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Summary 
 

Most eukaryotic proteins form complexes, but how these complexes are assembled in the cell often 

remains unknown. A prominent eukaryotic protein complex is RNA polymerase II (Pol II), a 12-subunit, 

520-kDa enzyme that carries out transcription of protein-coding genes. The structure and function of 

Pol II has been studied extensively, but little is known about its biogenesis. Assembly of Pol II apparently 

occurs in the cytoplasm prior to its nuclear import. Pol II biogenesis requires all three members of the 

recently discovered GPN-loop GTPases, but the function of these enzymes is unknown. The family is 

characterized by two protein insertions and a highly conserved motif consisting of the amino acids Gly-

Pro-Asn (single letter code: GPN) that is suggested to function in GTP hydrolysis. Depletion or mutation 

in the nucleotide binding site or GPN motif of human GPN1 (also called RPAP4, XAB1, MBDin) or its 

yeast homolog Npa3 leads to cytoplasmic accumulation of Pol II, but it is unknown whether these 

enzymes are involved in nuclear import and/or assembly. Lack of structural data for any eukaryotic GPN-

loop GTPase so far prevented detailed molecular understanding of these essential enzymes. 

In this thesis we report crystal structures of the GPN-loop GTPase Npa3 from the yeast 

S. cerevisiae. The enzyme was trapped in a GDP-bound, closed conformation, that shows eukaryote-

specific features in both insertion regions at 2.3 Å resolution. Further we show a GTP analog-bound 

structure at 2.2 Å resolution that reveals a novel, open conformation displaying a conserved 

hydrophobic pocket distant from the active site. We show that both insertion regions rearrange upon 

transition from the closed to the open state and provide atomic details of how Npa3 binds the 

nucleotides. Using site-directed mutagenesis, enzymatic activity assays and molecular modelling we 

elucidate the molecular mechanism of Npa3 hydrolysis from GTP to GDP that involves the GPN motif.  

We further show that Npa3 has chaperone activity and interacts with hydrophobic regions of 

Pol II subunits that form interfaces in the assembled Pol II complex. Consistent with a function as Pol II 

assembly chaperone, we show that Npa3 does not interact with mature, assembled Pol II. Biochemical 

results are in agreement with a model that the hydrophobic pocket binds peptides, and that this can 

allosterically stimulate GTPase activity and subsequent peptide release.  

Thus, our results indicate that GPN-loop GTPases form a new family of assembly chaperones for 

Pol II and maybe other protein complexes. 
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1. Introduction 

1.1. Transcription 

1.1.1. DNA-dependent RNA-Polymerases 
Gene transcription by DNA-dependent RNA polymerases is one of the most fundamental processes in all 

living organisms. Whereas bacteria and archaea rely on a single RNA polymerase, eukaryotes have 

evolved at least three specialized RNA polymerases (Pol I, II and III) that synthesize distinct subsets of 

RNA molecules. (Cramer et al., 2008; Werner & Grohmann, 2011). Pol I is located in the nucleoli and 

produces most ribosomal RNAs (rRNA). In the nucleoplasm, Pol II transcribes messenger RNAs (mRNA) 

and other small RNAs and Pol III synthesizes transfer RNAs (tRNA), 5S rRNAs and other small RNAs. In 

plants, two additional polymerases called Pol IV and Pol V transcribe non-coding RNAs required for gene 

silencing (Matzke et al., 2009). Further, chloroplasts and mitochondria contain their own, phage-related, 

single-subunit RNA polymerases that specifically transcribe the DNA of these organelles (Cheetham & 

Steitz, 1999).  

Eukaryotic Pol I, II and III consist of 14, 12 and 17 subunits, respectively (Table 1). Five core 

subunits are shared among all eukaryotic enzymes and two between Pol I and Pol III (Vannini & Cramer, 

2012). The crystal structure of the 10 subunit Pol II core (Cramer et al., 2000) provided first structural 

insights and was later extended to a complete 12 subunit model that also shows the so-called stalk 

(Armache, et al., 2005). Structural data derived from homology modeling is also available for Pol III 

(Jasiak et al., 2006) and the crystal structure of Pol I was solved recently (Engel et al., 2013). Even 

though the multi-subunit RNA polymerases synthesize distinct RNAs, they show great structural 

conservation (Vannini & Cramer, 2012). The two largest subunits that form the active center cleft are 

related to those of the bacterial polymerase and two subunits of the eukaryotic enzymes contain the 

bacterial α motif, respectively (Werner & Grohmann, 2011). Consistent with the structural conservation, 

eukaryotic Pol I, II and III share common features including a conserved mechanism of transcription 

initiation that requires interaction with transcription factors. 

Although the structure and function of eukaryotic RNA polymerases has been studied 

extensively during the last decades (Cramer, et al., 2008), only little is known about biogenesis of these 

essential molecular machines (Wild & Cramer, 2012). 
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Table 1| Subunit composition of RNA polymerases. 
Adapted from (Werner & Grohmann, 2011; Vannini & Cramer, 2012) 

1.1.2. Transcription cycle and regulation of RNA polymerase II 
The transcription cycle of Pol II comprises five steps: pre-initiation, initiation, elongation, termination 

and recycling (Svejstrup, 2004). During pre-initiation Pol II and general transcription factors (GTFs; Table 

2) are recruited to the promoter to form the pre-initiation complex (PIC), DNA is melted and the 

template strand is inserted into the polymerase active site (Sainsbury et al., 2015). Initiation starts with 

the incorporation of the first RNA nucleotides till the nascent chain reaches a length of 12-13 

nucleotides leading to an exchange of initiation to elongation factors and transition to the productive 

elongation phase. When Pol II reaches the 3’ end of the gene termination occurs with the help of 

termination factors, the newly synthesized RNA and Pol II are released and the enzyme can be recycled 

for another round of transcription (Svejstrup, 2004). 

Transcription regulation is coordinated by the Carboxy-terminal domain (CTD) of Rpb1 which is 

composed of heptapeptide repeats comprising the amino acids Y1S2P3T4S5P6S7. Hereby, specific and 

reversible posttranslational modifications of the hydroxy-groups and proline isomerizations provide a 

unique ‘CTD-code’ that forms a binding platform for transcription factors only at specific stages of the 

cycle to modulate transcription (Kim et al., 2010; Mayer et al., 2010; Kubicek et al., 2012; D. W. Zhang et 

al., 2012; M. Zhang et al., 2012; Eick & Geyer, 2013; Jasnovidova & Stefl, 2013). Additional regulation is 

obtained by particular secondary structures of nucleic acids (Allen et al., 2004; Lehmann et al., 2007; 

Aguilera & Garcia-Muse, 2012) and binding of accessory proteins to the DNA, nascent RNA and the Pol II 

core (Svejstrup, 2004). 

  Pol I Pol II Pol III Bacteria 
Polymerase core     
- large subunits A190 Rpb1 C160 β’ 
 A135 Rpb2 C128 β 
- partially shared/α-motif containing AC40 Rpb3 AC40 α 
 AC19 Rpb11 AC19 α 
- specific A12.2 Rpb9 C11 - 
- shared Rpb5 Rpb5 Rpb5 - 
 Rpb6 Rpb6 Rpb6 ω 
 Rpb8 Rpb8 Rpb8 - 
 Rpb10 Rpb10 Rpb10 - 
 Rpb12 Rpb12 Rpb12 - 
Polymerase stalk  A14 Rpb4 C17 - 
 A43 Rpb7 C25 - 
TFIIF-like  A49 Tfg1 C37 - 
 A34.5 Tfg2 C53 - 
Pol III specific  - - C82 - 
 - - C34 - 
 - - C31 - 
Number of subunits 14 12 17 5 
M [kDa] 589 514 693 ~400 
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1.1.3. General transcription factors in yeast 
Pol II transcription initiation requires the general transcription factors TFIIA, -B, -D, -E, -F and -H 

(Sainsbury, et al., 2015) (Table 2). In the canonical model, initiation starts with binding of the TFIID 

subunit TATA-binding protein (TBP) to promoter DNA were it induces an up to 90° kink of the DNA (J. L. 

Kim et al., 1993; Y. Kim et al., 1993). Then TFIIA and TFIIB bind the binary complex and TFIIB bridges 

between the TBP-DNA complex and Pol II (Bushnell et al., 2004; Kostrewa et al., 2009; X. Liu et al., 2010; 

Sainsbury et al., 2013), which is recruited to the promoter in complex with TFIIF to form the core PIC. 

The PIC is completed upon binding of TFIIE and TFIIH leading to an ATP-dependent DNA opening, the 

formation of a transcription bubble and initial RNA synthesis (Sainsbury, et al., 2015). Once RNA reaches 

12-13 nucleotides it clashes with TFIIB, triggering TFIIB displacement and formation of the elongation 

complex (Sainsbury, et al., 2013). 

 

Table 2| General transcription factors in yeast. 
Adapted from (Sainsbury, et al., 2015) 
Factor Subunits Functions 
TFIIA 2 Stabilizes TFIID-DNA complex, counteracts repressive effects of negative co-factors; 

stimulates constitutive and activated transcription.  
TFIIB 1 Required for Pol II recruitment to the promoter, stabilizes TFIID-DNA complex, assists in 

transcription start site (TSS) selection and stimulates initial RNA synthesis; may aids in 
DNA-RNA strand separation and is critical for initiation-to-elongation transition. 

TFIID 14-15 Nucleates Pol II recruitment and PIC assembly via binding of TBP to TATA-box promoters 
or TBP associated factors (TAFs) to TATA-less promoters. Further involved in chromatin 
remodeling and activator binding. 

TFIIE 2 Facilitates recruitment of TFIIH to promoters and stimulates ATPase and kinase activities 
of TFIIH. Functions in promoter opening and stabilization of open DNA by binding to 
ssDNA. 

TFIIF 2-3 Tightly associates with Pol II and stabilizes the PIC. Stimulates early RNA synthesis and aids 
in TSS selection.  

TFIIH 10 Consists of a core that functions in promoter opening as an ATP-dependent translocase 
and DNA repair, and a kinase module that phosphorylates the CTD to facilitate 
initiation-to-elongation transition.  

1.2. Life cycle of RNA polymerase II 

Although the structure and function of Pol II has been studied extensively over the last decades 

(Cramer, et al., 2008), only little is known about the life cycle of Pol II that comprises assembly, nuclear 

import and degradation or recycling of the subunits. During the last years a rising number of studies 

investigated these processes, leading to the identification of required proteins and novel insights into 

these essential cellular mechanisms. Here, a detailed summary about the current knowledge of the RNA 

polymerase II life cycle is provided. 
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1.2.1. Assembly 
Biogenesis of Pol II apparently starts in the cytoplasm with the synthesis of its 12 subunits Rpb1-Rpb12, 

but how they assemble remains poorly understood.  

Initial insights into subunit assembly derived from the bacterial RNA polymerase (Ishihama & 

Ito, 1972) because the eukaryotic Pol II core subunits Rpb1, Rpb2, Rpb3/11 and Rpb6 are homologous to 

the bacterial subunits β’, β, α and ω, respectively (Zhang et al., 1999; Cramer et al., 2001; Vassylyev et 

al., 2002). Urea-induced complete dissociation of bacterial polymerase subunits followed by stepwise in 

vitro reconstitution of the enzyme and analysis of the assembly intermediates led to the first model of 

bacterial RNA polymerase assembly (Ishihama & Ito, 1972). The postulated pathway starts with the 

association of two α-subunits to a αα-dimer which is then bound by the β-subunit to form a α2β 

assembly intermediate (Figure 1C). The functional polymerase arises from binding of subunit β’. The 

remaining ω subunit is not essential but is thought to be involved in folding and stabilization of β’, 

possibly joins the α2β intermediate in complex with subunit β’ and promotes assembly of both 

subcomplexes. (Ghosh et al., 2001; Minakhin et al., 2001). Recent NMR data indicates, that β’ω 

association is restricted to an early stage where the subunits are not completely folded yet (Drogemuller 

et al., 2015). The postulated in vitro assembly pathway was confirmed in vivo (Ishihama, 1981).  

Assuming a similar pathway for eukaryotic Pol II, the two subunits Rpb3 and Rpb11, that both 

contain the bacterial α motif (Werner & Grohmann, 2011), would form a complex that subsequently 

binds to Rpb2. Indeed, dissociation experiments with yeast Pol II revealed a Rpb2/3/11 subcomplex 

Figure 1| RNA polymerase subunit composition and assemblies. 
(A) Crystal structure of Pol II (pdb-code: 1WCM)(Armache, et al., 2005). Potential subassemblies are indicated. Eight zinc ions 
and the magnesium ion are shown as cyan and pink spheres, respectively. (B) Scheme of eukaryotic RNA polymerase subunit 
composition. Shared or homologous subunits are depicted in the same color. (C) Assembly of bacterial RNA polymerase. 
Subunit are colored according to their eukaryotic homologs as in (B). (D) Putative pathway for assembly of the Pol II core. 
Subunits shown in light grey (with broken outlines) have no homologs in bacterial RNA polymerases. Adapted from (Wild & 
Cramer, 2012). 
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 that was stable at 6M urea (Kimura et al., 1997). Additionally, Rpb10 was more weakly bound to this 

complex to form a Rpb2/3/11/10 subassembly at 4M urea. This is consistent with genetic studies, 

suggesting that Rpb10 association with the Rpb3 and Rpb11 homologs of Pol I and III (AC40 and AC19) 

has an important role in assembly and also indicates a conserved assembly pathway of the three 

polymerases (Lalo et al., 1993).  For in vivo assembly, the abundance of the individual subunits may also 

play an important role. Quantitative western blot analysis of all Pol II subunits in S. pombe revealed that 

Rpb3 is least abundant, thus limiting for complex formation, followed by Rpb1, Rpb2 and Rpb7 (2 fold 

more abundant) whereas the other subunits were 4-15 fold more abundant (Kimura et al., 2001). 

Further the smaller subunits Rpb4-Rpb12 also existed, at least temporarily, in unassembled form. A 

critical function has been proposed for the common subunit Rpb12 (Rubbi et al., 1999). The structure of 

the assembled Pol II core shows that Rpb12 interacts with both, Rpb3 and Rpb2, thus supporting a 

fundamental role of Rpb12 in biogenesis of all three polymerases as it bridges between the conserved 

second largest and α motif containing subunits (Rubbi, et al., 1999; Cramer, et al., 2000). It is thought 

that Rpb12 first binds to the Rpb3/11/10 subassembly to form a Rpb3/11/10/12 subcomplex that is 

then bound by a Rpb2/9 subcomplex (Wild & Cramer, 2012). In the last step of bacterial polymerase 

assembly the Rpb1 homolog β’ binds the corresponding assembly intermediate and the Rpb6 homolog 

ω was implicated in assembly and stability of the largest subunit (Minakhin, et al., 2001; Drogemuller, et 

al., 2015). In yeast, temperature-sensitive Rpb1 mutant cells, characterized by transcriptional shutdown, 

can be rescued by overexpression of Rpb6 (Nonet et al., 1987) underpinning the important role of this 

subunit in Rpb1 stability. In line with this, mutation of the Rpb6-interacting foot domain of Rpb1 leads to 

Pol II instability and assembly defects which can also be rescued by overexpression of Rpb6 (Garrido-

Godino et al., 2013). Additionally, substoichometric levels of Rpb8 were bound to Rpb1 in dissociation 

experiments using 4 M urea (Kimura, et al., 1997). Thus, Rpb1 likely binds the other two subassemblies 

as Rpb1/5/6/8 complex to build the 10 subunit Pol II core (Wild & Cramer, 2012). The whole assembly 

pathway is further supported by pulse labeling experiments with temperature sensitive subunits Rpb1, 

Rpb2 and Rpb3 that showed an Rpb2/3 subcomplex that forms early after subunit synthesis and 

subsequently interacts with Rpb1 (Kolodziej & Young, 1991). The additional, peripheral subunits, such as 

the stalk, are likely added to the core afterwards as preassembled complexes (Wild & Cramer, 2012). 

Consistent with this, dissociation from the core has been reported for Rpb4/7 (Pol II) in solution 

(Edwards et al., 1991), and C25/C17 (Pol III) during native mass spectrometry (Lorenzen et al., 2007). 

Further the TFIIF-like subcomplex of Pol I (A49/A34.5) can be dissociated with urea (Huet et al., 1975) 

and native mass spectrometry also revealed dissociation of its Pol III counterpart (C37/C53) as well as 

the Pol III-specific subunits C82/C34 (Lorenzen, et al., 2007). 

Taken together, the current model suggests the formation of an initial subcomplex, comprising 

subunits Rpb3/11/10/12 that subsequently binds to an Rpb2/9 subassembly (Wild & Cramer, 2012). This 
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large assembly intermediate is then bound by a third, Rpb1/5/6/8 subcomplex. Finally, the stalk 

comprising subunits Rpb4 and Rpb7 joins the Pol II core to form the complete functional 12 subunit 

Pol II complex (Armache, et al., 2005) (Figure 1). 

RNA polymerase II assembly factors 

In contrast to bacterial RNA polymerase, the eukaryotic enzymes could so far never be reconstituted 

from individual subunits in vitro, indicating that their assembly in vivo depends on the help of several 

factors. Systemic affinity purification screens identified a number of factors that interact with eukaryotic 

RNA polymerases, both in yeast (Gavin et al., 2002; Krogan et al., 2006) and in human (Jeronimo et al., 

2007). However, their cellular function often remains enigmatic and involvement in a wide range of 

processes like polymerase assembly, cellular transport, transcription, disassembly or degradation is 

possible. To more specifically screen for putative Pol II assembly factors (Table 3), two recent studies 

purified human Pol II from conditions that enrich for partially assembled enzymes (Boulon et al., 2010; 

Forget et al., 2010). Mass spectrometry analysis identified proteins bound to Pol II complexes, including 

components of the R2TP-prefoldin-like chaperone complex, the large CCT chaperonin complex and all 

three members of a recently discovered subfamily of GPN-loop GTPases, called GPN1, GPN2 and GPN3 

in human (Forget, et al., 2010). In the second study cells were treated with α-amanitin, a transcription 

inhibitor that leads to degradation of Rpb1 (Nguyen et al., 1996) and Rpb3 accumulation in the 

cytoplasm, thus allowing affinity purification of Rpb3-bound Pol II subcomplexes (Boulon, et al., 2010). 

Here, a Pol II subcomplex comprising subunits Rpb2/3/11/10/12 was identified, consistent with previous 

data (Kimura, et al., 1997; Cramer, et al., 2000). This subcomplex was bound by the GPN-loop GTPases 

GPN1, GPN2 and GPN3 as well as RPAP1, RPAP2 and Grinl1a (Boulon, et al., 2010) (Figure 2) that were 

known to bind Pol II (Jeronimo et al., 2004; Jeronimo, et al., 2007). Double treatment of cells with both, 

α-amanitin and leptomycin B, a specific nuclear export inhibitor of Xpo1 (also Crm1) (Fornerod et al., 

1997), led to cytoplasmic accumulation of Rpb1 (Boulon, et al., 2010). This allowed purification of an 

Rpb1/8 subcomplex and identification of associated components of the R2TP/Prefoldin-like complex. 

