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Energetic Materials 

Based on the toxicity of commercially used explosives like RDX or HMX the research focus on 

the synthesis of new less toxic ('green') explosives raises exponentially since the early 

1990´s.1 Because of the variety of work in this area the new commonly used term 'high 

energy material' (HEM) or 'energetic material' (EM) were introduced and comprises the three 

main branches: Explosives, Pyrotechnics, and Propellants (Figure 1). Hence, HEM or EM is 

another description for explosives, pyrotechnics or propellants depending on their 

formulation and their intended use.2  

 

 

 

 

 

 

 

 

Figure 1 Classification of Energetic Materials (EMs). 

Another frequently used term is the so called 'insensitive high explosive' (IHE) which is based 

on the use of inherently insensitive (chemically stable) molecules like TATB (1,3,5-triamino-

2,4,6-trinitrobenzene), FOX-7 (1,1-diamino-2,2-dinitroethane) or DADNP (2,6-diamino-3,5-

dinitropyridine)(Figure 2). IHEs are characterized by very high decomposition temperatures 

and high sensitivity data (>350 N friction, >40 J impact). They withstand accidentally shock, 

fire or impact e. g. by shrapnels or bullets and only burn instead of detonate. But they 

detonate if desired. 

  

                                                
1 J. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 2010. 
2 J. Akhavan, The Chemistry of Explosives, 3rd Edition, The Royal Society of Chemistry, 2011. 
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Figure 2 Chemical structures of IHEs: TATB (1), FOX-7 (2) and DADNP (3). 

An explosive material consists either of solids (e. g. TNT), liquids (e. g. nitroglycerin) or 

gaseous (H2/O2) components. It can be a single chemical compound (RDX), or a combination 

of two (pentolite) or more compositions (gunpowder). Energetic materials are in most cases 

metastable compounds. Any impulse (heat, friction, shock, electric spark) can lead to a very 

fast reaction accompanied by the release of a great amount of energy and gaseous (and/or 

solid) products at high temperature and pressure.3 The energy can be emitted in form of 

shock waves, propulsion of debris, or by thermal and ionizing radiation.2 The American 

Society for Testing and Materials (ASTM) defines an energetic material as a composition, 

containing fuel and oxidizer at once and which react under the release of energy and gas. 

Thus the exothermic decomposition of energetic compounds needs no atmospheric oxygen to 

sustain the reaction. Explosives are further subdivided in primary and secondary explosives. 

Common secondary explosives consist mostly of the elements carbon (C), hydrogen (H), 

nitrogen (N), and oxygen (O) and are so called 'CHNO' explosives. Main research interests on 

new (secondary) explosives are in high power, less sensitivity, and less toxicity of the 

material and their detonation products. Some characteristics which refer to the 'power of 

explosives' are the 4  

• heat of formation Q (kJ kg-1)  

• detonation velocity D (m s-1)  

• detonation pressure p (kbar)  

• released gaseous volume V (L kg-1) 
 

Novel HEs should reach high heat of formations (>5000 kJ kg-1), detonation velocities around 

10.000 m s-1, detonation pressures of >>400 kbar, and densities of 2 g cm-3 or higher.   

  

                                                
3 E.-C. Koch, S. Scheutzow, Review: On the Relation Between Sensitivity Parameters and Molecular Structure 

of Energetic Materials, NATO-MSIAC, Belgium, 2009. 
4 T. M. Klapötke, Chemie der Hochenergetischen Materialien, Walter de Gruyter, 2nd Edition, Berlin, 2012. 
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Explosives are used in civil and military applications. Commercial use comprises for instance 

quarry operations, mining industry and tunneling. Typical explosives in this area are ANFO, 

dynamite, emulsion or slurry explosives. Civil pyrotechnics are used for special effects like 

illumination or sound effects and civil propellants for acceleration in rockets and other 

vehicles.  

Primary Explosives such as lead azide (Pb(N3)2), lead styphnate (2,4,6-trinitroresorcinate) or 

mercury fulminate (C2HgN2O2) are very sensitive towards heat, shock or friction (Figure 3). 

They are normally initiated by burning. The transition from burning (deflagration) to 

detonation (DDT) occurs within very short time (ms) but with less energy content compared 

to secondary explosives. Detonation velocities are in the range of 3500–5500 m s-1. This 

behavior leads to the use for initiating devices such as detonators or priming caps. 

Mainly used secondary explosives are for instance RDX (1,3,5-trinitro-1,3,5-

triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) or HNS (1,2-

bis(2,4,6-trinitrophenyl)ethylene) (Figure 3). They are stable up to 200–350°C, less or 

moderate sensitive towards friction, impact or electric discharge and are normally initiated 

by the shock wave of a primary explosive. Detonation velocities of secondary explosives are 

in the range of 5500–10000 m s-1.2 The released energy and the power of the shock wave is 

much higher compared to primaries. 

 

 

Figure 3 Chemical structures of lead styphnate (1), RDX (2) and HNS (3). 

 

Propellants (low explosives) are divided in gun propellants (e. g. black powder, 

nitrocellulose) or rocket propellants (e. g. LOX/liq.H2, monomethyl hydrazine/dinitrogen 

tetroxide). They can consist either of solids, liquids or gaseous compounds or depending on 

their use as single or multiple propellants (fuel and oxidizer). They are characterized by 

deflagration (produces large amounts of gaseous products) instead of detonation which is 

described by the burn rate given in m s-1 or g s-1. The parameter to describe the efficiency of 

rockets and engines is the specific Impulse Isp (in m s-1 or N s kg-1), which gives the force 

with respect to the amount of propellant used per unit time.4  
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Pyrotechnics 

The word 'pyrotechnic' is derived from the Greek and means the 'art of fire' ('pyr' for fire and 

'techne' for art). A more popular regarded synonym for pyrotechnic is the word 'firework', 

although this correlation is imprecise.5 As stated under chapter 1, pyrotechnics are 

differentiated in military or civilian pyrotechnics.  

Pyrotechnic compositions are capable of self-containing and self-sustaining exothermic 

chemical reactions of solid mixtures and with or without the formation of gaseous products. 

Reaction rates of pyrotechnics lay between explosives (high reaction rates) and propellants 

(low reaction rates). In contrast to HEs, they consist of an oxidizer and a reducing agent and 

produce mainly solid and liquid reaction products.1,4,5 According to the varieties of 

applications several additives are blended to the formulations. Because pyrotechnic 

compositions exist of multiple compounds the manufacturing considers several variables like 

humidity, temperature, confinement, grain size, or sensitivity data (e. g. for (per)chlorates). 

Corresponding to their favored effect and civil or military use, pyrotechnics are separated in 

heat, sound, (colored) smoke, (colored) light, flame, delay or gas producing pyrotechnics 

(Figure 4). Compared to military pyrotechnics, commercially used fireworks are further 

categorized in ground-based, aerial, aquatic, and additionally used fireworks for theater and 

special effects in motion pictures, as well as 'toy' fireworks like snakes, sparklers, toy caps or 

party poppers.5  

  

                                                
5 A. Hardt, Pyrotechnics, Pyrotechnica Publications, 2001. 
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Figure 4 Classifications of Pyrotechnics. 

 

Heat-producing pyrotechnics  

Heat-producing pyrotechnics are used for instance as primers, 'first fires', as propellants in 

rocket motors, or in incendiary devices. Primers are ignited mechanically by a small metal 

pin or electrically by bridge wire and are able to generate heat or shock. They are used in 

detonator caps to ignite a primary explosive or for the ignition of gun propellants. In 

detonators the primer emits a small flame and ignites a primary explosive, which in turn 

produces a shock wave to initiate the main charge (e. g. secondary explosive). 

First fires are used to ignite other (less sensitive) materials and are ignited itself by a primer 

or igniter charge. In fireworks the first fire consists normally of a combination of black 

powder, dextrin and water. A typical first fire which is used for Black Knight composition 

(chapter 3) is denoted in Table 1. 

Compositions used in primers or first fires are normally very easy to initiate and are 

therefore hazardous materials, whereas heat-generating devices in contrast are less 

sensitive. The sensitivity of these formulations can be monitored by using less sensitive 

oxidizing compounds or by reducing the amount of oxidizer.2 

Exclusively heat-generating pyrotechnics are used in sealed units, e. g. heating canned food 

or water and they produce heat without flames, sparks or gases.  To avoid an increase of 

pressure they only produce solid or liquid reaction products and low amounts of energy or 

gas. Heat-generating compositions can be initiated by impact or friction.4 

Pyrotechnics 
Military & Civil 

Heat-producing 
First fires, Primers, 

Detonators  

Smoke-generating 
Camouflage,  

Smoke grenades 

Light-generating 
Signal flares, Special 
Effects, Decoy flares 

Delay Compositions 
Priming Caps, 

Projectiles, Tear gas 

Noise-generating 
Bangers, whistling 

fireworks 
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Table 1 Examples for pyrotechnic formulations used as heat-producing agents. 

Pyrotechnic composition Uses 

Potassium chlorate, lead peroxide, antimony sulfide, 

trinitrotoluene 

Percussion Primer 

Potassium perchlorate, lead thiocyanate, antimony sulfide Stab Primer 

Barium nitrate, tetranitrocarbazole, silicon, zirconium hydride, 

binder 

First Fire 

Zinc, zirconium or barium chromate, manganese Heat-generator 

 

 

Delay pyrotechnics 

Delay pyrotechnics are divided in gassy and gasless compositions. They provide a requested 

time delay in ms or s from ignition to the favored effect of the pyrotechnic charge. Some 

examples for delay formulations are listed below.2 

 

Table 2 Examples for pyrotechnic formulations used as ignition delays. 

Pyrotechnic composition Effect 

Blackpowder Gassy 

Tetranitrocarbazole, potassium nitrate Gassy 

Boron, silicon, potassium dichromate Gasless 

Tungsten, barium chromate, potassium perchlorate Gasless 

Lead chromate, barium chromate, manganese Gasless 

Chromium, barium chromate, potassium perchlorate Gasless 
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Gasless delays are used in confined settings or at high altitudes without variations of normal 

ambient pressures, whereas gas-producing delays are used in low altitudes and under air 

conditions. Blackpowder (sulfur, potassium nitrate, charcoal) is a typical gas producing 

formulation. Mixtures of metal oxides or metal chromates and elemental fuels like silicon or 

manganese are typical gasless formulations. 

Delays used in projectiles or bombs and which detonate on impact having very fast burn 

rates of greater than 1 mm ms-1. Delays with slow burn rates (1–6 mm s-1) are used in 

smoke pots, tear gas or smoke and hand grenades. Civil use includes quarry operations, 

mining, and tunneling.2 

Basically, the difference of standard and delay detonators is the delay composition, which 

can vary in length, reliant on the preferred lagging (ms or s). A schematic construction is 

illustrated in Figure 5. 

 

Figure 5 Example for standard and delay detonators.6 1 Wires, 2 Plug, 3 Fixing, 4 Primer, 5 Isolation, 6 Bridge 

wire, 7 Matter for primary, 8 Delay composition (different lengths), 9 Primary explosive, 10 Firing element, 

11 Cover, 12 Secondary explosive, 13 Cartridge. 

 

  

                                                
6 Orica Mining Services, Technical data sheet, Dynadet Detonators. 
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Smoke-generating pyrotechnics 

Depending on their ingredients, smoke-generating formulations produce varieties of colors 

and large amounts of gas to increase the colored surface. To avoid decomposition of the 

powdered pigment they burn at low temperatures. Examples of smoke formulations are 

presented below. 

Table 3 Examples for pyrotechnic formulations used as smoke generators. 

Pyrotechnic composition Color of Smoke 

Zinc dust, hexachloroethane, aluminium white 

Potassium chlorate, naphthalene, charcoal black 

Silicon tetrachloride, ammonia vapour grey 

Auramine, lactose, potassium chlorate, chrysoidine yellow 

Rhodamine red, potassium chlorate, baking soda, sulfur red 

Malachite green, potassium chlorate, antimony sulfide green 

Indigo, potassium chlorate, antimony sulfide blue 

 

The colored smoke is produced by an organic dye which first sublimes and then condenses in 

air to form small particles. They are strong absorbers of visible light and reflect discrete 

wavelengths of light depending on the used colored ingredient. Smoke pyrotechnics are used 

in camouflaging, wind direction indicators or in special effects (theatre, films) (Figure 6).2,4 
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Figure 6 Colored smoke grenade.7  

 

Noise-producing pyrotechnics 

The typical noise that a pyrotechnic composition produces is a loud 'bang' or a 'whistle'. The 

'bang' is produced by a gas-generating formulation, for instance black powder, which is 

placed inside a paperboard tube and which is ignited by a fuse. This principle is known for 

bangers or aerial bomb shells. Flash powders react faster and at higher temperatures, 

releasing more high pressure gas then black powder. The noise of flash powder compositions 

are much louder then black powder compositions.  

'Whistles' are produced by mixtures which are placed into an open-ended tube. Such 

compositions are very sensitive and hazardous to handle. Compounds which are added to 

whistlers are aromatic acids and their derivatives, potassium derivatives of benzoic acid or 

2,4-dinitrophenol, picric acid and sodium salicylate. The noise is generated after ignition by 

the formation of a resonation standing wave. The length of the standing wave is influenced 

by the length of the pyrotechnic mixture and therefore the whistle can be controlled in lower 

or higher frequencies.2 

  

                                                
7  http://2.bp.blogspot.com/_Ku0lA8wyASE/S-zwWoK9zHI/AAAAAAAAEbU/LHPJha-rw9M/s1600/mk13smokeflare.jpg 

[Stand: 1.11.2012] 

 



PYROTECHNICS   CHAPTER 2 

 
 

  10  
 

Light-producing pyrotechnics 

 
Light–producing pyrotechnics emit light in the narrow spectral range of the visible light 

(400−780 nm). The intensity of the emitted light depends on the individual constituent parts 

of the composition and the produced heat after ignition. They consists mostly of an oxidizer 

(typical nitrates, perchlorates), a fuel (elemental metal powders) and additives (binders, 

etc.). Flame temperatures can vary from 2000–3000°C, dependent on the fuel (Mg, shellac, 

rosin). Pyrotechnics which emit light at a favored characteristic frequency (e. g. infrared) are 

discussed in detail within chapter 3 and 9.  

The standard colors (red, green, yellow, blue) are generated by salts of the elements 

strontium, barium or boron, sodium, and copper (Table 4). Ideally, a compound bearing 

chlorine in its molecular structure is added to these formulations, e. g. perchlorates. At high 

temperatures the dye compound decomposes and reacts with the chlorine of the oxidizer to 

form molecules like SrCl+ or SrOH. The ion emits light in the red region (600–690 nm) for 

strontium compounds, in the green region (505–535 nm, BrCl+, BaOH, BaO) for barium or 

boron (BO2) compounds and in the blue for CuCl+ (420–460 nm).1,2 

Table 4 Examples for pyrotechnic formulations used as white and colored emitters. 

Pyrotechnic composition Light effect  

Magnesium, barium nitrate, potassium nitrate white 

Potassium perchlorate, barium nitrate, binder green  

Potassium perchlorate, strontium oxalate, binder red 

Potassium perchlorate, sodium oxalate, binder yellow 

Potassium perchlorate, copper carbonate , PVC blue 

 

To obtain white light the pyrotechnic formulation must burn at very high temperatures. The 

formed solid and liquid particles emit then light in a broad range in the visible 

electromagnetic spectrum. Because the oxidation of the metal fuels is a highly exothermic 

process high temperatures can be achieved. High temperatures form large amounts of atoms 

and molecules which are excited, resulting in higher intensity emissions. Elements which are 

preferred for very hot flames are magnesium or aluminum. Low temperatures are obtained 

by fuels like silicon or zinc. 
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Near Infrared Pyrotechnics 
 

 

 
 

Abstract: Alkaline metal salts are widely used in pyrotechnic formulations. For NIR 

pyrotechnics, e. g. BLACK KNIGHT compositions, potassium and cesium nitrate are 

mainly used as oxidizers and infrared emitters between 700–900 nm. Herein, new 

hand-held near infrared signal flare compositions were tested using several 

potassium and cesium salts of high nitrogen compounds such as tetrazole and 

triazole derivatives. The research of new formulations comprises the evaluation of 

sensitivity data and radiometric measurements of new formulations. Furthermore it 

was investigated if the IR emission can be improved using different nitrogen 

releasing agents like 5-aminotetrazole or diethylen triamino trinitrate (DETT) as 

hexamine replacements.  
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Introduction 

A typical human eye responds to wavelengths between 390–700 nm. A light-adapted eye has 

its maximum sensitivity in the green region of the visible spectrum at around 555 nm 

(Figure 7). The near infrared region starts from 700 nm and ending at about 2000 nm. Since 

the development of night vision devices (NVD or NOD) new pyrotechnic formulations 

emitting in the NIR region are of research interest. The mainly used spectral region for night 

vision detection is from 700–1000 nm, which can be explained by the spectral limit of night 

vision goggle detectors (Figure 8, red and orange graph).8 

 

 

Figure 7 Spectral response of the human eye.9 

                                                
8 E.-C. Koch, Survey on State-of-the-art Near-Infrared Emitting Compositions for Flares and Tracers, NATO-MSIAC, 

Belgium, 2009, and literature therein. 
9  http://utopia.cord.org/step_online/st1-6/images/Fig06-17.gif 
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Figure 8 Radiant sensitivity of various detector types (UV, VIS–NIR).8 

First attempts on infrared converter tubes were carried out in 1928 in the Netherlands (G. 

Holst and H. de Boer) but a first success was obtained from G. Holst in 1934 when he was 

working for Philips. The first device on the market was for civilian use and developed by D. 

Zworykin (Generation 0). NVDs in military use were introduced by the Germans in 1939 and 

first used of both sides during World War II (Generation 1) and then regularly in the Vietnam 

War. The intensifier tube uses an anode and an S-1 photocathode which consist of silver, 

cesium, and oxygen (Ag-O-Cs).10 The sensitivity of the S-1 was from 300–1200 nm. Since 

the inception of image intensifier tubes the development of new night vision devices 

increases extensively. The latest generation (GEN III+) is the so called 'Omnibus-VII' (OMNI-

VII). The new generations of high tech devices are able to adapt to changing light conditions, 

they produce less image noise, and operate with a luminous sensitivity of 700, instead of 

1800 of GEN III devices.11 NVD photocathode’s of the III and III+ Generation are made of 

gallium arsenide which improves the image resolution. Another new feature is the auto-

gating function (ATG) which leads to the best resolution and contrast at dynamic light 

conditions. They are useful for Aviator night vision goggles, operations in urban area or 

during sudden illumination of dark rooms or areas. The optical instrument includes an image 

intensifier tube, a water-resisting housing and a mounting system. Most of them include 

furthermore sacrificial lenses, IR illuminators, and telescopic lenses (Figure 9).  

                                                
10  a) Guo, H., Feng, L., Research on an extended blue GaAs photocathode, Proceedings of the International Society for 

Optical Engineering 2005, 579. b) K. Stahl, Infrarottechnik, Hühtig Verlag, Heidelberg 1980. 
11  Saldana, M., Night vision device having improved automatic brightness control, PCT Int. Appl. 1999, WO9905697 

A1. 
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NIR pyrotechnics find therefore their applications in (military) clandestine night operations 

and are used for instance as hand-held signal flares (ground) or parachute flares (ground to 

air) to illuminate large (combat) areas or aiding in emergency landings of aircrafts. Hence, 

they have two purposes: illumination and recognition.5 

 

 

Figure 9 Night vision device in military application.12,13 

 

Radiometric principles 

IR pyrotechnics vary in their characterization in those who produce standard colored light. 

Therefore, every pyrotechnic composition can be characterized by different kinds of 

measurements. Colored-light or pyrotechnics which emit in the visible range of the spectrum 

are described by photometric measurements. Important parameters are the 'luminous 

intensity', given in candela [Cd] or lumen per steradians [lm sr-1] and the 'dominant 

wavelength' [nm]. IR illuminants are specified by radiometric measurements. Important 

radiometric parameters within this thesis are the 'radiant intensity' and the introduced 

'concealment index'. Hence, to discuss NIR illuminants several relevant radiometric terms are 

defined first. 

 

The Illumination, given in units of W m-2, can be expressed with equation 1 by: 

    𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = (𝐼4𝜋) (4𝜋𝑅2)⁄               (1) 

where I is the Intensity in W sr-1 and R is the distance in feet (flare to illuminated object).14 

                                                
12 http://www.pvs4.com/AV-Night-vision-goggles.jpg [Stand: 1.11.2012] 
13 http://www.longwarjournal.org/photos/i/Afgh-Khost-NV.jpg[Stand: 1.11.2012] 
14 D. B. Nielson, Castable Infrared Illuminant Compositions, US Patent, WO94/02435, 1994. 
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The Irradiance Ee, also given in W m-2, is the power incident on a surface. They can be also 

called radiant flux density. Irradiance is often confusingly described as Intensity (Figure 

10a). 

The Radiant Intensity Ie is described as the power per unit solid angle and is given in units 

of Watts per steradian [W sr-1].  

The Visible Radiant Intensity Iv is given in Candela [Cd], because the visible intensity (or 

luminous intensity) is a photometric unit. For calculations of the dimensionless concealment 

index it is converted to W sr-1. 1 W sr-1 is 12.566 watts or 683 Cd at 555 nm (Figure 10b). 

 

a 

 
 

b 

 

 
Figure 10 Irradiance (a) vs. Radiant Intensity (b).15 

  

                                                
15 A. Ryer, Light Measurement Handbook, International Light Technologies Inc. 1997. 
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The solid angle Ω (A r-2) is the two-dimensional angle in three dimensional space that an 

object subtends at a point. The SI unit is steradian [sr]. From mathematical or physical point 

of view the solid angle is dimensionless [m2 m-2] (Figure 11). 

 

 
 

Figure 11 Illustration of the solid angle Ω, where A is the surface and r the radius.15 

 

The concealment index χ gives the ratio of the emitted NIR radiation to the emitted visible 

light (equation 2).  

 

with λNIR = 700–1000 nm and λVis = 400–700 nm. Both values can be calculated from 

radiometric intensity measurements. Typical values for concealment indices of parachute 

formulations are given in section 'Ammunition'.  
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Challenges of NIR pyrotechnics 

Although NIR flares are in the field since a long period of time, several problems were found 

during the use of inserted illuminants.   

As mentioned above the radiant intensity can be measured with special sensing devices, 

which respond to the invisible emission. It is favored to obtain a high concealment index χ, 

high NIR emission, and low in the visible area (equation 2). A commonly known 

disadvantage of many conventional compositions is the high emission of visible light which 

leads by mischance to a low concealment index. 

A further problem of many known compositions is their burn rate. The burn rate describes 

the measurement of the linear combustion rate of a compound and is given in length over 

time. Burning rates normally increases with pressure and time (exceptions e. g. black 

powder). Formulations having low burn rates emit less IR radiation, hence high burn rates 

are required. 

It is desired that the IR emission has its maximum at high altitudes. An undesired 

characteristic is therefore regarded to the burning time of the flare composition. Requested 

burning times of parachute flares are in the range of 20 seconds to several minutes. 

Parachute illuminants are ignited on ground and subsequent launched into the air. It is 

described that the burning surface area of flares increases over time. This means that a large 

amount of IR radiation is emitted near the surface and less radiation is emitted in higher 

altitudes. Additionally to avoid detection or fire of the area which is illuminated, parachute 

flares should not burn after they hit the ground. 

A problem which is observed by emitting pyrotechnics is chunking. Large pieces of the flare 

material break away from the main charge or the propellant and fall to the ground. This 

leads to less illumination of the area, shorter burning times and large burning pieces can 

cause fire on the surface.  

As pyrotechnic compositions are normally blended with several additives like binders, it is 

difficult to avoid the formation of soot. Most commonly used binders contain large carbon 

backbones which leads to the formation of solid carbon and carbon oxides. Depending on the 

binder and fuel, the formation of carbon and carbon oxides raises the amount of emitted 

visible light or causes black body radiation at high temperatures.  

Due to temperature, pressure, or humidity variations while stored at different locations, 

pyrotechnics can undergo an aging process which is as well undesired.8,14 
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'Black Knight' compositions 

Material 

Main focuses of new NIR illuminants are on high burn rates, a clean burning behavior, high 

NIR emission and low emission in the visible. Non visible diffuse flames which disseminate 

condensed reaction products would be favored. Solid reaction products which are close to the 

flame can alter or dim the radiant characteristics. Therefore compounds which release large 

amounts of nitrogen are desirable. Nitrogen-rich compounds produce non-luminous flames 

and leads to a clear burning behavior. The main charge of presently used NIR formulations 

and which avoid most of the problems discussed above is the 'Black Knight' (BK) 

composition. BK formulations consist of the compounds:8,14,16,17,18 

• Silicon powder 

• Potassium nitrate 

• Cesium nitrate 

• Hexamine 

• Epoxy binder 

 

As stated at the beginning, pyrotechnic compositions consist of an oxidizer and a fuel. For 

NIR illuminants the fuel is silicon powder, due to its non-luminous emission and nearly 

exclusively solid state combustion. It is important to avoid as much visible light as possible 

therefore fuels are used with low specific energy and burning temperature. Compared to 

other metal fuels, the specific energy of silicon is 250 [Cd s g-1]. In contrast, magnesium has 

a specific energy of 18.200 [Cd s g-1] and is therefore used in pyrotechnics where black body 

radiation is preferred (chapter 9).  

Another possible fuel with similar characteristics is boron (900 [Cd s g-1]). Both Si and B act 

as good heat sources and combustion rate catalysts.8,16 

The alkaline metals potassium, cesium, and rubidium have intense emission lines in the 

infrared.  The most intense transitions are at 766–769 nm for K, 780–794 nm for Rb and 852 

& 894 nm for Cs. Their corresponding nitrates fulfill two functions: they are oxidizers and IR 

emitters.  

  

                                                
16  B. E. Douda, Visible Radiation from Illuminating-Flare flames: Strong Emission Features, Journal of the Optical 

Society of America 1970, 60, 1116. 
17  Lohkamp, Near Infrared Illuminating Composition, US Patent 3733223, 1973. 
18  L. L. Jones, B. B. Nielson, Infrared Illuminant and Pressing Method, US Patent, 5056435, 1991. 
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Standard NIR pyrotechnic formulations contain potassium nitrate or better a combination of 

potassium and cesium nitrate. Although high values for χ are obtained for rubidium it is not 

commonly used in IR pyrotechnics due to financial reasons. It was observed from intensity 

measurements that a combination of both nitrates lead to better infrared emission and to a 

high concealment index. Cesium nitrate is favored because it increases performance, 

accelerates the burn rates, broadens the infrared output, and reduces at the same time the 

visible output.8 

Hexamine is added to the formulation to release nitrogen and enlarge the surface of the 

luminous area. Condensed products near the flame which can dim the IR emission are 

disseminated. However, it is mentioned in literature that hexamine support chunking of the 

flare charge.14  

Several different types of binders (e. g. Laminac/Lupersol, Witco premix, VAAR, 

Epon 813/Versamid 140) are available for commercially used IR flares. A regularly used 

binder for BK compositions is a two component epoxy binder which consists of an epoxy 

resin and a curing agent. 

 

Requirements on NIRs 

The performance and radiometric requirements for new near infrared hand-held signal flares, 

based on Black Knight compositions are: 

• 600–900 nm   > 25 W sr-1 

• 695–1050 nm > 30 W sr-1 

• Visible light < 350 Cd 

• Burn time ~ 45 seconds 

The intensity values above 25 and 30 Watts per steradian, as well as the amount of visible 

light and burn time relates to the complete parachute illuminant with an igniter charge, a 

first fire and the main NIR flare and comprises in most cases a charge size of 20 g and 

larger.  
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Ammunition 

NIR illuminants compared to visible flares provide a larger illuminated area after ignition 

(Figure 12a). They are supplied in different sizes for instance as 60, 80, 120 mm caliber. An 

example of IR candles is the aerial flare for target illumination LUU-19 Infrared Illuminant 

Rocket (Figure 12b). The size of this parachute flare is 12.4 cm and the burning time 

> 7 minutes. At 1500 m height this flare illuminates an area of 5.1 km2 (radius 1.277 km) 

and provides an irradiance of 2.33 x 10-4 W m-2. A 26.5 mm parachute flare with a payload 

mass of 20 g is provided by Rheinmetall. The burning time is 15 s, the radiant intensity is 

20 W sr-1 (NIR) and 250 Cd (VIS), the concealment index χ is 54. The 40 mm hand-held 

parachute rocket (Rheinmetall) burns 28 s with a NIR emission of 25 W sr-1, 250 Cd, and a χ 

of 68. A further example and profile of an artillery IR projectile is shown in Figure 13.8 

 

a 

 

 

 

b 

 

 

Figure 12 Illumination performance of XM 1064/6 155 MM Artillery IR Illuminant (a) and LUU-

19 IR illuminant rocket (b).8 
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Figure 13 M0235 105 MM Infrared Illuminant cartridge.8 

 

Research objective 

Although common NIR formulations are already in use, it is favored to improve some 

characteristics like the performance data. Values of more than 25 and 30 W sr-1, 

respectively, low visible emission and burn times of at least 45 seconds are desired. To 

discuss new NIR formulations it is nowhere near enough to synthesize new compounds. 

Important tools for analyzing modifications of pyrotechnic compositions are radiometric 

measurements.  

Until now no radiometric measurements were carried out in our research group, therefore 

the major intention within this thesis is the establishment of a set up for radiometric near 

infrared measurements with the new OCEAN OPTICS spectrometer and further to write a MATLAB 

code for evaluating the radiometric results.  

It is assumed that certain potassium and cesium compounds possess enough energy to 

achieve both exothermal decomposition and thermal excitation but generate sufficient 

nitrogen gas to remain dim in the visible range. Therefore a further challenge is the 

synthesis of several high nitrogen energetic materials, to analyze the energy content, safety 

and NIR emission behavior of cesium and potassium salts of these HEs and to find potential 

candidates for new molecular pyrotechnic NIR flare formulations. The synthesis of new 

formulations comprises the addition of cesium and potassium salts in a defined ratio, to raise 

the emission between 600 and 1000 nm, and to avoid visible emission. Radiometric results 

of standard main charges of Black Knight compositions were compared with the results 

obtained from new formulations. Possible candidates for NIR emitting compounds are 

potassium and cesium salts of 3-nitro-1,2,4-triazol-5-(1H,4H)-one (NTO), 4,4´,5,5´-

tetranitro-2,2´-bisimidazole (TNBI), 5,5´-bistetrazolyl amine (BTA), 3-nitro-1,2,4-triazole, 

etc. (Figure 14).  



NIR   CHAPTER 3 

 
 

  22  
 

 

Figure 14 Chemical structures of BTA (1), NTO (2), and TNBI (3) salts (M = K, Cs). 

 

Due to chunking of formulations containing hexamine it was further tested whether similar 

constituted compounds like lactose or 5-amino-1,2,4-triazole avoid this negative effect and 

additionally remain dim in the visible range by nitrogen or carbon dioxide release. 
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Discussion – Synthesis of NIR Additives 

Remarkable classes of new energetic materials are high nitrogen compounds (HNC) such as 

tetrazoles or triazoles. They are not only interesting as primary or secondary explosives and 

RDX replacements also as additives in pyrotechnics or propellants. The benefit of high 

nitrogen compounds derive from their very high heats of formation, due to the large amount 

of N-N and C-N bonds within their chemical structure and of the formation of large amounts 

of nitrogen. The heat of formation of 1,2,3-triazole and 1,2,4-triazole for example are 

272 kJ mol-1 and 109 kJ mol-1, respectively and 237 kJ mol-1 for 1H-tetrazole. Compared to 

their carbon equivalents nitrogen rich heterocyclic ring systems are further favorable 

because of their higher heats of formation, densities, oxygen balance, and thermal stability. 

Together with substituents like nitro, amino or azide groups they are multiple insertable.19 

For additives in pyrotechnic compositions there are worth considering because of the 

formation of non luminous flames and the absence of soot or smoke. New approaches in the 

synthesis of pyrotechnic formulations comprise the use of already known energetic materials 

such as TNT.20 Hence, for new Black Knight compositions studied in this work it is worthwhile 

to test common nitrogen rich explosives e. g. NTO and compounds with similar chemical 

structure like triazoles, tetrazoles and bistetrazoles and to investigate their radiometric 

properties. In the following the synthesis, physical behavior or crystal structure of several 

HNCs are discussed, whereas not all of these compounds are possible additives in 

pyrotechnic formulations, due to their sensitivity data, low yield or high costs. 

 

  

                                                
19  T. M. Klapötke, Structure and Bonding, High Energy Density Materials, Springer Verlag, p. 36-79, 2007. 
20 E.-C. Koch, 2,4,6-Trinitrotoluene: A Surprisingly Insensitive Energetic Fuel and Binder in Melt-Cast Decoy Flare 

Compositions, Angewandte Chemie 2012, 51, 1. 
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Potassium and cesium 3-nitro-1,2,4-triazolate (1a & 1b) 

Based on the patent DE 4115365 A1 3-nitro-1,2,4-triazole21, potassium, and cesium 3-nitro-

1,2,4-triazolate were synthesized using the following procedure: 

 

Schema 1 Synthesis of potassium and cesium 3-nitro-1,2,4-triazolate (1a & 1b). 

 
 

3-Amino-1,2,4-triazole was nitrated under acidic conditions to form 3-nitro-1,2,4-triazole 

(1). The driving force of the diazotization mechanism is the nitrogen release of the 

intermediate formed diazonium cation. The reaction can be accelerated by heating the 

solution to 55°C. At the end of the reaction the excess of nitrite was quenched using 

concentrated hydrochloric acid und urea.  

The best yield of 57% was obtained using 10 g (119 mmol) of 3-amino-1,2,4-triazole. 

Potassium and cesium 3-nitro-1,2,4-triazolate was received after isolation and purifying 1 

and adding the corresponding alkaline base as hydroxides or carbonates (1a, 1b). Both salts 

could be recrystallized from ethanol/water. 1a (yellow powder) was obtained water free, 

whereas 1b (orange crystals) was found to be the monohydrate. 

 

Analytic and physical-chemical data 

The analytical data (1H, 13C NMR, IR, Raman, elemental analysis) of 1, 1a, and 1b conforms 

to the data given in literature.21 The chemical shift of the nitro group in the 14N NMR is at 

-27 ppm. The symmetric valence mode in the IR spectra for the nitro group of 1a is 

observed at 1362 and 1549 cm-1, for 1b at 1356 and 1521 cm-1. The melting point of around 

212°C for 1 conforms to the literature value of 210–214°C.  

1, 1a, and 1b are insensitive against friction (FS), impact (IS), and electric discharge (ESD). 

Their sensitivity data are given in Table 5. 

 

  

                                                
21 M. Heschel, Preparation of 3-nitro-1,2,4-triazole, DE 4115365 A1, 1992. 
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Table 5 Sensitivity data of 3-nitrotriazol (1), potassium (1a) and cesium salt (1b). 

 1 1a 1b · H2O 

IS / J  40 40 40 

FS / N 240 288 240 

ESD / J 0.5 0.5 0.4 

  

 

Potassium and cesium 3,5-dinitro-1,2,4-triazolate (DNT) (2a & 2b) 

The synthesis of both, potassium and cesium DNT, starting from 3,5-diamino-1,2,4-triazole 

were carried out according to BAGAL et al.22 

 

Schema 2 Synthesis of potassium and cesium 3,5-dinitro-1,2,4-triazolate (2a & 2b). 

Under ice-cooling 3,5-diamino-1,2,4-triazole in water was added to sodium nitrite in sulfuric 

acid. In contrast to the diazotation described above, a large excess of nitrite was used to 

avoid unrequested side reactions. The mixture was heated to 65°C and stirred at this 

temperature until a clear red solution was obtained. The excess of nitrite was quenched 

under ice-cooling with 30% sulfuric acid and urea. The solution was extracted with ether and 

then treated with acetone. 2a and 2b were obtained in moderate yields of 50% after 

adjusting the pH to 7 with the corresponding alkaline base (1 M). The purification steps 

described in the patent23 were not successful. Therefore, the crude product was 

recrystallized from isopropyl alcohol and water. 2a was obtained as a dihydrate. 2b was 

obtained as a monohydrate using cesium carbonate, whereas the water free compound was 

obtained using cesium hydroxide.  

  

                                                
22  L. I. Bagal, M. S. Pevzner, Heterocyclic nitro compounds.  I.  Synthesis of nitro derivatives of 1,2,4-triazole, 1,3,4-

thiadiazole, tetrazole, 1,3,4-oxadiazole and pyrazole by the noncatalytic substitution of a diazo group for a nitro 
group, Chemistry of Heterocyclic Compounds 1970, 6, 259. 

23  T. K. Highsmith, J. M. Hanks, Process for the synthesis and recovery of nitramines, WO 02060881 A1, 2002. 



NIR SYNTHESIS   CHAPTER 4 

 
 

  26  
 

Analytic and physical-chemical data 

Elemental analysis, NMR shifts, and vibrational spectra are comparable to the data given in 

literature.22 The chemical shifts in the 14N NMR for the nitro group is located at -22 ppm for 

2a and -24 ppm for 2b. The RAMAN symmetric valence mode of the nitro group is around 

1404 cm-1 (2a) and 1397 cm-1 (2b), whereas the deformation mode is at 525 (2a) and 

517 cm-1 (2b). Neither NH2 or NH-modes (RAMAN, IR spectra) nor proton signals (1H NMR) 

are obtained. Both salts are insensitive against impact, friction, and electric discharge. 

