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Abstract

The aim of this thesis is to provide a rigorous mathematical derivation of the Vlasov-Poisson
equation and the Vlasov-Maxwell equations in the large N limit of interacting charged par-
ticles. We will extend a method previously proposed by Boers and Pickl to perform a
mean �eld limit for the Vlasov-Poisson equation with the full Coulomb singularity and an
N -dependent cut-o� decreasing as N−1/3+ε. We will then discuss an alternative approach,
deriving the Vlasov-Poisson equation as a combined mean �eld and point-particle limit of
an N -particle Coulomb system of extended charges. Finally, we will combine both methods
to prove a mean �eld limit for the relativistic Vlasov-Maxwell system in 3+1 dimensions.
In each case, convergence of the empirical measures to solutions of the corresponding mean
�eld equation can be shown for typical initial conditions. This implies, in particular, the
propagation of chaos for the respective dynamics.

Zusammenfassung (Translation of the Abstract)

Ziel dieser Arbeit ist eine mathematische präzise Herleitung der Vlasov-Poisson Gleichung
und der Vlasov-Maxwell Gleichungen als mean �eld Limes wechselwirkender Ladungen. Zu
diesem Zweck erweitern wir zunächst eine Methode von Boers und Pickl auf den Coulomb-
Fall mit einer N -abhändigen Regularisierung, die wie N−1/3+ε abfällt. Damit beweisen
wir einen mean �eld Limes für das Vlasov-Poisson System. Anschlieÿend präsentieren wir
einen alternativen Beweis und leiten das Vlasov-Poisson System als kombinierten mean
�eld und Punktteilchen-Limes eines N -Teilchen Coulomb-System ausgeschmierter Ladun-
gen her. Schlieÿlich kombinieren wir beide Methoden, um den mean �eld Limes für das
relativistische Vlasov-Maxwell Systems in 3+1 Dimensionen durchzuführen. Die Konver-
genz der empirischen Dichten gegen Lösungen der entsprechenden kinetischen Gleichung
wird jeweils für typische Anfangsbedingungen gezeigt. Dies impliziert inbesondere moleku-
lares Chaos für die jeweiligen Dynamiken.

Keywords: Derivation of kinetic equations. Particle methods. Particle approximation.
Vlasov equations. Validity problem. Molecular chaos. Propagation of chaos. Electrody-
namics. Rigid charges. Typicality.
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Chapter 1

Introduction

This work is about consistency between the microscopic and macroscopic level of physical
description. More precisely, it is about the microscopic justi�cation of kinetic equations with
electromagnetic interactions, particularly the Vlasov-Poisson and Vlasov-Maxwell equa-
tions.

Both these equations have been known and successfully used in physics for many decades
to provide an e�ective, macroscopic description of a collisionless plasma of charged (or
gravitating) particles. They are the kind of equations that a well-trained physicist could
easily guess. Yet, a precise mathematical derivation from �rst principles has been an open
problem, so far. In this work, we will present some results with a suitable microscopic
regularization that vanishes in the limit of large particle numbers.

That a rigorous treatment of large particle systems � at least in some relevant limiting
cases � is possible at all, is ultimately a testimony to the power and beauty of probabilities.
It is relatively easy to provide an analytic description of 2 interacting particles. It is
extremely di�cult for 3 particles. It is practically impossible for 10 particles. However,
as soon as we consider systems consisting of billions or trillions of particles, we begin to
discover typical regularities that give rise to new kinds of e�ective laws.

1.1 The microscopic equations

The starting point of our investigation are the classical Newtonian dynamics of N identical
particles in d dimensions given by

q̇i = 1
m pi

ṗi = α
∑
j 6=i

k(qi − qj).
(1.1)

Here, qi and pi denote the position and momentum of the i'th particle, m is the particle
mass and α > 0 a coupling constant comprising all other relevant constants. The force k
describes a pair-interaction among particles. We will consider, in particular, the Coulomb
kernel

k(q) = −∇ σ

|q|d−2
= σ

q

|q|d
, σ ∈ {±1} (1.2)
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where σ = +1 corresponds to the electrostatic force between equally charged particles, while
the attractive case σ = −1 describes Newtonian gravitation. Here, we have introduced the
potential

V (q) =
σ

|q|d−2
. (1.3)

Of course, much more general interactions are conceivable, in principle: mixed species of
particles, force-kernels depending on three or more particles, forces depending on the parti-
cle velocities, stochastic terms, external potentials, �rst order dynamics, etc. In particular,
when we discuss the relativistic Vlasov-Maxwell system, k will be replaced by the Lorentz
force generated by an electromagnetic �eld which enters the physical description as inde-
pendent degrees of freedom. Also, more general velocitiy-momentum relations q̇ = v(p)
can be considered, in particular v(p) = p√

c2+p2
for special relativity, where c is the speed

of light. However, for the sake of simplicity, only the standard Newtonian setting will be
discussed in this introduction.

The mean �eld scaling. As we want to approximate a kinetic equation of the Vlasov type,
we consider the system (1.1) in the so-called mean �eld scaling where α ∼ 1

N , so that the
total mass / charge of the system remains of order 1. This requires a corresponding rescaling
of time, position and momentum. To ensure that the initial data Z = (xi(0), pi(0))1≤i≤N
remains of order 1, it is convenient to consider rescaled time- and momentum coordinates
such that pi = N1/2pi, ti = N−1/2ti. Setting all physical constants (including the particle
mass) to 1, the microscopic equations thus read


q̇i = pi

ṗi = 1
N

∑
j 6=i

k(qi − qj).
(1.4)

One motivation for this particular scaling is the Virial theorem which states that, for

homogeneous k, the long-time averages of the total kinetic energy Ekin = 1
2

N∑
i=1

p2
i and the

potential energy Epot =
∑∑

1≤i<j≤N
V (qi − qj) are of the same order (see e.g. [38, Ch. I �10]).

Moreover, as, for instance, Jabin [32] explains, this is the simplest scaling of the system
for which one would expect an interesting behavior in the limit N → ∞. If α � 1

N , the
force term becomes very small and the time-evolution will be essentially free for large N .
If α � 1

N , the force term becomes more and more dominating and one expects a highly
complex (and possibly singular) behavior that might be heavily dependent on the details
of the microscopic interactions.

Nevertheless, the 1
N -scaling is just one of many possible choices and we can only hope for

the large N limit to capture some relevant traits of the system. Other interesting scalings -
which are not going to be discusses here - include, in particular, the Boltzmann-Grad limit,
leading to the famous Boltzmann equation [31].
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1.2 The Vlasov equation

In classical mechanics, a set of equations of the form (1.1) is generally assumed to provide a
complete description of the physical system. The only problem with these equations is that
they become extremely complex for large N . The number of atoms in a macroscopic system
is typically of the order of Avogadro's constant, i.e. N ∼ 1023. If we want to describe a
galaxy or a small cluster of galaxies (the �particles� here are stars) the order of N may
still be 109 or higher. Solving equation (1.1) with so many degrees of freedom is virtually
impossible � or at least extremely resource-intensive.

The basic idea, going back to Boltzmann, is to consider instead of the N -particle micro-
state a continuous distribution function f(t, q, p) that provides an e�cient description of
the most important (macroscopic) characteristics of the system. More precisely, for any
�observable� H(q, p) on the reduced phase-space Rd × Rd and any time t, the distribution
function yields an expectation value

〈H〉t =

∫ ∫
H(q, p)f(t, q, p) dqdp.

More simply put, f(t, q, p) can be thought of as a coarse-grained density of particles with
position (close to) q and momentum (close to) p.

The Jeans-Vlasov equation. The Vlasov equation or Jeans-Vlasov equation is a non-
linear partial di�erential equation de�ning an autonomous time-evolution for this continu-
ous model. It was introduced by A.A. Vlasov for his work in plasma physics [69, 70] and
even earlier by J.H. Jeans in the context of Newtonian stellar dynamics [33]. In the physical
literature, it is also referred to as collisionless Boltzmann equation, see e.g. [27].

The Vlasov equation for the distribution function ft reads:

∂tf + p · ∇qf +K · ∇pf = 0,

K(t, x) = k ∗ ρ(t, x) :=

∫
k(x− y)ρ(t, y),dy

ρ(t, q) =

∫
f(t, q, p) dp.

(1.5)

The marginal ρt = ρ[ft] is the charge- (or mass) density induced by the distribution ft
and K is the mean �eld force generated by this density. If k is the Coulomb kernel, the
corresponding Vlasov equation is known as the Vlasov-Poisson equation (or Vlasov-Newton
in the gravitational case.)

While the Vlasov equation may look complicated at �rst, its physical meaning is easy
to understand. The Vlasov equation is a transport equation. An initial distribution f0 is
transported with an e�ective �ow on the reduced phase-space Rd × Rd, which, in turn, is
generated by the mean �eld force K = K[ft]. More precisely, let ft be a solution of (1.5)
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and ϕt,s = (Qt,s, Pt,s) the solution of
d
dtQt,s = Pt,s
d
dtPt,s = k ∗ ρ[ft](Qt,s)

Q(s, s, q0, p0) = q0

P (s, s, q0, p0) = p0.

(1.6)

Then it holds that

ft = ϕt,s#fs, ∀0 ≤ s ≤ t ≤ T, (1.7)

where, ϕ(·)#f denotes the image-measure of f under ϕ, de�ned by ϕ#f(A) = f(ϕ−1(A))
for any Borel set A ⊆ R2d. ϕt,s is called the characteristic �ow of the Vlasov equation.

Since the vector �eld (p, k ∗ρ(q)) is divergence free on (q, p)-space, the Vlasov evolution
has several nice conservation properties along strong solutions. In particular, all Lp norms
are conserved, that is ‖f(t)‖p = ‖f0‖p. For p = 1, this is the conservation of mass:∫
ρt dq =

∫
ρ0 dq =

∫
f0(p, q)dqdp, where f0 is usually normalized to total mass one.

Of course, when the kernel k contains a singularity, the existence of solutions to either
the mean �eld or the characteristic equation is anything but obvious. We will cite the
pertinent results in due course.

1.3 Deriving mean �eld equations

Now, what does it mean to derive a Vlasov equation? That is, in what sense can we prove
that the function ft, evolving according to (1.5), provides a good e�ective description of
the N -particle system (1.4)?

Convergence of empirical density. One possibility to make this precise, is to consider
the microscopic or empirical density corresponding to the N -particle micro-state. That is,
let Z(t) =

(
q1(t), p1(t), ..., qN (t), pN (t)

)
∈ R6N denote the con�guration of the N -particle

system at time t. Then the empirical density is given by

µNt = µN [Z(t)] :=
1

N

N∑
i=1

δ(· − qi(t))δ(· − pi(t)). (1.8)

(Note that the particles here are assumed to be �identical�, i.e. the microscopic density is
invariant under permutation of the particles.) A sequence of such microscopic densities can
approximate a continuous density ft in the sense that

lim
N→∞

∫ ∫
H(q, p)µNt (q, p)dqdp =

∫ ∫
H(q, p) ft(q, p)dqdp

for any bounded and continuous H. We then say that µNt converges weakly to ft and
write µNt ⇀ fNt . This weak convergence gives precise meaning to the continuum limit of a
singular measure as (1.8).

Now, we may hope to prove a statement of the following kind:
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If at time t = 0 we consider a sequence of initial con�gurations Z = (qi, pi)1≤i≤N

such that µN [Z] = 1
N

N∑
i=1

δqiδpi ⇀ f0 then at later times t > 0, it holds that

µN [Z(t)] ⇀ ft, where Z(t) is the solution of the rescaled microscopic dynamics
(1.4) and ft a solution of the corresponding Vlasov equation (1.5).

µ0
N→∞ // f0

microscopic

time-evolution

��

mean �eld

time-evolution

��
µt

N→∞ // ft

(1.9)

This hope is further sustained by the following observation: Suppose that the microscopic
dynamics contain no self-interaction, i.e. k(0) = 0. Then, the N -particle force in the mean
�eld scaling can be written as

1

N

∑
i 6=j

k(qi(t)− qj(t)) = k ∗ ρ[µN [Z(t)]](qi(t)).

It is then straightforward to check that Z(t) is a solution of (1.4) if and only if µNt =
µN [Z(t)] solves (1.5) in the sense of distributions. One can thus expect that the density
still satis�es the same equation as one passes to the continuum limit in the sense explained
above.

Molecular Chaos. The second point of view is concerned with random initial conditions
rather than deterministic ones. In other words, it is concerned with distributions on the
N -particle phase-space, corresponding to ensembles of systems, rather than distributions
on the reduced phase-space, pertaining to the description of one particular system.

Suppose that at t = 0 the particles are identically and independently distributed accord-
ing to the law f0, that is, we consider the product-measure FN0 = ⊗Nf0 on R6N . Let Ψt,0

be the N -particle �ow generated by the microscopic dynamics (1.4) and FNt := Ψt,0#FN0 .
Then FNt (q1, p1, ..., qN , pN ) describes the distribution of (ensembles of) particles on phase
space at time t. One checks that it is a solution to the Liouville equation

∂tF
N
t +

N∑
i=1

pi · ∇qiFNt +
N∑
i=1

1

N

∑
i 6=j

k(qi − qj) · ∇piFNt . (1.10)

Now one would like to show that under this time-evolution, the particles remain �approx-
imately independent� with FNt ≈ ⊗Nft, where ft is the solution of the Vlasov equation.
Formally, this approximation is understood in terms of the convergence of marginals. Writ-
ing zi = (qi, pi), we de�ne for k ∈ N the reduced k-particle marginal

(k)FNt (z1, ..., zk) :=

∫
FNt (Z) d3zk+1...d

3zN . (1.11)
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Then we want to show that
(k)FNt ⇀ ⊗kft, N →∞. (1.12)

(In fact, it su�ces that the convergence holds for k ≤ 2). This property is known as
molecular chaos or Kac's chaos. By a well-known result of probability theory, molecular
chaos is equivalent to the convergence in law of the empirical measures µNt [Z] = µN [Ψt,0(Z)]
against the constant variable ft. (E.g. Kac, 1956 [34], Grünbaum, 1971 [23], Sznitman,
1991, [66, Prop. 2.2], see [48] for recent quantitative results). In other words, molecular
chaos is equivalent to convergence of the empirical measures for typical initial conditions.
In particular, it holds that

lim
N→∞

PN0
[
Z ∈ R6N :

∣∣∣∫ h(z)µNt [Z](z)dz −
∫
h(z)ft(z)dz

∣∣∣ > ε
]

= 0 (1.13)

for any ε > 0 and any bounded, continuous test-function h, where the probability PN0 is
de�ned in terms of FN0 = ⊗Nf0.

1.4 Classical results

To my knowledge, the �rst paper to discuss a mathematically rigorous derivation of Vlasov
equations is Neunzert and Wick, 1974 [50]. Better known are the publications of Braun
and Hepp, 1977 [10] and Dobrushin, 1979 [15], as well as the later exposition of Neunzert,
1984 [49]. For a general overview of the topic, we refer the reader to the book of Spohn [65],
the survey article of Kiessling [35], as well as the lecture notes of Jabin [32] and Golse [22]
that I have found to be very helpful.

The results of Neunzert, Braun-Hepp and Dobrushin are all of the �rst, deterministic
kind. Rather than the Vlasov-Poisson equation, they treat simpli�ed models with Lipschitz-
continuous forces k ∈W 1,∞ = {k ∈ C1(Rd) : ‖k‖∞ + ‖∇k‖∞ <∞}. For instance, one can
think of replacing the singular Coulomb potential (1.3) by a regularized variant like (in the
3-dimensional case)

V (x) =
σ√

x2 + ε2
, ε > 0. (1.14)

The strategy of proof can then be summarized as follows: choose an appropriate distance
metrizing weak convergence of probability measures (e.g. the bounded Lipschitz metric
in [10] or the Wasserstein metric in [15]) and establish a bound of the form

d

dt
dist(µNt , ft) ≤ C dist(µNt , ft). (1.15)

Then one concludes with Gronwall's lemma that

dist(µNt , ft) ≤ etCdist(µN0 , f0), (1.16)

so that convergence of the empirical measure at the initial time implies convergence of the
empirical measure at later times.

On the one hand, these proofs capture well the basic intuition behind the scheme (1.9):
As long as µNt ≈ ft in the weak topology, one hopes that K[µt] ≈ K[ft], in some (stronger)
sense. Hence, microscopic time-evolution and mean �eld time evolution will be �close� in



1.5 Recent results for singular forces 7

some sense. Hence, µNt and ft remain close as probability measures - and so on and so forth.
On the other hand, the molli�ed interactions studied in the aforementioned papers also
turned out to be deceptive, in some respect. Formally, the problem is that the Lipschitz
constant in (1.15) will depend on the size of the cut.o�, C = C(ε), in such a way that
C(ε)→∞ as ε→ 0.

Note that it is always possible to choose anN -dependent cut-o� like ε(N) ∼ log(N)−1 (if
C(ε) ∼ ε) with su�ciently small constants so that the right-hand-side (1.16) converges, see
e.g. [19]. However, the scale of the regularization is then so large compared to the typical
distance between neighboring particles (∼ N−1/d) that it captures only very long-range
characteristics of the original dynamics.

In any more satisfying sense, generalizing the results of Neunzert, Braun-Hepp and
Dobrushin to more realistic systems proved to be problematic. Indeed, the understanding
that has grown in recent years is that such deterministic statements are actually too strong
for singular interactions, the reason being that there exist �bad� initial conditions leading
to clustering of particles and hence to signi�cant deviations from the typical mean �eld
behavior. The best we can hope for is to prove convergence of the empirical measure
for typical initial conditions, i.e. the propagation of chaos. This becomes apparent, for
instance, in the works of Hauray and Jabin [25, 26] and is also one of the basic insight
behind the present thesis.

1.5 Recent results for singular forces

On a conceptual note, I believe it's important to appreciate the fact that the probabilistic
character of such results is not primarily a matter of ignorance or limited accuracy of
observation. Certainly, whether parts of nature can be described � at least approximately
� by a particular mathematical equation cannot depend on what we know or don't know
about the respective systems. Rather, the validity of the macroscopic equation is ultimately
explained by the fact that the mean �eld approximation is applicable to typical systems and
fails only for extremely special con�gurations of particles. See [40] for a detailed conceptual
discussion of typicality.

For this reason, results for particles initially arranged on a regular mesh (e.g. [73],
[3]) are relevant to certain numerical experiments, but less for explaining the validity of
the mean �eld approximation as referring to real-life physical systems. The situation is
somewhat similar with respect to the recent result of Kiessling, 2014 [36], who proves a (non-
quantitative) approximation for mean �eld equations including the Coulomb singularity
under the assumption of a uniform bound on the microscopic forces, but leaves open whether
or not this assumption is satis�ed for a statistically relevant subset of initial conditions.

In contrast, the strategy employed by Hauray and Jabin in [26] is to impose additional
constraints on the initial con�gurations, subsequently showing that the set of �good� initial
conditions, for which these constraints are satis�ed, approaches measure 1 as N → ∞. In
this way, the authors are able to treat systems with singular potentials up to � but not
including � the Coulomb case.

More precisely, they consider force kernels bounded like |k(q)| ≤ C
|q|α with α < d − 1

in dimension d ≥ 3. For 1 < α < d − 1 they require an N -dependent cut-o� which
can be chosen as small as N−1/2d for α ↗ d − 1, while for α < 1, they are able to prove
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molecular chaos with no cut-o� at all. The results of Hauray and Jabin marked a signi�cant
advancement in the derivation of Vlasov-type equations and it is a pitty that the method
fails precisely at the Coulomb threshold α = d− 1.

Recently, Boers and Pickl proposed a new method for deriving mean �eld equations
which is designed for stochastic initial conditions, thus aiming directly at a typicality re-
sult [6]. This method captures nicely the intuition of mean �eld approximations as law of
large numbers results and allowed to improve the cut-o� width for α < d − 1 to N−1/d,
corresponding to the typical nearest-neighbor distance in d-dimensional space.

1.6 Aim of this work

One of the main goals of this thesis is to generalize the method of Boers and Pickl to include
the Coulomb singularity, thus proving a mean �eld limit for the Vlasov-Poisson equation.
In brief, this will be achieved by exploiting the second order nature of the equation, intro-
ducing an anisotropic N -dependent metric that weighs spatial- and momentum coordinates
di�erently.

Afterwards, we will propose an alternative approach, deriving the Vlasov-Poisson equa-
tion as a combined mean �eld and point-particle limit of an N -particle Coulomb system
of extended charges. This proof is based on controlling the Wasserstein distance between
microscopic density and mean �eld density, thus showing how Dobrushin's method can, af-
ter all, be extended to singular forces with an N -dependent cut-o� decreasing much faster
than logarithmic. Moreover, this alternative approximation of the Vlasov-Poisson dynamics
is interesting in view of the Vlasov-Maxwell problem, because it treats, as a microscopic
model, the nonrelativistic analogue of the Abraham model of rigid charges that we are
going to use as a regularization of the �eld dynamics in the relativistic case. In the end, we
want to combine both methods, developed and tested for Vlasov-Poisson, into a derivation
of the 3-dimensional relativistic Vlasov-Maxwell system.

The Vlasov-Maxwell system is, simply put, the electrodynamic Vlasov theory, including
the Vlasov-Poisson equation as its nonrelativistic limit. It describes a collisionless plasma of
identical charged particles, interacting through a self-consistent electromagnetic �eld. The
analogue for gravitational interactions are the Vlasov-Einstein equations, not treated in
this thesis. Explicitly, the Vlasov-Maxwell system consist in the following set of equations:

∂tf + v(ξ) · ∇xf +K(t, x, ξ) · ∇ξf = 0,

∂tE −∇x ×B = −j, ∇x · E = ρ,

∂tB +∇x × E = 0, ∇x ·B = 0,

(1.17)

where

v(ξ) =
ξ√

1 + |ξ|2
(1.18)

is the relativistic velocity of a particle with momentum ξ,

ρ(t, x) =

∫
f(t, x, ξ) dξ, j(t, x) =

∫
v(ξ)f(t, x, ξ) dξ (1.19)

are the charge- and current density induced by the distirbution ft and

K(t, x, ξ) = E(t, x) + v(ξ)×B(t, x) (1.20)
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is the Lorentz force acting at time t on a particle at x with velocity v(ξ).

The mean �eld limit for Vlasov-Maxwell is considerably more complex than the electro-
static case, as it involves relativistic (retarded) interactions and the electromagnetic �eld as
additional degrees of freedom. However, we will show that the basic insights and techniques
developed for the Vlasov-Poisson equation carry over to the relativistic regime. In view of
the rigid charges model, the cut-o� parameter has a straightforward physical interpretation
in terms of a �nite electron-radius which will formally decrease with N .

A previous result for the Vlasov-Maxwell system was recently obtained by Golse, who
performed the mean �eld limit for a regularized version dynamics, i.e. with a �xed cut-o�,
similar to what Braun-Hepp, Dobrushin and Neunzert did for the Vlasov-Poisson equa-
tion [21]. In the spirit of the recent developments in the Vlasov-Poisson case, outlined
above, our aim is to proof a mean �eld limit for the actual Vlasov-Maxwell equations by
using an N -dependent cut-o� which decreases as N−1/12. I thus believe that this result con-
stitutes signi�cant progress in regard to the microscopic justi�cation of the Vlasov-Maxwell
dynamics.
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Chapter 2

The Wasserstein distances

In this chapter, we recall the de�nition as well as some basic facts and applications of
the Wasserstein distances, also known as Monge-Kantorovich-Rubinstein distances. The
Wasserstein distances are intimately connected to the problem of optimal transpartation;
in the context of kinetic equations, they were �rst introduced by Dobrushin [15]. For more
details and proofs, we refer the reader to the book of Villani [68]. This chapter is only
preparatory and does not include new results.

2.1 De�nition and basic properties

We denote by P(Rn) the set of probability measures on Rn equipped with its Borel algebra.
If (µk)k∈N is a sequence in P(Rn) and µ another element, we denote by µk ⇀ µ the weak
convergence of probability measures, meaning∫

φ(x) dµk(x)→
∫
φ(x) dµ(x), k →∞,

for all bounded and continuous functions φ : Rn → R.

De�nition 2.1.1. For given µ, ν ∈ P(Rn) let Π(µ, ν) be the set of all probability measures
Rn × Rn with marginal µ and ν respectively, i.e.∫

φ1(x)π(dx,dy) =

∫
φ1(x)dµ(x),

∫
φ2(y)π(dx,dy) =

∫
φ2(y)dµ(y)

for φ1, φ2 bounded and continuous. The elements of Π(µ, ν) are called couplings or trans-
ference plans between µ and ν.

For p ∈ [1,∞) we de�ne the Wasserstein distance of order p by

Wp(µ, ν) := inf
π∈Π(µ,ν)

( ∫
Rn×Rn

|x− y|p dπ(x, y)
)1/p

. (2.1)

The value might be in�nite, unless one demands that µ and ν have �nite p'th moments.
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In the context of optimal transportation, |x−y|p is called the cost function and could be re-
placed by a more general expression c(x, y). The problem of minimizing the right-hand-side
of (2.1) then corresponds to �nding an optimal transference plan for shifting a distribution
(of mass or goods of some sort) µ to a distribution ν if the cost of transportation is given
by c(x, y).

In view of (2.1), a direct application of Hölder's inequality yields the relation

p ≤ q ⇒ Wp(µ, ν) ≤Wq(µ, ν).

In general, a higher order means that large distances in Rn become more and more �costly�.
We can complete the analogy to the Lp-hierarchy by introducing the in�nite Wasserstein
distance de�ned as

W∞(µ, ν) = inf
{
π − esssup |x− y| | π ∈ Π(µ, ν)

}
. (2.2)

Turning back to the cases p ∈ [1,∞), a central result is the Kantorovich-Rubinstein duality.
For p ∈ [1,∞):

W p
p (µ, ν) = sup

{∫
φ1(x) dµ(x)−

∫
φ2(y) dν(y) :

(φ1, φ2) ∈ L1(µ)× L1(ν), φ1(y)− φ2(x) ≤ |x− y|p
}
.

(2.3)

Much of the power of the Wasserstein distance lies in this duality formula. It establishes
two equivalent characterizations ofWp, one involving an in�mum and one involving a supre-
mum. This allows us to switch between one and the other, depending on whether we want
to establish upper or lower bounds.

For any integrable function φ and p ∈ [1,∞) we de�ne its c-conjugate by

φc(y) := sup
x
{φ(x)− |x− y|p}. (2.4)

One easily veri�es that this is the smallest function satisfying φ(x)−φc(y) ≤ |x−y|p, ∀x, y ∈
Rn. Hence, the Kantorovich duality formula becomes

W p
p (µ, ν) = sup

φ∈L1(µ)

{∫
φ(x) dµ(x)−

∫
φc(y) dν(y)

}
. (2.5)

The most common variant is the �rst Wasserstein distance, for which the problem further
reduces to

W1(µ, ν) = sup
‖φ‖Lip≤1

{∫
φ(x) dµ(x)−

∫
φ(x) dν(x)

}
, (2.6)

where ‖φ‖Lip := sup
x 6=y

φ(x)−φ(y)
|x−y| , to be compared with the bounded Lipschitz distance

dBL(µ, ν) = sup
{∫

φ(x) dµ(x)−
∫
φ(x) dν(x) : ‖φ‖Lip = ‖φ‖∞ = 1

}
. (2.7)



2.2 Large deviations 13

Since the class of test-functions is smaller for the bounded Lipschitz metric, we have dBL ≤
W1, which shows that the Wasserstein distances (with respect to the Euclidean norm)
are relatively strong. Indeed, convergence in Wasserstein distance implies not only weak
convergence, but also convergence of the �rst p moments, that is:

Wp(µk, µ)→ 0 ⇐⇒

µk ⇀ µ and lim
k→∞

∫
|x|p dµk(x) =

∫
|x|p dµ(x).

More formally, one can introduce the p−th Wasserstein space Pp(Rn) ⊂ P(Rn) as the set
of probability measures with �nite p-th moment, that is

Pp(Rn) =
{
µ ∈ P(Rn) :

∫
|x|p dµ <∞

}
. (2.8)

We say that µk converges weakly to µ in Pp(Rn) if
∫
ϕ(x)dµk(x) →

∫
ϕ(x)dµ(x) for all

continuous ϕ with ϕ(x) ≤ (1 + |x|p). Then Wp metrizes the topology of weak convergence
on Pp(Rn). In particular, one checks with a little bit of e�ort that Wp is indeed a (�nite)
metric on Pp(Rn). (On P(Rn), the Wasserstein distances also satisfy all properties of a
metric, except they can take the value +∞.)

Sometimes it is also convenient to replace the Euclidean norm by a bounded metric on Rn,
e.g. d(x, y) := min{1, |x − y|}. Then the Wasserstein distances for this metric d generate
the usual weak* topology in P(Rn) and the �rst Wasserstein distance is equivalent to the
bounded Lipschitz distance.

2.2 Large deviations

A question that we will repeatedly encounter throughout our further discussion is the
following: Suppose we pick N points x1, ..., xN randomly and independently according to

the law f . How fast will the empirical density µN [X] = 1
N

N∑
i=1

δxi typically approximate f ,

if the di�erence is measured in a Wasserstein distance?

It is a classical result - known as the empirical law of large numbers, Varadarajan's the-
orem or Glivenko-Cantelli theorem - that µN [X] converges to f in probability. Establishing
quantitative bounds on large deviations (concentration estimates) is, however, a longstand-
ing problem in probability theory with a vast amount of literature. To my knowledge, one
of the �rst paper to address this question in the context of Wasserstein metrics was Bolley,
Guillin, Villani, 2007 [8]. Subsequently, other authors have derived stronger concentration
estimates, see, in particular, [7] and [13]. Very recently, great progress has been made in
the paper of Fournier and Guillin, 2014 [17] which considerably improves upon previous
results, both in strength and generality. In fact, the results can be shown to be almost
optimal in many cases. Maybe more importantly for us, the assumptions on the law f are
much weaker and easier to check than in the aforementioned publications. We will cite
here the concentration estimates of Fournier and Guillin [17, Thm. 2] and apply them on
various occasions throughout our further discussion.
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Theorem 2.2.1 (Fournier and Guillin). Let f ∈ P(Rn) and p ∈ (0,∞). For q > 0, κ > 0,
and γ > 0, consider

Mq(f) :=

∫
Rn

|x|qdf(x); Eκ,γ(f) :=

∫
eγ|x|

κ
df(x).

Assume one of the following three conditions:

(1) ∃κ > p, γ > 0 : Eκ,γ(f) < +∞

(2) ∃κ ∈ (0, p), γ > 0 : Eκ,γ(f) < +∞

(3) ∃q > 2p : Mq(f) < +∞

Let (xi)i=1,...,N be a sample of independent variables, distributed according to the law f and

µN [X] :=
N∑
i=1

δxi . Then, for all N ≥ 1 and ξ ∈ (0,∞):

P
[
W p
p (µN [X], f) > ξ

]
≤ a(N, ξ)1ξ≤1 + b(N, ξ)

with

a(N, ξ) := C


exp(−cNξ2) if p > n/2

exp(−cN( ξ
ln(2+1/ξ))2) if p = n/2

exp(−cNξn/p) if p ∈ [1, n/2)

and

b(N, ξ) := C


exp(−cNξ

κ
p )1ξ>1 under (1)

exp(−c(Nξ)
κ−ε
p )1ξ≤1 + exp(−c(Nξ)

κ
p )1ξ>1 ∀ε ∈ (0, κ) under (2)

N(Nξ)
− q−ε

p ∀ε ∈ (0, q) under (3)

The positive constants C and c depend only on p, n and either κ, γ, Eκ,γ(f) (under assump-
tion (1)) or κ, γ, Eκ,γ(f), ε (under (2)) or on q,Mq(f), ε (under (3)).

Discussing the rather intricate proof in more detail would go far beyond the scope of this
thesis. Very brie�y put, the strategy of Fournier and Guillin involves 3 steps. First,
large deviation estimates are derived for the case were f has compact support and the
�xed sample size N is replaced by a Poisson(N)-distributed random variable with intensity
measure Nf , which yields some useful independence properties. In a second step, one
removes this randomization by using the fact that, for large N , a Poisson(N)-distributed
random variable is concentrated around N with high probability. Finally, one has to extend
the estimates to the non-compact case by summing over a sequence of nested, disjoint sets
with increasing support and exploiting the decay properties of f .

2.3 Stability of the Coulomb force

As mentioned in the introduction, the classical mean �eld results are essentially stability
results of the form

‖k ∗ ρ1 − k ∗ ρ2‖ . dist(ρ1, ρ2), (2.9)
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where dist(·, ·) represents an appropriate distance between probability measures and ‖·‖
some stronger (usually Lp) norm. In particular, if the kernel k has bounded derivative,
one immediately concludes with (2.6) that ‖k ∗ ρ1 − k ∗ ρ2‖∞ ≤ ‖k‖LipW1(ρ1, ρ2). This
inequality is at the core of Dobrushin's mean �eld approximations [15], which amount to
the Gronwall bound

W1(µNt , ft) ≤ et(1+2‖∇k‖∞)W1(µN0 , f0) (2.10)

for µNt the microscopic density and ft the Vlasov density solving the corresponding Vlasov
equation.

Unfortunately, generalization to less benign interactions is di�cult and will in general
require additional regularity assumptions on ρi. For instance, when k = x

|x|d is the Coulomb

kernel (and ρ1, ρ2 have compact support) one would maybe like to exploit an inequality of
the form ‖k ∗ (ρ1 − ρ2)‖2 ≤ C‖ρ1 − ρ2‖2.1 So we try:∫

(ρ1 − ρ2)(ρ1 − ρ2)dq ≤ ‖ρ1 − ρ2‖LipW1(ρ1, ρ2)

and thus

‖ρ1 − ρ2‖2 ≤ max{‖∇ρ1‖∞, ‖∇ρ2‖∞}1/2
√
W1(ρ1, ρ2), (2.11)

which is not good enough to derive a Gronwall bound similar to (2.10) (even if we assumed
that ρ1 and ρ2 had bounded derivatives � which is emphatically not the case for a point
charge density).

However, if we exploit the fact that the Coulomb kernel k is generated by a potential
solving Poisson's equation, we gain just enough regularity to derive a linear bound with
respect to the second Wasserstein distance. This is due to an ingenious argument by
Loeper [42, Theorem 2.9], which we recall in the following.

De�nition 2.3.1. For any measurable function T , we denote by T#µ the push-forward
(image meausure) of µ by T de�ned by T#µ(A) = µ(T−1(A)) for any Borel set A ⊆ Rn.
A measurable function T : Rd → Rd is called a deterministic coupling or transference map
between µ and ν if T#µ = ν.

Now we have the following theorem:

Theorem 2.3.2. If µ is absolutely continuous with respect to the Lebesgue measure, there
exists a unique deterministic coupling such that (Id, T )#µ ∈ Π(µ, ν) is optimal with respect
to the quadratic cost-function, i.e.

