al. found significantly reduced MHC I 

surface levels on alveolar macrophages of current smokers with COPD (Hodge et al. 2011), indirectly 

pointing towards reduced peptide supply by the (immuno-)proteasome.  

Reduced (immuno-)proteasome activity in dendritic cells due to smoke exposure might reduce the 

probability of matching peptide/MHC I binding on the APC to the TCR complex on the CD8+ T cell to 

evoke a specific immune response. Also, reduced abundancy of immunoproteasome subunits in APCs 

might shift the peptide repertoire towards peptides generated by the standard proteasome subunits 

and are thus not as suitable for MHC I binding as peptides derived from immunoproteasomes 

(Figure 7). 

 

Figure 5: Ten days of cigarette smoke exposure affects immunoproteasome expression in alveolar 

macrophages without affecting UTY246-254 presentation. (A) Proteasome protein expression in isolated alveolar 
macrophages from air-exposed controls or mice that had been exposed to cigarette smoke for one exposure cycle 
(50 min/day) for 10 days. Western Blots display immunosubunits LMP2 and LMP7 as well as standard subunit Ǆ1 
and α3. Ǆ-Actin served as loading control. (B) Combined densitometric analysis of Western Blots from three 
independent experiments as in (A). Results are displayed as fold over air-exposed controls (mean + SEM, Student’s 
t-test, * = p<0.05, ** = p<0.01). (C) LMP2/Ǆ1 and MECL-1/Ǆ2 activity ratios in alveolar macrophages derived from 
densitometry of activity-based probe-labeling of isolated alveolar macrophages (mean ± SEM, Student’s t-test, * = 
p<0.05, *** = p<0.001). (D) Ǆ-galactosidase-activity of UTY reporter cell line co-incubated with ex vivo BAL cells 
from male mice that had been exposed to cigarette smoke for 10 days compared to air controls. Results are 
combined data from two independent experiments displayed as % of control (mean ± SEM, Student’s t-test). 
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Furthermore, a shift in epitope generation due to a shift of standard vs. immunoproteasome activity 

might lead to altered/dampened CD8+ T cell responses in susceptible smokers, possibly prolonging 

infection. A counterexample to show a beneficial and clinically relevant shift from immuno- to standard 

proteasome has been published recently: tumor cells mainly express standard proteasomes, present 

standard proteasome-derived epitopes on MHC I and thus evade recognition by CD8+ T cells, which 

are targeted against immunoproteasome-derived tumor antigens. Downregulation of 

immunoproteasomes and introducing tumor antigens in dendritic cells resulted in profound cytotoxic 

T lymphocyte (CTL) responses against standard proteasome-derived tumor antigens in melanoma 

patients (Dannull et al. 2013). 

It has been critically discussed whether 26S proteasomes containing standard or immunoproteasome 

subunits per se degrade (oxidatively) modified proteins differently (Seifert et al. 2010; Nathan et al. 

2013), or whether immunoproteasomes mainly enhance quantity, but not quality of peptides, as shown 

by in vitro digestions of model substrates (Mishto et al. 2014). Moreover, it has been recently 

demonstrated that the nature of incorporated Ǆ-subunits influences 20S associations with regulators: 

20S immunoproteasomes preferentially bound to PA28α/Ǆ regulators and less to PI31 compared to 

20S proteasomes containing standard subunits (Fabre et al. 2015). As the PA28α/Ǆ regulatory complex 

is inducible by IFNǅ as well, it is easily feasible that cigarette smoke interferes with PA28α/Ǆ expression 

in a similar way. In the aforementioned microarray analysis from Shaykhiev et al., both PA28α and 

PA28Ǆ subunits were significantly reduced in alveolar macrophages from COPD patients, and PA28Ǆ 

levels were significantly decreased in healthy smokers (Shaykhiev et al. 2009, data not shown). 

Reduced levels of PA28α/Ǆ in response to cigarette smoke might additionally impact antigen 

presentation (de Graaf et al. 2011; Raule et al. 2014). 