Table 6 Sensitivity data of potassium and cesium 3,5-dinitro-1,2,4-triazolate (2a & 2b). 

 2a · 2 H2O 2b · H2O 

IS / J  40 40 

FS / N 240 144 

ESD / J 0.3 0.15 

 

 

Crystal structure of cesium 3,5-dinitro-1,2,4-triazolate (2b) 

Single crystals of cesium 3,5-dinitro-1,2,4-triazolate with 0.75 water molecules were 

obtained after recrystallization from ethanol/water. Compound 2b crystallizes in the 

orthorhombic space group Pbca with 8 molecules in the unit cell and a size of a = 9.6332(5) 

Å, b = 11.7893(5) Å, c = 13.6302(5) Å, α = β = γ = 90°. The volume of the cell is 1547.8(1) 

Å3 and the crystal density 2.613 g cm−3 (T = 25 °C). Figure 15 displays the molecular unit of 

2b. Bond lengths and bond angles of the unit cell are given in Table 7. 
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Figure 15  Crystal structure of cesium 3,5-dinitro-1,2,4-triazolate · 0.75 H2O; Thermal ellipsoids in figures 

of crystal structures were drawn to 50% probability. 

 

The C-N bond distances of 1.325(4)–1.442(4) Å are between a formal C-N single (1.47 Å) 

and C-N double bond (1.22 Å) and the N-N bond distance of 1.363(4) Å is between a formal 

N-N single (1.45 Å) and N-N double bond (1.25 Å).24 Both are in good agreement with the 

literature known tetraammine copper salt of DNT.25 

The Cs-O distances (3.123–3.617 Å) and Cs-N distances (3.227–3.505 Å) in 2b are longer 

than in cesium structures described in literature.26 Coordination of the NO2-nitrogen atom is 

neglected, due to a positive partial charge of the nitrogen and therefore less electron 

density. Mainly eight oxygen atoms, six of the nitro groups and two from water molecules, 

saturate the coordination sphere of the cesium ion. Four nitrogen atoms of different anions 

coordinate with a distance of 3.23-3.51 Å. 

The view along the c-axis displays a wave structure of the anion and water molecules located 

between the layers (Figure 16). A view along b-axis shows that two alternate molecular units 

are orthogonal to each other and one water molecule is located on every bend of the wave.  

  

                                                
24  A. Holleman, E. Wiberg, N. Wieberg, Lehrbuch der Anorganischen Chemie 102nd Edition, Walter de Gruyter, 2007.  
25 M. H. V. Huynh, M. A. Hiskey, Preparation and explosive properties of tetraamminebis(3,5-dinitro-1,2,4-triazolato-

N1)copper(II), Journal of Energetic Materials 2005, 23, 27. 
26 H. Radies, T. M. Klapötke, Alkali Salts of 1-Methyl-5-nitriminotetrazole, Zeitschrift für Naturforschung 2007, 62, 

1343. 
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The crystal lattice is stabilized through moderate hydrogen bonds which lead in a helical 

structure, consisting of Cs-H2O-units, and from H-bonds formed from N1 as acceptor and a 

water molecule as donor. The O-H distance is 0.951(37) Å and the N⋯H distance 

1.989(37) Å. Therefore, the resulting donor-acceptor distance is 2.938(37) Å with an O-H-N 

angle of 175.73(28)°. 

 

Table 7 Bond lengths and bond angles of 2b. 

 Bond length [Å]  Bond angle [°] 

O1-N4 1.224(4) O2-N4-O1 124.4(3) 

N4-O2 1.224(3) O2-N4-C1 117.5(3) 

N4-C1 1.442(4) O1-N4-C1 118.1(3) 

C1-N2 1.326(4) N2-C1-N1 117.6(3) 

C1-N1 1.331(4) N2-C1-N4 121.3(3) 

C1-C2 2.004(41) N1-C1-N4 121.1(3) 

N1-C2 1.335(2) N2-C1-C2 76.2(2) 

N3-C2 1.325(4) N1-C1-C2 41.35(17) 

N3-N2 1.363(4) N4-C1-C2 162.4(3) 

O4-N5 1.219(4) C2-N3-N2 104.4(3) 

O3-N5 1.230(4) C1-N2-N3 103.6(3) 

  N3-C2-N1 117.0(3) 

  N3-C2-N5 121.5(3) 

  N1-C2-N5 121.6(3) 

  N3-C2-C1 75.8(2) 

  N1-C2-C1 41.19(17) 

  N5-C2-C1 162.7(3) 

  O4-N5-O3 124.2(3) 

  O4-N5-C2 117.8(3) 

  O3-N5-C2 118.0(3) 
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Figure 16 View along c-axis of cesium 3,5-dinitro-1,2,4-triazolate · 0.75 H2O; Thermal ellipsoids in figures 

of crystal structures were drawn to 50% probability. 

 

 

Synthesis of potassium and cesium 3,3’-bis(1,2,4-oxadiazol-5-one) 

(5a & 5b)27 

Synthesis of diaminoglyoxim (3) 

The synthesis of diaminoglyoxime was carried out according to ZELENIN and TRUDELL.28 To a 

solution of sodium hydroxide and hydroxylammonium chloride was added glyoxal (40% 

solution). After 12 h reflux and 36 h crystallization at 4°C the product was obtained in 56% 

yield.  

 

 
Schema 3 Synthesis of diaminoglyoxim (3). 

                                                
27  N. Mayr, PhD thesis, Ludwig-Maximilians-University, Munich 2012, and literature therein. 
28 A. K. Zelenin, A. K. Trudell, A two-step synthesis of diaminofurazan and synthesis of N-monoarylmethyl and N,N'-

diarylmethyl derivatives, Journal of Heterocyclic Chemistry 1997, 34, 1057. 
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Synthesis of oxamiddioxime dicarboxylic acid diphenylester (4) 

4 was synthesized by treating 3 in THF with phenyl chloroformate and adding slowly triethyl 

amine under ice-cooling. After 4 h triethylamine hydrochloride was filtered off and the yellow 

solution was added to water. The product precipitated immediately, was filtered off and 

washed with diethyl ether.  

 

Schema 4 Synthesis of oxamiddioxim dicarboxylic acid diphenylester (4). 

The obtained yield of 89% for the second reaction step using 84.7 mmol of 3 could not be 

improved by using the double amount of 3 (169.4 mmol). The analytical data of 4 agree with 

the data given in literature.27 

 

Synthesis of 3,3’-bis(1,2,4-oxadiazol-5-one) (5) (BOX) 

The second last reaction step comprises a base induced ester cleavage followed by an acid 

catalyzed ring closure leading to compound 5. 

 

Schema 5 Synthesis of 3,3’-bis(1,2,4-oxadiazol-5-one) (5). 
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To improve the moderate yield of 60%, 5 was treated with 10% sodium hydroxide solution 

instead of 5% NaOH which results in an amount of only 45%. It is expected that the 

concentration of sodium hydroxide influenced the ring closure; PhCO2
- separates too fast and 

therefore the ring closure does not occur.  

5a and 5b were synthesized with two equivalents KOH or CsOH in water. Analytical data and 

crystal structures of 5, 5a and 5b are discussed in detail within the PhD thesis of N. Mayr.27 

The sensitivity data of both salts are given in Table 8. 

 

Table 8 Sensitivity data of potassium and cesium 3,3’-bis(1,2,4-oxadiazol)-5-one. 

 5a 5b  

IS / J 40 40 

FS / N 360 360 

ESD / J 1.0 1.0 

 

 

 

Synthesis of potassium and cesium 3-nitro-1,2,4-triazole-5(4H)-one (NTO) 

(7a & 7b) 

An already known and commercially available secondary explosive is 3-nitro-1,2,4-triazole-

5(1H,4H)-one (NTO) (7). NTO is discussed as RDX (1,3,5-trinitro-1,2,5-triazacyclohexane) or 

HMX (1,3,5,7-tetranitro-1,3,5,7,tetraazacyclooctane) replacement in military applications 

due to comparable performance, less sensitivity and high density of 1.93 g cm-3. NTO is used 

in automobile airbags as alternative to the toxic primary explosive lead azide.29 Therefore it 

is an interesting candidate as additive in other pyrotechnic formulations. Because pyrotechnic 

compositions require compounds with high friction data cesium and potassium NTO were 

synthesized and tested as possible ingredients for Black Knight formulations. 

The synthesis of potassium and cesium 3-nitro-1,2,4-triazole-5(1H,4H)-one is described in 

Schema 6.29,30 

                                                
29 H. S. Jadhav, M. B. Talawar, Synthesis, characterization and thermolysis of 2,4-dihydro -2,4,5-trinitro-3H-1,2,4-

triazol-3-one (DTNTO): a new derivative of 3-nitro-1,2,4-triazol-5-one (NTO), Indian Journal of Engineering & 
Material Sciences 2005, 12, 467. 

30 D. Izsák, unpublished results, Ludwig-Maximilians-University Munich, 2012. 
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Schema 6 Synthesis of 3-nitro-1,2,4-triazole-5(1H,4H)-one (7), 7a and 7b with M = K or Cs. 

 

To a hot solution of 85% acetic acid was added semicarbazide. After refluxing the solution for 

7 h the acid was evaporated. The solid was treated with water and the solvent was again 

evaporated. This procedure was repeated two more times. Afterwards the solid was 

recrystallized from hot water. TO (6) was obtained in moderate yields of 61%. 7 was 

obtained after adding 6 to an excess of 100% nitric acid under ice-cooling. After 2 h the 

cooling was removed and the mixture was stirred at room temperature over night. The solid 

was isolated and washed with water. NTO was obtained as a colorless powder with a yield of 

23%. Crystalline NTO was obtained from the cooled solution (4°C) after four days.  

1 equivalent of potassium and cesium hydroxide, respectively were used for synthesizing the 

salts of NTO 7a and 7b. Both were recrystallized from ethanol/water. Potassium NTO (7a) 

was obtained as a dihydrate and cesium NTO (7b) as a monohydrate. 

 

Analytic and physical-chemical data 

The standard analytical data (NMR, EA, mass) for NTO is comparable with the data given in 

literature.29 Symmetric valence modes of the nitro group in the RAMAN spectra are at 

1376 cm-1 (7a) and 1377 cm-1 (7b). The bend mode of the NO2-group is at 484 (7a) and at 

488 cm-1 (7b), respectively. The antisymmetric stretch mode for the nitro group in the IR is 

located at 1587 cm-1 for 7a and 1591 cm-1 for 7b. NH modes in the IR spectra are at 

3342 cm-1 for 7a and 3349 cm-1 for 7b. The FAB- mass spectra indicate a single 

deprotonation at the ring system. Sensitivity data of both salts are given in Table 9. 
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Table 9 Sensitivity data of potassium and cesium 3-nitro-1,2,4-triazol-5(4H)-one. 

 7a 7b 

IS / J  40 40 

FS / N 288 288 

ESD / J 0.3 0.3 

 

 

Synthesis of potassium and cesium bis(1-methyl-tetrazole-5-yl)-triazene 

monohydrate (8a & 8b) (BMTT) 

The formation of bis(1-methyl-tetrazole-5-yl)-triazene (8) is illustrated in Schema 7. The 

compound was obtained as a monohydrate.31 

 

Schema 7 Synthesis of bis(1-methyl-tetrazol-5-yl)-triazene · H2O (8). 

Using a half equivalent of sodium nitrite 8 was obtained under acidic conditions by 

diazotation of 2-methyl-5-aminotetrazole. After stirring the mixture for 24 h under ice-

cooling the product was isolated with a yield of 32%. Because of an intense reaction (large 

amount of fume) and nitrogen release a large reaction flask was used to avoid flooding. Both 

salts were obtained by solving 8 in ethanol and adding one equivalent of the corresponding 

base. 8a and 8b were recrystallized from ethanol/water and dried at 50°C. Both were 

obtained as very fine yellow-greenish powders.  

Analytic and physical-chemical data 

Standard analytic was carried out for the potassium and the cesium salt of 8. The methyl 

group in the 1H NMR is detected as a singlet at 3.87 (8a) and 3.84 (8b) ppm. Both ring 

carbons are located at 162 and both methyl groups at 33 ppm in the 13C NMR spectra. 

Raman and IR spectra are also comparable with the data given in literature.31 

                                                
31 T. M. Klapötke, J. Stierstorfer, Investigations of bis(methyltetrazolyl)triazenes as nitrogen-rich ingredients in solid 

rocket propellants - Synthesis, characterization and properties, Polyhedron 2009, 28, 13. 
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Although 8 was obtained as a monohydrate the impact sensitivity is very low in contrast to a 

friction sensitive greater than 360 N (Table 10). Compared to the neutral compound the 

impact sensitivity was improved by the formation of salts. 8a and 8b are suitable as possible 

NIR ingredients but due to very low electrostatic discharge values and very low yields, both 

compounds are only second quality for pyrotechnic composition studied in this work.  

Table 10 Sensitivity data of 8a & 8b. 

 8 8a 8b 

IS / J 3  40 35 

FS / N 360 360 288 

ESD / J n.d. 0.03 0.03 

 

 

 

Synthesis of 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine, bis-potassium and 

bis-cesium BNGT (12a & 12b) 

Potassium and cesium BNGT were synthesized via multiple step synthesis (Schema 8). 

 

Schema 8 Synthesis of 12a & 12b. 
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Starting from TAG·HCl (9), which is obtained in good yields of 79%, the ring closure and the 

followed oxidation with NO2 synthesizing 11, were carried out according to M. D. COBURN and 

M. A. HISKEY.32,33,34 The oxidizing agent could be added either gaseous by a medium nitrogen 

flow using a washing flask between the NO2 and the reaction flask or adding liquid NO2. 

Choosing the latest, the loss in NO2 is higher and therefore an excess of 30 % should be 

used to balance the stoichiometry. Unfortunately NMP is not the solvent of first choice, due 

to its high boiling point and the solubility of 11 to some extent, but no superior solvent was 

found within this work. For the synthesis of 12a all used chemicals must be water free, 

concerning the hydrolysis of potassium methanolate. The in situ formed bis potassium salt 

was obtained as a dark red powder which could be recrystallized from water. 

The next step comprises the formation of the neutral compound 12 with HCl. An adequate 

solvent to recrystallize 12 was not found.  

It is known that tetrazines could be dissociated by a nucleophilic attack of the hydroxide 

anion to the carbon atoms leading to semicarbazide, hence the addition of cesium hydroxide 

for the formation of the cesium salt must be stoichometric.34 Because the deprotonation is 

faster than the nucleophilic attack, an accurate amount of the hydroxide leads to a reaction 

without any difficulties. Pure 12b, as well as pure 12a, were obtained in very low yields and 

therefore only one pyrotechnic formulation of each compound was prepared.  

Analytic and physical-chemical data 

In some cases the methyl group of the pyrazole leaving group was still detected in the 1H 

and 13C NMR. Crystals for x-ray measurements of both were not obtained. RAMAN and IR data 

conform to the data given in literature.33,34  

 

Table 11 Sensitivity data of 12, 12a and 12b. 

 12 12a 12b 

IS / J  8.5 40 40 

FS / N 240 240 288 

ESD / J 0.1 0.6 0.6 

 

                                                
32  K. Y. Lee, M. D. Corburn, 3-nitro-1,2,4-triazol-5-one: a less sensitive explosive, US 4733610 1988. 
33 M. C. Corburn, G. A. Buntain, An improved synthesis of 3,6-diamino-1,2,4,5-tetrazine.  II. From triaminoguanidine 

and 2,4-pentanedione, Journal of Heterocyclic Chemistry 1991, 28, 2049. 
34 D. E. Chavez, M. A. Hiskey, Novel high-nitrogen materials based on nitroguanyl-substituted tetrazines, Organic 

Letters 2004, 6, 2889.  

https://scifinder.cas.org/scifinder/references/answers/E45B450AX86F35099X350269D441210A2BD2:E45BBD22X86F35099X18AB3BF41A58F3B73A/2.html?nav=eNpb85aBtYSBMbGEQcXVxNTJycXIKMLCzM3Y1MDSMsLQwtHJ2MnNxNDR1MLN2Mnc2BGoNKm4iEEwK7EsUS8nMS9dzzOvJDU9tUjo0YIl3xvbLZgYGD0ZWMsSc0pTK4oYBBDq_Epzk1KL2tZMleWe8qCbiYGhooCBgYEZaGBGCYO0Y2iIh39QvKdfmKtfCJDh5x_vHuQfGuDp517CwJmZW5BfVAI0obiQoY6BGaiPoYSBqSgf1SVO-fk5qYl5ZxWKGq7O-fUO6JIomEsKQOqLi4HqtfOL0vWSE4v18ouTE4v0ilOLylKL9FLycxMz8_SS83Nz8_P0goGWBRekJttMWL1AdvqDU0wMTD4MPLmV_kUpmXmJOd6plSUMGj5Ag_SBBumDDdKHGKQPMUgfYpA-UKW1DwN7biXIxOISBkkfkGv1S0syc_R9MvOyU1M8EoszglNLrCsKCoCOEwd7BiSthyJ9I-d61NS7WnKgUIN5GawKKr_LpXXqtB3bTZhBoVrOAwweAXsHBjCoAABS2p3_&key=caplus_1992:128878&title=An%20improved%20synthesis%20of%203,6-diamino-1,2,4,5-tetrazine.%20%20II.%20%20From%20triaminoguanidine%20and%202,4-pentanedione&launchSrc=reflist&p=1
https://scifinder.cas.org/scifinder/references/answers/E45B450AX86F35099X350269D441210A2BD2:E45BBD22X86F35099X18AB3BF41A58F3B73A/2.html?nav=eNpb85aBtYSBMbGEQcXVxNTJycXIKMLCzM3Y1MDSMsLQwtHJ2MnNxNDR1MLN2Mnc2BGoNKm4iEEwK7EsUS8nMS9dzzOvJDU9tUjo0YIl3xvbLZgYGD0ZWMsSc0pTK4oYBBDq_Epzk1KL2tZMleWe8qCbiYGhooCBgYEZaGBGCYO0Y2iIh39QvKdfmKtfCJDh5x_vHuQfGuDp517CwJmZW5BfVAI0obiQoY6BGaiPoYSBqSgf1SVO-fk5qYl5ZxWKGq7O-fUO6JIomEsKQOqLi4HqtfOL0vWSE4v18ouTE4v0ilOLylKL9FLycxMz8_SS83Nz8_P0goGWBRekJttMWL1AdvqDU0wMTD4MPLmV_kUpmXmJOd6plSUMGj5Ag_SBBumDDdKHGKQPMUgfYpA-UKW1DwN7biXIxOISBkkfkGv1S0syc_R9MvOyU1M8EoszglNLrCsKCoCOEwd7BiSthyJ9I-d61NS7WnKgUIN5GawKKr_LpXXqtB3bTZhBoVrOAwweAXsHBjCoAABS2p3_&key=caplus_1992:128878&title=An%20improved%20synthesis%20of%203,6-diamino-1,2,4,5-tetrazine.%20%20II.%20%20From%20triaminoguanidine%20and%202,4-pentanedione&launchSrc=reflist&p=1
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Synthesis of 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine 

(15)  

Compound 13 was synthesized in good yields of 85% via nucleophilic substitution of the 

pyrazole ring of 11 by hydrazine at 50°C and acetonitrile as solvent. To remove the 

hydrazine from the ring system 13 was treated with chlorine at room temperature, obtaining 

14 in quantitative yield. 14 should not be dried under high vacuum due to sublimation of the 

product (Schema 9).  

The literature known synthesis of 15 was carried out with sodium 5-amino-tetrazolate.35,36 

To avoid as much sodium as possible, the respective potassium and cesium salts were used 

instead. But the exchange of chlorine with potassium or cesium 5-amino-tetrazolate to form 

compound 15 was not successful yet. 1H and 13C NMR signals are only detected for both 

amino tetrazolate salts. 

 

Schema 9 Attempted synthesis of 15. 

  

                                                
35 M. Hang, M. A. Hiskey, 3,6-Di(azido)-1,2,4,5-tetrazine: a precursor for the preparation of carbon nanospheres and 

nitrogen-rich carbon nitrides, Angewandte Chemie 2004, 43, 5658.  
36 D. E. Chavez, M. A. Hiskey, 1,2,4,5-Tetrazine-based energetic materials, Journal of Energetic Materials 1999, 17, 

357. 
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Following the procedure described by A. SAIKIA et al., compound 11 was treated directly with 

5-aminotetrazole in sulfolane at 135°C.37 The crude product was purified in DMF for 4 h at 

120°C and afterwards refluxed in ethanol. Weak 1H and 13C NMR signals are detected for 5-

aminotetrazole. Variations on scale and temperature led to no reaction. Therefore no further 

attempts were carried out synthesizing compound 15. 

 

Synthesis of 3,6-diamino-1,2,4,5-tetrazine (16) 

Schema 10 describes the synthesis of 3,6-diamino-1,2,4,5-tetrazine with ammonia.38 

 

 

Schema 10 Synthesis of 3,6-diamino-1,2,4,5-tetrazine (DAT) (16). 

 

DAT is a favorite precursor for synthesizing several secondary explosives. Presently, 

tetrazine based explosives are synthesized via 1,3-diaminoguanidine and are therefore 

expensive and extensive.39 The synthesis of compound 16 and e. g. salts of nitramino 

aminotetrazine (17) in a steel autoclave is favorable because of low costs and provides 

yields up to 90%.  

11 and NMP were added in a steel autoclave and cooled with liquid nitrogen. After 20 min 

the autoclave was evacuated and ammonia condensed into the container. The mixture was 

allowed to come to room temperature and was then heated to 90°C for several hours. 

Afterwards the mixture was treated with isopropanole and cooled in a fridge over night and 

the solid was filtered off on the next day. The purity of the bright red compound 16 was 

checked by elemental analysis and NMR. The signal for both amine groups is located at 6.70 

(4 H) in the proton spectra and the signal of both carbon atoms of the tetrazine ring are 

located at 162.3 ppm (2 C) in the 13C NMR.  

 

  

                                                
37 A. Saika, Synthesis and characterization of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): Novel 

high-nitrogen content insensitive high energy material, Journal of Hazardous Materials 2009, 170, 306. 
38  M. D. Coburn, D. G. Ott, Synthesis of 3,6-diamino-1,2,4,5-tetrazine, US 5281760, 1994. 
39 M. Göbel, PhD thesis, Ludwig-Maximilians-University Munich, 2010. 
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Synthesis of 3-amino-6-nitramino-1,2,4,5-tetrazine (17) and the 

potassium and cesium salts (17a & b) (ANAT) 

Compound 17a und 17b were synthesized according to the procedure illustrated below. 

 

 

Schema 11 Synthesis of K and Cs 3-amino-6-nitramino-1,2,4,5-tetrazine (17a & b). 

DAT was solved in 70% nitric acid and stirred for several hours, forming 17. 3-Amino-6-

nitramino-1,2,4,5-tetrazine was added to potassium or cesium hydroxide to form the salts 

17a and 17b in a yield of 88% for potassium and 77% for the cesium salt. It was observed 

that both salts decompose after several days and therefore there were not further 

investigated as additives in NIR formulations.  

Analytic and physical-chemical data 

The purity of compound 17 was proven by NMR an IR spectroscopy. The melting point of 17 

is 167°C. Because of the zwitter ionical structure the amino group is located as a broad 

signal at 8.67 ppm in the proton NMR. Two carbon signals in the 13C spectrum are located at 

around 164 and 162 ppm. The nitro group of the NNO2 group is found at -13 ppm in the 14N 

NMR for 17a and b. The symmetric and antisymmetric valence modes for the nitro and 

amino group are detected at around 1651 and 1634 cm-1 and 1400 and 1415 cm-1, 

respectively. Elemental analysis complains with the values given in literature.36 Sensitivity 

data for compound 17 and its salts are given in Table 13. 

 

Table 12 Sensitivity data of 17, 17a and 17b. 

 17 17a 17b 

IS / J  12 23 2 

FS / N 288 252 160 

ESD / J 0.6 0.5 0.3 
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Synthesis of 2,4,5-trinitroimidazole (21) 

Referred to literature, 2,4,5-trinitroimidazole was attempted to synthesize via 2,4,5-

triiodoimidazole.40,41 

 

 

Schema 12 Synthesis of 2,4,5-trinitroimidazole (27). 

The nitration of 4-nitroimidazole, obtaining 18, is proceeded with the in situ formation of 

acetyl nitrate. The authors solving 4-nitroimidazole in glacial acetic acid, afterwards the 

mixture is treated with nitric acid and acetic anhydrate. This order is only suitable for small 

scales (about 1 g) and leads to yields of only 30%.40 To obtain higher yields then described, 

several attempts were carried out to improve this reaction sequence. Two parameters which 

were modified are the order of the added compounds and the temperature. It was also found 

that acetic acid is not necessary for the nitration step, but the product was obtained in low 

yields. 

The best conditions for this reaction were as follows: acetic acid and acetic anhydrate was 

added in a flask and stirred for 30 minutes at -5°C. Afterwards nitric acid was added and the 

mixture was stirred for further 2 h at this temperature. 4-Nitroimidazole was added in small 

portions to the cooled solution and the flask was allowed to warm to room temperature and 

stirred for further 48 h. The solution was poured onto ice water, whereas 18 precipitated. 

The yield after purification was 69%. 18 decompose at 50°C to 4-nitroimidazole and should 

therefore not dried in an oven.  

2,4-Dinitroimidazole (19) was formed by isomerization of 1,4-dinitroimidazole in dry chloro 

benzene. Impurities of water lead to hydrolysis of 18.  

NMR spectra indicate signals for 4-nitroimidazole, as well as signals for compound 18 and 

19. The mixture could not be separated by column chromatography. 

                                                
40  H. Aissaoui, C. Boss, 5,6,7,8-Tetrahydro-Imidazo[1,5-A]Pyrazine Derivatives, WO 2008/078291 2008.  
41  A. R. Katritzky, D. J. Cundy, Polyiodoimidazoles and their nitration products, Journal of Energetic Materials 1993, 11, 

345. 
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The iodation of imidazole to obtain 20 was carried out using two different syntheses 

strategies (Schema 12). No product was obtained synthesizing 20 without the use of 

potassium iodine.40 A proper way was the use of iodine/potassium iodine. After 

recrystallization from ethanol 20 was obtained in low yields (13%). Therefore the precipitate 

of the aqueous layer was again treated with iodine, assuming the precipitate was iodine 

imidazole. Because of moderate yields of 20 the nitration step to synthesize 21 was not 

conducted and no further attempts were carried out obtaining 2,4,5-trinitroimidazole yet.  

 

 

Synthesis of 4,4’,5,5’-tetranitro-2,2’-bisimidazole (23) 

Schema 13 describes the synthesis of 2,2’-bisimidazol (BI) (22) and 4,4’,5,5’-tetranitro-2,2’-

bisimidazole (TNBI) (23). 

 

 

Schema 13 Synthesis of BI (22) und TNBI (23). 

The first synthesis step to 4,4’,5,5’-tetranitro-2,2’-bisimidazole is the formation of the 

precursor 2,2’-bisimidazole. Several methods are known in literature, leading to moderate 

results. Procedures, using 20–40% glyoxal, 25% ammonia, and a catalytically amount of 
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ammonium acetate or 20% glyoxal and gaseous ammonia, led to no product or in some 

cases with very low yields to TNBI.42,43,44 

The best method obtaining 22 is the synthesis via bis-sodiumbisulfite monohydrate. The 

reaction in 25% ammonia and ammonium carbonate led to the pure compound. 

Due to imprecise details for the nitration of 22 to 23 within literature, the best formation 

was found to be as follows: a mixture of sodium nitrite in sulfuric acid and a catalytically 

amount of urea was stirred under ice-cooling. 22 was added and the temperature was kept 

at 0 °C for half an hour. Then the mixture was allowed to warm to r. t., and afterwards 

heated to 85°C over night. After cooling to room temperature the solution was poured onto 

ice and 23 precipitated. The product was recrystallized from ethanol/water, obtaining good 

yields of 70%. Both salts were synthesized using potassium or cesium hydroxide, potassium 

hydroxide in ethanol or cesium carbonate (23a, 23b). 

 

Analytic and physical-chemical data 

Potassium and cesium TNBI were fully characterized by multinuclear NMR (1H, 13C, 14N), 

elemental analysis, different scanning calorimetry, IR, and Raman spectroscopy. Additionally 

sensitivity data are given in Table 13.  

As excepted for complete deprotonation, no hydrogen signal is observed for compound 23a 

and b. The 13C NMR detects one signal for C4/C4´, C5/C5´, and one signal for C3/C3´. The 

carbon bearing the nitro group is shifted 3 ppm to lower field (144.9 ppm) compared to the 

quartary ring carbon at 141.0 ppm. The ring nitrogen’s of the imidazole ring are not detected 

in the 14N NMR, whereas the NO2 nitrogen’s are at -25 ppm for the potassium salt and for the 

cesium salt at -34 ppm. 

  

                                                
42 E. E. Bernarducci, K. P. Bharadwaj, Molecular structures, electronic spectra, and ESR spectra of 
 bis(4,4',5,5'-tetramethyl-2,2'-biimidazole) copper(II) dinitrate and bis (4,4',5,5'-tetramethyl-2,2' biimidazole) zinc(II) 

0.90copper(II)0.10 dinitrate, Inorganic Chemistry 1983, 22, 3911. 
43 D. T. Cromer, C. B. Storm, Structure of 4,4´,5,5´-tetranitro-2,2´-biimidazole dihydrate, Acta Crystallographica (C) 

1990, 46, 1957. 
44 S. G. Cho, J. R. Cho, Synthesis and Characterization of 4,4´,5,5´-tetranitro-2,2´-bi-1H-imidazole (TNBI), 

Propellants, Explosives, Pyrotechnics 2005, 30, 445. 
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The typically nitro group modes in IR and RAMAN spectra are located at 1562, 1390, and 754–

704 for both salts and the C-N valence modes at 940 cm-1. 

Both compounds are stable up to 312°C, what makes them suitable for pyrotechnic 

formulations. Regarding to sensitivity data it is shown that the cesium salt is much more 

sensitive against friction and impact compared to the potassium salt or the neutral 

compound.  

 
Table 13 Sensitivity data of 23, 23a and 23b.  

 23 · H2O 23a 23b 

IS / J  40 40 9 

FS / N 240 216 192 

ESD / J 1.0 0.2 0.1 

 

 

Crystal structure of cesium 3,3',5,5'- tetranitro-2,2'-bisimidazole (23b) 

Compound 23b crystallizes water free in the monoclinic space group C2/m with 2 molecules 

in the unit cell. The size is a = 10.0357(4) Å, b = 12.7869(4) Å, c = 5.4750(2) Å, α = 90°, β 

= 109.233(4)°, γ = 90°, with a volume of 663.37(4) Å3. The calculated density is 

2.893 g cm−3 at room temperature. Figure 17 highlights the molecular unit of 23b. 

 

 

Figure 17 Molecular unit of Cs2TNBI, symmetry codes: (i) x, -y, z; (ii) 1-x, y, 1-z; (iii) 1-x, -y, 1-z; Thermal 

ellipsoids in figures of crystal structures were drawn to 50% probability. 
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The C-N bond distances of 23b are in the range of 1.346(3)–1.435(3) Å which is between a 

formal C-N single (1.47 Å) and C-N double bond (1.22 Å).24 The bond lengths are 

comparable with values obtained for potassium TNBI.45 

The torsion angles of the nitro groups to the ring layer are 174.8(2)° and -4.6(3)°, 

respectively. Therefore the molecule is not completely planar. 

The Cs-O distances (3.2121–3.5564 Å) and Cs-N distances (3.2093–3.728 Å) in 23b are 

longer than in cesium structures described in literature.26 Bond lengths and angles for the 

cesium salt are given in Table 14. 

 

Table 14 Bond lengths and bond angles within 23b. 

 Bond length [Å]  Bond angles [°] 

O1-N2 1.236(3) C2-N1-C1 102.70(19) 

O2-N2 1.233(3) N1-C2-C2ii 109.23(13) 

N1-C2 1.346(3) N1-C2-N2 117.44(19) 

N1-C1 1.351(2) C2-C2i-N2ii 133.32(12) 

C2-C2ii 1.406(4) O2-N2-O1 122.3(2) 

C2-N2 1.435(3) O2-N2-C2 120.21(19) 

C1-N1ii 1.351(2) O1-N2-C2 117.51(19) 

C1-C1iii 1.459(6) N1-C1-N1ii 116.1(3) 

  N1-C1-C1iii 121.93(14) 

 

Figure 18 displays the layer structure of TNBI in b direction with cesium ions lying in the 

same plane between two molecules. The framework is stabilized by Cs-O contacts of 3.447 Å 

to NO1 and 3.556 Å to N2 between the formed layers. Compared to 23b the crystal structure 

of the potassium salt consists of a layer structure with two different orientations A and B of 

the anions. Within one direction the anions are congruent and anions laying in A and B 

direction are orthogonal. It can be assumed that the difference of the impact sensitivity of 

both salts is due to their variant crystal structure.  

  

                                                
45 A. Preimesser, T. M. Klapötke, Energetic Derivatives of 4,4´5,5´-Tetranitro-2,2´-bisimidazole (TNBI), Zeitschrift für 

Anorganische und Allgemeine Chemie 2012, 638, 9. 
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The neutral compound crystallizes as a dihydrate and the bis-ammonium salt water free.43 

Because of hydrogen bonds to the distorted NO2 oxygen’s (27.56° according to the ring 

layer) the ammonium cation lays between two orthogonal and congruent layers similar as for 

potassium TNBI. 

 

 

Figure 18 Layer structure of 23b; Thermal ellipsoids in figures of crystal structures were drawn to 50% 

probability. 
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Additional compounds 

Several additional compounds were synthesized within our research group and tested as 

possible additives and/or hexamine replacements. Their syntheses are discussed in 

literature46 (26, 27, 33, 34, 35), literature47 (28), literature48 (29), and respectively. 30 

and 31 were synthesized according to literature49 and compounds 32, 36, 37 were used as 

received from Sigma-Aldrich (Figure 19 and 20). 

 

Figure 19 5,5´Azt (24), BTA (25), 5,5´-BT (26), 5,5´-1-BTO (27), DNQ (28), and 5,5´-AzOT (29). 

 

                                                
46 N. Fischer, PhD thesis, Ludwig-Maximilians University Munich, 2012. 
47 A. Penger, PhD thesis, Ludwig-Maximilians University Munich, 2011. 
48 D. Fischer, unpublished results, Ludwig-Maximilians University Munich, 2012. 
49 a) W. E. Bachmann, Journal of the American Chemical Society 1994, 71, 1842 b) W. E. Bachmann, Journal of the 

American Chemical Society 1951, 73, 2769. 
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Figure 20  RDX (30), HMX (31), lactose (32), EDD (33), DETT (34), DETP (35), 5-aminotetrazole 

(36), and 3-amino-1H-1,2,4-triazole (37). 
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'Black Knight' Compositions – Preparation 
 

Caution! Although no problems occurred during the preparation and handling of pyrotechnic 

compositions prepared in this work, some potassium or cesium salts are sensitive to shock 

and/or friction and all compositions are flammable. The materials when alight yield high 

temperatures and can cause severe skin burns. Safety equipment such as Kevlar® gloves, 

leather coat, wrist protection, face shield, ear protection, grounded equipment, and shoes 

are mandatory.  

 
For the syntheses of pyrotechnic formulations several important parameters must be 

considered in advance by selecting fuels, oxidizers and further additives: purity of the 

compound, particle size, particle shape, particle surface, crystal structure, and water 

content. Because the pyrotechnic effect can be influenced by these properties, an absolute 

homogeneity of the mixture is obligatory; fuel and oxidizer must be in close contact to each 

other.50 

NIR compositions were prepared as stated from the Armament Research, Development and 

Engineering Center (ARDEC). 

Epon 828, Epicure 3140 (binder system) and silicon MIL-S-250 (grade 2, class C) were 

obtained from ARDEC. The epoxy system was used as 70 % Epon and 30 % Epicure with a 

total amount of 4 %. Hexamine, potassium nitrate p. a., cesium nitrate p. a. and rubidium 

nitrate p. a. were received from Sigma-Aldrich, pulverized separately in a ball mill from 

HARBOR FREIGHT TOOLS for several hours, sieved and dried at 60 °C for at least 12 h before 

use. Black Knight compositions were prepared as 50 g (5 x 10 g) batches according to their 

respective weight percentages in the formulations (Table 16-19). 10 g of the composition 

was pressed with 2–3 t in a 54PM250 hydraulic press and corresponding 20 mm die set from 

MAASSEN GmbH. The average weight of five 10 g pellets and their average densities are 

stated in chapter 6, Table 22 and 23. 

Notations for reference and new BK formulations listed in Table 16-19 refer to the contained 

oxidizer(s), high nitrogen compounds (HNC) or hexamine (H) replacements, respectively. 

