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Abstract
While quantum theory has been tested to an incredible degree on microscopic scales,

quantum effects are seldom observed in our everyday macroscopic world. The

curious results of applying quantum mechanics to macroscopic objects are perhaps

best illustrated by Erwin Schrödinger’s famous thought experiment, where a cat can

be put into a superposition state of being both dead and alive. Obviously, these

quantum predictions are in stark contradiction to our common experience. Even

with plenty of theoretical explanations put forward to explain this discrepancy, a

large number of questions about the frontier between the quantum and the classical

world remain unanswered.

To distinguish between classical and quantum behavior, two fundamental concepts

inherent to classical physics have been established over the years: The world view

of local realism limits the power of classical experiments to establish correlations

over space, while the world view of macroscopic realism (or macrorealism) restricts

temporal correlations. Necessary conditions for both world views have been formu-

lated in the form of Bell and Leggett-Garg inequalities, and Bell inequalities have

been shown to be violated by quantum mechanics through increasingly conclusive

experiments. Furthermore, many challenging steps towards convincing violations of

macrorealism have been taken in a number of recent experiments.

In the first part of this thesis, conditions for macrorealism are analyzed in detail.

Two necessary conditions for macrorealism, the original Leggett-Garg inequality

and the recently proposed no-signaling in time condition, are presented. It is then

shown that a combination of no-signaling in time conditions is not only necessary

but also sufficient for the existence of a macrorealistic description. Finally, an

operational formulation of no-signaling in time, in terms of positive-operator valued

measurements and Hamiltonians, is derived.

In the next part, we argue that these results lead to a suitable definition of classical

behavior. In particular, we provide a formalism to judge the classicality of measure-

ments and time evolutions. We then proceed to apply it to a number of exemplary
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measurement operators and Hamiltonians. Finally, we argue for the importance of

spontaneously realized Hamiltonians in our intuition of classical behavior.

Next, differences between local realism and macrorealism are analyzed. For this

purpose, the probability polytopes for spatially and temporally separated experiments

are compared, and a fundamental difference in the power of quantum mechanics

to build both types of correlations is discovered. This result shows that Fine’s

theorem, which states that a set of Bell inequalities is necessary and sufficient for

local realism, is not transferable to macrorealism. Thus, (Leggett-Garg) inequalities

are in principle not well-suited for tests of macrorealism, as they can never form a

necessary and sufficient condition, and unnecessarily restrict the violating parameter

space. No-signaling in time is both better suited and more strongly motivated from

the underlying physical theory.

In the final part of this thesis, a concrete experimental setup for implementing

quantum experiments with macroscopic objects is proposed. It consists of a super-

conducting micro-sphere in the Meißner state, which is levitated by magnetic fields.

Through its expelled magnetic field, the sphere’s center-of-mass motion couples to

a superconducting quantum circuit. Properly tuned, ground state cooling can be

realized, since the sphere’s motion is extremely well isolated from the surrounding

environment. This setup therefore is a promising candidate for the observation of

quantum effects in macroscopic systems.
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Zusammenfassung
Obwohl Quantenmechanik auf mikroskopischen Skalen Vorhersagen trifft, die mit

unglaublicher Präzision experimentell bestätigt sind, beobachten wir in unserer

alltäglichen makroskopischen Welt kaum ihren Einfluss. Die Anwendung von Quan-

tentheorie auf makroskopische Objekte liefert vielmehr außerordentlich seltsame

Ergebnisse. Das bekannte Beispiel, Erwin Schrödinger’s Gedankenexperiment, in

dem eine Katze in einen Überlagerungszustand aus tot und lebendig gebracht wer-

den kann, illustriert dies anschaulich. Offensichtlicherweise entspricht das nicht

unseren alltäglichen Erfahrungen. Obwohl unzählige Theorien versuchen, diesen

Unterschied zwischen Quantenmechanik und klassischer Physik zu erklären, bleiben

viele Fragen über die Grenze zwischen diesen beiden Welten offen.

Im Laufe des letzten Jahrhunderts wurden zwei fundamentale Charakteristika von

klassischer Physik identifiziert, die eine Unterscheidung von klassischem und quan-

tenmechanischem Verhalten ermöglichen: Die Weltbilder lokaler Realismus und ma-

kroskopischer Realismus (oder Makrorealismus) setzen dem Aufbau von räumlichen

bzw. zeitlichen Korrelationen in klassischen Theorien prinzipielle Grenzen. Notwen-

dige Bedingungen für beide Weltbilder wurden in Form von Bell-Ungleichungen

und Leggett-Garg-Ungleichungen formuliert. Die Verletzung von Bell-Ungleichungen

(und damit von lokalem Realismus) durch Quantenmechanik ist durch Experimente

mit zunehmender Zuverlässigkeit bestätigt, und wichtige Schritte hin zu experimen-

tellen Tests von Makrorealismus wurden in den letzten Jahren unternommen.

Im ersten Teil dieser Dissertation werden Bedingungen für Makrorealismus im

Detail analysiert. Zwei notwendige Bedingungen, die ursprüngliche Leggett-Garg-

Ungleichung und die kürzlich vorgeschlagene Bedingung namens no-signaling in time

werden vorgestellt. Es wird ferner gezeigt, dass eine Kombination aus no-signaling

in time und Kausalitätsbedingungen sowohl hinreichend als auch notwendig für

die Existenz einer makrorealistischen Beschreibung eines Experiments ist. Zuletzt

wird eine operationelle Formulierung von no-signaling in time als Forderungen an

POVM-Messoperatoren und den Hamiltonoperator hergeleitet.
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Der nächste Teil legt dar, dass sich aus den obigen Ergebnissen eine passende Defini-

tion von klassischem Verhalten ergibt. Wir definieren die Klassizität von Messungen

und Zeitentwicklungen, und wenden unsere Ergebnisse auf einige beispielhafte

Messoperatoren und Hamiltonoperatoren an. Ferner wird die Wichtigkeit der in der

Natur spontan realisierten Wechselwirkungen für jede Definition von klassischem

Verhalten diskutiert.

Im dritten Teil werden Unterschiede zwischen lokalem Realismus und makrosko-

pischem Realismus analysiert. Wir betrachten hierfür die Form der Räume, die

durch die Wahrscheinlichkeitsverteilungen in beiden Fällen aufgespannt werden.

Wir finden fundamentale Unterschiede in der Struktur beider Polytope, insbesondere

in Bezug auf Quantenmechanik. Unsere Ergebnisse belegen, dass Fines Theorem,

welches besagt, dass Bell-Ungleichungen hinreichend und notwendig für lokalen

Realismus sind, nicht auf Makrorealismus übertragbar ist. Daraus folgern wir, dass

(Leggett-Garg-)Ungleichungen prinizpiell nicht optimal für experimentelle Tests von

Makrorealismus sind, da sie niemals hinreichend sein können, und den verletzen-

den Parameterraum unnötig einschränken. No-signaling in time ist somit sowohl

mächtiger, als auch besser durch die zugrundeliegende Theorie motiviert.

Im letzten Teil dieser Dissertation schlagen wir einen konkreten experimentellen

Aufbau für Quantenexperimente mit makroskopischen Objekten vor. Er besteht aus

einer supraleitenden Kugel im Mikrometerbereich im Meißner-Zustand. Die Kugel

wird durch ein starkes Magnetfeld in der Schwebe gehalten und gefangen. Über

das verdrängte Magnetfeld koppelt die Schwerpunktsposition der Kugel an einen

supraleitenden Quantenstromkreis. Mit einem passenden Antriebsfeld kann die

Schwerpunktsbewegung dann in den Quantengrundzustand gekühlt werden, da die

Kugel extrem gut von der Umgebug isoliert ist. Unser Vorschlag ist damit ein vielver-

sprechender Kandidat für die Beobachtung von Quanteneffekten in makroskopischen

Systemen.
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0Introduction

“ Das Typische an solchen Fällen ist, daß eine ursprünglich

auf den Atombereich beschränkte Unbestimmtheit sich in

grobsinnliche Unbestimmtheit umsetzt, die sich dann durch

direkte Beobachtung entscheiden läßt. Das hindert uns, in so

naiver Weise ein „verwaschenes Modell“ als Abbild der

Wirklichkeit gelten zu lassen. An sich enthielte es nichts

Unklares oder Widerspruchsvolles. Es ist ein Unterschied

zwischen einer verwackelten oder unscharf

eingestellten Photographie und einer Aufnahme von

Wolken und Nebelschwaden.

It is typical of these cases that an indeterminacy originally

restricted to the atomic domain becomes transformed into

macroscopic indeterminacy, which can then be resolved by

direct observation. That prevents us from so naively

accepting as valid a “blurred model” for representing reality.

In itself, it would not embody anything unclear or

contradictory. There is a difference between a shaky or

out-of-focus photograph and a snapshot of clouds and

fog banks.

— Erwin Schrödinger

On macroscopic superpositions in Die gegenwärtige

Situation in der Quantenmechanik [8], translation from

ref. [9], highlighting added
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0.1 History and motivation
It is one of nature’s subtle ironies that quantum mechanics, the perhaps best-tested

modern physical theory1, gives rise to a plethora of unanswered foundational ques-

tions. Issues like the measurement problem [11, 12], quantum violations of local

realism [13], and the vivid debate about different interpretations of quantum me-

chanics [14–16], have kept both physicists and philosophers busy for almost a century.

Among these problems is one (inadvertently) put forward by Erwin Schrödinger in

1935 [8], with his famous cat-based thought experiment (see fig. 0.1): the question

of the validity of quantum mechanics for macroscopic systems.

Many quantum mechanical peculiarities are in stark contrast to the behavior of our

macroscopic everyday world. While microscopic particles, such as photons, electrons

or even large molecules, can nowadays be put into superposition or entangled

states [17–19], the concept that a macroscopic object, such as a cat, could be in

a superposition state, seems, in Schrödinger’s words, burlesque. So, if quantum

mechanics provides such an excellent description of effects on the micro-scale, why

are quantum phenomena not a commonplace banality in our macroscopic world?

Over the past decades, various attempts have been made to answer this question.

While quantum decoherence [20–24] explains how strong interaction between quan-

tum systems and its environment leads to classical behavior2, it does not by itself

set an upper limit to the size of systems that can still exhibit quantum behavior.

Alternatively, a variety of novel theories have been put format to address this issue.

Through (in principle) observable changes to quantum physics, they impose funda-

mental limits to the maximum scales of quantum behavior. Since they introduce

novel, real physical processes leading to an accelerated collapse of the wave function,

they are called objective collapse theories. Perhaps the best-known example is the

Ghirardi-Rimini-Weber-Pearle model of continuous spontaneous localization [25–28],

which proposes a fundamental (non-quantum) source of “decoherence” with two

free parameters: a fundamental frequency for localization events, and characteristic

length scale for the localization distance. Another direction is the application of

gravitational concepts or string theory to quantum mechanics, e.g. by Penrose and

Diósi [29–33] or by Ellis, Mohanty, Nanopoulos, and Mavromatos [34, 35].

1Precision tests of quantum electrodynamics find agreement between the measured and theorized
value of the fine structure constant with a relative error of about 10−10 [10].

2Here one should distinguish between decoherence, which explains how a system gets entangled
with the environment, and the subsequent collapse of the wave function. The question of how and
when the actual collapse occurs (and the role of the observer in the process) is called the quantum
measurement problem.
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Figure 0.1: The absurdity of Schrödinger’s cat thought experiment has spawned
an overwhelming amount of references in popular culture. The above
drawing from the Oatmeal webcomic [37] puts a curious twist on its
setup.

Since the mentioned theories modify quantum behavior and present fundamental

limits to the reach of quantum mechanics, they can in principle be falsified by the

observation of quantum behavior on the macro scale. Experiments are quickly

approaching the regime where first tests are feasible [36]. A novel experimental

setup with some promising features is discussed in this thesis in chapter 4.

While the proposals mentioned above modify quantum mechanics to include ad-

ditional, dynamic processes, recently, an orthogonal approach was proposed by

Kofler and Brukner [38–40]. Investigating the measurement process itself, they

showed that using solely suitably coarse-grained measurements, one cannot observe

quantum behavior for a large class of Hamiltonian time evolutions. On the other

hand, sharp measurements (in principle) allow the observation of quantum effects

even on macroscopic systems, but are exceedingly hard to realize. In this thesis,

their work is extended from spins to arbitrary systems in chapter 1, and applied to

various measurement operators and Hamiltonians in chapter 2.

4 Chapter 0 Introduction



Before we3 go into depth on tests of quantum mechanics in macroscopic systems, let

us first give a brief introduction to local realism, one particularly important classical

concept that is violated on the microscopic level. While the rest of this thesis focuses

more on the related concept of macroscopic realism, a discussion of local realism is

interesting from a historical perspective and will be of use in chapter 3.

0.2 Local realism and Bell’s theorem
In 1935, Einstein, Podolsky and Rosen (EPR) published a seminal paper on the

completeness of quantum theory [41]. Using the effects of what is now known as

quantum entanglement, they attempted to show that the quantum wave function

cannot be considered a complete description of physical reality4. Their proof is

best illustrated by Bohm and Aharonov’s example [43]: Consider two spin 1/2
particles are emitted from a single spin 0 particle and sent to two observers, Alice

and Bob. Alice then measures the spin of her particle in a random direction. Due to

conservation of angular momentum, she can now predict with certainty the result

of Bob’s measurement, if both measurement directions are aligned. However, since

Alice could have chosen any measurement direction, and assuming locality, i.e. the

absence of “spooky action at a distance” [42], the result of any of Bob’s possible

measurements must already have been predetermined. Since these predetermined

values are not part of the quantum description, EPR concluded that the wave function

must be an incomplete description of reality. As a solution, they argued for the

extension of quantum mechanics with these predetermined values, which were later

called hidden variables.

Today, the conjunction of locality and realism is usually called local realism. It is the

world view that all physical properties always exist independent of measurements

(i.e. the existence of hidden variables), and that events at one point in space cannot

have an instantaneous influence on a distant point in space. In Scott Aaronson’s

words [44], “it’s the thing you believe in, if you believe all the physicists babbling

about ‘quantum entanglement’ just missed something completely obvious.”

Motivated by EPR’s proposal, in 1964 John S. Bell presented his famous theorem

[45]5: local hidden-variable models are fundamentally limited and cannot reproduce

truly quantum mechanical behavior. More technically, theories fulfilling local realism
3Throughout this thesis, plural pronouns (“we”, “us”, “our”) are used for simplicity. Depending on

the context, they are meant to include the co-authors of the presented studies.
4The meaning of the term physical reality was often illustrated by Einstein with the question [42] “is

the moon there when nobody is looking?”
5For reviews of Bell’s theorem and violations of local realism, see refs. [13, 46].
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Source

Alice
p(a|x, λ)

Bob
p(b|y, λ)

Figure 0.2: A sketch of an experiment testing local realism. A source generates two
particles, that are, after some initial interaction, sent to Alice and Bob.
If no communication between them is possible during the measurement
process, as stylized by the zigzag line, then local realism demands that
their probability distributions for the outcomes a, b must only depend
on their own individual settings x, y, and the hidden variables λ.

must also fulfill all so-called Bell inequalities, while quantum entangled states are

able to violate them. This allows for an explicit experimental test of whether nature

follows local realism or behaves in agreement with quantum mechanics6.

In the following decades until today, many alternative and, in some cases, more

general inequalities have been found [48–52]. The CHSH inequality, perhaps the

most important Bell inequality today, was proposed by Clauser, Horne, Shimony

and Holt (“CHSH”) in 1969 [48]. Let us now briefly recapitulate its derivation. We

follow the calculations in ref. [13].

Consider the experimental setup sketched in fig. 0.2: Two physical systems (e.g.

two particles), that have initially been allowed to interact with each other, are now

separated. The first system is sent to Alice, the second system is sent to Bob. Both

observers have the capability to perform different measurements on their individual

system. We denote the choice of measurement (setting) of Alice by x, and the one

of Bob by y. Their outcomes are called a and b, respectively. If the experiment is

repeated a sufficient number of times, we obtain a probability distribution p(ab|xy)
for the outcomes given the respective measurement settings. Note that in general

this probability does not factorize,

p(ab|xy) 6= p(a|x)p(b|y). (0.1)

Let us now assume the existence of hidden variables λ, which completely capture

the state of the system. The probability distributions then depend only on λ, their re-

6While an experimental violation of Bell’s inequality disproves all local realistic theories, it certainly
does not prove quantum mechanics, as, in the sense of Popper, physical theories can only be falsified
[47].
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spective measurement settings, and the other party’s outcome; we write p(a|xy, b, λ),
p(b|xy, a, λ) and p(ab|xy, λ).

Additionally, assume locality, i.e. that Alice and Bob cannot communicate their

measurement settings and results between each other. In an experiment, this

requirement may be realized by space-like separation of both observers, and by

randomly selecting the settings and performing the measurements in a time shorter

than information (light) would need to travel the distance from Alice to Bob. Then,

the joint probability factorizes into

p(ab|xy, λ) = p(a|x, λ)p(b|y, λ). (0.2)

If the experiment is repeated multiple times, initial states with different λ may

be produced by the source. Hence, we introduce a probability distribution q(λ).
Furthermore assuming that x, y can be chosen independently from λ, the freedom of

choice assumption, we can write the joint probability distribution as

p(ab|xy) =
∫

dλ q(λ)p(a|x, λ)p(b|y, λ). (0.3)

For simplicity, let us now consider the case of only two measurement settings

x, y ∈ {0, 1} and dichotomic outcomes a, b ∈ {−1,+1}. The expectation value of ab,

given settings x, y, is defined as 〈axby〉 =
∑
a,b ab p(ab|xy), and can take values from

−1 to 1. Using eq. (0.3), we can write this expectation value in terms of the local

expectation values,

〈axby〉 =
∫

dλ q(λ) 〈ax〉λ 〈by〉λ , (0.4)

where we introduced 〈ax〉λ =
∑
a a p(a|x, λ) and 〈by〉λ =

∑
b b p(b|y, λ).

Consider now the expression

S ≡ 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 , (0.5)

which we can, assuming local realism, also write as S =
∫

dλ q(λ)Sλ, where

Sλ ≡ 〈a0〉λ 〈b0〉λ + 〈a0〉λ 〈b1〉λ + 〈a1〉λ 〈b0〉λ − 〈a1〉λ 〈b1〉λ . (0.6)
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Since | 〈ax〉λ | ≤ 1, we have

Sλ ≤ | 〈a0〉λ (〈b0〉λ + 〈b1〉λ)|+ | 〈a1〉λ (〈b0〉λ − 〈b1〉λ)|

≤ | 〈b0〉λ + 〈b1〉λ |+ | 〈b0〉λ − 〈b1〉λ |.
(0.7)

Without loss of generality we can permute the settings and outcomes such that

〈b0〉λ ≥ 〈b1〉λ ≥ 0. We obtain

Sλ ≤ 2 〈b0〉λ ≤ 2, (0.8)

or, equivalently,

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 ≤ 2. (0.9)

This is the famous CHSH inequality, first shown in ref. [48].