W2(µ, ν) :=
(∫
Rd

|T (x)− x|2 dµ(x)
)
. (2.12)

The original theorem is due to Brenier [11], the proof was later simpli�ed and generalized
by Gangbo and McCann [18, Theorem 1.2]. See also [68, Chapter 10] for a comprehensive
discussion.

1In particular, one would have liked to apply such an estimate to the Vlasov-Maxwell system, exploiting
the relation ‖(E1, B1)− (E2, B2)(t)‖2 ≤ ‖(E1, B1)− (E2, B2)(0)‖2 +

∫
‖(j1 − j2)(s)‖2 ds.
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De�nition 2.3.3. Let f a bounded linear functional on the Sobolev space H1(Rn). Then
we consider the norm

‖f‖H−1 := sup
{∫

fg dx : g ∈ C∞c (Rd),
∫
|∇g|2dx ≤ 1

}
. (2.13)

As a motivation for introducing this somewhat more abstract norm, we note that a) it is
weaker than the L2-norm and b) the test-functions g ∈ H1(Rn) come with some bound on
their variation, ‖∇g‖2 ≤ 1, to be compared with ‖∇g‖∞ ≤ 1 in case of W1. This should
give us some hope that it is possible to establish a bound of the form (2.9) in terms of an
appropriate Wasserstein metric.

Let ρ1, ρ2 ∈ L1(Rn). Let T be the optimal coupling between ρ1 and ρ2 with respect to the
second Wasserstein distance and consider the interpolation

ρθ = ((θ − 1)T + (2− θ)Id)#ρ1, θ ∈ [1, 2]. (2.14)

This path has some interesting properties. For instance, the displacement convexity (see
[47], [42, Thm. 2.6 and Cor. 2.7]) implies that

‖ρθ‖∞ ≤ max{‖ρ1‖∞, ‖ρ2‖∞}, ∀θ ∈ [1, 2]. (2.15)

Now Loeper proves the following:

Proposition 2.3.4. Let ρ1, ρ2 ∈ H−1(Rn)∩L∞(Rn) and ρθ the interpolant de�ned above.
Then

‖ρ1 − ρ2‖H−1 ≤ {‖ρ1‖∞, ‖ρ2‖∞}1/2W2(ρ1, ρ2). (2.16)

Proof. Note that d
dθρθ = ρ2 − ρ1 and that for all g ∈ C∞c (Rn):∫
ρθ(x)g(x)dx =

∫
ρ1(x)g((θ − 1)T (x) + (2− θ)x))dx.

Di�erentiating with respect to θ yields:

d

dθ

∫
ρθ(x)g(x)dx =

∫
ρ1(x)∇g((θ − 1)T (x) + (2− θ)x)(T (x)− x)dx.

Applying the Cauchy-Schwartz inequality w.r.t the measure ρ1 yields∫
(ρ2 − ρ1)(x)g(x)dx ≤

(∫
ρθ(x)|∇g(x)|2

)1/2(∫
ρ1(x)|T (x)− x|2dx

)1/2
. (2.17)

The second term on the right-hand side is identical to W2(ρ1, ρ2). Using (2.15) and taking
the supremum over all g ∈ C∞c (Rn) with ‖∇g‖2 ≤ 1, the statement follows.

Furthermore, we have the following estimate:

Lemma 2.3.5. Let Φi, i = 1, 2 be the solution of

−∆Φi = ρi,

Φi(x)→ 0, |x| → ∞,

and Ei = −∇Φi. Then it holds that

‖E1 − E2‖2 ≤ ‖ρ1 − ρ2‖H−1 . (2.18)
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Proof. We compute∫
(ρ1 − ρ2)(x)g(x) dx =

∫
div(E1 − E2)(x)g(x) dx

=−
∫

(E1 − E2)(x)∇g(x)dx =

∫
∇(Φ1 − Φ2)(x)∇g(x)dx.

Taking the supremum over all g ∈ C∞c (Rn) with ‖∇g‖2 ≤ 1, the inequality follows.

In total, we have derived the following result that we will use on several occasions.

Proposition 2.3.6 (Loeper). Let k the d-dimensional Coulomb kernel and ρ1, ρ2 ∈ L1(Rd)∩
L∞(Rd) two (probability) densities. Then

‖k ∗ ρ1 − k ∗ ρ2‖2 ≤
[
max{‖ρ1‖∞, ‖ρ2‖∞}

]1/2
W2(ρ1, ρ2). (2.19)

Note: This result can be generalized to the less singular kernels, see e.g. [24].
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Chapter 3

A mean �eld limit for the

Vlasov-Poisson system

This chapter presents joint work with Prof. Dr. Peter Pickl and is largely copied from the
paper D. Lazarovici, P. Pickl: A mean �eld limit for the Vlasov-Poisson equation which is
currently under review for publication. For a preprint, see [39]. Some parts of the discussion
have been modi�ed or expended.

3.1 The Vlasov-Poisson equation

We are interested in a microscopic derivation of the nonrelativistic Vlasov-Poisson system.
This equation describes a plasma of identical, charged particles with Coulomb interactions.
For simplicity, we shall focus on the 3-dimensional case. Generalization to higher dimensions
is straightforward and will be included in the next chapter. The Vlasov-Poisson equation
reads:

∂tf + p · ∇qf + (k ∗ ρt) · ∇pf = 0, (3.1)

where k is the Coulomb kernel

k(q) := σ
q

|q|3
, σ = {±1} (3.2)

and

ρt(q) = ρ[ft](q) =

∫
d3p f(t, q, p) (3.3)

is the charge density induced by the distribution f(t, p, q) ≥ 0.
Units are chosen such that all constants, in particular the mass and charge of the particles,
are equal to 1. The case σ = +1 corresponds to electrostatic (repulsive) interactions while
σ = −1 describes gravitational (attractive) interactions. In the latter case, (3.1) is also
known as the Vlasov-Newton equation.

While the the existence theory of the Vlasov-Poisson dynamics is pretty well understood
� we will cite the pertinent results below � its microscopic derivation has been an open
problem. As discussed in more detail the introductory chapter, the last few years have seen
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great progress in treating mean �eld limits for singular forces � up to, but not including the
Coulomb case, see in particular Hauray and Jabin, 2013 [26] and Boers and Pickl, 2015 [6].
The aim of this chapter is to extend the method of Boers and Pickl to include the Coulomb
singularity, thus aiming at a microscopic justi�cation of the Vlasov-Poisson dynamics. The
Coulomb case is qualitatively di�erent from the previously treated interactions since the
mean �eld force k ∗ ρ is no longer Lipschitz, in general, even if the density is bounded.
However, we will show how it can be included by exploiting the second order nature of the
dynamics and introducing an appropriate scaling of the relevant metrics.

3.2 The microscopic model

Since the Coulomb kernel is strongly singular at the origin, we will require a regularization
on the microscopic level. We shall introduce a force kernel with an N -dependent cut-o�,
approximating the Coulomb interaction in the limit N →∞. Of course, the N -dependence
of the force thus introduced is a technical necessity rather than a realistic physical model,
though similar regularizations are commonly used in numerical computations. For N ∈ N
and δ ≥ 0, let

kNδ (q) := σ


q
|q|3 , if |q| ≥ N−δ

qN3δ , else.
(3.4)

For N → ∞ and any δ > 0 this converges point-wise to the Coulomb kernel on R3 \ {0},
which justi�es the notation k∞(q) := k(q) = σq

|q|3 . Moreover, we note that |kNδ (q)| ≤ N2δ

and kNδ (0) = 0. In the mean �eld scaling, the equations of motion for the regularized
N -particle system are given by

q̇i(t) = pi(t)

ṗi(t) = 1
N

N∑
j=1

kNδ (qi − qj),
(3.5)

for i ∈ 1, ..., N . Since the vector �eld is Lipschitz for �xed δ,N , we have global existence
and uniqueness of solutions and hence an N -particle Hamiltonian �ow, which we denote by
NΨt,s(Z) =

(
NΨ1

t,s(Z),NΨ2
t,s(Z)

)
∈ R3N ×R3N . We will often omit the index N when the

particle number is �xed. Introducing the N -particle force �eld K : R3N → R3N given by

(K(q1, .., qN ))i :=
1

N

N∑
j=1

kNδ (qi − qj), i = 1, .., N, (3.6)

we can also characterize Ψt,s as the solution of

d

dt

(
NΨ1

t,s(Z),NΨ2
t,s(Z)

)
=
(
NΨ2

t,s(Z),K(NΨ1
t,s(Z))

)
, NΨs,s(Z) = Z. (3.7)

Finally, if NΨt,0(Z) = (qi(t), pi(t))i=1,..,N we de�ne the corresponding microscopic or em-
pirical density by

µNt [Z] := µN [Ψt,0(Z)] =
1

N

N∑
i=1

δ(· − qi(t))δ(· − pi(t)). (3.8)
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Of course, more general cut-o�s can be considered. In the literature, the following nomen-
clature has been established (see e.g. [26, 32]).

De�nition 3.2.1. A pair-interaction de�ned by a kernel k : Rd → Rd satis�es a Sα-
condition, if

(Sα) ∃c > 0,∀q ∈ Rd \ {0} |k(q)| ≤ c
|q|α , |∇k| ≤

c
|q|α+1 .

Introducing a cut-o� of order N−δ near the origin, the regularized force kernel kNδ satis�es
a (Sαδ )-condition if

i) k satis�es a (Sα) condition,

(Sαδ ) ii) kNδ (q) = k(q) for |q| ≥ N−δ,

iii) |kNδ (q)| ≤ N−δα for all |q| < N−δ.

In addition, we shall require that

iv) |∇kNδ (q)| ≤ N−δ(α+1) for all |q| < N−δ (3.9)

which merely assures that the regularization around the origin is not somehow erratic.

Within this setting, we thus consider 3-dimensional force kernels satisfying a (Sαδ ) condition
with α = 2 and the additional assumption (3.9). The lower bound on the cut-o� will later
be determined as δ < 1

3 . Moreover, we shall adopt the convention kNδ (0) = 0, meaning that
the microscopic dynamics do not contain self-interactions. The reader is free to think of
(3.4) as de�ning the microscopic model or consider another regularization of his liking that
satis�es the assumptions above.

3.2.1 The mean �eld �ow

For any δ > 0 and N ∈ N ∪ {∞}, we also consider the corresponding mean �eld equation

∂tf + p · ∇qf +
(
kNδ ∗ ρt

)
· ∇pf = 0. (3.10)

For (formally) N = ∞, this reduces to the Vlasov-Poisson equation (3.1). For a �xed
initial distribution f0 ∈ L∞(R3×R3) with f0 ≥ 0 and

∫
f = 1 we denote by fNt the unique

solution of (3.10) with initial datum fNt (0, ·, ·) = f0.
As mentioned in the introduction, it is convenient to consider the characteristic �ow of

the mean �eld system. For N ∈ N, δ > 0 and ρ ∈ L1(R3), we de�ne K̂N
δ (·; ρ) : R3 × R3 →

R3 × R3 by
K̂N
δ (q, p; ρ) :=

(
p, kNδ ∗ ρ (q)

)
. (3.11)

Then, the (regularized) Vlasov-Poisson equation (3.10) with initial f0 is equivalent to the
following system of integro-di�erential equations:

d
dtϕ

N
t,s(z; f0) = K̂N

δ

(
ϕNt,s(z; f0); ρNt

)
ρNt (q) =

∫
fN (t, q, p) d3p

fN (t, ·) = ϕNt,s(· ; f0)#fNs

ϕNs,s(z; f0) = z.

(3.12)
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In other words, we have non-linear time-evolution in which ϕt,s(· ; f0) is the one-particle
�ow induced by the mean �eld dynamics with initial distribution f0, while, in turn, f0

is transported with the �ow ϕNt,s. Due to the semi-group property ϕNt,s′ ◦ ϕNs′,s = ϕNt,s it
generally su�ces to consider the initial time s = 0.

The method of characteristics can be though of as establishing a kind of duality between
the (rescaled) Newtonian dynamics (3.5) and the Vlasov equation (3.10). Indeed, observing
that the microscopic force can be written as

1

N

N∑
j=1

kNδ (qi − qj) = kNδ ∗ µNt [Z](qi) (3.13)

one easily checks that Ψt,0(Z) solves (3.5) with Ψ0(Z) = 0 if and only if gt = µN [Ψt,0(Z)] is
a weak solution of (3.10) with g0 = µN [Z]. This is often used to translate the microscopic
dynamics into a Vlasov equation, allowing to treat µNt [Z] and ft on the same footing.
Here, we will go the opposite way, so to speak, and translate the mean �eld dynamics � for
continuous f0 � into corresponding N particle dynamics.
To this end, we consider the lift of ϕNt,s(·) to the N -particle phase-space, which we denote

by NΦt,s. That is, for f0 ∈ L1(R6) and Z = (qi, pi)1≤i≤N , we de�ne

NΦt,s(Z; f0) :=
(
ϕNt,s(q1, p1; f0), ..., ϕNt,s(qN , pN ; f0)

)
. (3.14)

We shall often omit the index N and the initial distribution f0, unless necessary. Denoting
by K : R3N → R3N the lift of the mean �eld force to the N -particle phase-space, i.e.

(Kt(Z))i := kNδ ∗ ρ[fNt ](zi), Z = (z1, ..., zN ), (3.15)

the �ow NΦt,s(Z) =
(
NΦ1

t,s(X),NΦ2
t,s(X)

)
can also be characterized as the solution of the

non-autonomous di�erential equation

d

dt

(
NΦ1

t,s(Z),NΦ2
t,s(Z)

)
=
(
NΦ2

t,s(Z),Kt(
NΦ1

t,s(Z))
)
, NΦs,s(Z) = Z (3.16)

to be compared with (3.7). Finally, we introduce the corresponding empirical density

µN [Φt,0(Z)] = ϕNt,0#µN [Z]. (3.17)

The N -point process Z → NΦt,0(Z) can be called a �quantization� of the Vlasov equation,
which has nothing to do with quantum mechanics, but refers to the fact that we sample
the characteristic �ow along N trajectories with random initial condition Z. In summary,
for �xed f0 and N ∈ N, we consider for any initial con�guration Z ∈ R6N two di�erent
time-evolutions: Ψt,0(Z), given by the microscopic equations (3.5) and Φt,0(Z), given by
the time-dependent mean �eld force generated by fNt . Our aim is to show that for typical
Z, the two time-evolutions or close in an appropriate sense.

3.3 Existence of solutions

For the regularized Vlasov-Poisson equation (3.10), all forces are Lipschitz and the solution
theory is fairy standard, see e.g. [10, 15]. In the Coulomb case, the issue is more subtle.
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Fortunately, we can rely on various results establishing global existence and uniqueness of
(strong) solutions under fairly mild conditions on the initial con�guration f0. (Pfa�elmoser,
1990 [53], Schae�er, 1991 [59], Lions and Perthame, 1991 [41], Horst, 1993 [30].) For
our purposes, the following existence result due to Lions and Perthame will prove to be
particularly useful:

Theorem 3.3.1 (Lions and Perthame). Let f0 ≥ 0, f0 ∈ L1(R3×R3)∩L∞(R3×R3) satisfy∫
|p|mf0(q, p) dq dp < +∞, (3.18)

for all m < m0 and some m0 > 3.

a) Then, the Vlasov-Poisson system de�ned by equations (1�3) has a continuous, bounded
solution f(t, ·, ·) ∈ C(R+;Lp(R3×R3))∩L∞(R+;L∞(R3×R3)) for 1 ≤ p <∞ satisfying

sup
t∈[0,T ]

∫
|p|mf(t, q, p) dp dp < +∞, (3.19)

for all T <∞,m < m0.

b) If, in fact, m0 > 6 and we assume that f0 satis�es

supess{f0(q′ + pt, p′) : |q − q′| ≤ Rt2, |p− p′| < Rt}
∈ L∞

(
(0, T )× R3

q ;L
1(R3

p)
) (3.20)

for all R > 0 and T > 0, then

sup
t∈[0,T ]

‖ρt(q)‖∞ < +∞, ∀T ∈ (0,+∞). (3.21)

Under the assumption of part b) of the theorem, the result of Loeper, 2006 [42] then shows
that for any T > 0, said f is the unique solution in the set of bounded, positive measures
on [0, T )×R6 satisfying f

∣∣
t=0

= f0 in the sense of distributions. Moreover, it has been long
known that as long as the charge density is bounded, solutions with smooth initial data
remain smooth (see e.g. in [28]).

As Lions and Perthame remark � and as one can easily verify by following the proof � part
b) of the theorem actually yields a bound on the charge density that is uniform in N if one
considers a sequence of regularized time-evolutions as (for instance) in (3.10). We will note
this important fact in the following Lemma.

Lemma 3.3.2. Let f0 ∈ L1(R3×R3)∩L∞(R3×R3) and fNt be the solution of the regularized
Vlasov-Poisson equation (3.10) (with corresponding cut-o�) and initial datum fN (0, ·, ·) =
f0. If f0 satis�es assumption (3.20) of the above theorem, there exists a constant Cρ > 0
such that

‖ρNt ‖∞ ≤ Cρ, ∀N ∈ N ∪ {∞}, ∀t > 0, (3.22)

where formally ρ∞t = ρ[ft].
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Since condition (3.20) is rather abstract, we want to state a more intuitive su�cient con-
dition.

Lemma 3.3.3. Let f0 ∈ L1(R3×R3)∩L∞(R3×R3), f ≥ 0. Suppose there exist functions
ρ ∈ L∞(R3) and ϑ(|p|) ∈ L1(R3) with ϑ monotonously decreasing and an S > 0 such that
for all |p| > S

f0(q, p) ≤ ρ(q)ϑ(|p|).

Then f0 satis�es assumption (3.20). Special cases:

• f0 has compact support in the p-variables.

• f0 is a thermal state of the form ρ(q) e−βp
2
with ‖ρ‖∞<∞, β > 0.

Proof. For given R, t > 0 we have to consider the function

f̃(t, q, p) := supess{f0(q′ + pt, p′) : |q − q′| ≤ Rt2, |p− p′| < Rt}.

Choosing R′ > S +RT , we have∫
R3

f̃(t, q, p) d3p =

∫
|p|≤R′

+

∫
|p|>R′

f̃(t, q, p) d3p

≤4

3
πR′3‖f̃(t, ·, ·)‖∞ + ‖ρ‖∞

∫
sup

|p−p′|<Rt
ϑ(|p′|) d3p

≤4

3
πR′3‖f0‖∞ + ‖ρ‖∞

∫
ϑ(|p| −Rt) d3p

≤C‖f0‖∞ + ‖ρ‖∞‖ϑ‖1 <∞,

where in the second to last line we used the monotonicity of ϑ(|p|) and the fact that
‖f̃‖∞ = ‖f0‖∞.

One important consequence of the bounded density is that the mean �eld force remains
bounded, as well.

Lemma 3.3.4. Let k be the Coulomb kernel, and ρ ∈ L1 ∩L∞(R3;R+). Then there exists
C > 0 such that

‖k ∗ ρ‖∞ ≤ C‖ρ‖1/31 ‖ρ‖
2/3
∞ . (3.23)

Proof. For R > 0, we compute:

‖k ∗ ρ‖∞ ≤
∥∥∥ ∫
|y|<R

k(y)ρ(x− y) d3y
∥∥∥
∞

+
∥∥∥ ∫
|y|>R

k(y)ρ(x− y) d3y
∥∥∥
∞

≤ ‖ρ‖∞
∫
|y|<R

1

|y|2
d3y +R−2‖ρ‖1 = 4πR‖ρ‖∞ +R−2‖ρ‖1.

This last expression is optimized by setting R = (4π)−1/3‖ρ‖−1/3
∞ ‖ρ‖1/21 , which yields ‖k ∗

ρ‖∞ ≤ 2(4π)2/3‖ρ‖1/31 ‖ρ‖
2/3
∞ .
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3.4 Statement of the results

In the following, all probabilities and expectation values are meant with respect to the
product measure given at a certain time. That is, for any random variable H : R6N → R
and any element A of the Borel-algebra

PNt (H ∈ A) =

∫
H−1(A)

N∏
j=1

fNt (zj)dZ (3.24)

ENt (H) =

∫
R6N

H(Z)

N∏
j=1

fNt (zj)dZ . (3.25)

Note that since NΦt,s leaves the measure invariant,

ENs (H ◦ NΦt,s) =

∫
R6N

H(NΦt,s(Z))

N∏
j=1

fNs (zj)dZ

=

∫
R6N

H(Z)

N∏
j=1

fNs (ϕNs,t(zj))dZ

=

∫
R6N

H(Z)
N∏
j=1

fNt (zj)dZ = ENt (H).

In particular:
PNt (Z ∈ A) = PN0 (NΦt,0(Z) ∈ A). (3.26)

We will often omit the index N when the particle number is �xed and write only Pt,Et.
To quantify the convergence of probability measures, we will use the Wasserstein distances
introduced in Chapter 2. We can now state our precise results in the following theorem.

Theorem 3.4.1 (Particle approximation of the Vlasov-Poisson system). Let f0 ∈ L∞(R3×
R3) a probability measure satisfying the assumptions of Theorem 3.3.1 a) and b). Let
p ∈ [1, 2] and assume that, in addition, there exists m > 2p such that

∫
|q|mf0(q, p) dq dp <

+∞. For N > 3 and δ > 0 let Ψt,s be the N -particle �ow solving (3.5) with cut-o� width
N−δ, δ < 1

3 . Then, the empirical density µNt [Z] := µN [Ψt,0(Z)] typically converges to the
solution of the Vlasov-Poisson equation in the following sense:

For δ < 1
3 , γ < min

{
1
6 , δ
}
, and every T > 0 there exists constants c, C depending on m, p, γ

and a constant C0 depending on f0 and T such that for all N ≥ 4 :

P0

[
∃t ∈ [0, T ] : Wp(µ

N
t [Z], ft) > (3

√
log(N))N−γ et(C0+1)

√
log(N)

]
≤ 2N−1+3δeTC0

√
log(N) + C

(
e−cN

1−6γ
+N−1+2pγ

)
,

(3.27)

where ft is the unique solution of the Vlasov-Poisson system (3.1) on [0, T ] with f(0, ·) = f0.
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Remarks 3.4.2.

1) Note that since exp
[√

log(N)
]

= exp
[
log(N)/

√
log(N)

]
= N

1√
log(N) , we have e

√
logN =

o(N ε) for arbitrary small ε > 0. Thus µNt [Z] converges to ft in probability. However,

(3.27) yields good error bounds only for N > exp[( t(C0+1)
γ

)2
].

2) Without the additional assumption of spatial moments, molecular chaos still holds,
albeit without the quantitative bounds stated in the theorem (see Proposition 3.5.5).

3) Our result allows to choose the width of the cut-o� arbitrary close to N−1/3, which cor-
responds to the scale of the typical distance between a particle and its closest neighbor.

3.5 A new measure of chaos

The strategy of the proof, following Boers and Pickl [6], is to control the deviation of the
microscopic time-evolution from the mean �eld time evolution in terms of the following
N -dependent quantity:

De�nition 3.5.1. Let NΦt,0 the mean �eld �ow de�ned in (3.14) and NΨt,0 the micro-
scopic �ow de�ned in (3.6). We denote by NΦ1

t,0 = (qi(t))1≤i≤N and NΦ2
t,0 = (pi(t))1≤i≤N

the projection onto the spatial, respectively the momentum coordinates.

Let J(t) be the stochastic process given by

JNt (Z) := min
{

1, λ(N)N δ sup
0≤s≤t

|NΨ1
t,0(Z)− NΦ1

t,0(Z)|∞

+N δ sup
0≤s≤t

|NΨ2
t,0(Z)− NΦ2

t,0(Z)|∞
}
,

(3.28)

where |Z|∞ = max{|zi| : 1 ≤ i ≤ N} denotes the maximum-norm on R3N and λ(N) ≥ 1 is
a scaling factor that we will �x as λ(N) := max{1,

√
log(N)}.

The small but crucial innovation with respect to [6] is that distances in spatial and mo-
mentum coordinates are weighted di�erently by a factor λ(N), exploiting the second-order
nature of the dynamics.

Our aim is to derive a Gronwall estimate for the time-evolution of E0(JNt ), showing that

EN0 (JNt )
N→∞−−−−→ 0, ∀0 ≤ t ≤ T . The relevance of this statement for the proof of the theorem

is grounded in the following observations.

Lemma 3.5.2. For X = (x1, ..., xn) ∈ Rn let µN [X] := 1
N

N∑
i=1

δxi ∈ P(Rn). Then we have

for all p ∈ [1,∞]:
Wp(µ

N [X], µN [Y ]) ≤
∣∣X − Y ∣∣∞. (3.29)

Proof. Since Wp ≤ Wq for p ≤ q, it su�ces to consider the in�nite Wasserstein distance
de�ned by

W∞(µ, ν) = inf{π − esssup |x− y|
∣∣π ∈ Π(µ, ν)}.
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We then observe that π0 =
N∑
i=1

δxiδyi ∈ Π(µN [Z], µN [Y ]) with π0 − esssup |x − y| =

max
1≤i≤N

|xi − yi| = |X − Y |∞.

With this Lemma, we immediately conclude the following:

Proposition 3.5.3. For all p ∈ [1,∞] it holds that

P0

[
sup

0≤s≤t
Wp(µ

N [Ψs,0(Z)], µN [Φs,0(Z)]) ≥ N−δ
]
≤ E0(JNt ). (3.30)

Proof. Observe that JNt (Z) = 1 if there exists s ∈ [0, t] with |NΨs,0(Z) − NΦs,0(Z)|∞ ≥
N−δ. Hence, we have P0

[
Z ∈ R6N : sup

0≤s≤t
|NΨs,0(Z)− NΦs,0(Z)|∞ ≥ N−δ

]
≤ E0(JNt ) and

since Wp(µ
N [Ψs,0(Z)], µN [Φs,0(Z)]) ≤ |NΨs,0(Z) − NΦs,0(Z)|∞ according to the previous

lemma, the proposition follows.

In total, we will split our approximation into

Wp(µ
N
t [Z], ft) ≤Wp(µ

N [Ψt,0(Z)], µN [Φt,0(Z)]) (3.31)

+Wp(µ
N [Φt,0(Z)], fNt ) (3.32)

+Wp(f
N
t , ft). (3.33)

The �rst term (3.31) is the most interesting one, concerning the di�erence between micro-
scopic time-evolution and mean �eld time-evolution. It will be controlled by E0(JNt ), by
virtue of Proposition 3.5.3.

The second term Wp(µ
N [Φt,0(Z)], fNt ) = Wp(ϕ

N
t,0#µN0 [Z], ϕNt,0#f0) concerns the sampling

of the mean �eld dynamics by discrete particle trajectories. We will use the large-deviation
estimate of Fournier and Guillin, Thm. 2.2.1, to determine the typical rates of convergence
for the initial distribution. The challenge is then to control the growth of (3.32) uniformly
in N . This will be achieved with the stability result of Loeper, discussed in Chapter 2.3.

Convergence of (3.33) is a purely deterministic result: solutions of the regularized Vlasov-
Poisson equation (3.10) approximate solutions of the proper Vlasov-Poisson equation (3.1)
as the width of the cut-o� goes to zero. Concretely, we will show that W2(fNt , ft)→ 0.

The key conceptual innovation with respect to previous approaches is that we �rst sample
the (regularized) mean �eld dynamics along trajectories with random initial conditions,
i.e. approximate fNt by µN [Φt,0(Z)] and then control the di�erence between the mean
�eld trajectories and the �true� microscopic trajectories in terms of the expectation value
E0(JNt ). The virtues of this method, �rst proposed in [6], are manifold:

1. The method is designed for stochastic initial conditions, thus allowing for law-of-large
number estimates that turn out to be very powerful. (Note that the particles evolving
with the mean �eld �ow remain statistically independent at all times.)

2. The metric |NΨt,0(Z)− NΦt,0(Z)|∞ is much stronger than usual weak distances be-
tween probability measures, thus allowing for better stability estimates.
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3. Since d
dtJ

N
t (Z) = 0 if ∃ 0 ≤ s ≤ t : |NΨs,0(Z) − NΦs,0(Z)|∞ ≥ N δ we only have to

consider situations in which mean �eld trajectories and microscopic trajectories are
still close together.

4. Exploiting the second-order nature of the dynamics, we weigh distances in x-space
and momentum space di�erently, with an N -dependent factor λ(N). Note that as we
compare microscopic trajectories to characteristic curves of the mean �eld equation,
the growth the spatial distance is trivially bounded by the di�erence of the respective
momenta. The idea is thus to be a little more strict on deviations in space, so to
speak, and use this to obtain better control on �uctuations of the force.

3.5.1 Convergence of marginals

As mentioned in the introduction, it is a classic result that convergence of the empirical
density in the sense of Theorem 3.4.1 implies molecular chaos in the sense of (1.12). Nev-
ertheless, for completeness, we want to show that convergence of the k-particle marginals
can be straightforwardly concluded from the convergence of E0(JNt )→ 0.

De�nition 3.5.4 (Bounded Lipschitz distance). Let L be the space of functions g : Rn → R
satisfying

‖g‖∞ := sup
x
|g(x)| = 1, ‖g‖Lip := sup

x,y

g(x)− g(y)

|x− y|
= 1. (3.34)

For two probability densities µ, ν on Rk, the bounded Lipschitz distance is de�ned by

dBL(µ, ν) := sup
g∈L

∣∣∣∣∫ g(x)dµ(x)−
∫
g(x)dν(x)

∣∣∣∣ .
The bounded Lipschitz distance metrizes weak convergence in P(Rn).

Proposition 3.5.5. Suppose that lim
N→∞

EN0 (JNt ) = 0. Then, the reduced k-particle marginal

given by

(k)FNt (z1, ..., zk) :=

∫
FNt (Z) d3zk+1...d

3zN (3.35)

converges weakly to ⊗kfNt as N →∞ for all k ∈ N. More precisely, we have:

dBL((k)FNs ,⊗kfNs ) ≤ E0(Jt) +N−δ,∀s ≤ t. (3.36)

Proof. Let g : R6k → R be a test-function with ‖g‖Lip = ‖g‖∞ = 1. Let At ⊂ R6N be given
by Z ∈ At ⇐⇒ Jt(Z) < 1. Then Z ∈ At implies in particular

∣∣Ψs,0(Z) − Φs,0(Z)
∣∣
∞ ≤

N−δ, ∀s ∈ [0, t], while lim
N→∞

EN0 (Jt) = 0 implies lim
N→∞

PN0 (Act) = 0. Thus, we �nd for all

s ≤ t:
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dBL((k)FNs ,⊗k fNs )

= sup
g∈L

∣∣∣∫ ((k)
FNs −⊗kfNs

)
g(z1, ..., zk)d

3z1...d
3zk

∣∣∣
= sup
g∈L

∣∣∣∫ (FNs (Z)−⊗NfNs (Z)
)
g(z1, ..., zk)d

3z1...d
3
zk
...d3zN

∣∣∣
= sup
g∈L

∣∣∣∫ (Ψ0,s#F0(Z)− Φ0,s#F0(Z)
)
g(z1, ..., zk) d6Nx

∣∣∣
= sup
g∈L

∣∣∣∫ F0(Z)
(
g(PkΨs,0(Z))− g(PkΦs,0(Z))

)
d6Nz

∣∣∣
= sup
g∈L

∣∣∣∫
At

F0(Z)
(
g(PkΨs,0(Z))− g(PkΦs,0(Z))

)
d6Nz

∣∣∣ (3.37)

+ sup
g∈L

∣∣∣∫
Act

F0(Z)
(
g(PkΨs,0(Z))− g(PkΦs,0(Z))

)
d6Nz

∣∣∣ (3.38)

where Pk : RN → Rk, (z1, ..., zN ) 7→ (z1, ..., zk) is the projection onto the �rst k coordinates.
Since g and F0 are bounded by 1, we have (3.38) ≤ P0(Act) ≤ E0(Jt).

Using that ‖g‖Lip = 1, we obtain

sup
Z∈At

|g(PkΨs,0(Z))− g(PkΦs,0(Z))| ≤ |Ψs,0 − Φs,0|∞ ≤ N−δ, ∀0 ≤ s ≤ t. (3.39)

Hence, also (3.37) ≤ N−δ and the proposition follows.

Since we will also prove that fNt ⇀ ft, this implies molecular chaos for the Vlasov-Poisson
system. Note that this result holds without further assumptions on f0, but is much weaker
than the approximation stated in Theorem 3.4.1.

3.6 Local Lipschitz bound

If all forces were Lipschitz continuous with a Lipschitz constant L independent of N , we
could readily conclude that d

dt |
NΨt,0(Z) − NΦt,0(Z)|∞ ≤ (1 + L)|NΨt,0(Z) − NΦt,0(Z)|∞.

The desired convergence for EN0 (JNt ) would then immediately follow by a simple ap-
plication of Gronwall's Lemma. However, the forces considered here become singular
in the limit N → ∞ and hence do not satisfy a uniform Lipschitz bound. Neverthe-
less, we observe that, for the mean �eld force kN ∗ ρt, the global Lipschitz constant
‖kN ∗ ρt‖Lip diverges only logarithmically as the cut-o� is lifted with increasing N . Set-
ting λ(N) = max{1,

√
log (N)} in De�nition 3.5.1, the particular anisotropic scaling of

our metric will allow us to �trade� part of this divergence for a tighter control on spatial
�uctuations. This will su�ce to establish the desired convergence of E0(Jt) by virtue of
E0(Jt+∆t)− E0(Jt) ∼

√
log (N)E0(Jt) ∆t+ o(∆t).

We summarize our �rst observation in the following Lemma.
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Lemma 3.6.1. Let l =: R3 → Rk satisfy

|l(q)| ≤ c ·min{N3δ, |q|−3} (3.40)

for some c > 0. Then there exists a constant Cl > 0 such that

‖l ∗ ρt(x)‖∞ ≤ Cl max{1,
√

log(N)}
(
‖ρt‖1 + ‖ρt‖∞

)
. (3.41)

Proof.

‖l ∗ ρt(x)‖∞ =
∥∥∥∫ l(x− y)ρt(y) d3y

∥∥∥
∞

≤
∥∥∥ ∫
|x−y|<N−δ

l(x− y)ρt(y) d3y
∥∥∥
∞

+
∥∥∥ ∫
N−δ<|x−y|<1

l(x− y)ρt(y) d3y
∥∥∥
∞

+
∥∥∥ ∫
|x−y|>1

l(x− y)ρt(y) d3y
∥∥∥
∞
.

The �rst term is bounded by∥∥∥ ∫
|x−y|<N−δ

l(x− y)ρt(y) d3y
∥∥∥
∞
≤ ‖ρt‖∞N3δ|B(N−δ)| ≤ 4

3
π ‖ρt‖∞,

where B(r) denotes the ball with radius r. The last term is bounded by∥∥∥ ∫
|x−y|>1

l(x− y)ρt(y) d3y
∥∥∥
∞
≤ c ‖ρt‖1.

