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SUMMARY

Explosive volcanism is one of the most catastrophic material failure phenomena. Dur-
ing magma ascent, fragmentation produces particulate magma, which, if deposited above
the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, con-
duit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in
which sintering by viscous flow is possible. Therefore, understanding the kinetics of sinter-
ing and the characteristic timescales over which magma densifies are critical to understand-
ing the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by
a recovery of material strength towards that of a pore-free, dense magma. Understanding
damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are
also crucial for the application of micromechanical models and material failure forecasting
laws. Powdered standard glass and industrial glass beads have been used to explore sinter-
ing mechanisms at ambient pressure conditions and temporal evolution of connected and
isolated pore-structure. I observe that sintering under low axial stress is essentially particle
size, surface tension and melt viscosity controlled. I found that the timescales over which
the bulk density approaches that of a pore-free melt at a given temperature is dependent on
the particle-contact surface area, which can be estimated from the particle shape, the pack-
ing type and the initial total porosity. Granulometric constraint on the starting material
indicates that the fraction of finer particles controls the rate of sintering as they cluster in
pore spaces between larger particles and have a higher driving force for sintering due to their
higher surface energy to volume ratio. Consequently, the resultant sample suite has a range
of microstructures because the viscous sintering process promotes a fining of pores and a
coarsening of particles. In a volcano, newly formed sintering material will then further con-
tribute to magma-plugging of the conduit and its mechanical properties will affect magma
rupture and its associated precursory signals. This consideration permitted me to explore the
effect of sintering on the stress required for dynamic macroscopic failure of synthesised sam-
ples and assess the ability of precursory microseismic signals to be used as a failure forecast
proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were sub-
jected to mechanical tests under a constant rate of deformation and at a temperature in the
region of the material glass transition. A dual acoustic emission rig was employed to track the
occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to sys-
tematically assess the accuracy of the failure forecasting method as a function of heterogeneity



(castas porosity) since it acts as nucleating site for fracture propagation. The pore-emanating
crack model describes well the peak stress at failure in the elastic regime for these materials. I
show that the failure forecast method predicts failure within 0-15% error at porosities >o0.2.
However, when porosities are <o.2, the forecast error associated with predicting the failure
time increases to >100%. I interpret these results as a function of the low efficiency with
which strain energy can be released in the scenario where there are few or no heterogeneities
from which cracks can propagate. These observations shed light on questions surrounding
the variable efficacy of the failure forecast method applied to active volcanoes. In particular,
they provide a systematic demonstration of the fact that a good understanding of material
properties is required. Thus I wish to emphasise the need for a better coupling of empirical
failure forecasting models with mechanical parameters, such as failure criteria for heteroge-
neous materials, and point to the implications of this for a broad range of material-based
disciplines.
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ZUSAMMENFASSUNG

Explosiver Vulkanismus ist eines der drastischsten Phinomene, die ursichlich durch Mate-
rialversagen ausgelost werden. Wihrend seines Aufstiegs in der Kruste fragmentiert Magma
zu partikelgrossen Magmafetzen, die, sofern tiberhalb des Glasstibergangs abgelagert, viskos
sintern konnen. Sintern durch viskosen Fluss wird bei Ablagerung von Intra-Schlot Tuft-
isiten, Schlotwand Brekzien und Asche aus extrem heissen pyroklastischen Strome erwartet.
Die Eingrenzung der Kinetik des Sinterns, sowie der charakteristischen Zeitskalen der Verdich-
tung von Magma, sind daher essentiell um den Zeitrahmen des Entgasens von Schloten und
Ablagerungen besser zu verstehen. Viskoses Sintern wird begleitet von einer Erhchung der
Material Festigkeit zu der eines poren-freien, dichten Magmas. Weiterhin ist es wichtig, Be-
schidigungsmechanismen und das seismische Verhalten der vulkanischen Produkte kurz vor
dem Materialversagen zu verstehen, um die Anwendung von mikromechanischen Modellen
und die Vorhersage von Materialversagen zu erméglichen. Glasstandard in pulverisierter
Form und industrielle Glaskugeln wurden herangezogen um Sintermechanismen bei Atmo-
sphirendruck und die zeitliche Entwicklung verbundener und isolierter Porenstrukturen zu
erforschen. Ich beobachtete, dass Sintern bei niedriger axialer Belastung hauptsichlich durch
Partikelgrosse, Oberflichenspannung und Schmelzviskositit kontrolliert wird. Weiterhin ist
die Zeitskala, tiber die die Gesamtdichte bei einer definierten Temperatur die einer poren-
freien Schmelze erreicht, abhingig von der Partikel-Kontakt Oberfliche, die tiber Partikel-
form, die Partikelpackung und die initiale Gesamtporositit abgeschitzt werden kann. Korn-
grossenanalysen der Anfangsmaterialien deuten an, dass die Feinfraktion die Rate des Sin-
terns kontrolliert, da der Feinanteil in den Zwickeln der grosseren Partikel Anhidufungen
bilden kann und ausserdem ein hoheres Sinterpotential durch sein grosseres Oberflichen-
Volumen Verhilenis aufweist. Dementsprechend weisen die hergestellten Proben eine Reihe
von Mikrostrukturen auf, die durch Porenverkleinerung und Kornvergréberung wihrend
des viskosen Sinterns hervorgerufen wurden. Dadurch wird neu-gebildetes, sinterndes Ma-
terial innerhalb eines Vulkans das Verstopfen des Schlotes fordern, und die mechanischen
Eigenschaften dieses Materials beeinflussen die Fragmentation des eigentlichen Magmas und
der assoziierten Vorwarnsignale. Aufgrund dieser Betrachtung betrachte ich den Effeke des
Sinterns auf die fiir dynamisches makroskopisches Versagen unserer synthetisierten Proben
notige Belastung niher. Dies geschah, um das Potential der mikroseismischen Signale bei
Bedingungen innerhalb eines Vulkanschlots als Vorhersagekriterium fiir Materialversagen
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abzuschitzen. Dazu wurden die Proben bei konstanter Deformationsrate und Temperaturen
in der Nihe des Glastibergangs mechanischen Tests unterzogen. Das Auftreten von Sprod-
bruchverhalten wurde mithilfe eines dualen Schallemissionsgerites aufgezeichnet. Der resul-
tierende akustische Datensatz wurde dann herangezogen, um die Genauigkeit der Vorher-
sagemethode fiir das Versagen als Funktion der Probenheterogeneitit (also Porositit) einzu-
grenzen, da Porositit innerhalb eines Materials die Entstehung von Bruchstellen fordert. In
diesem Zusammenhang beschreibt das Modell der ,,Pore-emanating cracks® fiir diese Materi-
alien die Maximalbelastung bei Versagen im elastischen Regime. Ich zeige, dass Versagen bei
Porosititen >o,2 innerhalb eines Fehler von o—15% vorhergesagt werden kann. Sobald die
Porosititen unter einen Wert von o,2 fallen steigt der Fehler, der mit der Vorhersage der Ver-
sagenszeit assoziiert ist, auf tiber 100% an. Dieses Ergebnis interpretiere ich als eine Funktion
der niedrigen Effizienz, mit der Verformungsenergie freigesetzt werden kann, wenn wenige
oder keine Heterogeneititen (Porositit) als Schwachstellen im Material vorhanden sind. Dies
konnte zu der Frage beitragen, warum Versagensvorhersage an aktiven Vulkanen bisher zu
unterschiedlich guten Ergebnissen gefiihrt hat. Insbesondere zeigen meine Beobachtungen
systematisch, dass ein tiefes Verstindnis der Materialeigenschaften unerlisslich ist. Ich mochte
daher betonen, dass die empirischen Vorhersagemodelle besser mit mechanischen Parame-
tern, wie Versagenskriterien fiir heterogene Materialien, gekoppelt werden sollten, mit Aus-
wirkungen fiir einen grossen Bereich der material-wissenschaftlichen Disziplinen.
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RESUME

Le volcanisme explosif est 'un des phénomenes de fracturation matérielle les plus catas-
trophiques qui soient. Durant son ascension dans le conduit volcanique, le magma se frag-
mente en particules qui, une fois déposées a une température excédant celle de la transition
vitreuse du liquide interstitiel, vont se souder de fagon visqueuse. Les tuffisites formées dans
le conduitainsi que les cataclasites formées le long de ses parois, mais aussi les cendres déposées
a partir de coulées pyroclastiques exceptionnellement chaudes, sont autant d’exemples pour
lesquels du frittage par écoulement visqueux est possible. Comprendre la cinétique du frit-
tage ainsi que les échelles de temps caractéristiques liées a la densification du magma est par
conséquent crucial, afin de pouvoir identifier les périodes de dégazage dans les conduits et
les dépots volcaniques. Le frittage visqueux est accompagné d’un recouvrement de la résis-
tance mécanique du matériel vers celle d’'un magma dense et exempt de pores. Il est égale-
ment crucial de comprendre les mécanismes liés au dommage ainsi que le comportement
sismique avant la rupture des produits volcaniques frittés pour I'application de modeles mi-
cromécaniques et de lois de prédiction de la cassure matérielle. Un verre standard réduit en
poudre et des billes de verre industrielles ont été utilisé, afin d’étudier les mécanismes de frit-
tage a pression ambiante ainsi que 'évolution temporelle de la structure des pores connectés
et isolés. Jobserve que le frittage, sous faible contrainte axiale, est essentiellement contré6lé
par la taille des particules, la tension de surface et la viscosité du verre. Je constate que, a une
température donnée, les échelles de temps, pour lesquelles la densité du magma se rapproche
de celle du verre pur, dépendent de la surface de contact entre les particules, qui peut étre
estimée a partir de la forme des particules, du type dempilement et de la porosité initiale.
Les contraintes granulométriques sur le matériel de départ indiquent que c’est la fraction des
fines particules qui contréle le taux de frittage : ces particules se regroupent dans les espaces
créés entre les plus grandes particules et ont une force d’entrainement par frittage plus élevée
en raison du rapport entre énergie de surface et le volume plus important. En conséquence,
la série d’échantillons obtenus par frittage visqueux posseéde une gamme de microstructures,
puisque ce processus favorise la réduction du volume des pores par 'amalgamation des partic-
ules. Au sein d’un volcan, la présence de magma nouvellement fritté pourra alors contribuer
davantage au colmatage du conduit et ses propriétés mécaniques auront une incidence sur
la fragmentation magmatique ainsi que sur les signaux précurseurs associés. Cette considéra-
tion m’a permis, d’une part, d’étudier I'effet du frittage sur la contrainte mécanique nécessaire

Xiv



pour engendrer la rupture macroscopique des échantillons synthétisés et, d’autre part, a éval-
uer la capacité des signaux microsismiques précurseurs a étre utilisés pour prédire la cassure,
a des conditions de pression et de température pertinentes pour les conduits volcaniques peu
profonds. A cette fin, les échantillons ont été soumis 2 des essais mécaniques pour lesquels
une vitesse constante de déformation ainsi qu’une température correspondant a la zone de
transition vitreuse du matériel ont été appliqué. Deux capteurs d’émission acoustique ont
été utilisé pour surveiller la fracturation matérielle. Les données acoustiques ont ensuite été
exploité, afin d’évaluer de fagon systématique la précision de la méthode de prédiction de la
cassure en fonction de ’hétérogénéité (la porosité est utilisée comme quantification du degré
d’hétérogénéité matérielle), car elle correspond a la zone de nucléation des fractures. Dans
le régime élastique, le modele de fissuration depuis les pores décrit correctement le pic de
stress mécanique au moment de la rupture. Je montre que la méthode de prédiction de la
cassure indique une erreur absolue comprise entre o et 15 % pour les porosités supérieures
3 0,2. Cependant, lorsque les porosités sont inférieures a 0,2, l'erreur augmente jusque plus
de 100 %. Jinterpréte ces résultats en termes de faible efficacité avec laquelle I'énergie mé-
canique accumulée peut étre libérée dans le cas ot il y a peu ou pas d’hétérogénéités a partir
desquelles les fissures peuvent se propager. Ces observations mettent en lumiere les ques-
tions sur l'efficacité de la méthode de prédiction de la cassure lorsquappliquée aux volcans
actifs. Plus particulierement, elles démontrent de fagon systématique qu’une bonne com-
préhension des propriétés physiques et mécaniques du matériel est fondamentale. Ainsi, je
tiens a souligner la nécessité d’un meilleur couplage des modeles empiriques de prédiction
de la cassure avec des parametres mécaniques, tel que des criteres de rupture des matériaux
hétérogenes, et pointer en direction des implications pour un large éventail de disciplines
axées sur la science des matériaux.

XV



Contents

INTRODUCTION I
THEORETICAL BACKGROUND 9
2.1 Continuum theory of sintering . . . . . . ... ... L L. 10
2.1 Aconstitutivelaw . . . . ... oL 11
2.2 Porosity kinetics during free sintering . . . . . ... ... L. 15
2.2 Theory of fracture mechanics . . . . . .. ... . .o o Lo 16
220 Afracturecriterion . . . . ... ... 17
2.2.2 Subcritical crack dynamics . ... oo o000 00000 19
2.3 The ductile-brittle transitioninmagmas . . . . . . .. ... ... ... .. 21
THE DEATH OF HETEROGENEITY 25
3.1 Sintering asa way to densifymagmas . . . . ... ..o L 26
3.2 Experimentalmethods . . . . . ... ... o o Lo 28
320 Material properties . . . . ... L Lo Lo 28
322 Sample preparation . . . . ... Lo 31
3.2.3  Sample characterisation . . . . . ... ... Lo 0oL 33
3.3 Densification and healing of syntheticglasses . . . . . ... ... ... .. 36
331 Timescalesand mechanisms . . . . . . ... ... .. ....... 37
332  Strengthrecovery . . ... ... ... .. L oL L 44
3.3.3 Elasticityrecovery . . . . . . ... ... L oo 48
3.4 Implications formagmas . . .. ... ... ... .. ... .. .. ... ST
3.41  Plugdensification and stiffening . . . . .. ... o000 51
3.4.2  Volcanic ash sintering in theomorphicflows . . . . ... ... .. 52
MATERIAL FAILURE FORECASTING 55
4.1 Damageaccelerationand failure . . . . ... ..o o o000 56
42  Experimentalmethods . . . . . ... ... o o oo oL 58
421 Samplepreparation . . . . ... L Lo 58

xvi



4.2.2  Sample characterisation . . . . .. ... L L oL 59

4.2.3  Microseismic dataacquisition . . . . . ... ... oL 60

4.3 Failure predictability . . . . ... ... Lo o o 62
431  Modelsofacceleration . . . . .. ... L. 62

432 Time-to-failureanalysis . . . ... ... ... ... .. .. .. 65

433 Stadsticalanalysis . . . .. ... oL 0oL 78

4.4 Implications for volcaniceruptions . . . . . ... ... ... ..., 82

s  CONCLUSION AND OUTLOOK 8s
APPENDIX A SANDBOX FOR THERMO-MECHANICAL MODELLING 91
A1 Viscous compaction of glassshards . . . . .. ... o000 91
A2 Temperature delay in a rotary shear apparatus . . . . . ... ... ... .. 97
ArPENDIXB TOOLBOX FOR MICROSEISMIC DATA PROCESSING 103
REFERENCES 107

xvii



Listing of figures

1.1 Densification and healing of ash in a volcanic context . . . . . . .. .. .. 6
2.1 Viscous sintering schematiccartoon . . . . . .. ... L. I
2.2 Ductile-brittle transitionmap . . . . ... ... o Lo 23
3.1 Temperature dependence of melt viscosity . . . . ... ... .. L. 30
3.2 Particle size distributions . . . . . ... o Lo 31
3.3 Typical suite of sintered glasssamples . . . . ... .. ... ... ... .. 33
3.4  Schematic diagrams of the experimental devices . . . . . . ... ... ... 35
3.5 Textural evolution during sintering . . . . . .. ... ... ... ... 36
3.6 Porosity evolution in the sintered sample suite . . . . . . ... ... ... 38
3.7 Density evolution in the sintered sample suite . . . . . . .. .. ... ... 39
3.8 Trajectories in the porosity space . . . . . .. ... ... L. 44
3.9  Amastersinteringcurve . . . ... L. 45
3.10 Micromechanical response of the samples during sintering . . . . . . . .. 46
3.1 Strength of the samples during sintering . . . . . ... ... 00 47
3.2 P-wave modulus and total porosity . . . . . ... 49
3.3 Young’s modulus and total porosity . . . . . ... L Lo 50
4.1 Acoustic energy released during deformation . . . ... ... L 67
4.2 Damage accumulation during deformation . . . . .. ... ... 68
4.3 Strain energy stored during deformation . . . . ... L Lo 69
4.4 Acoustic-mechanic coupling during deformation . . . . . ... ... ... 70
4.5 Maximum Likelihood failure forecasting for H = o0.25 . . . ... ... .. 73
4.6 Maximum Likelihood failure forecastingfor H =o0.37 . . . ... ... .. 74
4.7 Maximum Likelihood failure forecastingfor H =o0.77 . . . . .. ... .. 75
4.8 Heterogeneity influences on material failure forecasting . . . . . . . .. .. 76
4.9 Comparative analysis of model performance . . . . . ... ... ... ... 79
4.10 Acoustic b-value analysis and fracture mechanisms . . . . ... ... L. 80

xviii



4.11

Al
Az

B.a

Acoustic b-value analysis and magnitude cut-oft . . . . . .. ..o 81

1D thermo-mechanical modelling of compaction . . . ... ... ... .. 96
Deposition temperature and timescale estimations . . . . . .. ... . .. 97
1D thermal modelling of heat conduction . . . . ... ... ... ... .. 101
A toolbox for microseismic data processing . . . ... ... 106

Xix



Constant  in
[Pa~"m~Y?].

Equation  2.26

Hilbert transform of a seismic signal
[V].

Constant in Equation 2.27 [m*J™].

Acceleration of a geophysical signal
[s7*].
Failure forecast error [-].

Kronecker symbol [-].

First invariant of the strain rate ten-
sor [s7"].

Strain rate tensor [s™].

Deviatoric strain rate tensor [s™'].
Radial strain rate [s7].

Axial strain rate [s7"].

Rate of a geophysical signal [s7].
Shear viscosity [Pas].

Melt shear viscosity [Pas].

Relative shear viscosity [-].

tension

Melt-vapour  interfacial

[Nm™].
Surface energy density [Jm™?].
Bulk viscosity [Pas].

Pe,i

?,
Pryr
Pr

€
Cbulk

er,f

Listing of symbols

Melt bulk viscosity [Pas].
Relative bulk viscosity [-].
Densification timescale [s].

Sintering timescale after Mackenzie
& Shuttleworth [1949] [s].

Structural relaxation timescale [s].
Sintering timescale [s].

Newtonian melt shear viscosity
[Pas].

Empirical constant in Equation 4.17
Cumulative number of seismic
events [-].

Porosity [-].

Initial connected porosity [-].
Connected porosity [-].
Relative porosity [-].

Final total porosity [-].
Initial total porosity [-].
Total porosity [-].

Melt density [kgm™3].

Bulk density [kgm™3].

Final relative density [-].



er,i
¢

-
7

%ij

ap

0-7'

Tz

Td

A
Aplack
Agp
A total
A white
be

by

a

CICIICEICED

Q Q
3

Initial relative density [-].

Relative density [-].

Stress [Pa].

Critical failure stress [Pa].

Stress tensor [Pa].

Compressive strength [Pa].

