
 

Dissertation 

 

 

 

Expression of higher plant photosynthetic proteins in 

the cyanobacterium Synechocystis sp. PCC 6803 

 

 

 

 

 

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-

Universität München 

 
 

vorgelegt von 

 

Stefania Viola 

 

23.01.14 



 

 

Expression of higher plant photosynthetic proteins in 

the cyanobacterium Synechocystis sp. PCC 6803 

 

 

 
Dissertation 

zur Erlangung des Doktorgrades der Fakultät für Biologie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

Stefania Viola 

 

 

 

 

 

 

 

 

Erstgutachter: Prof. Dr. Dario Leister 

Zweitgutachter: Prof. Dr. Jörg Nickelsen 

 

Tag der Einreichung: 18.12.2013  

Tag der mündlichen Prüfung: 23.01.2014  



Expression of higher plant photosynthetic proteins in the cyanobacterium Synechocystis sp. PCC 6803 

 

i 

 

Summary 

 

In plants, oxygenic photosynthesis occurs in chloroplasts, specialized organelles that 

originated from the endosymbiosis of an ancestral cyanobacterium. During evolution, the 

photosynthetic apparatus of higher plants underwent several changes in order to adapt to the 

new environmental light and oxygen conditions. The biogenesis and function of the 

photosynthetic complexes require many auxiliary and regulatory proteins that evolved in land 

plants, together with novel physiological mechanisms, in order to optimize the photosynthetic 

efficiency. The identification of these newly-evolved photosynthetic proteins is hampered by 

technical and biological limits of the plant model organisms. Here, we show the establishment 

of new tools for the study of higher plant photosynthesis that rely on the expression of 

Arabidopsis proteins in the unicellular cyanobacterium Synechocystis sp. PCC 6803. The use 

of a cyanobacterial platform benefits from the possibility to perform targeted gene 

manipulation, homologous complementation experiments and its short generation time. In this 

study, the PsaA and PsaB core subunits of Synechocystis photosystem I (PSI) have been 

replaced with the homologs from Arabidopsis and were shown to partially complement their 

function, although no functional PSI could form.  The CURT1A protein from Arabidopsis, 

responsible for the curvature of the thylakoid grana margins, was expressed in Synechocystis 

in addition to or in replacement of the bacterial synCURT1 homolog. CURT1A functionally 

interacted with and partially complemented synCURT1, showing membrane-bending 

properties that increased when removing the bulky cyanobacterial phycobilisomes. In order to 

easily perform the elaborate gene manipulations required to substitute the Synechocystis 

photosynthetic apparatus, an alternative single-vector based marker-less gene replacement 

strategy was developed. The strategy was applied to introduce the Arabidopsis PGRL1 and 

PGR5 proteins in Synechocystis. These proteins are responsible for the antimycin A-sensitive 

variant of cyclic electron flow in plants. The expressed proteins caused changes in the PSI 

oxidation-reduction kinetics, interacting with the electron transport chain in a manner that 

needs to be further elucidated. The strategy also proved to be useful to sequentially disrupt 

and replace the Synechocystis psaA gene with the Arabidopsis evolutionary descendant.
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Zusammenfassung 

 

Die oxygene Photosynthese der Pflanzen findet in spezialisierten Organellen, den Chloroplasten, 

statt, welche durch ein endosymbiotisches Ereignis entstanden sind. Als Folge der Anpassung an die 

neue zelluläre Umgebung erfuhr der Chloroplast cyanobakteriellen Ursprungs im Laufe der 

Evolution eine deutliche Veränderung. Diese ging mit dem Erwerb neuartiger Proteine und 

physiologischen Mechanismen einher, die die Biogenese und Funktion der Photosynthesekomplexe 

an die eukaryotische Situation angepasst haben. Die Identifizierung dieser neu entstandenen, 

photosynthetischen Proteine wird durch technische und biologische Limitierungen der pflanzlichen 

Modellorganismen erschwert. Im Rahmen dieser Arbeit wurden daher neue Methoden für die 

Untersuchung der Photosynthese höherer Pflanzen entwickelt, die den Transfer und die Expression 

von Proteinen aus Arabidopsis in dem Cyanobakterium Synechocystis sp. PCC 6803 erlauben. Die 

Vorteile dieses Einzellers liegen vorwiegend in der relativ kurzen Generationszeit sowie in der 

Möglichkeit zur gezielten Genmanipulation und homologen Komplementation. In dieser Arbeit 

wurden die Untereinheiten des Photosystems I (PSI) aus Synechocystis, PsaA und PsaB, durch die 

homologen Proteine aus Arabidopsis ersetzt. Hierbei wurde gezeigt, dass sich die Funktion dieser 

Proteine durch deren Homologe aus Arabidposis teilweise ersetzen lässt, auch wenn kein 

funktionstüchtiges PSI assembliert werden konnte. Desweitern wurde das CURT1A-Protein aus 

Arabidopsis, welches für die Biegung der Thylakoidmembran in den Randbereichen der 

Granastapel zuständig ist, in Synechocystis zusätzlich oder als Ersatz für dessen homologes 

synCURT1-Protein exprimiert. CURT1A war in der Lage, mit synCURT1 zu interagieren und 

dessen membranbiegende Funktion teilweise zu ersetzen. Die membranbiegende Fähigkeit ließ sich 

zudem durch das Entfernen der voluminösen Phycobilisomen deutlich verstärken. Ein weiteres Ziel 

dieser Arbeit bestand in der Etablierung einer alternativen Genaustauschstrategie, welche die 

aufwändige, mehrstufige Genmanipulationen von Synechocystis vereinfacht und auf dem Transfer 

eines Marker-freien Einzelvektors beruht. Unter Verwundung dieser Strategie konnten die Proteine 

PGRL1 und PGR5 von Arabidopsis, die für den Antimycin A-empfindlichen zyklischen 

Elektronentransport verantwortlich sind, in Synechocystis exprimiert werden. Die Expression dieser 

Proteine führte zu Veränderungen in der PSI-Redox-Kinetik, wobei der genaue 

Wirkungsmechanismus unbekannt ist und weitere Analysen erforderlich sind. Diese Strategie 

wurde zudem erfolgreich angewandt, um das endogene psaA-Gen in Synechocystis zu stören und 

anschließend durch dessen evolutionären Nachkommen aus Arabidopsis zu ersetzen. 
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1. INTRODUCTION 

 

1.1. Endosymbiotic origin of plant chloroplasts 

Oxygenic photosynthesis evolved about 2.7 billion years ago (Holland, 2006), when 

cyanobacteria started to use the energy of sunlight to extract electrons from water and channel 

them through two photosystems in series (photosystem II and photosystem I) to generate 

high-energy chemical bonds and reducing power as final products. In photosynthetic 

eukaryotes (algae and plants), this process takes place inside specialized organelles called 

chloroplasts that are now widely believed to derive from a endosymbiotic relationship 

between an ancestral cyanobacterium and a heterotrophic eukaryote. Like mitochondria, these 

so-called “primary” plastids are probably monophyletic and derive from a single 

endosymbiotic event (Howe et al., 2003; Douglas and Raven, 2003). Although chlorophyll b 

and c, photosynthetic pigments present in chloroplasts, are found only in certain 

cyanobacteria called prochlorophytes, this appears not to be an unequivocal proof for this 

specific clade to be the plastidial ancestor. Indeed, prochlorophytes are no monophyletic 

group by themselves (Lewin, 2002) and this suggests that chlorophyll b or c emerged 

independently several times during evolution. In contrast, it was recently shown that 

chloroplasts share the highest genetic similarity with the cyanobacterium Nostoc punctiforme 

(Meeks et al., 2001). 

From the comparison of different cyanobacterial and plant chloroplast genomes, it can be 

concluded that the latter are strongly reduced in size and encode less genes than their 

evolutionary ancestors. Indeed, the genome length of Nostoc punctiforme approaches 9 Mbp 

and contains up to 7500 ORFs (Meeks et al., 2001), while the chloroplast genome from 

Arabidopsis thaliana, a well-characterized angiosperm, is 154 kb long and contains 87 

putative protein-coding genes, 4 rRNA genes and 37 tRNA genes (Sato et al., 1999). In 

addition to the products of the few annotated plastidial genes, the Arabidopsis chloroplast 

proteome comprises about 2-3000 proteins, most of which are encoded by nuclear genes. On 

the other hand, up to 4500 (18 %) of Arabidopsis nuclear genes have direct homologs in 

cyanobacteria (Martin et al., 2002). Indeed, after the endosymbiotic event that originated 

chloroplasts, many genes became transferred from the plastidial to the nuclear genome of the 

host cell (Kleine et al., 2009). In this scenario, while the genetic autonomy of the organelles 

was reduced, new mechanisms required for the functionality of the transferred genes arose in 

the host cell. The newly evolved nuclear genes needed to be coupled with adequate DNA 
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regulatory elements (promoters, terminators) in order to be transcribed by the eukaryotic 

transcription machinery. Once translated in the cytosol, the proteins needed to be re-targeted 

to the organelle of origin in order to complete their function (Cavalier-Smith and Lee, 1985; 

Martin, 2003). Some of these genes acquired targeting elements that enabled them to be 

imported into the chloroplast while some others were not re-targeted to plastids anymore and 

gained new functions in other organelles or pathways of the host cell. Moreover, copies of the 

same gene deriving from duplication events diverged in their function, occasionally 

generating new metabolic pathways via their interaction with host proteins (Leister, 2003; 

Timmis et al., 2004). The integration process of the endosymbiont also included the targeting 

to the new organelle of nuclear genes that were not of cyanobacterial origin.  Because of the 

gene transfer, the chloroplast protein complexes and supercomplexes are mosaics of plastid- 

and nuclear-encoded proteins, therefore making it necessary to efficiently coordinate the gene 

expression in both genetic compartments to guarantee a correct plastid development and 

functionality (reviewed in Pesaresi et al., 2007; Woodson and Chory, 2008). Indeed, the 

assembly of the chimeric protein complexes, their cofactors and the stoichiometric adaption of 

the photosynthetic machinery to the changing environmental conditions require an intricate 

bidirectional communication between the organelle and the nucleus. Therefore, integration of 

the photosynthetic endosymbiont in the host cell led to the rise of new plant-specific 

regulatory, signalling and transport functions, thus introducing new levels of complexity in 

eukaryotic photosynthesis.  

Cyanobacteria and plant chloroplasts, although basically performing the same photosynthetic 

reaction, find themselves facing different environmental conditions and the various biological 

challenges that derive from them. Plants are sessile organisms and cannot avert drastic or 

unfavourable changes in the surrounding environment. Therefore, they needed to evolve new 

strategies to modulate the photosynthetic process in order to maintain its efficiency and avoid 

damages. Modern plant chloroplasts differ from modern cyanobacteria in many aspects and 

all of them can be understood in the light of evolution. 

 

1.2. Higher plant photosynthesis in the light of evolution 

Oxygenic photosynthesis is the process in which solar energy is used to synthesize carbon 

compounds from water and carbon dioxide. During the photosynthetic light reactions, the 

light energy is used to photolyse H2O and to generate reducing power (NADPH) and high-

energy chemical bonds (ATP).  
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In cyanobacteria and chloroplasts, light energy is converted into chemical energy by the 

concerted action of different protein complexes, all of which are embedded in the thylakoid 

membranes (Hill and Bendall, 1960). As described schematically in Figure 1.1, light energy 

drives the electron transfer from photosystem II (PSII) via the cytochrome b6f complex (Cyt 

b6f) and photosystem I (PSI) to the final electron acceptor NADP
+
. Coupled with the linear 

electron transport, protons (H
+
) are transported into the thylakoid lumen by the Q-cycle at the 

Cyt b6f complex and a proton gradient is thus created across the photosynthetic membrane. 

The protons accumulate in the lumen and create an electrochemical potential, which is 

balanced by the diffusion of the protons through the ATP synthase (ATPase). The proton flux 

through the ATPase is the motive force required for synthesis of ATP, a process that occurs in 

the chloroplast stroma or in the cyanobacterial cytosol. ATP and NADPH are subsequently 

used during the dark reactions for the biosynthesis of carbohydrates from CO2 and H2O.  

 

 

Figure 1.1 Scheme of linear electron transport (LEF). Photosystem II (PSII); Pheophytin a (Pheo); 

oxidised/reduced form of plastoquinone (PQ/PQH2); cytochrome b6f complex (Cyt b6f); plastocyanin (PC); 
photosystem I (PSI); ferredoxin (Fd); ferredoxin-NADPH oxidoreductase (FNR); ATP synthase (ATPase). 

 

The principal photoreceptor in photosynthesis is chlorophyll, a cyclic tetrapyrrole able to 

harvest light and convert the energy of the photons into higher excitation states of its electrons 

and to transmit it to neighbouring molecules by excitation transfer. In both cyanobacteria and 

plant chloroplasts, chlorophyll a (Chl a) defines the charge-separation properties of the 

photosystem I and photosystem II reaction centres (RCs), each possessing a so-called “special 

pair” of chlorophylls (Oie et al., 1982). The chlorophylls of the PSII reaction centre (P680) 
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have an excitation wavelength peak at 680 nm and transfer electrons from water to the 

primary acceptor pheophytin (Pheo) (Debus, 1992). From PSII, the electrons are transferred 

by the plastoquinones, lipid-soluble electron carriers, to the Cyt b6f complex. This, in turn, 

transfers them to the lumenal soluble carrier plastocyanin, replaced by the cytochrome c6 in 

cyanobacteria under copper deficiency conditions (reviewed in Kerfeld and Krogmann, 1998). 

The photosystem I (PSI) complex catalyzes the oxidation of plastocyanin and the reduction of 

ferredoxin or flavodoxin, a small iron-sulphur protein located in the stroma of chloroplasts or 

in the cytosol in cyanobacteria. In PSI the primary photochemistry is initiated by a Chl a 

dimer, P700, with an excitation peak at 700 nm and the charge separation of P700 transfers 

electrons to a chlorophyll a monomer (Ao). In addition 4Fe-4S centres serve as electron 

carriers in PSI (van der Est et al., 1994).  

Although they perform the same fundamental process, the photosynthetic machineries of 

cyanobacteria and higher plant evidently display many differences in both their structure and 

their physiology, as shown in Figure 1.2 (modified from Allen et al., 2011). To increase the 

absorption cross-section of the chlorophylls located in the photosynthetic RCs, light-

harvesting antenna systems are normally associated with them. In contrast to PSII, many of 

the antenna chlorophyll molecules in PSI are bound to the proteins of the reaction centre and, 

therefore, the antennas serving the two photosystems are also different (Rakhimberdieva et 

al., 2001). The antenna systems of cyanobacteria and land plants present an extraordinary 

variety of protein structures and pigments, suggesting that they diverged during evolution to 

adapt to different light environments. In cyanobacteria, the light-harvesting antennas are 

constituted by the phycobilisomes (PBSs), protein-pigment complexes peripherally associated 

with the thylakoid membrane (external antenna) (Liu et al., 2013). Phycobilisomes are 

constituted by a core of allophycocyanin (APC), which is connected to the membrane through 

linker polypeptides and is surrounded by six rods of chromophorylated phycocyanin (PC) and 

phycoerytrin (PE) proteins (reviewed in Adir, 2005). All chlorophylls in cyanobacteria are 

exclusively localized in the core antennas of PSI and PSII, whereas the chromophores 

associated with the PSBs are the bilins, a class of open-chained tetrapyrrols that are 

responsible for the blue-green colour of cyanobacteria. Pigments of lateral rods transfer the 

excitation energy via APC to the terminal acceptor of energy (also APC) which, in turn, relays 

the excitation to antenna chlorophylls of PSII and PSI localized within the membrane 

(Mullineaux, 2008).  

In higher plants, the Light Harvesting Complexes (LHCs) are associated with Chl a and Chl b 

and therefore belong to the CAB (chlorophyll a/b-binding) protein class. Although Chl a is 
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present in both reaction centres and LHCs, Chl b is restricted to LHCs (Dolganov et al., 

1995). The plant LHC proteins are composed of three transmembrane helices and are 

embedded into the thylakoid membrane, where they are associated with the RCs.  

 

   

Figure 1.2 Major protein and protein complexes of the photosynthetic apparatus of Arabidopsis thaliana and the 

cyanobacterium Thermosynechococcus elongatus. Protein subunits encoded by the plastidial or cyanobacterial 

genome are coloured in green, the plant subunits encoded by nuclear genes are coloured in yellow (Adapted 

from Allen et al., 2011). 

 

Whereas trimeric in cyanobacteria, the PSI of higher plants is monomeric (Jensen et al., 2007) 

and binds the additional membrane peripheral antenna called LHCI. This antenna consists of 

four Lhca polypeptides (Lhca1–4) that associate in a crescent supercomplex with a protein 

mass of around 25 kDa, linked to the PSI core complex at positions that in cyanobacteria are 

excluded from the trimer interface (Amunts and Nelson, 2009). 

The peripheral antenna proteins associated with plant PSII can be distinguished in two types. 

The most abundant complex is the so-called „major“LHCII antenna complex. This complex is 

composed of various combinations of the Lhcb1, Lhcb2 and Lhcb3 protein subunits that occur 

in a trimeric association state (Butler et al., 1988). In addition, there are three „minor“antenna 
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proteins, called Lhcb4 (CP29), Lhcb5 (CP26) and Lhcb6 (CP24) that normally occur in 

monomeric aggregation states. The LHC antennas arose during the evolutionary divergence 

from the cyanobacterial ancestor to adapt to the highly variable light conditions plants had to 

face with terrestrial life. Indeed, the redistribution of the mobile LHCII pool between PSII and 

PSI, called state transition, enables chloroplasts to modulate the excitation pressure on the two 

photosystems, thus maintaining the optimal photochemical efficiency (Kargul et al., 2005). 

The LHCII redistribution process involves phosphorylation/dephosphorylation events 

(Depege et al., 2003) and a structural reorganization of the photosynthetic complexes and of 

the thylakoids themselves. 

Although more conserved than the antenna systems, the photosynthetic reaction centres differ 

between cyanobacteria and chloroplasts in terms of their spatial distribution, stoichiometry, 

supermolecular organization and subunit composition. Adjustments in the relative amounts of 

the two photosystems represent another mechanism through which cyanobacteria and plants 

redistribute the excitation energy along the electron transport chain (Murakami, 1997; Allen 

and Pfannschmidt, 2000). PSII is the complex responsible for the photolysis of water, the 

hallmark and starting point of oxygenic photosynthesis and its main physiological form in 

both plants and cyanobacteria is a dimer (Holzenburg et al., 1993). The plant and bacterial 

PSII complexes have a slightly different subunit composition (Hankamer et al., 2001) but an 

overall similar structure (Büchel and Kühlbrandt, 2005). In both classes of organisms, the 

biogenesis of PSII is a highly regulated process and the subsequent events that lead to the 

assembly of the complex have been investigated in detail, as well as the integration of the 

cofactors (for a review, see Nickelsen and Rengstl, 2013). Additionally, a plethora of trans-

acting PSII assembly factors are known and most of them have been conserved throughout 

evolution, not surprisingly since the PSII subunits and their assembly order are highly 

conserved. Those that are not conserved represent plant-specific factors that might have 

evolved either as substitutes to cyanobacterial counterparts or, especially the repair factors, in 

response to the new conditions of the life on land (Komenda et al., 2012). In the biogenesis of 

PSII and of PSI, a further regulatory level derives from the plant-specific 

compartmentalization inside the cell that requires the post-translational targeting of the 

nuclear-encoded subunits to the chloroplast and the concerted biosynthesis and integration of 

the cofactors, as well as the coordinated expression of the nuclear and the chloroplast genes. 

Whereas the molecular details of PSII structure and physiology have been studied and 

dissected extensively, the biogenesis and assembly of PSI are still poorly understood in higher 
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plants, particularly because of the difficulties in identifying the assembly intermediates and 

because of the lethality caused by PSI depletion.   

 

1.3. Evolution of PSI 

Photosystem I is the plastocyanin-ferredoxin oxidoreductase in the thylakoid membranes of 

cyanobacteria and chloroplasts that catalyses the last step of the photosynthetic electron 

transport. It is one of the most complex membrane protein complexes known in nature and its 

quantum efficiency in the transfer of electrons is close to 1.0 (Nelson and Ben-Shem, 2002). 

PSI has a longer half-life than PSII (Yao et al., 2011) and is less susceptible to photodamage, 

because PSI-catalyzed reactions do not occur at extremely oxidizing redox potentials (Powles, 

1984). Because of these characteristics, PSI is studied by many groups from different 

disciplines, with a focus on energy utilization and the design of photosensors (Carmeli et al., 

2007; Terasaki et al., 2007). Probably for the same reason, it is highly conserved along the 

green lineage, although some key modifications arose in the PSI of land plants to adapt to 

different ecological niches.  

Eukaryotic PSI structurally consists of two membrane complexes: the reaction centre (RC), 

composed of 15 subunits, and the LHCI antenna system, composed of 4 subunits (Amunts et 

al., 2007). The currently known PSI-LHCI supercomplex therefore consists of a total of 19 

protein subunits and approximately 200 cofactors, non-covalently bound to the core complex 

and to the antennas (Jensen et al., 2007). The plant PSI-LHCI supercomplex is much larger 

than the cyanobacterial PSI that lacks the surrounding antenna proteins and is composed of 12 

subunits and 127 associated cofactors (Jordan et al., 2001). The protein components of the PSI 

core complexes from Arabidopsis thaliana, together with their homologs in Synechocystis sp. 

PCC 6803, are listed in Table 1.1. The cyanobacterial PsaM and PsaX subunits are not 

conserved in higher plants in which, in return, the four additional subunits PsaG, PsaH, PsaN 

and PsaO evolved.  

Of the 15 genes encoding the subunits of the higher plant PSI reaction centre, only 4 

(encoding PsaA, PsaB, PsaC and PsaJ) are located in the chloroplast genome, while the other 

11 are scattered throughout the nuclear chromosomes (Table 1.1). The nuclear genes encode 

for proteins translated in the cytoplasm and subsequently imported in the chloroplast (Soll and 

Schleiff, 2004) to be assembled with the cofactors and the plastid-encoded proteins. 

Therefore, additional steps of regulation are needed, with respect to cyanobacteria, for the 

biogenesis of a functional PSI.  
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Table 1.1 List of the photosystem I subunits in Arabidopsis thaliana and their homologs from Synechocystis sp. 

PCC 6803 

 

PSI subunit Arabidopsis gene Synechocystis gene 
Protein 

Identity 
Features 

Core 
    

PsaA AtCg00350   2253 bp slr1834    2256 bp 80 % 
 

PsaB AtCg00340   2205 bp slr1835    2196 bp 80 % 
 

Fd docking 
    

PsaC ArthCp075    246 bp ssl0563    246 bp 90 % 
 

PsaD 
At4g02770    835 bp 

At1g03130    892 bp 
slr0737     426 bp 64 % 

Plants: probably direct 

interaction with FNR in stroma 

PsaE 
At4g28750    1204 bp 

At2g20260    1034 bp 
ssr2831    225 bp 46 % 

 

PC docking 
    

PsaF At1g31330    1214 bp sll0819    498 bp 42 % 

Additional N-term. (positively 

charged aminoacids) domain 

in plants 

PsaN At1g49975    796 bp / 
  

Anchor for LHCI 

binding     

PsaG At1g55670    780 bp / 
  

PSI stability 
    

PsaJ ArthCp042    135 bp sml0008    123 bp 48 % 
 

LHCII interaction 

in state transition     

PsaH 
At3g16140    973 bp 

At1g52230    833 bp 
/ 

 

In plants it prevents 

trimerization 

PsaI ArthCp032    114 bp smr0004    123 bp 45 % 
 

PsaL At4g12800    1349 bp slr1655    474 bp 44 % 
For trimerization in 

cyanobacteria 

PsaO At1g08380   1016 bp / 
  

Interaction with 

LHCI     

PsaK At1g30380    1050 bp 
ssr0390   261 bp    

sll0629    387 bp 
28 % 

 

 

In both organisms, the PSI core is a heterodimer formed by the two large subunits PsaA and 

PsaB that consists of 22 transmembrane helices and harbours most of the cofactors of the 

electron transport chain, together with 80 Chl a molecules forming an internal antenna 

system. The stromal subunit PsaC carries the two terminal 4Fe-4S clusters of the electron 

transport chain and is, like the two core subunits, encoded by the chloroplast genome and 

extremely conserved in plants and cyanobacteria (90 % of protein identity for PsaC, 80 % for 
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PsaA and PsaB). The assembly of the core dimer starts with the co-translational insertion in 

the thylakoid membrane of PsaA and PsaB. This reaction centre (165 kDa) constitutes almost 

half of the molecular mass of the PSI complex (390 kDa) and forms the docking site for the 

subsequent assembly of the peripheral subunits PsaC, PsaD and PsaE. In the stroma, these 

three subunits form the docking site for the final electron acceptor ferredoxin, the reduction of 

which seems to have been optimized in plants with respect to cyanobacteria (Hanley et al., 

1996; Fischer et al., 1998). Moreover, the plant ferredoxin:NDP
+
 oxidoreductase (FNR) 

seems to accept electrons from ferredoxin by directly interacting with PSI, whereas this direct 

interaction has never been detected in cyanobacteria (Vallejos et al., 1984; Andersen et al., 

1992). The site of interaction of the electron donor plastocyanin on the lumenal side of PSI 

was also refined by evolution (Hippler et al., 1996), with the introduction of an extension in 

the lumenal N-terminus of the plant PsaF subunit. PsaF is an integral membrane protein and 

its exposed lumenal region contains the positively charged patch responsible for plastocyanin 

interaction (Hippler et al., 1998). The order and modality with which the other subunits are 

assembled into the plant PSI complex is still unclear (Ozawa et al., 2010), because their small 

sizes make it difficult to resolve assembly intermediates by mass-based separation techniques. 