Let us now consider a simple quantum implementation of this experiment, following

ref. [13]. Two quantum systems (e.g. two spins) can occupy two individual states,

called |−1〉 and |+1〉, and form a joint product state, written e.g. as |+1〉 ⊗ |−1〉 =
|+1,−1〉. Initially, the systems are prepared in the singlet state |ψ〉 = (|−1,+1〉 −
|+1,−1〉)/

√
2. Let the measurement settings be described by 3-dimensional vectors

x,y, and the measurement operators be x · σ for the first qubit, and y · σ for the

second qubit. Here, σ = (σx, σy, σz) is the vector of Pauli matrices. Then, the

expectation value 〈axby〉 = −x · y. Now we choose the two settings for Alice,

x ∈ {êx, êy}, and for Bob, y ∈ {−(êx + êy)/
√

2, (−êx + êy)/
√

2}. This yields

〈a0b0〉 = 〈a0b1〉 = 〈a1b0〉 = 1/
√

2 and 〈a1b1〉 = −1/
√

2. We obtain a violation

of the CHSH inequality (0.9),

S = 2
√

2 > 2. (0.10)

We have thus shown that quantum mechanics violates the assumption of local

realism.

Interestingly, neither a violation of solely locality or solely realism can be inferred

from the joint violation of locality and realism. The question which of the two

concepts is untenable is one of the main subjects in the great debate between

different interpretations of quantum mechanics [14–16].
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Figure 0.3: A common misinterpretation of Bell’s result is the idea that quan-
tum physics allows faster-than-light communication, as shown in the
above webcomic from xkcd [70]. Online, its title text reads: “The
no-communication theorem states that no communication about the no-
communication theorem can clear up the misunderstanding quickly enough
to allow faster-than-light signaling.”

Furthermore, it is important to note that this does not mean that quantum mechanics

violates special relativity. The no-signaling conditions, which can be formalized as

∀y : p(a|x) =
∑
b

p(ab|xy), (0.11)

are still satisfied (c.f. fig. 0.3).

Experimental violations of Bell-like inequalities have been achieved in a variety

of systems [53–67]. While these experiments will always leave open a number of

fundamental loopholes [68], recent experiments [65–67] manage to close all that

are considered relevant by the community [68, 69].

An interesting follow-up question is the degree of the Bell inequality violation

admitted by quantum mechanics. While discussed briefly in chapter 3, the topic of

quantum violations of local realism is out of the scope of this thesis. The reader is

referred to refs. [13, 71] for a detailed review.

0.2 Local realism and Bell’s theorem 9



0.3 Contents of this thesis
As discussed in the previous section, quantum physics and classical (local realistic)

theories differ vastly in their potential to establish spatial correlations. How, on the

other hand, do quantum and classical models differ when we look at measurements

separated in time?

In this thesis we will mainly look at these temporal correlations, i.e. measurements

performed on a single macroscopic system at multiple times. Chapter 1 starts with

a definition of macrorealism, roughly the analogue of local realism in time. We show

how the Leggett-Garg inequality [72], a condition similar to the Bell inequality, can

be derived. We then discuss no-signaling in time, a recently proposed necessary

condition for macrorealism [73], its relationship to the Leggett-Garg inequalities,

and prove that a combination of no-signaling in time and arrow of time conditions is

both necessary and sufficient for macrorealism. We also introduce a formulation of

no-signaling in time in terms of measurement operators and Hamiltonians.

Next, in chapter 2, we use this formalism to obtain a definition of the “classicality”

of measurement operators and Hamiltonians. We apply our definition to a num-

ber of exemplary systems, and discuss the importance of spontaneously realized

Hamiltonians for a definition of classical behavior.

In chapter 3 we compare the results from chapter 1 to tests of local realism and

look at the structure of probability space in quantum mechanics, local realism

and macrorealism. A fundamental difference of the role of quantum mechanics

is identified, which leads to the conclusion that the Leggett-Garg inequalities are

generally not well-suited to serve as a condition for macrorealism.

Chapter 4 discusses a novel magnetomechanical system for implementing, amongst

other experiments, tests of macrorealism. To bring a macroscopic object into the

quantum regime, we propose to use magnetostatics to couple a superconducting

quantum device to the motion of a superconducting sphere. We show that ground

state cooling, the fundamental requirement for many quantum protocols, can be

realized in this system. A key characteristic of our proposal is the almost perfect

isolation of the mechanical motion from the environment.

Finally, we draw some conclusions in chapter 5, and discuss possible future work.
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1Conditions for macrorealism

“ The Hitchhiker’s Guide to the Galaxy is an indispensable

companion to all those who are keen to make sense of life in

an infinitely complex and confusing Universe, for though it

cannot hope to be useful or informative on all matters, it

does at least make the reassuring claim, that where it is

inaccurate it is at least definitively inaccurate. In cases of

major discrepancy it’s always reality that’s got it wrong.

— Douglas Adams

The Hitchhiker’s Guide to the Galaxy [74]

Abstract

Macroscopic realism (or macrorealism) is a world view common to all classical

theories, enforcing that macroscopic properties of macroscopic objects exist indepen-

dently of and are not influenced by measurements. In analogue to the world view

of local realism, classical physics fulfills macrorealism, while quantum mechanics

violates it. This makes macrorealism an interesting subject for the study of the

quantum-to-classical transition.

Macrorealism is usually tested using Leggett-Garg inequalities [72, 75, 76]. Recently,

another necessary condition called no-signaling in time has been proposed as an

alternative witness for non-classical behavior [73]. It has been argued that no-

signaling in time may be a more robust condition than the Leggett-Garg inequalities

[39, 73, 77, 78].

In this chapter, we expand on previous analyses of no-signaling in time, and formulate

operational conditions for macrorealism. After an introduction to macrorealism

(section 1.1) and a discussion about the relation between its two constituents,

macrorealism per se and non-invasive measurability (section 1.2), we introduce the

Leggett-Garg inequality (section 1.3). We then present the condition of no-signaling

11



in time (section 1.4), and show that a combination of no-signaling in time and

arrow-of-time conditions is necessary and sufficient for macrorealism (section 1.5).

Subsequently, we derive an operational formulation for NSIT in terms of positive

operator-valued measurements and the system Hamiltonian (section 1.6).

This chapter is based on and uses parts of ref. [1]:

• L. Clemente and J. Kofler, ‘Necessary and sufficient conditions for macroscopic

realism from quantum mechanics’, Phys. Rev. A 91, 062103 (2015)
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1.1 Macroscopic realism
The direct application of quantum mechanical principles to macroscopic systems usu-

ally results in curios predictions, perhaps best illustrated by the famous Schrödinger’s

cat thought experiment [8]. As mentioned before (c.f. chapter 0), the question

whether macroscopic1 quantum effects can in principle be observed in macroscopic

systems remains unsolved to date. An answer to this questions would have vast im-

pact on a multitude of fundamental issues, such as the quantum measurement prob-

lem [11, 12]. It is therefore interesting to explore how—assuming their existence—

quantum effects on the macroscale could be experimentally demonstrated.

In 1985, Leggett and Garg [72] put forward macroscopic realism (or macrorealism), a

world view common to all classical physical theories which enforce that macroscopic

properties of macroscopic objects exist independently of, and are not influenced by

measurements. Macrorealism can be regarded as a close analogue to local realism

(as discussed in section 0.2), but with temporal correlations taking the role of spatial

correlations. Quantum violations of macrorealism can thus serve as an experimental

witness of non-classicality.

Let us start our discussion with the definition2 of macrorealism (MR), originally

presented in ref. [72]. Quoting Leggett’s revised version from 2002, macrorealism is

defined as the conjunction of three postulates [75]:

“ (1) Macrorealism per se. A macroscopic object which has available to it

two or more macroscopically distinct states is at any given time in a

definite one of those states.

(2) Non-invasive measurability. It is possible in principle to determine

which of these states the system is in without any effect on the state

itself or on the subsequent system dynamics.

(3) Induction. The properties of ensembles are determined exclusively

by initial conditions (and in particular not by final conditions).

1Here and in the following discussion, we are interested in truly macroscopic quantum superpo-
sitions, not in microscopic quantum effects giving rise to macroscopic phenomena (as e.g. in
superconductivity).

2Alternative definitions of macrorealism, and in particular macrorealism per se, have recently been
proposed, see refs. [78, 79] for more details.

1.1 Macroscopic realism 13



In the following, we will also refer to postulate (3) as the arrow of time3.

Here, we will not discuss the question of how to define the term macroscopic

in detail. Let us note that there exist two problems: The quantification of the

macroscopicity of a system itself, and the quantification of the macroscopic distinctness

of the states in a quantum superposition. The latter arises in particular since

quantum states of a macroscopic object can be orthogonal, even though they are not

macroscopically distinct: Paraphrasing an example from Peres [87], the quantum

states of a pen, and of the same pen with one atom removed, are macroscopically

practically indistinguishable, but orthogonal in quantum theory. Some notable

contributions towards a general definition of macroscopic distinctness can be found

in refs. [75, 88–100].

Analyzing the present definition of macrorealism, it can readily be seen that ortho-

dox4 quantum mechanics fulfills postulate (3), but violates postulates (1) and (2).

Classical physics obviously satisfies postulate (1), as superposition states are confined

to the realm of quantum physics, and (3) due to causality. However, at first glance, it

seems that classical physics can violate postulate (2) if imperfect measurements are

performed. Various approaches to close this so-called clumsiness loophole have been

discussed [72, 101]. The original solution proposed by Leggett and Garg requires

performing solely negative ideal measurements [72]. In that case, the measurement

process is constructed such that the measurement device interacts with the system

if and only if the system has one particular value (e.g. a double-slit experiment

with a detector blocking only one slit). The absence of a measurement result (no

click of the detector) then indicates the opposite outcome (the photon went through

the other slit). Classically, the system cannot have been influenced by a negative

measurement outcome. We conclude that classical physics, with its possibility of

performing non-invasive measurements, fulfills all postulates, and therefore is a

macrorealistic theory.

Exactly how the everyday macrorealism around us arises out of quantum behavior

can be regarded as an open question of quantum foundations. While theories such

as objective collapse models (briefly introduced in chapter 0) propose novel physical

processes, recent studies have investigated the possibility of obtaining classical

behavior from within quantum mechanics. They discovered that the restriction to

coarse-grained (“classical”) measurements alone already leads to the emergence of
3The question of how the arrow of time arises in quantum mechanics has been extensively discussed

in the literature. Some notable contributions are refs. [80–86]. Interestingly, a possible explanation
stems from coarse-graining, see refs. [85, 86].

4Here we consider the “orthodox” interpretation of quantum theory. There are interpretations (e.g.
Bohmian mechanics) where postulate (1) is obeyed.
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classicality [38, 102, 103], unless a certain type of (“non-classical”) Hamiltonian

is governing the object’s time evolution [39]. Although challenged by recent work

[104], further investigations have confirmed the intuition that these Hamiltonians

are hard to engineer and require a very high control precision in the experimental

setup [105–107]. In the current and the following chapter, we extend this work, and

obtain conditions for classicality from measurements and Hamiltonians.

Although setups such as superconducting devices, heavy molecules, and quantum-

optical systems are promising candidates in the race towards an experimental

violation of macrorealism, non-classical effects have so far only been observed either

for microscopic objects or microscopic properties of larger objects [19, 76, 108–

129]. The experimental realization of Schrödinger cat states is highly challenging,

and so far only possible for single-digit numbers of atoms or photons [130–141].

However, a genuine violation of macroscopic realism—with its reference to macro-

scopically distinct states—requires using solely measurements of macroscopically

coarse-grained observables. Thus far, the required parameter ranges lie outside of

the experimentally feasible domain. A proposal for a novel experimental setup that

may extend the experimentalist’s reach is discussed in chapter 4.

1.2 Macrorealism per se following from strong
non-invasive measurability
We start our analysis by first showing that a strong reading of non-invasive measura-

bility implies macrorealism per se.

In this section, we assume that the state space of a macroscopic object is split into

macroscopically distinct non-overlapping states (macrostates). Consider a macro-

observable Q(t) with a one-to-one mapping between its values and the macrostates.

Further consider measurements of the macro-observable that enforce a definite

post-measurement macrostate and report the corresponding value as the outcome.

Macrorealism per se (MRps) is fulfilled if Q(t) has a definite value at all times t,

prior to and independent of measurement:

∀t : ∃ definite Q(t). (1.1)
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Probabilistic predictions for Q(t) are merely due to ignorance of the observer. Even

in cases where Q(t) evolves unpredictably (e.g. in classical chaos) or even indeter-

ministically, it is still assumed to have a definite value at all times.

On top of MRps, the assumption of non-invasive measurability (NIM) in principle

allows a measurement at every instant of time, revealing the macrostate without

disturbance. NIM guarantees that

∀t : Q(t) = QH(t), (1.2)

where H denotes the history of past non-invasive measurements on the system: In

order for measurements to be non-invasive, the time evolution of Q must not depend

on the history of the experiment5. Note that all non-invasive measurements are

repeatable, i.e. when performing the same measurement immediately again, the

same outcome is obtained with probability 1.

In the literature, NIM is often treated as a necessary condition for macrorealism

per se. It is argued that NIM is “so natural a corollary of [MRps] that the latter is

virtually meaningless in its absence” [75]. As some others before [73, 78, 79], we

do not adhere to this position. A counter example to the statement MRps ⇒ NIM

is given by the de Broglie–Bohm theory, where measurements are invasive, as they

affect the guiding field and thus the subsequent (position) state, but MRps is fulfilled,

as the (position) state is well-defined at all times. In fact, we now argue that there

exist two different ways of reading the postulate of NIM in [75]:

• Weak NIM. Given a macroscopic object is in a definite one of its macrostates, it

is possible to determine this state without any effect on the state itself or on

the subsequent system dynamics.

• Strong NIM (sNIM). It is always possible to measure the macrostate of an object

without any effect on the state itself or on the subsequent system dynamics.

Let us now argue that sNIM actually implies MRps. Assuming sNIM, a hypothetical

non-invasive measurement can be performed at every instant of time, determining

the value of the macro-observable Q. Due to its non-invasive nature, Q must have
5Let us now assume the existence of hidden parameters λ(t) that define all physical properties.

MRps is fulfilled if the macro-observable is a deterministic function Q = Q(λ(t)). There are two
conceivable scenarios: (i) Deterministic time evolution of λ, causing deterministic time evolution of
the macro-observable Q(λ(t)). (ii) Stochastic time evolution of λ, where some intrinsic randomness
generates random jumps in λ. We still have a deterministic dependency Q(λ), but Q(λ(t)) appears
stochastic. In both cases MRps is fulfilled, since the system is in a single macrostate, as described
by Q = Q(λ(t)), at all times. The condition for NIM then reads Q(λ(t)) = Q(λH(t)), where λH(t)
are the hidden parameters after a history H of non-invasive measurements.
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had a definite value already before the measurement. This ensures that Q has a

definite value at all times, giving rise to a “trajectory” Q(t). Therefore,

sNIM⇒ MRps. (1.3)

Another way of establishing this implication is the following: Assume that MRps

fails, i.e. the object is not in a definite macrostate. A measurement leaves the object

in a definite macrostate, creating a definite state out of an indefinite one, and

therefore does not satisfy sNIM. We thus have ¬MRps⇒ ¬sNIM, which is equivalent

to (1.3).

Note that (1.3) holds even if sNIM is made less stringent, allowing measurements to

change the subsequent time evolution, while still determining the macrostate.

In this thesis, we implicitly assume the arrow of time and freedom of choice con-

cerning the initial states and measurement times (including whether a measurement

takes place at all). Then, sNIM alone is sufficient for macrorealism:

sNIM⇔ MRps ∧ NIM⇔ MR. (1.4)

1.3 The Leggett-Garg inequality
In their 1985 paper, Leggett and Garg proposed a necessary condition for macroreal-

ism, called the Leggett-Garg inequality (LGI) [72]. Similarly to the Bell inequalities

discussed in section 0.2, which serve as a witness for violations of local realism, the

violation of an LGI serves as a witness for violations of macrorealism. Let us now

briefly recapitulate its derivation, following ref. [76].

Consider a simple experimental setup where a system undergoes time evolution.

At times t0, t1, t2, the experimenter may choose to perform (or not perform) a

dichotomic measurement. We denote with Pi(Qi) the probability for obtaining

measurement result Qi ∈ {+1,−1} when measuring at time ti, with i ∈ {0, 1, 2}. Let

us now define the correlation functions

〈QiQj〉 =
∑
Qi,Qj

QiQjPij(Qi, Qj), (1.5)

where Pij(Qi, Qj) is the joint probability of Qi and Qj . Note that the subscripts

of the probability distributions here are important, as they distinguish different
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experiments: E.g. P12(Q2) belongs to an experiment where measurements are

performed at times t1 and t2, and, in general, P2(Q2) 6= P12(Q2).

Under the the assumption of macrorealism per se, the well-defined value of Qk
exists, whether or not a measurement was performed at ti. We can therefore write

the two-time joint probability distribution as marginal of a three-time probability

distribution:

Pij(Qi, Qj) =
∑
Qk 6=i,j

Pij(Qi, Qj , Qk). (1.6)

With macrorealism per se alone, the probabilities P01, P02, P12 do not necessarily

follow from a joint probability distribution, since earlier measurements can be

invasive and change the future time evolution towards the next measurement. With

the assumption of non-invasive measurability, this possibility is forbidden, and the

probabilities become equal:

P01(Q0, Q1, Q2) = P02(Q0, Q1, Q2) = P12(Q0, Q1, Q2)

= P012(Q0, Q1, Q2) ≡ P (Q0, Q1, Q2).
(1.7)

Using the short notation P (+,+,+) = P (+1,+1,+1) (others accordingly), we can

calculate all pairwise joint probability distributions:

〈Q0Q1〉 = P (+,+,+) + P (+,+,−) + P (−,−,+) + P (−,−,−)

− P (+,−,+)− P (+,−,−)− P (−,+,+)− P (−,+,−),
(1.8)

〈Q0Q2〉 = P (+,+,+) + P (+,−,+) + P (−,+,−) + P (−,−,−)

− P (+,+,−)− P (+,−,−)− P (−,+,+)− P (−,−,+),
(1.9)

〈Q1Q2〉 = P (+,+,+) + P (−,+,+) + P (+,−,−) + P (−,−,−)

− P (+,+,−)− P (−,+,−)− P (+,−,+)− P (−,−,+).
(1.10)

Adding and applying the normalization of probabilities, and introducing Cij =
〈QiQj〉, we can write

K ≡ C01 + C02 − C12 = 1− 4[P (+,−,+) + P (−,+,−)]. (1.11)

Choosing P (+,−,+) = P (−,+,−) = 0 we obtain the upper bound for eq. (1.11),

K ≤ 1, while P (+,−,+) + P (−,+,−) = 1 (the maximum due to normalization)

yields the lower bound, K ≥ −3. We thus obtain the Leggett-Garg inequality,

LGI012 : −3 ≤ C01 + C02 − C12 ≤ 1. (1.12)
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As with the Bell inequalities, quantum mechanics is able to violate this inequality.

As an example [38], consider a spin 1/2, evolving under Hamiltonian Ĥ = ~ωσ̂x/2,

and subject to possible σ̂z measurements with outcomes Q1, Q2, Q3 at times t0, t1, t2.

Then, the correlation functions are 〈QiQj〉 = cos[ω(tj − ti)]. Choosing measurement

times separated by ∆t = π/(3ω), we obtain K = 3/2 > 1. Quantum mechanics

therefore does not behave according to macrorealism.

Leggett-Garg inequalities have so far been violated in a number of experimental

realizations in microscopic systems [110–112, 114–119, 121, 122, 126–128]. How-

ever, all of the experimentally feasible systems so far are microscopic in size (e.g.

single spins or a single flux quanta), and therefore cannot implement a real test of

macroscopic realism. Promising schemes for experiments with more macroscopic

systems are quantum optomechanics and quantum magnetomechanics, which will

be discussed in chapter 4.