Finally, the second term yields

∥∥∥ ∫
N−δ<|x−y|<1

g(x− y)ρt(y) d3y
∥∥∥
∞
≤ ‖ρt‖∞

∫
N−δ<|y|<1

c

|y|3
d3y

≤ 4πc‖ρt‖∞ log(N δ) = 4πcδ ‖ρt‖∞ log(N).

One immediate application of the Lemma is to l(q) = ∇kNδ (q), showing that the mean �eld
force for the regularized system is Lipschitz continuous with a constant proportional to
log(N). Our goal is now to prove that for typical initial conditions, the �uctuations in the
microscopic forces can be bound in a similar fashion, as long as Ψt,0(Z) and Φt,0(Z) are
close. Following [6], we thus introduce a function controlling the di�erence |k(q)−k(q+ξ)|,
for |ξ| < 2N−δ.

De�nition 3.6.2. Let

lNδ (q) :=

{
54
|q|3 , if |q| ≥ 3N−δ

N3δ , else
(3.42)

and L : R6N → RN be de�ned by (L(Z))i := 1
N

∑
j 6=i

lNδ (qi − qj). Furthermore, for given ft,

we de�ne Lt(Z) by (Lt(Z))i := lNδ ∗ ρt(qi) =
∫
lNδ ∗q f(t, qi, p) dp.
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Lemma 3.6.3. For any ξ ∈ R3 with |ξ|∞ < 2N−δ, it holds that

|kNδ (q)− kNδ (q + ξ)|∞ ≤ lNδ (q)|ξ|∞. (3.43)

Proof. First note that by assumption the derivative of kN is bounded by N3δ, so that (3.43)
holds for |q| < 3N−δ. For |q| ≥ 3N−δ, there exists s ∈ [0, 1] such that |kNδ (q)−kNδ (q+ξ)| ≤
|∇kNδ (q + sξ)|∞|ξ|∞, where

|∇kNδ (q + sξ)|∞ ≤ 2|q + sξ|−3. (3.44)

The expression on the right-hand-side takes its greatest value if ξ is antiparallel to q and
s = 1. Hence, we have

|kNδ (q)− kNδ (q + ξ)|∞ ≤ 2
∣∣q(1− |ξ|

|q|
)
∣∣−3 |ξ|∞. (3.45)

Since |q| ≥ 3N−δ and |ξ| < 2N−δ, it follows that |ξ||q| <
2
3 . Hence, as claimed, |kNδ (q) −

kNδ (q + ξ)|∞ ≤ 2
(

3
|q|

)3
|ξ|∞ ≤ 54

|q|3 |ξ|∞.

3.7 Law of large numbers

In order to control the evolution of E0(JNt ), we will require as an intermediate step that
the mean �eld force (and its derivative) can be approximated by the analogous expressions
for the discrete measure µN [Φt,0(Z)] with random Z. The key observation here is that if
the N -particle con�guration evolves with the mean �eld �ow NΦt,0, the particles remain
statistically independent for all t, thus giving rise to a law-of-large-numbers estimate.

De�nition 3.7.1. For any t > 0 and �xed δ < 1
3 , we consider the (time-dependent) sets

At,Bt, Ct de�ned by

Z ∈ At ⇐⇒ |Jt(Z)| < 1

Z ∈ Bt ⇐⇒
∣∣K(Φt,0(Z))−K(Φt,0(Z))

∣∣
∞ < N−1+2δ

Z ∈ Ct ⇐⇒
∣∣L(Φt,0(Z))− L(Φt,0(Z))

∣∣
∞ < 1

where K is the mean �eld force (3.15) and L as in De�nition 3.6.2.

We now want to show that for any t, initial conditions in Bt ∩ Ct are typical with respect
to the product measure F0 := ⊗Nf0 on R6N .

Proposition 3.7.2. Let ρt ∈ L1(R3) ∩ L∞(R3) with ‖ρt‖1 = 1 as before. Let h : R3 → R
and suppose that for given δ > 0 and N ∈ N there exists c > 0 and an exponent 2 ≤ α ≤ 3
such that |h(x)| ≤ c ·min{Nαδ, |q|−α}, ∀q ∈ R3. Assume furthermore that

δ < min
{1− 2β

2α− 3
,

1− β
α

}
. (3.46)

Then there exists for all γ > 0 a constant Cγ > 0 such that

Pt
[

sup
1≤i≤N

∣∣∣ 1

N

N∑
j 6=i

h(qi − qj)− h ∗ ρt(qi)
∣∣∣ ≥ N−β] ≤ Cγ

Nγ
. (3.47)
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Proof. Let

Di :=
{
Z ∈ R6 :

∣∣∣ 1

N

N∑
j 6=i

h(qi − qj)− h ∗ ρt(qi)
∣∣∣ ≥ N−β} (3.48)

and D :=
N⋃
i=1

Di. Then P(D) ≤
N∑
i=1

P(Di) = NP(D1).

By Markov's inequality, we have for every M ∈ N:

Pt(D1) ≤Et
[
N2Mβ

∣∣∣ 1

N

N∑
j=1

h(q1 − qj)− h ∗ ρt(q1)
∣∣∣2M]

=
1

N2M(1−β)
E
[( N∑

j=1

(
h(q1 − qj)− h ∗ ρt(qi)

))2M]
.

(3.49)

LetM := {k ∈ NN0 | |k| = 2M} the set of multiindices k = (k1, ..., kN ) with
N∑
j=1

kj = 2M .

Let

Gk :=
N∏
j=1

(
h(qj − q1)− h ∗ ρt(q1)

)kj . (3.50)

Then:

E
[( N∑

j=1

(
h(q1 − qj)− h ∗ ρt(q1)

))2M]
=
∑
k∈M

(
2M

k

)
Et(Gk). (3.51)

Now we note that Et(Gk) = 0 whenever there exists a 1 ≤ j ≤ N such that kj = 1. This
can be seen by integrating the j'th variable �rst.

For the remaining terms, we have for any 1 ≤ m ≤M :

∫
|h(q1 − qj)|mft(qj , pj) d3pj d3pj =

∫
|h|m(q1 − qj)ρt(qj) d3qj .

Now for 2 ≤ α < 3 and m = 1 we estimate

|h ∗ ρt(q1)| ≤
∫
|h|(q1 − y)ρt(y) d3y

≤ c
∫
|y|<1

|y|−α ρt(q1 − y) d3y + c

∫
|y|≥1

|qj |−αρt(q1 − y) d3y

≤ c
(
4π‖ρt‖∞ + ‖ρt‖1

)
,
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while for α = 3, we �nd:

|h ∗ ρt(q1)| ≤
∫
|h|(q1 − y)ρt(y) d3y

≤ c
( ∫
|y|≤N−δ

+

∫
N−δ<|y|<1

+

∫
|y|≥1

)
|h(y)| ρt(q1 − y) d3y

≤ c‖ρt‖∞
∫

|y|≤N−δ

N3δ d3y + c‖ρt‖∞
∫

N−δ<|y|<1

1

|y|3
d3y + c

∫
|y|≥1

ρt(q1 − y) d3y

≤ c
(

4π‖ρt‖∞(
1

3
+ log(N δ)) + ‖ρt‖1

)
.

For m ≥ 2, we �nd in any case∫
|h|m(q1 − y)ρt(y) d3y =

∫
|h|m(y)ρt(q1 − y) d3y

≤
∫

|y|<N−δ

|h|m(y)ρt(q1 − y) d3y +

∫
|y|≥N−δ

|h|m(y)ρt(q1 − y) d3y

≤c‖ρt‖∞
(

4πN−3δNαδm +

∫
|y|≥N−δ

1

|y|αm
d3y
)
≤ 8πc‖ρt‖∞ N (αm−3)δ.

Hence, setting Cα := 16πc‖ρt‖∞
(
1 + 1{α=3} log(N)

)
we can conclude that ∀m ≥ 2:∣∣h(qj − qi)− h(qi)

∣∣m ≤ Cmα N (αm−3)δ. (3.52)

Now, for k = (k1, k2, ..., kN ) ∈ M, let #k denote the number of kj with αkj 6= 0. Note
that if #k > M , we must have kj = 1 for at least one 1 ≤ j ≤ N , so that Et(Gk) = 0. For
the other multiindices, we get (using that the particles are statistically independent):

Et(Gk) = Et
[ N∏
j=1

(
kδ(qj − qi)− k ∗ ρt(qi)

)kj]

≤
N∏
j=1

Et
[(
|h(qj − qi)|+ |h ∗ ρt(qi)|

)kj]

≤
N∏
j=1

C
kj
α N (αkj−3)δ

≤C2M
α N2MαδN−3δ#k.

(3.53)

Finally, we observe that for any l ≥ 1, the number of multiindices k ∈ M with #k = l is
bounded by ∑

#k=l

1 ≤
(
N

l

)
(2M)l ≤ (2M)2MN l.
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Thus:

Pt(D1) ≤ 1

N2M(1−β)

∑
k∈M

(
2M

k

)
Et(Gk)

≤ C2M
α CM

N2Mαδ

N2M(1−β)

M∑
l=1

N (1−3δ)l

≤ C2M
α MCMN

2M(αδ+β−1) max{NM(1−3δ), 1}
≤ C2M

α MCMN
−εM ,

where CM is some constant depending on M and

ε :=

{
1− 2β + δ(3− 2α) if 3δ < 1

2(1− β − αδ) if 3δ ≥ 1.
(3.54)

ε ≥ 0 according to (3.46). For 2 ≤ α < 3 we conclude the proof by noting that

Pt(D) ≤ N Pt(D1) ≤ C2M
α MCM N−(εM+1), (3.55)

and choosing M so large that (εM − 1) = γ. For α = 3, however, (3.55) becomes

Pt(D) ≤ C ′(M)(1 + log(N))2MN−(εM−1), (3.56)

where C ′(M) is some constant depending on M and ‖ρt‖∞. This can be rewritten as

(1 + log(N))2MN−εM+1 =
(1 + log(N)

N ε/4

)2M
N−

ε
2
M+1. (3.57)

The function g(x) = 1+log(x)

xε/4
, x ∈ [1,∞) is continuous with lim

x→∞
g(x) = 0. Hence, it has

a maximum C < +∞. In particular, 1+log(N)

Nε/4 ≤ C independent of N and the announced
result holds for α = 3, as well.

Corollary 3.7.3. Let Bt, Ct as in De�nition 3.7.1. Then we �nd for any γ > 0 a constant
Cγ such that

P0(Bt) ≥ 1− Cγ
Nγ

,

P0(Ct) ≥ 1− Cγ
Nγ

.

In other words, for any �xed t, initial conditions in Bt ∩ Ct are typical with the measure of
�bad� initial conditions decreasing faster than any inverse power of N .

Proof. Note that

Z ∈ Φt,0(Bt) ⇐⇒
∣∣K(Z)−K(Z)

∣∣
∞ < N−1+2δ

⇐⇒ max
1≤i≤N

∣∣∣ 1

N

N∑
j 6=i

kNδ (qi − qj)− kNδ ∗ ρt(qi)
∣∣∣ ≥ N−1+2δ
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and similarly

Z ∈ Φt,0(Ct) ⇐⇒
∣∣L(Z)− L(Z)

∣∣
∞ < 1

⇐⇒ max
1≤i≤N

∣∣∣ 1

N

N∑
j 6=i

lNδ (qi − qj)− lNδ ∗ ρt(qi)
∣∣∣ ≥ 1.

Applying the previous result once for kNδ with α = 2 and β = 1− 2δ and once for lNδ with
α = 3 and β = 0, we get

Pt
[

max
1≤i≤N

∣∣∣ 1

N

N∑
j 6=i

kNδ (qi − qj)− kNδ ∗ ρt(qi)
∣∣∣ ≥ N−1+2δ

]
≤ Cγ
Nγ

, (3.58)

Pt
[

max
1≤i≤N

∣∣∣ 1

N

N∑
j 6=i

lNδ (qi − qj)− lNδ ∗ ρt(qi)
∣∣∣ ≥ 1

]
≤ Cγ
Nγ

. (3.59)

Observing that P0(Bt) = Pt(Φt,0(Bt)) and P0(Ct) = Pt(Φt,0(Ct)), the statement follows.

3.8 A Gronwall estimate

The following proposition contains the core of the proof or our main theorem, a Gronwall
estimate for the growth of E0(JNt ).

Proposition 3.8.1. Under the assumptions of Thm. 3.4.1, we �nd for all δ < 1
3 and t > 0

E0(JNt ) ≤ 2N−1+3δ exp
[
2Clλ(N)

∫ t

0
(‖ρNs ‖∞ + 1) ds

]
. (3.60)

In particular, E0(JNt ) ≤ 2N−1+3δet2Cl(Cρ+1)λ(N) with Cρ as in (3.22).

In order to control the evolution of JNt (Z), we will need the following Lemma.

Lemma 3.8.2. For a function g : R→ R, we denote by

∂+
t g(t) := lim

∆t↘0

g(t+ ∆t)− g(t)

∆t
(3.61)

the right-derivative with respect to t. Let g ∈ C1(R) and h(t) := sup
0≤s≤t

g(t). Then ∂+
t h(t)

exists and ∂+
t h(t) ≤ min{0, g′(t)} for all t.

Proof. We have to distinguish 3 cases.
1) If g′(t) ≤ 0, there exists ∆t > 0 such that g(s) ≤ g(t), ∀s ∈ [t, t + ∆t). Thus for all
t′ ∈ [t, t+ ∆t) we have h(t′) := sup

0≤s≤t′
g(s) = sup

0≤s≤t
g(s) = h(t) and ∂+

t h(t) = 0.

2) If g(t) < h(t), there exists ∆t > 0 such that g(s) ≤ h(t) ∀s ∈ (t − ∆t, t + ∆t). This
means that h is constant on (t−∆t, t+ ∆t) so that, in particular, ∂+

t h(t) = 0.
3) If g(t) = h(t) and g′(t) > 0, there exists ∆t > 0 such that g is monotonously increasing
on (t−∆t, t+ ∆t). Hence, we have h(t′) = sup

0≤s≤t′
g(s) = g(t′) for all t′ ∈ [t+ ∆t) and thus

∂+
t h(t) = g′(t).
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Proof of Proposition 3.8.1. Recall from De�nition 3.5.1

JNt (Z) := min
{

1, λ(N)N δ sup
0≤s≤t

|NΨ1
t,0(Z)− NΦ1

t,0(Z)|∞

+N δ sup
0≤s≤t

|NΨ2
t,0(Z)− NΦ2

t,0(Z)|∞
}
.

We split the expectation E0(Jt) in the following way:

E0(Jt) = E0(Jt | Act) + E0(Jt | At \ Bt ∩ Ct) + E0(Jt | At ∩ Bt ∩ Ct) (3.62)

where Jt | At denotes the restriction of Jt to the set At ⊂ R6N .

1) On Act , we have d
dtJt = 0, since Jt(Z) is already maximal and thus also

d

dt
Et(Jt | Act) ≤ 0. (3.63)

2) For Z ∈ At, we have to consider

∂+
t sup

0≤s≤t
|Ψ1

s,0(Z)− Φ1
s,0(Z)|∞ ≤ |∂t(Ψ1

t,0(Z)− Φ1
t,0(Z))|∞

≤ |Ψ2
t,0(Z)− Φ2

t,0(Z)|∞ ≤ sup
0≤s≤t

|Ψ2
s,0(Z)− Φ2

s,0(Z)|∞
(3.64)

and

∂+
t sup

0≤s≤t
|Ψ2

s,0(Z)− Φ2
s,0(Z)|∞ ≤ |∂t(Ψ2

t,0(Z)− Φ2
t,0(Z))|∞

≤ |K(Ψ1
t,0(Z))−Kt(Φ

1
t,0(Z))|∞.

(3.65)

We begin by controlling the contribution of �bad� initial conditions not contained in Bt
and Ct. Since kNδ is bounded by N2δ−1, the total force acting on each particle is bounded
as |K(Z)|∞ ≤ N2δ. The mean �eld force K is of order 1, according to Lemma 3.3.4 and
N δ|Ψ2

t,0(Z)− Φ2
t,0(Z)|∞ ≤ 1 since Z ∈ At.

According to Proposition 3.7.2, the probability for Z ∈ Bct ∪ Cct decreases faster than any
power of N . Hence, we can �nd for any s > 0 a constant Cs, such that

∂+
t Et(Jt | At \ (Bt ∩ Ct)) ≤ sup{|JNt (Z)| : Z ∈ At}P0

(
(At ∩ Bt)c

)
≤ Cs
N s

. (3.66)

3) It remains to control the change of Jt for typical initial conditions, i.e. Z ∈ At ∩Bt ∩Ct.
To this end, we consider:

|K(Ψ1
t,0(Z))−Kt(Φ

1
t,0(Z))|∞ ≤|K(Ψ1

t,0(Z))−K(Φ1
t,0(Z))|∞ (3.67)

+|K(Φ1
t,0(Z))−Kt(Φ

1
t,0(Z))|∞. (3.68)

Since Z ∈ Bt, it follows that

|K(Φ1
t,0(Z))−Kt(Φ

1
t,0(Z))|∞ < N−1+2δ, (3.69)
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which controls (3.68). Now, by triangle inequality, we get for any 1 ≤ i ≤ N :

∣∣∣(K(Ψ1
t,0(Z))−K(Φ1

t,0(Z))
)
i

∣∣∣
∞
≤
∣∣∣ N∑
j=1

kNδ (Ψ1
j −Ψ1

i )− kNδ (Φ1
j − Φ1

i )
∣∣∣
∞

≤
N∑
j=1

∣∣kNδ (Ψ1
j −Ψ1

i )− kNδ (Φ1
j − Φ1

i )
∣∣
∞.

Thus, with Lemma 3.6.3:∣∣kNδ (Ψ1
j −Ψ1

i )− kNδ (Φ1
j − Φ1

i )
∣∣
∞ ≤ l

N
δ (Φ1

j − Φ1
i )|(Ψ1

j −Ψ1
i )− (Φ1

j − Φ1
i )|∞

≤ 2 lNδ (Φ1
j − Φ1

i )|Ψ1
t,0 − Φ1

t,0|∞.

Since Z ∈ Ct, it follows that

N∑
j=1

lNδ (Φ1
j − Φ1

i ) =
(
LNδ (Φt,0(Z)

)
i
≤ ‖lNδ ∗ ρNt (q)‖∞ + 1 ≤ 2Cl max{1,

√
log(N)}(1 + ‖ρNt ‖∞),

where ρNt = ρ[fNt ] and we applied Lemma 3.6.1 to lNδ . Hence, we have found for Z ∈
At ∩ Bt ∩ Ct:

d

dt
|Ψ2

t (Z)− Φ2
t,0(Z)|∞ ≤ 2Cl max{1,

√
log(N)}(1 + ‖ρNt ‖∞)

∣∣Ψ1
t,0(Z)− Φ1

t,0(Z)
∣∣
∞. (3.70)

Together with (3.64), this yields:

∂+
t Jt

∣∣∣
At∩Bt∩Ct

≤λ(N)N δ d

dt
|Ψ1

t,0(Z)− Φ1
t,0(Z)|∞ +N δ d

dt
|Ψ2

t,0(Z)− Φ2
t,0(Z)|∞

≤λ(N)N δ|Ψ2
t,0(Z)− Φ2

t,0(Z)|∞

+N δ
[
2Cl max{1,

√
log(N)}

(
1 + ‖ρNt ‖∞

)
|Ψ1

t,0(Z)− Φ1
t,0(Z)|∞ +N−1+2δ

]
.

Hence, �xing λ(N) := max{1,
√

log(N)},we have found

∂+
t Jt

∣∣∣
At∩Bt∩Ct

≤ 2Cl
(
1 + ‖ρNt ‖∞

)
λ(N)Jt(Z) +N−1+3δ. (3.71)

Together with (3.66) and (3.64) and observing that E0(J0) = 0, we have for any t ≥ 0 and
some s > 1:

E0(JNt ) ≤
t∫

0

(
CN−s + 2Cl(1 + ‖ρNs ‖∞)λ(N)E0(JNs ) +N−1+3δ

)
ds.

With Gronwall's Lemma and choosing s large enough, we conclude

E0(JNt ) ≤ 2N−1+3δ exp
[
2Clλ(N)

∫ t

0
(‖ρNs ‖∞ + 1) ds

]
.
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3.9 Controlling the mean �eld dynamics

The previous proposition contains our main approximation result for the mean �eld dy-
namics. However, as explained in Section 3.5, two more steps remain in order to complete
the proof of Theorem 3.4.1 and show that the empirical density converges to solutions of
the Vlasov-Poisson equation for typical initial conditions. First, we have to show that the
solutions fNt of the regularized Vlasov-Poisson equation converge to a solution of the proper
Vlasov-Poisson equation as the cut-o� is lifted with N →∞. Second we have to prove the
approximation of the continuous Vlasov-density by the discretized version µN [Φt,0(Z)], in
(3.32). To this end, we recall from Section 2.3.

Proposition (Loeper). Let k(q) be the Coulomb-kernel and ρ1, ρ2 ∈ L1(R3)∩L∞(R3) two
(probability) densities. Then we have the stability result

‖k ∗ ρ1 − k ∗ ρ2‖2 ≤
[
max{‖ρ1‖∞, ‖ρ2‖∞}

]1/2
W2(ρ1, ρ2). (3.72)

From this we derive the following approximation result:

Proposition 3.9.1. Let f0 satisfy the assumptions of Theorem 3.4.1. For N > 3, let
fNt and ft be the solution of the regularized, respectively the unregularized Vlasov-Poisson
equation with initial datum f0. Then we have for p ∈ [1, 2]:

Wp(f
N
t , ft) ≤ N−δ etC0λ(N), (3.73)

with λ(N) = max{1,
√

log(N)} and C0 := Cl(1+Cρ) depending on supt,N{‖ρNt ‖∞, ‖ρ
f
t ‖∞}.

Proof. Let ρNt := ρ[fNt ] and ρft := ρ[ft] denote the charge density induced by fNt and ft,
respectively. Let ϕNt = (QNt , P

N
t ) be the characteristic �ow of fNt . For the (unregularized)

Vlasov-Poisson equation, the corresponding vector-�eld is not Lipschitz. However, as we
assume the existence of a solution ft with bounded density ρt, the mean �eld force k ∗ ρt
does satisfy a Log-Lip bound of the form |k ∗ρt(x)−k ∗ρt(y)| ≤ C|x−y|(1+log−(|x−y|)),
where log−(x) = max{0,− log(x)}. This is su�cient to ensure the existence of a charac-

teristic �ow ψft,s = (Qft,s, P
f
t,s) such that ft = ψt,s#fs.

Now we consider π0(x, y) := f0(x)δ(x−y) ∈ Π(f0, f0), which is the optimal coupling yielding
W2(fNt , ft)|t=0= W2(f0, f0) = 0 and de�ne πt = (ϕNt,0, ψt,0)#π0. Then πt ∈ Π(fNt , ft), ∀t ∈
[0, T ). Set

D(t) :=
[ ∫
R6×R6

(
λ(N) |x1 − y1|+ |x2 − y2|

)2
dπt(x, y)

]1/2

=
[ ∫
R6×R6

(
λ(N) |QNt (x)−Qft (y)|+ |PNt (x)− P ft (y)|

)2
dπ0(x, y)

]1/2
.

(3.74)
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Note that W2(fNt , ft) ≤ D(t) for any π0 ∈ Π(f0, f0) and N ∈ N. Now we compute:

d

dt
D2(t) =

2

∫ (
λ(N) |QNt (x)−Qft (y)|+ |PNt (x)− P ft (y)|

)
(
λ(N) |PNt (x)− P ft (y)|+

∣∣kNδ ∗ ρNt (QNt (x))− k ∗ ρft (Qft (y))
∣∣)dπ0(x, y).

(3.75)

The interesting term to control is the interaction term∣∣kNδ ∗ ρNt (QNt (x))− k ∗ ρft (Qft (y))
∣∣

≤
∣∣kNδ ∗ ρNt (QNt (x))− kNδ ∗ ρNt (Qft (y)) (3.76)

+
∣∣kNδ ∗ ρNt (Qft (y))− k ∗ ρft (Qft (y))

∣∣. (3.77)

We begin with (3.76) and �nd with Lemma 3.6.1:∣∣kNδ ∗ ρNt (QNt (x))− kNδ ∗ ρNt (Qft (y))
∣∣

≤ Cl max{1, log(N)} (‖ρNt ‖∞ + 1)
∣∣QNt (x)−Qft (y)

∣∣
= Cl λ(N)(‖ρNt ‖∞ + 1)

∣∣QNt (x)−Qft (y)
∣∣ (3.78)

Using this in (3.75) we have

d

dt
D2(t) =

2

∫ (
λ(N) |QNt (x)−Qft (y)|+ |PNt (x)− P ft (y)|

)
(
λ(N) |PNt (x)− P ft (y)|+ λ(N)Cl (Cρ + 1)

∣∣QNt (x)−Qft (y)
∣∣)dπ0(x, y)

(3.79)

+ 2

∫ (
λ(N) |QNt (x)−Qft (y)|+ |PNt (x)− P ft (y)|

)
∣∣kNδ ∗ ρNt (Qft (y))− k ∗ ρft (Qft (y))

∣∣dπ0(x, y)

(3.80)

where we used the uniform bound (3.22) on the charge densities. The �rst term (3.79) can
be bounded as

(3.79) ≤ 2Cl(Cρ + 1)λ(N)D2(t) (3.81)

while for (3.80) we use the Cauchy-Schwartz inequality to get

(3.80) ≤ 2
[∫ (

λ(N) |QNt (x)−Qft (y)|+ |PNt (x)− P ft (y)|
)2

dπ0(x, y)
]1/2

(3.82)[ ∫ ∣∣kNδ ∗ ρNt (Qft (y))− k ∗ ρft (Qft (y))
∣∣2dπ0(x, y)

]1/2
. (3.83)
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We identify the �rst factor in (3.82) as 2D(t). Hence, it remains to estimate[ ∫ ∣∣kNδ ∗ ρNt (Qft (y))− k ∗ ρft (Qft (y))
∣∣2dπ0(x, y)

]1/2

=
[ ∫ ∣∣kNδ ∗ ρNt (Qf0(y))− k ∗ ρft (Qf0(y))

∣∣2dπt(x, y)
]1/2

=
[∫ ∣∣kNδ ∗ ρNt − k ∗ ρft ∣∣2(q) f(t, q, p) d3qd3p

]1/2

=
[∫ ∣∣kNδ ∗ ρNt − k ∗ ρft ∣∣2(q) ρft (q) d3q

]1/2

≤
∥∥ρft ∥∥1/2

∞

[∫ ∣∣kNδ ∗ ρNt − k ∗ ρft ∣∣2(q) d3q
]1/2

≤C1/2
ρ

∥∥kNδ ∗ ρNt − k ∗ ρft ∥∥2
.

We split this into:

‖kNδ ∗ ρNt − k ∗ ρ
f
t

∥∥
2
≤
∥∥k ∗ ρNt − k ∗ ρft ∥∥2

+
∥∥kNδ ∗ ρNt − k ∗ ρNt ∥∥2

.

According to Proposition 2.3.6, the �rst summand is bounded by∥∥k ∗ ρNt − k ∗ ρft ∥∥2
≤ C1/2

ρ W2(ρNt , ρ
f
t ) ≤ C1/2

ρ W2(fNt , ft) ≤ C1/2
ρ D(t).

For the second term, we get with Young's inequality:∥∥(k − kNδ ) ∗ ρNt
∥∥

2
≤
∥∥ρNt ∥∥2

∥∥k − kNδ ∥∥1
≤
(∥∥ρNt ‖∞ ∥∥ρNt ∥∥1

)1/2
∥∥k − kNδ ∥∥1

≤ C1/2
ρ

∫
|q|<N−δ

1

|q|2
d3q = 4π C1/2

ρ N−δ, (3.84)

where we used the fact that kNδ and k di�er only in the ball {|q| ≤ N−δ}. Putting everything
together, we have

d

dt
D2(t) ≤ 2Cl (Cρ + 1)λ(N)D2(t) + 2D(t)

(
4πCρN

−δ + CρD(t)
)

or, with C0 := 2(Cl + 1)(Cρ + 1),

d

dt
D(t) ≤ C0λ(N)D(t) + C0N

−δ. (3.85)

Using Gronwall's inequality and the fact that D(0) = 0, we conclude

W2(fNt , ft) ≤ D(t) ≤ N−δ etC0λ(N).

The case p < 2 is included since Wp ≤W2, ∀p ≤ 2.

A more detailed discussion of this method will be given in Chapter 4.

A similar, but simpler Gronwall estimate yields the following result:
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Lemma 3.9.2. Let ϕNt = (Q(t, ·), P (t, ·)) the characteristic �ow of fNt de�ned by (3.12)
and Φt,s the lift to the N -particle phase-space de�ned in (3.14). Then we have for all
p ∈ [1,∞):

Wp(µ
N [Φt,0(Z)], fNt ) ≤ λ(N)Wp(µ

N
0 [Z], f0) etC0λ(N). (3.86)

Proof. For Z ∈ R6N let π0(x, y) ∈ Π(µN0 , f0) and de�ne πt = (ϕNt , ϕ
N
t )#π0 ∈ Π(µN [Φt,0(Z)], fNt ).

Note that both measures are now transported with the same �ow. Set

Dp(t) :=
[ ∫
R6×R6

(
λ(N) |x1 − y1|+ |x2 − y2|

)p
dπt(x, y)

]1/p

=
[ ∫
R6×R6

(
λ(N) |Qt(x)−Qt(y)|+ |Pt(x)− Pt(y)|

)p
dπ0(x, y)

]1/p
.

(3.87)

Using again the Lipschitz bound as in (3.78), a standard argument yields

D(t) ≤ D(0) + C0λ(N)

∫
D(s) ds, (3.88)

and hence by Gronwall's inequality:

Wp(µ
N [Φt,0(Z)], fNt ) = Wp(ϕ

N
t #µN0 , ϕ

N
t #ft) ≤ D(t) ≤ D(0)etC0λ(N). (3.89)

Taking on the right-hand side the in�mum over all π0(x, y) ∈ Π(µN0 , f0),

Wp(µ
N [Φt,0(Z)], fNt ) ≤ λ(N)Wp(µ

N
0 [Z], f0) etC0λ(N), (3.90)

so that the announced statement follows.

In view of (3.86), it remains to establish an upper bound on the typical rate of convergence
for Wp(µ

N
0 [Z], f0)→ 0. (Note that, other than that, the result of Lemma 3.9.2 is actually

deterministic.) Fortunately, we can rely for this purpose on the large deviation estimates
of Fournier and Guillin, Thmeorem 2.2.1, that we cited in Chapter 2.

Proposition 3.9.3. Let p ∈ [1, 2] and γ < 1
6 . Then there exists a constants c, C > 0 such

that

P0

[
∃t ∈ [0, T ] : Wp(µ

N [Φt,0(Z)], fNt ) ≥ λ(N)N−γetC0λ(N)
]
≤ C

(
e−cN

1−6γ
+ N−1+2pγ

)
(3.91)

Proof. By assumption of Thm. 3.4.1, there exists m > 2p such that
∫
|q|mf0(q, p) dq dp <

+∞. Applying Thm. 2.2.1 with ξ = N−pγ , ε = m − 2p and the �nite-moment condition
(1), we get constants C, c > 0 such that

P0

[
Wp(µ

N
0 [Z], f0) > N−γ

]
≤ C

(
e−cN

1−6γ
+N−1+2pγ

)
.

Thus with Lemma 3.9.2, the statement follows.

Now we have everything in place to complete the proof of our main theorem.



42 3. A mean �eld limit for the Vlasov-Poisson system

3.9.1 Proof of the main theorem

Let p ∈ [1, 2] and γ < 1
6 . We split the approximation into

Wp(µ
N
t [Z], ft) ≤Wp(µ

N [Ψt,0(Z)], µN [Φt,0(Z)])

+Wp(µ
N [Φt,0(Z)], fNt )

+Wp(f
N
t , ft).

According to Proposition 3.9.3, we have constants c, C > 0 such that

P0

[
∃t ∈ [0, T ] : Wp(µ

N [Φt,0(Z)], fNt ) ≥ N−γλ(N)etC0λ(N)
]
≤ C

(
e−cN

1−6γ
+N−1+2pγ

)
.

According to Proposition 3.9.1, we have

Wp(f
N
t , ft) ≤ N−δ etC0λ(N). (3.92)

From Proposition 3.5.3:

P0

[
∃t ∈ [0, T ] : Wp(µ

N [Ψt,0(Z)], µN [Φt,0(Z)]) ≥ N−δ
]
≤ E0(JT ). (3.93)

Putting everything together and choosing γ < min{1
6 , δ} we have found

P0

[
∃t ∈ [0, T ] : Wp(µ

N
t [Z], ft) ≥ 3λ(N)N−γ et(C0+1)λ(N)

]
≤ E0(JT ) + C

(
e−cN

1−6γ
+N−1+2pγ

)
.

(3.94)

Recalling Proposition 3.8.1 and the fact that E0(JT ) < 2N−1+3δeTC0λ(N), the theorem is
proven. For simplicity, we demand N ≥ 4 so that λ(N) =

√
log(N).

3.10 Weaker singularities, open questions

While the present paper focuses on the Vlasov-Poisson equation, the method presented
here can, of course, be applied to interactions with milder singularities (see [6]). For better
comparison with other approaches, in particular the reference paper [26], we shall state
here the corresponding results without further proof. Generalization to higher dimensions
would be straight-forward, as well.
We use the characterization of force kernels introduced in De�nition 3.2.1.

Theorem 3.10.1. Let α < 2. Let k satisfy a (Sα) condition and kNδ satisfy a (Sαδ ) condition
with the additional assumption (3.9) and

δ <
1

1 + α
. (3.95)

Assume (for simplicity) that f0 ∈ L1 ∩ L∞(R3 × R3,R+), normalized to
∫
f0 = 1 has

compact support and let ft the unique solution of the Vlasov equation with force kernel k.
For Z ∈ R6N , let µNt [Z] the unique weak solution of the (regularized) Vlasov equation with
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force kNδ and initial data µN0 [Z]. Then we have molecular chaos in the sense that for all
γ ≤ min{1

6 , δ} and all T > 0 and su�ciently large N :

P0

[
∃t ∈ [0, T ] : W1(µNt [Z], ft) ≥ eC1tN−γ

]
≤ 2eC1TN−1+(α+1)δ + C2N

−1+2γ (3.96)

with constants C1, C2 depending on f0 and α.