Identification of auxiliary proteins involved in PSI biogenesis is also problematic and, to date, 

only a limited number of regulatory factors specifically involved in PSI assembly have been 

identified, as reviewed in Schöttler et al. (2011) and Chi et al. (2012). Although these factors 

are generally conserved in chloroplasts and cyanobacteria, the functions of some of them 

evolved together with eukaryotic photosynthesis. The plastid-encoded proteins YCF3 

(Schwabe and Kruip, 2000; Naver et al., 2001) and YCF4 (Wilde et al., 1995; Krech et al., 

2012) are highly conserved in cyanobacteria and, in both organisms, they have been proposed 

to function as molecular chaperones during the formation of the PSI complex. In chloroplasts, 

lack of these proteins causes a complete loss of PSI (Boudreau et al., 1997; Ruf et al., 1997), 

while PSI amount are only reduced in Synechocystis ycf4 mutants (Wilde et al., 1995). Two 

additional factors involved in the assembly of the plant PSI subunits are the nuclear-encoded 

proteins Y3IP1 (Albus et al., 2010), not characterized in cyanobacteria, and Pyg7-1 (Stöckel 

et al., 2006), that is essential for PSI accumulation in plants, in contrast to the cyanobacterial 

homolog Ycf37 that has only an accessory function in PSI biogenesis (Wilde et al., 2001). 

Additional plant nuclear-encoded proteins that are required for the assembly of PSI cofactors 

have been identified. Among these, Hcf101 is involved in the association of the 4Fe-4S 

clusters with the PSI apoproteins (Lezhneva et al., 2004), while in mutants lacking the Apo1 

protein all the chloroplast iron-sulphur proteins are strongly affected (Amann et al., 2004). 
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The PSI of higher plants occurs as a monomer surrounded by the LHCI antennas at the 

PsaF/PsaG side (Amunts et al., 2007), whereas in cyanobacteria no antenna system is present 

and the PSI reaction centres are organized in trimeric supercomplexes (Jordan et al., 2001). 

PsaL is responsible for trimerization in cyanobacteria, while the plant-specific PsaH protein 

prevents oligomerization and it has been proposed to be important for the PSI-LHCII 

interaction during state transition (Lunde et al., 2000; Kouril et al., 2005). The switch of the 

mobile LHCII pool between the two photosystems serves to balance their respective 

excitations and it can be considered as a vital adaption of plant photosynthesis to the 

fluctuating light conditions of their environment (Kargul and Barber, 2008). The trimeric state 

of cyanobacterial PSI can be seen, on the opposite, as a way to optimize harvesting of the dim 

light in aqueous environments by providing a larger intrinsic antenna system (Amunts and 

Nelson, 2009). Besides adaptive differences with respect to the prokaryotic ancestor, the plant 

PSI displays an extreme conservation of all the cofactors of the electron transport chain and of 

the protein structures they are associated with.  

During the Linear Electron Flow (LEF, see Figure 1.1), PSI acts downstream of PSII in 

transferring electrons from water molecules to the terminal acceptor NADP
+
, with the final 

overall production of NADPH and ATP. For effective photosynthesis, though, the Cyclic 

Electron Flow (CEF, for reviews see Shikanai, 2007; Joliot and Johnson, 2011) pathway is 

also required and this solely depends on the PSI photochemical reactions. In CEF (Figure 1.3) 

electrons are recycled from the photoreduced ferredoxin to the PQ pool and, through Cyt b6f, 

back to PSI. During this process no net reducing power is produced, but the Q-cycle still 

generates the proton motive force to drive the synthesis of ATP. The electron transport in 

thylakoids is therefore subjected to a photosynthetic control (Foyer et al., 2012) that balances 

the ratios of produced reductants and ATP, in order to meet the metabolic needs of the cell. 

Another important role of CEF is to induce the acidification of the lumen necessary to 

regulate the quenching of high energy states in fluctuating light conditions (Niyogi et al., 

2005). Two partially redundant pathways of cyclic electron flow around PSI are present in 

higher plants, the one discovered by Arnon and co-workers (Arnon et al., 1954) and a second 

one that depends on the chloroplast NAD(P)H dehydrogenase complex (NDH, Burrows et al., 

1998). 
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Figure 1.3 Scheme of cyclic electron flow (CEF) in higher plants. Photosystem II (PSII); plastoquinone (PQ); 

cytochrome b6f complex (Cyt b6f); plastocyanin (PC); photosystem I (PSI); ferredoxin (Fd); ferredoxin-NADPH 

oxidoreductase (FNR); NADPH dehydrogenase complex (NDH); PROTON GRADIENT REGULATION 5 

(PGR5); PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). Inhibitors of the different electron 

transport steps are also indicated: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); 2,5-dibromo-3-methyl-5-

isopropyl-/7-benzoquinone (DBMIB); Antimycin A (AA); Rotenone. 

 

This NDH-dependent CEF is present also in cyanobacteria, where it was shown to be 

important at limiting CO2 concentrations (Ogawa, 1991), and the evolutionary conservation of 

this pathway is also testified by the fact that the NDH subunits are encoded, in plants, by 

plastidial genes. The NDH-dependent cyclic transport is not inhibited by antimycin A (AA, 

(Endo et al., 1997), whereas the pathway discovered by Arnon is sensitive to this compound 

(Tagawa et al., 1963). In the plant AA-sensitive cyclic transport, electrons from reduced 

ferredoxin are directly transferred to PQ (Bendall and Manasse, 1995) by the action of a 

“ferredoxin-plastoquinone reductase” (FQR). In Arabidopsis thaliana, the two nuclear-

encoded thylakoid proteins involved in this pathway have been identified, PROTON 

GRADIENT REGULATION 5 (PGR5, Munekage et al., 2002) and PROTON GRADIENT 

REGULATION 5-LIKE 1 (PGRL1, DalCorso et al., 2008). PGRL1 can form homodimers 

and PGRL1-PGR5 heterodimers and has in vitro an AA-sensitive FQR activity, whereas the 

molecular function of PGR5 is so far not clear but it is necessary for the reduction of PGRL1 

(Hertle et al., 2013). In the current model of the AA-sensitive CEF of higher plants, though, 

open questions still remain, as for example the way in which PGRL1 and PGR5 interact with 

ferredoxin and where on PSI this interaction takes place. 

PSI is a stable and efficient enzyme and has a central role in the physiology of plant 

photosynthesis but still little is known about the mechanisms involved in its assembly and 

regulation (Schöttler et al., 2011). 

 



1. Introduction 

12 

 

1.4. Evolution of the membrane architecture 

Cyanobacteria are Gram-negative eubacteria and have a cell envelope composed of an outer 

and a plasma membrane that surround a peptidoglycan layer and the cytoplasmic aqueous 

compartment. Embedded in the cytosol they have a distinct intracellular system of 

membranes, the thylakoids, where the light-dependent reactions of photosynthesis take place. 

In most cases, cyanobacterial thylakoids form flattened layers of lipid-bilayer membranes 

organized in stacks that encircle the cell and cover much of the cytoplasmic space (for a 

review, see Murat et al., 2012). The number and spacing of the layers in a single stack are 

species-specific but, in general, they seem not to be fused to the plasma membrane, even if 

this is still under debate (Liberton et al., 2006). In Synechocystis sp. PCC 6803, a well-studied 

unicellular cyanobacterium, the three to eight thylakoid layers of a single stack converge to 

sites close to the plasma membranes that have been proposed to connect the two membrane 

systems in a dynamic way (Nickelsen et al., 2010). Indeed, cyanobacterial thylakoids form a 

complex network that includes perforations and internal membrane bridges between the layers 

and large vescicles often close or fused to them. The highly networked structure of 

cyanobacterial thylakoids ensures communication and flow of cellular components in between 

the layer stacks (Nevo et al., 2007). 

Chloroplasts of land plants are enclosed by a system of two membranes, the outer and inner 

envelope, that derive from the plasma and outer membranes of the progenitor prokaryote and 

delimit an aqueous matrix called stroma. The thylakoid membranes, embedded in the stroma, 

house the photosynthetic protein complexes as in the case on cyanobacteria but they show 

striking differences in architecture. Chloroplasts thylakoids form grana, cylindrical stacks of 

300 to 600 nm in diameter composed of a number of membrane layer that varies from 5 to 20, 

approximately (Mustárdy and Garab, 2003; Mullineaux, 2005). Each granum consists of 

superimposed discs connected to each other in a central core of appressed membranes, with 

the two discs at the top and bottom of the structure having one face exposed to the stroma. 

The margins of a single disc are highly curved and constitute the merging point of two 

neighbouring grana membranes at their periphery. The distinct grana stacks of a single 

chloroplast are interconnected by the stroma lamellae, membrane pairs of few micrometers in 

length that depart from the grana cylinder and are exposed to the stroma at their external 

surfaces. The grana stacks and stroma lamellae within one chloroplast form a single 

continuous network of thylakoid membranes that delimit a single internal aqueous phase, the 

lumen (Shimoni et al., 2005). This thylakoid network therefore shows a complex architecture 
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whose precise topography is still debated (Allen and Forsberg, 2001; Shimoni et al., 2005; 

Mustárdy et al., 2008; Daum and Kühlbrandt, 2011).  

Despite the remarkable differences in their architecture, both the bacterial and the plant 

photosynthetic membranes exhibit similar features, such as bifurcation, bending and folding, 

that once again demonstrate their tight evolutionary link. Although the mechanism underneath 

the curvature of thylakoids is not yet known, a protein family has recently been shown to 

control bending of the photosynthetic membranes and grana formation in Arabidopsis 

thaliana (Armbruster et al., 2013). The family of proteins named CURVATURE 

THYLAKOID 1 (CURT1) is composed of four members (CURT1A, B, C and D) that are 

specifically located to the grana margins of Arabidopsis thylakoids. They are integral 

membranes proteins spanning the thylakoid membranes with two transmembrane helices, with 

their N- and C-termini facing the stroma. They form oligomers, either homo- or hetero-

complexes, and their levels within the chloroplast strongly determine the thylakoid 

architecture. Indeed, in mutant plants lacking the major CURT1 isoform, CURT1A, alone or 

in combination with the depletion also of the other family members, transmission electron 

microscopy (TEM) analysis revealed marked aterations of the thylakoid structure. The mutant 

thylakoids formed disorganized stretches of unstacked membranes and grana stacks much 

broader and formed by fewer layers than in wild type chloroplasts. In the multiple mutants 

further modifications involved the presence of curved instead of flat membrane layers as well 

as of vescicular structures. On the contrary, Arabidopsis mutants overexpressing CURT1A 

have chloroplasts containing grana stacks that are slimmer and reduced in diameter but higher 

and more abundant than in the wild type, thus confirming the correlation between the CURT1 

protein levels and the architecture of the thylakoid membranes. The negative correlation 

between grana diameter and height is related to the fact that only a fixed proportion of the 

thylakoid membrane is incorporated in the grana stacks (Albertsson and Andreasson, 2004). 

The intrinsic ability of the CURT1 proteins to bend membranes was also confirmed by in 

vitro studies, using liposomes with thylakoid-like lipid composition. 

In the absence of CURT1 proteins, pleiotropic effects on the photosynthesis were observed. 

Indeed, the photosynthetic electron flow resulted to be impaired, especially at high light 

intensities, and the chloroplast ability of reversibly re-distributing excitation between the two 

photosystems was also reduced. These effects on photosynthesis can be attributed to the fact 

that plants adopted several mechanisms to adapt to varying light conditions and that one of 

them is to modulate in a dynamic manner the degree of thylakoid stacking within their 

chloroplasts. Indeed, plants adapted to shade and low-light conditions display grana composed 
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of many more layers of thylakoid membranes than those that prefer bright sunlight 

(Andersson, 1986). 

The photosynthetic membrane topology of land plants reveals a further evolutionary adaption, 

with respect to the cyanobacterial counterpart, that depends on a non-homogeneous 

distribution of the photosystems which are, instead, spatially separated. There is no evidence 

for an extensive domain organization in cyanobacterial thylakoid membranes, except for row-

like associations of PSII dimers (Folea et al., 2008), while in higher plant thylakoids PSI and 

PSII are spatially separated in order to optimize the photosynthetic efficiency. This spatial 

separation, called „lateral heterogeneity“ (Andersson, 1986), is just one of the mechanisms 

with which plants adapt to changing light conditions. PSII and its main antenna proteins, 

LHCII, are mainly located in grana thylakoids that are, on the opposite, deficient in PSI and 

LHCI, which are instead predominantly confined to the stroma membranes. This lateral 

heterogeneity prevents the unregulated transfer of excitation energy between the two pigment 

systems: electron flow through PSI is much faster than the one through PSII, given the higher 

quantum efficiency of the first, and therefore spatial separation can help to balance the energy 

distribution in order to optimize the photosynthetic efficiency (Mustárdy and Garab, 2003). 

The structure of the thylakoid grana is flexible and the degree of stacking is regulated by the 

phosphorylation of the LHCII and other phosphoproteins (Fristedt et al., 2009) as well as by 

the amount of CURT1 proteins (Armbruster et al., 2013). Modifications of the grana structure, 

in turn, facilitate the mobility of the antenna complexes during state transitions and the switch 

between linear and cyclic electron flow. Therefore, grana appear to be evolved by higher 

plants to enhance light harvesting in fluctuating light conditions (Trissl and Wilhelm, 1993; 

Mustárdy and Garab, 2003; Dekker and Boekema, 2005; Mullineaux, 2005; Daum and 

Kühlbrandt, 2011).  

 

1.5. Limitations of plant photosynthesis research 

Higher plant photosynthesis exhibits an increased complexity with respect to the ancestral 

counterpart represented by cyanobacteria, despite the conservation of the basic structures and 

physiology. Many assembly and regulatory mechanisms that specifically evolved in 

eukaryotic photosynthesis still have to be identified or clarified. Moreover, besides playing 

the central role in the energy metabolism of plants, the photosynthetic process has been 

recently shown to be closely related to a variety of other physiological processes that go 

beyond the chloroplast and influence the physiology of the whole cell, like control of the 

redox-state (Buchanan and Balmer, 2005), the generation of regulatory reacting oxygen 
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species (Wagner et al., 2004) and the regulation of the cell cycle (Fukushima et al., 2009). 

Despite its central role in plant biology, photosynthesis research has been so far challenged by 

several limiting aspects that are either due to technical shortcomings or are intrinsic to the 

model species used. Plants are multicellular eukaryotic organisms with specialized organs and 

a complex physiology and a life-span varying from few weeks to centuries. Arabidopsis 

thaliana is one of the most used model plants for the study of photosynthesis, because of the 

ease to manipulate it and its relatively short life cycle (about six weeks). Analysis of the 

function of photosynthesis-related nuclear genes in Arabidopsis traditionally relies on the 

screening of mutants’ sets deriving from chemical mutagenesis (EMS, Maple and Møller, 

2007) or by the Agrobacterium-mediated T-DNA insertion into the genome (Krysan et al., 

1999), which can also be used to introduce exogenous sequences into the plant. Both 

techniques, though, generate mutation in random loci and do not allow targeted mutagenesis 

because plants usually do not undergo homologous recombination in the nuclear genome. In 

addition to this, segregation of the generated mutations and screening for the desired 

phenotype - supposing to have suitable selection conditions - requires quite long time periods 

and a considerable amount of work. To generate mutants for multiple genes, classical plant 

crossing techniques have to be employed, together with the subsequent segregation and 

screening phases. Targeted manipulation is possible in the case of chloroplast genes, because 

the organellar genetic machinery is prokaryote-like and homologous recombination is 

therefore taking place. Generation of transplastomic plants is normally done by transforming 

plastids via particle bombardment of embryos or young plant cells and leads to the integration 

of the desired DNA into the homologous sequence of the plastidial genome (Gan, 1989). 

Integration of the exogenous DNA into the target genome can be selected using selectable 

markers, therefore reducing the screening process (Day and Goldschmidt-Clermont, 2011) 

and techniques to remove the marker after isolation of the desired mutants have also been 

developed (Klaus et al., 2004; Day and Goldschmidt-Clermont, 2011). Besides the presented 

advantages, this technique has so far been limited to a few specied, mostly tobacco in the case 

of photosynthesis research, and is restricted to the few genes still retained by the plastidial 

genome. 

Irrespectively of the genomic compartment where a photosynthesis-related gene is located, 

studying its function presents an additional level of complexity represented by the fact that a 

gene mutation quite often results in pleiotropic effects, thus rendering it difficult to identify 

the primary function of the gene product. Moreover, the quest for new photosynthesis-related 

candidates is currently based on forward genetics approaches, done by screening sets of 
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randomly mutated plants for a photosynthetic phenotype. Although successfully used to 

identify many new players in the photosynthetic process, this approach is limited by the 

viability of the gene mutations and, on the opposite, by the lack of phenotype in the case of 

genetic redundancy. Moreover, setting up the appropriate screening procedure for a certain 

biological process can be often challenging. The increasing number of sequenced genomes 

recently led to new screenings based on a bioinformatics approach, as in the case of the 

GreenCut project (Grossman et al., 2010). Although very promising, these methods could still 

be biased by the limited information and limited understanding they are based on.  

 

1.6. Designing a cyanobacterial platform to study higher plant photosynthesis 

Cyanobacteria are the evolutionary ancestors of higher plant chloroplasts and, as such, they 

harbour a complete photosynthetic apparatus, but they lack all those protein functions and 

adaptive mechanisms that evolved in the eukaryotic photosynthetic organisms and are 

therefore plant-specific. Being prokaryotes, they present some advantages with respect to 

plants. First of all, they contain a single genomic unit in varying number of copies per cell; 

therefore, there is no need for the co-regulation of genes encoded by two different genomes, 

like in plants. Cyanobacteria have a shorter life cycle than plants and, being unicellular, a 

physiology with less levels of complexity. When working with cyanobacteria, an enormous 

advantage derives from their ability to undergo homologous DNA recombination, which 

makes it possible to perform targeted gene and genome manipulations. When considering the 

cyanobacterial qualities in the perspective of research on higher plant photosynthesis, these 

organisms appear to be potential tools to investigate the function of plant photosynthetic 

proteins. Indeed, the function of a plant-specific protein expressed in cyanobacteria could be 

studied in a simpler physiological environment and in the absence of other eukaryotic 

regulatory components that, if necessary for the function, could be subsequently added. 

Moreover, it could be possible to replace the photosynthetic machinery of cyanobacteria with 

the one from higher plants via targeted genomic manipulation in order to identify all the 

components required for its correct functioning. To this end, libraries of plant transcripts 

could be used to fish new photosynthesis-related genes by complementing cyanobacterial 

chimeras containing the plant-type minimal photosynthetic machinery. 

 

1.7. Synechocystis as a model organism 

One of the most used genetic models for higher plant photosynthesis is Arabidopsis thaliana. 

To generate the proposed cyanobacterial platform, the cyanobacterium Synechocystis sp. PCC 
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6803 (in the following designated Synechocystis) is the organism of choice. Synechocystis is 

an excellent cyanobacterial model organism, because it is unicellular and, not forming 

filamentous structures, it does not fix nitrogen. It has a small, sequenced genome (3.6 Mb) 

(Kaneko et al., 1996), is able to take up spontaneously exogenous DNA and to integrate it via 

homologous recombination into the genome. In addition, a spontaneous glucose-tolerant 

mutant strain is available (Williams, 1988) which can grow heterotrophically in the presence 

of sugar even in complete darkness (Anderson and McIntosh, 1991), thus making it a 

convenient organism to study oxygenic photosynthesis. Photosynthetic Synechocystis mutants 

have been extensively used to study PSI (Dühring et al., 2007; Xu et al., 2011) and PSII 

(Vermaas et al., 1986; Vermaas et al., 1987) and also to investigate the functionality of 

photosynthesis-related proteins from higher plants in cyanobacteria (Nixon et al., 1991; He et 

al., 1999). All these studies relied on the employment of gene deletions or replacements. 

The classical strategy to delete a target gene or to insert exogenous genetic material into the 

Synechocystis genome via homologous recombination involves the use of a resistance marker 

(Labarre et al., 1989; Vermaas, 1996). In this approach, the marker, exogenous DNA and two 

homologous genomic sequences flanking the insertion cassette are cloned into a suicide 

vector, which is not able to replicate itself in the host cell. After integration of the insertion 

cassette into the host genome, the resistance-mediating marker allows positive selection of 

those mutant organisms, in which the integration has occurred. However, to perform 

additional genomic modifications, the use of different resistance markers is necessary. 

Consequently, the number of available markers restricts the number of genetic manipulations. 

To overcome this limitation, so called marker-less strategies have been developed, allowing 

the removal of the integrated marker. The first marker-less method was established in Gram-

negative bacteria using the nptI-sacB double selection cassette (Ried and Collmer, 1987): the 

nptI gene confers resistance to the antibiotic kanamycin, while the sacB gene from Bacillus 

subtilis (Fouet et al., 1984; Steinmetz et al., 1985) is conditionally lethal for Gram-negative 

bacteria when grown in the presence of 5 % sucrose. It encodes the enzyme levansucrase that 

hydrolyzes sucrose leading to the final production of levans (Gay et al., 1983) polymers that 

are lethal for Gram-negative bacteria. Thus, cells harbouring the sacB gene die when grown in 

presence of 5 % sucrose, although the underlying mechanism is not fully understood. In 

cyanobacteria, the nptI-sacB cartridge was first used to establish marker-less gene 

replacement in Anabaena sp. PCC 7120 (Cai and Wolk, 1990).  
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Figure 1.4 Schematic depiction of the classical double recombination strategy. The first recombination step 

(upper panel), involving a double crossover between the homologous regions HR1 and HR2 of the vector and the 

genomic target sequence, leads to integration of the nptI-sacB cassette in the target gene. After complete 

segregation of the knockout under positive selection in the presence of kanamycin, a second recombination step 

(lower panel) takes place. A double crossover between the homologous regions HR1 and HR2 of the vector and 

the genomic target sequence, leads to replacement of the double selection cassette by the gene of interest (GOI) 

to introduce. Negative selection on sucrose yields colonies that have lost the entire sacB marker and carry the 

GOI in place of the endogenous target gene. 

 

This replacement is based on two homologous recombination events, each of them requiring a 

DNA suicide vector and a bacterial transformation step (see Figure 1.4). 1) The target 

genomic sequence is replaced by the double-selection cassette and the mutants in which the 

homologous recombination took place are positively selected by their ability to grow in the 

presence of the antibiotic. 2) A second transformation and homologous recombination event 

leads to the excision of the nptI-sacB selection cartridge by its replacement with the 

exogenous sequence. The desired mutants can be selected by their resistance to sucrose and 

kanamycin sensitivity.  

An alternative version of double selection was developed for gene replacement in 

Synechococcus elongatus PCC 7942 (Matsuoka et al., 2001). In this approach, the background 
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strain carries a mutated form of the rps12 gene (which encodes for the 30S ribosomal subunit 

S12) conferring resistance to spectinomycin (Funatsu and Wittmann, 1972; Timms et al., 

1992). Since the mutation is recessive, the double selection cassette is composed of the 

kanamycin resistance gene and - as an alternative negative selection marker - of an rps12 wild 

type copy, which confers a dominant spectinomycin-sensitive phenotype. Limiting aspects of 

the rps12 marker system are the availability of spectinomycin-resistant mutants in other 

cyanobacterial species and the need to perform all multiple replacements in the rps12 mutant 

background.  

 

1.8. Aim of the work 

The goal of the presented project was the establishment of a cyanobacterial platform to study 

novel photosynthesis-related protein functions from higher plants. As a starting point, the PSI 

core subunits from Synechocystis were replaced with the Arabidopsis homologs. 

In a second approach, the effects of the Arabidopsis CURT1A protein on the structure of the 

Synechocystis thylakoids were tested by expressing it in addition to, or in replacement of, the 

cyanobacterial homolog. 

In order to facilitate further extensive manipulations of the Synechocystis genome, an 

alternative marker-less gene replacement strategy was developed which relies on the use of a 

single plasmid vector and a single transformation step in order to obtain both knockout and 

replacement bacterial strains. The developed strategy was used to test the function of the 

Arabidopsis PGRL1 and PGR5 proteins in Synechocystis and to replace the cyanobacterial 

PSI PsaA core subunit with the plant homolog.  
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2. MATERIALS AND METHODS 

 

2.1. Chemicals, enzymes and radioactive substances  

Standard chemicals were purchased from Roth (Karlsruhe, Germany), Duchefa (Haarlen, 

Netherlands), Applichem (Darmstadt, Germany), Serva (Heidelberg, German), Invitrogen 

(Darmstadt, Germany) and Sigma-Aldrich (Steinheim, Germany). 

Restriction enzymes were purchased from New England Biolabs (Ipswich, MA, USA) and 

Fermentas (Thermo Scientific, Rockford, USA), Taq DNA polymerase from QIAgen (Venlo, 

Netherlands) and Phusion High-Fidelity DNA polymerase from Fermentas. 

Radiochemicals (
32

P-dCTP, 
35

S-Met,) were from Hartmann Analytic (Braunschweig, 

Germany).  

 

Molecular weight markers 

GeneRuler
TM

 1 kb Plus DNA ladder (Thermo Scientific, Rockford, USA), was used as DNA 

length standard.  

The apparent molecular weight of proteins in SDS-polyacrylamide gel electrophoresis was 

determined according to PageRuler pre-stained molecular weight marker (10 to 170 kDa) 

from Pierce (Thermo Scientific). 