 

 

 

 

Figure 6: Reduced immunoproteasome transcripts in BAL of COPD patients. qRT-PCR mRNA analysis of 20S 
proteasome subunits α7, Ǆ1, Ǆ2, and Ǆ5 and immunoproteasome subunits LMP2, MECL-1, and LMP7 in BAL cells 
of control subjects (n=15) and COPD patients (n=9). Rpl19 was used as housekeeping gene (mean ± SEM, 
Student’s t-test, * = p<0.05, ** = p<0.01).  
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3.2.2 Potential role of decreased (immuno-)proteasome activity in 

(auto-)immune processes of COPD 

Autoimmunity describes the break of tolerance of the immune system to “self”-derived structures and 

can be triggered by environmental exposures such as virus infection (Olson et al. 2001; Fujinami et al. 

2006), which might be modulated by cigarette smoke exposure (Arnson et al. 2010). While research 

has mainly focused on CD4+ T cell-mediated autoimmunity for a long time, the role of CD8+ effector 

T cells in several autoimmune diseases has emerged as well (Walter & Santamaria 2005; Gravano & 

Hoyer 2013).  

In COPD, several lines of evidence support an autoimmune component of disease pathogenesis, 

including humoral responses against self-antigens or “altered self”-structures and increased CD8+ 

T cells (Agusti 2003; Grumelli et al. 2004; Feghali-Bostwick et al. 2008; Stefanska & Walsh 2009; Arnson 

et al. 2010; Duncan 2010; Duncan 2011; Kheradmand et al. 2012; Rovina et al. 2013).  

 

Neoantigenesis by cigarette smoke 

Cigarette smoke has been shown to modify macromolecules, either directly via adducts of smoke 

components such as acrolein to DNA and proteins, or indirectly via induction of oxidative stress 

resulting in oxidatively modified proteins (Cai et al. 2009; X. Liu et al. 2010). Indeed, oxidative 

stress-induced antibodies directed against carbonyl-modified proteins have been observed in COPD, 

which correlated with disease severity (Kirkham et al. 2011).  

Posttranslational protein modifications might have a strong effect on protein folding and function and 

may thus ultimately influence the cleavage pattern by the proteasome. Modifications on self-peptides 

might include direct modifications of peptides that are loaded onto MHC I, or modifications of 

proteins in the vicinity of the immunogenic peptide that lead to altered processing by the proteasome, 

resulting in presentation of peptides that were not initially presented in the thymus. It has been shown 

that an oxidatively modified MHC I epitope could still bind to MHC I, however, recognition of 

antigen-specific CD8+ T cells was reduced (Weiskopf et al. 2010). 

An alternative pathway of protein modifications could be due to the fact that cigarette smoke might 

affect abundancy of protein-modifying enzymes, as shown for protein citrullination, a modification 

associated with possible autoantibody production in response to smoke in susceptible rheumatoid 

arthritis patients (Makrygiannakis et al. 2008; Klareskog & Catrina 2015; Valesini et al. 2015).  

Another possibility of “altered self” has been proposed by Tzortzaki & Siafakas: DNA mutations caused 

by cigarette smoke might result in presentation of “mutated” epitopes and would then contribute to 

detection of cells as “non-self”, and activation of CD8+ T cell response leading to cell death and tissue 

destruction (Tzortzaki & Siafakas 2009). A prominent example of loss of epitope cleavage site due to 

mutation includes the tumor suppressor p53 (Theobald et al. 1998): Here, a frequent mutation (R273H) 
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found in many cancer types resulted in loss of the adjacent proteasomal cleavage site, preventing 

epitope presentation and lysis of cells bearing the mutation. Several viruses use the same mechanism 

to evade immune surveillance, and mutational sites have been described within (Ossendorp et al. 1996; 

Kimura et al. 2005; Cardinaud et al. 2011; Petrovic et al. 2012) or flanking MHC I epitope sequences 

(Yellen-Shaw et al. 1997; Seifert et al. 2004; Milicic et al. 2005). Similarly, it is conceivable that new 

proteasome cleavage sites emerge from cigarette smoke-induced mutations.  