Radial stress [Pa].

Axial stress [Pa].

Sintering specific time [-].

FFM scaling parameter [s™ ™ ?].
Pore area in Figure 3.5 [m?].
Amplitude of a seismic signal [dB].
Total area in Figure 3.5 [m?*].

Solid matrix area in Figure 3.5 [m’].

Empirical constant in Equation 3.17
[-].

Empirical constant in Equation 3.16
[Pa].

Constant in Equation 2.28 [ms™"].
Constant rate parameter [s™'].
Damage parameter [-].

Young’s modulus [Pa].

Melt Young’s modulus [Pa].

Arrhenius activation

[J mol~].

Envelope of a seismic signal [V].

€H€I'gy

Strain energy release rate [Jm™?].

Infinite-frequency shear modulus
[Pa].

Gy

kExp
Kie

K;

N

Strain energy release rate under
mode I loading [Jm™?].

Heterogeneity or disorder index [-].
Stress intensity factor [Pa mY?].
Exponential scaling parameter [s™"].

Critical stress intensity factor under
mode I loading [Pa m"?].

Stress intensity factor under mode I
loading [Pa m"?].

Initial  stress
[PamY?].

intensity  factor

Power law scaling parameter [s? ~*].
Likelihood [-].

Critical crack length [m].

Initial subcritical crack length [m].
Subcritical crack length [m].
P-wave modulus [Pa].

FFM rate parameter [-].

Melt P-wave modulus [Pa].
Subcritical crack growth index [-].
Power law rate parameter [-].

Local Laplace pressure [Pa].
Relative Laplace pressure [-].
Laplace pressure [Pa].

Pore pressure [Pa].

Order parameter [-].

Exponential rate parameter [s™'].
Universal gas constant [J K™'mol ™"].

Radius of a sphere [m].



Initial radius of a bubble [m].
Initial radius of a particle [m].
Average pore radius in Equation 3.14
[m].

Seismic signal [V].

Temperature [K].

Time [s].

Experimental critical time [s].
Predicted critical time [s].

Critical time [s].

Total energy [J].

xxii

Un  Mechanical energy [J].

U, Surface energy [J].

v.,;  Inidal subcritical crack growth ve-
locity [ms™*].

v, Subcritical crack growth velocity

[ms™].

Vmatriz Solid matrix volume [m?].

Viores  Pore volume [m’].
Up P-wave velocity [ms™"].
Vit Total volume [m?].



xxiii



Acknowledgments

This work has come to an end and it’s now my pleasure to heartily thank all those who
embarked on this journey with me. The pathway was not always straight, nor was the course
of my thoughts and ideas, but you were all of a great support and help. I wish to first ac-
knowledge the Deutsche Forschungsgemeinschaft for funding such a nice research project, as
well as my supervisors, Donald B. Dingwell and Yan Lavallée.

Don, you gave me a fantastic opportunity to drown in the heart of what is nowadays con-
sidered and accepted as being experimental volcanology by leaving the keys to one of the best
facilities worldwide. I really enjoyed the time spent in the labs measuring stuff, running fur-
naces, and squashing and shattering glasses; a lot of self-satisfaction came out of it and a lot
of fun too! Many many thanks for that! I also would like to thank you for the trust and
confidence you put on me and on my abilities to carry out this work independently and re-
sourcefully. As students, thank you for supporting any idea we may have, even the craziest
ones, for giving us the chance to attend almost any scientific meeting whatsoever and for
teaching us with great humility and respect.

Banana Yan, you were my first encounter and you successfully dragged me here. You most
certainly laid down the road of a wonderful study (I mean it!) and made sure to keeping me
on the track. I know that the initial focus of the study was Colima volcano, Mexico, but at
the end the results are there and are, in fact, possibly applicable to any volcano. That’s a much
better story, isn’t it? Thank you so much for everything, for your never-ending enthusiasm,
for your craziness; yet never without the seriousness it requires! S’il te plait ne change rien,
reste fidele 4 toi-méme et ne perds surtout pas ton joual ! Quand est-ce qu'on sen va-t-on
s'crisser une poutine par chez toi ?

Fabi Baby Wadsworth, what a brain! Mate, thanks for sharing so much of your brain cells,
for always being on my back, for your indefectible support and energy, for your patience
with my ups and downs, for the countless hard nights of work, for constantly feeding me
with great ideas and thoughts to work on, for basically everything that is making you being
yourself! Hopefully we’re gonna continue successfully coping with each other, thanks to
combination of synergies. When do we play toddler-size chess?

Kai-Uwe Hess, thank you for being around, for endless discussions with a glass of wine or

XXiv



beer, for sharing so much of your incredible knowledge about the properties and the structure
of silicate melts, for efficient manuscript proof-reading and so on and so forth. You will always
remain a great resource!

Betty Scheu, vielen Dank fiir die schone Unterstiitzung, wenn Yan das Department abge-
schieden hat. Thanks for taking care of me, for taking care of the press lab refurbishmentand
for helping me to cope with the workshop! I wish that all the efforts we put in this new and
fresh second-hand lab are gonna be fruitful. Can’t wait! And, most importantly, thank you
for kicking my ass in necessary times!

Ulli Kappers, un trou bavarois, thanks for all the good laughs but also for the exciting
science we might have shared here and there. And thanks for dragging me out for a pizza
from time to time!

To my new neighbours, Basti Wiesmaier and Corrado Cimarelli, thanks for your kind sup-
port throughout. Basti, you introduced me to the good things in life: road and mountain
biking. Thanks for that! And also thanks for helping me find my way through bureaucracy
and for a last minute request on my thesis. Corrado, ora avete un meraviglioso piccolo copia
di te stesso, tutto il meglio! Thanks for your constant happiness and these flickers in your
eyes when talking about any kind of subject!

Thanks to my co-authors for very appreciated contributions, in particular Andy Bell and
Ian Main; keep playing statistics! I use these lines to also thank the reviewers of my first paper,
who made it legit and had invaluable comments; thank you John Castro and Mike Heap!
John, see you in Mainz one day? Mike, see you later this week in Strasbourg!

Thanks to Simon Kremers and Joachim Wassermann, who both gave me the opportunity
to do some volcano-seismology at the very beginning of my stay. Thanks for introducing me
to Python and its amazing world; I now just can’t work without it!

Thanks to Andre Schéttler, my favorite Computermeister, for hosting my early months
in the department, and for his availability and efficiency. Du weiflt was du tust und Du tust
es immer gut!

To Jenny Schauroth, thanks for distracting me from time to time, for your perpetual good
mood and humour whatever the circumstances, and for an outstanding avocado cake!

To my fellow compatriots, Guilhem Douillet and Oryaélle Chevrel, thanks for being here,
for your frenchiness, for numerous talks we had (either political of about life in general), for
taking me to refresh myself in the Eisbach during hot summer days, and well done to both of
you for your achievements on your respective PhD studies!

To the administrative staff: I raise my glass. Through my mother’s job, I know the work it
represents and the mess of it. I would like to especially thank Margot, Sandra, Carina, Rike,
Marina, Renate, Lydia, Rosa and Isabel. I would also like to thank the technical staft for
helping me here and there, and in particular Markus, Wolfgang, Max and Detlef.

Abig thank you to all of you around: colleagues and friends; in no particular order (hoping

XXV



I forgot anyone): Jackie, Rosie, Roos, John, Klaus, Cristian, Laura, Daniele, Valeria, Danilo,
Teresa, Sascha, Christoph, Miguel, Linda, Alex, Paul, David, Kate, Maren, Donj4, Alejandra,
Nikita and Wenjia.

Un énorme merci 4 ma famille et, en particulier, 4 mes parents et 2 mon frerot. Merci de
m’avoir appris l'essentiel, de m’avoir toujours soutenu dans mes choix et d’avoir fait en sorte
que je puisse aller jusqu’au bout. Merci 2 mes amis de longue date en France ou ailleurs, pour
étre passés faire un coucou (ou pas) ici et 1a : Kalek, Conchi et D.D.

And last but not least or as we say in French the best at the end: a very special thank you to
my wife and my children. Barbara, merci pour tous tes efforts, pour avoir accepté de me suivre
presque les yeux fermés, pour avoir supporté mes hauts et mes bas, mais aussi pour m’avoir
soutenu en toutes circonstances et m’avoir poussé lorsque c’était nécessaire. Mes enfants,
Killian et Albane, peut-étre un jour lirez-vous ces lignes et vous rendrez-vous compte que le
plus important dans la vie c’est de se faire plaisir, tout en restant simple et humble.

XXVi



Xxvii



Preamble

Most of the contents of this doctoral dissertation have been presented in scientific journals
in a slightly modified form; namely

Lavallée, Y., Mitchell, T. M., Heap, M. J., Vasseur, J., Hess, K.-U., Hirose, T., & Dingwell,
D. B. (2012). Experimental generation of volcanic pseudotachylytes: Constraining rheology.
Journal of Structural Geology, 38, 222233, d0i:10.1016/].j53.2012.02.00L.

Vasseur, J., Wadsworth, F. B., Lavallée, Y., Hess, K.-U., & Dingwell D. B. (2013). Volcanic
sintering: Timescales of viscous densification and strength recovery. Geophysical Research
Letters, 40(21), 5658—5664, doi:10.1002/2013GL058105.

Lavallée, Y., Wadsworth, F. B., Vasseur, ]., Russell, J. K., Andrews, G. D. M., Hess, K.-U.,
von Aulock, F. W., Kendrick, J. E., Tuften, H., Biggin, A. J., & Dingwell, D. B. (2015). Erup-
tion and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass
shards. Frontiers in Earth Science, 3(2), doi:10.3389/feart.2015.00002.

Vasseur, J., Wadsworth, F. B., Lavallée, Y., Bell, A. F., Main, L. G., & Dingwell, D. B. (2015).
Heterogeneity: Thekey to failure forecasting. Scientific Reports, s, 13259, doi:10.1038/srepi13259.

Vasseur, J., Wadsworth, F. B., Lavallée, Y., & Dingwell, D. B. (2016). Dynamic elastic moduli
during isotropic densification of initially granular media. Geophysical Journal International,
204, 1721-1728, d0i:10.1093/gji/ggvsso.

xxviii


http://dx.doi.org/10.1016/j.jsg.2012.02.001
http://dx.doi.org/10.1002/2013GL058105
http://dx.doi.org/10.3389/feart.2015.00002
http://dx.doi.org/10.1038/srep13259
http://dx.doi.org/10.1093/gji/ggv550

XXiX



Je suis de ceux qui pensent que la science est d’une grande
beanté. Un scientifique dans son laboratoire est non seule-
ment un technicien : il est aussi un enfant placé devant
des phénoménes naturels qui limpressionnent comme des
contes de fées. Nous ne devrions pas laisser croire que tout
progreés scientifigue peut étre réduit a des mécanismes, des
machines, des ronages, quand bien méme de tels mécan-

ismes ont eux aussi leur beauté.

Marie Curie

Introduction

UNDERSTANDING VOLCANIC PROCESSES IS OF PARAMOUNT IMPORTANCE for scientists
dealing with hazard assessment and risk mitigation. For just over a century modern volcanol-
ogy has often solely been based on field observations without leading much quantitative us-

able information. Volcanologists were mostly adapting and combining the tools and method-



ologies used in classical geology. Since volcanic environments are highly dynamic systems in-
volving a wide range of physico-chemical conditions, it became clear over the years that vol-
canology is not a science on its own but rather multiple sciences combined at once. In fact,
volcanology is the phenomenological study of volcanic eruptions and magmatic processes,
and in recent years its progress has heavily tied in with the integration of adjacent disciplines
of fundamental sciences (e.g., material science).

For the past three decades or so, the development of modern technologies (mainly due to
the increase in computer capacities) has allowed volcanologists to systematically, quantita-
tively and rigorously monitor volcanic activity, probe volcanic materials and reproduce vol-
canic phenomena in the laboratory as well as numerically. However, the broad spectrum of
physico-chemical events occurring at, around and underneath volcanoes still makes it chal-
lenging to understand the big picture. One has to focus on certain aspects of volcanic ac-
tivity, if one is to constrain the underlying mechanisms involved in terms of fundamental
physico-chemical processes. With the advent of physical and experimental volcanology the
approaches employed to tackle these problems have greatly improved our knowledge of a
range of magmatic and volcanic phenomena.

Experimentation is in general at the heart of the scientific procedure. When feasible, ex-
periments are designed to (a) explore processes in a controlled environment, (b) constrain the
key parameters and (c) validate either conjectures or models (both theoretical and computa-
tional). For magmatic processes and volcanic eruptions, where direct observation is some-
what arduous and sometimes practically quasi-impossible, we can see that mimicking the
same mechanisms under certain assumptions and simplifications yields central results and

interpretations to feed back into field observations. The principal sources of field data derive



from geophysical and geochemical monitoring, and from description of volcanic deposits.
Interpretation of processes are thus often inferred from remarkable features of those signals
and/or of those deposits, which inherently remain to be tested against empirical or theoretical
laws. Experiments are key to describe material behaviour and physico-chemical processes, but
they have their limitations; one of which being the scaling issue that is common to almost all
fields of experimental geosciences. One has to distinguish between categories of experiments,
if one is to characterise small-scale processes or large-scale dynamics [Mader et al., 2004]. Nat-
ural materials are generally preferred for the study of the former because scaling may not, in
some cases, be an issue (Z.e., the time and lengthscales investigated often scale directly with
those of the natural system), whilst analogue materials are usually favoured to investigate the
latter.

Natural volcanic materials are highly complex structures: they are generally multiphase sys-
tems (mainly melt, bubbles and crystals), which contain varied amounts of dissolved chemi-
cal elements under pressure-temperature conditions acting at volcanoes. Consequently, their
physico-chemical properties spans the widest spectrum amongst geomaterials and their com-
plexities hinder systematic reproducibility when experimenting. Synthetic materials may help
circumvent these issues, as they have the advantages of being a simplified version of the nat-
ural ones and of having well-constrained properties. Under specific circumstances natural
materials can be reduced to two-phase by the use of synthetics. Let me take the example of
volcanic ash. During volcanic fragmentation quantities of ash are ejected and most of this ash
has been shown to be overprinted by the glassy component. It is therefore clear that the use
of chemically stable, synthetic glasses, such as borosilicate or soda-lime silicate glasses, is very

much relevant to explore the behaviour of their natural counterparts [e.g., Hess et al., 2007;



Robert et al., 2008b; Whittington et al., 2009; Cordonnier et al., 2012b]. Here I make use
of these synthetic glasses to create two-phase systems (melt and bubbles) for which the role
of structural heterogeneity is easily picked apart. This well-constrained simplification of the
natural system also allows to pin down the dominant first-order effects at the expense of the
complexities.

The careful choice of experimental materials is important and so is the choice of the ex-
perimental setup. An experiment needs to be design in a way to describe a process simply,
without ever oversimplifying it. Well-controlled experiments are commonly not designed
to replicate and capture the entire complexity of volcanic conduits conditions, which would
prove very challenging and somewhat not necessary to characterise the system’s behaviour.
Here I perform experiments under a uniaxial compression state (at temperatures relevant to
magmas) for which the associated stress field is quite similar to shallow magmatic systems
where a negligible amount of confining pressure is applied and the vertical stress exerted by
the underlying magma dominates. The suitability of this type of deformation experiments
in the study of volcanic processes has been extensively demonstrated [e.g., Lejeune & Richert,
1995; Quane & Russell, 2005, 2006; Lavallée etal., 2007; Hess et al., 2008; Lavallée et al., 2008;
Robert et al., 2008b,a; Quane et al., 2009; Benson et al., 20125 Lavallée et al., 20125 Kendrick
etal., 2013; Lavallée et al., 2013; Heap et al., 2014].

In the final ascent trough the Earth’s upper crust, magmas dominantly deform in a vis-
cous manner; yet they may experience abrupt transition to a brittle regime of deformation, as
they experience strong non-linear deviations in flow behaviour. In silicic systems, where the
magmas involved are so viscous, this transition implies that these magmas regularly switch

between flow and failure. This cycling between liquid-like and solid-like responses imparts



very special properties and represents a prodigious seismogenic source. Structural and textu-
ral studies of eroded, exposed volcano interiors and volcanic products have revealed a plethora
of lines of evidence for cyclic ductile-brittle events that involve repeated fracturing and seis-
micity [ Tuffen et al., 2003; Tuffen & Dingwell, 2005]. Using analogous acoustic signals, ex-
periments tend to constrain the source mechanisms on the microscale [Benson et al., 2007;
Burlini et al., 2007; Benson et al., 2008; Lavallée et al., 2008; Tuffen et al., 2008; Benson et al.,
2010, 2012; Lavallée et al,, 2012; Arciniega-Ceballos et al., 2014; Benson et al., 2014; Kendrick
etal,,2014] and this approach promises to improve our understanding of volcano-seismology.
Volcano-seismic signals are the largest and arguably the most reliable precursory type of ac-
tivity to volcanic eruptions. Laboratory-sized microseismic signals produced during rock or
magma deformation are equally reliable as a tool to describe and analyse accelerating trends
prior to sample-sized failure.

All the considerations listed above yield a fundamental outstanding question: what mate-
rial properties determine the seismic signals associated with failure and how do they modify
the efficacy of failure forecasting models? The present thesis aims at addressing this question
by means of static and dynamic experiments. Specifically the study investigates the role payed
by structural heterogeneities in magmas on the style and mechanisms of deformation during
ascent in the shallow volcanic conduit and on the subsequent ability to predict magma fail-
ure (Z.e., magma fragmentation) based on accelerating rates of precursory seismicity. To this
end, two major routes have been identified: (1) high-temperature static experiments using
crushed synthetic glasses (crystal-free, amorphous systems) to explore the way structural het-
erogeneities such as pores evolve in shallow magmas and porous lavas, while statically mea-

suring the resultant microstructural and elastic properties; and (2) high-temperature, high-
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Figure 1.1: Densification and healing of volcanic ash is evident at many places in a volcanic environ-
ment.

load dynamic experiments on reconstituted synthetic magmas to probe their micromechani-
cal behaviour, while dynamically measuring the elastic properties, as well as to simultaneously
record their microseismic behaviour in order to apply failure forecasting laws.

In avolcanic environment, densification and healing of granular volcanic materials may oc-
cur in various places (Figure 1.1). Welding or sintering of particles due to pressure-temperature
conditions encountered is invoked as the principal physical mechanism responsible for ash ag-
glutination and annealing. Common scenarios in nature include (a) syn-eruptive in-conduit
welding of ash-filled fractures, which are thought to be the source for tuffisite formation;
(b) post-eruptive conduit infill leading to the formation of sintered tufts; (c) post-eruptive
welding of ash upon deposition of hot pyroclastic density currents, which form rheomor-

phic ignimbrites; and even (d) sintering of ash in jet engines, which is a major threat to civil



aviation. Because the dominant constituent of volcanic ash is often glass, all these scenarios
happen under the action of viscous forces, thereby making the study of these processes a typ-
ical rheological problem. The phenomenon of viscous sintering of a granular medium can be
relatively easily reproduced in a laboratory environment with the use of adequate tools and
has been extensively studied in the glass and ceramic industry. However, there are multiple
ways to perform these kinds of experiments; following the technical designations used in in-
dustry: (a) free sintering, (b) isostatic pressing, (c) free forging and (d) constrained forging.
All these terms relate to the stress field applied to the sintering sample at high temperature.
In the aim to accurately decipher the key parameters and dominant timescales at stakes dur-
ing viscous sintering of synthetic volcanic ash under near-static conditions, I opted for (a) in
which case the surrounding stress field is inexistent.

