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Summary

Explosive volcanism is one of the most catastrophic material failure phenomena. Dur-
ing magma ascent, fragmentation produces particulate magma, which, if deposited above
the glass transition of the interstitial melt, will sinter viscously. In-conduit tuஸஹ஭sites, con-
duit wall breccias and ash deposited from exceptionally hot pyroclastic ஺ாows are scenarios in
which sintering by viscous ஺ாow is possible. Therefore, understanding the kinetics of sinter-
ing and the characteristic timescales over which magma densiஹ஭es are critical to understand-
ing the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by
a recovery of material strength towards that of a pore-free, dense magma. Understanding
damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are
also crucial for the application of micromechanical models and material failure forecasting
laws. Powdered standard glass and industrial glass beads have been used to explore sinter-
ing mechanisms at ambient pressure conditions and temporal evolution of connected and
isolated pore-structure. I observe that sintering under low axial stress is essentially particle
size, surface tension and melt viscosity controlled. I found that the timescales over which
the bulk density approaches that of a pore-free melt at a given temperature is dependent on
the particle-contact surface area, which can be estimated from the particle shape, the pack-
ing type and the initial total porosity. Granulometric constraint on the starting material
indicates that the fraction of ஹ஭ner particles controls the rate of sintering as they cluster in
pore spaces between larger particles and have a higher driving force for sintering due to their
higher surface energy to volume ratio. Consequently, the resultant sample suite has a range
of microstructures because the viscous sintering process promotes a ஹ஭ning of pores and a
coarsening of particles. In a volcano, newly formed sintering material will then further con-
tribute to magma-plugging of the conduit and its mechanical properties will aஸfect magma
rupture and its associated precursory signals. This consideration permittedme to explore the
eஸfect of sintering on the stress required for dynamic macroscopic failure of synthesised sam-
ples and assess the ability of precursory microseismic signals to be used as a failure forecast
proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were sub-
jected to mechanical tests under a constant rate of deformation and at a temperature in the
region of thematerial glass transition. A dual acoustic emission rig was employed to track the
occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to sys-
tematically assess the accuracy of the failure forecastingmethod as a function of heterogeneity
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(cast as porosity) since it acts as nucleating site for fracture propagation. The pore-emanating
crack model describes well the peak stress at failure in the elastic regime for these materials. I
show that the failure forecast method predicts failure within 0–15% error at porosities>0.2.
However, when porosities are <0.2, the forecast error associated with predicting the failure
time increases to >100%. I interpret these results as a function of the low eஸஹ஭ciency with
which strain energy can be released in the scenario where there are few or no heterogeneities
from which cracks can propagate. These observations shed light on questions surrounding
the variable eஸஹ஭cacy of the failure forecast method applied to active volcanoes. In particular,
they provide a systematic demonstration of the fact that a good understanding of material
properties is required. Thus I wish to emphasise the need for a better coupling of empirical
failure forecasting models with mechanical parameters, such as failure criteria for heteroge-
neous materials, and point to the implications of this for a broad range of material-based
disciplines.
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Zusammenfassung

Explosiver Vulkanismus ist eines der drastischsten Phänomene, die ursächlich durchMate-
rialversagen ausgelöst werden. Während seines Aufstiegs in der Kruste fragmentiert Magma
zu partikelgrossen Magmafetzen, die, sofern überhalb des Glassübergangs abgelagert, viskos
sintern können. Sintern durch viskosen Fluss wird bei Ablagerung von Intra-Schlot Tuஸf-
isiten, Schlotwand Brekzien und Asche aus extrem heissen pyroklastischen Ströme erwartet.
DieEingrenzungderKinetikdes Sinterns, sowieder charakteristischenZeitskalenderVerdich-
tung vonMagma, sind daher essentiell um den Zeitrahmen des Entgasens von Schloten und
Ablagerungen besser zu verstehen. Viskoses Sintern wird begleitet von einer Erhöhung der
Material Festigkeit zu der eines poren-freien, dichten Magmas. Weiterhin ist es wichtig, Be-
schädigungsmechanismen und das seismische Verhalten der vulkanischen Produkte kurz vor
demMaterialversagen zu verstehen, um die Anwendung vonmikromechanischenModellen
und die Vorhersage von Materialversagen zu ermöglichen. Glasstandard in pulverisierter
Form und industrielle Glaskugeln wurden herangezogen um Sintermechanismen bei Atmo-
sphärendruck und die zeitliche Entwicklung verbundener und isolierter Porenstrukturen zu
erforschen. Ich beobachtete, dass Sintern bei niedriger axialer Belastung hauptsächlich durch
Partikelgrösse, Ober஺ாächenspannung und Schmelzviskosität kontrolliert wird. Weiterhin ist
die Zeitskala, über die die Gesamtdichte bei einer deஹ஭nierten Temperatur die einer poren-
freien Schmelze erreicht, abhängig von der Partikel-Kontakt Ober஺ாäche, die über Partikel-
form, die Partikelpackung und die initiale Gesamtporosität abgeschätzt werden kann. Korn-
grössenanalysen der Anfangsmaterialien deuten an, dass die Feinfraktion die Rate des Sin-
terns kontrolliert, da der Feinanteil in den Zwickeln der grösseren Partikel Anhäufungen
bilden kann und ausserdem ein höheres Sinterpotential durch sein grösseres Ober஺ாächen-
VolumenVerhältnis aufweist. Dementsprechendweisen die hergestellten Proben eine Reihe
von Mikrostrukturen auf, die durch Porenverkleinerung und Kornvergröberung während
des viskosen Sinterns hervorgerufen wurden. Dadurch wird neu-gebildetes, sinterndes Ma-
terial innerhalb eines Vulkans das Verstopfen des Schlotes fördern, und die mechanischen
Eigenschafிen diesesMaterials beein஺ாussen die Fragmentation des eigentlichenMagmas und
der assoziierten Vorwarnsignale. Aufgrund dieser Betrachtung betrachte ich den Eஸfekt des
Sinterns auf die für dynamisches makroskopisches Versagen unserer synthetisierten Proben
nötige Belastung näher. Dies geschah, um das Potential der mikroseismischen Signale bei
Bedingungen innerhalb eines Vulkanschlots als Vorhersagekriterium für Materialversagen
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abzuschätzen. DazuwurdendieProbenbei konstanterDeformationsrate undTemperaturen
in der Nähe des Glasübergangs mechanischen Tests unterzogen. Das Aufிreten von Spröd-
bruchverhalten wurdemithilfe eines dualen Schallemissionsgerätes aufgezeichnet. Der resul-
tierende akustische Datensatz wurde dann herangezogen, um die Genauigkeit der Vorher-
sagemethode für das Versagen als Funktion der Probenheterogeneität (also Porosität) einzu-
grenzen, da Porosität innerhalb eines Materials die Entstehung von Bruchstellen fördert. In
diesemZusammenhang beschreibt dasModell der „Pore-emanating cracks“ für dieseMateri-
alien die Maximalbelastung bei Versagen im elastischen Regime. Ich zeige, dass Versagen bei
Porositäten >0,2 innerhalb eines Fehler von 0–15% vorhergesagt werden kann. Sobald die
Porositäten unter einenWert von 0,2 fallen steigt der Fehler, der mit der Vorhersage der Ver-
sagenszeit assoziiert ist, auf über 100% an. Dieses Ergebnis interpretiere ich als eine Funktion
der niedrigen Eஸஹ஭zienz, mit der Verformungsenergie freigesetzt werden kann, wenn wenige
oder keineHeterogeneitäten (Porosität) als Schwachstellen imMaterial vorhanden sind. Dies
könnte zu der Frage beitragen, warum Versagensvorhersage an aktiven Vulkanen bisher zu
unterschiedlich guten Ergebnissen geführt hat. Insbesondere zeigen meine Beobachtungen
systematisch, dass ein tiefesVerständnis derMaterialeigenschafிenunerlässlich ist. Ichmöchte
daher betonen, dass die empirischen Vorhersagemodelle besser mit mechanischen Parame-
tern, wie Versagenskriterien für heterogene Materialien, gekoppelt werden sollten, mit Aus-
wirkungen für einen grossen Bereich der material-wissenschafிlichen Disziplinen.
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Résumé

Le volcanisme explosif est l’un des phénomènes de fracturation matérielle les plus catas-
trophiques qui soient. Durant son ascension dans le conduit volcanique, le magma se frag-
mente en particules qui, une fois déposées à une température excédant celle de la transition
vitreuse du liquide interstitiel, vont se souder de façon visqueuse. Les tuஸஹ஭sites formées dans
le conduit ainsi que les cataclasites formées le longde ses parois,mais aussi les cendres déposées
à partir de coulées pyroclastiques exceptionnellement chaudes, sont autant d’exemples pour
lesquels du frittage par écoulement visqueux est possible. Comprendre la cinétique du frit-
tage ainsi que les échelles de temps caractéristiques liées à la densiஹ஭cation du magma est par
conséquent crucial, aஹ஭n de pouvoir identiஹ஭er les périodes de dégazage dans les conduits et
les dépôts volcaniques. Le frittage visqueux est accompagné d’un recouvrement de la résis-
tance mécanique du matériel vers celle d’un magma dense et exempt de pores. Il est égale-
ment crucial de comprendre les mécanismes liés au dommage ainsi que le comportement
sismique avant la rupture des produits volcaniques frittés pour l’application de modèles mi-
cromécaniques et de lois de prédiction de la cassure matérielle. Un verre standard réduit en
poudre et des billes de verre industrielles ont été utilisé, aஹ஭n d’étudier les mécanismes de frit-
tage à pression ambiante ainsi que l’évolution temporelle de la structure des pores connectés
et isolés. J’observe que le frittage, sous faible contrainte axiale, est essentiellement contrôlé
par la taille des particules, la tension de surface et la viscosité du verre. Je constate que, à une
température donnée, les échelles de temps, pour lesquelles la densité dumagma se rapproche
de celle du verre pur, dépendent de la surface de contact entre les particules, qui peut être
estimée à partir de la forme des particules, du type d’empilement et de la porosité initiale.
Les contraintes granulométriques sur le matériel de départ indiquent que c’est la fraction des
ஹ஭nes particules qui contrôle le taux de frittage : ces particules se regroupent dans les espaces
créés entre les plus grandes particules et ont une force d’entraînement par frittage plus élevée
en raison du rapport entre l’énergie de surface et le volume plus important. En conséquence,
la série d’échantillons obtenus par frittage visqueux possède une gamme de microstructures,
puisque ce processus favorise la réduction du volume des pores par l’amalgamation des partic-
ules. Au sein d’un volcan, la présence de magma nouvellement fritté pourra alors contribuer
davantage au colmatage du conduit et ses propriétés mécaniques auront une incidence sur
la fragmentationmagmatique ainsi que sur les signaux précurseurs associés. Cette considéra-
tionm’a permis, d’une part, d’étudier l’eஸfet du frittage sur la contraintemécanique nécessaire
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pour engendrer la rupture macroscopique des échantillons synthétisés et, d’autre part, à éval-
uer la capacité des signaux microsismiques précurseurs à être utilisés pour prédire la cassure,
à des conditions de pression et de température pertinentes pour les conduits volcaniques peu
profonds. À cette ஹ஭n, les échantillons ont été soumis à des essais mécaniques pour lesquels
une vitesse constante de déformation ainsi qu’une température correspondant à la zone de
transition vitreuse du matériel ont été appliqué. Deux capteurs d’émission acoustique ont
été utilisé pour surveiller la fracturation matérielle. Les données acoustiques ont ensuite été
exploité, aஹ஭n d’évaluer de façon systématique la précision de la méthode de prédiction de la
cassure en fonction de l’hétérogénéité (la porosité est utilisée comme quantiஹ஭cation du degré
d’hétérogénéité matérielle), car elle correspond à la zone de nucléation des fractures. Dans
le régime élastique, le modèle de ஹ஭ssuration depuis les pores décrit correctement le pic de
stress mécanique au moment de la rupture. Je montre que la méthode de prédiction de la
cassure indique une erreur absolue comprise entre 0 et 15 % pour les porosités supérieures
à 0,2. Cependant, lorsque les porosités sont inférieures à 0,2, l’erreur augmente jusque plus
de 100 %. J’interpréte ces résultats en termes de faible eஸஹ஭cacité avec laquelle l’énergie mé-
canique accumulée peut être libérée dans le cas où il y a peu ou pas d’hétérogénéités à partir
desquelles les ஹ஭ssures peuvent se propager. Ces observations mettent en lumière les ques-
tions sur l’eஸஹ஭cacité de la méthode de prédiction de la cassure lorsqu’appliquée aux volcans
actifs. Plus particulièrement, elles démontrent de façon systématique qu’une bonne com-
préhension des propriétés physiques et mécaniques du matériel est fondamentale. Ainsi, je
tiens à souligner la nécessité d’un meilleur couplage des modèles empiriques de prédiction
de la cassure avec des paramètres mécaniques, tel que des critères de rupture des matériaux
hétérogènes, et pointer en direction des implications pour un large éventail de disciplines
axées sur la science des matériaux.
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Je suॾ de ceux qui pensent que la science est d’une grande

beauté. Un scientifique dans son laboratoire est non seule-

ment un technicien : il est aussi un enfant placé devant

dॽ phénomènॽ naturels qui l’impressionnent comme dॽ

contॽ de féॽ. Noॿ ne devrions pॼ laisser croire que tout

progrès scientifique peut être réduit à dॽ mécanismॽ, dॽ

machinॽ, dॽ rouagॽ, quand bien même de tels mécan-

ismॽ ont eux aussi leur beauté.

Marie Curie

1
Introduction

Understanding volcanic processes is of paramount importance for scientists

dealing with hazard assessment and riskmitigation. For just over a centurymodern volcanol-

ogy has ofிen solely been based on ஹ஭eld observations without leading much quantitative us-

able information. Volcanologistsweremostly adapting and combining the tools andmethod-
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ologies used in classical geology. Since volcanic environments are highly dynamic systems in-

volving a wide range of physico-chemical conditions, it became clear over the years that vol-

canology is not a science on its own but rather multiple sciences combined at once. In fact,

volcanology is the phenomenological study of volcanic eruptions and magmatic processes,

and in recent years its progress has heavily tied in with the integration of adjacent disciplines

of fundamental sciences (e.g., material science).

For the past three decades or so, the development of modern technologies (mainly due to

the increase in computer capacities) has allowed volcanologists to systematically, quantita-

tively and rigorously monitor volcanic activity, probe volcanic materials and reproduce vol-

canic phenomena in the laboratory as well as numerically. However, the broad spectrum of

physico-chemical events occurring at, around and underneath volcanoes still makes it chal-

lenging to understand the big picture. One has to focus on certain aspects of volcanic ac-

tivity, if one is to constrain the underlying mechanisms involved in terms of fundamental

physico-chemical processes. With the advent of physical and experimental volcanology the

approaches employed to tackle these problems have greatly improved our knowledge of a

range of magmatic and volcanic phenomena.

Experimentation is in general at the heart of the scientiஹ஭c procedure. When feasible, ex-

periments are designed to (a) explore processes in a controlled environment, (b) constrain the

key parameters and (c) validate either conjectures or models (both theoretical and computa-

tional). For magmatic processes and volcanic eruptions, where direct observation is some-

what arduous and sometimes practically quasi-impossible, we can see that mimicking the

same mechanisms under certain assumptions and simpliஹ஭cations yields central results and

interpretations to feed back into ஹ஭eld observations. The principal sources of ஹ஭eld data derive
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from geophysical and geochemical monitoring, and from description of volcanic deposits.

Interpretation of processes are thus ofிen inferred from remarkable features of those signals

and/or of those deposits, which inherently remain to be tested against empirical or theoretical

laws. Experiments are key to describematerial behaviour and physico-chemical processes, but

they have their limitations; one of which being the scaling issue that is common to almost all

ஹ஭elds of experimental geosciences. One has to distinguish between categories of experiments,

if one is to characterise small-scale processes or large-scale dynamics [Mader et al., 2004]. Nat-

ural materials are generally preferred for the study of the former because scaling may not, in

some cases, be an issue (i.e., the time and lengthscales investigated ofிen scale directly with

those of the natural system), whilst analoguematerials are usually favoured to investigate the

latter.

Natural volcanicmaterials are highly complex structures: they are generallymultiphase sys-

tems (mainly melt, bubbles and crystals), which contain varied amounts of dissolved chemi-

cal elements under pressure-temperature conditions acting at volcanoes. Consequently, their

physico-chemical properties spans the widest spectrum amongst geomaterials and their com-

plexities hinder systematic reproducibilitywhen experimenting. Syntheticmaterialsmayhelp

circumvent these issues, as they have the advantages of being a simpliஹ஭ed version of the nat-

ural ones and of having well-constrained properties. Under speciஹ஭c circumstances natural

materials can be reduced to two-phase by the use of synthetics. Let me take the example of

volcanic ash. During volcanic fragmentation quantities of ash are ejected andmost of this ash

has been shown to be overprinted by the glassy component. It is therefore clear that the use

of chemically stable, synthetic glasses, such as borosilicate or soda-lime silicate glasses, is very

much relevant to explore the behaviour of their natural counterparts [e.g., Hess et al., 2007;
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Robert et al., 2008b; Whittington et al., 2009; Cordonnier et al., 2012b]. Here I make use

of these synthetic glasses to create two-phase systems (melt and bubbles) for which the role

of structural heterogeneity is easily picked apart. This well-constrained simpliஹ஭cation of the

natural system also allows to pin down the dominant ஹ஭rst-order eஸfects at the expense of the

complexities.

The careful choice of experimental materials is important and so is the choice of the ex-

perimental setup. An experiment needs to be design in a way to describe a process simply,

without ever oversimplifying it. Well-controlled experiments are commonly not designed

to replicate and capture the entire complexity of volcanic conduits conditions, which would

prove very challenging and somewhat not necessary to characterise the system’s behaviour.