This can be compared to the results in Hauray and Jabin, 2013 [26], where a statement
similar to (3.96) is derived for the case 1 ≤ α < 2 with a cut-o� of order

δ <
1

6
min

{ 1

α− 1
,

5

α

}
. (3.97)

For α ∈ [1, 2), the upper bound on δ given by (3.97) ranges between 5
6 and 1

6 , while our
upper bound from (3.95) ranges between 1

2 and 1
3 . In particular, it is interesting to note

that the cut-o� required in [26] is smaller than ours for α < 7
5 but larger for 7

5 < α < 2.
This suggests that the purely probabilistic estimates presented here fare better for strong

singularities � in the sense of admitting a signi�cantly smaller cut-o� � while the method
proposed in [26] provides better controls for mild singularities. In particular, Hauray and
Jabin are able to treat the case 0 < α < 1 without cut-o�, by providing an explicit
control on the minimal particle distance (in (p, q)-space, strictly speaking, while integrating
the forces over small time-intervals). As it stands, our method requires some microscopic
regularization even for very mild singularities. Since it proves quite e�ective in this settings,
it would be interesting to investigate if it can be improved � or combined with the approach
of [26] � to further reduce the cut-o� or dispense with it altogether in some cases. We will
expand on this discussion in the �nal chapter.
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Chapter 4

Vlasov-Poisson as a mean �eld limit

of extended charges

In this chapter, we are going to propose an alternative derivation of the Vlasov-Poisson
system, based on a variant of the Wasserstein distance and the stability result of Loeper
discussed in 2.3. As microscopic regularization, we will consider an N -particle Coulomb
system of extended charges with an N -dependent radius that goes to 0 in the limit N →∞.
This model can be understood as the nonrelativistic limit of the Abraham model of rigid
charges that we are going use as a regularization of the Maxwell-Lorentz dynamics when
we discuss the Vlasov-Maxwell system in the next chapter.

While so far, we restricted our discussion to the Vlasov-Poisson system in 3-dimensional
space in order to keep the presentation more simple, we will now opt for generality and
formulate our results in dimensions d ≥ 2. The result presented here is weaker than the one
in the previous chapter, in the sense that it requires a signi�cantly larger cut-o� of order
N−δ with δ < 1

d(2+d) , to be compared with δ < 1
d in Theorem 3.4.1, but yields better rates

of convergence depending on integrability properties of the initial Vlasov density f0. It is
also interesting in view of the alternative techniques and in preparation for our discussion
of the Vlasov-Maxwell equations.

4.1 The d-dimensional Vlasov-Poisson equation

The d-dimensional Vlasov-Poisson equations (d ≥ 2) reads

∂tf + p · ∇qf + (k ∗ ρt) · ∇pf = 0 (4.1)

where

ρt(q) = ρ[ft](q) =

∫
d3p f(t, q, p) (4.2)

is, as usual, the charge density induced by the distribution f(t, p, q). The Coulomb kernel
takes the form

k(q) := σ
q

|q|d
, σ = {±1} (4.3)

where σ = +1 corresponds to the electrostatic (repulsive) case and σ = −1 to the gravita-
tional (attractive) case.
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More generally, the Coulomb kernel in arbitrary dimensions can be derived from Poisson's
equation - which is the simplest rotational invariant di�erential equation, determining how
a source generates a potential. The unique solution of

−∆Φ = σρ

lim
|q|→+∞

Φ(q) = 0 on Rd (4.4)

is given by

Φ(q) =
1

α(d)

∫
σ

|q′ − q|d−2
ρ(q′) ddq′; if d ≥ 3

with α(d) = d(d− 2)|Bd(1)|, |Bd(1)| the volume of the d-dimensional unit ball, or

Φ(q) = − 1

2π

∫
log(|q − q′|)ρ(q′) dq′; for d = 2.

Then, the force is given by

−∇Φ(q) = k ∗ ρ(q) =
σ

α(d)

∫
q − q′

|q − q′|d
ρ(q′) ddq′.

(For convenience, one shifts the constant α(d) to the right-hand-side of (4.4), so it doesn't
appear in (4.3).)

4.2 The microscopic model

As a microscopic model, we consider a system of N charges, smeared out by a smooth,
non-negative, spherically symmetric form factor χ ∈ C∞0 (Rd). We shall assume that χ
satis�es:

i) supp(χ) ⊆ Bd(1; 0) = {x ∈ Rd : ‖x‖ ≤ 1}

ii) ‖χ‖∞ = supx∈R |χ(x)| = 1

iii) ‖χ‖1 =
∫
χ(x)dx = 1

For the point-particle limit, we de�ne a rescaled form factor as follows:

De�nition 4.2.1. We call a sequence (rN )N∈N of positive real numbers a rescaling sequence
if it is monotonously decreasing with r1 = 1 and lim

N→∞
rN = 0. For any N ∈ N, we then

de�ne

χN (x) :=
1

rdN
χ
( x

rN

)
. (4.5)

This rescaled form factor satis�es:

i') supp
(
χN
)
⊆ B(rN ; 0)
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ii') ‖χN‖∞ = r−dN

iii') ‖χN‖1 =
∫
χN (x)dx = 1

The cut-o� parameter rN can be interpreted as a �nite electron radius, which is formally
sent to 0 in the limit N → 0.

We denote the con�guration of the microscopic system by Z(t) = (qi(t), pi(t))1≤i≤N , where
qi(t) is the center of mass of particle i, and pi(t) the corresponding momentum at time t.
For �xed N ∈ N, the equations of motion in the mean �eld scaling read:q̇i(t) = pi(t)

ṗi(t) = KN (qi; q1, ..., qN )
(4.6)

with

KN (qi ; q1, ..., qN ) :=
1

N

N∑
j=1

∫ ∫
χN (qj − y)k(z − y)χN (qi − z) ddy ddz. (4.7)

The N -particle force (4.7) can be rewritten in the following way: Given the microscopic
distribution

µNt [Z] = µN [Z(t)] =
1

N

N∑
i=1

δqi(t)δpi(t), (4.8)

one easily checks that

KN (· ; q1, ..., qN ) = χN ∗ k ∗ χN ∗ ρ[µNt ] =: k̃ ∗ ρ̃[µNt ],

where we introduce the notation

ϕ̃ := χN ∗ ϕ, for ϕ : R3 → Rk. (4.9)

The smeared charge density, i.e. the charge density of the extended particles thus corre-
sponds to

ρ̃t(q) :=
1

N

N∑
i=1

χN (q − qi(t)) (4.10)

to be compared with the point-charge density

ρt(q) :=
1

N

N∑
i=1

δ(q − qi(t)). (4.11)

In the limit N → ∞, rN → 0, we have χN (· − qi) ⇀ δ(· − qi) in the sense of distributions
(see Lemma 4.2.2 below), so that (4.10) approximates (4.11).

Except for the scaling factor N−1, these equations describe the regular Coulomb dynamics
for smeared charges with form factor χN . The double-convolution results from the fact that
the charge enters the interaction-term quadratically; In other words, the charges acting and
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the charge being acted upon are both smeared out. Note that this system is Hamiltonian
for

H(qi, pi) =

N∑
i=1

1

2
p2
i +

1

2N

∑
i,j

∫
Rd

∫
Rd

χ(y − qi)
σ

|z − y|d−1
χ(z − qj)dy dz

and thus conserves total energy. Note also that � in contrast to the previous chapter �
these dynamics contain self-interactions.

In view of (4.10), we note the following Lemma concerning the `smearing' of measures.

Lemma 4.2.2.
Let χ ∈ C∞0 (Rd), (rN )N a rescaling sequence and χN the rescaled form factor as in (4.5).
For a probability measure ν ∈ P(Rd), we de�ne ν̃ = χN∗xν, i.e.

∫
h(x)dν̃(x) =

∫
h̃(x)dν(x)

for all bounded, continuous h. Then we have for all µ, ν ∈ P(Rd) and 1 ≤ p <∞

i) Wp(ν̃, ν) ≤ rN

ii) Wp(µ̃, ν̃) ≤Wp(µ, ν)

where Wp denotes the Wasserstein distance of order p.

Proof. i) De�ne π′(x, y) := ν(x)χN (x−y) and observe that
∫

dxπ′(x, y) = ν̃(y),
∫

dy π′(x, y) =
ν(x), hence π′ ∈ Π(ν̃, ν). π′ has support in {|x− y| < rN}. Thus, we conclude

Wp(ν̃, ν) = inf
π∈Π(ν,ν̃)

( ∫
Rd×Rd

|x− y|p dπ′(x, y)
)1/p

≤
( ∫
Rd×Rd

|x− y|p dπ′(x, y)
)1/p

≤ rN .

ii) In view of the Kantorovich duality (2.3), we �nd for (φ1, φ2) ∈ L1(µ) × L1(ν) with
φ1(y)− φ2(x) ≤ |x− y|p:∫

φ1(x) dµ̃(x)−
∫
φ2(y) dν̃(y) =

∫
(χ ∗ φ1)(x) dµ(x)−

∫
(χ ∗ φ2)(y) dν(y).

But χN ∗ φ1 and χN ∗ φ2 also satisfy

∣∣χN ∗ φ1(x)− χ ∗ φ2(y)
∣∣ =

∣∣∣∫ χN (z)φ1(x− z) dz −
∫
χN (z)φ2(y − z) dz

∣∣∣
≤
∫
χN (z)

∣∣φ1(x− z)− φ2(y − z)
∣∣ dz ≤ ∫ χN (z) |x− y|p dz = |x− y|p.

Hence, we have ∫
φ1 dµ̃−

∫
φ2 dν̃ ≤Wp(µ, ν),

and taking the supremum over all (φ1, φ2) yields the desired inequality.
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4.2.1 A note on the regularization.

From a purely formal point of view, the regularization thus introduced is merely a special
case of the ones treated in the previous chapter with kN := χN ∗ χN ∗ k satisfying a (Sαδ )-
condition with α = 2 and δ depending on the rescaling sequence rN . However, the approach
that we want to present now will take the physical picture of smeared charges seriously
in a certain sense. Recall that the stability result for the Coulomb force, Proposition
2.3.6, applies to bounded charge densities. In particular, it does not apply to point-charge

densities of the form ρµ = 1
N

N∑
i=1

δqi which are singular measures. The idea is thus to consider

smeared densities of the form (4.10), corresponding to extended charges with N -dependent
form factor. We will then take the mean �eld limit together with the point-particle limit
rN → 0 in a such a way as to assure that the charge density typically remains bounded.
Intuitively, this describes a situation in which a large number of small, extended particles
blur into a continuous charge cloud.

While the smearing of charges is a natural way of regularizing point-interactions, the
cut-o� thus introduced must still be considered a technical necessity rather than a realistic
physical model. In the context of the relativistic �eld theory, considered in the next chapter,
the issue is a bit more subtle and will be discussed in due course.

4.2.2 The regularized Vlasov-Poisson equation

For the microscopic model described above, we introduce a corresponding mean �eld equa-
tion:

∂tf + p · ∇qf + (k̃ ∗ ρ̃) · ∇pf = 0,

k̃ :=χN ∗ k; ρ̃t =

∫
χN ∗q f(t, ·, p) ddp.

(4.12)

We call this the regularized Vlasov-Poisson system with cut-o� parameter rN .

De�nition 4.2.3 (Characteristic �ow). Let ν = (νt)t∈[0,T ] a continuous family of proba-

bility measures on Rd × Rd. Let ρt[ν](q) =
∫
ν(q, p) ddp the induced (charge-)distribution

on Rd. We denote by ϕνt,s(q0, p0) =
(
Qν(t, s, q0, p0), P ν(t, s, q0, p0)

)
the one-particle �ow on

Rd × Rd solving: 
d
dtQ = P
d
dtP = χN ∗ k ∗ χN ∗ ρ(Q)

Q(s, s, q0, p0) = q0

P (s, s, q0, p0) = p0.

(4.13)

This �ow exists and is well-de�ned since the vector-�eld is Lipschitz for all N . If fN (t, q, p)
is a solution of (4.12), it is straight-forward to check that

fNt = ϕf
N

t,s #fNs , ∀t, s ≥ 0. (4.14)

Conversely, if ft is a �xed-point of (νt)→ ϕνt#f0, it is a solution (4.12) with initial datum
f0. In particular, one observes that Z(t) = (qi(t), pi(t))i=1,..,N is a solution of (4.6) if and
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only if µN0 [Z(t)] = 1
N

N∑
i=1

δqi(t)δpi(t) solves (4.12) in the sense of distributions. Basically, our

aim is thus to show that this relation carries over to the limit N →∞.

For the (unregularized) Vlasov-Poisson equation, the corresponding vector-�eld is not
Lipschitz, in general. However, if we assume the existence of a solution ft with ρ ∈
L∞([0, T ] × Rd), the mean �eld force k ∗ ρt does satisfy a Log-Lip bound of the form
|k ∗ ρt(x)− k ∗ ρt(y)| ≤ C|x− y||log(|x− y|)| (for |x− y| < 1

2 , let's say, see e.g. [46, Ch. 7]).
This is su�cient to ensure the existence of a characteristic �ow ψt,s = (Qt,s, Pt,s) solving

d
dtQt,s = Pt,s
d
dtPt,s = k ∗ ρ[ft](Qt,s)

Q(s, s, q0, p0) = q0

P (s, s, q0, p0) = p0

(4.15)

such that ft = ψt,s#fs, for all 0 ≤ s ≤ t ≤ T .

4.2.3 Existence of solutions

As in the previous chapter, existence and uniqueness of solutions for the regularized Vlasov-
Poisson equations (4.12) is standard, since all forces are Lipschitz. In the Coulomb case,
the issue is more delicate, in particular with respect to the higher-dimensional problem.
For the rest of this chapter, we shall work under the following assumption:

Assumption 4.2.4. Let f0 ∈ L1 ∩ L∞(Rd × Rd;R+
0 ) with total mass one. We assume

that there exists T ∗ > 0 such that the Vlasov-Poisson system (1-3) has a unique solution
f(t, x, p) on [0, T ∗) with f(0, ·, ·) = f0. Moreover, as we consider the sequence of solutions
of the regularized equations, the charge density remains bounded uniformly in N and t, i.e.
∀T < T ∗ ∃C0 < +∞ such that

‖ρ[fNt ]‖∞ ≤ C0, ∀t ∈ [0, T ], ∀N ∈ N ∪ {+∞}, (4.16)

where, with a slight abuse of notation, f∞t := ft.

In fact, as stated in the previous chapter, under the assumption of a bounded charge
density, the uniqueness of the solution (in the space of bounded positive measures) was
proven by Loeper [42]. Existence of weak solutions in arbitrary dimensions was already
proven e.g.in [2, 15]. Apart from this, the status of the assumption is the following: In the
physically most relevant, 3-dimensional case, we can rely on the various results cited in the
previous chapter. In particular, the theorem of Lions and Perthame, Thm. 3.3.1, ensures
that (4.16) is satis�ed for a reasonably large class of initial distributions and T ∗ = +∞.
The situation is similar in the 2-dimensional case, which is treated in [67,73]. In dimensions
d ≥ 4, where blow-up might occur, there exists at least some T ∗ > 0, depending only on
f0, such that (4.16) is satis�ed if we assume that f0 has compact support. This is ensured
by the following Lemma.
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Lemma 4.2.5 (Local existence of solutions). Let f0 ∈ L1 ∩ L∞(Rd × R3) with compact
support and f a (local) solution to (4.1) with f |t=0= f0. Let

D(t) := sup {|q| : ∃p ∈ Rd : f(t, q, p) 6= 0} (4.17)

R(t) := sup {|p| : ∃q ∈ Rd : f(t, q, p) 6= 0} (4.18)

the size of the support in the q-, respectively p-coordinates. Then there exists a constant
C > 0 such that

D(t) ≤ D(0) +

t∫
0

R(s) ds (4.19)

R(t) ≤ R(0) + C ‖f0‖∞‖f0‖1/d1

t∫
0

Rd−1(s) ds. (4.20)

These estimates hold independent of N as we consider the sequence fN of solutions to the
regularized equation (4.12) with fN |t=0= f0.

Note that since ρt(q) =
∫
f(t, q, p) ddp ≤ |Bd(1)|R(t)d‖f0‖∞, a (uniform) bound on the

momentum support implies a (uniform) bound on the charge density.

Proof. Given a solution ft of (4.1), let ϕt,s(z) = (Q,P )(t, s, z) the corresponding solution
of the characteristic system (4.13). Then, f(t, q, p) = f0(Q(0, t, q, p), P (0, t, q, p)) and hence

d

dt
D(t) ≤ sup

q,p
| d
dt
Q(t, 0, q, p)| = sup

q,p
|P (t, 0, q, p)| = R(t), (4.21)

which proves the �rst inequality, and

d

dt
R(t) ≤ sup

q,p

∣∣ d

dt
P (t, 0, q, p)

∣∣ ≤ ‖k̃ ∗ ρt‖∞ ≤ ‖k ∗ ρt‖∞ (4.22)

which implies

R(t) ≤ R(0) +

t∫
0

‖k ∗ ρt(s)‖∞ ds. (4.23)

Moreover,

ρt(q) =

∫
f(t, q, p) ddp ≤ C1‖ft‖∞Rd(t) = C1‖f0‖∞Rd(t) (4.24)

with C1 = |Bd(1)|. Now, we estimate:

|k ∗ ρt(x)| =
∫
|k|(y)ρt(x− y) dy ≤

∫
|y|≤r

1

|y|d−1
ρt(x− y) ddy +

∫
|q′|>r

1

|y|d−1
ρt(x− y) ddy

≤ C2‖ρt‖∞r + r−(d−1)‖ρNt ‖1
(4.25)
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where C2 = |Sd−1|, the surface area of the unit sphere in Rd. The optimal choice is

r = ‖ρt‖−1/d
∞ ‖ρt‖1/d1 for which we get

‖k ∗ ρt[f ]‖∞ ≤ (C2 + 1)‖f0‖1/d1 ‖ρt‖
d−1
d∞ . (4.26)

Together with (4.24), it follows that:

R(t) ≤ R(0) + C1(C2 + 1)‖f0‖‖f0‖1/d1

t∫
0

Rd−1(s) ds, (4.27)

independent of N . Thus, a standard Gronwall argument yields the bound:

R(t) ≤ R(0)

(1− CR(0)d−2t)
1
d−2

, (4.28)

with C = (d− 2)C1(C2 + 1)‖f0‖‖f0‖1/d1 which is �nite for all t < 1
CR(0)d−2 and all N ∈ N.

Since ‖k̃∗ρt‖∞ ≤ ‖k∗ρt‖∞ for any N , these estimates hold independent of N as we consider
the sequence fN of solutions to the regularized equation.

4.3 Statement of the results

We now sate our precise results in the following two theorems. The approximation of the
Vlasov density is again formulated in terms of the Wasserstein distances.

Proposition 4.3.1 (Deterministic Result). Let f0 ∈ L1 ∩ L∞(Rd × Rd), f ≥ 0. Let
(rN )N∈N be a rescaling sequence and fNt the unique solution of the regularized Vlasov-
Poisson equation (4.12) with fN (0, ·, ·) = f0. Assume that on [0, T ] the sequence (fN )N
satis�es the uniform bound (4.16) on the induced charge-densities. Suppose we have a
sequence of initial conditions Z ∈ R6N such that

lim
N→∞

r
−(1+ d

2
+ε)

N W2(µN0 [Z], f0) = 0 (4.29)

for some ε > 0. Then we have

lim
N→∞

r
−(1+ d

2
)

N W2(µNt [Z], fNt ) = 0, ∀0 ≤ t ≤ T. (4.30)

Since we will also show that W2(fNt , ft) = o(r1−ε
N ) (Prop. 4.4.5) this establishes a particle

approximation of the Vlasov-Poisson equation for initial conditions satisfying (4.29).

Theorem 4.3.2 (Typicality Result). Let f0 ∈ L∞(Rd × Rd) a probability measure such
that the Vlasov-Poisson equation (4.1) has a unique solution on [0, T ∗), T ∗ ∈ R+ ∪ {+∞}
with f(0, ·, ·) = f0. Assume that the sequence (fN )N of solutions to the regularized Vlasov-
Poisson equation (4.12) with the same initial data satis�es the uniform bound (4.16) on the
induced charge-densities. Assume, in addition, that there exists k > 4 such that

Mk(f0) :=

∫
(|q|+ |p|)k f0(q, p) dq dp < +∞. (4.31)
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Suppose that rN ≥ N−δ with

δ =
1− ε

d(2 + d+ 2ε)
, ε > 0.

Then there exist constants C1, C2, C3 such that for all T < T ∗ and N large enough that
rN ≤ exp[−(2C1T

ε )2] it holds that

P0

[
sup
t∈[0,T ]

W2(µNt [Z], ft) > r1−ε
N

]
≤ C2

(
e−C3Nε

+N1− k
2

+ k
2d ), (4.32)

where the probability P0 is de�ned in terms of the product measure ⊗Nf0 on (Rd × Rd)N .
The constant C1 depends on d, χ and C0 as in (4.16), while C2, C3 depend on d, k and
Mk(f0).

Remarks 4.3.3.

1. In dimension 3, the necessary cut-o� is of order N−δ with δ < 1
15 .

2. In view of Thm. 2.2.1, if the �nite moment condition (4.31) is replaced by the
assumption of a �nite exponential moment

∫
eγ|x|

κ
df0(x), the rate of convergence

becomes exponential, as well. This holds, in particular, for compactly supported f0.

4.3.1 Sketch of the proof

We give here a brief sketch of our derivation and the central concepts and ideas on which
it is based.

1. To control the distance between microscopic density and mean �eld density, we in-
troduce a variant of the second Wasserstein distance WN

2 de�ned with respect to the
N -dependent metric:

dN
(
(q1, p1), (q2, p2)

)
:= (1 ∨

√
|log(rN )|) |q1 − q2|+ |p1 − p2|,

where 1 ∨
√
|log(rN )| := max{1,

√
|log(rN )|}.

2. We use Loeper's stability estimate, Proposition 2.3.6, to control the L2 norm of the
di�erence between mean �eld force and microsocpic force in terms of the quadratic
Wasserstein distance.

3. The regularization yields a Lipschitz bound on the microscopic force that diverges
logarithmically with N . In terms of the modi�ed Wasserstein distance, this leads to
a Gronwall estimate of the form

d

dt
WN

2 (µNt , f
N
t ) ≤ C

√
|log(rN )|WN

2 (µNt , f
N
t ).

4. The previous bounds can be applied if the (smeared out) microscopic charge density
ρ̃µ = χN ∗ ρ[µt] remains bounded uniformly in N . We show that this can be assured

as long asW2(µNt [Z], fNt ) = o(r
−(1+d/2)
N ). Given a su�ciently fast rate of convergence

at t = 0, i.e. assumption (4.29), we conclude with 3. that this bound propagates.
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5. It remains to check that the constraints so imposed on the initial data are satis�ed
for typical Z, if the initial con�guration is chosen randomly according to the law f0.
This is achieved with the large deviation estimate of Fournier and Guilin, Thm. 2.2.1.
This result also determines how fast rN can go to zero in the limit N →∞.

4.4 A Gronwall argument

We recall:

Proposition (Loeper) Let k the Coulomb kernel and ρ1, ρ2 ∈ L1(Rd)∩L∞(Rd) two (prob-
ability) densities. Then

‖k ∗ ρ1 − k ∗ ρ2‖L2(Rd) ≤
[
max{‖ρ1‖∞, ‖ρ2‖∞}

]1/2
W2(ρ1, ρ2). (4.33)

Moreover, we will use the following estimates on the mean �eld force:

Lemma 4.4.1. Let k as before and ρ ∈ L1(Rd) ∩ L∞(Rd). Then it holds that

i) ‖k ∗ ρ‖∞ ≤ |Sd−1| ‖ρ‖∞ + ‖ρ‖1

ii) ‖χN ∗ k ∗ ρ‖Lip ≤ CL(1 ∨ |log(rN )|)
(
‖ρ‖1 + ‖ρ‖∞

)
where we used the notation a ∨ b := max{a, b}. |Sd−1| denotes the surface area of the unit
sphere and CL is a constant depending on χ.

Proof. i) For the �rst inequality, we compute

‖k ∗ ρ‖∞ ≤
∥∥∥ ∫
|y|<1

k(y)ρ(x− y) ddy
∥∥∥
∞

+
∥∥∥ ∫
|y|>1

k(y)ρ(x− y) ddy
∥∥∥
∞

≤ ‖ρ‖∞
∫
|y|<1

1

|y|d−1
ddy + ‖ρ‖1 = |Sd−1|‖ρ‖∞ + ‖ρ‖1.

ii)We split the expression as∥∥∇(χ ∗ k ∗ ρ)
∥∥
∞ ≤

∥∥∇(χ ∗ k|x≥rd+1
N
∗ ρ)

∥∥
∞ +

∥∥∇(χ ∗ k|x<rd+1
N
∗ ρ)

∥∥
∞

≤
∥∥χN∥∥

1

∥∥∇k|x≥rd+1
N
∗ ρ
∥∥
∞ +

∥∥∇χN∥∥∞ ∥∥k|x<rd+1
N

∥∥
1

∥∥ρ∥∥∞.
Now, we have:∣∣∣∣∇k|x≥rd+1

N
∗ ρ (x)

∣∣∣∣ ≤ ∫
|y|≥rd+1

n

1

|y|d
ρ(x− y) ddy

≤
∫

rd+1
N ≤|y|≤1

1

|y|d
ρ(x− y)ddy +

∫
|y|>1

1

|y|d
ρ(x− y)ddy

≤ (d+ 1)C ‖ρ‖∞ log(r−1
N ) + ‖ρ‖1.
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Furthermore:
‖∇χN‖∞ = r

−(d+1)
N ‖∇χ‖∞

and ∥∥k|x<rd+1
N

∥∥
1

=

∫
|y|<rd+1

N

1

|y|d−1
ddy = |Sd−1| rd+1

N .

Putting everything together, the statement follows.

For the solutions fNt to the (regularized) Vlasov-Poisson equation, the corresponding charge-
densities ρt = ρ[fNt ] are bounded by assumption. The challenge is to provide a bound on
the microscopic charge density that holds uniformly in N , i.e. as the electron radius de-
creases and the forces become more singular. The idea is to show that as long as µNt and fNt
are close in Wasserstein distance, the L∞-norm of ρ̃[fNt ] provides a bound on the L∞-norm
of ρ̃[µNt ]. A simple such estimate can be obtained as follows (c.f. [8, Prop. 2.1]).

Lemma 4.4.2. Let ρ1, ρ2 two probability measures on Rd and ρ̃i := χN ∗ ρi. Then there
exists a constant C depending on χ such that

‖ρ̃1‖∞ ≤ ‖ρ̃2‖∞ + C r
−(d+1)
N W1(ρ1, ρ2). (4.34)

Proof. For all q ∈ Rd we have

|(ρ̃1 − ρ̃2)(q)| =
∣∣χN ∗ (ρ1 − ρ2)(q)

∣∣ ≤‖χN‖LipW1(ρ1, ρ2).

Since ‖χN‖Lip ≤ ‖∇χN‖∞ ≤ r−(d+1)
n ‖∇χ‖∞, the lemma follows.

In view of the general Kantorovich-Rubinstein duality, we generalize this result to Wasser-
stein distances of higher order.

Lemma 4.4.3. Let ρ1, ρ2 two probability measures on Rd and ρ2 ∈ L∞(Rd). Then:

‖ρ̃1‖∞ ≤ |Bd(2)| ‖ρ2‖∞ + r
−(p+d)
N W p

p (ρ1, ρ2). (4.35)

Proof. For any integrable function Φ, we consider the c-conjugate

Φc(y) := sup
x
{Φ(x)− |x− y|p}

as introduced in equation (2.4). Now, we write

ρ̃1(x) = r
−(d+p)
N

[∫
rd+p
N χN (x− y)ρ1(y)dy −

∫
(rd+p
N χN (x− ·))c(z)ρ1(z) dz

+

∫
(rd+p
N χN (x− ·))c(z) ρ1(z)dz

]
.

By the Kantorovich duality theorem (2.5),∫
rd+p
N χN (x− y) ρ1(y)dy −

∫
(rd+p
N χN (x− ·))c(z) ρ2(z)dz ≤W p

p (ρ1, ρ2).
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It remains to estimate ∫
(rd+p
N χN (x− ·))c(z) ρ2(z) dz.

Recalling that ‖χN‖∞ = r−dN , we �nd

(rd+p
N χN (x− ·))c(z) = sup

y∈R3

{rd+p
N χN (x− y)− |y − z|p} ≤ rd+p

N ‖χN‖∞ = rpN .

Moreover, we observe that

supp (rd+p
N χN (x− ·))c ⊆ B(2rN ;x) := {z ∈ R3 : |z − x| ≤ 2rN}, (4.36)

since |z−x| > 2rN implies that χN (x− y) = 0, unless |y− z| ≥ rN . But then: rd+p
N χN (x−

y)− |y − z|p ≤ rd+p
N r−dN − r

p
N = 0. Hence,∫

(rd+p
N χN (x− ·))c(z)ρ2(z)dz ≤ ‖ρ2‖∞ rpN |B(2rN ;x)| ≤ 2d|Bd(1)| ‖ρ2‖∞ rd+p

N .

In total:

‖ρ̃1‖∞ ≤ r−(p+d)
N W p

p (ρ1, ρ2) + |Bd(2)|‖ρ2‖∞

as announced.

We shall apply the previous Lemma to ρ1 := ρ[µNt (Z)] and ρ2 := ρ[fNt ] using ‖ρ[fNt ]‖ ≤ Cρ
and W2(ρ[µNt (Z)], ρ[fNt ]) ≤ W2(µNt (Z), fNt ) to get a bound on the (smeared) microscopic
charge density.

4.4.1 Modi�ed Wasserstein distance

As we want to establish a Gronwall estimate for the distance between empirical density
and Vlasov density, we aim for a bound of the form:

dist(µNt+∆t, f
N
t+∆t)− dist(µNt , f

N
t ) ∝ dist(µNt , f

N
t ) ∆t+ o(∆t).

The choice of a metric giving precise meaning to dist(µNt , f
N
t ) is thus a balancing act. While

a stronger metric is, in general, more di�cult to control, it also yields stronger bounds as
it appears on the right hand side of the Gronwall inequality.

If we compare the characteristic �ow of the mean �eld dynamics with the �ow corre-
sponding to the �true�, i.e. microscopic, dynamics, the growth in the spatial distance is
trivially bounded by the distance of the respective momenta. The only problem lies in
controlling �uctuations in the force, i.e. the growth of the distance in momentum space.
The idea (that we already employed in the previous chapter) is thus to be more rigid on
deviations in the q-coordinates, weighing them with an appropriate N -dependent factor,
and use this to obtain better control on the forces.

De�nition 4.4.4. Let (rN )N∈N be a rescaling sequence. On Rd × Rd we introduce the
(N -dependent) metric:

dN
(
(q1, p1), (q2, p2)

)
:= (1 ∨

√
|log(rN )|) |q1 − q2|+ |p1 − p2|. (4.37)
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Now let WN
p (·, ·) be the p'th Wasserstein metric with respect to dN , i.e.:

WN
p (µ, ν) := inf

π∈Π(µ,ν)

( ∫
Rd×Rd

dN (x, y)p dπ(x, y)
)1/p

. (4.38)

Note that Wp(µ, ν) ≤WN
p (µ, ν) ≤ (1∨

√
|log(rN )|)Wp(µ, ν), ∀µ, ν ∈ P(Rd ×Rd). Finally,

we de�ne

W ∗(µ, ν) := min
{

1, r
−(1+ d

2
)

N WN
2 (µ, ν)

}
. (4.39)

Obviously, convergence with respect to W ∗ is much stronger than convergence with respect
to W2. Concretely, we have for any sequence (νN )N∈N and ν ∈ P(Rd × Rd):

W ∗(νN , ν)→ 0⇒W2(νN , ν) = o
(
r

1+ d
2

N

)
.

4.4.2 Deterministic result

We now come to the central part of our argument.

Proof of Proposition 4.3.1. Let N ∈ N and π0 ∈ Π(µN0 , f0). Let ϕµt = (Qµt , P
µ
t ) and

ϕft = (Qft , P
f
t ) the �ow induced by the characteristic equation (4.13) for µNt and fNt ,

respectively. For any t ∈ [0, T ], T < T ∗, de�ne the (N -dependent) measure πt on R6N×R6N

by πt = (ϕµt , ϕ
f
t )#π0. Then πt ∈ Π(µNt , ft), ∀t ∈ [0, T ]. We set

D(t) :=
[ ∫
R6×R6

dN (x, y)2 dπt(x, y)
]1/2

=
[ ∫
R6×R6

(
(1 ∨

√
|log(rN )|) |x1 − y1|+ |x2 − y2|

)2
dπt(x, y)

]1/2

=
[ ∫
R6×R6

(
(1 ∨

√
|log(rN )|) |Qµt (x)−Qft (y)|+ |Pµt (x)− P ft (y)|

)2
dπ0(x, y)

]1/2
.

Note that WN
2 (µNt , f

N
t ) < D(t) for any π0 ∈ Π(f0, f0). Now we consider:

D∗(t) := min
{

1, r
−(1+ d

2
)

N D(t)
}
. (4.40)

Obviously, d
dtD

∗(t) ≤ 0 whenever D(t) ≥ r
1+ d

2
N since then D∗(t) is already maximal. For

D(t) < r
1+ d

2
N , we compute:

d

dt
D2(t) =

2

∫ (
(1 ∨

√
|log(rN )|) |Qµt (x)−Qft (y)|+ |Pµt (x)− P ft (y)|

)
·(

(1 ∨
√
|log(rN )|) |Pµt (x)− P ft (y)|+

∣∣k̃ ∗ ρ̃µt (Qµt (x))− k̃ ∗ ρ̃ft (Qft (y))
∣∣)dπ0(x, y).
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The interesting term to control is the interaction term∣∣k̃ ∗ ρ̃µt (Qµt (x))− k̃ ∗ ρ̃ft (Qft (y))
∣∣

≤
∣∣k̃ ∗ ρ̃µt (Qµt (x))− k̃ ∗ ρ̃µt (Qft (y))

∣∣ (4.41)

+
∣∣k̃ ∗ ρ̃µt (Qft (y))− k̃ ∗ ρ̃ft (Qft (y))

∣∣. (4.42)

We begin with (4.41) and �nd with Lemma 4.4.1:∣∣k̃ ∗ ρ̃µt (Qµt (x))− k̃ ∗ ρ̃µt (Qft (y))
∣∣

≤ CL(1 ∨ |log(rN )|)(1 + ‖ρµt ‖∞)
∣∣Qµt (x)−Qft (y)

∣∣. (4.43)

Hence, we have
d

dt
D2(t) ≤ J1(t) + J2(t) (4.44)

with

J1(t) := 2

∫ (
(1 ∨

√
|log(rN )|) |Qµt (x)−Qft (y)|+ |Pµt (x)− P ft (y)|

)
·(

(1 ∨
√
|log(rN )|) |Pµt (x)− P ft (y)|+ CL(1 ∨ |log(rN )|)(1 + ‖ρµt ‖∞)

∣∣Qµt (x)−Qft (y)
∣∣)dπ0(x, y)

(4.45)

J2(t) := 2

∫ (
(1 ∨

√
|log(rN )|) |Qµt (x)−Qft (y)|+ |Pµt (x)− P ft (y)|

)
·∣∣k̃ ∗ ρ̃µt (Qft (y))− k̃ ∗ ρ̃ft (Qft (y))

∣∣dπ0(x, y).

