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1. Einleitung 

1.1. Herz-Kreislaufstillstand 

Die Ursachen die zu einem Herz-Kreislauf-Versagen führen und eine anschließende 

kardiopulmonale Reanimation erforderlich machen können vielseitig sein. Hauptursache 

für ein Kreislaufversagen sind jedoch Herzinfarkt und Lungenembolie und können mit 

einer letalen Arrhythmie einhergehen. Patienten, die einen Herz-Kreislaufstillstand 

erleiden, befinden sich in einem lebensbedrohlichen Zustand, der nur in den ersten 

Minuten durch geeignete Maßnahmen reversibel behoben werden kann (1).  

Die außerklinischen Maßnahmen und die gesundheitliche Aufklärung zum Thema Herz-

Kreislaufstillstand werden zunehmend intensiviert und tragen zu einer Sensibilisierung 

der Bevölkerung bei. Darüber hinaus wird auch die außerklinische Erstversorgung stetig 

verbessert, beispielsweise durch Schulung von Flugpersonal und Bereitstellung von 

halbautomatischen Defibrillatoren in U-Bahnstationen und Bahnhöfen. Auch die 

präklinische Versorgung der Patienten durch eine stetig verbessernde Infrastruktur des 

Rettungsdienstes führt zu verkürzten Einsatzzeiten und gewährleistet eine schnellere 

Einlieferung in eine Klinik (2). Eine frühe Versorgung des Patienten ist entscheidend, da 

die Überlebenschancen jede Minute nach Kreislaufstillstand um 8–10% sinken (3;4). 

Im Raum München wurden 2006 ca. 142.000 Gesamteinsätze im Rettungsdienstbereich 

München registriert, wovon ca. 13% durch den NAW der Berufsfeuerwehr München 

durchgeführt wurden. Nach Auswertungen der integrierten Leitstelle München waren 

durch die Notarzteinsatzfahrzeuge der Berufsfeuerwehr davon 1 % Reanimationen. Etwa 

50 % erreichten ein Wiedererlangen eines Spontankreislaufes und konnten in eine 

Münchner Klinik eingeliefert werden. Bei den vorliegenden Daten konnten 10% der 

Patienten ermittelt werden, die 30 Tage überlebten. Dies entspricht etwa einer Summe 

von 15 Patienten pro Jahr durch den NAW der Berufsfeuerwehr, sowie 70 Patienten in 

der gesamten Münchner Notfallrettung (2) für das Jahr 2006. 

In den Updates der Leitlinien zur kardiopulmonalen Reanimation durch den European 

Resuscitation Council (ERC), 2010 erschienen (5), liegt die Betonung eindeutig auf 
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stetiger Herzdruckmassage. Diese sollte maximal für 5 Sekunden für spezielle 

Maßnahmen unterbrochen werden, da gezeigt werden konnte, dass auch kurze 

Unterbrechungen mit einer späteren myokardialen Dysfunktion und einer verminderten 

Überlebensrate assoziiert werden (6;7).  

Zusätzlich werden die Behandlungsabläufe für medizinisches Personal von der 

wissenschaftlichen Fachorganisation wie der AHA (American Heart Association) oder der 

ERC (European Resuscitation Council) festgelegt, in Schulungen vermittelt und stetig 

optimiert. Durch dieses Vorgehen finden auch aktuelle Erkenntnisse der medizinischen 

Forschung Einzug in die Behandlungsrichtlinien und gewährleisten eine steigende 

Qualität der Behandlung. Aufgrund dieser Faktoren können immer mehr Patienten nach 

Reanimation mit einem Spontankreislauf (ROSC – return of spontaneous circulation) in 

die Klinik gebracht werden.  

Es gibt verschiedene Arten von letalen Arrhythmien bei reanimationspflichtigen 

Patienten, dabei kann jedoch nicht jede Arrhythmie durch elektrische Defibrillation 

therapiert werden, die Zirkulation muss durch Herzdruckmassage aufrechterhalten 

werden. Die definitive Therapie bei Kammerflimmern und der pulslosen ventrikulären 

Tachykardie ist die Defibrillation, bis zum Eintreffen eines Defibrillators und während 

der Ladepausen muss auch hier eine suffiziente Thoraxkompression durchgeführt werden 

(8;9). 

Obwohl die Behandlungsabläufe und die rhythmusbasierte Therapie durch die AHA und 

ILCOR (International Committee on Resuscitation) standardisiert sind, müssen auch 

diese Vorgaben den individuellen Bedürfnissen des Patienten angepasst werden (8), 

besonders im Hinblick auf die zunehmende Komorbidität des jeweiligen Patienten. 

Verschiedene Studien setzen ihren Schwerpunkt auf das neurologische Outcome nach 

primärem Kreislaufstillstand, doch der Gesundheitszustand ist oft unterschiedlich und 

komplex (10) besonders im Hinblick auf das postresuscitation syndrome. Das Ziel einer 

erfolgreichen Reanimation und der entsprechenden Nachbehandlung sollte es sein, die 

volle Gesundheit wiederzuerlangen, um den gewohnten Lebensstandard beizubehalten 

(11;12). Nahezu alle Patienten müssen bereits initial intensivmedizinisch betreut werden. 

Einerseits aufgrund anhaltender komatöser Zustände, beeinträchtigten 
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Hirnstammreflexen und Krampfanfällen, andererseits durch die Folgen der systemischen 

Ischämie, welche unter anderem im Rahmen der Reperfusion regelmäßig zum SIRS 

(systemic inflammatory response syndrome) und MOF (multi organ failure) führt. 

1.2. Immunreaktion nach CPR 

Obwohl seit 50 Jahren der Herz-Kreislaufstillstand durch Reanimation therapiert wird, ist 

die Mortalität der Patienten trotz klinischer Therapie sehr hoch. Ursachen dafür sind 

sowohl ein irreversibler hypoxischer Hirnschaden (13;14) sowie die Ausbildung eines 

postresuscitation syndrome (15). Bei einem Kreislaufstillstand von mehreren Minuten 

nach der systemischen Ischämie im Rahmen der Reperfusion ist insbesondere die 

Ausschüttung zelltoxischer Immunmodulatoren und Metabolite ein gravierendes Problem 

(8). Die immunologische Aktivierung, die systemische Ischämie und die Reperfusion 

tragen dazu bei, dass sich ein Hyperinflammationssyndrom ausbildet, welches häufig in 

einem therapierefraktären Organversagen endet. Je länger eine systemische Ischämie 

andauert, desto mehr Zytokine und toxische Metabolite, bspw. Sauerstoffradikale werden 

freigesetzt. Eine anschließende Reperfusion führt daher zu einer Verteilung dieser 

schädlichen Metabolite in den Kreislauf. Zur Zusammenfassung und Verständnis dieser 

Pathologie hat sich ein 3-Phasen-Modell etabliert (8;9;16). Die Zeit ab dem 

Kreislaufstillstand wird in drei Phasen unterteilt, wobei für jede Phase ein spezifisches 

Vorgehen in der Behandlung angezeigt ist. Die erste Phase, genannt die „elektrische 

Phase“ gilt bis 4 min nach Herz-Kreislaufstillstand.  Die „Zirkulationsphase“ gilt ab etwa 

4 min bis ca. 10 min nach Ereignis, gefolgt von der „metabolischen Phase“ die ab etwa 

10 min nach Ereignis eintritt.  

Es zeigte sich in experimentellen Studien sowie bei Patienten die außerklinisch einen 

Herzstillstand erlitten und von geschultem Personal z.B. vom Flughafenmitarbeiter 

reanimiert wurden, dass die sofortige Defibrillation Überlebensraten bis 50 % erreichen 

kann.  
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In der Zirkulationsphase wird aufgrund der zunehmenden Konzentration toxischer 

Metaboliten empfohlen, ab 4 Minuten nach Kreislaufstillstand keine direkte 

Defibrillation einzuleiten. Dies geschieht mit der Absicht zunächst durch 

Herzdruckmassage die Zirkulation aufrechtzuerhalten und die durch die Ischämie 

akkumulierten schädlichen metabolische Faktoren zu verringern. Jedoch ist diese Phase 

einfacher in der Theorie zu verstehen und durchzuführen, praktisch ist dies schwierig 

umsetzbar, da der Zeitpunkt des Kreislaufstillstandes oft unklar ist und soll daher eher ein 

Vorschlag sein wenn dies innerklinisch unter Beobachtung auftritt.  

Zuletzt folgt die 3. Phase, die sogenannte „metabolische Phase“. Dort führen weder 

Herzdruckmassage noch Defibrillation zu einer hohen Überlebensrate. Ursächlich 

werden hierfür Gewebeschäden sowie Folgen der Reperfusion genannt und werden in 

dem folgenden Kapitel näher beschrieben. 

1.3. Postresuscitation syndrome 

Das postresuscitation syndrome gilt als eigenständiges Krankheitsbild, das nach primär 

erfolgreicher Reanimation auftreten kann. Es kommt zustande durch die systemischen 

Schäden einer Ischämie des gesamten Organismus und der anschließenden Reperfusion 

des Kreislaufs. Zustände, die im Zusammenhang mit dem postresuscitation syndrome 

auftreten, wie eine fehlregulierte Zytokinproduktion, das Vorhandensein von 

Endotoxinen im Plasma, eine gestörte Blutgerinnung und eine Nierendysfunktion ähneln 

dabei dem Krankheitsbild der Sepsis (17;18). In einer Studie von Vanden Hoek et al. 2002 

(19) wurden embryonale Myozyten aus Hühnern nach einer Ischämiezeit von einer 

Stunde für weitere drei Stunden reperfundiert. Diese wiesen eine verstärkte Ausschüttung 

von Sauerstoffradikalen während der Reperfusion auf, wobei Cytochrome c in das 

Zytosol freigesetzt und die Apoptose eingeleitet wurde.  

Während der ischämischen Phase kann die oxidative Phosphorylierung in den 

Mitochondrien nicht mehr stattfinden. Somit folgt die Zelle dem anaeroben Stoffwechsel 
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um Energie zu gewinnen. Allerdings sind diese Möglichkeiten schnell ausgeschöpft, ein 

ATP-Mangel entsteht und das Zellgewebe wird geschädigt.  

Während der Reperfusionsphase bei Wiedererlangen des Blutkreislaufs wird aufgrund 

des sogenannten Sauerstoffparadoxons (20) möglicherweise noch mehr Gewebe 

geschädigt. Sauerstoffradikale, Gerinnungs- und komplementaktivierende Stoffe und die 

überschießende Zytokinbildung führen zu einer Aktivierung der neutrophilen 

Granulozyten, die auf ihrer Zelloberfläche verstärkt Adhäsionsmoleküle exprimieren. 

Diese aktivierten Granulozyten binden an endotheliale Liganden, verlassen somit die 

Gefäße und wandern in Gewebe mit beschädigtem Endothel (21). Durch die 

Leukozytenadhäsion an den beschädigten Gefäßendothelien kann es einerseits zu 

Permeabilitätsstörungen sowie zu Thrombosen in der Mikrozirkulation kommen. Des 

Weiteren kann eine Ischämie und Reperfusion der blutversorgenden Abschnitte des 

Darms zu einer Schädigung der Darmschleimhaut führen, die Barrieren der Mukosa 

werden vermehrt permeabel, bakterielle Endotoxine sowie Bakterien gelangen in die 

Zirkulation und können eine Immunantwort auslösen (17). 

Diese Komponenten aus Ischämie, Reperfusion, gesteigerten Konzentrationen pro- und 

antiinflammatorischer Zytokine im Plasma, myokardiale und renale Dysfunktionen sowie 

eine gestörte Gerinnung, Permeabilitätsstörungen an Gefäßwänden und die Anwesenheit 

von Endotoxinen im Blut können zu einem SIRS mit folgendem MOF führen (22) . 

Mittlerweile exisitieren zunehmende Kenntnisse über eine ähnlich ablaufende 

Immunkaskade des Herz-Kreislaufstillstandes und lebensbedrohlicher Polyraumata, 

wodurch eine Optimierung der Abläufe und der Patientenversorgung angestrebt wird. 

Dafür hat die AHA speziell ein Newsroom eingerichtet wo über Neuigkeiten berichtet 

wird und regelmäßig ein Gedankenaustausch stattfindet.  

Systemic inflammatory response syndrome (SIRS) und multi organ failure (MOF) 

Bereits in der initialen Phase nach einem akuten Ereignis wie einer Reanimation kommt 

es zu einer Aktivierung humaner immunologischer Systeme, wie dem humoralen und 

dem zellulären System. Das humorale System ist gekennzeichnet durch das Komplement- 



8 

und Gerinnungssystem. Das zelluläre System vermittelt über die Freisetzung von 

Endothelzellen, neutrophile Granulozyten und Makrophagen. Dabei werden an der 

Immunmodulation beteiligte Enzyme synthetisiert, exprimiert und in die systemische 

Zirkulation freigegeben (23;24). 

Diese Veränderungen können zu einer reversiblen, systemischen Entzündungsreaktion 

führen (23). Nachdem in den letzten Jahren die proinflammatorische Phase mit 

Parametern wie TNF-α, IL-8 und IL-6 im Schwerpunkt der Forschung stand (25;26), wird 

nun über ein weiteres Zusammenspiel diskutiert, dem SIRS/CARS/MARS-Modell, wie 

in Abbildung 1 graphisch dargestellt. 

Dieses beschreibt das gleichzeitige Aufeinandertreffen der verschiedenen Phasen der 

Immunreaktion. Während der kompensatorischen Immunantwort (compensatory anti-

inflammatory response syndrome) CARS werden antiinflammatorische Zytokine im 

Mausmodell, unter anderem IL-10 und IL-1ra verstärkt exprimiert (27). Das Modell des 

CARS wird mit einer Immunparalyse in Verbindung gebracht, bei dem Patienten durch 

eine verringerte Immunabwehr infektanfälliger sind. Ebenso kann es ein 

prädisponierender Faktor zur Entstehung eines MODS (multiple organ dysfunction 

syndrome) sein (25;28). Das mixed antagonistic response syndrome (MARS) wird 

definiert als ein antagonistisches Reaktionssyndrom, das sich aus mehreren Phasen SIRS 

und CARS zusammensetzt.  

Aus diesen Theorien sind neue Therapieansätze entstanden. Dazu zählen beispielsweise 

die Bestimmung klinischer Scores um eine Verlaufsbeurteilung bestimmen zu können, 

wie auch den Einsatz von Kühlelementen oder Infusionen (Hypothermie), um das 

Ausmaß des Ischämie/ Reperfusionsschadens durch die postischämische 

Immundysregulation zu mildern. 
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Abbildung 1:  Folgeerscheinungen des Organismus auf die Folgen eines Kreislaufstillstandes, wie 

Homöostase durch SIRS (systemic Inflammatory response syndrome), CARS (compensatory anti-

inflammatory response syndrome) und MARS (mixed antagonistic response syndrome) (29) . 

 

Klinisch wird das SIRS durch zwei oder mehr der folgenden Symptome definiert wobei 

kein infektiöser Fokus vorliegt: 

● Körpertemperatur > 38,0 °C oder < 36,0 °C 

● Herzfrequenz > 90/min 

● Atemfrequenz > 20/min oder pCO2 < 32 mmHg 

● Leukozyten > 12000/mm³ oder < 4000/mm³ 

 

Bei einer systemischen Entzündungsreaktion hat die Ausschüttung der Zytokine 

synergistische wie auch antagonistische Effekte auf das Gefäßendothel, die glatte 

Gefäßmuskulatur, die Blutplättchen sowie andere gewebsständige und migratorische 

Entzündungszellen. Sie kann durch das hohe Ausmaß der Zytokinproduktion Gewebe- 
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und Zellschäden auslösen und Organe schädigen, die von der eigentlichen Ursache nicht 

betroffen sind. Zu hohe Konzentrationen der Zytokine können das Gewebe nicht nur 

direkt schädigen, sondern auch indirekte Schäden durch Beeinträchtigung anderer 

Immunzellen, wie z.B. Granulozyten, hervorrufen (30).  