Here I perform experiments under a uniaxial compression state (at temperatures relevant to

magmas) for which the associated stress ஹ஭eld is quite similar to shallow magmatic systems

where a negligible amount of conஹ஭ning pressure is applied and the vertical stress exerted by

the underlying magma dominates. The suitability of this type of deformation experiments

in the study of volcanic processes has been extensively demonstrated [e.g., Lejeune&Richet,

1995;Quane&Russell, 2005, 2006; Lavallée et al., 2007;Hess et al., 2008; Lavallée et al., 2008;

Robert et al., 2008b,a; Quane et al., 2009; Benson et al., 2012; Lavallée et al., 2012; Kendrick

et al., 2013; Lavallée et al., 2013; Heap et al., 2014].

In the ஹ஭nal ascent trough the Earth’s upper crust, magmas dominantly deform in a vis-

cousmanner; yet theymay experience abrupt transition to a brittle regime of deformation, as

they experience strong non-linear deviations in ஺ாow behaviour. In silicic systems, where the

magmas involved are so viscous, this transition implies that these magmas regularly switch

between ஺ாow and failure. This cycling between liquid-like and solid-like responses imparts
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very special properties and represents a prodigious seismogenic source. Structural and textu-

ral studies of eroded, exposed volcano interiors and volcanic products have revealed a plethora

of lines of evidence for cyclic ductile-brittle events that involve repeated fracturing and seis-

micity [Tuஸfen et al., 2003; Tuஸfen & Dingwell, 2005]. Using analogous acoustic signals, ex-

periments tend to constrain the source mechanisms on the microscale [Benson et al., 2007;

Burlini et al., 2007; Benson et al., 2008; Lavallée et al., 2008; Tuஸfen et al., 2008; Benson et al.,

2010, 2012; Lavallée et al., 2012; Arciniega-Ceballos et al., 2014; Benson et al., 2014; Kendrick

et al., 2014] and this approachpromises to improve ourunderstandingof volcano-seismology.

Volcano-seismic signals are the largest and arguably the most reliable precursory type of ac-

tivity to volcanic eruptions. Laboratory-sized microseismic signals produced during rock or

magma deformation are equally reliable as a tool to describe and analyse accelerating trends

prior to sample-sized failure.

All the considerations listed above yield a fundamental outstanding question: what mate-

rial properties determine the seismic signals associated with failure and how do they modify

the eஸஹ஭cacy of failure forecasting models? The present thesis aims at addressing this question

bymeans of static and dynamic experiments. Speciஹ஭cally the study investigates the role payed

by structural heterogeneities in magmas on the style andmechanisms of deformation during

ascent in the shallow volcanic conduit and on the subsequent ability to predict magma fail-

ure (i.e., magma fragmentation) based on accelerating rates of precursory seismicity. To this

end, two major routes have been identiஹ஭ed: (1) high-temperature static experiments using

crushed synthetic glasses (crystal-free, amorphous systems) to explore the way structural het-

erogeneities such as pores evolve in shallow magmas and porous lavas, while statically mea-

suring the resultant microstructural and elastic properties; and (2) high-temperature, high-
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Figure 1.1: Densification and healing of volcanic ash is evident at many places in a volcanic environ-

ment.

load dynamic experiments on reconstituted synthetic magmas to probe their micromechani-

cal behaviour, while dynamicallymeasuring the elastic properties, aswell as to simultaneously

record their microseismic behaviour in order to apply failure forecasting laws.

In a volcanic environment, densiஹ஭cation andhealing of granular volcanicmaterialsmay oc-

cur in variousplaces (Figure 1.1). Weldingor sinteringof particles due topressure-temperature

conditions encountered is invoked as the principal physicalmechanism responsible for ash ag-

glutination and annealing. Common scenarios in nature include (a) syn-eruptive in-conduit

welding of ash-ஹ஭lled fractures, which are thought to be the source for tuஸஹ஭site formation;

(b) post-eruptive conduit inஹ஭ll leading to the formation of sintered tuஸfs; (c) post-eruptive

welding of ash upon deposition of hot pyroclastic density currents, which form rheomor-

phic ignimbrites; and even (d) sintering of ash in jet engines, which is a major threat to civil
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aviation. Because the dominant constituent of volcanic ash is ofிen glass, all these scenarios

happen under the action of viscous forces, therebymaking the study of these processes a typ-

ical rheological problem. The phenomenon of viscous sintering of a granularmedium can be

relatively easily reproduced in a laboratory environment with the use of adequate tools and

has been extensively studied in the glass and ceramic industry. However, there are multiple

ways to perform these kinds of experiments; following the technical designations used in in-

dustry: (a) free sintering, (b) isostatic pressing, (c) free forging and (d) constrained forging.

All these terms relate to the stress ஹ஭eld applied to the sintering sample at high temperature.

In the aim to accurately decipher the key parameters and dominant timescales at stakes dur-

ing viscous sintering of synthetic volcanic ash under near-static conditions, I opted for (a) in

which case the surrounding stress ஹ஭eld is inexistent.

Not only does viscous sintering provides me with mechanisms to study but also suites of

variably sintered samples with diஸferentmicrostructural shape of their porous network. Such

specimensmay then be exploit for further experiments, as they nowhavewell-constrained in-

trinsic material properties. In these porous glasses, if I assume that intensive properties such

as the glass density are pretty constant across the matrix, description of an extensive property

such as the amount of voids should directly re஺ாect their degree of structural heterogeneity.

Based on this assumption, well-controlled deformation experiments have been performed in

order to investigate the eஸfect of variable heterogeneity on the mechanical response and es-

pecially on macroscopic failure predictability. Explosive volcanic eruptions may similarly be

considered as the result of a conduit-sized magma failure whereby the mechanical energy ac-

cumulated during ascent is suddenly released. However, as these natural environments are

more complex dynamic systems than any experimental setup, they are controlled by the in-
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teraction of multiple processes that usually exhibit either non-linear or stochastic behaviour.

The high level of uncertainty in the parameters governing these processes makes predicting

the behaviour of volcanic systems highly problematic, whereas laboratory-based predictions

are relatively simple and to some extent easy to resolve.

The present dissertation is structured around the two axes I have just described. Chap-

ter 2 gives an extended, more in-depth introduction into the necessary building blocks from

which the experiments have been mapped out. Chapter 3 introduces the outcomes of the

ஹ஭rst experimental campaign and discuss their implications for magmatic systems (“The Life

and Death of Heterogeneity in Magmas...”). Chapter 4 deals with the second experimental

campaign and shows how the results of the former in஺ாuences the predictability of magma

failure as well as discuss how it relates to volcanic eruptions (“...Implications for Failure Fore-

casting”). Chapter 5 ஹ஭nally presents the overall conclusions, summarises the whole study and

discuss possible outlooks.
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Today’s scientists have substituted mathematics for exper-

iments, and they wander off through equation after equa-

tion, and eventually build a structure which hॼ no rela-

tion to reality.

Nikola Tesla

2
Theoretical background

This chapter essentially lays down and deals with the necessary general ideas

(either purely theoretical, empirical or semi-empirical) serving as physical bases for the phe-

nomena studied in the following chapters.
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2.1 Continuum theory of sintering

Sintering is the process by which a granular medium is allowed to compact and particles to

coalesce, ultimately resulting in a dense, pore-freematerial. The sintering process is classically

divided into three stages [Swinkels&Ashby, 1981; Swinkels et al., 1983; Cocks, 1994] (Fig. 2.1):

(1) a ஹ஭rst stage in which the particles are brought into contact and necks grow at their surface

contacts; in this phase the material may be modeled as an aggregate of individual particles

with small surface contacts; for crystalline materials this phase involves the diஸfusion of va-

cancies in the crystal lattice, whereas non-crystalline materials sinter by viscous ஺ாow; (2) an

intermediate stage in which the material can be idealised as an agglutinated frame with an in-

terconnected porous network; this framework is inherently unstable with respect to surface

tension in the absence of pore pressure and collapses causing themajority of volumetric strain

via porosity reduction; and (3) a ஹ஭nal stage in which, usually for relative densities greater than

0.9 [Coleman & Beere, 1975] (i.e., for porosity less than 0.1), the closure of the porous net-

work yields isolated, quasi-spherical pores (i.e., gas bubbles) suspended in the liquid phase;

these pores act to reduce the density from that of the pore-free material. It is important to

note, however, that during the intermediate stage the pores can be considered quasi-spherical

[Ashby, 1974].

The theory of sintering is based upon continuummechanics, which has been successfully

applied to the description of the compaction of porous bodies (this description being built

on the theories of plastic deformation of porous bodies). Frenkel [1945]was the ஹ஭rst to imple-

ment the rheological approach for sintering. The relationship determining sintering kinetics

was derivedon thebasis of the analysis of twomodel problems: (1) joint sintering of two equal
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Figure 2.1: Schematic cartoon of the simplified spherical case of the sintering process. Sintering is a

3-stage processwhere (1) super-cooled silicatemelt droplets form necks at grain-grain contacts, (2)

the necks widen and encroach on the interconnected pore network, and (3) the porous network is

closed leaving suspended isolated pores that relax to spherical.

spherical particles and (2) shrinkage of a spherical pore in an inஹ஭nite viscous medium. These

ideas were ampliஹ஭ed and further developed byMackenzie& Shuttleworth [1949]. They elab-

orated a method of macroscopic description of sintering as a uniform overall compression of

a porous medium characterised by two viscosities.

2.1.1 A constitutive law

The continuum theory of sintering describes themacroscopic behaviour of a viscous, porous

body during sintering. A porous medium is considered as a two-phase material constituted

of (1) a substance phase1 and (2) a void phase2. The skeleton, in turn, can be a heterophase

material (e.g., crystals embodied in a liquid), but for the theory developed hereafிer I will stick

to a single-phase viscous melt. The skeleton is assumed to be composed of individual parti-

cles. I will consider the case of a linear viscous incompressible skeleton containing isotropi-

cally distributed pores (intermediate and ஹ஭nal stages of sintering). The overallmechanical be-

haviour of this porous body is therefore strongly in஺ாuenced by the presence of pores [Wakai
1From now on referred as the “body skeleton” or the “melt”.
2From now on referred as the “pores”.
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et al., 2007] and isotropic. One phenomenological rheological model is proposed byOlevsky

[1998], which relates the stress tensor’s components σij (i.e., externally applied load) to the

deviator of the strain rate tensor’s components ε̇ij′. A modiஹ஭ed version of the law reads as

follows

σij = 2η0
(
ηrε̇ij′ + κrε̇iiδij

)
+ pLδij − ppδij (2.1)

forwhich η0 is the shear viscosity of themelt, ηr and κr are the relative shear and bulk viscosity

respectively, ε̇ii is the ஹ஭rst invariant of the strain rate tensor ε̇ij, pL is the Laplace pressure, pp is

the gas pressure in the pores, and δij is the Kronecker symbol (i.e., δij = 1 if i = j and δij = 0

otherwise). The relative shear and bulk viscosities are deஹ஭ned as

ηr = η
η0

; κr = κ
κ0

(2.2)

where η and κ are the shear and bulk viscosities of the porous material respectively, and η0
and κ0 those of the melt.

The ஹ஭rst termof the right-handpart of Eq. 2.1 represents thematerial resistance, the second

term corresponds to the in஺ாuence of capillary stresses and the last term to the in஺ாuence of

internal pore stresses (pp = 0 during the ஹ஭rst and intermediate stages, since the pores are

all interconnected). In essence, Eq. 2.1 measures the macroscopic deformation process by

local shrinking (whenever it entails a volume reduction) and by local change in shape caused

by viscous ஺ாow of the porous body. Introducing the following expression for the deviatoric

strain rate tensor

ε̇ij′ = ε̇ij − 1
3
ε̇ijδij (2.3)
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Eq. 2.1 can be transformed into

σij = 2η0
(
ηrε̇ij +

(
κr − 1

3
ηr
)
ε̇iiδij

)
+ pLδij − ppδij (2.4)

Now, if I consider an axisymmetric cylindrical specimen subjected to an external load, the

average stress distribution and the strain rate tensor can be written as

σij =


σr 0 0

0 σr 0

0 0 σz

 ; ε̇ij =


ε̇r 0 0

0 ε̇r 0

0 0 ε̇z

 (2.5)

where z denotes the axial direction and r the radial direction. Henceforth, the ஹ஭rst invariant

of the strain rate tensor corresponds to

ε̇ii = ε̇z + 2ε̇r (2.6)

Summing over the stress and strain rate tensor’s components in Eq. 2.4, and using Eqs. 2.5

and 2.6 yields the following expression

σz + 2σr = 6η0κr (ε̇z + 2ε̇r) + 3pL − 3pp (2.7)

Porosity dependence of the constitutive parameters

Determination of the overall eஸfective response of a viscoplastic heterophase body in terms of

the thermo-mechanical and geometrical characteristics of its constituents has been a long-

standing challenge for material scientists. The dependence of the eஸfective properties on
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porosity is just one particular case. For porous materials, a considerable amount of work

has been carried out on materials with linear viscous and power law creep behaviour [Skoro-

hod, 1972; Hsueh et al., 1986; Venkatachari & Raj, 1986; Rahaman et al., 1987; Cocks, 1989;

McMeeking&Kuhn, 1992; Du&Cocks, 1992a,b; Kuhn&McMeeking, 1992]. For the deter-

mination of the relative shear and bulk viscosities, I will stick to the approach developed by

Skorohod [1972]. Following a hydrodynamic analogy of the theory of elasticity, for which a

corresponding problem can be solved assuming elastic properties of the material due to the

similarity between the constitutive equations describing the behaviour of linear viscous and

linear elastic materials, he derived the following approximation

ηr = (1 − φ)2 (2.8)

for the relative shear viscosity, and

κr = 2 (1 − φ)3

3φ (2.9)

for the relative bulk viscosity. Here φ denotes the porosity.

At themicroscopic level, the Laplace pressure is the result of collective action of local capil-

lary stresses in a porousmaterial (i.e., the interstitial pressure acting at the surface of the pores

or of the particles, thereby providing a sintering driving potential). The relationship between

the relative pLr and the local Laplace pressure pLo (acting on a single pore) depends on the pro-

cedure of averaging the aforementioned local stresses over a macroscopic porous volume. A

substantial number of publications is dedicated to this topic [Coble, 1961; Skorohod, 1972;

Scherer, 1979; Bhat & Arunachalam, 1980; de Jonghe & Rahaman, 1984; Hsueh, 1985; Ra-
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haman et al., 1986; Hsueh et al., 1986; Raj, 1987; de Jonghe&Rahaman, 1988]. I will consider

the derivation based upon the 3D stochastic approach employed by Skorohod [1972]. The

achieved result may be stated as follows

pLr = (1 − φ)2 (2.10)

Afிer Laplace’s original work, the local Laplace pressure acting on any spherical surface reads

as

pLo = 2Γ
r (2.11)

for which Γ is the surface tension and r is the radius of the sphere. For convenience, r can be

generalised to either the characteristic radius of a pore or of a particle. The product of the

local and the relative Laplace pressure gives its general expression (i.e., pL = pLopLr)

2.1.2 Porosity kinetics during free sintering

During the ஹ஭rst and intermediate stages of sintering pp = 0 and in the case of free sintering

(i.e., σz = 0 and σr = 0), Eq. 2.7 becomes

ε̇z + 2ε̇r = − pL
2η0κr

(2.12)

Because ofmass continuity and of the assumed incompressibility of thematrix (the shrinkage

is only due to porosity change), the evolution law for porosity is given by [Olevsky, 1998]

ε̇z + 2ε̇r = φ̇
1 − φ (2.13)
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Combining Eqs. 2.12 and 2.13 further leads to the continuum porosity kinetics during free

densiஹ஭cation of a porous body from an initial packing of particles to a bubble-bearing sus-

pension
φ̇

1 − φ = − pL
2η0κr

(2.14)

Injecting Eqs. 2.9, 2.10 and 2.11 into Eq. 2.14 yields the following diஸferential equation

φ̇
φ = − 3Γ

2η0ri
(2.15)

which, once integrated between the initial porosity φ (t = 0) = φi and φ (t), gives the ap-

proximated form of the porosity evolution of a relaxing porous body derived from the work

of Mackenzie & Shuttleworth [1949]

φ (t) = φi exp
(

− 3Γ
2η0ri

t
)

= φi exp
(

− t
λMS

)
(2.16)

where λMS is the sintering timescale given by

λMS = 2η0ri
3Γ

(2.17)

2.2 Theory of fracture mechanics

Fracture mechanics applies the physics of stress and strain in deforming solids to problems

invoking the likelihood of fracture from the unstable propagation of pre-existing ஺ாaws or

cracks. The theory identiஹ஭es the conditions under which fracturing processes occur, and

their dynamic and kinetic eஸfects. Ultimately, it attempts to predict when fracture propa-

16



gates and how a solid fails. Fracturing is inherent to many dynamic processes in the Earth

system. Volcanic eruptions, in particular, are generally viewed as the result of magma ascent

through fractures occurring on a broad range of lengthscales within the Earth’s upper crust.

Magmas themselves can equally fracture during transport and so it is reasonable to assume

that under high deformation rates they respond like any other brittle material.

2.2.1 A fracture criterion

In essence, Griஸஹ஭th [1921] was the ஹ஭rst to propose a criterion of rupture based on the energy

budget in a solid. Heused the ஹ஭rst lawof thermodynamics to infer changes of the total energy

as ஺ாaws or cracks grow. During elastic loading, a stressed body stores strain potential energy,

which is provided by the work done on itself (in turn controlled by the forces applied), and

releases this energy by creating new crack surfaces (i.e., brittle cracking; conversion into a free

surface energy). The balance between a crack driving force (energy storage) and a crack resist-

ing force (energy release) is expressed by the total energyU of the system

U = Um + Us (2.18)

for which Um and Us are the mechanical and the surface energy respectively. When a crack

grows,Um decreases and, accordingly,Us increases. In the case of a thin plate under a constant

load, the mechanical energy per unit width of a crack length lc is given by [Lawn&Wilshaw,

1975]

Um = −πl2cσ2
4E (2.19)
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where σ is the remote stress applied normal to the crack surface and E the Young’s modulus.