Not only does viscous sintering provides me with mechanisms to study but also suites of
variably sintered samples with different microstructural shape of their porous network. Such
specimens may then be exploit for further experiments, as they now have well-constrained in-
trinsic material properties. In these porous glasses, if I assume that intensive properties such
as the glass density are pretty constant across the matrix, description of an extensive property
such as the amount of voids should directly reflect their degree of structural heterogeneity.
Based on this assumption, well-controlled deformation experiments have been performed in
order to investigate the effect of variable heterogeneity on the mechanical response and es-
pecially on macroscopic failure predictability. Explosive volcanic eruptions may similarly be
considered as the result of a conduit-sized magma failure whereby the mechanical energy ac-
cumulated during ascent is suddenly released. However, as these natural environments are

more complex dynamic systems than any experimental setup, they are controlled by the in-



teraction of multiple processes that usually exhibit either non-linear or stochastic behaviour.
The high level of uncertainty in the parameters governing these processes makes predicting
the behaviour of volcanic systems highly problematic, whereas laboratory-based predictions
are relatively simple and to some extent easy to resolve.

The present dissertation is structured around the two axes I have just described. Chap-
ter 2 gives an extended, more in-depth introduction into the necessary building blocks from
which the experiments have been mapped out. Chapter 3 introduces the outcomes of the
first experimental campaign and discuss their implications for magmatic systems (“The Life
and Death of Heterogeneity in Magmas...”). Chapter 4 deals with the second experimental
campaign and shows how the results of the former influences the predictability of magma
failure as well as discuss how it relates to volcanic eruptions (“...Implications for Failure Fore-
casting”). Chapter s finally presents the overall conclusions, summarises the whole study and

discuss possible outlooks.



Today’s scientists have substituted mathematics for exper-
iments, and they wander off through equation after equa-
tion, and eventually build a structure which has no rela-

tion to reality.

Nikola Tesla

Theoretical background

THIS CHAPTER ESSENTIALLY LAYS DOWN AND DEALS WITH the necessary general ideas
(either purely theoretical, empirical or semi-empirical) serving as physical bases for the phe-

nomena studied in the following chapters.



2.1 CONTINUUM THEORY OF SINTERING

Sintering is the process by which a granular medium is allowed to compact and particles to
coalesce, ultimately resulting in a dense, pore-free material. The sintering process is classically
divided into three stages [Swinkels & Ashby, 1981; Swinkels etal., 1983; Cocks, 1994] (Fig. 2.1):
(1) a first stage in which the particles are brought into contact and necks grow at their surface
contacts; in this phase the material may be modeled as an aggregate of individual particles
with small surface contacts; for crystalline materials this phase involves the diffusion of va-
cancies in the crystal lattice, whereas non-crystalline materials sinter by viscous flow; (2) an
intermediate stage in which the material can be idealised as an agglutinated frame with an in-
terconnected porous network; this framework is inherently unstable with respect to surface
tension in the absence of pore pressure and collapses causing the majority of volumetric strain
via porosity reduction; and (3) a final stage in which, usually for relative densities greater than
0.9 [Coleman & Beere, 1975] (i.e., for porosity less than o.1), the closure of the porous net-
work yields isolated, quasi-spherical pores (i.e., gas bubbles) suspended in the liquid phase;
these pores act to reduce the density from that of the pore-free material. It is important to
note, however, that during the intermediate stage the pores can be considered quasi-spherical
[Ashby, 1974].

The theory of sintering is based upon continuum mechanics, which has been successfully
applied to the description of the compaction of porous bodies (this description being built
on the theories of plastic deformation of porous bodies). Frenkel [1945] was the first to imple-
ment the rheological approach for sintering. The relationship determining sintering kinetics

was derived on the basis of the analysis of two model problems: (1) jointsintering of two equal
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Figure 2.1: Schematic cartoon of the simplified spherical case of the sintering process. Sinteringis a
3-stage process where (1) super-cooled silicate melt droplets form necks at grain-grain contacts, (2)
the necks widen and encroach on the interconnected pore network, and (3) the porous network is
closed leaving suspended isolated pores that relax to spherical.

spherical particles and (2) shrinkage of a spherical pore in an infinite viscous medium. These
ideas were amplified and further developed by Mackenzie & Shuttleworth [1949]. They elab-
orated a method of macroscopic description of sintering as a uniform overall compression of

a porous medium characterised by two viscosities.

211 A CONSTITUTIVE LAW

The continuum theory of sintering describes the macroscopic behaviour of a viscous, porous
body during sintering. A porous medium is considered as a two-phase material constituted
of (1) a substance phase’ and (2) a void phase®. The skeleton, in turn, can be a heterophase
material (e.g., crystals embodied in aliquid), but for the theory developed hereafter I will stick
to a single-phase viscous melt. The skeleton is assumed to be composed of individual parti-
cles. I will consider the case of a linear viscous incompressible skeleton containing isotropi-
cally distributed pores (intermediate and final stages of sintering). The overall mechanical be-

haviour of this porous body is therefore strongly influenced by the presence of pores [ Wakai

"From now on referred as the “body skeleton” or the “melt”.
*From now on referred as the “pores”.
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etal., 2007] and isotropic. One phenomenological rheological model is proposed by Olevsky
[1998], which relates the stress tensor’s components ¢;; (.e., externally applied load) to the
deviator of the strain rate tensor’s components ¢;'. A modified version of the law reads as

follows

i = 29, (17,2}]-’ + u,e',-,-o“ij) + prdy — ppdij (2.1)

for which y, is the shear viscosity of the melt, #, and x, are the relative shear and bulk viscosity
respectively, ¢;; is the first invariant of the strain rate tensor ¢, py is the Laplace pressure, p, is
the gas pressure in the pores, and d;; is the Kronecker symbol (i.¢., d;; = 1if i = jand d;; = o

otherwise). The relative shear and bulk viscosities are defined as

ho= 1w (2:2)

where » and » are the shear and bulk viscosities of the porous material respectively, and 7,
and x, those of the melt.

The first term of the right-hand part of Eq. 2.1 represents the material resistance, the second
term corresponds to the influence of capillary stresses and the last term to the influence of
internal pore stresses (p, = o during the first and intermediate stages, since the pores are
all interconnected). In essence, Eq. 2.1 measures the macroscopic deformation process by
local shrinking (whenever it entails a volume reduction) and by local change in shape caused
by viscous flow of the porous body. Introducing the following expression for the deviatoric

strain rate tensor

1
g = ¢ — ;E'ifo“ij (2.3)
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Eq. 2.1 can be transformed into
. I .
Tij = 29 | 5+ | Hr — ;’77 6idij | + pLdij — ppdy (2.4)

Now, if I consider an axisymmetric cylindrical specimen subjected to an external load, the

average stress distribution and the strain rate tensor can be written as

g 0 O ¢, O O
gi= 10 o of: ¢ = o ¢ o (2.5)
O O 0 0O O ¢

where z denotes the axial direction and 7 the radial direction. Henceforth, the first invariant

of the strain rate tensor corresponds to

€ = €, + 2%, (2.6)

Summing over the stress and strain rate tensor’s components in Eq. 2.4, and using Egs. 2.5

and 2.6 yields the following expression

Ty + 20, = 69 %, (¢ + 26,) + 3pL — 3Py (2.7)

POROSITY DEPENDENCE OF THE CONSTITUTIVE PARAMETERS

Determination of the overall effective response of a viscoplastic heterophase body in terms of
the thermo-mechanical and geometrical characteristics of its constituents has been a long-

standing challenge for material scientists. The dependence of the effective properties on
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porosity is just one particular case. For porous materials, a considerable amount of work
has been carried out on materials with linear viscous and power law creep behaviour [Skoro-
hod, 1972; Hsueh et al., 1986; Venkatachari & Raj, 1986; Rahaman et al., 1987; Cocks, 1989;
McMeeking & Kuhn, 1992; Du & Cocks, 1992a,b; Kuhn & McMeeking, 1992]. For the deter-
mination of the relative shear and bulk viscosities, I will stick to the approach developed by
Skorohod [1972]. Following a hydrodynamic analogy of the theory of elasticity, for which a
corresponding problem can be solved assuming elastic properties of the material due to the
similarity between the constitutive equations describing the behaviour of linear viscous and

linear elastic materials, he derived the following approximation

7, =(0—9) (.8)
for the relative shear viscosity, and

2(1— @)’ 5
- (2.9)

=

for the relative bulk viscosity. Here @ denotes the porosity.

At the microscopic level, the Laplace pressure is the result of collective action of local capil-
lary stresses in a porous material (Z.e., the interstitial pressure acting at the surface of the pores
or of the particles, thereby providing a sintering driving potential). The relationship between
the relative p;, and the local Laplace pressure p; , (acting on a single pore) depends on the pro-
cedure of averaging the aforementioned local stresses over a macroscopic porous volume. A
substantial number of publications is dedicated to this topic [Coble, 19615 Skorohod, 19725

Scherer, 1979; Bhat & Arunachalam, 1980; de Jonghe & Rahaman, 1984; Hsueh, 198s; Ra-
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haman et al., 1986; Hsueh et al., 1986; Raj, 1987; de Jonghe & Rahaman, 1988]. I will consider
the derivation based upon the 3D stochastic approach employed by Skorohod [1972]. The

achieved result may be stated as follows

prr=0—9) (2.10)

After Laplace’s original work, the local Laplace pressure acting on any spherical surface reads

as

I
Pro = 27 (2.1)

for which I is the surface tension and 7 is the radius of the sphere. For convenience, 7 can be
generalised to either the characteristic radius of a pore or of a particle. The product of the

local and the relative Laplace pressure gives its general expression (i.e., pr = proprr)

2.1.2  POROSITY KINETICS DURING FREE SINTERING

During the first and intermediate stages of sintering p, = o and in the case of free sintering

(i.e., 7 = oand ¢, = 0), Eq. 2.7 becomes

PL

& + 26, = _2777% (2.12)
o

Because of mass continuity and of the assumed incompressibility of the matrix (the shrinkage
is only due to porosity change), the evolution law for porosity is given by [Olevsky, 1998]
¢

i = .
£y + 26 o (2.13)
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Combining Eqs. 2.12 and 2.13 further leads to the continuum porosity kinetics during free

densification of a porous body from an initial packing of particles to a bubble-bearing sus-

pension
P I (214)
I= @ 2‘;70%7'
Injecting Egs. 2.9, 2.10 and 2.11 into Eq. 2.14 yields the following differential equation
. T
P__ (2.15)
¢ 2957

which, once integrated between the initial porosity ¢ (£ = 0) = @, and ¢ (z), gives the ap-
proximated form of the porosity evolution of a relaxing porous body derived from the work

of Mackenzie & Shuttleworth [1949]

¢ (1) = ¢, exp (— el t) = @, exp (—t) (2.16)

297 Aus
where A\ys is the sintering timescale given by

27,7

3

Aus = (2.17)

2.2 THEORY OF FRACTURE MECHANICS

Fracture mechanics applies the physics of stress and strain in deforming solids to problems
invoking the likelihood of fracture from the unstable propagation of pre-existing flaws or
cracks. The theory identifies the conditions under which fracturing processes occur, and

their dynamic and kinetic effects. Ultimately, it attempts to predict when fracture propa-
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gates and how a solid fails. Fracturing is inherent to many dynamic processes in the Earth
system. Volcanic eruptions, in particular, are generally viewed as the result of magma ascent
through fractures occurring on a broad range of lengthscales within the Earth’s upper crust.
Magmas themselves can equally fracture during transport and so it is reasonable to assume

that under high deformation rates they respond like any other brittle material.

2.2.1 A FRACTURE CRITERION

In essence, Griffith [1921] was the first to propose a criterion of rupture based on the energy
budgetin a solid. He used the first law of thermodynamics to infer changes of the total energy
as flaws or cracks grow. During elastic loading, a stressed body stores strain potential energy,
which is provided by the work done on itself (in turn controlled by the forces applied), and
releases this energy by creating new crack surfaces (i.e., brittle cracking; conversion into a free
surface energy). The balance between a crack driving force (energy storage) and a crack resist-

ing force (energy release) is expressed by the total energy U of the system

U=U,+ U (2.18)

for which U,, and Uj are the mechanical and the surface energy respectively. When a crack
grows, U,, decreases and, accordingly, U; increases. In the case of a thin plate under a constant

load, the mechanical energy per unit width of a crack length / is given by [Lawn & Wilshaw,

1975]

U, =——+ (2.19)

17



where ¢ is the remote stress applied normal to the crack surface and E the Young’s modulus.
Griffith [1921] provides the expression for the surface energy per unit width of a crack length

(for each surface of a crack), which depends on the surface energy density 7, as follows

U, =21y (2.20)
At equilibrium ”fi—[c] = o and injecting Equations 2.19 and 2.20 into Equation 2.18 results in a
critical failure stress ¢, such that
F
o.=2 =Y (2.21)
i,

Equation 2.21 is a necessary criterion to explain the strength of elastic materials such as glasses
or single crystals. However, in ductile materials (and, to some extent, in materials appearing
to be brittle), plasticity at the crack tips starts to play a major role. In this case a dissipative term
(corresponding to the release of heat at the crack tips) must be added in Equation 2.20. In the
case of stressed brittle material, a crack may be energetically favourable to extend but, if its tip
is not sharp enough to concentrate the applied stress and exceed its strength (Equation 2.21),
it will not propagate. Since the theory developed by Griffith [1921] is based on thermody-
namic equilibrium, it cannot predict the kinetics of a crack system that is perturbed from the
equilibrium state. All these considerations pose a serious limitation to the applicability of
this theory; the critical failure stress is not a sufficient criterion for material fracturing.

The works of Sneddon [1946] and Irwin [1958] widen the applicability of the ideas devel-
oped by Griffith [1921] by looking at the stress concentration and the stress field around a
crack tip in an elastic body under stress. By introducing the notion of stress intensity factor

(denoted as K), which depends on the crack geometry and on loading conditions (cast as a
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function f), it is shown that the stress around a crack tip depends on the angular coordinates

rand 3, such that

gij = \/f?}/fu (9) (2.22)

Under mode I loading?, the stress intensity factor in the vicinity of a crack tip is derived from
Equation 2.22 as
7l

K=o — (2.23)
2

This stress intensity factor provides a sufficient criterion for fracture propagation since it rep-
resents a measure of the stress singularity at the crack tip. Therefore, unstable crack propaga-
tion will occur if K; > Kj,. The critical stress intensity factor K is also known as the fracture
toughness of a material. While Kis a local parameter, a global parameter related to the crack
growth energetics may be defined. This is quantified by the strain energy release rate G and

the relationship with K under mode I loading is given by Lawn [1993]

K = VEG, (2.24)

By taking account of the stress field surrounding a crack, its geometry and material properties,
the stress intensity approach gives insight into the mechanisms responsible for crack initiation

and propagation in elastic materials.

2.2.2 SUBCRITICAL CRACK DYNAMICS

Time-dependent deformation during elastic loading is termed “subcritical” since it refers to

stable, quasi-static crack growth below a critical value of the stress intensity factor or of the

*Mode I fracturing describes an opening action (z.e., tensile stress normal to the plane of the crack).
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strain energy release rate. Subcritical crack dynamics is inherently sensitive to the applied
stress, temperature and chemical environment. Several kinetic laws of crack growth have been
therefore proposed to describe crack growth velocity v, as a function of the stress intensity fac-
tor [Anderson & Grew, 1977; Atkinson, 1982]. One of the most commonly used expression
for subcritical crack growth velocity is the power law proposed on purely empirical grounds

by Charles [1958]

v (2) = v, ([Ié)n (2.25)

with v, ; and K; the crack growth velocity and the stress intensity factor at # = o respectively,
and 7 the subcritical crack growth index. Equation 2.25 can be rationalised in terms of viscous
behaviour in the vicinity of the crack tip [Maugis, 1985; Lawn, 1993] and is consistent with the
growth of multiple cracks in stochastic granular medium [Main, 1999]. Other relationships
have been developed [Charles & Hillig, 19625 Wiederhorn & Bolz, 1970; Lawn & Wilshaw,

19755 Lawn, 1993 ], including the following exponential model

v (2) = v exp (oK) (2.26)

and

v (1) = v exp (BG) (2.27)

where o and B are constants. In Equations2.25,2.26 and 2.27 the temperature dependence can
be introduced as an Arrhenian factor in the constants 7, o and @ respectively. In particular,

Charles [1958] suggested the following relationship

0. (T) ~ C(Zir): exp <_Ijj;“> (2.28)
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for which Cis a constant, /. and [, are the crack length and critical crack length respectively,

E, the activation energy and R the universal gas constant.

2.3 THE DUCTILE-BRITTLE TRANSITION IN MAGMAS

Magmas may be treated as elastic materials under certain conditions, but they inherently re-
main viscoelastic materials due to pressure and temperature conditions in volcanic systems.
Atdepth a melt may be idealised as a relaxed, Newtonian fluid*; however, during ascentin the
volcanic conduit, pressure, temperature, mechanical and chemical conditions are drastically
changing such that it is generally pushed towards a non-relaxed state and forced to readily
straddle the ductile-brittle transition, which often results in catastrophic failure and magma
fragmentation [Dingwell, 1996]. This metastable region between relaxed liquid and unre-
laxed glass is a thermo-kinetic barrier and is known as the glass transition interval. Crossing
this interval does not always imply fragmentation (e.g., if no deformation is applied) but al-
ways results in a state where the melt reacts as an elastic material. Following Maxwell [1866],
the boundary between the relaxed and non-relaxed state may be defined according to a very
simple viscoelastic model, which describes the structural relaxation timescale A, of the melt

as

r =t (2:29)

for which n and G are the Newtonian shear viscosity and the shear modulus at infinite fre-
quency respectively. The shear viscosity #, defined earlier would be equivalent to the New-

tonian shear viscosity « as long as the melt remains in a Newtonian state and Equation 2.29

*+A fluid is considered as being Newtonian when it is in an equilibrium state (no deformation) or when its
shear viscosity displays no dependence on the applied deformation rate.
5See Section 2.1.
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would hold. One can already see that, when a melt is subjected to a shear stress, the struc-
tural relaxation timescale will compete against the deformation timescale (commonly given
by the shear strain rate), thereby dictating the state of the melt [Dingwell, 1996]. This com-
petition can be framed in terms of the dimensionless Deborah number (as classically used in
rheology), which characterise the “fluidity” of a material by expressing the ratio of the charac-
teristic relaxation timescale of the material to the observation timescale [Reiner, 1964]. Using

Equation 2.29 the Deborah number De is thus given by

De= —=:¢ (2.30)

It has been demonstrated experimentally that, for silicate melts, the onset of the non-New-
tonian behaviour® and the onset of the brittle behaviour are reached when the strain rate ap-
proaches a 10ooth and a 1ooth of the structural relaxation timescale respectively [ Dingwell &
Webb, 1989; Webb & Dingwell, 1990a,b; Cordonnier et al., 2012b]. Therefore, it straightfor-
wardly follows that De = 107% and De = 10~ ? for the non-Newtonian and brittle behaviour
onset respectively. The glass transition, which defines the interface between glass and melt,
is in the same way given by De = 1. Since the infinite-frequency shear modulus of all silicate
melts does not vary significantly as a function of temperature and chemical composition, we
tend to approximate it to 10" Pa s for most practical (macroscopic) purposes [Dingwell &
Webb, 1989]. Equation 2.30 allows us, in turn, to consider isorate lines in a Deborah num-
ber versus temperature space (Figure 2.2). In such a space the glass transition can be crossed

by changing the strain rate and/or the temperature. For natural systems such as silicic vol-

¢ A fluid is considered as being non-Newtonian when it exhibits a strain rate dependence of its shear viscosity
when sheared.
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Figure 2.2: A map of the ductile-brittle transition in silicate melts. The dashed red lines are typical
trajectories for a constant deformation rate (left) and an isothermal (right) process; the filled red
circle indicates where the system-sized failure would occur. The solid blue lines are calculated using
Equations 2.30 and 3.1.

canoes, it is more likely that the trajectory followed by the magma would be a combination
of changes in strain rate and in temperature, with the failure point corresponding to magma
fragmentation. Since magmas undergo chemical changes associated with volatile exsolution
and crystallisation during ascent, it is reasonable to assume that the critical Deborah numbers
defining the transitions will shift throughout an eruption [Cordonnier et al., 2012a]. Never-
theless, it remains that the trajectories invoked would almost always result in a shift from
a coherent to a particulate melt, thereby providing mechanisms for the generation of het-

erogeneity within volcanic edifices. Conversely, this newly created particulate magma could
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transition again back to a pore-free, dense melt by following a re-heating trajectory and will

be the subject of the next chapter.
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Break a vase, and the love that reassembles the fragments is
stronger than that love which took its symmetry for granted
when it was whole. The glue that fits the pieces is the sealing
of its original shape.