Reference 1 contained potassium nitrate, reference 2 cesium nitrate and reference 3 

rubidium nitrate as oxidizer. Reference 4 contained cesium and potassium nitrate and 

reference 5 cesium and rubidium nitrate. The acronym _r, _m, and _f stand for the different 

mixing grade of the ingredients and means rough, medium, and fine. The rough composition 

was mixed for 5 min, the medium composition 10 min, and the fine for at least 20 min in a 

                                                
50 B. Berger, Parameters Influencing the Pyrotechnic Reaction, Propellants, Explosives, Pyrotechnics 2005, 30, 27.  
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mortar. In addition oxidizer(s) and hexamine were pulverized in advance in a ball mill 

(Figure 21). BK_L contained lactose (L) instead of hexamine, BK_LH lactose and hexamine, 

BK_5AT contained 5-aminotetrazole and BK_ATR 3-amino-1,2,4-triazole, BK_EDD 

ethylendiamine dinitrate, BK_DETT diethylentriamine trinitrate, and BK_DETP 

diethylentriamine triperchlorate instead of hexamine. BTA compositions contained the 

corresponding potassium and/or cesium salt of 5,5´-bis(1H-tetrazolyl)amine, NTO 

compositions the salts of 3-nitro-1,2,4-triazole-5-one, DNT compositions the salts of 3,5-

dinitro-1,2,4-triazole, BK_BOX K and Cs 3,3’-bis(1,2,4-oxadiazol)-5-one, TNBI compositions 

the salts of 4,4´,5,5´-tetranitro-2,2´- bisimidazole, BK_BT K and Cs 5,5´-bistetrazolate, 

BK_BTO K and Cs 5,5´-bis(tetrazol-1-oxide), BK_BMTT K and Cs bis(1-methyl-tetrazole-5-

yl)-triazene, BK_3NT potassium 3-nitro-1,2,4-triazolate, BK_DNQ both salts of N,N´-

dinitroguanidine, BK_BNGT salts of 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine, and BK_CsAzOT 

the cesium salt of 5,5´-azo-bis-(1-oxido)-tetrazolate.  

Although the secondary explosives RDX and HMX are environmental harmful both were 

synthesized from hexamine therefore tests were performed using both to compare their 

radiometric results with the reference compositions.  

Black Knight compositions were prepared using the following procedure: 

 

1. Weight amount of epoxy resin (Epon 828) into a plastic cup 

2. Weight amount of Epicure into the same plastic cup 

3. Mix for 1 minute with a plastic / wood spatula 

4. Add fuel (Si) to the binder system 

5. Mix for 1 minute 

6. Add hexamine and HNC to the binder system 

7. Mix for 5 minutes  

8. Mix oxidizer(s) in a mortar for 5 minutes (in advance) 

9. Add oxidizer(s) to the fuel/binder system and mix everything in a mortar 

for at least 10 – 20 minutes. Notice: The curing time for the epoxy binder starts from 

mixing the oxidizer with the fuel/binder system 

10. If a homogenous mixture is obtained spread mix out onto metal trays 

11. Allow mixture to cure for 3–4 h 

12. Press 5 x 10 g pellets (2 t) 

13. Place flares into the oven (60 °C) to cure for two days 

14. Remove flares from the oven and after cooling to r. t. place them into desiccators 

with drying agent  

15. For NIR measurements light pellets with a sparkler  

16. Alternative: use a cover or a primer charge and light pellet with a sparkler (Table 15) 
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Figure 21 Pressed (2 t) NIR pellets with different mixing grain size (_f, _m, _r) and ball mill. 
 

 
 
Table 15 Primer Charge for a 20 g batch; Total: 106% (Nitrocellulose in addition to other ingredients). 

 w% Amount (g) 

Potassium nitrate 35 6.92 

Silicon 26 5.14 

Iron Oxide, black 22 4.35 

Aluminum, powder 13 2.57 

Charcoal 4 0.79 

Nitrocellulose 6 0.24 

Acetone 94 3.72 

 

Mix dry and sieved potassium nitrate (12 h, 60°C) and silicon (8 h, 60°C) into a plastic cup. 

Weight out the ingredients listed above. Blend Al, Si, Fe2O3, C, and potassium nitrate 

together. Mix nitrocellulose and acetone (Binder). Mix ingredients with binder solution to 

form homogenous slurry. Due to evaporation of the solvent the amount of acetone is not 

considered. 
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Black powder (BP) cover for NIR-flares 

2.52 g potassium nitrate, 0.48 g carbon, 0.32 sulfur, and 0.07 g dextrin were mixed with a 

plastic spatula. The first layer contained 85 % of BP and 15 % (0.5 g) Al powder. The flares 

were less moisturized with water from an aerosol can and then pored over the BP-Al mixture. 

After 20 min a second layer of BP without Al was applied using a small sieve (Figure 22). 

 

 

 

 

Figure 22 NIR pellets with BP/Al-coating. 
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Table 16 Weight percentages of BK formulations. 
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Table 17 Weight percentages of BK formulations (continued). 
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Table 18 Weight percentages of BK formulations (continued). 
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Table 19 Weight percentages of BK formulations (continued). 
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Sensitivity data 

Pyrotechnic formulations are thermodynamically metastable and therefore they can 

decompose unexpected.51 An important aspect which is linked with the safety of fireworks is 

the sensitivity data of the formulation. Because pyrotechnics are manufactured in large 

quantities it is important to know their properties against impact, friction and electric 

discharge. The sensitivities of all new formulations were determined by BAM (Bundesanstalt 

für Materialforschung- und prüfung) methods52,53 and are presented in Table 20 and 21. To 

investigate their thermal behavior DSC measurements were performed.   

 

BAM sensitivity 

Exclusively all Black Knight formulations are insensitive against friction and electric discharge 

(350 N, 1.5 J). Only several compositions are less sensitive (35–25 J) e. g. reference 1, 4, 5, 

ATR, LH, NTO2, NTO5, HMX, DETP or sensitive (25–7 J) against impact e. g. BK_L, 5AT, 

BTA2, BT1, BT2, RDX, RDX1, and CsATzO. Usually compounds blended with a binder show 

less sensitivity compared to the pure compound. For compositions with RDX and CsAzOT this 

property could not be confirmed. Both mixtures show the same impact sensitivity then the 

real substance (RDX: 7 J, CsAzOT: 20 J). Because of the very hygroscopic behavior of 

formulations containing DETT and EDD their sensitivity data were not determined (Table 20 

and 21). Concerning the safety it is important to mention that all formulations are highly 

flammable and can cause severe skin burns.  

  

                                                
51  G. Steinhauser, T. M. Klapötke, 'Green' Pyrotechnics: A Chemists‘ Challenge, Angewande Chemie Int. Ed. 2008, 47, 

3330–3347. 
52  a) NATO standardization agreement (STANAG) on explosives, impact sensitivity tests, no. 4489, Ed. 1, Sept. 17, 

1999. b) WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der Explosionsgefährlichkeit, hier der 
Schlagempfindlichkeit mit dem Fallhammer, Nov. 8, 2002. c) http://www.bam.de d) http://www.reichel-partner.de 
e) NATO standardization agreement (STANAG) on explosive, friction sensitivity tests, no. 4487, Ed. 1, Aug. 22, 
2002. f) WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der Explosionsgefährlichkeit oder der 
Reibeempfindlichkeit mit dem Reibeapparat, Nov. 8, 2002. g) WIWEB-Standardarbeitsanweisung 4-5.1.03, 
Ermittlung der Explosionsgefährlichkeit oder der Reibeempfindlichkeit mit dem Reibeapparat, Nov. 8, 2002. h) 
Impact: Insensitive > 40 J, less sensitive ≥ 35 J, sensitive ≥ 4, very sensitive ≤ 3 J; friction: Insensitive > 360 N, 
less sensitive = 360 N, sensitive < 360 N a. > 80 N, very sensitive ≤ 80 N, extreme sensitive ≤ 10 N; According to 
the UN Recommendations on the Transport of Dangerous Goods.  

53  a) http://www.ozm.cz/testing-instruments/small-scale-electrostatic-discharge-tester.html; b) S. Zeman, V. Pelikan, 
J. Majzlik, Central European Journal of Energetic Materials 2006, 3, 45; c) D. Skinner, D. Olson, A. Block-Bolten, 
Propellants, Pyrotechnics, Explosives 1997, 23, 34. 
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Differential Scanning Calorimetry (DSC) measurements 

To investigate the thermal behavior DSC measurements were carried out. Mostly the same 

endothermic signals beginning at 128°C and ending close to 393°C were observed (Table 20 

and 21). In addition to melting points or phase transitions, exothermic signals for several 

formulations were observed between 160 and 390°C. Melting points obtained at 310 and 

330°C correlates with the melting point of rubidium (lit.24 310°C) and potassium nitrate 

(lit.24 334°C). The signal achieved between 128–131°C conforms to the crystal state change 

of potassium nitrate (lit.24 129°C). Because DSC measurements were carried out until 400°C, 

the melting point of cesium nitrate with 410°C and exothermic redox reactions of the 

combustion process of the formulation were not detected. Hence, other characteristics like 

the influence of the amount of oxidizer were not investigated but were of particular interest. 

Further measurements above 500°C should be performed. Experiments described in 

literature demonstrate that the amount of oxidizer influences the decomposition 

temperature. Reducing the amount of oxidizer within a formulation containing boron as fuel 

and potassium nitrate as oxidizer, a decrease of the decomposition temperature from 570°C 

(20:80) to 510°C (30:70) was observed.50  

Formulation DETT, DETT1 and EDD were not characterized because of their strong 

hygroscopic behavior and/or incompatibility with hexamine. All 15 pellets show strong 

hexamine exhalations and dampish surfaces which were also difficult to light by a sparkler 

for NIR emission experiments. Because of the poor burning characteristics and moreover 

because of their intolerance with other ingredients DETT, DETP and EDD are unfortunately 

not suitable as hexamine replacements, although they are cheap and easy to synthesize.  
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Table 20 Sensitivity data of Black Knight formulations. 

Formulation FS [N] IS [J] ESD [J] DSC [°C] 

Reference1 360 35 1.5 128, 265, 330 

Reference2 360 40 1.5 152, 237 

Reference3 360 40 1.5 164, 205, 282, 310 

Reference4 360 35 1.5 128, 152, 224, 350.2 

Reference5 360 25 1.5 152 

BK_L 360 15 1.5 128, 329 

BK_5AT 360 10 1.5 128, 175, 330.7 

BK_ATR 360 30 1.5 128, 326, 393 

BK_LH 360 35 1.5 n.d. 

BK_BTA1 360 40 1.5 128 

BK_BTA2 360 15 1.5 128, 290, 319, 340.2 

BK_BTA3 360 40 1.5 131 

BK_BTA4 360 40 1.5 128, 331.4 

BK_BTA5 360 40 1.5 128, 320.4, 383.9 

BK_BTA6 360 40 1.5 363.3 

BK_BTA7 360 40 1.5 n.d. 

BK_NTO1 360 40 1.5 120 

BK_NTO2 360 35 1.5 129, 152, 370.9 

BK_NTO3 360 40 1.5 130, 229, 328 

BK_NTO4 360 40 1.5 130, 210.9, 389.4 

BK_NTO5 360 35 1.5 130, 155 

BK_NTO6 360 40 1.5 130, 152, 210.5, 381.4 

BK_NTO7 360 40 1.5 129 

BK_3NT 360 40 1.5 n.d. 

BK_CsAzOT 360 20 1.5 129, 152, 225 

BK_BNGT 360 40 1.5 130 

BK_DNQ 360 40 1.5 128 

n.d. = not determined 
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Table 21 Sensitivity data of Black Knight formulations (continued). 

Formulation FS [N] IS [J] ESD [J] DSC [°C] 

BK_TNBI1 360 40 1.5 n.d. 

BK_TNBI2 360 40 1.5 129, 329.1  

BK_TNBI3 360 40 1.5 130, 152 

BK_TNBI4 360 40 1.5 129 

BK_TNBI5 360 40 1.5 n.d. 

BK_TNBI6 360 40 1.5 n.d. 

BK_DETT n.d. n.d. 1.5 132, 199, 331.3, 383 

BK_DETT1 n.d. n.d. 1.5 128, 330, 365.5 

BK_EDD n.d. n.d. 1.5 131, 331, 353.2 

BK_DETP 360 35 1.5 128, 322 

BK_KBMTT 360 40 1.5 129, 315.4 

BK_CsBMTT 360 40 1.5 129, 329 

BK_BTO1 360 40 1.5 n.d. 

BK_BTO2 360 40 1.5 n.d. 

BK_BT1 360 20 1.5 128 

BK_BT2 360 20 1.5 129, 152 

BK_RDX 360 7 1.5 129, 180.2, 329 

BK_RDX1 360 7 1.5 129, 159.8, 330 

BK_HMX 360 35 1.5 129, 331 

BK_BOX1 360 40 1.5 129, 152, 223 

BK_BOX2 360 40 1.5 130, 151 

BK_BOX3 360 40 1.5 129 

BK_DNT1 360 40 1.5 129, 330 

BK_DNT2 360 40 1.5 129, 152 

BK_DNT3 360 40 1.5 129, 330 

n.d. = not determined 
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Combustion Data 

Pyrotechnic reactions are primarily solid-solid, solid-liquid, or solid-gaseous state redox 

reactions. The basic pyrotechnic reaction can be displayed as: 

 

 

Schema 14  Basic pyrotechnic reaction; (A) e. g. elemental metal powders (Mg, Al, Magnalium, B, Si, Hf, Zr, Ti), 

(B) e. g. alkaline earth chromates, (per)chlorates, nitrates.5,50 

The understanding of this redox system can be very difficult. Depending on the fuel (or other 

ingredients’) pyrotechnic reactions take place at high temperatures (1500–4000°C) and the 

chemistry behind is not comparable with normal inorganic redox reactions in solution and at 

room temperature.  

Multiple important parameters influence the reaction and make the development of new 

formulations to an unexhausted task and needs further a lot of experience. Normally, only 

one parameter should be varied while the others a held constant. Variations by preparing 

new formulations are possible by changing the reducing agent, the oxidizer (oxygen 

balance), the additives (binders, burn rate modifiers), the particle size of the single 

compounds and of the formulation etc. Modifications of only one of the above mentioned 

parameters can influence the pyrotechnic effect dramatically. Therefore: before changing the 

composition several important parameters have to be brought up in the work and 

understanding of pyrotechnics and must be considered in advance:50,54 

• Reaction rate [m s-1] (experimental) 

• Heat of reaction [J g-1] (calculated) 

• Reaction temperature [°C] (calculated or experimental) 

• Thermal behavior (DSC, TGA)  

• Ignition temperature [°C] (DSC) 

• Evolved gas (calculated or DSC/MS) 

• Reaction products (calculated or DSC/MS/XRD) 

   • Emitted light (experimental)  

  

                                                
54 J. A. Conkling, Chemistry of Pyrotechnics – Basic Principles and Theory, Marcel Dekker Inc. USA, 1985. 
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Suitable theoretical models for calculating the above mentioned parameters exists e. g. ICT 

code55, NASA code56, EKVI code57 but they did not consider factors like the particle size, 

impurities or oxidation layers on the surface of the fuel.50 Obviously, the investigation of all 

listed parameters is time consuming and needs large amounts of explosive material. Due to 

the large amount of material which would be necessary, a comprehensive evaluation of 

several terms like the oxygen balance or burn time was not performed yet. Only tendencies 

are mentioned. 

As noted before, pyrotechnic formulations can be altered by numerous parameters. This 

thesis is based on the addition of new materials, especially potassium and/or cesium salts of 

a high nitrogen containing compounds. As a consequence, the amount of remaining 

ingredients is changed. This raises the question of whether the amount of oxidizer or the 

amount of fuel (Si or hexamine) should be adjusted. Because the oxygen balance of all 

synthesized compounds is negative they are also referred as fuels. First test were performed 

with a reduced amount of oxidizer followed by experiments with a reduced amount of 

hexamine and a combination of hexamine and lactose (Table 16–19).  

From the experimental combustion experiments (chapter 7) it was noticed that, compared to 

the reference formulation, a couple of new compositions show different burning behavior. 

Some of them were impossible to light (DETT, 5,5´-azotetrazolate) others combust with very 

small flames and NIR emission (RDX, DETP, 5-aminotetrazole). To understand these natures’ 

thermodynamic performance calculations using the ICT code56 were executed for new 

formulations and the results compared with the data obtained for reference 1 and 4 

(summarized in Table 22 and 23). The main intention of these calculations was to find any 

correlation between the theoretical combustion data, mainly the oxygen balance of the flare 

and experimental burning times and burning behaviors (flame size).  

The investigated characteristic variables received from the ICT code are the previously 

mentioned oxygen balance (OB) Ω, the linked equivalence ratio (ER) and the fuel to oxidizer 

ratio (O/F). Absence data within Table 22 and 23 are due to missing crystal structures and 

hence missing densities and heat of formations of the high nitrogen compound. Consequently 

no calculations were conducted for 3NT, BNGT, DNQ, EDD, BTO1, both BMTT and BT 

formulations, BOX2, 3 and DNT1 and 2.  

  

                                                
55 S. Gordon, B. McBride, NASA CEA code, USA, 1994. 
56 F. Volk, H. Bathelt, ICT Thermochemical Code, Fraunhofer ICT, Pfinztal, 2005. 
57 B. Noläng, Ekvi System 3.2, BeN Systems, Balinge, Sweden, 2004.  
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Oxygen balance Ω, Equivalence ratio and Oxidizer to Fuel ratio 

The oxygen balance Ω (OB) is defined as the weight percent of oxygen which is necessary for 

complete combustion (Ω = negative) with respect to CO2 or is still available after complete 

combustion (Ω = positive). Similar as for secondary explosives the oxygen balance of 

pyrotechnic formulations can be calculated with: 

𝑂𝐵(Ω) = 100
𝑛𝑂𝑥𝑀𝑂𝑥𝑢

𝑛𝑅𝑒𝑑𝑀𝑅𝑒𝑑 + 𝑛𝑂𝑥𝑀𝑂𝑥
 

with Mox = molecular weight of oxygen, Mred = molecular weight of reducing agent, u = 

number of oxygen atoms within the oxidizer, n = number of moles.50 

The oxygen balance influences several parameter e. g. the reaction rate and also the heat of 

reaction. An example for the redox system titanium/potassium perchlorate indicate that a OB 

of zero shows the highest heat of reactions [J g-1] but not the highest reaction rate [m s-1].50 

This phenomenon can be explained because pyrotechnics undergo mainly solid-solid redox 

reaction. Further influences of the OB are described for MTV flares. The color ratio of the 

mixture increases with increasing oxygen balance of the fuel but decreases also the spectral 

efficiency.20 However, most pyrotechnic formulations have negative oxygen balances 

because there are overbalanced by fuel. A large amount of energy comes from oxidation of 

the fuel by air (see chapter 9). 

Calculated OBs of NIR pyrotechnics are in the range of -26 to -39% for references and 

between +3 and -42 for new formulations (Table 22 and 23). The OBs for pure synthesized 

potassium and cesium compounds as well as for nitrate and perchlorate salts, RDX or HMX 

are listed separately within Table 22 and 23  

The equivalence ratio is correlated to the oxygen balance Ω and correspond to Ω = 0 

(stoichiometric) for ER = 1, to an oxygen deficit (Ω = negative) for ER < 1 and conform to an 

oxygen excess (Ω = positive) with ER > 1. Only BK_RDX and DETT have values larger than 1 

and therefore positive oxygen balances.56  

Another term which is obtained from calculations is the oxidizer to fuel ratio (O/F) and is 

self-explanatory. Formulations with an O/F value of 1 consist of 50% oxidizer and 50% fuel. 

Compositions listed in Table 22 and 23 having a lower O/F value than 2.33 (refers to 70/30) 

are reduced in the amount of oxidizer. Due to the fact that several mixtures burn very fast 

and others in turn burn very long or distinguish tremendous in the size of the flame, a closer 

inspection of these three values was of particular interest.  
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Burn time 

The classical Black Knight formulations consist of 70% oxidizer (potassium or 

potassium/cesium nitrate), 10% fuel (silicon), 16% hexamine, and 4% binder.  

Formulations with oxygen balances about -40% (ref. 2, 5, BTA4, NTO6, TNBI4) showing 

similar burn times of 14 – 18 s and flares with OBs between 3.44 to -11% (RDX, 5AT, ATR) 

have long burn times from 30 to larger than 35 s. The estimation that formulations with 

more positive Ω values then -30% burn faster than these with values below -30% could not 

be confirmed for the tested formulations. These results could be influenced by the non- 

homogeneity or particle size of the composition.  

Replacing the total amount of 16% hexamine by 5-aminotetrazole, aminotriazole, DETT, 

DETP, EDD, RDX, and HMX results in long burning times (above 35 s) but also in very low 

flame surfaces and poor emission values (chapter 7). Moreover flares containing 5AT and 

ATR produce small sparks during combustion which is an unrequested property (Figure 23).  

Substituting hexamine by the same amount of lactose the burn time decreases dramatically 

from 25 s to 11 s. This can be explained, because lactose acts as readily combustible 

material in pyrotechnics. Moderate values of 18 s for a 10 g charge were obtained by a ratio 

of 8% hexamine and 8% lactose. To avoid too fast burning the maximum amount of lactose 

was therefore 8%.  

Flares substituted by 16% DETT were not possible to light. Another compound which was 

added in ratios of 6, 10.5 and 15 weight% and pressed as 15 g pellets was potassium and 

cesium 5,5´azotetrazolate (24a, b). Both compositions were not listed in Table 16, 20 and 

22 because they were impossible to light by a sparkler and even not by a pole burner. Only a 

crackling noise was observed by treating the pellet directly with the hot flame of the burner. 

Pure salts of azotetrazolate detonate in the bunsen burner. In combination with the binder a 

complete detonation was suppressed, leading only in a sizzle and chunking of small pieces of 

the flare. A reason why both flares do not burn might be the formation of large amounts of 

nitrogen which extinguish the flame.  

From radiometric results it was observed that an ER of 2.33 results in sufficient burn times 

and NIR output, except BTA1 with an ER of 1.5. Therefore further experiments should be 

carried out with a fix O/F ratio of 70/30. 
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Figure 23 Formation of sparks during combustion of BK_5AT (left) and BK_ATR (right). 
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Table 22 Combustion data of Black Knight formulations. 

Formulation Mass 
[g] 

Density 
[g cm-3] 

Burn time 
[s] ER1 O/F2 Ω  

(flare) 
Ω (CO2)  
(HNC) 

Reference1 9.8 1.57 25 0.52 2.33 -25.97 39.56 

Reference2 9.6 2.22 15 0.27 2.33 -39.30 20.52 

Reference3 9.1 2.00 18 0.35 2.33 -34.68 27.12 

Reference4 9.6 1.85 19 0.37 2.33 -33.59  

Reference5 9.5 2.10 14 0.30 2.33 -37.32  

BK_L 10.0 1.63 11 0.71 2.33 -11.05  

BK_5AT 9.6 1.66 36 0.88 2.33 -3.63 -65.83 

BK_ATR 9.5 1.61 30 0.71 2.33 -11.37 -105.93 

BK_LH 9.8 1.63 18 0.60 2.33 -18.51  

BK_BTA1 9.9 1.56 21 0.42 1.50 -33.48 -55.04(K) 

BK_BTA2 10.0 1.64 22 0.69 2.33 -12.38  

BK_BTA3 9.6 1.54 21 0.48 1.50 -26.02 -25.90(Cs) 

BK_BTA4 9.7 1.63 16 0.49 1.50 -25.04  

BK_BTA5 9.6 2.11 15 0.25 1.50 -42.28  

BK_BTA6 9.7 2.12 16 0.29 1.50 -34.82  

BK_BTA7 9.9 2.10 18 0.29 1.50 -39.56  

BK_NTO1 9.6 1.88 22 0.34 1.50 -31.80 -33.30(K) 

BK_NTO2 9.7 1.94 15 0.34 1.50 -31.51 -21.34(Cs) 

BK_NTO3 9.8 1.61 33 0.47 1.86 -28.81  

BK_NTO4 9.7 1.64 26 0.43 1.50 -31.07  

BK_NTO5 9.8 1.91 23 0.36 2.03 -34.72  

BK_NTO6 9.8 1.90 18 0.29 1.22 -39.33  

BK_NTO7 9.8 1.53 18 0.43 1.50 -31.64  

BK_3NT 9.9 1.57 28 - - - -47.32(K) 

BK_CsAzOT 9.9 2.07 23 0.41 2.33 -28.71 -20.78 

BK_BNGT 9.9 1.56 35 - - - -44.16/-29.093 

BK_DNQ 9.8 1.57 33 - - - -8.55/-5.693 

1 ER = equivalence ratio = 1 (Ω = 0), <1 (Ω = negative), >1 (Ω = positive), calculated with ICT-code56  
2 O/F = oxidizer to fuel ratio; Ω = oxygen balance ; HNC = high nitrogen compound;  
 Mass, density and burn time values are mean values (5 pellets); 3potassium/cesium 
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Table 23 Combustion data of Black Knight formulations (continued). 

Formulation Mass 
[g] 

Density 
[g cm-3] 

Burn time 
[s] ER1 O/F2 Ω 

(flare) 
Ω  

(HNC) 

BK_TNBI1 9.7 1.60 19 0.43 1.50 -31.98 -32.79(K) 

BK_TNBI2 9.9 1.74 22 0.43 1.50 -31.31 -22.15(Cs) 

BK_TNBI3 9.7 2.01 14 0.34 1.50 -30.85  

BK_TNBI4 9.9 2.00 17 0.28 1.86 -39.37  

BK_TNBI5 10.0 1.63 15 0.57 2.03 -20.31  

BK_TNBI6 9.9 2.10 14 0.42 2.03 -27.16  

BK_DETT 9.9 1.79 - 1.03 2.33 0.77 -38.33 

BK_DETT1 9.9 1.69 >35 0.69 2.33 -12.60  

BK_EDD 10.0 1.71 >35 - - - -25.79 

BK_DETP 9.8 1.61 >35 0.73 2.33 -10.33 -9.89 

BK_KBMTT 9.8 1.56 28 - - - -83.81 

BK_CsBMTT 9.8 1.57 34 - - - -50.64 

BK_BTO1 9.9 1.68 >35 - - - -38.98(K) 

BK_BTO2 9.8 1.70 >35 0.39 2.33 -31.64 -22.13(Cs) 

BK_BT1 9.9 1.73 25 - - - -31.25(K) 

BK_BT2 9.8 1.97 11 - - - -31.85(Cs) 

BK_RDX 9.8 1.69 >35 1.14 2.33 3.44 -21.61 

BK_RDX1 9.9 1.64 30 0.71 2.33 -11.26  

BK_HMX 9.8 1.63 >35 0.59 2.33 -19.54 -21.61 

BK_BOX1 9.8 1.97 11 0.52 2.33 -18.63 -51.98(K) 

BK_BOX2 9.9 2.11 10 - - - -29.75(Cs) 

BK_BOX3 9.9 1.71 28 - - -  

BK_DNT1 9.9 1.61 17 - - - -16.23(K) 

BK_DNT2 9.9 1.98 17 - - - -10.99(Cs) 

BK_DNT3 9.9 1.66 17 0.71 2.33 -11.16  

1 ER = equivalence ratio = 1 (Ω = 0), <1 (Ω = negative), >1 (Ω = positive), calculated with ICT-code56  
2 O/F = oxidizer to fuel ratio; Ω = oxygen balance; HNC = high nitrogen compound 
 Mass, density and burn time values are mean values (5 pellets) 
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Calculated reaction products56 

Pyrotechnic compositions form solid, liquid and of course gaseous reaction products. The 

formed products are normally not the same as would be expected for a reaction at standard 

conditions. It was observed that compositions with long combustion times and small flames 

produce less or different residues (visual) compared to standards or formulations with good 

burning behavior (Figure 24). For that reason additional calculations for selected 

compositions were carried out for possible reaction products at explosion temperature. The 

reaction temperature is influenced by the chosen oxidizer and reducing agent and can vary 

between 1000 and 4000°C.  

 

 

 

Figure 24  Residues of reference 4 (top left), BK_L (top right), BK_5AT (bottom left), and BK_ATR 

(bottom right). 

 

Because all formulations containing similar and/or the same oxidizer and fuel the calculated 

temperatures vary only between 2100–2860 K. From literature known T-Jump/FTIR 

spectroscopy58 and GC/MS experiments59 with compounds having a similar chemical 

structure than the tested ones (tetrazine, azotetrazolate) the formation of e. g. HCN, NH3, 

H2O, carbon (di)oxide and of course N2 is confirmed. Considering that, gaseous products with 

mole numbers smaller then 10-6 (at 2000 K) were excluded from the calculation.  

                                                
58  B. Tappan, S. Son, Decomposition and Ignition of the High-Nitrogen Compound Triaminoguanidinium Azotetrazolate 

(TAGzT), Propellants, Explosives, Pyrotechnics 2006, 31, 163. 
59  J. C. Oxley, J. L. Smith, Thermal decomposition of high nitrogen energetic compounds – dihydrazido-S-tetrazine salts 

salts, Thermochimica Acta 2002, 384, 91. 
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Because new compounds were added to form large amounts of nitrogen and improve the 

intensity and flame surface it raises the question if weather an excess of nitrogen release 

leads to the converse effect.  

Diagrams for reference 1 and 4, TNBI, NTO and some selected formulations with small 

flames/intensities are displayed in Figure 25–28. Reaction products which are from particular 

interest are highlighted in red.  

It becomes apparent that reference compositions (Fig. 25), TNBI (Fig. 26) and NTO (Fig. 28) 

formulations produce similar w% of nitrogen (between 9-16%). Formulations with weak 

combustion behavior form slightly more (DETT1, DETP) (Fig. 27) than reference 4 and 

similar w% than reference 1. Obviously more w%, up to 23%, were released during 

combustion of BK_5AT. Because the intensity values for TNBI and DNT formulations are just 

slightly better or comparable to reference intensities it can be assumed that from theoretical 

aspects a high nitrogen content of new additives is not obligatory for larger flame surfaces 

and higher radiant intensities.  

 

 

 

Figure 25 Calculated reaction products for reference 1 and 4.56 

Although both references contain the same amount of hexamine but differ in the amount of 

potassium nitrate (70% for ref.1 and 30% for ref. 4) reference 4 form twice as much toxic 

potassium cyanide (13%) than reference 1 (5%). Similar values (1–10%) were obtained for 

TNBI formulations and the highest amount of potassium cyanide was observed for NTO6 

which also contain the highest amount of the cesium salt of the high nitrogen compound 
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(15%). A faint smell after combustion also proves the formation of cyanide. Even though 

TNBI1 and 2 contain the same amount of either potassium or cesium salt (10%) the 

calculated amount of potassium cyanide for TNBI2 is very low and the amount of potassium 

hydroxide is very high and reverses for TNBI1. 

As it is given for the Boudouard reaction the amount of carbon monoxide is much higher for 

formulations with normal combustion properties and temperatures than the amount of 

carbon dioxide. Formulations with poor combustion behavior e. g. RDX and DETT produce 

mainly CO2 instead of CO and due to the different burning behavior it can be assumed that 

the combustion temperature is much lower. For the evidence of the calculated reaction 

products further mass spec (GC/MS) or gaseous IR experiments might be of interest. 

 

 

 
Figure 26 Calculated reaction products for TNBI formulations.56  
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Figure 27 Calculated reactions products for selected formulations.56  

 

 

 

Figure 28 Calculated reactions products for NTO formulations.56  
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Discussion – Radiometric Measurements 

Experimental set up  

The first aim prior to executing radiometric calculations was the development of an 

experimental set up under the consideration of several influencing variables, otherwise the 

experiment will not be reproducible and comparable with other measurements at a different 

time and place.  

Radiometric emissive properties of new Black Knight formulations were characterized using a 

HR2000+ES spectrometer (serial number: HR+C1888) with an ILX511B linear silicon CCD-

array detector, UV2/OFLV-5 filter, L2 lens, 10 µm slit and included software from OCEAN 

OPTICS. The spectrometer was calibrated by OCEAN OPTICS for radiometric measurements.  

For intensity measurements the optical fiber was coupled with a CC-3-UV cosine corrector 

(= irradiance probe) with a diameter of 3900 microns and a field of view (FOV) of 180° in 

order to consider angular incident light correctly to the calculations. The intensity of light was 

measured normal to the probe surface. 

The radiometric term Irradiance Ee was already mentioned in chapter 3. In this regard the 

connection to the Radiance Le should be drawn. The Radiance Le of an emitting body is a 

measure of the flux density per unit solid angle and is expressed in W cm-2 sr-1. Because the 

sample area increases with distance and therefore cancelling the inverse square losses, the 

radiance is independent of the distance of the light source. The Irradiance Ee, at any distance 

of the light source, is related to the Radiance Le by the relationship given below, and 

depends only on the subtended central viewing angle 𝛉 of the radiance detector:15 

𝐸𝑒 = 𝜋 𝐿 𝑠𝑖𝑛2 �
𝜃
2

�                    (1) 

 

Although radiometric measurements are sometimes performed with large distances between 

the emitting source and detector, the distance for the set up used within this thesis was 1 m, 

beginning from the end of the irradiance probe to the mid of the flare or flame, respectively 

(Figure 29a & b). Atmospheric influences on the emission date like air humidity can be 

therefore neglected choosing short distances between light area and sensing device.  

To avoid light traps it should be leave as much space between the optical path, walls and 

ceilings as possible. Because all measurements were carried out in a fume hood the available 

space was limited. Usually, objects which are far away of the set up have low influences on 

the measurements because of the inverse square law. Therefore all objects near to the light 
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source and detector were removed from the field of view or were covered with black panels 

or color to avoid reflection. Further, to exclude the influence of the formed soot and smoke 

which can dim the radiant characteristics, indoor irradiance experiments were carried out 

using a good ventilated fume hood in the basement of the university. In contrast, outdoor 

irradiance measurements were carried out on an open field with a Night-Max® M5 night 

vision device from GUTZEIT GmbH in combination with a Sony NEX C3 digital camera. The 

flare was placed in the middle of a 2 x 1 m metal penal. The distance between night vision 

device and a 10 g pellet was 70 m.  

The silicon detector of the spectrometer comprises a wavelength region from 200–1100 nm, 

in which the measurements for NIR calculations were in the range of 400–1050 nm. To avoid 

signal saturation the integration time for the measurement has to be adjusted for each 

specified light source. The shortest integration time which is technical possible is 1 ms. The 

chosen integration time was 100 ms because lower values leads to weak signals. If the 

intensity signal is lower than 50% the integration time should be changed as long as a 

maximum intensity of 85% is reached (try 200 ms). The selected scan time for all emission 

experiments was 35 s (350 scans). However, the average burn time of a pyrotechnic 

formulation was 20–25 s. Therefore, for correct calculations it is possible to exchange the set 

scan time to the real scan time within the MATLAB code afterwards. In order to obtain a good 

signal to noise ratio the 'scan to average' value should set to values above 1. To gain higher 

temporal resolution of the flame the spectra were not averaged ('scan to average' = 1). To 

avoid data loss of the intensity of the flame the boxcar-width was set to '0'. Every single 

experiment was performed with the exclusion from light and after recording a dark spectrum 

in advance. A user guide for irradiance measurements with the OCEAN OPTICS spectrometer is 

attached.  

The second task of the radiometric experiments comprises the evaluation of the obtained 

intensity data. Compared to experiments using static lights like LEDs or light bulbs the 

combustion of pyrotechnic formulations lasts several seconds to minutes and cannot be 

switched-on or of ad libitum. The Irradiance E is generally obtained following equation 1. 

Using a calibrated spectrometer, E is calculated according to equation 2. This means, the 

obtained spectra, given in counts were multiplied with the detector response file (calibration 

file), divided by the integration time and integrated over the wavelength. As previously 

mentioned, the Radiance Le is independent from the inverse square law, whereas the radiant 

Intensity Ie is dependent from the inverse square law. The obtained Irradiance Ee is 

converted into the radiant Intensity Ie according to equation 3. This results in the unit counts 

→ W m-2 → W sr-1.  
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 𝐸𝑒  =   � 𝑑𝐸𝜆 𝑑𝜆

𝜆2

𝜆1

                   (2) 

      𝐼𝑒 = 𝐸𝑒 × 𝑑2                       (3) 

with E = Irradiance, Eλ = Spectral Radiant Flux Density, I = Radiant Intensity and d = 

Distance. 

 

In addition to the maximum and mean intensities the concealment index χ is calculated 

according to equation 4: 

𝜒 = 𝐼𝑁𝐼𝑅
𝐼𝑉𝑖𝑠

        (4) 

 

with λNIR = 700–1000 nm and λVIS  = 400–700 nm, previously mentioned in chapter 3.  

The obtained data for new formulations were compared to standard Black Knight 

compositions containing either potassium nitrate (reference 1) or potassium and cesium 

nitrate (reference 4).  

  



RADIOMETRIC MEASUREMENTS   CHAPTER 7 

 
 

  73  
 

a 

 
 

 

 

b 

 

Figure 29 Experimental set up for indoor NIR measurements (a, b). 
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Radiometric results 

Caution! Due to safety reasons the quantity of synthesized energetic materials should be 

minimized. Therefore the total amount of each pure compound was 25 g. Although the 

impact and friction data of the formulations are determined first a further safety hazard still 

exists during the pressing process. Therefore the preferred charge size within this thesis was 

10 g. To test the reliability of the set up only selected formulations were tested as 20 g 

charges. 
 