Griஸஹ஭th [1921] provides the expression for the surface energy per unit width of a crack length

(for each surface of a crack), which depends on the surface energy density γ, as follows

Us = 2lcγ (2.20)

At equilibrium dU
dc = 0 and injecting Equations 2.19 and 2.20 into Equation 2.18 results in a

critical failure stress σc, such that

σc = 2
√
Eγ
πlc

(2.21)

Equation 2.21 is a necessary criterion to explain the strength of elastic materials such as glasses

or single crystals. However, in ductile materials (and, to some extent, in materials appearing

tobebrittle), plasticity at the crack tips starts toplay amajor role. In this case a dissipative term

(corresponding to the release of heat at the crack tips)must be added in Equation 2.20. In the

case of stressed brittle material, a crackmay be energetically favourable to extend but, if its tip

is not sharp enough to concentrate the applied stress and exceed its strength (Equation 2.21),

it will not propagate. Since the theory developed by Griஸஹ஭th [1921] is based on thermody-

namic equilibrium, it cannot predict the kinetics of a crack system that is perturbed from the

equilibrium state. All these considerations pose a serious limitation to the applicability of

this theory; the critical failure stress is not a suஸஹ஭cient criterion for material fracturing.

The works of Sneddon [1946] and Irwin [1958] widen the applicability of the ideas devel-

oped by Griஸஹ஭th [1921] by looking at the stress concentration and the stress ஹ஭eld around a

crack tip in an elastic body under stress. By introducing the notion of stress intensity factor

(denoted as K), which depends on the crack geometry and on loading conditions (cast as a
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function f), it is shown that the stress around a crack tip depends on the angular coordinates

r and θ, such that

σi,j = K√
2πrfi,j (θ) (2.22)

Under mode I loading3, the stress intensity factor in the vicinity of a crack tip is derived from

Equation 2.22 as

KI = σ
√
πlc
2

(2.23)

This stress intensity factor provides a suஸஹ஭cient criterion for fracture propagation since it rep-

resents a measure of the stress singularity at the crack tip. Therefore, unstable crack propaga-

tionwill occur ifKI > KIc. The critical stress intensity factorKIc is also known as the fracture

toughness of a material. WhileK is a local parameter, a global parameter related to the crack

growth energetics may be deஹ஭ned. This is quantiஹ஭ed by the strain energy release rate G and

the relationship withK under mode I loading is given by Lawn [1993]

KI =
√
EGI (2.24)

By taking account of the stress ஹ஭eld surrounding a crack, its geometry andmaterial properties,

the stress intensity approach gives insight into themechanisms responsible for crack initiation

and propagation in elastic materials.

2.2.2 Subcritical crack dynamics

Time-dependent deformation during elastic loading is termed “subcritical” since it refers to

stable, quasi-static crack growth below a critical value of the stress intensity factor or of the
3Mode I fracturing describes an opening action (i.e., tensile stress normal to the plane of the crack).
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strain energy release rate. Subcritical crack dynamics is inherently sensitive to the applied

stress, temperature and chemical environment. Several kinetic laws of crack growthhave been

therefore proposed to describe crack growth velocity vc as a function of the stress intensity fac-

tor [Anderson & Grew, 1977; Atkinson, 1982]. One of the most commonly used expression

for subcritical crack growth velocity is the power law proposed on purely empirical grounds

by Charles [1958]

vc (t) = vc,i
( K
Ki

)n
(2.25)

with vc,i andKi the crack growth velocity and the stress intensity factor at t = 0 respectively,

and n the subcritical crack growth index. Equation 2.25 can be rationalised in terms of viscous

behaviour in the vicinity of the crack tip [Maugis, 1985; Lawn, 1993] and is consistentwith the

growth of multiple cracks in stochastic granular medium [Main, 1999]. Other relationships

have been developed [Charles & Hillig, 1962; Wiederhorn & Bolz, 1970; Lawn &Wilshaw,

1975; Lawn, 1993], including the following exponential model

vc (t) = vc,i exp (αK) (2.26)

and

vc (t) = vc,i exp (βG) (2.27)

whereα andβ are constants. InEquations 2.25, 2.26 and 2.27 the temperature dependence can

be introduced as an Arrhenian factor in the constants n, α and β respectively. In particular,

Charles [1958] suggested the following relationship

vc (T) ∼ C
(

lc
lc,cr

) n
2

exp
(

− Ea

RT

)
(2.28)
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for which C is a constant, lc and lc,cr are the crack length and critical crack length respectively,

Ea the activation energy and R the universal gas constant.

2.3 The ductile-brittle transition in magmas

Magmas may be treated as elastic materials under certain conditions, but they inherently re-

main viscoelastic materials due to pressure and temperature conditions in volcanic systems.

At depth ameltmay be idealised as a relaxed,Newtonian ஺ாuid4; however, during ascent in the

volcanic conduit, pressure, temperature, mechanical and chemical conditions are drastically

changing such that it is generally pushed towards a non-relaxed state and forced to readily

straddle the ductile-brittle transition, which ofிen results in catastrophic failure and magma

fragmentation [Dingwell, 1996]. This metastable region between relaxed liquid and unre-

laxed glass is a thermo-kinetic barrier and is known as the glass transition interval. Crossing

this interval does not always imply fragmentation (e.g., if no deformation is applied) but al-

ways results in a state where the melt reacts as an elastic material. FollowingMaxwell [1866],

the boundary between the relaxed and non-relaxed state may be deஹ஭ned according to a very

simple viscoelastic model, which describes the structural relaxation timescale λr of the melt

as

λr = μ
G∞

(2.29)

for which μ andG∞ are the Newtonian shear viscosity and the shear modulus at inஹ஭nite fre-

quency respectively. The shear viscosity η0 deஹ஭ned earlier5 would be equivalent to the New-

tonian shear viscosity μ as long as the melt remains in a Newtonian state and Equation 2.29
4A ஺ாuid is considered as being Newtonian when it is in an equilibrium state (no deformation) or when its

shear viscosity displays no dependence on the applied deformation rate.
5See Section 2.1.
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would hold. One can already see that, when a melt is subjected to a shear stress, the struc-

tural relaxation timescale will compete against the deformation timescale (commonly given

by the shear strain rate), thereby dictating the state of the melt [Dingwell, 1996]. This com-

petition can be framed in terms of the dimensionless Deborah number (as classically used in

rheology), which characterise the “஺ாuidity” of amaterial by expressing the ratio of the charac-

teristic relaxation timescale of thematerial to the observation timescale [Reiner, 1964]. Using

Equation 2.29 the Deborah numberDe is thus given by

De = η0
G∞

ε̇ (2.30)

It has been demonstrated experimentally that, for silicatemelts, the onset of the non-New-

tonian behaviour6 and the onset of the brittle behaviour are reached when the strain rate ap-

proaches a 1000th and a 100th of the structural relaxation timescale respectively [Dingwell &

Webb, 1989; Webb &Dingwell, 1990a,b; Cordonnier et al., 2012b]. Therefore, it straightfor-

wardly follows thatDe = 10−3 andDe = 10−2 for the non-Newtonian and brittle behaviour

onset respectively. The glass transition, which deஹ஭nes the interface between glass and melt,

is in the same way given byDe = 1. Since the inஹ஭nite-frequency shear modulus of all silicate

melts does not vary signiஹ஭cantly as a function of temperature and chemical composition, we

tend to approximate it to 1010 Pa s for most practical (macroscopic) purposes [Dingwell &

Webb, 1989]. Equation 2.30 allows us, in turn, to consider isorate lines in a Deborah num-

ber versus temperature space (Figure 2.2). In such a space the glass transition can be crossed

by changing the strain rate and/or the temperature. For natural systems such as silicic vol-
6A ஺ாuid is considered as being non-Newtonianwhen it exhibits a strain rate dependence of its shear viscosity

when sheared.
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Figure 2.2: A map of the ductile-brittle transition in silicate melts. The dashed red lines are typical

trajectories for a constant deformation rate (left) and an isothermal (right) process; the filled red

circle indicateswhere the system-sized failurewould occur. The solid blue lines are calculated using

Equations 2.30 and 3.1.

canoes, it is more likely that the trajectory followed by the magma would be a combination

of changes in strain rate and in temperature, with the failure point corresponding to magma

fragmentation. Since magmas undergo chemical changes associated with volatile exsolution

and crystallisation during ascent, it is reasonable to assume that the critical Deborah numbers

deஹ஭ning the transitions will shifி throughout an eruption [Cordonnier et al., 2012a]. Never-

theless, it remains that the trajectories invoked would almost always result in a shifி from

a coherent to a particulate melt, thereby providing mechanisms for the generation of het-

erogeneity within volcanic ediஹ஭ces. Conversely, this newly created particulate magma could
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transition again back to a pore-free, dense melt by following a re-heating trajectory and will

be the subject of the next chapter.

24



Break a vase, and the love that reassemblॽ the fragments ॾ

stronger than that love which took its symmetry for granted

when it wॼwhole. The glue that fits the piecॽ ॾ the sealing

of its original shape.

DerekWalcott

3
The death of heterogeneity

Sintering and densification are ubiquitous processes in஺ாuencing the emplace-

ment of both eஸfusive and explosive products of volcanic eruptions. Here I sinter ash-size

angular fragments of a synthetic NIST viscosity-standard glass (from the National Institute

of Standards and Technology, USA) and near-spherical synthetic glass beads (produced by
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Potters Industries Inc.) at temperatures at which the resultant melt has a viscosity of ∼108–

109 Pa s and at ambient pressure conditions to assess sintering dynamics under near-surface

volcanic conditions. I track the evolution of porosity and density during sintering, as well as

elastic moduli, and the strength recovery via uniaxial compressive tests. I observe that vol-

canic ash sintering is dominantly time-, temperature- and particle size-dependent and may

thus be interpreted to be controlled by melt viscosity and surface tension. Sintering evolves

from particle agglutination to viscous pore collapse and is accompanied by a reduction in

connected porosity and an increase in isolated pores. Sintering and densiஹ஭cation result in a

non-linear increase in strength. Micromechanical modelling shows that the pore-emanating

crack model explains the strength of porous lava as a function of pore fraction and size.

3.1 Sintering as a way to densify magmas

Welding or sintering of volcanic ash and lava densiஹ஭cation occurs by a combination of viscous

஺ாow and chemical diஸfusion, and takes place in a variety of volcanic settings. This process is

evident in rheomorphically welded ignimbrites [Sparks et al., 1999], tuஸஹ஭site veins [Stasiuk

et al., 1996;Kolzenburg et al., 2012], shallow conduits [Tuஸfen et al., 2003; Tuஸfen&Dingwell,

2005], lava ஺ாows [Cabrera et al., 2011] and lava domes.

High-grade (high temperature) pyroclastic density currents can sinter during deposition,

resulting in dense welded ignimbrites [e.g., Smith, 1960; Ragan& Sheridan, 1972; Branney&

Kokelaar, 1992] that are sometimes mistaken for lavas in the ஹ஭eld. In this process, a density-

graded particulate ஺ாow is thought to progressively agglutinate (i.e., syn-deformational sin-

tering) to a non-particulate, viscously deformable ஺ாow, forming a rheomorphic ignimbrite

[Branney&Kokelaar, 1992]. The sintering or welding intensity can be estimated from strain
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markers in such deposits [Quane & Russell, 2005, 2006] and using existing experimental

models, the timescale over which strain is accumulated can be estimated [Russell & Quane,

2005].

Fracture and subsequent healing also occurs in shallow conduits and lava domes [Tuஸfen&

Dingwell, 2005]. This phenomenon is observed at all scales and is in all likelihood integral to

the structural stability of lava domes. Thermochemical, kinetic investigation of fractures in

obsidian has demonstrated the eஸஹ஭ciency of these processes [Cabrera et al., 2011; Castro et al.,

2012]. During this process, strength can be recovered and repeated fracture and healing may

take place [Tuஸfen et al., 2003]. In some instances, fractures may be ஹ஭lled by fragmented par-

ticles generating tuஸஹ஭site veins. Tuஸஹ஭sites form during magmatic fragmentation, subsequent

transport through, and deposition in, fracture networks. Tuஸஹ஭sites consist of ஹ஭ne-grained

fragments (1–103 µm) that relax and sinter in situ, forming diagnostic vein-ஹ஭lled brecciated

textures [Tuஸfen et al., 2003; Tuஸfen &Dingwell, 2005; Kolzenburg et al., 2012]. Kolzenburg

et al. [2012] have demonstrated that the strength of tuஸஹ஭sites can be recovered during the

healing process and as such, suggested that the in஺ாuence of tuஸஹ஭sites on the rheological, me-

chanical and physical behaviour of lava domes is limited to the timeframe over which the vein

heals.

Rheological experiments have shown that during welding the apparent viscosity of the

porous particulate lava progressively recovers in value to that of the liquid [Quane & Rus-

sell, 2003]. The rate of the process depends on stress and melt viscosity before vitriஹ஭cation

(at the glass transition) or crystallisation [Smith, 1960; Sparks et al., 1999; Quane & Rus-

sell, 2005; Russell & Quane, 2005; Quane et al., 2009]. As the kinetics of the process is

viscosity-dependent, the degree of densiஹ஭cation could be strongly in஺ாuenced by the presence
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of volatiles in the liquid phase [Hess &Dingwell, 1996] and thus by the availability of gas in

the pore space to resorb into the liquid structure [Sparks et al., 1999]. Rheological studies

addressing welding in volcanic systems have however neglected conditions in which no ex-

ternal stress is applied, where the fundamental mechanisms by which melt droplets coalesce

yield the kinetics of the surface tension driven end-member of this process. In material sci-

ence these phenomena arewell-studied1 [e.g., Frenkel, 1945;Mackenzie& Shuttleworth, 1949;

Scherer & Bachman, 1977; Prado et al., 2001]. Here I build on previous rheological studies to

investigate the kinetics of sintering and magma densiஹ஭cation to constrain, in turn, strength

recovery during healing. Micromechanical analysis is then employed to provide a failure cri-

terion for porous lavas.

3.2 Experimental methods

3.2.1 Material properties

The process of glass particle sintering has been investigated using well-constrained materials:

(1) a viscosity-standardborosilicate glass (SRM717a) from theNational Institute of Standards

andTechnology (NIST,USA), which I powdered into angular particles2, and (2) populations

of industrial soda-lime silica glass beads (Spheriglass® A-glass microspheres 1922 and 2530,

Potters Industries Inc.) with known chemical and physical properties3. The chemical com-

position of these glasses is listed in Table 3.1. The NIST glass has been selected because it has

a well-constrained temperature dependence of viscosity, a precise description of the calori-

metric glass transition Tg interval (780–795 K at 10 Kmin−1 natural cooling rate), a deter-

1See Section 2.1.
2From now on referred as “NIST glass”.
3From now on referred as “glass beads”.
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Table 3.1: Composition of materials.

Oxide NIST glass Glass beads
- wt % wt%

SiO2 68 72.5
B2O3 18.5 -
Al2O3 3.5 0.4
MgO - 3.3
CaO - 9.8
Li2O 1 -
Na2O 1 13.7
K2O 8 0.1
Fe2O3 - 0.2

mined fracture toughness [Wiederhorn, 1969], an excellent glass-forming ability (i.e., it does

not crystallise, degas or show liquid-liquid immiscibility at the experimental conditions and

timescales), and has been used extensively in background studies to constrain volcanic pro-

cesses [e.g., Hess et al., 2007; Robert et al., 2008b;Whittington et al., 2009; Cordonnier et al.,

2012b]. Similarly, the glass beads have been shown to be a chemically and thermally stable

material over the experimental conditions and timescales investigated here (i.e., the mass loss

is negligible and the onset of the glass transition interval varies insigniஹ஭cantly over repeated

heating cycles, and no crystallisation may occur below 970K) [Wadsworth et al., 2014].

The temperature dependence of viscosity η0 of the NIST glass is given by the following

certiஹ஭ed calibration of a Volger-Fulcher-Talmann (VFT) equation

log10 (η0) = −2.5602 + 4852.2
T − 465.762

(3.1)

where T stands for temperature. The temperature dependence of viscosity of the glass beads

has been predicted by using the multicomponent model of Fluegel [2007] developed for in-
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Figure 3.1: The temperature dependence of melt viscosity of the NIST glass from Equation 3.1

(calibrated and provided by NIST) and of the glass beads from Equation 3.2 (calculated after the

composition-dependent model of Fluegel [2007]). The green open circles are viscosity measure-

ments using a glass of near-identical composition to the glass beads.

dustrial glass-forming silicate melts. The resultant VFT equation reads as follows

log10 (η0) = −2.6387 + 4303.36
T − 530.754

(3.2)

One can observe that Equations 3.1 and 3.2 are very close to each other (Figure 3.1), thereby

providing a robust rheological comparable basis.
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Figure 3.2: The particle size distributions of the experimental materials: (A) NIST glass powder (as

measured from manual sieving) and (B) glass beads (as measured by laser refraction); the fine and

the coarse distributions are displayed in dark and pale green respectively.

3.2.2 Sample preparation

I crushed theNIST glass to a powder using a concussionmill for intervals of 10–15 s andmea-

sured the resultant particle size distribution by sievingwith half-phi intervals (Figure 3.2A). A

laser refraction particle size analyser (LS230, Beckman Coulter Inc.) with a measuring range

of 0.375–2000 µm was used to determine the particle size distributions of the two popula-

tions of glass beads (Figure 3.2B).Theparticle size distributionof both theNISTglass powder

and the glass beads used are monomodal. The two glass beads populations have well-deஹ஭ned

monomodal peaks at 76 and 177 µm from dark4 to pale green5 respectively. The distributions

range between 0.4 and 177 µm, and 92 and 340 µm respectively. The NIST glass powder also

has a monomodal peak around 63 µm and ranges between 44 and 354 µm. This powder con-

sists of angular fragments (Figure 3.5A top-lefி), whereas the glass beads are near-spherical

(Figure 3.5B top-lefி).
4From now on referred as the “ஹ஭ne” distribution.
5From now on referred as the “coarse” distribution.
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I systematically ஹ஭lled alumina ceramic crucibles (44mm in diameter and 75mm in height)

with particles, ensuring close to a maximum packing by tapping the powder ஺ாat every time

I poured a few millimetres of particles in the crucible. The maximum packing is a func-

tion of the particle size distribution, sorting and clast angularity for heterogeneous powder

populations [e.g., Evans & Gibson, 1986]. As such, a compact of irregular fragments leads

to a more dense packing that that of spherical particles, thus it is expected that the NIST

glass powder compact to reach a lower porosity. The sample-laden crucibles were heated at

10 Kmin−1 to isotherms above the glass transition and at which the melt viscosity is 1.1 × 108

and 2.24 × 109 Pa s for the NIST glass and 2.09 × 108 Pa s for the glass beads. Viscous sinter-

ing took place during dwells of 0.5 to 10 hours for the NIST glass powder and 1 to 32 hours

for the glass beads. Afிer sintering, the samples were cooled at a slower rate of ∼5 Kmin−1

to minimise cracks induced by the thermal contraction of the sample. Note that the sinter-

ing times shown here are the dwell time at the isotherm and do not include the heating and

cooling portions of the sample excursions to and from high temperature. Due to the fast

heating rate, sintering occurring during the heating portion above the glass transition tem-

perature is considered negligible (for a treatment of non-isothermal sintering, seeWadsworth

et al. [2014]). The samples show no preferential compaction at the base nor cracking; both

of which would aஸfect the bulk porosity. The densiஹ஭ed products were drilled from the cru-

cible to sample cores of 25mmdiameter by 50mmheight for further physical andmechanical

analysis (Figure 3.3).
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Figure 3.3: Typical suite of sintered glass sample cores using the NIST glass powder as starting ma-

terial. The sintering time increases incrementally from the left to the right; the farthest right sample

core being the pure NIST glass.