There exist many other Leggett-Garg inequalities involving more than three possible

measurement times or more than two outcomes [76]. Quantum mechanical exper-

iments are able to violate ineq. (1.12) up to 3/2 for a qubit and, as shown in ref.

[142], up to the algebraic maximum 3 for higher-dimensional systems still using

dichotomic measurements Qi = ±1.

For a review of Leggett-Garg inequalities and current experimental work see ref. [76].

1.4 No-signaling in time
Recently, a necessary condition alternative to the Leggett-Garg inequalities, no-

signaling in time (NSIT), was proposed6 by Kofler and Brukner [73]. The condition

can be seen as a temporal analogue to the no-signaling conditions in Bell experiments

(c.f. eq. (0.11) of section 0.2), or, alternatively, as a statistical version of NIM (c.f.

eq. (1.2)). It requires that the outcome probabilities Pj(Qj) of result Qj measured

at time tj are the same, no matter whether or not a measurement was performed at

some earlier time ti < tj:

NSIT(i)j : Pj(Qj) = Pij(Qj) ≡
∑
Q′i

Pij(Q′i, Qj). (1.13)

Note again that the probability distributions on both sides of the equation, Pi and Pij ,

correspond to different physical experiments: While Pj is established by measuring

6While no-signaling in time appeared in some forms already in earlier works [39, 72, 143, 144], its
potential was not fully realized until ref. [73].
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only at tj , Pij is obtained by measuring both at ti and tj . Unlike in the LGI in (1.12),

one is not limited to only two outcomes.

If it is the later measurement at tj which may or may not be performed, NSITi(j)
reduces to an instance of the arrow of time and is therefore fulfilled by both macro-

realism and quantum mechanics.

While NSIT(1)2 is a promising condition that is usually able to detect violations of

MR more reliably than LGI012 [39, 73, 77, 78], it fails for particular initial states,

where the invasiveness is able to “hide” in the statistics of the experiment (see the

discussion below). We can however make NSIT(1)2 robust against such cases, by

always performing a measurement at t0. We call the resulting condition

NSIT0(1)2 : P02(Q0, Q2) = P012(Q0, Q2)

≡
∑
Q′1

P012(Q0, Q
′
1, Q2). (1.14)

NSIT0(1)2 alone is not sufficient for LGI012. Hence, we also introduce the condition

NSIT(0)12 : P12(Q1, Q2) = P012(Q1, Q2)

≡
∑
Q′0

P012(Q′0, Q1, Q2). (1.15)

As was recently shown in [78], a combination of NSIT(0)12, NSIT0(1)2 and the arrow

of time (AoT) is sufficient for LGI012:

NSIT0(1)2 ∧ NSIT(0)12 ∧ AoT⇒ LGI012. (1.16)

Importantly, the inverse is not true, and, moreover the left-hand side is not sufficient

for macrorealism. In fact, we will show in chapter 3 that Leggett-Garg inequalities

can fundamentally never be necessary and sufficient for macrorealism.

We further remark that one can also write a condition similar to NSIT0(1)2 in a more

intuitive form that we call non-invaded correlations (NIC),

NIC0(1)2 : C02 = C02|1, (1.17)

where C02|1 denotes the correlation 〈Q0Q2〉 given that an additional measure-

ment was performed at t1. It is shown in appendix 1.A that NIC0(1)2 follows from

NSIT0(1)2.
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t
t0 t1 t2

LGI012
NSIT(0)1
NSIT(1)2
NSIT(0)2

NSIT0(1)2
NSIT(0)12
NIC0(1)2

Figure 1.1: The setup for macrorealism tests with different necessary conditions
for MR in a system with possible measurements at three points in time.
Black filled circles denote measurements that always take place, white
filled circles measurements that may or may not be performed. A pair of
measurements is always performed for the LGI, shown with gray filled
circles.

Fig. 1.1 presents a graphical summary of the conditions that have been discussed in

this and the previous section.

1.5 Necessary and sufficient conditions for
macrorealism
In the following, we will show that the combination of various NSIT conditions and

the arrow of time (AoT) guarantees the existence of a unique global probability

distribution P012(Q0, Q1, Q2), which is equivalent to macrorealism evaluated at

t0, t1, t2. Let us start by writing all single-measurement probabilities in terms of P012.

Once again, note that joint probabilities P with different subscripts correspond to

different experimental setups (e.g. P2(Q2) is obtained by measuring only at t2, while

P12(Q1, Q2) is obtained by measuring at times t1 and t2):

P2(Q2) =
∑
Q′1

P12(Q′1, Q2) =
∑
Q′0

∑
Q′1

P012(Q′0, Q′1, Q2), (1.18)

where we have used NSIT(1)2 for the first equality and NSIT(0)12 for the second one.

Furthermore,

P1(Q1) =
∑
Q′2

P12(Q1, Q
′
2) =

∑
Q′0

∑
Q′2

P012(Q′0, Q1, Q
′
2), (1.19)
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AoT AoT
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AoT

NSIT0(1)2

NSIT(0)12

NSIT(1)2

NSIT(0)2

NSIT(0)1

Figure 1.2: Different combinations of NSIT and AoT conditions are sufficient for
guaranteeing that all probability distributions Pi, Pij are the marginals
of a unique global probability distribution P012. There are multiple
ways of obtaining a sufficient set. The black arrows correspond to one
particular choice, and additional conditions are printed for completeness
in blue. Note that the existence of a classical explanation for the pairwise
joint probabilities Pij is sufficient for fulfilling LGI012, but not for MR012.

where for the first equality we assumed AoT [i.e. Qi are (statistically) independent

of Qj for j > i], and NSIT(0)12 for the second one. Moreover, we see that

P0(Q0) =
∑
Q′1

∑
Q′2

P012(Q0, Q
′
1, Q

′
2), (1.20)

where AoT was used twice. Next, the pairwise joint probability functions can be

constructed:

P01(Q0, Q1) =
∑
Q′2

P012(Q0, Q1, Q
′
2) (1.21)

follows from AoT. Using NSIT0(1)2 one obtains

P02(Q0, Q2) =
∑
Q′1

P012(Q0, Q
′
1, Q2). (1.22)

Finally, using NSIT(0)12, we obtain

P12(Q1, Q2) =
∑
Q′0

P012(Q′0, Q1, Q2). (1.23)

We have thus shown that there exists a combination of NSIT conditions, whose

fulfillment guarantees that all probability distributions in any experiment can be

written as the marginals of a unique global probability distribution P012(Q0, Q1, Q2).
This is equivalent to the existence of a macrorealistic model for measurements at
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t0 t1 t2

q

1− q
ϕ

Figure 1.3: The Mach-Zehnder setup [145] described in the main text. Which-path
measurements may be performed at times t0, t1 and t2. The reflectivities
are R1 and R2; a phase plate with phase a shift of ϕ is added to the
lower beam. The initial occupation fraction of the upper beam is given
by q.

times t0, t1, t2 (MR012). Note that while MR012 cannot prove the world view of MR in

general, it implies that no experimental procedure (with measurements at t0, t1, t2)

can detect a violation of MR. Let us now write a necessary and sufficient condition

for MR012,

NSIT(1)2 ∧ NSIT0(1)2 ∧ NSIT(0)12 ∧ AoT⇔ MR012. (1.24)

This set of conditions is not unique: We can e.g. substitute NSIT(1)2 by NSIT(0)2,

as can easily be seen from a graphical representation of all conditions in fig. 1.2.

We remark that even the combination of all two-time NSIT conditions, NSIT(0)1 ∧
NSIT(1)2∧NSIT(0)2, is sufficient neither for MR012 nor for LGI012. Note that LGIs only

test for non-classicalities of the pairwise joint probability distributions. A smaller set

of conditions is therefore sufficient for fulfilling all LGIs using two-time correlation

functions or probabilities [such as ineq. (1.12) or the so-called Wigner LGIs [77]],

see expression (1.16).

To illustrate these conditions for a qubit, in table 1.1 we show the individual condi-

tions evaluated for a Mach-Zehnder setup with arbitrary initial state and time evolu-

tion (see fig. 1.3 for explanation). The three possible measurements are which-path

measurements before the first beamsplitter (t0), between the two beamsplitters (t1),

and after the second beamsplitter (t2), respectively. We can easily find cases where

LGI012 is always fulfilled, but various NSIT conditions still witness a violation of MR,

e.g. for R1 = R2 = 1/2, ϕ 6= (n+ 1/2)π. As discussed above, it is possible for LGI012

to be violated with NSIT(1)2 fulfilled, e.g. for R1 = 1/4, R2 = 3/4, q = 1/2, ϕ = π.

For mixed initial states, NSIT0(1)2 reduces to the condition ϕ = (n + 1/2)π with
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n ∈ N0 and is sufficient for MR012, as no interference is possible in this case. For gen-

eral superposition states, NSIT(0)12 can be violated with NSIT0(1)2 fulfilled. Moreover,

NSIT conditions still allow detecting violations of MR if R1 = 0, 1 or R2 = 0, 1.

1.6 No-signaling in time for quantum
measurements
In the following, we will look at NSIT(0)T in an archetypal quantum experiment. A

system has been prepared at t = 0 in an initial state ρ̂0. Then, at t = 0, a POVM

{Â†aÂa}a with outcomes a is carried out. After the measurement, the system evolves

according to a unitary Ût = e−iĤt. At time t = T a second, possibly different POVM

{B̂†bB̂b}b with outcomes b is performed.

To determine the effect of the first measurement Â†aÂa on the system’s state and

its subsequent dynamics, we will compare the results of the final measurement

with a different experiment, where no measurement was performed at t = 0 (or,

equivalently, a measurement Âa = 1 was performed). The two setups are shown in

fig. 1.4.

The probabilities for obtaining outcome b in the second and first setup are called

PB̂(b) and PB̂|Â(b), respectively. They can be calculated as

PB̂(b) = tr(B̂bÛT ρ̂0Û
†
T B̂
†
b) (1.25)

PB̂|Â(b) =
∫

da tr(B̂bÛT Âaρ̂0Â
†
aÛ
†
T B̂
†
b), (1.26)

with the integral replaced by a sum if the number of outcomes is countable. NSIT(0)T

is fulfilled if the test measurement has no detectable effect on the system, i.e. if

PB̂ = PB̂|Â:

∀b : tr(B̂bÛT ρ̂0Û
†
T B̂
†
b) =

∫
da tr(B̂bÛT Âaρ̂0Â

†
aÛ
†
T B̂
†
b). (1.27)

Note that the equality sign in eq. (1.27) will often be fulfilled only approximately,

even by non-invasive measurements. In practice, one can choose from a variety of

error measures and corresponding reasonable error thresholds. However, to simplify

notation, we will continue to use the equality sign in the following calculations.
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t = 0

Âa

t = T

B̂b

B̂b

PB̂(b)

PB̂|Â(b)

t

t

Ĥ

Figure 1.4: A system evolves from t = 0 to t = T under Hamiltonian Ĥ. In the first
setup measurements Â†aÂa and B̂†bB̂b are performed at t = 0 and t = T ,
respectively, and in the second setup only a final measurement B̂†bB̂b is
performed.

1.6.1 Without time evolution
Let us start by considering the case T = 0 (NSIT(0)0), i.e. the final measurement

is performed immediately after the test measurement. In this setup, NSIT can be

regarded as a case of joint measurability, a condition previously discussed in the

context of compatibility of quantum measurements [146–153]. To rewrite eq. (1.27)

we use that
∫

da A†aÂa = 1. This yields

PB̂|Â(b)− PB̂(b) =
∫

da tr[(Â†aB̂
†
bB̂bÂa − B̂

†
bÂ
†
aÂaB̂b)ρ̂0]. (1.28)

The trace in the above equation can be interpreted as the expectation value of the

Hermitian operator
∫

da (Â†aB̂
†
bB̂bÂa − B̂

†
bÂ
†
aÂaB̂b). For NSIT(0)0 to be universally

valid, we require that it is zero for all initial states ρ̂0. Thus, the operator itself has

to be zero,

∀ρ̂0 : NSIT(0)0

⇔ ∀b :
∫

da (Â†aB̂
†
bB̂bÂa − B̂

†
bÂ
†
aÂaB̂b) = 0.

(1.29)

This equation can be further simplified to
∫

da Â†aB̂
†
bB̂bÂa = B̂†bB̂b. Note that for

Hermitian operators Âa = Â†a, B̂b = B̂†b we can rewrite (1.29) using the commutator

∀ρ̂0 : NSIT(0)0 ⇔ ∀b :
∫

da [ÂaB̂b, B̂bÂa] = 0. (1.30)

Furthermore, we have as sufficient conditions the vanishing commutators

∀a, b : [ÂaB̂b, B̂bÂa] = 0⇒ ∀ρ̂0 : NSIT(0)0, (1.31)

and, consequently,

∀a, b : [Âa, B̂b] = 0⇒ ∀ρ̂0 : NSIT(0)0. (1.32)
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It is interesting to note that both of these commutator conditions are, generally,

only sufficient but not necessary for NSIT(0)0. In fact, a formulation of NSIT(0)0 must

inherently have an asymmetry [152] between the test and final measurements, but

both (1.31) and (1.32) are symmetric under exchange of Â and B̂7.

We can, however, show that vanishing commutators in (1.31) and (1.32), are

sufficient and necessary when Âa, B̂b are von Neumann projective measurements

(Â2
a = Âa, B̂

2
b = B̂b). Let us start by rewriting the equality in (1.29) using Âa = |a〉〈a|

and B̂b = |b〉〈b|: ∫
da |〈a|b〉|2|a〉〈a| = |b〉〈b|. (1.33)

Since |b〉〈b| is a projector, squaring the integral on the left-hand side must leave

it unchanged. Using the fact that in order to sum up to identity, the Âa must be

orthogonal projectors, and therefore 〈a|a′〉 = δ(a− a′), we obtain

[∫
da |〈a|b〉|2|a〉〈a|

]2
=
∫

da |〈a|b〉|4|a〉〈a|. (1.34)

Comparing eq. (1.33) and eq. (1.34), we see that |〈a|b〉|2 = |〈a|b〉|4 can only be

fulfilled if it is non-zero for exactly one a. Thus, |b〉 is an eigenstate of Âa, and the

commutator is [Âa, B̂b] = 0. We have therefore demonstrated that for von Neumann

measurements (but not for general POVMs), vanishing commutators in (1.31) and

(1.32) are both sufficient and necessary for NSIT(0)0.

1.6.2 With time evolution
Let us now consider NSIT(0)T with unitary time evolution Û = e−iĤt. Analogous to

the derivation of (1.29) and defining B̃T
b ≡ Û

†
T B̂bÛT , we obtain

∀ρ̂0 : NSIT(0)T

⇔ ∀b :
∫

da (Â†a(B̃T
b )†B̃T

b Âa − (B̃T
b )†Â†aÂaB̃T

b ) = 0,
(1.35)

and, if Âa, B̂b are Hermitian operators,

∀ρ̂0 : NSIT(0)T ⇔ ∀b :
∫

da [ÂaB̃T
b , B̃

T
b Âa] = 0. (1.36)

7A simple example for this are the Pauli matrices with Â = σ̂x, B̂ = σ̂y. Then, [Â, B̂] = 2iσ̂z and
[ÂB̂, B̂Â] = 0. Although the first commutator is non-zero, NSIT(0)0 is trivially fulfilled. The
physical interpretation of a σ̂x measurement (or rather, its corresponding POVM element 1) is a
single-qubit operation without a meaningful measurement outcome.
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Comparing (1.29) and (1.35), we can apply the results for NSIT(0)0 derived above,

namely

∀a, b : [ÂaB̃T
b , B̃

T
b Âa] = 0 ⇒ ∀ρ̂0 : NSIT(0)T , (1.37)

and

∀a, b : [Âa, B̃T
b ] = 0 ⇒ ∀ρ̂0 : NSIT(0)T . (1.38)

Furthermore, one obtains

∀a, b : [Âa, B̂b] = [Âa, ÛT ] = 0 ⇒ ∀ρ̂0 : NSIT(0)T . (1.39)

If Âa, B̂b are von Neumann operators, we have (B̃T
b )2 = Û †T B̂bÛT Û

†
T B̂bÛT =

Û †T B̂bÛT = B̃T
b . Thus, the results from subsection 1.6.1 apply here too: For projec-

tors (but not for general POVMs), vanishing commutators in (1.37) and (1.38) are

sufficient and necessary for NSIT(0)T .

The above results suggest that a non-classical “resource” is required for an exper-

imental violation of NSIT, namely either highly non-classical states (equivalent to

non-classical measurements used in their preparation) or non-classical Hamiltonians

(usually requiring an extremely large experimental “control precision” as discussed

in [105–107]).

In chapter 2, we will use the above results to define the “classicality” of measurement

operators and Hamiltonians, and apply our definition to a number of example

systems.

1.7 Conclusion and outlook
In contrast to the still widespread belief that non-invasive measurability is a natu-

ral corollary of macrorealism per se, we rather showed the opposite, namely that

macrorealism per se is implied by a strong interpretation of non-invasive measurabil-

ity. Moreover, no-signaling in time (NSIT), i.e. non-invasiveness on the statistical

level, is in general a more reliable witness for the violation of macrorealism than

the well-known Leggett-Garg inequalities, which are based on two-time correlation

functions. In fact, we demonstrated that the right combination of various NSIT and

AoT conditions serves not only as a necessary but also a sufficient condition for a

macrorealistic model for measurements at the predefined time instants accessible in

the experiment. We then derived operational criteria for the measurement opera-

tors and the system Hamiltonian, whose fulfillment guarantees that no violation of

macrorealism can in principle be observed.
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While our results suggest that an experimental demonstration of non-classicalities

requires either very precise measurements or a complex time evolution, a general

proof of this trade-off (in terms of experimental control parameters) is still missing.

To provide some intuition on this topic, several examples for measurement operators

and Hamiltonians are discussed in the following chapter 2.
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Appendix

1.A Proof that NSIT0(1)2 is sufficient for NIC0(1)2
Let us use the short notation Pi(±i) ≡ Pi(Qi = ±). Then, the correlations in NIC0(1)2

can be written as

C02 = + P02(+0,+2) + P02(−0,−2)

− P02(+0,−2)− P02(−0,+2),
(1.40)

and, for the variant with a measurement at t1,

C02|1 = + P012(+0,+2) + P012(−0,−2)

− P012(+0,−2)− P012(−0,+2).
(1.41)

Using NSIT0(1)2, i.e. P02(Q0, Q2) = P012(Q0, Q2), we immediately see that NSIT0(1)2

is sufficient for C02 = C02|1, and therefore for NIC0(1)2.
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2Macroscopic classical dynamics
from microscopic quantum
behavior

“ We demand rigidly defined areas of doubt and uncertainty.

— Douglas Adams

The Hitchhiker’s Guide to the Galaxy [74]

Abstract

The frontier between quantum mechanics and classical physics has long been a major

area of investigation in both physics and philosophy. Quantum behavior observed

on microscopic scales differs vastly from the classical dynamics of our everyday

world: We never see macroscopic objects in superposition states, and we are in

principle able to perform non-invasive measurements on macroscopic systems. How

and why do physical systems stop to behave quantumly, and start to follow classical

dynamics?

Orthogonal to the introduction of novel physical processes, e.g. in objective collapse

theories briefly mentioned in chapter 0, recent works have investigated the process

of measurement itself, as discussed in chapter 1. They found that, as system

sizes increase, either sharp measurements or highly non-classical Hamiltonians are

required to observe quantum dynamics [1, 38, 39, 77, 103]. The results discussed in

chapter 1 further strengthen this intuition.