47 new Black Knight formulations and 5 reference formulations were synthesized as 

described in chapter 5 and investigated due to their radiant emission. Because it is described 

that the particle size of the used ingredients influences the burn nature of pyrotechnics, 

reference 1 was further synthesized in different grain sizes to test their burning quality and 

radiant intensity (Figure 21, 31 and 32).50 In addition several tests were performed to test 

the influence of a cover charge (first fire). Although the burning character is improved using 

a cover (here black powder) the influence of higher amounts of visible light reduces the 

concealment index. As a consequence it was preferred to test the pure pellet first. After 

excluding compositions with poor burning properties the measurement should be repeated 

with a charge of 20–40 g and additional primer or first fire.  

The results of the intensity measurements given in Table 24–41 are mean values of typically 

5 runs á 10 g. Some of them consist of 3 runs when i) low intensities were obtained for the 

first run, ii) the flame surface was very low, iii) the flare was difficult to ignite. However, the 

data obtained for Ivismean or INIRmean are mean values of the complete burning times e. g. 20 s 

(Table 22 and 23). 

Formulations which serve as standards are reference 1 and 4 and are highlighted in red. 

Compositions with values similar or better than the references are highlighted in blue. As 

mentioned above these compounds/compositions are still of interest and should be further 

characterized.  

Reference 1–5 

The spectra illustrated in Figure 30 are plots of the maximum intensity of reference 1, 4 and 

5 gained after ignition. The expected emission lines for potassium at 766–769 nm, cesium at 

852 and 894, and rubidium at 780 and 794 nm are displayed. Although rubidium is too 

expensive to use it regularly the intensity output and concealment index for a composition 

containing cesium and rubidium nitrate is very high due to a red-shift of about 11–28 nm for 

Rb and 38–128 nm for Cs compared to potassium. Therefore several formulations were 
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prepared with rubidium nitrate as oxidizer (Table 16 and 17). As expected it is not possible 

to avoid the sodium line at 589 nm, although pure compounds and oxidizers were used. 

Combustion products like KCN, MOH, SiO2, H2O, CO, CO2, NH3 etc. are located at higher 

wavelengths above 2000 to 6000 nm (M = K, Cs, Rb) and were therefore not recorded.   

 

 

Figure 30 Intensity plots for reference 1 (top), 4 (mid) and 5 (bottom). 

 

Figure 31 and 32 gives the comparison of reference formulations with different mixing grade. 

The fine composition was synthesized with ingredients mixed in a ball mill and then 

additionally in a mortar for 20 minutes. The rough composition was mixed for about 5 

minutes in a mortar (Figure 21). 

Although both formulations consist of the same wt% of the compounds the difference in their 

combustion behavior is obviously (Figure 31 and 32). As desired for NIR flares, the 

maximum IR output for the fine mixture is achieved shortly after ignition and stays nearly 

constant for several seconds. The maximum intensity for the rough mixture is observed not 

before 18 s and stays only short at his maximum. As both flares consists of the same high 

(2 cm), the burn rate for reference_f is 0.08 cm s-1 and for reference_r 0.06 cm s-1. The 
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results of our experiment conform with results obtained in literature50 whereas a decrease of 

the particle size of the fuel leads to an increase of the reaction rate. Reducing the particle 

size causes a higher reaction surface and a more intimate contact of fuel and oxidizer which 

influences the kinetic of the redox reaction.  

In addition to the decrease of the burn rate both plots visualizes a significant decrease of the 

intensity values of 5 W sr-1 for the rough mixed composition compared to about 11 W sr-1 for 

the fine mixed formulation (Table 25). On this account it must be mentioned again: the 

mixing process of pyrotechnic formulations should be done accurate to obtain reliable data.54 

 

 

 
 
 
 
 
 

 

Figure 31 Intensity plot as a function of time and wavelength of reference1_f (top) and reference1_r 

(bottom). 
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Figure 32 Intensity as a function of time for reference1_f and reference1_r.  

 

 

Table 24 Radiant intensities of Black Knight formulations.* 

Formulation 
IVISmax 

[Cd] 
IVISmax 

[W/sr]a 
IVISmean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_r 129 0.19 0.10 2.77 

Reference1_m 247 0.37 0.21 6.11 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference1_BP 527 0.77 0.32 8.45 

Reference2 100/148 0.15/0.22 0.09/0.12 4.25/6.14 

Reference3 128 0.19 0.11 5.90 

Reference4 144 0.21 0.13 7.01 

Reference5 121 0.18 0.11 7.57 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch, BP = black powder cover 
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Table 25 Radiant intensities of Black Knight formulations (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_r 5.32 5.43 4.98 28.71 

Reference1_m 10.99 11.22 11.20 30.41 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference1_BP 19.36 19.87 19.77 25.60 

Reference2 6.88/12.26 6.91/12.39 7.01/12.49 48.44/56.76 

Reference3 10.23 10.32 10.14 54.73 

Reference4 12.37 12.50 12.55 59.08 

Reference5 12.59 12.69 12.76 70.98 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch, BP = black powder cover 

 

The default values for the intensities are >25 W sr-1 for a charge larger than 10 g (enlarged 

surface, higher temperature). These values are stated for the maximum intensity. Because 

most flares tested therein consist of 10 g, 25 W sr-1 are normally not reached. As it can be 

seen from the compared 10/20 g charges nearly the double IR output was achieved for a 

20 g pellet (Table 25, 27, 35, 37, 41). Surprisingly this was observed for all new 

formulations but not for reference 1. One test with a 30 g charge of reference 1 and 4 results 

in 25 W sr-1 (χ = 27, Ivismax = 600 Cd) and 18 W sr-1 (χ = 57, Ivismax = 215 Cd), respectively. 

However, the data of pyrotechnic charges (mass and intensities) given in literature indicate a 

saturation of the intensity at a certain amount. Hence, the maximum intensity is reached at 

around 30 W sr-1 for payloads of 20 g and larger.8  To prove this statement several additional 

tests should be repeated with 20, 30 and 40 g payloads.   

 

Hexamine replacements 

Interestingly the obtained data for all hexamine replacements were underperforming. DETT 

does not burn and only the perchlorate salt of diethylene trinitrate shows intensities of 

around 4 W sr-1 (Table 26, 27). Promising candidates like lactose, 5-aminotetrazole or 

amino-1,2,4-triazole show nearly no intensities. Although it is assumed that compounds like 

5-aminotetrazole or DETT/DETP produce large amounts of nitrogen and lactose large 

amounts of carbon dioxide after decomposition the surface of the flame was not enlarged 

(Figure 33). As previously mentioned 5AT and ATR produces small sparks during combustion 

which is a further disadvantage (Figure 23). Figure 34 and 35 reflects the burning behavior 
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of selected flares with poor intensities and burning nature. These flares show understandably 

long combustion times. DETT must be lighted several times because the first contact with the 

flame does not support the self-sustaining of the formulation.  

Both commonly used secondary explosives HMX and RDX were synthesized from hexamine 

as starting material. Therefore it was obvious to test both as hexamine replacement. 

Although both are toxic and would not find their way into industrial manufactured 

pyrotechnic formulations it was of interest to investigate their burning behavior and 

compatibleness within a pyrotechnic formulation. As it can be seen from Figure 34 it is nearly 

no IR output obtained for a complete exchange of hexamine by 16% RDX. Formulations with 

a mixture of HMX or RDX and hexamine gave also low values of around 7 W sr-1.  

The highly negative heat of formations of DETT, DETP and lactose (–971.70 kJ mol-1, 

 −687.01 kJ mol-1, –651 kJ mol-1) could be one reason for the paltry IR emission and burning 

nature.20  In contrast, compounds with a similar heat of formation as hexamine (+124.06 kJ 

mol-1) e. g. 5-AT (+207.78 kJ mol-1) and ATR (+108.78 kJ mol-1) showing alike performance. 

Because all additives are not suitable for formulations and  BK_DETT, DETP and EDD are 

hygroscopic and not compatible with other ingredients there were not further investigated.  

 

Table 26 Radiant intensities of Black Knight formulations – hexamine replacements.* 

Formulation 
IVISmax 

[Cd] 
IVISmax 

[W/sr]a 
IVISmean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_L 194 0.29 0.17 4.57 

BK_5AT 28 0.04 0.04 0.83 

BK_ATR 61 0.09 0.06 1.75 

BK_LH 262 0.38 0.19 5.83 

BK_DETT - - - - 

BK_DETT1 46 0.07 0.03 0.64 

BK_EDD 46 0.07 0.01 0.44 

BK_DETP 122 0.18 0.08 1.59 

BK_RDX 40 0.06 0.02 0.45 

BK_RDX1 263/543 0.39/0.80 0.23/0.45 4.21/7.51 

BK_HMX 184/527 0.27/0.34 1.13/0.77 3.05/7.09 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 
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Table 27 Radiant intensities of Black Knight formulations – hexamine replacements (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_L 7.77 7.69 8.60 27.52 

BK_5AT 1.04 1.07 1.43 25.15 

BK_ATR 2.50 2.56 2.55 28.19 

BK_LH 10.40 11.65 11.36 30.23 

BK_DETT - - - - 

BK_DETT1 1.65 1.68 1.45 24.47 

BK_EDD 1.80 1.83 1.28 26.31 

BK_DETP 3.76 3.85 4.10 20.95 

BK_RDX 1.15 1.18 1.43 19.86 

BK_RDX1 7.11/13.65 7.29/14.05 7.41/13.97 18.45/17.16 

BK_HMX 6.85/15.60 7.01/16.08 6.91/15.95 25.49/20.23 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm; b I1 = 600-900 nm;  
c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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Figure 33 Flame surface of DETP (left) and reference 4 (right). 

 

 

 

Figure 34 Selected formulations with poor burning nature. 
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Figure 35  Intensity plots as a function of time and wavelength for BK_5AT (top), BK_L (mid) and _ATR 

(bottom). 
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BTA 

All formulations containing 5-bistetrazolyl amine show good burning characteristics. The 

visible output for 10 g charges are below the preset emission of 350 Cd. The lowest IR 

output was obtained for BTA3 and BTA6 although they consist of an equal ratio of their 

ingredients (10% HNC, 8% lactose, 8% hexamine, 60% oxidizer). Similar values (IR, χ) as 

both references are obtained for BTA1, therefore this formulation would be a good candidate 

for further experiments. The burning behavior of BTA1 together with several selected 

formulations is also displayed in Figure 36. Due to the large amount of cesium and or 

rubidium, very high concealment indices were obtained for BTA5, 6 and 7 (Table 28 and 29).  

 

 

Table 28 Radiant intensities of Black Knight formulations - BTA.* 

Formulation 
IVISmax 

[Cd] 
IVISmax 

[W/sr]a 
IVISmean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_BTA1 218 0.32 0.18 6.46 

BK_BTA2 304 0.44 0.25 5.10 

BK_BTA3 67 0.10 0.06 4.10 

BK_BTA4 102 0.15 0.10 3.76 

BK_BTA5 74 0.11 0.06 4.50 

BK_BTA6 37 0.05 0.03 3.62 

BK_BTA7 81 0.10 0.08 4.44 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 

 

  



RADIOMETRIC MEASUREMENTS   CHAPTER 7 

 
 

  84  
 

Table 29 Radiant intensities of Black Knight formulations - BTA (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_BTA1 11.74 11.95 12.05 36.94 

BK_BTA2 8.98 9.26 9.18 20.22 

BK_BTA3 4.17 4.17 4.04 41.73 

BK_BTA4 6.67 6.77 7.08 45.46 

BK_BTA5 8.74 8.80 9.06 81.12 

BK_BTA6 4.83 4.86 5.51 97.94 

BK_BTA7 8.11 7.63 7.83 75.81 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 

 

 

 

NTO 

As stated within chapter 1 new results of commonly used explosives in pyrotechnic 

formulations display good properties.20 NTO as another secondary explosive was therefore 

tested within NIR compositions (Table 30 and 31).  

Most NTO compositions show low intensity values. Only NTO4 and 6 are in the range of 

10 W sr-1. The concealment indices for most compositions are comparable with the 

references only NTO1 and 2 have very high values of around 98. Although the oxygen 

balances of the formulations are in the range of references (-28 – -39 %), the O/F values are 

between 1.22–2.03. As mentioned previously good intensity values are obtained for an O/F 

of 2.33. Because NTO4 and 6 formulations consist of 10-15 w% of the high nitrogen 

compound it would be meaningful to repeat this measurement with 70% oxidizer and a 

decreased amount of hexamine instead of the nitrates.  
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Table 30 Radiant intensities of Black Knight formulations - NTO.* 

Formulation 
IVISmax 

[Cd] 
IVISmax 

[W/sr]a 
IVISmean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_NTO1 23 0.03 0.02 1.80 

BK_NTO2 45 0.05 0.04 3.08 

BK_NTO3 168 0.25 0.08 3.24 

BK_NTO4 116 0.16 0.08 4.78 

BK_NTO5 84 0.12 0.07 4.24 

BK_NTO6 92 0.10 0.07 4.58 

BK_NTO7 108 0.16 0.07 2.62 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 

 

Table 31 Radiant intensities of Black Knight formulations - NTO (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_NTO1 3.09 3.11 3.30 98.00 

BK_NTO2 5.25 5.30 5.51 98.94 

BK_NTO3 8.53 8.69 8.55 39.01 

BK_NTO4 8.89 9.00 9.55 50.18 

BK_NTO5 8.38 8.46 8.65 66.77 

BK_NTO6 8.94 9.03 9.44 66.39 

BK_NTO7 6.07 6.16 6.28 38.43 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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TNBI 

Formulations containing the potassium and/or cesium salt of tetranitro bisimidazole showing 

a very good burning behavior. The intensity values of TNBI2, 5 and 6 are similar to both 

references whereas formulation 5 and 6 contain only 3 w% of the potassium or cesium salt 

(Table 32 and 33). TNBI2 consists of 10 w% of the cesium salt and gives slightly lower 

values then 5 and 6. Although TNBI flares had the largest flame sizes compared to all others 

the intensity output was not improved. Values obtained for formulation 4 (5/5 % potassium 

and cesium HNCs) are lower than of 1 and 2 (10 % either K or Cs). The reason for that 

might be the addition of lactose or the decreased amount of oxidizer. The intensity output of 

5 and 6 is not obviously better compared to the standard and only a low amount of TNBI was 

added. Figure 36 illustrates the burn time of several formulation, including TNBI1, compared 

to reference 1.  

 

 

Table 32 Radiant intensities of Black Knight formulations - TNBI.* 

Formulation 
Ivismax 

[Cd] 
Ivismax 

[W/sr]a 
Ivismean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_TNBI1 162 0.24 0.13 4.78 

BK_TNBI2 163 0.24 0.13 5.58 

BK_TNBI3 65 0.09 0.05 3.95 

BK_TNBI4 81 0.12 0.08 5.23 

BK_TNBI5 266 0.39 0.20 5.30 

BK_TNBI6 129 0.19 0.11 5.08 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 
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Table 33 Radiant intensities of Black Knight formulations - TNBI (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_TNBI1 8.75 8.91 8.98 39.97 

BK_TNBI2 10.68 10.83 10.87 44.69 

BK_TNBI3 7.18 7.24 7.67 75.67 

BK_TNBI4 9.09 9.15 9.41 76.67 

BK_TNBI5 10.93 11.21 11.50 27.99 

BK_TNBI6 10.54 10.66 11.00 55.94 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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BOX  

Good values for the maximum intensity were obtained for BOX1 which comprises 8% of the 

potassium salt and a decreased amount of hexamine. Because the total amount of oxidizer 

(70%) and high nitrogen compound (8%) are equal for all three BOX formulations, the 

addition of lactose and the combination of the potassium and cesium salt (4/4%) reduces the 

NIR output by half for BOX2 and 3. The concealment index for 1 and 2 is moderate due to 

the amount of cesium nitrate. Because BOX3 contain only potassium nitrate and only 4% of 

the cesium salt χ is considerably lower (55 vs. 24). Similar as for BTA1 further test should be 

carried out with larger amounts of BOX1 in addition with a first fire. Because the visible 

output for a 20 g charge is higher than requested it should be further tested if the visible 

emission could be adjusted by a varied ratio of the single components.  

 

Table 34 Radiant intensities of Black Knight formulations - BOX.* 

Formulation 
Ivismax 

[Cd] 
Ivismax 

[W/sr]a 
Ivismean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_BOX1 172/432 0.25/0.63 0.17/0.37 6.44/14.29 

BK_BOX2 94/206 0.14/0.30 0.09/0.17 3.34/6.17 

BK_BOX3 216/361 0.32/0.53 0.14/0.31 3.38/7.00 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 

 
 

Table 35 Radiant intensities of Black Knight formulations - BOX (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_BOX1 11.80/26.15 11.97/26.60 12.21/28.03 46.92/41.31 

BK_BOX2 5.87/12.52 5.96/12.47 6.58/14.07 43.00/41.50 

BK_BOX3 7.78/12.87 7.96/13.17 7.86/13.49 24.56/24.32 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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DNT 

The IR output for all DNT formulations is comparable with the emission of references 1 and 

4. The visible light of a 20 g charge is much higher, although only 2–5% of DNT were added. 

Due to the low amount of DNT all formulations deviate only slightly from the reference 

formulation, therefore the high amount of visible light might be from the decomposition of 

DNT. Because DNT2 formulations showing good intensity values (slightly better than both 

references) it might be useful to performed further tests and higher amounts of DNT within 

the formulation.  

 

Table 36 Radiant intensities of Black Knight formulations - DNT.* 

Formulation 
Ivismax 

[Cd] 
Ivismax 

[W/sr]a 
Ivismean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_DNT1 285/713 0.42/1.04 0.23/0.53 5.04/11.22 

BK_DNT2 178/398 0.26/0.58 0.14/0.30 6.36/12.10 

BK_DNT3 277/789 0.41/1.16 0.22/0.61 4.98/11.07 

*all values are mean values of 3-5 measurements 
a Ivis = 400-700 nm; b INIR = 700-1000 nm; 10g / 20g batch 

 
 

 

Table 37 Radiant intensities of Black Knight formulations - DNT (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_DNT1 10.05/23.40 10.33/24.13 10.30/24.73 24.11/22.43 

BK_DNT2 12.70/24.94 12.85/25.30 13.18/26.32 48.90/42.75 

BK_DNT3 10.00/22.11 10.24/22.86 10.50/23.48 24.76/19.15 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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BTO and BT 

All compositions containing either BTO or BT show lower intensity values than reference 

formulations. Although the IR output for BT2 is around 12 W sr-1 for a 10 g payload the 

formulations consist of only 3% of potassium BT. The visible emission for 10 g charges are in 

a good range for both BTO flares (10 and 20 g) and for BT2. Only BT1 exceeds the 350 Cd 

benchmark. Because of the low values obtained for BT1 (10 w% cesium salt) further 

experiments might be not useful.  

 

 

Table 40 Radiant intensities of Black Knight formulations – BTO and BT.* 

Formulation 
Ivismax 

[Cd] 
Ivismax 

[W/sr]a 
Ivismean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_BTO1 78/139 0.11/0.20 0.05/0.10 1.31/2.54 

BK_BTO2 136/299 0.20/0.44 0.08/0.25 2.71/7.91 

BK_BT1 216/411 0.32/0.60 0.14/0.36 2.93/7.38 

BK_BT2 153/207 0.23/0.30 0.14/0.23 6.00/10.43 

*all values are mean values of 3-5 measurements 
a Ivis = 400-700 nm; b INIR = 700-1000 nm; 10g / 20g batch 

 
 

Table 41 Radiant intensities of Black Knight formulations – BTO and BT (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_BTO1 3.20/4.96 3.27/5.09 3.13/4.74 28.31/23.35 

BK_BTO2 6.82/14.64 6.94/14.90 5.94/15.06 34.25/33.52 

BK_BT1 6.72/12.62 6.89/12.95 7.07/12.59 21.21/20.97 

BK_BT2 11.52/17.10 11.67/17.30 12.21/18.44 51.64/56.31 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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Figure 36 displays the intensity as a function of time for reference 1 and 4 as well as for 

BTA1, TNBI1 and BTO1 is displayed in Figure 36. BTA1 and TNBI1 are constituted of 10 wt% 

potassium HNC and 60 % potassium nitrate as oxidizer. It can be seen BK_BTA1 and TNBI1 

show good intensity values and burn times between both references. Similar as the 

references the maximum intensity output is close after ignition but the radiant emission of 

about 8 W sr-1 for TNBI 1 is unexpected low. Compared to BTO1 which comprises only 5 wt% 

of potassium BTO and 65% potassium nitrate the burning behavior and intensity output 

differs dramatically, although the burning time is larger than 35 s. One reason for this 

characteristic might be a too high nitrogen content of the compound. Due to the high 

formation of nitrogen the produced heat which is necessary for the burn rate and intensity 

emission is dissipated.  

 

 

 

Figure 36 Intensity as a function of time for selected formulations.  
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The intensity plot for several selected formulations with different burn times is illustrated 

below. As desired, all composition reaches their maximum intensity shortly after ignition. 

However, the burn time decreases dramatically from 25 s to 10 s for BT2. TNBI6 and BT2 

consist of similar ingredients and w% and differ therefore only slightly in burn time and 

radiant output.  

Because lactose is added in pyrotechnics as readily combustible material it accelerates the 

combustion process of TNBI6 and BT2; both combust within 10–14 s.  

 

 
 

 

Figure 37 Intensity as a function of time for selected formulations. 
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Individual tests 

The obtained data for 3NT, CsAzOT, DNQ, and BNGT are not satisfying. Although the visible 

output for all formulations is in a good range (< 350 Cd) the IR output with around 9 W sr-1 

and the concealment index of 55 is only for CsATzO acceptable. Due to the sensitivity data of 

the formulation (chapter 6) the use of CsAtzO as a possible additive would be further 

questionable. Because the synthesis of DNQ is ambitious and the neutral compound 

decomposes after several days, the synthesis of larger scales of DNQ is also not profitably. 

Table 38 Radiant intensities of Black Knight formulations - Selected.* 

Formulation 
IVISmax 

[Cd] 
IVISmax 

[W/sr]a 
IVISmean  
[W/sr] 

INIRmean  
[W/sr]b 

Reference1_f 281/264 0.42/0.39 0.20/0.25 5.37/7.71 

Reference4 144 0.21 0.13 7.01 

BK_KBMTT 217 0.32 0.16 4.26 

BK_CsBMTT 179 0.26 0.12 3.57 

BK_3NT 237 0.35 0.15 3.55 

BK_CsATzO 115/221 0.17/0.32 0.09/0.18 4.53/8.77 

BK_BNGT 166 0.24 0.12 3.21 

BK_DNQ 137 0.20 0.09 2.53 

*all values are mean values of 3-5 measurements, a Ivis = 400-700 nm 
b INIR = 700-1000 nm; 10g / 20g batch 

Table 39 Radiant intensities of Black Knight formulations - Selected (continued).* 

Formulation 
INIRmax 

[W/sr]a 
I1max 

[W/sr]b 
I2max  

[W/sr]c χ 

Reference1_f 10.96/13.15 11.21/13.40 11.38/12.85 26.82/33.98 

Reference4 12.37 12.50 12.55 59.08 

BK_KBMTT 8.69 8.88 9.14 27.42 

BK_CsBMTT 8.08 8.24 8.25 30.96 

BK_3NT 7.71 7.92 8.05 22.36 

BK_CsATzO 9.20/18.09 9.30/18.30 9.3/18.87 55.04 

BK_BNGT 6.67 6.80 6.83 27.31 

BK_DNQ 5.27 5.39 5.23 26.77 

*all values are mean values of 3-5 measurements; a INIR = 700-1000 nm;  
b I1 = 600-900 nm; c I2 = 695-1050 nm; χ = INIR/Ivis; 10g / 20g batch 
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NIR pyrotechnics produce purple flames because of the formation of excited potassium and 

cesium ions. However the interesting emission is not visible with the human eye. Therefore 

several flares were tested outside with a night vision device. The first photo series illustrates 

the illumination close to the flame (Figure 38). The area next to the flare is considerably 

more illuminated compared to the area with extinct flame. The second photo series features 

the different view with and without NIR device (Figure 39). After a few seconds the IR output 

reaches his maximum. Because of the overexposure of the camera by filming the flame 

directly the desired effect is only slightly visible. Because NIR flares fulfill their work in high 

altitudes these pictures give only an impression of the influence of the NIR emission at 

ground level and less dihedral angle. Nevertheless, in combination with their calculated 

intensities they are still more informative then just the visible purple flame.  

 

 

 

Figure 38 Outdoor NIR experiments with burning pellet (first column, left) and extinguished pellet 

(second column, right). 

 

sparkler 



RADIOMETRIC MEASUREMENTS   CHAPTER 7 

 
 

  95  
 

   

   

   

Figure 39 Outdoor NIR experiments (with and without NVD). 
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Conclusion 

Several energetic materials like potassium and cesium 3,5-dinitro-1,2,4-triazolate or 3-nitro-

1,2,4-triazol-5-(4H)-one were successfully synthesized. Selected salts were investigated as 

possible additives in near infrared pyrotechnic formulations, so called Black Knight 

compositions. Before executing radiometric measurements, all formulations were tested due 

to their sensitivity and combustion behavior. Exclusively all formulations are insensitive 

against friction and electric discharge and only few are moderate or less sensitive against 

impact e. g. BK_RDX or BK_CsAzOT. Additionally, thermodynamic calculations using the ICT 

code were performed to compare parameters like the oxygen balance or combustion 

products of the new formulations with the standard Black Knight composition. Because the 

main intention of this thesis was the establishment of a new set up for radiometric 

measurements investigations of possible influences on the burning behavior or burn rate and 

trends in combination with e. g. the oxygen balance were not observed. However, this work 

is now on progress. 

The set up of the new OCEAN OPTICS spectrometer was successfully established in our 

research group. 46 new formulations were tested due to their radiant intensity and burning 

behavior and compared mainly with reference formulations containing either potassium or a 

combination of potassium and cesium nitrate as oxidizer. The results of the measurements 

showing the same scale as for flares stated in literature therefore their maximum intensities 

are comparable. 

Most of the new tested formulations show similar or lower maximum intensity values as both 

references. Several additional tests might be carried out with DNT2, BTA1, BT2, TNBI5 or 

BOX1 which shows good burning behaviors and acceptable IR output.  
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Experimental Section 

Equipment 

Caution! Although no problems occurred during the synthesis and handling of the materials 

studied in this work, some of the neutral compounds and their salts are sensitive energetic 

materials. Safety equipment such as Kevlar® gloves, leather coat, wrist protection, face 

shield, ear protection, grounded equipment, and shoes are mandatory.  
 
General Method. All chemicals and solvents were used as received (Sigma–Aldrich, Fluka, 

Acros Organics) unless stated otherwise. MELTING POINTS were measured with a Linseis PT10 

DSC, calibrated with standard pure zinc and indium. Measurements were performed at a 

heating rate of 5°C min-1 in a closed aluminum sample pan with a 1 µm hole on top for gas 

release and under a nitrogen flow of 20 mL min-1 with an empty identical aluminum sample 

pan as reference. The values were checked by a Büchi Melting Point B-450 apparatus. The M. 

p. values are not corrected. MASS SPECTROMETRY was conducted on a JEOL MStation JMS 700 

machine. All NMR SPECTRA were recorded with a Jeol Eclipse 270, Jeol EX 400, or a Jeol 

Eclipse 400 instrument. The chemical shifts are quoted in ppm relative to TMS (1H, 13C), and 

MeNO2 (14N, 15N). For NMR signals the common abbreviations were used: s (singlet), d 

(duplet), t (triplet), q (quartet), and m (multiplet). INFRARED (IR) SPECTRA were recorded with 

a Perkin–Elmer Spektrum One FT-IR Spectrum BXII with Smith ATR Dura Sample IRII 

instrument. The absorption is given in wave numbers (cm-1) with a range of 100–4000 cm-1. 

Transmittance values are qualitatively described as very strong (vs), strong (s), medium 

(m), weak (w), and very weak (wv). RAMAN SPECTRA were measured with a Bruker MULTIRAM 

1064 2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm). The 

intensities are given in percentages of the most intense peak and are given in parenthesis. 

ELEMENTAL ANALYSES (C, H, N, I) were performed with a Vario El and Netsch STA 429 

Simultaneous Thermal Analyzer. SENSITIVITY DATA were determined using a BAM drop hammer, 

BAM Friction tester, and an OZM electrical discharge testing device.52,53 

Potassium and cesium salts were synthesized using p. a. alkaline bases (KOH and CsOH) or 

their carbonates (K2CO3, KHCO3 and Cs2CO3), respectively. Typically CsOH was used as a 

50 w% solution (5.74 mol L-1) and KOH pellets of 99.95% purity. The salts were obtained 

depending on their solubility from acetone, ethanol or water.  
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For crystallographic data the molecular structure in the crystalline state were determined 

using an Oxford Xcalibur3 diffractometer with a Spellman generator (voltage 50 kV, current 

40 mA) and a KappaCCD detector. The data collection was performed using the CrysAlis CCD 

software,60 the data reduction with the CrysAlis RED software.61 The structures were solved 

with SIR-92,62 and SHELXS-97,63 refined with SHELXL-9764 and finally checked using the 

PLATON software.65 In all structures, the hydrogen atoms were located and refined. The 

absorptions were corrected by a SCALE3 ABSPACK multi-scan method.66  

All relevant data and parameters of the X-ray measurements and refinements are given in 

Table 50. Thermal ellipsoids in figures of crystal structures were drawn to 50% probability.  

 

  

                                                
60  CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171 .NET) (compiled 

April 1 2005, 17: 53: 34). 
61 CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171 .NET) (compiled 

April 1 2005, 17: 53: 34). 
62  A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A Program for Crystal Structure  Solution, SIR-92, J. Appl. 

Cryst. 1993, 26, 343. 
63  G. M. Sheldrick, Program for Crystal Structure Solution, SHELXS-97, University Gottingen, 1997. 
64  G. M. Sheldrick, Program for the Refinement of Crystal Structures, SHELXS-97, University of Göttingen, Germany, 

1997. 
65  A. L. Spek, A Multipurpose Crystallographic Tool, PLATON, Utrecht University, Utrecht, The Netherlands, 1999. 
66  SCALE3 ABSPACK – An Oxford Diffraction program (1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd. 
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Synthesis 

Synthesis of 3-nitro-1,2,4-triazole (1), potassium and cesium 3-nitro-

1,2,4-triazolate (1a & 1b) 

 

3-Amino-1,2,4-triazole (10.00 g, 119 mmol) was dissolved in 22 mL 37% 

HCl. The solution was added via a dropping funnel and under ice cooling 

within 45 min to a solution of sodium nitrite (23.00 g, 333 mmol) in 

100 mL water. After one hour the ice bath was removed and the solution 

was stirred for a further hour at room temperature. Afterwards the mixture was heated to 

55°C and stirred for 1.5 h and then cooled to r. t. The pH was adjusted from five to one with 

4.60 mL 37% HCl. The excess of nitrite was removed by adding a solution of 7.00 g urea in 

40 mL water. After 1 h stirring the solid was filtered off and washed with 4 x 30 mL ice 

water. The beige powder 1 was dried at 90°C over night. Yield: 10.30 g (75%) M. p. 212–

214°C (Lit: 210–214°C), EA (C2H2N4O2, 114) found(calc.): C 21.02(21.06), H 1.67(1.77), N 

49.20(49.12) %; 1H NMR (d6 DMSO, 25°C): δ = 8.85, 7.92; 13C NMR (d6 DMSO, 25°C): 

δ = 163.6, 146.7; 14N NMR (d6 DMSO, 25°C): δ = -26; IR (ATR): 𝜈� = 3854 (w), 3746 (w), 

3676 (w), 3650 (w), 3630 (w), 3162 (w), 3093 (w), 3025 (w), 2962 (w), 2849 (w), 2775 

(w), 2700 (w), 2649 (w), 2361 (w), 2338 (w), 1772 (w), 1734 (s), 1379 (s), 1310 (s), 1269 

(s), 1180 (m), 1107 (m), 1018 (m), 980 (s), 917 (m), 879 (m), 834 (s), 772 (w); Raman 

(200 mW): 𝜈�  = 3162 (12), 2859 (5), 1578 (6), 1481 (19), 1425 (100), 1382 (858), 1312 

(14), 1271 (12), 1177 (25), 1108 (13), 1020 (19), 983 (6), 835 (11), 774 (8), 535 (4), 449 

(10), 278 (4), 246 (13). 

 

4.00 g (35.1 mmol) of 1 were solved in 1.97 g (35.1 mmol) KOH in 20 mL water and stirred 

for 20 min at r. t. The cesium salt was obtained from 3.50 g (30.7 mmol) of 1 in 6.12 mL 

CsOH solution (50 w%) and 20 mL water. After the solvent was evaporated both salts could 

be recrystallized from EtOH/H2O. Yield 4.82 g (90%) potassium salt (1a) and 7.77 g (90%) 

cesium salt (1b). 

 

Potassium 3-nitro-1,2,4-triazolate (1a) EA (C2HKN4O2, 152) found(calc.): C 

16.16(15.79), H 0.85(0.66), N 37.97(36.82) %; 1H NMR (d6 DMSO, 25°C): δ = 7.73; 
13C NMR (d6 DMSO, 25°C): δ = 166.4, 152.2; 14N NMR (d6 DMSO, 25°C): δ = -18; IR 

(ATR): 𝜈� = 3366 (w), 3139 (m), 2649 (w), 1567 (s), 1549 (vs), 1490 (vs), 1417 (m), 1394 

(vs), 1362 (vs), 1310 (m), 1290 (s), 1258 (m), 1170 (m), 1080 (m), 1060 (s), 982 (m), 960 

(m), 903 (m), 837 (vs), 686 (m); Raman (200 mW): 𝜈�  = 3126 (12), 1534 (10), 1492 (4), 

1408 (7), 1393 (70), 1376 (2), 1364 (100), 1292 (10), 1259 (8), 1168 (54), 1080 (4), 1065 
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(48), 1022 (7), 984 (3), 903 (1), 842 (10), 771 (1), 542 (3), 280 (2), 249 (2); Sensitivity 

data: IS  40 J, FS 288 N, ESD 0.5 J; grain size: 100-200 µm. 

 

Cesium 3-nitro-1,2,4-triazolate monohydrate (1b) EA (C2H3CsN4O3, 263.9) 

found(calc.): C 9.06(9.10), H 1.04(1.15), N 21.21(21.22) %; 1H NMR (d6 DMSO, 25°C): δ = 

7.74; 13C NMR (d6 DMSO, 25°C): δ = 162.6, 152.2; 14N NMR (d6 DMSO, 25°C): δ = -18; 

IR (ATR): 𝜈�  = 3369 (vs), 3140 (vs), 1668 (m), 1521 (vs), 1480 (vs), 1394 (vs), 1356 (vs), 

1293 (m), 1259 (m), 1163 (m), 1073 (s), 984 (m), 890 (m), 836 (s); Raman (200 mW): 𝜈�  

= 3121 (15), 1529 (7), 1471 (3), 1390 (63), 1357 (100), 1291 (5), 1260 (7), 1162 (49), 

1070 (64), 1026 (8), 986 (3), 834 (4), 765 (2), 541 (1), 250 (4); Sensitivity data: IS 40 J, 

FS 240 N, ESD 0.4 J; grain size: 100–200 µm. 

 

 

Synthesis of potassium and cesium 3,5-dinitro-1,2,4-triazolate (DNT) (2a 

& 2b) 
 

4.95 g (0.05 mol) 3,5-diaminotriazole was dissolved in 115 mL 1 M 

sulfuric acid and 35 mL water. The solution was slowly added within 

1 h to an ice/salt cooled solution of 34.50 g (0.5 mol) sodium nitrite 

in 150 mL water. Afterwards the suspension was stirred for 1 h at 0°C 

and a further hour at r. t. The suspension was heated to 65°C and kept at this temperature 

until it became a clear red solution. It was cooled again with an ice/salt bath and 60 mL 30% 

sulfuric acid was added. After 15 min a solution of 6 g urea in 30 mL water was added and 

the red mixture was stirred for 1 h at r. t. and then extracted with 12 x 100 mL diethyl 

ether. The solvent was removed to a total volume of 4-5 mL and a small excess (0.055) of 

KOH in ethanol (0.5 M) or 2 M KOH was added. The orange solid was filtered off and washed 

with ice water. The cesium salt was obtained by adjusting the pH to 6–7 with a small excess 

of CsOH (0.1 M) or Cs2CO3. The alkaline salts precipitated after a few hours. Yield: 

4.9 g (50%) potassium salt, 7.3 (50%) cesium salt. 
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Potassium DNT dihydrate (2a) EA (C2KN5O4 · 2 H2O, 197.15) found(calc.): C 

10.08(10.30), H 1.38(1.73), N 29.61(30.03) %; 1H NMR (d6 DMSO, 25°C): δ = 3.39 (H2O); 
13C NMR (d6 DMSO, 25°C): δ = 163.4; 14N NMR (d6 DMSO, 25°C): δ = -21; IR (ATR): 𝜈� = 

3603 (s), 3415 (vs), 2361 (w), 1642 (m), 1535 (vs), 1492 (vs), 1390 (vs), 1355 (vs), 1301 

(vs), 1111 (m), 1050 (m), 845 (s); Raman (200 mW): 𝜈� = 1543 (5), 1494 (2), 1404 (90), 

1394 (3), 1358 (15), 1309 (3), 1113 (100), 1031 (2), 834 (8), 768 (3), 298 (2); Sensitivity 

data: IS 40 J, FS 144 N, ESD 0.30 J; grain size: 100-200 µm. 