3.2.3 Sample characterisation

A physical description of the welded products requires an accurate description of the porous

network. The total porosityφT is deஹ஭nedby the relative amount of pores in the sample and its

counterpart the relative density ρr by the relative amount of solid in the sample. By denoting

the total volume asVtotal, and the volume of the solid matrixVmatrix and of the poresVpores =

Vtotal − Vmatrix, the relative density can be written as

ρr = Vmatrix

Vtotal
=

ρbulk
ρ0

(3.3)

where ρbulk and ρ0 are the bulk density and the density of the pore-free, dense material (i.e.,

the solid matrix). Therefore, total porosity reads

φT =
Vpores

Vtotal
= 1 − ρr (3.4)
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The connectedporosityφC of the sampleswasmeasuredbyheliumpycnometry (Micromerit-

ics Accupyc 1330 and Quantachrome Ultrapyc 1200e). The isolated porosity was estimated

from the diஸference between the total and connected porosity. The density of both theNIST

glass and the glass beads is dependent on the cooling rate at which the melt crossed the glass

transition interval and therefore I used a corrected glass density for the post-experimental

samples given the cooling rate of∼5 Kmin−1.

Ultrasonic wave velocities were measured in a benchtop apparatus (Figure 3.4A), where

the specimen is placed between two vertical endcaps equipped with piezoelectric transducers

(with a resonant frequency of<1MHz) connected to a pulse generator (AgilentTechnologies

33210A, 10MHz function/waveform generator) and an oscilloscope (Agilent Technologies

DSO5012A). The onset of P-wave arrival at the receiver was individually picked as the ஹ஭rst

deviation from the baseline signal.

Oriented thin sections were obtained in the axial plane of the sintered samples and pho-

tomicrographs were recorded using an optical microscope in plane-polarised light. Accord-

ingly, backscattered electron images of oriented thick sections of the sintered samples were

recorded. The images were converted to binary, allowing for automatic thresholding of hues

and greyscales to black and white. The minimum and maximum pore sizes were measured.

These measurements were of connected vesicle widths in the case of the poorly sintered sam-

ples and of isolated vesicle radii in the case of the well-sintered samples.

A series of compressive deformation tests was performed on the prepared porous mag-

matic suspensions using a uniaxial press equipped with a surrounding furnace (≤1373 K),

which can apply a ≤300 kN force vertically (Figure 3.4B; see Hess et al. [2007] for details

of the apparatus). These Uniaxial Compressive Strength (UCS) tests were performed on a
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Figure 3.4: Schematic diagrams of the experimental devices used (A) to determine benchtop elastic

waves velocities and (B) for uniaxial compression tests. Both schematics after Heap et al. [2014].

relaxed (liquid) magma at a temperature of ∼810K in the case of the NIST glass and at a

temperature of ∼825 K in the case of the glass beads. For both materials, these experiments

were carried out slightly above the calorimetric glass transition interval. At this temperature

a negligible amount of viscous sintering occurred on the timescale of the experiment due to

the relatively high viscosity of the suspension (in contrast to the sintering experiment con-

ditions). I loaded the porous magma up to failure at a constant strain rate of ∼10−3 s−1 to

ensure deformation in a purely elastic regime. In each experiment, the component of strain,

which could not be viscously relaxed, resulted in a stress accumulation that triggered brittle

failure; the peak axial stress was recorded as a measure of the UCS.

35



Figure 3.5: Textural evolution during sintering. (A top-left) Photomicrograph (reflected light) of the

NIST glass powder sieved between 100 and 150μm. (A middle-left to bottom-right) Binary false-

colour thin sectionphotomicrographsofNISTglass samples sintered at 923K for incremental times.

Black represents theporesandwhite theglassmatrix. (B top-left). Photomicrograph (reflected light)

of the coarse distribution of the glass beads. (Bmiddle-left to bottom-right) Backscattered electron

images in binary false-colour of thick sections of glass bead samples sintered at 923K for incremen-

tal times. Black represents the pores andwhite the glass matrix.

3.3 Densification and healing of synthetic glasses

Microstructural analysis reveals details of the sintering process. I note a rapid coarsening

of the ash fragments due to agglutination. This densiஹ஭cation process results, in turn, in an

overall decrease in average pore size, which evolves from ∼1 to ∼0.01mm over the sintering

timescale in the case of the NIST glass powder (Figure 3.5). The ஹ஭ndings are consistent with

the general observation that sintering results in viscous pore collapse, densiஹ஭cation, strength-

ening and elasticity recovery of porous lava.
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3.3.1 Timescales and mechanisms

The total and connected porosity decrease during sintering, whereas isolated porosity in-

creases (Figure 3.6). The rate of porosity change is in஺ாuenced by the sintering temperature

and the size of the particles. For the NIST glass powder, at 923 K the liquid has a viscos-

ity of 1.1 × 108 Pa s and the total and connected porosity decrease from a common starting

maximum packing value of ∼0.4 to a minimum value of 0.05 in the case of total porosity

(Figure 3.6A) and 0 in the case of connected porosity (Figure 3.6B top). Simultaneously, the

isolated porosity increases from 0 to∼0.05 (Figure 3.6B bottom). At 873 K themelt viscosity

is 2.24 × 109 Pa s and over the experimental time of 10 hours, the total and connected poros-

ity evolve from∼0.4 to∼0.25 (Figure 3.6A) and to∼0.2 (Figure 3.6B top) respectively. The

isolated porosity evolves from 0 to∼0.07 (Figure 3.6B bottom).

For the glass beads, at 923 K the liquid has a viscosity of 2.09 × 108 Pa s and the total and

connected porosity decrease from the starting maximum packing value of ∼0.48 to a mini-

mum value of 0.12 (Figure 3.6C) and of 0 (Figure 3.6D top) respectively. The timeframe over

which the densiஹ஭cation process occurs depends on the particle size distribution and one can

observe that within 10 and 35 hours for the smallest and highest particle size distributions re-

spectively, both porosities have reached their ஹ஭nal values. For all particle size distributions,

the isolated porosity increases from 0 to∼0.12 (Figure 3.6D bottom). Relative density—the

standard metric of sintering in ceramics and glass-technology studies—is inversely propor-

tional to the total porosity (see Equation 3.4) and I observe that the preservation and accu-

mulation of isolated porosity prevents the recovery of the defect-free glass density for both

the NIST glass and the glass beads (Figure 3.7).
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Figure 3.6: Results for porosity evolution in the sintered sample suite. The evolution of total, con-

nected (top) and isolated (bottom)porositywithbest-fit curves to themodels (solid anddashed lines;

see text) for (A) and (B) the NIST glass powder, and (C) and (D) the glass beads respectively. The

colour coding of the NIST glass data refers to the two viscosities investigated and that of the glass

beads data to the two particle size distributions investigated (see Figure 3.2B).

First stage sintering

As described in Section 2.1, sintering stages have been approximated by theoretical and empir-

ical relationships. Neck formation iswell-describedby theFrenkel [1945] andScherer&Bach-

man [1977] sintering models and variations of these studies which states that relative density
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Figure 3.7: Results for relative density evolution in the sintered sample suite with best-fit curves to

themodels (solid anddashed lines; see text) for (A) theNIST glass and (B) the glass beads. The colour

coding of the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of

the glass beads data to the two particle size distributions investigated (see Figure 3.2B).

will increase with time between relative densities of 0.3 and a threshold value <1 [Frenkel,

1945; Scherer & Bachman, 1977; Scherer, 1977; Cahn, 1991]. I ஹ஭nd that a combination of their

approaches yields an empirical, linear relationship valid for the range of relative densities over

which neck formation dominates, such that

ρr (t) = 1 +
(
ρr,i − 1

)(
1 − t

λs

)
(3.5)

where ρr,i is the initial relative density, t is time since the onset of the isotherm and λs is the

characteristic timescale of sintering. I can combine Equations 3.4 and 3.5 to derive the total

porosity as a function of time (note that total and connected porosity are interchangeable in

this particular case)

φT (t) = φT,i

(
1 − t

λs

)
(3.6)
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where φT,i is the total porosity at t = 0. Equations 3.5 and 3.6 show that the initial stage

of isothermal viscous sintering can be approximated by a linear relationship with time. This

model, which neglect externally applied stress, requires that viscous sintering is characterised

by a dominant sintering timescale λs. Uhlmann et al. [1975] suggest that this timescale is

related to the melt viscosity η0, the melt-vapour interfacial tension Γ and the initial radius of

the sintering particles rp,i

λs =
rp,iη0
Γ

(3.7)

I use a least squares regression to ஹ஭t all the linear portions of the total and connected porosity

data shown in Figure 3.6, as well as all the linear portions of the relative density data shown in

Figure 3.7. For each experimental temperature (NISTglass) and eachparticle size distribution

(glass beads), values of λs were adjusted such that they yield best-ஹ஭t controlling particle sizes.

The best-ஹ஭t models are represented as coloured dashed lines in Figures 3.6 and 3.7.

For a melt surface tension of 0.3Nm−1 for a borosilicate E-glass of a similar composition

[Kraxner et al., 2009] to theNIST glass, I ஹ஭nd that the best-ஹ஭t timescale formy data relates to

a dominant particle radius of 17–25 µm in the case of the sintering NIST glass powder. This

particle size range is consistent for both experimental temperatures and is in very good agree-

mentwith the particle size analysis, which indicates that themost frequent particle radii are in

the range 26–37 µm and the ஹ஭nest fraction is<26 µm (grey shaded area in Figure 3.7A). In the

case of the sintering glass beads, the best-ஹ஭t timescale relates to a dominant particle radius of

31 and 103 µm for the dark and pale green data respectively, which is also in very good agree-

ment with both particle size distributions indicating a dominant range of 10–45 µm (dark

green shaded area in Figure 3.7B) and of 60–170 µm (pale green shaded area in Figure 3.7B).

I therefore suggest that for unimodal distributions, it is the ஹ஭nest particle sizes that domi-
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nate the timescale of eஸfective sintering because those particles will occupy the interstices of

larger particles and share themost contact surface area for viscous neck formation. Prado et al.

[2001] also concluded that Equation 3.7 holds, as the ஹ஭nest particles cluster in pore spaces be-

tween larger particles and control sintering rates due to the high stress at their surface driving

sintering.

Intermediate and final stages sintering

In Equation 3.7 the driving stress for deformation is derived from the surface tension and the

interconnected pore-geometries. The fact that I can approximate the evolution of porosity

and density using Equation 3.7 implies that the deformation is viscous and that diஸfusive neck

growth is not the dominant transport mechanism. Equation 3.7 is identical to the approxi-

mation for the viscous relaxation time of a bubble in a melt deஹ஭ned by Oldroyd [1953] in

which rb,i is the initial bubble radius, such that

λd = rb,iη0
Γ

(3.8)

I note that there is a packing-dependent proportionality between rp,i of statically sintering

particles in a granular material and rb,i of bubbles in the resultant viscously relaxing suspen-

sion. This consideration permits me to describe a continuum in the processes of sintering

and bubble relaxation, as the material progresses from granular to a suspension medium. As

such, the data can be empirically approximated by the following exponential expression

φT (t) = φT,f +
(
φT,i − φT,f

)
exp

(
− t
λd

)
(3.9)
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whereφT,i andφT,f are the initial and ஹ஭nal total porosity respectively, andλd is the characteris-

tic densiஹ஭cation timescale, which is dominantly related to the bubble collapse and relaxation

timescale. It is clear that Equation 3.9 is an adaptation of Equation 2.16 derived from theory6,

by accounting for the ஹ஭nal porosity value (i.e., the remaining isolated porosity when the sin-

tering process is over). Because the total porosity includes isolated and connected pores, and

because in some instances the results for viscous sintering show that the connected porosity

decays to zero (i.e., φC,f = 0; Figure 3.6B and D), Equation 3.9 becomes

φC (t) = φC,i exp
(

− t
λd

)
(3.10)

which is, indeed, the same as Equation 2.16 (although describing the evolution of total poros-

ity). By injectingEquation 3.9 intoEquation 3.4one canprovide the following relative density

evolution with time

ρr (t) = ρr,i +
(
ρr,f − ρr,i

)(
1 − exp

(
− t
λd

))
(3.11)

As for the ஹ஭rst stage of sintering, a least squares regression analysis has been applied to all

the total and connected porosity data shown in Figure 3.6, and all the relative density data

shown in Figure 3.7. For each experimental temperature (NIST glass) and each particle size

distribution (glass beads), values of λd were adjusted such that they yield best-ஹ஭t controlling

bubble sizes. The best-ஹ஭t models are represented as coloured solid curves in Figures 3.6 and

3.7. I note that rp,i/rb,i is ∼1.3–2.3 (Table 3.2), which is consistent with the pore space radii

expected between particles of a heterogeneous population at maximum packing.
6See Section 2.1.
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Table 3.2: Melt parameters known or estimated for use in sintering models (see text) and relative

density model outputs.

Material T η0 Γ λs rp,i λd rb,i rp,i/rb,i
– K Pa s Nm−1 hours µm hours µm –

NIST powder 873 2.24 × 109 0.3 35.1 17 26.8 13 ∼1.3
NIST powder 923 1.1 × 108 0.3 2.6 25 1.2 11 ∼2.2
Fine beads 923 2.09 × 108 0.3 6.1 31 2.6 13 ∼2.3
Coarse beads 923 2.09 × 108 0.3 20 103 10.6 54 ∼2

The data presented in Figure 3.6 can be cast in a porosity space (i.e., connected against to-

tal porosity), where the data points plot below the isoline (total = connected porosity) and

any vertical distance from this isoline is given by the isolated porosity. I observe that both

sintering NIST glass powder and glass beads data lie sub-parallel to the isoline and system-

atically deviate from it, as connected porosity decays to zero (Figure 3.8). Mechanisms such

as cracking, crack healing, coalescence by bubble growth and bubble collapse have been in-

ferred from trajectories in this porosity space [e.g., Kennedy et al., 2010]. I observe that the

sintering trajectories followed by the data points in Figure 3.8 indicate an overall pore collapse

mechanism, which is consistent with the viscous sintering theory7.

The eஸஹ஭cacyof themodels inEquations 3.9 and 3.10 canbe testedbynon-dimensionalisation

of the controlling parameters. As such, a relative porosity φr can be deஹ஭ned as

φr =
φC
φC,i

; φr =
φT − φT,f

φT,i − φT,f
(3.12)

for the connected and total porosity respectively, which implies that the initial and ஹ஭nal values
7See Section 2.1.
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Figure 3.8: Trajectories in the total-connected porosity spacewith best-fit curves to themodels (see

text) for (A) theNIST glass and (B) the glass beads. The colour coding of theNIST glass data refers to

the two viscosities investigated (see Figure 3.6A) and that of the glass beads data to the two particle

size distributions investigated (see Figure 3.2B).

become 1 and 0, and a speciஹ஭c time of sintering τd can be deஹ஭ned by

τd = t
λd

(3.13)

These deஹ஭nitions yield a master sintering curve for all viscous sintering of metastable single-

phase melts (Figure 3.9).

3.3.2 Strength recovery

High temperature uniaxial compressive strength tests show that stress accumulation ismostly

elastic and that macroscopic failure is preceded by aminor amount of strain hardening, high-

lighting the predominantly brittle nature of porous lava at such viscosity and high strain rate

(Figure 3.10). Note that the defect-free NIST glass (pure melt; black curve in Figure 3.10A)
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Figure 3.9: Amaster sintering curve for all the data presented in Figure 3.6. The filled symbols stand

for the total porosity, whereas the unfilled ones for the connected porosity. The colour coding of the

NISTglassdata refers to the twoviscosities investigated (seeFigure3.6A) and thatof theglassbeads

data to the two particle size distributions investigated (see Figure 3.2B).

displays the most strain hardening prior to failure. One can observe that the stress-strain

curves are very similar for both the sintered NIST glasses and sintered glass beads, suggesting

that themicrostructure of the porous network is not a ஹ஭rst-order control during deformation

and therefore less relevant. Sintering and densiஹ஭cation result in strength recovery (i.e., when

the sintering time approachesλs, the strength of single-phase, defect-freemelt (glass) is recov-

ered). This result is expressed by the UCS (peak stress at failure; here measured at 10−3 s−1). I

observe that theUCS drastically increases with sintering time and thus decreases non-linearly

with total porosity (Figure 3.11).
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Figure 3.10: Micromechanics during sintering. The differential stress (i.e., the axial stress) and axial

strain resulting from strength tests performed at a constant strain rate of 10−3 s−1 for sintered sam-

ples of (A) NIST glass and (B) glass beads. The black line in (A) represents the stress-strain curve for

the defect-free NIST glass.