(4.46)

Now we observe that

J1(t) ≤ CL(1 ∨ |log(rN )|)(1 + ‖ρµt ‖∞)D2(t), (4.47)

while for the second term, we �nd with Hölders inequality

J2(t) ≤ 2
[∫ (

(1 ∨
√
|log(rN )|) |Qµt (x)−Qft (y)|+ |Pµt (x)− P ft (y)|

)2
dπ0(x, y)

]1/2
(4.48)[∫ ∣∣k̃ ∗ ρ̃µt (Qft (y))− k̃ ∗ ρ̃ft (Qft (y))

∣∣2 dπ0(x, y)
]1/2

. (4.49)

We identify (4.48) as D(t), while for (4.49) we get

[∫ ∣∣k̃ ∗ (ρ̃µt − ρ̃
f
t

)(
Qft (y)

)∣∣2 dπ0(x, y)
]1/2

=
[∫ ∣∣k̃ ∗ (ρ̃µt − ρ̃

f
t

)(
Q0(y)

)∣∣2 dπt(x, y)
]1/2

≤
[∫ (

k̃ ∗ ρ̃µt − k̃ ∗ ρ̃
f
t

)2
f(t, y) d2dy)

]1/2
=
[∫ (

k̃ ∗ ρ̃µt − k̃ ∗ ρ̃
f
t

)2
(q) ρft (q) ddq)

]1/2

≤ ‖ρft ‖1/2∞ ‖k̃ ∗ (ρ̃µt − ρ̃
f
t )‖2 ≤ C1/2

0 ‖k ∗ (ρ̃µt − ρ̃
f
t )‖2. (4.50)
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From Lemma 4.4.3, we know that as long as D(t) ≤ r
1+ d

2
N , i.e. D∗(t) ≤ 1, the microscopic

charge density is bounded by

‖ρµt ‖∞ ≤|Bd(2)|‖ρ[fNt ]‖∞ + r
−(d+2)
N D2(t)

≤|Bd(2)| sup
N∈N
‖ρ[fNt ]‖∞ + 1

≤|Bd(2)|C0 + 1 =: Cρ.

(4.51)

Note that this bound holds independent of N . Hence, we can use Loeper's stability result,
Proposition 2.3.6 in (4.50) and get:

‖k ∗ (ρ̃µt − ρ̃
f
t )‖2 ≤

[
max{‖ρ̃µt ‖∞, ‖ρ̃

f
t ‖∞}

] 1
2 W2(ρ̃µt , ρ̃

f
t ) ≤ C

1
2
ρ D(t). (4.52)

Putting everything together and setting C1 := 2CρCL, we have

d

dt
D2(t) ≤ 2C1(1 ∨

√
|log(rN )|)D2(t)

or, after dividing by 2D(t) and multiplying both sides by r
−(1+ d

2
)

N ,

d

dt
D∗(t) ≤ C1(1 ∨

√
|log(rN )|)D∗(t).

By an application of Gronwall's Lemma, we conclude that:

D∗(t) ≤ D∗(0) et C1(1∨
√
|log(rN )|).

Finally, taking on the right hand side the in�mum over all π0 ∈ Π(µN0 , f0), D∗(0) becomes
W ∗(µN0 [Z], f0) and we get for all t ∈ T :

W ∗(µNt , f
N
t ) ≤W ∗(µN0 , f0) et C1(1∨

√
|log(rN )|). (4.53)

If there exists an ε > 0 such that lim
N→∞

W2(µN0 ,f0)

r
1+d/2+ε
N

= 0, the right hand side converges to 0,

so that, in particular, lim
N→∞

r
1+ d

2
N W2(µNt , f

N
t ) = 0.

To show convergence to solutions of the (unregularized) Vlasov-Poisson equation, we also
require the following:

Proposition 4.4.5. Let f0 satisfy the assumptions of Theorem 4.3.2. Let fNt and ft be
the solution of the regularized, respectively the proper Vlasov-Poisson equation with initial
data f0. Then:

W2(fNt , ft) ≤ rN etC1(1∨
√
|log(rN )|). (4.54)

Proof. Let ρNt := ρ[fNt ] and ρ∞t := ρ[ft] be the charge density induced by fNt and ft,
respectively. Let ϕNt = (QNt , P

N
t ) the characteristic �ow of fNt and ψt = (Qt, Pt) the

characteristic �ow of ft. We consider π0(x, y) := f0(x)δ(x − y) ∈ Π(f0, f0), which is
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already the optimal coupling yielding WN
2 (fNt , ft)|t=0= WN

2 (f0, f0) = 0 and set πt =
(ϕNt , ψt)#π0 ∈ Π(fNt , ft). As above, we de�ne

D(t) :=
[ ∫
R6×R6

(
(1 ∨

√
|log(rN )|) |x1 − y1|+ |x2 − y2|

)2
dπt(x, y)

]1/2
(4.55)

and compute

d

dt
D2(t) ≤ 2

∫ (
(1 ∨

√
|log(rN )|) |QN (t, x)−Q(t, y)|+ |PN (t, x)− P (t, y)|

)
(

(1 ∨
√
|log(rN )|) |PN (t, x)− P (t, y)|+

∣∣k̃ ∗ ρ̃Nt (QN (x))− k ∗ ρft (Qt(y))
∣∣)dπ0(x, y).

The proof proceeds analogous to Prop. 4.3.1, simpli�ed by the fact that the charge densities
remain bounded by assumption. The only noteworthy di�erence is in eq. (4.52). Observing
that k̃ ∗ ρ̃ = k ∗ ˜̃ρ, we use Lemma 4.2.2 to conclude:

W2(˜̃ρNt , ρt) ≤W2(ρNt , ρt) + 2rN ≤W2(fNt , ft) + 2rN ≤ D(t) + 2rN . (4.56)

In total, we �nd:

d

dt
D2(t) ≤ 2C0CL (1 ∨

√
|log rN |)D2(t) + 2C0D(t)(D(t) + 2rN )

or
d

dt
D(t) ≤ C1(1 ∨

√
|log rN |)D(t) + 2C0rN

with C1 > 2C0(CL + 1) as de�ned in the previous proof. Using Gronwall's inequality and
the fact that D(0) = 0, we have

W2(fNt , ft) ≤ D(t) ≤ rN etC1(1∨
√
|log rN |),

from which the desired statement follows.

4.4.3 Typicality

In the previous sections, we performed the mean �eld limit for the Vlasov-Poisson system
under the assumption of a su�ciently fast convergence of the initial distribution. How
strong this result is, now depends on two questions:

1) How restrictive is the condition W2(µN0 , f0) = o(r
1+ d

2
+ε

N )?

2) How fast can we let the electron radius (i.e. the cut-o� parameter) rN go to zero?

If we found that only very special sequences of initial distributions µN [Z], Z ∈ R6N achieve
the necessary rate of convergence, the result would not be very satisfying from a physical
point of view. If we observe a globular cluster, let's say, we cannot pretend that someone
has arranged the galaxies in precisely such a way as to ensure the validity of Proposition
4.3.1. If, on the other hand, we can show that the good initial con�gurations are typical, it
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would mean that, on the contrary, the mean �eld approximation fails only for very special
(in this sense �conspiratorial�) initial conditions.

Hence, in order to complete the proof of Theorem 4.3.2, it remains to show that the
assumptions of Proposition 4.3.1 are satis�ed for generic initial data, i.e. with probability
approaching 1 as N tends to in�nity. To this end, we apply again the large deviation esti-
mate from Theorem 2.2.1, which will also determine the lower bound for the N -dependent
cut-o� rN .

Proof of Theorem 4.3.2. Let rN ≥ N−δ and ε > 0. Let A ⊆ R2d be the (N -dependent)
set de�ned by

Z ∈ A ⇐⇒ W2(µN0 [Z], f0) > r
1+ d

2
+ε

N . (4.57)

We apply Theorem 2.2.1 in n = 2d dimensions with ξ = N−δ(2+d+2ε) ≤ r
2(1+ d

2
+ε)

N and
condition (4.31) (stating that f0 has a �nite k'th moment for k > 4). We �nd:

P0(A) ≤ C
(
exp(−cNN−δ(2+d+2ε)d) +N1− k−ε

2
(1−δ(2+d+2ε))

)
where the probability is de�ned with respect to ⊗Nf0. Choosing

δ =
1− ε

(2 + d+ 2ε)d
(4.58)

we have
P0(A) ≤ C

(
exp(−cN ε) +N1− k

2
+ k

2d
)
→ 0, N →∞.

For the typical initial conditions Z ∈ Ac, we have according to Proposition 4.3.1 and, in
particular, equation (4.53):

W ∗(µNt , f
N
t ) ≤W ∗(µN0 , f0) et C1(1∨

√
|log(rN )|)

≤ (1 ∨
√
|log(rN )|) r−(1+ d

2
)

N W2(µN0 , f0) et C1(1∨
√
|log(rN )|)

≤ (1 ∨
√
|log(rN )|) rεN eT C1(1∨

√
|log(rN )|) (4.59)

for all t ≤ T . Observing that e
√
|log rN | =

(
e− log rN )

1√
|log rN | = (rN )

−1√
|log rN | , there exists

N0 ∈ N such that (4.59) < 1 for all N ≥ N0. More precisely, it su�ces to choose N0 large

enough that rN0 < e−(
2C1T
ε

)2 . Then we �nd:

W ∗(µNt , f
N
t ) < 1⇒W2(µNt , f

N
t ) < r

1+ d
2

N W ∗(µNt , f
N
t ) < r

1+ d
2

N . (4.60)

Now we recall from Proposition 4.4.5 that

W2(fNt , ft) ≤ rN etC1(1∨
√
|log(rN )|),

which is smaller than 1
2r

1−ε
N for N ≥ N0. We conclude the proof by noting that

W2(µNt [Z], ft) ≤W2(µNt [Z], fNt ) +W2(fNt , ft) ≤ r
1+ d

2
N +

1

2
r1−ε
N ≤ r1−ε

N

for all Z ∈ Ac and t ∈ [0, T ].
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Chapter 5

A mean �eld limit for the

Vlasov-Maxwell system

5.1 The Vlasov-Maxwell equations

In this chapter, we are going to propose a microscopic derivation of the three dimen-
sional relativistic Vlasov-Maxwell system. This is a set of di�erential equations describing
a collisionless plasma of identical charged particles interacting through a self-consistent
electromagnetic �eld:

∂tf + v(ξ) · ∇xf +K(t, x, ξ) · ∇ξf = 0,

∂tE −∇x ×B = −j, ∇x · E = ρ,

∂tB +∇x × E = 0, ∇x ·B = 0.

(5.1)

As usual, units are chosen such that all physical constants, in particular the speed of light,
are equal to 1. The distribution function f(t, x, ξ) ≥ 0 describes the density of particles
with position x ∈ R3 and relativistic momentum ξ ∈ R3. The other quantities �guring in
the Vlasov-Maxwell equations are the relativistic velocity of a particle with momentum ξ,
given by

v(ξ) =
ξ√

1 + |ξ|2
(5.2)

and the charge and current density entering Maxwell's equations, given by

ρ(t, x) =

∫
f(t, x, ξ) dξ, j(t, x) =

∫
v(ξ)f(t, x, ξ) dξ. (5.3)

The function

K(t, x, ξ) = E(t, x) + v(ξ)×B(t, x) (5.4)

thus describes the Lorentz force acting at time t on a particle at x moving with momentum
ξ. In contrast to the previous chapters, we denote the coordinates by (x, ξ) to emphasize
that we are now working in a special-relativistic setting.
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As in the case of Vlasov-Poisson, our aim is perform a mean �eld limes and show that
solutions of the Vlasov-Maxwell equations can typically be approximated by the empirical
density of a well-de�ned microscopic system in the large N limit.

As a microscopic theory, we will consider an N -particle Coulomb system of extended,
rigid charges, also known as the Abraham model (after [1], see [64] for a recent discus-
sion). Size and shape of the particles will be described by an N -dependent form factor
that approximates a δ-distribution in the limit N → ∞. The cut-o� parameter thus has
a straightforward physical interpretation in terms of a �nite electron-radius. Our approx-
imation of the Vlasov-Maxwell dynamics will be a combination of mean �eld limit and
point-particle limit, very much like in the previous chapter where we treated, in fact, the
nonrelativistic limit of the Abraham model.

One should note, however, that the status of the regularization is quite di�erent in
the context of Vlasov-Maxwell than with respect to the nonrelativistic Coulomb interac-
tions. In the latter case, the correct microscopic dynamics are known and (relatively) well
understood. Any regularization thereof is �rst and foremost a simpli�cation of the math-
ematical problem, with the width of the cut-o� essentially quantifying the deviation from
the true microscopic theory. When it comes to the relativistic regime, though, the stan-
dard Maxwell-Lorentz dynamics are not well de�ned for point-particles and it is not clear
what the �true� microscopic theory approximating the Vlasov-Maxwell dynamics is even
supposed to be. The study of rigid charges (and their point-particle limit) thus seems like
a natural way to make sense of the Maxwell-Lorentz equations, with a longstanding tradi-
tion in the physical literature, see e.g. Lorentz 1892 [43], 1904 [44], Sommerfeld, 1904 [61].
Nevertheless, at least with the particular scalings considered here, the regularization thus
imposed remains a technical expedient rather than a realistic physical theory.

Compared to the discussion of the Vlasov-Poisson equation in the previous chapters, the
derivation of the Vlasov-Maxwell dynamics is much more complicated for several reasons.
First, we are now dealing with a relativistic (on the microscopic level: semi-relativistic)
theory with retarded interactions. Second, this theory involves the electromagnetic �eld as
additional degrees of freedom. Finally, the known results about existence and uniqueness
of classical solutions are far less conclusive for Vlasov-Maxwell than for Vlasov-Poisson (we
will give some relevant references below).

Nevertheless, since we have already addressed the electrostatic problem � including the
nonrelativistic limit of the rigid charges model � one should not expect any fundamentally
new di�culties in the relativistic case. Indeed, we will show how the methods developed
in the previous two chapters can be combined and extended into a particle approximation
for the Vlasov-Maxwell dynamics. Another essential ingredient is a decomposition of the
electromagnetic �eld in terms of Liénard-Wiechert potentials that was proven, for instance,
by Bouchut, Golse and Pallard in [9].

To my knowledge, the only previous mean �eld result for the Vlasov-Maxwell system is
the paper of Golse [21], which uses the same rigid-charges model with a �xed (but arbitrarily
small) radius to derive a molli�ed version of the equations (i.e. the smearing persists in
the limiting equation). As the author notes (see [21, Prop. 6.2]), this result can be applied
to approximate the actual Vlasov-Maxwell system, but only in a very weak sense, basically
corresponding to choosing an N -dependent cut-o� decreasing as ∼ log(N)−

1
2 . We will

considerably improve upon this result, allowing the cut-o� to decrease as N−
1
12 .
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5.1.1 Structure of the chapter

The chapter is structured as follows:

We will �rst recall a representation of the electromagnetic �eld in terms of Liénard-
Wiechert distributions that was derived, for instance, in [9]. The key advantage of this
representation is that it does not depend on derivatives of the current-density, thus allow-
ing for better control of �uctuations in terms of the Vlasov density.

In Section 5.3, we introduce the Abraham model of rigid charges as our microscopic theory
and de�ne a corresponding regularized mean �eld equation. By introducing an appropriate
N -dependent rescaling, we will take the mean �eld limit together with a point-particle
limit, in which the electron-radius goes to 0 and the particle form factor approximates a
δ-distribution. This will allow us to approximate the actual Vlasov-Maxwell dynamics in
the large N limit.

In section 5.4 we recall some known results about existence of (strong) solutions to the
Vlasov-Maxwell equations.

After stating our precise results in Section 5.5, we derive a few simple but important
corollaries from the solutions theory of the Vlasov-Maxwell equations in Section 5.6.

In Section 5.7, we brie�y recall the stochastic process JNt de�ned in Chapter 3 and its
relevance for proving molecular chaos.

In Section 5.8 we derive some global bounds on the (smeared) microscopic charge density
and the corresponding �elds.

Section 5.10 then contains the more detailed law-of-large number estimates for the di�er-
ence between mean �eld dynamics and microscopic dynamics. These estimates are derived
from the Liénard-Wiechert decomposition of the �elds and are somewhat similar to the
bounds proven in [9] for the regularity of solutions.

Finally, we combine all estimates into a proof of the mean �eld limes for the Vlasov-
Maxwell dynamics.

5.2 Field representation

The Vlasov-Maxwell system contains in particular Maxwell's equations

∂tE −∇x ×B = −j, ∇x · E = ρ,

∂tB +∇x × E = 0, ∇x ·B = 0,
(5.5)

where charge- and current-density are induced by the Vlasov density f(t, x, ξ). In general,
Maxwell's equations can be solved by introducing a scalar potential Φ and a vector potential
A, satisfying

�t,xΦ = ρ, �t,xA = j, (5.6)

in terms of which the electric and magnetic �elds are given by

E(t, x) = −∇xΦ(t, x)− ∂tA(t, x); B(t, x) = ∇×A(t, x). (5.7)
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It is convenient to split the potential into a homogeneous and an inhomogeneous part, i.e.
A = A0 +A1 with

�t,xA0 = 0, ∂tA0 |t=0= −Ein (5.8)

�t,xA1 = j, A1 |t=0= ∂tA1 |t=0= 0. (5.9)

We recall that the retarded fundamental solution of the d'Alembert operator �t,x = ∂2
t −∆x

(in 3 + 1 dimensions) is given by the distribution

Y (t, x) =
1t>0

4πt
δ(|x| − t). (5.10)

Hence, in the Vlasov-Maxwell system, a solution of (5.9) is given by

A1 = Y ∗t,x j =

∫
v(ξ)Y ∗t,x f(·, ·, ξ)dξ. (5.11)

Similarly, we set

Φ = Φ1 = Y ∗t,x ρ =

∫
Y ∗t,x f(·, ·, ξ)dξ. (5.12)

The solution of the homogeneous wave-equation is given by (see e.g. [60, Thm. 4.1])

A0(t, ·) = Y (t, ·) ∗x Ein, (5.13)

where the initial �eld has to satisfy the constraint

divEin = ρ0 =

∫
f(0, ·, ξ)dξ. (5.14)

Hence,

Ein = −∇xG ∗x ρ0 + E′in (5.15)

with

G(x) =
1

4π|x|
, x ∈ R3, and divE′in = 0. (5.16)

In total, for a given distribution function ft, the Lorentz force-�eld K(t, x, ξ) = E(t, x) +
v(ξ)×B(t, x) is given by

K[f ] =−
∫
∂t∇x (Y (t, ·) ∗x G ∗x f0(·, η))dη (5.17)

−
∫

(∇x + v(η)∂t)Y ∗ f(·, ·, η)dη (5.18)

−
∫
v(ξ)× (v(η)×∇x)Y ∗ f(·, ·, η)dη, (5.19)

where we have set E′in = 0, for simplicity. In more detail, this formulation of the �eld
equations can be found e.g. in [21]. Note that equations (5.17 - 5.19) still allow for various
representation in terms of f , depending on how one evaluates the derivatives.
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5.2.1 Liénard-Wiechert distributions

A particularly useful representation of the electromagnetic �eld can be given as a superposi-
tion of Liénard-Wiechert �elds (see, in particular, [9, Lemma 3.1].) For a given distribution
ft, the induced electric �eld can be written as

E(t, x) = E0(t, x) + E′0(t, x) + E1(t, x) + E2(t, x)

where

E0[f0] = −∂tY (t, ·) ∗x Ein (5.20)

E′0[f0] =

∫
(α0Y )(t, ·, ξ) ∗t,x f0 dξ (5.21)

E1[f ] =

∫
(α−1Y ) ∗t,x (1t≥0f) dξ (5.22)

E2[f ] = −
∫

(∇ξα0Y ) ∗t,x (K1t≥0f) dξ (5.23)

with

α0(t, x, ξ) =
x− tv(ξ)

t− v(ξ)x
; α−1(t, x, ξ) =

(1− v(ξ)2)(x− tv(ξ))

(t− v(ξ)x)2
. (5.24)

Hence

(∇ξα0)ij(t, x, ξ) =
t(t− v · x)(vjv

i − δij) + (xj − tvj)(xi − (v · x)vi)√
1 + |ξ|2(t− v · x)2

. (5.25)

Here, we follow the notation from [9]; The upper index in αj , j = 0,−1, refers to the degree
of homogeneity in (t, x).

E2 is called the radiation or acceleration term. It dominates in the far-�eld and
depends on the acceleration of the particles.

E1 corresponds to a relativistic Coulomb term and grows like the inverse square
distance in the vicinity of a point source.

E′0 are �shock waves�, depending only on the initial data and propagating with speed
of light.

E0 is the homogeneous �eld generated by the potential (5.13). It depends only on
Ein and thus on the initial charge distribution via the constraint (5.14).

Similar expressions hold for the magnetic �eld. One �nds that

B(t, x) = B0(t, x) +B′0(t, x) +B1(t, x) +B2(t, x)

with

B′0[f0] =

∫
(n× α0Y )(t, ·, ξ) ∗x f0 dξ (5.26)

B1[f ] =

∫
(n× α−1Y ) ∗t,x (1t≥0f) dξ (5.27)

B2[f ] = −
∫

(∇ξ(n× α0Y )) ∗t,x (K1t≥0f) dξ (5.28)

where we introduced the normal vector n(x) := x
|x| .
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Remark 5.2.1. In the physical literature, the Liénard-Wiechert �eld is usually written in
terms of the particle acceleration v̇ rather than the force ξ̇. Since v(ξ) = ξ√

1+|ξ|2
, the two

expressions are related as v̇ =
√

1− |v|2(K − (v ·K)v).

5.3 Microscopic theory (Abraham model)

Consider a system ofN identical point-charges with phase-space trajectories (xi(t), ξi(t))i=1,..,N .
The corresponding charge- and current-densities are then given by

ρ(t, x) =
N∑
i=1

δ(x− xi(t)); j(t, x) =
N∑
i=1

v(ξi(t))δ(x− xi(t)) (5.29)

and generate an electromagnetic �eld (E,B)(t, x) according to Maxwell's equations. How-
ever, together with the Lorentz-force equation

d
dtxi(t) = v(ξi(t))

d
dtξi(t) = E(t, xi(t)) + v(ξi(t))×B(t, xi(t))

(5.30)

this does not yield a consistent theory due to the self-interaction singularity : The �elds
generated by (5.29) are singular precisely at the location of the particles, where they would
have to be evaluated according to (5.30).

A classical way to regularize the Maxwell-Lorentz theory is to consider instead of point-
particles a system of extended, rigid bodies to which the charge is permanently attached.
This is also known as the Abraham model. Shape and size of the rigid charges are given
by a smooth, compactly supported, spherically symmetric form factor χ satisfying:

χ ∈ C∞c (R3); χ(x) = χ(|x|); χ(x) = 0 for |x| > r = 1;

∫
χ(x) dx = 1. (5.31)

The corresponding charge- and current-densities are then given by

ρ(t, x) =
1

N

N∑
i=1

χ(x− xi(t)); j(t, x) =
1

N

N∑
i=1

v(ξi(t))χ(x− xi(t)), (5.32)

where xi(t) now denotes the center of mass of particle i. In order to approximate the Vlasov-
Maxwell equations, we shall perform the mean �eld limit together with a point-particle
limit, introducing an N -dependent electron-radius rN which tends to zero as N →∞. We
thus de�ne a rescaled form factor χN by

χN (x) := r−3
N χ

( x

rN

)
, N ∈ N, (5.33)

where (rN )N is a decreasing sequence with rN = 1, lim
N→∞

rN = 0, to be speci�ed later. This

rescaled form factor satis�es

‖χN‖∞ = r−3
N ; χN (x) = 0 for |x| > rN ;

∫
χN (x) dx = 1 (5.34)
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and approximates a δ-measure in the sense of distributions.
In the so-called mean �eld scaling, the new �eld equations read

∂tE −∇x ×B = − 1
N

N∑
i=1

v(ξi(t))χ
N (x− xi(t)),

∇x · E = 1
N

N∑
i=1

χN (x− xi(t)),

∂tB +∇x × E = 0, ∇x ·B = 0.

(5.35)

The particles move according to the equation of motion
d
dtxi(t) = v(ξi(t))

d
dtξi(t) =

∫
χN (x− xi(t))

[
E(t, x) + v(ξi(t))×B(t, x)

]
dx.

(5.36)

An equivalent regularization was used by Rein [55] to prove the existence of weak solutions
to the Vlasov-Maxwell equations, and by Golse [21] to prove the mean �eld limit for the
regularized Vlasov-Maxwell system. For any �xed rN , initial particle con�guration Z =
(xi, ξi)1≤i≤N and initial �eld con�guration (Ein, Bin) ∈ C2(R3) satisfying the constraints

divEin(x) =
1

N

∑
χN (x− xi), divBin(x) = 0, (5.37)

the system of equations de�ned by (5.35) and (5.36) has a unique strong solution as proven
in [4] and [37].

Note that the Abraham model is only semi-relativistic, because the charges are assumed
to maintain their shape in any frame of reference, neglecting the relativistic e�ect of Lorentz-
contraction. Rotations of the rigid particles are neglected, as well (though one may expect
that these degrees of freedom can be separated anyway due to spherical symmetry of the
form factor). On the other hand, one important virtue of this theory is that the total
energy

ε =
1

N

N∑
i=1

√
1 + |ξi(t)|2 +

1

2

∫
E2(t, x) +B2(t, x) dx (5.38)

is a constant of motion, as we will verify with a simple computation.

Proof of energy conservation. On the one hand, we compute:

d

dt

1

N

N∑
i=1

√
1 + |ξi(t)|2

=
1

N

N∑
i=1

v(ξi(t)) ·
(∫

χN (x− xi(t))(E(t, x) + v(ξi(t))×B(t, x))dx
)

(5.39)

=
1

N

N∑
i=1

v(ξi(t)) ·
(∫

χN (x− xi(t))E(t, x)dx
)

=
1

N

N∑
i=1

∫
v(ξi(t))χ

N (x− xi(t))E(t, x)dx. (5.40)
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On the other hand, the usual computation for energy conservation in the Maxwell �elds
yields (with 5.35)

∂t

(1

2

∫
E2(t, x) +B2(t, x) dx

)
=

∫
E(t, x)∂tE(t, x) +B(t, x)∂tE(t, x) dx

= − 1

N

N∑
i=1

∫
v(ξi(t))χ

N (x− xi(t))E(t, x) dx (5.41)

+

∫
E(t, x) · ∇ ×B(t, x)−B(t, x) · ∇ × E(t, x) dx. (5.42)

Assuming lim
|x|→∞

(E(t, x), B(t, x)) = 0, the last integral vanishes, since

E · ∇ ×B −B · ∇ × E(t, x) = div(B × E).

By comparison with (5.40), this shows that (5.38) is a constant of motion.

5.3.1 The regularized Vlasov-Maxwell system

In view of the extended charges model de�ned by equations (5.35) and 5.36, we introduce
a corresponding mean �eld equation. For a given form factor χ ∈ C∞c and a rescaling
sequence (rN )N , we consider the set of equations

∂tf + v(ξ) · ∇xf + K̃(t, x, ξ) · ∇ξf = 0,

∂tE −∇x ×B = −j̃, ∇x · E = ρ̃,

∂tB +∇x × E = 0, ∇x ·B = 0.

(5.43)

ρ̃ = χN ∗x
∫
f(t, ·, ξ) dξ, j̃ = χN ∗x

∫
v(ξ)f(t, ·, ξ) dξ. (5.44)

K̃(t, x, ξ) = χN ∗x
(
E + v(ξ)×B

)
(t, x) (5.45)

where χN is the rescaled form factor de�ned in (5.33). We call this set of equations the
regularized Vlasov-Maxwell system with cut-o� parameter rN .

Since the L1 norm of ρ propagates along any local solution and ‖Dαρ̃t‖∞ ≤ ‖DαχN‖∞‖ρt‖1
all spatial derivatives of ρ̃ and j̃ are bounded uniformly in time. This is enough to show
global existence of classical solutions for compact initial data f0 ∈ C1

c (R3×R3), Ẽin, B̃in ∈
C2
c (R3) satisfying the constraints divẼin = ρ̃0, divB̃in = 0, see [29,54] for more details.

Remark 5.3.1. The regularized Vlasov-Maxwell system de�ned above is not exactly the
same as the one considered by Golse [21] or Rein [54], at least not a priori. In those
publications, a double convolution is applied to the charge/current density, that is, the �elds
solve Maxwell's equation for ρ = χN ∗ χN ∗

∫
f(t, ·, ξ)dξ, j = χN ∗ χN ∗

∫
v(ξ)f(t, ·, ξ)dξ.

Here, only one molli�er is used in (5.44) to regularize the charge/current density, a second
convolution with χN is applied as the �elds act back on ft, mirroring the form of the rigid
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charges model de�ned by eqs. (5.35,5.36). However, by using the uniqueness of solutions
to Maxwell's equation and the fact that convolutions commute with each other and with
derivatives, one checks that both formulations of the regularized Vlasov-Maxwell dynamics
are actually equivalent.

5.4 Existence of solutions

While the 3-dimensional Vlasov-Poisson equation is very well understood from a PDE
point of view, the state of research is less satisfying when it comes to the Vlasov-Maxwell
equations. Existence of global weak solutions was �rst proven in DiPerna, Lions, 1989 [14].
Concerning existence and uniqueness of classical solutions, no conclusive answer has been
given, so far. The central result is the paper of Glassey and Strauss, 1986, aptly titled
�singularity formation in a collisionless plasma could occur only at high velocities� [20]. We
recall their main theorem in the following.

Theorem 5.4.1 (Glassey-Strauss, 1986). Let f0 ∈ C1
c (R3 × R3) and Ein, Bin ∈ C2

c (R3)
satisfying divEin = ρ[f0], divB0 = 0. Let (ft, Et, Bt) be a (weak) solution of the Vlasov-
Maxwell System (5.1) with initial datum (f0, Ein, Bin). Suppose there exists T ∈ [0,+∞]
and C > 0 such that

R(t) = sup{|ξ| : ∃x ∈ R3 f(t, x, ξ) 6= 0} < C, ∀t < T (5.46)

Then:
sup

0≤t<T ∗
{‖ft‖W 1,∞

x,ξ
, ‖(Et, Bt)‖W 1,∞

x
} <∞ (5.47)

where ‖f‖
W 1,∞
x,ξ

= ‖f‖∞+ ‖∇x,ξf‖∞ etc. Hence, (ft, Et, Bt) is the unique classical solution

on [0, T ) with initial data (f0, Ein, Bin).

Simply put, the theorem states that singularity formation can occur in �nite time only if
particles get accelerated to velocities arbitrarily close to the speed of light. Subsequently,
seemingly weaker conditions have been identi�ed that ensure the boundedness of the mo-
mentum support and thus the existence of strong solutions. For instance, Sospedra-Alfonso
and Illner [62] prove:

lim sup
t→T−

R(t) = +∞ ⇒ lim sup
t→T−

‖ρ[ft]‖∞ = +∞. (5.48)

Most recently, Pallard [52] showed that

lim sup
t→T−

R(t) = +∞ ⇒ lim sup
t→T−

‖ρ[ft]‖L6(R3) = +∞. (5.49)

Unfortunately, the criteria thus established are still far away from the known a priori bounds
(the strongest, in Lp-sense, being the kinetic-energy bound on ‖ρ[ft]‖L4/3(R3), see e.g. [54])
so that well-posedness of the Vlasov-Maxwell system is still considered an open problem.
Note that the conditions (5.48) and (5.49) are actually necessary and su�cient for (5.46),
because ρt(x) =

∫
f(t, x, ξ)dξ ≤ 4π

3 R
3(t)‖f0‖∞.
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We will also need the following theorem of Rein [55], who used the regularization introduced
above to establish the existence of global weak solutions to the Vlasov-Maxwell system,
simplifying the original proof of DiPerna and Lions [14].

Theorem 5.4.2 (Rein, 2004). Let f0 ∈ L1∩L∞(R3×R3) and Ein, Bin ∈ L2(R3) satisfying
the compatibility condition (5.50). Let (fNt , E

N
t , B

N
t ) be a solution of the regularized Vlasov-

Maxwell system (5.43) with initial data (f0, Ẽin, B̃in). Then there exist functions f ∈
L∞(R;L1 ∩ L∞(R6)), E,B ∈ L∞(R;L2(R3)) such that, along a subsequence,

fN ⇀ f in L∞([0, T ]× R6); EN , BN ⇀ E,B in L2([0, T ]× R3), k →∞

for any bounded time-interval [0, T ], T > 0 and (f,E,B) is a global weak solution of the
Maxell-Vlasov system (5.1) with lim

t→0
(ft, Et, Bt) = (f0, Ein, Bin) and ‖ft‖Lp(R6) = ‖f0‖Lp(R6)

for all p ∈ [1,∞], t > 0.

5.5 Statement of the results

In the previous sections, we have introduced three kinds of dynamics: The Vlasov-Maxwell
system (5.1), the regularized Vlasov-Maxwell system (5.43) and the microscopic Abraham
model of extended charges (5.35,5.36) which, in fact, can be viewed as a special case of
(5.43) with f0 = µN [Z]. In order to approximate one solution by the other, it does not
su�ce to assume that the respective distributions are (in some sense) close at t = 0. We
also have to �x the incoming �elds in an appropriate manner, otherwise free �elds can be
responsible for large deviations between mean �eld dynamics and microscopic dynamics.
We will note our respective convention in the following de�nition.

De�nition 5.5.1. Let f0 ∈ C1
c (R3 × R3) with f0 ≥ 0,

∫
f0(x, ξ)dxdξ = 1 and Ein, Bin ∈

C2
c (R3) satisfying the Gauss constraints

divEin = ρ[f0] =

∫
f0(·, ξ)dξ, divBin = 0. (5.50)

Such (f0, Ein, Bin) are the admissible initial data for the Vlasov-Maxwell system (5.1).

1) For the regularized Vlasov-Maxwell system, we �x initial data for the �elds as

ENin := χN ∗ Ein, BN
in := χN ∗Bin, (5.51)

for any N ≥ 1. These �elds satisfy: divENin = ρ̃[f0] and divBN
in = 0. We denote by

(fN , EN , BN ) the unique solution of (5.43) with initial data (f0, E
N
in, B

N
in).

2) For the microscopic system with initial con�guration Z = (x1, ξ1, ..., xN , ξN ) ∈ R6N ,

the charge distribution can be written as ρ̃[µN [Z]](x) = 1
N

N∑
i=1

χN (x − xi). Given a

renormalizing sequence (rN )N≥1 we �x compatible initial �elds (Eµin, B
µ
in) such that

Eµin := ENin −∇G ∗ (ρ̃[µN0 [Z]]− ρ̃[f0]), Bµ
in := BN

in. (5.52)
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Note that Eµin andB
µ
in depend onN and Eµin also on Z. For anyN ∈ N and Z = (xi, ξi) ∈

R6N we then denote by
(
(x∗i , ξ

∗
i )1≤i≤N , E

µ, Bµ
)
the unique solution of (5.35, 5.36) with

initial data (Z,Eµin, B
µ
in). We call

NΨt,0 = R6N → R6N , NΨt,0(Z) = (x∗i (t), ξ
∗
i (t))i=1,..,N (5.53)

the microscopic �ow and

µNt [Z] := µN [Ψt,0(Z)] =
1

N

N∑
i=1

δx∗i (t)δξ∗i (t) (5.54)

the microscopic density of the system with initial con�guration Z.