Als Multiorganversagen bezeichnet man das innerhalb kurzer Zeit oder gleichzeitige 

Versagen zweier oder mehrerer Organe. Die hauptsächlich betroffenen Pathologien sind: 

● Akute respiratorische Insuffizienz/ Lungenversagen (ARDS) 

● Akute kardiozirkulatorische Insuffizienz/ Herz-Kreislauf-Schock 

● Akute renale Insuffizienz/ Nierenversagen 

● Akute Leberinsuffizienz/ Leberversagen 

● Gastrointestinale Stressblutungen 

● Enterokolitis/ Pankreatitis 

● Gerinnungsstörungen und disseminierte intravasale Gerinnung 

● Bewusstseinsstörungen und metabolisches Koma 

● Störungen des autonomen und peripheren Nervensystems und der 

Skelettmuskulatur (28) 

1.4. Zytokine 

Nach Wiedererlangen eines Spontankreislaufes kommt es zur Freisetzung von 

zelltoxischen Metaboliten sowie von Zytokinen, die mit den Folgen nach Reanimation 

wie SIRS und CARS in Verbindung gebracht werden. Im Tiermodell sowie in 

experimentellen klinischen Studien konnte festgestellt werden, das bereits in der initialen 

Phase nach Ischämie/ Reperfusion eine Aktivierung von humoralen, also Komplement- 

und Gerinnungssystem, und zellulären Systemen, sowie immunkompetenten Zellen wie 

Granulozyten und Makrophagen ausgelöst wird (31;32). Genau diese Veränderungen 
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werden für ein folgendes SIRS verantwortlich gemacht (27;33). Im späteren Verlauf nach 

der initialen Phase kommt es dann zu einem Erschöpfen der Aktivierung und somit zu 

einer Immunsuppression (34). Dieser Zustand ist für den Patienten ebenfalls 

problematisch, da hier das Infektionsrisiko hoch ist (35). 

Zytokine, mit ihrem Molekulargewicht zwischen 25 und 65 kDa (Kilodalton) sind relativ 

kleine Proteine, die eine entscheidende Rolle in der Regulation der humanen 

Immunabwehr spielen. Hildebrand et al. (23) beschrieben die Namensgebung der 

Zytokine, die erstmalig als Lymphokine und Monokine benannt wurden, in der Annahme, 

dass diese Parameter von Lymphozyten und Monozyten synthetisiert werden. Da jedoch 

fast alle kernhaltige Zellen diese Proteine synthetisieren können, wurde der Name 

Zytokin eingeführt.  

Zu den charakteristischen Eigenschaften der Zytokine gehören das Auslösen von 

Chemotaxis, Freisetzung intrazellulärer Granula, erhöhte Rezeptorexpression, verstärkter 

Adhärenz der Zellen und die Bildung von Lipiden für den Arachidonsäurestoffwechsel 

(36). Ob und wie diese Eigenschaften auftreten ist jedoch abhängig von vielen anderen 

Faktoren. Bis auf IL-1ra haben die antiinflammatorischen Zytokine auch 

proinflammatorische Eigenschaften, deshalb hat sich eine strenge Einteilung der Zytokine 

nicht bewährt (37). Abhängig sind die Effekte der Zytokine von dem lokalen Milieu, 

synergistischen Effekten und der Rezeptordichte der Zytokine (33). 

1.4.1 Proinflammatorische Zytokine, Tumornekrosefaktor-alpha, Interleukin-8  

Eine Immunsuppression oder eine anhaltende Stimulation des Monozyten-Makrophagen-

Systems z.B. durch Ischämie und Reperfusion führt zu einer Überproduktion von 

Zytokinen und somit zu einem Verlust der regulatorischen Kontrolle durch den 

Organismus (38).  

Verantwortlich für die frühe Immunantwort werden in der Literatur u.a. folgende 

Zytokine diskutiert: IL-1α, IL-1β, IL-6 und TNF-α. Des Weiteren haben 

proinflammatorische Eigenschaften folgende Zytokine: TGF-β, IFNγ, IL-11 und IL-8 

(39). 



12 

Tumornekrosefaktor-alpha (TNF- α)  

TNF-α wird vor allem von Makrophagen, Monozyten und T-Lymphozyten gebildet und 

ist einer der frühesten und potentesten proinflammatorischen Mediatoren in der Kaskade 

der Zytokine. Daher wurde TNF-α aufgrund seines breiten Spektrums in dieser Arbeit 

untersucht. TNF-α erhöht die Permeabilität und die prokoagulatorische Aktivität des 

Endothels und bewirkt eine vermehrte Expression von Adhäsionsmolekülen auf 

Endothelzellen (64). Ausgelöst wird die Synthese von TNF-α durch verschiedene 

körperliche Einflüsse, wie z.B. Hypoxie, Ischämie, Endotoxine und LPS 

(Lipopolysaccarid), sowie verschiedene Faktoren des Komplementssystems (23). 

Inhibiert werden kann die TNF-α-Freisetzung durch antiinflammatorische Interleukine, 

insbesondere durch IL-10 (40).  

Die löslichen TNF-α Rezeptoren sind dafür verantwortlich, dass TNF-α im Plasma nur 

eine kurze Halbwertszeit von 10-20 min aufweist, was seine Bedeutung für den klinischen 

Verlauf der Patienten limitiert (41). 

In experimentellen Studien konnte gezeigt werden, dass TNF-α pathophysiologisch nach 

Ischämie/ Reperfusion und Infektion in der inflammatorischen Reaktion eine bedeutende 

Rolle einnimmt (27;42), dadurch wird es als einer der Hauptmediatoren bei septischem 

Schock und gram-negativer Sepsis angesehen (43). Auch spielt TNF-α neben IL-1β eine 

wichtige Rolle bei der Entstehung kardialer Dysfunktionen nach Reperfusion. Die 

hämodynamischen Einflüsse von TNF-α werden in Zusammenhang gebracht mit 

verminderter Kontraktilität des Herzmuskels, verringerter Auswurfleistung (EF) und 

Herabsetzen des systemischen Gefäßwiderstandes mit daraus folgender Hypotension 

(44;45). 

Interleukin 8 (IL-8) 

IL-8 wird aufgrund seiner chemotaktischen Wirkungen auf neutrophile Granulozyten, 

den Chemokinen, zugeschrieben. Die Synthese von IL-8 wird z. B. durch IL-1, TNF-α, 

LPS und Hypoxie stimuliert (36). IL-8 wirkt auf neutrophile Granulozyten, wodurch eine 

Adhäsion am Endothel ausgelöst wird. Die Induktion von IL-8 kann erfolgen durch 
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lymphozytären Zellen wie Monozyten, T-Zellen, neutrophile Granulozyten, natürlichen 

Killerzellen sowie endothelialen und epithelialen Zellen, Fibroblasten und Hypoxie 

(36;46-48). 

Die Migration der neutrophilen Granulozyten durch das Endothel wird durch IL-8 

stimuliert, wodurch Proteasen und freie Radikale freigesetzt werden. Auch scheint IL-8 

Einfluss zu nehmen auf die Interaktion von Makrophagen und Endothelzellen, an die im 

experimentellen Versuch eine verstärkte Adhäsion gezeigt werden konnte (36).  

Diese freigesetzten Stoffe wie Proteasen und freie Radikale können NF-κ-B aktivieren. 

Dies ist ein essentieller Faktor für die Transkription von IL-8 durch eingewanderte und 

gewebsbeständige Zellen, nachdem die ischämischen Organe, wie Lunge (49), Myokard 

(50) und Gehirn (51) wieder reperfundiert werden. Des Weiteren hindert IL-8 durch 

Hemmung der Apoptose den Abbau der gewebsschädigenden Faktoren und verlängert 

somit den schädlichen Effekt (36). Die Zugabe von anti-IL-8-Antikörpern schützt im 

Versuch vor neutrophiler Infiltration und dem anschließenden Gewebeschaden. Diese 

Ergebnisse zeigen, dass die neutrophile Granulozyteninfiltration mit der Freisetzung von 

IL-8 eine wesentliche Rolle in der Pathophysiologie des Myokardinfarktes (52) des 

Reperfusionssyndroms und der Ausbildung eines ARDS (acute respiratory distress 

syndrome) spielt (53;54). Daher war IL-8 auf intrazellulärer Ebene in dieser Studie von 

Interesse und wurde als Parameter herangezogen. 

1.4.2 Antiinflammatorische Zytokine, Interleukin-10, Interleukin-1 

Rezeptorantagonist  

Wie bereits beschrieben wird die Immunantwort durch ein komplexes Netzwerk aus 

unterschiedlichen Kontrollmechanismen reguliert. Innerhalb dieser regulatorischen 

Mechanismen haben sich antiinflammatorische Zytokine, sowie spezifische Inhibitoren 

und lösliche Zytokinrezeptoren als wichtig erwiesen (33). 

Unter physiologischen Bedingungen arbeiten diese antiinflammatorischen Zytokine als 

Modulatoren, die einer möglicherweise schädlichen Auswirkung entgegenwirken, welche 

durch eine anhaltende oder überschießende inflammatorische Reaktion bedingt wird. 
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Obwohl die antiinflammatorischen Zytokine einer unkontrollierten 

proinflammatorischen Zytokinauschüttung gegensteuern, kann es zu einer 

Überkompensation führen und das Leben des Patienten durch z. B. ein erhöhtes 

Infektionsrisiko gefährden (35). 

Interleukin-10 (IL-10) 

IL-10 wird als einer der wichtigsten antiinflammatorischen Parameter der menschlichen 

Immunantwort angesehen. Es ist ein wirksamer Inhibitor der durch Typ-1-Helferzellen 

(TH1)-produzierten Zytokine wie IFNγ, IL-2 und TNF-α. Des Weiteren ist es ein 

wichtiger Antagonist der proinflammatorischen Zytokinproduktion des Monozyten/ 

Makrophagen-Systems. 

IL-10 wird synthetisiert durch CD-4 und TH-2 Zellen, Monozyten, B-Zellen und 

zirkuliert als ein Homodimer bestehend aus zwei Proteinen mit jeweils 160 Aminosäuren 

(55-57). 

Aus dem Monozyten/Makrophagen-System inhibiert IL-10, TNF-α, IL-1, IL-6, IL-8, 

Gm-CSF, und die Zytokinproduktion aus Neutrophilen und natürlichen Killerzellen. 

Weiterhin inhibiert IL-10 die Oberflächenexpression der MHC-Komplexe der Klasse 2 

(Haupthistokompatibilitätskomplex), sowie CD-14, ein Signalmolekül, das in der 

Wiedererkennung von LPS eine wichtige Rolle einnimmt. IL-10 inhibiert die 

Translokation von NF- κ-b nach LPS Stimulation und fördert den Abbau von mRNA der 

proinflammatorischen Zytokine (40;57). 

Zusätzlich schwächt IL-10 die Expression von TNF-α-Oberflächenrezeptoren (58). 

IL-10 kann durch die inhibitorische Wirkung auf IL-6 die Körpertemperatur beeinflussen 

und zur Fiebersenkung beitragen (59). 

Hohe IL-10 Werte in der Zirkulation wurden bei Patienten mit systemischen 

Erkrankungen wie rheumatoide Arthritis, Multiple Sklerose, Psoriasis und in 

verschiedenen Entzündungsreaktionen wie Sepsis gemessen (40). 
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Eine physiologisch inadäquate IL-10 Sekretion durch eine systemische Verletzung kann 

aber auch schädliche Auswirkungen mit sich führen. So wurde bei Patienten mit einer 

akuten Lungenverletzung und verminderter IL-10 Konzentration ein möglicher 

Zusammenhang hergestellt, welcher darauf deutet, dass sich daraus mit größerer 

Wahrscheinlichkeit ein letales ARDS entwickelt (60). 

Im Mausmodell wurde festgestellt, dass sich nach dem Knock-out des für IL-10 

kodierenden Genabschnitts eine chronisch entzündliche Enteritis entwickelt, die einer 

chronisch entzündlichen Darmerkrankung beim Menschen ähnelt (61). Dieses Ergebnis 

weist darauf hin, dass die endogene Konzentration von IL-10 wichtig ist, um septische 

Zustände durch enterogene Bakterien zu verhindern (33). 

Interleukin-1 Rezeptorantagonist (IL-1ra) 

IL-1ra ist ein Protein, das aus 152 Aminosäuren besteht und als spezifischer Inhibitor 

kompetetiv die IL-1 Rezeptoren von IL-1a und IL-1b blockiert (37;62). 

Nachdem IL-1 an seinen Rezeptor bindet, bildet sich ein Komplex aus dem Typ 1-

Rezeptor und dem dafür benötigten spezifischen Protein, dem IL-1 receptor accessory 

protein. IL-1ra bindet mit hoher Affinität an den Typ-1 Rezeptor, jedoch kann es den 

heterodimerischen Komplex aus Rezeptor und dem accessory protein nicht binden. Somit 

ist der membrangebundene Rezeptor kompetitiv blockiert und die Zelle vor Aktivierung 

durch IL-1 geschützt (63). 

Die antiinflammatorischen Zytokine IL-4, IL-6, IL-10 und IL-13 inhibieren die Synthese 

von IL-1b und stimulieren gleichzeitig die Produktion von IL-1ra (64). 

IL-1ra wird von Monozyten und Makrophagen sezerniert. In einer Studie wurde 

nachgewiesen, dass durch Stimulation mit bakterieller LPS die Sekretion von IL-1ra in 

den Kreislauf im Vergleich zu IL-1 oder IL-1b über das 100-fache zunimmt (37). Es gibt 

außer LPS noch verschiedene andere Stimuli, die eine Sezernierung von IL-1ra und den 

proinflammatorischen Zytokinen aus der Interleukin-1 Familie auslösen. Unter anderem 

wird in der Literatur diskutiert, dass eine lokale überschießende Reaktion in der Lunge 

zu einem ARDS führen kann. Dieses endet oftmals letal, insbesondere da eine Pneumonie 
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als eine der größten Komplikationen bei annähernd 50% der Patienten in der 

postresuscitation period auftreten kann (65;66). 

1.5. Funktionsweise und Anwendung der hypothermischen Therapie 

Bereits in den Schriften der alten Ägypter wird der Nutzen der Kühlung als 

therapeutisches Konzept erwähnt. Während der Kriege riet Sokrates, die Körper der 

verwundeten Soldaten mit Eis und Schnee zu bedecken um den Blutverlust zu mindern. 

In der Medizin heute wurde die Hypothermie nach dem 2. Weltkrieg wiederentdeckt, 

eingesetzt bei Herzoperationen. Erste Studien über die Kühlung nach Herz-

Kreislaufstillstand stammen aus dem Jahre 1958 (67). Dort zeigte sich eine Verbesserung 

des neurologischen Outcome, doch aufgrund der hohen Nebenwirkung von Infekten 

setzte sich die hypothermische Therapie nicht durch. Erst in den 90er Jahren wurde mit 

dem Wissen der reduzierten Mortalität und dem positiven neurologischen Outcome 

weitergeforscht. Seit 2003 wird diese Methode in den Leitlinien der ILCOR empfohlen, 

nachdem Studien belegen konnten, dass Patienten nach ROSC eine verbesserte 

Überlebenschance sowie ein verbessertes neurologisches Outcome haben (68;69). In den 

aktuell erschienenen Leitlinien 2010 gewinnt die Methode der Hypothermie weiter an 

Gewicht und wird mittlerweile in vielen deutschen Kliniken eingesetzt (70). Die milde 

Hypothermie ist definiert als eine Kühlung der Körperkerntemperatur auf 32-34 °C für 

einen Zeitraum von 24 Stunden (71). In der Literatur wird die Länge der Kühlung sowie 

die abschließende Erwärmung unterschiedlich diskutiert, die Zeitspanne der Kühlung 

schwankt dort zwischen 12 und 72 h (69). In den aktuellen Leitlinien wird eine 24 h 

Kühlung empfohlen (70). Zum Zeitpunkt der Studie soll diese angewandt werden bei 

Patienten, die nach Kammerflimmern erfolgreich außerklinisch reanimiert wurden. Die 

ILCOR empfiehlt dabei, die Patienten für 12-24 h auf 32-34 °C zu kühlen. Darüber hinaus 

wird mittlerweile empfohlen, unabhängig davon, ob der initiale Rhythmus defibrillierbar 
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war oder nicht (72), die Hypothermie auch innerklinisch  anzuwenden. Dies gilt ebenso 

bei anderen Rhythmusstörungen, die zu einem Herz-Kreislaufstillstand führen (73). 