The yeast R2TP/Prefoldin-like complex functions as Hsp90 co-chaperone (Zhao et al., 2005) and its 

human homologous complex (Te et al., 2007; Boulon et al., 2008) contains the shared polymerase 

subunit Rpb5 (Sardiu et al., 2008). The R2TP component hSpagh (also RPAP3) binds Hsp90 and likely 

recruits it to unassembled Rpb1 to maintain free Rpb1 stability and association with other Pol II subunits 

(Boulon, et al., 2010). Hereby, the CTD heptapeptide repeat of cytoplasmic Rpb1 is mainly 

unphosphorylated. Further another component of the R2TP/Prefoldin-like complex, the yeast prefoldin 

Bud27, was implicated in biogenesis of all three RNA polymerases (Miron-Garcia et al., 2013). Bud27 

shows genetic interaction with Rpb5 and Rpb6, affects correct assembly of both subunits to Pol I, II 

and III and leads to growth defects and cytoplasmic accumulation of all three RNA polymerases upon 

deletion. Additionally, the karyopherin-like protein Rtp1 has been shown to interact with the R2TP 
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complex, Pol II subunits and nucleoporins but not with the yeast GPN1 homolog Npa3, and a function in 

assembly by binding to the N-terminal region of Rpb2 has been suggested (Gomez-Navarro et al., 2013). 

Further, deletion of Rtp1 leads to cytoplasmic accumulation of Pol II subunits but not Pol I and Pol III 

subunits. 

Taken together, in vivo assembly of Pol II requires the help of several factors but their molecular 

function is not very well understood. Lack of structural data for many biogenesis factors, especially the 

essential GPN-loop GTPases, so far prevented detailed understanding of their function in Pol II 

biogenesis. 

 

Figure 2| Model of Pol II biogenesis.  
The model combines results from yeast and human. (i) Subunits derived from protein synthesis and nucleocytoplasmic 
recycling assemble with the help of assembly factors (black) that may stabilize assembly intermediates. (ii) Formation of two 
major subassemblies comprising subunit Rpb1 and Rpb2, respectively plus additional subunits (in color if determined 
experimentally or in grey if presumed to be present) and assembly factors (black, human names). Assembly factors shown in 
grey may leave assembling Pol II. (iii) Fully assembled Pol II is bound by the nuclear import adaptor Iwr1 which recruits 
importin α/β via its NLS for nuclear import. Some assembly factors may stay bound to Pol II. (iv) Biogenesis factors are released 
and general transcription factors bind Pol II for transcription initiation. (v) Nucleocytoplasmic recycling of assembly factors in a 
Crm1/Xpo1-dependant manner. (vi) Degradation or nucleocytoplasmic recycling of subunits derived from disassembly of 
stalled Pol II. Adapted from (Wild & Cramer, 2012). 
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1.2.2. Nuclear Import 

Nuclear import of RNA polymerase II is most likely restricted to fully assembled enzymes, because 

depletion of any Pol II subunit leads to cytoplasmic accumulation of Pol II (Boulon, et al., 2010). Since 

none of the 12 Pol II subunits contain a nuclear localization sequence (NLS), additional proteins are 

required to mediate its nuclear translocation. Here, a critical role is attributed to Iwr1 which contains a 

N-terminal bipartite NLS (Czeko et al., 2011). Deletion of yeast Iwr1 or mutation of its NLS leads to 

cytoplasmic accumulation of Pol II subunits (Czeko, et al., 2011). This effect is specific for Pol II because 

Pol I and Pol III subunits are unaffected. Iwr1 functions as adaptor protein that binds Pol II and recruits 

importin-α/importin-β (Kap60/95) via its NLS. Electron microscopy revealed that Iwr1 binds Pol II 

between its two largest subunits, thus restricting Pol II import to fully assembled enzymes. Further 

nucleocytoplasmic recycling of Iwr1 is required because deletion of its nuclear export sequence (NES) 

(Peiro-Chova & Estruch, 2009) leads to Pol II import defects in yeast (Czeko, et al., 2011). This is in 

agreement with observations that treatment with leptomycin B, a specific nuclear export inhibitor of 

Xpo1 (also Crm1) (Fornerod, et al., 1997), leads to cytoplasmic accumulation of Rpb1, indicating nuclear 

trapping of the Pol II import factor (Boulon, et al., 2010). The import mechanism of Iwr1 is conserved 

between yeast and human because human Iwr1 partially rescues Pol II import defects caused by 

deletion of its yeast counterpart (Czeko, et al., 2011). However, an alternative import pathway may exist 

since Iwr1 is not essential.  

Table 3| Putative assembly and import factors of RNA polymerase II.  
Adapted from (Wild & Cramer, 2012; Forget et al., 2013; Gomez-Navarro, et al., 2013; Minaker et al., 2013; Miron-Garcia, 
et al., 2013; Guglielmi et al., 2015) 
Factor 
(human/yeast) 

Functional data 

GPN1/Npa3 Interaction with assembling Pol II and subunits Rpb1, Rpb4 and Rpb7. Depletion or mutation 
leads to cytoplasmic accumulation of Pol II subunits. Accumulates in the cytoplasm with Rpb1 
in disease characterized by protein aggregates where it shows increased expression levels. 

GPN2/YOR262W Interaction with assembling Pol II. Mutation leads to cytoplasmic accumulation of Pol II 
subunits 

GPN3/YLR243W Depletion or mutation leads to cytoplasmic accumulation of Pol II subunits 
GrinL1a/- Interaction with assembling Pol II 
RPAP1/RBA50 Interaction with assembling Pol II 
RPAP2/RTR1 Interaction with assembling Pol II and GPN1  
Hsp90/Hsp82 Interaction with assembling Pol II and Pol I. May stabilizes Rpb1 and assists in Pol II assembly. 
SLC7A6OS/Iwr1 Iwr1 binds Pol II between Rpb1 and Rpb2 and provides NLS for Pol II import in a Kap60/95-

dependant manner. Depletion leads to Pol II import defect. 
R2TP-Prefoldin complex Interaction with assembling Pol II. Depletion of the R2TP component hSpagh/RPAP3 leads to 

decreased levels of cytoplasmic Rpb1 in Pol II assembly defect conditions. Deletion of yeast 
Bud27 affects Pol I, II and III assembly, leads to growth defect and cytoplasmic accumulation 
of all polymerases 

Rtp1 Interaction with the R2TP complex and Pol II subunits. Affects Pol II nuclear import and may 
assist assembly of Rpb2/Rpb3 and its binding to Rpb1 

CCT complex Large chaperonin complex that interacts with GPN1 and Pol II subunits 
Microtubules Interference with microtubule integrity leads to cytoplasmic accumulation of Rpb1. Yeast 

Npa3 mutants are hypersensitive to microtubule depolymerization drug 
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1.2.3. Recycling and Degradation 
Disassembly and recycling or degradation of defective nuclear RNA polymerase is important to avoid 

nuclear aggregation and transcription defects. However, the underlying mechanisms are not very well 

characterized. Xpo1-dependent nucleocytoplasmic recycling of Rpb3 apparently takes place after 

disassembly of nuclear Pol II (Boulon, et al., 2010). Indications for this came from experiments were 

α-amanitin induced specific degradation of nuclear Rpb1 (Nguyen, et al., 1996) leads to cytoplasmic 

accumulation of Rpb3 (Boulon, et al., 2010).  This effect is rather caused by nucleocytoplasmic recycling 

than import defects of Rpb3 because additional treatment with the Xpo1 exportin inhibitor 

leptomycin B leads to nuclear accumulation of Rpb3 (Boulon, et al., 2010). The recycled subunit might 

then be incorporated into a new Pol II complex in the cytoplasm.  

Degradation of Pol II likely occurs individually for each subunit rather than en bloc because 

different half-lives were reported for each subunit, ranging from 22 min for Rpb1 to 87 min for Rpb9 

whereas the shared subunits Rpb6, Rpb8 and Rpb12 were described as stable in the given time course 

(Belle et al., 2006). Indeed, ubiquitination and proteasome-mediated degradation of Rpb1 from stalled 

Pol II has been reported both, in yeast and in human (Somesh et al., 2005; Daulny & Tansey, 2009). The 

responsible factors including ubiquitin-ligases were identified and their mechanisms were described in 

detail (Huibregtse et al., 1997; Beaudenon et al., 1999; Somesh, et al., 2005; Ribar et al., 2007; Somesh 

et al., 2007; Daulny et al., 2008; Harreman et al., 2009; Garrido-Godino, et al., 2013). Further 

ubiquitination and degradation of Rpb8 upon DNA damage has been reported (Wu et al., 2007). 

However, the fate of the other subunits is not known and requires further investigations.  

1.3. GPN-loop GTPases 

1.3.1. General principles and classification of GTPases 
GTPases (also called G proteins) are a large and functionally diverse family of guanosine triphosphate 

(GTP) hydrolyzing enzymes that carry out a wide variety of biological functions such as signal 

transduction, cellular transport, and macromolecular complex assembly (Wittinghofer & Vetter, 2011). 

All GTPases share a common 160-180 residue G-domain with an α,β topology that harbors five so called 

G-motifs (G1-G5) required for nucleotide binding and hydrolysis (Bourne et al., 1991; Wittinghofer & 

Vetter, 2011). Whereas G4 and G5 bind the guanine base to mediate nucleotide specificity, G1 (also 

called P-loop or Walker A motif) stabilizes the negative charge of the phosphate ions. The charge is 

further partially neutralized by an essential, octahedral coordinated Mg2+-ion. Motifs G2 and G3 (also 

called Walker B motif) are involved in nucleotide sensing, GTP hydrolysis and conformational switching 

and belong to the most flexible regions in the rather rigid G-domain, termed ‘switch 1’ and ‘switch 2’, 
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respectively. The G-domain is often extended by protein insertions and additions of sequence elements 

or whole domains to carry out specific biological functions (Wittinghofer & Vetter, 2011).  

The GTPase cycle is often highly regulated by additional factors such as guanine nucleotide 

exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation 

inhibitors (GDIs) (Wittinghofer & Vetter, 2011). High nucleotide affinities (10 pM for Ras) and slow 

intrinsic dissociation rates (~10-4 s-1 for Ras) of most G proteins can be overcome by regulation through 

GEFs. GEFs reduce the affinity and increase dissociation of bound GDP from the cognate GTPase by 

orders of magnitude, thus facilitating GTP binding and effector protein interaction. The intrinsic GTP 

hydrolysis rate is usually very low (10-4-10-5 s-1) due to the thermodynamically unfavorable nucleophilic 

attack of the negatively charged γ-phosphate. Hereby GAPs stimulate the intrinsic hydrolysis of their 

cognate GTPase by orders of magnitude. Many GAPs protrude into the active site of the G protein and 

provide a catalytic residue and/or stabilize the intrinsic machinery. The most prominent example is the 

so called ‘arginine-finger’ which stabilizes the pentavalent transition state of the SN2 reaction by 

providing a positively charged guanidinium group to the negatively charged β- and γ-phosphates of GTP. 

For translational GTPases this function is apparently substituted by binding of a monovalent cation at an 

equivalent position (Kuhle & Ficner, 2014). Further, some GAPs use a ‘Gln/Asn thumb’ that resembles 

the catalytic Gln residue of many G proteins that is thought to stabilize and polarize the nucleophilic 

water relative to the γ-phosphate (Scheffzek et al., 1997; Vetter & Wittinghofer, 2001; Daumke et al., 

2004; Pan et al., 2006; Schuette et al., 2009). In contrast, prenylated G proteins can further be 

negatively regulated by GDIs that inhibit the cycle by binding to the prenyl groups of the cognate G 

protein to shuttle it between membrane compartments and inhibit its nucleotide dissociation 

(Wittinghofer & Vetter, 2011). GTPases activated by dimerization, so-called GADs do not rely on GEFs 

and GAPs and stimulate GTP hydrolysis by dimerization, most likely in concert with effector protein 

interaction, which in turn acts as GTPase coregulator (GCR). 

Based on a unique set of sequence and structural signatures the superclass of GTPases can be 

divided into two classes, designated as TRAFAC and SIMIBI (Leipe et al., 2002). The TRAFAC class (after 

translation factors) is characterized by a highly conserved threonine preceding strand β3 (G2 motif), has 

adjacent anti-parallel strands β3 and β4 and comprises the most prominent examples including 

translation factors, heterotrimeric G proteins and the Ras superfamily. The SIMIBI class (after signal 

recognition particle, MinD and BioD) is characterized by a highly conserved aspartate residue after 

strand β2 (G2 motif), which is adjacent and parallel to the G3 flanking β-strand and involves the signal 

recognition particle (SRP) and its receptor SR as well as the GPN-loop GTPases (also called XAB1 family) 

and many others.  
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1.3.2. Structural insights into an archaeal GPN-loop GTPase  
GPN-loop GTPases are characterized by a highly conserved motif consisting of the amino acids Gly-Pro-

Asn (single letter code: GPN) and two protein insertions (‘insertion 1’ and ‘insertion 2’) of approximately 

40 amino acids, respectively (Wittinghofer & Vetter, 2011). Insertion 1 harbors the GPN motif and is 

reminiscent to the insertion box of the SRP G domain (Freymann et al., 1997). Structural insights came 

from the archaeal GPN1 homolog Pab0955 from Pyrococcus abyssi that shares 27% sequence identity 

with its human counterpart (Gras, et al., 2007) (Figure 3). A set of crystal structures, both free and in 

complex with different nucleotides, provide mechanistic snapshots along the hydrolysis pathway. 

Pab0955 is homodimeric, independent of the bound nucleotide, both in the crystals and in solution 

(Gras et al., 2005; Gras, et al., 2007). The structures reveal that the GPN-loop of one monomer 

protrudes into the active site of the other monomer (Gras, et al., 2007). Hereby, the ‘trans’-GPN-loop 

binds the hydrolyzed orthophosphate in an anion whole formed by backbone amines and the Asn side 

chain. This neutralizes the negative charge of the phosphate ion and likely plays an essential role in 

catalysis. Further the Asn side chain may resemble the role of the catalytic Gln (G3 motif) residue of Ras, 

which is thought to stabilize the phosphate intermediate (Prive et al., 1992). Biochemical data show 

weak intrinsic GTPase activity (0.012 µM hydrolyzed GTP per min and mg protein), no ATPase activity 

and autophosphorylation of itself in the presence of GTP and Mg2+ (Gras, et al., 2007). Pull-down assays 

with cellular extracts and screening by surface plasmonic resonance identified the DNA-binding 

proteincomplexes Topoisomerase VI (subunit B) and the Replication Factor Complex RF-C (small subunit) 

as potential interaction partners. However, no large conformational changes of the different nucleotide 

states were observed and the cellular function remained largely unclear.  

Figure 3| Structure of the archaeal GPN-
loop GTPase Pab0955.  
(A) Overall structure of the Pab0955∙GDP 
dimer (pdb-code: 1YRA). Monomer’s A 
and B are shown in pink and light green, 
respectively. GDP is shown as sticks and 
G1, G2, G3, G4 and G5 are shown in 
yellow, orange, blue, green and cyan, 
respectively. The two insertions I1 and I2 
are depicted in fully and partially 
saturated colors, respectively. (B) Active 
site of the Pab0955∙PiGDP structure (pdb-
code: 1YR9). Hydrogen bonds are shown 
as dashed lines and G motifs colored as in 
(A). The GPN motif is shown in purple and 
GDP and Pi as sticks. Adapted from (Gras, 
et al., 2007) 
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1.3.3. Eukaryotic Npa3/GPN1 and its paralogs GPN2 and GPN3  
Eukaryotic cells contain three paralogs of GPN-loop GTPases. In human, these are called GPN1 (also 

RPAP4, XAB1, or MBDin), GPN2, and GPN3 (also Parcs). Archaea contain a single GPN-loop GTPase, and 

prokaryotes lack homologs. Homo- and heterodimerization of GPN1 and its paralogs were reported 

(Carre & Shiekhattar, 2011; Alonso et al., 2013; Minaker, et al., 2013; Mendez-Hernandez et al., 2014). 

Additionally to the characteristic two insertions in the G domain and the GPN motif, GPN1 and its yeast 

homolog Npa3 contain a C-terminal tail with unknown function and low conservation, which is 

truncated in its paralogs and lacking in archaea. GPN1/Npa3 contains a nuclear export sequence (NES) 

(Reyes-Pardo et al., 2012), consistent with the predominant cytoplasmic localization of Npa3 in yeast 

(Huh et al., 2003; Dez et al., 2004) and GPN1 in human cells (Nitta et al., 2000; Lembo et al., 2003; 

Forget, et al., 2010; Reyes-Pardo, et al., 2012). However, it may also play nuclear roles because Xpo1-

dependent nucleocytoplasmic shuttling of the enzyme was reported (Forget, et al., 2010; Staresincic et 

al., 2011; Reyes-Pardo, et al., 2012; Forget, et al., 2013). In the yeast Saccharomyces cerevisiae, deletion 

of Npa3 or its paralogs GPN2 (YOR262W) and GPN3 (YLR243W) is lethal (Giaever et al., 2002), indicating 

essential, non-redundant functions of these enzymes.  