In this chapter, we discuss a definition of “classicality” based on the condition of

no-signaling in time. After a brief recapitulation of the results from chapter 1

(section 2.1), we propose a definition of the classicality of measurements operators

and Hamiltonians (section 2.2). We then proceed to apply this definition to several

commonly used measurement operators (section 2.3) and several interesting Hamil-

tonians (section 2.4). Finally, with the example of a toy model implementation of a

33



Schrödinger’s cat setup, we show that the concept of classicality can be non-intuitive

(section 2.5).

This chapter is based on and uses parts of refs. [1, 2]:

• L. Clemente and J. Kofler, ‘Necessary and sufficient conditions for macroscopic

realism from quantum mechanics’, Phys. Rev. A 91, 062103 (2015)

• L. Clemente and J. Kofler, ‘The emergence of macroscopic classical dynamics

from microscopic quantum behavior’, (in preparation)
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2.1 Quantifying violations of classicality
Historically, Leggett-Garg inequalities [72, 75] were used to witness quantum viola-

tions of macrorealism and thus classicality. However, a relatively novel condition

called no-signaling in time (NSIT) [1, 73, 78] was recently found to be more suitable

for such tests [3] (c.f. chapters 1 and 3). In this chapter, we will therefore only

consider violations of NSIT.

The condition of NSIT can be seen as a statistical formulation of the requirement

of non-invasive measurability. Consider an experiment where a system S evolves

under a Hamiltonian Ĥ. A positive-operator valued measurement (POVM) with

Kraus operators Âa with outcomes a may be performed on the initial state ρ̂0. The

system then undergoes unitary time evolution for time t, and is measured again, this

time with Kraus operators B̂b with outcomes b. NSIT can be written as

PB̂(b) =
∑
a

PB̂|Â(b|a) ≡ P̄B̂|Â(b), (2.1)

where the subscript of the outcomes denotes the times of the measurements.

In section 1.6 it was shown that the condition of NSIT can generally be written as

∀b : tr(ÂbÛ ρ̂0Û
†Â†b) =

∑
a

tr(ÂbÛ Âaρ̂0Â
†
aÛ
†Â†b), (2.2)

where Û = exp(−iĤt/~). Quite naturally, the magnitude of the violation of NSIT

depends on the initial state of the system. Note that here we do not explicitly

consider mixed initial states, since they can simply be treated as a combination of

pure states.

To measure the overlap of the undisturbed and the disturbed probability distributions

in eq. (2.2), we make use of the Bhattacharyya coefficient [154], as defined by

V =
∫

db
√
PB̂(b)P̄B̂|Â(b) ∈ [0, 1]. (2.3)

The extreme cases of V = 0 and V = 1 correspond to orthogonal and identical

probability distributions, respectively.

In appendix 2.A we demonstrate that the overlap (2.3) of the Husimi distribution

[155] can serve as a witness for the macroscopic distinctness of the states in a

quantum superposition, and use it to expose microscopic distinctness of macroscopic

states in a recent experiment.
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2.2 A definition of classicality
As we have indicated before, the coarse-graining of “sharp” quantum measurement

operators into “fuzzy” classical measurements, plays a crucial role in the transition

from quantum mechanics to classical physics [38]. However, not every coarse-

grained operator can be called classical. As an example, the parity operator (e.g.

for large spins or photonic states) only differentiates two macrostates, but is in

fact highly non-classical. Generally speaking, a suitable coarse-graining should

“lump” together neighboring eigenvalues, independent of a (quantum) experiment’s

Hamiltonian. However, Hilbert spaces in quantum mechanics possess no inherent

measure for the distance between orthogonal states. Such a measure must thus

arise solely out of spontaneously realized Hamiltonians. Effectively, any definition of

classicality must therefore depend on Hamiltonians spontaneously realized by nature,

which define a natural order and closeness of states. This concept is discussed in

more detail in section 2.5. In the following, the closeness of states is established

with an a priori choice of suitable reference operators. With this reference set, we

can write a definition for classical operators and classical Hamiltonians:

(I) A measurement operator is called classical with respect to a reference set iff it

fulfills1 the equality in (2.2) (with t = 0) pairwise with every member of the

set.

(II) A Hamiltonian is called classical with respect to a reference set iff the equality

in (2.2) is fulfilled for each combination of measurement operators from the

set.

A natural choice for the reference set are coarse-grained versions of quantum op-

erators in phase space. Phase space inherently involves the necessary definition of

closeness in a suitable and intuitive way. Several exemplary candidates for different

experiments are discussed in the next section.

2.3 Classicality of quantum measurements
In the following, we will apply our results from chapter 1 to a number of physical

systems. In this section, we will focus on the classicality of operators—condition (I)

from the previous section—and always assume either an immediate test measure-

ment, or free time evolution in between.

1As mentioned in section 1.6, approximate fulfillment of eq. (2.2) is sufficient in practice.
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δ2 = 0.0001

V ≈ 0.168

δ2 = 0.03

V ≈ 0.671

δ2 = 1

V ≈ 0.990

Figure 2.1: Husimi distribution in the complex plane (mesh with interval 1), imme-
diately after a quadrature measurement with decreasing unsharpness
δ. Sharp measurements (small δ) completely destroy the initial state,
while unsharp measurements (large δ) keep it intact.

2.3.1 Quadrature measurements
Let us start with quadrature measurements on pure coherent initial states ρ̂ =
|γ〉〈γ|. We investigate coarse-grained measurements with unsharpness δ in the

X-quadrature, and unsharpness κ in the P -quadrature, as described by the (dimen-

sionless) operators

X̂δ
x = 1

(δ2π)1/4 exp
(
− 1

2δ2 (x− X̂)2
)
, (2.4)

P̂ κp = 1
(κ2π)1/4 exp

(
− 1

2κ2 (p− P̂ )2
)
. (2.5)

Note that for B̂β = π−1|β〉〈β|, we recover the well-known Husimi Q-distribution

[155], since PB̂(β) = π−2 tr(|β〉〈β|ρ̂0|β〉〈β|) = π−1 〈β|ρ̂0|β〉 = Q(β). As an example,

choosing Â = X̂δ and B̂β = π−1|β〉〈β|, the Husimi distribution PB̂|Â is shown in

fig. 2.1 for several values of δ.

The behaviors for different combinations of Â, B̂ ∈ {X̂δ, P̂ κ} are printed in table 2.1,

and detailed analytic values for the overlaps are listed in appendix 2.B.

The importance of selecting a complete set of classical reference operators becomes

clear when looking at different combinations of coarse-grained X̂δ, P̂ κ. In particular,

even a sharp X measurement is revealed by a second (coarse-grained) X measure-

ment only after time evolution. Therefore, P̂ κ has to be a member of the reference

set. On the other hand, a sharp measurement in P can never be detected by another

measurement in P under free time evolution Ĥ = P̂ 2/(2m). Therefore, X̂δ needs
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Â = X̂δ Â = P̂ κ

B̂ = X̂δ V (0) = 1
V (T →∞) < 1

V (0) < 1
V (T →∞) = 1

B̂ = P̂ κ V (t) = const < 1 V (t) = 1

Table 2.1: Overlaps (2.3) between the invaded and the non-invaded probability
distributions with different combinations of coarse-grained phase space
quadrature measurements. For final measurements in the momentum
quadrature, B̂ = P̂ κ, the overlap of the system stays constant, since P̂ κ

commutes with the free Hamiltonian. For analytical values and detailed
discussion see appendix 2.B.

to be a member of the set. For X̂δ and P̂ κ to fulfill the consistency condition, we

further require sufficiently large δ � 1 and κ� 1, such that [X̂δ, P̂ κ] ≈ 0.

Using the notation X̂c.g. (P̂c.g.) for a sufficiently coarse-grained X (P ) measurement,

and X̂sh. (P̂sh.) for a sharp, invasive measurement, we can write some candidate

reference sets:

• {X̂c.g.} and {X̂sh.} do not constitute reference sets, since they cannot detect

the invasiveness of a X̂sh. measurement.

• {X̂sh., P̂c.g.} is not a reference set, since the operators do not fulfill (2.2).

• {X̂c.g., P̂c.g.} is a possible reference set.

For further discussion about the joint measurability and coexistence of coarse-grained

phase space operators we refer the reader to references [156–158].

2.3.2 Coherent state measurements
As another example, let us now consider coarse-grained operators in coherent state

space,

Âa = 1
π

∫
dα fa(α) |α〉〈α|, (2.6)

where fa(α) are some real and positive envelope functions that define the coarse-

grained regions. Again, we consider coherent initial states ρ̂ = |γ〉〈γ| and final

measurements B̂β = π−1|β〉〈β|. An analytical result can be obtained for a measure-
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Figure 2.2: Overlap V vs coarse-graining ring width d. For coherent initial states
in the center of the second region |γ = 3d/2〉 the overlap approaches
unity as more of the state’s probability distribution lies in the region.
For initial states located on a border |γ = d〉 the overlap approaches a
value close to 0.997. This is due to the artificial sharp boundary between
the coarse-grained regions.

ment fa(α) = δ(a − α) for a ∈ C, yielding Âα = π−1|α〉〈α|. We can now calculate

the overlap for T = 0:

V = 1
π

∫
dβ

[
|〈β|γ〉|2

∫
dα |〈β|α〉〈α|γ〉|2

] 1
2

= 2
√

2
3 ≈ 0.943.

(2.7)

This overlap provides us with a lower bound, that applies to all coarse-grained

measurements based on coherent states. As an example, numerically evaluated

overlaps for a ring-like coarse-graining (fa(r) is non-zero for ad ≤ r < (a+ 1)d, with

a ∈ N0 and d the ring width) are plotted in fig. 2.2.

A choice of reference set, alternative to the previously discussed {X̂c.g., P̂c.g.}, can

be made using the coarse-grained coherent state measurements from eq. (2.6), i.e.

{Âa} with suitable envelope functions fa such that [Âa, Âa′ ] ≈ 0.

2.3.3 Fock state measurements
Instructive examples for observing the effect of coarse-graining are different combi-

nations of Fock-measurements on coherent initial states. We look at coarse-grained
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von Neumann measurement operators defined by different border functions g(m):

Âm =
∑
k

|k〉〈k| if g(m) ≤ k < g(m+ 1),

0 else.
(2.8)

For quadratic dependence g(m) = cm2 with c > 0, the region corresponding to

each operator is constant-sized in the coherent state space, since the average photon

number is n̄ = |α|2. For sufficiently large c the measurement is therefore sufficiently

coarse-grained. Measurements with constant-sized regions in Fock space, g(m) = cm,

correspond to increasingly sharp measurements in coherent state space. The resulting

overlap for different choices of g(m) can be calculated numerically and is discussed

in fig. 2.3. The different degrees of invasiveness are illustrated in fig. 2.4.

2.4 Classicality of Hamiltonians
The formalism derived in section 1.6 also allows us to judge the classicality of

Hamiltonians, as defined in section 2.2.

To simplify calculations, we now consider the setup printed in fig. 2.5. Since we

are interested in the non-classicalities of Hamiltonians, we consider identical test

and final measurements described by the POVM elements {Â†mÂm}m. We denote

the operator corresponding to the outcome of the test measurement as Âa, and of

the final measurement as Âb. Furthermore, in an experiment, the preparation of

the system in a specific initial state is usually achieved by performing a projective

measurement. It is generally not reasonable to assume that the initial state should be

more non-classical (e.g. sharp) than the measurement operators. In the following, we

will therefore use an initial state obtained directly from the measurement operator

Âi with outcome i,

ρ̂0,i = Û ÂiÂ
†
i Û
†

tr(ÂiÂ
†
i )
. (2.9)

We have added an additional time evolution from the state after the measurement

(at time −t) to the initial state (at time 0). Without this step, the test measurement

at time 0 could sometimes wrongly be judged as non-invasive (e.g. for projective

measurements).

We now analyze the non-classicalities of several exemplary Hamiltonians. In this sec-

tion, we consider as quantum system a large spin j with z-eigenstates |−j〉 . . . |j〉. As

we are solely interested in non-classicalities resulting from the choice of Hamiltonian,
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Figure 2.3: Overlap V (cf. eq. (2.3)) vs initial state |γ〉 for coarse-grained Fock
measurements (2.8) with different border functions g(m), from top:
100m2, 10m2, 2m2,m2, 2m,m. Quadratic border functions are coarse in
the coherent state space and therefore not as invasive. Linear border
functions lead to increasingly sharp measurements. The oscillations
are caused by the fact that the presented type of coarse-graining works
better when the initial state is located in the center of a bin. Dips in the
overlap occur when the initial state sits at the border between two bins.

g(m) = m2 g(m) = 2m g(m) = m

Figure 2.4: The Husimi distribution after performing various Fock measurements
on an initial state |γ = 8〉. While a coarse-grained measurement with
m states per bin leaves the initial state mostly unchanged (left plot), a
sharper measurement with 2 states per bin is invasive (center plot), or
even projective with 1 state per bin (right plot).
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Âi Âa Âb

−t 0 +t

ÛÛ

Figure 2.5: The setup discussed in section 2.4. An initial, preparatory measurement
with measurement operator Âi is performed at time −t. The system
then undergoes time evolution with unitary Û . At time 0, it may or
may not be measured with operator Âa. The final measurement, Âb, is
performed at time t, after the system evolved again according to unitary
Û .

we choose a maximally coarse-grained which-hemisphere measurement, described

by the operators

Â↑ =
∑
m>0
|m〉〈m|, (2.10)

and Â↓ = 1− Â↑.

2.4.1 Rotation Hamiltonian
As first example Hamiltonian, we consider a simple Hamiltonian corresponding to a

rotation around the x-axis,

Ĥ = ωĴx, (2.11)

where

(Ĵx)ab = ~
2(δa,b+1 + δa+1,b)

√
(s+ 1)(a+ b− 1)− ab. (2.12)

As an example, for j = 5/2, we have

Ĵx = ~ω
2



0
√

5 0 0 0 0
√

5 0 2
√

2 0 0 0
0 2

√
2 0 3 0 0

0 0 3 0 2
√

2 0
0 0 0 2

√
2 0

√
5

0 0 0 0
√

5 0


. (2.13)

Taking again the Bhattacharyya coefficient, eq. (2.3), and setting ω = 1 and i = ↑,
we obtain the results plotted in fig. 2.6.

With the chosen Hamiltonian, the maximum violation of no-signaling in time (i.e.

the smallest value of the overlap V ) is obtained at t = π/2. The dependence of the

maximum violation of j (i.e. the minimum Vmin = mint V (t)) is plotted in fig. 2.7.
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We observe that with increasing spin size, the system becomes more and more

classical. Hence, Ĵx is a classical Hamiltonian.

2.4.2 Squeezing Hamiltonian

Next, we consider the spin squeezing Hamiltonian [159]

Ĥ = χĴ2
x . (2.14)

As an example, for j = 5/2, we have

Ĵ2
x = ~2χ2

4



5 0 2
√

10 0 0 0
0 13 0 6

√
2 0 0

2
√

10 0 17 0 6
√

2 0
0 6

√
2 0 17 0 2

√
10

0 0 6
√

2 0 13 0
0 0 0 2

√
10 0 5


. (2.15)

Setting χ = 1, the time evolution of the overlap is plotted in fig. 2.8. Interestingly,

the maximum violation of NSIT increases with the system size, and approaches

a constant value (see fig. 2.9), which confirms the intuition that squeezing is a

non-classical operation.

2.4.3 A Schrödinger’s cat toy model

Finally, we consider a Hamiltonian that directly builds superpositions between both

hemispheres,

(Ĥd)ab =


1
2 if a = n− b+ 1 and (a− 1 < d or n− a < d),

0 else,
(2.16)
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Figure 2.6: The overlap (2.3) as a function of time for spin sizes 1/2 (blue), 5/2
(orange), 9/2 (green) and 13/2 (red), with a Ĵx rotation Hamiltonian
(2.11). A maximal violation of NSIT is reached at t = π/2; the magni-
tude of the violation decreases with increasing spin size (c.f. fig. 2.7).
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Figure 2.7: The minimum with respect to time t of the overlap as a function of the
spin size j, with a Ĵx rotation Hamiltonian (2.11). Plotted here are
values of j = 1/2 + 2n with n ∈ N, to avoid issues with an even or odd
number of states per hemisphere. It can readily be seen that the overlap
approaches unity as the system becomes increasingly macroscopic.
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Figure 2.8: The overlap (2.3) as a function of time for spin sizes 1/2 (blue, barely
visible as it is equal to 1), 5/2 (orange), 9/2 (green) and 13/2 (red),
with a squeezing Ĵ2

x Hamiltonian (2.14). A maximal violation of NSIT
is reached at t = π/2; the magnitude of the violation approaches a
constant value smaller than 1 with increasing spin size (c.f. fig. 2.9).
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Figure 2.9: The minimum with respect to time t of the overlap as a function of the
spin size j, with a squeezing Ĵ2

x Hamiltonian (2.14). Again, plotted here
are values of j = 1/2+2n with n ∈ N. In contrast to the Ĵx Hamiltonian
(c.f. fig. 2.7), the violation of NSIT approaches a constant value smaller
than 1 with increasing system size.
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where n = 2j+ 1 is the dimension of the system. Intuitively, Ĥd is zero for all entries

off the anti-diagonal, and only has 2d entries on the anti-diagonal that are non-zero,

extending from the edges of the matrix. As an example, for j = 5/2 (n = 6),

Ĥd=0 = 1
2



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Ĥd=1 = 1

2



0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0


, (2.17)

Ĥd=2 = 1
2



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


, Ĥd=3 = 1

2



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


. (2.18)

The time evolution of the NSIT violation is plotted in fig. 2.10; its minimum value as

a function of d is plotted in fig. 2.11.

For macroscopically large j (e.g. of the order of 1023), the Hamiltonian (2.16)

establishes “long-range interactions” already for very small values of d ∼ 1. However,

as there are many more states in the coarse-grained measurement operator, the

resulting time evolution remains approximately classical.

2.5 Spontaneously realized Hamiltonians
In the definition of classicality from section 2.2, we have omitted a discussion of the

Hamiltonians that are spontaneously realized by nature. In fact, we will now argue

that the Hamiltonians that give rise to classical dynamics are not as limited as one

might think.

Let us start by recalling that, as orthogonal vectors in a Hilbert space, states that span

a basis in quantum mechanics possess no inherent measure of closeness. Without

any physical intuition, it is therefore not clear whether the spin state |m = 1/2〉 is

closer to |m = 3/2〉 or to |m = 99/2〉. Our classical intuition of closeness stems from
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Figure 2.10: The overlap (2.3) as a function of time for d = 0 (blue), d = 1
(orange), d = 2 (green) and d = 3 (red), with the Hamiltonian (2.16)
for j = 5/2. A maximal violation of NSIT is reached at t = π/2; the
magnitude of the violation increases with d (c.f. fig. 2.11).
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Figure 2.11: The minimum with respect to time t of the overlap as a function of the
parameter d in the Hamiltonian (2.16), with j = 99/2. With increasing
d, the NSIT violation also increases.
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the Hamiltonians that are spontaneously realized by nature, in our case e.g. Ĵx-like

Hamiltonians.

However, imagine an “exotic” region of space (e.g. a box), where instead the

Schrödinger’s cat toy model Hamiltonian (2.16) from subsection 2.4.3 is spon-

taneously realized. An inhabitant of this box might have a completely different

intuition of closeness of states, taking states |±m〉 to be neighboring. With this

reordering2 of the basis states, the Hamiltonian (2.16) becomes diagonal, and looses

its long-range interactions. Thus, after coarse-graining, from the inhabitant’s perspec-

tive, the world would behave completely classical, perhaps even indistinguishable

from our observation of the world outside of the box. However, when we look inside

the box, we would see an “exotic” world, with spontaneously realized Schrödinger

cats.