Zahlreiche Studien mit dem Schwerpunkt auf die neurologische Komponente 

beschäftigten sich in den letzten Jahren mit der Anwendung der Hypothermie nach ROSC 

(69;73;74). Im Tiermodell konnte gezeigt werden, das die Anwendung der Hypothermie 

das neurologische Outcome positiv beeinflusst (68;75) und dem ischämischen zerebralen 

Schaden vorbeugen kann (76). Die Schäden, ausgelöst durch das Reperfusionssyndrom, 

können ebenfalls durch milde Hypothermie unterdrückt werden (71;74), da die 

Hypothermie im Tiermodell die Nekrose sowie Apoptose signifikant verringern konnte 

(77;78). Auch die Entstehung freier Radikale wird durch die Hypothermie gemindert 

(79;80). 

Der Effekt der Hypothermie wird dadurch erklärt, dass die Kühlung zu einer geringeren 

Expression zelltoxischer Metaboliten und freier Radikaler führt (71), welche den 

programmierten Zelltod von Neuronen auslöst. Diese Forschungsergebnisse beziehen 

sich auf die Versuche am Tiermodell. 

Die aufgrund des Sauerstoffmangels bei vermindertem zerebralen Blutflusses auftretende 

Azidose löst eine Nekrose sowie Apoptose aus. Dabei zeigte sich durch die Hypothermie 

eine verminderte Caspase-Aktivität sowie eine verminderte Translokation von 

Cytochrom c, die für die Apoptose verantwortlich gemacht werden (81;82).  

Doch der genaue Effekt auf die pro-und antiinflammatorische Immunantwort ist weder 

im zerebralen und noch weniger im peripheren Immunsystem vollständig bekannt und 

wird in der experimentellen Forschung mit widersprüchlicher Datenlage diskutiert (83).  

In einigen klinischen Studien werden Systeme wie Kühlhelme (84), äußerlich 

angewendete Kühlelemente (69), gesenkte Raumtemperatur (68), und Ringerinfusionen, 

gekühlt auf 4 °C mit 30 ml/kg KG verwendet (85;86). In experimentellen Tierstudien hat 

sich gezeigt, dass die frühe Anwendung der milden Hypothermie den positivsten Effekt 

zeigt (86). Die Kerntemperatur sollte schnellstmöglich auf 32 °C gesenkt werden, sobald 

ein Spontankreislauf wiedererlangt ist, wenn möglich sogar noch unter 

Reanimationsbedingungen (74). Bei den externen Anwendungen durch Kühlelemente 

wird die Körperkerntemperatur um ca. 0,9 °C/h (69) und bei herabgesenkter 
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Raumtemperatur um ca. 0,3 °C/h gesenkt (68). Die Kühlung durch 4 °C kalte 

Ringer/Natriumchloridlösung, infundiert mit 30 – 40 ml/ kg KG, erzeugt den besten 

Kühleffekt mit ca. 1,7 °C/h (69). Interessanterweise zeigte sich in den klinischen Studien, 

dass kein Patient, der kalte Infusionslösungen erhielt, ein Lungenödem entwickelte, 

obwohl dies aufgrund der Menge an Volumen durchaus denkbar wäre (86) (Beispiel: 70 

kg, zwischen 2,1- 2,4 l NaCl). 

In den letzten Jahren wurden durch zahlreiche klinische Studien erörtert (74;86), welche 

Patienten am meisten durch die Hypothermie profitieren und welche Kühltechnik und 

Kerntemperatur den größten positiven Effekt aufzeigen. In Tabelle 1 sind die Methoden 

mit ihren Vor- und Nachteilen graphisch dargestellt. 

Nach aktuellen Leitlinien wird die kontrollierte Wiedererwärmung von 0,25-0,5 °C pro 

Stunde empfohlen. Hyperthermien nach Wiedererwärmung müssen vermieden werden. 

Des Weiteren soll die Hypothermie bei allen Patienten nach Wiedererlangen eines 

Spontankreislaufes zur Verbesserung des Outcome angewendet werden (5;70) da es 

Hinweise gibt, dass auch Patienten, die länger als 15 min ohne Spontankreislauf waren, 

von der Hypothermie profitieren. Insbesondere im Hinblick darauf, dass außerhalb der 

Klinik keine genaue zeitliche Einschätzung möglich ist (87).



19 

 

 

Methoden Vorteile Nachteile 

Externe Kühlung 

durch Kühlelemente, 

Kühldecken 

• Nichtinvasiv 
• Einfache Handhabung 
• Kann prähospital 

angewendet werden 

• Nichtausreichende 
Senkung der 
Kerntemperatur 

• Arbeitsbehinderung für 
Arzt/ Pfleger 

• Kälteschäden der Haut 

Modifizierte externe 

Kühlung durch 

Kühlzelte, 

Kühlmatratzen 

• Leicht anwendbar 
• Gute Aufrechterhaltung 

der 
Körperkerntemperatur 

• Gut kombinierbar mit 
gekühltem 
intravenösem Volumen 

• Höhere Kosten durch 
Materialanschaffung 

• Platzproblem durch Zelte 
• Nicht prähospital 

anwendbar 

Gekühlte Infusionen 

z.B Ringer/NaCl 

0,9%, 30-40 ml/kg 

KG, intravenös 

• Schnell durchführbar 
auch prähospital 

• Geringer 
Kostenaufwand 

• Senkt schnell die 
Kerntemperatur 

• Gut kombinierbar mit 
anderen Elementen 

• Schwierige 
Aufrechterhaltung 
aufgrund großer Volumina  

• Kontraindiziert bei 
verringerter EF (ejection 
fraction) 

Tabelle 1: Vorteile und Nachteile in der Aufrechterhaltung der milden Hypothermie (71) 
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2. Fragestellung 

Wie anfangs beschrieben, ist die Frage nach der genauen Pathophysiologie des SIRS bzw. 

der postresuscitation disease und Multiorganversagen nach CPR Gegenstand vieler 

aktueller Studien (17;18;88). Obwohl über die initialen Mechanismen der Immunantwort 

wenig bekannt ist, wird angenommen, dass nach Wiedererlangen des Spontankreislaufs 

zelltoxische Metaboliten sowie Endotoxine und Zytokine in den Blutkreislauf sezerniert 

werden. 

Die Induktion der zelltoxischen Metaboliten und Zytokine nach ROSC werden 

verantwortlich gemacht für das gestörte Gleichgewicht der immunkompetenten Zellen in 

der Blutzirkulation und damit an der Entstehung eines Multiorganversagens und eines 

postresuscitation syndrome (15;89). Daher sind insbesondere die initialen intrazellulären 

Steuerungsmechanismen von Interesse, da diese Veränderungen in Zusammenhang 

gebracht werden mit einem oftmals folgenden letalen Multiorganversagen. Durch ein 

bereits validiertes Verfahren besteht die Möglichkeit präklinisch Probenmaterial zu 

gewinnen und dieses zeitnah zu analysieren. Die Expression der relevanten Zytokine, die 

an der Immunreaktion nach CPR beteiligt sind, werden in einem zeitabhängigen Profil 

(1. Abnahmezeitpunkt bis 72 h nach ROSC) dargestellt, um ihre Bedeutung besser zu 

verstehen und ihren Einfluss hinsichtlich des Krankheitsverlaufs der Patienten besser 

erfassen zu können.  

Um die initialen pathophysiologischen Mechanismen besser zu verstehen, war es Ziel 

dieser Arbeit folgende Fragestellungen zu erfassen: 

I. Lässt sich anhand eines Patientenkollektives die Genexpression der hier 

untersuchten Zytokine bestätigen? 

II. Lassen sich die präklinisch- und klinischen Daten mit den gemessenen 

Zytokinexpressionen vergleichen und besteht ein Zusammenhang der 

experimentellen Daten mit dem klinischen Verlauf der reanimierten 

Patienten? 
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III. Gibt es Unterschiede in der mRNA-Expression pro- und 

antiinflammatorischer Mediatoren und unterscheidet sich die Dynamik der 

mRNA-Expression hinsichtlich des Überlebens und Versterbens innerhalb 

der ersten 12-72 h nach ROSC? 

IV: Existieren Unterschiede in der Genexpression und im Überleben 

hinsichtlich verschiedener Therapieanwendungen wie hypothermisch 

behandelter Patienten vs. nicht hypothermisch therapierter Patienten? 
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3. Patienten und Methoden  

3.1. Patientenkollektiv, klinische Daten und Scoreerfassung 

Die Studie wurde mit 25 Patienten in einem Zeitraum von 4 Jahren durchgeführt. Alle 

Patienten erlitten präklinisch einen Herz-Kreislaufstillstand und wurden 

reanimationspflichtig. Nicht berücksichtigt wurden dabei Patienten, die innerhalb der 

ersten 24 Stunden nach ROSC verstarben. Nach der ersten Stabilisierungsphase 

präklinisch wurden die Patienten in verschiedene Kliniken im Raum München zur 

Weiterversorgung gebracht und intensivmedizinisch versorgt. Die präklinische sowie die 

klinische Behandlung erfolgte nach den Richtlinien der Internationalen 

Konsensuskonferenz 2000 ,,Cardiopulmonary Resuscitation and Emergency 

Cardiovaskular Care“ (11). 

Studienort 

Die Untersuchungen wurden an der Chirurgischen Klinik und Poliklinik der Universität 

München durchgeführt, in Zusammenarbeit mit der Abteilung für Klinische Chemie und 

Klinische Biochemie. Die präklinische Versorgung erfolgte durch die eingesetzten 

Münchner Notärzte. 

Blutentnahmen 

Die erste Blutabnahme erfolgte durch den Notarzt der Feuerwehr direkt nach 

Wiedererlangen des Spontankreislaufs in speziell gefertigten Blutabnahmesets. Nach 

Anruf durch die Feuerwehr am Ende des Einsatzes, wurden die Blutröhrchen abgeholt 

und im Labor weiterverarbeitet. Nach der initialen Blutabnahme folgten, standardisiert 

nach Protokoll, weitere Abnahmen in den entsprechenden Kliniken im Raum München 

in den Zeitabständen von 6 h, 12 h, 24 h, 48 h und 72 h nach Wiedererlangen des ROSC.  
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Die PAXgene® Röhrchen wurden bis zur Aufarbeitung im Kühlschrank bei + 4°C 

aufbewahrt. Das Blutmaterial in Lithium-Heparinat wurde bei 2500 U/min 10 Minuten 

zentrifugiert und im Kühlschrank bei 80 °C eingefroren. 

Präklinische und klinische Daten 

Nach Genehmigung der lokalen Ethikkommission (AZ: 282/01) erfolgte die 

Datenerhebung dieser Studie von 2004 bis 2006. 

Die relevanten klinischen und intensivmedizinischen Daten wurden dokumentiert und 

sind dargestellt in Tabelle 4 und 5. 

Scoreerfassung 

Zu jedem Zeitpunkt der Blutabnahme wurden die relevanten Parameter zur Errechnung 

des MOF-Scores nach Goris (90) erhoben und nach Lefering (91) modifiziert, um das 

Ausmaß des MOF, sowie den Verlauf und die Letalität abzuschätzen (92). Die Höhe der 

Scores korrelieren dabei mit den Schweregrad der Dysfunktionen der Organe. Erfasst 

werden Werte der Lunge, Leber, Niere sowie Herz-Kreislauf, Blutparameter und 

Glasgow-Coma-Scale (92).  

Klinisch werden die Scores zu verschiedenen Zeitpunkten zwischen Aufnahme bis zu 

72 h nach Krankheitsbeginn errechnet (93). In der vorliegenden Studie wurden die 

Patienten in Gruppen unterteilt, bei MOF < 4 und MOF ≥ 4 innerhalb des beobachteten 

Zeitraumes von 72 h. Es wurden 15 Patienten mit vollständiger Errechnung 

eingeschlossen.  

Gruppen 

Um Unterschiede hinsichtlich des klinischen Outcome ‚Überlebt’ vs. ‚Verstorben’ 

darzustellen, wurden die Patienten in die jeweilige Gruppe eingeteilt, je nach klinischem 

Befund. Patienten die in Rehabilitation oder nach Hause entlassen werden konnten, 

wurden in die Gruppe ‚Überlebt’ eingeschlossen, unabhängig vom jeweiligen 
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Gesundheitszustand. Patienten die innerhalb von 30 d nach ROSC verstarben, wurden in 

die ‚Verstorben’ Gruppe eingeteilt. 

Hypothermie 

In dem Zeitraum von 2004-2006 wurden sechs hypothermisch behandelte Patienten in 

die Studie eingeschlossen. Diese wurden in den Kliniken im Raum München bis zu 24 h 

mit Kühldecken/ Infusionen sowie Kühlelementen behandelt. In dieser Studie wurden 

sechs hypothermisch behandelte Patienten mit sieben normotherapierten Patienten 

verglichen. 

Zum Vergleich der Auswirkungen der verschiedenen Behandlungsarten wurden 13 

Patienten in zwei Gruppen aufgeteilt. Eine Gruppe wurde hypothermisch innerhalb der 

ersten 24 Stunden behandelt, die andere Gruppe hingegen wurde nach ROSC nicht 

gekühlt. Von besonderem Interesse war das Verhalten der Expression in den ersten 24 h 

nach Ereignis, da die Dauer der Kühlung in diesem Zeitraum stattfand. Des Weiteren war 

von Interesse, ob sich die Parameter nach der Kühlung im Vergleich zur Gruppe regulär 

therapierter Patienten wieder angleichen.  

3.2. Quantitative Genexpressionsanalysen 

3.2.1 PAXgene® Blood RNA System; mRNA-Isolierung aus Vollblut 

Das PAXgene® Blood RNA Kit (Fa. PreAnalytix, Hombrechtikon, Schweiz) als RNA-

stabilisierendes Vollblutentnahmesystem hat präklinisch den Vorteil, dass Blut durch ein 

einfaches System gewonnen wird und zur Stabilisierung der intrazellulären mRNA nach 

Zell-Lyse verwendet werden kann. 

Der Prozess gliederte sich in ein Protokoll mit einer Arbeitszeit von ca. 150 min. 

Nachdem die Proben bei + 4 °C für 3 Tage im Kühlschrank lagerten, wurde mit der 
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Waschung und Resuspension der Pellets begonnen und bei 4260 g für 10 min zentrifugiert 

(Zentrifuge CT 4 22 Fa. Juan, Unterhaching). Der Überstand wurde dekantiert, der 

Gefäßrand mit einem sauberen Tuch getrocknet. Anschließend wurden die Proben mit 

5 ml RNAse freiem Wasser gefüllt und mit einem neuen Deckel versehen. Um den Inhalt 

zu homogenisieren, wurden die Proben durch maschinelles Aufschütteln (vortexen, 

Schüttler VM 4, Fa. Cat, Deutschland) bearbeitet, bis sich das Pellet sichtbar mit dem 

Wasser vermischte. Anschließend wurde wieder bei 4260 g für 10 min zentrifugiert. Der 

Überstand wurde komplett dekantiert, es sollte nur der Bodensatz (Pellet) zurückbleiben. 