 

DNA Primers 

All the primers used in this study were purchased from Metabion GmbH (Martinsried, 

Germany). 

 

Antibodies 

Immuno-decoration of Western blot membranes was done with the following antibodies: α-

CURT1A (Agrisera, Vännäs, Sweden); α-synCURT1 peptide (BioGenes GmbH, Berlin, 

Germany), α-APC α/β, (Agrisera), α-PGRL1 (Roberto Barbato, Dipartimento di Scienze 

dell'Ambiente e della Vita, Università del Piemonte Orientale, Alessandria, Italy; Paolo 

Pesaresi, Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy), α-

PGR5 (Toshiharu Shikanai, Department of Botany, Graduate School of Science, Kyoto 

University, Sakyo-ku, Kyoto, Japan). 
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2.2. Bacterial strains and vectors 

The bacterial strains and plasmids used are described in Table 2.1. E. coli DH5α cultures were 

grown in Luria Broth (LB) medium at 37 °C and shaking at 225 rpm.  

Unless otherwise indicated, Synechocystis sp. PCC 6803 glucose-tolerant wild type (GT, 

Himadri Pakrasi, Department of Biology, Washington University, St. Louis) and mutant 

strains were grown at 30 °C in BG11 medium containing 5 mM glucose (Rippka et al., 1979), 

under continuous illumination at 30 µmol photons m
-2

 s
-1

. Liquid cultures were shaken at 120 

rpm. For growth on plates, 1.5 % (w/v) agar and 0.3 % (w/v) sodium thiosulfate were added 

to the BG11 medium. The PSI-defective mutant strains were grown in LAHG conditions 

(Light Activated Heterotrophic Growth: darkness, unless 5 min of light per day, as described 

by Anderson and McIntosh, 1991), in the presence of glucose. 

For positive selection of the mutants, increasing concentrations of kanamycin (10 to 100 

µg/ml) were added to the medium. For negative selection, BG11 containing 5 % (w/v) sucrose 

was used. 

 

Table 2.1 Strains used in this study 

Strain  Characteristics 
Selection 

markers 
Source 

        

E. coli       

DH5α Competent cells     

        

Synechocystis       

WT  WT Synechocystis sp PCC 6803, glucose tolerant kanS, sucR 

H. Pakrasi 

(Washington 

University, St. 

Louis) 

ΔpsaA 
nptI-sacB cassette replacing endogenous psaA 

gene 
kanR, sucS This study 

B_optkan 
At psaB_opt gene and downstream nptI-sacB 
cassette replacing endogenous psaB 

kanR, sucS This study 

B_opt B_optkan without nptI-sacB cassette kanS, sucR This study 

AB_optkan 
At psaA/B_opt operon and upstream nptI-sacB 

cassette replacing endogenous psaA/B 
kanR, sucS This study 

AB_opt AB_optkan without nptI-sacB cassette kanS, sucR This study 

CURT1A 
CURT1A gene and downstream nptI-sacB cassette 

replacing slr0168 ORF 
kanR, sucS This study 

CURT1A syncurt1 
CURT1A gene and upstream nptI-sacB cassette 
replacing endogenous Syn CURT1 

kanR, sucS This study 

Δapc 
SpecR cassette replacing endogenous apcA/B 
operon 

kanR, sucS, SmR This study 

CURT1A 

syncurt1Δapc 
Δapc in CURT1A syncurt1 background SmR This study 

luxprim 
luxAB operon, interrupted by nptI-sacB cassette, 

replacing slr0168 ORF 
kanR, sucS This study 
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luxsec Intact luxAB operon replacing slr0168 ORF kanS, sucR This study 

PGR5 
PRGL1-PGR5 synthetic operon, interrupted by 

nptI-sacB cassette,  replacing slr0168 ORF 
kanR, sucS This study 

PGR5+PGRL1 
Intact PRGL1-PGR5 synthetic operon replacing 

slr0168 ORF 
kanS, sucR This study 

psaAprim 
At psaA gene, interrupted by nptI-sacB cassette, 

replacing endogenous psaA 

kanR, sucS, 

heterotroph 
This study 

psaAsec Intact At psaA gene replacing endogenous psaA 
kanS, sucR, 

photoautotroph 
This study 

 

Table 2.2 Plasmid vectors used in this study 

Plasmid Characteristics 
Selection 

markers 
Source 

pGEM-T Easy Backbone for pDSpsaA ampR 
Promega, Madison, 

WI  

pRL250 
nptI-sacB double selection cassette, sacB gene from 

Bacillus subtilis 
kanR, sucS 

P. Wolk (Michigan 

State University) 

  SpecR  selection cassette, gene from Sm
R
   

pICH69822 Destination vector for Golden Gate cloning kanR 

E. Weber (Icon 

Genetics GmbH, 

Halle) 

pRL1063a luxAB operon from Vibrio fischeri SmR 
P. Wolk (Michigan 

State University) 

pUC57+psaA_opt Codon-optimized At psaA gene ampR GenScript 

pUC57+psaB_opt Codon-optimized At psaB gene ampR GenScript 

pUC57+PSI_opt Codon-optimized PSI synthetic operon ampR GenScript 

pCURT1AOI 

pICH69822 with Syn psbA2 promoter, CURT1A gene, 

upstream nptI-sacB cassette from pRL250 and slr0168 

flanking regions 

kanR, sucS This study 

pCURT1AO 

pICH69822 with Syn psbA2 promoter, CURT1A gene, 

downstream nptI-sacB cassette from pRL250 and Syn 

CURT1 flanking regions 

kanR, sucS This study 

pSMapc 
pICH69822 with SpecR cassette from and andogenous 

apcA/B operon flanking regions 
kanR, SmR This study 

pDSAK1 
pGEM-T Easy with nptI-sacB cassette from pRL250 

and Syn psaA flanking regions 
kanR, sucS This study 

pDSAB_opt 

pICH69822 with At psaA/B_opt operon with 

endogenous flanking regions and downstream nptI-sacB 

cassette from pRL250 

kanR, sucS This study 

pAB1 
pGEM-T Easy with At psaB_opt downstream region 

from B_opt strain 
kanR This study 

pDSA_opt 

pICH69822 with At psaA_opt gene with flanking  

regions from B_opt strain and upstream nptI-sacB 

cassette from pRL250 

kanR, sucS This study 

pAB2 
pGEM-T Easy with At psaA_opt upstream region from 

AB_opt strain 
kanR This study 

pDSlux 

pICH69822 with nptI-sacB cassette from pRL250, 

luxAB operon from pRL1063a and Syn psbA2 promoter 

and slr0168 flanking regions 

kanR, sucS This study 

pDSpgrl1 

pICH69822 with nptI-sacB cassette from pRL250, 

Arabidopsis PGRL1 and PGR5 coding sequences, Syn 

psbA2 promoter and slr0168 flanking regions 

kanR, sucS This study 

pDSpsaA 
pGEM-Teasy with nptI-sacB cassette from pRL250, At 

psaA gene and Syn psaA flanking regions 
kan

R
, suc

S
 This study 
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2.3. Generation of recombinant plasmids 

All DNA techniques such as plasmid isolation, restriction and ligation were performed 

according to standard protocols (Sambrook et al., 1989). Synechocystis sequences were 

obtained from Cyanobase (http://genome.kazusa.or.jp/cyanobase/Synechocystis). All the 

plasmids used are listed in Table 2.2. To generate all the fragments used for plasmid 

constructions, sequences of interest were PCR amplified and then purified from 1 % agarose 

gel with the QIAgen (Venlo, Netherlands) gel extraction kit following the producer’s 

instructions. 

For all vectors, except pDSAK1 and pDSpsaA, the amplified fragments were assembled into 

the final construct using the one-step Golden Gate Shuffling cloning strategy (Engler et al., 

2009) and the plasmid pICH69822 as destination vector. The nptI-sacB double-selection 

cassette was amplified from the pRL250 plasmid, the SpecR cassette from a pUR plasmid 

backbone. The Synechocystis slr0168 ORF (Kunert et al., 2000) was used as neutral genomic 

site for the stable integration of the pDSLux and pCURT1A vectors, using the upstream and 

downstream genomic regions of slr0168 (~1 kb each) as flanking regions for homologous 

recombination. The sequences of the Arabidopsis thaliana psaA and psaB genes with a codon 

usage optimized for expression into Synechocystis sp. PCC6803 (At psaA_opt and At 

psaB_opt) were purchased, cloned into the EcoRV restriction site of pUC57, from GenScript 

(Hong Kong). 

The pDSAK1 plasmid was constructed by standard cloning and the Synechocystis psaA gene 

was chosen as insertion site, using its upstream and downstream genomic regions (~500 bp 

each) as flanking regions for homologous recombination. To generate the vector, the nptI-

sacB cassette was excised from the pRL250 plasmid with BamHI and then cloned into the 

pGEM-T Easy vector (Promega, Madison, Wisconsin) according to the manufacturer’s 

instructions. The Syn psaA downstream region was cloned at the 3’ of the nptI-sacB cassette 

between the SpeI and SacI restriction sites, then the upstream region was inserted upstream of 

the cassette between the ApaI and NcoI restriction sites. For pDSAB_opt generation, the At 

psaA_opt and At psaB_opt sequences were amplified from the pUC57+psaA_opt and 

pUC57+psaB_opt vectors (GenScript). The two artificial genes were then assembled into a 

synthetic operon using the Synechocystis psaA upstream region (~500 bp), psaA/psaB 

intergenic region (A/B IR, 245 bp) and psaB downstream region (~500 bp). The nptI-sacB 

double selection cassette was placed at the 3’ of the Syn psaB downstream region and was 

then followed by a second copy of the same flanking sequences. The pAB1 vector was 
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generated by cloning the Syn psaB downstream region used for the pDSAB_opt vector 

assembly into the pGEM-T Easy vector. The pDSA_opt vector was constructed using the Syn 

psaA upstream region (~500 bp) and the A/B IR fused to the initial region of At psaB_opt 

(positions +1 → +665) were used for integration of the construct into the genome. Upstream 

of A/B IR was placed the At psaA_opt gene under the regulation of the endogenous psaA 

promoter (PpsaA, 206 bp). The nptI-sacB double selection cassette was cloned between the Syn 

psaA upstream region and the PpsaA-At psaA_opt fusion. The entire PpsaA sequence was 

included also in the Syn psaA upstream region and therefore repeated at both the 5’ and 3’ of 

the selection cassette. The pAB2 vector was generated by cloning the Syn psaA upstream 

region used for the pDSA_opt vector assembly into the pGEM-T Easy vector. All primers 

used are listed in Table 2.3. 

 

Table 2.3 Primers used in the PSI project. The restriction sites are indicated in bold characters and the BsaI-

generated overhangs are underlined. 

pDSAK1       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

A1 FW 
GGCCGCGGGCCCGATTTCCCCTTGCGGACT

CTGAGCCAATTTG PCR of Syn psaA 

upstream region 

ApaI 

A1K RV 
TTCAGAACCATGGGCAGGGTTCTCCTCGCTC

G 
NcoI 

A4K FW TTCGATCACTAGTACTTTGAGCTGAAG 
PCR of Syn psaA 

downstream region 

SpeI 

A4 RV 
GGCCGCGAGCTCCGATCGGGCGAATGTTTA

AAGGATCTTTAATC 
SacI 

        

pDSAB_opt       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

A/B UR FW 
TTTGGTCTCTAGGTTTCCACCCGCCAATAAT

CC PCR of Syn psaA 

upstream region 

BsaI 

A/B UR RV 
TTTGGTCTCTTCATGCAGGGTTCTCCTCGCT

CGAC 
BsaI 

A_opt FW 
TTTGGTCTCTATGATTATTCGTAGTCCCGAA

C 
PCR of At psaA_opt  

BsaI 

A_opt RV 
TTTGGTCTCTAAGTCTAACCCACAGCAATA

ATACG 
BsaI 

A/B IR FW (P3) 
TTTGGTCTCTACTTTGAGCTGAAGTTGGGTT
TTC PCR of Syn psaA/B 

intergenic region 

BsaI 

A/B IR RV (P2) 
TTTGGTCTCTCCATAGCTTTTTCGGAAATTC

TCCTCG 
BsaI 

B_opt FW 
TTTGGTCTCTATGGCTTTACGCTTTCCCCGT

TTTTC 
PCR of At psaB_opt 

BsaI 

B_opt2 RV 
TTTGGTCTCTAACGTTAGCCAAATTTCCCAG

AAGTAGAG 
BsaI 

selection cassette 

FW 

TTTGGTCTCACGTTGGAATTCGATTGATCCG

TCGAC 
PCR of nptI_sacB 

double selection 

cassette 

BsaI 

selection cassette 

RV 

TTTGGTCTCCCATACTTTAGGCCCGTAGTCT

GCA 
BsaI 
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A/B DR repl. FW 
TTTGGTCTCTTATGCGAATTCCTCTGTTAGG

TAATTAAG PCR of Syn psaB 

downstream region 

BsaI 

A/B DR RV 
TTTGGTCTCTAAGCTAGCCACCAGCAACCTC

AGTG 
BsaI 

        

pDSA_opt       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

A2 UR FW 
TTTGGTCTCTAGGTTTATTTCGGCAATGGCA

TG PCR of Syn psaA 

upstream region 

BsaI 

A2 UR RV 
TTTGGTCTCTAACGGCAGGGTTCTCCTCGCT

CG 
BsaI 

selection cassette 

FW 

TTTGGTCTCACGTTGGAATTCGATTGATCCG

TCGAC 
PCR of nptI_sacB 

double selection 

cassette 

BsaI 

selection cassette 

RV 

TTTGGTCTCCCATACTTTAGGCCCGTAGTCT

GCA 
BsaI 

A2 prom. FW 
TTTGGTCTCTTATGATTTTTAATTATTGTTAC

GCAGGTCTTG PCR of Syn psaA 

promoter 

BsaI 

A/B UR RV 
TTTGGTCTCTTCATGCAGGGTTCTCCTCGCT
CGAC 

BsaI 

A_opt FW 
TTTGGTCTCTATGATTATTCGTAGTCCCGAA

C 
PCR of At psaA_opt  

BsaI 

A_opt RV 
TTTGGTCTCTAAGTCTAACCCACAGCAATA

ATACG 
BsaI 

A/B IR FW 
TTTGGTCTCTACTTTGAGCTGAAGTTGGGTT

TTC 
PCR of Syn psaA 

downstream region 

from B_opt 

BsaI 

A2 DR RV 
TTTGGTCTCTAAGCAGCCCTTGGGGATGGG

GTAAC 
BsaI 

        

Others       

Primer Name Sequence (5‘→3‘) Purpose   

kan_S1 (P5) GGTCTTGACAAAAAGAACCGGGC Primers used to check 

presence of nptI_sacB 

  

sacB_S1 (P6) ATTCTTCCGTCAAGAAAGTC   

AB seq 1 (P11) TGTGAGGGAACTTGGAACTC 

Primers used for 

genotyping 

  

AB seq 2 (P8) CATAATCTGCAGTTGGCGATC   

AB seq 4 (P1) CACAAAGGACTTTATGAAATC   

AB seq 5 (P4) GGACAAAGAAGATGGCACCG   

AB seq 7 (P12) TCCAGTAAATCGTTGTAACG   

AB seq 8 (P9) TCTGAATTTTTGACCTTTCGC   

AB seq 9 (P10) AGCACATTATCTTCGTTCTG   

AB seq 10 (P7) GCTGGGACGTGGTCATAAAG   

  

    

 

For pCURT1AOI generation, the CURT1A coding sequence lacking the predicted cTP was 

amplified from Arabidopsis cDNA and placed under control of the Synechocystis strong 

psbA2 promoter (PpsbA2, Eriksson et al., 2000). The promoter-gene fusion and the downstream 

nptI-sacB double selection cassette were placed between the slr0168 flanking regions. The 

pCURT1AO vector was generated using the same PpsbA2–CURT1A fusion as for 

pCURT1AOI, but the nptI-sacB cassette was placed upstream of it and the upstream and 

downstream genomic regions of the Synechocystis sl10483 gene (Syn CURT1, ~500 bp each) 

were used as flanking regions for homologous recombination. The pSMapc vector was 
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constructed by cloning the SpecR cassette between the upstream and downstream regions (~1 

kb each) of the Synechocystis apcAB dicistronic operon (slr067, slr1986). All primers used 

are listed in Table 2.4. 

 

Table 2.4 Primers used in the CURT1 project. The restriction sites are indicated in bold characters and the BsaI-

generated overhangs are underlined. 

pCURT1AOI       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

PG UR FW TTTGGTCTCTAGGTTGCTCAGCAGTGACCTATTC PCR of slr0168 

upstream region 

BsaI 

PG UR RV TTTGGTCTCTTGGGGCCACTGTTATTTTGATTG BsaI 

psbA2P FW 

(C3) 
TTTGGTCTCTCCCATGGAAAAAACGACAATTAC PCR of psabA2 

promoter 

BsaI 

COE_P RV TTTGGTCTCTTTGGTTATAATTCCTTATGTATTTG BsaI 

CURT1A FW 
TTTGGTCTCTCCAAATGGCTTCTTCAGAAGAGAC

CTC 
PCR of  

At CURT1A CDS 

without cTP 

BsaI 

CURT1A2 RV 

(C4) 

TTTGGTCTCTAACGCTATTCGCTTCCTGCGATCTT

C 
BsaI 

selection 

cassette FW 

TTTGGTCTCACGTTGGAATTCGATTGATCCGTCG

AC 
PCR of nptI_sacB 

double selection 

cassette 

BsaI 

selection 

cassette RV 
TTTGGTCTCCCATACTTTAGGCCCGTAGTCTGCA BsaI 

PG DR2 FW TTTGGTCTCTTATGCAATTTCGTTTGCGAATTTAC PCR of slr0168 

downstream region 

BsaI 

PG DR2 RV TTTGGTCTCTAAGCATAAAATACCTTCCCATC BsaI 

        

pCURT1AO       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

CURT UR FW 
TTTGGTCTCTAGGTTTTTTGACCTATCTGGGTGA

AG 
PCR of slr0483 

upstream region 

BsaI 

CURT UR RV TTTGGTCTCTAACGAGCTTCCCATATTGGGGC BsaI 

selection 

cassette FW 

TTTGGTCTCACGTTGGAATTCGATTGATCCGTCG

AC 
PCR of nptI_sacB 

double selection 

cassette 

BsaI 

selection 

cassette RV 
TTTGGTCTCCCATACTTTAGGCCCGTAGTCTGCA BsaI 

COE_P FW  
TTTGGTCTCTTATGCCCATGGAAAAAACGACAAT

TAC 
PCR of psabA2 

promoter 

BsaI 

COE_P RV TTTGGTCTCTTTGGTTATAATTCCTTATGTATTTG BsaI 

CURT1A FW 
TTTGGTCTCTCCAAATGGCTTCTTCAGAAGAGAC

CTC 
PCR of  

At CURT1A CDS 

without cTP 

BsaI 

CURT1A RV  
TTTGGTCTCTGACACTATTCGCTTCCTGCGATCTT
C 

BsaI 

CURT DR FW TTTGGTCTCATGTCTCCAGACCGCCCCAG PCR of slr0483 

downstream region 

BsaI 

CURT DR RV TTTGGTCTCTAAGCCAAATGCCATTCCTGGGCG BsaI 

        

pSMapc       

Primer Name Sequence (5‘→3‘) Purpose 
Restriction 

site 

APC UR FW 
TTTGGTCTCTAGGTCGGCAATACTGGCGGTGTAA

G 
PCR of Syn 
apcA/B operon 

upstream region 

BsaI 

APC UR RV TTTGGTCTCTGTTTGGATGGATTCCTCCGTAAAG BsaI 

SM cass FW 

(C7) 
TTTGGTCTCTAAACCTTGCGCTCGTTCG PCR of SpecR 

selection cassette 

BsaI 

SM cass RV TTTGGTCTCTTTATTTGCCGACTACCTTGGTGATC BsaI 
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APC DR FW TTTGGTCTCTATAATCCTGGATTCCCGTGGGTG PCR of Syn 

apcA/B operon 

downstream region 

BsaI 

APC DR RV 

(C8) 
TTTGGTCTCTAAGCGGATCTAGGTTGTGGTTCCG BsaI 

        

Others       

Primer Name Sequence (5‘→3‘) Purpose   

synCURT1 FW 

(C1) TTTGGTCTCTCCAAATGGTGGGCCGTAAACATTC 
Primers used to 

check presence of 

Syn CURT1  

  

synCURT1 RV 
(C2) 

TTTGGTCTCTGACACTAACCGCCAAAAATTTGCT
C 

  

apcAB FW 

(C5) 
GAAATCAATCGTGAATGCTG Primers used to 

check presence of 

Syn apcA/B operon 

  

apcAB RV 

(C6) 
CGGTAACTTCTTTGATGGCT   

        

 

To generate the pDSlux vector, the luxAB dicistronic operon from Vibrio fischeri was derived 

from the pRL1063a plasmid (Wolk et al., 1991). The operon was placed under control of 

PpsbA2, by fusing it upstream of luxA. Two amplicons of the luxAB operon were generated, the 

first starting at position +1 of luxA and ending at position +460 of luxB and the second 

starting at position +856 of luxA and ending at the 3’ end of luxB. Thus, the sequences of the 

two fragments overlap for 1055 base pairs. The two amplicons were separated by the nptI-

sacB double selection cassette. The promoter-operon fusion and the interrupting nptI-sacB 

double selection cassette were placed between the slr0168 flanking regions. To generate the 

pDSpgrl1 vector, the sequences encoding the Arabidopsis thaliana PGRL1 and PGR5 mature 

proteins were amplified from cDNA and placed each under control of one copy of PpsbA2. Two 

amplicons of the PGRL1 coding sequence were generated, the first (5’ PGRL1) covering the 

+1 → +503 region and the second (PGRL1) the entire sequence. Thus, the sequences of the 

two fragments overlap for 503 base pairs. The PpsbA2-5’ PGRL1 fusion was placed upstream of 

the nptI-sacB cassette. The PGRL1 amplicon was placed downstream of the cassette, followed 

by the PpsbA2-PGR5 fusion. The PGRL1-PGR5 synthetic operon, interrupted by the nptI-sacB 

double selection cassette, was placed between the slr0168 flanking regions. The pDSpsaA 

plasmid was constructed by overlapping PCR and subsequent standard cloning steps and the 

Synechocystis psaA gene was used as insertion site, using its upstream and downstream 

genomic regions (~500 bp each) as flanking regions for homologous recombination. To 

generate the vector, the nptI-sacB cassette was excised from the pRL250 plasmid with BamHI 

and then cloned into the pGEM-T Easy vector (Promega, Madison, Wisconsin) according to 

the manufacturer’s instructions. The At psaA (AtCG00350) coding sequence was thus placed 

under control of the endogenous Synechocystis psaA promoter (contained in HR1). Two 

fragments of At psaA were amplified from plant cDNA, the first (5’ At psaA) covering the +1 
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→ +1430 and the second (3’ At psaA) the +922 → 3’ end positions. The two amplicons, 

overlapping for 509 base pairs, were assembled with the upstream and downstream flanking 

regions via overlapping PCR. The downstream amplicon was cloned at the 3’ of the nptI-sacB 

cassette between the SpeI and SacI restriction sites, then the other amplicon upstream of the 

cassette between the ApaI and NotI restriction sites. All primers used are listed in Table 2.5. 