As the porous structure ofmymediummainly consists of pores (instead of cracks), I tested

the applicability of the pore-emanating crackmodel to constrain the UCS results [Sammis&

Ashby, 1986]. Zhu et al. [2011] provide an analytical approximation for the pore-emanating

crack model as follows

σP = 1.325KIc

φ0.414√πrpores
(3.14)

where σP is a compressive strength, rpores the average radius of the pores and KIc is the frac-

ture toughness or the critical stress intensity factor of glass through which a fracture needs

to propagate to achieve complete failure. Note that fractures propagate by the conversion of

strain energy to fracture surface energy; here, viscous dissipation of strain energy above the

calorimetric glass transition is negligible, as the viscosity and strain rate are high: relaxation
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Figure 3.11: Strength recovery during sintering. (A) Uniaxial Compressive Strength (UCS) as mea-

sured by the peak stress at failure. Displayed are predicted isopore lines for different radii from

which cracks initiate in the pore-emanating crack model [Sammis & Ashby, 1986; Zhu et al., 2011].

(B) The correlation between theUCSmeasured and theUCSpredicted by the pore-emanating crack

model for pore sizes measured in similarly sintered samples (see Figure 3.5A). The colour coding of

the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of the glass

beads data to the two particle size distributions investigated (see Figure 3.2B).

would require >100 s but the strength tests are performed in ≪100 s. This ensures defor-

mation in a purely brittle regime. Combining measured porosities and estimated values of

KIc for intact, defect-free borosilicate glass of a similar composition [Wiederhorn, 1969] to

the NIST glass of ∼0.7MPam1/2, I can approximate the relationship between the pore ra-

dius rpores and compressive strength using Equation 3.14 (see grey dashed lines in Figure 3.11A).

This modelled relationship agrees with my experimental data (Figure 3.11B; NIST glass data

only), as poorly-sintered samples with a high fraction of relatively large (∼1 mm) pores have a

compressive strength appropriate to their pore size; similarly, highly-sintered samples with a

low fraction of relatively small (100 µm) pores have a compressive strength comparable to the

modelled strength. This comparative analysis suggests that the pore-emanating crack model
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is wholly applicable to the strength of bubbly magma as a function of pore fraction and size

at the porosities investigated here.

3.3.3 Elasticity recovery

I tracked two elastic moduli during sintering: (1) the P-wavemodulusMmeasured statically8

and (2) the Young’s modulus or tensile modulus Emeasured dynamically (i.e., during elastic

loading of the samples). The P-wave modulus is deஹ஭ned as

M = ρbulkv
2
P (3.15)

where vP is the P-wave velocity, and the Young’s modulus is given by the linear slope of the

stress-strain curve during elastic deformation.

I observe that the total porosity is linearly proportional to the inverse of the measured

ultrasonic P-wave velocity. Therefore, the P-wave modulus is also linearly, inversely propor-

tional to total porosity (Figure 3.12) until the granular threshold value [Nur et al., 1998]. This

critical porosity threshold is constrained here to a value of ∼0.33 for the NIST glass; that is,

the porosity at which the solid phase of the material is no longer load bearing and the bulk

material behaves in a granularmanner at low loads [Nur et al., 1998]. This relationship iswell-

established and suggests that the progressive sintering of fragments consistently densiஹ஭es the

material to below the theoretical critical porosity. The porosity range of the initial starting

material is above the threshold, as it is granular. A simple linear regression may describe the

trends observed as follows

M = M0 − bMφT (3.16)
8See Section 3.2.3.
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Figure 3.12: The effect of the total porosity on (A) the P-wave modulus and (B) the relative P-wave

modulus, during sintering. Thesolid linesare thebest-fits to thedatausingEquation3.16. Thecolour

coding of the NIST glass data refers to the two viscosities investigated (see Figure 3.6A) and that of

the glass beads data to the two particle size distributions investigated (see Figure 3.2B).

for whichM0 is the P-wave modulus of the pure glass (i.e., the value at φT = 0) and bM the

slope. The diஸference between the two materials used here; that is, the distance between the

two best-ஹ஭t lines shown in Figure 3.12A, corresponds to (1) the diஸference in P-wave modulus

of the pore-free, dense specimens and (2) diஸferences in the pore microstructure associated

with particle packing and angularity. The ஹ஭rst diஸference serves to modifyM0 whereas the

second diஸference serves tomodify bM. This ஹ஭rst diஸference is, in turn, controlled by the diஸfer-

ence in glass density between the NIST glass (2375 kgm−3) and the glass beads (2755 kgm−3).

The second diஸference is further illustrated by normalising the P-wave modulus by its ஹ஭tted

glass value (Figure 3.12B; relative P-wave modulus).

In the same manner as for the UCS9, the Young’s modulus shows a non-linear trend with

total porosity (Figure 3.13). Both materials tend to recover their glass value at zero porosity.
9See Section 3.3.2.
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Figure3.13: Theeffect of total porosityon (A)Young’smodulus and (B) the relativeYoung’smodulus,

during sintering. The solid lines are the best-fits to the data using Equation 3.17. The colour coding

of theNISTglass data refers to the twoviscosities investigated (seeFigure3.6A) and that of the glass

beads data to the two particle size distributions investigated (see Figure 3.2B).

An empirical relationship for the eஸfect of porosity on Young’s modulus of polycrystalline

refractory materials and used in the ஹ஭eld of rock mechanics is given by Spriggs [1961]

E = E0 exp
(
−bEφT

)
(3.17)

for which E0 is the non-porous Young’s modulus and bE an empirical constant. Using Equa-

tion 3.17 the data canbe ஹ஭ttedby least square analysis, which shows that it iswell-encompassed

by this model (Figure 3.13A). As for the P-wave modulus, I see that the diஸference in trends is

controlled by the diஸference in the non-porous elasticmoduli of the specimens, which is likely

due to the diஸference in glass density. Similarly, when normalising the Young’s modulus by

its ஹ஭tted glass value (Figure 3.13B; relative Young’s modulus), a diஸference remains andmay be

again inferred from diஸferences in microstructure of the porous networks.
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3.4 Implications for magmas

The results presented in this study show that surface tension is capable of sintering ash par-

ticles and densifying porous lavas. Limitations in my experiments remain however as, in na-

ture, sintering at lowpressures in conduitsmay be accelerated if volatiles are resorbed into the

melt, locally lowering the viscosity [Hess &Dingwell, 1996] and facilitating neck formation.

However, sintering in surஹ஭cial deposits, such as ignimbrites, may occur in the presence of air,

which has a low solubility in silicate melts and is therefore not a signiஹ஭cant viscosity-forcing

factor [Castro, pers. comm.]. Additionally stress, whether compressive or tensional, can

contribute to the total stress forcing densiஹ஭cation. The results nonetheless demonstrate the

near-static limiting conditions underwhich these processes can operate andmay help provide

a basic constraint on condition of sintering and densiஹ஭cation of eruptive products in nature.

3.4.1 Plug densification and stiffening

Sintering and densiஹ஭cation may be important processes occurring during lava dome extru-

sion. The porosity of lava domes varies widely (0–80%; Castro & Cashman [1999]) and

the lava commonly undergoes cycles of fracture and subsequent healing with or without the

presence of tuஸஹ஭site ash fragments [Tuஸfen &Dingwell, 2005; Kolzenburg et al., 2012]. Dur-

ing magma fragmentation, the fragments, which are not ejected from the shallow conduit,

will sinter, heal and recover strength. Although my experiments only considered uniaxial

compressive stress (neglecting conஹ஭ning stress, which accelerates compaction and pore pres-

surisation but counteracts dilatation), application of the aforementioned sintering timescale

relationship suggests that healing is indeed very rapid (e.g., minutes to hours) for crystal-free

melts, as speculated by Kolzenburg et al. [2012], who were dealing with crystal-rich tuஸஹ஭sites
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which relax at a presumably lower rate. I note that even at surஹ஭cial stress conditions a sig-

niஹ஭cant strength recovery can be achieved within the initial 15% densiஹ஭cation. Magmastatic

stress and diஸferential stress from magma ascent, which are greater than the stress imparted

by surface tension, will accelerate this process. Thus the strength of a lava dome plugging a

conduit should be seen as transient and requires knowledge of the porous network in real

time if we wish to accurately constrain the eruption style [e.g., Edmonds &Herd, 2007].

3.4.2 Volcanic ash sintering in rheomorphic flows

The description of sintering in natural volcanic settings is typically referred to as welding

and only occasionally is the term “sintering” used to describe the low-grade end-member of a

welding continuum [Wilson &Hildreth, 2003]. Grunder & Russell [2005] suggest that, in

fact, welding only applies to sintering that is coupled with ஺ாattening, compaction or stretch-

ing of pyroclasts. In the ceramics and glass science literature the description of sintering refers

to the entire continuum and encompasses the diஸfusive and viscous components depending

on the material state.

Most volcanic ash is dominantly composed of glass and so any scenario where volcanic

ash is deposited close to or above the glass transition interval or where ash is subjected to a

trajectory of reheating above the glass transition interval will result in a degree of viscous sin-

tering dependent on the ratio of melt drop radius and surface tension (e.g., Equation 3.7).

Pervasive ductile deformation structures in so-called welded ignimbrites deposited from py-

roclastic density currents are interpreted to result from the continued shear stress imposed

by ஺ாow of the overlying mass on viscously deformable lava-like ஺ாows [Branney & Kokelaar,

1992;Manley, 1995]. The bed-load suspended in the pyroclastic density currents, which sinter
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upondeposition, is estimated to rangebetweenvery ஹ஭ne ash (µm) andblocks (cm–m). There-

fore, understanding of the particle size in஺ாuence is critical for correctly estimating sintering

timescales or temperatures of emplacement. The normalised density of such deposits has

been used to rank the strain associated with sintering and compaction [Smith, 1960; Wilson

& Hildreth, 2003; Quane & Russell, 2005]. Normalised densities for non-welded material

ranges from 0.3–0.4 whereas foliated and welded vitrophyric material ranges from ∼0.7–

1.0 (welding intensity rank IடVI; Quane & Russell [2005]). Application of my modelled

relationship provides a lower constraint of the timescale of the sintering interval over which

porosity can be reduced to the values observed in the deposits under ambient pressure con-

ditions; that is, neglecting the load of the overlying ஺ாowing mass. These data suggest that

for a pyroclastic density current containing suspended fragments of super-cooled silicate liq-

uid with long relaxation times, the sintering time upon deposition can be approximated by

Equation 3.7. Some authors invoke a geometrical parameter to approximate the sintering

fragments to spheres, which in cases of low-angularity particles may be more appropriate

[e.g., Scherer & Bachman, 1977]. Thus my considerations complement previous studies and

provide detailed insights into the relationship between the particle size and the melt proper-

ties which should be incorporated into the rheological relationships developed for volcanic

welding [e.g., Quane et al., 2009].

If I consider a pyroclastic deposit in its entirety, an overburden stress of 105 Pa is predicted

for a deposit ∼10m, which exceeds surface tension and thus induces compressive ஺ாatten-

ing and foliation during sintering [Russell & Quane, 2005]. However, densely welded ig-

nimbrites commonly result from progressive aggradation from sustained density currents

[Branney & Kokelaar, 1992] and therefore the overburden is an end-state and sintering, ini-
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tiated at low axial stress and would be partially controlled by the processes I describe.
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Prediction ॾ very difficult, especially if it’s about the future.

Niels Bohr

4
Material failure forecasting

Elastic waves are generated when materials fracture under given stress conditions.

Their number and energy increase non-linearly, ending in a system-sized catastrophic failure

event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding

large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Fore-
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castMethod (FFM).Here I test the hypothesis that the style andmechanisms of deformation,

and the accuracy of the FFM, are both tightly controlled by the degree of microstructural

heterogeneity of the material under stress. I generate a suite of synthetic samples with vari-

able heterogeneity, expressed by the total porosity. I experimentally demonstrate that the

accuracy of failure prediction increases drastically with the degree of material heterogeneity.

These results have signiஹ஭cant implications in a broad range of material-based disciplines for

which failure forecasting is of central importance. In particular, the FFM has been used with

only variable success to forecast failure scenarios both in the ஹ஭eld (volcanic eruptions and

landslides) and in the laboratory (rock and magma failure). My results show that this vari-

ability may be explained, and the reliability and accuracy of forecast quantiஹ஭ed signiஹ஭cantly

improved, by accounting for material heterogeneity as a ஹ஭rst-order control on forecasting

power.

4.1 Damage acceleration and failure

Most Earth materials exhibit signiஹ஭cant structural heterogeneities. Common examples are

local density ஺ாuctuations, pores, cracks and crystals [Alava et al., 2006]. The presence of

these so-called Griஸஹ஭th ஺ாaws in materials provides sites of stress concentration where isolated

cracks may nucleate favourably [Griஸஹ஭th, 1921] and their growth dynamics under subcriti-

cal loading may be strongly aஸfected [e.g., Petri et al., 1994; Ramos et al., 2013]. Ultimately,

sustained microcrack initiation, multiplication and coalescence ofிen results in a critical den-

sity of fractures whereby macroscopic rupture ensues. In this manner, fracturing in hetero-

geneous materials is pervasive prior to failure, as cracks propagate small distances between

஺ாaws and strain energy can be readily dissipated elastically [Paterson&Wong, 2005;Wong&
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Baud, 2012]. In non-porous glasses, such elements of heterogeneity are lacking and the few

crack nucleation sites available are typically nanoscopic in scale [Célarié et al., 2003; Bonamy

et al., 2006]. Therefore, the crack propagation distance is relatively large and the strain en-

ergy stored must exceed the activation energy required for nucleation and propagation of

fractures across the sample [Griஸஹ஭th, 1921]. In such cases, little or no strain energy is released

prior to rupture and fracturing is localised rather than pervasive. Thus more homogeneous

materials possess a great propensity for highly catastrophic failure through rapid, unstable

crack propagation associated with few precursory signals [Alava et al., 2006].

In the Earth system, strain localisation and material failure yield threshold for natural dis-

asters. At volcanoes the onset of an eruption is ofிen preceded by an acceleration in seismicity

originating from the fracturing of rocks and formation of a conduit [Kilburn, 2003; Smith

et al., 2009]; likewise eruptive transitions to explosions are also preceded by such characteris-

tic seismic patterns [De la Cruz-Reyna &Reyes-Dávila, 2001] that have been experimentally

demonstrated to originate frommagma failure [Lavallée et al., 2008; Tuஸfen et al., 2008]. In

the case of landslides, a similar acceleration in seismicitymay also be observed [e.g., Fukuzono,

1985; Kilburn & Petley, 2003]. Thus empirical mechanistic models have been developed to

describe the stress and strain rate extant upon failure of bothporous rocks [Paterson&Wong,

2005] andmagmatic suspensions. Material deformation and failure is generally accompanied

by accelerating precursory signals [e.g., Mogi, 1962; Lockner & Byerlee, 1977; Lockner, 1993;

Petri et al., 1994; Davidsen et al., 2007; Ramos et al., 2013]. This acceleration represents the

basis for the application of time-to-failure forecasting models [Fukuzono, 1985; Voight, 1988;

Cornelius & Voight, 1994; Main, 1999]. During rock deformation, microcracking releases

acoustic emissions prior to macroscopic failure [Lockner, 1993]. Their temporal, spatial and
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size distribution follow a power law [Voight, 1989; Petri et al., 1994; Main, 2000; Davidsen

et al., 2007], which is also observed in tectonic earthquake afிershock activity [Shaw, 1993;

Utsu et al., 1995; Shcherbakov et al., 2004] as well as in seismic precursors to volcanic erup-

tions [Voight, 1988; Main, 1999; Kilburn & Voight, 1998]. Nevertheless, the wide range of

materials in nature and especially the degree ofmaterial heterogeneity (at all scales) challenges

our understanding of precursory signals leading to natural disasters [Sornette, 2002].

4.2 Experimental methods

4.2.1 Sample preparation

The suite of samples was fabricated by viscous sintering under no external applied stress1.

I used industrial soda-lime silica beads (Spheriglass® A-glass microspheres 1922 and 2530,

Potters Industries Inc.) with well-constrained chemical and physical properties such as the

calorimetric glass transition interval and the viscosity-temperature dependence. This mate-

rial is also chemically stable and does not crystallise or degas at the experimental conditions. I

systematically packed glass beads in alumina ceramic crucibles (44mm diameter and 75mm

height) and heated them at 10 Kmin−1 to an isotherm above the glass transition at which the

melt viscosity is 2.09 × 108 Pa s. Viscous sintering took place during dwells of 1 to 32 hours

and the samples were cooled down at a slower rate of ∼5 Kmin−1 to avoid induced thermal

cracks. The densiஹ஭ed products were ஹ஭nally drilled out from the crucibles to sample cores of

25mmdiameter by 50mmheight. The total porosity in the suite of cores was calculated from

the density of the bulk sample and the powdered glass density as measured afிer sintering.
1See section 3.2.2
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4.2.2 Sample characterisation

Connected and total porosity, and ultrasonic wave velocities of the porous glass samples were

characterised using the methods described in section 3.2.3. Accordingly, a series of UCS tests

was performed in a high load, high temperature uniaxial press2 equipped with a split furnace

surrounding the pistons (in order to simulatemagma deformation in the upper volcanic con-

duit) at a constant strain rate of 10−3 s−1 and a temperature of ∼825 K. Because the samples

are only composed of two phases, porosity strongly controls the subcritical dynamics during

brittle deformation. Similarly to the critical point analogy3 [Davies, 1992; Alava et al., 2006],

I deஹ஭ne a sample “order parameter” Q based on the normalised diஸference between the areas

of both phases in Figure 3.5 (whichwould directly provide a quantitativemetric for structural

heterogeneity in porous glass samples)

Q =
∣∣∣∣Awhite − Ablack

Atotal

∣∣∣∣ (4.1)

whereAwhite,Ablack andAtotal and the areas described by the glass matrix and the pores, and

the total area respectively. Since the ஹ஭eld is boolean (i.e., a change of dimension does not

add to the complexity), I can interconvert between area and volume, such that Equation 4.1

becomes

Q =
∣∣∣∣Vmatrix − Vpores

Vtotal

∣∣∣∣ (4.2)

2See schematic in Figure 3.4B
3During the approach to a critical point or the in the neighbourhood of a critical point, a system is appro-

priately described on lengthscales on the order of the correlation length (e.g., the size of the largest crack for a
specimen under subcritical loading), since details on smaller lengthscales are irrelevant to the overall behaviour.
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By injecting Equations 3.3 and 3.4 into Equation 4.2 I further get

Q =

∣∣∣∣∣∣
(
1 − φT

)
Vtotal − φTVtotal

Vtotal

∣∣∣∣∣∣ =
∣∣∣1 − 2φT

∣∣∣ (4.3)

It follows that at φT = 0 (pore-free) or φT = 1 (no solid phase), Q = 1 (i.e., perfect order),

and that at φT = 0.5,Q = 0 (i.e., maximum disorder). The heterogeneity index (or disorder

index) is thus straightforwardly calculated fromH = 1 − Q.