Note: The macroscopic �elds (ENin, B
N
in) are compactly supported, though the microscopic

�eld Eµin, determined by (5.51), is not.

We now state our precise result in the following theorem. Our approximation of the Vlasov-
Maxwell dynamics is formulated in terms of the Wasserstein distances Wp discussed in
Chapter 2. Probabilities and expectation values referring to initial data Z ∈ R6N are
meant with respect to the product measure ⊗Nf0 for a given probability density f0 ∈
L1 ∩ L∞(R3 × R3). That is, for any random variable H : R6N → R and any element A of
the Borel-algebra we write

PN0 (H ∈ A) =

∫
H−1(A)

N∏
j=1

f0(zj)dZ, (5.55)

ENt (H) =

∫
R6N

H(Z)
N∏
j=1

f0(zj)dZ . (5.56)

When the particle number N is �xed, we will usually omit the index and write only P0,
respectively E0.

Theorem 5.5.2. Let f0 ∈ C1
c (R3 × R3,R+

0 ) with total mass one and (Ein, Bin) ∈ C2
c (R3)

satisfying the constraints (5.50). Let γ < 1
12 and rN a rescaling sequence with rN ≥ N−γ.

For N ∈ N, let (fN , EN , BN ) the solution of the renormalized Vlasov-Maxwell equation
(5.43) and (Ψt,0(Z), Eµ, Bµ) the solution of the microscopic equations (5.35 5.36) with
initial data as in Def. 5.5.1. Let µNt [Z] := µN [Ψt,0(Z)] the empirical density corresponding
the the microscpic �ow Ψt,0(Z). Suppose there exists T > 0 and constant C0 > 0 such that

‖ρ[fNt ]‖∞ ≤ C0, ∀N ∈ N, 0 ≤ t ≤ T. (5.57)

a) Then we have molecular chaos in the sense that for all p ∈ [1,∞) and ε > 0:

∀0 ≤ t ≤ T : lim
N→∞

PN0
[
Wp(µ

N
t [Z], ft) ≥ ε

]
= 0 (5.58)

where (ft, Et, Bt) is the unique classical solution of the Vlasov-Maxwell system (5.1) on
[0, T ] with initial data (f0, Ein, Bin).
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b) For the regularized dynamics, we have the following quantitative approximation result:
Let p ≥ 1, α < min{1

6 ,
1
2p} and γ < δ < 1

4 . Then there exist constants L,C depending
on T,C0 and the initial data such that for all t ∈ [0, T ] and N ≥ 4:

P0

[
sup

0≤s≤t
Wp(µ

N
s [Z], fNs ) ≥ N−δ + etLN−α

]
≤ etC

√
log(N)N−

1
4

+δ + a(N, p, α) (5.59)

where

a(N, p, α) = c′ ·


exp(−cN1−2pα) if p > 3

exp(−c N1−6α

log(2+N3α)2
) if p = 3

exp(−cN1−6α) if p ∈ [1, 3).

(5.60)

The constant c′, c > 0 depend only on p, α and f0.

c) For the �elds, we have the following approximation results: For any compact region
M ⊂ R3 there exists a constant C1 > 0 such that for any 0 ≤ t ≤ T and N ≥ 4:

P0

[
‖(ENt , BN

t )− (Eµt , B
µ
t )‖L∞(M) ≥ C1

√
log(N)N−δ

]
≤ etC

√
log(N)N−

1
4

+δ. (5.61)

Remarks 5.5.3.

1) The result implies propagation of molecular chaos in the sense of (1.12).

2) We do not have a quantitative result for the convergence fNt ⇀ ft, i.e. we do not know
how fast Wp(f

N
t , ft) converges to 0 for any p.

3) Assumption (5.57) can be replaced by equivalent conditions, e.g. a uniform bound on
‖ρ[fNt ]‖L6(R3) or on the momentum-support. Of course, it would be much more desirable
to have a su�cient condition on f0 only. However, such a condition would likely have
to come out of the existence theory for Vlasov-Maxwell.

4) The constants C and C0 blow up as the maximal velocity v approaches 1 (speed of
light).

5.6 Corollaries from solution theory

We will �rst conclude some corollaries from the existence theorems cited above. Fix f0 ∈
C1
c (R3×R3,R+

0 ) and T > 0 as in Theorem 5.5.2. By assumption, there exists C0 such that

‖ρ[fNt ]‖∞ ≤ C0, ∀N ≥ 1, 0 ≤ t ≤ T. (5.62)

By the theorem of Sospedra-Alfonso and Illner [62], there thus exists a R > 0 such that

R[fN ](t) = sup{|ξ| : ∃x ∈ R3 fN (t, x, ξ) 6= 0} < R, (5.63)

for all N ≥ 1 and 0 ≤ t ≤ T . We de�ne

ξ := R+ 1 and v := |v(ξ)|, (5.64)
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which will serve us as an upper bound on the velocity of the particles. By the Glassey-
Strauss theorem, there thus exists a constant L′ > 0 such that

‖(ENt , BN
t )‖∞ + ‖∇x(ENt , B

N
t )‖∞ ≤ L′, (5.65)

for all N ≥ 1, 0 ≤ t ≤ T . In particular, observing that

∇ξv(ξ) = ∇ξ
ξ√

1 + ξ2
=

δi,j√
1 + ξ2

− ξiξj

(
√

1 + ξ2)3
, (5.66)

with |∇ξv(ξ)| ≤ 2, we have

‖K[fN ](t, ·, ·)‖W 1,∞(R3×R3) ≤ max{L′, 2} =: L. (5.67)

Note that the theorems of Glassey/Strauss und Sospedra-Alfonso/Illner are formulated for
the unregularized Vlasov-Maxwell system (5.1), so one has to check that they actually yield
bounds that are uniform in N as one considers the sequence of regularized solutions fNt .
We refer, in particular, to the simpli�ed proof of the Glasey-Strauss theorem proposed by
Bouchut, Golse and Pallard [9]. For instance, the W 1,∞-bound on the �elds is derived from
estimates of the form

‖K(t)‖
W 1,∞
x,ξ
≤ C2e

TC2
(
1 + log+(‖∇xf‖L∞([0,T ]×R3×R3))

)
,

sup
s≤t
‖∇x,ξf(s)‖∞ ≤ ‖∇x,ξf0‖∞ + C1

t∫
0

(1 + log+(sup
s′≤s
‖∇x,ξf(s′)‖∞)) sup

s′≤s
‖∇x,ξf(s′)‖∞ds,

where log+(x) := max{0, log(x)} and the constants C1, C2 depend only on T, f0 and R
(see [9, Section 5.4]). Hence, one readily sees that the bounds hold independent of N .

Since the velocity of the particles is bounded by 1, the support in the space-variables
remains bounded, as well, for compact initial data. We set

r = sup
{
|x| : ∃ξ ∈ R3 f0(x, ξ) 6= 0

}
+ T + 1. (5.68)

Then we have, in particular, supp ρ̃[ft] ⊆ B(r; 0) = {x ∈ R3 : |x| ≤ r} for all 0 ≤ t ≤ T as
well as |Ψ1

t,0(Z)|∞ < r if Z ∈ supp ⊗N f0.

Now we recall from Theorem 5.4.2 that, along a subsequence,

(fNt , E
N , BN ) ⇀ (f ′t , E

′
t, B

′
t), (5.69)

where (f ′, E′, B′) is a global weak solution of the Vlasov-Maxwell system (5.1) with initial
data (f0, Ein, Bin) and weak convergence of the �elds is understood in L2 sense. However,
for any t ∈ [0, T ] and any test-function ϕ ∈ C∞c (R3 × R3) with |ξ| < R ⇒ ϕ(x, ξ) = 0,∫

ϕ(x, ξ)f ′t(x, ξ)dξdx = lim
N→∞

∫
ϕ(x, ξ)fNt (x, ξ)dξdx = 0.
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This means that the momentum-support of f ′ remains bounded by R and according to the
Glassey-Strauss theorem, (f ′, E′, B′) is actually a strong solution on [0, T ]. Thus, under
the assumptions of the theorem, we can conclude that

(fNt , E
N
t , B

N
t ) ⇀ (ft, Et, Bt), ∀0 ≤ t ≤ T, (5.70)

where (ft, Et, Bt) is the unique classical solution on [0, T ] with initial data (f0, Ein, Bin)
and the convergence holds for any subsequence (otherwise one could extract a convergent
subsubsequence) and thus for the sequence itself.

Finally, note that since we can restrict all measures to the compact space B(r)× B(ξ),
weak convergence is equivalent to convergence in Wasserstein distance so that, in particular,
Wp(f

N
t , ft)→ 0 for all p ∈ [1,∞).

5.7 Strategy of proof

De�nition 5.7.1. Let f0, Ein, Bin as above. Let f
N
t the solution of the regularized Vlasov-

Maxwell system with initial datum f0. Let K[f̃N ] the Lorentz-force �eld corresponding
to the charge- and current-density induced by f̃N = χN ∗ fN . We denote by ϕNt,s the
characteristic �ow of the regularized Vlasov-Maxwell system (5.43), i.e. the solution of

d
dty(t) = v(η(t))

d
dtη(t) = K̃[f̃N ](t, y, η)

(5.71)

with ϕNs,s(z) = z. We denote by NΦt,s the lift of ϕ
N
t,s(·) to the N -particle phase-space, that

is NΦt,s(Z) := (ϕNt,s(z1), ..., ϕNt,s(zN )). In other words, NΦt,s is the N -particle �ow generated

by the (regularized) mean �eld force induced by fNt . We will often omit the index N .

The strategy of the proof is very similar to the one in Chapter 3 in the Vlasov-Poisson
case. We recall the J function which we introduced as our measure of chaos to control the
di�erence between mean �eld dynamics and microscopic dynamics.

De�nition 5.7.2. Let NΦt,0 the mean �eld �ow de�ned above and NΨt,0 the microscopic
�ow solving (5.36). We denote by NΨ1

t,0 = (x∗i (t))1≤i≤N and NΨ2
t,0 = (ξ∗i (t))1≤i≤N the

projection onto the spatial, respectively the momentum coordinates.
Let J(t) be the stochastic process given by

JNt (Z) := min
{

1, λ(N)N δ sup
0≤s≤t

|NΨ1
t,0(Z)− NΦ1

t,0(Z)|∞

+N δ sup
0≤s≤t

|NΨ2
t,0(Z)− NΦ2

t,0(Z)|∞
}
,

(5.72)

where |Z|∞ = max{|xi| : 1 ≤ i ≤ N} denotes the maximum-norm on R3N and λ(N) :=
max{1,

√
log(N)}.

Our aim is to derive a Gronwall estimate for the time-evolution of EN0 (JNt ), showing that

EN0 (JNt )
N→∞−−−−→ 0, ∀0 ≤ t ≤ T . This will be achieved by using the Liénard-Wiechert

representation of the �elds introduced in section 5.2.1. The �eld corresponding to the
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(regularized) Vlasov-Maxwell dynamics is generated by the smeared Vlasov-density f̃N ,
while the �eld corresponding to the microscopic dynamics of the rigid charges is generated
by the smeared microscopic density µ̃N [Z] := χN ∗x µ[Z]. For a given space-time point
(t, x) ∈ R× R3, we will estimate the di�erence as:∣∣Ei[f̃N ](t, x)− Ei[µ̃N ](t, x)

∣∣
≤
∣∣Ei[f̃N ](t, x)− Ei[µ̃N [Φs,0(Z)]](t, x)

∣∣ (5.73)

+
∣∣Ei[µ̃N [Φs,0(Z)]](t, x)− Ei[µ̃N [Ψs,0(Z)]](t, x)

∣∣ (5.74)

for i = 1, 2, 3 and similarly for the magnetic �eld components. Here, we have introduced as
an intermediate, the �eld corresponding to the (smeared) point-charge density µN [Φs,0(Z)]
of the mean �eld �ow Φs,0(Z). We will use a law-of-large number estimate to show that
terms of the form (5.73) are typically small, because the particles evolving with the mean
�eld �ow are at all times i.i.d. with law fN . For the terms of the form (5.74), we will derive
a local Lipschitz bound in terms of JNt (Z), the (weighted) maximal distance between the
respective mean �eld and microscopic trajectories.

In total, the approximation of the solution to the Vlasov-Maxwell system will be split as:

Wp(µ
N
t [Z], ft) ≤Wp(µ

N [Ψt,0(Z)], µN [Φt,0(Z)]) (5.75)

+Wp(µ
N [Φt,0(Z)], fNt ) (5.76)

+Wp(f
N
t , ft). (5.77)

The �rst term is the most interesting one, concerning the di�erence between microscopic
time-evolution and mean �eld time-evolution. We recall from Proposition 3.5.3 that

P0

[
sup

0≤s≤t
Wp(µ

N [Ψs,0(Z)], µN [Φs,0(Z)]) ≥ N−δ
]
≤ E0(JNt ). (5.78)

Convergence of E0(JNt ) will thus yield the bound on (5.75).

Convergence of (5.77) is a purely deterministic statement and follows from Theorem 5.4.2
cited above. The proof of Rein, however, is based on a compactness argument and does
not yield quantitative bounds. Hence, we do not know at what rate (5.77) goes to zero.
Based on the corresponding result in the Vlasov-Poisson case, Prop. 3.9.1, we conjecture
that Wp(f

N
t , ft) ∼ r1−ε

N for any ε > 0 and p ≤ 2, though we were not yet able to prove this.

The second term Wp(µ
N [Φt,0(Z)], fNt ) = Wp(ϕ

N
t,0#µN0 [Z], ϕNt,0#f0) concerns the sampling

of the mean �eld dynamics by discrete particle trajectories. Since the mean �eld forces
satisfy a Lipschitz bound uniformly inN according to (5.67), we have the following standard
result:

Lemma 5.7.3. Under the assumptions of Theorem 5.5.2, it holds that

Wp(µ
N [Φt,0(Z)], fNt ) = Wp(ϕ

N
t,0#µN0 [Z], ϕNt,0#f0) ≤ etLWp(µ

N
0 [Z], fNt )

for all 0 ≤ t ≤ T , where L is the uniform Lipschitz constant de�ned in (5.67).
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Proof. We will give a somewhat non-standard proof of this standard result. Since ϕNt,0(x, ξ)

is the solution of (5.71) with ϕN0,0(x, ξ) = (x, ξ), it is a classical result that the Jacobian of
the �ow satis�es:

d

dt
Dx,ξϕ

N
t,0 = Dx,ξ(v(ξ),K(t, x, ξ))Dx,ξϕ

N
t,0, Dx,ξϕ

N
0,0 = 16×6, (5.79)

and since |Dx,ξ(v(ξ),K(t, x, ξ))|∞ < L it follows that |Dx,ξϕt,0|∞ < etL.

Now for any Z ∈ R6N let π0(x, y) ∈ Π(µN0 , f0) and de�ne πt = (ϕNt , ϕ
N
t )#π0 ∈ Π(µN0 [Φt,0(Z)], fNt ).

Then

Wp(µ
N [Φt,0(Z)], fNt ) ≤

( ∫
R6×R6

|x− y|p dπt(x, y)
)1/p

=
( ∫
R6×R6

|ϕNt (x)− ϕNt (y)|p dπ0(x, y)
)1/p

≤ etL
( ∫
R6×R6

|x− y|p dπt(x, y)
)1/p

.

We conclude by taking on the right-hand-side the in�mum over all π0(x, y) ∈ Π(µN0 , f0).

Hence, it remains to check that if the initial con�guration Z is chosen randomly with law
⊗Nf0, the microscopic density µN0 [Z] approximates f0 in Wasserstein distance. To this end,
we will once again rely on the large deviation estimates from Fournier and Gullin, Theorem
2.2.1. Since f0 here is compactly supported, we can use the result with the exponential
moment condition. This yields the following:

Lemma 5.7.4. Applying Thm. 5.59 in dimension d = 6 with ε = Nαp we get

P
[
Wp(µ

N
0 [Z], f0) > N−α

]
≤ a(N, p, α) = c′ ·


exp(−cN1−2pα) if p > 3

exp(−c N1−6α

log(2+N3α)2
) if p = 3

exp(−cN1−6α) if p ∈ [1, 3).

5.8 Global estimates

By assumption, there exists a constant C0 > 0 such that ‖ρ[fN ]‖L∞([0,T ]×R3) ≤ C0 for all
N ∈ N∪{+∞}. Using the methods introduced in Chapter 4, we will now show that as long
as mean �eld dynamics and microscopic dynamics are su�ciently close, this implies certain
bounds on the microscopic density and �elds. As we have to deal with singular kernels, the
necessary regularizations come from the smearing with the N -dependent molli�er χN .

Notation / De�nition: Following [52] we introduce the shorthand notation

g . h :⇐⇒ ∃C > 0 : g ≤ C h, (5.80)

where C ∈ R is a constant that may depend only on T and initial data.
Moreover, for �xed N ≥ 1 and any measurable function h on Rn, n = 3 or n = 6, we
introduce the notation h̃ := χN ∗xh. For a probability measure P(Rn) we de�ne ṽ ∈ P(Rn)
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by
∫
hdν̃ :=

∫
h̃dν for all measureable h. Note that if ρ(x) = 1

N

N∑
i=1

δ(x − xi) for xi ∈ R3,

we have ρ̃ = 1
N

N∑
i=1

χN (x− xi), consistent with the notation of Section 5.3.

Lemma 5.8.1. Let h : R3 → Rn a measurable function satisfying |h(x)| ≤ 1
|x|2 . Then:

i) |χN ∗ h(x)| . min
{
r−2
N ,

1

|x|2
}
, (5.81)

ii) |∇χN ∗ h(x)| . min
{
r−3
N ,

1

|x|3
}
. (5.82)

Proof. Recalling that ‖χN‖∞ = r−3
N ‖χ‖∞ and ‖χN‖1 = 1, we compute:

|χN ∗ h(x)| ≤
∫
|k(y)|χN (x− y)d3y ≤

∫
1

|y|2
χN (x− y) d3y

≤
∫

|y|≤rN

+

∫
|y|>rN

1

|y|2
χN (x− y)d3y

≤ ‖χN‖∞
∫

|y|≤rN

1

|y|2
d3y +

1

r2
N

∫
χN (x− y)d3y . r−2

N .

Similarly,

|∇(χN ∗ h)(x)| ≤ |∇χN | ∗ |k|(x) ≤
∫

|y|≤rN

+

∫
|y|>rN

1

|y|2
|∇χN (x− y)|d3y

≤ ‖∇χN‖∞
∫

|y|≤rN

1

|y|2
d3y +

1

r2
N

∫
|∇χN (x− y)|d3y

≤ r−4
N ‖∇χ‖∞ 4πrN + r−2

N r−1
N ‖∇χ‖1 ≤ r

−3
N (4π‖∇χ‖∞ + ‖∇χ‖1).

Finally, if |x| > 2rN , the mean-value theorem of integration yields for s ≥ 1:

χN ∗ 1

|y|s
(x) =

∫
1

|x− y|s
χN (y)d3y ≤ sup{|x− y|−s | y ∈ suppχN} ≤ 2s

|x|s
,

where we used the fact that
∫
χN = 1 and |y| ≤ rN ≤ 1

2 |x|, ∀y ∈ supp (χN ).

5.8.1 Bounds on the charge density

Proposition 5.8.2. Suppose there exists a p ∈ [1,∞) such that

Wp(µ
N
0 [Z], f0) ≤ r3+p

N . (5.83)

Then there exists a constant Cρ depending on T such that

|NΨt,0(Z)− NΦt,0(Z)|∞ < rN ⇒ ‖ρ̃[µNt [Z]]‖∞ ≤ Cρ. (5.84)
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Corollary 5.8.3. Under the conditions of the proposition, we also have

|NΨt,0(Z)− NΦt,0(Z)|∞ < rN ⇒ ‖Dαρ̃[µNt [Z]]‖∞ . r−|α|N . (5.85)

Proof. Note that Dαρ̃[µNt ] = Dα(χN ∗ ρ[µNt ]) = (DαχN ) ∗ ρ[µNt ], and

DαχN (x) = Dα
xr
−3
N χ(

x

rN
) = r

−|α|
N r−3

N (Dαχ)(
x

rN
).

Let χ := Dαχ
‖Dαχ‖1 . This χ satis�es (5.31) and can thus be used as a form factor instead of χ.

The previous proposition then yields |NΨt,0(Z)−NΦt,0(Z)|∞ < rN ⇒ ‖χN ∗ρ[µNt ]‖∞ ≤ C,
and thus

‖Dαρ̃[µNt ]‖∞ = ‖Dαχ‖1 r−|α|N ‖χN ∗ ρ[µNt ]‖∞ . r−|α|N .

Remark 5.8.4. In the end, we will have to show that assumption (5.83) is satis�ed for
typical initial conditions, as the initial particle con�gurations are chosen randomly and
independently with law f0. This (and only this) requirement will set the lower bound on
the cut-o� to rN ∼ N−γ with γ < 1

12 .

The proof of Proposition 5.8.2 is based on Lemma 4.4.2, derived in Chapter 4. We recall:

Lemma Let ρ1, ρ2 ∈ P(R3) two probability measures. Then

‖χN ∗ ρ1‖∞ ≤
32π

3
‖ρ2‖∞ + r

−(3+p)
N W p

p (ρ1, ρ2). (5.86)

Proof of Proposition 5.8.2. As an intermediate step, we introduce the density µN [Φt,0(Z)]
corresponding to the mean �eld �ow de�ned in 5.7.1. Since the mean �eld force is Lipschitz
continuous with a constant L independent of N , we have according to Lemma 5.7.3

W p
p (µN [Φt,0(Z)], fNt ) ≤ etLW p

p (µN0 [Z], f0).

Moreover, by assumption, ‖ρ̃[fNt ]‖∞ ≤ ‖ρ[fNt ]‖∞ ≤ C0, ∀N . Applying the previous Lemma
with ρ1 = ρ[µN [Φt,0(Z)]], ρ2 = ρ[fNt ], we get

‖ρ̃[µN [Φt,0(Z)]]‖∞ . C0 + etL.

Now, recall from Lemma 3.5.2 that W∞(µ[Φt,0(Z)], µ[Ψt,0(Z)]) ≤
∣∣Φt,0(Z) − Ψt,0(Z)

∣∣
∞,

where W∞ is the in�nity Wasserstein distance. If
∣∣Φt,0(Z)−Ψt,0(Z)

∣∣
∞ < rN , there exists

q > 0 such that
∣∣Φt,0(Z)−Ψt,0(Z)

∣∣
∞ ≤ r

1+ 3
q

N . We thus have

r
−(q+3)
N W q

q (µN [Φt,0(Z)], µN [Ψt,0(Z)]) ≤ r−(q+3)
N (W∞(µ[Φt,0(Z)], µ[Ψt,0(Z)]))q

≤ r−(q+3)
N

∣∣Φt,0(Z)−Ψt,0(Z)
∣∣q
∞ ≤ 1.

Applying once more Lemma 4.4.2 with ρ1 = ρ[µN [Ψt,0(Z)]], ρ2 = ρ[µN [Φt,0(Z)]] and the
Wasserstein metric of order q, we get the announced result.
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5.8.2 Bounds on the �eld derivatives

Proposition 5.8.5. Under the conditions of Proposition 5.8.2, the microscopic �elds satisfy

‖∇xEt[µ̃N ]‖∞, ‖∇xBt[µ̃N ]‖∞ . r−2
N . (5.87)

Proof. We begin with the homogeneous �eld

E0(t, x) = ∂tY (t, ·) ∗ Ein(x) = ∂t

( t

4π

∫
S2

Ein(y + ωt)dω
)
. (5.88)

From this representation, one reads of the bounds

‖E0(t, ·)‖
Wk−1,∞
x

≤ ‖Ein‖Wk−1,∞
x

+ t‖Ein‖Wk,∞
x

. (5.89)

In particular, for Ein = −∇G ∗ ρ0, we have

‖DαEin(t, ·)‖∞ . ‖Dαρ0‖∞ + ‖Dαρ0‖1, |α| = 0, 1, 2,

where we used∫
1

|y|2
|Dαρ0|(x− y)d3y =

∫
|y|≤1

+

∫
|y|>1

1

|y|2
|Dαρ0|(x− y)d3y ≤ 4π‖Dαρ0‖∞ + ‖Dαρ0‖1.

For the inhomogeneous parts, we can use equation (5.17) to write

E(t, x) = −
∫

(∇x + v(η)∂t)Y ∗ f(·, ·, η)dη

= −
∫

(∇x + v(η)∂t)

t∫
0

∫
S2

(t− s)f(s, x+ ω(t− s), η)dη,

B(t, x) = −
∫

(v(η)×∇x)Y ∗ f(·, ·, η)dη

= −
∫

(v(η)×∇x)

t∫
0

∫
S2

(t− s)f(s, x+ ω(t− s), η)dη,

from which we read o� the bounds

‖∇E‖∞, ‖∇B‖∞ ≤ 4π(1 + T )T sup
s≤T

∑
|α|≤2

‖Dαρ[f(s)]‖∞. (5.90)

Applying this to f(t) = µ̃Nt = χN ∗x µNt [Z] and using (5.85), the desired statement follows.
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5.8.3 Bound on the total force

While we will show that for typical initial conditions, the microscopic time-evolution will be
close to the mean �eld time-evolution, we also need to control how �bad� initial conditions
contribute to the growth of E0(Jt). To this end, we require a bound on the total microscopic
force, although a rather coarse one will su�ce.

Proposition 5.8.6. The total microscopic force is bounded as

‖K̃t[µ̃
N ]‖L∞(R3×R3) ≤ ‖Ẽt[µ̃N ]‖L∞(R3) + ‖B̃t[µ̃N ]‖L∞(R3) . r

−2
N , ∀t ≥ 0. (5.91)

Note that this holds independently of assumption (5.83).

Proof. Recall that the total energy

ε(t) =
1

N

N∑
i=1

√
1 + |ξi(t)|2 +

1

2

∫
E2
t (x) +B2

t (x)dx

is a constant of motion. At t = 0, we thus have:

ε(0) ≤ 1

2

(
‖Ein‖22+‖Bin‖22

)
+

√
1 + ξ

2
.

For the microscopic system, we have according to our convention, equation (5.52),

Eµin := ENin −∇G ∗ (ρ̃[µN0 [Z]]− ρ̃[f0]), Bµ
in := BN

in.

Since ENin = χN ∗ Ein, we have ‖ENin‖2 ≤ ‖Ein‖2 uniformly in N . The same holds for
Bµ
in = BN

in. It remains to estimate ‖∇G ∗ ρ̃[µN0 [Z]]‖2 and ‖∇G ∗ ρ̃[f0]‖2.
Since |∇G(x)| = 1

4π|x|2 , Lemma 5.8.1 yields |χN ∗x∇G| . min{r−2
N , |x|−2} and we compute

‖χN ∗ ∇G‖22 ≤
∫

|y|≤rN

|χN ∗x ∇G|2(x) +

∫
|y|>rN

|χN ∗x ∇G|2(x)

. r−4
N

∫
|x|<rN

d3x+

∫
|x|≥rN

|x|−4d3x

. r−4
N r3

N + r−1
N = 2r−1

N .

(5.92)

This yields, on the one hand,

‖∇G ∗ ρ̃[µN0 [Z]]‖22 =
∥∥ 1

N

N∑
i=1

∇G ∗ χN (· − xi(0))
∥∥2

2
≤ ‖χN ∗ ∇G‖22 . r−1

N , (5.93)

and, on the other hand,

‖∇G ∗ ρ̃[f0]‖2 = ‖χN ∗ ∇G ∗ ρ[f0]‖2 ≤ ‖χN ∗ ∇G‖2‖ρ[f0]‖1 . r−1/2
N . (5.94)

In total, we have found that

‖E(t, ·)‖2 + ‖B(t, ·)‖2 ≤
√

2ε+ 1 + ξ
2
. r−1/2

N . (5.95)
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Finally, by Young's inequality, we have for K̃(t, x, ξ) = χN ∗x (Et + v(ξ)×Bt)(t, x):

‖K̃[µ̃N ](t, ·, ·)‖∞ ≤ ‖χN‖2
(
‖E[µ̃N ](t, ·)‖2 + ‖B[µ̃N ](t, ·)‖2

)
. r−3/2

N r
−1/2
N = r−2

N ,

where we used

‖χN‖22 =

∫
(χN (x))2d3x =

∫
(r−3
N χ(x/rN ))2d3x = r−3

N

∫
χ(y)2d3y = r−3

N ‖χ‖
2
2.

It might be interesting to note that � in contrast to the other mean �eld results presented or
referenced in this thesis � we actually use an energy bound here, exploiting the conservation
of energy in the Abraham model. Also note that this is the only bound for which we have
to use both molli�ers appearing in (5.43).

5.9 Light cone structure

The Maxwell theory as well as the Vlasov-Maxwell approximation are relativistic. Par-
ticle interactions � mediated by the electromagnetic �eld � are retarded, with in�uences
�propagating� with the speed of light. More precisely, the �eld value at a given space-time
point (t, x) ∈ R×R3 depends on the particle trajectories only at their intersection with the
backwards light cone {(s, y) | (t− s)2 − (x− y)2 = 0, t− s ≥ 0}. Formally, this light cone
structure is manifested in the d'Alembert kernel Y (t, x) de�ned in (5.10), which has support
in {t = |x|, t > 0}. The regularized Vlasov-Maxwell system (5.43) is only semi-relativistic
(because of the rigid form factor), but inherits this light-cone structure. Integral expres-
sions of the form (5.22, 5.23), determining the inhomogeneous �eld components, evaluate
the mean �eld density on the backwards light cone. Since the Vlasov density is transported
with the characteristic �ow, the respective integrals can be pulled-back to the t = 0 hy-
persuface in a canonical way. The respective �eld components at a space-time point (t, x)
then depend on the initial distribution f0 on Bt(x)× R3 where Bt(x) = B(t;x) is the ball
around x with radius t. In the following, we make these observations more precise.

De�nition 5.9.1 (Retarded time). Fix a spacetime point (t, x) ∈ R×R3. Let ft a solution
of (5.43) and ϕs,0(z) = (y∗(s, z), η∗(s, z)) the characteristic �ow, i.e. the solution of (5.71)
with (y∗(0), η∗(0)) = z. Then we denote by tret(z) the unique solution of

(t− s)2 − (x− y∗(s, z))2 = 0; (t− s) > 0. (5.96)

tret(z) = tret(y
∗(s, z); t, x) is the time at which the trajectory y∗(s) crosses the backward

light cone with origin (t, x). We have tret(z) ≥ 0 ⇐⇒ y0 ∈ Bt(x) = {y ∈ R3 : |x− y| ≤ t}.

Lemma 5.9.2 (Distributions on the light cone). Let ft a solution of (5.43) and ϕs,0(z) =
(y∗(s, z), η∗(s, z)) as above. For a �xed space-time point (t, x) ∈ R+ × R3 consider the
di�eomorphism

φ : Bt(x)× R3 → Bt(x)× R3

z = (x, ξ) 7→ (y∗(tret(z), z), η
∗(tret(z), z)).

(5.97)
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1) For a ∈ C(R3 × R3), we have (with n(x− y) = x−y
|x−y|):∫

Bt(x)×R3

a(φ(z)) f0(z) dz

=

∫
Bt(x)×R3

a(y, η) (1− n(x− y)v(η)) f(t− |x− y|, y, η)dy dη.

(5.98)

2) For α ∈ C(R× R3 × R3):∫
(αY ) ∗t,x (1t≥0f)(t, x, η) dη

=

∫
Bt(x)×R3

α(t− s, x− y∗(s, z), η∗(s, z))
|x− y∗(s, z)|(1− n(x− y∗(s, z)) · v(η∗(s, z))

∣∣∣∣∣
s=tret(z)

f0(z) dz. (5.99)

Proof. Since ft = ϕt,0#f0, we compute∫
Bt(x)×R3

a(y, η) f(t− |x− y|, y, η)dy dη

=

∫
[0,t]×Bt(x)×R3

a(y, η) δ(|x− y| − (t− s)) f(s, y, η)dsdydη

=

∫
a(y, η) δ(|x− y| − (t− s))ϕs,0#f0(y, η)dsdydη

=

∫
a(y∗(s; y, η), η∗(s; y, η)) δ(|x− y∗(s; y, η)| − (t− s)) f0(y, η)dsdydη.

Now we use: If h ∈ C1 has a unique root ζ, then δ(h(x)) = δ(x − ζ)h′(ζ) in the sense of
distributions. The function h(s) = |x − y∗(s; y, η)| − (t − s) is di�erentiable with h′(s) =

1− (x−y∗(s))·v(η∗(s))
|x−y∗(s)| = 1− n(x− y∗(s)) · v(η∗(s)). If y∗(0) ∈ Bt(x), it has a unique positive

root tret = tret(z). Hence, we get:∫
a(y, η) δ(t− s−|x− y|) f(s, y, η) dsdydη

=

∫
a(y∗(tret(z), z), η

∗(tret(z), z))

1− n(x− y∗(tret(z))) · v(η∗(tret(z)))
f0(z) dz

(5.100)

and the identity follows. For (5.99), we have∫
(αY ) ∗t,x (1t≥0f)dη(t, x)

=

∫
R×R3×R3

α(t− s, x− y, η)Y (|x− y| − (t− s))1{s≥0}f(s, y, η)dsdydη.

Now observe that on the support of Y , we have 1{s≥0} = 1{y∈Bt(x)} and (t − s) = |x − y|
and apply part 1) of the Lemma to a(y, η) = |x− y|−1α(|x− y|, x− y, η).
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Furthermore, in order to compare the �elds generated by the mean �eld trajectories with
those generated by the microscopic trajectories, we will require the following lemma.

Lemma 5.9.3. Let x∗1(s), x∗2(s) two trajectories with velocity bounded by v < 1. Fix a
space-time point (t, x) ∈ R × R3 and denote by tiret, i = 1, 2 the time at which trajectory i
intersects the backward light cone with origin (t, x). Then we have:

|x∗1(t1ret)− x∗2(t2ret)| ≤
1

1− v
|x∗1(t1ret)− x∗2(t1ret)|. (5.101)

Similarly, if we denote that respective momenta by ξ1(s), ξ2(s) and assume that the force ξ̇2

is bounded by L <∞, then

|ξ∗1(t1ret)− ξ∗2(t2ret)| ≤ |ξ∗1(t1ret)− ξ∗2(t1ret)|+
L

1− v
|x∗1(t1ret)− x∗2(t1ret)|. (5.102)

Proof. Suppose w.l.o.g. that

(t− t1ret)− |x− x∗1(t1ret)| = 0,

(t− t1ret)− |x− x∗2(t1ret)| > 0.