Derek Walcott

The death of heterogeneity

SINTERING AND DENSIFICATION ARE UBIQUITOUS PROCESSES influencing the emplace-
ment of both effusive and explosive products of volcanic eruptions. Here I sinter ash-size
angular fragments of a synthetic NIST viscosity-standard glass (from the National Institute

of Standards and Technology, USA) and near-spherical synthetic glass beads (produced by
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Potters Industries Inc.) at temperatures at which the resultant melt has a viscosity of ~10®*-
10° Pa s and at ambient pressure conditions to assess sintering dynamics under near-surface
volcanic conditions. I track the evolution of porosity and density during sintering, as well as
elastic moduli, and the strength recovery via uniaxial compressive tests. I observe that vol-
canic ash sintering is dominantly time-, temperature- and particle size-dependent and may
thus be interpreted to be controlled by melt viscosity and surface tension. Sintering evolves
from particle agglutination to viscous pore collapse and is accompanied by a reduction in
connected porosity and an increase in isolated pores. Sintering and densification result in a
non-linear increase in strength. Micromechanical modelling shows that the pore-emanating

crack model explains the strength of porous lava as a function of pore fraction and size.

3.1 SINTERING AS A WAY TO DENSIFY MAGMAS

Welding or sintering of volcanic ash and lava densification occurs by a combination of viscous
flow and chemical diffusion, and takes place in a variety of volcanic settings. This process is
evident in rtheomorphically welded ignimbrites [Sparks et al., 1999], tuffisite veins [Stasiuk
etal., 1996; Kolzenburgetal., 2012 ], shallow conduits [ Tuffen etal., 2003; Tuffen & Dingwell,
2005], lava flows [ Cabrera et al., 2011] and lava domes.

High-grade (high temperature) pyroclastic density currents can sinter during deposition,
resulting in dense welded ignimbrites [e.g., Smith, 1960; Ragan & Sheridan, 1972; Branney &
Kokelaar, 1992] that are sometimes mistaken for lavas in the field. In this process, a density-
graded particulate flow is thought to progressively agglutinate (z.e., syn-deformational sin-
tering) to a non-particulate, viscously deformable flow, forming a rheomorphic ignimbrite

[Branney & Kokelaar, 1992]. The sintering or welding intensity can be estimated from strain
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markers in such deposits [Quane & Russell, 2005, 2006] and using existing experimental
models, the timescale over which strain is accumulated can be estimated [Russell & Quane,
2005].

Fracture and subsequent healing also occurs in shallow conduits and lava domes [ Tuffen &
Dingwell, 2005]. This phenomenon is observed at all scales and is in all likelihood integral to
the structural stability of lava domes. Thermochemical, kinetic investigation of fractures in
obsidian has demonstrated the efficiency of these processes [ Cabrera et al., 20113 Castro et al.,
2012]. During this process, strength can be recovered and repeated fracture and healing may
take place [ Tuffen et al., 2003]. In some instances, fractures may be filled by fragmented par-
ticles generating tuffisite veins. Tuffisites form during magmatic fragmentation, subsequent
transport through, and deposition in, fracture networks. Tuffisites consist of fine-grained
fragments (1-10° um) that relax and sinter iz situ, forming diagnostic vein-filled brecciated
textures [ Tuffen et al., 2003; Tuffen & Dingwell, 2005; Kolzenburg et al., 2012]. Kolzenburg
et al. [2012] have demonstrated that the strength of tuffisites can be recovered during the
healing process and as such, suggested that the influence of tuffisites on the rheological, me-
chanical and physical behaviour of lava domes is limited to the timeframe over which the vein
heals.

Rheological experiments have shown that during welding the apparent viscosity of the
porous particulate lava progressively recovers in value to that of the liquid [Quane & Rus-
sell, 2003]. The rate of the process depends on stress and melt viscosity before vitrification
(at the glass transition) or crystallisation [Smith, 19605 Sparks et al., 1999; Quane & Rus-
sell, 20055 Russell & Quane, 200s; Quane et al,, 2009]. As the kinetics of the process is

viscosity-dependent, the degree of densification could be strongly influenced by the presence
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of volatiles in the liquid phase [Hess & Dingwell, 1996] and thus by the availability of gas in
the pore space to resorb into the liquid structure [Sparks et al., 1999]. Rheological studies
addressing welding in volcanic systems have however neglected conditions in which no ex-
ternal stress is applied, where the fundamental mechanisms by which melt droplets coalesce
yield the kinetics of the surface tension driven end-member of this process. In material sci-
ence these phenomena are well-studied’ [e.g., Frenkel, 19455 Mackenzie & Shuttleworth, 19495
Scherer & Bachman, 1977; Prado et al., 2001]. Here I build on previous rheological studies to
investigate the kinetics of sintering and magma densification to constrain, in turn, strength
recovery during healing. Micromechanical analysis is then employed to provide a failure cri-

terion for porous lavas.

3.2 EXPERIMENTAL METHODS

3.2.1 MATERIAL PROPERTIES

The process of glass particle sintering has been investigated using well-constrained materials:
(1) a viscosity-standard borosilicate glass (SRM 717a) from the National Institute of Standards
and Technology (NIST, USA), which I powdered into angular particles®, and (2) populations
of industrial soda-lime silica glass beads (Spheriglass® A-glass microspheres 1922 and 2530,
Potters Industries Inc.) with known chemical and physical properties’. The chemical com-
position of these glasses is listed in Table 3.1. The NIST glass has been selected because it has
a well-constrained temperature dependence of viscosity, a precise description of the calori-

metric glass transition 7, interval (780—795 K at 10 K min™" natural cooling rate), a deter-
g g 780-795 g

'See Section 2.1.
*From now on referred as “NIST glass”.
From now on referred as “glass beads”.
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Table 3.1: Composition of materials.

Oxide NIST glass Glass beads

- wt % wt %
SiO, 68 72.5
B,O, 18.5 -

ALO, 3.5 0.4
MgO - 3.3
CaO - 9.8
Li,O I -

Na,O I 13.7
K,O 8 o.I
Fe,O, - 0.2

mined fracture toughness [Wiederhorn, 1969], an excellent glass-forming ability (i.e., it does
not crystallise, degas or show liquid-liquid immiscibility at the experimental conditions and
timescales), and has been used extensively in background studies to constrain volcanic pro-
cesses [e.g., Hess etal., 2007; Robert et al., 2008b; Whittington et al., 2009; Cordonnier et al.,
2012b]. Similarly, the glass beads have been shown to be a chemically and thermally stable
material over the experimental conditions and timescales investigated here (i.e., the mass loss
is negligible and the onset of the glass transition interval varies insignificantly over repeated
heating cycles, and no crystallisation may occur below 970 K) [Wadsworth et al., 2014].

The temperature dependence of viscosity », of the NIST glass is given by the following
certified calibration of a Volger-Fulcher-Talmann (VFT) equation

4852.2

1 = —2.56 —_— .

where T stands for temperature. The temperature dependence of viscosity of the glass beads

has been predicted by using the multicomponent model of Fluegel [2007] developed for in-
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Figure 3.1: The temperature dependence of melt viscosity of the NIST glass from Equation 3.1
(calibrated and provided by NIST) and of the glass beads from Equation 3.2 (calculated after the
composition-dependent model of Fluegel [2007]). The green open circles are viscosity measure-
ments using a glass of near-identical composition to the glass beads.

dustrial glass-forming silicate melts. The resultant VFT equation reads as follows

4303.36
R (3-2)

log (y,) = —2.6387 +
80 (7) T'— 530.754

One can observe that Equations 3.1 and 3.2 are very close to each other (Figure 3.1), thereby

providing a robust rheological comparable basis.
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Figure 3.2: The particle size distributions of the experimental materials: (A) NIST glass powder (as
measured from manual sieving) and (B) glass beads (as measured by laser refraction); the fine and
the coarse distributions are displayed in dark and pale green respectively.

3.2.2 SAMPLE PREPARATION

I crushed the NIST glass to a powder using a concussion mill for intervals of 10-15 s and mea-
sured the resultant particle size distribution by sieving with half-phi intervals (Figure 3.2A). A
laser refraction particle size analyser (LS230, Beckman Coulter Inc.) with a measuring range
of 0.375—2000 um was used to determine the particle size distributions of the two popula-
tions of glass beads (Figure 3.2B). The particle size distribution of both the NIST glass powder
and the glass beads used are monomodal. The two glass beads populations have well-defined
monomodal peaks at 76 and 177 um from dark* to pale green’ respectively. The distributions
range between 0.4 and 177 um, and 92 and 340 um respectively. The NIST glass powder also
has a monomodal peak around 63 wm and ranges between 44 and 354 um. This powder con-
sists of angular fragments (Figure 3.5A top-left), whereas the glass beads are near-spherical

(Figure 3.5B top-left).

4From now on referred as the “fine” distribution.
SFrom now on referred as the “coarse” distribution.
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I systematically filled alumina ceramic crucibles (44 mm in diameter and 75 mm in height)
with particles, ensuring close to a maximum packing by tapping the powder flat every time
I poured a few millimetres of particles in the crucible. The maximum packing is a func-
tion of the particle size distribution, sorting and clast angularity for heterogeneous powder
populations [e.g., Evans & Gibson, 1986]. As such, a compact of irregular fragments leads
to a more dense packing that that of spherical particles, thus it is expected that the NIST
glass powder compact to reach a lower porosity. The sample-laden crucibles were heated at
10 Kmin™ to isotherms above the glass transition and at which the melt viscosity is 1.1 X 10*
and 2.24 X 10° Pas for the NIST glass and 2.09 X 10® Pa s for the glass beads. Viscous sinter-
ing took place during dwells of 0.5 to 10 hours for the NIST glass powder and 1 to 32 hours
for the glass beads. After sintering, the samples were cooled at a slower rate of ~5 Kmin™
to minimise cracks induced by the thermal contraction of the sample. Note that the sinter-
ing times shown here are the dwell time at the isotherm and do not include the heating and
cooling portions of the sample excursions to and from high temperature. Due to the fast
heating rate, sintering occurring during the heating portion above the glass transition tem-
perature is considered negligible (for a treatment of non-isothermal sintering, see Wadsworth
et al. [2014]). The samples show no preferential compaction at the base nor cracking; both
of which would affect the bulk porosity. The densified products were drilled from the cru-
cible to sample cores of 25 mm diameter by so mm height for further physical and mechanical

analysis (Figure 3.3).
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Figure 3.3: Typical suite of sintered glass sample cores using the NIST glass powder as starting ma-
terial. The sintering time increases incrementally from the left to the right; the farthest right sample
core being the pure NIST glass.

3.2.3 SAMPLE CHARACTERISATION

A physical description of the welded products requires an accurate description of the porous
network. The total porosity ¢. .is defined by the relative amount of pores in the sample and its
counterpart the relative density ¢_by the relative amount of solid in the sample. By denoting
the total volume as V1, and the volume of the solid matrix V;punix and of the pores Ve =

Viotal = Vmarrix> the relative density can be written as

Vmam’x ebulk
= = 33
i Vi total é, ( )

where ¢, , and ¢_ are the bulk density and the density of the pore-free, dense material (ze.,

the solid matrix). Therefore, total porosity reads

17}707‘8&
=  —— =71 — 3 4
@T v, total er ( )
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The connected porosity ¢ of the samples was measured by helium pycnometry (Micromerit-
ics Accupyc 1330 and Quantachrome Ultrapyc 1200e). The isolated porosity was estimated
from the difference between the total and connected porosity. The density of both the NIST
glass and the glass beads is dependent on the cooling rate at which the melt crossed the glass
transition interval and therefore I used a corrected glass density for the post-experimental
samples given the cooling rate of ~s K min™".

Ultrasonic wave velocities were measured in a benchtop apparatus (Figure 3.4A), where
the specimen is placed between two vertical endcaps equipped with piezoelectric transducers
(with a resonant frequency of <t MHz) connected to a pulse generator (Agilent Technologies
33210A, 10 MHz function/waveform generator) and an oscilloscope (Agilent Technologies
DSOsor2A). The onset of P-wave arrival at the receiver was individually picked as the first
deviation from the baseline signal.

Oriented thin sections were obtained in the axial plane of the sintered samples and pho-
tomicrographs were recorded using an optical microscope in plane-polarised light. Accord-
ingly, backscattered electron images of oriented thick sections of the sintered samples were
recorded. The images were converted to binary, allowing for automatic thresholding of hues
and greyscales to black and white. The minimum and maximum pore sizes were measured.
These measurements were of connected vesicle widths in the case of the poorly sintered sam-
ples and of isolated vesicle radii in the case of the well-sintered samples.

A series of compressive deformation tests was performed on the prepared porous mag-
matic suspensions using a uniaxial press equipped with a surrounding furnace (<1373 K),
which can apply a <300 kN force vertically (Figure 3.4B; see Hess et al. [2007] for details

of the apparatus). These Uniaxial Compressive Strength (UCS) tests were performed on a
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Figure 3.4: Schematic diagrams of the experimental devices used (A) to determine benchtop elastic
waves velocities and (B) for uniaxial compression tests. Both schematics after Heap et al. [2014].

relaxed (liquid) magma at a temperature of ~810 K in the case of the NIST glass and at a
temperature of ~825 K in the case of the glass beads. For both materials, these experiments
were carried out slightly above the calorimetric glass transition interval. At this temperature
a negligible amount of viscous sintering occurred on the timescale of the experiment due to
the relatively high viscosity of the suspension (in contrast to the sintering experiment con-

I

ditions). I'loaded the porous magma up to failure at a constant strain rate of ~1073s™" to
ensure deformation in a purely elastic regime. In each experiment, the component of strain,

which could not be viscously relaxed, resulted in a stress accumulation that triggered brittle

failure; the peak axial stress was recorded as a measure of the UCS.
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Figure 3.5: Textural evolution during sintering. (A top-left) Photomicrograph (reflected light) of the
NIST glass powder sieved between 100 and 150 um. (A middle-left to bottom-right) Binary false-

colour thin section photomicrographs of NIST glass samples sintered at 923 K for incremental times.
Black represents the pores and white the glass matrix. (B top-left). Photomicrograph (reflected light)
of the coarse distribution of the glass beads. (B middle-left to bottom-right) Backscattered electron
images in binary false-colour of thick sections of glass bead samples sintered at 923 K for incremen-
tal times. Black represents the pores and white the glass matrix.

3.3 DENSIFICATION AND HEALING OF SYNTHETIC GLASSES

Microstructural analysis reveals details of the sintering process. I note a rapid coarsening
of the ash fragments due to agglutination. This densification process results, in turn, in an
overall decrease in average pore size, which evolves from ~1 to ~o0.or mm over the sintering
timescale in the case of the NIST glass powder (Figure 3.5). The findings are consistent with
the general observation that sintering results in viscous pore collapse, densification, strength-

ening and elasticity recovery of porous lava.
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3.3.1 TIMESCALES AND MECHANISMS

The total and connected porosity decrease during sintering, whereas isolated porosity in-
creases (Figure 3.6). The rate of porosity change is influenced by the sintering temperature
and the size of the particles. For the NIST glass powder, at 923 K the liquid has a viscos-
ity of 1.1 X 10® Pas and the total and connected porosity decrease from a common starting
maximum packing value of ~0.4 to a minimum value of 0.05 in the case of total porosity
(Figure 3.6A) and o in the case of connected porosity (Figure 3.6B top). Simultaneously, the
isolated porosity increases from o to ~o.0s (Figure 3.6B bottom). At 873 K the melt viscosity
is2.24 X 10° Pa s and over the experimental time of 10 hours, the total and connected poros-
ity evolve from ~o0.4 to ~o.25 (Figure 3.6A) and to ~o.2 (Figure 3.6B top) respectively. The
isolated porosity evolves from o to ~o0.07 (Figure 3.6B bottom).

For the glass beads, at 923 K the liquid has a viscosity of 2.09 X 10®* Pas and the total and
connected porosity decrease from the starting maximum packing value of ~0.48 to a mini-
mum value of o.12 (Figure 3.6C) and of o (Figure 3.6D top) respectively. The timeframe over
which the densification process occurs depends on the particle size distribution and one can
observe that within 10 and 35 hours for the smallest and highest particle size distributions re-
spectively, both porosities have reached their final values. For all particle size distributions,
the isolated porosity increases from o to ~o.12 (Figure 3.6D bottom). Relative density—the
standard metric of sintering in ceramics and glass-technology studies—is inversely propor-
tional to the total porosity (see Equation 3.4) and I observe that the preservation and accu-

mulation of isolated porosity prevents the recovery of the defect-free glass density for both

the NIST glass and the glass beads (Figure 3.7).
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Figure 3.6: Results for porosity evolution in the sintered sample suite. The evolution of total, con-
nected (top) and isolated (bottom) porosity with best-fit curves to the models (solid and dashed lines;
see text) for (A) and (B) the NIST glass powder, and (C) and (D) the glass beads respectively. The
colour coding of the NIST glass data refers to the two viscosities investigated and that of the glass
beads data to the two particle size distributions investigated (see Figure 3.2B).