 

Table 2.5 Primers used in the marker-less gene replacement project. The restriction sites are indicated in bold 

characters and the BsaI-generated overhangs are underlined. 

pDSlux       

Primer 

Name 
Sequence (5‘→3‘) Purpose 

Restriction 

site 

slr0168 UR 

FW 
TTTGGTCTCTAGGTACAGGCCCTCAAGGCCCTG PCR of slr0168 

upstream 

region 

BsaI 

slr0168 UR 

RV 
TTTGGTCTCTGCCACTGTTATTTTGATTGGTGGC BsaI 

slr0168 DR 
FW (R5) 

TTTGGTCTCTTTCGTTTGCGAATTTACACCAG PCR of slr0168 
downstream 

region 

BsaI 

slr0168 DR 

RV (R6) 
TTTGGTCTCTAAGCTAGGGTGGAGCCAGTGGC BsaI 

selection 

cassette FW 
TTTGGTCTCACGTTGGAATTCGATTGATCCGTCGAC 

PCR of 

nptI_sacB 

double 

selection 

cassette 

BsaI 

selection 

cassette RV 
TTTGGTCTCCCATACTTTAGGCCCGTAGTCTGCA BsaI 

Lux1 FW 

(R1) 

TTTGGTCTCTCCAAATGAAGTTTGGAAATATTTGTTT

TTC PCR of luxAB 

first amplicon 

BsaI 

Lux1 RV TTTGGTCTCTAACGCATAAAAGTCGTTTTGGGGATG BsaI 

Lux2 FW TTTGGTCTCTTATGGTATGACTGCTGAGTCCGCAAG PCR of luxAB 

second 

amplicon 

BsaI 

Lux2 RV 

(R4) 

TTTGGTCTCTCGAATTGTTGAATAAATCGAACTTTTG

C 
BsaI 

DS prom FW TTTGGTCTCTTGGCCCCATGGAAAAAACGACAATTAC 
PCR of psabA2 

promoter 

BsaI 

DS prom RV TTTGGTCTCTTTGGTTATAATTCCTTATGTATTTGTCG BsaI 

        

pDSpgrl1       

Primer 

Name 
Sequence (5‘→3‘) Purpose 

Restriction 

site 

slr0168 UR 

FW (R7) 
TTTGGTCTCTAGGTACAGGCCCTCAAGGCCCTG PCR of slr0168 

upstream 

region 

BsaI 

slr0168 UR 

RV 
TTTGGTCTCTGCCACTGTTATTTTGATTGGTGGC BsaI 

slr0168 DR 

FW  
TTTGGTCTCTTTCGTTTGCGAATTTACACCAG PCR of slr0168 

downstream 

region 

BsaI 

slr0168 DR 

RV  
TTTGGTCTCTAAGCTAGGGTGGAGCCAGTGGC BsaI 

selection 

cassette FW 
TTTGGTCTCACGTTGGAATTCGATTGATCCGTCGAC 

PCR of 

nptI_sacB 
BsaI 
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selection 

cassette RV 
TTTGGTCTCCCATACTTTAGGCCCGTAGTCTGCA 

double 

selection 

cassette 

BsaI 

DS prom FW TTTGGTCTCTTGGCCCCATGGAAAAAACGACAATTAC PCR of psabA2 

promoter, first 

copy 

BsaI 

DS prom RV TTTGGTCTCTTTGGTTATAATTCCTTATGTATTTGTCG BsaI 

DS pgrl1 FW TTTGGTCTCTCCAAATGGCCACAACAGAGCAATC PCR of 5' 

PGRL1 

amplicon 

BsaI 

DS pgrl1 RV TTTGGTCTCTAACGATCTCAAAACCTGTAATGTCGTC BsaI 

DS pgrl2 FW TTTGGTCTCTTATGATGGCCACAACAGAGCAATC PCR of PGRL1 

entire amplicon 

BsaI 

DS pgrl2 RV TTTGGTCTCTTGGGTTAAGCTTGGCTTCCTTCTGGC BsaI 

DS prom2 

FW 
TTTGGTCTCTCCCATGGAAAAAACGACAATTAC PCR of psabA2 

promoter, 
second copy 

BsaI 

DS prom2 
RV 

TTTGGTCTCTCCATTTGGTTATAATTCCTTATGTATTT
GTCG 

BsaI 

DS pgr5 FW TTTGGTCTCTATGGCTGCTGCTTCGATTTC 
PCR of PGR5 

amplicon 

BsaI 

DS pgr5 RV 

(R8) 
TTTGGTCTCTCGAACTAAGCAAGGAAACCAAGCCTC BsaI 

        

pDSpsaA       

Primer 

Name 
Sequence (5‘→3‘) Purpose 

Restriction 

site 

A1 FW (R11) 
GGCCGCGGGCCCGATTTCCCCTTGCGGACTCTGAGCC

AATTTG PCR of Syn 

psaA upstream 

region 

ApaI 

A1 RV 
TGGTTCCGGCGAACGAATAATCATGCAGGGTTCTCCTC

GCTCGACAATG 
  

A2 FW  
CATTGTCGAGCGAGGAGAACCCTGCATGATTATTCGTT

CGCCGGAACCAG PCR At psaA 

first amplicon 

  

A1DS RV TTCGAATGCGGCCGCTGTAATTGTATAGC NotI 

A4DS FW TCAATCACTAGTATGTATAGGAC PCR At psaA 

second 

amplicon 

SpeI 

A3 RV (R12) 
GGAAAACCCAACTTCAGCTCAAAGTTTATCCTACTGCAA

TAATTCTTGC 
  

A4 FW 
GCAAGAATTATTGCAGTAGGATAAACTTTGAGCTGAA

GTTGGGTTTTCC 
PCR of Syn 
psaA 

downstream 

region 

  

A4 RV 
GGCCGCGAGCTCCGATCGGGCGAATGTTTAAAGGAT
CTTTAATC 

SacI 

        

Others       

Primer 

Name 
Sequence (5‘→3‘) Purpose   

psaA gUR 

FW  (R9) 
TGTGAGGGAACTTGGAACTC Primers used to 

check presence 

of Syn  psaA 

  

psaA_syn RV 

(R10) 
GATCATAATCACGCACCATG   

DS_nptI RV 
(P2) 

AAGATGCGTGATCTGATCCTTC Primers used to 

check presence 

of nptI_sacB 

  

sac_S2 (P3) AGCATATCATGGCGTGTAATATGGG   
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2.4. Synechocystis transformation 

Synechocystis WT or mutant strains were transformed with plasmid vectors purified with the 

QIAgen (Venlo, Netherlands) Midiprep kit. 

For each transformation, 10 ml of growing cells at an OD730 of 0.4 were harvested by 

centrifugation and resuspended in 1/20 volume of BG11. The cell number per ml was 

calculated from OD730 with the formula: 1 OD730 = 7×10
7
 cells. 2 μg of plasmid DNA per 

transformation were added to the cells. Transformations were incubated in light for 5 hours, 

the last 3 hours with shaking. For recovery, fresh BG11 was added and the transformations 

were incubated overnight in the dark with shaking at 30 °C. On the next day, cells were 

collected by centrifugation at 4500xg for 10 min, resuspended in a small volume of fresh 

BG11 medium and plated on BG11 agar plates containing the correct antibiotic. Mutants that 

integrated the nptI-sacB cassette in their genome were positively selected on BG11 agar plates 

containing 10 μg/ml kanamycin, whereas those that integrated the SpecR cassette were 

selected on BG11 agar plates containing 5 μg/ml spectinomycin. Unless otherwise indicated, 

plates of transformed cells transformed were incubated in light at 30 °C. To calculate the 

transformation efficiencies, the number of obtained transformants was counted and then the 

following equation was used: Transformation frequency = ‘number of transformants’ / ‘total 

number of cells before transformation’. For complete segregation of the mutants, increasing 

kanamycin (up to 100 μg/ml) and spectinomycin (up to 50 μg/ml) concentrations were used. 

 

2.5. Synechocystis counter-selection and frequency calculation of second recombinants 

For second recombination, with consequent removal of the nptI-sacB cassette and counter 

selection, completely segregated strains harbouring the double selection cartridge were used. 

Cells were grown in BG11 liquid medium containing 100 μg/ml kanamycin to an OD730 of 

0.4, then 10 ml were harvested by centrifugation and resuspended in 1/20 volume of fresh 

BG11 and the cell number per ml was calculated as described before. 2 μg of plasmid DNA 

per transformation were added to the cells and transformations were incubated in light for 5 

hours, the last 3 hours with shaking. As Synechocystis cells contain multiple copies of the 

genome, liquid cultures were then allowed to recover for 5 days in fresh BG11 medium 

without selection in order to allow them to lose all the copies of sacB. After the incubation 

period, 2 ml of each liquid culture were plated on BG11 solid medium containing 5 % 

sucrose. Unless otherwise specified, plates were incubated in light at 30°C. To calculate the 

frequency of second recombination, the number of recombinants was counted and the 
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following equation was used: ‘Recombination frequency’ = ‘number of recombinants’ / ‘total 

number of cells’ before recombination. Genomic PCR was used to confirm the complete 

segregation of first and second recombinants.  

For second recombination and counter selection in the case of the “single-step” double 

recombination strategy, completely segregated first recombinant strains were grown in liquid 

BG11 containing 100 μg/ml kanamycin to an OD730 of 1. For each of these cultures 500 μl 

were pelleted, washed and resuspended in 10 volumes of BG11 without antibiotic and the cell 

number per ml was calculated as described before. The liquid cultures were then grown for 5 

days without selection and subsequently 2 ml of each liquid culture were plated on BG11 

solid medium containing 5 % sucrose.  

 

2.6. Plant cultivation and growth conditions 

Arabidopsis thaliana WT (ecotype Col-0) seeds were incubated in the dark on wet Whatman 

paper for two days at 4 °C, then transferred to soil under controlled climate chamber 

conditions (PFD: 80 μmol m
-2

 s
-1

 16h/8h dark/light). 

 

2.7. Nucleic acid manipulation 

 

2.7.1.  Standard and high-fidelity PCR 

For genotyping of bacterial strains, PCR analysis was performed using 0.5 μl of genomic 

DNA as template in a total reaction volume of 20 μl. The reaction mix contained 1x PCR-

buffer (QIAgen), 100 μM dNTPs, 200 μM primers, 0.5 units of Taq DNA polymerase. The 

PCR products were then loaded on a 1% agarose TAE (150 mM Tris-HCl, 1.74 M Acetic 

acid, 1 mM EDTA) gel and visualized by Ethidium bromide staining.  

DNA fragments were amplified from Synechocystis genomic DNA or Arabidopsis Col-0 

cDNA with the Phusion High-Fidelity DNA Polymerase (Thermo Scientific, Rockford, 

USA). Reactions were performed in a total volume of 20 μl each containing 1x Phusion HF 

reaction buffer, 200 μM dNTPs, 200 μM of each primer and 0.4 units Phusion HF DNA 

Polymerase. The PCR-products were loaded on a 1% agarose gel and then cut from the gel 

and purified with the QIAgen gel extraction kit following the producer’s instructions. 

 

2.7.2.  Genomic DNA isolation 

Small-scale isolation of Synechocystis genomic DNA for genotyping and cloning was 

performed using the xanthogenate method, according to Tillett and Neilan (2000). Two ml of 
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exponentially growing liquid cultures were pelleted and resuspended in 50 μl of TE buffer (10 

mM Tris/HCl pH 7.4, 1 mM EDTA pH 8.0) containing 100 μg/ml RNAse A (DNAse-free). 

750 μl XS buffer (1 % calciumethylxanthogenate, 100 mM Tris/HCl pH 7.4, 20 mM EDTA 

pH 8.0, 1% SDS, 800 mM NH4OAc) was added to each sample and, after inverting them 4-6 

times, the tubes were incubated at 70 °C for 2 hours to dissolve membranes. The suspensions 

were then vortexed for 10 sec, incubated in ice for 30 min and centrifuged for 10 min at 

13000xg. The supernatant was transferred in a new tube and DNA was precipitated by adding 

0.7 volumes of isopropanol and by centrifuging for 10 min at 12000xg. The DNA pellet was 

washed with 70 % ethanol, dried and resuspended in 100 μl of ddH2O. 

For Southern blot analysis, high-quality genomic DNA was isolated as follows. 50 ml of 

liquid culture in the late exponential phase were centrifuged at 4000xg for 10 min at 4 °C and 

washed twice in 10 ml of TE buffer. The pellet was resuspended in 1 ml of TES buffer (25 % 

w/v sucrose, 50 mM Tris/HCl, 1 mM EDTA pH 8.0), frozen in liquid N2, thawed at 60°C and 

frozen again. After thawing again, 5 mg/ml lysozyme, 0.1 µg/ml RNAseA and 100 mM 

EDTA (pH 8.0) were added and the suspension was incubated at 37 °C for 1 hour. Then, 3 

units of proteinase K and 2 % SDS were added and the sample was incubated at 60 °C for an 

additional hour. The genomic DNA was extracted twice by adding an equal volume of 

phenol-chloroform (1:1 w/v) and the obtained aqueous phase was cleaned from traces of 

phenol with one volume of chloroform. The DNA in the aqueous phase was then precipitated 

with 0.7 volumes of isopropanol and washed with 70 % ethanol. The DNA pellet was air-

dried for 1 hour and resuspended overnight at 4 °C in 50 µl of H2O. All centrifugation steps 

were performed at 4 °C. 

 

2.7.3. RNA isolation 

The total RNA from Arabidopsis thaliana was extracted from leaf ground tissue using one 

volume of extraction buffer (300 mM NaCl, 50 mM Tris-HCl pH 7.5, 20 mM EDTA, 0.5 % 

SDS) and one volume of phenol-chloroform-isoamylalcohol (PCI) followed by solubilization 

at 65 °C for 5 minutes. After a centrifugation step (10 minutes at 7000 g), the supernatant was 

mixed with one volume of 8 M LiCl, incubated for two hours at -20 °C and centrifuged for 30 

minutes at 4 °C at 7000xg. The pellet was then washed with 75 % ethanol and resuspended in 

80 μl of DEPC-treated water. 

The total RNA from Synechocystis sp. PCC 6803 was extracted with the PGTX 95 method, 

according to Pinto et al. (2009). Cells from 50 ml of exponentially liquid cultures were 

pelleted, resuspended in 1 ml of PGTX (phenol 39.6 % w/v, glycerol 6.9 % w/v, 8-
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hydroxyquinoline 0.1 % w/v, EDTA 0.58 % w/v, sodium acetate 0.8 % w/v, guanidine 

thiocyanate 9.5 % w/v, guanidine hydrochloride 4.6 % w/v and Triton X-100 2 % w/v) and 

incubated at 95 °C for 5 min. After cooling on ice for 5 min, samples were vigorously mixed 

with 1/10 volume of chloroform, incubated 5 min at room temperature and centrifuged for 15 

min at 12000xg, 4 °C. The aqueous phase was then further extracted with one volume of 

phenol-chloroform-isoamylalcohol (PCI), and the RNA in the supernatant was precipitated 

with 0.7 volumes of isopropanol. The RNA pellet was washed with 75 % ethanol, air-dried 

and resuspended in 80 μl of DEPC-treated water. 

 

2.7.4.  Plant cDNA synthesis 

Synthesis of Arabidopsis thaliana cDNA was performed using the iScript reverse 

transcriptase kit (Bio-Rad, Hercules, CA, USA). During the whole procedure, DEPC-treated 

water was used. For digestion of DNA contaminations, DNAse treatment of 1 μg of RNA was 

performed in a total reaction volume of 10 μl, containing 1x PCR buffer (Qiagen, Venlo, 

Netherlands) + MgCl2 and 0.5 units of DNAse I. The reaction mix was incubated at room 

temperature for 30 minutes and the enzyme was then inactivated by adding 2.5 mM EDTA 

and further incubating for 15 min at 65 °C. Each RNA sample was then used in a total reverse 

transcription reaction volume of 20 μl, containing 1x iScript reaction mix buffer and 1 μl of 

iScript reverse transcriptase.  The first-strand cDNA synthesis was performed according to the 

following protocol by using a thermocycler (BioRad): 5 minutes at 25 °C, 40 minutes at 42 °C 

and 5 minutes at 85 °C. 

 

2.7.5.  Southern analyses 

Southern blot analyses were performed according to Sambrook et al. (1989). For Southern 

blot analysis, 5 μg of genomic DNA were digested, in 100 μl of total reaction volume, with 5 

units of the appropriate restriction enzyme, according to the manufacturer’s instructions. 

Reactions were incubated overnight at 37 °C. The obtained digestion products were purified 

with phenol-chloroform extraction, precipitated with isopropanol and resuspended overnight 

at 4°C in 20 μl ddH2O each. After 5 min denaturation at 65 °C, the samples were mixed with 

4 μl of 6x loading dye and electrophoretically separated on a 0.8 % agarose gel in 0.5x TBE 

(40 mM Tris-HCl, pH 8.3, 45 mM boric acid, 1 mM EDTA) at 80 V for 6 hours. After the 

separation, the DNA fragments in the gel were visualized with Ethidium bromide staining and 

then they were depurinated by incubating the gel in 0.2 M HCl for 10 min. After careful 

rinsing, the gel was denatured by gently shaking it in 1.5 M NaCl, 0.5 M NaOH for 45 min 
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and then neutralized for further 45 min in 3 M NaCl, 0.5 M Tris, pH 7.0. The gel was then 

blotted on a positively-charged nylon membrane (Hybond N+; GE Healthcare, Freiburg, 

Germany) by using the capillary transfer technique. A glass plate was placed on top of a glass 

basin filled with 20x SSC buffer (2 M NaCl, 0.2 M Na-citrate; pH 7.0). A paper bridge was 

placed on top of this plate, consisting of 1 piece of Whatman paper (3 MM) slightly larger 

than the gel and long, in order to reach into the 20x SSC buffer in the basin. The bridge was 

wetted with 10xSSC and, on top of that, 2 pieces of Whatman paper of the same size of the 

gel and also wetted with 10xSSC were placed. Air bubbles were carefully removed and the 

gel was placed upside down on the paper and then, on its back side, the positively charged 

nylon membrane upfront pre-incubated in 2x SSC buffer. On top of the membrane 2 further 

sheets of Whatman paper were added, also pre-wetted in 2x SSC buffer and a stack of paper 

towels about 10 cm tall. A weight of about 400 g was placed on top of the sandwich, to drive 

the flux of the blotting buffer via capillary force. The capillary transfer was allowed to run 

over night for approximately 16 hours. The membrane was UV-crosslinked. For the pre-

hybridization-step, the membrane was placed into a glass tube containing 20 ml of 

hybridization buffer preheated to 60 °C. 160 μl of previously denatured (100 °C, 5 minutes) 

herring sperm DNA (10 ng/μl) were added and the tube was then incubated in a rotating oven 

at 67 °C for at least 5 hours. For probe preparation, approximately 100 ng of PCR-product 

were filled up to 12 μl with ddH2O, denatured at 100 °C for 5 minutes and cooled on ice for 5 

minutes. Afterwards, 4 μl of 1xOLB Buffer (50 mM Tris pH 6.8, 10 mM MgOAc, 50 mM 

DTT, 0.5 mg/ml BSA, 33 μM each of dATP, dTTP and dGTP), 1 μl of Klenow DNA 

polymerase and 3 μl of radioactive 
32

P-dCTP were added to the probe and the reaction was 

incubated at 37 °C for 1 hour. The probe was purified with the Illustra MicroSpin
TM

 G-25 

Columns (Freiburg, Germany) according to the producer’s instructions and eluted in 100 μl 

ddH2O. The probe was then denatured (100 °C for 5 min) together with 60 μl of herring 

sperm DNA (10 ng/μl) and added to the filter. Hybridization was carried on overnight at 67 

°C in the rotating oven. For the washing step, the probe was discarded and 10 ml of washing 

buffer (0.1 % SDS, 0.2 M NaCl, 20 mM NaH2PO4, 5 mM EDTA; pH7.4) pre-warmed to 60 

°C were added in the tube that was further incubated at 67 °C. After 30 minutes the washing 

buffer was exchanged and the tubes were put back in the oven for 15 minutes. The washing 

buffer was discarded and the membrane was washed again at room temperature in RT buffer 

(6 mM NaH2PO4, 1 mM EDTA, 0.2 % SDS; pH 7.0) for one hour on a shaker. The membrane 

was then exposed on a radioactive-sensitive phosphor-screen overnight. Primers used to 

amplify the probes are listed in Table 2. 
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Signals were detected with a phosphor imager and IMAGEQUANT (Typhoon, GE 

Healthcare, http://www.gehealthcare.com/). 

 

2.7.6. Northern analyses 

Northern blot analyses were performed according to Sambrook et al. (1989) loading 15 μg of 

total RNA. To 15 μl of RNA 15 μl of formamide, 4 μl of formaldehyde and 3 μl of 10x MEN 

(0.2 M MOPS, 50 mM Na acetate, 10 mM EDTA; pH 7.0) buffer were added. The samples 

were incubated at 65 °C for 15 minutes and afterwards put on ice for 5 minutes. Then 8 μl of 

6x loading dye were added, the samples were loaded on an agarose gel (2 % agarose, 6 % 

formaldehyde, 1x MEN buffer) and then ran at 40 V for 3 hours. The gel was then blotted on 

a positively-charged nylon membrane (Hybond N+; GE Healthcare, Freiburg, Germany) by 

using the capillary transfer technique as previously described for the southern blot. The 

blotting assembly was allowed to run over night for approximately 16 hours and the 

membrane was afterwards UV-crosslinked. For the pre-hybridization-step the hybridization 

buffer was preheated to 60 °C. 20 ml of hybridization buffer and 160 μl of previously 

denaturated (100 °C, 5minutes) herring sperm DNA (10 ng/μl) were added. The tube was 

incubated in a rotating oven at 60 °C overnight. For probe preparation approximately 100 ng 

of PCR-product were filled up to 12 μl with ddH2O, denaturated at 100 °C for 5 minutes and 

cooled down on ice for 5 minutes. Afterwards, 4 μl of 1x NEBuffer 2, 1 μl of Klenow DNA 

polymerase, 33 μM dNTPs (without CTP) and 3 μl of radioactive 
32

P-dCTP were added to the 

probe followed by incubation over night at room temperature. For probe purification, Illustra 

MicroSpinTM G-25 Columns were used according to the producer’s instructions. For the 

washing step the washing buffer (0.1 % SDS, 0.2 M NaCl, 20 mM NaH2PO4, 5 mM EDTA; 

pH7.4) was pre-warmed in a water bath to 60 °C. The probe was discarded and 10 ml of 

washing buffer were added and further incubated at 65 °C. The washing buffer was kept at 60 

°C. After 30 minutes the washing buffer was exchanged and the tubes were put back to 60 °C 

for 15 minutes. The membrane was then exposed to a radioactive sensitive screen overnight. 

Primers used to amplify the probes are listed in Table 2.3. Signals were acquired and 

quantified with a phosphor imager and IMAGEQUANT (Typhoon, GE Healthcare, 

www3.gehealthcare.com).  
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2.8. Protein manipulation 

 

2.8.1.  Protein preparation and immuno-blot analyses 

For total protein extraction, Synechocystis cultures in the exponential growth phase were 

collected by centrifugation and resuspended in 1 volume of thylakoid buffer (50 mM 

HEPES/NaOH pH 7.0, 5 mM MgCl
2
, 25 mM CaCl

2
, 10 % glycerin). Cell suspensions were 

transferred into a 2 ml tube together with 0.5 volumes of glass beads (0.25-0.5 mm diameter), 

and vortexed 5 times for 20 sec. Samples were placed on ice for 1 min between each 

vortexing step. Beads and unbroken cells were pelleted by centrifuging at 16000xg for 3 min 

and then the supernatant, corresponding to the total protein fraction, was transferred into a 

new tube. For preparation of thylakoid fractions, the crude extract was diluted in 2 volumes of 

thylakoid buffer and membranes were pelleted at 16000xg, 4 °C, for 30 min. The thylakoid 

pellet was washed once more in thylakoid buffer and resuspended in a small volume of it. 

Proteins from both total and membrane fractions were solubilized with 2 % LDS and 100 mM 

DTT at room temperature for 1 hour and subsequently denatured at 80°C for 1 min. Non 

soluble material was removed by centrifugation at 16000xg for 10 min. Total protein 

concentration in the samples was measured with Amido Black staining (Schaffner and 

Weissmann, 1973).  

The protein samples were loaded on a Tris-tricine SDS-Polyacrylamide gel (Schagger and 

von Jagow, 1987) with the desired acrylamide concentration and, afterwards, proteins were 

transferred to PVDF membranes (Ihnatowicz et al., 2004). After blotting, membranes were 

saturated with 5 % milk proteins dissolved in 1x TBS-T (150 mM NaCl, 10 mM Tris pH 8.0, 

0.1 % v/v Tween20) and saturated membranes were incubated overnight at 4°C with the 

specific primary antibody diluted in TBS-T containing 5 % milk proteins. After removal of 

the primary antibody and 3 washing steps in TBS-T (10 min each), membranes were 

incubated for 1 hour with the corresponding secondary antibody, diluted in TBS-T containing 

5 % milk proteins, conjugated with horseradish peroxidase. Detection of the horseradish 

peroxidase signal was performed using the Pierce ECL Western Blotting Substrate kit 

(Thermo Scientific, Rockford, USA).  

 

2.8.2.  Blue-Native analyses of thylakoid protein complexes 

For native electrophoretical separation of thylakoid complexes, Synechocystis thylakoid 

fractions were prepared as described above but all steps were performed on ice and protease 

inhibitors (1 mM ACA, 1 mM PMSF, 4 mM benzamidin) were added to the thylakoid buffer. 



2. Materials and Methods  

37 

 

Chlorophyll concentration of thylakoid suspensions was then measured as follows: 5 μl of 

each sample were diluted 1:200 in 80 % acetone and incubated in the dark at -20 °C for 30 

min. Membrane debris were pelleted at 16000xg for 10 min. Absorbance at 663 nm was 

measured and the chlorophyll concentration was calculated with the formula: C= A663 x dil. 

factor / 86.86. 

50 μg of chlorophyll for each sample were washed and resuspended to a final concentration of 

0.5 μg/μl in thylakoid buffer containing 1 % n-Dodecyl-β-D-Maltoside. Solubilisation was 

performed on ice at 4 °C with gentle shaking for 50 min, followed by 10 more min at room 

temperature. Insoluble material was pelleted by centrifugation at 16000xg, 4 °C, for 30 min 

and supernatant was then mixed with 0.1 volumes of Coomassie loading solution (750 mM 

aminocaproic acid, 5 % Coomassie-G). Thylakoid protein complexes were separated on a 

Blue-Native PAGE (gradient gel, 4-12 % polyacrylamide) (Schagger et al., 1988). After 12 

hours of run, the blue cathode buffer (50 mM Tricine, 15 mM Bis-Tris pH 7.0, 0.02 % 

Coomassie-G) was replaced with fresh buffer without Coomassie-G. Anode buffer (50 mM 

Bis-Tris pH 7.0) was replaced as well with fresh one. After the run, gel stripes corresponding 

to single samples were incubated for 20 s in a denaturing buffer (6 % SDS, 200 mM Na2CO3, 

3 % β-mercaptoethanol) and proteins separated in the second dimension by SDS-PAGE (15 % 

polyacrylamide gel (Shapiro et al., 1967). 2D gel was stained with Colloidal Coomassie 

staining (10 % ammonium sulfate, 0.1 % Coomassie G-250, 3 % orthophosphoric acid, 20 % 

Ethanol) and destained with water. 