GPN1 was initially identified in human cells to bind the DNA repair protein XPA (Nitta, et al., 

2000), which functions as assembly platform for the DNA repair machinery (de Laat et al., 1999) and was 

thus named ‘XPA binding protein 1’ (XAB1) (Nitta, et al., 2000). However, the suggested role of GPN1 in 

nuclear import of XPA could not be confirmed (Li et al., 2013). Further, interaction of human GPN1 with 

MBD2, a component of the large protein complex ‘Methyl-CpG-binding protein 1’ (MeCP1) was 

reported, which represses transcription of densely methylated genes and led to the name ‘MBD2-

interacting protein’ (MBDin) (Lembo, et al., 2003). Here, the interaction required both, a functional 

G-domain and the C-terminal acidic tail. A GPN1 homolog was identified in S. cerevisiae in a screen for 

ribosomal biogenesis factors and called ‘Nuclear preribosomal-associated protein 3’ (Npa3) (Dez, et al., 

2004). The corresponding homolog was also found in the yeast Schizosaccharomyces pombe (Aves et al., 

2002). GPN3 was shown to interact with the oligomerization domain of Apaf-1, which was defective to 

mediate apoptosome formation and apoptosis induction upon oncogenic stimuli when GPN3 was 

silenced (Sanchez-Olea et al., 2008). Some cancer cell lines have developed mechanisms to overcome 

GPN3-depletion defects such as cytoplasmic accumulation of Rpb1, downregulation of transcription, cell 

cycle arrest and impaired proliferation (Sanchez-Olea, et al., 2008; Calera et al., 2011). GPN-loop 

GTPases were implicated in Pol II biogenesis because interaction with Pol II subunits and assembly 

intermediates as well as Pol II biogenesis factors, such as chaperones were shown (Jeronimo, et al., 

2007; Boulon, et al., 2010; Forget, et al., 2010). Additionally global downregulation of transcription was 

observed upon silencing of yeast Npa3 and GPN3 (Jeronimo, et al., 2007). Indeed, mutation in the 

nucleotide-binding site or GPN motif in human GPN1 leads to cytoplasmic accumulation or decreased 
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nuclear levels of Rpb1 (Forget, et al., 2010; Carre & Shiekhattar, 2011). This is consistent with Pol II 

assembly and/or import defects because Pol II is assembled from its subunits in the cytoplasm (Boulon, 

et al., 2010) prior to its nuclear import (Czeko, et al., 2011). Depletion of human GPN3 (Calera, et al., 

2011) or mutation of yeast GPN2 or GPN3 (Minaker, et al., 2013) also leads to cytoplasmic accumulation 

of Rpb1, indicating a general role of all three GPN-loop GTPases in Pol II biogenesis. Depletion of the 

GPN1 homolog Npa3 from S. cerevisiae leads to cytoplasmic accumulation of Rpb1 and Rpb3 

(Staresincic, et al., 2011). Rpb1 accumulation is also observed when Npa3 is mutated in its nucleotide-

binding site or GPN motif (Forget, et al., 2010; Staresincic, et al., 2011). Association of yeast Npa3 with 

Rpb1 is regulated by GTP binding in whole-cell extracts (Staresincic, et al., 2011) and a direct interaction 

of human GPN1 and GPN3 with recombinant Pol II subunits Rpb4 and Rpb7 and the C-terminal repeat 

domain (CTD) of Rpb1 has been reported (Carre & Shiekhattar, 2011). Recent studies suggest a role in 

Pol II assembly rather than import because GPN-loop GTPases lack a nuclear localization signal (NLS), 

and mutations of GPN2 or GPN3 cannot be rescued by fusion of a NLS to Rpb3, whereas deletion of the 

import factor Iwr1 is partially rescued (Minaker, et al., 2013). Further GPN1 interacts with the CCT 

complex (Forget, et al., 2010), a chaperone complex with various functions (Leroux & Hartl, 2000) that 

interacts with Pol II subunits (Dekker et al., 2008), consistent with a role in cytoplasmic assembly. In 

patients with myofibrillar myopathies, a neuromuscular disorder characterized by protein aggregates, 

human GPN1 shows increased expression and accumulates with Rpb1 in the cytoplasm of muscle cells 

(Guglielmi, et al., 2015).  

Whether GPN-loop GTPases are involved in cytoplasmic assembly and/or nuclear import of Pol II 

is still discussed controversially. The lack of structural data for any eukaryotic GPN-loop GTPase so far 

prevented detailed molecular understanding of these essential proteins. 

1.4. Molecular chaperones 

The pioneering experiments of Anfinsen (Anfinsen, 1973) and Caspar and Klug (Caspar & Klug, 1962) 

state that all information for protein folding and correct assembly with other proteins or nucleic acids 

are stored within the primary structure of those chains. This was in contrast to findings that the mixture 

of Xenopus histones and DNA in physiological salt concentrations lead to insoluble aggregates rather 

than spontaneously assembled nucleosomes (Laskey et al., 1978). Experiments showed, that the 

addition of Xenopus egg homogenate prevents aggregation and allows nucleosome assembly. The 

responsible negatively charged factor, nucleoplasmin, was identified to bind folded histones, thus 

reducing their basic charge, preventing non-specific aggregation with negatively charged DNA and 

permitting their inherent self-assembly properties (Laskey, et al., 1978). This principle was then 

extended 1987 (Ellis, 1987) and lead to the current definition of molecular chaperones which describes 

any protein that interacts with and aids in the folding and assembly of another macromolecular 
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structure without being part of its final structure (Kim et al., 2013). The large and highly diverse group of 

molecular chaperones can be subdivided in various classes dependent on their time of action, mode of 

action or location of action.  

1.4.1. Ribosome-binding chaperones 
Emerging polypeptide chains often need to be protected from engaging unfavorable intra- and 

intermolecular interactions that may cause misfolding and aggregation (Kim, et al., 2013). This is carried 

out by ribosome-associated chaperones that usually shield exposed hydrophobic regions during 

translation. In bacteria, the trigger factor (TF) binds at the ribosomal exit tunnel (Kramer et al., 2002; 

Ferbitz et al., 2004; Merz et al., 2008), interacts with most newly synthesized cytosolic and some 

secretory proteins (Bukau et al., 2000; Oh et al., 2011; Calloni et al., 2012; Preissler & Deuerling, 2012), 

binds nascent chains after 60-100 residues (Bukau, et al., 2000; Kaiser et al., 2006; Oh, et al., 2011) and 

thereby permits prior nascent chain interaction of ribosome-binding targeting factors like the signal 

recognition particle (Eisner et al., 2003; Ullers et al., 2003) and modifying enzymes like the peptide 

deformylase (Bingel-Erlenmeyer et al., 2008). ATP-independent TF-release from the nascent chain 

allows folding or downstream transfer of the polypeptide chain to the Hsp70 chaperone DnaK that likely 

exhibits functional redundancy with TF (Bukau, et al., 2000; Genevaux et al., 2004; Calloni, et al., 2012). 

In eukaryotes, a similar role is suggested for the ribosome-associated complex (RAC) and the nascent-

chain-associated complex (NAC). RAC comprises the specialized Hsp70-like protein Ssz1 and the co-

chaperone zuotin (Hsp40) and cooperates with the ribosome-binding Hsp70 isoform Ssb in fungi to 

assist nascent chain folding (Bukau, et al., 2000; Gautschi et al., 2002; Raue et al., 2007; Peisker et al., 

2008; Koplin et al., 2010; Preissler & Deuerling, 2012). NAC interacts with the ribosome and short 

nascent chains and exhibits partially redundant function with Ssb in yeast, but its precise role in protein 

folding and quality control remains elusive (Wegrzyn et al., 2006; Koplin, et al., 2010; Pech et al., 2010; 

del Alamo et al., 2011; Preissler & Deuerling, 2012). 

1.4.2. Chaperones acting downstream of the ribosome 

A large number of molecular chaperones function downstream of the ribosome to maintain protein 

folding, proteome maintenance, macromolecular complex assembly, protein transport, degradation, 

aggregate dissociation and refolding of stress-denatured proteins (Kim, et al., 2013). In the following 

section molecular mechanisms of chaperones are explained, including GPN1- and Pol II-interacting 

members.  

Hsp70 chaperones are ATPases that interact with a myriad of nascent and newly synthesized 

polypeptides without having direct affinity for the ribosome (Calloni, et al., 2012; Niwa et al., 2012). 

Hsp70 consists of a N-terminal nucleotide binding domain (NBD) that is connected to the C-terminal 

substrate binding domain (SBD) via a conserved, flexible linker (Bukau & Horwich, 1998; Bertelsen et al., 



   INTRODUCTION 

15 
 

2009; Mapa et al., 2010; Zuiderweg et al., 2013). ATP binding to the NBD allosterically alters the SBD 

that opens the peptide binding pocket (Zhuravleva & Gierasch, 2011; Kityk et al., 2012). In the open, 

ATP-bound state, the SBD binds extended, hydrophobic 5-7-residue long peptides, typically flanked by 

positively charged amino acids (Bukau & Horwich, 1998). The open, ATP-bound state has high on and off 

rates for the substrate peptides whereas the rates are low in the closed, ADP-bound state where the 

peptide is trapped in the pocket (Bukau & Horwich, 1998; Mayer, 2010). In turn, substrate binding 

allosterically stimulates ATP hydrolysis (Swain et al., 2007; Smock et al., 2010; Zhuravleva & Gierasch, 

2011) and stable peptide binding (Bertelsen, et al., 2009; Mapa, et al., 2010). The ATPase cycle of Hsp70 

is highly regulated by Hsp40 (J proteins) co-chaperones and nucleotide exchange factors (NEFs) (Hartl & 

Hayer-Hartl, 2009; Mayer, 2010). Besides its role in protecting nascent chains against aberrant 

interactions, the Hsp70-Hsp40 system also functions in ATP-dependent co- and posttranslational folding 

and downstream transfer of polypeptides to other chaperones like the Hsp90 and the chaperonin 

system (Kim, et al., 2013). Archaea, lacking the Hsp70 system may substitute its function with the ATP-

independent prefoldin (PFD, also known as Gim complex), a hexameric α/β complex of 14-23 kDa 

subunits that binds certain nascent chains, mediates transfer to chaperonins and assists in chaperonin 

mediated folding (Frydman, 2001; Hartl & Hayer-Hartl, 2002). 

 Chaperonins (also called Hsp60s) are large double ring complexes of 800-1000 kDa comprising 7-9 

60 kDa subunits per ring and form a central cavity where a single client protein is encapsulated for ATP-

dependent folding (Hartl, 1996; Bukau & Horwich, 1998; Hartl et al., 2011). They are structurally 

subdivided into two groups. Group I requires lid-shaped co-chaperones for client protein encapsulation. 

Group II, including the eukaryotic CCT (also TRiC) contain built-in lids (Horwich et al., 2007; Tang et al., 

2007). CCT interacts with nascent chains, assists in posttranslational folding in cooperation with Hsp70 

(Etchells et al., 2005; Cuellar et al., 2008), interacts with 5-10% of eukaryotic proteins (Yam et al., 2008), 

including GPN1 (Forget, et al., 2010) and Pol II subunits (Dekker, et al., 2008) and uses an iris-like closing 

mechanism enabling encapsulation of large multidomain proteins that don’t fit into the cavity entirely 

(Russmann et al., 2012).  

 Many eukaryotic proteins are delivered to the Hsp90 system by Hsp70 for ATP-dependent 

completion of folding and conformational regulation (McClellan et al., 2007; Zhao & Houry, 2007; 

Taipale et al., 2010). The transfer is mediated by the Hsp90 organizing protein (HOP) that bridges 

between both key chaperones (Young et al., 2001). Hsp90 is involved in many cellular process, including 

cell cycle progression, steroid and calcium signaling, protein complex assembly, immune and heat shock 

response (Young et al., 2003; McClellan, et al., 2007; Taipale, et al., 2010; Makhnevych & Houry, 2012). 

The chaperone consists of three domains, an N-terminal ATPase domain, essential for function (Young, 

et al., 2001; Pearl & Prodromou, 2006) with regulatory properties (Hainzl et al., 2009; Tsutsumi et al., 

2009), a middle domain required for substrate protein interaction and ATP hydrolysis regulation (Meyer 
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et al., 2003; Koulov et al., 2010; Retzlaff et al., 2010), and a C-terminal domain for dimerization and 

co-chaperone interaction (Young, et al., 2001; Harris et al., 2004). The structures of homodimeric Hsp90 

from different organisms has been studied extensively (Ali et al., 2006; Shiau et al., 2006; Dollins et al., 

2007) and many complex structures with various co-chaperones and inhibitors are available (Young, et 

al., 2001; Harris, et al., 2004; Roe et al., 2004; Ali, et al., 2006; Pearl & Prodromou, 2006; Vaughan et al., 

2006; Southworth & Agard, 2011). The structures together with biochemical data reveal extensive 

rearrangements (Mayer, 2010; Li et al., 2012) and high flexibility (Krukenberg et al., 2008) consistent 

with the diversity of its client proteins (Taipale, et al., 2010). The apo state adopts an open V-shaped 

conformation that closes upon binding of ATP and inactive client proteins. In the next step the 

N-terminal domains dimerize and the two subunits twist around each other to form the so-called 

molecular clamp state (Ali, et al., 2006; Southworth & Agard, 2011; Li, et al., 2012). Hydrolysis of ATP to 

ADP drives substrate activation to completion and leads to N-termini separation, release of the folded 

substrate, ADP and inorganic phosphate and the closing of the cycle by converting into the open apo 

state (Kim, et al., 2013). The reaction cycle is regulated by posttranslational modifications and various 

co-chaperones that accelerate (Aha1) or slow down (HOP, Cdc37 and p23) the cycle at different steps 

(Kim, et al., 2013). Further, stimulation of ATPase activity by client protein binding was reported 

(McLaughlin et al., 2002). Additionally to protein folding Hsp90 plays an important role in assembly of 

various macromolecular complexes, including RNA polymerase II (Makhnevych & Houry, 2012).  

1.4.3. Assembly chaperones  

Many proteins assemble to macromolecular complexes to carry out their biological function. However, 

multiprotein complex assembly not only requires universal folding chaperones and rather unspecific 

‘holdases’ like small heat shock proteins (sHsps) that shield hydrophobic regions of a wide range of 

client proteins to avoid aggregation. Specific assembly chaperones are required to orchestrate the 

assembly of individual components in a highly ordered manner (Ellis, 2013). The distinction between 

folding and assembly chaperones is not always absolute because oligomerization often involves 

conformational rearrangements. A rising number of assembly chaperones has been identified for large 

molecular machines including the nucleosome (nucleoplasmin, Asf1, CAF-1 etc.) (De Koning et al., 2007; 

Avvakumov et al., 2011), Rubisco (RbcX, Raf1) (Saschenbrecker et al., 2007; C. Liu et al., 2010; Hauser et 

al., 2015), the proteasome (PAC1/2/3, hUmp1) (Murata et al., 2009), spliceosomal snRNPs  (plCln) (Chari 

et al., 2008), ATP synthase (PAB) (Mao et al., 2015) and the ribosome (RAC, NAC, Jjj1) (Karbstein, 2010). 

Assembly chaperones hereby transiently mask surfaces that form interfaces in the 
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assembled complex thus preventing aggregation and misassembly and opening a time window for 

association with the native interaction partner (Ellis, 2013). These subunit interfaces often consist of 

hydrophobic residues and thus are especially prone for aggregation during complex assembly.  

 

1.5. Aims and scope of this study 

Biogenesis of RNA polymerase II is not very well understood and requires the help of several factors. 

Here, the essential, recently discovered GPN-loop GTPases were shown to play a critical role. However, 

no structural information for any eukaryotic GPN-loop GTPase was available and the cellular function of 

these enzymes remained largely unclear. In particular, it was not known whether GPN-loop GTPases are 

involved in assembly or nuclear import of Pol II or both and what precise function they carry out. 

Further, it was unclear whether these proteins interact with complete assembled Pol II or only with 

assembly intermediates or single subunits. Additionally, the molecular function of the GPN-loop was 

only suggested from structural studies of an archaeal GPN-loop GTPase but not confirmed biochemically 

and remained speculative in the eukaryotic system.  

To gain insights into the structure and molecular mechanisms of GPN-loop GTPases we aimed to 

solve high resolution crystal structures of the yeast GPN1 enzyme Npa3 in complex with various 

nucleotides to gain snapshots along the hydrolysis pathway. With this we intended to understand how 

Npa3 binds and hydrolyzes GTP and elucidate the molecular function of its GPN-loop to propose a 

model for enzymatic Npa3 activity. Further we aimed to confirm this model biochemically by using a 

combination of structure-guided site-directed mutagenesis and enzymatic activity assays. To unravel the 

function of Npa3 we aimed to apply biochemical approaches and characterize Pol II interaction sites 

which might hint to its role in Pol II biogenesis. 
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2. Materials and Methods  

2.1. Materials 

2.1.1. Bacterial strains 
Table 4| Escherichia Coli strains 

Strain Base strain Genotype Source 

XL1 blue K12 endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 
proAB+ lacIq Δ(lacZ)M15] hsdR17(rK

- mK
+) 

Stratagene 

BL21 Gold RIL DE3 B; F-; ompT; hsdS(rB- rB-); dcm+; Tetr; gal_(DE3); endA; Hte 
[argU, ileY, leuW, Camr] 

Stratagene 

Rosetta  DE3 F- ompT hsdSB(RB
- mB

-) gal dcm λ(DE3 [lacI lacUV5-T7 gene 1 
ind1 sam7 nin5]) pLysSRARE (CamR) 

Novagen 

 

2.1.2. Yeast strains 
Table 5| Saccharomyces cerevisiae strains 

Strain Genotype Source 

Npa3-C-TAP S288C; ATCC 201388: MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 

Thermo Scientific Open 
Biosystems 

Pol II purification 
strain 

MATa or α; ura3-52 trp1Δ leu2Δ1 his3Δ200 pep4::HIS3 
prb1Δ1.6R can1Δ GAL rpb3::URA3-N-6xHis-RPB3 

Kashlev Lab 

 

2.1.3. Plasmids  
Table 6| Plasmids used in this study 

Vector ID Insert/Description Type Tag Primer 
B1I Sc Npa3 1-385 (fl) pOPINI N-His Npa3_Sc_pI_M1_F/Npa3_Sc_pI_N385_R 

B2I Sc Npa3 1-298 pOPINI N-His Npa3_Sc_pI_M1_F/Npa3_Sc_pI_K298_R 

B3I Sc Npa3 1-264 pOPINI N-His Npa3_Sc_pI_M1_F/Npa3_Sc_pI_K264_R 

B4I Sc Npa3 1-385∆203-

211 

pOPINI N-His Npa3_Sc_pI_M1_F/Npa3_Sc_∆203-211_R 

Npa3_Sc_∆203-211_F/Npa3_Sc_pI_N385_R 

B5I Sc Npa3 1-298∆203-

211 

pOPINI N-His Npa3_Sc_pI_M1_F/Npa3_Sc_∆203-211_R 

Npa3_Sc_∆203-211_F/Npa3_Sc_pI_K298_R 

B1E Sc Npa3 1-385 (fl) pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_pE_N385_R 

B2E Sc Npa3 1-298 pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_pE_K298_R 
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B3E Sc Npa3 1-264 pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_pE_K264_R 

B4E Sc Npa3 1-385∆203-

211 

pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_∆203-211_R 

Npa3_Sc_∆203-211_F/Npa3_Sc_pE_N385_R 

B6E Sc Npa3 1-264∆203-

211 

pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_∆203-211_R 

Npa3_Sc_∆203-211_F/Npa3_Sc_pE_K264_R  

B1E_GPN-AAA Sc Npa3 1-385_GPN-

AAA 

pOPINE C-His Npa3_Sc_pE_M1_F/ Npa3_Sc_GPN-AAA_R  

Npa3_Sc_GPN-AAA_F /Npa3_Sc_pE_N385_R 

B1E_D40A Sc Npa3 1-385_D40A pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_D40A_R  

Npa3_Sc_D40A_F/Npa3_Sc_pE_N385_R 

B1E_D106A Sc Npa3 1-385_D106A pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_D106A_R  