Interestingly, chronic exposure of mice to an irritant present in cigarette smoke, i.e. acrolein, is able to 

recapitulate COPD symptoms including emphysema and accumulation of CD8+ T cells in the lungs 

(Borchers et al. 2007). Intriguingly, mice deficient for CD8 were partially protected from developing 

emphysema, highlighting the role of CD8+ T cells. In this model, acrolein might cause both DNA 

damage leading to altered peptide sequences presented on MHC I or directly modify proteins and 

alter the peptides that are generated by the proteasome. Whether there is a direct effect of acrolein 

exposure on proteasome activity has not been fully investigated (van Rijt et al. 2012). It would also be 

interesting to evaluate the effect of other pulmonary irritants, as about one third of COPD patients has 

never smoked (Salvi & Barnes 2009). These irritants might include environmental pollutants like ozone 

or industrial air pollutants such as dusts and gases.  

The concept of “altered self” peptides and neoantigenesis has been investigated in the context of 

CD4+/MHC II responses and autoantibody production in several human diseases (Doyle & Mamula 

2012; Zavala-Cerna et al. 2014), but not regarding CD8+ T cell auto-cytotoxicity. This is possibly due to 

the previous difficulties to isolate and characterize CD8+ T cells. However, new technologies allow for 

deep-sequencing of TCRs (Clemente et al. 2013). It has not been possible to detect modifications in 

the MHC I peptidome in response to cigarette smoke, but new mass spectrometry approaches might 

prove useful (Kincaid et al. 2012; Olsen & Mann 2013). Also, it is not feasible to elucidate the effects of 

smoke on the MHC I peptidome in humans due to the variety of MHC I allele variants between 

individuals. To test whether cigarette smoke modifies the MHC I peptidome, experimental models with 

a clearly defined genetic background combining smoke and virus infection are needed, which would 

permit the purification of MHC I peptides for mass spectrometric analysis. 

 

Priming of autoreactive CD8
+
 T cells 

Autoreactive CD8+ T cells recognizing self-peptides on MHC I are sorted out in the thymus through 

negative selection. However, in the periphery, CD8+ T cells may encounter modified self-peptides on 

MHC I, against which they were not selected (Klein et al. 2014). The proteasome, and especially the 

immunoproteasome, shape the MHC I peptide repertoire by enhancing peptide supply both 

qualitatively and quantitatively (Groettrup et al. 2001; Zanker et al. 2013; Mishto et al. 2014). It has 

been recently shown that in healthy individuals, self-reactive, but anergic CD8+ T cells are present, 
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although low in numbers and kept under control by regulatory T cells (Maeda et al. 2014). In COPD, 

however, lungs exhibit reduced levels of regulatory T cells (Hou et al. 2013).  

As highlighted in the introduction part, immunoproteasomes protect the organism from 

autoimmunity, because the antigen presentation of both “self” and “non-self”, i.e. pathogen-derived 

peptides, is enhanced only during infection. Due to altered cleavage preferences of the 

immunoproteasome, certain “self” peptides cease to be presented when infection is resolved and 

immunoproteasome levels are back to baseline (Groettrup et al. 2001; Heink 2005; Shin et al. 2006; 

Eleftheriadis 2012). The data presented in this thesis point towards a transcriptional downregulation of 

immunoproteasomes resulting in a shift from immuno- to standard proteasomes in BAL cells of COPD 

patients and alveolar macrophages from cigarette smoke-exposed mice (Figures 5 and 6). Murine lung 

CD11c+ cells, including professional antigen-presenting dendritic cells, exhibited decreased 

presentation of an immunoproteasome-dependent MHC I peptide when they were exposed to 

cigarette smoke extract (Figure 3). All together, the data imply a dysfunction of immunoproteasomes 

in response to cigarette smoke in immune cells of the lung (Kammerl et al. 2016). Reduced 

immunoproteasome in APCs might lead to augmented presentation of standard proteasome-derived 

self-peptides during infection, which are also presented by parenchymal cells when infection is 

resolved and thus might perpetuate autoreactive CD8+ T cell responses (Figure 7). 