FIRST STAGE SINTERING

Asdescribed in Section 2.1, sintering stages have been approximated by theoretical and empir-
ical relationships. Neck formation is well-described by the Frenkel [1945] and Scherer & Bach-

man [1977] sintering models and variations of these studies which states that relative density
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Figure 3.7: Results for relative density evolution in the sintered sample suite with best-fit curves to
the models (solid and dashed lines; see text) for (A) the NIST glass and (B) the glass beads. The colour
coding of the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of
the glass beads data to the two particle size distributions investigated (see Figure 3.2B).

will increase with time between relative densities of 0.3 and a threshold value <1 [Frenkel,
1945; Scherer & Bachman, 1977; Scherer, 1977; Cahn, 1991]. I find that a combination of their
approaches yields an empirical, linear relationship valid for the range of relative densities over

which neck formation dominates, such that

e, () =1+ (¢, — 1) (I - ;) (35)

S

where ¢_, is the initial relative density, # is time since the onset of the isotherm and A is the
characteristic timescale of sintering. I can combine Equations 3.4 and 3.5 to derive the total
porosity as a function of time (note that total and connected porosity are interchangeable in

this particular case)

Pr (1) = Pr, (I - ;) (3.6)
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where P, IS the total porosity at # = o. Equations 3.5 and 3.6 show that the initial stage
of isothermal viscous sintering can be approximated by a linear relationship with time. This
model, which neglect externally applied stress, requires that viscous sintering is characterised
by a dominant sintering timescale A;. Uhlmann et al. [1975] suggest that this timescale is
related to the melt viscosity 7, the melt-vapour interfacial tension I" and the initial radius of

the sintering particles 7, ;
- rp,ivo

As
r

(3.7)

I use a least squares regression to fit all the linear portions of the total and connected porosity
data shown in Figure 3.6, as well as all the linear portions of the relative density data shown in
Figure 3.7. For each experimental temperature (NIST glass) and each particle size distribution
(glass beads), values of A, were adjusted such that they yield best-fit controlling particle sizes.
The best-fit models are represented as coloured dashed lines in Figures 3.6 and 3.7.

For a melt surface tension of 0.3 N m™ for a borosilicate E-glass of a similar composition
[Kraxneretal., 2009] to the NIST glass, I find that the best-fit timescale for my data relates to
a dominant particle radius of r7-25 um in the case of the sintering NIST glass powder. This
particle size range is consistent for both experimental temperatures and is in very good agree-
ment with the particle size analysis, which indicates that the most frequent particle radii are in
the range 26—37 wm and the finest fraction is <26 um (grey shaded area in Figure 3.7A). In the
case of the sintering glass beads, the best-fit timescale relates to a dominant particle radius of
31 and 103 wm for the dark and pale green data respectively, which is also in very good agree-
ment with both particle size distributions indicating a dominant range of 10—45um (dark
green shaded area in Figure 3.7B) and of 6o-170 um (pale green shaded area in Figure 3.7B).

I therefore suggest that for unimodal distributions, it is the finest particle sizes that domi-
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nate the timescale of effective sintering because those particles will occupy the interstices of
larger particles and share the most contact surface area for viscous neck formation. Prado etal.
[2001] also concluded that Equation 3.7 holds, as the finest particles cluster in pore spaces be-
tween larger particles and control sintering rates due to the high stress at their surface driving

sintering.

INTERMEDIATE AND FINAL STAGES SINTERING

In Equation 3.7 the driving stress for deformation is derived from the surface tension and the
interconnected pore-geometries. The fact that I can approximate the evolution of porosity
and density using Equation 3.7 implies that the deformation is viscous and that diffusive neck
growth is not the dominant transport mechanism. Equation 3.7 is identical to the approxi-
mation for the viscous relaxation time of a bubble in a melt defined by Oldroyd [1953] in

which 7, ; is the initial bubble radius, such that

Tb.i °
na = ke (.8)

I note that there is a packing-dependent proportionality between 7, ; of statically sintering
particles in a granular material and 7 ; of bubbles in the resultant viscously relaxing suspen-
sion. This consideration permits me to describe a continuum in the processes of sintering
and bubble relaxation, as the material progresses from granular to a suspension medium. As

such, the data can be empirically approximated by the following exponential expression

Pr (¢) = ¢Tf+ (¢T7i - ¢Tf) exp <_);) (3.9)
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where Pri and ¢, pare the initial and final total porosity respectively, and )\, is the characteris-
tic densification timescale, which is dominantly related to the bubble collapse and relaxation
timescale. Itis clear that Equation 3.9 is an adaptation of Equation 2.16 derived from theory®,
by accounting for the final porosity value (z.e., the remaining isolated porosity when the sin-
tering process is over). Because the total porosity includes isolated and connected pores, and
because in some instances the results for viscous sintering show that the connected porosity

decays to zero (i.e., . =0 Figure 3.6B and D), Equation 3.9 becomes

o (1) = P.; EXp (—);) (3.10)

which is, indeed, the same as Equation 2..16 (although describing the evolution of total poros-
ity). By injecting Equation 3.9 into Equation 3.4 one can provide the following relative density

evolution with time

t

e, () =g, + (e, ¢.) (I —exp (—/\>) (3.11)

d

As for the first stage of sintering, a least squares regression analysis has been applied to all
the total and connected porosity data shown in Figure 3.6, and all the relative density data
shown in Figure 3.7. For each experimental temperature (NIST glass) and each particle size
distribution (glass beads), values of A\; were adjusted such that they yield best-fit controlling
bubble sizes. The best-fit models are represented as coloured solid curves in Figures 3.6 and
3.7. I note that 7»#/r,; is ~1.3-2.3 (Table 3.2), which is consistent with the pore space radii

expected between particles of a heterogeneous population at maximum packing.

%See Section 2.1.
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Table 3.2: Melt parameters known or estimated for use in sintering models (see text) and relative
density model outputs.

Material T R r A Vpi A Toi i/
- K Pas Nm™ hours um hours pm -

NIST powder 873 2.24 X 10° 0.3 35.1 7 268 13 ~L3

NIST powder 923 1.1 X 10° 0.3 2.6 25 1.2 n ~22
Finebeads 923 2.09 Xx10® 03 6.1 31 2.6 13 ~23
Coarse beads 923 2.09 X 10® 0.3 20 103 10.6 54 ~2

The data presented in Figure 3.6 can be cast in a porosity space (i.e., connected against to-
tal porosity), where the data points plot below the isoline (total = connected porosity) and
any vertical distance from this isoline is given by the isolated porosity. I observe that both
sintering NIST glass powder and glass beads data lie sub-parallel to the isoline and system-
atically deviate from it, as connected porosity decays to zero (Figure 3.8). Mechanisms such
as cracking, crack healing, coalescence by bubble growth and bubble collapse have been in-
ferred from trajectories in this porosity space [e.g., Kennedy et al., 2010]. I observe that the
sintering trajectories followed by the data points in Figure 3.8 indicate an overall pore collapse
mechanism, which is consistent with the viscous sintering theory”.

The efficacy of the models in Equations 3.9 and 3.10 can be tested by non-dimensionalisation

of the controlling parameters. As such, a relative porosity ¢ can be defined as

_ P, _ Pr ™ Py
Pr ?’c,i7 P Pri— @T,f G.2)

for the connected and total porosity respectively, which implies that the initial and final values

7See Section 2.I.
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Figure 3.8: Trajectories in the total-connected porosity space with best-fit curves to the models (see
text) for (A) the NIST glass and (B) the glass beads. The colour coding of the NIST glass data refers to
the two viscosities investigated (see Figure 3.6A) and that of the glass beads data to the two particle
size distributions investigated (see Figure 3.2B).

become 1 and o, and a specific time of sintering 7, can be defined by

t

T4 = )Td (3-13)

These definitions yield a master sintering curve for all viscous sintering of metastable single-

phase melts (Figure 3.9).

3.3.2 STRENGTH RECOVERY

High temperature uniaxial compressive strength tests show that stress accumulation is mostly
elastic and that macroscopic failure is preceded by a minor amount of strain hardening, high-
lighting the predominantly brittle nature of porous lava at such viscosity and high strain rate

(Figure 3.10). Note that the defect-free NIST glass (pure melt; black curve in Figure 3.10A)
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Figure 3.9: A master sintering curve for all the data presented in Figure 3.6. The filled symbols stand
for the total porosity, whereas the unfilled ones for the connected porosity. The colour coding of the
NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of the glass beads
data to the two particle size distributions investigated (see Figure 3.2B).

displays the most strain hardening prior to failure. One can observe that the stress-strain
curves are very similar for both the sintered NIST glasses and sintered glass beads, suggesting
that the microstructure of the porous network is not a first-order control during deformation
and therefore less relevant. Sintering and densification result in strength recovery (i.e., when
the sintering time approaches A, the strength of single-phase, defect-free melt (glass) is recov-
ered). This result is expressed by the UCS (peak stress at failure; here measured at 107> s77). I
observe that the UCS drastically increases with sintering time and thus decreases non-linearly

with total porosity (Figure 3.11).
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Figure 3.10: Micromechanics during sintering. The differential stress (i.e., the axial stress) and axial
strain resulting from strength tests performed at a constant strain rate of 10~ ? s~ for sintered sam-
ples of (A) NIST glass and (B) glass beads. The black line in (A) represents the stress-strain curve for
the defect-free NIST glass.

As the porous structure of my medium mainly consists of pores (instead of cracks), I tested
the applicability of the pore-emanating crack model to constrain the UCS results [Sammis &
Ashby, 1986]. Zhu et al. [2011] provide an analytical approximation for the pore-emanating

crack model as follows

sk
@OAMW

where gp is a compressive strength, 7, the average radius of the pores and K is the frac-

ap (3.14)

ture toughness or the critical stress intensity factor of glass through which a fracture needs
to propagate to achieve complete failure. Note that fractures propagate by the conversion of
strain energy to fracture surface energy; here, viscous dissipation of strain energy above the

calorimetric glass transition is negligible, as the viscosity and strain rate are high: relaxation
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Figure 3.11: Strength recovery during sintering. (A) Uniaxial Compressive Strength (UCS) as mea-
sured by the peak stress at failure. Displayed are predicted isopore lines for different radii from
which cracks initiate in the pore-emanating crack model [Sammis & Ashby, 1986; Zhu et al., 2011].
(B) The correlation between the UCS measured and the UCS predicted by the pore-emanating crack
model for pore sizes measured in similarly sintered samples (see Figure 3.5A). The colour coding of
the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of the glass
beads data to the two particle size distributions investigated (see Figure 3.2B).

would require >100 s but the strength tests are performed in <100s. This ensures defor-
mation in a purely brittle regime. Combining measured porosities and estimated values of
K for intact, defect-free borosilicate glass of a similar composition [Wiederhorn, 1969] to
the NIST glass of ~0.7 MPa m"?, 1 can approximate the relationship between the pore ra-
dius 7peres and compressive strength using Equation 3.14 (see grey dashed lines in Figure 3.11A).
This modelled relationship agrees with my experimental data (Figure 3.11B; NIST glass data
only), as poorly-sintered samples with a high fraction of relatively large (~1 mm) pores have a
compressive strength appropriate to their pore size; similarly, highly-sintered samples with a
low fraction of relatively small (100 um) pores have a compressive strength comparable to the

modelled strength. This comparative analysis suggests that the pore-emanating crack model
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is wholly applicable to the strength of bubbly magma as a function of pore fraction and size

at the porosities investigated here.

3.3.3 ELASTICITY RECOVERY

I tracked two elastic moduli during sintering: (1) the P-wave modulus 44 measured statically®
and (2) the Young’s modulus or tensile modulus £ measured dynamically (z.e., during elastic

loading of the samples). The P-wave modulus is defined as

M= ¢, .U (3.15)

where vp is the P-wave velocity, and the Young’s modulus is given by the linear slope of the
stress-strain curve during elastic deformation.

I observe that the total porosity is linearly proportional to the inverse of the measured
ultrasonic P-wave velocity. Therefore, the P-wave modulus is also linearly, inversely propor-
tional to total porosity (Figure 3.12) until the granular threshold value [Nur et al., 1998]. This
critical porosity threshold is constrained here to a value of ~0.33 for the NIST glass; that is,
the porosity at which the solid phase of the material is no longer load bearing and the bulk
material behaves in a granular manner atlow loads [Nur et al., 1998]. This relationship is well-
established and suggests that the progressive sintering of fragments consistently densifies the
material to below the theoretical critical porosity. The porosity range of the initial starting
material is above the threshold, as it is granular. A simple linear regression may describe the
trends observed as follows

M= M, — by, (3.16)

8See Section 3.2..3.
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Figure 3.12: The effect of the total porosity on (A) the P-wave modulus and (B) the relative P-wave
modulus, during sintering. The solid lines are the best-fits to the data using Equation 3.16. The colour
coding of the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of
the glass beads data to the two particle size distributions investigated (see Figure 3.2B).

for which A4, is the P-wave modulus of the pure glass (i.e., the value at ¢.. = o) and b, the
slope. The difference between the two materials used here; that is, the distance between the
two best-fit lines shown in Figure 3.12A, corresponds to (1) the difference in P-wave modulus
of the pore-free, dense specimens and (2) differences in the pore microstructure associated
with particle packing and angularity. The first difference serves to modify A4, whereas the
second difference serves to modify &y,. This first difference is, in turn, controlled by the differ-
ence in glass density between the NIST glass (2375 kg m ) and the glass beads (2755 kgm™3).
The second difference is further illustrated by normalising the P-wave modulus by its fitted
glass value (Figure 3.12B; relative P-wave modulus).

In the same manner as for the UCS?, the Young’s modulus shows a non-linear trend with

total porosity (Figure 3.13). Both materials tend to recover their glass value at zero porosity.

9See Section 3.3.2.
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Figure 3.13: The effect of total porosity on (A) Young's modulus and (B) the relative Young’s modulus,
during sintering. The solid lines are the best-fits to the data using Equation 3.17. The colour coding
of the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of the glass
beads data to the two particle size distributions investigated (see Figure 3.2B).

An empirical relationship for the effect of porosity on Young’s modulus of polycrystalline

refractory materials and used in the field of rock mechanics is given by Spriggs [1961]

E = E,exp (—qu)T) (3.17)

for which Ej is the non-porous Young’s modulus and & an empirical constant. Using Equa-
tion 3.17 the data can be fitted by least square analysis, which shows thatitis well-encompassed
by this model (Figure 3.13A). As for the P-wave modulus, I see that the difference in trends is
controlled by the difference in the non-porous elastic moduli of the specimens, which is likely
due to the difference in glass density. Similarly, when normalising the Young’s modulus by
its ficted glass value (Figure 3.13B; relative Young’s modulus), a difference remains and may be

again inferred from differences in microstructure of the porous networks.
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3.4 IMPLICATIONS FOR MAGMAS

The results presented in this study show that surface tension is capable of sintering ash par-
ticles and densifying porous lavas. Limitations in my experiments remain however as, in na-
ture, sintering at low pressures in conduits may be accelerated if volatiles are resorbed into the
melt, locally lowering the viscosity [Hess & Dingwell, 1996] and facilitating neck formation.
However, sintering in surficial deposits, such as ignimbrites, may occur in the presence of air,
which has a low solubility in silicate melts and is therefore not a significant viscosity-forcing
factor [Castro, pers. comm.]. Additionally stress, whether compressive or tensional, can
contribute to the total stress forcing densification. The results nonetheless demonstrate the
near-static limiting conditions under which these processes can operate and may help provide

a basic constraint on condition of sintering and densification of eruptive products in nature.

3.4.1 PLUG DENSIFICATION AND STIFFENING

Sintering and densification may be important processes occurring during lava dome extru-
sion. The porosity of lava domes varies widely (080 %; Castro & Cashman [1999]) and
the lava commonly undergoes cycles of fracture and subsequent healing with or without the
presence of tuffisite ash fragments [ Tuffen & Dingwell, 2005; Kolzenburg et al., 2012]. Dur-
ing magma fragmentation, the fragments, which are not ejected from the shallow conduit,
will sinter, heal and recover strength. Although my experiments only considered uniaxial
compressive stress (neglecting confining stress, which accelerates compaction and pore pres-
surisation but counteracts dilatation), application of the aforementioned sintering timescale
relationship suggests that healing is indeed very rapid (e.g., minutes to hours) for crystal-free

melts, as speculated by Kolzenburg et al. [2012], who were dealing with crystal-rich tuffisites
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which relax at a presumably lower rate. I note that even at surficial stress conditions a sig-
nificant strength recovery can be achieved within the initial 15 % densification. Magmastatic
stress and differential stress from magma ascent, which are greater than the stress imparted
by surface tension, will accelerate this process. Thus the strength of a lava dome plugging a
conduit should be seen as transient and requires knowledge of the porous network in real

time if we wish to accurately constrain the eruption style [e.g., Edmonds & Herd, 2007].

3.4.2 VOLCANIC ASH SINTERING IN RHEOMORPHIC FLOWS

The description of sintering in natural volcanic settings is typically referred to as welding
and only occasionally is the term “sintering” used to describe the low-grade end-member of a
welding continuum [Wilson & Hildreth, 2003]. Grunder & Russell [2005] suggest that, in
fact, welding only applies to sintering that is coupled with flattening, compaction or stretch-
ing of pyroclasts. In the ceramics and glass science literature the description of sintering refers
to the entire continuum and encompasses the diffusive and viscous components depending
on the material state.

Most volcanic ash is dominantly composed of glass and so any scenario where volcanic
ash is deposited close to or above the glass transition interval or where ash is subjected to a
trajectory of reheating above the glass transition interval will result in a degree of viscous sin-
tering dependent on the ratio of melt drop radius and surface tension (e.g., Equation 3.7).
Pervasive ductile deformation structures in so-called welded ignimbrites deposited from py-
roclastic density currents are interpreted to result from the continued shear stress imposed
by flow of the overlying mass on viscously deformable lava-like flows [Branney & Kokelaar,

1992; Manley, 1995]. The bed-load suspended in the pyroclastic density currents, which sinter

52



upon deposition, is estimated to range between very fine ash (um) and blocks (cm-m). There-
fore, understanding of the particle size influence is critical for correctly estimating sintering
timescales or temperatures of emplacement. The normalised density of such deposits has
been used to rank the strain associated with sintering and compaction [Smith, 1960; Wilson
& Hildreth, 2003; Quane & Russell, 2005]. Normalised densities for non-welded material
ranges from 0.3-0.4 whereas foliated and welded vitrophyric material ranges from ~o.7-
1.0 (welding intensity rank I-VI; Quane & Russell [2005]). Application of my modelled
relationship provides a lower constraint of the timescale of the sintering interval over which
porosity can be reduced to the values observed in the deposits under ambient pressure con-
ditions; that is, neglecting the load of the overlying flowing mass. These data suggest that
for a pyroclastic density current containing suspended fragments of super-cooled silicate lig-
uid with long relaxation times, the sintering time upon deposition can be approximated by
Equation 3.7. Some authors invoke a geometrical parameter to approximate the sintering
fragments to spheres, which in cases of low-angularity particles may be more appropriate
[e.g., Scherer & Bachman, 1977]. Thus my considerations complement previous studies and
provide detailed insights into the relationship between the particle size and the melt proper-
ties which should be incorporated into the rheological relationships developed for volcanic
welding [e.g., Quane et al,, 2009].

If I consider a pyroclastic deposit in its entirety, an overburden stress of 10’ Pa is predicted
for a deposit ~10 m, which exceeds surface tension and thus induces compressive flatten-
ing and foliation during sintering [Russell & Quane, 2005]. However, densely welded ig-
nimbrites commonly result from progressive aggradation from sustained density currents

[Branney & Kokelaar, 1992] and therefore the overburden is an end-state and sintering, ini-
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tiated at low axial stress and would be partially controlled by the processes I describe.
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Prediction is very difficult, especially if it’s about the future.