4.2.3 Microseismic data acquisition

During deformation at high temperature in the uniaxial press, the cooler ends of the pistons

were equipped with two (one on each end) Acoustic Emission (AE)4 broadband transduc-

ers of 125 kHz central frequency. The pistons were thus used as waveguides for AEs released

during microfracturing processes and catastrophic sample failure. The AE signal was trans-

ferred using buஸfered 40 dB pre-ampliஹ஭er to a data acquisition system (Richter system, Ap-

plied Seismology Consultants), which recorded AE voltage data continuously (12-bit A/D

full-waveform resolution) at a sampling rate of 20MHz. From these continuous streams, AE

event onsets were (1) triggered using a standard STA/LTA (Short-Term Average over Long-

TermAverage) detector [Baer&Kradolfer, 1987] and (2) automatically picked using an adap-

tation of the standard autoregressive-Akaike-Information-Criterion (AR஡AIC) picker [e.g.,

Sleeman & van Eck, 1999; Leonard, 2000; Zhang et al., 2003].

In seismology, event detection5 is of foremost importance since seismological surveillance

of the globe implies the storage of huge quantities of informations. Detection algorithms
4AEs are high-frequency (in the range of 1 kHz to 1MHz), transient stress waves generated by release of

accumulated elastic energy during mechanical loading of a material.
5Also known as “event triggering”.
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havebeendeveloped and are all basedon seismic onset characteristics: (a) the signal amplitude

increases tremendously and (b) themain frequencies become those of the earthquake. In AE

testing, event detection is commonly basedononeof these characteristics andmadeby setting

a set of deஹ஭ned parameters, such as a simple voltage threshold. However, other energy-based

algorithms such as the STA/LTA method are widely used in seismology to characterise the

evolution of the local signal-to-noise ratio. They ofிen involve the computation of the signal

envelope

Es (t) =
√
s (t)2 s̄ (t)2 (4.4)

where s and s̄ are the signal and its Hilbert transform. During the arrival of a wave, the signal

envelope average at short term (STA: approximation of the local signal) over the its average

at longer term (LTA: approximation of the global noise) varies signiஹ஭cantly. Thus, when a

threshold ஹ஭xed a priori is exceed, detection ensues. For my AE records, I found that setting

the STA andLTAwindows to 1 and 20ms respectively, and the threshold to 2 yielded the best

results.

Accordingly, event picking is also a critical component of signal processing in seismology.

Modelling the signal as an autoregressive process is an usual approach for onset time deter-

mination. Akaike [1974] was the ஹ஭rst to show that a time series could be divided into locally

stationary segments, each of which representing an autoregressive process, and to deஹ஭ne a

mathematical criterion to solve for the separation point between two segments. For a time

series x [1,N] for whichN is the total number of samples, the Akaike Information Criterion

(AIC) is given by

AIC [k] = k ln (var(x [1, k])) + (N − k − 1) ln (var(x [k + 1,N])) (4.5)
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where k is the current sample index. The function compares the logarithm of the variance

before and afிer the current sample. Since the variance measures the dispersion of the data

around the mean, an important diஸference in dispersion occurs before and afிer the sample k

in Equation 4.5 during the arrival of a seismic wave, such that its onset ofிen corresponds to

the minimum of the AIC function. In the case of AE the signal was de-noised prior to AIC

computation.

Once triggering, P-wave picking and event selection have been performed, characteristics

of each AE event are computed, such as the peak amplitude in dB and the energy in nJ (based

on a resistance reference standard value of 10 kΩ). Altogether, this procedure permits the

generation of pre-failure catalogues of AE events for each deformation experiment. These

catalogues are further used as the basis for the application of the FFM.

4.3 Failure predictability

4.3.1 Models of acceleration

A great number of catastrophic events share similar characteristic accelerating trends inwarn-

ing signals [Sornette, 2002] and are potentially describable via similar scaling laws [Bak et al.,

2002; Davidsen et al., 2007]: rupture of engineering structures, natural catastrophes (such

as great earthquakes, volcanic eruptions, landslides and avalanches), abrupt weather changes,

some stock market crashes and even human parturition, amongst others. In many current

models for precursory acceleration, the rate of seismic events ω̇ can be described by the Time-

ReversedOmori Law (TROL) [Hirata, 1987; Shaw, 1993; Utsu et al., 1995; Shcherbakov et al.,

2004]

ω̇ (t) = kPL (tc − t)−p (4.6)
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for which kPL is a scaling parameter, p parameterises the rate of acceleration (in turn depen-

dent on the dominant crack mechanism [Kilburn, 2003]) and tc is the critical time (corre-

sponding to the time of system-sized catastrophic failure). This critical point is deஹ஭ned by a

mathematical singularity as the quantity ω̇ evolves toward inஹ஭nity. Equation 4.6 is directly

analogous to the approach to a critical point in a second-order phase transition for the correla-

tion length (size of the largest cluster or inmy case the largest growing crack)6 as a function of

temperature rather than time (alsowith a critical exponent analogous to p, which depends on

themicroscopic physics) [Main, 2000; Alava et al., 2006]. The TROL is of widespread inter-

est as a forecasting tool and has been extensively applied to material failure phenomena [e.g.,

Tokarev, 1971; Fukuzono, 1985; Voight, 1988; Cornelius & Voight, 1994; Kilburn & Voight,

1998; Main, 1999; De la Cruz-Reyna &Reyes-Dávila, 2001; Kilburn & Petley, 2003; Kilburn,

2003; Lavallée et al., 2008; Smith et al., 2009; Smith & Kilburn, 2010; Bell et al., 2011a, 2013].

The FFM is an empirical relationship relating the acceleration of a geophysical observable ω̈

to its rate ω̇ under steady state conditions (stress or strain rate, temperature)

ω̈ = Aω̇m (4.7)

with A ∼ kPL and p = 1
m−1 . In this context ω̇ can be applied to any accelerating signal

whereupon afிer linearisation of the TROL, the FFM takes the following form

ω̇ (t)− 1
p = k− 1

p (tc − t) (4.8)
6See Section 2.2.2.
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In a volcanic context, p has been shown to decrease toward 1 as cracks grow [Kilburn, 2003].

Retrospective analyses of pre-eruptive seismic activity have thus commonly assumed that

p = 1, which implies that the solution is straightforwardly found by means of a linear regres-

sion of the inverse rate with time. However, this approach may yield a biased and inaccurate

solution [Bell et al., 2011b] because the FFM fails to account correctly for the true Poisson

error structure of the data. Therefore, I apply the Maximum Likelihood (ML) method to

the full point process, in order to provide (a) a more reliable estimate of the precision (ran-

dom error) and (b) a more accurate solution, which reduces the potential for residual bias

(systematic error) in forecasting the failure time [Bell et al., 2013]. Following Ogata [1983],

the logarithm of the likelihood function L for the TROL takes a similar form to that of the

modiஹ஭ed Omori law for afிershock occurrence and is, in an interval (t0, t1), given by

ln (L) =
N∑
i=1

ln
(
kPL (tc − ti)−p

)
+ kPL
1 − p

(
(tc − t1)1−p − (tc − t0)1−p

)
(4.9)

for p ̸= 1, and

ln (L) =
N∑
i=1

ln
(
kPL (tc − ti)−1

)
+ kPL (ln (tc − t1) − ln (tc − t0)) (4.10)

for p = 1. The TROL is most commonly employed to describe the rate of pre-failure seis-

mic events because it has a well-deஹ஭ned failure time. Other models have been proposed on

theoretical or empirical grounds, including the exponential model [Lengliné et al., 2008; Bell

et al., 2011a; Bell & Kilburn, 2012; Kilburn, 2012]

ω̇ (t) = kExp exp (qt) (4.11)
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with kExp the pre-exponential scaling parameter and q the rate constant; however, the failure

time is not deஹ஭ned by the dynamics underlying the exponential model and failure forecasts

using this model must be based on other metrics. In this case the log-likelihood of the expo-

nential model is, in an interval (t0, t1), deஹ஭ned by

ln (L) = q
N∑
i=1

ti + N ln
(
kExp

)
−

kExp
q (exp (qt1) − exp (qt0)) (4.12)

A very simple, non-realistic constant rate model can also be used, such that

ω̇ (t) = c (4.13)

for which c is the rate constant. The resultant log-likelihood function, in an interval (t0, t1),

reads

ln (L) = N ln (c) − c (t1 − t0) (4.14)

4.3.2 Time-to-failure analysis

I experimentally test the hypothesis that the accuracy of failure forecasting improves as a func-

tion of material heterogeneity using samples of variable quenched disorder, generated by the

total porosity (0–0.45) available during the synthesis7. This style of heterogeneity also pro-

vides a direct analogue for porous magma fragmentation. Speciஹ஭cally I investigate the failure

of variably porous silicate liquids undergoing the glass transition. Uniaxial compression of

these porous materials was carried out at ∼825 K in the elastic, brittle regime by imposing a

strain rate of 10−3 s−1 while monitoring AEs during deformation up to bulk failure.
7See Section 3.3.
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Energy considerations

During elastic loading, the energy budget of a specimen is signiஹ஭cantly changing, as it is put

out of the initial state equilibrium by pushing towards the macroscopic failure envelope.

The instability, which is described by the critical point or critical time tc, is reached upon

failure. The strain potential energy stored during deformation is progressively released by

brittle fracturing, which implies the conversion of strain energy into dominantly free surface

energy (crack opening and propagation), seismic or acoustic energy (mechanical waves), and

minor amounts of heat and light. AE energy is therefore a proxy for the mechanical energy

dissipated by crack formation. The interplay between stored and released energy controls

the overall energy balance and is investigated hereafிer. Note that the AE energy computed

here is surely an underestimation of the full energy released for multiple reasons: (a) as just

mentioned, the stored energy is not entirely converted into acoustic waves; (b) the AE energy

computed (although gain-corrected) does not represent the energy released at the source be-

cause of path eஸfects in the sample and in the pistons; and (c) the AE signal is not recorded in

joules directly, which implies that there is an inherent calibration error when computing the

energy of a signal.

The calculated AE energy release rate during deformation and failure shows typical hy-

perbolic (power law) acceleration underlying the deஹ஭nition of Equation 4.6 (Figure 4.1A).

Drastic fracture propagation uponmacroscopic failure releases the highest rate of AE energy,

and this rate decreases systematically with increasing heterogeneity (Figure 4.1B). Neverthe-

less, AE energy cannot be used in a failure forecasting perspective based on theMLmethod8

since a point process approach has of yet not been developed and is potentially not trivial
8See Section 4.3.1.
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Figure 4.1: Rate of acoustic energy released from porous glasses during deformation and failure (A)

for the full time series and (B) at failure. The logarithmic space used in (A) is to test the adequacy of a

power law form of acceleration towards failure (see text). The data in (A) are colour-coded from low

to high heterogeneity samples.

[Bell, pers. comm.].

Damage accumulation relates directly to subcritical crack dynamics9 and the AE energy

provides a good indication of fracture processes occurring inside a specimen. Under constant

stress, Equation 2.25 predicts the acceleration of crack length lc and reduces to an equation of

the form [Das & Scholz, 1981; Main, 1999]

lc (t) = lc,i
(
1 − t

tc

) 2
2−n

(4.15)

when n > 2, with lc,i the crack length at t = 0. As described in Section 4.3.1, one can directly

observe that Equation 4.15 has a similar form to Equation 4.6 but with a diஸferent power law
9See Section 2.2.2.
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Figure 4.2: Damage accumulation in porous glasses during deformation and failure plotted in (A)

a log-log and (B) a semi-log space, and colour-coded from low to high heterogeneity samples. The

plotting space used in (A) is to test the adequacy of a hyperbolic trend towards failure, whereas the

plotting space in (B) is to test an exponential form (see text).

exponent. This link was formally made between subcritical crack growth and the FFM by

Main [1999]. When the stress is increasing linearly, the resultant acceleration takes a similar

form [Main, 2000] with a shorter acceleration for a given value of n.

A damage parameter D is directly calculated from the decibel amplitude AdB of the AE

events [Cox &Meredith, 1993]

D =
N∑
i=i

10
3AdB
40 (4.16)

The accumulation of damage displays a supra-exponential acceleration for my experiments

(Figure 4.2). Such damage accumulation is not predicted best by the power law formulation

for subcritical crack growth derived in Equation 4.15 (Figure 4.2A). However, when it is plot-

ted against t
tc in a linear space instead of 1 − t

tc in a logarithmic space, the resultant trends

appear close to linear (Figure 4.2B). Such evolution can be derived by setting n = 2 in Equa-
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Figure 4.3: Mechanical response and strain energy of porous glasses during deformation and fail-

ure. (A) Axial load against axial displacement (data fromFigure 3.3.2B). (B) Cumulative strain energy

stored as estimated by the area under the curves in (A). All lines are colour-coded from low to high

heterogeneity samples.

tion 2.25 and the subcritical crack length can be shown to be [Ojala et al., 2003]

lc (t) = lc,i exp
(
ν ttc

)
(4.17)

where ν is an empirical constant. Nevertheless, damage accumulation can also not be used in

a failure forecasting perspective for the same reasons discussed above; Equations 4.15 and 4.17

are therefore disregarded as potential forecasting tools.

I use the data presented in Section 3.3.2 to calculate the strain energy stored during defor-

mation, here recast as axial force against axial displacement (Figure 4.3A). The strain energy

is simply estimated by the integrated area under the force-displacement curve (Figure 4.3B). I

observe non-linear trends for all samples, which canbe decomposed into (1) an incurved onset

at low axial strain corresponding to some reduction in pore volume (i.e., much of the strain is

accommodated elastically), (2) a linear portion during which the strain is stored into the glass

69



10-2 10-1 100

t/tc

10-16

10-14

10-12

10-10

10-8
E
n
e
rg

y
 p

a
rt

it
io

n
in

g
A

0.0 0.2 0.4 0.6 0.8 1.0
t/tc

B

0.3

0.5

0.7

0.9

H
e
te

ro
g
e
n
e
it

y
 i
n
d
e
x
, 
H

Figure 4.4: Acoustic-mechanic response of porous glasses during deformation and failure. Energy

partitioning (as calculated from ratio of cumulative acoustic over cumulative strain energy) plotted

in (A) a log-log and (B) a semi-log space, and colour-coded from low to high heterogeneity samples.

matrix, and (3) a peak at which macroscopic failure occurs and the energy is released. The

stress drops are not shown in Figure 4.3 but they display full energy release for all samples,

which implies that the remaining strain energy stored (i.e., not released duringmicrocracking

events) is completely consumed upon fragmentation.

The seismo-mechanical coupling can further be formally assessed by looking at the en-

ergy partitioning during deformation and failure. I compute the ratio between the acoustic

energy released and the mechanical energy stored, and track it over the deformation process

(Figure 4.4). A general realisation is that the trends display two stages as (1) the ratio decreases

drastically with time (i.e., more energy is stored than it is released, relatively speaking) and (2)

the ratio increases in increments (i.e., more energy is released than it is stored, relatively speak-

ing). The ஹ஭rst stage quantiஹ஭es the strain energy partition into aseismic processes occurring

during the onset of deformation (interpreted as pore volume reduction or even pore closure)

while the second stage quantiஹ஭es the strain energy partition into seismic processes.
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Retrospective failure forecasting

I applied the TROL to catalogues of acoustic events in order to retrospectively forecast fail-

ure. Equation 4.6 has three free parameters (kPL, p and tc) to adjust since they are not known

a priori. The ML method has been shown to provide statistically stable and repeatable es-

timates of these parameters [Bell et al., 2013]. Additionally, this method uses the timings of

individual AE events rather than event rates determined in equally spaced bins (as is com-

monly the case when applying the standard FFM). TheML solution is found byminimising

the negative log-likelihood function (see Equations 4.9 and 4.10) using a downhill simplex

algorithm. The forecasting window was restricted to 90% of the known failure time. Uncer-

tainties on the ஹ஭tted parameters require prior constraint to be reliably computed such that

this precludes the estimation ofmeaningful error bars on the forecasted failure times. I deஹ஭ne

the forecast error δ as the absolute diஸference between the predicted failure time tc,f and the

experimental failure time tc,e normalised by the deformation time, namely

δ =
tc,p − tc,e

tc,e
=

tc,p
tc,e

− 1 (4.18)

since the deformation time corresponds to the experimental failure time. It follows thatwhen

tc,p = tc,e, δ = 0 (i.e., failure time perfectly resolved); when tc,p < tc,e, δ < 0 (i.e., early

forecast); and when tc,p > tc,e, δ > 0 (i.e., late forecast).

I hereafிer show three experimental examples of samples with a range of heterogeneity be-

tween 0.25 and 0.77. The TROL and exponential models (Equations 4.6 and 4.11) are illus-
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trated in cumulative form to compare against the total number of AE events

Ω (t) = kPL
1 − p

(
(tc − t)1−p − (tc − t0)1−p

)
(4.19)

for the TROL, and

Ω (t) =
kExp
q (exp (qt) − exp (qt0)) (4.20)

for the exponential model. Prospective forecasting at 90% of the raw data using the TROL

and the exponential models shows that they are almost indistinguishable for heterogeneities

of 25% and 37% (Figures 4.5A and 4.6A), unlike for 77% where they start to diverge from

each other (Figure 4.7A). In the latter a more pronounced singularity as time tends towards

the failure time (power law asymptote) is observed, whereas in the formers this singularity

is seemingly not present or has not been reached. Henceforth, the retrospective ML TROL

ஹ஭ts the data very well for any degree of heterogeneity. By means of a statistical tool called

the Bayesian Criterion Information (BIC)10, the discrepancy between the ML TROL and

exponential ஹ஭t may be picked apart. This is illustrated by the ΔBIC, which almost never

favours the TROL over the exponential model (i.e., ΔBIC > 0) forH = 0.25 andH = 0.37

(Figures 4.5B, 4.6B), whilst starting to slightly prefer the TROL (i.e., ΔBIC < 0) for H =

0.77 (Figure 4.7B). However, the results indicate that the AEs released during the ஹ஭rst stages

of deformation generally follow an exponential trend. It is known from fracture mechanics

that exponential trends are controlled by the activation of an increasing number of cracks,

whereas hyperbolic trends are determined by the coalescence of major cracks [e.g., Kilburn,

2003, 2012].
10For a comprehensive deஹ஭nition and analysis, see Section 4.3.3.
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Figure 4.5: Maximum Likelihood failure forecasting for a sample withH = 0.25. (A) Cumulative

number of AE events (solid black line), retrospective ML TROL model (solid red line), and prospec-

tiveML TROL (dashed red line) and exponential model (dashed blue line) at 90% of the failure time.