 

3.2.3 Hypothesis for the role of immunoproteasomes in COPD pathogenesis 

The following model is proposed for the role of immunoproteasomes in COPD pathogenesis: In the 

course of respiratory viral infection, decreased immunoproteasome function impacts on the cell-types’ 

specific function during viral resolution. In infected parenchymal cells (Figure 4), cigarette smoke-

mediated impairment of immunoproteasome function might lead to evasion of virus-infected cells to 

CD8+ T cell surveillance if antigenic peptides are produced rather by standard proteasomes and not 

immunoproteasomes. Accordingly, viral peptides on MHC I of infected cells are different in quantity 

and/or quality from the ones presented on APCs and thus do not match to the specifically activated 

CD8+ T cell clones. Non-detection of infected cells might enhance infection symptoms or contribute to 

chronic infections, because the virus has more time to amplify without being detected and to lyse cells, 

leading to increased tissue damage. 

If APCs loose immunoproteasome activity (Figure 7), they might prime an altered set of TCRs on CD8+ 

T cells, because their MHC I peptides would mainly be generated by standard proteasomes. In that 

case, CD8+ T cells may still recognize infected cells, but chances are higher that CD8+ T cells were 

primed against “self”- or “altered self”-derived peptides. Such priming of autoreactive CD8+ T cells 

against “self”- or “altered self” may then contribute to increased and autoimmune responses during 
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infection, because the same standard proteasome-derived peptides are also presented on MHC I of 

non-infected cells (Figure 7). 

A combination of both scenarios, namely decreased immunoproteasome activity in infected 

parenchymal cells and APCs, might have additive effects and perpetuate inflammation in the lungs of 

smokers, leading to secondary (bacterial) infection, immune cell recruitment with activation of 

proteolytic enzymes and oxidative stress generation, ultimately resulting in loss of tissue and 

respiratory capacity as observed in COPD.  

 

3.3 Ongoing and future work 

Future studies to decipher the role of (immuno-)proteasomes in cigarette smoke-induced lung disease 

should ideally combine both cigarette smoke exposure and infections with COPD-relevant viruses to 

 

Figure 7: Possible role of immunoproteasome in generation of autoreactive CD8
+
 T cell responses during 

infection. (A) When immunoproteasome function is impaired in cross-presenting APCs due to cigarette smoke 
exposure, viral proteins, but also “self” proteins, are degraded by the standard proteasome and peptides are 
presented in the lymph node to naïve CD8+ T cells. In this context, “self”-proteins might be modified by 
posttranslational modifications or directly by cigarette smoke components, possibly resulting in altered cleavage. 
Presentation of these “self”-derived peptides leads to priming of autoreactive CD8+ T cells, which did not undergo 
negative thymic selection. (B) If autoreactive CTLs were activated during the course of CD8+ T cell priming, they 
recognize standard proteasome-dependent and “self”-derived peptides and kill uninfected cells, resulting in tissue 
damage and inflammation. APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte; ER, endoplasmic reticulum; 
IP, immunoproteasome; MHC I, major histocompatibility complex class I; SP, standard proteasome; TCR, T cell 
receptor. 
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mimic the human situation during COPD exacerbations. Furthermore, mouse models would have the 

advantage of having a defined MHC I genotype, also, knock-out mice for immunoproteasome subunits 

are available and the LMP7-specific inhibitor ONX-0914 has proven to be safe and beneficial in several 

preclinical models. In this way, the dependency of virus epitope generation on immunoproteasomes 

could be tested.  