Niels Bohr

Material failure forecasting

ELASTIC WAVES ARE GENERATED when materials fracture under given stress conditions.
Their number and energy increase non-linearly, ending in a system-sized catastrophic failure
event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding

large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Fore-

55



cast Method (FFM). Here I test the hypothesis that the style and mechanisms of deformation,
and the accuracy of the FFM, are both tightly controlled by the degree of microstructural
heterogeneity of the material under stress. I generate a suite of synthetic samples with vari-
able heterogeneity, expressed by the total porosity. I experimentally demonstrate that the
accuracy of failure prediction increases drastically with the degree of material heterogeneity.
These results have significant implications in a broad range of material-based disciplines for
which failure forecasting is of central importance. In particular, the FEM has been used with
only variable success to forecast failure scenarios both in the field (volcanic eruptions and
landslides) and in the laboratory (rock and magma failure). My results show that this vari-
ability may be explained, and the reliability and accuracy of forecast quantified significantly
improved, by accounting for material heterogeneity as a first-order control on forecasting

power.

4.1 DAMAGE ACCELERATION AND FAILURE

Most Earth materials exhibit significant structural heterogeneities. Common examples are
local density fluctuations, pores, cracks and crystals [Alava et al., 2006]. The presence of
these so-called Griffith flaws in materials provides sites of stress concentration where isolated
cracks may nucleate favourably [Griffith, 1921] and their growth dynamics under subcriti-
cal loading may be strongly affected [e.g., Petri et al., 1994; Ramos et al., 2013]. Ultimately,
sustained microcrack initiation, multiplication and coalescence often results in a critical den-
sity of fractures whereby macroscopic rupture ensues. In this manner, fracturing in hetero-
geneous materials is pervasive prior to failure, as cracks propagate small distances between

flaws and strain energy can be readily dissipated elastically [Paterson & Wong, 2005; Wong &
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Baud, 2012]. In non-porous glasses, such elements of heterogeneity are lacking and the few
crack nucleation sites available are typically nanoscopic in scale [ Célarié¢ et al., 2003; Bonamy
et al,, 2006]. Therefore, the crack propagation distance is relatively large and the strain en-
ergy stored must exceed the activation energy required for nucleation and propagation of
fractures across the sample [Griffith, 1921]. In such cases, little or no strain energy is released
prior to rupture and fracturing is localised rather than pervasive. Thus more homogeneous
materials possess a great propensity for highly catastrophic failure through rapid, unstable
crack propagation associated with few precursory signals [ Alava et al.,, 2006].

In the Earth system, strain localisation and material failure yield threshold for natural dis-
asters. Atvolcanoes the onset of an eruption is often preceded by an acceleration in seismicity
originating from the fracturing of rocks and formation of a conduit [Kilburn, 2003; Smith
etal.,, 2009]; likewise eruptive transitions to explosions are also preceded by such characteris-
tic seismic patterns [De la Cruz-Reyna & Reyes-Divila, 2001] that have been experimentally
demonstrated to originate from magma failure [Lavallée et al., 2008; Tuffen et al., 2008]. In
the case of landslides, a similar acceleration in seismicity may also be observed [e.g., Fukuzono,
19855 Kilburn & Petley, 2003]. Thus empirical mechanistic models have been developed to
describe the stress and strain rate extant upon failure of both porous rocks [Paterson & Wong,
2005] and magmatic suspensions. Material deformation and failure is generally accompanied
by accelerating precursory signals [e.g., Mogi, 19625 Lockner & Byerlee, 19775 Lockner, 1993;
Petri et al., 1994; Davidsen et al., 2007; Ramos et al., 2013]. This acceleration represents the
basis for the application of time-to-failure forecasting models [ Fukuzono, 198s; Voight, 1988;
Cornelius & Voight, 1994; Main, 1999]. During rock deformation, microcracking releases

acoustic emissions prior to macroscopic failure [Lockner, 1993]. Their temporal, spatial and
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size distribution follow a power law [Voight, 1989; Petri et al., 1994; Main, 2000; Davidsen
et al., 2007], which is also observed in tectonic earthquake aftershock activity [Shaw, 1993;
Utsu et al., 19955 Shcherbakov et al., 2004] as well as in seismic precursors to volcanic erup-
tions [Voight, 1988; Main, 1999; Kilburn & Voight, 1998]. Nevertheless, the wide range of
materials in nature and especially the degree of material heterogeneity (at all scales) challenges

our understanding of precursory signals leading to natural disasters [Sornette, 2002].

4.2 EXPERIMENTAL METHODS

4.2.1 SAMPLE PREPARATION

The suite of samples was fabricated by viscous sintering under no external applied stress'.
I used industrial soda-lime silica beads (Spheriglass® A-glass microspheres 1922 and 2530,
Potters Industries Inc.) with well-constrained chemical and physical properties such as the
calorimetric glass transition interval and the viscosity-temperature dependence. This mate-
rial is also chemically stable and does not crystallise or degas at the experimental conditions. I
systematically packed glass beads in alumina ceramic crucibles (44 mm diameter and 75 mm
height) and heated them at 10 K min™" to an isotherm above the glass transition at which the
melt viscosity is 2.09 X 10* Pas. Viscous sintering took place during dwells of 1 to 32 hours
and the samples were cooled down at a slower rate of ~5 K min™ to avoid induced thermal
cracks. The densified products were finally drilled out from the crucibles to sample cores of
25 mm diameter by so mm height. The total porosity in the suite of cores was calculated from

the density of the bulk sample and the powdered glass density as measured after sintering.

'See section 3.2.2
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4.2..2 SAMPLE CHARACTERISATION

Connected and total porosity, and ultrasonic wave velocities of the porous glass samples were
characterised using the methods described in section 3.2.3. Accordingly, a series of UCS tests
was performed in a high load, high temperature uniaxial press* equipped with a split furnace
surrounding the pistons (in order to simulate magma deformation in the upper volcanic con-
duit) at a constant strain rate of 10 ?s™ " and a temperature of ~825 K. Because the samples
are only composed of two phases, porosity strongly controls the subcritical dynamics during
brittle deformation. Similarly to the critical point analogy? [Davies, 19925 Alava et al., 2006],
I define a sample “order parameter” Q based on the normalised difference between the areas
of both phases in Figure 3.5 (which would directly provide a quantitative metric for structural

heterogeneity in porous glass samples)

Awnite — Ablack

Q= ‘ a4 (4.1)

where Aypite; Aplack and Ayyry and the areas described by the glass matrix and the pores, and
the total area respectively. Since the field is boolean (i.e., a change of dimension does not
add to the complexity), I can interconvert between area and volume, such that Equation 4.1

becomes

(4.2)

_Q _ ’ Vmatrix - V:vares

I/toml

*See schematic in Figure 3.4B

*During the approach to a critical point or the in the neighbourhood of a critical point, a system is appro-
priately described on lengthscales on the order of the correlation length (e.g., the size of the largest crack for a
specimen under subcritical loading), since details on smaller lengthscales are irrelevant to the overall behaviour.
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By injecting Equations 3.3 and 3.4 into Equation 4.2 I further get

(I - QDT) I/total - @Tl/total _ ’

Vtotal T 2‘@7" (43)

Q:

It follows that at .. = o (pore-free) or ¢.. = 1(no solid phase), Q = 1 (i.e., perfect order),
and thatat .. = 0.5, Q = o (i.e., maximum disorder). The heterogeneity index (or disorder

index) is thus straightforwardly calculated from A =1 — Q.

4.2.3 MICROSEISMIC DATA ACQUISITION

During deformation at high temperature in the uniaxial press, the cooler ends of the pistons
were equipped with two (one on each end) Acoustic Emission (AE)* broadband transduc-
ers of 125 kHz central frequency. The pistons were thus used as waveguides for AEs released
during microfracturing processes and catastrophic sample failure. The AE signal was trans-
ferred using buffered 40 dB pre-amplifier to a data acquisition system (Richter system, Ap-
plied Seismology Consultants), which recorded AE voltage data continuously (12-bit A/D
full-waveform resolution) at a sampling rate of 20 MHz. From these continuous streams, AE
event onsets were (1) triggered using a standard STA/LTA (Short-Term Average over Long-
Term Average) detector [Baer & Kradolfer, 1987] and (2) automatically picked using an adap-
tation of the standard autoregressive-Akaike-Information-Criterion (AR-AIC) picker [e.g.,
Sleeman & van Eck, 1999; Leonard, 2000; Zhang et al., 2003].

In seismology, event detection’ is of foremost importance since seismological surveillance

of the globe implies the storage of huge quantities of informations. Detection algorithms

*+AEs are high-frequency (in the range of 1kHz to 1t MHz), transient stress waves generated by release of
accumulated elastic energy during mechanical loading of a material.
SAlso known as “event triggering”.
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have been developed and are all based on seismic onset characteristics: (a) the signal amplitude
increases tremendously and (b) the main frequencies become those of the earthquake. In AE
testing, event detection is commonly based on one of these characteristics and made by setting
a set of defined parameters, such as a simple voltage threshold. However, other energy-based
algorithms such as the STA/LTA method are widely used in seismology to characterise the
evolution of the local signal-to-noise ratio. They often involve the computation of the signal

envelope

E (1) = /s (6)"5(2)° (4-4)

where s and s are the signal and its Hilbert transform. During the arrival of a wave, the signal
envelope average at short term (STA: approximation of the local signal) over the its average
at longer term (LTA: approximation of the global noise) varies significantly. Thus, when a
threshold fixed 4 priori is exceed, detection ensues. For my AE records, I found that setting
the STA and LTA windows to 1 and 20 ms respectively, and the threshold to 2 yielded the best
results.

Accordingly, event picking is also a critical component of signal processing in seismology.
Modelling the signal as an autoregressive process is an usual approach for onset time deter-
mination. Akaike [1974] was the first to show that a time series could be divided into locally
stationary segments, each of which representing an autoregressive process, and to define a
mathematical criterion to solve for the separation point between two segments. For a time
series x [1, N] for which Nis the total number of samples, the Akaike Information Criterion

(AIC) is given by

AIC[k] = kln (var(x 1, k])) + (N — & — 1) In (var(x [k + 1, N])) (4-5)
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where k is the current sample index. The function compares the logarithm of the variance
before and after the current sample. Since the variance measures the dispersion of the data
around the mean, an important difference in dispersion occurs before and after the sample &
in Equation 4.5 during the arrival of a seismic wave, such that its onset often corresponds to
the minimum of the AIC function. In the case of AE the signal was de-noised prior to AIC
computation.

Once triggering, P-wave picking and event selection have been performed, characteristics
of each AE event are computed, such as the peak amplitude in dB and the energy in nJ (based
on a resistance reference standard value of 10 k(). Altogether, this procedure permits the
generation of pre-failure catalogues of AE events for each deformation experiment. These

catalogues are further used as the basis for the application of the FFM.

4.3 FAILURE PREDICTABILITY

431 MODELS OF ACCELERATION

A great number of catastrophic events share similar characteristic accelerating trends in warn-
ing signals [Sornette, 2002 ] and are potentially describable via similar scaling laws [Bak et al.,
2002; Davidsen et al., 2007]: rupture of engineering structures, natural catastrophes (such
as great earthquakes, volcanic eruptions, landslides and avalanches), abrupt weather changes,
some stock market crashes and even human parturition, amongst others. In many current
models for precursory acceleration, the rate of seismic events & can be described by the Time-
Reversed Omori Law (TROL) [Hirata, 1987; Shaw, 1993; Utsu et al., 1995; Shcherbakov et al.,

2004]

w(t) =lkp (t.— 1) (4.6)
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for which kp; is a scaling parameter, p parameterises the rate of acceleration (in turn depen-
dent on the dominant crack mechanism [Kilburn, 2003]) and ¢ is the critical time (corre-
sponding to the time of system-sized catastrophic failure). This critical point is defined by a
mathematical singularity as the quantity & evolves toward infinity. Equation 4.6 is directly
analogous to the approach to a critical pointin a second-order phase transition for the correla-
tion length (size of the largest cluster or in my case the largest growing crack)® as a function of
temperature rather than time (also with a critical exponent analogous to p, which depends on
the microscopic physics) [Main, 20005 Alava et al., 2006]. The TROL is of widespread inter-
est as a forecasting tool and has been extensively applied to material failure phenomena [e.g.,
Tokarev, 1971; Fukuzono, 198s; Voight, 1988; Cornelius & Voight, 1994; Kilburn & Voight,
1998; Main, 1999; De la Cruz-Reyna & Reyes-Davila, 2001; Kilburn & Petley, 2003; Kilburn,
2003; Lavallée et al., 2008; Smith et al., 2009; Smith & Kilburn, 2010; Bell et al., 20113, 2013].
The FFM is an empirical relationship relating the acceleration of a geophysical observable &

to its rate & under steady state conditions (stress or strain rate, temperature)

w= A" (4.7)

with 4 ~ kpp and p = —*=. In this context @ can be applied to any accelerating signal

m—1°

whereupon after linearisation of the TROL, the FFM takes the following form

() =kt (s —1) (4.8)

6See Section 2.2.2.
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In a volcanic context, p has been shown to decrease toward 1 as cracks grow [Kilburn, 2003].
Retrospective analyses of pre-eruptive seismic activity have thus commonly assumed that
p = 1, which implies that the solution is straightforwardly found by means of a linear regres-
sion of the inverse rate with time. However, this approach may yield a biased and inaccurate
solution [Bell et al., 2011b] because the FFM fails to account correctly for the true Poisson
error structure of the data. Therefore, I apply the Maximum Likelihood (ML) method to
the full point process, in order to provide (a) a more reliable estimate of the precision (ran-
dom error) and (b) a more accurate solution, which reduces the potential for residual bias
(systematic error) in forecasting the failure time [Bell et al., 2013]. Following Ogata [1983],
the logarithm of the likelihood function L for the TROL takes a similar form to that of the

modified Omori law for aftershock occurrence and is, in an interval (z,, #,), given by

kpr
I=p

In(L) = ZN:In (/epL (2, — l‘i)ﬁ]) +
forp # 1,and
In (L) = z_j In (ke (2 — 2) ) + ko (In (£ — ) — In (# — 1)) (4.10)

for p = 1. The TROL is most commonly employed to describe the rate of pre-failure seis-
mic events because it has a well-defined failure time. Other models have been proposed on
theoretical or empirical grounds, including the exponential model [ Lengliné et al., 2008; Bell

et al., 2oma; Bell & Kilburn, 2012; Kilburn, 2012 ]
& (1) = kexp exp (q2) (4.11)
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with kg, the pre-exponential scaling parameter and g the rate constant; however, the failure
time is not defined by the dynamics underlying the exponential model and failure forecasts
using this model must be based on other metrics. In this case the log-likelihood of the expo-

nential model is, in an interval (%, #), defined by

N kEx
In(L) =¢> t+ Nl (/eb—xp) — 7"’ (exp (gt) — exp (gt5)) (4.12)

i=1

A very simple, non-realistic constant rate model can also be used, such that

w(t) =c (4.13)

for which c is the rate constant. The resultant log-likelihood function, in an interval (%, #,),

reads

In(L) =Nln(c) —c(t, — 1) (4.14)

4.3.2 TIME-TO-FAILURE ANALYSIS

I experimentally test the hypothesis that the accuracy of failure forecasting improves as a func-
tion of material heterogeneity using samples of variable quenched disorder, generated by the
total porosity (0—0.4s) available during the synthesis’. This style of heterogeneity also pro-
vides a direct analogue for porous magma fragmentation. Specifically I investigate the failure
of variably porous silicate liquids undergoing the glass transition. Uniaxial compression of
these porous materials was carried out at ~825 K in the elastic, brittle regime by imposing a

strain rate of 10> s* while monitoring AEs during deformation up to bulk failure.

7See Section 3.3.
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ENERGY CONSIDERATIONS

During elastic loading, the energy budget of a specimen is significantly changing, as it is put
out of the initial state equilibrium by pushing towards the macroscopic failure envelope.
The instability, which is described by the critical point or critical time #, is reached upon
failure. The strain potential energy stored during deformation is progressively released by
brittle fracturing, which implies the conversion of strain energy into dominantly free surface
energy (crack opening and propagation), seismic or acoustic energy (mechanical waves), and
minor amounts of heat and light. AE energy is therefore a proxy for the mechanical energy
dissipated by crack formation. The interplay between stored and released energy controls
the overall energy balance and is investigated hereafter. Note that the AE energy computed
here is surely an underestimation of the full energy released for multiple reasons: (a) as just
mentioned, the stored energy is not entirely converted into acoustic waves; (b) the AE energy
computed (although gain-corrected) does not represent the energy released at the source be-
cause of path effects in the sample and in the pistons; and (c) the AE signal is not recorded in
joules directly, which implies that there is an inherent calibration error when computing the
energy of a signal.

The calculated AE energy release rate during deformation and failure shows typical hy-
perbolic (power law) acceleration underlying the definition of Equation 4.6 (Figure 4.1A).
Drastic fracture propagation upon macroscopic failure releases the highest rate of AE energy,
and this rate decreases systematically with increasing heterogeneity (Figure 4.1B). Neverthe-
less, AE energy cannot be used in a failure forecasting perspective based on the ML method®

since a point process approach has of yet not been developed and is potentially not trivial

8See Section 4.3.1.
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Figure 4.1: Rate of acoustic energy released from porous glasses during deformation and failure (A)
for the full time series and (B) at failure. The logarithmic space used in (A) is to test the adequacy of a
power law form of acceleration towards failure (see text). The datain (A) are colour-coded from low
to high heterogeneity samples.

[Bell, pers. comm.].
Damage accumulation relates directly to subcritical crack dynamics® and the AE energy
provides a good indication of fracture processes occurring inside a specimen. Under constant

stress, Equation 2.25 predicts the acceleration of crack length /. and reduces to an equation of

the form [Das & Scholz, 1981; Main, 1999]

L) =L, <1 - t) Z’” (4.15)

when 7 > 2, with [;; the crack length at # = o. As described in Section 4.3.1, one can directly

observe that Equation 4.15 has a similar form to Equation 4.6 but with a different power law

9See Section 2.2.2.
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Figure 4.2: Damage accumulation in porous glasses during deformation and failure plotted in (A)
a log-log and (B) a semi-log space, and colour-coded from low to high heterogeneity samples. The
plotting space used in (A) is to test the adequacy of a hyperbolic trend towards failure, whereas the
plotting space in (B) is to test an exponential form (see text).

exponent. This link was formally made between subcritical crack growth and the FEM by
Main [1999]. When the stress is increasing linearly, the resultant acceleration takes a similar
form [Main, 2000] with a shorter acceleration for a given value of 7.

A damage parameter D is directly calculated from the decibel amplitude 4,5 of the AE

events [ Cox & Meredith, 1993]

D=) 10 (4.16)

i=i

The accumulation of damage displays a supra-exponential acceleration for my experiments
(Figure 4.2). Such damage accumulation is not predicted best by the power law formulation
for subcritical crack growth derived in Equation 4.15 (Figure 4.2A). However, when it is plot-
ted against ff in a linear space instead of 1 — é in a logarithmic space, the resultant trends

appear close to linear (Figure 4.2B). Such evolution can be derived by setting » = 2 in Equa-
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Figure 4.3: Mechanical response and strain energy of porous glasses during deformation and fail-
ure. (A) Axial load against axial displacement (data from Figure 3.3.2B). (B) Cumulative strain energy
stored as estimated by the area under the curves in (A). All lines are colour-coded from low to high
heterogeneity samples.

tion 2.25 and the subcritical crack length can be shown to be [Ojala et al., 2003]

L (2) = I ;exp (vt> (4.17)

c

where v is an empirical constant. Nevertheless, damage accumulation can also not be used in
a failure forecasting perspective for the same reasons discussed above; Equations 4.15 and 4.17
are therefore disregarded as potential forecasting tools.