Mit 360 µl Resuspensionspuffer (Buffer 1) wurde das Pellet mit der geeigneten 

Präzisionspipette resuspensiert (Fa. Eppendorf, Hamburg) und in einen 1,5 ml sterilen, 

nummeriertes Cup (Fa. Eppendorf) überführt. Sobald das Pellet überführt ist, wurde es 

mit Binding Buffer (300 µl BR2) und anschließend mit Proteinkinase K vermengt. Diese 

besitzt endo- und exoproteolytische Aktivität und kann daher für die Aufspaltung der 

Proteine und zur Freisetzung von Nukleinsäuren eingesetzt werden. Danach wurden die 

Proben bei 10 min und 55°C in einem Wasserbad (WNE 14, Fa. Memmert, Schwabach) 

mit Schüttler erwärmt. Nach 5 min erfolgte die kurze Vortexung der Proben, möglichst 

ohne abzukühlen. Sofort im Anschluss wurden die Proben in die Kühlzentrifuge gegeben 

und bei 14000 U/min und 4°C für 4 min zentrifugiert. Das Lysat wurde komplett auf 

Qiashreddersäulen (Qiagen) überführt, um das Lysat zu homogenisieren und alte Zellteile 

zu entfernen. Die Säulen mussten an Deckel und Wand beschriftet werden, um der 

adäquaten Nummerierung zu folgen. Bei 16100 g wurden die Säulen für 3 min 

zentrifugiert (Tischzentrifuge, Heraeus Biofuge pico, Fa. Kendro, Hanau). Das Lysat 

wurde vorsichtig vom Pellet getrennt und in vorbereitete 350 µl Ethanol überführt. Durch 

vortexen und anzentrifugieren sollten eventuelle Tropfen gelöst werden. Je 650 µl der 

Proben wurden auf die PAXgene® Säulen gegeben, die auf einem 2 ml processing tube 

saßen, und für eine Minute zentrifugiert. Im Anschluss wurde die Säule auf einen neuen 

Cup überführt und der Rest der Probenlösung wird aufgetragen und nochmals für 1 min 

zentrifugiert. Um die gebundene mRNA zu waschen, die sich in den Säulen befindet, 

wurde 350 µl Waschpuffer BR3 auf die Säulen gegeben. Anschließend erfolgte die 

Lösung bei einminütiger Zentrifugierung. Um die Membran der Säule von Resten der 

DNA zu befreien, wurde RNAse freie DNAse auf die Säule pipettiert. Diese Mischung 
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(Master Mix) bestand pro Probe aus 70 µl RDD puffer (DNA Digestion Buffer) und 10 µl 

DNAse. Insgesamt wurden 80 µl des Master Mix direkt auf die Säulen pipettiert und bei 

Raumtemperatur 15 min inkubiert. 

Danach erfolgte ein zweiter Waschgang mit 350 µL Puffer 3, und einminütige 

Zentrifugierung. Die alten Cups mit dem Überstand wurden verworfen und die Säulen 

auf neue Cups überführt. Im Anschluss daran erfolgte eine zweite Waschung mit Puffer 

4. Zu diesem Puffer mussten vorab, da dieser konzentriert vorlag, 44 ml 96–100-

prozentiger Ethanol hinzugefügt werden. 500 µl des verdünnten Puffer 4 wurden auf die 

Säule pipettiert und ebenfalls für 1 min zentrifugiert. Die Säulen wurden auf Cups 

überführt und die Reste verworfen. Der vorhergegangene Arbeitsschritt wurde ein 

weiteres Mal wiederholt. Anschließend wurden 500 µl Waschpuffer auf die Säule 

gegeben und die Proben 3 min zentrifugiert. Die Cups wurden inklusive Überstände 

verworfen und die Säulen auf neue Cups überführt, diese wurden nochmals für 1 min 

zentrifugiert. Dieser Arbeitsschritt diente der Entfernung von eventuellen Resten auf der 

Säule. Anschließend werden die Säulen auf sterile 1,5 ml Eppendorfer Cups überführt. 

Im letzten Schritt wurden auf die Säulen 40 µl Elutionspuffer (BR 5) aufgegeben, wobei 

der Puffer direkt auf die Membran der Säule pipettiert werden musste. Dann erfolgte die 

Zentrifugierung der Cups um die RNA zu eluieren. Dieser Schritt wurde wiederholt, so 

dass im Anschluss 80 µl Eluat in den Cups vorhanden waren. Das Eluat wurde 5 min im 

Wasserbad bei 65 °C inkubiert. Bei dieser Temperatur denaturierten die Fragmente, die 

an die RNA anlagerten. Die Proben wurden sofort auf Eis gekühlt, im Anschluss erfolgte 

die photometrische Konzentrationsbestimmung der extrahierten RNA. Bis zur 

Weiterverarbeitung bzw. Messung wurden die Proben bei 80°C im Gefrierschrank 

gelagert.  

3.2.2 cDNA-Synthese  

Für die quantitativen RT-PCR Analysen musste die vorhandene mRNA in DNA 

umgeschrieben werden. Dies erfolgte über die Herstellung eines komplementären DNA-

Strangs (complementary DNA - cDNA) mittels der Avian-Myeloblastosis-Virus-

Reversen Transkriptase (AMV-RT). Dazu wurde das First Strand cDNA Synthesis Kit 
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(AMV, Fa. Roche, Penzberg, Germany) verwendet. Hier wurde der Oligo-dT-Primer 

angewandt, dieser bindet zum 3‘-Ende des Poly-A-Schwanzes der mRNA.  

Pro Reaktion wurde 1 µg Gesamt-RNA benötigt. Da die Menge der Reagenzien im Kit 

festgelegt ist, musste die RNA-Menge in 8.2 µl vorliegen, um für den Ansatz inkl. 

Reagenzien 20 µl Gesamtinhalt zu erzielen. 

Die benötigte Menge mRNA wurde aus dem Probengefäß in ein steriles Reaktionsgefäß 

(Fa. Eppendorf) überführt. 

Die sterilen Cups und die PCR Tubes (0,2 ml) wurden beschriftet und auf Eis gelagert. 

Um 8.2 µl in den Cups zu erhalten, musste die Gesamtmenge mittels Vakuumverdampfer 

(Zentrifuge RC 10.10 + ATMA-Kompressor, Fa. Juan, Unterhaching) bei einer 

Temperatureinstellung von 45°C reduziert werden. Nach vorgegebener Zeit wurden die 

Proben mit einer geeichten Präzisionspipette überprüft und nach erreichtem Zielvolumen 

in die PCR-Cups (Fa. Eppendorf, Hamburg) überführt.  

Anschließend erfolgte die Hitzedenaturierung die Sekundärstruktur der mRNA.  

Für den Versuch wurde ein sogenannter Master Mix (Tabelle 2) hergestellt. Dieser 

besteht aus 10 ml Reaktions-Buffer (entspricht: 100 mM Tris, 500 mM KCl, pH 8.3, 

Puffer 1); 25mM MgCl2, (Puffer 2), Deoxynucleotid Mix (dATP, dCTP, dTTP, dGTP, 

jeweils 10 mM, entspricht Puffer 3), Oligo-p(dT)15-Primer (Puffer 5), RNaseInhibitor 

(Puffer 7) und AMV-Reverse-Transkriptase (Puffer 8).  

Die für die Versuchsdurchführung benötigte Reagenzienmenge wurde in Abhängigkeit 

der Probenanzahl ermittelt.  
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10 mal Reaction Buffer 2 µl x Probenanzahl 

25 mM MgCl2 4 µl x Probenanzahl 

Desoxynucleotid Mix 2 µl x Probenanzahl 

Oligo p(dT) Primer 2 µl x Probenanzahl 

RNase Inhibitor 1 µl x Probenanzahl 

AMV RT 0,8 µl x Probenanzahl 

Tabelle 2: Mastermix für reverse Transkription: Reagenzien für die Probenanalyse 

 

Nachdem die Proben 5 min auf Eis lagerten, wurden jeweils 11,8 µl Master Mix auf jede 

Probe gegeben und kurz anzentrifugiert, damit das Enzym vollständig im Master Mix 

inkubiert. 

Die Proben wurden anschließend in einen Heizblock (PTC-200, Fa. MJ Research, 

Watham, USA) gegeben und in folgenden Zyklen inkubiert:  

 

Annealing (Oligonukloetid-Bindung an die RNA) bei 25°C für 10 min 

Transkription (Überschreibung der RNA in cDNA bei 42°C für 60 min 

Denaturierung des AMV Enzyms (Inaktivierung der Reversen Transkriptase) bei 99°C 

für 5 min 

Abkühlen der Reagenzien bei 4°C für weitere 5 min 

Tabelle 3: Inkubationsbedingungen im Thermalblock zeit- und temperaturabhängig 

 

Nach Abkühlung der Proben wurden diese im Kühlschrank bei -20°C eingefroren. 

 

 



29 

 

3.2.3 Realtime-PCR, quantitative Genexpressionsanalyse 

Zusätzlich zur herkömmlichen PCR lässt sich mit dem Verfahren der Real-Time- 

quantitativen PCR (rt-PCR) die Menge der amplifizierten DNA-Fragmente quantifizieren 

(52). Hierfür wurde das Light Cycler® FastStart DNA Master SYBR Green I (Fa. Roche, 

Penzberg, Germany) verwendet. Die Quantifizierung erfolgte mittels einer 

Fluoreszenzmessung während jedes PCR-Schrittes in der exponentiellen Phase der PCR. 

Die Fluoreszenz entstand durch den DNA-Farbstoff SYBR Green, der in Nukleinsäure-

Doppelstränge interkaliert. Dies wurde durch eine Schmelzkurvenanalyse bestätigt.  

Diese Messtechnik macht sich die Eigenschaft zu nutze, dass bestimmte PCR-Produkte 

im Vergleich zu unspezifischen Produkten, wie Primerdimeren und Verunreinigungen, 

eine spezifische Schmelztemperatur haben.  

Wird eine DNA aufgeschmolzen, löst sich das daran gebundene SYBR Green und 

fluoresziert nicht mehr. Der Wendepunkt der Fluoreszenzkurve gibt somit Aufschluss 

über die vorhandene Menge des gesuchten Produkts. Die Quantifizierung erfolgt dabei 

mittels der LightCycler® analysis software (Version 3.39) anhand einer externen 

Standardkurve. 

Aus dem Kit von LC-Search werden der Standard, die Standardverdünnungslösung, das 

Primer Set und die Kontroll-DNA verwendet. Aus dem Kit SYBR Green wird SYBR 

Green 1a verwendet. 

Die benötigte Anzahl an Glaskapillaren wurden in den Kapillaren-Kälteblock eingesetzt 

und mit dem Deckel verschlossen.  

Um eine Standardverdünnung herzustellen, wurden in 4 Cups 10,8 µl Standardlösung 

pipettiert, dann erfolgte die Zugabe in das erste Gefäß mit 1,2 µl des Standards einer 

bekannten Konzentration mit definierter Kopienzahl. Anschließend wurde aus der 

Standardlösung jeweils 1,2 µl entnommen und mit dem nächsten Gefäß vermengt. So 

entstand eine Standardlösung von unverdünnt, 1:10, 1:100, 1:1000 und 1:10000. 

Um den Master Mix für die PCR herzustellen, verwendete man 6 µl RNAse-freies Wasser 

und jeweils 2 µl LC- Primer und SYBR Green je Probenansatz. Der Mix musste 

lichtverschlossen aufbewahrt werden, da SYBR Green lichtempfindlich ist. 
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Anschließend wurden in alle Glaskapillaren 9 µl H2O vorgelegt, zusätzlich wurde eine 

Negativ-sowie eine Positivkontrolle befüllt (10 µl). 

Im nächsten Schritt erfolgte die Zuführung von 1 µg DNA in die Kapillaren und dann 

10 µl des MasterMix. Alle Kapillaren wurden mit einem Verschluss versehen und mit der 

Kühlzentrifuge bei 4°C und 660 rpm für 4 min zentrifugiert (Zentrifuge BR 4, Fa. Juan, 

Unterhaching, Germany). 

Danach wurden die Proben in das LightCycler® Karussel überführt. 

Nach dem Durchlauf wurden die Proben herausgenommen und die analysierten Daten 
wurden ausgedruckt und gespeichert. 

3.3. Statistische Auswertung 

Zur Bestimmung der gewählten Parameter wurden bei jedem Patienten zu jedem der 

sechs Zeitpunkte (Abnahmezeitpunkt, 6 h, 12 h, 24 h, 48 h und 72 h) jeweils zwei 

Blutproben entnommen. Aus den gemessenen Rohdaten wurde der Mittelwert errechnet 

und als Mittelwert ± Standardfehler des Mittelwertes (standard error of the mean) MW 

± SEM dargestellt und in entsprechende Patientenkollektive eingeteilt. Die ermittelten 

Messwerte werden als Kopienzahl/µl mRNA angegeben. 

Um die gewonnenen Daten auf mögliche Unterschiede hinsichtlich des zeitlichen 

Verlaufs zu untersuchen, wurden die Messwerte auf Normalverteilung getestet und dann 

eine Varianzanalyse (ANOVA-Analysis on variance) nach Kruskal-Wallis, mit 

anschließendem paarweisen Vergleich (Dunn’s Methode), durchgeführt.  

Um Unterschiede in den Subgruppen aufzuzeigen wurde eine Varianzanalyse (ANOVA) 

durchgeführt, gefolgt von einem Mann-Whitney Rank Sum Test. 

Um die Signifikanzen im zeitlichen Verlauf und in den Gruppen untereinander 

darzustellen wurde das Signifikanzniveau von p < 0,05 festgesetzt. Damit beträgt die 

Irrtumswahrscheinlichkeit (p) weniger als 5%. 
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Zur statistischen Auswertung und Analyse der Daten wurde die Software SigmaStat für 

Windows Version 3.00 und zur Visualisierung der Ergebnisse die Software SigmaPlot für 

Windows Version 8.0 verwendet. 
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4. Ergebnisse 

4.1. Präklinische und klinische Patientendaten 

In die Studie von 2003 bis 2006 wurden 25 Patienten im Alter von 35-90 Jahren 

eingeschlossen. Das Durchschnittsalter betrug 67,15 Jahre. Aus der Gesamtgruppe der 

Patienten waren 19 männlich und 6 weiblich. Von den teilnehmenden Patienten erlitten 

12 einen Herzinfarkt, weitere Diagnosen waren Lungenembolie und maligne 

Rhythmusstörungen. Während der ersten Behandlungstage auf der Intensivstation 

verstarben 10 Patienten. 15 Patienten überlebten während dieses Zeitraums und wurden 

meist in die Rehabilitation entlassen. Im Zeitraum von 2004 bis 2006 wurden 6 Patienten 

hypothermisch behandelt. Die Faktoren die in die Score-Berechnung mit eingehen 

wurden aus den Patientenakten und den Laborwerten zu den jeweiligen Stunden 

errechnet. 

Die Arbeitsdiagnose, Geschlecht, Alter, Reanimationsdauer und die initiale Gabe von 

Katecholaminen sind in Tabelle 4 aufgeführt.
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Nr. Initialen Geschlecht Alter in 
Jahren 

Klinische Arbeitsdiagnose 1.Dauer 
CPR in 

min 

Defibrillation
Anzahl 

Katecholamine 
in mg 

1 H., E. m 62 
Alkoholabusus, respiratorische 
Insuffizienz bei Hypothermie mit 
Hyperkapnie, Asystolie 

5 HDM 0,15 

2 B., H. m 76 Kammerflimmern wegen Myokardinfarkt 5 6 k.A. 

3 B., A. m 63 Asystolie, schwerste COPD und 
respiratorischer Insuffizienz 25 1 15 

4 D., T. m 32 I.v. Drogenmischintoxikation, Aspiration, 
Asystolie 10 HDM k.A: 

5 F., T. m 34 Schweres isoliertes Thorax-
Einklemmtrauma,Hypoxie, Asystolie 15 HDM k.K. 

6 G., K. m 61 Kammerflimmern wegen Myokardinfarkt 10 k. A. k. A. 

7 M., H. m 86 Asystolie wegen Myokardinfarkt 17 k. A. k. A. 

8 G., N. m 56 Kammerflimmern wegen, 
Herzhinterwandinfarkt 25 3 7,3 

9 K., G. m 45 Kammerflimmern wegen Myokardinfarkt 10 3 2 

10 B., D. m 44 Myokardinfarkt 10 5 1 

11 S., A. m 67 Asystolie bei Myokardinfarkt 10 HDM 4 

12 B., M. w 72 Asystolie bei fulminanter Lungenembolie 40 k. A. k. A. 

13 P., A. m 54 Asystolie, unkl. Genese 25 3 k.K. 

14 D., W. m 61 KHK mit kardiogenem Schock, 
Kammerflimmern 35 6 8 

15 P., L. m 90 Myokardinfarkt, Kammerflimmern 7 1 k. K. 

16 D., D. m 51 Hinterwandinfarkt, Kammerflimmern 10 1 k. K. 

17 P., W. w 62 Koronare Herzerkrankung, 
Kammerflimmern 20 9 9 

18 T., H. m 70 Koronare Herzerkrankung, 
Kammerflimmern 8 1 k. K. 

19 S., U. w 62 Koronare Herzerkrankung, 
Kammerflimmern 12 2 k.K. 

20 G., E. w 51 Myokardinfarkt, Kammerflimmern 45 7 9 

21 M., A. w 69 Myokardinfarkt, Kammerflimmern 13 10 3 

22 A., M. m 72 Hinterwandinfarkt, Asystolie 20 HDM 4 

23 K., J. m 88 Stemi,kardiogener Schock mit 
Kammerflimmern 9 4 2 

24 K., R. w 82 KHE/COPD, Kammerflimmern 10 1 1,5 

25 Z., F. m 75 KHK, Kammerflimmern 11 1 k. K. 

Tabelle 4 Angaben zur Reanimationsnummer, Geschlecht und Alter, sowie Arbeitsdiagnose. Reanimationsdauer in min 
aus Notarztprotokoll. k.A. Keine Angaben zu Reanimationsdauer. HDM = Herzdruckmassage, bei defibrillierten 

Patienten die Anzahl der Elektroschocks. Katecholamine je nach Dosis in mg intravenös oder über den Tubus 
verabreicht (k.K. = keine Katecholamine erhalten).
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Der klinische Verlauf sowie die Scores der Patientenauswertung sind in Tabelle 5 aufgeführt. 