Npa3_Sc_D106A_F/Npa3_Sc_pE_N385_R 

B1E_Q110L Sc Npa3 1-385_Q110L pOPINE C-His Npa3_Sc_pE_M1_F/Npa3_Sc_Q110L_R  

Npa3_Sc_Q110L_F/Npa3_Sc_pE_N385_R 

B6E_D106A Sc Npa3 1-264∆203-

211 D106A 

pOPINE C-His B6E w. Npa3_Sc_pE_M1_F/Npa3_Sc_D106A_R  

Npa3_Sc_D106A_F/ Npa3_Sc_pE_K264_R 

Npa3_265-385 Sc Npa3 265-385 pOPINE C-His Npa3_Sc_Q265_pE_F /Npa3_Sc_pE_N385_R 

B1Enotag Sc Npa3 1-385 (fl) pOPINE - Npa3_Sc_pE_M1_F/Npa3_Sc_pE_N385no-tag_R 

C1I Sp Npa3 1-367 (fl) pOPINI N-His Npa3_POM_pI_M1_F/Npa3_POM_pI_Q367_R 

C3I Sp Npa3 1-273  pOPINI N-His Npa3_POM_pI_M1_F/Npa3_POM_pI_R273_R 

C5I Sp Npa3 1-301∆208-

215 

pOPINI N-His Npa3_POM_pI_M1_F/Npa3_POM_∆208-215_R 

Npa3_POM_∆208-215_R/Npa3_POM_pI_K301_R 

C1E Sp Npa3 1-367  pOPINE C-His Npa3_POM_pE_M1_F/Npa3_POM_pE_Q367_R 

C2E Sp Npa3 1-301  pOPINE C-His Npa3_POM_pE_M1_F/Npa3_POM_pE_K301_R 

C3E Sp Npa3 1-273  pOPINE C-His Npa3_POM_pE_M1_F/Npa3_POM_pE_R273_R 

A1I Hs GPN1 1-374 (fl) pOPINI N-His GPN1_pI_M1_F/GPN1_pI_K374_R 

A2I Hs GPN1 1-304 pOPINI N-His GPN1_pI_M1_F/GPN1_pI_L304_R 

A3I Hs GPN1 1-275 pOPINI N-His GPN1_pI_M1_F/GPN1_pI_R275_R 

A5I Hs GPN1 18-304  pOPINI N-His GPN1_pI_H18_F/GPN1_pI_L304_R 

A6I Hs GPN1 18-275  pOPINI N-His GPN1_pI_H18_F/GPN1_pI_R275_R 

A1E Hs GPN1 1-374 (fl) pOPINE C-His GPN1_pE_M1_F/GPN1_pE_K374_R 

A2E Hs GPN1 1-304 pOPINE C-His GPN1_pE_M1_F/GPN1_pE_L304_R 

A3E Hs GPN1 1-275 pOPINE C-His GPN1_pE_M1_F/GPN1_pE_R275_R 

A4E Hs GPN1 18-374 pOPINE C-His GPN1_pE_H18_F/GPN1_pE_R275_R 

A5E Hs GPN1 18-304  pOPINE C-His GPN1_pE_H18_F/GPN1_pE_L304_R 

A6E Hs GPN1 18-275  pOPINE C-His GPN1_pE_H18_F/GPN1_pE_R275_R 

D1I Sc GPN3 1-272 (fl) pOPINI N-His YLR243W_pI_M1_F/ YLR243W_pI_E272_R 

D1E Sc GPN3 1-272 (fl) pOPINE C-His YLR243W_pE_M1_F/ YLR243W_pE_E272_R 
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E1I Sp GPN3 1-276 (fl) pOPINI N-His Fet5_pI_F/Fet5_pI_R 

E1E Sp GPN3 1-276 (fl) pOPINE C-His Fet5_pE_F/Fet5_pE_R 

E1A_no-tag Sp GPN3 1-276 (fl) pOPINA - Fet5_pA_noHis_F/ Fet5_pA_noHis_R 

F1A Sc GPN2 1-347 (fl) pOPINA C-His GPN2_Sc_M1_pA_F/GPN2_Sc_R347_pA_R 

F2A Sc GPN2 1-264 pOPINA C-His GPN2_Sc_M1_pA_F/GPN2Sc_G264_pA_R 

 

F3A Sc GPN2_1-243 pOPINA C-His GPN2_Sc_M1_pA_F/GPN2Sc_D243_pA_F 

 

F4A Sc GPN2 1-347∆206-

211 

pOPINA C-His GPN2_Sc_M1_pA_F/GPN2Sc∆I206-S211_pA_R 

GPN2Sc∆I206-S211_pA_F/GPN2_Sc_R347_pA_R 

 

F5A Sc GPN2 1-264∆206-

211 

pOPINA C-His GPN2_Sc_M1_pA_F/GPN2Sc∆I206-S211_pA_R 

GPN2Sc∆I206-S211_pA_F/GPN2Sc_G264_pA_R 

F6A Sc GPN2_1-243∆206-

211 

pOPINA C-His GPN2_Sc_M1_pA_F/GPN2Sc∆I206-S211_pA_R 

GPN2Sc∆I206-S211_pA_F/GPN2Sc_D243_pA_F 

His-N-Iwr1 Sc Iwr1 1-353 (fl) pET21b N-His Cloned by E. Czeko 

Iwr1-C-His Sc Iwr1 1-353 (fl) pET21b C-His Cloned by E. Czeko 

N-Cys-Iwr1_9-

223 

Sc Cys-Iwr1 9-223 pOPINB N-His- Iwr1_Sc_pB_Cys-A9_F/Iwr1_Sc_pB_D223_R (N-
term. Cys for site-directed fluorescence-labeling) 

 
 

2.1.4. Oligonucleotides 
Table 7| Oligonucleotides used for molecular cloning 

Primer name Sequence (5’ to 3’) Target 
vector 

Npa3_Sc_pI_M1_F ACCATCACAGCAGCGGCAGTCTCAGCACAATCATATG  pOPINI 

Npa3_Sc_pI_N385_R ATGGTCTAGAAAGCTTTAGTTTCTAATATACTTCGCGATATTTTC  pOPINI 

Npa3_Sc_pI_K298_R ATGGTCTAGAAAGCTTTACTTCTCGTTTAACCCTAGATCC  pOPINI 

Npa3_Sc_pI_K264_R ATGGTCTAGAAAGCTTTACTTATAGTATTGGTCGTATTCATCAAC  pOPINI 

Npa3_Sc_pE_M1_F AGGAGATATACCATGAGTCTCAGCACAATCATATG  pOPINE 

Npa3_Sc_pE_N385_R GTGATGGTGATGTTTGTTTCTAATATACTTCGCGATATTTTC  pOPINE 

Npa3_Sc_pE_K298_R GTGATGGTGATGTTTCTTCTCGTTTAACCCTAGATCC  pOPINE 

Npa3_Sc_pE_K264_R GTGATGGTGATGTTTCTTATAGTATTGGTCGTATTCATCAAC  pOPINE 

Npa3_Sc_pE_N385no-

tag_R 

GTGATGGTGATGTTTTTAGTTTCTAATATACTTCGCGATATTTTC  pOPINE 

Npa3_Sc_Q265_pE_F AGGAGATATACCATGCAAGAACGTGAAAAAGCATTG  pOPINE 

Npa3_POM_pI_M1_F ACCATCACAGCAGCGGCATGACAGATAAAGAGAAGAAGCC  pOPINI 
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Npa3_POM_pI_Q367_R 

Npa3_POM_pI_K301_R 

ATGGTCTAGAAAGCTTTATTGCTTCATACGCTCTGTAAG 

ATGGTCTAGAAAGCTTTATTTAGAAACATGCATGTCTTTC 

 pOPINI 

Npa3_POM_pI_R273_R ATGGTCTAGAAAGCTTTATCGTTCCATTTCTGGAAC  pOPINI 

Npa3_POM_pE_M1_F AGGAGATATACCATGACAGATAAAGAGAAGAAGCC  pOPINE 

Npa3_POM_pE_Q367_R GTGATGGTGATGTTTTTGCTTCATACGCTCTGTAAG  pOPINE 

Npa3_POM_pE_K301_R GTGATGGTGATGTTTTTTAGAAACATGCATGTCTTTC  pOPINE 

Npa3_POM_pE_R273_R GTGATGGTGATGTTTTCGTTCCATTTCTGGAAC  pOPINE 

GPN1_pI_M1_F ACCATCACAGCAGCGGCATGGCGGCGTCCG  pOPINI 

GPN1_pI_H18_F ACCATCACAGCAGCGGCCACCCAGTGTGTCTGTTGG  pOPINI 

GPN1_pI_K374_R ATGGTCTAGAAAGCTTTACTATTTATTGTTTCTCTTCCAGTATTGTG  pOPINI 

GPN1_pI_L304_R   ATGGTCTAGAAAGCTTTACAAGGCTACAGAACCCATATCTTTTC  pOPINI 

GPN1_pI_R275_R ATGGTCTAGAAAGCTTTAACGTTCATATTCAGGACGATACTC  pOPINI 

GPN1_pE_M1_F AGGAGATATACCATGGCGGCGTCCG  pOPINE 

GPN1_pE_H18_F AGGAGATATACCATGCACCCAGTGTGTCTGTTGG  pOPINE 

GPN1_pE_K374_R GTGATGGTGATGTTTTTTATTGTTTCTCTTCCAGTATTGTG  pOPINE 

GPN1_pE_L304_R GTGATGGTGATGTTTCAAGGCTACAGAACCCATATCTTTTC  pOPINE 

GPN1_pE_R275_R GTGATGGTGATGTTTACGTTCATATTCAGGACGATACTC  pOPINE 

GPN2_Sc_M1_pA_F AGGAGATATACCATGCCCTTCGCTCAGAT  pOPINA 

GPN2_Sc_R347_pA_R GTGGTGGTGGTGTTTCCTAACAAAATCCATTCCTTG  pOPINA 

GPN2_Sc_G264_pA_R GTGGTGGTGGTGTTTGCCGAATATGTAGCCATTTG  pOPINA 

GPN2Sc_D243_pA_R GTGGTGGTGGTGTTTATCCACGGACAAAACCTC  pOPINA 

YLR243W_pI_F ACCATCACAGCAGCGGCTCTCGCGTTGGTGTC  pOPINI 

YLR243W_pI_R ATGGTCTAGAAAGCTTTATTCTTCGACATCTATTTGGTCG  pOPINI 

YLR243W_pE_F AGGAGATATACCATGTCTCGCGTTGGTGTC  pOPINE 

YLR243W_pE_R GTGATGGTGATGTTTTTCTTCGACATCTATTTGGTCG  pOPINE 

Fet5_pI_F ACCATCACAGCAGCGGGTTAAGGTGGCAGCTTTTGTTTG  pOPINI 

Fet5_pI_R ATGGTCTAGAAAGCTTTATTCATCGTCTTCTAAATCATCTGC  pOPINI 

Fet5_pE_F AGGAGATATACCATGGTTAAGGTGGCAGCTTT  pOPINE 

Fet5_pE_R GTGATGGTGATGTTTTTCATCGTCTTCTAAATCATCTGC  pOPINE 

Fet5_pA_noHis_F AGGAGATATACCATGGTTAAGGTGGCAGCTTTTGTTTG  pOPINA 

Fet5_pA_noHis_R GTGGTGGTGGTGTTTCTATTCATCGTCTTCTAAATCATCTGC  pOPINA 

    

Mutagenic Primer 

Npa3_Sc_∆203-211_F CAAGGAAGATCAAGACGGGTACATGAGCTCATTG   independent 

Npa3_Sc_∆203-211_R CAATGAGCTCATGTACCCGTCTTGATCTTCCTTG  independent 

Npa3_Sc_GPN-AAA_F GAGAATTACCAGCTAGCTGCGGCCGGTGCCATTGTCACC  independent 
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Npa3_Sc_GPN-AAA_R GGTGACAATGGCACCGGCCGCAGCTAGCTGGTAATTCTC  independent 

Npa3_Sc_D40A_F CCATACGTAATCAATCTTGCTCCTGCAGTATTGAGAGTCC  independent 

Npa3_Sc_D40A_R GGACTCTCAATACTGCAGGAGCAAGATTGATTACGTATGG  independent 

Npa3_Sc_D106A_F CAAAACTGCATCATCGCCACTCCAGGCC   independent 

Npa3_Sc_D106A_R GGCCTGGAGTGGCGATGATGCAGTTTTG  independent 

Npa3_Sc_Q110L_F CATCGACACTCCAGGCTTAATCGAATGTTTTGTGTG  independent 

Npa3_Sc_Q110L_R CACACAAAACATTCGATTAAGCCTGGAGTGTCGAT  independent 

Npa3_POM_∆208-215_F GACTAAAGACGAAGGTGGATATATGGGTTCG  independent 

Npa3_POM_∆208-215_R CGAACCCATATATCCACCTTCGTCTTTAGTC  independent 

GPN2Sc_d_I206-

S211_pA_F 

CAGGATCTGGATTATTTGGAGCCATATAGTGTACTGGGAAAGAAATATAGC

AAG 

 independent 

GPN2Sc_d_I206-

S211_pA_R 

CTTGCTATATTTCTTTCCCAGTACACTATATGGCTCCAAATAATCCAGATCCT

G 

 

 independent 

Sequencing Primer    

T7f TAATACGACTCACTATAGGG  All pOPIN  

pET-RP CTAGTTATTGCTCAGCGG  pET28-based  

pTriExDown TCGATCTCAGTGGTATTTGTG  pTriEx-based  

 
 

2.1.5. Reagents and consumables 
Chemicals were obtained from Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany) or Sigma-

Aldrich (Seelze, Germany) unless stated otherwise. Enzymes and reagents for cloning were obtained 

from Fermentas (St. Leonrot, Germany), New England Biolabs (Frankfurt am Main, Germany) and 

Clontech (St. Germain-en-Leye, France). For DNA preparation commercial kits from Qiagen (Hilden, 

Germany) were used. DNA and RNA oligonucleotides were ordered at ThermoScientific (Ulm, Germany) 

and Metabion (Planegg, Germany), respectively. Crystallization reagents and tools were ordered at 

Hampton Research (Aliso Viejo, CA, USA). GTP-derivatives were obtained from Sigma-Aldrich (Seelze, 

Germany) or Jena Bioscience (Jena, Germany). 

 

2.1.6. Media and additives 
Media were usually taken from lab stocks (Table 8). Media additives (Table 9) were sterile filtered. 
  
 



   MATERIALS AND METHODS 

23 
 

Table 8| Media for Escherichia coli and Saccharomyces cerevisiae 
Media Application Description 

LB E. coli culture 1% (w/v) Bacto tryptone, 0.5% (w/v) yeast extract, 8.6 mM NaCl, 2.6 mM 
NaOH, plates contained 1.5% (w/v) agar 

LB X-Gal plates E. coli 
transformation  

1 % (w/v) Bacto tryptone, 0.5% (w/v) yeast extract, 8.6 mM NaCl, 2.6 mM 
NaOH, 1.5 % (w/v) agar, 0.02% (w/v) 5-Brom-4-chlor-3-indoxyl-β-D-
galactopyranosid (X-Gal)[1] [2], 1 mM IPTG[2], 0.1% (w/v) ampicillin/kanamycin[2] 

YPD Yeast culture 2% (w/v) peptone, 2% (w/) glucose, 1% (w/v) yeast extract 

YPD plates Yeast plate YPD, 2% (w/v) agar 
[1] stock solution dissolved in DMF; [2]added after autoclave 

 
 
 
Table 9| Media additives for Escherichia coli and Saccharomyces cerevisiae 

Additive Description Stock solution Applied concentration 

IPTG E. coli induction 1 M in H2O 0.5 mM 

Ampicillin Antibiotic 100 mg/ml in H2O 100 µg/ml 

Kanamycin Antibiotic 30 mg/ml in H2O 30 µg/ml  

Chloramphenicol Antibiotic 50 mg/ml in EtOH 50 µg/ml 

Tetracycline Antibiotic 12.5 mg/ml in EtOH 12.5 µg/ml 

5-bromo-4-chloro-3-
indolyl-β-D-
galactopyranoside (X-Gal) 

E. coli blue/white 
screening 

20% (w/v) in DMF 0.02  (w/v) 

 

2.1.7. Buffers and solutions 
Table 10| General buffers, dyes and solutions 
Name Description Application 

10X TAE 50 mM EDTA, pH 8.0, 2.5M Tris-acetate Agarose gels 

6X DNA loading dye Fermentas Agarose gels 

5X Phusion HF buffer Finnzymes PCR 

iQ™ SYBR® Green 
Supermix 

BioRad DNA staining 

10X buffer 0 Fermentas Restriction Digest 

10X FastDigest buffer Fermentas Restriction Digest 

20X MES buffer NuPAGE® MES SDS Running buffer, Life technologies SDS-PAGE 

20X MOPS buffer NuPAGE® MOPS SDS Running buffer, Life technologies SDS-PAGE 

5X SDS loading buffer 250 mM Tris-HCl pH 8.0, 50% (v/v) glycerol, 0.5% (w/v) 
bromophenol blue, 7.5% (w/v) SDS, 500 mM DTT 

SDS-PAGE 

Protein Ladder PageRulerTM Prestained Protein Ladder (Fermentas) SDS-PAGE 

Gel staining solution 50% (v/v) ethanol, 7% (v/v) acetic acid, 0.125% (w/v) 
Coomassie brilliant blue R-250 

Coomassie staining  

Gel staining solution Instant blue, Expedeon Coomassie staining 
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100X PI 1.42 mg leupeptin, 6.85 mg pepstatine A, 850 mg PMSF, 
1650 mg benzamidine dissolved in 50 ml ethanol 

Protease inhibitor mix 

TFB-1 30 mM KOAc, 100 mM RbCl, 10 mM CaCl2, 

50 mM MnCl2
[1], 15% [v/v] glycerol, pH 5.8 (with 0.2 M 

acetic acid) 

Chemically competent E. coli 

TFB-2 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15% [v/v] 
Glycerol, pH 6.5 (with KOH) 

Chemically competent E. coli 

1x Bradford dye 1:5 dilution of Bradford concentrate (BioRad) Determination of protein 
concentration 

[1] added after pH adjustment 
 
 
 
Table 11| Npa3 and GPN2 purification buffers 
Name Description 

Lysis buffer 50 mM Tris pH 7.5 (6°C), 5 mM Imidazole, 300 mM NaCl, 5 mM MgCl2, 0.2% (v/v) 
Tween-20, 2 mM DTT[1], 1X PI[1] 

Nickel wash buffer 50 mM Tris pH 7.5 (6°C), 10 mM imidazole, 300 mM NaCl, 5 mM MgCl2,  2 mM DTT[1] 

Nickel elution buffer 50 mM Tris pH 7.5 (6°C), 200 mM imidazole, 300 mM NaCl, 5 mM MgCl2,  2 mM DTT[1] 

Anion exchange buffer A 50 mM Tris pH 7.5 (6°C), 100 mM NaCl, 5 mM MgCl2, 2 mM DTT[1] 

Anion exchange buffer B 50 mM Tris pH 7.5 (6°C), 1 M NaCl, 5 mM MgCl2, 2 mM DTT[1] 

SEC buffer 100 10 mM HEPES pH 7.5 (4°C), 100 mM NaCl, 5 mM MgCl2, 10 mM DTT[1] 

SEC buffer 200 10 mM HEPES pH 7.5 (4°C), 200 mM NaCl, 5 mM MgCl2, 10 mM DTT[1] 
[1] added directly before usage 

 
 
 
Table 12| Iwr1 purification buffers 
Name Description 

Iwr1 Lysis buffer 20 mM Tris pH 8.0 (4°C), 150 mM NaCl, 5 mM DTT[1], 1X PI[1] 

Iwr1 Nickel wash buffer 20 mM Tris pH 8.0 (4°C), 150 mM NaCl, 10/20/30/40 mM imidazole, 5 mM DTT[1] 

Iwr1 Nickel elution buffer 20 mM Tris pH 8.0 (4°C), 150 mM NaCl, 250 mM imidazole, 5 mM DTT[1] 