 

Cesium DNT monohydrate (2b) EA (C2CsN5O4, 290.90) found(calc.): C 7.75(7.77), H 

0.22(0.65), N 22.55(22.67) %; 1H NMR (d6 DMSO, 25°C): δ = 3.37 (H2O); 13C NMR (d6 

DMSO, 25°C): δ = 163.3; 14N NMR (d6 DMSO, 25°C): δ = -25; IR (ATR): 𝜈� = 3358 (vs), 

2358 (w), 1547 (s), 1489 (vs), 1384 (vs), 1351 (vs), 1294 (vs), 1097 (m), 1047 (m), 844 

(s), 829 (s); Raman (200 mW):  𝜈� = 3610 (1), 1524 (2), 1495 (4), 1427 (5), 1397 (100), 

1353 (16), 1306 (4), 1096 (79), 1015 (4), 832 (5), 768 (3), 517 (2), 312 (3); DSC (5°C 

min-1): T = 208°C (M. p.), 368°C (dec.); Sensitivity data: IS 40 J, FS 144 N ESD 0.15 J; 

grain size: 100–200 µm. 

 

 

 

Synthesis of potassium and cesium 3,3’-bis(1,2,4-oxadiazol-5-dion) (BOX) 

(5a & 5b)27 

Synthesis of diaminoglyoxime (3)  

 

To a solution of 140 g (3.50 mol) sodium hydroxide in 400 mL ice water 

was added slowly under ice cooling 250 g (3.60 mol) hydroxylamine 

hydrochloride. The solution was treated with 46.40 g (0.80 mol, 92 mL) 

glyoxal (40% solution in water), stirred for 10 min at 0°C and then refluxed for 12 h. The 

yellow mixture was kept in a fridge for 36 h to crystallize. The beige solid was filtered off and 

dried under high vacuum. Yield: 52.25 g (56%) of diaminoglyoxime (3). 1H NMR (d6 DMSO, 

25°C): δ = 5.14, 9.75; 13C NMR (d6 DMSO, 25°C): δ = 145.8; IR (ATR): 𝜈� = 3463 (vs), 

3363 (vs), 2803 (m), 1637 (s), 1601 (m), 1571 (m), 1441 (m), 1418 (m), 1296 (w), 1111 

(w), 935 (m), 736 (w), 714 (w). 
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Synthesis of oxamiddioxim dicarboxylic acid diphenylester (4) 

 

To a solution of 3 (10.00 g, 84.7 mmol) in 250 mL THF was 

added 27.40 g (175 mmol, 22.1 mL) phenyl chloroformate in 25 

mL THF. Under ice cooling was added slowly via a dropping 

funnel 20.00 g (197.6 mmol, 27.4 mL) triethylamine. The solution was stirred for 4 h at r. t. 

and the solid (triethylammoniumchloride) was filtered off and washed with 3 x 40 mL THF. 

The filtrate was treated with 500 mL water and 4 precipitated as a colorless solid which was 

washed with 4 x 30 mL diethyl ether and dried under high vacuum. Yield: 25.59 g (89%). 1H 

NMR (d6 DMSO, 25°C): δ = 7.05, 7.28, 7.29, 7.48; 13C NMR (d6 DMSO, 25°C): δ = 115.4, 

121.4, 126.5, 126.7, 129.5, 129.9, 130.0, 150.8, 151.3, 151.9. 

 

Synthesis of 3,3’-bis(1,2,4-oxadiazol-5-one) (5) (BOX) 

 

26.60 g (74.2 mmol) of 4 was added to 300 mL of a 5% sodium 

hydroxide solution. The suspension was refluxed over night. A color 

change from yellow to green to dark red was observed. After cooling 

to r. t. a black solution was obtained. The product 5 precipitated after 

adding 100 mL of 6 M HCl under ice cooling. The solution was stirred for further 5 h; 

afterwards the brown solid filtered off and washed with 3 x 40 mL 2 M HCl and 4 x 30 mL 

water. Yield 7.55 g (60%). EA (C4H2N4O4, 170.0) found(calc.): C 27.89(28.25), H 

1.04(1.19), N 32.77(32.94) %; 1H NMR (d6 DMSO, 25°C): δ = 11.15; 13C NMR (d6 DMSO, 

25°C): δ = 148.2, 168.6; Raman (200 mW): 𝜈� = 1840 (9), 1757 (16), 1687 (5), 1635 

(100), 1574 (10), 1539 (4), 1323 (13), 1239 (13), 1040 (6), 1029 (5), 970 (51), 927 (15), 

766 (16), 759 (18), 695 (4), 596 (9), 393 (13), 328 (10), 328 (10),213 (13), 161 (16); MS: 

m/z (DEI+): 170 [M], 112 (59), 70 (28), 44 (37), 41 (14). 
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Synthesis of potassium and cesium BOX (5a & 5b) 

4.73 g (27.8 mmol) of 5 was solved in 0.16 g KOH (55.6 mmol) and 10 mL water, or 5.70 g 

(33.5 mmol) of 5 was solved in CsOH (50 wt%, 0.585 mL, 67 mmol) and 10 mL water, 

respectively. After the water was evaporated both salts were recrystallized from EtOH/water 

and dried under HV. 

 

Potassium BOX (5a) EA (C4K2N4O4, 246.26) found(calc.): C 19.33(19.51), H 0.0(0.0), N 

22.67(22.75) %; 13C NMR (d6 DMSO, 25°C): δ = 141.1, 160.3; Raman (200 mW): 𝜈� = 

1779 (3), 1611 (48), 1572 (100), 1552 (2), 1517 (7), 1498 (1), 1401 (1), 1256 (2), 1210 

(9), 1076 (2), 953 (9), 936 (35), 906 (10), 877 (1), 778 (19), 752 (2), 728 (1), 606 (4), 

408 (7), 342 (4), 249 (3); IR (ATR): 𝜈� = 2322 (w), 2218 (w), 1660 (vs), 1465 (m), 1281 

(s), 1213 (m), 956 (w), 931 (m), 867 (m), 781 (m) 733 (w); DSC (5°C min-1): no phase 

transition, M. p. or Tdec; Sensitivity data: IS 40 J, FS 360 N, ESD 1 J; grain size: 100–

200 µm. 

 

Cesium BOX (5b) EA (C4Cs2N4O4, 433.88) found(calc.): C 11.05(11.07), H 0.0(0.0), N 

12.88(12.91) %; 13C NMR (d6 DMSO, 25°C, ppm): δ = 140.3, 158.2; Raman (200 mW): 

𝜈� = 1673 (2), 1563 (100), 1501 (8), 1471 (3), 1199 (19), 1072 (3), 923 (17), 878 (10), 771 

(19), 748 (3), 600 (5), 405 (14), 334 (10), 248 (4); IR (ATR): 𝜈� = 2280 (w), 2198 (vw), 

1655 (vs), 1456 (m), 1278 (m), 1194 (m), 967 (w), 920 (m), 844 (m), 782 (m), 756 (w); 

DSC (5°C min-1): T = 386°C (dec.); Sensitivity data: IS 40 J, FS 360 N, ESD 1 J; grain 

size: 100–200 µm. 

 

 

Synthesis of potassium and cesium 3-nitro-1,2,4-triazol-5(4H)-one (NTO) 

(7a & 7b) 

 

115 mL (423 mmol) 85% acetic acid was heated to 70°C and 

semicarbazide (112 g, 1 mol) was added. The reaction mixture was 

refluxed at 110°C for 7 h and afterwards the solvent was evaporated. 

The solid was treated with 200 mL water which was again evaporated. 

The procedure was repeated two more times. The damp crude product was recrystallized 

from 120 mL boiling water, then filtered off and washed with water, ethanol, diethyl ether 

and dried under high vacuum. Yield: 51.9 g (61%) of 1H-1,2,4-triazol-5(4H)-one (TO) (6). 

EA (C2H2N3O, 85.06) found(calc.): C 28.29(28.24), H 3.39(3.55), N 49.17(49.40) %. 

Under ice cooling 6.00 g (71 mmol) of 6 was added slowly to a solution of 8.67 mL 

(274 mmol) 100% nitric acid and 2 mL water. After 2 h the cooling was removed and the 
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mixture was stirred at r. t. over night. The solid was filtered off, washed with a small amount 

of ice water, ethanol and diethyl ether and dried under high vacuum. Yield: 2 g (23%) NTO 

(7) as colorless crystals. 

 

1.00 g (7.7 mmol) of 7 was solved in 10 mL ethanol and 0.43 g (7.7 mmol KOH or 1.02 mL) 

CsOH solution (50 wt%), respectively. After 20 min the salts precipitated and after isolation 

recrystallized from ethanol/water. Yield: 1.23 g potassium NTO dihydrate (7a) and 1.66 g 

cesium NTO monohydrate (7b) as yellow crystals.  

 

Potassium NTO dihydrate (7a) EA (C2H5KN3O5, 204.18) found(calc.): C 11.88(11.76), H 

1.83(2.27), N 27.47(27.44) %; M. p. 172°C, DSC (5°C min-1): T = 248°C (dec.); 1H NMR 

(d6 DMSO, 25°C): δ = 11.45, 3.41; 13C NMR (d6 DMSO, 25°C): δ = 165.4, 160.6; Raman 

(200 mW): 𝜈� = 1538 (3), 1494 (6), 1376 (100), 1303 (7), 1111 (31), 1049 (18), 1017 (6), 

846 (1), 783 (2), 484 (2); IR (ATR): 𝜈� = 3342 (m), 3239 (m), 3095 (w), 2995 (w), 2785 

(w), 2489 (w), 2422 (w), 2271 (w), 1696 (m), 1587 (s), 1540 (w), 1500 (vs), 1412 (m), 

1377 (m), 1309 (m), 1115 (m), 1045 (s), 1011 (m), 847 (m), 809 (m), 774 (vs), 744 (s), 

719 (m), 671 (m); MS (FAB- m/z): 129.00 (100), 130.01 (3); Sensitivity data: IS 40 J, FS 

360 N, ESD 0.3 J; grain size: 100–200 µm. 

 

Cesium NTO monohydrate (7b) EA (C2H3CsN3O4, 261.96) found(calc.): C 8.40(8.58), H 

1.05(1.08), N 19.46(20.01) %; DSC (5°C min-1): T = 250.9°C (dec.); 1H NMR (d6 DMSO, 

25°C): δ = 11.27, 3.39; 13C NMR (d6 DMSO, 25°C): δ = 165.3 (s, 1 C, C=O), 160.6 (s, 1 C, 

C-NO2); Raman (200 mW): 𝜈� = 1550 (4), 1495 (7), 1377 (100), 1302 (3), 1268 (2), 1101 

(24), 1044 (20), 1010 (7), 843 (1), 783 (2), 488 (2), 263 (1); IR (ATR): 𝜈� = 3349 (s), 3244 

(m), 3094 (m), 2999 (m), 2796 (m), 2498 (w), 2433 (w), 2280 (w), 1675 (m), 1591 (s), 

1504 (vs), 1413 (m), 1375 (m), 1309 (m), 1040 (m), 1004 (m), 818 (m), 769 (s), 740 (s) 

668 (m); MS (FAB- m/z): 129.00 (100), 130.01 (3); Sensitivity data: IS 40 J, FS 360 N, 

ESD 0.3 J; grain size: 100–200 µm. 
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Synthesis of potassium and cesium bis(1-methyl-tetrazole-5-yl)-triazenate 

(8a & 8b) 

 

1-Methyl-5-aminotetrazole (9.91 g, 100 mmol) was solved in 

50 mL water and stirred under ice cooling. 37% HCl (4.80 mL) was 

added until a clear solution was obtained. Within 1 h a solution of 

sodium nitrite (3.50 g, 5.50 mmol) in 20 mL water was added with 

a dropping funnel and the mixture was stirred for 24 h at 0°C. The solid was filtered off and 

washed with 4 x 20 mL ice water. Yield: 3.36 g (32 %) of 8 · H2O (colorless powder).  

1.60 g of 8 · H2O was solved in 10 mL ethanol and two equivalents of KOH (0.79 g, 14.1 

mmol) or CsOH solution (50 w%, 1.86 mL, 14.1 mmol) were added. After 30 min both salts 

precipitated, were filtered off and washed with cold EtOH and Et2O. Yield: 1.9 g of the 

potassium salt (8a) and 2.3 g of the cesium salt (8b) (yellow powder). 

 

Potassium bis(1-methyl-tetrazol-5-yl)-triazene (8a) EA (C4H6KN11, 247.26) 

found(calc.): C 18.29(19.43), H 2.38(2.45), N 57.70(62.31) %; 1H NMR (d6 DMSO, 25°C): 

δ = 3.87, 3.34 (H2O); 13C NMR (d6 DMSO, 25°C): δ = 162.0, 33.2; Raman (200 mW): 𝜈� = 

3016 (2), 2962 (8), 1538 (100), 1465 (12), 1398 (3), 1339 (24), 1285 (8), 1270 (2), 1206 

(10), 1119 (16), 1007 (3), 952 (2), 707 (5), 497 (10), 404 (4), 351 (1), 268 (4), 230 (7);  

IR (ATR): 𝜈� = 3420 (m), 2322 (m), 2299 (m), 1512 (s), 1477 (m), 1307 (vs), 1194 (m), 

1096 (m), 1013 (m), 751 (m), 705 (m); Sensitivity data: IS 35 J, FS 360 N, ESD 30 mJ; 

grain size: 100–200 µm. 

 

Cesium bis(1-methyl-tetrazol-5-yl)-triazene (8b) EA (C4H8CsN11O, 359.08) 

found(calc.): C 13.35(13.38), H 2.11(2.25), N 42.88(42.91) %; 1H NMR (d6 DMSO, 25°C): 

δ = 3.84, 3.33 (H2O); 13C NMR (d6 DMSO, 25°C): δ = 161.9, 33.1; Raman (200 mW): 𝜈� = 

2956 (4), 1534 (100), 1463 (8), 1412 (6), 1331 (25), 1281 (8), 1200 (23), 1124 (19), 1010 

(3), 948 (3), 702 (3), 497 (12), 405 (4), 218 (3); IR (ATR): 𝜈� = 3378 (m), 2300 (w), 2266 

(w), 1653 (m), 1500 (s), 1473 (m), 1461 (m), 1440 (m), 1261 (vs), 1195 (vs), 1037 (m), 

803 (m), 753 (m), 699 (m); Sensitivity data: IS 35 J, FS 288 N, ESD 30 mJ; grain size: 

100–200 µm. 
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Synthesis of triaminoguanidinium hydrochloride (TAG-HCl) (9) 

Aminoguanidinium bicarbonate (136.11 g, 1.0 mol) was added slowly to 500 mL 2 M HCl until 

no more CO2 release was observed. The mixture was stirred for 1 h at r. t. The solvent was 

removed in vacuo and the crude product (aminoguanidinium hydrochloride (AG-HCl)) was 

recrystallized from 200 mL EtOH and 30 mL water. AG-HCl was filtered off, dried under high 

vacuum, and added to 500 mL dioxane in a two neck SCHLENK flask. 108 mL (2.2 mol) 

hydrazine monohydrate solution was added and the mixture was stirred for 6 h at 90°C. 

Nitrogen was bubbled to the solution and ammonia release (pH paper) indicated the end of 

the reaction. The solvent was removed and the precipitate recrystallized from 200 mL 

ethanol and 250 mL water. Yield: 95.6 g (68%) 9 as a colorless powder. EA (CH9ClN6, 

140.5) found(calc.): C 8.46(8.48), H 6.42(7.12), N 59.57(59.36) %; 1H NMR (d6 DMSO, 

25°C): δ = 8.60, 4.52; 13C NMR (d6 DMSO, 25°C): δ = 160.3. 

 

 

Synthesis of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydo-1,2,4,5-

tetrazine (10) 

10.42 g (74.2 mmol) of 9 was solved in 80 mL water. Within 1 h 16 mL acetyl acetone 

(155 mmol) was added and the suspension stirred for 1 h at r. t. The yellow solution was 

heated to 75°C and stirred for 5 h whereas 10 precipitated. After cooling to r. t. the solid 

was filtered off and washed with a large amount of cold water. Yield: 13.34 g (66%) of a 

light yellow powder. 1H NMR (CDCl3, 25°C): δ = 2.20, 2.46, 5.94, 8.03; 13C NMR (CDCl3, 

25 °C): δ = 13.6, 13.9, 110.0, 142.5, 145.8, 150.1. 

 

 

Oxidation of 10 to 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine (11) 

13 g (48 mmol) of 10 was added to 50 mL N-methyl-2-pyrrolidone (NMP). The suspension 

was stirred for 30 min under ice/salt cooling. Afterwards 3.2 mL (100 mmol) liquid NO2 was 

added slowly and the red suspension stirred for 2 h at r. t. To remove the excess of NO2 

nitrogen was bubbled through the mixture. The solid was filtered off and washed with water. 

Yield: 10.6 g (83%) of 11. EA (C12H14N8, 270) found(calc.): C 53.27(53.32), H 5.09(5.22), N 

41.09(41.46) %; 1H NMR (CDCl3, 25°C): δ = 2.34, 2.69, 5.99; 13C NMR (CDCl3, 25°C): δ = 

13.8, 14.5, 110.0, 142.4, 145.6, 149.9. 
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Synthesis of potassium 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine (12a) 

Potassium methoxide (2.10 g, 30 mmol) was solved in 50 mL methanol. Nitro guanidine 

(1.44 g, 13.8 mmol) was added and the mixture heated to 55°C. After the solution became 

clear (45 min), 1.80 g (6.67 mmol) of 11 was added slowly.  After 10 min a dark red solid 

was obtained and the mixture was stirred for further 3 h at 55°C. After cooling to r. t. the 

solid was filtered off and washed with 4 x 30 mL methanol. The crude product was dried at 

60°C over night and then recrystallized from 20 mL water. Yield 0.8 g (33%) of 12a as a red 

powder. 

 

Potassium 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine (12a) EA (C4H4K2N12O4, 362.35) 

found(calc.): C 13.28(13.26), H 1.85(1.11), N 45.21(46.39) %; 1H NMR (d6 DMSO, 25°C): 

δ = 8.66; 13C NMR (d6 DMSO, 25°C): δ = 163.3, 160.9; Raman (200 mW): 𝜈� = 2928 (10), 

2915 (5), 1627 (6), 1598 (3), 1556 (2), 1474 (100), 1434 (4), 1416 (4), 1404 (2), 1395 

(5), 1356 (13), 1345 (2), 1103 (36), 1049 (4), 953 (8), 869 (14), 757 (19), 666 (3), 609 

(1), 602 (5), 585 (3), 440 (3); IR (ATR): 𝜈� = 3345 (vs), 3247 (vs), 2361 (m), 2338 (m), 

1575 (s), 1450 (s), 1247 (s), 1247 (s), 1041 (m), 935 (w), 844 (vw), 778 (vw), 760 (vw), 

726 (vw), 685 (vw); Sensitivity data: IS 40 J, FS 240 N, ESD 0.6 J; grain size: 100–200 

µm. 

 

 

Synthesis of 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine (12) 

The crude product 12a (1.3 g, 3.6 mmol) was solved in 20 mL water and the pH adjusted to 

1 with 6 M HCl. The mixture was stirred for 1 h at r. t., the solid filtered off and washed with 

3 x 30 mL water. Yield: 0.76 g (74%) of 12 as a pink powder. 

 

3,6-Bis-nitroguanidyl-1,2,4,5-tetrazine (12) EA (C4H6N12O4, 286.15) found(calc.): C 

16.25(16.79), H 2.41(2.11), N 54.82(58.73) %; 1H NMR (d6 DMSO, 25°C): δ = 11.63, 9.42, 

8.75; 13C NMR (d6 DMSO, 25°C): δ = 159.4, 157; Raman (200 mW): 𝜈� = 3215 (4), 1912 

(6), 1622 (21), 1582 (9) 1503 (100), 1396 (3), 1302 (20), 1222 (22), 1112 (30), 1027 (10), 

962 (86), 886 (40), 808 (2), 785 (28), 754 (5), 613 (29), 491 (3), 411 (15); IR (ATR): 𝜈� = 

3361 (s), 3180 (s), 2360 (m), 2322 (m), 1620 (m), 1546 (s), 1333 (s), 1221 (vs), 1062 (w), 

1026 (m), 937 (m); MS (DCI) m/z: 287 (M+H), 257 (M+H-NO); Sensitivity data: IS 8.5 J, 

FS 240 N, ESD 0.1 J; grain size: 100–200 µm. 
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Synthesis of cesium 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine (12b) 

12 (1 g, 3.5 mmol) was solved in acetone and 1.2 mL CsOH solution was added. The solvent 

was evaporated on air. Yield: 1.54 g (80%) of 12b. 

 

Cesium 3,6-bis-nitroguanidyl-1,2,4,5-tetrazine (12b) (C4H4Cs2N12O4, 549.8): 1H NMR 

(d6 DMSO, 25°C): δ = 9.22; 13C NMR (d6 DMSO, 25°C): δ = 165.2, 157.7; IR (ATR): 𝜈� = 

3364 (s), 3169 (s), 2355 (m), 2331 (m), 1609 (m), 1547 (m), 1334 (m), 1261 (m), 1049 

(w), 948 (w); Sensitivity data: IS 40 J, FS 288 N, ESD 0.6 J; grain size: 100–200 µm. 

 

 

Synthesis of 3,6-dihydrazino-1,2,4,5-tetrazine (13) 

 

11 (2 g, 7.41 mmol) was added to 30 mL acetonitrile. Hydrazine 

monohydrate (0.8 mL, 16.3 mmol) was added slowly to the suspension 

and the mixture was stirred for 30 min at r. t. Afterwards the solution 

was refluxed for 4 h and the solid filtered off. Yield: 0.76 g of 13 (72%) 

as a dark red powder. 1H NMR (d6 DMSO, 25°C): δ = 8.39, 4.38; 13C 

NMR (d6 DMSO, 25°C): δ = 164.2; MS (C2H6N6) (DEI) m/z: 142 (87), 57 (100), 43 (23), 31 

(46). 

 

 

Synthesis of 3,6-dichloro-1,2,4,5-tetrazine (14) 

20 mL acetonitrile and 0.75 g (5.28 mmol) of 13 were added in a SCHLENK flask. Via a glas 

tube chlorine was bubbled through the mixture. The excess of chlorine was passed into a 2 M 

sodium hydroxide solution (in between 3 washing flasks). After 30 min a color change from 

red to orange occurred. The mixture was stirred for further 15 min and then chlorine was 

replaced by nitrogen for 20 min to get rid of the excess of chlorine. Afterwards the solution 

was concentrated but not dried at high vacuum to avoid sublimation of the product. Yield:  

610 mg (76%) of 14 as an orange powder. 13C NMR (CDCl3, 25°C): 168.0. 
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Synthesis of 3,6-diamino-1,2,4,5-tetrazine (16) 

13.60 g (0.05 mol) of 11 was added to 50 mL NMP in a 250 mL autoclave. A stirring bar was 

added and the autoclave was closed with 10 N, and cooled with liquid nitrogen. After 20 min 

the container was evacuated. A flask with defined volume (2.746 L) was connected to the 

steel vacuum line and ammonia (3 x 0.1 mol) was passed into it. The ammonia was 

condensed into the autoclave and after 30 min cooling with liq. N2 the autoclave was allowed 

to come to r. t., and then heated to 100°C in an oil bath for 10 h. The less excess of 

ammonia was released, the solution added to 150 mL isopropyl alcohol and cooled in a fridge 

over night. The precipitate was filtered off and washed with 4 x 30 mL cold isopropyl alcohol. 

Yield: 4.9 g (60%) of 16 as a red powder. EA (C2H4N6, 112.09) found(calc.): 

C 21.72(21.43), N 74.50(74.97), H 3.54(3.60) %; 1H NMR (d6 DMSO, 25°C): δ = 6.70, 13C 

NMR (d6 DMSO, 25°C): δ = 162.3. 

 

Synthesis of potassium and cesium 3-amino-6-nitrimino-1,2,4,5-tetrazine 

(17a & b) 

Under ice-cooling 1 g (8.9 mmol) 3,6-diamino-1,2,4,5-tetrazine was added in small portions 

to 25 mL 60% nitric acid. After stirring for 2 h the ice bath was removed and the solution 

allowed coming to room temperature. The precipitate was washed with 3 x 30 mL ice water 

and dried on air. Yield: 1.05 g (75%) of an orange-red powder (17). EA (C2H3N7O2, 157.54) 

found(calc.): C 15.52(15.29), N 60.91(62.41), H 1.92(1.92) %; 1H NMR (d6 DMSO, 25°C): 

δ = 8.45; 13C NMR (d6 DMSO, 25°C): δ = 163.0. 

 

1.00 g of 17 was treated with 10 mL acetone and 1.10 mL CsOH solution (50 w%) or 

6.37 mL 1M KOH respectively were added. The water was evaporated and both salts were 

obtained in good yields. 1.40 g (77%) of 17a and 1.10 g (88%) of 17b. 

 

Potassium 3-amino-6-nitrimino-1,2,4,5-tetrazine (17a) (C2H2K2N7O2, 195.1), 1H NMR 

(d6 DMSO, 25 °C): δ = 7.38; 13C NMR (d6 DMSO, 25°C): δ = 164.3, 162.2; 14N NMR (d6 

DMSO, 25°C): δ = -13; Raman (200 mW): 𝜈� = 1574 (4), 1436 (100), 1400 (16), 1368 

(58), 1335 (10), 1303 (16), 1043 (41), 961 (5), 891 (6), 853 (16), 806 (4), 754 (16), 653 

(5), 394 (4), 363 (10); IR (ATR): 𝜈� = 3410 (m), 3326 (m), 1651 (m), 1574 (s), 1435 (s), 

1375 (vs), 1335 (s), 1251 (m), 1053 (s), 1033 (m), 1040 (m), 959 (m), 849 (w), 805 (w), 

757 (w), 752 (w), 670 (w); Sensitivity data: IS 23 J, FS 252 N, ESD 0.5 J; grain size: 500–

1000 µm. 
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Cesium 3-amino-6-nitrimino-1,2,4,5-tetrazine (17b) EA (C2H2Cs2N7O2, 288.9) 1H NMR 

(d6 DMSO, 25°C): δ = 7.38; 13C NMR (d6 DMSO, 25°C): δ = 164.0, 162.2; 14N NMR (d6 

DMSO, 25°C): δ = -13; Raman (200 mW): 𝜈� = 1537 (7), 1504 (15), 1427 (100), 1380 

(31), 1336 (24), 1306 (23), 1027 (57), 959 (5), 896 (21), 862 (46), 803 (6), 769 (19), 737 

(12), 669 (7), 590 (7), 490 (8), 423 (13), 390 (13); IR (ATR): 𝜈� = 3280 (m), 3123 (m), 

1634 (m), 1514 (s), 1451 (s), 1370 (vs), 1331 (s), 1661 (s), 1025 (m), 957 (m), 861 (w), 

813 (w), 767 (w), 742 (w), 670 (w); Sensitivity data: IS 2 J, FS 160 N, ESD 0.3 J; grain 

size: 500–1000 µm. 

 

 

Synthesis of 2,4,5-trinitro-1H-imidazole (21)  

Synthesis of 1,4-dinitroimidazole (18) 

Glacial acetic acid (12 mL, 210 mmol) and acetic anhydride (9 mL, 95 mmol) were added 

under ice/salt cooling in a 50 mL flask. After 45 min 4.1 mL (98 mmol) 100% nitric acid was 

added slowly. The solution was stirred for 2 h and afterwards 5 g (44 mmol) 4-nitroimidazole 

was added in small portions. The reaction mixture was stirred for 48 h at r. t., then poured 

onto 40 mL ice water and stirred for further 30 min whereas 18 precipitated. The solid was 

filtered off, washed with 3 x 30 mL ice water and dried under HV. Yield: 3 g (43%) of 18 as 

a colorless powder. 1H NMR (d6 DMSO, 25°C): δ = 9.40, 8.97; 13C NMR (d6 DMSO, 25°C): 

δ = 144.8, 133.2, 116.5. 

 

Isomerization of 16 to 2,4-dinitroimidazole (18) 

18 (7.8 g, 49.3 mmol) was added to 75 mL chloro benzene and the suspension stirred for 

24 h at 115°C. After cooling to r. t. 19 precipitated, was filtered off and dried under high 

vacuum. The pure compound could not be isolated. 
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Synthesis of 2,4,5-trinitro-1H-imidazole (21) from 2,4,5-triiodo-1H-

imidazole (20) 

Synthesis of 2,4,5-triiodo-1H-imidazole (20) 

20.32 g (0.08 mol) Iodine and 26.56 g (0.16 mol) potassium iodide were solved in 150 mL 

water. The solution was added slowly to a solution of 1.36 g (0.02 mol) 1H-imidazole in 

200 mL (22.44 g) potassium hydroxide. The mixture was stirred for 24 h at r. t. and 

afterwards 25 mL 25% acetic acid was added to adjust the pH to 7. The yellow precipitate 

was filtered off, washed with water and recrystallized from a small amount of ethanol. After 

two days in the fridge the solid was filtered off. Yield: 1.20 g (13%) of 20 as brown crystals.  

The filtrate was added to 100 mL water and further precipitate was obtained which was 

solved in 100 mL 4 M KOH. To the mixture was added 12.70 g (0.05 mol) Iodine and 16.60 g 

(0.1 mol) KI and then the solution stirred for further 24 h at r. t.  The pH was again adjusted 

to 7 with 50 mL 25% acetic acid. The precipitate was filtered off, washed with 100 mL water, 

was added to 150 mL 1 M sodium thiosulfate solution and stirred for 1 h at r. t. The solid was 

filtered off and washed with 3 x 50 mL water. Yield: 4.8 g (54%) of 20 (powder). EA 

(C3HI3N2, 445.77) (crystals), found(calc.): C 8.08(8.08), H 0.21(0.23), N 6.37(6.28) %; EA 

(powder), found(calc.): C 7.88(8.08), H 0.17(0.23), N 6.18(6.28) I 85.97(85.41); MS (DEI) 

m/z: 446 (52) [M], 319 (25) [M-I], 253 (100) [I2], 192 (6) [M-I2], 127 (19) [I]. 

 

Synthesis of 2,4,5-trinitro-1H-imidazole (21) from 2,4,5 triiodo-1H-

imidazole (20) 

18 (2 g, 4.5 mmol) was added under ice cooling slowly to 2 mL (48 mmol) 100% HNO3. The 

mixture was stirred for 1 h at 0°C and then heated to 80°C for 10 min. The solution was 

poured onto ice and neutralized with sodium bicarbonate. Afterwards a few drops of 100% 

HNO3 were added and the solution extracted with 6 x 20 mL diethyl ether. The solvent was 

removed and a small amount of water was added to the oily residue. The pH was adjusted to 

9 with potassium carbonate and saturated with potassium chloride. No precipitate was 

observed. 18 could not be isolated. 
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Synthesis of potassium and cesium 4,4’,5,5’-tetranitro-2,2’-bis-1H-

imidazole (TNBI) (23a & 23b) 

Synthesis of 2,2’-bis-1H-imidazole (22) 

183 g (1.75 mol) sodium bisulfite was solved in 800 mL water and 500 mL ethanol. 128 g 

(0.88 mol) 40 w% glyoxal solution was added. The suspension was stirred for 1.5 h at r. t., 

the residue was filtered off and washed with a large amount of EtOH and Et2O. The product 

was dried at 60°C for 1 h. Yield: 50.6 g of glyoxal bisodium bisulfite monohydrate. The solid 

was added to 1.4 L 25% ammonia and 50 g ammonium carbonate. The mixture was stirred 

for 4 h at 80 °C. A color change from clear to yellow to brown was observed. The solution 

was cooled to r. t. and the precipitate was filtered off, washed with 3 x 50 mL water and 3 x 

50 mL acetone. Yield: 12 g (40% based on Glyoxal). EA (C6H6N4, 134.14) found(calc.): C 

53.50(53.72), H 4.16(4.51), N 41.54(41.77) %; 1H NMR (d6 DMSO, 25°C): δ = 12.58, 7.13, 

7.00; 13C NMR (d6 DMSO, 25°C): δ = 139.8, 128.8, 117.9. 

 

Synthesis of 4,4’,5,5’-tetranitro-2,2’-bis-1H-imidazole (23) 

 

18 g (0.21 mol) sodium nitrate was solved under ice cooling in 

30 mL 96% sulfuric acid. A catalytic amount of urea was added 

and thereupon 5 g (0.04 mol) of 22. The solution was stirred for 

30 min at 0°C, 1 h at r. t. and then heated to 85°C over night. The 

mixture was cooled to r. t. and poured onto ice. The solid was filtered off and washed with 

water (or 2 M HCl). 23 precipitated after a few hours, was then filtered off and washed with a 

small amount of ice water. The filtrate of 23 was extracted with diethyl ether, concentrated 

and an excess of potassium hydroxide in ethanol was added to obtain further product. Yield: 

8 g (70%). EA (C6H2N8O8 · 2 H2O, 314.13) found(calc.): C 21.08(20.58), N 32.22(32.00); H 

1.40(1.73) %; 1H NMR (d6 DMSO, 25°C): δ = 8.95; 13C NMR (d6 DMSO, 25°C): δ = 135.2, 

138.9, 139.6; Raman (200 mW): 𝜈� = 1626 (43), 1553 (50), 1531 (30), 1514 (17), 1481 (5) 

1443 (3), 1373 (17), 1340 (19), 1303 (100), 1275 (20), 1115 (2), 1016 (16), 866 (7), 765 

(2), 742 (2), 521 (1), 389 (2); IR (ATR): 𝜈� = 3361 (s), 3180 (s), 2360 (m), 2322 (m), 1620 

(m), 1546 (s), 1333 (s), 1221 (vs), 1062 (w), 1026 (m), 937 (m); Sensitivity data: IS 40 

J, FS 240 N, ESD 1.0 J; grain size: 100–200 µm.  
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2 g (6.4 mmol) of 23 in 50 mL water was treated with two equivalents of KOH, KOH in 

ethanol (0.5 M), CsOH (50 wt%), or Cs2CO3, respectively. The potassium salt was 

recrystallized from ethanol/water. The cesium salt was obtained as an orange powder. Yield: 

1.6 g (65%, K), 2.9 g (80%, Cs). 

 

Potassium TNBI (23a) EA (C6K2N8O8, 390.33): found(calc.): N 28.43(28.71), C 

18.32(18.46) %, DSC (5°C min-1): T = 312°C (dec.); 1H NMR (d6 DMSO, 25°C): no signal; 
13C NMR (d6 DMSO, 25°C): δ = 144.9, 141.0; 14N NMR (d6 DMSO, 25 °C): δ = -25; Raman 

(200 mW): 𝜈�  = 1562 (100), 1538 (3), 1529 (8), 1494 (5), 1472 (28), 1390 (9), 1349 (16), 

1307 (44), 1248 (93), 1021 (13), 870 (10), 769 (5), 759 (4), 396 (6); IR (ATR): 𝜈� = 1510 

(m), 1489 (s), 1469 (vs), 1394 (s), 1367 (s), 1302 (s), 1230 (s), 1112 (m), 944 (m), 854 

(m), 809 (s), 754 (m), 704 (m); Sensitivity data: IS 40 J, FS 360 N, ESD 1.0 J; grain size: 

100–200 µm.  

 

Cesium TNBI (23b) EA (C6Cs2N8O8, 577.93): found(calc.) C 12.81(12.47), N 19.09(19.39); 
13C NMR (d6 DMSO, 25°C, ppm): δ = 144.9, 141.0; 14N NMR (d6 DMSO, 25°C, ppm): δ = 

-34; IR (ATR): 𝜈� = 1506 (m), 1488 (s), 1436 (m), 1379 (s), 1354 (m), 1307 (s), 1193 (vs), 

1104 (w), 940 (m), 857 (m), 810 (s), 755 (m), 702 (m); Sensitivity data: IS 9 J, FS 192 

N, ESD 0.1 J; grain size: 100–200 µm. 