 

2.8.3. In vivo translation assay  

For in vivo radioactive labelling of thylakoid proteins, Synechocystis liquid cultures in the 

exponential growth phase were used. Equal amount of cells, based on the OD730, were 

harvested by centrifugation at 4500xg for 10 min and then resuspended in BG11 

supplemented with 5 mM glucose to a final OD730 corresponding to 300 ng/μl of chlorophyll 

a in the wild type sample. The same volume of the wild type was used for the other samples. 

The samples were incubated for 1 hour under normal growth conditions (30 µmol m
-2

 s
-1

 light 

intensities, 30 °C), with shaking, then supplemented with 500 μCi/ml of 
35

S-Met and 

incubated for additional 30 min, in order to radiolabel newly translated proteins. Protein 

radiolabelling was terminated by 1 mM of non-radioactive Methionine and cells were then 

collected by centrifugation at 4000xg, for 10 min, in a centrifuge pre-cooled to 4 °C. 

Thylakoids fractions were prepared as described before, resuspended to a final concentration 

corresponding - in the wild type - to 0.5 μg/μl of chlorophyll a and solubilised for 1 hour at 
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room temperature with 2 % LDS and 100 mM DTT. The same volume of the wild type was 

used for the other samples. The soluble fraction was obtained by centrifugation at 16000xg for 

10 min at room temperature. Samples corresponding, in the wild type, to 15 μg of chlorophyll 

were loaded and separated on an SDS-PAGE gel with 12 % polyacrylamide. The gel was then 

stained with Colloidal Coomassie staining, dried and exposed to Storage Phosphor Screen 

(Fuji) and radioactive labelled proteins were detected with the Typhoon PhosphorImager (GE 

Healthcare, Munich, Germany). 

 

2.9. Spectroscopic and fluorimetric analyses 

 

2.9.1.  P700 oxidation-reduction kinetics measurements 

The photo-oxidation and dark-reduction kinetics of P700 were measured in intact cells using 

the A820 change, as described (Herbert et al., 1995). The A820 was monitored using the 

modulated Duel-PAM 100 detection system (Walz, Effeltrich, Germany). The instrument 

operated with a time constant of 20 ms. Samples for A820 measurements were prepared at 

room temperature by washing exponentially growing cultures with BG11 not supplemented 

with glucose and resuspending them to a final OD730 of 1. After 10 min of dark-adaption, the 

samples were placed in a quartz cuvette with 1 cm of path length into the Optical Unit ED-

101US/MD mounted to Mounting Stand ST-101 with attached Measuring Heads DUAL-E 

and DUAL-DB. Inhibitors of electron transport were added to the samples prior to 

measurements to block different inputs of electrons to PSI, as has been done previously 

(Maxwell and Biggins, 1976; Herbert et al., 1992; Yu et al., 1993). Input from PSII was 

blocked with 25 μm DCMU. Input from the plastoquinone pool was blocked with 25 μm 

DBMIB. Stock solutions of the inhibitors were prepared to 1 mM in 1 % ethanol and then 

diluted 40x in the final samples. Mock treatment of the samples was performed, as a control, 

adding 1/40 of their final volume of 1 % ethanol prior to measurements. For the P700 

measurements, modulated far red measuring light was used and samples were excited with 

white actinic light (100 µmol m
-2

 s
-1

 light intensities) for 3 sec, followed by a dark period of 5 

sec. The P700 traces shown are representative of three independent experiments. 

 

2.9.2.  Bacterial whole-cell absorbance spectra 

Absorbance spectra of whole Synechocystis cells were recorded using a spectrophotometer. 

Cells were harvested, washed and resuspended in BG11 liquid medium to a final OD
730 

of 0.5. 
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Their absorbance spectra were recorded between 350 and 750 nm and normalized to the light 

scattering at 730 nm.  

 

2.9.3. Low temperature (77 K) fluorescence emission spectra 

77K fluorescence was recorded using an in-house built spectrofluorometer. Synechocystis 

samples grown under different light intensities were used. Cells were harvested, washed and 

resuspended in BG11 liquid medium to a final OD
730 

of 0.5, dark-adapted for 10 min and then 

rapidly frozen in liquid nitrogen. To investigate the stoichiometry of the PSI and PSII 

complexes, their fluorescence emission spectra under the Chl a excitation at 435 nm were 

recorded between 600 and 800 nm. Fluorescence emission peaks of PSI (720 nm) of the 

different strains were compared by normalizing the PSII emission peak (695 nm) to the one 

from WT. 

 

2.10. Luciferase assay 

Luciferase activity was induced by the addition of decanal, an analogue of the luciferase 

substrate luciferin, to the cyanobacterial suspension to a final concentration of 1 mM (from 50 

mM decanal in methanol/water 50 %, v/v stock). The reaction was incubated for 15 min with 

mild shaking and then luminescence was measured with a microplate reader (Safire
2
; Tecan, 

http://www.tecan.com/) at room temperature. Luminescence values were related to the 

suspension optical density at 730 nm, also measured with the microplate reader. Each 

suspension was measured in duplicates and the assay was repeated twice with independently 

grown cultures. 

For luciferase activity from agar plates, cells grown on solid medium were spread with the 

decanal solution and luminescence was detected with the FUSION FXT imaging system 

(Peqlab Biotechnologie GmbH, Erlangen, Germany). 

 

2.11. TEM analyses 

Transmission electron microscopy analysis of Synechocystis cells was performed in 

collaboration with Prof. Dr. Gerhard Wanner, Biozentrum der LMU, Planegg-Martinsried, 

Germany. 

 

2.12. Database analyses and software tools 

Gene models, mRNAs and gene sequences have been obtained from the NCBI 

(http://ncbi.nlm.nih.gov), Cyanobase (http://genome.kazusa.or.jp/cyanobase/) and TAIR 
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(http://arabidopsis.org) databases. Nucleic acid sequence analysis and in silico manipulation 

was performed using the VectorNTI Advance 9.1 (Invitrogen) and BioEdit Sequence 

Alignment Editor (www.mbio.ncsu.edu/bioedit/bioedit.html) software. Chloroplast transit 

peptides of Arabidopsis proteins were predicted by consulting the TargetP database 

(www.cbs.dtu.dk/services/TargetP). Protein multi-alignments were performed using ClustalW 

(Thompson et al., 2002) and Boxshade (http:// ch.embnet.org/software/BOX_form.html). 
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3. RESULTS AND DISCUSSIONS 

 

3.1.  Replacement of the Synechocystis PSI complex 

The introduction of Arabidopsis PSI in replacement of the Synechocystis endogenous one was 

chosen as starting point for the project because of its high degree of conservation between the 

two organisms and, in general, along the green lineage. As already shown in Table 1.1, 11 

genes must be replaced and 4 introduced de novo in order to introduce the Arabidopsis PSI in 

Synechocystis. The two largest PSI proteins PsaA and PsaB were exchanged in the first place. 

The PsaA and PsaB subunits originated through gene duplication (Kirsch et al., 1986) and are 

highly conserved even in organisms separated by a billion years of evolution, which is 

underlined by the high sequence similarity (about 80 %) in pairwise alignments with the 

Arabidopsis and Synechocystis proteins. Strongly conserved regions include the four cysteines 

(two each provided by psaA and psaB) that organize the iron-sulphur cluster (4Fe-4S) Fx, 

which is essential for functional electron transfer (Heathcote et al., 2003). 

PsaA and PsaB are encoded by the plastidial tri-cistronic operon psaA-psaB-rps14 in 

Arabidopsis and in all the higher plants and are under the transcriptional regulation of the 

light-responsive psaA promoter PpsaA (Chen et al., 1993; Lezhneva and Meurer, 2004). 

Accumulation of the psaA/B transcript is regulated in all higher plants and the amounts of PSI 

and PSII are transcriptionally modulated in a complementary manner according to changes in 

light quantity and quality (Allen and Pfannschmidt, 2000). The structure of the psaA-psaB 

operon in Synechocystis is similar to the Arabidopsis counterpart, but is di-cistronic as it lacks 

the rps14 gene at its 3’ end. The chloroplastic and the bacterial operon possess a number of 

common genetic regulatory elements since they are both transcribed and translated by a 

prokaryotic machinery. The Synechocystis PpsaA promoter also displays a light-dependent 

functional regulation that probably involves regulatory components mediating the signalling 

from photoreceptors (Herranen et al., 2005). Moreover, the psaA and psaB genes are 

separated in both organisms by an intergenic region (A/B IR) whose low divergence 

throughout the photoautotrophs lineage suggests the retention of cis-acting elements similar to 

those involved in prokaryotic translation initiation (Peredo et al., 2012). Indeed, the two 

intergenic regions have slightly different sizes (26 bp in Arabidopsis, 246 bp in 

Synechocystis) but both contain a Shine-Dalgarno sequence that promotes translation in 

prokaryotes.  

Although the psaA-psaB regulatory elements are partially conserved between Synechocystis 

and Arabidopsis, they diverged during evolution in order to adapt to the different cellular and 
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external environments of higher plants. Therefore, in order to avoid perturbing the 

transcription and mRNA processing of the operon, only the PsaA and PsaB coding sequences 

of Synechocystis were replaced with the plant counterparts, maintaining the surrounding 

genetic elements (Figure 3.1A).  

To prevent an inefficient translation of the introduced Arabidopsis genes, their coding 

sequences were optimized for heterologous expression in Synechocystis (OptimimGene™ 

algorithm, GenScript, Piscataway, U.S.A.). Different organisms show a different selective use 

of synonymous codons in encoding their proteins, called “codon usage”. Moreover, codon 

usage is different for each genome type and the main difference is the choice between codons 

ending in cytidine/guanosine or in adenosine/uridine. When comparing higher plants and 

cyanobacteria, chloroplastic genes preferentially contain codons ending in A/U, while most 

cyanobacteria contain C/G-endings (Campbell and Gowri, 1990).  Besides codon usage bias, 

the algorithm used for psaA-psaB replacement also optimized the GC and GpC content and 

removed mRNA secondary structure, cryptic splicing sites, repeats and other undesirable 

transcript processing sites. In the obtained Arabidopsis synthetic genes, named At psaA_opt 

and At psaB_opt, the Codon Adaptation Index (CAI) was increased, respectively, from 0.42 to 

0.94 and from 0.43 to 0.95.  

 

3.1.1. Generation of the PSI core subunits PsaA and PsaB mutants 

To generate a Synechocystis strain with a complete knockout of the PSI reaction core, 

glucose-tolerant wild type cells were transformed with the pDSAK1 vector, which led to the 

integration of the nptI-sacB double selection cassette in replacement of the endogenous psaA 

gene. Since absence of the PsaA protein prevents the assembly and accumulation of 

functional PSI complexes and causes a severe light-sensitivity and the inability to grow 

photoautotrophically, selection of the transformants was performed in Light Activated 

Heterotrophic Growth (LAHG) conditions as previously described by Anderson and McIntosh 

(1991). Selection of the transformants on agar medium supplemented with kanamycin yielded 

colonies with the integrated nptI-sacB cassette and the deleted psaA gene. The obtained 

ΔpsaA mutant was sequentially re-streaked on increasing antibiotic concentrations to achieve 

the complete segregation. This strain was used as a reference to investigate the effects of 

replacing the Synechocystis PsaA and PsaB proteins with the respective homologs from 

Arabidopsis thaliana and, more specifically, to determine whether the plant proteins could 

lead to the assembly of a functional PSI. A mutant was generated in which both the Syn psaA 

and psaB coding sequences were replaced by the At psaA_opt and At psaB_opt synthetic 
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genes. In this mutant, called AB_opt, the synthetic coding sequences replaced the endogenous 

ones. 

The AB_opt mutant was generated stepwise. The glucose-tolerant wild type Synechocystis 

strain was initially transformed with the pDSAB_opt vector in order to substitute the entire 

psaA/B operon. Selection of the transformants on kanamycin was performed in normal light, 

in order to select for a light-tolerant phenotype, but still on BG11 medium containing glucose. 

In the obtained transformants the nptI-sacB double selection cassette downstream of the 

operon and the At psaB_opt gene could be detected, but not At psaA_opt (data not shown). 

PCR on genomic DNA and sequencing of the obtained amplified fragments revealed that the 

first homologous recombination occurred through the psaA/B intergenic region and the psaB 

downstream region, thus leading only to the replacement of the Syn psaB gene.The reason 

why the At psaA_opt gene was not integrated properly can be explained by the length of the 

entire synthetic operon (~5 kb) and by the presence of the homologous intergenic region (A/B 

IR) separating the desired recombination site and the nptI positive marker. The obtained 

mutant (B_opt
kanR

) was used as background for the subsequent replacement of Syn psaA. 

B_opt
kanR

 was transformed with the plasmid pAB1 in order to excise the nptI-sacB cassette 

and to obtain a marker-less strain. After a recovery of 5 days, transformants lost all sacB 

copies and selection on 5 % sucrose yielded markerless mutants, called B_opt. 

Transformation of B_opt was performed using the pDSA_opt vector in order to replace Syn 

psaA with the artificial homolog At psaA_opt, this time introducing the nptI-sacB cassette 

upstream of the operon. The endogenous psaA promoter, placed between the cassette and the 

recombinant gene, could have caused an undesired recombination as A/B IR did in the case of 

pDSAB_opt, even if its smaller size would correlate with a lower probability of 

recombination. Anyway, PpsaA was kept in order to allow expression of the introduced At 

psaA_opt also before removal of the double selection cassette. Indeed, selection on 

kanamycin yielded colonies still able to grow in full light and harbouring the entire At 

psaA/B_opt synthetic operon. Complete segregation of the mutant, AB_opt
kanR

, was confirmed 

by PCR and subsequent removal of the double selection cassette was performed via 

transformation with the pAB2 vector. Cells that still contained nptI-sacB were negatively 

selected on 5 % sucrose while the surviving transformants constituted the AB_opt mutant 

strain. These mutants were, as those of all the previous recombination steps, still bluish, but 

not light sensitive like the ΔpsaA knockout strain and they could grow under normal light 

conditions (Figure 3.1C). To confirm correct segregation of the genotypes in the ΔpsaA, 

AB_opt
kanR

 and AB_opt mutants, genomic PCR was performed using six primer pairs (Figure 
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3.1B). In the wild type strain, the primer pairs P1+P2 and P3+P4 generated amplicons 

spanning the Syn psaA-psaB intergenic region and the Syn psaA and Syn psaB genes, 

respectively. None of these PCR products were detectable in the two replacement strains, 

confirming that they had lost both the endogenous genes, while only primers P3+P4 generated 

an amplicon in ΔpsaA that still retained Syn psaB. Primer pair P5+P6 amplified the nptI-sacB 

selection cassette from the ΔpsaA and AB_opt
kanR

, but not AB_opt, genomes. The region 

spanning the At psaB_opt gene and its downstream region could be amplified, combining 

primers P7 and P8, in the AB_opt
kanR

 and AB_opt mutants, as well as the amplicon spanning 

the At psaA_opt and At psaB_opt recombinant genes (primer pair P9+P10). The primers P11 

and P12 generated a PCR product covering the At psaA_opt 5' end and its upstream genomic 

region in the AB_opt mutant strain, confirming the complete excision of the nptI-sacB 

cassette. In the case of AB_opt, partially overlapping amplicons covering the whole integrated 

synthetic operon, including the upstream and downstream flanking sequences, were also 

sequenced to confirm its accuracy. 

 

3.1.2. Molecular analysis of the PSI core mutants 

The growth phenotypes of the ΔpsaA, AB_opt
kanR

 and AB_opt mutant strains were analyzed by 

spotting them on BG11-agar plates under different selective and trophic conditions (Figure 

3.1C). The ΔpsaA
 
mutant displayed resistance to kanamycin, deriving from the integrated nptI 

resistance gene, but, being PSI-deficient, it only grew under LAHG conditions. In LAHG, 

bacteria are grown heterotrophically in presence of 5 mM glucose, in the dark except for a 

single short exposure to dim light every 24 h, which is necessary to maintain the circadian 

rhythm and ensure normal progression through the cell cycle. Being an obligate heterotroph 

and light-sensitive, psaA was unable to grow neither in continuous bright light nor without 

glucose. The AB_opt
kanR

 mutant was also resistant to kanamycin while AB_opt was sensitive 

to the presence of the antibiotic. Interestingly, both the mutants containing the psaA and psaB 

optimized genes from Arabidopsis were not light sensitive and were partially able to grow 

photoautotrophically on BG11 agar plates containing no sugar. Although in these conditions 

they could grow only at a much slower rate (see Figure 3.1C) than the wild type, this 

suggested that the At PsaA and At PsaB proteins could partially replace the function of the 

Synechocystis homologs, at least to the extent of restoring light tolerance and the ability to 

grow photoautotrophically. Moreover, the presence of the same phenotype in both 

replacement mutants indicated that the nptI-sacB cassette upstream of the PpsaA promoter in 

AB_opt
kanR

 did not influence the operon function. 
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Figure 3.1 Analysis of the psaA-psaB mutant strains  
(A) Schematic depiction of the mutant strains after the subsequent transformation steps. The genomic regions 

used for targeted homologous recombination are highlighted at each step (HR1-10). Annealing sites of the 

primers used for genotyping (P1-12) are indicated. 
(B) Complete segregation of the Synechocystis ΔpsaA, AB_optkanR and AB_opt strains generated by the genetic 

manipulations represented in (A). Note that B_optkanR and B_opt are not shown because they already constituted 

the background genotypes of the AB_optkanR and AB_opt mutants shown here. 
(D) Drop test of ΔpsaA, AB_optkanR and AB_opt mutants on selective media. Liquid cultures at an OD730 of 0.4 

were washed with BG11 without glucose and spotted (15 μl each) onto BG11 medium containing either 100 

μg/ml kanamycin or no selection. When tested for light sensitivity, cells were grown mixotrophically, in 
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continuous light at 30 μmol photons m-2 s-1 on BG11 supplemented with 5mM glucose. When tested for 

autotrophic growth, cells were grown in continuous light at 30 μmol photons m-2 s-1 on BG11 without glucose. 

When grown in Light Activated Heterotrophic Growth (LAHG) conditions, the cells were incubated in the dark 

on BG11 supplemented with 5 mM glucose, and exposed to light for 5 min every 24 hours. 

 

The growth phenotype of the Synechocystis mutants with the At psaA and At psaB optimized 

genes replacing the endogenous counterparts suggested that the introduced recombinant genes 

were functional at least to some extent, because their presence was sufficient to partially 

rescue the PSI-deficient phenotype of ΔpsaA. Expression of the cyanobacterial and plant PSI 

core genes was analyzed by Northern blot in the wild type, ΔpsaA and AB_opt strains (Figure 

3.2A). When hybridizing the filters with the Syn psaA and Syn psaB radiolabelled probes, the 

target transcripts were detected only in WT. In both cases, a 5 kb and a 2.2 kb band, 

corresponding to the unprocessed Syn psaA-psaB and to the processed Syn psaA or Syn psaB 

transcripts, respectively, were present, as already reported in literature (Herranen et al., 2005). 

The probes hybridized neither to the AB_opt nor to the psaA RNA sample, which confirms 

that disruption of the psaA gene prevents also transcription of psaB. On the contrary, the At 

psaAo and At psaBo probes hybridized to the AB_opt RNA sample, thus confirming that the 

two plant genes were transcribed in this mutant strain. Moreover, two bands (of 5 and 2.2 kb, 

respectively) were present in both cases as it was shown for the endogenous counterparts, 

demonstrating that the replacement operon could be transcribed and the mRNA was correctly 

processed. The abundance of the At psaA_opt and At psaB_opt transcripts could not be 

quantified and compared with that of the endogenous ones in WT, because of the different 

hybridization efficiencies of the probes.  

Although the plant genes were transcribed in the AB_opt strain, it was not possible to detect 

the corresponding proteins when performing immunoblot analysis on total or thylakoid 

protein fractions. Failure to detect At PsaA and At PsaB proteins could either be explained by 

a drastically lowered translation rate or by an increased instability of the synthesized 

polypeptides. 

In order to identify the cause for the absence of At PsaA and At PsaB, in vivo pulse labelling 

of proteins from WT, psaA and AB_opt strains was performed. Cells were incubated for 30 

min in light in the presence of 
35

S-Methionine that was incorporated into newly translated 

proteins. After the incubation period, de novo synthesized thylakoid proteins were isolated 

and separated on a denaturing polyacrylamide gel. Prior to loading, samples were adjusted 

according to the OD730 of the initial cell suspensions. Equal loading was confirmed by 

Coomassie staining of the gel and, in the wild type, positions of the PsaA and PsaB proteins 
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were assigned according to previous immunodecoration results (data not shown), while D1 

and D2 core subunits of PSII were annotated referring to Ossenbühl et al. (2006).  

 

 

 

Figure 3.2 Expression and translation analysis in the psaA-psaB strains 
(A) Northern blot analysis of Synechocystis psaA and psaB genes and of the recombinant Arabidopsis optimized 

homologs (At psaAo and At psaBo, respectively) in the WT, ΔpsaA and AB_opt strains.  20 μg of RNA were 

loaded for each lane and equal loading was verified by methylene blue staining of the membrane. The probes 

covered the entire sequences of the target genes. Hybridization was performed at 60 °C, according to the 

Materials and Methods. 

(B) Protein synthesis in the WT, psaA and AB_opt strains. Newly synthesized thylakoid proteins were isolated 

from cell suspensions after 30 min incubation with 35S-Met under 30 µmol m-2 s-1 light intensities. First, proteins 

were fractionated by SDS-PAGE.  Then, the gel was stained with coomassie and dried. Signals of de novo 

synthesized proteins were detected by autoradiography. Expected sizes of the PsaA/PsaB and D1/D2 proteins are 

indicated with asterisks (*). 

 

The autoradiogram of the gel (Figure 3.2B) showed a drastic reduction of the protein 

synthesis rate in the psaA knockout mutant with respect to the WT, although the amount of 

proteins loaded on the gel was equal for all three genotypes. The overall protein translation 

rate of membrane proteins in the AB_opt mutant was higher than in the PsaA knockout strain 

but lower than in the wild type. The presence of newly translated PsaA and PsaB Arabidopsis 
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proteins could not be unambiguously determined due to a lack of precise information about 

electrophoretic mobility of the different membrane proteins.  

Although it could not be clarified that synthesis and accumulation of the Arabidopsis PSI core 

proteins took place in the replacement mutant, the presence of At psaA_opt and At psaB_opt 

transcripts lead to a partial rescue of the drastic psaA translational impairment shown in 

Figure 3.2B. These preliminary results were consistent with the growth phenotypes of the 

analyzed strains. 

To investigate the effects of the genetic manipulations in ΔpsaA and AB_opt on the assembly 

and accumulation of the membrane protein complexes, BN-PAGE analysis was performed. 

Thylakoid membranes were solubilised with β-DM and photosynthetic complexes were 

fractionated by Blue Native PAGE. Six major bands, representing the PSI supercomplexes, 

trimeric PSI, dimeric PSI, dimeric PSII/ATPase, monomeric PSI, and monomeric PSII, were 

detected in the WT (Figure 3.3A, left panel) and annotated according to available literature 

(Herranen et al., 2004; Yao et al., 2011). It has to be noted that the bands representing PSI 

complexes are the only green ones, as chlorophyll a is mainly associated to photosystem I in 

Synechocystis (Fujita et al., 1988). Blue Native gels were stained with Coomassie in order to 

visualize pigment-less and low-abundant complexes (Figure 3.3A, right panel). The unstained 

and the Coomassie-stained BN PAGES revealed that all PSI complexes and supercomplexes 

were absent in psaA, while PSII and ATPase complexes were still present in wild type-like 

amounts. Instead, two additional chlorophyll-containing complexes could be identified in the 

AB_opt mutant strains (indicated by the asterisks). The two additional complexes migrated 

similarly into the BN PAGE compared to the PSI dimer and the PSI supercomplexes of the 

wild type sample. No PSI trimer - the most abundant PSI supercomplex in the wild type - , 

could be identified in the PSI-core replacement mutant. The observed differences in the 

photosynthetic complexes corresponded to changes in the in vivo absorption spectra of the 

analyzed strains (Figure 3.3B). In psaA the absorption peaks of Chl a, at 438 and 681 nm, 

were essentially absent and also the peak corresponding to phycocyanin (PC) was reduced 

with respect to the wild type. In the AB_opt strain, the PC peak was higher than in psaA, 

although it was still lower than in WT. Notably, the replacement mutant accumulated to a 

certain extent also chlorophyll, thus confirming that the additional complexes observed in the 

BN-PAGE were associated with the pigment. The markedly reduced Chl a/PC ratios 

accounted for the blue colour of both mutant strains.  

 



3. Results and discussion 

 

49 

 

 

 

Figure 3.3 Analyses of photosynthetic complexes in the WT, ΔpsaA and AB_opt strains 
(A) Blue native analyses of thylakoid membranes. Thylakoid membranes were isolated and then solubilised with 

β-DM (1 %). Protein preparations corresponding to 50 µg chlorophyll a were fractionated on BN gels (4-12% 

gradient). Blue Native gels were stained with coomassie (R250) to visualize complexes containing no 

chlorophyll-binding proteins.  

(B) In vivo absorption spectra of Synechocystis WT, ΔpsaA and AB_opt strains. The peaks at 438 and 681 nm 

correspond to the maxima of Chl a absorption, the peak at 628 nm corresponds to the absorption maximum of 

PC. The spectra were normalized to the absorbances at 730 nm. 

(C) Steady-state fluorescence emission spectra at 77 K. Cell suspensions were adjusted to an OD730 of 0.5 and 

dark-adapted for 10 min prior to freezing. Fluorescence emission spectra were measured by exciting cells at 435 

nm and were normalized to the PSII emission peak at 695 nm. The curves are representativeof two repetitions. 