Nr. Initialen Verlauf des Patienten Überlebt/Verstorben MOF-Score 
nach 24h 

MOF-Score 
nach 72h 

1 H.,E. Selbstentlassung aus Klinik 6 3 

2 B., H. Überlebt 4 3 

3 B., A. Verstorben am 4. Behandlungstag 5 4 

4 D., T. Verstorben, Hirntod   

5 F., T. Überlebt, in Rehabilitation k.A. k.A. 

6 G., K. Überlebt, in Rehabilitation k.A. k.A. 

7 M., H. Vor 3. Behandlungstag verstorben k.A. k.A. 

8 G., N. Überlebt, in Rehabilitation 6 5 

9 K., G. Überlebt, in Rehabilitation 4 3 

10 B., D. Überlebt, in Rehabilitation 1 1 

11 S., A. Überlebt in Rehabilitation 7 6 

12 B., M. Verstorben nach 72 h k.A. k.A. 

13 P., A. Verstorben 5 Tage nach Ereignis, hypoxischer Hirnschaden, gastrointestinale 
Blutungen, Hyperthermie unklarer Genese 

5 3 

14 D.,W. Entlassen in gebessertem Allgemeinzustand 7 5 

15 P., L. Entlassen in gebessertem Allgemeinzustand 1 2 

16 D., D. Entlassen in stabilem Allgemeinzustand 1 0 

17 P., W. Verstorben 5 Tage nach Ereignis, ausgeprägter hypoxischer Hirnschaden 3 3 

18 T., H. Entlassen in gebessertem Allgemeinzustand 2 2 

19 S., U. Entlassen in Rehabilitation 0 0 

20 G., E. Verstorben 4 Tage nach Ereignis durch kardiorespiratorische Insuffizienz bei 
generalisiertem Hirnödem 

4 3 

21 M., A. Entlassen in Rehabilitation 3 4 

22 
A., M. Verstorben 11 Tage nach Ereignis, Aspirationspneumonie, Sepsis, 

Nierenversagen, Subileus, zunehmende Azidose mit terminalem 
Kreislaufversagen 

6 6 

23 K., J. Verstorben 9 Tage nach Ereignis, schwerer hypoxischer Hirnschaden, Asystolie 3 4 

24 K., R. Verstorben nach 48 h 6 6 

25 Z., F. Entlassen in gutem Allgemeinzustand 2 1 

Tabelle 5 Klinischer Verlauf der einzelnen Patienten und Score-Werte zur Stunde 24 und 72. 
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4.2. Quantitative Genexpressionsanalysen 

4.2.1 Zeitlicher Verlauf zur Expressionsdynamik 

Um den zeitlichen Verlauf aller Patienten zur Expressionsdynamik darzustellen, wurden 

die Daten mit den Werten der Abnahmezeitpunkte verglichen, siehe Abbildung 2. Die x-

Achse beschreibt die Zeitpunkte der Blutabnahme im zeitlichen Verlauf. „Zeitpunkt A“ 

beschreibt den Abnahmezeitpunkt direkt nach ROSC. 

4.2.2 Proinflammatorische Zytokine, TNF-α, Interleukin-8 

                       Eine signifikante Abnahme zeigt sich nach einem Kruskal-Wallis Test (p < 0,05) für 

TNF-α zur 24 h. Bei IL-8 kommt es zu einem signifikanten Abfall zu allen Zeitpunkten 

außer zur 6. h (p < 0,05, Kruskal-Wallis-Test), siehe Abbildung 3. Im Verlauf sind kaum 

mehr Expressionen von IL-8 nachweisbar, Werteminima werden bereits 24 h nach 

Ereignis erreicht.  
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Abbildung 2 Vollblut-RNA Expression von TNF-α im zeitlichen Verlauf nach ROSC. Kruskal-Wallis-

Test p<0,05 vs Abnahmezeitpunkt (MW ± SEM). 
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Abbildung 3        Vollblut-RNA Expression von IL-8 im zeitlichen Verlauf nach ROSC. Kruskal-Wallis-

Test * = p<0,05 (MW ± SEM).  

4.2.3 Antiinflammatorische Zytokine, Interleukin-10, 

Interleukin-1 Rezeptorantagonist 

Der Verlauf der Expressionsniveaus der antiinflammatorischen Zytokine verläuft, im 

Vergleich mit TNF-α und IL-8 in die entgegengesetzte Richtung. Nach dem 

Abnahmezeitpunkt ist eine Zunahme zu erkennen, siehe Abbildungen 4 und 5. Im Fall 

von IL-10 zeigt sich dabei lediglich eine Tendenz, während die Zunahme von IL-1ra zu 

allen Abnahmezeitpunkten signifikant ist im Vergleich zum Anfangsabnahmezeitpunkt 

(Kruskal-Wallis-Test, p<0,05). 
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Abbildung 4 Vollblut-RNA Expression von IL-10 im zeitlichen Verlauf nach ROSC (MW ± SEM). 
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Abbildung 5 Vollblut-RNA Expression von IL-1ra im zeitlichen Verlauf nach ROSC. Vergleich 

Abnahmezeitpunkt zum Anfangsabnahmezeitpunkt mit Kruskal-Wallis-Test, p<0,05 (MW ± SEM). 

4.3. Korrelation MOF-Score und Genanalysen 

Im Folgenden wurde untersucht ob die Expressionsniveaus der pro- und 

antiinflammatorischen Zytokine mit dem Ausmaß des Multiorganversagens korrelieren. 

Es konnte allerdings für keines der untersuchten Zytokine, zu keinem Abnahmezeitpunkt 

ein signifikanter Unterschied innerhalb der vergleichenden Gruppe festgestellt werden. 

Die Versuchsergebnisse zeigten lediglich Tendenzen. 

Die intrazelluläre Expression von TNF-α der Gruppe MOF < 4 stellte sich über den 

beobachteten Zeitraum von 72 h deskriptiv höher dar, als die Gruppe mit höheren Werten.  
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Abbildung 6  Vollblut-RNA Expression von TNF-α.Vergleich der Gruppen MOF < 4 vs. MOF ≥ 4 

(MW ± SEM).  

 

Die intrazelluläre Expression von IL-8 der Gruppe MOF ≥ 4 zeigt deskriptiv höhere 

Werte zu A, 6 h und 12 h, mit einer tendenziellen Erhöhung zum Abnahmezeitpunkt A 

und zum Zeitpunkt 6 h, siehe Abbildung 7 (Mann-Whitney Rank Sum Test, p =0,087 

und p = 0,059). Im zeitlichen Verlauf nehmen die Expressionen ab, Werteminima werden 

für beide Gruppen ab dem Zeitpunkt 24  erreicht. 
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Abbildung 7  Vollblut-RNA Expression von IL-8.Vergleich der Gruppen MOF < 4 vs MOF >= 4 (MW 

± SEM). 

 

Auch die Expression von IL-10 zeigt zu Beginn höhere Werte der Gruppe MOF ≥4, es 

zeigen sich tendenziell höhere Werte dieser Gruppe zum Zeitpunkt 12 h, siehe Abbildung 

8 (Mann-Whitney Rank Sum Test p = 0,052). Ab dem Zeitpunkt 24 h verlaufen die 

Expressionen beider Gruppen ähnlich deskriptiv und ohne signifikanten Nachweis. 
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Abbildung 8 Vollblut-RNA Expression von IL-10. Vergleich der Gruppen MOF < 4 vs. MOF ≥4 (MW 

± SEM).  

 

Bei IL-1ra scheinen die Expressionen der Gruppe mit MOF-Werten ≥ 4 ebenfalls höher 

zu sein, als in der Gruppe mit niedrigeren MOF-Werten. Die Gruppe MOF < 4 verhält 

sich deskriptiv, auf einem ähnlichen, nicht schwankenden Expressionsniveau, ohne 

Signifikanz oder Tendenz, siehe Abbildung 9. 
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Abbildung 9 Vollblut-RNA Expression von IL-1ra im Vergleich der Subgruppen MOF < 4 vs. 

MOF ≥ 4 (MW ± SEM).  

 

4.4. Vergleich der Patientengruppen hinsichtlich des Überlebens/ 

Versterbens 

Die Abbildungen 10 bis 13 zeigen Expressionsunterschiede der Zielparameter in 

Abhängigkeit vom Überleben und Versterben der Patienten im zeitlichen Verlauf nach 

ROSC. 

Die Ergebnisse wurden statistisch mit einer Varianzanalyse (ANOVA, p < 0,05) auf 

Signifikanz getestet, gefolgt von einem Mann-Whitney Rank Sum Test als Post-hoc 

Verfahren. 
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4.4.1 Proinflammatorische Zytokine 

Im Vergleich der Gruppen zeigt sich kein Expressionsunterschied hinsichtlich des 

klinischen Outcome bei TNF-α, siehe Abbildung 10. Bei TNF-α erscheint der 

Expressionsabfall bei den Verstorbenen allenfalls deskriptiv niedriger als bei den 

Überlebenden.  

 

 

Abbildung 10 Vollblut-RNA Expression von TNF-α von überlebenden vs. verstorbenen Patienten (MW 

± SEM).  

 

Für das proinflammatorische Zytokin IL-8 fallen die Kopienzahlen für beide Gruppen auf 

einen sehr niedrigen Wert zurück, IL-8 wird also im zeitlichen Verlauf kaum mehr 

exprimiert (siehe Abbildung 11). Im Vergleich der Gruppen zeigt sich eine Tendenz zum 
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Zeitpunkt 6 h mit verringerten Werten der überlebenden Gruppe. Die Expression von IL-

8 scheint bei den Verstorbenen bis zum Zeitpunkt 12 h gering erhöht zu sein. 

 

 

Abbildung 11 Vollblut-RNA Expression von IL8 von überlebenden vs. verstorbenen Patienten (MW ± 

SEM). 

4.4.2  Antiinflammatorische Zytokine 

Bei dem antiinflammatorischen Zytokin IL-10 zeigen sich zu allen Abnahmezeitpunkten 

erhöhte Expressionsraten in der Gruppe der Verstorbenen. Es kommt bei beiden Gruppen 

zu einem Abfall zum Zeitpunkt 24 h, mit anschließendem Wiederanstieg, dies ist in der 

Gruppe der verstorbenen Patienten deutlicher zu sehen. Zum Abnahmezeitpunkt 48 h und 

72 h sind die Expressionsraten, im Vergleich zur überlebenden Gruppe, signifikant 
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erhöht, siehe Abbildung 12 (ANOVA, gefolgt von Mann-Whitney Rank Sum Test, 

p<0,05). 

 

Abbildung 12 Vollblut-RNA Expression von IL-10 von überlebenden vs. verstorbenen Patienten (MW 

± SEM).  

Auch bei IL-1ra, als antiinflammatorischem Parameter, zeigen sich wie in Abbildung 13 

dargestellt keine signifikanten Unterschiede in der Expression innerhalb der beiden 

Gruppen.  
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Abbildung 13 Vollblut-RNA Expression von IL-1ra von überlebenden und verstorbenen Patienten 

(MW ± SEM). 
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4.5. Vergleich Hypothermie versus Normothermie 

                              Die intrazelluläre Expression von TNF-α (siehe Abbildung 14) zeigt einen biphasischen 

Verlauf der nichtgekühlten Patientengruppe. Nach 24 h steigen die Expressionen an, 

während die hypothermisch behandelten Patienten konstant niedrige Raten zeigen. Beide 

Verläufe zeigen sich jedoch nur deskriptiv, ohne signifikante Unterschiede der jeweiligen 

Subgruppen, zu den Abnahmezeitpunkten. 

                      

 

Abbildung 14 Vollblut-RNA Expression von TNF-α im Vergleich der Gruppen hypothermisch vs. 

normothermisch behandelter Patienten (MW ± SEM). 

 

                    Die Expression von IL-8 zeigt sowohl bei der Gruppe der hypothermisch behandelten 

Patienten, als auch bei der Gruppe der normothermisch behandelten Patienten ein 
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abnehmendes Niveau ab dem Zeitpunkt 6 h und danach über den gesamten 

Beobachtungszeitraum, siehe Abbildung 15. Ab dem Zeitpunkt 24 h zeigen sich in 

beiden Gruppen kaum mehr Konzentrationen. Auch hier zeigt sich im direkten Vergleich 

der Subgruppen untereinander nur ein deskriptiver Verlauf ohne statistische Signifikanz. 

 

Abbildung 15 Vollblut-RNA Expression von IL-8 im Vergleich hypothermisch-behandelter Patienten 

zu normothermen Patienten (MW ± SEM). 

 

Die Expressionsraten von IL-10 bei gekühlten Patienten zeigen sich erhöht im Zeitraum 

der Kühlung (bis zum Zeitpunkt 24 h), während die nicht gekühlte Gruppe geringere 

Konzentrationen zeigt, siehe Abbildung 16. Nach dem Zeitpunkt 24 h steigen beide 

Konzentrationen wieder an. Im Vergleich der Gruppen untereinander gibt es zum 

Zeitpunkt 12 h einen signifikanten Unterschied, wobei die Subgruppe der hypotherm-

behandelten Patienten erhöhte Werte zeigt (Mann-Whitney Rank Sum Test, p > 0,05). 
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Abbildung 16 Vollblut-RNA Expression von IL-10 im Vergleich hypothermisch-behandelter Patienten 

zu normothermen Patienten (MW ± SEM). 

 

Bei der Zytokinexpression von IL-1ra zeigt sich interessanterweise ein biphasischer 

Verlauf unter den gekühlten Patienten, siehe Abbildung 17. Die Expression steigt nach 

dem Abnahmezeitpunkt A, fällt bis zum Zeitpunkt 24 h und steigt nach Ende der 

Kühltherapie wieder an. Die Expressionsraten der normothermen Gruppe zeigen sich 

demgegenüber im Vergleich zum Abnahmezeitpunkt leicht erhöht und bleiben relativ 

konstant im gesamten gemessenen Zeitraum. Im Vergleich der Gruppen untereinander 

zeigten sich bis auf die 12 h in allen Vergleichen eine signifikante Mehrexpression der 

gekühlten Patienten (ANOVA gefolgt von Mann-Whitney Rank Sum Test, p < 0,05).  
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Abbildung 17 Vollblut-RNA-Expression von IL1-ra im Vergleich hypothermisch-behandelter 

Patienten zu normothermen Patienten (MW ± SEM). 
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5. Diskussion  

Mit dieser Arbeit konnte in einem ersten Schritt gezeigt werden, dass eine 

Quantifizierung der mRNA- Expression für immunologisch relevante Zytokine mit dem 

PAXgene® Blood RNA System aus Vollblut zum einen möglich ist und zum anderen 

auch unter schwierigen präklinischen Blutentnahmebedingungen zuverlässig 

funktioniert.  