Set r := |x∗1(t1ret)− x∗2(t1ret)| and τ = min{t, t1ret + r
1−v}. Obviously, if τ = t, we have

(t− τ)− |x− x∗2(τ)| = −|x− x∗2(τ)| ≤ 0.

If τ = t1ret + r
1−v < t, we estimate

|x− x∗2(τ)| ≥ |x− x∗1(t1ret)| − |x∗1(t1ret)− x∗2(t1ret)| − |x∗2(t1ret)− x∗2(s2)|
≥ (t− t1ret)− r − v(τ − t1ret)
= (t− τ) + (τ − t1ret)− r − v(τ − t1ret)
= (t− τ) + (1− v)(τ − t1ret)− r

and therefore also

(t− τ)− |x− x∗2(τ)| ≤ r − (1− v)(τ − t1ret) = 0.

By continuity, there thus exists s ∈ (t1ret, τ ] with (t− s)− |x− x∗2(s)| = 0. Hence, s = t2ret
and we found

|x∗2(t2ret)− x∗1(t1ret)| ≤ |x∗2(t1ret)− x∗1(t1ret)|+ |x∗2(t2ret)− x∗2(t1ret)|

≤ r + v(t2ret − t1ret) ≤
r

1− v
=
|x∗2(t1ret)− x∗(t1ret)|

1− v
,

as well as

|ξ∗2(t2ret)− ξ∗1(t1ret)| ≤ |ξ∗2(t1ret)− ξ∗1(t1ret)|+ |ξ∗2(t2ret)− ξ∗2(t1ret)|
≤ |ξ∗2(t1ret)− ξ∗1(t1ret)|+ L|t2ret − t1ret|

≤ |ξ∗2(t1ret)− ξ∗1(t1ret)|+
L

1− v
|x∗1(t1ret)− x∗2(t1ret)|.
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Remark 5.9.4. The previous lemma has a simple geometric proof. Consider the projection
onto a 2-dimensional (x, t)-plane and set (x∗1(t1ret), t

1
ret) = (0, 0). Then, the light ray crossing

the trajectory of the �rst particle corresponds to the line x = s. In the worst case, the
second trajectory moves away from x = 0 with constant velocity v. This corresponds
to the straight line x(s) = r + sv. The point of intersection with the light ray is then
s = r+ sv ⇒ x = s = r

1−v . If s > t, this line intersects the other side of the light cone �rst.

(t,x)

tret1

tret2

r

x*1

∆x/∆t=v

{

Figure 5.1: Fig. 1: Intersections of the light cone

5.9.1 Law of large numbers

Part of our proof consists in sampling the mean �eld dynamics along (random) trajectories,
i.e. approximating the mean �eld distribution fNt with the discrete measure µN [Φt,0(Z)],
where Φt,0 is the mean �eld �ow de�ned in (5.7.1) and Z ∈ R6N is random with distribution
⊗Nf0. One advantage of this approach is that the N particles evolving with the mean �eld
�ow remain i.i.d. with law fNt for all times, thus allowing for law of large numbers estimates.
We will work with the following (more or less standard) result:
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Proposition 5.9.5. Let f0 ∈ L1 ∩ L∞(R3 × R3) a probability density. Let α, β > 0 with
α+ β < 1

2 . Let h : R6 → R such that |h(z)| . Nα. Let φ : R6 → R6 a di�eomorphism with
bounded derivative. Then, for all γ > 0 there exists a Cγ > 0 such that

P0

[∣∣∣ 1

N

N∑
i=1

h(φ(zi))−
∫
h(φ(z))f0(z)

∣∣∣ ≥ N−β] ≤ Cγ
Nγ

. (5.103)

Note: Finer estimates, exploiting decay-properties of h, were proven in Proposition 3.7.2.

Proof. Let

A :=
{
Z ∈ R6N :

∣∣∣ 1

N

N∑
i=1

h(φ(zi))−
∫
h(φ(z))f0(z)

∣∣∣ ≥ N−β}. (5.104)

By Markov's inequality, we have for every M ≥ 2:

P0(A) ≤E0

[
N2Mβ

∣∣∣ 1

N

N∑
1=1

h(φ(zi))−
∫
h(φ(z))f0(z)

∣∣∣2M]
=

1

N2M(1−β)
E
[( N∑

i=1

[
h(φ(zi))−

∫
h(φ(z))f0(z)

])2M]
.

(5.105)

Let M := {k ∈ NN0 | |k| = 2M} the set of multiindices k = (k1, k2, ..., kN ) with
N∑
j=1

kj =

2M . Let

Gk :=

N∏
i=1

[
h(φ(zi)−

∫
h(φ(z))f0(z)

]kj .
Then:

E0

[( N∑
i=1

[
h(φ(zi))−

∫
h(φ(z))f0(z)

])2M]
=
∑
k∈M

(
2M

k

)
Et(Gk).

Now we observe that E0(Gk) = 0 whenever there exists a 1 ≤ j ≤ N such that kj = 1.
This can be seen by integrating the j'th variable �rst.

For the remaining terms, we have the bound∫
|h(φ(z))|mf0(z) dz . Nαm‖f0‖∞. (5.106)

Now, for k = (k1, k2, ..., kN ) ∈ M, let #k denote the number of ki with ki 6= 0. Note that
if #k > M , we must have ki = 1 for at least one 1 ≤ i ≤ N , so that E0(Gk) = 0. For the
other multiindices, we get:

E0(Gk) = E0

[ N∏
i=1

(
h(φ(qi))−

∫
h(φ(z))f0(z)

)ki] . N2Mα. (5.107)
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Finally, for any k ≥ 1, the number of multiindices k ∈M with #k = j is bounded by∑
#k=j

1 ≤
(
N

j

)
(2M)j ≤ (2M)2MN j .

Thus:

P0(A) .
NMN2Mα

N2M(1−β)
= NM(2(α+β)−1)

and the proposition follows.

We have formulated the proposition with φ for convenience. The relevant examples for us
will be φ(z) = z and φ the di�eomorphism de�ned in (5.97).

In the next section, we will use the law of large numbers to sample the �elds on a regular
lattice that we introduce on the following de�nition.

De�nition 5.9.6. Let r as de�ned in (5.68). For N ∈ N let GN be the regular lattice
in [−r, r]3 with side length d

N . GN contains a total of (3N)3 lattice points and for any

x ∈ [−r, r]3, the maximal distance to the next lattice point is at most
√

3
2

r
N .

5.10 Pointwise estimates

We will now go deeper into the details of the dynamics to control the di�erence between
mean �eld and microscopic time-evolution. To this end, we have to control the di�erences
in the electromagnetic �elds generated by the (regularized) mean �eld density f̃Nt and the
(smeared) microscopic density µ̃Nt [Z] = µN [Ψt,0(Z)] (recall that in view of (5.43)m the
distributions are �smeared out� with χN as they enter the �eld equations.) We will use
the decomposition of the �elds in terms of Liénard-Wiechert distributions introduced in
Section 5.2.1. We will denote by Ei[f̃ ] and Ei[µ̃], i = 0, 1, 2 the respective �eld component
generated by f̃N , respectively µ̃Nt [Z].

5.10.1 Controlling the Coulomb term

We begin by controlling the contribution of the Coulombic term (5.22):∣∣E1[f̃N ](t, x)− E1[µ̃N ](t, x)
∣∣ =

∣∣∣∫ (α−1Y ) ∗t,x (1t≥0f̃
N ) dξ −

∫
(α−1Y ) ∗t,x (1t≥0µ̃

N
(·)[Z]) dξ

∣∣∣
with the kernel α−1 de�ned in (5.24). The expression on the r.h.s. is to be evaluated at
(t, x). Since convolutions commute, we may write∣∣E1[f̃N ](t, x)− E1[µ̃N ](t, x)

∣∣
=
∣∣∣χN ∗ (∫ (α−1Y ) ∗ (1t≥0f

N ) dξ −
∫

(α−1Y ) ∗ (1t≥0µ
N [Ψs,0(Z)]) dξ

)∣∣∣
≤
∣∣∣χN ∗ (∫ (α−1Y ) ∗ (1t≥0f

N ) dξ −
∫

(α−1Y ) ∗ (1t≥0µ
N [Φs,0(Z)]) dξ

)∣∣∣ (5.108)

+
∣∣∣χN ∗ (∫ (α−1Y ) ∗ (1t≥0µ

N [Φs,0(Z)]) dξ −
∫

(α−1Y ) ∗ (1t≥0µ
N [Ψs,0(Z)]) dξ

)∣∣∣ (5.109)
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where we have inserted the density µN [Φs,0(Z)] corresponding to the mean �eld �ow
Φs,0(Z) = NΦs,0(Z), in addition to the actual microsocpic density µNs [Z] = µN [Ψs,0(Z)].

A law of large numbers bound for (5.108). Recall from De�nition 5.7.1, that µN [Φt,0(Z)] =
ϕNt,0#µ[Z], where ϕNt,0 is the characteristic �ow of fNt . More explicitly, with ϕNt,0(zi) =
(y∗, η∗)(t, zi), we have

µN [Φt,0(Z)] =
1

N

∑
i=1

δ(x− y∗(t, zi))δ(ξ − η∗(t, zi)).

We shall also use the shorthand y∗i (t) = y∗(t, zi), η
∗
i (t) = η∗(t, zi). Now we observe that,

fN (t, x, ξ) = (ϕNt,0#f0)(x, ξ) =

∫
δ(x− y)δ(ξ − η)(ϕNt,0#f0)(y, η)dydη

=

∫
δ(x− y∗(t, z))δ(ξ − η∗(t, z))f0(z)dz.

Inserting this into (5.108) and performing the z-integration last (assuming, for the moment,
that the order of integration can be exchanged), we see that

E0

[
χN ∗

(∫
(α−1Y ) ∗ (1t≥0f

N ) dξ −
∫

(α−1Y ) ∗ (1t≥0µ
N [Φs,0(Z)]) dξ

)]
= 0,

where the expectation value is de�ned with respect to ⊗Nf0. The idea is thus to use the
law of large numbers to show that (5.108) goes to 0 in probability.

Recall from (5.24) that:

α−1(t, x, ξ) =
(1− v(ξ)2)(x− tv(ξ))

(t− v(ξ)x)2
.

Hence, we compute∫
(α−1Y ) ∗t,x (1t≥0µ

N [Φs,0(Z)])(t, x) dξ

=
1

N

N∑
i=1

∫
R3×R3

t∫
0

dsdydξ δ(y − y∗i (s))δ(ξ − η∗i (s))

(1− v(ξ)2)(x− y − (t− s)v(η))

(t− s− v(η)(x− y))2

δ(|x− y| − (t− s))
4π|x− y|

=
1

N

N∑
i=1

t∫
0

(1− v(η∗i )
2)(n(x− y∗i )− v(η∗s))

4π(1− v(η∗i )n(x− y∗i ))2|x− y∗i (s)|2
δ(|x− y∗i (s)| − (t− s)) ds.

The function h : s→ |x− y∗i (s)| − (t− s) is di�erentiable with h′(s) = 1− v∗(η∗(s))n(x−
y∗i (s)). If it has a root in [0, t], we denote it by tret,i, otherwise the integral is zero. Recall
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that tret,i ≥ 0 ⇐⇒ zi ∈ Bt(x)× R3. Hence, we �nd:∫
(α−1Y ) ∗t,x (1t≥0µ

N [Φs,0(Z)])(t, x) dξ

=
1

N

N∑
i=1

(1− v(η∗i )
2)(n(x− y∗i )− v(η∗i ))

4π(1− v(η∗i )n(x− y∗i ))3|x− y∗i (s)|2
1{s≥0}

∣∣∣∣∣
s=tret,i

(5.110)

=
1

N

N∑
i=1

1{zi∈Bt(x)×R3} k
(
x− y∗(tret,i, zi), η∗(tret,i, zi)

)
, (5.111)

where we have introduced the kernel

k(x, ξ) :=
(1− v(ξ)2)(n(x)− v(ξ))

4π(1− v(ξ) · n(x))3|x|2
. (5.112)

Furthermore, according to Lemma 5.9.2,∫
(αY ) ∗t,x (1t≥0f

N )(t, x, η) dη

=

∫
Bt(x)×R3

α−1(t− s, x− y∗(s, z), η∗(s, z))
|x− y∗(s, z)|(1− n(x− y∗(s, z)) · v(η∗(s, z))

∣∣∣∣∣
s=tret(z)

f0(z) dz

=

∫
Bt(x)×R3

(1− v(η∗(s, z))2)(n(x− y∗(s, z))− v(η∗(s, z)))

4π(1− v(η∗(s, z))n(x− y∗(s, z)))3|x− y∗(s, z)|2

∣∣∣∣∣
s=tret(z)

f0(z) dz

=

∫
Bt(x)×R3

k(x− y∗(tret(z), z), η∗(tret(z), z)) f0(z) dz.

(In fact, we could have also applied the same identity (5.99) to µN [Φt,0(Z)]).
Now note that on the support of f , we have

|k(x, ξ)| ≤ 1

2π(1− v)3|x|2
, (5.113)

and thus, according to Lemma 5.8.1,

|k̃(x, ξ)| = |χN ∗x k(x, ξ)| . r−2
N , ∀x ∈ R3, |ξ| ≤ ξ (5.114)

where we have applied the molli�er χN . In total, we have found that (5.108) is of the form∣∣∣∣ 1

N

N∑
i=1

h(φ(zi))−
∫
h(φ(z)) df0(z)

∣∣∣∣
with h(y, η) = k̃(x−y, η) and φ the di�eomorphism de�ned in Lemma 5.9.2 and f0 restricted
to B(t;x) × R3. Hence, we can use the law of large numbers in the form of Proposition
5.9.5 to conclude the following:
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Lemma 5.10.1. Let A1
t be the (N and t dependent) set de�ned by

A1
t := {Z ∈ R3 × R3 | (5.108) < N−1/3 for all x ∈ GN}. (5.115)

Then there exists C1 > 0 such that P0(A1
t ) ≥ 1− C1

N1 .

Proof. Let GN the lattice de�ned in 5.9.6 and xk ∈ GN . We want to apply Proposition
5.9.5 with h(y, η) = k̃(xk − y, η) and φ as in (5.97). Since |h| . r−2

N ≤ N2γ , with γ < 1
12 ,

we can choose β = 1
3 . Thus, by Prop. 5.9.5, there exists a constant C > 0 such that

P0

[∣∣∣χN ∗ (∫ (α−1Y ) ∗ 1t≥0(fN − µN [Φs,0(Z)]
)

dξ
)

(t, xk)
∣∣∣ ≥ N− 1

3

]
≤ C

N4
.

Since the lattice GN contains (3N)3 points, we have

P0

[
∃xk ∈ CN : (5.108) ≥ N−

1
3
]

≤
∑

xk∈GN
P0

[∣∣∣χN ∗ (∫ (α−1Y ) ∗ (1t≥0f
N − 1t≥0µ

N [Φt,0(Z)]
)

dξ
)

(t, xk)
∣∣∣ ≥ N− 1

3

]
≤ (3N)3 C

N4
≤ 27C

N
.

A Lipschitz bound bound for (5.109). We now have to control (5.109), i.e. the di�erence
of the �eld components E1 generated by the mean �eld trajectories (y∗i , η

∗
i )i=1,..,N on the

one hand and the true microscopic trajectories (x∗i , ξ
∗
i )i=1,..,N on the other hand. To this

end, we want to establish a local Lipschitz bound for the kernel (5.112).

Lemma 5.10.2 (Local Lipschitz bound). There exists constants b1, b2 > 0 and functions

g1(x) :=
b1

(1− v)3

{
r−3
N ; |x| < 2rN

1−v
|x|−3 ; |x| ≥ 2rN

1−v
, g2(x) :=

b2
(1− v)4

{
r−2
N ; |x| < rN

|x|−2 ; |x| ≥ rN
. (5.116)

such that for all z1 = (x1, ξ1), z2 = (x2, ξ2) with |ξ1|, |ξ2| ≤ ξ and |x1−x2| < rN
1−v , v = |v(ξ)|:

|k̃(x1, ξ1)− k̃(x2, ξ2)|∞ ≤ g1(x1) |x1 − x2|∞ + g2(x1) |ξ1 − ξ2|∞. (5.117)

Proof. We have

|k̃(x1, ξ1)− k̃(x2, ξ2)|∞ ≤ |k̃(x1, ξ2)− k̃(x2, ξ2)|∞ + |k̃(x1, ξ1)− k̃(x1, ξ2)|∞,

hence, there exists y between x1 and x2 and ζ between ξ1 and ξ2 such that

|k̃(x1, ξ1)− k̃(x2, ξ2)|∞ ≤ |∇xk̃(y, ξ2)|∞|x1 − x2|∞ + |∇ξk̃(x1, ζ)|∞|ξ1 − ξ2|∞.

Now one checks that

|∇ξk(x, ξ)|∞ ≤
18

(1− v)4|x|2
,
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so that according to Lemma 5.8.1, there exists b2 > 0 such that

|∇ξk̃(x, ξ)|∞ ≤
b1

(1− v)4
min{r−2

N , |x|−2}. (5.118)

For the di�erence in the x-coordinates, we get from (5.113) and Lemma 5.8.1 a constant
b > 0 such that

|∇xk̃(x, ξ)|∞ ≤
b

(1− v)3
min{r−3

N , |x|−3}. (5.119)

Thus, for |x1| < 2rN
1−v , a bound of the form (5.117) certainly holds, since the derivative is

bounded by b
(1−v)3

r−3
N . For |x1| > 2rN

1−v and |x1 − x2| < rN
1−v we observe that |sx1 + s(x2 −

x1)| ≥ |x1|
2 ,∀s ∈ [0, 1], so that 1

|sx1+s(x2−x1)|3 ≤
8
|x1|3 . Setting b1 := 8b, the statement

follows.

Now recall that as long as JNt (Z) < 1, the trajectories are close as per (5.7.2). More
precisely, JNt (Z) < 1 ⇒ sup

0≤s≤t
|NΦt,0(Z) − NΨt,0(Z)|∞ < N−δ ≤ N−γ ≤ rN . This implies,

in particular, |x∗(s, zi) − y∗(s, zi)| < rN as well as |ξ∗(s, zi)| < ξ for 0 ≤ s ≤ t and all
1 ≤ i ≤ N . Moreover, with Lemma 5.9.3 we have for any �xed (t, x) ∈ R+ × R3:

|x∗i (txret,i)− y∗i (t
y
ret,i)| ≤

rN
1− v

, (5.120)

where txret,i and t
y
ret,i denote the retarded time of the trajectory x∗i (s), respectively y

∗
i (s),

with respect to the space-time point (t, x). Hence, we can apply the previous Lemma and
�nd that (5.109) is bounded by

1

N

N∑
i=1

1{tret≥0}

∣∣∣k̃(x− x∗(txret,i, zi), ξ∗(txret,i, zi))− k̃(x− y∗(tyret,i, zi), η∗(txret,i, zi))∣∣∣
≤ 1

N

N∑
i=1

1{tret≥0}

(
g1(x− y∗i (t

y
ret,i)) |x

∗
i (t

x
ret,i)− y∗i (t

y
ret,i)|∞ + g2(x− y∗i (t

y
ret,i)) |ξ

∗
i (txret,i)− η∗i (t

y
ret,i)|∞

)
≤
( 1

N

N∑
i=1

1{tret≥0}g1(x− y∗i (t
y
ret,i))

) 1

1− v
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞ (5.121)

+
( 1

N

N∑
i=1

1{tret≥0}g2(x− y∗i (t
y
ret,i))

)
sup

0≤s≤t

(
|NΦ2

s,0(Z)− NΨ2
s,0(Z)|∞ +

L

1− v
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞

)
.

(5.122)

For the last inequality, we used Lemma 5.9.3 and the bound (5.67) on the mean �eld force to
account for the fact that the distance |x∗i (txret,i)−y∗i (t

y
ret,i)|, respectively |ξ∗i (txret,i)−η∗i (t

y
ret,i)|,

involves to di�erent retarded times. Now, we want to estimate 1
N

N∑
i=1

1{tret≥0}gj(x −
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y∗i (t
y
ret,i)), j = 1, 2 by its expectation value w.r.to f0. In view of Lemma 5.9.2, we write:

1

N

N∑
i=1

1{tret≥0}gj(x− y∗i (t
y
ret,i))

≤
∣∣∣ 1

N

N∑
i=1

1{tret≥0}gj(x− y∗i (t
y
ret,i))−

∫
Bt(x)×R3

gj(x− y)(1− n(x− y)v(η))fN (t− |x− y|, y, η)
∣∣∣

+
∣∣∣ ∫
Bt(x)×R3

gj(x− y)(1− n(x− y)v(η))fN (t− |x− y|, y, η)dydη
∣∣∣.

For the last term, we recall the bounds from (5.116) and estimate, using |1− n · v| ≤ 2,∣∣∣ ∫
Bt(x)×R3

g1(x− y)(1− n(x− y)v(η))fN (t− |x− y|, y, η)dydη
∣∣∣

.
∫

|x−y|≤t

g1(x− y)ρ[fN ](t− |x− y|, y)dy

≤ sup
0≤s≤t

‖ρ[fN ](s, ·)‖∞
( ∫
|y|≤ 2rN

1−v

g1(y) d3y +

∫
2rN
1−v<|y|≤t

g1(y) d3y
)

. C0

( ∫
|y|≤ 2rN

1−v

r−3
N d3y +

∫
2rN
1−v<|y|≤t

|y|−3 d3y
)

. C0 (1 + log(r−1
N ) + log(T )), (5.123)

and for g2: ∣∣∣ ∫
Bt(x)×R3

g2(x− y)(1− n(x− y)v(η))fN (t− |x− y|, y, η)dydη
∣∣∣

.
∫

|x−y|≤t

g2(x− y)ρ[fN ](t− |x− y|, y)dy

. sup
0≤s≤t

‖ρ[fN ](s, ·)‖∞
∫
|y|≤t

|y|−2d3y

. C0T. (5.124)

It remains to show that the di�erence∣∣∣∣ 1

N

N∑
i=1

1{tret≥0}gj(x− y∗i (tret,i))−
∫
gj(x− y)(1− nv)fN (t− |x− y|, y, ξ)

∣∣∣∣ (5.125)

is typically small. According to part 1) of Lemma 5.9.2, (5.125) can be written as∣∣∣∣ 1

N

N∑
i=1

1{zi∈Bt(x)×R3}gj(x− πxφ(zi))−
∫
1{z∈Bt(x)×R3}gj(x− z)φ#f0(z)dz

∣∣∣∣,
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where πx(x, ξ) = x is the projection on the spatial coordinates and we used the fact that
tret(z) ≥ 0 ⇐⇒ z ∈ B(t, x)× R3. Hence, we can apply again the law of large numbers.

For any x ∈ GN , we consider h : R6 → R, z 7→ 1{φ−1(z)∈Bt(x)×R3}gj(x−πxz). This function
is bounded as |h| . r−3

N ≤ N3γ with γ < 1
12 . Applying Proposition 5.9.5 with φ as in

(5.97), α = 3γ and β = 0, we �nd

P0

[∣∣∣ 1

N

N∑
i=1

1{tret≥0}gj(x− y∗i (tret,i))−
∫
gj(x− y)(1−nv)fN (t− |x− y|, y, ξ)

∣∣∣ > 1
]
. N−4

and thus P0

[
∃xk ∈ GN | (5.125) > 1] . N−1, for j = 1, 2, since the grid GN consists of

(3N)3 points. We de�ne the (N and t dependent) set

A2
t := {Z ∈ R3 × R3 | (5.125) ≤ 1, j = 1, 2 ∀x ∈ GN}. (5.126)

Then there exists C2 > 0 such that P(A2
t ) ≥ 1− C2

N .

For the magnetic �eld component B1, the proof works analogously, since the corresponding
kernel n× α−1 has the same bounds and regularity properties.

5.10.2 Controlling the radiation term

We now consider the contribution of the radiation term E2. The corresponding kernel is
less singular in the near-�eld, but depends on the acceleration of the particles. From (5.23):

|E2[f̃N ](t, x)− E2[µ̃N ](t, x)|

=
∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]1t≥0f̃

N ) dξ −
∫

(∇ξαY ) ∗ (K̃[µ̃N ]1t≥0µ̃
N ) dξ

∣∣∣
≤
∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]1t≥0f̃

N ) dξ −
∫

(∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃
N [Ψs,0(x)]) dξ

∣∣∣ (5.127)

+
∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]− K̃[µ̃N ])(1t≥0 µ̃

N [Ψs,0(x)]) dξ
∣∣∣, (5.128)

where we use the regularized distributions and the corresponding regularized forces K[f̃N ],
respectively K[µ̃N ] in view of (5.43). The integrals on the r.h.s. are to be evaluated at
(t, x). For the second term (5.128):∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]− K̃[µ̃N ])(1t≥0 µ̃

N ) dξ
∣∣∣

=
∣∣∣ 1

N

N∑
i=1

t∫
0

∫
S2

(t− s)∇ξα(t− s, ω(t− s), ξ∗i (s))

(K̃[f̃N ]− K̃[µ̃N ])(s, x− ω(t− s), ξ∗i (s))χN (x− ω(t− s)− x∗i (s)) dωds
∣∣∣

≤ 1

N

N∑
i=1

t∫
0

∫
S2

∣∣∣(t− s)∇ξα(t− s, ω(t− s), ξ∗i (s))
∣∣∣

∣∣∣(K̃[f̃N ]− K̃[µ̃N ])(s, x− ω(t− s), ξ∗i (s))
∣∣∣χN (x− ω(t− s)− x∗i (s)) dωds.
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Now, recall from (5.25):

(∇ξα0)ij(t, x, ξ) =
t(t− v · x)(vjv

i − δij) + (xj − tvj)(xi − (v · x)vi)√
1 + |ξ|2(t− v · x)2

and thus

(t− s)∇ξα(t− s, ω(t− s), ξ∗) =
(1− v · ω)(vjv

i − δij) + (ωj − vj)(ωi − (v · ω)vi)√
1 + |ξ|2(1− v · ω)2

.

Since the vectors appearing in the nominator are all of norm 1 or smaller, we can estimate

|(t− s)∇ξα(t− s, ω(t− s), ξ∗)| ≤ 8

(1− v)2
. (5.129)

Moreover, we observe that 1
N

N∑
i=1

χN (x−ω(t−s)−x∗i (s)) is nothing else than the (smeared)

microscopic charge density ρ̃[µN [Z]](s, x− ω(t− s)). In total, we can thus write∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]− K̃[µ̃N ])(1t≥0 µ̃) dξ
∣∣∣

≤ 8

(1− v)2

t∫
0

∫
S2

∣∣E[f̃N ](s, x− ω(t− s))− E[µ̃N ](s, x− ω(t− s))
∣∣

+
∣∣B[f̃N ](s, x− ω(t− s))−B[µ̃N ](s, x− ω(t− s))

∣∣ ρ̃[µ](s, x− ω(t− s))dωds

.
‖ρ̃[µ]‖L∞([0,T ]×R3)

(1− v)2

t∫
0

‖E[f̃N ](s)− E[µ̃N ](s)‖L∞(B(r)) + ‖B[f̃N ](s)−B[µ̃N ](s)‖L∞(B(r))ds,

(5.130)

where in the last line, we used the fact that supp ρ̃[µ](s) ⊆ B(r; 0), ∀s ≤ T .

For (5.127) we write∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]1t≥0f̃
N ) dξ −

∫
(∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃

N [Ψt,0(Z)]) dξ
∣∣∣

≤
∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]1t≥0f̃) dξ −

∫
(∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃

N [Φt,0(Z)]) dξ
∣∣∣ (5.131)

+
∣∣∣∫ (∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃

N [Φt,0(Z)]) dξ −
∫

(∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃
N [Ψt,0(Z)]) dξ

∣∣∣.
(5.132)

We evaluate∫
(∇ξαY ) ∗ (K̃[f̃N ]1t≥0µ̃

N [Φt,0(Z)]) =
1

N

N∑
i=1

1{tret,i>0}κ(tret,i, y
∗(tret,i), η

∗(tret,i))
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with kernel

κ(s, y, η) :=
(K̃[f̃ ](s, y, η) · v(η))v(η)− K̃[f̃ ](s, y, η))√

1 + η2(1− v(η) · n(x− y))2|x− y|

+
K̃[f̃ ](s, y, η) · (n(x− y)− v(η))

(
n(x− y)− (v · n)v(η)

)√
1 + η2(1− v(η) · n(x− y))2|x− y|

.

(5.133)

With L as in (5.67), the function κ satis�es

|κ(s, y, η)| . |K̃[f̃N ](s, y, η)|
(1− v)2|x− y|

≤ L

(1− v)2|x− y|
(5.134)

|∇x,ξκ(s, y, η)| .
|∇x,ξK̃[f̃N ](s, y, η)|

(1− v)3|x− y|
+
|K̃[f̃N ](s, y, η)|
(1− v)2|x− y|2

≤ L

(1− v)3

( 1

|x− y|
+

1

|x− y|2
)
. (5.135)

Now we proceed along the lines of section 5.10.1, simpli�ed by the fact that the kernel is
homogeneous of degree −1 (rather than −2) in x.

Let A3
t be the (N and t dependent) set de�ned by

A3
t := {Z ∈ R3 × R3 | (5.131) ≤ N−1/4 for all x ∈ GN}. (5.136)

Then there exists C3 > 0 such that P(A3
t ) ≥ 1− C3

N .

For (5.132), we introduce a function g3 . min{r−2
N , |x|−1 + |x|−2} such that

|κ̃(t, x1, ξ1)− κ̃(t, x2, ξ2)|∞ ≤ g3(x1) |(x1, ξ1)− (x2, ξ2)|∞, (5.137)

for all t ≤ T , |ξ1|, |ξ2| ≤ ξ and |x1−x2| < rN
1−v (c.f. Lemma 5.10.2). With this, we �nd that

(5.132) ≤
( 1

N

N∑
i=1

1{tret≥0}g3(x− y∗i (t
y
ret,i))

) L

1− v
sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞.

(5.138)

In contrast to 5.10.1, we do not have to treat distances in physical space and momentum
space separately, other than that, the argument is the same. We estimate the g3 term by

∣∣∣ 1

N

N∑
i=1

1{tret≥0} g3(x− y∗i (t
y
ret,i))

∣∣∣
≤
∣∣∣∣ 1

N

N∑
i=1

1{zi∈Bt(x)×R3} g3(x− πxφ(zi))−
∫
1{z∈Bt(x)×R3}g3(x− z)φ#f0(z)dz

∣∣∣∣ (5.139)

+

∣∣∣∣∫ 1{z∈Bt(x)×R3} g3(x− z)φ#f0(z)dz

∣∣∣∣. (5.140)
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Since g3 . min{r−2
N , |x|−1 + |x|−2}, one checks that (5.140) . C0(1 + T 2). Now we de�ne

the (N and t dependent) set

A4
t := {Z ∈ R3 × R3 | (5.139) ≤ 1 for all x ∈ GN}. (5.141)

According to Proposition 5.9.5, there exists a constant C4 > 0 such that P0(A) ≥ 1 − C4
N .

For Z ∈ A4
t , J

N
t (Z) < 1, we thus have (5.132) . sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞.

For the magnetic �eld component B2, the proof works analogously, since the corresponding
kernel ∇ξn× α0 has the same bounds and regularity properties.

5.10.3 Controlling shock waves

We now consider the term (5.21). We compute

E′0(t, x) =

∫
(α0 Y )(t, ·, ξ) ∗x χN ∗x f0(x, ξ)dξ

=
t

4π

∫
ω − v

1− v · ω
χN (x− y − wt) f0(y, ξ) dwdydξ

=

∫
h(t, x− y) f0(y, ξ)dydξ,

with

h(t, x, ξ) =
t

4π

∫
S2

ω − v
1− v · ω

χN (x− wt). (5.142)

This function satis�es

|h(t, x, ξ)| . t

1− v
r−3
N . (5.143)

We have to control the di�erence∣∣E′0[µ̃N0 [Z]](t, x)− E′0[f̃0](t, x)
∣∣

=
∣∣∣ 1

N

N∑
i=1

h(t, x− xi, ξi)−
∫
h(t, x− y, ξ) f0(y, ξ)

∣∣∣, (5.144)

which depends only on initial data. Applying Proposition 5.9.5 (with φ(z) = z and α =
3γ, β = 1

4) we have for any (t, x):

P0

[∣∣∣ 1

N

N∑
i=1

h(t, x− xi, ξi)−
∫
h(t, x− y, ξ) f0(y, ξ)

∣∣∣ > N−
1
4

]
. N−4

and thus P0

[
∃x ∈ GN | (5.144) > N−

1
4

]
. N−1. We conclude:

Let A5
t be the (N and t dependent) set de�ned by

A5
t := {Z ∈ R3 × R3 | (5.144) ≤ N−

1
4 for all x ∈ GN}. (5.145)
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Then there exists C5 > 0 such that P(A5
t ) ≥ 1− C5

N .

Remark: Without regularization, the kernel (5.142) would have the form t
∫
S2

ω−v
1−v·ω δ(x−

wt), which is not only unbounded, but distribution valued, re�ecting the fact that E′0(t, x)
depends on the initial charge distribution only via ρ0

∣∣
{|x−y|=t}. However, after smearing

with χN , the term is relatively harmless. The width of the necessary cut-o� for the law of
large number estimate could be further reduced by exploiting the fact that h(t, x, ξ) = 0
unless t− rn < |x| < t+ rN .

For the magnetic �eld component B′0, the proof works analogously, since the corresponding
kernel satis�es the same bound (5.143).

5.10.4 Controlling the homogeneous �elds

It remains to control the contribution of the homogeneous �elds (5.20), which depend only
on the initial data via the Gauss constraint divE0

∣∣
t=0

= ρ0. The solution of the homogeneous
�eld-equation is given by

E0(t, x) = ∂tY (t, ·) ∗ Ein(x) = ∂t
( t

4π

∫
S2

Ein(x+ ωt)dω
)
.

If Ein(x) = −∇G ∗ ρ0(x) =
∫ x−y
|x−y|3 ρ0(y) dy is the Coulomb �eld, we compute:

− ∂t∇x
∫
G ∗x Y (t, ·) ∗x f̃0(x, ξ)dξ

=
1

4π

∫ ∫
S2

[ x− y + 2ωt

|x− y + ωt|3
− tω · (x− y + ωt)(x− y + ωt)

|x− y + ωt|5
]
dω ρ̃0(y) dy

=
1

4π

∫ ∫
S2

h′(tω, x− y) dω ρ̃0(y)dy,

with h′(tω, x) := 1
4π

(
x+2ωt
|x+ωt|3 −

tω·(x+ωt)(x+ωt)
|x+ωt|5

)
. Shifting the molli�er to the kernel, we get:

|χN ∗ h′| . r−2
N + t r−3

N ,

where we used again Lemma 5.8.1, and thus

E0(t, x) =

∫ ∫
h0(t, x− y) f0(y, ξ) dydξ, (5.146)

with

h0(t, x) :=

∫
S1

χN ∗ h′(x, ωt)dω, |h0(t, x)| . r−2
N + t r−3

N . (5.147)

Now, by (5.51), the incoming �elds are �xed such that ENin−E
µ
in = −∇G∗(ρ0[f ]−ρ0[µ[Z]]).