 

In the attempt to detect the presence of PSI with an independent experiment, fluorescence 

emission spectra of the two photosystems at low temperature (77 K) were measured in cell 

suspensions of the WT, ΔpsaA and AB_opt Synechocystis strains (Figure 3.3C). Chlorophyll a 

was excited with light at 435 nm and the recorded fluorescence emission was normalized to 

the PSII emission peak at 695 nm. Three main peaks were present in the WT sample; two 
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originating from PSII, at 685 and 695 nm, and one at 725 nm which corresponds to PSI 

(Murakami, 1997). As expected, PSI fluorescence at 725 nm was higher than PSII 

fluorescence at 695 nm, because the PSI/PSII ratio varies from about 1 to almost 4 in 

Synechocystis depending on the growth light conditions. Despite the observed differences in 

their photosynthetic complex composition (Figure 3.3A), the psaA and AB_opt mutants 

showed comparable fluorescence emission spectra. Both displayed the 685 and 695 nm 

emission peaks deriving from the PSII-associated chlorophyll a molecules but no PSI 

fluorescence emission could be observed. Based on the absence of PSI fluorescence emission, 

the Synechocystis AB_opt mutants appear not to accumulate any functional PSI reaction 

centre. 

 

3.1.3. Discussion: Arabidopsis PsaA and PsaB can partially complement the function of the 

Synechocystis homologs 

Among the two photosystems characterizing all the photo-oxygenic organisms, PSI is more 

conserved between cyanobacteria and higher plants. PSI is responsible of transferring 

electrons from plastocyanin, located on the luminal side of thylakoids, to ferredoxin on the 

stromal side. Although core components and structures of the cyanobacterial and chloroplast 

PSI complexes are similar, some differences exist between them. In cyanobacteria, PSI is 

normally trimeric and each monomer consists of 12 protein subunits, whereas that of plants is 

composed of at least 15 subunits and mainly exists as a monomer associated with thylakoid-

embedded light-harvesting proteins. Four out of 15 subunits (PsaG, PsaH, PsaN and PsaO) are 

newly evolved in chloroplasts, whereas one cyanobacterial subunit (PsaM) was lost in higher 

plants. PSI complex assembly is only poorly understood presumably because assembly 

intermediates cannot be readily identified. In recent years, forward and reverse genetic 

approaches provided a starting point for the study of PSI assembly, but the analysis of 

mutants with impaired accumulation of the complex is difficult in plants, where a complete 

PSI depletion is lethal. This aspect could be responsible for the failure to identify fundamental 

regulatory proteins required for the assembly and function of PSI. For this reason, together 

with the high homology level, photosystem I was chosen as the starting point to generate the 

Synechocystis platform having the photosynthetic machinery replaced by that of the flowering 

plant Arabidopsis thaliana.  

As already reported in previous studies, knockout of the psaA and psaB genes prevents the 

assembly of any functional PSI complex in Synechocystis. Although these mutants are PSI-

deficient, they can grow in Light Activated Heterotrophic Growth conditions, whereas the 
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mutation is lethal in both photoautotrophic and mixotrophic conditions. Indeed, PSI depletion 

was found to correlate with an extreme light sensitivity of the resulting mutants; this is 

observed both in Anabaena variabilis ATCC 29413 (Mannan et al., 1991) and Synechocystis 

sp. PCC 6803 (Smart et al., 1991; Smart and McIntosh, 1993). The same phenotype can be 

observed in the ΔpsaA mutant generated in the present study, where the Syn psaA gene is 

completely replaced by the nptI-sacB double selection cassette. This strain is characterized by 

a turquoise-blue colour, since most of chlorophyll a is associated with PSI in cyanobacteria. 

As expected, the psaA knockout causes a severe light sensitivity and the mutant’s inability to 

grow in absence of glucose as energy supply.  

The replacement of the Synechocystis psaA and psaB coding sequences with the optimized 

homologs from Arabidopsis thaliana, in the generated AB_opt strain, results in a partial 

rescue of the described phenotype, at least regarding the light sensitivity. Indeed, AB_opt cells 

are capable of growing under both LAHG and mixotrophic conditions, even if their colour 

still resembled that of ΔpsaA. The double replacement mutant is also able to grow 

photoautotrophically, but with slower growth rates under mixotrophic conditions. The fact 

that the mutant shows only partial complementation could not be traced back to a lack of 

transcription, because both plant genes were proven to be transcribed (Figure 3.2A). At 

psaA_opt and At psaB_opt transcripts accumulate in the mutant cells, with a wild type-like 

processing pattern which consists of a 5 kb psaA-psaB transcript and of the mature 2.2 kb 

transcripts, respectively.  

Several attempts to express photosynthetic genes from higher plants in Synechocystis were 

carried out in former studies. The psbA gene from Poa annua was introduced into a 

Synechocystis mutant background strain missing all three psbA genes (psbA1/2/3). It could be 

shown that the corresponding plant PSII core protein accumulated in the Synechocystis mutant 

strain (Nixon et al., 1991). Instead, CP43 from spinach accumulated in cyanobacterial cells 

only when fused with the C-terminus of the endogenous Synechocystis counterpart, which is 

apparently necessary for its stability (Carpenter et al., 1993). In another study an Lhcb gene 

from pea was introduced into Synechocystis but the protein did not accumulate, because it 

was degraded (He et al., 1999). However, the full-length translated recombinant protein could 

be detected in low amounts by pulse labelling experiments. 

In this study it cannot be unambiguously determined if the plant PsaA and PsaB full-length 

proteins are translated in AB_opt, because annotation of protein bands in in vivo pulse 

labelling experiments (Figure 3.2B) was uncertain. Irrespectively of this, major changes in the 

general translation profiles of the analyzed strains are present. When comparing equal steady-
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state amounts of thylakoid proteins, de novo synthesis is drastically reduced in the ΔpsaA 

knockout with respect with wild type, whereas in the AB_opt replacement strain the overall 

translational rate is partially increased, but lower than in WT. Therefore, although the 

presence of the recombinant PsaA and PsaB proteins could not be demonstrated, several 

phenotypic differences were observed after introducing the two plant genes in AB_opt which 

cannot be explained by their gene transcription alone (Figure 3.1C). The extreme sensitivity to 

photoinhibition of Synechocystis mutants depleted of PSI and of the associated chlorophylls 

has been proposed to originate from their inability to efficiently quench the electrons coming 

from PSII (Smart et al., 1991). Indeed, functional PSII and phycobilisome complexes 

assemble in unmodified amounts in the PSI-less strains (Figure 3.3A), suggesting that 

syntheses of these three complexes are independently regulated (Shen et al., 1993). Three 

possible electron acceptors for PSII have been proposed to act in strains lacking PSI: i) 

ferredoxin, which reduces NADP
+
 (Arnon et al., 1981) ii) cytochrome oxidase, via the Cyt b6f 

complex, which is shared between photosynthesis and respiration in cyanobacteria (Sandmann 

and Malkin, 1984) iii) or a hydrogenase, which would reduce H
+
 to hydrogen gas and has 

been purified from cyanobacteria (Ewart and Smith, 1989). According to these findings, the 

markedly reduced sensitivity to photoinhibiton of the AB_opt mutants (Figure 3.1C drop 

test, growth in normal light) can be attributed to the presence of an electron acceptor for PSII 

not present in Δpsa. In the thylakoids of the knockout strain, all various PSI complexes and 

super complexes are completely missing, while the other complexes of the photosynthetic 

machinery are still present. In the mutant expressing the Arabidopsis psaA-psaB genes, two 

more complexes can in fact be detected in addition to those present in Δpsa. The greenish 

appearance of these novel complexes suggests their association with chlorophyll molecules 

and their sizes are comparable with those of the wild type PSI dimer and supercomplexes. 

Despite these strong suggestions of the presence of some chimeric PSI complex, the generated 

Synechocystis replacement mutant shows the same fluorescence emission spectrum as the 

PSI-less strain. Absence of the PSI fluorescence emission signal indicates that the additional 

thylakoid complex detected is not functional and reasons for this have to be investigated in 

future experiments.  

In cyanobacteria, the PSI biogenesis starts with the formation of the large, heterodimeric 

PsaA/PsaB reaction centre. Subsequently, low molecular mass subunits are added to the core 

scaffold, beginning with the extrinsic subunits of the stromal ridge (PsaC, PsaD, and PsaE), 

which is involved in ferredoxin binding (Schöttler et al., 2011). Non-functionality of PSI 

hybrids could be due to a poor structural interaction of the recombinant plant-type core with 
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the low molecular mass cyanobacterial subunits, even if it has been shown that the 3D 

conformation of the conserved PSI subunits is virtually identical in higher plants and 

cyanobacteria (Amunts and Nelson, 2008). Either way, it is tempting to speculate that 

introduction of the other 13 Arabidopsis subunits in the AB_opt Synechocystis mutant might 

possibly lead to the accumulation of a functional plant-type PSI. In fact, a synthetic operon 

encoding for the missing PSI mature plant proteins has already been constructed, to be 

introduced into the replacement strain (data not shown). A remarkable feature of PSI complex 

is that it contains an extremely high amount of non-protein components. Indeed, almost one 

third of its total mass consists of different co-factors, such as chlorophylls, carotenoids, 

phylloquinones and 4Fe-4S clusters. These co-factors are known to be fundamental for PSI 

complex function, but also for its structural integrity. One explanation for PSI instability can 

be that those co-factors are not properly associated with the apoproteins. The higher plant and 

cyanobacterial PSI complexes show a high homology level also in the coordination sites for 

the carriers of the electron transport chain chlorophylls and carotenes, that are conserved at 

nearly identical positions and orientations (Amunts and Nelson, 2009). It can therefore be 

almost certainly excluded that the observed lack of PSI function in the AB_opt Synechocystis 

strain is caused by a defect in co-factors assembly. A more likely scenario is the lack of plant-

specific factors required for the PSI biogenesis in Synechocystis.  In plants, indeed, gene 

products have been identified by mutational analyses that may act as regulatory or scaffold 

proteins in the assembly of PSI. The conserved chloroplast proteins Ycf3, Ycf4, and Pyg7-1 

(Ycf37 in Synechocystis) - along with specific cyanobacterial proteins like BtpA and RubA - 

appear to be involved in posttranslational steps of PSI assembly (Dühring et al., 2007). 

Although these factors show a remarkable degree of sequence similarity in cyanobacteria and 

chloroplasts, their inactivation has different consequences in the respective organisms (Chi et 

al., 2012). Therefore, the lack of functionality of the tentative chimeric PSI accumulating in 

the Synechocystis AB_opt strain might be due to the absence, in the host organism, of one or 

more of the plant-specific forms of these factors. In order to investigate this, the first 

necessary step is to determine the subunit composition of the complex indentified in the 

AB_opt mutant that could be used as a genetic background to screen for proteins that are 

needed for PSI functional assembly in Arabidopsis thaliana.  
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3.2. Effects of CURT1 proteins levels on the thylakoid architecture in Synechocystis 

 

The CURVATURE THYLAKOID1 (CURT1) protein family of Arabidopsis thaliana is composed of 

four members, named CURT1A, B, C and D. As already mentioned, they have been shown to 

be specifically located in the grana margins of the thylakoids and to determine the grana 

structure in plants (Armbruster et al., 2013). Orthologs of the CURT1 proteins exist in plants, 

algae and cyanobacteria and a homolog, encoded by the gene slr0483, is also present in 

Synechocystis sp. PCC 6803 (synCURT1).  

The bacterial synCURT1 is a 17 kDa protein composed of 149 amino acids (Figure 3.4A). A 

multialignment (Figure 3.4B) performed to determine the conservation degree in between the 

synCURT protein and the Arabidopsis homologs showed that synCURT1 shares the highest 

identity (43 %) with the mature form of the plant isoform CURT1A. As well as its 

Arabidopsis counterparts, the synCURT1 protein contains four predicted α-helices (H1-4), 

which also represent the regions conserved to the highest degree among all the isoforms. A 

peptide in the N-terminus of synCURT1, the less conserved part of the protein, was chosen as 

epitope for the generation of a protein-specific antibody. 

 

CURT1A 1 ma-----------------------------isvaasssmavmvprvpa-vstrcsav--
CURT1B 1 ----------------------------maslsvssssti--idsrappsrlasasassp
CURT1C 1 ----------------------------masisatlpspl-----------lltqrks--
CURT1D 1 melctrsttiithlpasfnghgylagksvdrislplqrnvaslv--lqs-rtlRCSRKFP
synCURT1 1 -------------------------------------------MGRKHSIRIIKDW----

CURT1A 29 -----pylpprs-fgrssftvplklvsgnglqkvellkt---RASSEETSSIDTNELITD
CURT1B 31 scislptlpiqshtrAAKATAYCRKIVRNVVTRAT-TEVGEAPATTTEAETTELPEIVKT

CURT1C 20 nltsiqklpfsltrgtnd-------lsplsltrnp-ssislmvkASGESSDSSTDLDVVS
CURT1D 58 GE---TVTEETS-TGVNEFGVE----DRDGVVVAAEEKNSNSEAPQAEDEETQALEFLND
synCURT1 14 -----LKMEEQK-----------------TATAGIKTDVGPITTPNPQKSPITDQAWQEW

CURT1A 80 LKEKWD--------------GLENKSTVLIYGGGAIVAVWLSSIVVGAINSVPLLPKVME
CURT1B 90 AQEAWE--------------KVDDKYAIGSLAFAGVVALWGSAGMISAIDRLPLVPGVLE
CURT1C 72 TIQNWD--------------KSEDRLGLIGLGFAGIVALWASLNLITAIDKLPVISSGFE
CURT1D 110 IK---L--------------DSDKTYSILLYGSGAIVALYLTSAIVSSLEAIPLFPKLME
synCURT1 52 LQPVWEVLGKIPQMTGEFFEDNKQPLISLGIILLGIISVKILIAVLDAINDIPLLAPTLQ

CURT1A 126 LVGLGYTGWFVYRYLLFKSSRKELAEDIESLKKKIAGSE--
CURT1B 136 LVGIGYTGWFTYKNLVFKPDREALFEKVKSTYKDILGSS--
CURT1C 118 LVGILFSTWFTYRYLLFKPDRQELSKIVKKSVADILGQ---
CURT1D 153 VVGLGYTLWFTTRYLLFKRNREELKTKVSEIKKQVLGSDSE
synCURT1 112 LIGMGYTAWFIWRYLWKAEKRQELASEFGALKEQIFGG---