I use the data presented in Section 3.3.2 to calculate the strain energy stored during defor-
mation, here recast as axial force against axial displacement (Figure 4.3A). The strain energy
is simply estimated by the integrated area under the force-displacement curve (Figure 4.3B). 1
observe non-linear trends for all samples, which can be decomposed into (1) an incurved onset
atlow axial strain corresponding to some reduction in pore volume (z.e., much of the strain is

accommodated elastically), (2) a linear portion during which the strain is stored into the glass
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Figure 4.4: Acoustic-mechanic response of porous glasses during deformation and failure. Energy
partitioning (as calculated from ratio of cumulative acoustic over cumulative strain energy) plotted
in (A) alog-log and (B) a semi-log space, and colour-coded from low to high heterogeneity samples.

matrix, and (3) a peak at which macroscopic failure occurs and the energy is released. The
stress drops are not shown in Figure 4.3 but they display full energy release for all samples,
which implies that the remaining strain energy stored (z.e., not released during microcracking
events) is completely consumed upon fragmentation.

The seismo-mechanical coupling can further be formally assessed by looking at the en-
ergy partitioning during deformation and failure. I compute the ratio between the acoustic
energy released and the mechanical energy stored, and track it over the deformation process
(Figure 4.4). A general realisation is that the trends display two stages as (1) the ratio decreases
drastically with time (i.e., more energy is stored than it is released, relatively speaking) and (2)
the ratio increases in increments (Z.e., more energy is released than it is stored, relatively speak-
ing). The first stage quantifies the strain energy partition into aseismic processes occurring

during the onset of deformation (interpreted as pore volume reduction or even pore closure)

while the second stage quantifies the strain energy partition into seismic processes.
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RETROSPECTIVE FAILURE FORECASTING

I applied the TROL to catalogues of acoustic events in order to retrospectively forecast fail-
ure. Equation 4.6 has three free parameters (kpz, p and z,) to adjust since they are not known
a priori. The ML method has been shown to provide statistically stable and repeatable es-
timates of these parameters [Bell et al., 2013]. Additionally, this method uses the timings of
individual AE events rather than event rates determined in equally spaced bins (as is com-
monly the case when applying the standard FFM). The ML solution is found by minimising
the negative log-likelihood function (see Equations 4.9 and 4.10) using a downhill simplex
algorithm. The forecasting window was restricted to 90% of the known failure time. Uncer-
tainties on the fitted parameters require prior constraint to be reliably computed such that
this precludes the estimation of meaningful error bars on the forecasted failure times. I define
the forecast error 4 as the absolute difference between the predicted failure time 7 r and the

experimental failure time 7, normalised by the deformation time, namely

—1 (4.18)

since the deformation time corresponds to the experimental failure time. It follows that when
lep = loeo 0 = O (ie., failure time perfectly resolved); when 7., < ., & < o (ie., early
forecast); and when ¢, , > 1., 3 > o (i.e., late forecast).

I hereafter show three experimental examples of samples with a range of heterogeneity be-

tween o0.25 and 0.77. The TROL and exponential models (Equations 4.6 and 4.11) are illus-
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trated in cumulative form to compare against the total number of AE events

Q) = ffp (6= 0/ = (6= 1)) (419)
for the TROL, and
kEx
Q) = 7" (exp (g1) — exp (915)) (420)

for the exponential model. Prospective forecasting at 90% of the raw data using the TROL
and the exponential models shows that they are almost indistinguishable for heterogeneities
of 25% and 37% (Figures 4.5A and 4.6A), unlike for 77% where they start to diverge from
each other (Figure 4.7A). In the latter a more pronounced singularity as time tends towards
the failure time (power law asymptote) is observed, whereas in the formers this singularity
is seemingly not present or has not been reached. Henceforth, the retrospective ML TROL
fits the data very well for any degree of heterogeneity. By means of a statistical tool called
the Bayesian Criterion Information (BIC)™, the discrepancy between the ML TROL and
exponential fit may be picked apart. This is illustrated by the ABIC, which almost never
favours the TROL over the exponential model (i.e., ABIC > o) for H = o.2sand H = 0.37
(Figures 4.5B, 4.6B), whilst starting to slightly prefer the TROL (i.e., ABIC < o) for H =
o0.77 (Figure 4.7B). However, the results indicate that the AEs released during the first stages
of deformation generally follow an exponential trend. It is known from fracture mechanics
that exponential trends are controlled by the activation of an increasing number of cracks,
whereas hyperbolic trends are determined by the coalescence of major cracks [e.g., Kilburn,

2003, 2012].

*°For a comprehensive definition and analysis, see Section 4.3.3.
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Figure 4.5: Maximum Likelihood failure forecasting for a sample with H = 0.25. (A) Cumulative
number of AE events (solid black line), retrospective ML TROL model (solid red line), and prospec-
tive ML TROL (dashed red line) and exponential model (dashed blue line) at 90% of the failure time.
The vertical dashed line indicates the cut-off for prospective forecasting. (B) AB/C for TROL-
exponential (solid blue line) and TROL-constant rate (solid green line). AB/C = oisindicated as a
horizontal dashed black line. (C) ML estimate of the rate parameter for the TROL model. (D) Forecast
error as calculated from the ML estimate of the failure time.

The fact that the power law singularity is not present for low and medium heterogene-
ity samples implies that the TROL almost always predict a rate parameter that has not yet
reached a value around 1 (Figures 4.5C and 4.6C) and a failure time relatively far from the

observed one (Figures 4.sD and 4.6D) (which remains true while moving along the data se-
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Figure 4.6: Maximum Likelihood failure forecasting for a sample with H = 0.37. The composition
of panels (A) to (D) and line colour scheme is as for Figure 4.5.

quence). I can note that the forecast error progressively worsens and indicates an overesti-
mation of the actual failure time (late forecast). It is even displayed that in Figure 4.5D the
failure time is perfectly resolved at ~61% of the sequence. However, the failure time is better
predicted in Figure 4.7D as time approaches it, due to the presence of the power law singular-
ity in the raw data sequence, and the rate parameter decreases toward, or fluctuates around,
avalue of 1 (Figure 4.7C)

When applying the same methodology to the full AE dataset, the forecasting performance
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Figure 4.7: Maximum Likelihood failure forecasting for a sample with 4 = 0.77. The composition
of panels (A) to (D) and line colour scheme is as for Figure 4.5.

can be evaluated quantitatively as a function of the heterogeneity index (Figure 4.8). The rate
parameter shows and overall decrease toward a value of 1 and the absolute forecast error im-
proves systematically, with an increase in the degree of heterogeneity (Figures 4.8A and 4.8B).
This is most likely due to the fact that more heterogeneous materials act to inhibit dynamic
fractures by crack arrest and/or by introducing a more heterogeneous stress field (consistent
with the quasi-static theories used to derive Equation 4.6). In the more homogeneous materi-

als failure results in an abrupt run-away instability that occurs before the forecast singularity is
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Figure 4.8: Heterogeneity influences on material failure forecasting. As the degree of heterogeneity
increases, (A) the rate parameter p generally decreases, (B) the absolute forecast error | 9] improves,
(C) the ABIC (BICp — BICEy,) displays a marked preference of the TROL over the exponential
model and (D) the Ab (b, isiar — bﬁnal; see Figure 4.10) shows a higher relative proportion of large to
small AE events towards failure.

reached. As a consequence, the systematic forecast error is smaller (the predicted failure time
is more accurate) when applied to more heterogeneous materials containing total porosities
>0.2, whereas at total porosities <o.2 the error in the predicted failure time can be >100 %
of the deformation time.

The TROL is strongly, non-linearly preferred over the exponential model when the entire

dataset is used and importantly, as heterogeneity increases (Figure 4.8C). On the other hand,
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as heterogeneity decreases I observe (1) fewer AEs (providing less advance warning), (2) a pref-
erence for the exponential acceleration model (making failure time harder to define) and (3) a
sudden-onset singularity at the time of catastrophic failure. All of these elements combine to
degrade the forecasting power significantly. In operational terms this would present a serious
challenge, for example in forecasting the probability of an eruption during a period of unrest.
Additionally, difference in b-values™ shows that it generally decreases as failure approaches,
indicating that there is an increase in the relative proportions of large to small AE events that
accompany increasingly macroscopic fracturing events (Figure 4.8D).

Since the pioneering studies in the field of earthquake seismology in the early 1960s, the im-
portant role of heterogeneity in fracture processes has been evident [Mogi, 1962]. However,
this concept has not been developed due to alack of a physical description of what constitutes
heterogeneity inside a material [Sornette, 2002 ]. Physically I show that it can be described by
the simple observable of the volume-averaged quantity of flaws, which, in my chemically sta-
ble sintered glass specimens, can be attributed to the pores. The porous network is therefore
a good proxy for the effective heterogeneity via its control of the subcritical crack dynamics.
Furthermore, the degree of heterogeneity has been shown to either accelerate the dynamics
when many spatially diffuse flaws are present or, conversely, to retard dynamics when these
flaws are more widely spaced [Ramos et al., 2013]. Although these results contradict apparent
advances made by theoretical models [Kierfeld & Vinokur, 2006], they support the idea of
sudden rupture in materials that develop more localised, slow crack propagation prior to the

expected bulk failure; hence leading to a diminished ability to predict such failure.

"For a comprehensive analysis, see Section 4.3.3.
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4.3.3 STATISTICAL ANALYSIS
MODEL COMPARISON

I undertook a comparative analysis, testing how well the different models of acceleration®
explain the observed evolution of AE rate with time. I used the BIC (see Kass & Raftery [1995]
for a comprehensive review) to quantify the relative performance of different models. This
statistical tool is based on the likelihood of the observation given the model, with a weighting

favouring the model with fewer parameters. The BIC is given by

BIC = —2In (L) + N, In (N,) (4.21)

where L is the likelihood of the observations given the model, N, is the number of free pa-
rameters and N, is the number of observations. When making an inference, the preferred
model is more likely to have the lower BIC. Therefore, calculating the positive difference
ABICbetween two models helps discriminate the preferred model. Here I computed these
differences (i.e., ABIC = BICp, — BICg,, and ABIC = BICp; — BICcg) for the AE dataset
continuously from so to 100% of the sequence such that, when ABIC becomes negative it

indicates a strong statistical preference for the power law over the other models (Figure 4.9).

AE b-vALUE

Complementary statistical analysis of the AE signals following the seismic Gutenberg-Rich-
ter (G-R) b-value (i.e., the slope of the log-linear frequency-magnitude relationship) indicates

that cracking occurs on a broad range of scales as deformation proceeds. The frequency-

2See Section 4.3.1
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Figure 4.9: Comparison of the A BIC between the TROL and exponential model (solid blue lines)
and between the TROL and constant rate model (solid green line) as a function of the time fraction
to achieve failure (corresponding to 1). Negative values of A B/C suggest that the TROL is preferred
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79



3.0 ‘
«+ First half, b,

initial

4+ Second half, by,

N
o
+

AE b-value
=
i
——
——
-

10t -mmmmcmm e m - - I S AR P - - - -
"'ﬁ’“ L 3 % :2: s 3 -
—e—r - & .
0.5, e - g
A B
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Heterogeneity index, H Heterogeneity index, H

Figure 4.10: AE b-value as a function of heterogeneity. The b-values were determined for (A) the
complete experimental AE record, and (B) the first and last halves of the AE events acquired in each
experiment (with completeness magnitudes being calculated separately for each half of the data).
The AE b-values lie in the range 0.5-1.0, except for samples with higher degrees of heterogeneity,
where two experiments show b-values of ~1.6.

magnitude data for the AEs is consistent with a G-R distribution (Figure 4.10A). The G-R
b-value was determined for AE events above the completeness magnitude using the ML es-
timate [Aki, 1965]. Completeness magnitude is taken as the higher of the two values deter-
mined by the maximum curvature and b-value stability methods [Mignan & Woessner, 2012
(Figure 4.11). Sensitivity analysis showed that the key b-value results were robust to different
completeness magnitude estimation methods and to small uncertainties in the completeness
magnitude.

The AE b-value is strongly controlled by the degree of heterogeneity, confirming early ob-
servation [Mogi, 1962]. The temporal evolution of the b-value with stress is harder to exam-
ine due to the small number of events. The b-value is therefore examined in a coarse way by

splitting the data set into two halves, one early and one later (Figure 4.10B). In general the 4-
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Figure 4.11: Evolution of the AE b-value with the magnitude cut-off as computed using the ML es-
timate (solid black line). The completeness magnitude determined from the maximum curvature
method is indicated by a vertical blue line and from the &-value stability method by a vertical green
line. b = 1is indicated as a horizontal dashed black line.
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value for materials with large heterogeneity tends to decrease dramatically from >2 to ~1, well
above the level expected from the estimated random error (plotted as error bars). This is in-
terpreted as initially pervasive microscopic fractures coalescing into macroscopic ones [ Main
et al,, 1989] and the deformation localising on the eventual fracture plane. In contrast, the
b-value of less porous material remains around low values of o.5—1 throughout, suggesting a
high degree of localisation throughout [Main et al., 1989]. This is consistent with there being
fewer nucleation sites for the low-porosity material. The data presented here is not sufficient
to distinguish between models with (a) simple G-R behaviour with variable 4-value and (b)
an exponentially-truncated G-R model with constant 4-value and variable correlation length
(i.e., the size of the largest fracture). The latter model and a smooth acceleration in event rate
for the heterogeneous samples are however both consistent with the behaviour expected of a
second-order phase transition at the critical point [Alava et al., 2006]. On the other hand the
sudden-onset instability for the more homogeneous samples is more reminiscent of a first-
order phase transition. Numerical simulations should be employed in future to explore this

transition from first- to second-order more formally.

4.4 IMPLICATIONS FOR VOLCANIC ERUPTIONS

An estimated 10% of the world’s population live in a close vicinity of a historically active vol-
cano [Peterson, 1986]. A great number of volcanic hazards permanently threatens these pop-
ulations and risk management is of paramount importance in order for inhabitants to be
safely evacuated prior to catastrophes. Experts dealing with the tools for hazard assessment
often encounter the problem of eruption forecasting; that is to issue a timely warning of not

only the expected time and location of a potential eruption, but also the size and the style of
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activity. Indeed, highly dynamics associated phenomena such as pyroclastic flows pose a more
serious risk than other associated phenomena. Forecasting strategies tends more and more to
be cast in a probabilistic framework [Marzocchi & Bebbington, 2012], in which physics-based
predictive models should be coupled with empirical statistics as well as expert opinion. Pre-
dictive models are, as of now, solely based on the temporal evolution of precursory geophys-
ical signals, such as seismicity®. Understanding the potential drawbacks and limitations of
the FFM is therefore an essential aspect of their responsible application to hazard assessment
and risk mitigation.

Previous studies have evaluated the statistical performance of the FFM applied to natural,
experimental and synthetic datasets [Bell et al., 2011b, 2013 ] but to date no study (to the best of
my knowledge) has assessed its efficacy as a function of material properties, and the trade-off
between quasi-static and dynamic effects at the system size. At volcanoes, successful forecast-
ing is as yet sporadic and requires the laborious classification of volcano-seismic signals. While
the onset of magma extrusion due to continued fracturing towards the Earth surface has been
retrospectively successfully forecast or “hind-casted” [e.g., Kilburn & Voight, 1998; Kilburn,
2003 ], this is a necessary but not sufficient criterion for operational or real-time forecasting.
In the case of fracturing during magma ascent, seismicity is most likely triggered by fracture
propagation in the weakest, most porous parts of the magmatic column. In cases where low-
porosity, fine-grained rock or glassy obsidian undergoes fracturing initiated from fewer flaws,
I expect to encounter a poor resolution of failure. Such a variable failure forecasting power

should equally well apply to the prediction of explosive eruptions for magmas erupting with

BThe relatively low cost and easiness of seismic network deployment makes seismicity a significant geophys-
ical observable at volcanoes; it is also generally recognised as the most reliable precursory activity to volcanic
eruptions.

83



different porosities.

The results presented here shed new light onto the basic physical mechanisms responsible
for inaccuracy of time-to-failure forecasting laws, especially in the context of volcanic erup-
tions. In scenarios where magma ascent timescale is very brief and shorter than that of the
seismic unrest, strong deviations from the ideal preparatory fracturing behaviour must be ex-
pected. I predict that adaptation of material failure forecasting methods with heterogeneity-
based mechanistic constraints will allow predictability of volcanic events in cases when even

little warning is available.
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The most exciting phrase to bear in science, the one that

heralds new discoveries, is not “Eureka!” but “That’s

funny...”

Isaac Asimov

Conclusion and outlook

I INVESTIGATED THE TIMESCALES OF VOLCANIC ASH DENSIFICATION AND HEALING by
performing static rheological experiments at temperatures above the glass transition interval
of the starting materials. I used different starting materials: (a) a powdered borosilicate glass

and (b) two populations of soda-lime silica glass beads. The experiments demonstrated that
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viscous sintering of volcanic ash is rapid, even under low stress conditions, and is dominantly
controlled by melt viscosity (as underlined by the use of (a) at different temperatures), in-
terfacial tension between pores and melt, and particle size (as underlined by the use of (b) at
the same temperature). Viscous sintering from a granular material to a homogenous meltis a
continuum process involving the evolution from particle agglutination to melt pore collapse.
This transition from weak, granular to strong coherent behaviour is observed both texturally
and mechanically. The elastic properties of the resultant suspension progressively recover its
glass value: (a) the strength recovers according to bubble-bearing liquid failure criterion and
(b) the elastic moduli recover according to empirical laws. Although particle angularity has
a minor influence on viscous sintering kinetics, it does strongly determine the initial packing
and especially the final pore structure. I therefore observed that the elastic moduli is affected
by differences in pore shape of the end-products.

Densification and healing of particulate eruptive products is evident in nature and under-
pins processes of welding by viscous flow under pressure-temperature conditions encoun-
tered in volcanic areas. A vast breadth of scenarios have been identified and may occur both
inside and outside volcanic conduits. A few examples include tuffisites veins formed during
magma ascent in the conduit or during lava dome extrusion following local decompression
events due to the opening of fractures, which are thought to be the result of post-decompression
sintering of magma fragments, and ignimbrite deposited from downslope pyroclastic den-
sity currents, which are thought to be the result of the progressive aggradation and welding
of volcanic ash. Since the sintering process essentially implies destruction of pore networks,
thereby promoting the evolution of mechanical properties towards those of a dense magma,

newly formed sintering material from fallout deposition of ash particles in the conduit or in

86



lava domes will further contribute to sealing of the degassing pathways and the formation
of a plug. This behaviour will consequently affect the structural stability of the edifice and
supports cyclical-type explosive eruptions observed at many volcanoes around the world.

Applicability of the present sintering experiments to a natural context could be however
improved by incorporating the effect of many other physico-chemical parameters. First of all,
sintering in a more relevant volcanic atmosphere, such as a water-laden atmosphere, would
affect the kinetics by the occurence of coupled viscous-diffusive transport mechanisms. Re-
sorption of chemical species into the melt s a significant viscosity-forcing factor and would ei-
ther accelerate or retard sintering dynamics. Furthermore, the interaction between gas species
and glassy ash particles in volcanicjets or plumes generates the surficial deposition of salt crys-
tals and, upon agglutination, would equally affect sintering kinetics (ongoing study with Dr
Paul Ayris, LMU).