The vertical dashed line indicates the cut-off for prospective forecasting. (B) ΔBIC for TROL–

exponential (solid blue line) and TROL–constant rate (solid green line). ΔBIC = 0 is indicated as a
horizontal dashedblack line. (C)MLestimateof the rateparameter for theTROLmodel. (D)Forecast

error as calculated from theML estimate of the failure time.

The fact that the power law singularity is not present for low and medium heterogene-

ity samples implies that the TROL almost always predict a rate parameter that has not yet

reached a value around 1 (Figures 4.5C and 4.6C) and a failure time relatively far from the

observed one (Figures 4.5D and 4.6D) (which remains true while moving along the data se-
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Figure 4.6: Maximum Likelihood failure forecasting for a sample withH = 0.37. The composition

of panels (A) to (D) and line colour scheme is as for Figure 4.5.

quence). I can note that the forecast error progressively worsens and indicates an overesti-

mation of the actual failure time (late forecast). It is even displayed that in Figure 4.5D the

failure time is perfectly resolved at∼61% of the sequence. However, the failure time is better

predicted in Figure 4.7D as time approaches it, due to the presence of the power law singular-

ity in the raw data sequence, and the rate parameter decreases toward, or ஺ாuctuates around,

a value of 1 (Figure 4.7C)

When applying the samemethodology to the full AE dataset, the forecasting performance
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Figure 4.7: Maximum Likelihood failure forecasting for a sample withH = 0.77. The composition

of panels (A) to (D) and line colour scheme is as for Figure 4.5.

can be evaluated quantitatively as a function of the heterogeneity index (Figure 4.8). The rate

parameter shows and overall decrease toward a value of 1 and the absolute forecast error im-

proves systematically, with an increase in the degree of heterogeneity (Figures 4.8A and 4.8B).

This is most likely due to the fact that more heterogeneous materials act to inhibit dynamic

fractures by crack arrest and/or by introducing a more heterogeneous stress ஹ஭eld (consistent

with the quasi-static theories used to derive Equation 4.6). In themore homogeneousmateri-

als failure results in an abrupt run-away instability that occurs before the forecast singularity is
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Figure4.8: Heterogeneity influences onmaterial failure forecasting. As thedegreeof heterogeneity

increases, (A) the rate parameter p generally decreases, (B) the absolute forecast error |δ| improves,

(C) theΔBIC (BICPL − BICExp) displays a marked preference of the TROL over the exponential

model and (D) theΔb (binitial − bfinal; see Figure 4.10) shows a higher relative proportion of large to
small AE events towards failure.

reached. As a consequence, the systematic forecast error is smaller (the predicted failure time

is more accurate) when applied to more heterogeneous materials containing total porosities

>0.2, whereas at total porosities <0.2 the error in the predicted failure time can be >100%

of the deformation time.

The TROL is strongly, non-linearly preferred over the exponential model when the entire

dataset is used and importantly, as heterogeneity increases (Figure 4.8C). On the other hand,
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as heterogeneity decreases I observe (1) fewerAEs (providing less advancewarning), (2) a pref-

erence for the exponential accelerationmodel (making failure time harder to deஹ஭ne) and (3) a

sudden-onset singularity at the time of catastrophic failure. All of these elements combine to

degrade the forecasting power signiஹ஭cantly. In operational terms this would present a serious

challenge, for example in forecasting the probability of an eruption during a period of unrest.

Additionally, diஸference in b-values11 shows that it generally decreases as failure approaches,

indicating that there is an increase in the relative proportions of large to small AE events that

accompany increasingly macroscopic fracturing events (Figure 4.8D).

Since the pioneering studies in the ஹ஭eld of earthquake seismology in the early 1960s, the im-

portant role of heterogeneity in fracture processes has been evident [Mogi, 1962]. However,

this concept has not been developed due to a lack of a physical description ofwhat constitutes

heterogeneity inside amaterial [Sornette, 2002]. Physically I show that it can be described by

the simple observable of the volume-averaged quantity of ஺ாaws, which, in my chemically sta-

ble sintered glass specimens, can be attributed to the pores. The porous network is therefore

a good proxy for the eஸfective heterogeneity via its control of the subcritical crack dynamics.

Furthermore, the degree of heterogeneity has been shown to either accelerate the dynamics

when many spatially diஸfuse ஺ாaws are present or, conversely, to retard dynamics when these

஺ாaws aremorewidely spaced [Ramos et al., 2013]. Although these results contradict apparent

advances made by theoretical models [Kierfeld & Vinokur, 2006], they support the idea of

sudden rupture in materials that develop more localised, slow crack propagation prior to the

expected bulk failure; hence leading to a diminished ability to predict such failure.
11For a comprehensive analysis, see Section 4.3.3.
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4.3.3 Statistical analysis

Model comparison

I undertook a comparative analysis, testing how well the diஸferent models of acceleration12

explain the observed evolutionofAE ratewith time. I used theBIC (seeKass&Rafிery [1995]

for a comprehensive review) to quantify the relative performance of diஸferent models. This

statistical tool is based on the likelihood of the observation given themodel, with a weighting

favouring the model with fewer parameters. The BIC is given by

BIC = −2 ln (L) + Np ln (No) (4.21)

where L is the likelihood of the observations given the model,Np is the number of free pa-

rameters and No is the number of observations. When making an inference, the preferred

model is more likely to have the lower BIC. Therefore, calculating the positive diஸference

ΔBIC between two models helps discriminate the preferred model. Here I computed these

diஸferences (i.e., ΔBIC = BICPL − BICExp and ΔBIC = BICPL − BICCR) for the AE dataset

continuously from 50 to 100% of the sequence such that, when ΔBIC becomes negative it

indicates a strong statistical preference for the power law over the other models (Figure 4.9).

AE b-value

Complementary statistical analysis of the AE signals following the seismic Gutenberg-Rich-

ter (G஡R) b-value (i.e., the slope of the log-linear frequency-magnitude relationship) indicates

that cracking occurs on a broad range of scales as deformation proceeds. The frequency-
12See Section 4.3.1
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Figure 4.9: Comparison of the ΔBIC between the TROL and exponential model (solid blue lines)
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The AE b-values lie in the range 0.5–1.0, except for samples with higher degrees of heterogeneity,

where two experiments show b-values of∼1.6.

magnitude data for the AEs is consistent with a G஡R distribution (Figure 4.10A). The G஡R

b-value was determined for AE events above the completeness magnitude using the ML es-

timate [Aki, 1965]. Completeness magnitude is taken as the higher of the two values deter-

mined by themaximum curvature and b-value stabilitymethods [Mignan&Woessner, 2012]

(Figure 4.11). Sensitivity analysis showed that the key b-value results were robust to diஸferent

completeness magnitude estimation methods and to small uncertainties in the completeness

magnitude.

The AE b-value is strongly controlled by the degree of heterogeneity, conஹ஭rming early ob-

servation [Mogi, 1962]. The temporal evolution of the b-value with stress is harder to exam-

ine due to the small number of events. The b-value is therefore examined in a coarse way by

splitting the data set into two halves, one early and one later (Figure 4.10B). In general the b-
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value formaterialswith large heterogeneity tends todecrease dramatically from>2 to∼1, well

above the level expected from the estimated random error (plotted as error bars). This is in-

terpreted as initially pervasive microscopic fractures coalescing into macroscopic ones [Main

et al., 1989] and the deformation localising on the eventual fracture plane. In contrast, the

b-value of less porous material remains around low values of 0.5–1 throughout, suggesting a

high degree of localisation throughout [Main et al., 1989]. This is consistent with there being

fewer nucleation sites for the low-porosity material. The data presented here is not suஸஹ஭cient

to distinguish between models with (a) simple G஡R behaviour with variable b-value and (b)

an exponentially-truncatedG஡Rmodel with constant b-value and variable correlation length

(i.e., the size of the largest fracture). The latter model and a smooth acceleration in event rate

for the heterogeneous samples are however both consistent with the behaviour expected of a

second-order phase transition at the critical point [Alava et al., 2006]. On the other hand the

sudden-onset instability for the more homogeneous samples is more reminiscent of a ஹ஭rst-

order phase transition. Numerical simulations should be employed in future to explore this

transition from ஹ஭rst- to second-order more formally.

4.4 Implications for volcanic eruptions

An estimated 10% of the world’s population live in a close vicinity of a historically active vol-

cano [Peterson, 1986]. A great number of volcanic hazards permanently threatens these pop-

ulations and risk management is of paramount importance in order for inhabitants to be

safely evacuated prior to catastrophes. Experts dealing with the tools for hazard assessment

ofிen encounter the problem of eruption forecasting; that is to issue a timely warning of not

only the expected time and location of a potential eruption, but also the size and the style of
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activity. Indeed, highly dynamics associated phenomena such as pyroclastic ஺ாows pose amore

serious risk than other associated phenomena. Forecasting strategies tendsmore andmore to

be cast in a probabilistic framework [Marzocchi&Bebbington, 2012], inwhich physics-based

predictive models should be coupled with empirical statistics as well as expert opinion. Pre-

dictive models are, as of now, solely based on the temporal evolution of precursory geophys-

ical signals, such as seismicity13. Understanding the potential drawbacks and limitations of

the FFM is therefore an essential aspect of their responsible application to hazard assessment

and risk mitigation.

Previous studies have evaluated the statistical performance of the FFM applied to natural,

experimental and synthetic datasets [Bell et al., 2011b, 2013] but to date no study (to the best of

my knowledge) has assessed its eஸஹ஭cacy as a function of material properties, and the trade-oஸf

between quasi-static and dynamic eஸfects at the system size. At volcanoes, successful forecast-

ing is as yet sporadic and requires the laborious classiஹ஭cationof volcano-seismic signals. While

the onset ofmagma extrusion due to continued fracturing towards the Earth surface has been

retrospectively successfully forecast or “hind-casted” [e.g., Kilburn & Voight, 1998; Kilburn,

2003], this is a necessary but not suஸஹ஭cient criterion for operational or real-time forecasting.

In the case of fracturing during magma ascent, seismicity is most likely triggered by fracture

propagation in the weakest, most porous parts of the magmatic column. In cases where low-

porosity, ஹ஭ne-grained rock or glassy obsidian undergoes fracturing initiated from fewer ஺ாaws,

I expect to encounter a poor resolution of failure. Such a variable failure forecasting power

should equally well apply to the prediction of explosive eruptions for magmas erupting with
13The relatively low cost and easiness of seismic network deploymentmakes seismicity a signiஹ஭cant geophys-

ical observable at volcanoes; it is also generally recognised as the most reliable precursory activity to volcanic
eruptions.
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diஸferent porosities.

The results presented here shed new light onto the basic physical mechanisms responsible

for inaccuracy of time-to-failure forecasting laws, especially in the context of volcanic erup-

tions. In scenarios where magma ascent timescale is very brief and shorter than that of the

seismic unrest, strong deviations from the ideal preparatory fracturing behaviourmust be ex-

pected. I predict that adaptation of material failure forecasting methods with heterogeneity-

based mechanistic constraints will allow predictability of volcanic events in cases when even

little warning is available.
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The most exciting phrase to hear in science, the one that

heralds new discoveriॽ, ॾ not “Eureka!” but “That’s

funny...”

Isaac Asimov

5
Conclusion and outlook

I investigated the timescales of volcanic ash densification and healing by

performing static rheological experiments at temperatures above the glass transition interval

of the starting materials. I used diஸferent starting materials: (a) a powdered borosilicate glass

and (b) two populations of soda-lime silica glass beads. The experiments demonstrated that
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viscous sintering of volcanic ash is rapid, even under low stress conditions, and is dominantly

controlled by melt viscosity (as underlined by the use of (a) at diஸferent temperatures), in-

terfacial tension between pores and melt, and particle size (as underlined by the use of (b) at

the same temperature). Viscous sintering from a granular material to a homogenousmelt is a

continuumprocess involving the evolution fromparticle agglutination tomelt pore collapse.

This transition fromweak, granular to strong coherent behaviour is observed both texturally

and mechanically. The elastic properties of the resultant suspension progressively recover its

glass value: (a) the strength recovers according to bubble-bearing liquid failure criterion and

(b) the elastic moduli recover according to empirical laws. Although particle angularity has

a minor in஺ாuence on viscous sintering kinetics, it does strongly determine the initial packing

and especially the ஹ஭nal pore structure. I therefore observed that the elastic moduli is aஸfected

by diஸferences in pore shape of the end-products.

Densiஹ஭cation and healing of particulate eruptive products is evident in nature and under-

pins processes of welding by viscous ஺ாow under pressure-temperature conditions encoun-

tered in volcanic areas. A vast breadth of scenarios have been identiஹ஭ed and may occur both

inside and outside volcanic conduits. A few examples include tuஸஹ஭sites veins formed during

magma ascent in the conduit or during lava dome extrusion following local decompression

events due to theopeningof fractures,which are thought tobe the result of post-decompression

sintering of magma fragments, and ignimbrite deposited from downslope pyroclastic den-

sity currents, which are thought to be the result of the progressive aggradation and welding

of volcanic ash. Since the sintering process essentially implies destruction of pore networks,

thereby promoting the evolution of mechanical properties towards those of a dense magma,

newly formed sintering material from fallout deposition of ash particles in the conduit or in
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lava domes will further contribute to sealing of the degassing pathways and the formation

of a plug. This behaviour will consequently aஸfect the structural stability of the ediஹ஭ce and

supports cyclical-type explosive eruptions observed at many volcanoes around the world.

Applicability of the present sintering experiments to a natural context could be however

improved by incorporating the eஸfect ofmany other physico-chemical parameters. First of all,

sintering in a more relevant volcanic atmosphere, such as a water-laden atmosphere, would

aஸfect the kinetics by the occurence of coupled viscous-diஸfusive transport mechanisms. Re-

sorption of chemical species into themelt is a signiஹ஭cant viscosity-forcing factor andwould ei-

ther accelerate or retard sintering dynamics. Furthermore, the interaction between gas species

and glassy ash particles in volcanic jets or plumes generates the surஹ஭cial deposition of salt crys-

tals and, upon agglutination, would equally aஸfect sintering kinetics (ongoing study with Dr

Paul Ayris, LMU).

Sintering under diஸferent loading conditions is something that would also strongly aஸfect

the process and results in anisotropic shrinkage (i.e., diஸferential densiஹ஭cation). The addition

of either a uniaxial or a triaxial stress ஹ஭eldwould completely alter the dynamics and contribute

to a higher degree of densiஹ஭cation (under compressive forces) or little, and even no, densiஹ஭-

cation (under tensile forces). Relevant to a volcanic environment would be the simultaneous

occurence of shear deformation,whichwould induce creep-like anddensiஹ஭cationbehaviours.

In this case, a creep rate term would have to be added to the diஸferential equation governing

the free sintering dynamics, which would imply the derivation of an additional timescale due

to a stress intensiஹ஭cation factor. The ratio of the creep to the densiஹ஭cation rate would thus

control the overall kinetics and intuitively be independent of temperature under isothermal

conditions, since both of these rates would still depend on melt viscosity. However, in vol-
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canic environments processes are rarely isothermal and the application of heating or cooling

rates is yet another viscosity-forcing factor. Sintering during simultaneous heating would en-

hance the dynamics and could result in fully dense end-products. The timescale involved in

this case would have to be translated in terms of a “temperature-scale” by introducing time-

dependency of the temperature and integrating the melt viscosity over two extreme values,

since it is the only parameter depending signiஹ஭cantly on temperature1. Conversely, sintering

during simultaneous cooling would not enhance the dynamics and could result in preserva-

tion of the pore networks.

I also investigated the role of structural heterogeneity during dynamic mechanical experi-

ments on the resultant suite of sintered glass samples, which have been performed in a uniax-

ial press equipped with a surrounding furnace and a dual acoustic emission recording sys-

tem. I ran a series of elastic deformation tests until macroscopic sample failure at a con-

stant temperature slightly above the glass transition of the melt (viscous component), but

at a constant strain rate high enough to stay within the brittle regime. The application of a

statistically-improved failure forecastingmethod to precursory accelerating microseismic sig-

nals, originating from brittle cracking events, demonstrated that failure predictability has a

strong non-linear dependence on the degree of sample heterogeneity (which is straightfor-

wardly calculated from the amount of voids). The results are backed up by complementary

statistical analyses of the signals: (a) the Gutenberg-Richter b-value is in the same fashion

controlled by the presence of heterogeneities and cracking mechanisms are inferred from its

temporal evolution (a shifி from the nucleation and propagation of distributed small-scale

to more localised large-scale cracks with decreasing heterogeneity is observed), and (b) com-
1Wadsworth et al. [2014] have already treated the non-isothermal sintering of synthetic glass particles rele-

vant to volcanic ash under linear heating conditions.
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parison of acceleration models indicates that an exponential-like trend (crack nucleation) is

favoured over a hyperbolic-like trend (crack coalescence) as heterogeneity decreases, which

results in a progressive truncation of the forecast singularity as the sample tends to more un-

expectedly shatter from the propagation of pervasive cracks rather than the propagation and

coalescence of cracks into a major shear fracture. However, due to very rapid acceleration of

the precursors, bulk failure prediction is generally only reliable a short time in advance.