In einem zweiten Schritt konnten durch die quantitative Analyse der mRNA 

Expressionsmuster von definierten pro- und antiinflammatorischen Zytokinen neue 

Erkenntnisse über die initialen Aktivierungsvorgänge nach Ischämie und Reperfusion 

gewonnen werden. Anhand der Daten aus der vorliegenden Arbeit konnte gezeigt werden, 

dass spezifische pro- und antiinflammatorische Parameter bereits frühzeitig nach 

Wiedererlangen eines Spontankreislaufes signifikant verändert sind. Durch eine serielle 

Untersuchung der mRNA-Expressionsmuster konnte es uns gelingen, den zeitlichen 

Verlauf von spezifischen pro- und antiinflammatorischen Parametern in der frühen Phase 

nach erfolgreicher Reanimation auf Genomebene darzustellen. Selbstverständlich handelt 

es sich hierbei nur um einen sehr kleinen Ausschnitt sehr komplexer und bisher nicht 

vollständig verstandener pathophysiologischer Vorgänge im Rahmen des 

postresuscitation syndrome. Allerdings kann die hier dargestellte Expressionsaktivität 

definierter Zytokine möglicherweise einen Beitrag zum Verständnis dieser komplizierten 

immunologischen Prozesse liefern. 

5.1. Studiendesign 

In unsere Studie wurden insgesamt 25 Patienten eingeschlossen, die einen 

außerklinischen Herz-Kreislaufstillstand erlitten und nach Reanimation einen 

Spontankreislauf wiedererlangten. Patienten, die innerhalb der ersten 24 Stunden nach 
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ROSC verstarben, wurden nicht in unsere Studie eingeschlossen, da das Ziel der 

vorliegenden Arbeit in der Darstellung der Zytokinexpressionsmuster über einen 

Zeitraum von 72 Stunden lag. 

Das Durchschnittsalter des Kollektivs betrug 63,4 Jahre. Darunter waren 6 (24%) 

Patienten weiblich und 19 (76%) männliche Patienten, dies entspricht einem Verhältnis 

von 0,34: 1. 10 Patienten verstarben während des Klinikaufenthaltes, 15 konnten aus der 

Klinik unter anderem in Rehabilitation entlassen werden. Die 30-Tages-Überlebensrate 

unseres Kollektives betrug 60%.  

6 Patienten wurden hypothermisch therapiert, da die Hypothermie zum Zeitpunkt der 

Studiendurchführung noch keine generelle Leitlinienempfehlung war und daher im 

individuellen Ermessen des behandelnden Ärzteteams lag.  

Aus der Gesamtgruppe an Patienten stammen 15 Patienten aus einer Pilotstudie zur 

Etablierung der PAXgene®-Methode der Arbeitsgruppe ,Trauma and Resuscitation’ der 

Ludwig-Maximilians-Universität München.  

Die deutsche Gesellschaft für Anästhesiologie und Intensivmedizin ev. (DAGI) erhob 

folgende Daten für das Jahr 2007-2009 (94), die mit unseren epidemiologischen Daten 

vergleichbar sind.  

Das Durchschnittsalter aus den Daten des seit 2007 existierenden Reanimationsregisters 

lag bei 67,1 Jahren und war vergleichbar mit den Daten an den verschiedenen 

teilnehmenden Standorten. 

66,9% waren männlich, dies unterschied sich ebenfalls wenig an den involvierten 

Zentren. Die Daten aus dem Reanimationsregister entsprechen denen unseres Kollektives 

hinsichtlich Alters und Geschlechts. In Bezug auf die Überlebensraten wurden aus den 

verschiedenen teilnehmenden Zentren unterschiedliche Entlasszahlen aus der Klinik 

berichtet. Teils lagen diese zwischen 14-20 %, jedoch wurden auch Zahlen genannt 

zwischen 1-3 %, die aus der Klinik entlassen werden konnten in einem akzeptablen 

Allgemeinzustand (94). Dies sind erhebliche Unterschiede zwischen den Kliniken an den 

verschiedenen Standorten, obwohl doch überall mit den gleichen, regelmäßig 

überarbeiteten Guidelines gearbeitet wurde (95-97). Dies ist mit ein Grund für die 
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Entwicklung des Reanimationsregisters 2007 der DGAI, um genau diese Unterschiede zu 

detektieren. Bekannte Faktoren wie Qualitätsmanagement, Ausbildungsniveau des 

Rettungsteams, Zeit bis Eintreffen des Teams können somit besser erfasst werden. 

Zusätzlich spielen sicherlich auch unbekannte Faktoren eine Rolle, die an der Auslösung 

eines postresuscitation syndrome beteiligt sind (31;98).  

In unserer Studie lag die Entlassrate aus einer Klinik bei 60 %, jedoch muss in Betracht 

gezogen werden, dass Patienten die weniger als 24 h überlebten nicht in die Studie 

miteingeschlossen wurden. Daher sind unsere Angaben in Bezug auf das sekundäre 

Outcome nicht mit der aktuellen Studienlage vereinbar. Sicher ist jedoch, dass das 

Qualitätsmanagement präklinisch und klinisch einen Einfluss auf die Überlebensraten hat 

und durch regelmäßiges Training und regelmäßige Fortbildung der entsprechenden 

Teams verbessert werden kann. In München besteht durch die Berufsfeuerwehr schon 

seit 1998 ein internes Reanimationsregister womit die außerklinischen Reanimationen 

evaluiert werden um das Qualitätsmanagement kontinuierlich zu verbessern. Somit 

wurden Einsatzdetails wie Alter, Geschlecht, Rhythmus sowie Einsatzzeiten und Ort 

genau dokumentiert und analysiert. Ebenfalls wurde die Klinik nach Einlieferung 

vermerkt. Des Weiteren ist belegt aus den Münchner Daten 2007-2009 nach ROSC und 

erfolgreicher Klinikeinweisung, dass eine höhere Überlebensrate in Fachkliniken mit 

Kardiologie und Herzchirurgie erreicht werden konnte (Zwischen 14,3% keine 

Fachklinik bis 60,5% Fachklinik) (99). Daher können die Daten dieser Studie zum 

Vergleich herangezogen werden in Bezug auf die 30-Tagesüberlebensrate, da der 

Großteil unseres Kollektives in eine Fachklinik eingeliefert wurde. 

Es existieren einige Studien mit ähnlichem Kollektiv und ähnlicher Fallzahl. Ito et al. 

(100) untersuchten an 28 Patienten nach ROSC und Klinikeinlieferung bestimmte 

Zytokin-Konzentrationen im Serum. Es konnten signifikante Unterschiede von IL-8 und 

TNF-α im Serum innerhalb von 12 h nach Klinikeinlieferung nachgewiesen werden. 

Gando et al. (101) konnten in einer Studie mit 23 Patienten eine aktivierte Immunantwort 

nach ROSC durch endotheliale und neutrophile Aktivierung zeigen, die mit Zeichen einer 

Endothelverletzung einhergehen. Signifikante Anstiege ließen sich innerhalb der ersten 

24 h nach Einlieferung in die Klinik nachweisen. Es wurde geschlussfolgert, dass diese 
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inflammatorischen Aktivierungen beim postresuscitation syndrome eine wichtige Rolle 

spielen können. Auch zeigten beispielsweise Bishops et al. (102) in einer Studie mit 10 

Patienten nach ROSC und behandelt mit Hypothermie über den Zeitpunkt der Kühlung 

eine supprimierte Komplementaktivierung sowie signifikante Unterschiede von IL-8 und 

IL-10 Konzentrationen im Verlauf der Kühlung und während der Wiedererwärmung. 

Dies erlaubt die Schlussfolgerung, dass die Hypothermie die Immunaktivierung nach 

ROSC dämpft.  

In allen hier aufgeführten Studien sind bei der kleinen Fallzahl und besonders dem 

besonderen Patientenklientel ähnliche Limitationen aufgeführt. Obwohl doch viele 

Patienten einen Kreislaufstillstand erleiden, ist die Anzahl der sekundär Überlebenden 

gering. Aus dem Münchner Reanimationsregister 2007-2009 wurden 2.484 

Reanimationen registriert, wovon bei 49,3% kein Spontankreislauf wiederhergestellt 

werden konnte. In den entsprechenden Kliniken betrug die Sterberate innerklinisch 50%, 

und bei 12% des Gesamtkollektives konnten keine Angaben ermittelt werden. Die 30-

Tage-Überlebensrate aus diesem Register betrug 12,1% in einem Zeitraum von 2007-

2009 (2).  

Aufgrund der geringen Anzahl an Patienten kann es zu den großen Unterschieden 

zwischen den gemessenen Konzentrationen der Parameter beigetragen haben und die 

systemische Immunantwort kann variabel sein. Dies könnte zu einer Heterogenität der 

genetischen Faktoren während der Immunantwort geführt haben, besonders auch im 

Hinblick auf die Dauer der Reanimation bis zum Erlangen eines Spontankreislaufs (102). 

Jedoch können die Schlussfolgerungen aus den Arbeiten richtungsweisend sein für die 

weitere Identifizierung zum Verständnis des postresuscitation syndrome nach 

Wiedererlangen eines Spontankreislaufs. 

Sequentielle Blutentnahme 

In vorangegangenen Studien konnte dargestellt werden, dass die initiale Phase nach 

Ischämie mit anschließender Reperfusion bei der Ausbildung von Organschädigungen 

eine wichtige Rolle spielt (31), ähnlich wie bei thematisch verwandten Fragestellungen 

nach Polytrauma oder Verbrennungen (103;104). Daher lag unser Hauptinteresse für das 
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Studiendesign auf den Expressionsveränderungen in der frühen Phase nach 

Wiedererlangen des Kreislaufs.  

In einem Review von Mannick et al. (105) aus der Polytraumaforschung wurde die 

Notwendigkeit kontinuierlicher, serieller Messungen zur Abbildung der Immunreaktion 

nach Verletzungen dargestellt. Grund dafür sind die frühen und dynamischen 

Veränderungen, denen das Immunsystem ausgesetzt ist. Ebenfalls ist dies die kritische 

Phase indem nach kardiopulmonaler Reanimation und ROSC ein postresuscitation 

syndrome auftreten kann (15;17;25). Die Abnahmepunkte sollten daher im kritischen 

Zeitintervall der immunologischen Veränderungen in der frühen Phase nach ROSC 

gesetzt werden. Entscheidend ist es, in dieser für den Patienten in der meist 

hämodynamisch instabilen Klinik einen Kompromiss zwischen der zeitlichen Auflösung 

dieser vulnerablen Phase sowie der geringstmöglichen Schädigung des jeweiligen 

Patienten zu finden. Diese Zeitpunkte wurden in Anlehnung an andere 

Forschungsgruppen gewählt (105;106). 

In den oben aufgeführten Studien sowie in weiteren Studien konnte die Blutentnahme erst 

bei Eintreffen des Patienten in den entsprechenden Kliniken durchgeführt werden (100-

102) und somit konnte dort die initiale Zeit nach Wiedererlangen eines Spontankreislaufs 

nicht erfasst werden. In unserer Studie war ein Schwerpunkt auf diese initiale Zeit gesetzt. 

Daher ergaben sich große Anforderungen an die von uns durchgeführte klinisch-

experimentelle Studie. Die praktische Umsetzung der Studie wies einige Limitationen 

auf, schon während der präklinischen Phase. Idealerweise erfolgte die erste Blutentnahme 

unmittelbar nach Wiedererlangen des Spontankreislaufs durch den Notarzt. Dies ist mit 

großem logistischem Aufwand in unserer Studie gelungen, trotz der geringen Fallzahl der 

primär erfolgreichen Reanimationen, die sich pro Notarzt/Notarzteinsatzfahrzeug auf ca. 

1-2 pro Jahr beläuft. Zusätzlich erklärte sich nicht jeder Notarzt zur Mitarbeit bereit und 

befüllte die Blutröhrchen. Des Weiteren verstarben ein Teil der Patienten prä- sowie 

innerklinisch innerhalb der ersten 24 h, so dass diese aus der Studie ausgeschlossen 

werden mussten. Ohne die Mitarbeit und Zustimmung der jeweiligen Klinik konnte keine 

Blutentnahme zu den festgelegten Zeitpunkten erfolgen, diese fanden Tag und Nacht 

statt. Dies erforderte eine hohe Einsatzbereitschaft mit 24h-Rufbereitschaft und großer 
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logistischer Herausforderung, die Blutentnahmen zu den jeweiligen Zeitpunkten 

durchzuführen. Auch war Voraussetzung, dass die Patienten klinisch ausreichend stabil 

waren und 72 h überlebten, damit die Studie durchgeführt werden konnte. 

Unterteilung MOF-Scores 

Ein weiterer zu diskutierender Punkt ist die vorgenommene Unterteilung des 

Patientenkollektivs anhand des MOF-Scores in zwei Gruppen. In der vorliegenden 

Gruppe wurde die Abstufung MOF < 4 Punkte (es liegt kein relevantes Organversagen 

vor) und MOF ≥ 4 (es liegt ein relevantes Organversagen vor) herangezogen. Dies stellt 

eine valide statistische Methode zur Gruppenbildung innerhalb eines Kollektivs dar. Sie 

kann allerdings auch aufgrund der zwischen den beiden gebildeten Gruppen als 

Schwachstelle der Datenbewertung angesehen werden, weil eine solche Einteilung den 

individuell vorliegenden Grunderkrankungen und damit der individuellen Prognose nicht 

gerecht werden kann. Es muss davon ausgegangen werden, dass bestehende 

Komorbiditäten und medikamentöse Behandlungen sowie die unterschiedlichen 

Ursachen des Kreislaufstillstands Einfluss auf die Zytokinexpression haben. Einige 

Studien befassten sich mit der Fragestellung, ob eine adäquate Vorhersage über ein 

Outcome nach ROSC und besonders außerklinischem Herz-Kreislaufstillstandes möglich 

ist. Dafür wurden unterschiedliche Score-Systeme verwendet. Robert et al. (98) 

berichteten beispielsweise, nach Auswertung von Patienten nach ROSC anhand des 

SOFA-Scores (sequential organ failure assessment) eine erhöhte innerklinische 

Mortalität in Bezug auf die Parameter betreffend das kardiovaskuläre und respiratorische 

System, die anderen Organsysteme zeigten sich unabhängig davon. In der Studie konnte 

kein eindeutiger Zusammenhang zwischen Multiorganversagen und innerklinischem 

Versterben hergestellt werden. Schlussfolgerung von Jacobs et al. (107) war, dass eher 

verwertbare Faktoren wie Körpertemperatur, Hyperglykämie, niedriger pH-Wert und 

Krampfanfälle negativ das Überleben beeinflussen. Natürlich ist auch der Score-Wert vor 

Ereignis unbekannt, denn dies ist ein unerwartetes Geschehen und kann daher nicht zum 

Vergleich herangezogen werden. Ebenfalls besteht auch hier die Möglichkeit von 

unbekannten und nicht messbaren Faktoren die auf die Unterteilung Einfluss nehmen. 
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Outcome Überlebt/ Verstorben 

Die Einteilung der Patientengruppe anhand des zweiten klinischen Parameters Outcome 

wurde in der hier vorliegenden Arbeit als Überleben innerhalb einer Follow-Up- Periode 

von 30 Tagen definiert. Das Ziel dieser Unterteilung nach Überleben und Versterben war 

die Identifizierung einer möglichen Risikogruppe innerhalb des Patientenkollektivs. Ein 

Nachteil dieser Form der Gruppenbildung liegt in der Vernachlässigung der individuellen 

Todesursachen einschließlich der ihr zugrundeliegenden Pathophysiologie. Weder die 

Vorerkrankungen noch das Alter der Patienten konnten aufgrund der insgesamt 

eingeschränkten Fallzahl in der Auswertung berücksichtigt werden. Zusammenfassend 

bedeutet das, dass zwar anhand des gewählten Kriteriums Überleben vs. Versterben eine 

eindeutige Gruppenunterscheidung gelingt, nicht aber zwei in sich homogene Gruppen 

gebildet werden konnten.  

Milde Hypothermie 

Das Kollektiv der gekühlten Patienten ist mit 6 Patienten sehr gering. Mit ein Grund dafür 

ist, dass zum durchgeführten Zeitpunkt der Studie keine klare Empfehlung zur 

hypothermischen Therapie bestand, daher erfolgte die Kühlung nicht nach einem 

einheitlichen Protokoll und wurde auch nicht in allen beteiligten Kliniken durchgeführt. 