 

 

Synthesis of potassium and cesium 5,5´-azotetrazolate (24a & 24b)67 
 

50 g (0.59 mol) 5-aminotetrazole was solved in 500 mL 10% potassium 

hydroxide or cesium hydroxide solution and over a period of 45 min 

65 g (0.41 mol) potassium permanganate was added at 65°C. The 

solution was stirred for 2 h. Afterwards 400 mL ethanol was added and 

the solution refluxed for 15 minutes. The precipitate (MnO2) was filtered off from the hot 

solution with a warm suction filter. The yellow solution was kept in the fridge over night. The 

solid was filtered off and washed with ethanol and diethyl ether.  Yield: 44.91 g (55.7%)  

 

Potassium 5,5´-azotetrazolate pentahydrate (24a) EA (C2H10K2N10O5, 278.32) 

found(calc.): C 7.2(7.3), H 3.0(3.1), N 42.1(41.7) %; 13C NMR (d6 DMSO, 25°C): δ = 

172.0;  Raman (200 mW): 𝜈� = 1500 (21), 1481 (44), 1411 (11), 1394 (50) 1374 (100), 

1185 (2), 1155 (1), 1078 (13), 1059 (10), 1050 (16), 1037 (14), 922 (5), 348 (1); IR 

(ATR): 𝜈� = 3641 (m), 3260 (w), 2925 (m), 2850 (w), 2411 (m), 2356 (m), 2090 (m), 1965 

                                                
67 A. Hammerl, European Journal of Inorganic Chemistry 2002, 834. 
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(w), 1673 (w), 1480 (w), 1447 (m), 1400 (m), 1182 (m), 1156 (m), 866 (m), 770 (m), 727 

(m), 340 (w); DSC (5°C min-1): T = 239°C (dec.); Sensitivity data: IS 50 J, FS 360 N, ESD 

1.2 J; grain size: 100–200 µm. 

 

Cesium 5,5´-azotetrazolate dihydrate (24b) EA (C2H4Cs2N10O2, 465.93) found(calc.): C 

5.2(5.3), H 0.9(1.2), N 30.1(29) %; 13C NMR (d6 DMSO, 25°C): δ = 173.0;  Raman 

(200 mW): 𝜈� = 1483 (44), 1464 (4), 1406 (12), 1371 (100), 1282 (2), 1072 (22), 1044 

(25), 913 (5), 890 (2); IR (ATR): 𝜈� = 3641 (m), 3260 (w), 2925 (m), 2850 (w), 2411 (m), 

2356 (m), 2090 (m), 1965 (w), 1673 (w), 1480 (w), 1447 (m), 1400 (m), 1182 (m), 1156 

(m), 866 (m), 770 (m), 727 (m), 340 (w); DSC (5°C min-1):T = 231°C (dec.); Sensitivity 

data: IS 1 J, FS 5 N, ESD 0.02 J; grain size: 100–200 µm. 

 

 

Synthesis of potassium and cesium bistetrazolyl amine (25a & 25b)68  

 

A 2 L three-neck reaction flask contained a refluxing suspension of 

sodium dicyanamide (44.5 g, 0.5 mol), sodium azide (65 g, 1.0 mol), 

ethanol (400 mL), and water (250 mL).  2 M HCl (750 mL) was added 

over the course of five hours. The reaction mixture was refluxed for 48 h. 

After cooling to 0°C in an ice bath and addition of conc. HCl (80 mL) 25 · H2O was obtained 

as a fine colorless precipitate. The solid was filtered off and washed with small amounts of 

ethanol and diethyl ether and dried under vacuum. Yield: 75 g (88%). The product was 

recrystallized from HCl. 1H NMR (d6 DMSO) δ = 11.92, 9.53; 13C NMR (d6 DMSO) δ = 

154.7; DSC (5°C min-1) T = 250°C (dec.); IR (KBr): 𝜈� = 3456 (s), 3028 (s), 2932 (s), 2858 

(s), 2671 (m), 2438 (m), 1796 (w), 1656 (vs), 1611 (s), 1556 (s), 1454 (m), 1352 (m), 

1337 (m), 1282 (m), 1263 (m), 1154 (w), 1110 (m), 1072 (s), 1501 (s), 1036 (m), 1003 

(m), 899 (m), 819 (m), 790 (m), 738 (m), 690 (m), 503 (m), 406 (w); Raman (200 mW): 

𝜈�  = 3328 (11), 3120 (8, br), 1649 (9), 1618 (34), 1552 (54), 1480 (22), 1455 (17), 1370 

(17), 1346 (15), 1267 (25), 1226 (26), 1151 (15), 1128 (15), 1073 (100), 1039 (42), 838 

(7), 794 (17), 736 (9), 670 (7), 421 (22), 409 (48), 381 (9), 348 (20), 321 (48), 172 (100), 

147 (46). 

25 · H2O (10 g, 0.06 mol) was added to 150 mL water and the mixture was heated to 80°C. 

Potassium carbonate (8.28 g, 0.06 mol) was added and the solution stirred for 1 h. The 

solvent was evaporated and the solid recrystallized from water/ethanol. Yield: 90%.  

  

                                                
68 J. Weigand, Journal of Material Chemistry 2008, 18, 5248. 
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Potassium BTA (25a) DSC (5°C min-1): T = 349°C (dec.); 1H NMR (d6 DMSO): δ = 7.6; 
13C NMR (d6 DMSO): δ = 162; Raman (200 mW): 𝝂�   = 1524 (57), 1420 (10), 1405 (6), 

1305 (5), 1217 (66), 1114 (23), 1063 (10), 1051 (100), 1000 (10), 569 (5), 403 (14), 348 

(14), 306 (16); IR (ATR): 𝝂�   = 3395 (s), 3262 (s), 3036 (s), 2897 (m), 1684 (w), 1625 (m), 

1509 (m), 1392 (w), 1303 (w), 1213 (w), 1154 (w), 1137 (w), 1110 (w), 1008 (w), 855 (w), 

749 (w), 729 (w); Sensitivity data: IS 40 J, FS 288 N, ESD 1.5 J; grain size: 250 –500 µm. 

 

25 · H2O (10 g, 0.06 mol) was added to 150 mL water and the mixture was heated to 80°C. 

Cesium carbonate (19.44 g, 0.06 mol) was added and the solution stirred for 1 h. The 

solvent was evaporated and the solid recrystallized from water/ethanol. Yield: 90%. 
 

Cesium BTA (25b) DSC (5°C min-1): T = 274°C (dec.); 1H NMR (d6 DMSO): δ = 7.4; 13C 

NMR (d6 DMSO): δ = 162; Raman (200 mW): 𝝂�   = 1521 (55), 1413 (10), 1400 (6), 1221 

(22), 1212 (44), 1123 (21), 1113 (23), 1051 (100), 1006 (11), 400 (17), 345 (14), 306 

(24); IR (ATR): 𝝂�   = 3300 (s), 3246 (s), 2877 (w), 1591 (m), 1490 (m), 1409 (w), 1390 

(w), 1299 (w), 1211 (w), 1121 (w), 1001 (w), 848 (w); Sensitivity data: IS 40 J, FS 240 

N, ESD 1.5 J; grain size: 250 –500 µm. 

 



MTV   CHAPTER 9 

 
 

  116  
 

Mid Infrared Pyrotechnics 
 

69 

 
 

Abstract: Infrared decoy flares serve the protection of aerial platforms such as 

helicopters, fixed wing and jet propelled planes against infrared guided air-to-air 

and surface-to-air missiles. These flares are jettonised from the craft at high speed 

and upon combustion develop a strong infrared signature in the infrared band 

between λ = 1–5 μm. Decoy flares developing a blackbody type signature often 

comprise magnesium, polytetrafluoroethylene, (C2F4)n (Teflon®) and vinylidene 

fluoride - hexafluoropropene copolymer (C10F13H7)n (Viton®) and are hence called 

MTV flares. It has now been found that pyrolants containing magnesium and e. g. 

ammonium or guanidinium 5-(perfluoropropyl)-5H-tetrazolate as oxidizers yield 

superior spectral efficiency compared to MTV. Several similar compounds like 

cesium trifluoromethyl tetrazolate or their chlorine derivatives are of further 

interest as new additives in pyrotechnic formulations. 

 

  
                                                
69  Eurocopter AS532UL Cougar dispensing flares at Axalp 2010, © Édouard Puginier – http://tazintosh.com 
  [Stand: 10.11.2012] 
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Introduction 

Similar as NIR illuminants belong 'decoy flares' to the category of light-producing 

pyrotechnics. A (decoy) flare is an aerial infrared countermeasure to counter an infrared 

homing (passive missile guidance system) surface-to-air or air-to-air missile. Such flares are 

based on very hot burning metals with burning temperatures equal or hotter than an engine 

exhaust. The favored fuel is magnesium. Standard decoy flares are so called 'MTVs'. They 

consist of magnesium (fuel), Teflon® (oxidizer), and Viton® (Binder). 

An example for one of the first heat-seeking, short range, air-to-air missile is the sidewinder 

AIM-9. The infrared detector of the sidewinder exists of lead sulfide and lead selenide. The 

lead sulfide seeking-head detected radiance in the range of 2–3 microns, whereas the lead 

selenide seeking-head detected radiance between 3–5 microns. These both IR ranges are 

referred as α (2–3 microns) and β-band (3–5 microns). Until now, IR detectors of air-to-air 

or surface-to-air missiles were improved tremendously.70 

The IR signature of an aircraft is generated by several components of the metal cover and 

the engine exhaust (Figure 40).  Radiation between 3–5 microns is emitted from hot 

exhausts (H2O, CO, CO2), whereas hot jet engines emit in the range of 2–2.5 microns. The 

aircraft fuselage emit primarily between 8-10 microns, due to sun and earth radiation or 

friction. An IR seeking missiles detect the combined radiation and identify the aircraft as a 

potential target.70,71,72 

 

 

Figure 40 Complete infrared signature of a fighter jet.73  

                                                
70 S. P. Mahulikar, H. R. Sonawane, Progress in Aerospace Sciences 2007, 43, 218. 
71 J. S. Acetta, D. L. Shumaker, The Infrared and Electro-Optical Systems Handbook, Vol. 5, Passive Electro-Optical 

Systems, SPIE Optical Engineering Press, Bellingham, 1996, 220. 
72 H. Radies, PhD thesis, Ludwig-Maximilians-University Munich, 2009. 
73 http://3.bp.blogspot.com/_J4nYRGAodHs/TQIkpMVGZSI/AAAAAAAAAgs/6HS8p2Q_ldI/s1600/us_kampfjet.jpg 

[Stand: 2.11.2012] 
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An example for the IR signature of the MIG 29 is illustrated in Figure 41.  

 

  

Figure 41 FPA image and visual image of MIG 29 expelling flares.74 

Heat-seeking missiles normally searching for radiation emitted from the aircraft between the 

α and β band. New weapon systems are able to differ between the several radiation sources. 

For tactical reasons the aircraft can ignite decoy flares to prescind adversarial missiles from 

the aircraft to the burning flare. These pyrotechnic compositions should burn with similar 

radiation and higher intensity as the aircraft. An example of a missile attack and the use of 

decoys of a fighter jet are illustrated in Figure 42. 

                                                
74 E.-C. Koch, Pyrotechnic Countermeasures II, Propellants, Explosives, Pyrotechnics 2006, 31, 3. 



MTV   CHAPTER 9 

 
 

  119  
 

 

Figure 42 Scenario of a missile attack.75 

 

Radiometric principles 

On the research of IR emitting compositions it is important to compare the signature of 

aircrafts and decoy flares. The dimensionless parameter θ is useful discussing the intensity of 

(new) formulations. Term θ gives the ratio of the intensity in the α band to the intensity of 

the β band (equation 1). 

𝜃 =
𝐼𝛼

𝐼𝛽
                  (1)  

with α = 2–3 μm and β = 3–5 μm. As mentioned before hot components emit between the α 

band and the exhaust emit in the β band. Theta values of an aircraft are in the range of 0.7. 

New decoy flares should have values very close to the aircraft to avoid adverse attacks. 

Figure 43 illustrates the radiant intensity of an aircraft compared to the mainly used MTV 

flares. 

                                                
75 E.-C. Koch, Review on Pyrotechnic Aerial Infrared Decoys, Propellants, Explosives, Pyrotechnics 2001, 26, 3. 
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Figure 43 Comparison of relative magnitude of MTV and target (left)75 and kerosene plume and MTV 

flare in 2–5 microns range (right).74 

 

The physical principles of decoy flares are based on black body radiation, due to high burning 

temperatures and combustion products (soot) which add as black (grey) emitters. According 

to PLANCK´S law, the emitted radiation can be described mathematically as:75,76   

𝑊𝜆 =
2𝜋ℎ𝑐2

𝜆5   
1

𝑒ℎ𝑐 𝜆𝑘𝑇⁄ − 1
                  (2) 

were Wλ = spectral radiant emittance in W cm-2 μm-1, λ = wavelength in microns, h = 

PLANCK´S constant 6.626 x 10-34 W s-2, T = absolute temperature in Kelvin, c = velocity of 

light 2.998 x 1010 cm s-1, and k = Boltzmann constant 1.381 x 10-23 W s K-1. 

Referred to the WIEN displacement law the emission maximum (λmax) shifts to shorter 

wavelengths as the temperature of the radiator rises, with: 

𝜆𝑚𝑎𝑥 = 2897.756 𝜇𝑚 𝐾 𝑇−1            (3) 

As PLANCK´S law is valid for an ideal black body emitter, true decoys are rather grey bodies. 

To describe the deviation from the ideal case to real behavior, the emissivity ε is introduced: 

𝜀 =
𝑊′

𝑊
                   (4) 

The emissivity gives the ratio of the radiant emittance W' of a real radiator to the radiant 

emittance W of a black body of the same temperature. ε can range from unity (black body) 

                                                
76 P. Atkins, Physikalische Chemie, Wiley-VCH, 2001. 
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to zero for non radiation sources. For real grey bodies values from 0 < ε < 1 are observed 

(Figure 44). 

 

Figure 44 Radiant emittance W for 1100 K for black body, grey body, and a selective radiator.75  

The values 0 and 1 are not included, because ε = 0 would be an ideal white emitter and ε = 

1 an ideal black body. A good grey body emitter is soot (ε = 0.95) which is formed during 

combustion of MTV flares. The main intention of decoy flares based on black body principles 

are high ε values, high combustion temperatures and θ values between 0.5–0.8. Recent 

decoy flares have θ values of 1.3–1.4.  

 

MTV composition 
 

Typical MTV decoy flares contain an excess magnesium, fluorine combustible materials like 

PTFE (Polytetrafluoroethylene) and a binder like Viton® (hexafluoropropene-

vinylidenefluoride-copolymer) [(-C5H3F8)-]. The ratio of fuel to oxidizer is usually 70/30. The 

main part of the released energy is produced by the reaction of excess Mg with air to form 

MgO (Schema 15). 

 

Schema 15 Combustion reaction of MTVs, whereas m ≥ 2 for (a) and (b). 
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New approaches of MTV compositions are based on the addition of fluorine bearing high 

nitrogen compounds, such as derivatives of tetrazoles or triazoles. Several new formulations 

were tested within the PhD thesis of H. RADIES.72 According to his work on new pyrotechnic 

formulations several attempts were carried out within this thesis to synthesize possible 

candidates for novel flare formulations. The major intention is to find a formulation with 

convenient performance data and theta values, compared to the original MTV composition. 

Two examples of fluorine high nitrogen compounds are given in Figure 45. Due to the 

positive effect of chlorine in pyrotechnic formulations it is furthermore of interest to 

synthesize chlorine derivatives of high nitrogen compounds and to test the effectiveness as 

MTV additives. 

 

Figure 45 Guanidinium (a) and ammonium (b) 5-(perfluoroalkyl)-5H-tetrazolate and the corresponding 

chlorine derivative of the ammonium salt (c) (n = 1-3, m = 3, 5, 7). 

Further new concepts for new decoy flare formulations are based on boron and boron-oxygen 

bonds or on silicon as an additive. Other novel compositions are so called 'pyro organics' and 

contain for instance Al/Fe2O3/Sr(NO3)2 and an organic binder.72  
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Research objective 

An additional project adapted on pyrotechnic formulations is the synthesis of fluorine bearing 

high nitrogen materials. These compounds include two advantages: nitrogen release to 

enlarge the surface of radiation and fluorine as a strong oxidizing agent. Therefore there are 

possible additives or replacements for Teflon® in MTV formulations. Of major concerns are 

several tetrazole and triazole derivatives (Figure 46). On the basis of the PhD thesis of H. 

Radies72 it was found that good candidates are the salts of trifluoromethyl tetrazole. Due to 

hygroscopic behavior of calcium trifluoro methyl terazolate, the corresponding potassium and 

cesium salts are of interest. Thus, both compounds were synthesized and characterized by 

analytical and spectroscopic measurements. 

 

Figure 46 Chemical structures of cesium difluoro-1,2,4-triazolate (1), cesium trifluoromethyl 

tetrazolate (n = 1, 2, 3; m = 3, 5, 7) (2), and the chlorine derivative (3) for n = 1; m = 3. 

 

Because of the positive effect of chlorine in pyrotechnic formulations a further attempt is the 

synthesis of the corresponding chlorine derivatives of tetrazoles or triazoles. 
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Discussion – Synthesis of MTV Additives 

The improvement of pyrotechnic formulations is still an extensive task. Several previously 

mentioned parameters, e. g. heat of formation, oxygen balance, reaction products, burning 

behavior, combustion temperature etc., must be considered and can be modified. A possible 

approach discussing MTV payloads is the replacement of Teflon® by compounds which 

showing a faster burning behavior and produce favorable non-luminous flames or gas like 

nitrogen. Nitrogen release is desired due to an expansion of the hot core zone, the dispersion 

of the formed soot and therefore obtaining a higher emission of radiation. A further benefit is 

the enlargement of the emitting body which is useful during adversely attacks. Based on the 

PhD thesis of H. Radies72 several fluorine tetrazoles are of interest. The monosubstituted 

sodium tetrazolate with fluorinated alkyl chains are known in literature since 1962. The 

compound is synthesized from sodium azide and trifluoracetonitrile in acetonitrile.77 Further 

tetrazole derivatives were synthesized in the group of J. M. SHREEVE in 1989.78,79 Several 

other groups concentrate on disubstituted perfluoralkyl tetrazolates and also 5,5´-

(hexafluoropropyl)-bis-tetrazole is already kown.80 Due to the hygroscopicity of several 

perfluorinated derivatives synthesized in our research group, cesium 5-trifluoromethyl 

tetrazolate was synthesized and its spectroscopic properties investigated. The chlorinated 

derivative of 5-trifluoromethyl tetrazolate are attempted to synthesize. Further fluorinated 

substances, like 3,5-difluoro-1H-1,2,4-triazolate or 4,5-difluoro-1H-1,2,3-triazolate might be 

interesting compounds.  

 

 

  

                                                
77  W. P. Norris, 5-Trifluoromethyltetrazole and its Derivatives, Journal of Organic Chemistry 1962, 27, 3248. 
78 E. O. John, J. M. Shreeve, 5-(perfluoralkyl)tetrazoles: η5 Ligands in Solution and μ-2,3- η2 Ligands in Solid 

Complexes, Inorganic Chemistry 1989, 28, 893. 
79  E. O. John, J. M. Shreeve, Reaction of 5-(Perfluoralkyl)tetrazoles with cyanogens, nitrosyl, and cyanuric chlorides, 

Inorganic Chemistry 1989, 28, 4629. 
80 a) W. R. Carpenter, Formation of tetrazoles by the condensation of organic azides with nitriles, Journal of Organic 

Chemistry 1962, 27, 2085. b) W. G. Finnegan, R. A. Henry, Synthesis and reaction of 1-nitroso-l-alkyl-2-guanyl and 
2-carbamoylhydrazines, Journal of Organic Chemistry 1965, 30, 567. c) R. J Spear, Positional selectivity of the 
methylation of 5-substituted tetrazolate anions, Australian Journal of Chemistry 1984, 37, 2453. d) H. C. Brown, R. 
J. Kassal, 5-Perfluoroalkyltetrazoles. I. Ring-opening reactions, Journal of Organic Chemistry 1967, 32, 1871. 
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Synthesis of sodium 5-trifluoromethyl tetrazolate (1) and the 

corresponding cesium (2) salt 

The synthesis of 2 follows a [2+3] cycloaddition of nitriles (dipolarophile) with azides 

(dipole).77 Fundamental investigations of the 1,3-dipolar cycloaddition was already carried 

out by HUISGEN et al.81,82 Unfortunately the starting material trifluoroacetonitrile is toxic, 

expensive, and under normal conditions a gaseous product (bp. −64°C), which makes the 

synthesis of 2 unfavorable. Therefore, trifluoroacetonitrile was synthesized in situ from the 

cheap corresponding trifluoroacetamide. Two possible syntheses are known in literature for 

the formation of the nitrile (Schema 16 and 17). 

 

 
 

Schema 16 Synthesis of trifluoroacetonitrile from the corresponding amide via phosphorous pentoxide. 

 

The dehydration described in literature uses phosphouros pentoxide as desiccant and the 

product is obtained after heating the mixture to 100°C.83 Alternative the product can be 

formed out of 2,2,2-trifluoroacetamide in pyridine, adding a mixture of trifluoroacetic 

anhydrate (TFAA) as desiccant.84 Trifluoroacetonitrile can be then separated in a cooling 

flask.  

 

 

Schema 17  Synthesis of trifluoroacetonitrile from the corresponding amide via trifluoroacetic 

anhydride and pyridine. 

 

                                                
81 R. Huisgen, 1,3-Dipolar cycloadditions.  76.  Concerted nature of 1,3-dipolar cycloadditions and the question of     
   diradical intermediates, Journal of Organic Chemistry 1976, 41, 403. 
82 R. Huisgen, Centenary lecture. 1,3-dipolar cycloadditions, Proceedings of the Chemical Society 1961, 357. 
83 Y. Kobayshi, I. Kumadaki, 1,3-Dipolar cycloaddition reaction of trifluoroacetonitrile with heterocyclic ylides, 

Heterocycles 1981, 15, 1223. 
84 M. H. Parker, A convenient preparation of trifluoroacetonitrile. Application to the synthesis of a novel pyrimidinone 

building block, Synthetic Communications 2004, 34, 903. 
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The synthesis of trifluoroacetonitrile was performed according to Schema 17. The preparation 

of potassium and cesium 5-trifluoromethyl tetrazolate was carried out according to Schema 

18. As stated above the nitrile is formed in situ in a three neck flask combined with a 

dropping funnel and an in- and outlet for a low nitrogen flow. The amide was solved in 

pyridine and while stirring a mixture of TFAA in pyridine was added very slowly. Via the 

nitrogen flow the formed nitrile was then condensed in a cooled flask (liquid nitrogen). The 

advantage of this reaction is a nearly quantitative yield of 100%. 1 was obtained after 

condensing the cooled nitrile into a flask with sodium azide in dry acetonitrile. The azide is 

provided in small excess to be sure that all of the nitrile reacts. The excess of solid sodium 

azide can be filtered off and after removing the solvent 1 was obtained as a white powder in 

good yields. For the formation of 2, 1 was treated with 1 M HCl and then extracted with 

diethyl ether. The neutral compound was then treated with the corresponding hydroxide or 

carbonate. Compared to the cesium salt which is moderate hygroscopic potassium 5-

trifluoromethyl tetrazolate is very hygroscopic and was not further investigated. Analytical 

data were only conducted for 2.  

 

 
Schema 18 Synthesis of cesium 5-trifluoromethyl tetrazolate (2). 

 

Analytical and physical-chemical data 

Compared to other 5-perfluoroalkyltetrazolates discussed in literature,72 the cesium salt was 

characterized by {1H}13C, 19F, and 14/15N NMR, DSC, mass spectra, vibrational spectroscopy, 

and sensitivity tests.The {1H}13C NMR in DMSO of 2 displays two signals (Figure 47). The 

ring carbon is located at 154.1 ppm. Because of the nearby CF3 group the signal is split into 

a quartet with a coupling constant of 33.8 Hz (2J). The carbon signal of the CF3 group is 

shifted to higher field and is located at 123.8 ppm. The signal split again into a quartet with 
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a coupling constant of 267.5 Hz (1J) to the fluorine atoms. The signal for the fluorine atoms 

of the CF3 group in the 19F NMR appears as a singlet at -60.3 ppm. The nitrogen signals of 

the ring system are located at 14 (14NMR) and 13.6 ppm (15NMR) and at -60 ppm (14/15NMR). 

 

Figure 47 1H decoupled 13C NMR spectra of 2. 

 

The decomposition temperature of the cesium salt was obtained from DSC measurements. 

Compound 2 loose crystal water at 132°C and decompose at 290°C. These values are 

comparable with decomposition temperatures found for the sodium salt of trifluoromethyl 

tetrazolate.72 In addition to crystal water the structure includes sodium (from sodium azide) 

and therefore the decomposition point of 2 is a bit lower compared to the sodium salt 

(310°C).  

Similar to other salts of perfluoralkyltetrazolate72 2 is insensitive against impact, friction and 

electric discharge (Table 42). Because of the hygroscopic behavior the compound is 

restricted in the use as pyrotechnic additive. However, 2 was synthesized as a 50 g batch 

and send to the Frauenhofer-Institut für Chemische Technologie (ICT) for several combustion 

experiments. 

 

Table 42 Sensitivity data of cesium trifluoromethyl tetrazolate. 

 2 

IS / J 40 

FS / N 360 

ESD / J 0.5 

 

  



MTV SYNTHESIS   CHAPTER 10 

 
 

  128  
 

Attempted synthesis of sodium 5-trichloromethyl tetrazolate (3) 

 

Similar as for 5-trifluoromethyl tetrazole the synthesis of the chlorine derivative follows a 

1,3-dipolar cycloaddition.81 The chemical reaction is between a 1,3-dipole (azide) and a 

dipolarophile (nitrile) and forms a five-membered ring (Schema 19).  

 

 

Schema 19 Reaction mechanism for the synthesis of 5-trichloromethyl tetrazolate. 

Only few synthetic routes are described for the synthesis of the chloro derivative of methyl 

tetrazole.85,86,87 GEISENBERGER and BECK synthesized the compound 1987 under mild 

conditions via cobalt(III) complexes and they also published the crystal structure.88 Because 

the yields are low using cobalt(III) complexes the compound was attempted to synthesize 

similar as 5-trifluoromethyl tetrazole. Schema 20 describes the synthetic routes tested within 

this thesis to obtain the sodium salt of 5-trichloromethyl tetrazolate.  

A simple method for synthesizing 3 with 75% yield is described by B. DAS.86 Trichloro 

acetonitrile and sodium azide were solved in an adequate solvent like DMF or 2-butanone. 

Catalytically amounts of iodine or silica based sodiumhydogensulfate were added to the 

mixture and the solution was stirred for 3 h under refluxing conditions. After purification by 

column chromatography the compound could not be isolated. Only mass spec and NMR shift 

signals identify the crude compound in very low yields. Several attempts were carried out 

using the described procedure. B. DAS et al. also describe that nitriles bearing an electron 

                                                
85 Z. P. Demko, K.B. Sharpless, Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water, Journal of Organic 

Chemistry 2001, 66, 7945. 
86  B. Das, C. R. Reddy, A Simple, Advantageous Synthesis of 5-Substituted 1H-Tetrazoles, Synlett 2010, 3, 391. 
87  F. Himo, Z. Demko, B. Sharpless, Why is Tetrazole Formation by Addition of Azides to Organic Nitriles Catalyzed by 

Zinc(II) Salts?, Journal of the American Chemical Society 2003, 125, 9983. 
88  J. Geisenberger, W. Beck, Synthese von Tetrazolen und Triazolen über die 1,3-dipolare Cycloaddition an die Azid-

Liganden von polymeren Cobalt(III)- und Palladium(II) Komplexen. Darstellung und Struktur von 5-
Trichlormethyltetrazol, Zeitschrift für Naturforschung 1987, 42b, 55. 
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donating group reacts faster than those with electron withdrawing groups. Therefore the 

reaction time was elongated from 3 h to 12 h. Further variations of solvents or temperatures 

were also not successful. 

 

 

Schema 20 Attempted synthetic routes to sodium 5-trichloromethyl tetrazolate.  

 

Another possible reaction pathway was suggested by F. HIMO87 using zinc bromide as 

catalyst. They discuss only kinetic experiments using gas chromatography and did not isolate 

the compound. However, on this basis the compound was attempted to synthesize using 

trichloro acetonitrile with an excess of sodium azide and zinc bromide as lewis acid. The 

preferred solvent was 2-propanol instead of water, due to the formation of trichloro 

acetamide. The neutral zinc bromide solution inhibits the formation of toxic and explosive 

HN3. Zinc bromide act as catalyst because the energy barrier which is necessary for the 

formation of the ring system, is lower when Zn2+ cations coordinate to the nitrogen of the 

nitrile. If the zinc ion is tetrahedral coordinated by three water molecules and one nitrile the 

energy barrier decreases from 132.4 to 106.0 kJ mol-1. It increases if the zinc coordinates 

tetrahedral to water and the azide ion to 149.2 kJ mol-1. Thus, the catalytically effect of zinc 

bromide is due to a dative bond to the nitrile (Figure 48).87 Changing reaction times, 

temperatures or solvents, compound 3 could not be isolated using this procedure. 
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Figure 48 Tetrahedral coordination of the zinc cation. 

 

Based on the results of H. RADIES72 3 was attempted to synthesize using the same procedure 

as for the synthesis of 2. Dry THF was used as solvent instead of acetonitrile. The reaction 

was carried out at room temperature and the mixture was stirred for 24 h. The NMR of the 

obtained residue displays several signals. Only few of them were identified as educt. Other 

obtained signals could not be correlated to the desired product.  

According to the patent from MASAHARU89 3 was attempted to synthesise via hydrazine in THF. 

The solution was added to trichloro acetonitrile and stirred for 2 h at 60°C. Afterwards 

sodium nitrit was added and the mixture stirred over night. The NMR of the obtained orange 

oil displays signals of trichloro acetonitrile and several signals which could not allocated to 3.  

 

 

Conclusion 

Pyrotechnic formulations which emit light in the region between 2 and 5 microns (mid 

infrared) are so called MTV decoy flares. These flares consist normally of Magnesium, Teflon® 

and Viton®. To improve the burn rate or the size of the hot core zone Teflon® might be 

replaced. A possible candidate as new additive in MTV compositions is cesium trifluoromethyl 

tetrazolate, which was successfully synthesized. A sample of 50 g of the compound was send 

to the Frauenhofer Institut (ICT) for several decomposition and compatibility tests. The 

evaluation of the results is still in progress; therefore they could not be presented within this 

thesis.  

Because chlorine is a useful additive in pyrotechnics, several attempts were carried out to 

synthesize the chlorine derivative trichloromethyl tetrazole or its salts. Although the 

compound is mentioned in literature the synthesis could not be reproduced.  

                                                
89 Masaharu, European Patent Application 2001, EP 1136476 A2. 
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Experimental Section 

Equipment 

Caution! Although no problems occurred during the synthesis and handling of the materials 

studied in this work, some of the neutral compounds and their salts are sensitive energetic 

materials. Safety equipment such as Kevlar® gloves, leather coat, wrist protection, face 

shield, ear protection, grounded equipment, and shoes are mandatory.  
 
General Method. All chemicals and solvents were used as received (Sigma–Aldrich, Fluka, 

Acros Organics) unless stated otherwise. MELTING POINTS were measured with a Linseis PT10 

DSC, calibrated with standard pure zinc and indium. Measurements were performed at a 

heating rate of 5°C min-1 in a closed aluminum sample pan with a 1 µm hole on top for gas 

release and under a nitrogen flow of 20 mL min-1 with an empty identical aluminum sample 

pan as reference. The values were checked by a Büchi Melting Point B-450 apparatus. The M. 

p. values are not corrected. MASS SPECTROMETRY was conducted on a JEOL MStation JMS 700 

machine. All NMR SPECTRA were recorded with a Jeol Eclipse 270, Jeol EX 400, or a Jeol 

Eclipse 400 instrument. The chemical shifts are quoted in ppm relative to TMS (1H, 13C), 

MeNO2 (14N, 15N), and CFCl3 (19F). For NMR signals the common abbreviations were used: s 

(singlet), d (duplet), t (triplet), q (quartet), and m (multiplet). INFRARED (IR) SPECTRA were 

recorded with a Perkin–Elmer Spektrum One FT-IR Spectrum BXII with Smith ATR Dura 

Sample IRII instrument. The absorption is given in wave numbers (cm-1) with a range of 100 

to 4000 cm-1. Transmittance values are qualitatively described as very strong (vs), strong 

(s), medium (m), weak (w), and very weak (wv). RAMAN SPECTRA were measured with a 

Bruker MULTIRAM 1064 2000R NIR FT-Raman instrument equipped with a Nd:YAG laser 

(1064 nm). The intensities are given in percentages of the most intense peak and are given 

in parenthesis. ELEMENTAL ANALYSES (C, H, N, I) were performed with a Vario El and Netsch STA 

429 Simultaneous Thermal Analyzer. SENSITIVITY DATA were determined using a BAM drop 

hammer, BAM Friction tester, and an OZM electrical discharge testing device.52,53 

For the synthesis of nitrogen rich heterocyclic fluorine and chlorine derivatives reactions were 

carried out under exclusion of air and moisture using the SCHLENCK technique. Argon (purity 

4.6) from a 50 L compressed gas cylinder of the MESSER GRIESHEIM Company was used as 

inert gas. Before usage the glass flasks were heated twice to 400°C with a heat gun and in 

between exposed with an argon flow. The weighting of the compounds was done against an 

argon flow. For several reactions absolute solvents (e. g. THF, acetonitrile) were used and 

freshly distilled over an adequate desiccant. 
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Synthesis 

Synthesis of cesium trifluoromethyl tetrazolate (2) 

 

Trifluoromethyl amide (5.65 g, 0.05 mol) was added to 26 mL dry pyridine 

in a 100 mL three neck flask. A dropping funnel was filled with 8.5 mL dry 

pyridine and TFAA (7 mL, 0.05 mol) whereby the dropping funnel was 

cooled during the addition of TFAA. An ice bath cooled condensation trap 

(collects pyridine) was connected to the flask, followed by a second cold trap which was 

cooled to –196°C by liquid nitrogen. The second trap was connected at the end to a bubble 

counter to avoid the condensation of liquid oxygen. During the reaction a low to medium 

nitrogen flow was ran through the reaction mixture. The solution of the dropping funnel was 

added slowly to the trifluoromethyl amide/pyridine mixture. If no more gas formation was 

observed the nitrogen flow was raised for 5 min. The second cold trap, containing trifluoro 

acetonitrile, was removed and evacuated under cooling with liq. nitrogen. A dry 1000 mL 

flask with sodium azide (3.575 g, 0.055 mol) in 75 mL dry acetonitrile was connected to the 

cold trap and the trifluoro acetonitrile was condensed to the sodium azide solution. The 

reaction mixture was allowed to come to r. t. and then stirred for 48 h. The excess of sodium 

azide was filtered off and washed with acetonitrile. The solvent was removed and the product 

dried under high vacuum. Yield: 8 g (98%) of colorless crystalline sodium trifluoromethyl 

tetrazolate (NaTF 1). NaTF (6.16 g, 73 mmol) was solved in 36.5 mL 2 M HCl and afterwards 

extracted with 3 x 150 mL diethyl ether and 1 x 100 mL water. To the combined organic 

layers was added 12.72 mL CsOH, the solution was stirred for 1 h at r. t. and the solvent 

evaporated. Yield: 19.36 g (97%, Cs).  

 

EA (C2CsF3N4, 270) found(calc.):C 8.90(8.95) H 0.05(0.0) N 20.75(20.32); 19F NMR (d6 

DMSO, 25°C): δ = -60.03; 13C NMR (d6 DMSO, 25°C): δ = 123.8, 154.1; 14N NMR (d6 

DMSO, 25°C): δ = 14.0, -60.0; 15N NMR (d6 DMSO, 25°C): δ = 13.6,  -60.0; MS (FAB-) m/z 

(rel. Int.): 137.0 (100) [C2N4F3
-]; DSC (5°C min-1): T = 129°C, 310°C (dec.) IR (ATR): 𝜈�  = 

3418 (s), 1642 (m), 1508 (s), 1415 (w), 1230 (vs) 1175 (vs), 1141 (vs), 1045 (s), 980 (w), 

769 (w), 750 (m), 580 (w); Raman (200 mW): 𝜈�  = 1507 (100), 1242 (13), 1170 (50), 

1160 (12), 1062 (80), 999 (31), 755 (90), 426 (30), 389 (84); Sensitivity data: IS 35 J, 

FS 40 N, ESD 1.5 J; grain size: 250–500 μm. 

 

  



EXPERIMENTAL SECTION    CHAPTER 11 

 
 

  133  
 

Synthesis of trichloro acetonitrile according to H. Radies72 

Synthesis via trichloro acetamide (TCAA) 

 

Trichloro acetamide (9.74 g, 60 mmol) in 20 mL dry pyridine was added under argon in a 

250 mL three neck flask. A dropping funnel was filled under cooling with 25 mL dry pyridine 

and 8.51 mL (60 mmol) trichloroacetic anhydride. The solution was added within 1.5 h to the 

trichloro acetamide mixture. Afterwards the solution was stirred under argon over night. The 

brown solution was distilled under argon (ambient temperature, 100°C). A colorless liquid 

was obtained at 83–84 °C. 1H NMR (C6D6, 25°C ): δ = - ; 13C NMR (C6D6, 25°C ): δ = 

113.0, 70.0; IR: 𝜈� = 3080 (vw), 3002 (vw), 1582 (m), 1482 (w), 1438 (m), 1261 (vw), 

1217 (w), 1147 (vw), 1068 (w), 1030 (m), 992 (m), 786 (s), 745 (vs), 700 (vs), 664 (m). 

 

Synthesis via trifluoro acetamide (TFAA) 

 

The procedure as described above was repeated using TFAA instead of TCAA. 1H NMR (C6D6, 

25°C ): δ = - ; 13C NMR (C6D6, 25°C ): δ = 114.0, 70.2; IR (ATR): 𝜈� = 3391 (w), 3080 (w), 

3063 (vw), 3026 (w), 2581 (vw), 2094 (vw), 1636 (w), 1612 (w), 1598 (m), 1582 (m), 

1540 (w), 1487 (m), 1438 (s), 1216 (w), 1200 (w), 1147 (w), 1068 (w), 1030 (m), 992 (m), 

784 (s), 748 (s), 700 (vs), 685 (vs); Raman (200 mW): 𝜈� = 3060 (67), 2249 (35), 2306 

(16), 1733 (17), 1601 (5), 1581 (28), 1217 (15),1032 (71), 992 (100), 485 (45), 264 (27), 

162 (26). 