Iwr1 Anion exchange buffer A 20 mM Tris pH 8.0 (4°C), 100 mM NaCl, 5 mM DTT[1] 

Iwr1 Anion exchange buffer B 20 mM Tris pH 8.0 (4°C), 1 M NaCl, 5 mM DTT[1] 

Pol II buffer 5 mM HEPES pH 7.25 (20°C), 40 mM (NH4)2SO4, 10 µM ZnCl2, 10 mM DTT[1] 
[1] added directly before usage 
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Table 13| Pol II purification buffers 
Name Description 

3X freezing buffer 150 mM Tris pH 7.9 (4°C), 3 mM EDTA, 30 µM ZnCl2, 30 % (v/v) glycerol, 3 % (v/v) 
DMSO, 30 mM DTT[1], 3X PI[1] 

HSB150 50 mM Tris pH 7.9 (4°C), 150 mM KCl, 1 mM EDTA, 10 µM ZnCl2, 10 % (v/v) glycerol, 
10 mM DTT[1], 1X PI[1] 

HSB1000/7 50 mM Tris pH 7.9 (4°C), 1000 mM KCl, 7 mM imidazole, 1 mM EDTA, 10 µM ZnCl2, 10 
% (v/v) glycerol, 2.5 mM DTT[1], 1X PI[1] 

Ni buffer 7/50/100 20 mM Tris pH 7.9 (4°C), 150 mM KCl, 7/50/100 mM imidazole 

MonoQ 150 20 mM Tris-acetate pH 7.9 (4°C), 150 mM KOAc, 10 % (v/v) glycerol, 0.5 mM EDTA pH 
7.9, 10 µM ZnCl2, 10 mM DTT[1] 

MonoQ 2000 20 mM Tris-acetate pH 7.9 (4°C), 2 M KOAc, 10 % (v/v) glycerol, 0.5 mM EDTA pH 7.9, 
10 µM ZnCl2, 10 mM DTT[1] 

Pol II buffer 5 mM HEPES pH 7.25 (20°C), 40 mM (NH4)2SO4, 10 µM ZnCl2, 10 mM DTT[1] 
[1] added directly before usage 

 
 

Table 14| Rpb4/7 purification buffers 
Name Description 

Ni buffer 0/10/20/50/200 50 mM Tris pH 7.5 (4°C), 150 mM NaCl, 0/10/20/50/200 mM imidazole, 10 mM β-
mercaptoethanol[1] 

Ni salt buffer 50 mM Tris pH 7.5 (4°C), 2 M NaCl, 10 mM β-mercaptoethanol[1] 

SourceQ 100 50 mM Tris pH 7.5 (4°C), 100 mM NaCl, 10 mM β-mercaptoethanol[1] 

SourceQ 1000 50 mM Tris pH 7.5 (4°C), 1 M NaCl, 10 mM β-mercaptoethanol[1] 

Pol II buffer 5 mM HEPES pH 7.25 (20°C), 40 mM (NH4)2SO4, 10 µM ZnCl2, 10 mM DTT[1] 
[1] added directly before usage 

 
 
Table 15| HPLC buffers 
Name Description 

Buffer A 50 mM triethylammonium acetate 

Buffer B 90 % (v/v) acetonitrile 
 
 
Table 16| Chaperone assay buffers 
Name Description 

TE 50 mM Tris pH8.0, 2 mM EDTA 

Incubation buffer 40 mM HEPES-KOH pH7.5, 5 mM MgCl2 
 
 
Table 17| Biotinylation buffer 
Name Description 

BirA dilution buffer  5 mM HEPES-NaOH pH 7.25, 16 mM MgCl2, 10 µM ZnCl2, 10 mM DTT[1] 

[1] added directly before usage 
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2.2. General Methods 

2.2.1. Molecular cloning and site-directed mutagenesis 

Polymerase chain reaction (PCR)     Primers for InFusion cloning (Clontech) (Berrow et al., 2007) were 

designed using a target vector specific overhang of 15-20 nucleotides, followed by around 20 

nucleotides complementary to the gene of interest. Annealing temperatures were calculated using the 

Tm calculator online tool (NEB). PCR reactions were carried out using the Phusion High Fidelity PCR 

Master Mix (NEB), 0.5 µM of each primer and variable amounts of either genomic DNA, cDNA or 

plasmid DNA. Thermocycling programs comprised 30 cycles and were adjusted to the specific needs of 

the individual reactions in terms of annealing temperature and elongation times (Biometra T3000 

Thermocycler). PCR products were separated by agarose gel electrophoresis and purified using the 

QIAquick gel extraction kit (Qiagen).   

Site-directed mutagenesis     Point mutations and deletions were introduced by overlap-extension-PCR 

(Higuchi et al., 1988). Mutagenic primers were designed with a melting temperature of approximately 

78°C, containing the desired mismatches in the middle of the primer. To increase the annealing stability 

nucleotides G or C were used at the 5’ and 3’ end of the primer if possible. Two overlapping PCR 

products were synthesized in separate reactions using one primer containing the respective overhang 

for InFusion cloning (Clontech) (Berrow, et al., 2007) and one primer containing the desired mutation, 

respectively. In a second PCR reaction 40 ng of each purified PCR product were used as template to 

amplify the gene of interest with the desired mutation. PCR reactions were carried out as descried 

above. PCR products were separated by agarose gel electrophoresis and purified using the QIAquick gel 

extraction kit (Qiagen).   

Electrophoretic separation of DNA     Electrophoretic separation of DNA was carried out in horizontal 1X 

TAE agarose gels containing 0.7 µg/ml Sybr Safe (Invitrogen) and 0.5-2% agarose, depending on the DNA 

length to be separated. Electrophoresis was carried out in PerfectBlue Gelsystem electrophoresis 

chambers (Peqlab). Samples were mixed with 6X loading dye (Fermentas) prior to loading and DNA was 

visualized and documented using a Safe Imager blue light transilluminator (Invitrogen, λ=470 nm). 

Enzymatic restriction cleavage     2 µg of the desired vector were digested per 100 µl reaction prior to 

InFusion cloning using restriction endonucleases (NEB or Fermentas) as recommended by the respective 

manufacturer. Cleaved vectors were purified using the QIAquick PCR purification kit (Qiagen). 
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Restriction- and ligation-free InFusion cloning     InFusion cloning allows restriction- and ligation-free 

cloning (Berrow, et al., 2007). For this 100 ng of the linearized vector were incubated with 3X molar 

excess of the gene of interest (amplified with the respective InFusion overhangs) and the InFusion Dry-

Down PCR cloning mixture (Clontech) as recommended by the manufacturer. Then 2.5 µl of the InFusion 

product were used for transformation of the plasmid into chemically competent E. coli XL1 blue cells as 

described in 2.2.2. 

Isolation and verification of plasmid DNA     After transformation of plasmids into E. coli cells (2.2.2.), 

single colonies were picked from selective plates and used for colony PCR. For this, colonies were 

inoculated in 30 µl H2O and mixed at RT for 10 min in a thermomixer. Then 6 µl of the mixture were 

used as template for a PCR reaction carried out as described above. Colonies resulting in positive PCR 

reactions were inoculated in 5 mL LB medium and incubated at 37°C shaking overnight. Plasmids were 

isolated using the QIAprep Spin Miniprep kit (Qiagen) as recommended by the manufacturer. DNA 

sequences were verified by sequencing (GATC).  

2.2.2. Preparation and transformation of competent E. coli cells 

Preparation of chemically competent E. coli cells     E. coli cells were grown in 5 ml LB medium 

overnight at 37°C and 140 rpm. The pre-culture was diluted 1:100 with LB medium containing 

appropriate antibiotics and cells were grown for 2-3 hours at 37°C and 140 rpm until OD600=0.25 - 0.3. 

Then, cultures were chilled on ice for 5 min and centrifuged at 4,000 x g for 5 min at 4°C. After 

resuspending in 50 ml Transformation buffer 1 (TFB-1) (Table 10) per 250 ml culture, the cells were 

again incubated on ice for 5 min followed by centrifugation at 4,000 x g and 4°C for 5 min. The 

supernatant was discarded and the pellet was gently resuspended in 5 ml Transformation buffer 2 

(TFB-2) (Table 10) per 250 ml culture. After another incubation on ice for 15 min the competent cells 

were aliquoted (50 µl), flash frozen in liquid nitrogen and stored at -80°C.  

Transformation of chemically competent E. coli cells     For transformation cells were thawed on ice and 

100 ng vector or 2.5 µl InFusion product were added and incubated on ice for 5 min. The competent 

cells were heat shocked at 42°C for 45 s and cooled on ice for 5 min. Then 450 µl LB medium was added 

and the cells were grown in a thermomixer (Qiagen) at 37°C for 1 hour at 600 rpm. Finally, cells were 

plated on LB plates supplemented with appropriate antibiotics and incubated overnight at 37°C. 
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Cotransformation of electro-competent E. coli cells     For cotransformation, electro-competent E. coli 

BL21 Gold RIL cells were thawed on ice and 100 ng of the respective vectors were added and incubated 

in a cuvette on ice for 5 min. Electroporation was carried out at 2.5 kV in a MicroPulser Electroporater 

(Biorad). Cells were then cooled on ice for 5 min and grown in 300 µl LB medium at 37°C for 1 hour at 

600 rpm in a thermomixer (Qiagen). Finally, cells were plated on selective plates and incubated 

overnight at 37°C. 

2.2.3. Recombinant protein expression in E. coli 

Expression and purification screening    New constructs of the proteins of interest were screened on 

ideal expression temperature, cell density and IPTG concentration for induction as well as protein 

solubility and affinity-tag accessibility prior to large-scale purification. For this, E. coli precultures were 

grown in 1 ml LB medium supplemented with appropriate antibiotics at 37°C shaking overnight. Main 

cultures were inoculated 1:100 in 5 ml LB medium supplemented with appropriate antibiotics and 

grown to varying OD600 values at 37°C shaking. Induction was induced with varying amounts of IPTG and 

protein expression was carried out at different temperatures at 160 rpm overnight. Cells were 

harvested by centrifugation at 4,000 x g for 10 min and the pellets were frozen at -20°C. Then, cells 

were resuspended in 1 ml of the respective lysis buffer and lysed by sonication. Cell debris and insoluble 

proteins were removed by centrifugation at 15,000 rpm and 4°C for 15 min in a microcentrifuge. The 

supernatant was incubated for 25 min at 8°C with 10 µl Magnetic Ni-NTA agarose beads (Life 

Technologies) pre-equilibrated with the respective wash buffer. The sample was washed four times with 

500 µl of the respective wash buffer before protein elution was carried out with 50 µl of the respective 

elution buffer. Samples were taken from every step for SDS-PAGE analysis as described in 2.2.4. 

Protein expression in E. coli     For recombinant protein expression from a single vector chemically 

competent E. coli Rosetta (DE3) cells were used whereas coexpression from two different plasmids was 

carried out in electro-competent E. coli Codon-Plus (DE3) RIL cells. For this, the plasmids encoding the 

proteins of interest were transformed as described in 2.2.2. Precultures were grown in 20 ml LB medium 

supplemented with appropriate antibiotics at 37°C shaking overnight. Main cultures were inoculated 

1:100 in LB medium supplemented with appropriate antibiotics and grown at 37°C and 160 rpm till 

OD600=0.6-0.8. Expression was induced by addition of varying amounts of IPTG and carried out at 

18-20°C and 160 rpm overnight. Cells were harvested by centrifugation at 5,000 rpm for 10 min and 

pellets were stored at -20°C. 
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2.2.4. Protein analysis 

Determination of protein concentration     Total protein concentrations were usually determined by 

measuring the absorption at 280 nm using a ND-1000 (NanoDrop) spectrometer. Molar absorption 

coefficients of individual proteins were calculated using the ProtParam software (Gasteiger E, 2005). If 

the protein didn’t contain UV absorbing residues or the sample was contaminated with large amounts 

of non-protein molecules absorbing at 280 nm, such as nucleic acids and detergents, protein 

concentrations were determined by Bradford assay (Bradford, 1976).  For this, the dye reagent (BioRad) 

was used as recommended by the manufacturer and samples were measured at 595 nm. Reference 

curves were generated for every new batch of the dye reagent using bovine serum albumin (Fraction V, 

Roth). 

SDS-Polyacrylamide gel electrophoresis     Electrophoretic separation of proteins was carried out using 

NuPAGE Novex 4-12% Bis-Tris Mini gels (Invitrogen) as recommended by the manufacturer. Vertical 

electrophoresis was carried out in X-Cell Sure Lock tanks (Invitrogen) using either NuPAGE MES or 

NuPAGE MOPS SDS running buffer (Table 10), dependent on the size of proteins to be separated. 

Samples were mixed with 5X SDS loading buffer (Table 10) prior to loading. Gels were stained with 

either Coomassie staining solution or InstantBlue (Expedeon) followed by destaining with H2O.  

TCA precipitation     If protein concentrations were too low to be visible on an SDS gel, TCA precipitation 

was carried out before. For this, the sample was mixed with an equal volume of 20% (v/v) 

trichloroacetic acid and incubated on ice for 10 min. Then the sample was centrifuged at 15,000 rpm 

and 4°C for 10 min and the pellet was washed with 1 ml ice-cold acetone. The sample was centrifuged 

again at 15,000 rpm and 4°C for 10 min, the supernatant was discarded and the pellet was boiled at 

95°C until completely dry. Then, the sample was resuspended in 1X SDS loading buffer (Table 10) for 

SDS-PAGE analysis. If the sample turned yellow, 5 µl Tris pH 8 were added to neutralize the acid. 

Limited proteolysis     Limited proteolysis time courses were performed to identify stable and compactly 

folded protein regions. 50 µg/ml of the protein of interest were digested with either 1 µg/ml trypsin, 

1 µg/ml chymotrypsin, 0.2 µg/ml subtilisin A or 0.1 µg/ml proteinase K at 37°C. Samples were taken at 0, 

1, 2, 4, 8, 15 and 60 min, respectively and the reaction was immediately stopped by the addition of 2X 

SDS loading dye (Table 10) followed by subsequent boiling at 95°C for 10 min. The degraded protein 

bands were separated by SDS-PAGE, excised and analyzed by mass spectrometry. 

Mass spectrometry     Unknown protein bands were identified by peptide mass fingerprinting by the 

Zentrallabor für Proteinanalytik (ZfP), Adolf-Butenandt-Institut, Munich using LC-MS/MS followed by a 

database search to identify the corresponding proteins. 
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2.2.5. Crystallization screening 

Pre-Crystallization Test     The Pre-Crystallization Test (Hampton Research) was used to determine 

appropriate protein concentrations prior to crystallization screening. The assay was performed as 

recommended by the manufacturer. 

Initial crystallization screening     Initial screening was performed at the Crystallization Facility of the 

Max-Planck-Institute of Biochemistry, Martinsried. Using various commercially available as well as in-

house produced screens, sitting drop 96 well plates were set up at either 20°C or 4°C with a drop size 

ranging from 100 nl to 500 nl. Protein to reservoir ratios were adjusted to the specific needs and ranged 

between 1:1 and 3:1. Initial crystals were refined by varying pH values, concentrations of components 

and precipitants, temperature and drop-size either by self-designed user sitting-drop screens at the MPI 

or in-house using 24-well sitting drop plates or 15 well hanging-drop plates (Qiagen). 

2.2.6. Bioinformatic tools 
Protein and gene sequences were retrieved from NCBI or Saccharomyces cerevisiae genome databases 

(SGD). Sequence data was visualized and processed using ApE (Davis & Hammarlund, 2006) and 

Chromas (Technelysium). Multiple sequence alignments were generated using ClustalW2 or 

ClustalOmega (Larkin et al., 2007; Goujon et al., 2010; Sievers et al., 2011; McWilliam et al., 2013) and 

displayed using ESPript (Gouet et al., 1999) or Jalview (Waterhouse et al., 2009). Protein secondary 

structures were predicted by HHpred (Soding et al., 2005) and psipred (Jones, 1999). 

2.3. Expression and purification of specific proteins and protein 

complexes 

2.3.1. Npa3 and variants 
Full-length Npa3 from Saccharomyces cerevisiae was amplified from genomic DNA and subcloned into 

the pOPINI vector (provided by OPPF-UK) containing an N-terminal hexahistidine tag as described in 

2.2.1. Truncated variants of Npa3 were amplified from full-length Npa3 plasmid DNA and either cloned 

into pOPINI vector containing an N-terminal hexahistidine tag or pOPINE vector (provided by OPPF-UK) 

containing a C -terminal hexahistidine tag. Deletions or/and mutations were introduced by overlap 

extension PCR as described in 2.2.1. All variants of Npa3 were transformed and expressed in E. coli 

Rosetta (DE3) (Novagen) as described in 2.2.2. and 2.2.3., respectively. Expression was induced with 

0.5 mM IPTG for 20 h at 20°C. Cells were lysed by sonication in lysis buffer (Table 11). After 

centrifugation at 24,000 x g for 30 min, the cleared lysate was loaded onto a 2 ml Ni-NTA column 
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(Qiagen), pre-equilibrated with nickel wash buffer (Table 11). The column was washed with 10 CV nickel 

wash buffer before elution of the bound protein with 3 CV nickel elution buffer (Table 11). The 

conductivity of the eluate was adjusted to match that of the anion exchange buffer A (Table 11) and 

applied to a MonoQ 10/100 GL column (Amersham) equilibrated with anion exchange buffer A. The 

protein was eluted with a linear gradient over 15 CV from 100 mM to 1 M NaCl in anion exchange 

buffer B (Table 11). Fractions containing Npa3 were pooled and the sample was concentrated for a final 

size exclusion step. Size exclusion chromatography was carried out using either a HiPrep Sephacryl S-300 

HR column (GE Healthcare) or a HiLoad 16/600 Superdex 200 pg column (GE Healthcare) pre-

equilibrated in SEC buffer 100 (Table 11) for all variants except Npa3(1-264∆203-211) were this step was 

performed in SEC buffer 200 (Table 11). Fractions containing Npa3 were pooled and full-length Npa3 

was concentrated to 2-100 mg/ml, flash frozen in liquid nitrogen and stored as 5-20 µl aliquots at -80°C. 

Npa3(1-264∆203-211) was concentrated to 3.7 mg/ml and used for crystallization without freezing.  

2.3.2. Npa3-GPN2 complexes 
Npa3 variants were cloned into pOPINE vector (provided by OPPF-UK) and a stop codon was introduced 

at the 3’ end of the gene to avoid expression of the plasmid encoded C-terminal hexahistidine tag. GPN2 

variants were cloned into pOPINB vector (provided by OPPF-UK) with an N-terminal hexahistidine tag 

and both vectors were cotransformed into E. coli BL21 (DE3) RIL (Stratagene) cells by electroporation as 

described in 2.2.2. Protein expression was carried out as described (2.2.3) using 0.5 mM IPTG for 

induction. Purification was performed as described for full-length Npa3 (2.3.1). 