----------

------ ---------------------- ---

----------------- ----------------
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H3 H4

~~~~~~ ~~~~~~ ~ ~~~~~~ ~~
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Figure 3.4 Characteristics of CURT1 proteins 
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(A) Scheme of synCURT1 (149 aa) protein structure. The four predicted α-helices (H1-4) and two 

transmembrane domains (TM) are indicated, together with the specific antibody recognition site.  

(B) Sequences of Arabidopsis CURT1A, B, C and D and of synCURT1were aligned using ClustalW (Thompson 

et al., 2002) and Boxshade. Conserved amino acids are highlighted by black boxes, whereas grey ones indicate 

closely related amino acids. Predicted chloroplast transit peptides of the plant proteins are indicated in lowercase 

letters and CURT1A and synCURT1 peptide sequences used for antibody generation are indicated in italics. The 

four predicted α-helices (H1-4) and the two TMs (~, in bold characters) are also highlighted. 

 

3.2.1.  Generation of Synechocystis mutants with altered CURT1 protein levels 

Unlike higher plants, the thylakoid membranes in cyanobacteria do not form grana: in 

Synechocystis they are organised in parallel layers converging in sites close to the plasma 

membrane. To investigate to which extent the CURT1 proteins have an impact also on 

cyanobacterial thylakoid architecture, mutants of the cyanobacterium Synechocystis with 

altered levels of the endogenous (synCURT1) or Arabidopsis (CURT1A) CURT1 protein 

were generated (Figure 3.5A). In fact, complete loss of synCURT1 seemed to have severe 

consequences for cell viability, because the attempt to obtain fully segregating knockout 

strains for synCURT1 failed. However, it was possible to generate both strains that express 

CURT1A either in addition (strain: CURT1A) or instead of synCURT1 (strain: CURT1A 

syncurt1). 

The suicide vectors used to generate the mutants, pCURT1A and pCURT1Asyncurt1 

respectively, were assembled using the Golden Gate cloning strategy. In both cases 

expression of the Arabidopsis CURT1A coding sequence, lacking the cTP, was driven by the 

strong Synechocystis PpsbA2 promoter. In the CURT1A strain, the endogenous gene was 

introduced into the slr0168 genomic neutral site, whereas it was used to directly replace the 

Synechocystis endogenous gene in CURT1A syncurt1. The fact that it was possible to achieve 

the complete segregation of CURT1A syncurt1 indicates that Arabidopsis CURT1A can 

replace the function of the Synechocystis homolog to a certain extent.  

Genetic backgrounds of the mutants were confirmed by PCR on genomic DNA (Figure 3.5B) 

and the synCURT1 and CURT1A protein accumulation by immunodecoration using the 

specific antibodies raised against the two protein homologs. As expected, both proteins were 

localized in the thylakoid protein fraction. Interestingly, the strain that expressed CURT1A in 

addition to endogenous synCURT1 expressed less synCURT1 than the wild type and less 

CURT1A than CURT1A syncurt1 (Figure 3.5C). These differences suggest that Synechocystis 

might have mechanisms to prevent an excessive accumulation of CURT1 proteins, thus 

strengthening the hypothesis of their conserved function. 
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The growth rate of the two mutant strains, and in particular that of CURT1A syncurt1, was 

reduced with respect to wild type cells, indicating that the plant homolog is only partially able 

to complement synCURT1 function (Figure 3.5D). 

 

 

Figure 3.5 Analysis of the CURT1 strains  
(A) Scheme of the CURT1A and CURT1A syncut1 mutant strains. In CURT1A the Arabidopsis CURT1A coding 

sequence, lacking the cTP and placed under regulation of the psbA2 promoter, is integrated in the neutral site 

slr0168 while the endogenous Syn CURT1 is intact. In CURT1A syncurt1 the Arabidopsis CURT1A coding 

sequence, lacking the cTP and placed under regulation of the psbA2 promoter, replaces the endogenous Syn 

CURT1. Annealing sites of the primers used for genotyping (C1-4) are indicated. 
(B) Complete segregation of the generated Synechocystis CURT1 strains, referring to the genetic manipulations 

represented in (A).  
(C) Immunoblot analysis of synCURT1 and CURT1A proteins in total protein and thylakoid fractions of WT 

and mutant strains. 15 μg of protein were loaded for each lane. 
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(D) Growth rate analysis of WT and CURT1 mutants grown in photoautotrophic conditions. Optical density at 

730 nm was measured every 24 hours for 7 days and three independent cultures for each strain were used. 

 

The thylakoid architecture of the obtained mutant strains was analysed by TEM and it 

revealed several changes caused by the altered CURT1 levels (Figure 3.6). The thylakoids of 

the mutants did not form the typical ordered parallel sheets of the wild type Synechocystis 

cells: on the contrary, the layers were mostly spanning the cytoplasm in an unordered manner 

and no contact sites with the plasma membrane could be observed.  

 

 

 

Figure 3.6 Analysis of thylakoid structure of CURT1 mutants by TEM (Armbruster et al., 2013).  

Thylakoid contact sites with the plasma membrane are indicated, in WT, by black arrowheads. Exemplary 

detached phycobilisomes are indicated by white arrowheads. 

 

Moreover, instead of being smooth, the thylakoids presented a crumpled appearance with a 

decreased average lumen width (the wild type, 23.8 ± 2.9 nm; CURT1A, 19.5 ± 1.5 nm; 

CURT1A syncurt1, 17.3 ± 2.9 nm; n > 30 cells). Probably due to the unevenness of the 

membrane surface, the phycobilisomes, which in wild type cells are normally associated to 

the thylakoid membranes, were detached from the mutant thylakoids and could be seen as 

electron-dense spots in proximity of the membrane layers. 

 

3.2.2. Knockout of phycobilisomes in CURT1A syncurt1 

Given these results, it was tempting to speculate that, because this physical impediment 

represented by the phycobilisomes does also prevent the direct interaction of thylakoid 
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membranes, overexpression of CURT1 might actually succeed in inducing grana formation in 

Synechocystis strains without phycobilisomes. To verify this hypothesis, mutants were 

generated in which the allophycocyanin (AP) α and β subunits, the main protein components 

of the phycobilisomes core discs, were knocked out. ApcA, apcB and apcC constitute a 

tricistronic operon in Synechocystis and their interruption was shown to lead to 

phycobilisome-deficient mutants lacking assembled antenna complexes (Ajlani et al., 1995). 

To generate the phycobilisome knockout mutants Δapc and CURT1A syncurt1Δapc, WT and 

CURT1A syncurt1 were transformed with the pSMapc vector (Figure 3.6A). Homologous 

recombination between the vector and the genome led to the replacement of the entire apcA 

and apcB coding sequences with the SpecR positive selection cassette. Complete segregation 

of the obtained Δapc and CURT1A syncurt1Δapc mutants was confirmed by PCR on genomic 

DNA (Figure 3.6B) and by immunoblot analysis of synCURT1, CURT1A and AP α and β 

proteins (Figure 3.6C). As previously reported (Ajlani and Vernotte, 1998), both mutant 

strains showed a greenish-olive colour and grew at a slower rate with respect to the wild type 

and these phenotypical traits were even stronger in the CURT1A syncurt1 genotypical 

background. 

 

 

 

Figure 3.6 Analysis of the phycobilisome mutant strains  
(A) Scheme of the Δapc gene manipulation. The Synechocystis apcAB operon is replaced by the SpecR selection 

cassette in apc. In CURT1A syncurt1apc, the apcAB knockout is in the CURT1A syncurt1 mutant background. 

Annealing sites of the primers used for genotyping (C5-8) are indicated. 
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 (B) Complete segregation of the generated Synechocystis Δapc and CURT1A syncurt1Δapc strains, referring to 

the genetic manipulations represented in (A).  
(C) Immuno-blot analysis of synCURT1 and CURT1A proteins in total protein fraction of WT and mutant 

strains. 15 μg of protein were loaded for each lane. 

 

The thylakoid architecture of the Δapc mutant strains was analysed by TEM. As previously 

reported (Collins et al., 2012), absence of phycobilisomes in the Δapc mutant strain caused a 

decrease in the long-range curvature of the thylakoids that did not necessarily follow the 

shape of the plasma membrane as they normally do in wild type cells (Figure 3.7). As 

expected, the electron-dense spots representing phycobilisomes were not present anymore in 

the mutant and this resulted in a diminished distance between the thylakoid layers, as a 

consequence of the lack of steric hindrance of the antenna complexes (Olive et al., 1997). The 

CURT1A syncurt1Δapc mutant presented the same alterations of the membrane architecture as 

Δapc, but additional effects caused by altered levels of the CURT1 proteins were also present 

in this strain. The thylakoids of CURT1A syncurt1Δapc appeared to be less crumpled than in 

CURT1A syncurt1 but, at the same time, the layers were pronouncedly curved in a waved-

shape.  

 

Figure 3.7 Analysis of thylakoid structure of Δapc mutants by TEM. Exemplary curvatures of thylakoid 

membranes are indicated, in CURT1A syncurt1Δapc, by white arrowheads. 
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3.2.3. Discussion: Synechocystis and Arabidopsis CURT1 proteins have a conserved 

function in determining the thylakoid architecture  

Taken together, the results suggest that CURT1 proteins have also a role in determining the 

architecture of thylakoid membranes in cyanobacteria, the evolutionary ancestors of plant 

chloroplasts. Conservation of the protein function throughout evolution is also supported by 

the fact that Arabidopsis CURT1A could partially replace Synechocystis CURT1. 

Expression of Arabidopsis CURT1A in Synechocystis cells caused modifications in the 

thylakoid structure, although it was not possible to unequivocally clarify, whether the reduced 

levels of endogenous synCURT1 or the presence of the Arabidopsis protein itself were 

responsible for them. In either case, the crumpled appearance of thylakoids in the analysed 

mutants and the decrease in lumen width, determining an increased membrane curvature, led 

to detachment of phycobilisomes.  

When the steric hindrance of phycobilisomes was abolished in the CURT1A syncurt1Δapc 

mutant thylakoid membranes resulted to be wave-shaped, with a smoother surface appearance 

compared to the background genotype. Although no grana-like structures could be detected, 

an increased membrane-bending ability could be observed when CURT1A was overexpressed 

in replacement of synCURT1 in the absence of phycobilisomes. 

To better dissect the effects on CURT1A accumulation in Synechocystis cells, comparisons 

with the syncurt1 knockout mutant should be done, also regarding the phycobilisome 

depletion. 

 

3.3. Development of a single vector-based based strategy for marker-less gene replacement 

in Synechocystis 

 

3.3.1. Design of the strategy 

In order to generate Synechocystis strains with one or all of the photosynthetic complexes 

replaced by their higher plant counterparts, many gene manipulations would be needed. As 

summarized in the introduction and shown in the previous experiments, marker-less gene 

replacement can be the technique of choice to achieve such results. Irrespective of the 

selection variant they rely on, marker-less gene replacement methods usually require the use 

of two subsequent transformation events, each of them with a different vector.  

In order to minimize cloning and transformation steps, an alternative strategy was developed 

for marker-less gene replacement in Synechocystis, also using the nptI-sacB cartridge, in 

which, although two subsequent genomic recombination events still occur, a single bacterial 
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transformation event and a single vector are required (Viola et al., 2014). This is also the case 

of double recombination strategies that rely on a first integration of the whole vector into the 

target genomic sequence via single crossing-over, as in the case of allelic exchange (Lalioti 

and Heath, 2001; Clerico et al., 2007). In this case, the second recombination, leading to the 

excision of the integrated vector, generates two populations of bacteria, one that reverts to 

wild type and one that keeps the desired mutation. Thus, screening of the population of the 

second recombinants by PCR needs to be done. The strategy developed in this study 

overcomes this step by leading to a final bacterial population exclusively composed of 

mutants. 

In this method, schematically depicted in Figure 3.8, two subsequent homologous 

recombination events take place and two subsequent mutants, with knockout and replacement 

of the target gene respectively, can be obtained by simply growing the transformed cells under 

different selective conditions in a stepwise manner, without the need of a second 

transformation. The first recombination event leads to the integration of the construct, 

containing the DNA sequence to be introduced interrupted by the selection marker, into the 

cyanobacterial genome via double crossing-over; the second recombination, a single crossing-

over, takes place in between direct repeats present in the integrated construct itself and causes 

excision of the double selection cassette and reconstitution of the introduced DNA sequence. 

In this way two subsequent mutants, with knockout and replacement of the target gene 

respectively, can be obtained by simply growing the transformed cells under different 

selective conditions in a stepwise manner. A double-recombination vector suited for this 

strategy includes several essential elements: (1) a replication origin for E. coli that is not 

functional in Synechocystis; (2) flanking sequences homologous to Synechocystis 

chromosomal sites to allow stable integration of the construct in the target genome 

(designated as HR1 and HR2); (3) the nptI-sacB double selection cassette, separating the two 

portions of the sequence to be integrated, that allow both positive and negative selection of 

the Synechocystis recombinants; (4) the exogenous gene of interest (GOI) to introduce, split in 

two partially overlapping (shaded box) segments divided by the nptI-sacB cassette; (5) a 

Synechocystis endogenous promoter to induce the expression of the introduced recombinant 

gene(s).  

When Synechocystis cells are transformed with such a vector, the initial recombination event 

leads to the integration of the construct, containing the exogenous gene(s) to be introduced 

interrupted by the nptI-sacB cassette, into the cyanobacterial genome (Figure 1, upper panel) 

via double crossing-over between the two flanks of the construct, HR1 and HR2, and the 
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corresponding homologous sequences present in the cyanobacterial genome. Strains that have 

integrated the construct in this way contain the nptI-sacB cassette in the target locus and 

therefore can grow in the presence of kanamycin, which is used for their positive selection, 

but are sensitive to sucrose. Complete segregation of the first-round [“prim(ary)”] 

recombinants leads to loss of the endogenous target gene and, moreover, the integrated GOI is 

not functional because the nptI-sacB cassette interrupts its sequence.  

 

 

Figure 3.8 Schematic depiction of the single-step double recombination strategy (Viola et al., 2014). The first 

recombination step (upper panel), involving a double crossover between the homologous regions HR1 and HR2 

of the vector and the genomic target sequence, leads to genomic integration of the construct. Note that the 

integrated gene of interest (GOI) is split into two parts, 5’ and 3’, the sequences of which partially overlap 

(shaded box). The 5’ and 3’ GOI segments are separated from each other by the nptI-sacB selection cassette, 

which renders the first recombinant mutants resistant to kanamycin and sensitive to sucrose. After complete 

segregation of the replacement under positive selection in the presence of kanamycin, which ensures the total 

elimination of the endogenous target gene function, release of the selective pressure allows the second 

recombination to take place (lower panel). In this step, a crossover involving the overlapping regions of the split 

GOI leads to the excision of the nptI-sacB cassette. Negative selection on sucrose yields colonies that have lost 

the entire sacB marker and carry the intact, functional GOI in place of the endogenous target gene. 
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After complete segregation, the positive selective pressure is released and the mutants are 

grown without selection in order to allow the second recombination event to occur (Figure 1, 

lower panel), without any transformation step being required. The second recombination 

event takes place via a single crossing-over in between direct internal repeated sequences 

present in the integrated construct itself and causes excision of the double selection cassette, 

restoring the integrity of the introduced gene(s). Mutants in which the second recombination 

is incomplete can be efficiently counter-selected on sucrose, because only those recombinants 

that have lost the whole nptI-sacB cassette will survive. As a consequence, in the population 

generated by the second round of recombination [“sec(ondary) recombinants”], the target 

gene is replaced by the transgenic DNA of choice and no selection marker remains in the 

genome. 

 

3.3.2. Confirmation of the strategy: introduction of the luciferase reporter system 

To test the efficacy of the one-step double recombination strategy, glucose-tolerant WT 

Synechocystis cells were transformed with the vector pDSlux (Figure 3.9A). The mutants 

obtained after the first round of recombination, lux
prim

, harboured an interrupted luxAB operon 

inserted in the Synechocystis slr0168 ORF. This dicistronic operon is composed of the luxA 

and luxB genes, and encodes the heterodimeric luciferase enzyme which, in presence of its 

substrate analogue decanal, produces a luminescent product. In the mutants obtained after the 

second recombination round, named lux
sec

, excision of the double selection cassette led to the 

reconstitution of the intact luxAB operon under the control of PpsbA2. 

The frequencies of the first and second recombination events were calculated for the lux 

mutants. Ten independent lux
prim

 strains obtained after the first recombination were selected 

and allowed to undergo a second recombination.  

 

Table 3.1 Frequency of the second recombination event in independent luxprim strains 

 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

lux
sec 7x10

-6 5x10
-7 7x10

-6 4x10
-6 7x10

-6 1x10
-7 2x10

-6 2x10
-5 2x10

-5 2x10
-5 

 

The transformation frequency was 4x10
-5

, which is comparable to the values reported in 

literature (Zang et al., 2007). The frequency of the second recombination varied between 
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2x10
-5

 and 1x10
-7 

(Table 3.1), with an average value of 9x10
-6

, revealing that it occurs with a 

frequency about ten times lower than the first. 

Five of the original ten independent lux
prim

 first recombinants and two lux
sec

 second 

recombinants for each of the five lux
prim

 clones were selected for further analyses. 

To confirm the correct segregation of the expected DNA modifications in the generated 

mutants, genomic PCR was performed using three primer pairs. In all five lux
prim

 mutants, but 

in none of the lux
sec

 strains, the primer pairs R1+R2 and R3+R4 generated amplicons 

(respectively, 2.7 and 2.3 kb) spanning the 5’ or 3’ regions respectively of the nptI-sacB 

cassette and the flanking segment of the interrupted luxAB operon. When combined, primers 

R1 and R3 amplified the reconstituted luxAB operon, generating a PCR product of 2.3 kb that 

was detectable only in the lux
sec

 second recombinants. The slr0168 downstream region (HR2, 

~1 kb), used as a positive control, could be amplified in all the samples using the primer pair 

R5+R6 (Figure 3.9B). 

Gene replacement via homologous recombination is sometimes prone to error, and may result 

in non-homologous DNA integration into the genome, thus generating mutants with multiple 

or non-targeted genomic insertions. However, when Southern blots bearing genomic XmaI 

digests from WT and the selected lux mutants were probed with a fragment of the luxAB 

recombinant operon (Figure 3.8C), two labelled bands (F1 and F2, with 7.5 and 8.3 kb 

respectively) corresponding to the split luxAB operon were found in the lux
prim

 mutants, while 

the detection of a single band of 11 kb (F3) in the lux
sec

 recombinants confirmed the presence 

of the reconstituted intact operon. The absence of any signal of unexpected size indicated that 

only homologous recombination events at the correct target loci occurred. 

In order to characterize the growth phenotype of the lux mutants, they were grown on various 

BG11-based media (Figure 3.9D). When spotted on BG11 plates supplemented with 5 mM 

glucose and not containing any selection pressure, all lux
prim

 and lux
sec

 mutant strains grew 

normally. The lux
prim

 first recombinant strains were able to grow in the presence of kanamycin 

and, furthermore, the presence of 5 % sucrose in the medium was lethal for them, confirming 

the functionality of both the positive and the negative selection markers. Conversely, all the 

lux
sec

 strains were sensitive to kanamycin, as they had lost the nptI resistance gene, and grew 

on BG11 supplemented with 5 % sucrose because they no longer harboured the sacB gene. 

None of the strains could grow on BG11 supplemented with both kanamycin and sucrose, as 

expected.  

 



3. Results and discussion 

 

65 

 

 

 

Figure 3.9 Analysis of the lux strains (Viola et al., 2014) 
(A) Schematic depiction of the mutant strains after the first and second recombination rounds following 

transformation with the lux constructs. The lux construct was integrated in the neutral receptor site slr0168. In 

luxprim, the nptI-sacB cassette interrupted the luxB gene. In luxsec, loss of the cassette led to the reconstitution of 

the entire luxAB operon under the regulation of the psbA2 promoter. Annealing sites of the primers used for 

genotyping (R1-6) and of the DS_lux probe used for Southern hybridization as well as the positions of the XmaI 

restriction sites are indicated. 
(B) Complete segregation of the Synechocystis lux strains generated by the genetic manipulations represented in 

(A) Genotyping PCR was performed on five independent luxprim first-round recombinants and, for each of them, 

two second-round recombinants. Note that luxprim#2-5 behaved like luxprim#1. Expected sizes of the amplicons 

generated by the used primer pairs were: R1/R2, 2.7 kb; R3/R4, 2.3 kb; R1/R4, 2.3 kb; R5/R6, 1 kb. Negative 

control (n.c.) was included.  C.  Southern analysis of genomic DNA from Synechocystis WT and lux mutants. 

The XmaI restriction map of the slr0168 genomic region in the analyzed strains and the probe used for 

hybridization are shown in A.  Five μg of DNA were loaded per lane. Genomic fragments F1 (7.5 kb) and F2 

(8.3) were detected in luxprim, the fragment F3 (11 kb) in the luxsec strains. Note that luxprim#4-5 behaved like 
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luxprim#1. The lane corresponding to WT is also shown. (C) Southern analysis of genomic DNA from 

Synechocystis WT and lux mutants. The XmaI restriction map of the slr0168 genomic region in the analysed 

strains and the probe used for hybridization are shown in (A). Five μg of DNA were loaded per lane. Genomic 

fragments F1 (7.5 kb) and F2 (8.3 kb) were detected in luxprim, the fragment F3 (11 kb) in the luxsec strains. 

Southern analysis was performed on five independent luxprim first-round recombinants and, for each of them, two 

second-round recombinant strains. 
(D) Drop test of lux mutants on selective media. Liquid cultures at an OD730 of 0.4 were washed with BG11 

without glucose and spotted (15 μl each) onto BG11 medium containing either 100 μg/ml kanamycin or 5% 

sucrose or no supplement. Colonies from the non-selective plate were incubated with 1 mM decanal and 

luminescence was determined to quantify luciferase activity. 

 

The luxAB operon codes for two proteins that are both required for the expression of 

luminescence, a gene function not naturally present in Synechocystis. In lux
prim

 mutants the 

full-length copy of the luxB gene is not fused to a functional promoter; therefore, the LuxB 

subunit of the luciferase cannot be synthesized. The second recombination (in lux
sec

 mutants) 

is expected to reconstitute the entire luxAB operon under the regulation of PpsbA2, thus 

allowing the expression and assembly of the functional enzyme. To confirm this, all the 

spotted strains were tested for luminescence (Figure 3.9D, lower panel). Strong luciferase 

activity was detectable only in the lux
sec

 strains, carrying the reconstituted luxAB operon, and 

almost absent in all the lux
prim

 mutants. A faint luminescent background was always 

detectable in the first-round recombinants, possibly due to read-through transcription of luxB 

from the nptI promoter. To better quantify the luciferase activity, light emission was measured 

for the ten lux
prim

 strains used for second recombination and ten lux
sec

 independent 

recombinants for each of them (Table 3.2). The luminescence values relative to the 

untransformed WT Synechocystis strain clearly indicated a gain of function in all the lux
sec

 

strains, albeit with a certain inter-strain variability. The level of luciferase activity in the 

lux
prim

 transformants ranged between 1.5- and 2.5-fold higher than in the WT, while in the 

second-round recombinants it was at least ten times higher than in WT. 

 

Table 3.2 Luciferase activity relative to OD730 in Synechocystis luxprim and luxsec mutants. For each strain, the 

first recombinant and ten independent second recombinants were analyzed. Each suspension was measured in 

duplicate and the assay was repeated twice with independently grown cultures. Average luminescence values of 

the mutants are relative to background signal in the untransformed WT Synechocystis strain, which value was set 

to 1. 

 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

lux
prim 2.6±1.4 2.3±0.4 1.8±0.4 2±1.2 2.1±0.7 1.8±0.5 2.2±1.1 1.7±0.6 1.5±0.8 1.5±1 

lux
sec

 

(1-10) 
17.3±4 61.8±11 16.6±4 24.1±6 15.3±5 23.2±9 22.7±9 10.4±3 10.6±3 13.1±4 
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3.3.3. Application of the strategy: 1. Introduction of Arabidopsis PGRL1 and PGR5 proteins 

The same strategy was used to introduce the Arabidopsis thaliana PROTON GRADIENT 

REGULATION 5 (PGR5) and PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1) 

proteins into Synechocystis. These chloroplast proteins were previously shown to be both 

necessary and sufficient for the NDH-independent Cyclic Electron Flow (CEF) around 

Photosystem I during photosynthesis (Hertle et al., 2013), also defined as the Antimycin A 

(AA)-sensitive pathway. This CEF pathway is present in higher plants but no corresponding 

mechanism is found in cyanobacteria, in which only the NDH-complex-mediated cyclic 

transport has been identified. 

Glucose-tolerant WT Synechocystis cells were transformed with the pDSpgrl1 vector (Figure 

3.10A). The PGR5 mutants positively selected after the first recombination harboured a 

synthetic construct in the slr0168 neutral region, in which the sequences coding for the two 

mature Arabidopsis proteins were assembled, each under the regulation of one PpsbA2 copy. 

The PGRL1 coding sequence was interrupted by the nptI-sacB double selection cassette in 

PGR5 mutants, whereas the PpsbA2-PGR5 transcriptional fusion was intact. In the subsequent 

second recombination round, excision of the double selection cassette led to the reconstitution 

of the intact PpsbA2-PGRL1 fusion in the PGR5+PGRL1 mutants. 

As in the case of the lux mutants, the correct segregation of the PGRL1 genetic manipulations 

was confirmed by genomic PCR using three primer pairs. The primer pairs R7+R2 and 

R3+R8 generated amplicons (of 2.7 and 1.7 kb, respectively) spanning the 5’ or 3’ regions of 

the nptI-sacB cassette and the flanking segment of the interrupted PGRL1-PGR5 operon. 

These two PCR products were present in PGR5, but in none of the two selected 

PGR5+PGRL1 mutants. The reconstituted operon (2.3 kb) could be amplified only in the 

PGR5+PGRL1 second recombinants combining primers R7 and R8. The slr0168 downstream 

region (HR2, ~1 kb), used as a positive control, could be amplified in all the samples using 

the primer pair R5+R6 (Figure 3.10B).  

Accuracy of the targeted homologous DNA integration into the genome was also verified by 

Southern blot analysis of genomic XmaI digests from WT and the selected PGRL1 mutants. 

The digested genomes were probed with the entire PGRL1-PGR5 recombinant operon (Figure 

3.10C). Two labelled bands (F1 and F2, with 6.3 and 7.9 kb respectively) corresponding to 

the split PGRL1-PGR5 operon were found in PGR5, while a single band of 10 kb (F3) was 

detected in the PGR5+PGRL1 recombinants, corresponding to the intact operon. No signal of 

unexpected size was present in any of the mutants.  
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Figure 3.10 Analysis of the PGRL1 strains  
(A) Schematic representation of the mutant strains after the first and second recombination following 

transformation with the pDSpgrl1 vector. The PGRL1-PGR5 construct was integrated in the genomic neutral 

locus slr0168. In PGR5, the nptI-sacB cassette interrupted the PGRL1 gene. In PGR5+PGRL1, loss of the 

cassette led to the reconstitution of the entire PGRL1-PGR5 synthetic operon, with each gene under the 

regulation of one copy of the psbA2 promoter. Annealing sites of the primers used for genotyping (R2, 3, 5-8) 
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and of the DS_pgrl1 probe used for Southern hybridization as well as the positions of the XmaI restriction sites 

are indicated. 
(B) Complete segregation of the Synechocystis PGRL1 strains generated by the genetic manipulations 

represented in (A). Genotyping PCR was performed on one PGR5 first-round and two PGR5+PGRL1 second-

round recombinants. Expected sizes of the amplicons generated by the used primer pairs were: R7/R2, 2.7 kb; 

R3/R8, 1.7 kb; R7/R8, 2.3 kb; R5/R6, 1 kb. Negative control (n.c.) was included. 
(C) Southern analysis of genomic DNA from Synechocystis WT and PGRL1 mutants. The XmaI restriction map 

of the slr0168 genomic region in the analysed strains and the probe used for hybridization are shown in (A). Five 

μg of DNA were loaded per lane. Genomic fragments F1 (6.3 kb) and F2 (7.9) were detected in PGR5, the 

fragment F3 (10 kb) in the PGR5+PGRL1 strains.  
(D) Drop test of PGRL1 mutants on selective media. Liquid cultures at an OD730 of 0.4 were washed with BG11 

without glucose and spotted (15 μl each) onto BG11 medium containing either 100 μg/ml kanamycin or 5% 

sucrose or no supplement.  
(E) Immuno-blot analysis of Arabidopsis PGR5 and PGRL1 proteins in thylakoid fractions of WT and mutant 

strains. 15 μg of protein were loaded for each lane and thylakoid proteins from Arabidopsis thaliana were 

included as a positive control. 

 

The PGRL1 strains were also tested by growing them on various BG11-based media (Figure 

3.10D). All PGR5 and PGR5+PGRL1 mutant strains grew normally in the absence of 

selective pressure, whereas only the PGR5 first recombinants survived in the presence of 

kanamycin and it did not grow when 5 % sucrose was added to the medium. On the contrary, 

all the PGR5+PGRL1 strains were sensitive to kanamycin and grew on BG11 supplemented 

with 5 % sucrose, as they had lost both the nptI and the sacB marker genes. The combined 

presence of both kanamycin and sucrose resulted to be lethal for all the strains.  

Accumulation of the PGRL1 and PGR5 proteins, not naturally present in Synechocystis, was 

probed by immunoblot of isolated membrane proteins using the specific antibodies raised 

against the two plant proteins. Arabidopsis wild type thylakoid proteins were used as a 

positive control. As expected, the PGR5 strain expressed only PGR5 and, conversely, both the 

PGR5 and the PGRL1 proteins accumulated in the two PGR5+PGRL1 recombinants (Figure 

3.10E). 

In order to investigate whether the recombinant PGR5 and PGRL1 proteins were capable of 

supporting the NDH-independent CEF pathway in Synechocystis, the photooxidation and 

dark-reduction kinetics of the PSI reaction centre, P700, were measured in the PGRL1 

mutants.   

As already reported (Yu et al., 1993; Thomas et al., 1998) the cyclic electron transport 

pathway in whole cells of cyanobacteria can be studied by measuring the changes in 

absorbance at 820 nm, to determine the P700 redox state and its re-reduction kinetics. In 

cyanobacteria the electron flow through the Cyt b6f complex, which is shared between the 

photosynthetic and the respiratory electron transport chains (Scherer, 1990), is the limiting 

step in the re-reduction of the oxidized P700 (P700
+
). Illumination with actinic white light, 
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exciting both PSII and PSI, causes the reduction of the plastoquinone pool and the depletion 

of the proximal electron donor of PSI that gets oxidized. In subsequent darkness, P700
+
 gets 

reduced by electrons coming from both the PSII-dependent linear electron flow and the NDH-

dependent cyclic electron flow. 

 

 

 

Figure 3.11 Physiological characterization of the PGRL1 strains 
 (A) and (B) P700 oxidation (P700 ox) traces of Synechocystis WT, PGR5 and PGR5+PGRL1 strains. The A820 

was measured with a Dual-PAM-100 fluorometer, with and without addition of 25 μM DCMU or 25 μM 

DBMIB. The traces are representative of two repetitions. Cell suspensions were adjusted to an OD730 (used as 

indication of an equal amount of biomass) of 10 and dark-adapted for 10 min prior to measurements. Three 

second after the onset of far red measuring light, white actinic light (30 µmol photons m-2 s-1) was supplied for 3 

sec. The bars under each P700 trace represent the absence (dark bars) and presence (white bars) of actinic 

illumination. The P700 oxidation signal is relative to the “zero” level at the onset of actinic illumination. In (A) 

the P700 traces of the three analyzed strains for each inhibitor treatment are compared. The initial oxidation rate 

is proportional to the efficiency with which excitation energy is delivered to P700. The re-reduction rate is 
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proportional to the transfer to P700 of electrons deriving both from PSII and from the cyclic electron flow. A re-