 

Synthesis of silica gel-supported sodium hydrogen sulfate (NaHSO4·SiO2)90  

4.14 g (0.03 mol) NaHSO4 was added to 20 mL water. After the solid was dissolved 10 g 

(0.17 mol) silica gel (60 Å, 230–400 mesh) was added and the mixture stirred for 15 min. It 

was heated to 50°C and while stirring the solvent was evaporated. For further drying the 

solid was placed into an oven at 65°C for 3 h and at 135°C over night. The catalyst was 

stored in an oven and was used within 48 h. Yield: 100%. 

 

  

                                                
90 G. W. Breton, Journal of Organic Chemistry 1997, 62, 8952. 
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Synthesis of trichloromethyl tetrazole according to B. Das86 by using iodine 

 

2.2 g (34.2 mmol) sodium azide and 2.3 g (22.8 mmol) trichloro acetonitrile were solved in 

60.0 mL butanone. Under argon 0.34 g (2.7 mmol) dry iodine was added and the mixture 

stirred for 4 h at 85°C. After cooling to r. t. 45 mL 4 M HCl and 70 mL ethyl acetate was 

added. The solution was stirred over night, afterwards 70 mL ethyl acetate and 50 mL water 

was added. The aqueous solution was extracted with 3 x 100 mL ethyl acetate. The 

combined organic layers were extracted with 3 x 30 mL sat. sodium thiosulfate solution and 

then washed with 3 x 100 mL water. The solvent was removed. The orange oil was subjected 

to column chromatography (silica gel; n-hexane/ethyl acetate 8:1). 1H NMR (d6 DMSO, 

25°C): δ = 8; 13C NMR (d6 DMSO, 25°C): δ = 163.5, 93.5; MS: (DEI+) m/z (rel. Int.): 187 

(6) [M+H]. 

 

 

Attempted synthesis of trichloromethyl tetrazole according to B. Das86 with 

NaHSO4·SiO2 

 

2 mL (20 mmol) trichloro acetonitrile, 1.95 g (30 mmol) sodium azide and 

0.9 g (7.5 mmol) NaHSO4·SiO2 was added in a 250 mL flask. 50 mL dry 

butanone was added and the mixture refluxed for 4 h at 75°C under argon. 

After cooling to r. t. 100 mL 4 M HCl and ethyl acetate was added. After 10 

min another 100 mL ethyl acetate was added. The aqueous layer was extracted with 3 x 100 

mL ethyl acetate. The combined organic layers were washed with 3 x 100 mL water. In some 

cases brine was used for obtaining separated phases. The organic layer was dried over 

Na2SO4, the solvent was removed and 1 mL of an orange oil was obtained.   

Alternative: 

Using the same procedure the synthesis was repeated with different volume% of butanone 

and different solvents e. g. dry iso propanol. 1H NMR (d6 DMSO): δ = 10.0; 13C NMR (d6 

DMSO, 25°C): δ = 138.0, 74.4; IR (ATR): 𝜈� = 2982 (w), 2942 (w), 2362 (vw), 1710 (s), 

1650 (w), 1613 (w), 1549 (vw), 1530 (vw), 1513 (vw), 1462 (w), 1379 (m), 1262 (m), 

1157 (m), 1105 (m), 1049 (m), 1025 (m), 1001(m), 947 (w), 870 (m), 815 (vs), 790 (vs), 

728 (s), 695 (m). 
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Attempted synthesis of trichloromethyl tetrazole according to F. Himo87 

 

To a solution of 1.6 g (25 mmol) sodium azide, 5.6 g (25 mmol) zink bromide in 35 mL water 

and 15 mL iso propanol was added 0.1 mL (1 mmol) trichloro acetonitrile. The solution was 

stirred over night at r. t. One fourth of the solution was added to 5 mL 1 M HCl and 25 mL 

ethyl acetate. The organic layer was separated and the procedure repeated with the 

remained solution. The solvent of all combined organic layers were removed under high 

vacuum. Yield: 0.5 g of a colorless and hygroscopic solid. 

 

Alternative: 

The synthesis was repeated using benzyl alcohol (1 mL) or ethyl acetate (1 mL) as solvent. 

The reaction time was elongated to 48 h. 1H NMR (d6 DMSO, 25°C): δ = -; 13C NMR (d6 

DMSO, 25°C): δ = 69.6 (educt); IR (ATR): 𝜈� = 3383 (vs), 2359 (vw), 2188 (w), 1979 (vw), 

1966 (vw), 1677 (m), 1625 (vs), 1507 (m), 1434 (m), 1390 (m), 1378 (m), 1347 (m), 1287 

(m), 1224 (s), 1143 (m), 1089 (s), 1014 (m), 876 (m), 850 (s). 

 

Attempted synthesis of trichloromethyl tetrazole according to Z. P. Demko 

and K. B. Sharpless85 

 

In a 250 mL flask was added 40 mL dry propionitrile or butanone, Cl3CCN (2 mL, 20 mmol), 

NaN3 (1.43 g, 22 mmol) and ZnBr2 (4.53 g, 20 mmol). The solution was refluxed for 24 h 

(alternative: 2 h). After cooling to r. t. 25 mL 4 M HCl and 100 mL ethyl acetate was added 

and the reaction mixture stirred for further 30 min. In case of obtaining a precipitate ethyl 

acetate was added until the solid was solved. The solution was extracted with 3 x 100 mL 

ethyl acetate and the solvent of the combined organic layers was removed. 200 mL 0.25 M 

sodium hydroxide was added and the solution stirred for 30 min until a colorless solid of zinc 

hydroxide was obtained. The solid was filtered off and washed with 30 mL 4 M HCl. The 

solvent was removed until a colorless crystalline solid was obtained. 1H NMR (d6 DMSO, 

25°C): δ = 9.57 (altern. 2 h), 9.38; 13C NMR (d6 DMSO, 25°C): δ = 171.0, 145.1, 77.2 

(altern. 2 h). 
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Attempted synthesis of sodium trichloromethyl tetrazole according to H. 

Radies72 

 

0.31 g (7.77 mmol) sodium azide, 0.48 mL (4.68 mmol) trichloro acetonitrile, and 30 mL dry 

THF were added into a 50 mL flask. The reaction mixture was stirred for 24 h at room 

temperature and afterwards the excess sodium azide was filtered off. The solvent was 

removed. The procedure was repeated using dry acetonitrile instead of THF. In both cases a 

brown oil was obtained. 1H NMR (d6 DMSO, 25°C): δ = 9.47; 13C NMR (d6 DMSO, 25°C): 

δ = 145.0, 116.2, 107.1, 69.8. 
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Detonation Velocity 
 

 

 

Abstract: The detonation velocities of several compounds with possible application 

as new secondary explosives were experimentally determined in a detonation 

chamber (KV-250) using the fiber optic technique. The investigated explosives are 

1-amino-3 nitroguanidine (1), diaminouronium nitrate (2), dihydroxylammonium 

5,5-bistetrazolate (3), hydroxylammonium 5-nitriminotetrazolate (4), 

oxalylhydrazide nitrate (5) and, 1,3,5- triaminoguanidinium 1-methyl-5-

nitriminotetrazolate (6). The compounds were synthesized on a 20 g scale, loaded 

into a PE tube and initiated with an electrically ignited detonator. The measured 

detonation velocities were recorded using the EXPLOMET-FO-2000 system and 

compared with the calculated detonation parameters using the EXPLO5 code with 

the respective loading density of the compound. 
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Introduction 

Combustion, Deflagration and Detonation 

Several major characteristics are allocated with (secondary) explosives. One important 

character is the detonation velocity. Some EMs burn relatively slow (few mm or cm per 

second) but if the burn rate of a slow burning material increases it can cause into a 

deflagration or detonation.  

A combustion (burning) is defined as an exothermic chemical reaction which occurs between 

a fuel and an oxidant (air). The chemical reaction is very fast and accompanied by the 

release of heat (flame). The generated energy will raise the temperature of the unreacted 

material and increases its rate of reaction. An example of combustion is the ignition of a 

matchstick. Depending on the temperature combustion can occur with or without the 

formation of a flame. At low temperature the oxidation of the combustible material is very 

slow and no flame is observed. The rate of oxidation is increased by the application of heat. 

After the ignition temperature is reached the heat generations is greater than the heat loss 

and a flame is observed. As mentioned at the beginning, the combustion process of 

explosives (and propellants) is a self-sustaining, exothermic and fast oxidizing reaction with 

the generation of large amounts of gaseous products.  They contain oxygen and fuel in their 

molecular structure and are classified as combustible materials. In general, propellants 

generate combustion gases by deflagration, whereas explosives generate gases by 

deflagration or detonation.2,91 

Deflagration describes a (thermal) subsonic combustion process with the formation of 

flames, sparks or crackling noises. Deflagrating explosives ignite when a small unconfined 

part of it are contacted to flame, spark, heat, shock or friction. They burn faster and more 

violent then common combustible materials. The rate of deflagration increases with the 

degree of confinement. As a material undergoes deflagration the produced gases from the 

decomposition process of the crystals become trapped and the internal pressure and 

therefore the temperature rise which in turn increase the rate of deflagration. Deflagration of 

complete confined explosive materials can be classified into 'low' and 'high' order detonation. 

If the deflagration rates are between 1000–1800 m s-1 it is stated as low order and from 

5000 m s-1 it becomes high order detonation. It can be said that unconfined materials 

undergo a deflagration process, whereas confined setting led to detonation processes.2,91  

  

                                                
91 M. Suceska, Test Methods of Explosives, Springer Verlag, 1995. 
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An explosive material which generates a shock wave after initiation undergoes a detonation 

process. Depending on the compound (primary or secondary explosive) detonation velocities 

of the shock wave are between 1500–9000 m s-1. The detonation process is always 

supersonic. In contrast to the heat transfer during deflagration, the detonation process is 

governed by the speed at which the material transmits the shock wave. Detonation can be 

initiated by shock or by burning to detonation (DDT). 

Because the detonation process is a very complicated process, containing many 

mathematical equations only basic principles are discussed within this thesis.  

 

 

Theoretical aspects 

According to the ZELDOVICH VON NEUMANN-DOERING (ZND) model91,92 of detonation the chemical 

reaction occurs in a thin chemical reaction zone under the action of a shock wave. A 

simplified diagram of the detonation process is given in Figure 49. This rapid and violent 

process differs from others like heat conduction in that all the important energy transfer is by 

mass flow caused by the action of the shock wave.  

 

 

Figure 49 Schematic description of the detonation process and detonation wave structure.4  

 

  

                                                
92 W. Fickett, W. C. Davis, Detonation-Theory and Experiment, 1979. 
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The CHAPMAN-JOUGUET postulate is based on the assumption of an ideal detonation with a 

complete chemical conversion of the explosive material within the shock front and a steady 

state of the detonation products.  

The graph in Figure 50 defines the relationship between the density (volume) and the 

pressure during the dynamic compression of the explosive. Curve 1 represents the explosive 

before reaction and curve 2 the reacted explosive. 

Due to the pressure of the shock wave, a thin layer of the explosive material is compressed 

from the initial density ρ0 to the density ρ1 according to curve 1 (adiabatic shock of the 

explosive). As a result of the dynamic compression of the explosive, an increase of the 

pressure p0 to p1 occurs. The higher pressure leads to a significant increase of the 

temperature in the chemical reaction zone and the chemical reaction begins. When the 

chemical reaction comes to an end, pressure and density reach the values p2 and ρ2. This 

state relates to the point laying on the shock adiabatic curve (2) of the detonation products. 

In this state, the products expand isentropically into the surrounding medium. For the steady 

state model of detonation the values (p0, ρ0), (p1, ρ1) and (p2, ρ2) lie on one line, the 

RAYLEIGH or MICHELSON line. The slope of the RAYLEIGH line is proportional to the detonation 

velocity of an explosive material. Relating to the CHAPMAN-JOUGUET postulate, the RAYLEIGH line 

is the tangent to the adiabatic shock curve of the detonation products. This point on curve 2, 

called the CJ-Point, shows the end of the chemical reaction and the steady state of the 

(gaseous) reaction products. The 'speed of the reaction products' corresponds to the 

detonation velocity.91,92 

 

 

 

Figure 50 Steady state model of detonation.4  
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The steady state is reached as the released energy of the exothermic reaction equals the 

energy released to the immediate vicinity plus the energy necessary to compress and slide 

the crystals or particles of the explosive material. 

Using thermodynamic and hydrodynamic laws, the detonation process can be described 

mathematically with the following equations:  

 

𝜌0𝐷 = 𝜌(𝐷 − 𝑊)                                                             (1) 

𝑝 = 𝜌0 𝐷𝑊                                                                         (2) 

𝑒 − 𝑒0 = 1
2� (𝑝 + 𝑝0)(𝑉0 − 𝑉) + 𝑞                             (3) 

𝛾 = − �
𝜕 ln 𝑝
𝜕 ln 𝑉

�
𝑠

= −
𝑉
𝑝

�
𝜕𝑝
𝜕𝑉

�
𝑠

= −
𝑉
𝑝

�
𝑝 − 𝑝0

𝑉 − 𝑉0
�         (4) 

 

Where D = detonation velocity, W = mass velocity, q = heat of detonation, e = internal 

energy, V = specific volume with V = 1/ρ and γ = polytropic exponent, and subscript 0 

indicates the unreacted explosive.  

It is possible to get the relationship of the most important detonation parameters by 

combining equations 1 to 3, including equation 4 from the CHAPMAN-JOUGUET postulate.91 

 

 

Experimental detonation velocity 

For the experimental characterization of an explosive compound several detonation 

parameters, such as detonation velocity, detonation pressure, detonation product mass 

velocity, detonation temperature etc., must be considered. Nowadays, several dynamic 

methods based on different physical principles, as well as experimental test procedures, 

exist.91,92 From the above mentioned properties the most important parameter for a 

secondary explosive is the detonation velocity, which presently can be measured quite 

accurately for covalent bonded compounds. Calculated VOD values can be achieved very 

easily with different computational methods like EXPLO593 or Cheetah.94 

Every detonation process, as well as the combustion process, is accompanied by the 

emission of light. This makes it possible to measure the detonation velocity with different 

techniques. For rough estimations, simple ways like the DAUTRICHE91 method can be applied. 

                                                
93 M. Suceska, EXPLO5.03 program 2009 and EXPLO5.04 program 2010, Zagreb, Croatia. 
94 Lawrence Livermore National Laboratory, Cheeta 6.0 thermochemical code 2011, Livermore, USA. 
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To get more accurate results, optical methods with high speed cameras or electrical methods 

with different types of velocity probes should be used.  

The determination of the VOD is based on the measurement of the time interval needed for 

the detonation wave to travel through a known distance in an explosive material. The 

equipment should provide suitable velocity probes for the detection of the arrival of the 

detonation wave, and the measurement of very short time intervals (in a microsecond scale) 

needed for the detonation wave to travel between two or more velocity probes.  

VOD experiments within this thesis were carried out with the EXPLOMENT-fo®-2000 

equipment using the optical fiber technique (Figure 51 and 52). The EXPLOMENT-fo®-2000 is 

an electronic instrument for the precise measurement of the detonation velocity. The 

principle is based on measuring the time which elapses when the detonation wave passes 

between two probes in a selected distance. The time is then recalculated to the detonation 

velocity knowing the distance between two optical fibers. The EXPLOMENT has five 

independent timer which measures the time interval between six optical probes. Using all six 

fibers the instrument can provide a 'semi-continuous' VOD measurement. The optical fibers 

insure excellent immunity against electrical noise and there is no signal disturbance by stray 

currents etc.  

 

Figure 51 EXPLOMENT-fo®-2000 measuring equipment. 
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Figure 52 Possible settings for the optical fibers.4 

 

The accuracy of the instrument is ± 0.1 µs for the time and better than 0.2 % for the 

velocity. VODs can be measured up to 10 000 m s−1, what is in the range of CL-20, an 

explosive with one of the highest detonation velocities. The time interval is measured 

between 0.1 µs and 10 s. 

 

Research objective 

The final topic of this thesis includes the measurements of the detonation velocity of several 

new high energetic materials synthesized in our research group. Therefore several VOD tests 

with different densities of the material were performed. The obtained values were compared 

with calculated and measured detonation velocities of commonly used explosives like RDX, 

HMX and PETN.95  

It was further tested whether the experimental set up established within the master thesis 

could be improved by variations of several parameters e. g. density of the explosive material 

or confinement of the explosive charge. 

                                                
95 N. Fischer, D. Fischer, T. M. Klapoetke, S. Scheutzow, J. Stierstorfer, M. Boehm, Experimentally determined 

detonation velocities of new secondary explosives, Proceedings of the 14th NTREM Conference, Pardubice, CZ, 2011. 
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Discussion – Experimental VOD 

Nitrogen rich compounds play a major role in the development of new energetic materials for 

the use as (gun-) propellants, explosives and pyrotechnics.96 A main subject in our research 

group are secondary explosives and potential RDX replacements. The high demand of 

versatility is the major challenge that is faced in designing and inventing new nitrogen rich 

materials. Such materials should feature high thermal and mechanical stabilities and at the 

same time should be as high performing as possible, regarding the detonation velocity, 

detonation pressure and heat of explosion. Furthermore, environmental compatibility is a big 

issue nowadays. Unfortunately, this combination of requirements is rarely achieved.97,98 

Whereas the thermal stability as well as the sensitivity and compatibility of new potential 

RDX replacements can be determined comparatively easy in laboratory experiments, the only 

common method for obtaining the performance data are computational calculations. To 

compare theoretical data with real performance data, experimentally determined 

performance tests need to be carried out. 

New secondary explosives 

The detonation velocities of 1-amino-3-nitroguanidine (1), diaminouronium nitrate (2), 

dihydroxylammonium 5,5-bistetrazolate (3), hydroxylammonium 5-nitriminotetrazolate (4), 

oxalylhydrazide nitrate (5) and 1,3,5-triaminoguanidinium 1-methyl-5-nitriminotetrazolate 

(6), (Figure 53) were experimentally determined and afterwards compared with the 

calculated values using the EXPLO5 (V5.04) code.93 

 

 

                                                
96  L. V. De Yong, G. Campanella, A study of blast characteristics of several primary explosives and pyrotechnic 

compositions, Journal of Hazardous Materials 1989, 21, 125. 
97  T. M. Klapötke, J. Stierstorfer, The CN7

- anion, Journal of the American Chemical Society 2009, 131, 1122. 
98  A. K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials 

emerging for military and space applications, Journal of Hazardous Materials 2004, 112, 1. 
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Figure 53 Overview of the investigated compounds 1–6. 

 

Mostly all the investigated compounds meet the high requirements for new secondary 

explosives, which means, the performance data exceed those or are at least comparable to 

those of commonly used RDX (Table 43). Apart from 4, all compounds show mechanical 

stability towards impact, friction and electrical discharge as well as high decomposition 

temperatures above 180°C. The calculated performance data, in particular the detonation 

velocities, also reveal the potential of the compounds regarding the applicability as new 

secondary explosives. Compounds 1, 2, 3 and 6 were synthesized according to 

literature.99,100,101,102 For the preparation of 4 and 5, the following procedure was used: 

Oxalyldihydrazide103 and 5-nitriminotetrazole.104 Hydroxylammonium 5-nitriminotetrazolate 

(4) was prepared by dissolving 5-nitriminotetrazole in water followed by the addition of 

aqueous hydroxylamine. Oxalyldihydrazide nitrate (5) was prepared by simple protonation of 

oxalyldihydrazide with dilute nitric acid.105 

 

 

  

                                                
99 N. Fischer, T. M. Klapötke, Energetic Materials based on 1-amino-3-nitroguanidine, New Trends in Research of 

Energetic Materials, Proceedings of the 13th seminar, Pardubice, CZ, 1, 113, 2010. 
100  N. Fischer, T. M. Klapötke, Explosives based on Diaminourea, Propellants, Explosives, Pyrotechnics 2011, 36, 225. 
101  M. A. Hiskey, D. E. Chavez, High nitrogen fuels for low-smoke pyrotechnics, Journal of Pyrotechnics 1999, 10, 17. 
102 T. M. Klapötke, J. Stierstorfer, Nitrogen-Rich salts of 1-Methyl-5-nitrimino-tetrazolate: An Auspicious Class of 

Thermally Stable Energetic Materials, Chemistry of Materials 2008, 20, 4519. 
103  T. Curtius, K. Hochschwender, Hydrazides and azides of organic acids. XXXI. The hydrazides and azides of oxalic 

acid, Journal für Praktische Chemie 1915, 91, 415. 
104  T. M. Klapötke, J. Stierstorfer, Nitration Products of 5-Amino-1H-tetrazole and Methyl-5-amino-1H-tetrazole – 

Structures and Properties of Promising Energetic Materials, Helvetica Chimica Acta 2007, 90, 2132. 
105  D. Fischer, Master thesis, Ludwig-Maximilians-University, Munich, 2010. 
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Table 43 Sensitivity, stability, and performance data of compounds 1–6. 
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Preparation of the Explosive Charges 

Caution! The preparation of the explosive charges should be done carefully and with full 

body protection (helmet, Kevlar® gloves, leather coat or vest, ear protection). There must be 

a second person present in case of emergency.  No metal tubes (except detonators) should 

be used inside the detonation chamber! The chamber must be cleaned after each shot. If 

steel disks are replaced by polycarbonate (e. g. for high speed videos) the maximum charge 

is reduced to 100 g of TNT! 

 

The comparison of the old and new experimental set up for measuring the detonation 

velocity is shown in Figure 54 and 55. New experiments were carried out using a plastic tube 

of 10 cm length, 0.14 cm diameter, 0.8 cm wall thickness, and 1 cm bottom thickness. Small 

holes were drilled into the plastic tube to fix the optical fibers (Ø 1 mm, covered by PE 

jacket, overall thickness 2.2 mm from). Depending on the amount of fibers used for the test, 

the distances between two holes should be between 0.15 cm and 0.45 cm. Most of the 

experiments were done with two probes and a distance of 0.2 cm. The distance between the 

last probe and the bottom should be 0.5–1 cm. 

About 5 mm of the PE jacket were removed carefully from one end of the fiber (complete 

length ~ 1 m for each fiber). Both ends were cut off with a sharp knife in order to obtain a 

plane end surface of the fiber. If necessary, the ends can be planed using sandpaper. The 

end without PE is plugged into the plastic tube to the beginning of the explosive compound. 

All probes must be vertical to the tube surface and with the same length inside the tube. The 

transmittance of the fibers should be checked with a laser pointer and the tube should be 

fixed in a bench vise in order to be filled with explosive. 

Average amounts of the explosives for one test were 10–25 g, in order to obtain a 

homogenous detonation wave and a good value for the detonation velocity. The distance 

between the first optical fiber and the detonator and/or booster (e. g. PETN 0.2–1 g) should 

be 2.5 fold of the tube diameter. Before and after filling the compound inside the tube, 

height and diameter should be measured with a sliding caliper to calculate the density. The 

explosive is pressed carefully with a small round piece of wood or plastic.  

For all VOD tests standard detonators DYNADET-C2-0ms (containing PETN and RDX) from 

ORICA Mining services were used.  
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a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b 

 
 
Figure 54 Previous (a) and presently (b) used set up for detonation velocity experiments. 
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Figure 55 Presently used set up for detonation velocity experiments (schematic). 
 

 

Experimentally Determined VODs 

The results of the detonation velocity experiments are illustrated in Table 45–49. Obviously, 

single detonation velocities of the particular measurements show deviance between several 

hundred and thousand meters per seconds. The detonation velocities of 1, D1,2 in VOD1 

with 9650 m s-1 and D2,3 in VOD2 with 9493 m s-1 (Table 44) exceed the detonation 

velocities of 8977 m s-1 calculated for crystal density (1.77 g cm-3), as well as for the 

respective density of 1.34 g cm-3. Compound 2 was only initiated by a booster charge of 

0.32 g PETN. The measured individual detonation velocities are around 6000 m s-1 (Table 44) 

for a density of 1.48 g cm-3, thus around 1000 m s-1 lower than the calculated value of 7855 

m s-1. No more than 40 g of compound 1 and 2 were synthesized and therefore they were 

tested only twice. To compare these values with theoretical values additional measurements 

need to be performed. 3 could not be ignited above a density of 1.162 g cm-3, which leads to 

a VOD of 3381 and 5572 m s-1, compared to the calculated VOD of 6387 m s-1. Assuming 

that an increased density of compound 3 causes a higher critical diameter, even increasing 

the standard diameter of 14 mm to 20.5 mm (VOD3) a detonation was still not observed 

(Table 45). The average detonation velocity of compound 4 with 6216 m s-1 conforms to the 

computational value of 6525 m s-1, although the individual detonation velocities differ by 

around 2000 m s-1 (Table 46). Similar to 1 and 2 further experiments of 4 needs to be 

performed. Despite analogue conditions and similar densities, average values between 4000 

and 5000 m s-1 of VOD1 and 2 (Table 47) for compound 5 disagree with the average 

detonation velocities of VOD3 – 5. Latter experimental values are in good agreement with 

the calculated values of around 7000 m s-1 for a density between 1.3 and 1.4 g cm-3. Just as 

compound 3, 6 was not ignitable above a density of 1.169 g cm-3, however, at higher 

densities it could be ignited by using 0.2 g PETN/0.3 g RDX (Table 48). The obtained value of 

3454 m s-1 is about 2000 m s-1 lower than the calculated VOD.  
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Due to the large deviations of VOD results it becomes apparent that experimental VODs are 

still influenced by several external and internal effects. One important influence on 

detonation velocity experiments is the density of the explosive material. The denser the 

sample is pressed into the tube, the higher is the detonation velocity, whereas high 

homogeneity throughout the whole length is aspired. However, directly pressing the loose 

sample into the tube causes layers of different densities and a density gradient. This may 

have a significant effect on the detonation velocity, since the velocity increases in more 

dense layers, which can be a reason for the variance of the single measured VODs. In 

addition, the pressure of the shock wave leads to a dynamic compression of the unreacted 

material, resulting in a significant temperature and pressure increase, which obviously has 

different effects depending on the density. Moreover, air gaps are a main issue concerning 

detonations and the shock front in particular. Since the shock front travels faster through air 

gaps than through the explosive material, this leads to an inhomogeneous and faster 

forwarding of the detonation front, which suggests a higher detonation velocity. To avoid 

these air gaps a high density is aspired.  

In contrast the negative effect of too high densities can be seen in the detonation velocity 

tests of dihydroxylammonium 5,5-bistetrazolate (3), which became unreactive. Discussing 

VOD results for high densities, the critical diameter for the respective compound must be 

considered. For good detonation velocity measurements, a stable and mainly planar 

detonation front is also favored. In the early stages of the detonation, the shock front 

expands tapered and becomes planar with increasing propagation. Thus, a preferably long 

distance between the point of ignition and the first optical fiber is desired. A large amount of 

explosive is necessary or compromises between tube length and the amount of material have 

to be made. The tube length and the preferably long traveling distance of the detonation 

front to the first optical fiber also limited the distance between the points of measurement, 

which leads to a higher error margin. In addition, the diameter of the optical fiber itself 

(1 mm) and the distance of 14 mm to the second optical fiber lead to a greater range of 

error. 

A good experimental set up considers all the above mentioned complex problems; therefore 

modifications of the old set up were conducted. Preferable would be a tube length 

(confinement) of more than 15 cm with an appropriate diameter to provide a stable and 

planar detonation front and to consider the critical diameter of an explosive. Most energetic 

materials have small critical diameter (except TNT) and a tube diameter of 2 cm should be 

enough for densities below crystal density. Large tube length requires large amounts of 

explosives. Hence, this parameter wasn’t changed for the new set up to avoid the synthesis 

of more than 50 g of secondary explosives for one experiment. To obtain high densities and 

a better fixing of the optical fibers tubes used during the master thesis were replaced by 
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tubes with a wall thickness of 8 mm and a bottom thickness of at least 10 mm (Figure 55). 

Alternatively, the explosive can be pressed into pellets prior to use and loaded afterwards. 

However, this method can lead to extra air gaps between confinement and pellet while using 

tubes. Another method would be a fixing of several pellets by small amounts of glue and the 

exchange of the optical fibers my metal pins or plates.  

It was found that covalent bonded compounds such as picric acid or HMX (Table 49) show 

comparable values whereas most of the salts tested within this thesis show strong deviations 

of the calculated values. Therefore it can be assumed that values of symmetric and/or 

covalent bonded molecules indicate more homogenous (more ideal) detonation behavior then 

ionic molecules and leading to more comparable VODs.  

The experimental determination of detonation velocities is still a complex task with many 

parameters and effects to consider, which influence and interfere with each other. Despite 

the experimentally determined detonation velocities, the tested compounds, especially 1-

amino-3-nitroguanidine (1), dihydroxylammonium 5,5´-bistetrazolate (3) or oxalylhydrazide 

nitrate (5) remain promising new secondary explosives since they are cheap and easy to 

synthesize and they show very good calculated detonation parameters.  

 

 

Table 44 Experimental detonation velocities of compound 1 and 2. 

Compound 1 VOD 1 VOD 2 Compound 2 VOD 1 VOD 2 

Ø / mm 14.1 14.1  14.1 14.1 

hempty / mm 100.1 100.2  100.4 100.2 

hloaded / mm 73.9 93.9  83.7 86.7 

m / g 16.1 21.8  17.0 20.0 

ρ / g cm-3 1.387 1.481  1.305 1.482 

mbooster / g 0.3 (PETN) -  - 0.32 (PETN) 

x1,2 / mm 15.4 14.7  14.6 14.2 

x2,3 / mm 14.3 14.2  14.3 14.1 

D1,2 / m s-1 9650 7726  - 6780 

D2,3 / m s-1 5958 9493  - 5862 

Dav / m s-1 7804 8610  - 6321 

Dcal / m s-1 7507 7846  7246 7855 
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Table 45 Experimental detonation velocity of compound 3. 

Compound 3 VOD 1 VOD 2 VOD 3 VOD 4 VOD 5 

Ø / mm 14.1 14.0 20.5 14.0 14.0 

hempty / mm 100.4 99.9 100.0 99.9 99.9 

hloaded / mm 82.29 86.4 92.9 87.8 90.0 

m / g 15.0 18.5 40.0 19.0 10.0 

ρ / g cm-3 1.162 1.389 1.303 1.401 0.721 

mbooster / g - - 1.0 (RDX) 0.3 (PETN) - 

x1,2 / mm 14.5 14.0 14.8 14.0 14.1 

x2,3 / mm 13.9 13.9 13.9 14.0 14.0 

D1,2 / m s-1 3381 - - - 4375 

D2,3 / m s-1 5572 - - - 3888 

Dav / m s-1 4477 - - - 4132 

Dcal / m s-1 6387 - - - 4695 

 
 
Table 46 Experimental detonation velocity of compound 4. 

Compound 4 VOD 1 

Ø / mm 14.2 

hempty / mm 100.4 

hloaded / mm 85.8 

m / g 15.0 

ρ / g cm-3 1.101 

mbooster / g - 

x1,2 / mm 14.4 

x2,3 / mm 14.1 

D1,2 / m s-1 7220 

D2,3 / m s-1 5211 

Dav / m s-1 6216 

Dcal / m s-1 6525 
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Table 47 Experimental detonation velocity of compound 5. 

Compound 5 VOD 1 VOD 2 VOD 3 VOD 4 VOD 5 

Ø / mm 14.1 14.0 14.1 20.6 14.0 

hempty / mm 100.2 100.0 100.1 100.1 100.1 

hloaded / mm 88.8 87.3 88.3 90.0 87.2 

m / g 22.0 20.0 18.0 39.9 19.4 

ρ / g cm-1 1.577 1.486 1.309 1.331 1.443 

mbooster / g 0.3 (PETN) - - - - 

x1,2 / mm 14.0 14.0 14.0 13.8 14.1 

x2,3 / mm 14.1 14.0 14.0 14.1 14.0 

D1,2 / m s-1 5048 Calc. 5600 8088 5620 

D2,3 / m s-1 4689 3927 7777 6125 8763 

Dav / m s-1 4869 8975 6689 7107 7192 

Dcal / m s-1 7765 7401 6877 6949 7318 
 
 
Table 48 Experimental detonation velocity of compound 6. 

Compound 6 VOD 1 VOD 2 VOD 3 VOD 4 

Ø / mm 14.0 14.2 14.2 14.0 

hempty / mm 100.2 100.4 100.3 100.0 

hloaded / mm 85.8 88.8 85.7 85.5 

m / g 22.0 22.0 20.0 15.4 

ρ / g cm-1 1.667 1.564 1.473 1.169 

mbooster / g - 0.3 (PETN) 0.8 (PETN) 0.2 PETN / 0.3 RDX 

x1,2 / mm 14.3 14.0 14.5 14.0 

x2,3 / mm 14.1 14.1 14.0 13.9 

D1,2 / m s-1 - - - 3671 

D2,3 / m s-1 - - - 3236 

Dav / m s-1 - - - 3454 

Dcal / m s-1 8702 8290 7935 6443 
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Table 49 Calculated and experimental VOD for common explosives (Lit. values106). 

Explosive Exper. [m s-1] 
(Density [g cm-3]) 

Calc. [m s-1] 

(Explo5)93 
Distance 

[mm] 
Literature 

(Density [g cm-3]) 

Picric acida 5130 (0.9) 4959 20 7400 (1.76) 

 5263 (0.9)  20  

 4615 (0.9)  24  

 4181 (1.0) 5314 23  

 7000 (1.3) 6117 21  

HMXa 6000 (1.0) 6075 21 9100 (1.95) 

 6250 (1.1) 6402 20  

 9523 (1.3) 7128 20  

RDXa 7600 (1.0) 6088 19 8700 (1.89) 

 4617 (1.0)  20  

TNTb 1919 (1.0) 5154 19 6930 (1.61) 

 2777 (1.0)  20  

 9130 (1.3) 7176 21  

PETNb 7741 (0.9) 5587 24 8260 (1.76) 

 2238 (0.9)  45  

 8333 (1.2) 6585 20  

 7219 (1.3) 6896 44  

NGA1b,c 4181 (0.6) 4812 23 8895 (1.79) 

 8333 (0.8) 5482 20  

 6250 (1.0) 6257 35  

NGA2b,c 5405 (1.0) 5885 20 8750 (1.79) 

a ±4 % error 
b ±3 % error 
c nitro glycerin analogue47 
 
  

                                                
106 J. Köhler, Explosivstoffe, 10. Auflage, Wiley-VCH, 2008. 
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EXPLO5 calculations 

Calculations of the detonation parameters were carried out using the EXPLO5 V5.04 code.93 

The program is based on the steady-state model of equilibrium detonation, referring to the 

BECKER-KISTIAKOWSKY-WILSON equation of state (BKW EOS) for gaseous detonation products 

and the COWAN-FICKETT equation of state for solid carbon.107 The calculation of the equilibrium 

composition of the detonation products is achieved by applying the modified WHITE-JOHNSON-

DANTZIG free energy minimization technique. The program is designed to enable the 

calculation of detonation parameters at the CHAPMAN-JOUGUET (CJ) point. The BKW equation in 

the following form was used with the BECKER-KISTIAKOWSKY-WILSON-NEUMANN (BKWN) set of 

parameters (𝛼, 𝛽, 𝜅, 𝜃) as stated below, with 𝑋𝑖 being the mol fraction and 𝑘𝑖 the molar 

covolume of the i-th gaseous product (see also chapter 1, Introduction).107,108 

 

𝑝𝑉
𝑅𝑇

= 1 +  𝑥𝑒𝛽𝑥                                𝑥 =
(𝜅Σ𝑋𝑖𝑘𝑖)

[𝑉(𝑡 +  𝜃)]𝛼 

  

𝛼 = 0.5, 𝛽 = 0.176, 𝜅 = 14.71, 𝜃 = 6620. 
 

VOD values of compound 1 – 6 were calculated for the respective density achieved in the 

particular experiments and for crystal density. All important data is given in Table 44-48. 

Experimental densities vary from 0.7 to 1.6 g cm-3, whereas crystal densities are in the 

range of 1.6 to 1.8 g cm-3. Beside compound 4 and 5 all theoretical VODs obtained for the 

crystal density are higher than the VOD of RDX with 8748 m s-1 at a density of 1.80 g cm-3 

(Table 43, 46, 47). Moreover, compound 4 has a detonation velocity of 9236 m s-1 for a 

density of 1.75 g cm-3. 

The averaged experimental values between optical fiber 1 and 2 and between 2 and 3 of 

several measurements of compound 1, 3, 4 and 5 match the computational values, although 

significant deviation of the single VODs in each experiment are observed.  VODs measured 

for several common explosives, listed in Table 49, are in good agreement with their 

calculated values, especially for HMX, NGA1 and 2. Due to the large critical diameter of TNT 

experimental values are not conform to its theoretical detonation velocity.  