Sintering under different loading conditions is something that would also strongly affect
the process and results in anisotropic shrinkage (i.e., differential densification). The addition
of either a uniaxial or a triaxial stress field would completely alter the dynamics and contribute
to a higher degree of densification (under compressive forces) or little, and even no, densifi-
cation (under tensile forces). Relevant to a volcanic environment would be the simultaneous
occurence of shear deformation, which would induce creep-like and densification behaviours.
In this case, a creep rate term would have to be added to the differential equation governing
the free sintering dynamics, which would imply the derivation of an additional timescale due
to a stress intensification factor. The ratio of the creep to the densification rate would thus
control the overall kinetics and intuitively be independent of temperature under isothermal

conditions, since both of these rates would still depend on melt viscosity. However, in vol-
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canic environments processes are rarely isothermal and the application of heating or cooling
rates is yet another viscosity-forcing factor. Sintering during simultaneous heating would en-
hance the dynamics and could result in fully dense end-products. The timescale involved in
this case would have to be translated in terms of a “temperature-scale” by introducing time-
dependency of the temperature and integrating the melt viscosity over two extreme values,
since it is the only parameter depending significantly on temperature’. Conversely, sintering
during simultaneous cooling would not enhance the dynamics and could result in preserva-
tion of the pore networks.

I also investigated the role of structural heterogeneity during dynamic mechanical experi-
ments on the resultant suite of sintered glass samples, which have been performed in a uniax-
ial press equipped with a surrounding furnace and a dual acoustic emission recording sys-
tem. I ran a series of elastic deformation tests until macroscopic sample failure at a con-
stant temperature slightly above the glass transition of the melt (viscous component), but
at a constant strain rate high enough to stay within the brittle regime. The application of a
statistically-improved failure forecasting method to precursory accelerating microseismic sig-
nals, originating from brittle cracking events, demonstrated that failure predictability has a
strong non-linear dependence on the degree of sample heterogeneity (which is straightfor-
wardly calculated from the amount of voids). The results are backed up by complementary
statistical analyses of the signals: (a) the Gutenberg-Richter b-value is in the same fashion
controlled by the presence of heterogeneities and cracking mechanisms are inferred from its
temporal evolution (a shift from the nucleation and propagation of distributed small-scale

to more localised large-scale cracks with decreasing heterogeneity is observed), and (b) com-

"Wadsworth et al. [2014] have already treated the non-isothermal sintering of synthetic glass particles rele-
vant to volcanic ash under linear heating conditions.
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parison of acceleration models indicates that an exponential-like trend (crack nucleation) is
favoured over a hyperbolic-like trend (crack coalescence) as heterogeneity decreases, which
results in a progressive truncation of the forecast singularity as the sample tends to more un-
expectedly shatter from the propagation of pervasive cracks rather than the propagation and
coalescence of cracks into a major shear fracture. However, due to very rapid acceleration of
the precursors, bulk failure prediction is generally only reliable a short time in advance.
Theselast results highlight the first-order physical controls on failure predictability in porous

materials and have important implications for the prediction of volcanic eruptions. They
also highlight the need to reconsider empirical failure forecasting laws in a wider context and
better couple them with mechanical parameters, such as failure criteria for heterogeneous
materials. Nevertheless, the effect of other forms of heterogeneity could be investigated in
the future. The inclusion of crystals in the samples would, for instance, affect the subcritical
crack growth dynamics in a non-trivial way. Larger scale heterogeneities (due to the presence
of permeable channels) rather than local ones (as it is the case in the porous samples used here)
would equally affect the dynamics and possibly boost failure resolution. Performing the same
experiments under a range of strain rates, such that they straddle the viscous-brittle transi-
tion, would also be the subject of future studies. In this case I would expect an enhancement
of failure predictability in the viscoelastic window due to steadiness increase of the cracking
dynamics from the occurrence of fracture and healing events during deformation. Future
studies should also explore cyclic loading scenarios, which may better represent the pulsatory
nature of magma ascent. Only with a thorough understanding of material response to diverse
stress conditions will volcanology move forward in the integration of rheology into improve

monitoring strategies at active volcanoes.
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Sandbox for thermo-mechanical modelling

A1 VISCOUS COMPACTION OF GLASS SHARDS

Here I present a fully analytical approach combining a one-dimensional model for conduc-
tive heat transfer with a viscoelastic mechanical model to account for progressive changes in
heat conductivity in a porous magma undergoing compaction. This approach hasbeen devel-

oped in order to constrain the eruption and emplacement timescales of an ignimbrite deposit.
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The assumptions are that (1) the ignimbrite was deposited instantaneously and (2) it experi-
enced no deformation during aggradation. The approach developed here is a simplification
of nature as it has been constrained that the deposition of pyroclastic density currents results
from progressive aggradation [e.g., Branney & Kokelaar, 1992]; yet I assume that deposition
is extremely rapid and that deposition temperature may be relatively uniform, in order to use
current mechanical models. Thus, the starting conditions of the model are homogeneous ini-
tial temperature and total porosity. The heat transfer is governed by conservation of energy
following the one-dimensional heat equation in Cartesian coordinates

8i"_ o0*T
ot Oz

(A.1)

for which T'is the temperature, ¢is the time, z represents the vertical distance perpendicular to
the surface of the deposit and D s the thermal diftusivity of the porous material. The classical
definition of the thermal conductivity assumes a pore-free material and, here, I refine this
definition to consider the insulation provided by the total porosity ¢,. of the material [e.g,
Connor et al., 1997]
k
o= 40 <I - @T) + ?fG;CPT (A

where k is the thermal conductivity, ¢ and gf the skeletal and pore fluid density respectively,

and C, and C’; the skeletal and pore fluid specific heat capacity respectively. The pore fluid
pressure is assumed to be atmospheric, which is reasonable considering the lack of confine-
ment to prevent expansion. The thermal conductivity is also a function of the porosity of the
material considered. Some empirical models have been proposed to relate the thermal con-

ductivity of a porous rock to its pore-free thermal conductivity &, [Bagdassarov & Dingwell,
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<I+@T> (A3)

Analytical solution of Equation A.1 for geological systems has most commonly been achieved
by assuming self-similarity of solutions [Carslaw & Jaeger, 1959]. Assuming homogeneous
initial temperature, Carslaw & Jaeger [1959] treat the problem of a cooling magma body in
contact with a county rock at 2 = o and which solidifies at and below its solidus temperature.
In our case I use the glass transition temperature in place of the solidus. A derived solution

of Equation A.1 for the temperature profile in the melt is as follows

T, —T; Z
Toerr (2,8) = T + —5—"—erfc <> A.4)
(%) erfc (A%) 20/ Dipt (

where T; and Ty are the initial and the glass transition temperature of the melt respectively,
D,, and D, the thermal diffusivity of the melt and the glass respectively, and A a non-defined
thermal constant. Carslaw & Jaeger [1959] have shown that the temperature profile in the

solid portion, here the glass, can be described by the following equation

T

_ g . o
Tgla:& (Z, t) - kg\/E—l— kc\/ﬁgerf()\) (kg\/ﬁc"i_ kc\/Bg rf (2@)) (AS)

where D, is the thermal diffusivity of the underlying country rock, and &, and &, the thermal

conductivity of the glass and the country rock respectively. The solidification surface occurs

following

Zgiass (1) = 20/ Dyt (A.6)

This thermal approach is further combined with a mechanistic and kinetic description of
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the compaction of the deposited ash [Quane & Russell, 2005, 2006; Quane etal., 2009]. The
porosity evolution with stress ¢, viscosity of the material at zero porosity #, and time 7 can be

derived using the empirical equation [Quane et al,, 2009]

A= To exp <_°%> — exp _ P (A7)
oo (1 - @TJ) = @r 1= @r;

where

and

g=In aio-t—l— exp _ HPri (A.9)
Yo (1 - @T’i) 1= Pr,

Here, @, is the initial total porosity and « an empirical constant. Following Quane et al.
[2009] T'use & = 0.78 for packing of volcanic ash. The stress distribution across the entire

deposit is described by the overburden as

7(z) = (1 — <pT) gz (A.10)

where gis the acceleration of the gravity.

Equations A.2—A.10 provide the necessary tools to iterate a thermo-mechanical model de-
scribing the feedbacks between compaction via destruction of porosity, temperature (and
thus viscosity) and stress upon deposition. Using a set of constrained glass parameters (Ta-
ble A.1; Pr; = 05 and A = 3.6), I simulate the progression of compaction as a function of
time and initial temperature (Figure A.1). The model results suggest that for the pyroclasts

at a stratigraphic height of 2 = 0.3 m to reach the measured ¢,. = 0.075at T'= T, and a
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Table A.1: Initial parameters.

ks e G,
m*s™" kgm™  JkgT'K™
Melt/Glass .59 2.9 X 10° I X 10}
Country rock 1.59 2.33 X 10° 1 X 10°
Pore fluid 2.5 X 107 1.275 1.007 X 10°

I

constrained cooling rate of 0.1 K min™", ~1 hour is required. Due to the interplay between
cooling and compaction, I can further deduce that ~1240 K is the idealised deposition tem-
perature 7T; to meet the measured conditions of porosity, stratigraphic position and cooling
rate (Figure A.2). This compaction time estimate may be faster if syn-depositional shearing
[e.g., Robert et al,, 2013] were to have achieved higher stresses than the overburden load con-
sidered in our model.

The welding timescale calculated here agrees well with the 12—20 min proposed by sim-
ilar rheological modelling by Robert et al. [2013], but is significantly shorter than the 10-
15 h proposed for the Bishop Tuff (Long Valley Caldera, California, USA) by Wilson & Hil-
dreth [1997]. In contrast it is orders of magnitude more rapid than the thermo-mechanical
constraints on the Bandelier Tuff (Valles Caldera, New Mexico, USA) estimated at 1—s days
[Quane et al,, 2009], the Rattlesnake Tuff estimated at 10s of days [Richle et al., 2010], the
Bishop Tuft estimated at 10—100s of days [ Wilson & Hildreth, 1997; Sheridan & Wang, 20053
Richle et al., 2010], and on a theomorphic phonolitic fallout deposit (Las Canadas Caldera,
Tenerife, Spain) estimated at 25—54 days [Soriano et al.,, 2002]. The study constrains that
welding is not, as previously suggested, decoupled from cooling [e.g., Sheridan & Wang,
2005] but rather synchronous with cooling. Here I demonstrate that welding (i.e., sinter-

ing and formation of eutaxitic textures) reflects the temperature-time window in which the
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Figure A.1: Results from the 1D analytical thermo-mechanical model for the lower half of the de-
posit. (A) Overburden stress and time-dependent temperature in the deposit after homogeneous
initial conditions of 1240 K and 0.5 total porosity. (B) Total porosity evolution during viscous com-
paction and cooling between 10's and 5 h. (C) Cooling rate (solid black line) and total porosity (solid
grey line) locked in the glass as the melt crosses Tg.

erupted products remain in the liquid state (above the glass transition temperature of the
glass fraction of the pyroclasts).

The general agreement between the onset temperature of welding (1240 K) and the geother-
mometric constraint (1173-1323 K) suggests that little cooling took place during eruption and
transport (unless frictional processes contributed in large amounts; [e.g., Robert et al., 20135
Lavallée et al., 2014]). In this sense, there are strong parallels between large ignimbrites and
tuffisites within silicic lava-filled conduits, which exhibit similar dense welding textures [e.g.,
Tuffen et al.,, 2003]. In tuffisites, minimal cooling occurs between fragmentation and sinter-
ing due to isolation from the atmosphere in intrusive pyroclastic channels. The inference is

that for large-volume ignimbrites the bulk of the magma is similarly thermally insulated from
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Figure A.2: Estimation of the temperature of deposition and the timescale to reach the measured
porosity at a stratigraphic height of 30 cm in the deposit. (A) Intersection of a cooling rate of
0.1 K min™" (horizontal black line) and a total porosity of 0.075 at a height of 30 cm (vertical shaded
area) constrains an initial deposition temperature of ~12.40 K. (B) The time required to produce the
total porosity observed at a height of 30 cm whilst cooling to ~1240 K constrained here to ~60 min
(vertical black line). Horizontal shaded area same as for panel (A).

the atmosphere [Suzuki & Koyaguchi, 20105 Sulpizio & Dellino, 2014], despite degassing to
near-atmospheric pressure; a similar insulation has been postulated from examination of ig-
nimbrite emplaced sub-aqueously [Kokelaar & Koniger, 2000]. This must reflect minimal
entrainment of surrounding fluids (air or water) during pyroclastic fountaining and flow. It
may also reflect a wide source vent [e.g., Legros et al.,, 2000]. Cooling of pyroclasts may there-
fore be largely prevented until deposition [e.g., Lesti et al., 2011], thus supporting the view

that the thermal history of explosive eruptions and emplacement are decoupled.

A2 TEMPERATURE DELAY IN A ROTARY SHEAR APPARATUS

Here I present a simple solution to heat diffusion in a rotary shear apparatus. The experi-

mental setup is designed to investigate the occurrence of frictional melting at a slip interface
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between two rocks (see Hirose & Shimamoto [2005] for details of the technique). It con-
sists of two plane-parallel cylindrical rock samples, which are put in face-to-face contact by
applying a normal stress (1.5 MPa) to their axial surface; one of them is held stationary while
the other is placed in the rotary side of the loading column and suddenly spin following a
radial velocity of 1.3 m s™*. The stationary sample has axis-parallel drill holes for the insertion
of thermocouples. In the case of rapid heating which accompanies high velocity friction,
the temperature monitored in the host rock only provides an approximation of the actual
temperature at the slip interface; in fact, the thermocouple reads the temperature dissipated
through time. It thus results that each read temperature increments was experienced at the
slip interface at an earlier time. I assume a semi-infinite one-dimensional medium under-
going thermal conduction (neglecting dissipation), following the heat equation in Cartesian
coordinates
o*T 10T

- axz - BE (A.II)

for which Tis the temperature, is the time, x is the horizontal distance from the thermocou-

ple and D is the thermal diftusivity. The initial and boundary conditions read as

T(x,t=0)=T; (Ar2)

T(x=o0,0) =T, (A1)

where T; is the uniform initial temperature of the medium, 7 the temperature measured by
the thermocouple at a distance monitored during the experiment. Upon slip and heating,
a temperature 7" is imposed at the interface (using a Dirichlet boundary condition which

averages the imposed fix temperature at each time interval). I apply the following change of
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variable 7= T — T; to Equation A.11 in order to extract the temperature at a position x, thus

obtaining
T 10T

o Dor °

with Equations A.12 and A.13 becoming

Equation A.14 can be solved using the following Laplace transform

$wp) = L{T(9)} = /:O exp (—pt) T (x. ) dt

which, once applied to Equation A.14, provides me with

—;l:?— é (pS*— T (x,t= o)) =o0

Using Equation A.1s it further simplifies to

Zj—qu}:o

with
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Equation A.19 offers a mathematical solution of the type

3 (x,p) = — (Aexp (—gx) + Bexp (gv)) (A.2x)

The temperature keeps a finite value when x tends towards infinity, so that B = oand 4 =

% from Equation A.16. Henceforth, the use of the Laplace inverse transform leads to

S(x,p) = — (T, — T;) erf (2 th) (A.22)
and finally
()= Ti- (1. - Tert =) (A2

which is used to approximate the temperature along the slip interface using a thermal diffu-
sivity of 5.3 X 1077 m*s ™.

Although simplistic in its discretisation of time and temperature intervals, the estimation
provided by Equation A.23 appears to satisfactorily approximate the evolution of temper-
ature during slip, since the modelled temperatures initially diverge from the thermocouple
read out (while heating takes place faster than what is recorded), then converge as the sample
shortens and the thermocouple approaches and intrudes the melt zone (henceforth provid-
ing an in-situ measurement of the melt temperature), as seen in Figure A.3. The thermal con-
straint has obvious implication for the mechanics experienced at the slip zone. Yet, a more
accurate three-dimensional derivation of the temperature evolution via the forward iteration

of an analytical solution to Fourier’s law of conduction applied to a cylinder will require at-

tention in the future.
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Figure A.3: Evolution of the slip zone (i.e., the interface between the two rocks) distance from the
thermocouple (input in the model as x; solid black line), of the temperature recorded at the thermo-
couple (7; solid pale brown line) and of the back-modelled temperature at the slip zone (T(x, t);
solid brown line).
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Toolbox for microseismic data processing

A roolbox for AE data handling and processing has been designed and coded using Python
programming language. The scripts are continuously being revised as new analysis becomes
necessary to further our understanding of coupled acoustic-mechanic behaviour of volcanic
materials. The package is based on, and works together with, the now famous ObsPy toolbox—

afree and platform-independent Python toolbox to handle seismological data from observatories—
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developed and maintained by the ObsPy Development Team (devs@obspy.org) at the De-
partment of Earth and Environmental Sciences, section Geophysics, of the Ludwig Maxim-
ilian University of Munich [Beyreuther et al., 2010].

The AEproc package contains common methods and modules to handle and process con-
tinuous AE streams recorded by a Richter data acquisition system using the eXstream soft-
ware developed by Applied Seismology Consultants (ASC, UK). This system provides up
to 20 MHz 12-bit full-waveform acquisition in both streaming and triggering mode. ASC’s
flagship software, the InSite Seismic Processor, is a full-fledged toolbox for microseismic data
handling and processing (including modules for data management, waveform visualisation,
event location and mechanism, etc.). The Streamer Leach module of InSite offers the pos-
sibility to automatically trigger events from continuous AE signals for further processing.
However, research sometimes requires the numerical implementation of newly developed
techniques and methods, such that it is more convenient to be able to use a programming
language. Here I developed scripts in Python to complete AE data analysis. Python is open-
source, platform-independent and modular, and its popularity has been accelerating over the
years, such that it is increasingly used in various fields and especially, in seismology. This is
because its comprehensive standard library, as well as freely available libraries developed by
people and companies around the world, provide tools for all kinds of tasks and, in particular,
has excellent features for interfacing C/C++ and Fortran codes.

As of today, AEproc has got essential seismological processing routines via the use of Ob-
sPy. AE data share similar characteristics with classical seismic data; however, their major dif-
ference arises from the sampling rate, which implies that specific routines have to be adapted

to properly handle AE data. In particular, Obspy’s UTCDateT1ime object based on Python’s
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built-in datetime object' has a maximum time precision on the order of a microsecond,
while microseismic signals recorded at >1 MHz require a higher precision to be handled prop-
erly. In AEproc, I redefine a DateT1ime object (Figure B.1) based on the excellent eGenix’s mx -
DateT1ime package, which has a maximum time precision on the order of a nanosecond. AE-
proc is constituted of five main modules (Figure B.1): (a) a core module (aeproc. core) pro-
vides classes for date, time and waveform manipulation (via the concept of streams and traces,
as originally implemented in ObspPy), classes for raw data file input/output and storage,
reading functions® and various functions and methods as utilities; (b) a visualisation module
(aeproc.visu) for waveform and spectrum (power spectrum, spectrogram and scalogram
in the form of a continuous wavelet transform) plotting; (c) a signal module (aeproc.sig-
nal) contains diverse functions for signal processing such as a calibration, de-noising, filtering
(finite impulse response filters), root-mean-square computation, AIC computation, etc.; (d)
an energy module (aeproc.energy) for continuous real-time seismic energy computation
on streams; and (e) an events module (aeproc. events) for event triggering from continu-

ous streams of data and event manipulation (e.g., amplitude and energy estimation).

"The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
*Only the SRM file format is supported at the moment.
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