reduction transient can be seen just after the onset of light when no inhibitors are added to the samples (black 

arrow). In (B) the P700 traces of the three different inhibitor treatments for each analyzed strain are compared.  
(C) In vivo absorption spectra of Synechocystis WT, PGR5 and PGR5+PGRL1 strains. The peaks at 438 and 681 

nm correspond to the maxima of Chl a absorption, the peak at 628 nm corresponds to the absorption maximum 

of PC. The spectra were normalized to the absorbance at 730 nm. 

(D) Steady-state fluorescence emission spectra at 77 K of cells of Synechocystis WT, PGR5 and PGR5+PGRL1 

strains. Cell suspensions were adjusted to an OD730 of 0.5 and dark-adapted for 10 min prior to freezing. 

Fluorescence emission spectra were measured with excitation at 435 nm and normalized to the PSII emission 

peak at 695 nm. The curves are representative for two repetitions. 

 

The different inputs of electrons to PSI can be selectively blocked using inhibitors (Maxwell 

and Biggins, 1976; Herbert et al., 1992; Yu et al., 1993): input from PSII can be abolished 

with the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), input from the 

plastoquinone pool with the artificial quinone 2,5-dibromo-3-methyl-5-isopropyl-/7-

benzoquinone (DBMIB). 

Absorbance at 820 nm in Synechocystis cell suspensions at an OD730 of 10, previously dark-

adapted for 10 min, was measured (Figure 3.11) and used as expression of the relative P700 

oxidation level (P700
+
). In the wild type, exposure to white actinic light caused a rapid 

oxidation of P700 which was then transiently re-reduced by electrons from PSII before 

reaching the steady-state oxidation level (Figure 3.11A, black arrow). When illumination 

ceased, the P700
+
 signal quickly fell back to the dark level thanks to electron input from PSII 

and the CEF. In DCMU-treated WT cells the block of electron flow from PSII was testified 

by the lack of the re-reduction transient after onset of illumination, the higher steady-state 

level of the P700
+
 signal, as well as its slower re-reduction kinetics in the dark. These 

observations were in accord with fact that, in presence of DCMU, CEF is the only pathway 

responsible for the PSI reduction. WT treated with both DCMU and DBMIB showed an even 

higher steady-state level of PSI oxidation. Indeed, DBMIB inhibits the electron transfer from 

the plastoquinone pool to the cytochrome b6f complex, therefore blocking the flow of 

electrons to PSI deriving from both the PSII and the CEF. In the untreated strain expressing 

PGR5, and even more pronouncedly in those expressing both PGRL1 and PGR5, the P700
+
 

signal was rising faster and to a higher level than in WT and the initial transient re-reduction 

was greatly reduced. According to this, the electrons extracted from PSI by exciting light 

appeared to be acquired by downstream acceptors in a more efficient way than in the wild 

type, thus maintaining P700 in a more oxidized state.  

In the PGR5 expressing strain, treatments with DCMU and with DCMU plus DBMIB led to 

an increase of the P700
+
 steady-state level relative to the untreated samplesimilar to WT, but 

to a lower extent, suggesting a reduction of the maximum PSI oxidation potential in the 
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mutant strain. This reduction was even more marked in the mutant expressing both PGRL1 

and PGR5. When comparing the P700 traces under the different treatments for each analyzed 

genotype, a diminished difference between the steady-state and the maximal PSI oxidation 

levels was observed in the PGR5 and, even more, in the PGR5+PGRL1 mutants (Figure 

3.11B). To exclude that these differences were caused by altered amounts of PSI or pigments, 

spectral analyses of PGR5 and PGR5+PGRL1 were performed. Neither the absorption spectra 

nor the low-temperature fluorescence emission spectra of the mutants showed significant 

differences with respect to the wild type (Figure 3.11C and D), suggesting that the drastic 

changes in P700 properties in the mutant strains are actually caused by a functional 

interaction of PGR5 and PGRL1 with PSI and with other components of the electron transport 

chain in Synechocystis. 

 

3.3.4. Application of the strategy: 2. The psaA gene 

In the case of the PGRL1 mutants, the double recombination strategy was used to introduce in 

Synechocystis two photosynthesis-related proteins from Arabidopsis that are not naturally 

present in this organism, but the core photosynthetic components and functions are conserved 

in the two organisms. To study the function of such photosynthetic orthologs, gene 

replacement is normally employed. Therefore, the single-step strategy was used to replace the 

Synechocystis psaA (Syn psaA) gene with the corresponding homolog from the green plant 

Arabidopsis thaliana (At psaA). As already mentioned, the psaA gene is, in both 

cyanobacteria and plants, part of the psaA/psaB operon which codes for PsaA and PsaB, the 

core subunits of PSI (for a review, see Chitnis, 2001).  

By transforming the glucose-tolerant WT Synechocystis strain with the vector pDSpsaA, 

analogously to the experiments described above, knockout (psaA
prim

) and replacement 

(psaA
sec

) mutants were subsequently obtained (Figure 3.12A). The knockout line psaA
prim

 was 

generated with the first recombination event, in which the integrated construct replaced the 

endogenous psaA gene. Only the psaA coding sequence was affected by the replacement, 

whereas the surrounding genomic regions and all the endogenous regulatory elements 

remained unchanged. In the psaA
prim

 mutant, the integrated At psaA gene was non-functional, 

being split in two parts separated by the nptI-sacB cassette. As expected, the same severe 

ΔpsaA mutant phenotype was observed in the psaA
prim

 strain that was turquoise-blue and 

highly light sensitive. The blue phenotype of the first-round recombinant resulted from the 

lack of Chl a, with the phycobilisome chromophore phycocyanin (PC) being the predominant 

pigment present (Figure 3.12B). After complete segregation of the first replacement, the 



3. Results and discussion 

 

73 

 

second recombination event was permitted by removal of the selective pressure and 

subsequent negative selection on sucrose-containing medium yielded colonies in which 

excision of the nptI-sacB cassette led to the reconstitution of the At psaA gene, replacing the 

endogenous one. These mutants, named psaA
sec

, were also bluish, having a drastically reduced 

Chl a/PC ratio with respect to the wild type, but they were able to accumulate more 

chlorophyll than the psaA
prim

 strain (Figure 3.12B). The second-round recombinants could 

grow under normal light conditions.  

 

 

 

Figure 3.12 Analysis of the psaA strains (Viola et al., 2014) 
(A) Schematic depiction of mutant strains after the first and second rounds of recombination following 

transformation with the psaA construct. The psaA construct is integrated in the Synechocystis psaA gene. In 

psaAprim
 the nptI-sacB cassette interrupts the At psaA gene. In psaAsec

, loss of the cassette leads to the 
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reconstitution of the entire At psaA under the control of the native cyanobacterial promoter. Positions of the 

primers used for genotyping (R2, R9-12) are indicated. 

(B) In vivo absorption spectra of WT, psaAprim and psaAsec Synechocystis strains. The peaks at 438 and 681 nm 

correspond to the maxima of Chl a absorption, the peak at 628 nm corresponds to the absorption maximum of 

PC. The spectra were normalized to the absorbance at 730 nm. 

(C) Complete segregation of the generated Synechocystis psaA strains, as demonstrated by PCR analysis. Primer 

positions are given in (A). Complete segregation of the generated Synechocystis psaA strains, as demonstrated by 

PCR analysis. Primer positions are given in A. Expected sizes of the amplicons generated by the used primer 

pairs were: P9/P10, 2 kb; P9/P2, 3 kb; P11/P12, 2.3 kb.  Negative control (n.c.) was included. 

(D) Drop test of WT, psaAprim and psaAsec Synechocystis strains on selective media and under different light 

conditions. Liquid cultures at OD730 of 0.4 were washed with BG11 without glucose and spotted (15 μl each) on 

non-selective BG11 medium or on BG11 containing 100 μg/ml kanamycin or 5 % sucrose. When tested for 

autotrophic growth, cells were grown in continuous light at 30 μmol photons m-2 s-1 on BG11 without glucose. 

When grown in Light Activated Heterotrophic Growth (LAHG) conditions, the cells were incubated in the dark 

on BG11 supplemented with 5 mM glucose, and exposed to light for 5 min every 24 hours. 

 

The correct segregation of the psaA genetic manipulations performed was confirmed by 

genomic PCR using three primer pairs. The region (2 kb) spanning the upstream homologous 

region used for integration of the construct (HR1) and the endogenous psaA gene could be 

amplified with the primer pair R9+R10 only in WT, confirming that in both mutant strains the 

knockout was complete. In psaA
prim

, but not in WT and in the psaA
sec

 mutant, the primer pair 

R9+R2 generated an amplicon (3 kb) spanning HR1, the flanking 5’ At psaA segments and the 

5’ region of the nptI-sacB cassette. Primers R11 and R12 amplified the fully reconstituted 

psaA gene from A. thaliana, generating a PCR product of 2.2 kb that was detectable only in 

the psaA
sec

 recombinants (Figure 3.12C).  

The growth phenotypes of the mutant strains were analyzed by spotting them on BG11-agar 

plates under different selective and trophic conditions (Figure 3.12D). The psaA
prim

 mutant 

displayed resistance to kanamycin, deriving from the integrate nptI resistance gene, but, being 

PSI-deficient, it only grew heterotrophically in LAHG conditions. Like the ΔpsaA knockout 

strain, psaA
prim

 was unable to grow in continuous bright light and without glucose. Excision 

of the nptI-sacB cassette with the second recombination rendered the psaA
sec

 mutant sensitive 

to kanamycin but able to grow on BG11 containing sucrose, whereas the presence of 5 % 

sucrose was lethal to the knockout strain. None of the mutants, as in the previous examples, 

was viable in presence of both kanamycin and 5 % sucrose. Interestingly, psaA
sec

 resembled 

the already described AB_opt mutants in its ability to grow in full light and 

photoautotrophically on BG11 agar plates containing no sugar, suggesting that the At PsaA 

protein can functionally replace the Synechocystis protein and even interact with the 

cyanobacterial PsaB in the formation of the PSI core. 
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3.3.5. Discussion: advantages of the single-step replacement strategy 

Targeted gene and genome manipulation via homologous recombination in bacteria relies on 

the use of marker genes. In marker-less gene replacement, a negative and a positive selection 

marker are employed, in a process that normally involves two transformation steps with two 

DNA suicide vectors. In this work, we developed an alternative strategy for marker-less gene 

replacement in Synechocystis, based on the use of a single plasmid and a single transformation 

step. 

The technique was tested by inserting the luxAB operon from Vibrio fischeri into the neutral 

receptor site slr0168. To this end the wild type strain was transformed with the vector pDSlux 

and the transformation efficiency with this integration vector was in the range of 10
-5

, while 

the average frequency of the second recombination event was 10
-6

 (see Table 1). This ten-fold 

difference could be due to the fact that the first recombination event involves a double 

crossover between the genomic DNA and the plasmid vector, whereas the second 

recombination presumably involves a single intra-genomic crossover (Clerico et al., 2007). 

Thus, a difference in efficiency between these two recombination mechanisms could explain 

the results obtained. In addition, other factors like length, position and relative concentration 

of the homology regions might contribute to the difference in efficiency (Kufryk et al., 2002).  

In comparison with standard procedures, the single-step marker-less gene replacement 

strategy described here has several advantages. The requirement of only one vector for each 

gene replacement makes the cloning procedure faster and more facile, especially when one 

needs to sequentially replace many genes. Our single-step approach merely requires 

alternative selective growth conditions in addition to the transformation step, although this 

flexibility requires that the constructs must be assembled from numerous DNA fragments - six 

(plus the vector backbone) in the case of pDSlux, for instance. However, the increased 

complexity of the plasmid vectors required can easily be accommodated by using large-scale 

modular cloning technologies like the Golden Gate (Engler et al., 2009), the Gibson (Gibson 

et al., 2009) or the BioBrick (Shetty et al., 2008) assembly systems. Another issue that can 

arise during gene manipulation concerns the cloning of genes that are toxic to E. coli. Also in 

this regard, our strategy is advantageous, because the interruption of the GOI sequence by the 

intervening nptI-sacB cassette inactivates it, thus avoiding the problem of toxicity. Only the 

second recombination in the Synechocystis host cell reconstitutes both the gene sequence and 

function. Also for studies of biological functions for which two genes are necessary, the 

single-step gene replacement strategy can constitute a suitable experimental tool, as shown for 

the luxAB operon. In the lux
prim

 mutants, interruption of this operon by the double selection 
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cassette leads to impairment of the luciferase activity, as luxB cannot be transcribed and 

therefore the heterodimeric enzyme cannot be assembled. Only after removal of the cassette 

by the second recombination event is the integrity of the dicistronic luxAB and with it the 

luciferase activity restored, as shown in Figure 3.9D and Table 3.2. Some background 

luminescence was observed in the lux
prim

 recombinants, which could be due to read-through 

transcription of luxB from the nptI promoter. Thus, by using only one vector and performing a 

single transformation step it was possible to show that both luxA and luxB are necessary for 

luciferase function, as previously described (Engebrecht et al., 1983; Foran et al., 1988). 

These results confirm that, when our strategy is used to analyze a gain of function, the new 

function can be expected to arise only in the second recombinants and not in the first mutant 

strains, which can therefore serve as ideal controls. 

When used to introduce in Synechocystis the plant-specific PGRL1 and PGR5 proteins, 

responsible for the NDH-independent CEF pathway in Arabidopsis, the technique proved to 

be useful in dissecting the proteins function. In Arabidopsis, the two thylakoid proteins 

PGRL1 and PGR5 participate in shuttling electrons from PSI to the Cytochrome (Cyt) b6f 

complex, forming a heterodimer (DalCorso et al., 2008; Hertle et al., 2013).  

Cyanobacteria contain the NDH-dependent CEF pathway, but it is unclear whether they also 

possess a true pendant of the PGRL1/PGR5-dependent pathway. This is because homologues 

of PGRL1 have not yet been identified in cyanobacteria. However, inactivation of a 

cyanobacterial gene with distant homology to PGR5 appears to perturb cyanobacterial AA-

sensitive CEF (Yeremenko et al., 2005). To dissect the function of the two plant proteins in 

Synechocystis, mutants were generated expressing either PGR5 alone or PGRL1 and PGR5 

together. Indeed, the PGR5
 
mutants accumulated PGR5 alone, the PGRL1 coding sequence 

they harboured being disrupted by the nptI-sacB cassette, whereas reconstitution of the PpsbA2-

PGRL1 fusion led in the PGR5+PGRL1 mutant strain to the accumulation of both PGRL1 

and PGR5. When analyzing the absorption and low-temperature fluorescence emission 

spectra of the mutants, no significant differences with respect to the wild type could be 

observed. Therefore, the pigments and PSI/PSII ratios seemed not to be affected by the 

recombinant proteins. On the contrary, when measuring the P700 oxidation-reduction 

kinetics, major changes were detected in, surprisingly, both PGR5
 
and PGR5+PGRL1 

recombinants. The P700
+
-related absorbance at 820 nm was measured with or without the 

addition of inhibitors blocking the electron transport at different. The PSI in the WT strain 

became oxidized after exposure to actinic light and then transiently re-reduced by electrons 

from PSII. This re-reduction did not take place after DCMU treatment, as expected. 
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Moreover, DCMU treatment resulted in a higher oxidation level in light and in a slower re-

reduction rate after illumination was terminated, because electrons coming from the CEF 

alone and not also from PSII were responsible for it. When using both DCMU and DBMIB, 

also the re-reduction caused by CEF was prevented, the PSI oxidation level was even higher 

and corresponded to the maximum PSI oxidation capacity. In the strain expressing PGR5 and, 

even more pronouncedly, in the strain expressing both PGR5 and PGRL1, the maximum 

P700
+
 signal in presence of inhibitors was markedly lower than in WT, albeit the unchanged 

photosystem I levels.  These results were compatible with the idea that PGRL1 and PGR5, the 

latter even alone, prevented oxidation of PSI by reinjection of electrons into the electron 

transport chain. The PGR5
 
and PGR5+PGRL1 recombinants, though, displayed a faster PSI 

oxidation at the onset of light, with a greatly diminished re-reduction transient due to 

electrons coming from PSII. Although a more detailed physiological characterization of the 

mutants will be needed, it could be inferred from the showed results that PGR5 and PGRL1 

are able to interact with the electron transport chain also in Synechocystis.  

The single-step strategy was also employed to replace the psaA gene from Synechocystis with 

the homolog from Arabidopsis thaliana, which resides in the plastid genome of the plant. The 

PsaA subunit, together with PsaB, constitutes the dimeric core of PSI, and is highly conserved 

among photosynthetic organisms from cyanobacteria to flowering plants (Amunts and Nelson, 

2008). PsaA is an essential component of PSI and is necessary for its assembly, accumulation 

and function, and therefore essential for photoautotrophic growth of both plants and 

cyanobacteria. Knockout of the psaA gene is lethal to higher plants, while genetic inactivation 

of the PSI reaction centre in Synechocystis generates mutants that are able to survive 

heterotrophically under LAHG conditions, although they have a severe phenotype and are 

unable to survive in the light. In the psaA
sec

 mutants, replacement of the endogenous psaA 

gene with the Arabidopsis homolog led to a partial complementation of the psaA
prim

 knockout 

phenotype (Figure 3.12D). Also in this case, using the single-step gene replacement strategy, 

both the knockout and replacement lines were generated using a single vector and a single 

transformation. In the case of essential genes like psaA the one-vector strategy confers an 

additional advantage because mutants with severe phenotypes can be difficult to grow in 

liquid cultures and therefore their transformation can be challenging. This alternative gene 

replacement strategy makes it possible to obtain a second recombination event simply by 

releasing the positive selective pressure on the segregated transformants and applying 

negative selection in an alternating manner.  
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4. CONCLUSIONS 

 

In this work we established a set of tools for the identification and functional characterization 

of photosynthesis-related proteins from higher plants based on a cyanobacterial platform. For 

this purpose, the prokaryote Synechocystis sp. PCC 6803 was chosen, as it serves as a well-

established model organism in photosynthesis research (Vermaas et al., 1986; Vermaas et al., 

1987; Carpenter et al., 1993; Dühring et al., 2007; Xu et al., 2011). Cyanobacteria derive from 

the same ancestor as plant chloroplasts that evolved after a single endosymbiotic event 

(Martin et al., 2002). During this event, a photosynthetic bacterium was integrated into an 

ancestral eukaryotic cell, thus providing it with the complete photosynthetic machinery in the 

shape of a new subcellular compartment, the future chloroplast. With the subsequent 

evolution of land plants, the chloroplast gradually lost its genetic and physiological autonomy 

(Whatley and Whatley, 1981; Kleine et al., 2009) and underwent a large number of 

modifications in order to adapt to the new cellular (Pesaresi et al., 2007) as well as external 

environment. Higher plants face environmental conditions that drastically differ from the low-

light, oxygen-depleted marine environment the prokaryotic photosynthetic machinery evolved 

in. They are confronted with fluctuating light and an oxidative environment that they cannot 

avert and, at the same time, with an inadequate evolutionary inheritance (Leister, 2012). As a 

consequence, plants developed new regulatory and protective mechanisms to optimize their 

photosynthetic efficiency and limit the damage caused by oxidative and light stress. Over the 

time, higher plants evolved an extremely complex and fine-tuned photosynthetic apparatus 

based on the interplay of numerous players that either derive from prokaryotic homolgs or 

evolved independently in the eukaryotic cell (Leister, 2003; Timmis et al., 2004). Unrevealing 

the details of such an intricate network is a major challenge for plant scientists, since the 

available genetic and molecular tools seem not to keep pace with the increasing complexity of 

the plant photosynthesis model that is being assembled.  

The generation of a cyanobacterial platform for the analysis of photosynthesis-related proteins 

from higher plants can constitute a versatile tool to dissect the molecular function of already 

identified proteins as well as for the identification of new ones whose identity has so far been 

elusive.  
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4.1. Dissecting the molecular function of known proteins: the CURT1 protein family and 

PGRL1/PGR5-mediated CEF 

The four members of the CURT1 protein family from Arabidopsis thaliana play an important 

role in the process of thylakoid membrane curvature at the grana margins (Armbruster et al., 

2013). The resulting structural rearrangements represent an important adaptive mechanism to 

variable light conditions (Andersson, 1986; Trissl and Wilhelm, 1993; Mustárdy and Garab, 

2003; Dekker and Boekema, 2005; Kargul and Barber, 2008). Although the ability of these 

proteins to bind membranes was demonstrated in vitro, the underlying mechanism is not clear 

yet. The expression of the major Arabidopsis CURT1 variant, CURT1A, in Synechocystis in 

addition (CURT1A) or in substitution for (CURT1A syncurt1) the endogenous synCURT1 

homolog showed that the plant protein is able to induce thylakoid membrane curvature and to 

influence thylakoid architecture also in cyanobacteria. Moreover, the Arabidopsis and the 

Synechocystis homologs resulted to have a partially conserved function, for which a control of 

their cellular amounts seems to be necessary. Although expression of CURT1A did not induce 

the formation of grana stacks in the Synechocystis thylakoids, its membrane-bending 

properties increased in the phycobilisome-less mutants (CURT1A syncurt1Δapc), suggesting 

that physical constrains could be a main reason for the lack of grana formation. The generated 

Synechocystis CURT1 mutants represent the starting point for further analyses of the 

molecular function of CURT1. In the future, the introduction of different combinations of the 

Arabidopsis CURT1 isoforms will allow to dissect their specific roles. Additionally, the 

regulatory effects on the CURT1 function of posttranslational phosphorylation that has been 

postulated in plants (Armbruster et al., 2013) can be investigated. Although still controversial, 

phosphorylation of thylakoid proteins has been reported in cyanobacteria (Allen et al., 1985; 

Allen et al., 1992). In Synechocystis, phosphorylation of the phycobilisome linker proteins has 

been shown by Piven and colleagues (2005), but no PSII core phosphorylation occurs. 

Expression of Arabidopsis chloroplast kinases in the Synechocystis CURT1 mutant strains 

could help to elucidate the mechanisms that regulate the CURT1 activity in higher plants. 

The PGR5 (Munekage et al., 2002) and PGRL1 (DalCorso et al., 2008; Hertle et al., 2013) 

proteins account for the AA-sensitive cyclic electron flow (CEF) pathway in Arabidopsis 

thaliana, which is partially redundant to the NDH-mediated CEF (Burrows et al., 1998). The 

two proteins interact physically with each other, which allows for the re-injection of electrons 

from reduced ferredoxin into the Q-cycle, with PGRL1 undergoing the reduction-oxidation 

reactions. The current model proposed by Hertle and colleagues (2013) suggests that a 

PGRL1/PGR5 dimer directly interacts with Fd and FNR in close proximity to the PSI 
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complex. However, the mode of interaction and the specific molecular function of PGR5 are 

not fully understood yet. The current state of knowledge is that in cyanobacteria only the 

NDH-mediated CEF pathway is present, although a protein similar to the N-terminus of 

PGR5 has been characterized in Synechocystis (Yeremenko et al., 2005).  

Synechocystis mutants expressing either PGR5 alone (PGR5) or PGR5 and PGRL1 together 

(PGR5+PGRL1) were tested for a potential effect of the plant proteins on CEF around 

cyanobacterial PSI. The P700 oxidation-reduction kinetics were indeed altered in the two 

mutants, with a higher PSI oxidation level under physiological conditions but an overall 

reduced maximal oxidation capacity when PSI re-reduction from LEF (using DCMU) or from 

both LEF and CEF (using DCMU and DBMIB) were blocked. These preliminary results 

strongly indicate that the PGR5 and PGRL1 proteins from Arabidopsis interact with the 

photosynthetic electron transport chain of Synechocystis, but further analyses need to be 

carried out to clarify the underlying molecular mechanisms. This approach opens up 

interesting questions that will direct future investigations.  For instance, PGR5 affects electron 

flow in PGR5 mutants even in the absence of PGRL1, apparently by oxidizing PSI to a higher 

extent than in the wild type: is PGR5 actually the protein, among the two, that first receives 

electrons from Fd, as hypothesized? The maximal P700
+
 levels in PGR5 and PGR5+PGRL1 

are reduced also in the presence of DBMIB: is the PQ pool the actual site of electron re-

injection and, if so, how can the observed phenotype in the Synechocystis mutants be 

explained? Which are the missing plant-specific components or features required for the 

correct function of the two introduced proteins? The newly introduced pathway competes 

with the NDH complex that in cyanobacteria is shared between the CEF and the respiratory 

pathway (Sandmann and Malkin, 1984), for the electrons deriving from PSI. Clearly, it cannot 

be excluded that this competition also plays a role in the observed phenotype. This aspect 

should be further investigated. 

 

4.2. Generating a cyanobacterium with a plant-type photosynthetic machinery: replacement 

of PSI  

The glucose-tolerant Synechocystis wild type strain is able to grow heterotrophically in 

darkness (Williams, 1988; Anderson and McIntosh, 1991), which makes it an excellent model 

to study photosynthesis. The replacement of the bacterial photosynthetic apparatus with its 

plant-specific counterpart could provide a useful platform to determine the composition of the 

minimal functional photochemical apparatus. Moreover, this kind of platform might allow 
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identifying new plant-specific components involved in the regulation of photosynthesis that, 

so far, escaped identification with the currently used screening approaches. 

The substitution of PSI was chosen as an initial project to establish the Synechocystis 

platform, because it is the evolutionarily most conserved photosynthetic complex but, at the 

same time, the least characterized. To this end, mutants were generated (AB_opt) in which the 

PsaA and PsaB core subunits of Synechocystis PSI got replaced by the respective homologs of 

Arabidopsis. The characterization of these mutants showed that the plant proteins can only 

partially replace the bacterial counterparts. The two Arabidopsis genes were correctly 

transcribed and this partially rescued the phenotype of the PSI-less mutant (ΔpsaA). Although 

the expression of the plant psaA-psaB genes restored the light-tolerance phenotype and led to 

the accumulation of a partially assembled PSI complex, it was not possible to either detect the 

mature proteins by immunodecoration or any PSI-specific maxima in fluorescence emission 

spectra in the replacement mutant. It can be therefore presumed that the assembly of the 

functional PSI complexe is impaired in one of the post-transcriptional steps. This can be seen 

as a promising starting point to identify the reasons of the lack of functionality rather than a 

failure of the strategy. The first working hypothesis is that At PsaA and At PsaB do not 

properly interact with the other Synechocystis subunits of PSI. To clarify this, the putative PSI 

complex accumulating in the AB_opt mutants has to be purified and its composition to be 

determined. If the assembly of a chimeric PSI complex appears to be the limiting step, the 

additional introduction of the residual PSI subunits from Arabidopsis would be the next logic 

step. This is, indeed, the direction we are currently following and the characterization of the 

planned mutant strain will help to answer these questions.  

Some factors that are necessary for the assembly of plant-specific PSI and that are not 

characterized or exert a slightly different function in cyanobacteria have previously been 

described (for a review, see Schöttler et al., 2011). Their requirement for the assembly of the 

introduced PSI could be tested by expressing them in the generated Synechocystis mutants. 

Even more interestingly, with this approach new PSI assembly factors could be identified. A 

library of Arabidopsis thaliana transcripts can, indeed, be introduced in the generated 

Synechocystis mutants in order to identify the clones that are able to rescue the PSI-deficient 

phenotype. The same approach could be applied in strains that show a replacement of 

different components of the photosynthetic apparatus, thus providing a new screening tool for 

novel photosynthesis-related proteins. 
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4.3. Improving the molecular tools for large-scale gene knockout and replacement in 

Synechocystis 

Synechocystis is naturally transformable and performs homologous recombination. To 

generate multiple targeted deletions and/or replacements of its genes, marker-less 

manipulation methods based on counter-selection are generally employed (Cai and Wolk, 

1990; Matsuoka et al., 2001). Irrespectively of the markers used, the available methods are 

usually based on two transformation steps with two different DNA plasmids, of which the 

first generates the knock-out and the second one allows for the replacement of the target gene.  

In this study, we developed an alternative marker-less gene deletion and replacement strategy 

in Synechocystis sp. PCC 6803 which is based on a single transformation step exploiting the 

ability of the cyanobacterium to undergo two subsequent genomic recombination events via 

double and single crossing-over, by stepwise changes in the selective pressure applied. This 

strategy presents some convenient properties that could be profitably exploited in large-scale 

genomic manipulations, like during the generation of the here proposed cyanobacterial 

platform. A practical advantage is that only one DNA vector, and with it only one 

transformation step, is required for the stepwise generation of the knock-out and of the 

replacement Synechocystis mutant.  This aspect can become quite relevant when manipulating 

a large number of genes. 

When this single-vector strategy is used to analyse a gain of function mutation, the new 

function is expected to occurr only in the second recombinants and not in the first mutant 

strains, which can therefore serve as ideal controls. Moreover, in the case of two-gene 

systems, the single-vector strategy can be used to prove that the gain of function actually 

depends on the functional integrity of both system components, as shown in the case of the 

luxAB reporter system. 

Originally, this strategy has been conceived for the manipulation of essential photosynthetic 

genes, like psaA, whose knock-out generates mutants with severe phenotypes that are difficult 

to grow in liquid cultures and to manipulate and are therefore unsuitable for a second 

transformation procedure. This specific gene replacement mechanism allows a second 

recombination event simply by releasing the positive selection pressure on the segregated 

transformants and instead applying negative selection. The disruption, in the DNA vector 

employed, of the exogenous gene to introduce by the selection cassette allows obtaining, in 

the first recombination step, the knockout of the target cyanobacterial gene. Moreover, this 

disruption could prove itself useful when cloning genes that are toxic in Escherichia coli.  
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Taken together, the implementation of a double recombination event by a simple stepwise 

change of growth conditions can be exploited to address various biological questions and 

could also be employed for large-scale gene replacement approaches. Thanks to the tight 

counter-selection against incomplete second-round recombinants and transformants bearing 

multiple genomic integrations, the method could indeed be applied in semi-automated 

systems.  

 

In this work we established the basis for a new approach to study higher plant photosynthesis 

that relies on the transfer of the plant photosynthetic machinery into the simplified context of 

a unicellular prokaryote. Although the presented work only touches the surface of the 

possibilities that are innate to this strategy and the presented results are clearly provisional, 

encouraging hints of a future successful development are already present. Plant scientists need 

to keep up with the increasing complexity of the biological processes they investigate by 

developing new research tools. The here presented approach might just be one of such 

possible alternatives to achieve this aim. 
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