 

                                                
107 M. Suceska, Calculations of the detonation properties of C-H-N-O explosives, Propellants, Explosives, Pyrotechnics 

1991, 16, 197. 
108 a) M. Suceska, Calculation of detonation parameters by EXPLO5 computer program, Material Science Forum, 2004,    

465 b) M. Suceska, Evaluation of detonation energy by EXPLO5 computer code results, Propellants, Explosives, 
Pyrotechnics 1999, 24, 280 c) M. L. Hobbs, M. R. Baer, Proceedings of the 10th Symposium (International) on 
Detonation, ONR 33395-12, Boston, 1993. 
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Because all calculations consider the ideal behavior of a detonation and equilibrium of the 

detonation products it is not possible to match these values with experimental detonation 

velocities perfectly. The obtained deviations for several experiments are in the range of 

tolerance and the average values are still comparable with the theoretical detonation 

velocities.  

 

 

Conclusion 

The detonation velocity is one of the most important parameters discussing secondary 

explosives. Because it is relatively easy to calculate the detonation parameters for most of 

the new synthesized energetic materials, the experiment is still challenging.  

A couple of new explosives which meet the high requirements as possible RDX replacements 

were synthesized within our research group. Several detonation velocity experiments were 

performed and the results compared with the calculated values obtained with the EXPLO5 

code. It was further investigated if the old set up established during the master thesis was 

improved by changing the density of the compound and the confinement. As expected for 

experimental values the deviation of the single VODs is high and the mean values are 

comparable with the calculated values. Although the experiments are influenced by many 

parameters like density, crystal size and/or shape, air gaps, confinement, etc. the obtained 

results for all tested compounds are acceptable especially for oxalyldihydrazide nitrate. It 

was further observed that compounds with a symmetric molecular unit like RDX or HMX 

show better (more ideal) detonation characteristics than the tested salts.  

In summary it can be stated that both set ups (old and new) are applicable. The advantage 

of the new set up is a better fixing of the optical fiber and the possibility of higher densities 

due a higher wall thickness of the confinement. Because of safety reasons the amount of 

new synthesized explosive compounds is limited. The advantage of the old set up is the need 

of less quantities of explosive material. Therefore from safety aspects and synthesis cost 

(each VOD should be repeated at least 3-5 times) the old set up is still useful.  
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Experimental Section 

Equipment 

Caution! Although no problems occurred during the synthesis and handling of the materials 

studied in this work, some of the neutral compounds and their salts are sensitive energetic 

materials. Safety equipment such as Kevlar® gloves, leather coat, wrist protection, face 

shield, ear protection, grounded equipment, and shoes are mandatory.  
 

General Method. All chemicals and solvents were used as received (Sigma–Aldrich, Fluka, 

Acros Organics) unless stated otherwise. MELTING POINTS were measured with a Linseis PT10 

DSC, calibrated with standard pure zinc and indium. Measurements were performed at a 

heating rate of 5°C min−1 in a closed aluminum sample pan with a 1 µm hole on top for gas 

release and under a nitrogen flow of 20 mL min−1 with an empty identical aluminum sample 

pan as reference. The values were checked by a Büchi Melting Point B-450 apparatus. The M. 

p. values are not corrected. MASS SPECTROMETRY was conducted on a JEOL MStation JMS 700 

machine. All NMR SPECTRA were recorded with a Jeol Eclipse 270, Jeol EX 400, or a Jeol 

Eclipse 400 instrument. The chemical shifts are quoted in ppm relative to TMS (1H, 13C), and 

MeNO2 (14N, 15N). For NMR signals the common abbreviations were used: s (singlet), d 

(duplet), t (triplet), q (quartet), and m (multiplet). INFRARED (IR) SPECTRA were recorded with 

a Perkin–Elmer Spektrum One FT-IR Spectrum BXII with Smith ATR Dura Sample IRII 

instrument. The absorption is given in wave numbers (cm−1) with a range of 100 to 4000 

cm−1. Transmittance values are qualitatively described as very strong (vs), strong (s), 

medium (m), weak (w), and very weak (wv). RAMAN SPECTRA were measured with a Bruker 

MULTIRAM 1064 2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm). 

The intensities are given in percentages of the most intense peak and are given in 

parenthesis. ELEMENTAL ANALYSES (C, H, N) were performed with a Vario El and Netsch STA 429 

Simultaneous Thermal Analyzer. SENSITIVITY DATA were determined using a BAM drop hammer, 

BAM Friction tester, and an OZM electrical discharge testing device.52,53 
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Synthesis 

Hydroxylammonium 5-nitriminotetrazolate (4) 

 

5-Nitriminotetrazole (1.59 g, 12.2 mmol) was dissolved in a few mL water and a solution of 

silver nitrate (2.07 g, 12.2 mmol) was added. Silver 5-nitriminotetrazolate precipitated 

instantly as a white solid. The product was filtered off and washed with water to remove 

excess of acid. The white solid was resuspended in 50 mL of warm water and treated with a 

solution of hydroxylammonium chloride (0.84 g, 13.0 mmol) in 20 mL water. The mixture 

was stirred at 30°C for 1 h with exclusion of light and the formed silver chloride was filtered 

off. The filtrate was evaporated and the residue recrystallized from ethanol/water to yield 4 

as a white solid (1.70 g, 85%). DSC (5°C min-1): T = 180°C (dec.); IR (KBr): 𝜈�  = 3125 (s), 

2958 (s), 2776 (m), 2711 (s), 1617 (m), 1598 (m), 1539 (s), 1431 (s), 1383 (m), 1321 

(vs), 1244 (m), 1213 (m), 1188 (m), 1153 (m), 1108 (m), 1061 (m), 1039 (m), 1003 (m), 

872 (w), 823 (w), 777 (w), 753 (w), 742 (w), 700 (w), 493 (w); Raman (300 mW): 𝜈�  = 

2715 (1), 1541 (100), 1452 (1), 1433 (1), 1381 (4), 1332 (36), 1158 (7), 1110 (4), 1070 

(4), 1036 (22), 1014 (85), 875 (8), 744 (14), 695 (1), 494 (3), 427 (4), 413 (15); 1H NMR 

(d6 DMSO, 25°C): δ = 10.95; 13C NMR (d6 DMSO, 25°C): δ = 158.3; MS m/z (FAB+): 34.0 

[NH3OH+]; m/z (FAB-): 129.1 [HATNO2
-]; EA (CH5N7O3, 163.10): found(calc.): C 7.38(7.36), 

H 3.09(3.17), N 60.12(57.40) %; Sensitivity data: IS 2 J, FS 40 N, ESD 0.30 J; grain size: 

100 - 500 μm. 

 

 

Oxalyldihydrazide nitrate (5) 

 

1.18 g (10 mmol) Oxalyldihydrazide was added to a mixture of 5.5 mL 2 M nitric acid and 

10 mL water. The suspension was heated up until all oxalyldihydrazide has dissolved and 

then poured to 20 mL ethanol. The suspension was cooled to 5°C, filtered off and dried at r. 

t. Yield: 1.68 g (93%) of colorless crystalline 5. DSC (5°C min-1): 273°C (dec.); IR (ATR): 𝜈�  

= 3307 (w), 3178 (w), 3028 (w), 2775 (w), 1674 (m), 1531 (m), 1326 (s), 1243 (s), 1152 

(w), 1088 (w), 995 (m), 802 (m), 709 (m); Raman (300 mW): 𝜈�  = 3224 (4), 1735 (9), 

1703 (15), 1584 (12), 1553 (28), 1346 (19), 1289 (23), 1206 (9), 1094 (10), 1049 (100), 

1003 (4), 938 (15), 812 (2), 719 (7), 510 (5), 400 (5); 1H NMR (d6 DMSO, 25°C): δ = 

8.28; 13C{1H} NMR (d6 DMSO, 25°C): δ = 157.8; EA (C2H7N5O5, 181.11): found(calc.): C 

13.50(13.26), H 3.74(3.90), N 38.59(38.67) %; Sensitivity data: IS 11 J, FS 360 N, ESD 

0.3 J; grain size 500-1000 μm. 
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SUMMARY 

One area of our research group is the synthesis of new additives for mainly red and green 

pyrotechnics and infrared signal flares. So far, the research on pyrotechnics comprises only 

the synthesis of new compounds and a visible impression of the emitted color. Because one 

important effect of pyrotechnics is the emission of light the major concerns are now on 

evaluating the color purity of the light (visible pyrotechnics) or the amount of emitted 

radiation (infrared pyrotechnics).  

Commonly used near infrared emitting pyrotechnics are so called Black Knight compositions. 

They consist of potassium or potassium and cesium nitrate, silicon powder, hexamine and a 

binder. In combination with night vision devices NIR pyrotechnics are used e. g. for 

illuminating large (battle) fields at night. Hence, the present thesis concentrates on several 

objectives:  

•  the establishment of a set up for radiometric NIR emission experiments with the 

new OCEAN OPTICS spectrometer and further the development of a MATLAB code for 

evaluating the obtained data.  

•  the synthesis of several potassium and cesium high nitrogen compounds, such as 

bistetrazolates, azotetrazolates or triazolates  (Figure A) 

•  the preparation of new formulations based on Black Knight compositions  

• the determination of their sensitivity data concerning impact, friction and electric 

discharge and decomposition behavior 

•  the comparison of the data obtained from the MATLAB code with standards given in 

literature and with 46 new prepared formulations 

 

 

Figure A Chemical structures of BTA (left), NTO (mid), and TNBI (right) salts (M = K, Cs). 
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The most important topic which is related to the work with explosives/energetic materials is 

safety. Exclusively all new pyrotechnic formulations are insensitive against impact or electric 

discharge. Only few compositions (e. g. BK_RDX, _CsAzOT) are sensitive (25-7 J) against 

impact and several (e. g. NTO5, BTA2) are moderately sensitive (35-25 J). The blending of 

the compounds with the remaining ingredients and the preparation of pressed pellets 

proceeded without complications. Only several possible hexamine replacements (DETT, EDD, 

DETP) are incompatible with the other components. 

As additives in pyrotechnic compositions it is assumed that high nitrogen compounds release 

large amounts of nitrogen and dissipate condensed reaction products from the hot core zone. 

Hence, they can improve the radiant emission.  

In summary it can be stated that high nitrogen compounds did not necessarily improve the 

combustion behavior of Black Knight compositions. Several formulations comprising e. g. K 

and Cs 4,4´,5,5´-tetranitro-2,2´bisimidazole, 5,5´bistetrazolyl amine or 3,3´-bis(1,2,4-

oxadiazol-5-one) show large flame sizes and a good burning behavior (steady combustion). 

In contrast formulations comprising 5-aminotetrazole, 5,5´-bistetrazolate or 5,5´-

azotetrazolate produce sparks, where impossible to be lighted or burned with very small 

flame sizes and consequently low IR output. Although the IR output of most of the 

formulations is in the region of reference formulations several compounds (BOX, DNT, BTA, 

TNBI) are still of further interest.  

Since the establishment of the new set up the work on pyrotechnics is no longer limited to 

the synthesis of new materials. A further important tool which might be now useful is the 

calculation of several pyrotechnic parameters. To understand the different combustion 

characteristics of similar constituted pyrotechnic flares variables like the oxygen balance, 

heat of formation, temperature or oxidizer to fuel ratio should be investigated. Several 

calculations were carried out within this thesis. Although the oxygen balance of the 

composition influences the burn characteristics no trend could be observed for new 

formulations. However, an O/F ratio of 2.33 results in good burn times and is therefore 

recommended for future experiments. The attention should be also focused on the heat of 

formation, due to a high influence on the spectral efficiency.  

Experiments with different mixed grain sizes prove the importance of the homogeneity of the 

composition. In addition to safety reasons it might be meaningful to use ultra sonic mixing 

devices or industrial mixing equipments. 

Future work should also comprise additives like boron or ferric oxide, due to a positive effect 

on the burn rate. Different binders like laminac or lupersol should be tested to further 

decrease the amount of visible light and therefore to increase the concealment index χ 

(INIR/IVis).  
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Improvements of the burn rate or NIR emission could be obtained by adding nitrocellulose or 

ammonium nitrate to some extent. However, the amount of IR emitting compounds 

(potassium and cesium) should be still high.  

A second project which was related to the area of pyrotechnics comprises the synthesis of 

new additives for MTV decoy flares. These flares consist of the materials magnesium (fuel), 

Teflon® (oxidizer) and Viton® (binder) and are used as aerial infrared countermeasure to 

counter a homing missile. Hostile missiles detect the IR signature of an aircraft which is 

given by the α/β ratio.  

Commonly used MTV decoys produce small hot core zones compared to the size of an 

aircraft. Therefore new additives in MTV payloads should contain a large amount of fluorine 

due to the oxidizing effect and a large number of N–N or C–N bonds due to the formation of 

nitrogen. Similar as for NIR pyrotechnics discussed above it is assumed that a high nitrogen 

content enlarges the surface of the hot core zone, disseminates reaction products and 

improves the radiant emission.  

Based on the PhD thesis of H. RADIES several compounds are of interest (Figure B). 

 

Figure B Chemical structures of cesium difluoro-1,2,4-triazolate (left), cesium trifluoromethyl 

tetrazolate (CnF2n+1) (mid), and the chlorine derivative (right) for n = 1; m = 3. 

 

Compound 2 was synthesized via trifluoro acetonitrile and sodium azide and the resulting 

sodium salt was converted into the cesium salt. The cesium salt was fully characterized and 

the obtained data compared with values given in literature. 50 g of the compound were sent 

to the Frauenhofer Institut for several stability and decomposition experiments.  

A further interesting compound is trichloromethyl tetrazole and its salts. Several attempts 

were carried out to synthesize 3. Although the compound is mentioned in literature it could 

not be isolated. Only weak signals observed in the mass spectra indicate the existence of this 

salt.  
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The last topic of this thesis concentrates on a possible new set up for experimental 

detonation velocity tests. The detonation velocity (VOD) is one important parameter 

concerning new secondary explosives. While it is relatively easy to calculate several 

detonation parameters, experimental values are normally not expected to be identical with 

the calculated values. The old set up established within the master thesis is useful for small 

charges and low densities. Therefore the confinement was changed and several possible RDX 

replacements (Figure C) synthesized in our research group were tested with the new setting. 

 

Figure C Small overview of the investigated compounds 1-amino-3-nitroguanidine (left), 

diaminouronium nitrate (mid), dihydroxylammonium 5,5-bistetrazolate (right). 

The obtained values were compared with the calculated values for each compound and with 

both values obtained for RDX. As expected the deviations of individual VODs are large. 

However, the average values for several compounds e. g. 1-amino-3-nitroguanidine, 

hydroxylammonium 5-nitriminotetrazolate, and oxalylhydrazide nitrate are in a good range. 

As desired the densities of the material for each test were higher compared to the old set up. 

But not all compounds detonate at high densities e. g. dihydroxylammonium 5,5-

bistetrazolate, and 1,3,5-triaminoguanidinium 1-methyl-5-nitriminotetrazolate.   

It was found that both set ups are applicable. Depending on the sensitivity data of new 

synthesized compounds the old set up is preferable due to lower amounts of explosive. The 

new set up is useful for large charge sizes of 30–40 g and higher densities depending also on 

the critical diameter of the compound.   
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Abbreviations and Conversations 

ANFO Ammonium nitrate fuel oil 

BAM Bundesanstalt für Materialforschung und –prüfung 

BK 'Black Knight' (pyrotechnic composition) 

br broad 

calc. calculated 

Cd Candela 

conc. concentrated 

dec.  Decomposition 

δ  Chemical shift in ppm (NMR) 

DSC Differential Scanning Calorimetry 

d Duplet (NMR) 

EM Energetic material 

FOV Field of View 

h Hour(s) 

HEM High energetic material 

HNC High Nitrogen Compound 

HMX Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine 

HNS Hexanitrostilben 

IR Infrared spectroscopy 

IR Infrared (spectral region) 

J Joule 

Lit.  Literature 

M.p.  Melting point 

MTV Magnesium Teflon® Viton® (Flare composition) 

m  medium (Intensity in the IR spectra) 

m Multiplet (NMR) 

M mol L−1 

min Minutes 

mL Milliliter 

ms Milliseconds 

NIR Near Infrared (spectral region) 

nm Nanometer 

NMR  Nuclear Magnetic Resonance 

NTO 3-Nitro-1,2,4-triazol-5-on 

PETN Pentaerythritol tetranitrate 

ppm  parts per million 
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RDX Hexogen 

r. t. room temperature 

s Singlet (NMR) 

s  strong  (Intensity in the IR spectra) 

s seconds 

θ Theta 

t  Triplet (NMR) 

t Tons 

TFAA Trifluoroacetic anhydride 

TCAA Trichloroacetic anhydride 

Ω Oxygen balance 

VOD Velocity of Detonation 

vs  very strong (Intensity in the IR spectra) 

w  weak (Intensity in the IR spectra) 

W/sr    Watt / steradian 

𝜒    Concealment Index (INIR/IVis) 
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User guide for the HR2000+ES Spectrometer (only Irradiance 
measurements) 
 

Measurements required a dark and sample spectrum with the same integration time and 

calibration file. It is not necessary to store a reference spectrum. Absolute irradiance 

measurements are not relative to another measurement.15 

 

1. Open SpectraSuite 

2. Click inside the Graph (A) window to show the selected settings (Data sources) 

3. Set Integration time (100 ms) 

4. Select Absolute Irradiance Measurement (via File/New… or Icon 𝐈 ) 

5. Wizard window opens -> Select Existing Acquisition (Aktive Erfassung) 

6. Select Source (only one spectrometer is selectable) 

7. Get Irradiance Calibration from File 

8. Browse HR+C1888_090811_OOIIrrad.cal file (should be already selected!) 

9. Select Fiber Diameter (fix: 3900 microns! of cosine corrector) 

10. Switch-off the light and measure dark spectrum by click on the dark lamp button 

11. Finish -> an active Absolute Intensity Graph (B) appears 

12. Click inside Graph (B) window to highlight them in the Data source window 

13. Select Processing -> processing mode -> Minus Dark Spectrum 

14. A new Graph (B) appears with a new y-axis (Intensity in counts) 

15. Select File -> Save -> Save spectrum -> Save window appears 

16. Highlight Data source HR+C1888, Dark spectrum subtracted! 

17. Select Save every scan and Stop after number of scans: e. g. 350 

18. Data options -> select Tab separated with (or without) headlines 

19. Save within your folder (browse) -> give a name -> number of character: e. g. 1 

20. NOTICE: Push the 'Accept' button not until starting your measurement, means light your 

flare!! If you do so the measurement starts from that time on! 

21. Switch-off the light and ignite sparkler 

22. When the sparkler ignites the flare push the 'Accept' button 

23. Wait till all data is saved 

24. Run x,y-files through MATLAB codes (CD) for intensity values and plots 

 



APPENDIX III 

 
 

   168  
 

Matlab code for Intensity and 3D plots 

%Eingaben-------------------------------------------------------------
---- 
  
prompt = {'Integration time','Datapoints','Headerlines',}; %data 
window opens 
dlg_title = 'Konstanten'; %titel 
num_lines = 1;   
def = {'0.1','2030','17'}; %fixed values (integration time, data 
points, headlines) 
  
answer = inputdlg(prompt,dlg_title,num_lines,def); %output  
int_zeit = str2num(answer{1}); %integration time 
datapoints=str2num(answer{2}); %distance to detector 
headerlines=str2num(answer{3}); %headerlines (file format ocean optics 
txt file) 
  
%push buttons    
uicontrol('style','pushbutton','string','Open Files',... 
               'units','normalized','position',[.0 .9 .2 .1],... 
               'callback','folder = uigetdir()') 
            
uicontrol('style','pushbutton','string','Plot',... 
               'units','normalized','position',[.2 .9 .2 .1],... 
               'callback','uiresume(gcbf)')    
            
                
uiwait;  
cd(folder); 
dirListing = dir(fullfile(cd, '*.txt')); % opens data 
numfiles = size(dirListing,1); % number of data 
  
% Input-Data manipulation--------------------------------------------- 
  
for x = 1:numfiles %For-loop changes ',' by '.' 
Filex = dirListing(x).name; 
 Name{x}=textscan(Filex,'%s%s','delimiter','.'); 
    Filex    = memmapfile(Filex,'Writable',true); 
    comma   = uint8(','); 
    point   = uint8('.'); 
    Filex.Data(( Filex.Data==comma)) = point; 
    %read inkrementierungs number of files 
    n(x)=sscanf(dirListing(x).name, '%*c%u.txt');  
end  
  
%new sort of files (ASCII(standard)--> numeric  
[~, index] = sort(n); %position of the file 
File = dirListing(index);%new sort of the files 
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%reading files and build matrix 
for x = 1:numfiles 
    [wave,int]= textread(File(x).name,'%f 
%f',datapoints,'headerlines',... 
    headerlines);  
    [max_value,indexnumber]=max(int); %Max-Intensity of graph 
    intzeit(x)=int(indexnumber); %time function 
    Matrix(:,x)=int; %matrix 
end  
  
%PLOTS----------------------------------------------------------------
---- 
%3D Plot 
t=linspace(0,(length(dirListing))*int_zeit,(length(dirListing))); 
Z=transpose(Matrix); 
[X,Y]=meshgrid(wave,t); 
  
subplot('position',[ 0.15 0.6 0.8 0.2]); 
mesh(X,Y,Z); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
xlabel('Wavelength [nm]'); 
ylabel('Time [s]'); 
zlabel('Intensity [Counts]'); 
title('Intensity and Wavelength as a Function of Time', 
'FontWeight',... 
      'bold', 'fontsize',11) 
  
 
%max intesity plot (timline) 
 v=linspace(0,(length(dirListing))*int_zeit,(length(dirListing))); 
subplot('position',[0.15 0.2 0.3 0.2]); 
plot(v,intzeit); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
title('MaxInt (timeline)','FontWeight','bold', 'fontsize',11); 
xlabel('Time [s]');  
ylabel('Intensity [Counts]'); 
  
%max intensity plot 
  
%Processing for max spectra 
[max_value2,indexnumber2]=max(intzeit); 
Filemax = File(indexnumber2).name; 
[wave,MaxVektor]= textread(Filemax,'%f 
%f',datapoints,'headerlines',... 
    headerlines);  
  
%Plot  
subplot('position',[0.65 0.2 0.3 0.2]); 
plot(wave,MaxVektor); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
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title('Max Intensity Graph','FontWeight','bold','fontsize',11); 
xlabel('Wavelength [nm]');  
ylabel('Intensity [Counts]');  
  
uicontrol('Style','text',... 
        'Position',[350 400 50 20],... 
        'String','Burntime') 
  
uicontrol('style','edit','string','',... 
               'units','normalized','position',[.6 .9 .2 .05],... 
               'callback','btime=get(gcbo,''String'')')            
uicontrol('style','pushbutton','string','Update',... 
               'units','normalized','position',[.4 .9 .2 .1],... 
               'callback','uiresume(gcbf)')      
  
uiwait; 
X=0; 
Y=0; 
en=str2double(btime)/int_zeit; 
Matrixbt=Matrix(1:datapoints,1:en); 
  
%3D Plot update 
t=linspace(0,str2double(btime),str2double(btime)/int_zeit); 
Z=transpose(Matrixbt); 
[X,Y]=meshgrid(wave,t); 
  
subplot('position',[ 0.15 0.6 0.8 0.2]); 
mesh(X,Y,Z); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
xlabel('Wavelength [nm]'); 
ylabel('Time [s]'); 
zlabel('Intensity [Counts]'); 
title('Intensity and Wavelength as a Function of Time', 
'FontWeight',... 
      'bold','fontsize',11) 
  



APPENDIX III 

 
 

   171  
 

Matlab code for Radiometric Calculations 

%Eingaben-------------------------------------------------------------
----- 
  
prompt = {'Integration time','Datapoints','Headerlines',... 
         'Detector distance','Burntime'};%prompt window 
dlg_title = 'Konstanten'; %titel 
num_lines = 1;  
def = {'0.1','2030','17','1','35'}; %fixed values 
  
answer = inputdlg(prompt,dlg_title,num_lines,def); %back to values 
integrationtime = str2num(answer{1}); %integration time 
datapoints=str2num(answer{2});  %datapoints 
headerlines=str2num(answer{3}); %headlines 
distance=str2num(answer{4}); %distance to detector 
btime=str2num(answer{5});   %burn-time 
  
%reading calibration file from ocean optics spectrometer!!------------
------------------------------------ 
[wave2,calx]= textread('calfilex.txt','%f 
%f',datapoints,'headerlines',0); 
  
%push buttons---------------------------------------------------------
--- 
uicontrol('style','pushbutton','string','Open Files',... 
               'units','normalized','position',[.0 .9 .2 .1],... 
               'callback','folder = uigetdir()') 
uicontrol('style','pushbutton','string','Plot',... 
               'units','normalized','position',[.2 .9 .2 .1],... 
               'callback','uiresume(gcbf)')    
uiwait;  
cd(folder); 
dirListing = dir('*.txt');% Files  
  
%definitions 
%creates one empty column with 2047 zeros 
Vektor=zeros(datapoints,1);  
  
%open and read files------------------------------------------------ 
  
for x = 1:length(dirListing) 
File = dirListing(x).name; 
     
    %change ',' by '.' 
    Name=textscan(File,'%s%s','delimiter','.'); 
    File    = memmapfile(File,'Writable',true); 
    comma   = uint8(','); 
    point   = uint8('.'); 
    File.Data(( File.Data==comma)) = point; 
    %read data 
    Files = [dirListing(x).name];   
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    [wave,int]= textread(Files,'%f %f',datapoints,'headerlines'... 
    ,headerlines);  
    [max_value,indexnumber]=max(int); 
    intzeit(x)=int(indexnumber); 
         
    %vector for mean spectra 
    Vektor=Vektor+int; 
end  
  
%calculate mean spectra------------------------------------- 
 
MeanVektor=Vektor./(btime./integrationtime); 
  
%open and read data for max intensity spectra-------------------- 
[max_value2,indexnumber2]=max(intzeit); 
Filemax = dirListing(indexnumber2).name; 
[wave,MaxVektor]= textread(Filemax,'%f %f',datapoints,... 
'headerlines',headerlines);  
  
%convert oceanoptic calibration data from [ujoule/s/nm] -> 
[watt/cm^2/nm] 
%[Watt/m^2/nm] = [ujoule/s/nm]/(detector area*integrationtime)*0.01 
%detector area = 3,1415926.*(0.195cm)^2 (cosine corrector) 
cal=calx.*0.01.*integrationtime; 
  
 
%calibration of files 
MeanVektorx=MeanVektor.*cal; 
MaxVektorx=MaxVektor.*cal; 
  
 
%calculates baseline ([200nm-400nm])------------------------------- 
 if (sum(MaxVektor(27:454))/427)<0 
    mx=-(sum(MaxVektor(27:454))/427); 
else 
    mx=(sum(MaxVektor(27:454))/427); 
end 
    baseline_max = mx.*cal; 
  
    
if (sum(MeanVektor(27:454))/427)<0 
    mn=-(sum(MeanVektor(27:454))/427); 
else 
    mn=(sum(MeanVektor(27:454))/427); 
end 
    baseline_mean = mn.*cal; 
 
%Baseline-noise-filter (signal to noise for the Si-detector too high 
at both ends, from 400nm --> z=454 
for z=454:datapoints 
    h=round(baseline_max(z)*1);  
 if (z+h)<datapoints & (h >0) 
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    MeanVektorxx(z)=(sum(MeanVektorx(z:z+h))+sum(MeanVektorx(z:z-
h)))/(2*h); 
    MaxVektorxx(z)=(sum(MaxVektorx(z:z+h))+sum(MaxVektorx(z:z-
h)))/(2*h); 
     
 elseif h==0 
    MeanVektorxx(z)=MeanVektorx(z); 
    MaxVektorxx(z)=MaxVektorx(z); 
     
 end 
end     
  
%Plot graph with max intensity--------------------------------- 
 
subplot('position',[ 0.15 0.5 0.8 0.3]); 
plot(wave,MaxVektorx); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
title('Max Intensity Graph','FontWeight','bold', 'fontsize',11); 
xlabel('Wavelength [nm]');  
ylabel('W/m^2/nm');  
  
%Integration procedure------------------------------------------------
----- 
  
%integration --> [W/m^2/nm]*nm -> [W/m^2] 
%limits for all integrals 
 
minlo = 600;    %limit for ARDEC 
maxlo = 1000; 
minhi = 695;    %limit for ARDEC 
maxhi = 1050; 
vislo = 400;    %limit for concealment index 
vishi = 700; 
NIRlo = 700;    %limit for concealment index 
NIRhi = 1000; 
  
%new names for columns (wavelength and intensity) 
%'max' means spectra for the maximum intensity at a defined time 
%'mean' means the mean spectra over the complete burning time e.g. 
30sec. 
 
lambda=wave; 
I=MaxVektorxx'; 
Im=MeanVektorxx'; 
  
 
%define x-values 
indlo = find(lambda > minlo & lambda < maxlo); 
indhi = find(lambda > minhi & lambda < maxhi); 
indvis = find(lambda > vislo & lambda < vishi); 
indNIR = find(lambda > NIRlo & lambda < NIRhi); 
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%define y-values of the spectra (max) 
I1 = I(indlo); 
I2 = I(indhi); 
I3 = I(indvis); 
I4 = I(indNIR); 
  
%define y-values of the spectra (mean) 
Im1 = Im(indlo); 
Im2 = Im(indhi); 
Im3 = Im(indvis); 
Im4 = Im(indNIR); 
  
 
%integration of the defined limits of the spectra (max) 
int1=sum(I1(1:end-1).* diff(lambda(indlo))); 
int2=sum(I2(1:end-1).* diff(lambda(indhi))); 
int3=sum(I3(1:end-1).* diff(lambda(indvis))); 
int4=sum(I4(1:end-1).* diff(lambda(indNIR))); 
  
 
%integration of the defined limits of the spectra (mean) 
intm1=sum(Im1(1:end-1).* diff(lambda(indlo))); 
intm2=sum(Im2(1:end-1).* diff(lambda(indhi))); 
intm3=sum(Im3(1:end-1).* diff(lambda(indvis))); 
intm4=sum(Im4(1:end-1).* diff(lambda(indNIR))); 
  
 
%Convert [W/m^2] -> [W/sr] 
I1max=int1*distance^2; Datb(2,2)=I1max;     
I2max=int2*distance^2; Datb(3,2)=I2max; 
Ivismax=int3*distance^2; Datb(4,2)=Ivismax; 
Inirmax=int4*distance^2; Datb(5,2)=Inirmax; 
  
 
%intensity for mean 
I1mean=intm1*distance^2;Datb(2,1)=I1mean;     
I2mean=intm2*distance^2;Datb(3,1)=I2mean;   
Ivismean=intm3*distance^2;Datb(4,1)=Ivismean;   
Inirmean=intm4*distance^2;Datb(5,1)=Inirmean;   
  
 
%converting W/sr in candela for Ivismax 
Cdmax=Ivismax.*683;Datb(6,2)=Cdmax; 
Cdmean=Ivismean.*683;Datb(6,1)=Cdmean; 
 
 
%concealment index for mean 
mXie=Inirmean./Ivismean;Datb(1,1)=mXie;  
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%concealment index max 
Xie=Inirmax./Ivismax; Datb(1,2)=Xie;  
cnames = {'Meanspectra','Maxspectra'}; 
rnames = {'Xie','I1','I2','I_VIS','I_NIR','Cd'}; 
t = uitable('Data',Datb,'ColumnName',cnames,...  
            'RowName',rnames,'Position',[70 20 215 125]); 
  
 
 
 
%UPDATE------------------------------------------------------------ 
 
hh=1; 
hs=0; 
  
while hh==1         
         
uicontrol('style','edit','string','',... 
               'units','normalized','position',[.8 .9 .2 .05],... 
               'callback','faktor=get(gcbo,''String'')') 
            
uicontrol('Style','text',... 
        'Position',[450 400 50 20],... 
        'String','Faktor') 
b=uicontrol('style','pushbutton','string','Stop',... 
               'units','normalized','position',[.6 .9 .2 
.1],'callback',... 
               'hs=get(gcbo,''value'')'); 
uicontrol('style','pushbutton','string','Update',... 
               'units','normalized','position',[.4 .9 .2 .1],... 
               'callback','uiresume(gcbf)') 
uiwait;    
if hs==1 
break  
end  
  
for z=454:datapoints 
h=round(baseline_max(z)*str2double(faktor));  
 if (z+h)<datapoints & (h >0) 
MeanVektorxx_neu(z)=(sum(MeanVektorx(z:z+h))+sum(MeanVektorx(z:z-
h)))/(2*h); 
MaxVektorxx_neu(z)=(sum(MaxVektorx(z:z+h))+sum(MaxVektorx(z:z-
h)))/(2*h); 
 elseif h==0 
MeanVektorxx_neu(z)=MeanVektorx(z); 
MaxVektorxx_neu(z)=MaxVektorx(z); 
 end 
end 
  
subplot('position',[ 0.15 0.5 0.8 0.3]); 
plot(wave,MaxVektorxx,wave,MaxVektorxx_neu, 'r'); 
axis tight; 
set(gca,'fontsize',10,'FontName','verdana'); 
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title('Max Intensity Graph','FontWeight','bold', 'fontsize',11); 
xlabel('Wavelength [nm]');  
ylabel('W/m^2/nm');  
       
I=MaxVektorxx_neu'; 
Im=MeanVektorxx_neu'; 
lambda=wave; 
  
 
%define x-values 
indlo = find(lambda > minlo & lambda < maxlo); 
indhi = find(lambda > minhi & lambda < maxhi); 
indvis = find(lambda > vislo & lambda < vishi); 
indNIR = find(lambda > NIRlo & lambda < NIRhi); 
  
%define y-values of the spectra (max) 
I1 = I(indlo); 
I2 = I(indhi); 
I3 = I(indvis); 
I4 = I(indNIR); 
  
%define y-values of the spectra (mean) 
Im1 = Im(indlo); 
Im2 = Im(indhi); 
Im3 = Im(indvis); 
Im4 = Im(indNIR); 
  
%integration of the defined limits of the spectra (max) 
int1=sum(I1(1:end-1).* diff(lambda(indlo))); 
int2=sum(I2(1:end-1).* diff(lambda(indhi))); 
int3=sum(I3(1:end-1).* diff(lambda(indvis))); 
int4=sum(I4(1:end-1).* diff(lambda(indNIR))); 
  
%integration of the defined limits of the spectra (mean) 
intm1=sum(Im1(1:end-1).* diff(lambda(indlo))); 
intm2=sum(Im2(1:end-1).* diff(lambda(indhi))); 
intm3=sum(Im3(1:end-1).* diff(lambda(indvis))); 
intm4=sum(Im4(1:end-1).* diff(lambda(indNIR))); 
  
%Convert [W/m^2] -> [W/sr] 
I1max=int1*distance^2; Dat(2,2)=I1max;     
I2max=int2*distance^2; Dat(3,2)=I2max; 
Ivismax=int3*distance^2; Dat(4,2)=Ivismax; 
Inirmax=int4*distance^2; Dat(5,2)=Inirmax; 
 
%concealment index max 
Xie=Inirmax./Ivismax; Dat(1,2)=Xie; 
 
%intensity for mean 
I1mean=intm1*distance;Dat(2,1)=I1mean;     
I2mean=intm2*distance;Dat(3,1)=I2mean;   
Ivismean=intm3*distance;Dat(4,1)=Ivismean;   
Inirmean=intm4*distance;Dat(5,1)=Inirmean;   
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%concealment index for mean 
mXie=Inirmean./Ivismean;Dat(1,1)=mXie;  
  
%converting W/sr in candela for Ivismax 
Cdmax=Ivismax.*683;Dat(6,2)=Cdmax; 
Cdmean=Ivismean.*683;Dat(6,1)=Cdmean; 
  
cnames = {'Meanspectra','Maxspectra'}; 
rnames = {'Xie','I1','I2','I_VIS','I_NIR','Cd'}; 
t = uitable('Data',Dat,'ColumnName',cnames,...  
        'RowName',rnames,'Position',[285 20 215 125]); 
end 
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X-ray Data 

Table 50 X-ray data for Cs DNT and TNBI.  

 CsDNT • 0.75 H2O Cs2TNBI 

 fx056 hx311 

Formula  C2 H1.5CsN5O4.75 C6Cs2N8O8 

Molecular weight 304 578 

T / [K] 293 293 

Crystal size [mm] 0.3 x 0.1 x 0.1 0.3 x 0.15 x 0.1 

Habitus orange plates red plates 

Crystal system orthorombic Monoclinic 

Space group P bca C 2/m 

a [Å] 9.6332(5) 10.0357(4) 

b [Å] 11.7893(5) 12.7869(4) 

c [Å] 13.6302(5) 5.4750(2) 

α [°] 90 90 

β [°] 90 109.233(4) 

γ [°] 90 90 

V [Å3] 1547.8(1) 663.37(4) 

Z 8 2 

ρcalc [g cm-1] 2.613 2.893 

μ [mm-1] 4.784 5.561 

F(000) 1132 532 

theta max [°] 26.00 25.91 

Index ranges −6≤ h ≤ 11 −12≤ h ≤ 12 

 −14 ≤ k ≤ 13 −15 ≤ k ≤ 15 

 −16 ≤ l ≤ 10 −6 ≤ l ≤ 6 

reflns. collected 3704 3328 

reflns. obsd. 1518 676 

reflns. unique 1086 659 

R1, wR2 (2σ data) 0.0345 / 0.0407 0.0140 / 0.0340 

R1, wR2 (all data) 0.0215 / 0.0392 0.0135 / 0.0337 

S on F2 0.836 1.116 

Emax/Emin [e Å-3] 0.663 / −0.680 1.402 / -0.311 
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