Erst in den Leitlinien von 2010 (5) wurde die einheitliche Empfehlung ausgesprochen, 

nach jeglicher Art von Herz-Kreislaufstillstand eine Kühlung durchzuführen. Aufgrund 

der kleinen Patientengruppe und damit geringen Datenanzahl müssen weitere Studien 

nach einheitlichem Protokoll durchgeführt werden, um eine klare Aussage über den 

Einfluss der Hypothermie auf die Zytokinkonzentration und eine statistische Aussage 

treffen zu können.   
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Limitationen 

Als klare Limitation ist zu werten, dass die Veränderungen der mRNA- Expression nicht 

automatisch zu Änderungen auf Proteinebene führen. In Bezug auf die biologische 

Funktion im menschlichen Organismus spielen Proteine eine zentrale Rolle. In dieser 

Studie wurde der Fokus jedoch auf die Veränderungen der mRNA-Expression gesetzt, 

um die frühzeitigen Regulierungen nach ROSC zu analysieren. Um unsere Zielvorgaben 

zu unterstützen wäre es von wesentlichem Interesse, die Daten auf Protein-Ebene 

analysieren zu können um einen relevanten Vergleich aufzuzeigen. Aus diesem Grund 

sind weitere Untersuchungen notwendig und diese Studie kann höchstens als 

richtungsweisend interpretiert werden. Ein limitierendes Problem in der Untersuchung 

dieses Kollektivs ist jedoch, dass im lebendenden, jedoch schwer erkranktem Menschen 

nur eine sehr geringe Menge an Blut für Forschungszwecke entnommen werden kann um 

den instabilen Patienten nicht zu gefährden. Deshalb wurde in dieser Studie auf die 

Untersuchungen auf Transkriptions- und Proteinebene verzichtet.  

5.2. Quantitative Genexpressionsanalysen 

Validierung des experimentellen Protokolls 

Im Rahmen einer vorangegangenen Doktorarbeit wurden im Vorfeld an 18 freiwilligen 

Probanden anhand eines Protokolls Validierungen durchgeführt. Dies ist eine Vorarbeit 

unserer Studie mit dem Titel ‚Initiale Analyse der RNA-Expression spezifischer 

Mediatoren nach erfolgreicher kardiopulmonaler Reanimation’ von Herrn Henning 

Laven aus dem Jahr 2009 (108). Anhand dieser Validierungen konnte gezeigt werden, 

dass die Muster der Genexpressionen mit dem PAXgene® Blood RNA Kit sinnvolle 

Ergebnisse liefern, und somit auch geeignet sind für die Anwendbarkeit am schwer 

kranken Patienten. Dies wurde auch durch andere Autoren bestätigt (109).  
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mRNA-Analyse 

Um RNA zu analysieren, ist das humane Blut eine schnell verfügbare und vitale Quelle. 

Durch das PAXgene® Blood RNA Kit lässt sich aus Vollblut eine sogenannte snapshot 

Analyse durchführen, also eine Momentaufnahme aller immunkompetenten Zellen zum 

Abnahmezeitpunkt. Bei dem angewendeten Verfahren können durch die sofortige Zell-

Lyse aber keine einzelnen Zellpopulationen identifiziert werden und es ist keine 

Differenzierung in verschiedene immunkompetente Zellen möglich (104). 

Vorteil des PAXgene® Systems ist die geringe Ausgangsmenge der Blutproben (3 x 

2,5 ml), so dass Blutproben auch bei instabilem Kreislauf gewonnen werden können 

(104). Ein weiterer Vorteil bei der Aufbereitung im PAXgene® System besteht darin, das 

durch eine stabilisierende Lösung, die das System beinhaltet, der aktuelle 'Status quo' 

aufrechterhalten wird und eine Lagerungsmöglichkeit besteht. Dies ist besonders in der 

präklinischen Anwendung von Bedeutung. 

 

Realtime-PCR 

In den letzten Jahren ist das wissenschaftliche Interesse an der quantitativen mRNA-

Analyse bestimmter Zytokine angestiegen, um die spezifischen Vorgänge der 

immunkompetenten Zellen zu erfassen. Dabei hat sich die Realtime-PCR als sensitive 

und spezifische Methode erwiesen und ist mittlerweile als Standardmethode zur 

Quantifizierung von mRNA von Zytokinen anerkannt.  Diese ist in der Lage, hoch-

sensitive Zielgen-Expressionen zu detektieren, auch wenn die ursprünglich eingesetzten 

mRNA Konzentrationen sehr niedrig sind.  

Aus zirkulierendem Vollblut werden kernhaltige Zelltypen mit Immunkompetenz, wie 

z.B. B-Zellen, T-Lymphozyten und Natural-Killer-(NK) Zellen abgebildet. Daher ist die 

mRNA nicht den einzelnen Zelltypen zuzuordnen, obwohl dies prinzipiell von Interesse 
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wäre, z.B. in Hinblick auf die Beteiligung der Monozyten an der Immunantwort. Aus 

technischen und logistischen Gründen mussten wir auf diese Analyse verzichten.  

Zeitliche Expressionsdynamik 

Um den zeitlichen Verlauf der Zytokinexpression nach ROSC darzustellen wurde Blut in 

einem Zeitrahmen von 72 h entnommen, da innerhalb dieser 72 h eine Organdysfunktion 

mit all ihren pathophysiologischen Folgen auftreten kann und maßgeblich das Überleben 

bestimmt (110). 

In Bezug auf das postresuscitation syndrome existieren mittlerweile einige 

wissenschaftliche Stellungnahmen, die sich hauptsächlich auf Serumanalysen entweder 

kardio-chirurgisch oder auf das neurologische Outcome nach hypoxischen Zuständen 

beziehen (31;68;79;88;100), jedoch nicht auf den initialen Mechanismen zur 

Zytokinexpression. 

In dieser Arbeit konnte eine Immunreaktion der immunkompetenten Zellen im zeitlichen 

Verlauf dargestellt werden, es ließen sich unterschiedliche Expressionsdynamiken in den 

gemessenen Zytokinen aufzeigen.  

Die Expression der proinflammatorischen Zytokine nach Wiedererlangen des 

Spontankreislaufs hat im Verlauf von 72 h nach ROSC im Verhältnis zum 

Abnahmezeitpunkt abgenommen, siehe Abbildung 2 und 3. Diese Veränderung ist 

besonders von Interesse im Hinblick auf das Auftreten von Multiorganversagen nach 

Reanimation und anschließender Reperfusion. Es steht jedoch auf den ersten Blick in 

scheinbarem Widerspruch zu dem Modell des Verlaufes der systemischen 

inflammatorischen Immunantwort (SIRS), da nach diesem Modell zunächst ein Anstieg 

der Expression proinflammatorischer Zytokine erfolgt, bevor die Expression zurückgeht 

und eine kompensatorische Immunantwort folgt (105). Die gemessenen Werte der 

proinflammatorischen Zytokinexpression aus der vorliegenden Arbeit lassen sich jedoch 

trotzdem mit dem genannten SIRS-Modell in Einklang bringen, wenn man annimmt, dass 

die Expressionsniveaus zum Abnahmezeitpunkt bereits erhöht waren und dann – im 

Zeitraum der Studie bis 72 h nach dem Ereignis – wieder abnahmen. Eine mögliche 
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Erklärung dafür bietet ein Experiment, in dem in vitro zu Vollblutproben 

Lipopolysaccharid (LPS) hinzugegeben wird, um die Ausschüttung von Zytokinen wie 

TNF-α hervorzurufen (111) und damit eine Entzündungsreaktion zu simulieren. Das 

Expressionsniveau von TNF-α aber auch IL-10 ist nach Zugabe von LPS nach 2–4 

Stunden signifikant erhöht (104). Geht man davon aus, dass dieser Vorgang während der 

Reanimation stattfindet, ließe sich erklären, wieso das Expressionsniveau der 

proinflammatorischen Zytokine zum Abnahmezeitpunkt bereits erhöht ist. Um ein 

genaueres Bild vom Verlauf der Expressionsniveaus der Zytokine zu erhalten müsste 

jedoch Blut vor der Reperfusion entnommen werden, um den gesamten Zeitraum ab 

Herz-Kreislaufstillstand betrachten zu können. Dies wurde in einer Studie von Niemann 

et al. (41) am Schweinemodell durchgeführt. Es wurde angenommen, dass die 

Serumspiegel von TNF-α nach Wiedererlangen eines Herz-Kreislaufstillstandes 

ansteigen und eine signifikante Rolle an der postischämischen myokardialen Dysfunktion 

spielen. Blutproben wurden vor einem ausgelösten Herz-Kreislaufstillstand sowie 

zwischen 15 min und 6 h nach dem Ereignis untersucht. Es konnte 15 min nach dem 

Ereignis ein abrupter signifikanter Anstieg der TNF-α Konzentration festgestellt werden 

und 3 h nach ROSC war die Konzentration wieder auf dem Ausgangslevel. Daraus lässt 

sich folgern, dass die Reperfusion nach wiedererlangtem Kreislauf mit einem abrupten 

Anstieg von TNF-α im Plasma einhergeht. Dies ist eine mögliche Erklärung für die 

abfallenden Werte im zeitlichen Verlauf in der vorliegenden Arbeit. Ein weiterer 

relevanter Punkt ist auch die Halbwertszeit von TNF-α im Plasma, die in der Literatur 

zwischen 20 und 40 min angegeben wird (41), doch letztendlich ist unklar, wie viel der 

exprimierten mRNA in Protein transkribiert wird und in die Zirkulation übergeht. 

Die Arbeitsgruppe um Ito et al. (100) hat als eine der Ersten TNF-α eine Rolle im 

Zusammenhang mit der postischämischen myokardialen Dysfunktion zugeordnet. 

Dinarello et al. (112) diskutierten, dass TNF-α im Zusammenspiel mit IL-1ß eine kardiale 

Dysfunktion auslösen kann und den peripheren Widerstand sinken lässt, was hypotone 

Kreislaufverhältnisse zur Folge hat und sich negativ auf die Kreislaufsituation in der 

frühen Phase nach Wiedererlangen eines Spontankreislaufs auswirkt. 
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Und doch lässt sich keine ganz genaue Aussage treffen, da die Konzentrationen im 

Plasma stark unterschiedlich sind, was an vielen unterschiedlichen Ursachen liegen kann, 

z.B. wann die erste Blutentnahme erfolgte. Nieman et al. (41) beschrieben einen Umfang 

von 2 h 10 min bis 4 h 45 min. Schweregrad und verschiedene Ursachen der kardial 

bedingten Ischämie, aber auch die unterschiedlichen Therapien wie Vasopressoren bei 

anhaltender Hypotension und auch genetische Faktoren müssen in Erwägung gezogen 

werden. 

Es bleibt zu berücksichtigen, dass die Immunantwort durch eine Balance zwischen pro- 

und antiinflammatorischen Zytokine aufrecht erhalten wird. Da die meisten Zytokine 

beide Eigenschaften besitzen (37) und weitere Einflüsse, wie die Nachbarschaft der 

Zellen und die Anwesenheit von anderen Zytokinen, auf die jeweilige Zelle mitwirken, 

lässt sich keine eindeutige Linie zwischen pro- und antiinflammatorischer Mediatoren 

ziehen (37;39). Antiinflammatorische Zytokine wie IL-10 unterdrücken dabei die 

Produktion proinflammatorischer Zytokine (112) und sind damit mitverantwortlich für 

den charakteristischen Verlauf von SIRS und CARS (113). 

Die hier untersuchten antiinflammatorischen Zytokine haben eine wesentliche Rolle an 

der Entstehung eines CARS, welches zu einer Immunsuppression führt. IL-10 fungiert 

dabei als Regulator proinflammatorischer Zytokine wie z. B. TNF-α (114).  

So zeigten sich beispielsweise schwerverletzte Patienten mit einer solchen Immunantwort 

auf ihre Verletzungen anfälliger für nosokomiale Keime (105) und Infektionen nach 

schwerem Blutverlust und Sepsis (115). Darüber hinaus konnte ein Zusammenhang 

zwischen einem erhöhten Niveau von IL-10 in Anwesenheit von proinflammatorischen 

Parametern innerhalb der ersten zehn Tage nach der Verletzung mit einer erhöhten 

Sepsisrate hergestellt werden (116). 

Die Ergebnisse der vorliegenden Analyse des mRNA-Expressionsniveaus zeigen im 

zeitlichen Verlauf einen signifikanten Anstieg von IL-1ra, siehe Abbildung 5, wie bereits 

in der Literatur beschrieben (117;118), jedoch keine signifikanten Veränderungen bei IL-

10 (Abbildung 4). Möglicherweise hängt dies mit der geringen Halbwertszeit von IL-10 

von 60 min zusammen, dem sehr heterogenen Patientengut oder den unterschiedlichen 

Therapieansätzen wie Vasopressingabe und hypothermischer Behandlung. 
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5.3. Expressionsdynamik MOF-Score und Genanalysen 

Scores wurden entwickelt um große Kollektive, im Hinblick auf den Schweregrad der 

Erkrankung zu klassifizieren sowie das Risiko für die Entwicklung eines MOF im 

weiteren Verlauf abzuschätzen (119). Weiterhin besteht die Möglichkeit, die Scores nach 

festgelegten Kriterien und nationalen sowie internationalen Standards zu vergleichen und 

somit eine Vergleichbarkeit verschiedener Kliniken und Fachrichtungen herzustellen und 

Behandlungskosten zu erklären (120). Jedoch muss berücksichtigt werden, dass keine 

Aussage zum individuellen Verlauf eines Patienten getroffen werden kann, da die 

Risikoeinschätzung auf Basis eines Scores lediglich einer statistischen 

Wahrscheinlichkeit entspricht. 

In der vorliegenden Studie wurden die Patienten in Gruppen unterteilt und in einem 

Score-System gruppiert. Hier wurde der MOF-Score angewandt. Diese wurden aus den 

vorhandenen klinischen Parametern errechnet, solange diese vollständig erfasst werden 

konnten. 

Die entsprechende Einteilung in die klinische Gruppe erfolgte über die Vergabe von 

Punkten. Wie bereits oben erwähnt, sind der Score- Verwendung Grenzen gesetzt, denn 

innerhalb der Scores wird der Immunstatus nur anhand der Leukozytenzahlen abgebildet 

und somit die Immunantwort nur zu einem geringen Teil erfasst. Des Weiteren kann sich 

beispielsweise ein Patient bei Hirntod trotz eines moderaten MOF-Scores in einem letalen 

Zustand befinden.  

In vorangegangenen Studien konnte nachgewiesen werden, dass Patienten die in die zwei 

Gruppen ‚Überlebt - Verstorben’ gegliedert wurden einen signifikanten Unterschied 

zwischen den Scores und der Überlebensrate aufzeigten (4). In der vorliegenden Arbeit 

wurde daher eine mögliche Korrelation der mRNA-Expression mit den MOF-Scores 

untersucht. Es zeigten sich lediglich Tendenzen zwischen den gemessenen Expressionen 

und den von den Patienten errechneten Score-Gruppierungen. Ein möglicher 

Erklärungsansatz für eine fehlende Korrelation ist, dass die Score-Systeme nicht als 

Aussage für einzelne Individuen, wie in der vorliegenden Arbeit erfolgt, herangezogen 

werden können. Des Weiteren war das Patientenkollektiv aufgrund der zu geringen 
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Fallzahlen in der vorliegenden Arbeit zu klein und die Heterogenität zu groß um eine 

Prognose treffen zu können. Weiterhin muss berücksichtigt werden, dass jedes 

gemessene Zytokin eine eigene Halbwertszeit sowie unterschiedliche 

Expressionsniveaus aufweisen. Aufgrund der starken interindividuellen Schwankungen 

der Serumspiegel und der kurzen Halbwertszeit haben Pilz et al. gezeigt, dass TNF-α 

nicht als klinisch relevanter Parameter geeignet ist (121). Dies könnte eine weitere 

Erklärung sein, warum es in der vorliegenden Arbeit nicht möglich war, mRNA 

Expressionen mit individuellen Score-Systemen zu vergleichen. 