2.3.3. Iwr1 
Full-length Iwr1, cloned into a pET21b vector with an N-terminal hexahistidine tag was transformed into 

E. coli Rosetta (DE3) (Novagen) cells as described (2.2.2). Protein expression was induced with 0.5 mM 

IPTG for 20 h at 18°C as described (2.2.3). Cells were lysed by sonication in Iwr1 Nickel Lysis buffer 

(Table 12). After centrifugation at 24,000 x g for 30 min, the cleared lysate was loaded onto a 2 ml 

Ni-NTA column (Qiagen) equilibrated with Iwr1 Nickel Lysis buffer. The column was washed four times 

with 10 CV Iwr1 Nickel wash buffer sequentially containing 10, 20, 30 and 40 mM imidazole (Table 12), 

respectively and eluted with 3 CV Iwr1 Nickel elution buffer (Table 12). The eluate was applied to a 

MonoQ 10/100 GL column (Amersham) equilibrated with Iwr1 anion exchange buffer A (Table 12) and 

eluted over a linear gradient of 15 CV from 100 mM NaCl to 1 M NaCl in Iwr1 anion exchange buffer B 

(Table 12). After concentration with a partial buffer exchange using three volumes Pol II buffer (Table 

12), the sample was applied to a Superdex 75 10/300 or Superose 12 10/300 size exclusion column (GE 

Healthcare) equilibrated with Pol II buffer. Fractions containing Iwr1 were pooled and concentrated to 

2-4 mg/ml, flash frozen in liquid nitrogen and stored as 20 µl aliquots at -80°C. 
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2.3.4. Endogenous RNA polymerase II from S. cerevisiae 
Yeast cell lysis     Fermented yeast cell pellets of the Pol II purification strain (Table 5) were provided by 

Stefan Benkert and pellets were thawed in a water bath at a maximum of 30°C. 1 ml 100X PI (Table 10) 

was added to the cell suspension and cells lysis was carried out using beat beaters (Hamilton Beach). For 

this, 200 ml of the cell mixture were added to a metal chamber together with 200 ml of glass beads 

(0.5 mm diameter, BioSpec Products). Air bubbles were removed by stirring gently with a glass rod. The 

chamber was completely filled up with HSB150 (Table 13) before assembly with the impeller. Lysis was 

carried out for 80 min at 4°C with cycles of 30 s on and 90 s off. To avoid warming of the cell mixture the 

lysis chamber was covered with a salt-ice mixture. The lysate was then separated from the beads by 

filtering through a mesh funnel and washed with HSB150. Finally, the lysate was centrifuged twice for 

30 min at 13,690 x g at 4°C. 

Protein purification     The cleared lysate was subjected to ultracentrifugation for 90 min at 76,220 x g 

and 4°C. The aqueous phase was collected and protein precipitation was carried out with 50% (w/v) 

(NH4)2SO4 stirring overnight at 4°C. The solution was then centrifuged twice for 45 min at 34,200 x g and 

4°C and the precipitate was dissolved in 140 ml HSB150 per 100 g pellet by stirring for 1 to 2 h at 4°C. 

The conductivity was adjusted to that of HSB1000/7 (Table 13). The sample was then applied to pre-

equilibrated Ni-NTA resin (Qiagen) and washed with 5 CV HSB1000/7 and 3 CV Ni buffer 7 (Table 13) 

before elution of bound protein with 3 CV Ni buffer 50 and 3 CV Ni buffer 100 (Table 13). Elution 

fractions were pooled and conductivity was adjusted to that of MonoQ150 buffer (Table 13). The 

sample was loaded on a MonoQ 10/100 GL column (GE Healthcare) pre-equilibrated with MonoQ150 

and eluted with a linear gradient over 12 CV to 75% buffer MonoQ2000 (Table 13). Fractions containing 

Pol II were pooled and diluted with 3 volumes Pol II buffer (Table 13) before concentration to around 

1 ml. Then 4-fold molar excess of recombinant Rpb4/7 (for purification protocol see 2.3.5.) were added 

and incubated on ice for 45 min. Finally, the complete assembled Pol II complex was applied to a 

Superose 6 10/300 column (GE Healthcare) equilibrated with Pol II buffer and fractions containing Pol II 

were concentrated to 3-3.8 mg/ml, flash frozen in liquid nitrogen and stored in 20 µl aliquots at -80°C. 

2.3.5.  Rpb4/7 
Protein expression was performed as described in 2.2.3 and expression was induced with 0.5 mM IPTG 

for 16 hours at 20°C. Cells were lysed by sonication in Ni buffer 0 (Table 14) containing 1X PI (Table 10). 

After centrifugation at 16,000 x g for 20 min, the cleared lysate was applied to a pre-equilibrated 

(Ni buffer 0) Ni-NTA agarose column (Qiagen) (Table 14). The column was washed with 5 CV Ni buffer 0, 

3 CV Ni salt buffer, 3 CV Ni buffer 10 and 3 CV Ni buffer 20 (Table 14). Protein was eluted with 3 CV Ni 

buffer 50 followed by 6 CV Ni buffer 200. Fractions containing Rpb4/7 were pooled and applied to a 

Source15Q 16/10 column (GE Healthcare) pre-equilibrated with SourceQ 100 buffer (Table 14). The 
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column was washed with 10 CV SourceQ 100 buffer and the protein was eluted with a linear gradient 

over 10 CV to 1 M NaCl in SourceQ 1000 buffer (Table 14). Finally, fractions containing Rpb4/7 were 

pooled and a size exclusion step was performed using a HiLoad 26/60 Superdex75 pg column 

(GE Healthcare), pre-equilibrated in Pol II buffer (Table 14). Protein was concentrated to 6 mg/ml and 

40 µl aliquots were flash frozen in liquid nitrogen and stored at -80°C. 

2.4. Crystallization 

2.4.1. Crystallization of Npa3∆C∆Loop∙GMPPCP 
Npa3∆C∆Loop (comprising residues 1-264∆203-211) was freshly purified as described in 2.3.1 and 

nucleotide exchange was carried by incubation with 10 mM GMPPCP at 8°C overnight. Crystals were 

grown in a 1.5 ml Eppendorf tube in SEC buffer 200 (Table 11) for 1-3 days at 8°C. Crystals were fished 

directly from the Eppendorf tube and transferred to a spot plate containing 100 µl mother solution. 

Cryo protection was carried out at 8°C as described in 2.4.4. 

2.4.2. Crystallization of Npa3∆C∆Loop∙GDP∙AlFx 

A fresh 50 mM AlFx stock solution was prepared by mixing equal volumes of 1 M NaF and 100 mM AlCl3 

(both dissolved in SEC buffer 200 (Table 11)) followed by an incubation for 30 min at RT. Then, 5 mM 

GDP and 10 mM AlFx were incubated with freshly purified Npa3∆C∆Loop (comprising residues 

1-264∆203-211) overnight at 8°C. Crystals were grown for 1-3 days by hanging drop vapor diffusion at 

8°C with SEC buffer 200 supplemented with 10 mM AlFx as reservoir solution. Cryo protection procedure 

was carried out at 8°C as described in 2.4.4. 

2.4.3. Crystallization of Npa3∆C∆Loop∙GDP 
Npa3∆C∆Loop (comprising residues 1-264∆203-211) was freshly purified as described in 2.3.1 and the 

sample was incubated with 10 mM GDP at 8°C overnight. Crystals were grown for 6-15 days by sitting 

drop vapor diffusion at 20°C with 9 mM HEPES pH 7.0, 45 mM NaCl, 5 mM MgCl2 and 5% (v/v) Jeffamine 

M-600 as reservoir solution. Cryo protection was carried out at 20°C as described in 2.4.4. 

2.4.4. Cryo-protection and freezing 
Crystals were transferred to a spot plate containing 100 µl mother solution. Cryo-protection was carried 

out by step-wise transferring to mother solution containing 35% (v/v) glycerol (steps comprised 

incubation with 20, 40, 60, 80 and 100% of the cryo solution, respectively). Crystals were incubated for 

30 min between every cryo-step before harvesting and flash-cooling in liquid nitrogen.  

 



   MATERIALS AND METHODS 

34 
 

2.5. Data collection and X-ray structure determination 

2.5.1. Data collection 
Diffraction data of crystals Npa3∆C∆Loop∙GDP∙AlFx were collected at beamline X06DA of the Swiss Light 

Source (Villigen, Switzerland) at 100 K and 1.0001 Å, respectively (Table 18). Diffraction data of crystals 

Npa3∆C∆Loop∙GMPPCP and Npa3∆C∆Loop∙GDP were collected at beamline MX1 at EMBL/DESY 

(Hamburg, Germany) at 100 K and 0.99988 Å, respectively (Table 18). 

2.5.2. Experimental phasing  
A single anomalous diffraction experiment from intrinsic sulphur atoms (S-SAD) was performed on the 

same Npa3∆C∆Loop∙GDP∙AlFx crystal as in 2.5.1 at beamline X06DA of the Swiss Light Source in Villigen, 

Switzerland. Diffraction data were collected at 100 K and a wavelength of 2.066 Å at three different χ 

angles (0°, 10° and 20°) as described recently (Weinert et al., 2015) (Table 18). For each dataset 7,200 

images were collected with an increment of 0.1°. Raw data were processed with XDS and the three 

datasets were merged using XSCALE (Kabsch, 2010b; 2010a). The programs SHELXC/D/E of the SHELX 

suite (Sheldrick, 2008) were used for detection of the sulphur atoms and for SAD phasing. 

2.5.3. Molecular Replacement 
The Npa3∆C∆Loop∙GDP structure was solved by molecular replacement using PHASER (McCoy et al., 

2005) with the Npa3∆C∆Loop∙GDP∙AlFx core structure as search model. The number of molecules per 

asymmetric unit were estimated using the program matthews from the CCP4 suite (Collaborative 

Computational Project, 1994). 

2.5.4. Model building and refinement 
The Npa3∆C∆Loop∙GMPPCP structure could be refined using the Npa3∆C∆Loop∙GDP∙AlFx structure with 

phenix.refine (Afonine et al., 2005), because the crystals had the same space group and almost identical 

unit cell parameters.  

Atomic models of all structures were iteratively built with COOT (Emsley & Cowtan, 2004) and 

refined with phenix.refine. Figures were prepared with PyMOL (deLano Scientific). 
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2.6. Functional characterization of Npa3 

2.6.1. Analysis of GTPase activity 
GTPase activity was measured in 96-well plates using the Malachite Green Phosphate Assay Kit 

(BioAssay Systems) as recommended by the manufacturer. 0.15 µM of Npa3 variants were incubated 

with 100 µM GTP (Fermentas) at 37°C and 600 rpm in SEC buffer 200 (Table 11) in a thermomixer. 

Orthophosphate concentrations from at least three independent experiments were determined at 

various time points by measuring the absorption at 620 nm at four different positions within each well 

using an Infinite M1000 plate reader (Tecan) and the values were averaged. Control experiments were 

performed to determine orthophosphate contaminations in the individual solutions and data was 

corrected for this value. 

GTPase activity in the presence of partially unfolded citrate synthase (CS) was measured at 43°C 

in SEC buffer 100 (Table 11) with the pH value adjusted to 7.5 at 43°C. 

2.6.2. Isolation of bound nucleotides 
GTPase-bound nucleotides were isolated either to check nucleotide loading after purification or to 

monitor nucleotide exchange over time after in vitro incubation with varying amounts of GTP-

derivatives.  

For this 125 µM of the purified GTPase were used and, for the latter one, incubated with excess 

of the desired nucleotide in vitro for different time periods at 4°C. Here, unbound nucleotides were 

removed by loading the sample onto a Mini Bio-Spin Chromatography column (BioRad), pre-equilibrated 

with the respective protein buffer, and elution was carried out by centrifugation for 4 min at 1,000 x g in 

a microcentrifuge. Afterwards, the bound nucleotide was released from the protein by denaturation at 

95°C for 5 min. Denatured protein was removed by centrifugation at 15,000 rpm for 10 min and the 

supernatant containing the released nucleotide was used for HPLC analysis (2.6.3). 

2.6.3. High performance liquid chromatography (HPLC) 
Identification and quantification of nucleotides was performed by HPLC. Here, a 50 µl sample containing 

125 µM nucleotide was loaded on a C18 reversed phase column (25 cm x 4.6 mm, 5 µm particle size, 

Sigma-Aldrich) pre-equilibrated in buffer A (Table 15). Elution was carried out at 1 ml/min for 55 min 

before very strongly bound components were eluted with buffer B (Table 15). Retention times for 

nucleotide standards were determined experimentally using 250 µM GTP, GMPPCP, GMPPNP, GDP or 

GMP, respectively. Nucleotides were detected by measuring the absorption at 260 nm. Comparative 

quantification of eluted samples was carried out by peak integral calculation and comparison with 

known standards.  
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2.6.4. Chaperone assay 
Thermal aggregation of citrate synthase (CS), a general chaperone substrate protein, was essentially 

carried out  as described (Buchner et al., 1998) with modifications. An ammonium sulfate solution of CS 

from porcine heart (Sigma) was dialyzed against TE buffer (Table 16) overnight at 4°C. CS was 

concentrated to 17 mg/ml and aliquots were flash frozen in liquid nitrogen. For each experiment an 

aliquot of CS was supplemented with TE buffer to yield a concentration of 30 µM. Possible precipitates 

were removed by centrifugation at 14,000 rpm for 30 min at 4°C and protein concentrations were 

measured again prior to experimental procedure.  

Varying amounts of Npa3 were added to a quartz cuvette containing either 800 µl preheated 

(43°) incubation buffer (Table 16) in the absence of nucleotides or 800 µl pre-heated (43°C) 

SEC buffer  100 (Table 11) (pH 7.5 at 43°C) and 1 mM GMPPCP, GTP or GDP, respectively. The cuvette 

was transferred to a thermostated Fluoromax 3 fluorometer (HORIBA Scientific) and light scattering was 

measured at 360 nm and 43°C to check whether Npa3 aggregates under the assay conditions. If a stable 

baseline was observed, CS (monomer) was added to reach a final concentration of 0.15 µM and CS 

aggregation was measured every 0.2 s for 50 min by light scattering at 360 nm. Data was normalized on 

the baseline and measurement of at least three independent experiments were averaged.  
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2.7. Interaction studies  

2.7.1. In vitro Biotin-Pulldown 

Biotinylation of RNA polymerase II     RNA polymerase II containing a biotin acceptor peptide at the 

N-terminus of Rpb3 was purified as described (2.3.4). Enzymatic biotinylation was carried out in vitro in 

200 µl reactions containing 270 µg of Pol II, 15 µg BirA (thankfully provided by Dr. Laurent Larivière), 

2 mM ATP pH7 and 100 µM biotin supplemented with BirA dilution buffer (Table 17). The mixture was 

incubated for 2.5 h in a thermomixer at 20°C and 600 rpm before buffer exchange to SEC buffer 100 

(Table 11) was carried out using Micro Bio-Spin™ Chromatography columns (BioRad) as recommended by 

the manufacturer. Aliquots of biotinylated Pol II were prepared, flash frozen in liquid nitrogen and 

stored at -80°C. 

Pull-Down of RNA polymerase II associated proteins    3-5 µg of biotinylated Pol II were incubated with 

5-15 times molar excess of the purified putative binding protein at 8°C and 600 rpm overnight (and 

1 mM of the respective nucleotide if required). The mixture was then incubated with 20 µl of pre-

equilibrated magnetic streptavidin beads (Invitrogen) in a thermomixer at 22°C and 750 rpm for 30 min 

and unbound proteins were removed by washing three times with SEC buffer 100 (Table 11) containing 

0.05 % (v/v) NP-40. The supernatant was removed and elution was carried out by adding 15 µl of 1x SDS 

buffer (Table 10) followed by incubation at 95°C for 2 min. The elution fraction was analyzed by SDS-

PAGE as described (2.2.4). 

2.7.2. Native gel electrophoresis 
3 µg of RNA polymerase II were incubated with 3-10 times molar excess of the purified putative binding 

proteins at 8°C overnight. Native gel electrophoresis was carried out at 100 V using the NativePAGE™ 

Novex® Bis-Tris Gel System (Life Technologies) as recommended by the manufacturer. Gels were stained 

using Instant blue (Expedeon). 

2.7.3. Analytical size exclusion chromatography 
Purified, putatively interacting proteins were incubated in 200 µl reactions in the respective protein 

buffers at 20°C for 30 min or at 8°C overnight. The sample was then loaded on a Superose 6 or 

Superose 12 column (GE Healthcare) depending on the size of the proteins. Protein fractions were TCA 

precipitated (2.2.4) if necessary and analyzed by SDS-PAGE as described (2.2.4). 
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2.7.4. Coexpression and His-Affinity purification 
Interactions between various constructs of the GPN-loop GTPases as well as the Pol II nuclear import 

factor Iwr1 were analyzed by coexpression followed by His-tag affinity purification. Therefore electro-

competent BL21 Gold (RIL) cells were cotransformed (2.2.2) with only one of the proteins containing a 

hexahistidine-tag. Protein expression was performed as described (2.2.3) and the cleared cell lysate was 

incubated at 8°C for 25 min with 10 µl magnetic Ni-NTA beads (Life Technologies) equilibrated with Lysis 

buffer (Table 11). The beads were then washed four times with 500 µl Nickel wash buffer (Table 11) 

before elution was performed by incubation with 50 µl Nickel elution buffer (Table 11) for 3 min on ice. 

Samples were then analyzed by SDS-PAGE (2.2.4). 

2.7.5. Tandem affinity purification  
TAP-tagged yeast strains were obtained from Thermo Scientific Open Biosystems (Table 5). Tandem 

affinity purifications (TAP) from 2l yeast cultures were done as described (Puig et al., 2001) by Anja 

Kieser from the Sträßer Lab. 

2.7.6. Immobilized peptide microarrays  
An array of 1,139 15meric peptides covering the complete sequence of RNA polymerase II with an 

overlap of 11 amino acids were synthesized and triplicates were N-terminally immobilized on a glass 

surface via a Ttds-linker by JPT Peptide Technologies, Berlin, Germany. Purified N-terminal hexahistidine 

tagged wild-type Npa3 was pre-incubated with either 10 mM GMPPCP or 10 mM GDP overnight at 4°C 

in SEC buffer 100 (Table 11). Incubation with 10 mM GTP was started 5 min prior to experimental 

procedure. Microarray incubations and data analysis was carried out by JPT Peptide Technologies. 