This example shows that the conditions for classicality to arise from quantum

behavior are not as intuitive as previously thought. In fact, to judge whether a

Hamiltonian gives rise to classical behavior, eq. (2.2) should be tested with coarse-

grainings in all possible reorderings of the basis states.

2.6 Conclusions and outlook
In this chapter, we have used the results from ref. [1] and chapter 1 to define

the “classicality” of measurements, and by extension, of Hamiltonians. We have

then applied this definition to a number of exemplary measurements, and found

that it is fulfilled when measurements are suitable coarse-grained. Next, we tested

several Hamiltonians for non-classicalities. Finally, we discussed the possibility of

obtaining “exotic” classical behavior from Hamiltonians that are very non-classical

in our intuitive notion.

It is left for future work to investigate conditions for obtaining classical behavior

from spontaneously realized Hamiltonians, as outlined in section 2.5. Especially a

condition of no long-range interactions in a rearranged basis might be investigated.

A more operational formulation of the emergence of classical phase space out of

microscopic quantum behavior would certainly be interesting.

2Interestingly, when we consider the Hamiltonian (or the resulting unitary) to be the adjacency matrix
of a weighted graph, this problem is generally equivalent to graph partitioning, a well-known
NP-complete problem in computer science [160–162].
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Appendix

2.A The Husimi distribution as measure of
distinctness of quantum states
In this appendix we illustrate how the Husimi distribution [155] can be used to

witness distinctness of quantum states. Recall the definition of the distribution,

Q(α, ρ̂) = N 〈α|ρ̂|α〉 , (2.19)

where N is some normalization parameter, |α〉 is a coherent state, and ρ̂ is the

quantum state. We can compare the Husimi distributions for two quantum states, ρ̂

and ρ̂′, using the Bhattacharyya coefficient [154],

V =
∫

dα
√
Q(α, ρ̂)Q(α, ρ̂′) ∈ [0, 1]. (2.20)

Note that the use of coherent states in a measure for distinctness is motivated by

their similarity to classical states.

We can now apply this measure exemplary to quantum states used by two recent

experiments. Let us start with an experiment by De Martini et. al. [163]. In a slightly

simplified model, they produced a superposition of the states

|+〉 ∝
∞∑
k=0
|2k〉〈2k|β〉,

|−〉 ∝
∞∑
k=0
|2k + 1〉〈2k + 1|β〉.

(2.21)

Although their states are completely orthogonal, 〈+|−〉 = 0, the Q-distributions

are very similar, despite the large number of photons (|β|2 ∼ 104) involved in their

experiment. In fact, we have V ≈ 1, as visualized in fig. 2.12.
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Figure 2.12: Left: Plot of |+〉 (and |−〉, which is in fact indistinguishable to the
naked eye) for β = 3, as described in the main text of appendix 2.A.
Right: Plot of Q(α, |+〉〈+|)−Q(α, |−〉〈−|). Note that the difference is
around four orders of magnitude smaller than the Q-distributions.

Figure 2.13: The Q-distributions for |ψ0〉, |ψ1〉, and |ψ3〉, for β = 2, as described in
appendix 2.A. With increasing k, the states become more and more
distinct.

On the other hand, a recent experiment by Lvovsky et. al. [120] realized a superposi-

tion of displaced Fock states,

|ψ0〉 = D̂(β) |0〉 = |β〉

|ψk〉 = D̂(β) |k〉 ,
(2.22)

where D̂(β) = exp(βâ† − β∗â) is the displacement operator. Using our analysis

outlined above, we find the states to be moderately distinct, with V decreasing with

increasing k:

Vk=0 = 1, Vk=1 ≈ 0.89, Vk=2 ≈ 0.71, Vk=3 ≈ 0.54. (2.23)

Three exemplary Q-distributions are printed in fig. 2.13.
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2.B Overlaps for quadrature measurements
In the following we will give analytical values for the overlap for different com-

binations of coarse-grained X̂δ and P̂ κ measures, as defined by eq. (2.4) and

eq. (2.5), acting on a particle with initial state 〈x|ψ〉 = π−1/4σ−1/2 exp(−x2/(2σ2)).
In between the measurements we apply a unitary generated by a free Hamiltonian

ÛT = exp(−itp̂2/2m). There are four combinations:

• Â = X̂δ, B̂ = X̂δ. Here the overlap starts at V (0) = 1, but approaches the

value

lim
t→∞

V (t) = 4δ2(δ2 + σ2)
(2δ2 + σ2)2 . (2.24)

The effect of the measurement only becomes apparent with time evolution.

• Â = P̂ κ, B̂ = X̂δ. The overlap starts at

V (0) = 4κ2(δ2 + σ2)[κ2(δ2 + σ2) + 1]
[2κ2(δ2 + σ2) + 1]2 , (2.25)

and approaches 1 for t → ∞. The momentum measurement changes the

spatial distribution once, but with wave packet expansion the impact becomes

less apparent.

• Â = X̂δ, B̂ = P̂ κ. The overlap is constant in time at the value

V = 4δ2(κ2σ2 + 1)[δ2(κ2σ2 + 1) + σ2]
[2δ2(κ2σ2 + 1) + σ2]2 , (2.26)

since [P̂ κ, Ĥ] = 0.

• Â = P̂ κ, B̂ = P̂ κ. The overlap is constant at 1, and a measurement in P̂ cannot

be detected by a second P̂ measurement, as again, [P̂ κ, Ĥ] = 0.

These examples reaffirm the importance of the selection of multiple final measure-

ments.
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3The local realism and
macrorealism polytopes

“ [. . . ] the conception of chance enters into the very first steps

of scientific activity, in virtue of the fact that no observation

is absolutely correct. I think chance is a more fundamental

conception than causality; for whether in a concrete case a

cause-effect relation holds or not can only be judged by

applying the laws of chance to the observations.

— Max Born

Natural Philosophy of Cause and Chance [164]

Abstract

Tests of local realism (c.f. section 0.2) and macrorealism (c.f. chapter 1) have

historically been discussed in very similar terms: Leggett-Garg inequalities follow

Bell inequalities as necessary conditions for classical behavior. However, some

discrepancies in this analogy have recently become apparent. While the concept

of no-signaling applies generally in all reasonable physical theories, its temporal

analogue, no-signaling in time, is readily violated by quantum physics [73].

Here, we analyze further differences between local realism and macrorealism. We

compare the probability polytopes spanned by all measurable probability distribu-

tions for both scenarios, and show that their structure differs strongly between

spatially and temporally separated measurements. We arrive at the conclusion that,

in contrast to tests of local realism, where Bell inequalities form a necessary and

sufficient set of conditions, no set of inequalities can ever be necessary and sufficient

for a macrorealistic description. Fine’s famous proof, that Bell inequalities are neces-

sary and sufficient for the existence of a local realistic model, can therefore not be

transferred to macrorealism. A recently proposed condition, no-signaling in time,

fulfills this criterion, and we show why it is better suited for future experimental
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tests and theoretical studies of macrorealism. Our work thereby identifies a major

difference between the mathematical structure of local realism and macrorealism.

After a brief introduction (section 3.1), we start our discussion with a review of the

probability space spanned by local realistic theories (section 3.2). We then derive

the structure of the comparable macrorealism polytope (section 3.3), and discuss

the structure of quantum mechanics in tests of macrorealism (section 3.4). Finally,

we compare local realism and macrorealism, and reach some conclusions about the

Leggett-Garg inequality (section 3.5).

This chapter is based on and uses parts of ref. [3]:

• L. Clemente and J. Kofler, ‘No Fine theorem for macrorealism: Retiring the

Leggett-Garg inequality’, (2015), arXiv:1509.00348 [quant-ph]
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3.1 Introduction
The violation of classical world views, such as local realism [45] and macrorealism

[72, 75], is one of the most interesting properties of quantum mechanics. Experi-

ments performed over the past decades have shown violations of local realism in

various systems [53, 55, 58], while violations of macrorealism are on the horizon

[76, 110–119, 121, 122, 125–128]. The latter endeavors pave the way towards the

experimental realization of Schrödinger’s famous thought experiment [8]. In the

future, they might offer insight into important foundational questions, such as the

quantum measurement problem [11, 12], and allow experimental tests of (possibly

gravitational) extensions of quantum mechanics [36].

Historically, the discussion of tests of macrorealism (MR) follows the discussion

of tests of local realism (LR) closely: Leggett-Garg inequalities (LGIs) [72] are

formulated similarly to Bell inequalities [45, 48, 50], and some concepts, e.g.

quantum contextuality [165], are connected to both fields [166–170]. However,

recently, a discrepancy between LR and MR has been identified: Whereas Bell

inequalities are found to be both necessary and sufficient for LR [171], a combination

of arrow of time (AoT) and no-signaling in time (NSIT) [73] equalities are necessary

and sufficient for the existence of a macrorealistic description [1] (c.f. chapter 1).

A previous study [1] also demonstrated that two-time LGIs are not sufficient for

macrorealism, but did not rule out a potential sufficiency of other sets of LGIs,

e.g. of the CH type [50, 172]. Moreover, cases have been identified where LGIs

hide violations of macrorealism [166] that are detected by NSIT [1, 73]. These

fundamental differences between tests of local realism and macrorealism seem

connected to the peculiar definition of macrorealism [78, 79].

In this chapter, we analyze the reasons for and the consequences of this difference.

We show that the probability space spanned by quantum mechanics (QM) is of

a higher dimension in an MR test than in an LR test, and analyze the resulting

structure of the probability polytope. We conclude that inequalities—excluding the

pathological case of two inequalities merging into a single equality—are not suited

as sufficient conditions for MR, and form only weak necessary conditions. Fine’s

theorem [171], which states that Bell inequalities are necessary and sufficient for

a local realistic model, therefore cannot be transferred to macrorealism (unless

one uses potentially negative quasi-probabilities [173]). Our study thus identifies a

striking difference between the mathematical structures of LR and MR. While current

experimental tests of macrorealism overwhelmingly use Leggett-Garg inequalities,
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we argue that NSIT is better suited as a witness of non-classicality: Not only is it, in

combination with AoT, logically equivalent to MR, but it is violated in a much larger

range of parameters. In fact, our work shows that there is no compelling reason

(other than history) to use LGIs in future theoretical and experimental studies.

3.2 The local realism polytope
Let us start with reviewing the structure of the LR polytope (LR), as described in

refs. [13, 174, 175]. Consider an LR test between n ≥ 2 parties i ∈ {1 . . . n}. Each

party can perform a measurement in one of m ≥ 2 settings si ∈ {1 . . .m}. Each

setting has the same number ∆ ≥ 2 of possible outcomes qi ∈ {1 . . .∆}, and, to

allow for all possible types of correlations, may measure a distinct property of the

system. We can define probability distributions pq1...qn|s1...sn
for obtaining outcomes

q1 . . . qn, given the measurement settings s1 . . . sn. If a party i chooses to not perform

a measurement, the corresponding “setting” is labeled si = 0, and there is only

one “outcome” labeled qi = 0 (e.g. pq1,0|s1,0 when only the first party performs a

measurement). We leave out final zeroes, e.g. pq1...qi,0...0|s1...si,0...0 = pq1...qi|s1...si
.

Note that this convention differs from the literature for LR tests, where the case of

no measurement is often left out [13, 174], but simplifies the comparison between

LR and MR tests. Each experiment is then completely described by (m∆ + 1)n

probability distributions; it can be seen as a point in a probability space R(m∆+1)n
.

We now require normalization of the probabilities. There are (m + 1)n linearly

independent normalization conditions, as each probability only appears once:

∀s1 . . . sn :
∑
q1...qn

pq1...qn|s1...sn
= 1. (3.1)

Due to the special case of no measurements (si = 0), here (and in the following

equations) we have abbreviated the notation of the summation: the possible values

of qi in fact depend on si. The normalization conditions reduce the dimension of the

probability space to

(m∆ + 1)n − (m+ 1)n. (3.2)

Furthermore, the positivity conditions

∀s1 . . . sn, q1 . . . qn : pq1...qn|s1...sn
≥ 0 (3.3)

restrict the reachable space to a subspace with the same dimension, but delimited by

flat hyperplanes. The resulting subspace is called the probability polytope P.
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In an LR test with space-like separated parties, special relativity prohibits signaling

from every party to any other,

∀i, q1 . . . qi−1, qi+1 . . . qn, s1 . . . sn, si 6= 0:

pq1...qi−1,0,qi+1...qn|s1...si−1,0,si+1...sn
=

∆∑
qi=1

pq1...qn|s1...sn
.

(3.4)

These no-signaling (NS) conditions restrict the probability polytope to a NS polytope

(NS) of lower dimension. Taking their linear dependence, both amongst each other

and with the normalization conditions, into account, we arrive at dimension [174]

dim NS = [m(∆− 1) + 1]n − 1. (3.5)

Since quantum mechanics obeys NS, and due to Tsirelson bounds [176], the space

of probability distributions from spatially separated experiments implementable in

quantum mechanics, QMS, is located strictly within the NS polytope. Furthermore,

the space of local realistic probability distributions, LR, is a strict subspace of QMS. It

is delimited by Bell inequalities (e.g. the CH/CHSH inequalities for n = m = ∆ = 2)

and positivity conditions, and therefore forms a polytope within QMS [171, 174].

In summary, we have P ⊃ NS ⊃ QMS ⊃ LR, with dim P > dim NS = dim QMS =
dim LR. The structure of the NS, QMS and LR spaces is sketched on the left of

fig. 3.1.

3.3 The macrorealism polytope
In a test of MR, temporal correlations take the role of an LR test’s spatial correlations.

Instead of spatially separated measurements on n systems by different observers,

a single observer performs n sequential (macroscopically distinct) measurements

on one and the same system. Again, each measurement is either skipped (“0”)

or performed in one of m ≥ 11 settings, with ∆ possible outcomes each. With

this one-to-one correspondence, the resulting probability polytope P in the space

R(m∆+1)n−(m+1)n
is identical to the one in the Bell scenario. However, without

further physical assumptions, no-signaling in temporally separated experiments is

only a requirement in one direction: While past measurements can affect the future,

1In contrast to LR tests, where m ≥ 2 is required to observe quantum violations, m = 1 allows for
violations of MR, and is in fact the most considered case in the literature.
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NS
QMS

LR

BI

BI’

Figure 3.1: Left: A sketch of subspaces in an LR test [13]. The no-signaling poly-
tope (NS) contains the space of probability distributions realizable from
spatially separated experiments in quantum mechanics (QMS), which
contains the local realism polytope (LR). LR is delimited by Bell in-
equalities and the positivity conditions. NS, QMS, and LR have the
same dimension. A Bell inequality (BI) is also sketched, delimiting LR.
Another tight Bell inequality (BI’) is less suited as a witness of non-LR
behavior, and illustrates the role of Leggett-Garg inequalities in macro-
realism tests.
Right: A sketch of polytopes in an MR test. The arrow of time poly-
tope (AoT) is equal to the space of probability distributions realizable
from temporally separated experiments in quantum mechanics (QMT),
which contains the macrorealism polytope (MR). MR is a polytope of
lower dimension, located fully within the QMT subspace and solely
delimited by positivity constraints. Since each probability can easily
be minimized or maximized individually, MR reaches all facets of AoT.
A Leggett-Garg inequality (LGI) is also sketched; it is a hyperplane of
dimension dim QMT−1, which, in general, is much larger than dim MR.
Note that the LGI can only touch MR (i.e. be tight) at the boundary of
the positivity constraints.
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AoTs (n = 3,m = 2):

(1)

(102)(101)

(12)

(122)(121)

(11)

(112)(111)

(01)

(012)(011)

(2)

(202)(201)

(22)

(222)(221)

(21)

(212)(211)

(02)

(022)(021)

NSITs (n = 3,m = 2):

(001)

(101)

(111)

(011)

(211)

(201)

(221)

(021)

(121)

(002)

(102)

(112)

(012)

(212)

(202)

(222)

(022)

(122)

(01)

(11) (21)

(02)

(12) (22)

Figure 3.2: Arrow of time (AoT) and no-signaling in time (NSIT) conditions re-
lating different outcome probability distributions for the case n = 3
measurement times and m = 2 possible settings. The notation (xyz)
refers to distributions with settings s1 = x, s2 = y, s3 = z. The ar-
rows denote the process of marginalization: e.g. the AoT condition
pq1|s1=x =

∑
q2 pq1,q2|s1=x,s2=y is denoted by (x) ← (xy), and the NSIT

condition pq2|s2=y =
∑
q1 pq1,q2|s1=x,s2=y is denoted by (y) ← (xy). It

can easily be seen that the AoT conditions are linearly independent,
since they cannot form loops. Adding more measurement times (adding
further rows), or adding more settings (broadening the trees) does not
change their independence. In contrast, the NSIT conditions are not
linearly independent, and thus form loops. Note that marginalizing
only over a single measurement is sufficient, as simultaneous marginal-
izations follow from individual ones, and hence are always linearly
dependent.
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causality demands that future measurements cannot affect the past. This assumption

is captured by the arrow of time (AoT) conditions:

∀i ≥ 2: ∀q1 . . . qi−1, s1 . . . si−1 with Σi−1
j=1sj 6= 0, si 6= 0:

pq1...qi−1|s1...si−1 =
∆∑
qi=1

pq1...qi|s1...si
.

(3.6)

Counting the number of equalities in eq. (3.6) shows that their number is

n∑
i=2

[(m∆ + 1)i−1 − 1]m = (m∆ + 1)n − nm∆− 1
∆ , (3.7)

where the first factor in the sum counts the setting and outcome combinations for

times 1 . . . i− 1, excluding the choice of all si = 0, and the second factor the number

of settings at time i. All listed conditions are linearly independent due to their

hierarchical construction, see fig. 3.2. However, a number of the normalization

conditions for the marginal distributions, already subtracted in eq. (3.2), are not

linearly independent from AoT, and thus become obsolete. Their number is obtained

by counting the different settings in eq. (3.6):

n∑
i=2

[(m+ 1)i−1 − 1]m = (m+ 1)n − nm− 1. (3.8)

The remaining normalization conditions are the ones for probability distributions

with just one measurement and for the “0-distribution”; there are nm + 1 such

distributions. Taking eq. (3.2), subtracting eq. (3.7) and adding eq. (3.8), we

conclude that the AoT conditions restrict the probability polytope to an AoT polytope

(AoT) of dimension

dim AoT = [(m∆ + 1)n − 1](∆− 1)
∆ . (3.9)

As shown in [1] (c.f. chapter 1), the set of all no-signaling in time (NSIT) conditions,

∀i<n, q1 . . . qi−1, qi+1 . . . qn, s1 . . . sn,Σj>isj 6=0, si 6=0:

pq1...qi−1,0,qi+1...qn|s1...si−1,0,si+1...sn
=

∆∑
qi=1

pq1...qn|s1...sn
,

(3.10)

is, together with AoT, necessary and sufficient for macrorealism. To get from AoT to

the macrorealism polytope, MR, we therefore require a linearly independent subset

these conditions. However, since the AoT conditions from eq. (3.6) plus the NSIT
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LR test MR test

number of unnormalized
distributions

(m∆ + 1)n

dim P (m∆ + 1)n − (m+ 1)n

dim QMS/ dim QMT [m(∆− 1) + 1]n − 1 < [(m∆ + 1)n − 1](∆− 1)/∆

dim LR/ dim MR [m(∆− 1) + 1]n − 1

Table 3.1: Dimensions of the probability space P and its subspaces reachable by
spatially separated (QMS) / temporally separated (QMT) experiments in
quantum mechanics, local realism (LR), and macrorealism (MR). There
are n spatially / temporally separated measurements with m settings
and ∆ outcomes each.

conditions from eq. (3.10) are equivalent to the NS conditions from eq. (3.4), we

arrive at MR with the same dimension as the LR polytope:

dim MR = dim LR = [m(∆− 1) + 1]n − 1. (3.11)

3.4 Quantum mechanics in macrorealism tests
We are left with the question of how the space of probability distributions realizable

from temporally separated experiments in quantum mechanics, QMT, relates to AoT.