Ein interessanter Ansatz für die Zukunft wäre allerdings, an einem größeren 

Stichprobenumfang und einer spezifischeren Normierung der Patienten mögliche 

signifikante Unterschiede aufzuzeigen.  

5.4. Expressionsdynamik in Abhängigkeit Überlebt / Verstorben 

Die in der vorliegenden Arbeit eingeschlossenen 25 Patienten wurden in die Gruppen 

‚Überlebt’ und ‚Verstorben’ unterteilt, je nach der 30-Tage-Überlebensrate (122). Zu 

Bedenken ist hierbei, dass unsere Studie zwar das Überlebensrate, aber nicht die 

Lebensqualität der überlebenden Patienten miterfasst hat.  

Aufgrund der Inhomogenität der Patientengruppe bezüglich Dauer der Reanimation 

sowie Komorbiditäten kann keine Aussage zur Qualität des Überlebens getroffen. Bisher 

bezogen sich die meisten Studien auf  neurologische Folgen eines Herz-

Kreislaufstillstandes, und da bisher noch keine durchschlagenden Therapieoptionen 

bestehen, werden erst Studien in den kommenden Jahren die Lebensqualität nach 

Klinikaufenthalt klassifizieren (123). 

In unserer Untersuchung konnte gezeigt werden, dass bei verstorbenen Patienten eine 

erhöhte intrazelluläre mRNA Expression bei IL-8 und IL-10 messbar war (Abbildung 11 

und 12). 
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Maier et al. (124) konnten in einer Studie keinen Zusammenhang mit der Sterblichkeit 

der Patienten und den Konzentrationen von IL-8 und IL-10 im Serum nachweisen. Jedoch 

beschrieben sie Zytokinmessungen als wichtige biochemische Marker, anhand welcher 

sich der Verlauf eines späteren Multiorganversagens vorhersagen lässt. In einer Arbeit 

der Arbeitsgruppe Polytrauma der Ludwig-Maximilians-Universität München  aus dem 

Jahre 2009 (125) wurden polytraumatisierte Patienten auf Zytokine im Serum untersucht, 

vor dem Hintergrund dass auch multiple Verletzungen ein SIRS auslösen können. Es 

konnten deutlich erhöhte IL-8 Spiegel im Serum nachgewiesen werden. In einer weiteren 

Studie (126) konnten erhöhte Monozyten-mRNA Konzentrationen bei Patienten, die das 

Trauma nicht überlebten, gezeigt werden. 

Adrie et al. (17) zeigten, dass bei reanimierten Patienten mit anschließendem Kreislauf 

erhöhte Spiegel von Zytokinen im Plasma vorhanden sind. Der Zustand nach 

Reanimation wurde von der Arbeitsgruppe ebenfalls als Sepsis-ähnlich beschrieben. In 

der Studie konnten signifikant erhöhte IL-8 und IL-10 Konzentrationen bei verstorbenen 

Patienten nachgewiesen werden. Keine signifikanten Unterschiede zeigten sich bei IL-

1ra, ähnlich unseren Ergebnissen. Somit kann davon ausgegangen werden, dass die 

Serumproteine direkt nachproduziert werden und die Zellen dafür ihr Transfusionsmuster 

ändern. 

In der Studie wird aber auch als mögliche Ursache für die hohen Zytokinkonzentrationen 

die Gabe von Vasopressoren diskutiert. Die Katecholamingabe induziert die Expression 

von IL-10 (127;128). Die Schlussfolgerung der Studie ist aber, dass die Expression der 

Zytokine eher die unterschiedlichen Verläufe eines Schocks beschreibt und man daher 

keine therapeutische Konsequenz ableiten kann, weil keine Unterschiede bei den 

überlebenden Patienten mit oder ohne Katecholamintherapie gezeigt werden konnten. 
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5.5. Expressionsdynamik in der therapeutischen Hypothermie 

Kühlung nach Herz-Kreislaufstillstand verbessert die Überlebenschancen der betroffenen 

Patienten und ist mit einer supprimierten Immunantwort assoziiert. Es ist jedoch nicht 

abschließend geklärt, welche Faktoren dafür verantwortlich sind. Unklar ist, ob die  pro- 

und antiinflammatorischen Zytokine, die mit den Folgen der Reperfusion in Verbindung 

gebracht werden, durch die Kühlung beeinflusst werden und die Immunantwort 

verändern (83).  

Bisher bezogen sich viele experimentelle und klinische Studien auf die Auswirkungen 

der Hypothermie auf das neurologische Outcome im Hinblick auf die zerebrale 

Minderperfusion (129-131). Nur wenige Studien bezogen sich auf Organe wie Herz (132) 

Nieren und Lunge (133). Hauptsächlich wurden solche Studien nur am Tiermodell 

durchgeführt. Darüber hinaus sind wenig experimentelle Daten zur Zytokinproduktion 

nach Hypothermie veröffentlicht. Aus diesem Grund können nur wenige Studien zum 

Vergleich mit den Daten der vorliegenden Arbeit herangezogen werden.  

Signifikante Unterschiede zeigten sich in der vorliegenden Arbeit bei IL-10 zum 

Zeitpunkt 12 h, siehe Abbildung 16. Die Expression der hypothermisch behandelten 

Patienten war im Vergleich zu nicht gekühlten Patienten zu diesem Zeitpunkt erhöht. Für 

IL-1ra, als antiinflammatorischer Marker, zeigten sich ebenfalls signifikant höhere 

mRNA Expressionen bei gekühlten Patienten, siehe Abbildung 17. Die ermittelten 

mRNA Expressionen von TNF-α zeigten sich nur in der graphisch vermindert in der 

gekühlten Gruppe, ohne Nachweis einer Signifikanz. 

In einer Publikation von Callaway et al. 2008 (42) durchgeführt am Tiermodell, wurde 

über signifikante Unterschiede im Serum von IL-10 innerhalb der ersten Stunde nach 

Ereignis berichtet. Die nicht gekühlte Tiergruppe zeigte erhöhte Werte an IL-10. Der 

Abnahmezeitpunkt 1 h nach Ereignis konnte aus organisatorischen Gründen in unserer 

Studie nicht untersucht werden. In der Publikation von Callaway et al. wurde ebenfalls 

diskutiert, ob der Unterschied des IL-10 auf die Kühlung zurückzuführen ist, oder aber in 

der Gabe von Katecholaminen begründet ist (127).  
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IL-10 ist ein wichtiger Antagonist der proinflammatorischen Zytokinproduktion des 

Monozyten-/Makrophagen-Systems und wird mit einer inadäquaten Produktion während 

einer Sepsis als schädlich angesehen. IL-10 ist wiederum ein Induktor für IL-1ra (64), 

was sich in unserer Studie als stimmig darstellt, da die mRNA beider 

antiinflammatorischer Parameter in der gekühlten Patientengruppe signifikant erhöht ist. 

Bishops et al. (134) untersuchten an 10 gekühlten Patienten die Unterschiede von 

Zytokinen im Serum. Es wurden keine signifikanten Unterschiede in IL-10 und IL-1ra 

während der Wiedererwärmung gefunden. Dies wurde mit einer stabilen 

antiinflammatorischen Antwort begründet.  

Andere Studien berichten über eine Abnahme der proinflammatorischen Zytokine, wie 

z.B. TNF-α (135), wenn die Patienten direkt nach Ereignis durch Hypothermie behandelt 

wurden (136), doch muss die Kühlung unmittelbar nach Ereignis erfolgen (137). In der 

vorliegenden Arbeit ist die sofortige Kühlung nach Ereignis der Patienten nicht 

gewährleistet, da zum Zeitpunkt der Datenerhebung noch keine standardisierten 

Protokolle zur Verfügung standen.  

Interessanterweise zeigt sich jedoch in unserer Studie eine signifikant erhöhte Expression 

von IL-1ra bei Patienten nach Kreislaufstillstand, die hypothermisch behandelt wurden, 

und zwar über die 24. h hinaus. El-Menyar et al. (88) beschreibt, dass ein wesentlicher 

Teil des postresuscitation syndrome die inflammatorische Immunantwort ist. Unter 

anderem werden TNF-α und IL-1ß mitverantwortlich gemacht, in diesem Zustand eine 

kardiale linksventrikuläre Funktionsstörung auszulösen. 

IL-1ra ist ein spezifischer Inhibitor, der die IL-1 Rezeptoren von IL-1a und IL-1ß 

blockiert und weiterhin TNF-α moduliert. Beilin et al. (135) konnten nachweisen, dass 

IL-1ß unter milder Hypothermie signifikant vermindert ist.  

Somit kann die Hypothese aufgestellt werden, dass IL-1ra die inflammatorische 

Immunreaktion hemmt und als positive Reaktion die Pumpfunktion des Herzens schützt 

und die Überlebensrate verbessert. 
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6. Zusammenfassung 

Trotz steigender Patienteneinlieferung in eine Klinik nach erfolgreicher 

kardiopulmonaler Reanimation entwickeln viele Patienten nach ROSC neben einer 

zerebralen Ischämie ein letales Multiorganversagen. Auslöser dafür ist die 

postischämische Immunreaktion des Körpers, das sogenannte postresuscitation 

syndrome. Bisher konnte nicht abschließend geklärt werden, welche genauen Umstände 

die postischämische Immunreaktion auslösen. Bei allen offenen Fragen scheint besonders 

die molekulare Ebene interessant. Neuere Studien befassen sich eingehend mit dem 

Thema der klinischen Überlebensrate nach kardiopulmonaler Reanimation. Der 

Forschungsschwerpunkt liegt bei den meisten Arbeiten aber auf dem Fokus der 

neurologischen Folgeschäden. 

Das Ziel der vorliegenden Arbeit war, einen Einblick auf mögliche Ursachen eines 

Multiorganversagens nach kardiopulmonaler Reanimation zu gewinnen. Hierbei sind 

maßgeblich Zytokine an der Auslösung beteiligt, daher war in der vorliegenden 

Untersuchung von Interesse: 

I. Zu analysieren, ob sich die Zytokinexpression in einem Zeitraum von 72 h nach 

erfolgreicher Wiederherstellung eines Kreislaufs auf mRNA-Ebene quantifizieren 

lässt 

II. Einen möglichen Zusammenhang zwischen intrazellulär ermittelten Daten und 

dem klinischen Verlauf, anhand des MOF-Scores dargestellt, zu überprüfen 

III. Zu ermitteln, ob die gemessenen Daten eine Dynamik der pro- und 

antiinflammatorischen Zytokine aufzeigen und ob es Unterschiede in der 

Dynamik hinsichtlich des klinischen Verlaufs wie “Überlebt” und “Verstorben” 

gibt 

IV. Die neu in den Leitlinien aufgenommene Methode der Hypothermie, mit nicht 

gekühlten Patienten hinsichtlich eines möglichen Expressionsunterschieds zu 

vergleichen  
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Um über die initialen pathophysiologischen Mechanismen auf mRNA-Ebene mehr zu 

erfahren, wurden aus der Literatur relevante Zytokine, die an diesen Mechanismen 

beteiligt sind, in der vorliegenden Studie genauer untersucht. Als proinflammatorische 

Parameter wurden IL-8 und TNF-α, als antiinflammatorische Parameter wurden IL-10 

und IL-1ra ausgewählt und quantitativ mittels RT-PCR bestimmt. 

Zu diesem Zweck wurde aus Vollblut eine snapshot-Analyse zu verschiedenen 

Zeitpunkten nach erfolgreicher Reanimation durchgeführt. Es konnte erfolgreich gezeigt 

werden, dass sich das PAXgene® Blood RNA Kit dazu eignet, mRNA zu isolieren und 

nachzuweisen. Dies erfolgte nach einem Protokoll mit 6 seriellen Abnahmezeitpunkten, 

die erste Abnahme erfolgte nach Erlangen eines Spontankreislaufs unter Mithilfe des 

notärztlichen Teams, sowie nach 6 h, 12 h, 24 h, 48 h und 72 h nach Ereignis. Die 

ermittelten Rohdaten des untersuchten Gens wurden auf eine definierte RNA 

Konzentration normalisiert.  

In die Studie wurden 25 Patienten eingeschlossen. Prinzipiell war die Studie zwar 

durchführbar, jedoch unter erschwerten Bedingungen aufgrund des nicht alltäglichen 

Patientenkollektives mit der teils fehlenden Mitarbeit in der präklinischen und 

innerklinischen Versorgung sowie des individuellen, oft instabilen Zustandes der 

Patienten.   

In der vorliegenden Arbeit konnte somit gezeigt werden, dass das PAXgene® Blood 

RNA Kit zur mRNA Isolierung aus Vollblut geeignet ist und sich damit Unterschiede in 

den Expressionsniveaus im zeitlichen Verlauf nachweisen lassen. 

Bezogen auf den zeitlichen Verlauf der proinflammatorischen Parameter zeigte sich 24 h 

nach Ereignis bei TNF-α ein signifikanter Abfall. Bei IL-8 zeigten sich signifikant 

erniedrigte Expressionsdynamiken 12 h bis 72 h nach Ereignis. Der 

antiinflammatorischer Parameter IL-10 zeigte keine signifikanten Unterschiede an den 

untersuchten Abnahmezeitpunkten. IL-1ra zeigte einige signifikant erhöhte 

Expressionsprofile bis zur 48 h. 

In Bezug auf die Fragestellung der Überlebensrate nach einer erfolgreichen Reanimation 

und Versorgung im Krankenhaus, wurden die Expressionsniveaus der Zytokine und die 

MOF-Scores der einzelnen Patienten miteinander in Korrelation gesetzt. Es konnte kein 
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Zusammenhang zwischen den MOF-Scores und dem Verlauf der Genexpressionen 

festgestellt werden.  

 Innerhalb des definierten Beobachtungszeitraums wurden Kollektive nach ,Überlebt‘ 

und ‚Verstorben‘ eingeteilt und hinsichtlich der jeweiligen Expressionsraten der Zytokine 

miteinander verglichen. Für TNF-α und IL-8 konnten im zeitlichen Verlauf in keiner 

Gruppe signifikante Unterschiede detektiert werden. Lediglich bei IL-8 ist zum 

Abnahmezeitpunkt ein signifikanter Unterschied zu erkennen, da die Gruppe der 

Verstorbenen ein erhöhtes Maß an IL-8 Expression aufzeigt. 

Für das Zytokin IL-10 wurden 48 h und 72 h nach Abnahmezeitpunkt signifikant erhöhte 

intrazelluläre mRNA-Konzentrationen bei dem Kollektiv ‚Verstorben’ detektiert. IL-1ra 

zeigte lediglich einen leichten Anstieg in der Expression beim Kollektiv ‚Verstorben’, 

erreichte jedoch kein Signifikanzniveau. 

Aus der Patientengruppe wurden sechs Patienten nach Wiedererlangen eines 

Spontankreislaufs in den Münchner Kliniken gekühlt (sogenannte Hypothermie). Im 

Vergleich von TNF-α und IL-8 konnte nur eine leicht verminderte Zytokinexpression im 

Kollektiv der gekühlten Patienten festgestellt werden. 

Das Zytokin IL-10 wurde zum Zeitpunkt 12 h nach Abnahme mit signifikant höheren 

Expressionen in der hypothermisch behandelten Gruppe ermittelt. Bei IL-1ra wurde 

ebenfalls zu mehreren Zeitpunkten ein signifikant erhöhter Wert bei den gekühlten 

Patienten gemessen. Es kann angenommen werden, dass dies die Pumpfunktion des 

Herzens verbessert.  

In der hier durchgeführten Arbeit zeigt sich, dass pro- und antiinflammatorischen 

Parameter an der Immunreaktion nach Herz-Kreislaufstillstand und anschließend 

wiedererlangter Zirkulation beteiligt sind und negative Folgen wie ein 

Multiorganversagen mit sich führen. 

Aufgrund der geringen Anzahl teilnehmender Patienten müssen weitere Untersuchungen 

durchgeführt werden um die hier erlangten Erkenntnisse zu bestätigen und um 

Zusammenhänge von Multiorganversagen und Zytokinen aus der Immunantwort noch 

besser verstehen zu können.  
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