These last results highlight the ஹ஭rst-orderphysical controls on failurepredictability inporous

materials and have important implications for the prediction of volcanic eruptions. They

also highlight the need to reconsider empirical failure forecasting laws in a wider context and

better couple them with mechanical parameters, such as failure criteria for heterogeneous

materials. Nevertheless, the eஸfect of other forms of heterogeneity could be investigated in

the future. The inclusion of crystals in the samples would, for instance, aஸfect the subcritical

crack growth dynamics in a non-trivial way. Larger scale heterogeneities (due to the presence

of permeable channels) rather than local ones (as it is the case in the porous samples used here)

would equally aஸfect the dynamics and possibly boost failure resolution. Performing the same

experiments under a range of strain rates, such that they straddle the viscous-brittle transi-

tion, would also be the subject of future studies. In this case I would expect an enhancement

of failure predictability in the viscoelastic window due to steadiness increase of the cracking

dynamics from the occurrence of fracture and healing events during deformation. Future

studies should also explore cyclic loading scenarios, whichmay better represent the pulsatory

nature ofmagma ascent. Onlywith a thoroughunderstanding ofmaterial response to diverse

stress conditions will volcanology move forward in the integration of rheology into improve

monitoring strategies at active volcanoes.
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A
Sandbox for thermo-mechanical modelling

A.1 Viscous compaction of glass shards

Here I present a fully analytical approach combining a one-dimensional model for conduc-

tive heat transfer with a viscoelastic mechanical model to account for progressive changes in

heat conductivity in a porousmagmaundergoing compaction. This approachhas beendevel-

oped in order to constrain the eruption and emplacement timescales of an ignimbrite deposit.
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The assumptions are that (1) the ignimbrite was deposited instantaneously and (2) it experi-

enced no deformation during aggradation. The approach developed here is a simpliஹ஭cation

of nature as it has been constrained that the deposition of pyroclastic density currents results

from progressive aggradation [e.g., Branney & Kokelaar, 1992]; yet I assume that deposition

is extremely rapid and that deposition temperaturemay be relatively uniform, in order to use

currentmechanicalmodels. Thus, the starting conditions of themodel are homogeneous ini-

tial temperature and total porosity. The heat transfer is governed by conservation of energy

following the one-dimensional heat equation in Cartesian coordinates

∂T
∂t = D∂2T

∂z2 (A.1)

forwhichT is the temperature, t is the time, z represents the vertical distance perpendicular to

the surface of the deposit andD is the thermal diஸfusivity of the porousmaterial. The classical

deஹ஭nition of the thermal conductivity assumes a pore-free material and, here, I reஹ஭ne this

deஹ஭nition to consider the insulation provided by the total porosity φT of the material [e.g.,

Connor et al., 1997]

D = k
ρCp

(
1 − φT

)
+ ρfCf

pφT

(A.2)

where k is the thermal conductivity, ρ and ρf the skeletal and pore ஺ாuid density respectively,

and Cp and Cf
p the skeletal and pore ஺ாuid speciஹ஭c heat capacity respectively. The pore ஺ாuid

pressure is assumed to be atmospheric, which is reasonable considering the lack of conஹ஭ne-

ment to prevent expansion. The thermal conductivity is also a function of the porosity of the

material considered. Some empirical models have been proposed to relate the thermal con-

ductivity of a porous rock to its pore-free thermal conductivity k0 [Bagdassarov&Dingwell,
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1994]

k = k0
(
1 − φT
1 + φT

)
(A.3)

Analytical solution of EquationA.1 for geological systems hasmost commonly been achieved

by assuming self-similarity of solutions [Carslaw & Jaeger, 1959]. Assuming homogeneous

initial temperature, Carslaw & Jaeger [1959] treat the problem of a cooling magma body in

contact with a county rock at z = 0 andwhich solidiஹ஭es at and below its solidus temperature.

In our case I use the glass transition temperature in place of the solidus. A derived solution

of Equation A.1 for the temperature proஹ஭le in the melt is as follows

Tmelt (z, t) = Ti +
Tg − Ti

erfc
(
λ Dg
Dm

)erfc( z
2
√
Dmt

)
(A.4)

where Ti and Tg are the initial and the glass transition temperature of the melt respectively,

Dm andDg the thermal diஸfusivity of the melt and the glass respectively, and λ a non-deஹ஭ned

thermal constant. Carslaw & Jaeger [1959] have shown that the temperature proஹ஭le in the

solid portion, here the glass, can be described by the following equation

Tglass (z, t) =
Tg

kg
√
Dc + kc

√
Dgerf (λ)

kg√Dc + kc
√
Dgerf

 z
2
√
Dgt

 (A.5)

whereDc is the thermal diஸfusivity of the underlying country rock, and kg and kc the thermal

conductivity of the glass and the country rock respectively. The solidiஹ஭cation surface occurs

following

zglass (t) = 2λ
√
Dmt (A.6)

This thermal approach is further combined with a mechanistic and kinetic description of
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the compaction of the deposited ash [Quane&Russell, 2005, 2006;Quane et al., 2009]. The

porosity evolution with stress σ, viscosity of the material at zero porosity η0 and time t can be

derived using the empirical equation [Quane et al., 2009]

Δt = η0
ασ
(
1 − φT,i

)
exp(−

αφT
1 − φT

)
− exp

−
αφT,i

1 − φT,i

 (A.7)

where

φT (t) = β
β − α (A.8)

and

β = ln

 ασ
η0
(
1 − φT,i

) t + exp

−
αφT,i

1 − φT,i

 (A.9)

Here, φT,i is the initial total porosity and α an empirical constant. Following Quane et al.

[2009] I use α = 0.78 for packing of volcanic ash. The stress distribution across the entire

deposit is described by the overburden as

σ (z) =
(
1 − φT

)
ρgz (A.10)

where g is the acceleration of the gravity.

Equations A.2–A.10 provide the necessary tools to iterate a thermo-mechanical model de-

scribing the feedbacks between compaction via destruction of porosity, temperature (and

thus viscosity) and stress upon deposition. Using a set of constrained glass parameters (Ta-

ble A.1; φT,i = 0.5 and λ = 3.6), I simulate the progression of compaction as a function of

time and initial temperature (Figure A.1). The model results suggest that for the pyroclasts

at a stratigraphic height of z = 0.3m to reach the measured φT = 0.075 at T = Tg, and a
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Table A.1: Initial parameters.

k0 ρ Cp
m2 s−1 kgm−3 J kg−1 K−1

Melt/Glass 1.59 2.9 × 103 1 × 103
Country rock 1.59 2.33 × 103 1 × 103
Pore ஺ாuid 2.5 × 10−2 1.275 1.007 × 103

constrained cooling rate of 0.1 Kmin−1, ∼1 hour is required. Due to the interplay between

cooling and compaction, I can further deduce that ∼1240K is the idealised deposition tem-

perature Ti to meet the measured conditions of porosity, stratigraphic position and cooling

rate (Figure A.2). This compaction time estimate may be faster if syn-depositional shearing

[e.g., Robert et al., 2013] were to have achieved higher stresses than the overburden load con-

sidered in our model.

The welding timescale calculated here agrees well with the 12–20min proposed by sim-

ilar rheological modelling by Robert et al. [2013], but is signiஹ஭cantly shorter than the 10–

15 h proposed for the Bishop Tuஸf (Long Valley Caldera, California, USA) by Wilson &Hil-

dreth [1997]. In contrast it is orders of magnitude more rapid than the thermo-mechanical

constraints on the Bandelier Tuஸf (Valles Caldera, New Mexico, USA) estimated at 1–5 days

[Quane et al., 2009], the Rattlesnake Tuஸf estimated at 10s of days [Riehle et al., 2010], the

Bishop Tuஸf estimated at 10–100s of days [Wilson&Hildreth, 1997; Sheridan&Wang, 2005;

Riehle et al., 2010], and on a rheomorphic phonolitic fallout deposit (Las Cañadas Caldera,

Tenerife, Spain) estimated at 25–54 days [Soriano et al., 2002]. The study constrains that

welding is not, as previously suggested, decoupled from cooling [e.g., Sheridan & Wang,

2005] but rather synchronous with cooling. Here I demonstrate that welding (i.e., sinter-

ing and formation of eutaxitic textures) re஺ாects the temperature-time window in which the
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Figure A.1: Results from the 1D analytical thermo-mechanical model for the lower half of the de-

posit. (A) Overburden stress and time-dependent temperature in the deposit after homogeneous

initial conditions of 1240K and 0.5 total porosity. (B) Total porosity evolution during viscous com-

paction and cooling between 10 s and 5 h. (C) Cooling rate (solid black line) and total porosity (solid
grey line) locked in the glass as themelt crossesTg.

erupted products remain in the liquid state (above the glass transition temperature of the

glass fraction of the pyroclasts).

The general agreementbetween theonset temperature ofwelding (1240K) and the geother-

mometric constraint (1173–1323 K) suggests that little cooling took place during eruption and

transport (unless frictional processes contributed in large amounts; [e.g., Robert et al., 2013;

Lavallée et al., 2014]). In this sense, there are strong parallels between large ignimbrites and

tuஸஹ஭sites within silicic lava-ஹ஭lled conduits, which exhibit similar dense welding textures [e.g.,

Tuஸfen et al., 2003]. In tuஸஹ஭sites, minimal cooling occurs between fragmentation and sinter-

ing due to isolation from the atmosphere in intrusive pyroclastic channels. The inference is

that for large-volume ignimbrites the bulk of themagma is similarly thermally insulated from
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Figure A.2: Estimation of the temperature of deposition and the timescale to reach the measured

porosity at a stratigraphic height of 30 cm in the deposit. (A) Intersection of a cooling rate of

0.1Kmin−1 (horizontal black line) and a total porosity of 0.075 at a height of 30 cm (vertical shaded

area) constrains an initial deposition temperature of∼1240K. (B) The time required to produce the

total porosity observed at a height of 30 cmwhilst cooling to∼1240K constrained here to∼60min

(vertical black line). Horizontal shaded area same as for panel (A).

the atmosphere [Suzuki & Koyaguchi, 2010; Sulpizio & Dellino, 2014], despite degassing to

near-atmospheric pressure; a similar insulation has been postulated from examination of ig-

nimbrite emplaced sub-aqueously [Kokelaar & Königer, 2000]. This must re஺ாect minimal

entrainment of surrounding ஺ாuids (air or water) during pyroclastic fountaining and ஺ாow. It

may also re஺ாect a wide source vent [e.g., Legros et al., 2000]. Cooling of pyroclasts may there-

fore be largely prevented until deposition [e.g., Lesti et al., 2011], thus supporting the view

that the thermal history of explosive eruptions and emplacement are decoupled.

A.2 Temperature delay in a rotary shear apparatus

Here I present a simple solution to heat diஸfusion in a rotary shear apparatus. The experi-

mental setup is designed to investigate the occurrence of frictional melting at a slip interface
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between two rocks (see Hirose & Shimamoto [2005] for details of the technique). It con-

sists of two plane-parallel cylindrical rock samples, which are put in face-to-face contact by

applying a normal stress (1.5MPa) to their axial surface; one of them is held stationary while

the other is placed in the rotary side of the loading column and suddenly spin following a

radial velocity of 1.3m s−1. The stationary sample has axis-parallel drill holes for the insertion

of thermocouples. In the case of rapid heating which accompanies high velocity friction,

the temperature monitored in the host rock only provides an approximation of the actual

temperature at the slip interface; in fact, the thermocouple reads the temperature dissipated

through time. It thus results that each read temperature increments was experienced at the

slip interface at an earlier time. I assume a semi-inஹ஭nite one-dimensional medium under-

going thermal conduction (neglecting dissipation), following the heat equation in Cartesian

coordinates

−∂2T
∂x2 = 1

D
∂T
∂t (A.11)

for whichT is the temperature, t is the time, x is the horizontal distance from the thermocou-

ple andD is the thermal diஸfusivity. The initial and boundary conditions read as

T (x, t = 0) = Ti (A.12)

T (x = 0, t) = Tc (A.13)

where Ti is the uniform initial temperature of the medium, Tc the temperature measured by

the thermocouple at a distance monitored during the experiment. Upon slip and heating,

a temperature T is imposed at the interface (using a Dirichlet boundary condition which

averages the imposed ஹ஭x temperature at each time interval). I apply the following change of
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variable T̄ = T−Ti to Equation A.11 in order to extract the temperature at a position x, thus

obtaining

−∂2T̄
∂x2 − 1

D
∂T̄
∂t = 0 (A.14)

with Equations A.12 and A.13 becoming

T̄ (x, t = 0) = 0 (A.15)

T̄ (x = 0, t) = Tc − Ti (A.16)

Equation A.14 can be solved using the following Laplace transform

θ (x, p) = L
{
T̄ (t)

}
=
∫ ∞

0
exp (−pt) T̄ (x, t) dt (A.17)

which, once applied to Equation A.14, provides me with

−d2θ
dx2 − 1

D
(
pθ − T̄ (x, t = 0)

)
= 0 (A.18)

Using Equation A.15 it further simpliஹ஭es to

−d2θ
dx2 − q2θ = 0 (A.19)

with

q2 = p
D (A.20)
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Equation A.19 oஸfers a mathematical solution of the type

θ (x, p) = − (A exp (−qx) + B exp (qx)) (A.21)

The temperature keeps a ஹ஭nite value when x tends towards inஹ஭nity, so that B = 0 andA =
Tc−Ti

p from Equation A.16. Henceforth, the use of the Laplace inverse transform leads to

θ (x, p) = − (Tc − Ti) erf
(

x
2
√
Dt

)
(A.22)

and ஹ஭nally

T (x, t) = Ti − (Tc − Ti) erf
(

x
2
√
Dt

)
(A.23)

which is used to approximate the temperature along the slip interface using a thermal diஸfu-

sivity of 5.3 × 10−7m2 s−1.

Although simplistic in its discretisation of time and temperature intervals, the estimation

provided by Equation A.23 appears to satisfactorily approximate the evolution of temper-

ature during slip, since the modelled temperatures initially diverge from the thermocouple

read out (while heating takes place faster than what is recorded), then converge as the sample

shortens and the thermocouple approaches and intrudes the melt zone (henceforth provid-

ing an in-situmeasurement of themelt temperature), as seen in Figure A.3. The thermal con-

straint has obvious implication for the mechanics experienced at the slip zone. Yet, a more

accurate three-dimensional derivation of the temperature evolution via the forward iteration

of an analytical solution to Fourier’s law of conduction applied to a cylinder will require at-

tention in the future.
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Figure A.3: Evolution of the slip zone (i.e., the interface between the two rocks) distance from the

thermocouple (input in themodel as x; solid black line), of the temperature recorded at the thermo-

couple (Tc; solid pale brown line) and of the back-modelled temperature at the slip zone (T (x, t);
solid brown line).
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B
Toolbox for microseismic data processing

A toolbox for AE data handling and processing has been designed and coded using Python

programming language. The scripts are continuously being revised as new analysis becomes

necessary to further our understanding of coupled acoustic-mechanic behaviour of volcanic

materials. Thepackage is basedon, andworks togetherwith, thenowfamousObsPy toolbox—

a free andplatform-independentPython toolbox tohandle seismological data fromobservatories—
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developed and maintained by the ObsPy Development Team (devs@obspy.org) at the De-

partment of Earth and Environmental Sciences, section Geophysics, of the Ludwig Maxim-

ilian University of Munich [Beyreuther et al., 2010].

The AEproc package contains commonmethods andmodules to handle and process con-

tinuous AE streams recorded by a Richter data acquisition system using the eXstream sofி-

ware developed by Applied Seismology Consultants (ASC, UK). This system provides up

to 20MHz 12-bit full-waveform acquisition in both streaming and triggering mode. ASC’s

஺ாagship sofிware, the InSite Seismic Processor, is a full-஺ாedged toolbox for microseismic data

handling and processing (including modules for data management, waveform visualisation,

event location and mechanism, etc.). The Streamer Leach module of InSite oஸfers the pos-

sibility to automatically trigger events from continuous AE signals for further processing.

However, research sometimes requires the numerical implementation of newly developed

techniques and methods, such that it is more convenient to be able to use a programming

language. Here I developed scripts in Python to complete AE data analysis. Python is open-

source, platform-independent andmodular, and its popularity has been accelerating over the

years, such that it is increasingly used in various ஹ஭elds and especially, in seismology. This is

because its comprehensive standard library, as well as freely available libraries developed by

people and companies around theworld, provide tools for all kinds of tasks and, in particular,

has excellent features for interfacing C/C++ and Fortran codes.

As of today, AEproc has got essential seismological processing routines via the use of Ob-

sPy. AE data share similar characteristics with classical seismic data; however, their major dif-

ference arises from the sampling rate, which implies that speciஹ஭c routines have to be adapted

to properly handle AE data. In particular, Obspy’s UTCDateTime object based on Python’s
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built-in datetime object1 has a maximum time precision on the order of a microsecond,

whilemicroseismic signals recorded at>1MHz require a higher precision tobehandledprop-

erly. InAEproc, I redeஹ஭ne aDateTimeobject (FigureB.1) based on the excellent eGenix’smx-

DateTime package, which has amaximum time precision on the order of a nanosecond. AE-

proc is constituted of ஹ஭vemainmodules (Figure B.1): (a) a coremodule (aeproc.core) pro-

vides classes for date, time andwaveformmanipulation (via the concept of streams and traces,

as originally implemented in ObspPy), classes for raw data ஹ஭le input/output and storage,

reading functions2 and various functions andmethods as utilities; (b) a visualisation module

(aeproc.visu) for waveform and spectrum (power spectrum, spectrogram and scalogram

in the form of a continuous wavelet transform) plotting; (c) a signal module (aeproc.sig-

nal) contains diverse functions for signal processing such as a calibration, de-noising, ஹ஭ltering

(ஹ஭nite impulse response ஹ஭lters), root-mean-square computation, AIC computation, etc.; (d)

an energy module (aeproc.energy) for continuous real-time seismic energy computation

on streams; and (e) an events module (aeproc.events) for event triggering from continu-

ous streams of data and event manipulation (e.g., amplitude and energy estimation).

1Thedatetimemodule supplies classes formanipulating dates and times in both simple and complexways.
2Only the SRM ஹ஭le format is supported at the moment.
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