Fritz has shown in ref. [177] that QMT = AoT for n = m = ∆ = 2, if we allow for

positive-operator valued measurements (POVMs). Let us now generalize his proof to

arbitrary n,m,∆. We do so by constructing a quantum experiment that produces all

possible probability distributions which are allowed by AoT.

Consider a quantum system of dimension (m∆ + 1)n, with states enumerated as

|q1 . . . qn; s1 . . . sn〉. As with the probability distributions, final zeros may be omitted.

The initial state of the system is |0 . . . 0; 0 . . . 0〉. Now, n POVMs are performed on

the system. The measurements are chosen such that depending on their setting and

outcome they take the system to the corresponding state: Performing a measurement

on a system in state |q1 . . . qi−1; s1 . . . si−1〉 with setting si and obtaining outcome qi
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should leave the system in state |q1 . . . qi; s1 . . . si〉. This is accomplished by choosing

Kraus operators for the i-th measurement in basis si for outcome qi as

K(i)
si,qi

=
∑

s1...si−1,q1...qi−1

√
rqi|q1...qi−1,s1...si

× |q1 . . . qi; s1 . . . si〉〈q1 . . . qi−1; s1 . . . si−1|

+
∑
s1...sn
q1...qn

Σn
j=isj 6=0

1√
∆
|q1 . . . qn; s1 . . . sn〉〈q1 . . . qn; s1 . . . sn|.

(3.12)

For i = 1, the first sum in eq. (3.12) reduces to the single term√pq1|s1 |q1; s1〉〈0 . . . 0; 0 . . . 0|,
while the second sum remains unchanged. The second sum in eq. (3.12) is necessary

for the completeness relation
∑
qi

(K(i)
si,qi)†K

(i)
si,qi = 1. The above definitions also

work for si = 0, where rqi=0|q1...qi−1,s1...si−1,si=0 = 1, and (K(i)
si,qi)†K

(i)
si,qi = 1. The

conditional probabilities r in eq. (3.12) can be obtained from the probabilities p

using the assumption of AoT:

rqi|q1...qi−1,s1...si
=

pq1...qi|s1...si

pq1...qi−1|s1...si−1

. (3.13)

This construction gives a recipe to obtain any point in the AoT probability space in a

quantum experiment. We have therefore shown that AoT = QMT for any choice of

n,m,∆.

Note that the probability distributions constructed above can also be achieved by

a purely classical stochastic model, albeit with invasive measurements. Such an

experiment would therefore not convince a macrorealist to give up their world view.

For that to happen, an experiment needs to properly address the clumsiness loophole

[72, 101, 178].

Since AoT is a polytope, QMT with POVMs is also a polytope, and no non-trivial

Tsirelson-like bounds exist. If, on the other hand, we only allowed projective

measurements, we would have QMT ⊂ AoT with non-trivial Tsirelson-like bounds,

as shown in ref. [177]. In this case, QMT would not be a polytope. It is easy to

see that QM with projectors is unable to reproduce some probability distributions:

n = 2,m = 1,∆ = 2, p11|11 = 1, p01|01 = 0 fulfills AoT but cannot be constructed in

projective quantum mechanics, since the initial state must be an eigenstate of the

first measurement. Here we consider the general case of POVMs.
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In summary, we have

P ⊃ NS ⊃ QMS ⊃ LR

= ⊂ ⊂ ⊂

P ⊃ AoT = QMT ⊃ MR

, (3.14)

with NS = MR, and dimensions

dim P > dim NS = dim QMS = dim LR

= < < =

dim P > dim AoT = dim QMT > dim MR

. (3.15)

The structure of AoT, QMT and MR within P is sketched on the right of fig. 3.1, the

dimensions of all mentioned subspaces are printed in table 3.1.

3.5 Comparing local realism and macrorealism
Finally, let us compare the characteristics of quantum mechanics in LR and MR tests.

Trivially, QM fulfills NS between spatially separated measurements, and AoT between

temporally separated measurements. While QMS and LR have the same dimension

and are separated by Bell inequalities, QMT and MR span subspaces with different

dimensions. Inequalities can never reduce the dimension of the probability space,

since they act as a hyperplane separating the fulfilling from the violating volume

of probability distributions. We conclude that no combination of (Leggett-Garg)

inequalities can be sufficient for macrorealism.

The observation that inequalities cannot be sufficient for macrorealism, and the dif-

ferences in the structure of the probability space shown above, present fundamental

discrepancies between LR and MR. Fine’s observation [171] that Bell inequalities

are necessary and sufficient for LR can therefore not be transferred to the case of

LGIs and MR. More precisely, Fine’s proof uses the implicit assumption of NS, which

is obeyed by all reasonable physical theories, including QM. However, the temporal

analogue to NS is the conjunction of AoT and NSIT, where AoT is obeyed by all

reasonable physical theories, while NSIT is violated in QM. Therefore,

BIs ⇐; LR ⇔ NS ∧ BIs (3.16)

LGIs ⇐; MR⇔ AoT ∧ NSIT :
⇒ AoT ∧ LGIs, (3.17)
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where “BIs” and “LGIs” denote the sets of all Bell and Leggett-Garg inequalities,

respectively. In appendix 3.A we explicitly construct a counter-example for AoT ∧
CH-LGIs⇒ MR.

Moreover, since MR is a polytope with smaller dimension than QMT, LGIs can only

touch MR (i.e. be tight) at one facet, i.e. a positivity constraint, as sketched in

fig. 3.1 on the right. A comparable Bell inequality, sketched in fig. 3.1 on the left

as BI’, clearly illustrates the limitations resulting from this requirement. In fact,

for each facet, there is an infinite number of such LGIs, compared to a single NSIT

condition. In an experimental test of MR, using a LGI therefore needlessly restricts

the parameter space where violations can be found. Note also the mathematical

simplicity of NSIT conditions when compared to the LGI, which can facilitate further

theoretical studies. In summary, engineering future experiments for violations of

NSIT conditions instead of LGIs appears to be better motivated by the underlying

theory.
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Appendix

3.A A counter-example for LGIs as sufficient
conditions
In the following, we will demonstrate that CH-type Leggett-Garg inequalities [172]

are not sufficient for macrorealism, and therefore Fine’s theorem does not apply

to macrorealism. Consider the experimental setup from fig. 3.3: A combination of

Mach-Zehnder interferometers with 50/50 beamsplitters is set up as sketched. At

times t0, t1, t2, and t3, which-path measurements may be performed; the outcomes

are denoted as |+〉 and |−〉. The initial state at t0 is |+〉.

We obtain the following probabilities:

p01(+,+) = 1
2 p02(+,+) = 0 p03(+,+) = 1

2

p12(+,+) = 1
4 p13(+,+) = 0 p0(+) = 1

p1(+) = 1
2 p2(+) = 0 p3(+) = 1

2

p12(−,+) = 1
4 p012(+,+,+) = 1

4 p012(+,−,+) = 1
4 .

(3.18)

We now evaluate a standard LGI, the CH-type LGIs and various NSIT conditions. The

standard LGI is easily fulfilled:

LGI : C01 + C12 + C23 − C03 = 0 ≤ 2. (3.19)
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The CH-type LGIs, taken from ref. [171] with the replacement rules2 from ref. [73],

are also fulfilled,

−1 ≤ p01(+,+) + p03(+,+) + p23(+,+)− p12(+,+)− p0(+)− p3(+) = −3
4 ≤ 0,

−1 ≤ p12(+,+) + p23(+,+) + p03(+,+)− p01(+,+)− p2(+)− p3(+) = −1
4 ≤ 0,

−1 ≤ p03(+,+) + p01(+,+) + p12(+,+)− p23(+,+)− p0(+)− p1(+) = −1
4 ≤ 0,

−1 ≤ p23(+,+) + p12(+,+) + p01(+,+)− p03(+,+)− p2(+)− p1(+) = −1
4 ≤ 0.

(3.20)

On the other hand, various NSIT conditions are easily violated:

NSIT(1)2 : p2(+) = 0 6= p12(+,+) + p12(−,+) = 1
2 ,

NSIT0(1)2 : p02(+,+) = 0 6= p012(+,+,+) + p012(+,−,+) = 1
2 .

(3.21)

We conclude that the CH-type LGIs are only necessary but not sufficient for macrore-

alism:

AoT ∧ CH-LGIs⇐; AoT ∧ NSIT⇔ MR. (3.22)

Obviously, the setup satisfies AoT.

50/50 50/50 50/50

|+〉

|−〉

|−〉

|+〉

|+〉

|−〉

|−〉

|+〉

t0 t1 t2 t3

100%

0%

Figure 3.3: A setup of Mach-Zehnder interferometers, with which-path measure-
ments at four times. The beamsplitters are perfect 50/50 half-mirrors,
and the initial state is |+〉.

2We replace A↔ t0, A
′ ↔ t2, B ↔ t1, B

′ ↔ t3, where A,A′, (B,B′) are the settings for Alice (Bob)
in ref. [171].
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4Quantum magnetomechanics

“ Yeah [beep], magnets!

— Jesse Pinkman

Breaking Bad, Season 5, Episode 1

Abstract

Tests of quantum mechanical predictions for the behavior of macroscopic quantities

are of high interest for various extensions of quantum mechanics and quantum

gravity, as outlined in chapter 0 and section 1.1. In recent years, various setups with

nano- and micro-mechanical resonators in the quantum regime have therefore been

theorized and experimentally investigated. Such experiments are however typically

hindered by strong coupling to the environment, often simply from mechanical

connections. Recent proposals attempt to mitigate these issues by mechanically

disconnecting a test mass through optical levitation. They thereby trade decoherence

from a mechanical connection for decoherence from the increased heating and

scattering of laser light.

In this chapter, we propose a novel kind of setup, where quasi-magnetostatic fields

take the role of conventional optical tools. Our setup consists of a levitating super-

conducting sphere in the Meißner state. The variation of its expelled field with the

center-of-mass motion leads to a resonant coupling to a superconducting quantum

circuit. We show that this interaction can be tuned to the sideband cooling regime,

where ground state cooling is experimentally feasible. We also calculate the most

common sources of decoherence for the mechanical resonator, and show that they

are extremely low when compared to the cooling rate. Our proposal therefore

enables quantum experiments with micrometer-sized, massive objects.

After motivating a novel experimental design (section 4.1), we start with a detailed

discussion of our proposed experiment (section 4.2). We then calculate the cooling

rate and final occupation number for sideband cooling (section 4.3), and analyze the
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most common sources of decoherence of the superconducting sphere (section 4.4).

Finally, we discuss a protocol to build spatial superposition states (section 4.5), and

give exemplary experimental parameters (section 4.6).

This chapter is based on and uses parts of ref. [4]:

• O. Romero-Isart, L. Clemente, C. Navau, A. Sanchez, and J. I. Cirac, ‘Quantum

Magnetomechanics with Levitating Superconducting Microspheres’, Phys. Rev.

Lett. 109, 147205 (2012)

An initial discussion of mechanical levitation for quantum experiments can be found

in ref. [179]. In parallel to our work, a similar proposal was reported by Cirio,

Brennen and Twamley [180]. Additionally, a News and Views article [181] was

published in Nature Physics on both works.
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4.1 Introduction and motivation
The experimental realization of macroscopic quantum behavior presents a multi-

tude of interesting applications, ranging from answers to fundamental questions

of quantum theory [11, 12], over improved detection efficiencies of gravitational

waves [182] to experimental tests of quantum gravity [36]. Over the past decade,

various experimental setups with nano- and micromechanical resonators of ever

increasing size have been theorized, and many experiments have been performed.

An important milestone on the way to quantum behavior is the cooling of a macro-

scopic degree of freedom to the quantum ground state, a spectacular feat that has

been demonstrated in multiple different setups [136, 183–185], some of them using

sideband cooling techniques [186–188]. For an extensive overview of the field of

mechanical resonators in the quantum regime see refs. [189–194].

The experiments discussed above share a common construction: A macroscopic

mechanical degree of freedom (e.g. the center-of-mass motion) is coupled to a

well-understood quantum device. This coupling is then exploited for both active

and passive cooling techniques, and finally to manipulate and measure the quantum

state of the macroscopic object.

However, when constructing quantum experiments, the experimenter is often faced

with a difficult tradeoff: The system has to be well-enough isolated from the sur-

rounding environment to allow the observation of quantum behavior, but it must still

be precisely controllable and measurable when required by experimental protocols.

With mechanical resonators in particular, the former presents a major challenge on

the way to ground state cooling: The mechanical connection of the resonator to the

environment is a strong source of heating and decoherence, the so-called clamping

losses. For this reason, it was recently proposed to use setups where the mechanical

resonator is optically levitated, and therefore completely mechanically disconnected

from the environment [195–199]. This optomechanical setup is sketched in fig. 4.1.

Additionally, novel protocols for building quantum superpositions are theoretically

feasible in the parameter ranges admitted by these setups [36, 200]. Notably, the

possibility of performing such experiments in space, in order to improve isolation,

has been discussed in refs. [201, 202].

While experiments using light to trap and cool mechanical resonators eliminate

mechanical coupling to the environment, they share two common problems: Photons

are scattered by the object, producing position-localization decoherence [195, 196,

199, 200], and photons are absorbed, heating the object and increasing decoherence
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x

Figure 4.1: The optomechanical setup discussed in refs. [195–199]. A dielectric
micro-sphere is levitated and trapped by optical tweezers (red), and
positioned inside of an optical cavity (purple). When a suitable driving
field is applied (here from the left), the motion of the object’s center-
of-mass position x can in theory be cooled to the quantum ground
state.

due to the emission of black body radiation [36, 195, 196, 199, 200]. These issues

make an experimental realization more challenging, and limit the maximum size of

the object to tens or hundreds of nanometers.

In this chapter, we propose a novel kind of system that eliminates these problems by

relying solely on magnetic fields for both trapping and the coupling to a quantum

device. Since cooling of the mechanical motion to low energies is an important first

step in realizing many interesting macroscopic quantum states, we will focus our

discussion on ground-state cooling.

Our proposed setup consists of a type-I superconducting micro-sphere (e.g. made of

lead), levitated and trapped by a strong external magnetic field. Due to the Meißner

effect [203], the superconductor expels the magnetic field from inside the material,

as sketched in fig. 4.2. To pick up this expelled field, a pickup coil is placed close

to the sphere. It is connected to a superconducting quantum circuit, e.g. an LC

resonator or a flux qubit1. Then, the center-of-mass position of the sphere couples to

the quantum circuit through the pickup coil.

In the following, we show that with sideband cooling techniques [186–188], the

motion of the sphere can be cooled the quantum ground state. We start by looking

at the details of the setup, and calculate the magnetomechanical coupling.

1See refs. [204–208] for reviews on the topic of superconducting quantum circuits.
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Figure 4.2: Left: Sketch of the magnetic field lines at the center of the trap. The
magnetic field minimum used for levitation and trapping is clearly
visible.
Right: Same setup with the superconducting sphere present. The
Meißner effect [203] is apparent, as the superconductor expels the
magnetic field.

4.2 The magnetomechanical setup
We consider the setup depicted in fig. 4.3: A superconducting sphere of radius R

and mass M is cooled to a temperature T below its critical temperature TC . We

choose the material and the radius such that both the penetration length λ of the

field inside the superconductor and the coherence length ξ of Cooper pairs inside

the superconductor are much smaller than the radius of the sphere, λ, ξ � R.

(Exemplary experimental parameters are printed in table 4.1 in section 4.6.) We

can then assume that the magnetic field penetration into the sphere is negligible,

and the sphere has zero total magnetic field inside, B = 0. The sphere is trapped

at the center of the harmonic potential generated by a magnetic trap [209], more

concretely a pair of circular coils of radius l in an anti-Helmholtz configuration, i.e.

positioned coaxially with distance l from each and with opposing currents ±I inside

the coils. As shown in appendix 4.A, the resulting trapping potential is harmonic in

all three dimensions, and of the form

V̂trap = M

2 [ω2
t x̂

2 + ω2
⊥(ŷ2 + ẑ2)], (4.1)

where the x-axis is placed along the axis of the coils. Following the derivation in

appendix 4.A, we arrive at trapping frequencies

ωt ≈ 1.49
√
µ0
ρ

I

l2
, (4.2)

and

ω⊥ ≈ 0.74
√
µ0
l4ρ

, (4.3)
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Figure 4.3: The magnetomechanical setup described in this chapter. A pair of coils
in the anti-Helmholtz configuration (opposing directions of current,
with equal radius and positioned coaxially in distance l) creates a static
magnetic field to trap the superconducting sphere (radius R). A pickup
coil of radius r, connected to a superconducting qubit, is placed coaxially
to the coils at distance d. It serves to couple the center-of-mass position
x̂ of the sphere to the qubit.

where µ0 is the vacuum permeability, and ρ is the density of the sphere.

For the material of the sphere to stay superconducting during the experiment, it

is important that the magnetic field at the surface of the sphere never exceeds the

material’s critical field BC . This restriction results in an upper bound on the radius

of the sphere,

R� Rmax ≈ 1.15 BC
ωt
√
µ0ρ

. (4.4)

See appendix 4.B for derivation of this value.

At distance d from the center of the trap, a pickup coil of radius r is placed coaxially

with the anti-Helmholtz coils. We require d > l/2, such that the pickup coil is

placed outside of the anti-Helmholtz setup. The pickup coil is then connected either

to an LC resonator, or to a superconducting flux qubit, so that it transmits the

sphere’s expelled magnetic field to the quantum circuit. As we will see below, the
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Figure 4.4: The dimensionless magnetomechanical coupling parameter η due to
the magnetic flux expelled by the superconducting sphere at the pickup
coil, plotted as a function of the distance d of the pickup coil, for
the experimental parameters printed in table 4.1 in section 4.6. The
blue line corresponds to sphere radius R = 1 µm, the orange line to
R = 2 µm, and the green line to R = 3 µm.

magnetomechanical sphere-circuit coupling depends on a dimensionless parameter

η ≡ xzp
Φ′ext

Φ0
, (4.5)

where xzp =
√
~/(2Mωt) is the mechanical zero point motion (also referred to as

ground state size), Φ0 = π~/e is the magnetic flux quantum, and Φ′ext = dΦext(d+x)
dx |x=0

is the derivative of the magnetic field expelled by the sphere with respect to the

sphere’s position, evaluated at the location of the pickup coil, assuming the sphere is

at the center of the trap. In appendix 4.C we show that, assuming l, r � R,

Φ′ext ≈ 2.70µ0
I

l2
R3r2

(d2 + r2)3/2 . (4.6)

The dimensionless parameter η as a function of the distance d is sketched in fig. 4.4

for different radii of the sphere.