In addition, the length of smoke exposure might strongly influence the outcome of virus infection. Our 

data from mice exposed to cigarette smoke for ten days showed that cigarette smoke exposure had an 

effect on relative immunoproteasome activity, but it was not tested whether longer smoke exposure 

might lead to further decrease of immunoproteasome activity with impairment of 

immunoproteasome-dependent antigen presentation, such as the UTY246-254-peptide. This would only 

be possible in mice that were exposed to cigarette smoke for longer durations, e.g. 4-6 months when 

histologic COPD-like changes are clearly present. These analyses are currently ongoing. 

Moreover, it has not been tested so far whether the IFNǅ response of cells for upregulation of 

immunoproteasomes is reversibly changed or whether this process is irrevocably altered even after 

smoking cessation. This might be easily performed in cell culture experiments with cigarette smoke 

extract and subsequent IFNǅ treatment or in mice that were exposed to cigarette smoke and infected 

with a respiratory virus or a viral mimic such as polyI:C to evaluate the induction kinetics of the antigen 

presentation machinery, including the immunoproteasome. 

An interesting functional readout for (immuno-)proteasome function in response to virus infection in 

COPD exacerbations might be to decipher the CD8+ T cell repertoire. Experimental models of acute 

exacerbations have been established, which include viral infection of smoke-exposed mice (Gaschler et 

al. 2007; Papi et al. 2007; Foronjy et al. 2014), but also controlled human studies involving rhinovirus 

infection have been reported (Mallia et al. 2011; Sethi & MacNee 2011; Mallia et al. 2014). Recent 

advance has been made to study rhinovirus infection in mice transgenic for human intercellular 

adhesion molecule (ICAM) 1, the cellular receptor for rhinovirus (Bartlett et al. 2008). For viruses such 

as influenza, the possibilities of detecting presentation of known epitopes is possible due to 

hybridoma cell lines, and influenza-specific CD8+ T cells can be detected by MHC I-tetramer staining. 

The MHC I epitopes of several respiratory viruses have been comprehensively identified in the mouse 

(Gredmark-Russ et al. 2008; Walsh et al. 2013), 

Effects on CD8+ T cells might be of both quantitative (reduced numbers of T cell clones) and 

qualitative (altered TCR repertoire) nature. To translate this model to the human situation, it might be 

beneficial to use mice that are transgenic for the human MHC I allele HLA-A2 to directly transfer viral 

peptide identities. With improvements in methodology, mass spectrometry analysis of MHC I-eluted 

peptides is possible and might help to identify changes in virus antigen presentation in response to 

smoke. Also, abundancy of presented “self”-derived peptides during infection might be estimated. 
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Furthermore, it would be interesting to examine the viral peptides and CD8+ T cell responses in the 

blood of stable COPD patients with a defined MHC I genotype and during exacerbations. A first step 

could be to sequence the TCRs by using next-generation sequencing techniques in stable vs. 

virus-induced exacerbated COPD and in virus-infected non-COPD controls to get a first hint on both 

quantity and quality of CD8+ TCRs. 

All these experiments might shed light on the role of (immuno-)proteasome-mediated antigen 

presentation in response to smoke. Reduced levels of immunoproteasomes may serve as a biomarker 

for enhanced susceptibility to virus infection, while increased levels might be protective from 

Th2-associated diseases like asthma. This concept is tested at the moment in the PASTURE/EFRAIM 

birth cohort, where immunoproteasome transcript levels are evaluated in peripheral blood 

mononuclear cells (PBMCs) of cord blood of newborns and at the age of one and six years.  

Future work might also include evaluations of immunoproteasome activity in PBMCs of stable COPD 

patients or during exacerbations. Preliminary studies on PBMCs isolated from a well-defined cohort of 

never-smokers and smokers revealed no obvious differences in general proteasome content or activity 

between groups (medical thesis of Julia Schimmer). However, recruited study participants were all 

healthy young males, without any history of chronic diseases and daily medication. Nonetheless, 

immunoproteasome expression and activity in blood immune cells of COPD patients might be an 

interesting biomarker for virus susceptibility and outcome of exacerbation. 
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