Microarrays were blocked with blocking buffer (Pierce International, Superblock TBST20) for 60 min, 

washed with TBS containing 0.1% Tween20 (TBS-T) and incubated with 1 mg/ml of the respective Npa3 

sample for 60 min at 4°C. After an additional TBS-T washing step 0.4 μg/ml Penta His antibody Alexa 647 

(Qiagen) were incubated for 45 min followed by washing with 3 mM SSC buffer (JPT Peptide 

Technologies, Berlin, Germany). The microarrays were dried and fluorescence signal was analyzed using 

a Genepix Scanner 4200AL (Molecular Devices) and GenePix spot-recognition software by JPT Peptide 

Technologies. In case of false positive binding, neighboring overlapping peptides containing partially the 

same sequence were also not taken into consideration. 
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3. Results and Discussion 

3.1. Structure and function of Npa3-nucleotide complexes 

3.1.1. Npa3 domain organization and crystallization 
Npa3 contains 385 amino acid residues and consists of a central GTPase core (residues 1-41, 83-184, and 

225-263), two protein insertions (‘insertion 1’ and ‘insertion 2’ containing residues 42-82 and 185-224, 

respectively), and a C-terminal tail (residues 264-385) (Figure 4A). The GTPase core harbors the motifs 

G1-G5 that are required for GTP binding and hydrolysis (Bourne, et al., 1991). The C-terminal tail is 

poorly conserved among eukaryotes and is absent in archaea. Because efforts to crystallize full-length 

Npa3 failed, we removed the C-terminal tail and part of a loop (residues 203-211 in insertion 2) that is 

predicted to be disordered and absent in most eukaryotic homologs (variant Νpa3ΔCΔLoop, comprising 

residues 1-202 and 212-264). We co-crystallized Νpa3ΔCΔLoop (Figure 4) with the non-hydrolyzable GTP 

analog GMPPCP, but also with GDP, and with GDP and AlFx (‘GDP∙AlFx’), which mimics the pentavalent 

transition state (Wittinghofer, 1997). 

 

 

 

Figure 4| Npa3 domain organization, purification and crystallization.  
(A) Schematic representation of Npa3 from the yeast Saccharomyces cerevisiae. NES: Nuclear export sequence. The color-
code is used throughout the figures. (B) Purification of Npa3∆C∆Loop. The chromatogram of the final gel filtration step 
(HiPrep Sephacryl S300) and the corresponding SDS gel of the peak fraction is shown. (C) Crystals of Npa3 in complex with 
various nucleotides. 
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Figure 5| X-ray diffraction and structure solution. 
(A) Diffraction image of Npa3∆C∆Loop∙GDP∙AlFx in the S-SAD (left panel) and native diffraction experiment (right 
panel). (B) Structure solution of Npa3∆C∆Loop∙GDP∙AlFx using SHELX revealed a clear solution (CCall=50.72, CCweak=28.5, 
left panel). The occupancy of 17 sulfur sites is shown in the middle panel (red areas, with occupancies below 30% were 
discarded as noise or bound solvent molecules). The anomalous signal vs resolution is shown in the right panel and 
data >2.7 Å (d’’/sig > 1.2) were used for further processing. (C) Initial density of the S-SAD experiments shows clearly 
defined densities for side-chains. Shown is a representative portion of the initial density before refinement with the 
high-resolution native-data set. (D) Diffraction images of GMPPCP- (left panel) and GDP- bound (right panel) crystals. 

3.1.2. Structure determination of Npa3 complexes 
The structure with GDP∙AlFx was solved using single anomalous diffraction from intrinsic sulfur atoms 

(Figure 5) and a protein model was built and refined to a free R-factor of 23.9% at 1.85 Å resolution 

(Table 18). The model was used to solve the structures containing GMPPCP, or GDP, which were refined 

to free R-factors of 22.7% and 27.6% at 2.2 Å and 2.3 Å resolution, respectively (Table 18). The electron 

density of the GDP∙AlFx complex was not clearly interpretable in the active site region, where it showed 

a mixture of different nucleotide configurations. Thus this structure was discarded, although the protein 

model was excellent. The structures containing GMPPCP or GDP showed very well defined densities for 

bound nucleotides, represented defined enzyme states, showed great stereochemistry, and were used 

for further analysis. The structures are relevant for all eukaryotic orthologs because Npa3 is highly 

conserved, with 50% of the residues in the crystallized variant being identical between S. cerevisiae and 

human enzymes (Figure 6A and C). The structures revealed a closed GDP-bound and open GMPPCP-

bound state (Figure 6B) that are described in the following sections (3.1.3 and 3.1.4). 

 
 



    RESULTS AND DISCUSSION 

41 
 

 

Figure 6| Crystal structures of Npa3 in GDP- (closed) and GMPPCP-bound (open) forms. 
(A) Amino acid sequence alignment of Npa3 from S. cerevisiae (S.c.), with eukaryotic homologs from S. pombe (S.p.),  
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Table 18| X-ray diffraction data collection and refinement statistics 
 Native S-SAD 

 GDPa GMPPCPa GDP-AlFx
b GDP-AlFx

b, c  
Data collection     

Space group C2221 P41212 P41212 P41212 
Cell dimensions   
a, b, c (Å) 

 
108.0, 119.2, 
347.5 

 
116.2, 116.2, 56.8 

 
116.2, 116.2, 55.9 

 
116.2, 116.2, 55.9 

Wavelength (Å) 0.99988 0.99888 1.0001 2.066 
Resolution (Å) 50-2.3 (2.36-2.3)d 50-2.2 (2.26-2.20)d 80-1.85 (1.90-1.85)d 50-2.15 (2.21-2.15)c 
Rsym (%) 5.7 (126.9) 4.5 (155) 3.8 (145.6) 5.2 (89.8) 
I/σI 20.16 (1.88) 28.50 (1.94) 38.32 (2.16) 66.37 (2.00) 
Completeness (%) 99.7 (99.8) 99.5 (98.0) 100 (100) 98.2 (79.9) 
Redundancy 7.15 (6.91) 14.11 (13.12) 14.39 (14.42) 63.07 (7.31) 
CC (1/2)

e (%) 100 (69.0) 100 (83.2) 100 (72.0) 100 (62.3) 
Refinement     

Resolution (Å) 45.3-2.3 36.8-2.2 46.2-1.85  
No. reflections 99,343 20,172 33,217  
Rwork/ Rfree (%) 23.8/27.6 21.4/22.7 20.1/23.9  
No. atoms     
   Protein 12065 1998 2036  
   Nucleotide  168 32 28  
   AlFx - - 4  
   Mg2+ 6 1 1  
   Lauric acid - 14 14  
   Glycerol 24 12 12  
   Water 121 5 108  
B-factorsf (Å2)     
   Protein 83.5 121.2 59.4  
   Nucleotide  69.6 123.6 57.6  
   AlFx - - 107.1  
   Mg2+ 64.2 166.6 104.7  
   Lauric acid - 108.0 49.7  
   Glycerol 107.7 145.2 63.8  
   Water 60.1 110.7 53.5  
R.m.s deviations     
    Bond lengths (Å)  0.011 0.007 0.008  
    Bond angles (°) 1.29 1.15 1.18  
aDiffraction data were collected at beamline MX1 at EMBL/DESY, Hamburg, Germany and processed with XDS (Kabsch, 2010b).  
bDiffraction data were collected at beamline X06DA, Swiss Light Source, Switzerland and processed with XDS (Kabsch, 2010b).  
cData are merged form three data sets, measured at different χ angles (0°, 10°, 20°) from a single crystal.  
dNumbers in parenthesis refer to the highest resolution shell.  
eCC1/2 = percentage of correlation between intensities from random half-datasets (Karplus & Diederichs, 2012).  
fThe average over all copies in the asymmetric unit is given. 

GPN1 from H. sapiens (H.s.) and the archaeal homolog Pab0955 from P. abyssi (P.a.). Secondary structure elements are 
indicated above the sequence (cylinders: α-helices; arrows: β-strands). Amino acid numbering above the sequence 
corresponds to Npa3 from S.c. Invariant residues are in green and conserved residues in yellow. Motifs G1-G5 and 
insertions 1 and 2 are marked with bars, residues of the hydrophobic pocket with black squares, residues involved in 
nucleotide-binding with asterisks, and residues involved in magnesium binding with pink spheres. (B) Ribbon 
representation of the closed (GDP-bound, left) and open (GMPPCP-bound, right) conformation. The G motifs and insertion 
regions are colored according to (A). A fatty acid bound to the hydrophobic pocket that is opened in the Npa3∙GMPPCP 
structure is shown as slate blue sticks. Missing residues are indicated with dashed lines. (C) Surface conservation of Npa3 in 
the closed, GDP-bound (left panels) and open, GMPPCP-bound (right panels) state. Invariant residues are shown in green, 
conserved residues in yellow, variable residues in grey. 
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3.1.3. Npa3∙GDP structure shows eukaryote-specific features 
The Npa3 core consists of a central, six-stranded parallel β-sheet surrounded by helices (Figure 6B and 

Figure 7). The two insertion regions extend the Npa3 core, resulting in an overall L-like shape of the 

enzyme. The asymmetric unit of the Npa3∙GDP crystals contains six enzymes that differ only slightly in 

regions forming crystal contacts. The Npa3∙GDP structure resembles the homologous archaeal structure 

Pab0955∙MgGDP (Gras, et al., 2007) (PDB-code 1YRB), but also reveals major differences in insertions 1 

and 2 (Figure 7) and in regions connecting the core to insertion 2. A single residue links strand β7 in the 

core to the C-terminal end of helix α10, which is bent by ~50° (Figure 7A and B). In the archaeal 

structure, strand β7 is shorter and the linker region to α10 comprises five residues, allowing for a 

straight conformation of the helix. Whereas helices α9 and α10 in Npa3∙GDP lie side by side, they are 

tilted in the archaeal structure (Figure 7A and C). Helix α3 in insertion 1 of Npa3∙GDP is apparently  

 

 

 

 

Figure 7| Superposition of Npa3∙GDP (blue) and the archaeal GPN-loop GTPase Pab0955∙GDP (green) reveals 
eukaryote-specific structural features.  
(A) Superposition of overall structures from Npa3∙GDP and Pab0955∙GDP (pdb code: 1YRB,(Gras et al., 2007)) shown as 
front view (left) and side view (right). Significant differences between the two structures are indicated with black 
arrows and the insertion regions are shown with dashed lines. Boxes highlight areas shown in B-D. (B) The linker 
between strand β7 and helix α10 is shorter in Npa3 leading to a strong bending of helix α10. (C) Helix α9 of Npa3 is 
rotated, leading to significant differences of insertion 2 compared to the archaeal GPN-loop GTPase. (D) Helix α3 of 
insertion 1 is rotated and the GPN-loop is shifted. 
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rotated by 37° towards the core, and helix α4 and the GPN-loop are shifted by ~3 Å towards the G3 

motif (Figure 7A and D).  

Taken together, the core of the eukaryotic enzyme generally resembles its archaeal counterpart, 

whereas the two insertions differ significantly. 

3.1.4. Npa3∙GMPPCP structure reveals novel open conformation 
Our Npa3∙GMPPCP structure reveals a novel open conformation that differs significantly from the 

Npa3∙GDP structure (Figure 6B and Figure 8). Both insertions are rearranged and the position of helix α7 

is changed, opening an extended hydrophobic pocket. Insertion 2 adopts a different fold, and remotely 

resembles the helical bundle of the N domain of the prokaryotic GTPase Ffh from T. aquaticus (pdb-

code 1LS1) (Ramirez et al., 2002). In the GMPPCP-bound state, residues D189 of insertion 2 and C179 

show peptide flips (Figure 8B and E) that enable a straight conformation of helices α8 and α9 and the 

formation of a single helix. Helix α10, which is bent in the Npa3∙GDP structure, adopts a straight 

conformation, and helix α7 is rotated by ~15° (Figure 8A-C and F). This disrupts a methionine-rich 

hydrophobic core formed between helices α7, α8, and α9 that kept the pocket closed in the Npa3∙GDP 

structure (Figure 8C). Rotation of helix α7 enables it to hydrogen bond to residue E112, which no longer 

interacts with Q110 in motif G3 and N72 in the GPN-loop, as observed in the closed Npa3∙GDP structure 

(Figure 8F). Mutation of any one of these residues (E112, Q110, N72) is lethal in yeast (Forget, et al., 

2010; Staresincic, et al., 2011; Alonso, et al., 2013). In addition, insertion 1 is changed in the 

Npa3∙GMPPCP structure, including motif G3, which binds the GPN-loop (Figure 8D). Insertion 1 is more 

flexible than in the GDP-bound structure. Its hydrogen bonds with Y48 to D106 (G3) and with Y60 to the 

carbonyl of P71 (GPN-loop) are lost, helix α3 is unfolded, and residues 64-69 are mobile. Positioning of 

insertion 1 apparently involves a novel “DIRD” motif that comprises the invariant residues D53, I54, R55, 

and D56 (Figure 8D). The DIRD motif is, along with the GPN motif, the most highly conserved region 

within the sequence of the yeast Npa3 paralogs GPN2 and GPN3 (Figure 9). Residue N38 in motif G2 

bridges between D106 in motif G3 and D53 in the DIRD motif to keep helix α2 and thus insertion 1 in 

close proximity to the core (Figure 8D). The side chain of D56 in the DIRD motif is flipped in the 

Npa3∙GMPPCP structure and hydrogen bonds to D53, possibly stabilizing the changed position of 

insertion 1. Taken together, Npa3 can adopt two very different conformations, a closed conformation 

observed with bound GDP, and a novel open conformation observed when the GTP analog GMPPCP is 

bound. 
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Figure 8| Superposition of closed Npa3∙GDP (blue) and open Npa3∙GMPPCP (grey) structures. 
Magnesium ions are shown as blue (Npa3∙GDP) or grey (Npa3∙GMPPCP) spheres, water molecules as small red spheres and 
hydrogen bonds as dashed lines. (A) Superposition of overall structures from Npa3∙GDP and Npa3∙GMPPCP shown as front 
view (left) and side view (right). Significant differences between the two structures are indicated with black arrows and 
boxes highlight areas shown in B-F (B) Peptide flip of D189 enables pocket opening and the formation of a single helix from 
helices α8 and α9. (C) Conformational changes in insertion 2 and helix α7 facilitate the opening of an extended, 
hydrophobic pocket. (D) A set of residues in insertion 1 rearranges, including the GPN-loop and a DIRD-motif leading to 
increased flexibility of this region in the GMPPCP-bound state. (E) Pocket opening allosterically alters the active site via the 
G4 motif. (F) Conformational changes in helix α7 are linked to the G3 motif and the GPN-loop. 
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Figure 9| Amino acid sequence alignment of GPN-loop GTPases Npa3 from S. cerevisiae, and its paralogs GPN2 and GPN3. 
Secondary structure elements are indicated above the sequence (cylinders: α-helices; arrows: β-strands; dashed line: no 
structural data available). Numbering above the sequence corresponds to Npa3. Invariant residues are in green whereas 
conserved residues are in yellow. The G-domains G1-G5 and insertion regions are marked with bars, residues of the 
hydrophobic pocket with black squares, residues involved in nucleotide binding with asterisks and residues involved in 
magnesium binding are marked with pink spheres. 

 

 

3.1.5. Nucleotide binding and conformational states 
The two structures reveal atomic details of how Npa3 binds GMPPCP or GDP using its motifs G1-G5 

(Figure 10). In the Npa3∙GMPPCP structure, strong electron density corresponding to the γ-phosphate of 

the nucleotide is observed (Figure 10A). The octahedral coordination of the magnesium ion by oxygen 

atoms of the β- and γ-phosphate of GMPPCP and Thr17 of the G1 motif (P-loop, 10-GMAGSGKT-17) is 

completed by three water molecules, hydrogen bonded by D40 in the G2 motif (36-VINLD-40) and D106 

and T107 in the G3 motif (106-DTPGQ-110) (Figure 10B). After GTP hydrolysis an additional water 

molecule apparently replaces the coordination sphere previously occupied by the γ-phosphate oxygen 

of GMPPCP (Figure 10C). Residues in the G1 motif stabilize the negative charge of the phosphate ions. 

Guanine specificity is conferred by hydrogen bonds of the Watson-Crick edge of GMPPCP to motifs G4 

(173-NKTD-176) and G5 (238-SSF-240). F240 in motif G5 stacks against the guanine base. Thus our 

structures explain how Npa3 specifically binds GDP and the GTP analog. 
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3.1.6. Catalytic mechanism of Npa3 
The catalytic mechanism for hydrolysis of GTP to GDP and inorganic phosphate by GPN-loop GTPases 

was suggested for the archaeal enzyme (Gras, et al., 2007). To probe the catalytic mechanism in the 

eukaryotic system we prepared Npa3 variants with point mutations and tested their ability to hydrolyze 

GTP (Figure 11A). Whereas residue D106 in motif G3 stabilizes the Mg2+ ion, residue D40 in motif G2 

positions the nucleophilic water molecule (N) (Figure 11B), as observed for the bacterial GTPase FtsY 

(Voigts-Hoffmann et al., 2013). Consistent with this, the D106A and D40A variants of Npa3 were both 

inactive (Figure 11A). 

Figure 10| Nucleotide-binding pocket and active site. 
(A) Initial unbiased Fo-Fc difference electron density of GMPPCP and the magnesium ion, including coordinated water 
molecules contoured at 3σ (green mesh). The final Npa3∙GMPPCP model is superimposed. Motifs G1-G5 are color-
coded as in Fig. 4A. Water molecules are shown as small red spheres, magnesium ions as pink spheres and hydrogen 
bonds as dashed lines. (B-C) Nucleotide interaction network of Npa3 with GMPPCP (B) and GDP (C). Metal-ion-ligand 
interactions are shown as solid black lines. 
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Figure 11| Catalytic mechanism of Npa3.  
(A) GTPase activity of Npa3 mutants. Bars represent free orthophosphate concentrations after 40 min at 37°C. Kinetics are 
shown for wild-type Npa3 (grey) and the crystallized variant Npa3ΔCΔLoop (blue). (B) Schematic mechanism of GTP 
hydrolysis. The active site of Npa3∙GMPPCP is shown. The GPN-loop of monomer B is modeled by superpositioning of two 
Npa3∙GMPPCP enzymes on the archaeal Pab0955 dimer (PDB-code: 1YRB) (Gras, et al., 2007). The nucleophilic water (N) 
that attacks the γ-phosphate and the buttressing water (B) are superimposed from the Npa3∙GDP structure. Hydrogen 
bonds are shown as dashed black lines, potential hydrogen bonds derived from dimer modeling as dashed grey lines, water 
molecules as small red spheres, the magnesium ion as pink sphere and metal ion-ligand interactions as solid black lines. 

The catalytic mechanism was suggested to also involve the GPN-loop. In the archaeal enzyme 

dimer, the GPN-loop of one monomer protrudes into the active site of the other monomer, where it 

binds the hydrolyzed GTP γ-phosphate (Gras, et al., 2007) (Figure 3). Indeed, Npa3 variants with a 

mutation of the GPN-loop (70GPN72 changed to 70AAA72) lacked GTPase activity, supporting the 

suggested mechanism (Figure 11). In addition, a single Q110L mutation, predicted to disrupt buttressing 

of the GPN-loop by residue Q110 in motif G3, was also inactive. All mutated residues shown here to be 

involved in catalysis in vitro are essential in vivo (Forget, et al., 2010; Staresincic, et al., 2011). Further, 

purified Npa3 formed a dimer, and in the Npa3∙GDP crystals, two symmetry-related complexes formed a 

dimer that contained the GPN-loop of one monomer in the active site of the other monomer, as 

observed in the archaeal structure. 