4.3 Calculation of the cooling rate
4.3.1 The initial master equation

Let us now write the system Hamiltonian, starting with an LC resonator with

inductance L and capacity C. Its Hamiltonian is

ĤLC = [Φ̂− Φext(x̂)]2

2L + Q̂2

2C , (4.7)

4.3 Calculation of the cooling rate 73



∼~Ω cos(ωdt)Φext(x)

×

× ×
Ip

Figure 4.5: A flux qubit [204] with three Josephson junctions (denoted by crosses).
The two qubit states |↑〉 and |↓〉 correspond to a current Ip flowing
clockwise or counterclockwise, respectively. The external magnetic
flux Φex(x) threads the pickup coil, and therefore effectively the flux
qubit connected to it. An external driving field with frequency ωd and
amplitude Ω is applied.

with [Φ̂, Q̂] = i~, where Φ̂ is the magnetic flux in the inductance, and Q̂ the charge

in the capacitor. Since the expectation value of the sphere’s position operator, x̂, is

usually small, we expand Φext(x̂) linearly. We furthermore replace x̂ = xzp(b̂† + b̂)
and Φ̂ = Φzp(â† + â) with the zero-point flux Φzp =

√
~/(2CωLC) and the resonator

frequency ωLC = 1/
√
LC. Additionally, we define gLC = εLCη. We thus obtain the

Hamiltonian

ĤLC/~ = ωLC â
†â+ gLC(â† + â)(b̂† + b̂). (4.8)

Next, let us turn to the option of a superconducting flux qubit [205–208]. We

consider a qubit with three Josephson junctions [204], as shown in fig. 4.5. We

assume that the external flux is tuned so that the qubit is near its degeneracy point,

i.e. f(Φext) = Φext/Φ0 − 1/2 ≈ 0. In this case, the qubit Hamiltonian reads

Ĥs/~ = − ε̃2 σ̂z −
∆
2 σ̂x, (4.9)

where we have introduced the bias of the qubit ε̃ = νf(Φext) with ν = 2Φ0Ip/~,

the tunneling amplitude ∆, and the persistent current in the qubit Ip. As before,

σ̂x, σ̂y and σ̂z are the Pauli matrices. Again, we expand ε̃(x̂) linearly to obtain

ε̃(x̂) ≈ ε̃(0) + ε̃′(0)x̂. Including the Hamiltonian for the mechanical resonator, we

arrive at the total magnetomechanical Hamiltonian

ĤMM/~ = ωtb̂
†b̂− ε

2 σ̂z −
∆
2 σ̂x − g0σ̂z(b̂† + b̂). (4.10)

We have introduced ε = ε̃(0) and the magnetomechanical coupling g0 = νη.
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With experimentally feasible numbers (c.f. table 4.1 in section 4.6), the coupling to

the qubit g0 is significantly smaller than the coupling to the LC resonator gLC . While

the linear LC resonator is therefore better-suited for ground state cooling or other

Gaussian dynamics, the qubit presents a much more interesting and diverse addition

to the experimenter’s toolbox due to its non-linearity. We will therefore continue our

calculations for the qubit. More detailed calculations for the LC resonator can be

found in ref. [4].

In order to resonantly couple the qubit (with a frequency of a few GHz) to the

mechanical resonator (with a frequency in the kHz or low MHz regime), we need to

apply a suitable driving field to the flux qubit. Its Hamiltonian reads

Ĥdrive/~ = Ω cos(ωdt)σ̂z, (4.11)

where Ω is the amplitude and ωd the frequency of the driving field, a setup that has

been studied in refs. [210–214]. The total Hamiltonian of the system can now be

written as

Ĥ/~ = ĤMM/~ + Ĥdrive/~

= ωtb̂
†b̂− ε

2 σ̂z −
∆
2 σ̂x + Ω cos(ωdt)σ̂z − g0σ̂z(b̂† + b̂).

(4.12)

Let us first write this Hamiltonian in the eigenbasis of the qubit. Diagonalization

yields2

Ĥ/~ = ωtb̂
†b̂− ωs2 σ̂z+Ω cos(ωdt)(σ̂z cosα+ σ̂x sinα)−g0(σ̂z cosα+ σ̂x sinα)(b̂†+ b̂).

(4.13)

Here, we have defined ωs =
√
ε2 + ∆2 and tanα = ∆/ε.

To obtain the cooling rate, we also need to consider sources of decoherence for both

the superconducting sphere and the qubit. The former, decoherence of the sphere,

will later (section 4.4) be shown to be negligible, and is therefore not included in

the following discussion. On the other hand, decoherence of the qubit consists of

spontaneous decay to the lower energy state with rate Γ0, and pure dephasing with

rate Γϕ [205–208]. We model these processes with Lindblad terms in the master

equation
˙̂ρ = − i

~
[Ĥ, ρ̂] + L0[ρ̂] + Lϕ[ρ̂], (4.14)

2Here and in the following, for simplicity, we omit stylistic changes to the symbol of the Hamiltonian,
and keep using Ĥ, even as the Hamiltonian undergoes various transformations.
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where

L0[ρ̂] = Γ0
2 (2σ̂−ρ̂σ̂+ − ρ̂σ̂+σ̂− − σ̂+σ̂−ρ̂) (4.15)

describes the spontaneous decay, and

Lϕ[ρ̂] = Γϕ
2 (σ̂zρ̂σ̂z − ρ̂) (4.16)

describes the pure dephasing. We have introduced the creation and annihilation

operators for the qubit, σ̂+ = (σ̂x + iσ̂y)/2 and σ̂− = (σ̂x − iσ̂y)/2.

4.3.2 The master equation in the interaction picture
Let us now move to a frame rotating with the drive frequency ωd. We apply the

transformation ρ̂→ ÛRρ̂Û
†
R where

ÛR = exp(iσ̂zωdt/2) = cos(ωdt/2)1 + i sin(ωdt/2)σ̂z. (4.17)

This results in a transformation to the Hamiltonian Ĥ → ÛRĤÛ
†
R − i ˙̂

URÛ
†
R, which

yields

Ĥ/~ = ωtb̂
†b̂+ δω

2 σz

+ Ω
2
[
cosα

(
e−iωdt + eiωdt

)
σ̂z + sinα[σ̂x + cos(2ωdt)σ̂x − sin(2ωdt)σ̂y]

]
− g0 [cosασ̂z + sinα[cos(ωdt)σ̂x − sin(ωdt)σ̂y]] (b̂† + b̂),

(4.18)

where δω = ωd − ωs. Note that the Lindblad terms are unaffected by this transfor-

mation.

Now we perform a rotating-wave approximation, i.e. we drop all rapidly oscillating

terms, since their contribution averages out to zero. This is valid provided the

rotation frequency is much larger than the other significant frequencies: ωd �
ωt, δω, g0. We then arrive at the Hamiltonian

Ĥ/~ = ωtb̂
†b̂+ δω

2 σz + Ω̃
2 σ̂x − gσ̂z(b̂

† + b̂), (4.19)

where we introduced Ω̃ = Ω sinα and g = g0 cosα.

Next, we again diagonalize the qubit. We obtain the Hamiltonian

Ĥ/~ = ωtb̂
†b̂+ ω̃s

2 σ̂z − g(cosβσ̂z + sin βσ̂x)(b̂† + b̂), (4.20)
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where ω̃s =
√
δω2 + Ω̃2, and tan β = Ω̃/δω. Using the unitary Û = exp[i(ωtb̂†b̂ +

ω̃sσ̂z/2)t], we can now bring the Hamiltonian to the interaction picture. We thus

arrive at

ĤI/~ = −g
(
cosβσ̂z + sin βeiω̃stσ̂+ + sin βe−iω̃stσ̂−

) (
eiωttb̂† + e−iωttb̂

)
. (4.21)

Setting ω̃s = ωt and assuming ωt � g0, we can perform another rotating-wave

approximation, yielding the final Hamiltonian in the interaction picture,

ĤI/~ = −g̃(σ̂−b̂† + σ̂+b̂), (4.22)

where we have introduced g̃ = g sin β.

We now need to apply the diagonalization and the transformation to the interaction

picture to the dissipative terms. After diagonalization, and a subsequent rotating-

wave approximation, similar to the one outlined above (valid provided that ωt �
Γ0,Γϕ), we obtain

L0[ρ̂] =
Γ∗ϕ
2 (σ̂zρ̂σ̂z − ρ̂)

+ Γ↓
2 (2σ̂−ρ̂σ̂+ − ρ̂σ̂+σ̂− − σ̂+σ̂−ρ̂)

+ Γ↑
2 (2σ̂+ρ̂σ̂− − ρ̂σ̂−σ̂+ − σ̂−σ̂+ρ̂).

(4.23)

Note that due to the diagonalization, a term describing spontaneous excitation in

the qubit with rate Γ↑ has appeared. We have defined

Γ∗ϕ = Γϕ cos2 β + Γ0
2 sin2 β, (4.24)

Γ↓ = Γϕ
2 sin2 β + Γ0

4 (1 + cosβ)2, (4.25)

Γ↑ = Γϕ
2 sin2 β + Γ0

4 (1− cosβ)2. (4.26)

In summary, we have the master equation in the interaction picture,

˙̂ρ = L0[ρ̂] + LI [ρ̂], (4.27)

where LI [ρ̂] = −i[ĤI , ρ̂]/~.

With Hamiltonian (4.22) and the spontaneous decay described by the master equa-

tion (4.27), the system is in the sideband cooling regime. An intuitive interpretation
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|↑〉 |n− 1〉
|↑〉 |n〉

|↑〉 |n+ 1〉

|↓〉 |n− 1〉
|↓〉 |n〉

|↓〉 |n+ 1〉
Γ↓

Figure 4.6: The sideband cooling scheme discussed in this chapter. The columns
correspond to different energy levels in the mechanical resonator, the
vertical levels are the two states of the qubit. The Hamiltonian (4.22)
leads to a resonant coupling, depicted by the blue arrow. Note that the
transition corresponding to the dotted red arrow is prohibited due to
the choice of detuning δω. In combination with the decay of the qubit
with rate Γ↓, this setup leads to a cooling of the mechanical motion.

of Hamiltonian (4.22) and the resulting cooling of the system is sketched and

explained in fig. 4.6.

4.3.3 Adiabatic elimination
With the experimental parameters chosen below (table 4.1 in section 4.6), the

coupling strength is much smaller than the decoherence rates, g̃ � Γ∗ϕ,Γ↓,Γ↑.
Looking at the master equation (4.27), we realize that in this case we can treat the

hermitian part, LI [ρ̂], as a perturbation. In the following, we perform an adiabatic

elimination [215, 216] of the qubit, following the calculation in ref. [217].

Consider the subspace of eigenvectors of L0 with eigenvalue λ = 0. These states can

be written as

L0 (|n〉〈n| ⊗ ρ̂ss) = 0, (4.28)

where |n〉 with n = 0, 1, . . . are the eigenstates of the mechanical resonator, and ρ̂ss

is the steady-state of the qubit. Let P be a projector onto that subspace; it can be

written as

P ρ̂ = trs(ρ̂)⊗ ρ̂ss, (4.29)

where trs is the trace over the qubit degrees of freedom. Applying perturbation

theory, eq. (4.27) can be written as

d
dt P ρ̂ = [PLIP − PLI(1− P)L−1

0 (1− P)LIP]ρ̂. (4.30)
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For the cooling process we are just interested in the evolution of the mechanical

state,

˙̂ρm = trs(P ˙̂ρ) = trs

(
[PLIP − PLI(1− P)L−1

0 (1− P)LIP]ρ̂
)
. (4.31)

The first term is zero:

trs(PLIP ρ̂) = ig̃[〈σ̂−〉ss b̂
† + 〈σ̂+〉ss b̂, ρ̂m] = 0. (4.32)

Using the fluctuation-dissipation theorem, the second term can be evaluated as (c.f.

ref. [217])

− trs[PLI(1− P)L−1
0 (1− P)LIP ρ̂] =

A+
2
(
2b̂†ρ̂mb̂− b̂b̂†ρ̂m − ρ̂mb̂†b̂

)
+ A−

2
(
2b̂ρ̂mb̂† − b̂†b̂ρ̂m − ρ̂mb̂b̂†

)
,

(4.33)

where the excitation rate is

A+ = 2g̃2
∫ ∞

0
dτ 〈σ̂+(τ)σ̂−(0)〉ss = 2g̃2

∫ ∞
0

dτ eM1τ 〈σ̂+σ̂−〉ss

= g̃2(
Γ∗ϕ + Γ↑+Γ↓

2

) (1− Γ↓ − Γ↑
Γ↓ + Γ↑

)
,

(4.34)

and the decay rate is

A− = 2g̃2
∫ ∞

0
dτ 〈σ̂−(τ)σ̂+(0)〉ss = 2g̃2

∫ ∞
0

dτ eM2τ 〈σ̂−σ̂+〉ss

= g̃2(
Γ∗ϕ + Γ↑+Γ↓

2

) (1 + Γ↓ − Γ↑
Γ↓ + Γ↑

)
.

(4.35)

Here, the parameters M1 = M2 = −[Γ∗ϕ + (Γ↑ + Γ↓)/2] are the first two elements of

the diagonal matrix in the Bloch equations


〈 ˙̂σ+〉

〈 ˙̂σ−〉

〈 ˙̂σz〉

 =


M1 0 0

0 M2 0

0 0 −(Γ↑ + Γ↓)




〈σ̂+〉

〈σ̂−〉

〈σ̂z〉

+


0

0

−(Γ↓ − Γ↑)

 . (4.36)

We arrive at the master equation of the mechanical resonator,

˙̂ρm = A+
2
(
2b̂†ρ̂mb̂− b̂b̂†ρ̂m − ρ̂mb̂†b̂

)
+ A−

2
(
2b̂ρ̂mb̂† − b̂†b̂ρ̂m − ρ̂mb̂b̂†

)
. (4.37)
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From this, we obtain a simple differential equation for the occupation number

operator n̂ = b̂†b̂:

〈 ˙̂n〉 = −Γ 〈n̂〉+A+, (4.38)

with Γ = A− −A+. We finally obtain the cooling rate

Γ = 2g̃2(
Γ∗ϕ + Γ↑+Γ↓

2

) Γ↓ − Γ↑
Γ↓ + Γ↑

= −32 g2
0Γ0 cos2 α cosβ sin2 β

[cos(2β)(Γ0 − 2Γϕ)− 5Γ0 − 6Γϕ](Γ0 + Γ0 cos2 β + 2Γϕ sin2 β)
,

(4.39)

and the occupation number in the steady state,

〈n̂〉ss = A+
Γ = 1

2

(
Γ↓ + Γ↑
Γ↓ − Γ↑

− 1
)

= Γ0(secβ + cosβ − 2) + 2Γϕ sin β tan β
4Γ0

. (4.40)

The occupation numbers and cooling rates for different values of β are plotted in

fig. 4.7.

4.4 Sources of decoherence
As mentioned in subsection 4.3.1, we have thus far assumed the absence of de-

coherence acting directly on the superconducting sphere. In this section, we will

justify this assumption by explicitly calculating the rates for a variety of possible

sources of decoherence. The resulting decoherence rates are printed in table 4.1 in

section 4.6.

4.4.1 Imperfect vacuum
If the experiment is performed in an imperfect vacuum, air molecules hitting the

sphere cause position localization decoherence. The rate can be estimated from

geometric considerations and was calculated before in refs. [179, 195]. It is

Γair = 16P
πRρv̄

, (4.41)

where v̄ =
√

3kT/m is the mean velocity of air molecules of average massm = 28.3 u
in the vacuum chamber, T is the temperature and P the pressure.
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Figure 4.7: Top: The steady-state occupation number of the mechanical resonator,
〈n̂〉ss, as a function of β, plotted for three cases: Γϕ = 0 in blue,
Γϕ = Γ0/10 in orange, and Γϕ = Γ0 in green. Ground state cooling can
be achieved if 〈n̂〉ss < 1.
Bottom: The cooling rate Γ in units of Γ̄ = g̃2/(Γ0 sin2 β) as a function
of β. The values of Γϕ/Γ0 are the same in the top plot.

4.4.2 Fluctuations of the trap frequency and center

Next, we calculate the decoherence rate from fluctuations in the trap. As was shown

in ref. [218], fluctuations ξω(t) of the form

Ĥ(t) = p̂2

2M + Mωt
2 [1 + ξω(t)]x̂2 (4.42)

result in two-level transitions with rate

Rωn→n±2 = πω2
t

16 Sω(2ωt)(n+ 1± 1)(n± 1). (4.43)
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Here, Sω(ω) is the one-sided power spectrum of the fractional fluctuation in the

resonance frequency,

Sω(ω) = 2
π

∫ ∞
0

dτ cos(ωτ) 〈ξω(t)ξω(t+ τ)〉 , (4.44)

where

〈ξω(t)ξω(t+ τ)〉 = 1
T

∫ T

0
dt ξ(t)ξ(t+ τ). (4.45)

We obtain the decoherence rate

Γω = Rω0→2 = πω2
t

8 Sω(2ωt). (4.46)

Similarly, we can follow ref. [218] to calculate the decoherence rate for position

fluctuations ξx(t) modeled by

Ĥ(t) = p̂2

2M + Mωt
2 [x̂− ξx(t)]2. (4.47)

We find

Γx = R0→1 = πω2
t

4
Sx(ωt)
x2

zp
, (4.48)

where

Sx(ω) = 2
π

∫ ∞
0

dτ cos(ωτ) 〈ξx(t)ξx(t+ τ)〉 . (4.49)

4.4.3 Hysteresis in the trapping coils
The oscillating magnetic moment of the sphere induces currents in both the trap

coils and the pickup coil. In a type-II superconductor (as required for the coils due

to the high currents), this is a dissipative process due to flux vortex pinning. In

this subsection, we will approximate the decoherence rates from this effect. As a

simplification, we replace the coil by a thin cylinder. Furthermore, we consider a

uniform magnetic field over the whole cylinder, with the magnitude of the expelled

field on the x-axis in distance d from the sphere.

We start by presenting the phenomenology of rapidly changing magnetic fields

applied to thin type-II superconducting disks [219]. Consider a thin disk in zero

external field, where we slowly apply a weak magnetic field. Screening currents

are induced at the surface of the material, counteracting the external magnetic

field. If the applied field exceeds the lower critical field for the superconductor, flux

vortices (see fig. 4.8 for explanation) appear at the edges of the disk. With increasing
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Figure 4.8: A type-II superconductor under an external magnetic field stronger than
its lower critical field. The magnetic field lines penetrate the material
only through flux vortices. Their movement through the superconductor
is not frictionless, and therefore dissipates energy.

magnetic field, these vortices permeate towards the center of the disk. Depending on

the strength of pinning of these vortices in the material, energy is dissipated as they

move. We consider hard type-II superconductors, where the vortices are strongly

pinned and can be described by the critical-state model [220].

The critical-state model asserts that vortices penetrate only so far into the material

as to reduce the local current density |J | to the critical current density Jc. This

results in an outer critical region with |J | = Jc, and an inner flux-free region. With

increasing external magnetic field, the critical region expands towards the center

of the material. On the other hand, reversing the external field results in vortices

of the opposite flux direction forming at the surface, and moving into the material.

Therefore, the flux at the edges is first neutralized, later the flux pinned near the

center. It is clear that this process of delayed magnetization is not reversible, and

gives rise to hysteresis losses.

With an oscillating external field, the magnetization in x-direction, Mx, versus

applied field in x-direction, Hx, runs in closed loops with area A given by

A =
∮

dMxHa = WV

µ0
, (4.50)

where we have introduced the energy dissipation per cycle per unit volume, WV .