Hence, we have to control the di�erence∣∣∣ 1

N

N∑
i=1

h0(t, x− xi)−
∫
h0(t, x− y) f0(y, ξ)dydξ

∣∣∣. (5.148)
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As before, an application of the law of large numbers in form of Proposition 5.9.5 yields
the following: Let A6

t be the (N and t dependent) set de�ned by

A6
t := {Z ∈ R3 × R3 | (5.146) ≤ N−

1
4 for all x ∈ GN}. (5.149)

Then there exists C6 > 0 such that P0(A6
t ) ≥ 1− C6

N .

For the magnetic �eld, BN
0 −B

µ
0 = 0 since, by assumption, BN

in = Bµ
in.

For every t, our law of large numbers estimates yield bounds on a �nite number on points,
that we have chosen to lie on the grid GN covering the interval [−r, r] which contains the
support of fN and µN . However, combined with the bound on the �eld derivatives from
Proposition 5.8.5, this can be used to derive a L∞-bound. We give an example in the
following lemma.

Lemma 5.10.3. Let r as de�ned in (5.68). In view of the assumptions of Propositions
5.8.2 and 5.8.5, we �x some p ≥ 1 and consider the set M = M(p) de�ned by

Z ∈M ⇐⇒ W p
p (µN0 [Z], f0) ≤ r3+p

N . (5.150)

Let ENin and Eµin = Eµin[Z] as �xed in (5.52). Then there exists a constant C > 0 such that

P0

[
‖ENin − E

µ
in‖L∞(B(r)) . N

− 1
4

∣∣∣M] ≥ 1− C

N
. (5.151)

Proof. Above, we have proven that

P0

[
∃xk ∈ GN : |ENin(xk)− Eµin(xk)| ≥ N−

1
4

]
. N−1. (5.152)

Furthermore, according to Proposition 5.8.5, we have ‖∇x(EN −Eµ)‖∞ . r−2
N for Z ∈M .

By construction:

sup{ min
xi∈GN

|x− xi| : x ∈ B(r)} ≤
√

3

2

r

N
. (5.153)

Hence, |ENin(xk) − Eµin(xk)| ≤ N−
1
4 ∀xk ∈ G implies |ENin(x) − Eµin(x)| . N−

1
4 +

r−2
N
N ≤

N−
1
4 +N−1+2γ for all x ∈ B(r). Since γ < 1

12 , we conclude

P0

[
‖ENin − E

µ
in‖L∞(B(r)) . N

− 1
4

∣∣∣Z ∈M] . N−1.

5.11 A Gronwall argument

We are �nally ready to combine the results of the previous sections into a prove of the
main theorem. Our aim is to establish a Gronwall bound for the quantity E0(JNt ) de�ned
in 5.7.2, thus proving the mean �eld limit for typical initial conditions.
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5.11.1 Good initial conditions

Let γ < 1
12 and rN ≥ N−γ . Fix an initial distribution f0 with compact support as in

Theorem 5.5.2. We begin by noting the (time-independent) conditions that the initial
con�guration Z ∈ R6N has to satisfy. All probabilities are meant with respect to the
product-measure ⊗Nf0 on R3N . Consider the sets C1,C2 de�ned by

Z ∈ C1 ⇐⇒ zi ∈ supp (f0),∀1 ≤ i ≤ N. (5.154)

Z ∈ C2 ⇐⇒ ‖(ENin, BN
in)− (Eµin, B

µ
in)‖L∞(B(r)) ≤ N−

1
4 . (5.155)

Moreover, setting p := 1
4γ , we consider the set C3 ⊂ R6N de�ned by

Z ∈ C3 ⇐⇒ W p
p (µN [Z], f0) ≤ r3+p

N . (5.156)

Obviously, P0(Z /∈ C1) = 0 and according to Lemma 5.10.3, P0(Z /∈ C2) . N−1. For C3,
we apply the large deviation estimate, Theorem 2.2.1, with d = 6, p := 1

4γ and ξ = r3+p
N ≥

N−(3+p)γ = N−(3γ+1/4). This yields constants c, c′ > 0 such that

P0

(
W p
p (µN0 [Z], f0) > r3+p

N

)
≤ c′e−cNs

, (5.157)

where

s = 1− 2(3γ + 1/4) =
1

2
(1− 12γ) > 0. (5.158)

In total, setting
C := C1 ∩ C2 ∩ C3 (5.159)

there exists a constant C7 such that P0(C) ≥ 1− C7
N . Note that the requirement γ < 1

12 for
the width of the cut-o� comes from (5.158).

5.11.2 Evolution of JNt

For t > 0 we have to control the growth of E0(JNt ). Recall from Def. 5.7.2:

JNt (Z) := min
{

1, λ(N)N δ sup
0≤s≤t

|NΨ1
t,0(Z)− NΦ1

t,0(Z)|∞

+N δ sup
0≤s≤t

|NΨ2
t,0(Z)− NΦ2

t,0(Z)|∞
}
,

with λ(N) := max{1,
√

log(N)}. For �xed t > 0 we denote by Bt the set

Bt := {Z ∈ R3 × R3 : JNt (Z) < 1}. (5.160)

Moreover, we de�ne the set

At := A1
t ∩A2

t ∩A3
t ∩A4

t ∩ ... ∩A12
t , (5.161)

where A1
t , A

2
t , A

3
t , A

4
t , A

5
t , A

6
t are de�ned in Section 5.10 and A7

t , .., A
12
t are the analogous

sets for the magnetic �eld components.
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We split E0(JNt ) into

E0(JNt ) = E0(JNt | At ∩ Bt ∩ C) + E0(JNt | Bt ∩ (At ∩ C)c) + E0(JNt | Bct ).

Now, we �rst observe that if Z ∈ Bct , we have d
dtJ

N
t = 0, since JNt (Z) = 1 is already

maximal. In particular,
∂t E0(JNt | Bct ) = 0. (5.162)

Hence, we only need to consider the case JNt (Z) < 1 for which, in particular,

sup
0≤s≤t

|NΨs,0(Z)− NΦs,0(Z)|∞ < N−δ ≤ N−γ ≤ rN . (5.163)

We have to control the evolution of

λ(N)N δ sup
0≤s≤t

|NΨ1
s,0(Z)− NΦ1

s,0(Z)|∞ +N δ sup
0≤s≤t

|NΨ2
s,0(Z)− NΦ2

s,0(Z)|∞.

We will denote by EN = EN [f̃N ] and BN = BN [f̃N ] the macroscopic �elds, generated by
the (regularized) Vlasov density, and by Eµ = Eµ[µ̃N [Z]], Bµ = Bµ[µ̃N [Z]] the microscopic
�elds, generated by the rigid charges.

Recalling Lemma 3.8.2 and denoting by ∂+
t the derivative from the right w.r.t. t, we �nd:

∂+
t sup

0≤s≤t
|NΨ1

s,0(Z)− NΦ1
s,0(Z)|∞

≤
∣∣∂t(NΨ1

t,0(Z)− NΦ1
t,0(Z))

∣∣
∞ = max

1≤i≤N
|v(ξ∗i (t))− v(η∗i (t))|

≤ 2 max
1≤i≤N

|ξ∗i (t)− η∗i (t)| = 2|NΨ2
t,0(Z)− NΦ2

t,0(Z)|∞,

(5.164)

as well as

∂+
t sup

0≤s≤t
|NΨ2

s,0(Z)− NΦ2
s,0(Z)|∞

≤
∣∣∂t(NΨ2

t,0(Z)− NΦ2
t,0(Z))

∣∣
∞ = max

1≤i≤N
|K̃[µ̃](t, x∗i , ξ

∗
i )− K̃[f̃ ](t, y∗i , η

∗
i )|

≤ max
1≤i≤N

|K̃[f̃ ](t, x∗i , ξ
∗
i )− K̃[f̃ ](t, y∗i , η

∗
i )|+ max

1≤i≤N
|K̃[µ̃](t, y∗i , η

∗
i )− K̃[f̃ ](t, y∗i , η

∗
i )|

≤L|NΨt,0(Z)− NΦt,0(Z)|∞ + ‖ẼN (t)− Ẽµ(t)‖L∞(B(r)) + ‖B̃N (t)− B̃µ(t)‖L∞(B(r))

(5.165)

In the last line, we used the uniform Lipschitz bound on the mean �eld force (5.67) and
the fact that |x∗i |, |y∗i | < r for all i = 1, .., N and t ≤ T .

It remains to control the term

‖ẼN (t, ·)− Ẽµ(t, ·)‖L∞(B(r)) + ‖B̃N (t, ·)− B̃µ(t, ·)‖L∞(B(r))

≤ ‖EN (t, ·)− Eµ(t, ·)‖L∞(B(r)) + ‖BN (t, ·)−Bµ(t, ·)‖L∞(B(r)).
(5.166)

Now, Z ∈ (At∩C)c are the �bad� initial conditions that may lead to large �uctuations in the
�elds or a blow-up of the microscopic charge density. However, the Vlasov �elds (ẼN , B̃N )
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are bounded uniformly in N according to (5.67), while the (smeared) microscopic �elds
(Ẽµ, B̃µ) diverge at most as ‖(Ẽµ, B̃µ)‖∞ . r−2

N according to Prop. 5.8.5. Therefore:

‖∂+
t J

N
t (·)‖L∞(R6N )

≤ (2λ(N) + L)JNt + ‖ẼNt ‖∞ + ‖Ẽµt ‖∞ + ‖B̃N
t ‖∞ + ‖B̃µ

t ‖∞ . r
−2
N .

(5.167)

Hence, there exists a constant C ′ such that

∂+
t E0(JNt | Bt ∩ (At ∩ C)c)) = E0(∂+

t J
N
t | Bt ∩ (At ∩ C)c)

≤ ‖∂+
t J

N
t ‖L∞(R6N ) P0(Act ∪ Cc) ≤ C ′r−2

N

1

N
≤ C ′N−1+2γ .

(5.168)

Z ∈ At ∩ Bt ∩ C are the �good� initial conditions, for which we have derived various nice
properties:

|x∗i (t)| < r, |ξ∗i (t)| < ξ, ∀t ∈ [0, T ] (from eq. 5.163)

‖ρ[µNt [Z]]‖∞ ≤ Cρ, ∀N ≥ 1, t ∈ [0, T ] (from Proposition 5.8.2)

‖(∇xEµ,∇xBµ)‖∞ . r−2
N (Proposition 5.8.5)

‖(ENin, BN
in)− (Eµin, B

µ
in)‖L∞(B(r)) ≤ N−1/4 (since Z ∈ C2)

In particular, combining the results of Section 5.10, we have:

max
{
|EN (t, xi)− Eµ(t, xi)|∞ + |BN (t, xi)−Bµ(t, xi)|∞ : xi ∈ GN

}
. N−

1
4︸ ︷︷ ︸

from (5.115,5.136,5.145,5.149)

+
C0

(1− v)4
(1 + log(r−1

N )) sup
0≤s≤t

|NΦ1
s,0(Z)− NΨ1

s,0(Z)|∞︸ ︷︷ ︸
from (5.121,5.123 ,5.141)

+
LC0T

(1− v)5
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞ +

C0T

(1− v)4
sup

0≤s≤t
|NΦ2

s,0(Z)− NΨ2
s,0(Z)|∞︸ ︷︷ ︸

from(5.122,5.124 ,5.141)

+
LC0(1 + T 2)

(1− v)4

(
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞ + sup

0≤s≤t
|NΦ2

s,0(Z)− NΨ2
s,0(Z)|∞

)
︸ ︷︷ ︸

from(5.138−5.140)

+
Cρ

(1− v)2

t∫
0

‖EN (s)− Eµ(s)‖L∞(B(r)) + ‖BN (s)−Bµ(s)‖L∞(B(r)) ds.

︸ ︷︷ ︸
from (5.130)

We simplify this expression to:

max
{
|EN (t, xi)− Eµ(t, xi)|∞ + |BN (t, xi)−Bµ(t, xi)|∞ : xi ∈ GN

}
. N−

1
4 +

C0 log(r−1
N )

(1− v)4
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞ +

LC0(1 + T 2)

(1− v)5
sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞

+
Cρ

(1− v)2

t∫
0

‖EN (s)− Eµ(s)‖L∞(B(r)) + ‖BN (s)−Bµ(s)‖L∞(B(r)) ds. (5.169)
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According to Proposition 5.8.5 and equation (5.67), we have ‖(EN , BN )− (Eµ, Bµ)‖Lip .
r−2
N . Moreover, by construction: sup

{
min
xi∈GN

|x − xi| : x ∈ B(r, 0)
}
≤
√

3
2

r
N . Hence, by the

same argument as in Lemma 5.10.3,

‖EN (t, ·)− Eµ(t, ·)‖L∞(B(r)) + ‖BN (t, ·)−Bµ(t, ·)‖L∞(B(r))

. max
{
|EN (t, xi)− Eµ(t, xi)|∞ + |BN (t, xi)−Bµ(t, xi)|∞ : xi ∈ GN

}
+
r−2
N

N
,

where
r−2
N
N ≤ N

−1+2γ ≤ N−
1
4 . Together with (5.169), we thus have:

‖EN (t, ·)− Eµ(t, ·)‖L∞(B(r)) + ‖BN (t, ·)−Bµ(t, ·)‖L∞(B(r))

. N−
1
4 +

C0 log(r−1
N )

(1− v)4
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞ +

LC0(1 + T 2)

(1− v)5
sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞

+
Cρ

(1− v)2

t∫
0

‖EN (s)− Eµ(s)‖L∞(B(r)) + ‖BN (s)−Bµ(s)‖L∞(B(r)) ds.

By Gronwall's inequality, there exists a constant C ′′ > 0 depending on v and Cρ such that

‖EN (t, ·)− Eµ(t, ·)‖L∞(B(r)) + ‖BN (t, ·)−Bµ(t, ·)‖L∞(B(r))

≤ etC′′
(
N−

1
4 +

C0 log(r−1
N )

(1− v)4
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞

+
LC0(1 + T 2)

(1− v)5
sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞

+ ‖EN (0, ·)− Eµ(0, ·)‖L∞(B(r)) + ‖BN (0, ·)−Bµ(0, ·)‖L∞(B(r))

)
(5.170)

and with (5.155):

‖EN (t, ·)− Eµ(t, ·)‖L∞(B(r)) + ‖BN (t, ·)−Bµ(t, ·)‖L∞(B(r))

≤ eTC′′
C0 log(r−1

N )

(1− v)4
sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞

+ eTC
′′LC0(1 + T 2)

(1− v)5
sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞ + eTC

′′
2N−

1
4 .

(5.171)
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Plugging this into (5.165), we get:

∂+
t

(
N δ sup

0≤s≤t
|NΨ2

s,0(Z)− NΦ2
s,0(Z)|∞

)
≤ N δL|NΨt,0(Z)− NΦt,0(Z)|∞ + 2eTC

′′
N−

1
4

+δ

+ eTC
′′LC0(1 + T 2)

(1− v)5
N δ sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞

+ eTC
′′C0 log(N)

(1− v)4
N δ sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞.

(5.172)

Note, in particular, that the last summand can be rewritten as:√
log(N)

(1− v)4

(√
log(N)N δ sup

0≤s≤t
|NΦ1

s,0(Z)− NΨ1
s,0(Z)|∞

)
,

so that, together with (5.164) and λ(N) = max{1,
√

log(N)}:

∂+
t J

N
t (Z) ≤ 2λ(N)N δ|NΨ2

t,0(Z)− NΦ2
t,0(Z)|∞ +N δL|NΨt,0(Z)− NΦt,0(Z)|∞ + 2eTC

′′
N−

1
4

+δ

+ eTC
′′C0

√
log(N)

(1− v)4

(√
log(N)N δ sup

0≤s≤t
|NΨ1

s,0(Z)− NΦ1
s,0(Z)|∞

)
+ eTC

′′LC0(1 + T 2)

(1− v)5
N δ sup

0≤s≤t
|NΦs,0(Z)− NΨs,0(Z)|∞

≤ eTC
′′
LC0(3 + T 2)

(1− v)5
λ(N) JNt (Z) + 2eTC

′′
N−

1
4

+δ.

Together with (5.168), we have found:

E0(JNt+∆t)− E0(JNt,0)

≤
(eTC′′LC0(3 + T 2)

(1− v)5
λ(N) JNt (Z) + 2eTC

′′
N−

1
4

+δ + C ′N−1+2δ
)

∆t+ o(∆t).

Finally, using Gronwalls inequality and the fact that JN0 (Z) = 0 ∀Z we get

E0(JNt ) ≤ etCλ(N)N−
1
4

+δ, (5.173)

with

C(T,C0, f0) = max
{eTC′′LC0(3 + T 2)

(1− v)5
, C ′

}
. (5.174)

Together with the results of Section 5.7, Proposition 3.5.3 and Lemma 5.7.4, this concludes
the proof of the theorem. For simplicity, we demand N ≥ 4, so that λ(N) =

√
log(N).

The approximation result for the �elds, i.e. part c) of the theorem, can be read o� equa-
tion (5.171) using P0

[√
log(N) sup0≤s≤t|NΦ1

s,0(Z) − NΨ1
s,0(Z)|∞ ≥ N−δ

]
≤ E0(JNt ) and

P0

[
sup0≤s≤t |NΦs,0(Z)− NΨs,0(Z)|∞ ≥ N−δ

]
≤ E0(JNt ). By choosing the grid GN accord-

ingly, B(r) can be replaced by any compact set M ⊂ R3.



Chapter 6

Discussion

We have presented two alternative approximations of the Vlasov-Poisson equation and
one approximation of the Vlasov-Maxwell equations as mean �eld limits of regularized N -
particle dynamics. To my knowledge, these are the �rst such results concerning the actual
Vlasov-Poisson and Vlasov-Maxwell equations used in physics with generic initial data and
an N -dependent cut-o� decreasing much faster than logarithmic. Hence, I believe that
they constitute signi�cant progress with regard to the microscopic justi�cation of these
equations. They can give us some con�dence that consistency between the fundamental
microscopic theory and the mesoscopic kinetic theory can be established in a rigorous
fashion. Nevertheless, the results we obtained are, of course, just one step towards a
conclusive derivation and leave room for improvement in various respects. In particular, one
would like to further reduce the size of the cut-o� or, ideally, dispense with the microscopic
regularization altogether.

6.1 Vlasov-Maxwell: On the status of the regularization

However, as already noted in the introduction to Chapter 5, the status of the regularization
is more subtle in the context of Vlasov-Maxwell than with respect to the Vlasov-Poisson
case. In the context of Vlasov-Poisson, the correct particle dynamics are clear and relatively
well understood and skeptical individuals must insist that we have only conclusively proven
the mean �eld approximation, once we derive the Vlasov equation from an N -particle
Coulomb systems with no cut-o� at all. We will discuss the prospects of this ambitious
endeavour in the next section.

When it comes to the relativistic theory, though, the standard Maxwell-Lorentz equa-
tions are not well de�ned for point-particles due to the self-interaction singularity, and
there is no universal agreement on what the �correct� microscopic theory is supposed to
be. (In fact, a successful derivation of the Vlasov-Maxwell equations would seem to justify
or corroborate the respective microscopic model just as much as the other way round.)
Personally, I would advocate that the optimal result in this case would be a derivation of
the Vlasov-Maxwell equations on the basis of Wheeler-Feynman electrodynamics, which is
a time-symmetric version of classical electrodynamics that contains no �elds and no self-
interactions and hence no (a priori) singularities ( [71,72], see [5] for a recent mathematical
discussion). However, the Wheeler-Feynman theory is still so little understood from a
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mathematical point of view, that the investigation of its mean �eld limit seems very far
away.

Against this backdrop, the point-particle limit of the rigid charges model, that was con-
sidered here, seems like a natural � though still rather pragmatic � way to understand both
classical electrodynamics and its mean �eld limit. Colloquially speaking, if the equations do
not make sense for in�nitely small particles, we read them as referring to arbitrarily small
particles. In fact, there are also physicists willing to entertain the idea of rigid charges on
a more fundamental level, see e.g. Lyle, 2010 [45], though the main objection remains the
break of fundamental Lorentz invariance.1

To be clear, none of this is to say that the microscopic model considered in Chapter
5 amounts to a realistic physical theory. It certainly does not. However, as other authors
have pointed out before (see e.g. [16,21]), any more satisfying microscopic approach to the
Vlasov-Maxwell dynamics will most likely require a satisfying solution to the self-interaction
problem �rst. Given the current state of a�airs, I believe that the approach taken here is
very reasonable, not only from a mathematical but also from a physical point of view.

Vlasov-Maxwell: Outlook and related questions. In any case, though, our result
leaves much room for improvement as far as the size of the cut-o� is concerned. Note that
the lower bound on the cut-o�, rN ∼ N−δ with δ < 1

12 , comes only from the Wasserstein
bound on the charge density, Proposition 5.8.2, which assures that the microscopic charge
density will typically remain bounded uniformly in N and t. This is a relatively powerful,
but rather coarse way to prevent a blow-up of the microscopic dynamics. All the other
estimates would allow the cut-o� (electron radius) to decrease at least with δ < 1

4 , even
with the rough law of large number estimates used here. Hence, it seems likely that the
width of the cut-o� could be signi�cantly decreased by a more detailed analysis of the
microscopic dynamics, in particular the so-called �acceleration� or �radiation� component
of the electromagnetic �eld.

There are other ways in which our approximation result for the Vlasov-Maxwell system
could be improved. In particular, one would like to get rid of assumption (5.57) � the
uniform bound on the charge density for the sequence of solutions to the regularized Vlasov-
Maxwell equation � and replace it with a condition on f0, preferably one that can be easily
checked. However, such a condition would likely have to come out of the existence theory
for Vlasov-Maxwell. The same might be true with respect to a possible extension of the
results to a larger class of initial data.

On a di�erent note, it might be interesting to include rotational degrees of freedom
and study the rigid charges model with spin. Moreover, it would be interesting to see
whether the methods employed here for the Vlasov-Maxwell system can also be applied, in
an appropriate sense, to the Vlasov-Einstein equations. A �rst step in that direction was
already made by Elskens, Kiessling and Ricci [16], who studied a relativistic version of the
gravitational Vlasov-Poisson system coupled to a linear wave equation.

1Empirically, experiments currently put the upper bound on the electron radius to 10−22m [12].
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6.2 Vlasov-Maxwell: A note on the existence theory

Concerning the existence of classical solutions to the Vlasov-Maxwell systems, the e�orts in
recent years have largely focused on proving su�cient conditions for the result of Glassey
and Strauss ( [20], see our Thm. 5.4.1). Most recently, Pallard [52] proved that for compact
initial data, singularity formation can only happen in �nite time T , if lim

t→T−
‖ρ(t)‖6 = +∞.

Unfortunately, this is still far away from the best known a priori bound on the charge
density, which is ‖ρ(t)‖4/3 ≤ C, for a constant C depending on initial data. This estimate
comes from the conservation of the energy

ε(t) :=

∫ ∫ √
1 + |ξ|2f(t, x, ξ)dxdξ +

1

2

∫
|E(t, x)|2 + |B(t, x)|2dx, (6.1)

more precisely, from the resulting upper bound in the kinetic energy term. From a physical
point of view, it would seem that the relevant bounds on singularity formation should come
from the potential / �eld energy rather than the kinetic energy. However, to my knowledge,
so far no one has been able to extract valuable estimates from the L2-bounds on E and B.

In fact, the following observation might indicate that no satisfying results are to be
expected. Let's consider, as a rough estimate, a stationary, spherically symmetric charge
distribution with

ρ(x) = ρ(|x|) =

{
|x|−β, |x| < R1

0, |x| > R2

,

where 0 < R1 < R2 < ∞ and β < 3. According to Gauÿ' law, the Coulomb �eld of this
charge distribution is then given by (with r = |x|):

E(r) ∼ r−2

r∫
0

r′2ρ(r′) dr′ = r1−β, for r < R1 (6.2)

and E(r) ∼ 1
r2

for r > R2. The corresponding �eld energy is ‖E‖22 ≈
∫ R1

0 r2r2(1−β)dr +
Const. Now the integral is �nite if and only if β < 2

5 . But with β <
2
5 we have ρ ∈ Lp(R3) if

and only if p ≤ 6
5 . In other words, an upper bound on ‖E‖2 does not preclude a singularity

for which the Lp norms of ρ are already in�nite for p > 6
5 .

Of course, this electrostatic situation does not correspond to a consistent solution of a
Vlasov-Maxwell equations and it says nothing about the formation of singularities. How-
ever, it might suggest that the upper bound on the �eld energy is unlikely to produce
stronger a priori estimates for the charge density.

6.3 Vlasov-Poisson: Comparison of recent results

Let us now turn to the Vlasov-Poisson system, for which the di�culties are of less fun-
damental nature. In this thesis, we have presented two alternative approximations of the
Vlasov-Poisson equation � one based on the method of Boers and Pickl and a regularization
of the force (Chapter 3) and one based on the stability result of Loeper and a smearing
of the charge density (Chapter 4). It is thus interesting to compare both approaches with
each other as well as with the results of Hauray and Jabin [26] that must be viewed as
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the reference for mean �eld limits with singular forces. Of course, we have to emphasize
that the results of Hauray and Jabin do not include the Coulomb singularity, which is the
main focus of our work, while our work does not include results without cut-o�, which is
the main focus of theirs. Nevertheless, it is instructive to compare the various approaches
and techniques, in particular with regard to possible future improvements. In this spirit,
we want to highlight some important similarities and di�erences.

The role of probability. What all recent results have in common, is that they are
probabilistic in the sense that the mean �eld limit can be performed for typical initial
conditions. As mentioned in the introduction, this is in contrast to the classical results of
Braun-Hepp and Dobrushin, which are, in e�ect, deterministic, allowing arbitrary sequences
of initial con�gurations approximating a macroscopic pro�le f0. The reason is that for
unbounded forces, there exist �bad� initial conditions leading to clustering and/or strong
correlations between the particles and thus to signi�cant deviations from the typical mean
�eld behavior.

The strategy employed in [26] � as well as in our proof from Chapter 4 � is thus to
impose additional constraints on the initial conditions, subsequently showing that these
constraints are satis�ed with probability 1 in the limit N → ∞. In [26], the necessary
bounds are imposed on the concentration of particles at t = 0, while in our proof, the
probabilistic element enters through the requirement of a su�ciently fast convergence of
the initial distribution. In any case, these assumptions assure that at t = 0, the particles are
�well-placed� so to speak, preventing, in particular, a blow-up of the microscopic dynamics.

In contrast, the method introduced in [6] and re�ned in Chapter 3 is designed for
stochastic initial conditions. The relevant quantity to control is a stochastic process on the
N -particle phase-space, rather than distributions pertaining to the description of an indi-
vidual system. Indeed, recognizing the need for a probability result, it is tempting to work
with the N -particle distribution FNt de�ned in Section 1.3 rather than empirical densities
µNt [Z]. In the past, this has usually lead to the study of the BBKGY hierarchy which,
however, has not produced particularly strong results for the mean �eld scaling (see [63],
for instance). The method of Boers and Pickl � while also taking the ensemble point of
view � seems to be more �exible and more powerful in the mean �eld context.

The quantities to control. An interesting distinction between the three methods lies in
the way they control the di�erence between mean �eld dynamics and microscopic dynamics.
[26] uses the in�nite Wasserstein distance. As the authors explain:

�The use of the in�nite MKW distance is important. We were not able to
perform our calculations with other MKW distances of order p < +∞ as the
in�nite distance is the only MKW distance with which we can handle a localized
singularity in the force and Dirac masses in the empirical distribution.� [26, p.17]

This is in contrast to the situation in Chapter 4 of this thesis, where we could use the more
common and much weaker Wasserstein distance of order 2. The reason is that we apply the
microscopic regularization on the level of the charge density, so that we deal with bounded
densities rather than Dirac masses.

The method used in Chapter 3 takes the opposite approach, so to speak. Instead of
smearing the microscopic density, we approximate the Vlasov density by singular measures
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by sampling the mean �eld �ow along random initial conditions. Controlling the di�erence
between microscopic dynamics and mean �eld dynamics then comes down to controlling
the distance between two sets of particle trajectories rather than two probability measures,
which allows for relatively strong estimates.

Admissible initial distributions. The result of Hauray and Jabin requires f0 with com-
pact support. At least in dimension 3, both of our results for the Vlasov-Poisson equation
allows a signi�cantly larger class of initial data which includes physically relevant examples
such as Boltzmann distributions.

The size of cut-o�. The three results di�er signi�cantly with respect to the scale of the
required microscopic cut-o�. The comparison has to be taken with a grain of salt, since
the results in [26] do not include the Coulomb case, while our result from Chapter 4 would
have to be adapted to singularities weaker than Coulomb. However, if we consider inverse
power laws of order α, i.e. kα(x) = ± x

|x|α+1 , x ∈ Rd molecular chaos can be proven with a

cut-o� of order N−δ for any δ < κ, where

• κ→ 1
2d , as α↗ 2 with the method of Hauray and Jabin [26]

• κ = 1
d , for α = 2 with for the method of Boers and Pickl (Ch.3)

• κ = 1
d(d+2) , for α = 2 with the method of smeared charges (Ch.4)

Moreover, we note that the last two results hold in dimension d ≥ 2 while the result in [26]
requires d ≥ 3.

The method of smeared charges, presented in Chapter 4, is arguably the simplest one. It
avoids any detailed analysis of the microscopic dynamics by propagating the L∞-bound
(3.21) on the microscopic charge density with W2(µNt , ft). Similar estimates can be used to
carry over stronger regularity properties from the Vlasov density to the regularized micro-
scopic density. The price for this simpli�cation is a relatively large cut-o�, in particular in
higher dimensions. Moreover, we observe that there is no immediate connection between
the size of the required cut-o� and the strength of the singularity. This is in contrast to
the situation in [26] and [6], where the lower bound on the cut-o� decreases with α.

Turning to the result of Chapter 3, a cut-o� of order ∼ N−
1
3 is already quite satisfying,

as this corresponds to the scale of the average distance between two neighboring particles.
In other words, while a particle interacts with N − 1 other particles at any given time, the
number of interactions a�ected by the cut-o� is typically of order 1. One reason for the
relative strength of the result � as far as the size of the cut-o� is concerned � is that all
non-trivial estimates take place in d-dimensional physical space, rather than 2d-dimensional
(p, q)-space.

Finally, in [26], the necessary cut-o� for singularities near the Coulomb case is of order

N−
1
2d , corresponding to the typical distance between two neighboring particle states in

(p, q)-space.
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Results without cut-o�? Probably the more important result in the paper of Hauray
and Jabin concerns weak singularities, for which molecular chaos is proven with no cut-
o� at all. For α < 1, the authors are able to provide an explicit control of the minimal
particle distance � in (p, q)-space, strictly speaking, while integrating the force over short
time intervals. More precisely, they show that, for typical initial conditions,

inf
i 6=j
|(qi, pi)− (qj , pj)| ≥ N−γ , γ <

α+ d

2d
(6.3)

which provides the necessary bound on close encounters to prove molecular chaos. If and
how these results can be extended to α ≥ 1 is an open question.

Concerning our method developed in Chapter 4, there is probably much room for im-
provement as far as the size of the cut-o� is concerned. However, it is clear that this
particular method is by all means committed to a microscopic regularization, i.e. a smear-
ing of the point-charges.

As far as the method of Boers and Pickl is concerned, the issue is a bit more subtle.
While this approach is not a priori committed to a regularization, it seems unlikely that
the cut-o� can be removed completely � even for very weak singularities � without a more
detailed analysis of the N -particle dynamics. So far, our handle on the microscopic tra-
jectories comes merely from their closeness to the mean �eld trajectories: only those Z
contribute to the growth of E0(JNt ) for which |Ψs,0(Z) − Φs,0(Z)|∞ < N−δ, ∀0 ≤ s ≤ t.
This de�nes a scale beyond which we have no control on close encounters of particles and
the cut-o� takes over. The method, however, is very �exible. In particular, it is possible
to include additional quantities in the de�nition of JNt � for instance, something along
the lines of the minimal particle distance considered in [26] � to get better control on the
clustering of particles. Continued e�orts along these lines seems like a promising project.

6.4 Related questions and remarks

It might be interesting to observe that all the results discussed here hold equally in the
repulsive and the attractive (gravitational) case, while physical intuition would tell us that
repulsive interaction might help to prevent close encounters and mitigate the in�uence of
the singularity. The situation is quite similar with respect to the solution theory, where
most results do not distinguish between Vlasov-Newton and Vlasov-Poisson. However, as
already argued in [26, Section 6.2], individual two-particle interactions become so weak in
the 1

N -scaling that the di�erence between repulsive and attractive forces are relevant only
at extremely short distances.

For instance, the potential energy bound for a repulsive potential V (x) ∼ 1
|x|α−1 , α > 1

yields a lower bound on the minimal distance between particles in physical space which is of

order ∼ N−
2

α−1 , i.e. ∼ N−2 in the 3-dimensional Coulomb case α = 2. This is far beyond
the scale of the cut-o� in any of the available results and presumably even far beyond the
bounds that could be obtained on purely probabilistic grounds. (For the free dynamics,

the typicality bound on close encounters is of order N−
1
d−2 , that is, for γ > − 1

d−2 , the
probability of any two particles coming closer than N−γ over a compact time-interval goes
to 0 for N → ∞). Nevertheless, it will be interesting to see whether future improvements



6.4 Related questions and remarks 111

of the existing results can exploit the repulsive character of the dynamics.

Singularity formation in Newtonian gravity. In view of possible results without
cut-o�, there is of course a di�erence between attractive and repulsive interactions as far
as the existence of the microscopic dynamics is concerned. In our discussions, this has
not been an issue, since we always considered regularized dynamics on the microscopic
level, for which the existence theory is standard. The same holds for singular forces (with
α > 1) in the repulsive case, provided they are generated by a potential. Since the energy
conservation yields a bound on the minimal particle distance, the standard Picard-Lindelö�
theory applies for every �xed N .

Concerning singularity formation in Newtonian gravity, the state of the art is summa-
rized in the book of Saari [58], to whom we also owe many of the pertinent results. In
particular, it is known that for the Newtonian N -body problem in 2 or 3 dimensions, initial
conditions leading to a collision of two or more particles form a set of �rst Baire category
and Lebesgue measure zero [56, 57]. However, there is also the possibility of non-collision
singularities, where particles go o� to in�nity in �nite time. These non-collision singulari-
ties are known to exist for N ≥ 5 [74], but not for N ≤ 3 [51]. Concerning their likelihood,
what has been proven so far is that for N = 4, initial conditions leading to non-collision
singularities (if they exist at all) form a set of �rst Baire category and Lebesgue measure
zero. Saari conjectures that this holds true for all N ≥ 4 [58, p. 221] and intuitively, it
seems clear that only extremely conspiratorial behavior could lead to particles being accel-
erated to in�nity in �nite time. However, as far as I known, no rigorous proof has been
given so far.
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