This energy dissipation has been calculated for many geometries, e.g. thin long strips

[221]. Here we use the result for the rate of energy dissipation Ph from ref. [219],

for thin disks of radius r, thickness t, critical current JC and applied field Hx:

Ph = 16µ0
3π

ωtr
3

J2
c t

2H
4
x. (4.51)

Note that the H4
x dependence is valid only for thin disks, t � r. For geometries

where t ∼ r it changes to a H3
0 scaling, c.f. refs. [222–225]. Equation (4.51) has
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been confirmed to high precision by experiments, e.g. the ones performed in ref.

[226].

We use eq. (4.67) from appendix 4.C for the applied magnetic field generated by the

dipole, and eq. (4.60) from appendix 4.A for the magnetic moment. We thus have

an external field

Hx = 2mx

4πd3 , (4.52)

and arrive at the energy dissipation rate

Px ≈ 1.37I
4r3x̄4µ0
J2
c t

2l8

(
R

d

)12
, (4.53)

where x̄ is the amplitude of the oscillation of the sphere. Due to the dependence on

(R/d)12 we only consider the trap coils, and neglect the pickup coil, which is placed

farther away. We therefore set d = l/2 and r = l. Using Ph/Γh = ~ωt and choosing

x̄ = xzp, we obtain the rate of decoherence due to hysteresis,

Γh ≈ 24.3 ~I2R6

J2
c l

13t2ρ. (4.54)

4.4.4 Miscellaneous sources
Here, we do not explicitly consider a number of other decoherence sources, which

we assume to be negligible:

• The internal vibrational modes of the sphere are sufficiently decoupled from

its center-of-mass motion, as shown in ref. [198], and are assumed to not

significantly contribute to decoherence.

• The superconductor reacts quickly to changes in the external field, since its

energy splitting (of the order of tens of GHz) is much larger than the trapping

frequencies (of the order of tens of kHz).

• Blackbody radiation of the sphere is negligible due to the cryogenic tempera-

tures of ∼ 100 mK. In refs. [196, 200, 227], it was shown that the blackbody

decoherence rate scales as T 6. Note that in optically levitated setups, black-

body radiation due to heating from the lasers presents a significant challenge

for ground state cooling, which is by construction absent from our system.
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We remark that the coupling to the flux qubit can easily be switched off by changing

the drive frequency to be off-resonant. In this case, the sphere’s center-of-mass

motion is effectively completely decoupled from the environment.

4.5 Spatial superposition states

Let us now discuss a protocol for building spatial superpositions. Note that we can

rewrite the Hamiltonian (4.10) in the form

ĤMM/~ = ωs
2 σ̂z + T̂ †(χσ̂z)ωtâ†âT̂ (χσ̂z), (4.55)

where T̂ (ζ) = exp(−ip̂ζxzp/~) is the translation operator, and χ = 2g/ωt is a

dimensionless parameter. From this form, we observe that the center of the magnetic

trap depends on the qubit state. We can then prepare the qubit in an initial state

|ψ0〉 = 1√
2

(|↑〉s + |↓〉s), (4.56)

and the mechanical oscillator in state |0〉m, such that, after time π/ωt has elapsed,

the system is in the joint state

|ψ〉 = 1√
2

(|↑〉s |x−〉m + |↓〉s |x+〉m), . (4.57)

where |x−〉m = T̂ (−2χ) |0〉m and |x+〉m = T̂ (2χ) |0〉m are the displaced vacuum

states of the mechanical oscillator. After performing a measurement in the super-

position basis of the qubit, the sphere is thus left in a spatial superposition state,

albeit only with microscopic distinctness (on the order of femtometers). Note that

squeezing the position state of the sphere before the start of the protocol is necessary

in some parameter regimes.

We also refer the reader to refs. [36, 200], where an alternative protocol to perform

a quasi-double-slit experiment was discussed in detail for optically levitated nano-

spheres. This protocol requires quickly turning off the trap (realized there by letting

a dieletric nano-sphere fall through an optical cavity), and might benefit from the

ease of tuning the trapping frequency in the presented magnetomechanical setup.
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4.6 Experimental parameters and outlook
Above, we have shown that sideband cooling of a mechanical resonator can be

implemented in a magnetomechanical system. We have also calculated the major

decoherence sources. Table 4.1 shows an exemplary choice of parameters, and

the most important derived characteristics of our setup. Due to the extremely low

decoherence rates in the mechanical resonator (on the order of few Hz), ground

state cooling is feasible if the drive amplitude Ω and the detuning of the qubit f(0)
(c.f. subsection 4.3.1) are chosen properly, as shown in fig. 4.7.

A number of experiments testing parts of our proposal have been performed [228–

230], and some theoretical works have built on the concepts discussed here [231–

233]. Furthermore, new proposals have been put forward to use superconducting

vortex lattices in ultracold atom experiments [234]. The experimental toolbox of

magnetic building blocks is also rapidly increasing with novel magnetic configura-

tions [235, 236].

The unique combination of levitation, large masses (∼ 2× 1014 u), low bulk temper-

atures and very weak coupling to the environment make our proposal a candidate

for future experiments investigating the boundary of macroscopic quantum physics

[36]. Maybe even superpositions of living organisms may be finally realized [195,

237, 238].

86 Chapter 4 Quantum magnetomechanics



Parameter Symbol Value Comment

Qubit splitting ν 2π × 10 GHz c.f. [204–208]

Qubit amplitude ∆ 2π × 10 GHz c.f. [204–208]

Qubit decay rate Γ0 2π × 16 kHz c.f. [204–208]

Qubit decay rate Γϕ 2π × 8 kHz c.f. [204–208]

LC inductance L 0.1 nH c.f. [204–208]

LC capacitance C 1 pF c.f. [204–208]

Sphere radius R 2 µm

Sphere density ρ 11 340 kg m−3

Coherence length ξ 96 nm c.f. [239]

Penetration depth λ 30.5 nm c.f. [239]

Critical magnetic field BC 0.08 T c.f. [240]

Trap coils radius l 25 µm

Trap coils crit. current Jc 7× 1011 A m−2 c.f. [241]

Trap coils current I 10 A I/(t2π) < Jc

Trap coils thickness t 2.5 µm

Pickup coil distance d 17.5 µm

Pickup coil radius r 24.5 µm

Temperature T 100 mK

Critical temperature TC 7.2 K c.f. [239]

Pressure P 1× 10−8 Pa

Trap freq. fluct. Sω(2ωt) 1× 10−10 Hz−1

Trap pos. fluct. Sx(ωt)/x2
zp 1× 10−10 Hz−1

Sphere mass M 2× 1014 u

Max radius Rmax 3.1 µm

Trap frequency ωt 2π × 40 kHz

Coupling g0 2π × 1.1 kHz

Coupling to LC gLC 2π × 78 kHz

Dec. from air Γair 0.32 µHz

Dec. from freq. fluct. Γω 2 Hz

Dec. from pos. fluct. Γx 5 Hz

Dec. from hysteresis Γh 3.2× 10−22 Hz

Table 4.1: An exemplary choice of experimental parameters for a sphere made of
lead, allowing ground state cooling. The most important derived values
are printed after the vertical space.
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Appendix

4.A Trapping frequency
In this section, we calculate the frequency of the magnetic trap described in sec-

tion 4.2. The magnetic field close to the center of the the pair of anti-Helmholtz coils

(of equal radius and distance l) is

Ba = µ0
24

25
√

5
I

l2
(2x,−y,−z)T . (4.58)

When a superconducting sphere is placed inside this setup, the external magnetic

field induces currents inside of the material. The currents in turn produce the

magnetic field used for both trapping and the interaction with the pickup coil (the

latter is calculated in appendix 4.C). Assuming that the external magnetic field does

not penetrate into the sphere (i.e. λ � R), we can assume that the internal field

H is equal to the negative magnetization, M = −H. For spheres, the internal

(demagnetizing) field is

H = 3
2Ha = 3

2
Ba
µ0

, (4.59)

where the factor of 3/2 originates from the spherical geometry [242]. Assuming

R � l, we can approximate the induced currents by replacing the sphere with a

magnetic dipole with moment

m = M
4
3R

3π = −2Ba
µ0

R3π. (4.60)

Since the potential energy of the moment m in an external field is given by V =
−mBa, we arrive at the harmonic trapping potential

V = 2304
3125

µ0πI
2R3

l4
(4x2 + y2 + z2), (4.61)
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and therefore at trapping frequencies

ωt = 48
√

3
25
√

5

√
µ0
ρ

I

l2
≈ 1.49

√
µ0
ρ

I

l2
(4.62)

and

ω⊥ = 24
√

3
25
√

5

√
µ0
ρ

I

l2
≈ 0.74

√
µ0
ρ

I

l2
. (4.63)

The same results can be obtained using the image method of ref. [243].

4.B Maximum radius of the sphere
Since the sphere is placed in a field minimum, the maximum magnetic field will

appear at its surface. However, when evaluating the field at the surface, the above

dipole approximation slightly overestimates the magnitude of the field. For our

purposes, the accuracy is sufficient; an exact calculation using the image method

[243] can be found in the supplementary material of ref. [4]. With the simplified

calculation, we find the field at the surface to be

|B| = 72
25
√

5
µ0IR

l2
≈ 1.29µ0IR

l2
. (4.64)

Given a critical field BC , this restricts the radius of the sphere to

Rmax = 25
√

5
72

BC l
2

Iµ0
, (4.65)

or, using ωt from appendix 4.A,

Rmax = 2√
3
BC√
µ0ρ

1
ωt
≈ 1.15 BC√

µ0ρ

1
ωt
. (4.66)

4.C Magnetomechanical coupling to the pickup coil
In this section, we will calculate the effect of the expelled magnetic field on the

pickup coil of radius r, placed in distance d + x from the center of the trap. The

x-component of the field of a magnetic dipole with m = (m, 0, 0)T in spherical

coordinates (radius a, inclination θ) can be written as

Bx =
[
µ0
4π

(3a(m · a)
a5 − m

r3

)]
x

= µ0
4π

(
3ma2

x

a5 − m

a3

)
= µ0

4π
3m cos2 θ −m

a3 .

(4.67)
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We can now calculate the flux Φext through the pickup coil using cylindrical coordi-

nates

Φext =
∫
S

dS Bx =
∫ 2π

0

∫ r

0
dϕ dr′ r′Bx(r′). (4.68)

Using the magnetic moment from eq. (4.60) and, for the coordinates, tan θ =
r′/(d+ x) and a2 = (x+ d)2 + (r′)2, we obtain

Φext = − 48
25
√

5
Iµ0πr

2R3x

l2[r2 + (d+ x)2]
3
2
. (4.69)

Taking the derivative with respect to x yields

Φ′ext(0) = − 48
25
√

5
Iµ0πr

2R3

l2(r2 + d2)
3
2
≈ −2.70 Iµ0r

2R3

l2(r2 + d2)
3
2
. (4.70)
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5Conclusions and outlook

Over the course of this thesis, we have looked at two major concepts used to

define the border between quantum mechanics and classical physics, the world

views of local realism and macrorealism. In chapter 1 we gave an introduction

to macrorealism, and discussed some of its main properties. We then turned to

experimentally testable conditions for macrorealism and found that a set of no-

signaling in time and arrow of time conditions is both necessary and sufficient for

macrorealism. This led us to derive some operational conditions for macrorealistic

behavior in an experiment in terms of measurement operators and Hamiltonians.

Next, we have used our results to define the “classicality” of measurement operators

and Hamiltonians in chapter 2. We investigated coarse-grained measurements and

various Hamiltonians in several exemplary systems to confirm our intuition, and

discussed the role of spontaneously realized Hamiltonians in a definition of classical

behavior.

In chapter 3, we compared the probability polytope of local realistic and macrorealis-

tic theories. We identified some fundamental differences between the two, which led

us to conclude that (Leggett-Garg) inequalities can never form sufficient conditions

for macrorealism. Our work shows that Fine’s theorem cannot be transferred from

local realism to macrorealism, and motivates the “retirement” of the Leggett-Garg

inequalities in favor of no-signaling in time for future experimental and theoretical

studies.

Finally, in chapter 4, we proposed a novel type of experimental system for the

realization of macroscopic quantum experiments. The use of magnetostatics for

trapping a superconducting micro-sphere and coupling it to a superconducting

quantum circuit establishes an extremely clean and isolated setup. Ground-state

cooling of the sphere’s center-of-mass motion, an important ingredient for many

types of experiments, appears feasible in the studied parameter regime.

The conditions and experimental setups discussed in this thesis are integral for

many proposed experiments studying quantum foundations. Although extremely

challenging, their experimental realization will likely bring many new fundamental
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insights into the inner workings of the quantum-to-classical transition, and may

even allow the study of more exotic theories, such as objective collapse models and

quantum gravity.

It is quite astonishing how far into the macroscopic domain quantum experiments

have come in recent decades. While initial experiments focused on interference

patterns of single particles such as photons and electrons, today, quantum states of

objects with masses of as much as 1013 u are experimentally feasible [183]. It will

be exciting to see over the next few decades whether fundamental (or technological)

limits to the upper size of quantum systems emerge. Perhaps even Schrödinger’s cat

will finally cease to be a mere thought experiment.
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Bongs, S. Bose, C. Braxmaier, Č. Brukner, B. Christophe, M. Chwalla, P.-F. Cohadon,
A. M. Cruise, C. Curceanu, K. Dholakia, K. Döringshoff, W. Ertmer, J. Gieseler,
N. Gürlebeck, G. Hechenblaikner, A. Heidmann, S. Herrmann, S. Hossenfelder, U.
Johann, N. Kiesel, M. Kim, C. Lämmerzahl, A. Lambrecht, M. Mazilu, G. J. Milburn,
H. Müller, L. Novotny, M. Paternostro, A. Peters, I. Pikovski, A. Pilan-Zanoni, E. M.
Rasel, S. Reynaud, C. J. Riedel, M. Rodrigues, L. Rondin, A. Roura, W. P. Schleich,
J. Schmiedmayer, T. Schuldt, K. C. Schwab, M. Tajmar, G. M. Tino, H. Ulbricht,
R. Ursin, and V. Vedral, ‘Macroscopic quantum resonators (MAQRO): 2015 Update’,
(2015), arXiv:1503.02640 [quant-ph].

[203] W. Meißner and R. Ochsenfeld, ‘Ein neuer Effekt bei Eintritt der Supraleitfähigkeit’,
Naturwissenschaften 44, 787 (1933).

[204] J. E. Mooij, T. P. Orlando, L. S. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd,
‘Josephson Persistent-Current Qubit’, Science 285, 1036 (1999).

[205] Y. Makhlin, G. Schön, and A. Shnirman, ‘Quantum-state engineering with Josephson-
junction devices’, Rev. Mod. Phys. 73, 357 (2001).

[206] M. H. Devoret, A. Wallraff, and J. M. Martinis, ‘Superconducting Qubits: A Short
Review’, (2004), arXiv:cond-mat/0411174.

[207] J. Clarke and F. K. Wilhelm, ‘Superconducting quantum bits’, Nature 453, 1031
(2008).

[208] J. Q. You and F. Nori, ‘Atomic physics and quantum optics using superconducting
circuits’, Nature 474, 589 (2011).

[209] J. Fortágh and C. Zimmermann, ‘Magnetic microtraps for ultracold atoms’, Rev. Mod.
Phys. 79 (2007).

[210] A. Armour, M. Blencowe, and K. Schwab, ‘Entanglement and Decoherence of a
Micromechanical Resonator via Coupling to a Cooper-Pair Box’, Phys. Rev. Lett. 88,
148301 (2002).

[211] E. Il’ichev, N. Oukhanski, A. Izmalkov, T. Wagner, M. Grajcar, H. G. Meyer, A.
Smirnov, A. Maassen van den Brink, M. Amin, and A. Zagoskin, ‘Continuous Moni-
toring of Rabi Oscillations in a Josephson Flux Qubit’, Phys. Rev. Lett. 91, 097906
(2003).

[212] J. Hauss, A. Fedorov, C. Hutter, A. Shnirman, and G. Schön, ‘Single-Qubit Lasing
and Cooling at the Rabi Frequency’, Phys. Rev. Lett. 100, 037003 (2008).

[213] J. Hauss, A. Fedorov, V. Brosco, C. Hutter, R. Kothari, S. Yeshwant, and A. Shnir-
man, ‘Dissipation in circuit quantum electrodynamics: lasing and cooling of a
low-frequency oscillator’, New J. Phys. 10, 095018 (2008).

[214] P. Rabl, P. Cappellaro, M. Dutt, L. Jiang, J. Maze, and M. D. Lukin, ‘Strong magnetic
coupling between an electronic spin qubit and a mechanical resonator’, Phys. Rev.
B, 041302 (2009).

[215] M. Lindberg and S. Stenholm, ‘The master equation for laser cooling of trapped
particles’, J. Phys. B: At. Mol. Phys. 17, 3375 (1984).

[216] S. Stenholm, ‘The semiclassical theory of laser cooling’, Rev. Mod. Phys. 58, 699
(1986).

Bibliography 107

http://arxiv.org/abs/1503.02640
http://arxiv.org/abs/1503.02640
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1103/RevModPhys.73.357
http://arxiv.org/abs/cond-mat/0411174
http://arxiv.org/abs/cond-mat/0411174
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature10122
http://link.aps.org/doi/10.1103/RevModPhys.79.235
http://link.aps.org/doi/10.1103/RevModPhys.79.235
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1103/PhysRevLett.91.097906
http://dx.doi.org/10.1103/PhysRevLett.91.097906
http://dx.doi.org/10.1103/PhysRevLett.100.037003
http://dx.doi.org/10.1088/1367-2630/10/9/095018
http://link.aps.org/doi/10.1103/PhysRevB.79.041302
http://link.aps.org/doi/10.1103/PhysRevB.79.041302
http://dx.doi.org/10.1088/0022-3700/17/16/019
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1103/RevModPhys.58.699


[217] J. I. Cirac, R. Blatt, P. Zoller, and W. Phillips, ‘Laser cooling of trapped ions in a
standing wave’, Phys. Rev. A 46, 2668 (1992).

[218] M. Gehm, K. O’Hara, T. Savard, and J. Thomas, ‘Dynamics of noise-induced heating
in atom traps’, Phys. Rev. A 58, 3914 (1998).

[219] J. R. Clem and A. Sanchez, ‘Hysteretic ac losses and susceptibility of thin supercon-
ducting disks’, Phys. Rev. B 50, 9355 (1994).

[220] C. P. Bean, ‘Magnetization of Hard Superconductors’, Phys. Rev. Lett. 8, 250 (1962).

[221] E. H. Brandt, M. V. Indenbom, and A. Forkl, ‘Type-II Superconducting Strip in
Perpendicular Magnetic Field’, Europhys. Lett. 22, 735 (1993).

[222] A. M. Campbell and J. E. Evetts, ‘Flux vortices and transport currents in type II
superconductors’, Advances in Physics 21, 199 (1972).

[223] C. Y. Pang, A. Campbell, and P. McLaren, ‘Losses in Nb/Ti multifilamentary compos-
ite when exposed to transverse alternating and rotating fields’, IEEE Trans. Magn.
17, 134 (1981).

[224] W. J. Carr, M. S. Walker, and J. H. Murphy, ‘Alternating field loss in a multifilament
superconducting wire for weak ac fields superposed on a constant bias’, J. Appl.
Phys. 46, 4048 (1975).

[225] E. H. Brandt, ‘The flux-line lattice in superconductors’, Rep. Prog. Phys. 58, 1465
(1995).
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