From these results emerges the catalytic mechanism of GPN-loop GTPases. The nucleophilic 

water molecule (N) is positioned in-line of the scissile phosphodiester bond at the γ-phosphate of GTP 

by residue D40 and a buttressing water molecule bound to the backbone of residue G109 of motif G3, 

which stabilizes the GPN-loop via residue Q110 and positions it in the active site of monomer B. The 

negative charge in the transition state of the SN2 reaction is partially neutralized by a magnesium ion 

that is positioned also by D106 in motif G3. Modeling of the Npa3 dimer, based on the archaeal dimer 

structure, shows that the GPN-loop of one monomer protrudes into the active site of the other 

monomer even in the open enzyme conformation, and could bind the hydrolyzed orthophosphate. 
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Figure 12| A highly conserved, putative peptide-binding pocket is exposed upon transition from the closed to the 
open state.  
(A) Initial unbiased Fo-Fc difference electron density for lauric acid (slate blue sticks) bound to the putative peptide-
binding pocket of Npa3, contoured at 2σ (green mesh). (B) Highly conserved surface of the putative peptide-binding 
pocket. Invariant residues are in green, conserved residues in yellow, and variable residues in grey. Insertion regions and 
G motifs are depicted. Lauric acid is shown as slate blue spheres. 

3.1.7. A putative peptide binding pocket 
In the Npa3∙GMPPCP structure we observed a strong, extended electron density in the hydrophobic 

pocket that is created upon the transition from the closed to the open state of the enzyme (Figure 12A). 

This density could be explained by a molecule of lauric acid, a C12 fatty acid that may have been derived 

from hydrolysis of Tween20, a lauric acid ester that was present in the lysis buffer. The fatty acid 

carboxyl group binds residues N144 and W186, whereas the acid tail is close (within 5 Å) to the 

hydrophobic residues Y137, V139, F150, M154, A157, C158, L161, M168, V170, F172, W186, F190, L225, 

F228, Y229 and L232. The surface of the pocket is highly conserved between species (Figure 12B). 

In the cellular context, it is likely that the newly observed hydrophobic pocket of Npa3 binds 

hydrophobic peptides. GPN1 is known to interact with assembling Pol II subunits (Boulon, et al., 2010; 

Forget, et al., 2010), which expose hydrophobic peptide regions, because large hydrophobic subunit 

interfaces are present in the functional Pol II assembly (Armache, et al., 2005). We therefore considered 

that the hydrophobic pocket naturally binds to hydrophobic protein regions as described for molecular 

chaperones that prevent misassembly and aggregation of multisubunit complexes (Ellis, 2013; Kim, et 

al., 2013). Indeed, modeling showed that hydrophobic peptides may be accommodated in the pocket in 

an extended conformation. 
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3.1.8. Npa3 has GTPase stimulating chaperone activity 
The existence of a putative hydrophobic peptide-binding pocket prompted us to ask whether Npa3 has 

chaperone activity. We tested for chaperone-like activity of Npa3 in vitro with a standard assay that 

uses citrate synthase (CS) as a general chaperone substrate protein, whose temperature-induced 

aggregation is suppressed when a chaperone is added (Buchner, et al., 1998). Indeed, Npa3 was able to 

suppress temperature-induced aggregation of CS (Figure 13A). We next investigated whether this effect 

was nucleotide-dependent. Because no GTPase activity was observed in the standard chaperone assay 

buffer (not shown), we changed to SEC buffer 100 (Table 11) and adjusted the pH value to 7.5 at 43°C. 

This buffer supported GTP hydrolysis, albeit at about 5-fold reduced levels, apparently due to the 

increased temperature of 43°C (compare wild-type Npa3 in Figure 11A and Figure 13C). Chaperone-like 

activity was readily observed in the presence of nucleotides, but no significant differences occurred 

after the addition of GMPPCP, GTP, or GDP (Figure 13B).  

These data indicated that the open Npa3 conformation is not induced by GTP binding but rather 

by binding of hydrophobic unfolded protein peptide regions. Pocket opening in Npa3 goes along with a 

conformational change in motifs G3 (Figure 8C and F) and G4 (Figure 8B and E) that widens the 

nucleotide-binding pocket. Indeed, a similar conformational change in Ffh from T. aquaticus, one of the 

closest folding homologs of Npa3, was proposed to allosterically alter the active site via the G4 motif 

(Freymann, et al., 1997). Thus we speculated that peptide binding would allosterically widen the active 

center, may promote GDP displacement, and facilitate GTP binding and thus may lead to an increased 

GTP turnover rate.  

To investigate this, we analyzed the GTPase activity of Npa3 both in the presence and in the 

absence of partially unfolded CS at 43°C. Indeed, the presence of CS stimulated GTPase activity more 

than four-fold, providing a link between chaperone and GTPase functions (Figure 13C).  

Taken together, our results show that Npa3 exhibits chaperone-like activity and indicate that it 

can bind unfolded protein peptide regions without GTP addition. They also suggested that peptide 

binding triggers opening of the pocket, promotes GDP displacement and thus facilitates GTP rebinding, 

whereas peptide release is regulated by GTP hydrolysis. 
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3.2. Analysis of Npa3 interactions with RNA polymerase II 

 

3.2.1. Npa3 does not interact with complete assembled Pol II complexes 
It is not clear whether Npa3 functions in assembly or nuclear import of Pol II (Wild & Cramer, 2012). 

Binding of Npa3/GPN1 to Pol II subunits and subassemblies has been shown (Jeronimo, et al., 2007; 

Boulon, et al., 2010; Forget, et al., 2010; Carre & Shiekhattar, 2011; Staresincic, et al., 2011) but it’s 

unknown whether it also binds the mature, complete assembled polymerase. Because only complete 

assembled Pol II is imported into the nucleus (Boulon, et al., 2010; Czeko, et al., 2011), a nuclear import 

factor likely interacts with the assembled Pol II complex. To investigate this, we tested for Npa3 binding 

to complete assembled, purified, endogenous Pol II from S. cerevisiae with both analytical gel filtration 

and pull-down experiments (Figure 14). Npa3 did neither interact with assembled, mature Pol II (Figure 

14A and B), nor with a Pol II complex bound to the nuclear import factor Iwr1 (Figure 14B).  

Figure 13| Npa3 has chaperone-like activity that stimulates GTPase activity. 
(A) Npa3 has chaperone-like activity in vitro. Npa3 suppresses thermally induced (43°C) aggregation of the general non-
native chaperone-substrate protein citrate synthase (CS). Different amounts of wild-type Npa3 were added as indicated on 
the right. (B) Chaperone-like activity of Npa3 is independent of added nucleotides under limiting conditions. 1 mM of 
GMPPCP, GTP, or GDP, were added and relative CS aggregation in the presence of 0.5 x molar amounts of Npa3 was 
determined after 30 min. (C) GTPase activity of Npa3 is stimulated > 4-fold in the presence of the non-native chaperone-
substrate protein citrate synthase. Free orthophosphate concentrations were determined after 40 min at 43°C (compare 
Methods). 
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Figure 14| Npa3 does neither interact with assembled Pol II nor with a Pol II-Iwr1 complex. 
(A) Analytical gel filtration (Superose 6 10/300, GE healthcare) of Pol II and Npa3-nucleotide complexes. Purified  Pol II 
(12 µg), 5x molar excess of purified Npa3 and 1 mM GMPPNP (upper panel) or 1 mM GDP (lower panel) were incubated 
overnight at 4°C for nucleotide exchange and potential complex assembly. After gel filtration the fractions were TCA 
precipitated and analyzed by SDS-PAGE. Marker: (top to bottom: 170, 130, 100, 70, 55, 40, 35, 25, 15, 10 kDa) (B) 
Streptavidin pull-down of biotinylated Pol II and associated factors. Purified Pol II was biotinylated at Rpb3 and 4.2 µg Pol II 
were incubated with 15x molar excess of Npa3 and 1 mM GMPPCP or GDP overnight at 8°C or with 1 mM GTP for 30 min at 
RT and 600 rpm. Pol II-Iwr1 complexes were preformed by incubation with 5x molar excess of Iwr1 over Pol II at RT for 45 
min before Npa3 was added. 
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3.2.2. Npa3 binds peptides derived from hydrophobic Pol II subunit interfaces 
Because Npa3 was implicated in biogenesis of Pol II, we investigated whether Npa3 may act as an 

assembly chaperone for Pol II. Unfortunately, this could not be tested directly, because Pol II is not 

available in recombinant form and endogenous Pol II is not amenable to chaperone assays. We could 

however ask whether Npa3 would be able to bind peptides derived from Pol II subunits that may be 

exposed during Pol II assembly. To address this in an unbiased fashion, we used peptide arrays to screen 

a total of 1,139 Pol II-derived 15 residue long peptides (overlap of 11 residues, respectively; Table 20) 

covering all regions of all 12 Pol II subunits, for binding Npa3 in the presence of GMPPCP, GTP, or GDP. 

In this assay 55 peptides bound Npa3 significantly (signal intensity >3.5) (Table 19). The binding 

efficiency generally did not depend on nucleotides (Figure 16-Figure 20 and Figure 25), consistent with 

the model that opening of the hydrophobic pocket is triggered by peptide binding. The 55 Npa3-binding 

peptides stemmed from all Pol II subunits except Rpb3, Rpb6, and Rpb12. When we mapped the 

Npa3-binding peptides onto the Pol II structure (Figure 15), we found that 42 of the 55 peptides were at 

least partially located in interfaces between Pol II subunits and were enriched in hydrophobic residues 

(Table 19, Figure 16-Figure 20).  

 

 

 

 

Figure 15| Location of Npa3-binding peptides in the assembled Pol II complex. 
Npa3 binding to Pol II peptides is depicted in yellow (signal intensity 3.5-3.75), orange (3.75-4) and red (>4) whereas 
unbound regions are in grey (<3.5). Zinc atoms are shown as cyan spheres and the magnesium ion as pink sphere. A 
schematic representation of the 12 Pol II subunits Rpb1-Rpb12 in the folded Pol II complex is shown on the right. (pdb-code 
1WCM) (Armache et al., 2005). 



    RESULTS AND DISCUSSION 

54 
 

 

 

Table 19| Npa3-binding Pol II-derived peptides 
Pol II subunit Peptide No Start a.a. End a.a. Sequence Interface 
Rpb1 3 9 23 APLRTVKEVQFGLFS Yes 
  20 77 91 CPGHFGHIDLAKPVF Yes 
  21 81 95 FGHIDLAKPVFHVGF Yes 
  24 93 107 VGFIAKIKKVCECVC Yes 
  26 101 115 KVCECVCMHCGKLLL No 
  32 125 139 ALAIKDSKKRFAAIW No 
  57 225 239 NEVFSRPEWMILTCL Yes 
  85 337 351 RGNLMGKRVDFSART Yes 
  105 417 431 YSKRAGDIQLQYGWK Yes 
  106 421 435 AGDIQLQYGWKVERH Yes 

  115 457 471 AHRVKVIPYSTFRLN Yes 
  193 769 783 SVEGKRIAFGFVDRT Yes 
  194 773 787 KRIAFGFVDRTLPHF Yes 
  201 801 815 ENSYLRGLTPQEFFF Yes 
  234 933 947 YKQLVKDRKFLREVF Yes 
  261 1041 1055 AFDWVLSNIEAQFLR Yes 
  275 1097 1111 GVPRLKEILNVAKNM No 
  305 1217 1231 KQTFKNDLFVIWSED No 
  375 1497 1511 DSGSNDAMAGGFTAY Lacking in 1WCM 
Rpb2 463 116 130 EARLRNLTYSSGLFV Yes 
  464 120 134 RNLTYSSGLFVDVKK No 
  465 124 138 YSSGLFVDVKKRTYE No 

  481 188 202 DLYKLKECPFDMGGY Yes 
  482 192 206 LKECPFDMGGYFIIN Yes 

  525 364 378 ITQLEGFESRKAFFL No 
  527 372 386 SRKAFFLGYMINRLL No 
  539 420 434 LFKKLTKDIFRYMQR No 
  547 452 466 TITSGLKYALATGNW  No 

  630 784 798 NYNVRMDTMANILYY  Yes 
  645 844 858 SSIDRGLFRSLFFRS Yes 
  646 848 862 RGLFRSLFFRSYMDQ  Yes 
  647 852 866 RSLFFRSYMDQEKKY Yes 

  730 1184 1198 GCDNKIDIYQIHIPY Yes 
Rpb4 833 54 68 EARLVIKEALVERRR  Yes 
  834 58 72 VIKEALVERRRAFKR  Yes 
  837 70 84 FKRSQKKHKKKHLKH  Yes 
  855 142 156 KNTMQYLTNFSRFRD  Yes 
Rpb5 892 69 83 ISKFPDMGSLWVEFC  No 
  921 185 199 ALYLGLKRGEVVKII No 
Rpb7 970 11 25 ITLHPSFFGPRMKQY Yes 
  971 15 29 PSFFGPRMKQYLKTK Yes 
  975 31 45 LEEVEGSCTGKFGYI Yes 
  976 35 49 EGSCTGKFGYILCVL Yes 
  977 39 53 TGKFGYILCVLDYDN Yes 
  984 67 81 SAEFNVKYRAVVFKP Yes 
Rpb8 1036 104 118 FEEVSKDLIAVYYSF Yes 
  1037 108 122 SKDLIAVYYSFGGLL Yes 
  1038 112 126 IAVYYSFGGLLMRLE  Yes 
  1039 116 130 YSFGGLLMRLEGNYR  Yes 
  1043 132 146 LNNLKQENAYLLIRR  Yes 
Rpb9 1047 2 16 TTFRFCRDCNNMLYP  Yes 
Rpb11 1106 46 60 IRAELLNDRKVLFAA  Yes 
  1108 54 68 RKVLFAAYKVEHPFF  Yes 
  1109 58 72 FAAYKVEHPFFARFK Yes 
  1110 62 76 KVEHPFFARFKLRIQ Yes 
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We therefore mapped residues in subunit interfaces in the mature Pol II complex using CoCoMaps 

(https://www.molnac.unisa.it/BioTools/cocomaps), and compared them with peptides that are bound 

by Npa3. In the following sections a detailed analysis of Npa3 binding peptides derived from Rpb1, 

Rpb8, Rpb11, Rpb4 and Rpb7 is provided. 

3.2.3. Npa3 binds peptides derived from Rpb1 interfaces 
We identified numerous Npa3-binding peptides within the interface between the two largest Pol II 

subunits, Rpb1 and Rpb2 (Figure 16). In particular, many peptides mapped to the extended Rpb1-Rpb2 

interface within the clamp domain of Pol II (Rpb1 peptides 3, 20, 21, 24, 57, 85, and Rpb2 peptide 730). 

We also detected three Npa3-binding peptides (193, 194, 201) in the funnel domain of Rpb1. 

Npa3 interacted also with peptides from subunits Rpb8, Rpb9 and Rpb11 that are located in 

critical interfaces with Rpb1.  
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Figure 16| Npa3 binds peptides derived from Rpb1 interfaces. 
(A) Boxplot representation of the heatmap describing the Npa3 peptide-binding landscape of Rpb1-derived peptides in the 
presence of GTP, GDP and GMPPCP, respectively. Control experiments were performed without Npa3 and nucleotides to test 
cross-reactivity of the anti-His antibody. Intensity distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 
were defined as unbound (grey area). Red boxes indicate false-positive binding of the antibody to the peptides, either directly or 
in overlapping regions. These peptides were not used for further analysis. The sample intensity distribution corresponds to all 
Rpb1-derived peptides. Peptide numbers are shown for Npa3-binding peptides above the boxplots. Box labeled with 9x shows a 
representative portion of nine identical regions of CTD peptides (B) Surface representations of Rpb1 show that Npa3 interacts 
with hydrophobic peptides located at Rpb1 interfaces. Numbers correspond to the peptide numbers from the array (see Table 19 
for Npa3-binding peptides and Table 20 for all tested peptides). Left panel: Npa3 binding to Rpb1-peptides is depicted in yellow 
(signal intensity 3.5-3.75), orange (3.75-4) and red (>4) whereas unbound regions are in grey (<3.5). Npa3 binding peptides 
derived from other Pol II subunits that form interfaces with Rpb1 are shown as sticks and colored according to their signal 
intensity as described (compare Figure 17, Figure 18 and Figure 25 for analysis of these subunits). Middle panel: Rpb1 interfaces 
are shown in black. Dashed lines indicate positions of interacting subunits in the assembled Pol II complex. Right panel: Surface 
charge of Rpb1. White solid lines highlight hydrophobic interface regions. (C) Rpb1-Rpb2 interfaces bound by Npa3 in the peptide 
array.  Left panel: Interface between Rpb1 (grey) and Rpb2 (brown). The extended clamp interface is highlighted. The clamp and 
funnel domain is shown in the middle and right panel, respectively. Residues involved in the interface are shown as sticks and 
Npa3-binding interface residues are labeled. The corresponding peptide numbers are shown at the sides. All structural figures 
were made using the Pol II structure pdb-code:1WCM (Armache, et al., 2005). 
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3.2.4. Npa3 binds Rpb8-derived peptides at the interface to Rpb1 
Three overlapping Npa3-binding peptides (peptides 1,037; 1,038; 1,039) contained a hydrophobic region 

in Rpb8 (117-SFGGLLMR-124) that forms an interface with Rpb1.  

Figure 17| Npa3 binds Rpb8-derived peptides located at the subunit interface to Rpb1. 
(A) Position of Rpb8 (green) and its interacting subunit Rpb1 (dark grey) in the assembled Pol II complex. (B) Boxplot representation 
of the heatmap describing Npa3 peptide-binding landscape of Rpb8-derived peptides in the presence of GTP, GDP and GMPPCP, 
respectively. Control experiments were performed without Npa3 and nucleotides to test cross-reactivity of the anti-His antibody. 
Intensity distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 were defined as unbound (grey area). (C) 
Surface representations of Rpb8 show that Npa3 interacts with hydrophobic Rpb8-derived peptides located at the subunit interface 
to Rpb1. Left panel: Npa3 binding to Rpb8 peptides is depicted in yellow (signal intensity 3.5-3.75), orange (3.75-4) and red (>4) 
whereas unbound regions are in green (<3.5). Middle panel: Subunit interfaces are shown in black. Dashed lines indicate Rpb1 
position in the assembled Pol II complex. Right panel: Surface charge of Rpb8. White solid lines highlight hydrophobic interface 
regions. Numbers correspond to the peptide numbers from the array (see Table 19 for Npa3-binding peptides and Table 20 for all 
tested peptides) (D) Putative Npa3 binding region of Rpb8. Residues involved in the interface are shown as sticks and Npa3 binding 
interface residues are labeled. All structural figures were made using the Pol II structure pdb-code:1WCM (Armache, et al., 2005) 
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3.2.5. Npa3 binds Rpb11-derived peptides at the interface to Rpb1 
In Rpb11, 18 of a total of 25 residues that form the interface with Rpb1 were found in overlapping Npa3-

binding peptides (peptides 1,106;1,108-1,110). Peptide 1,109 covers most interface residues and shows 

the strongest Npa3 binding among Rpb11-derived peptides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18| Npa3 binds Rpb11-derived peptides located at the subunit interface to Rpb1 but not to Rpb3. 
(A) Position of Rpb11 (green) and its interacting subunits Rpb1 (dark grey) and Rpb3 (red) in the assembled Pol II. The Rpb1 and Rpb3 
interface of Rpb11 is shown in the middle and right panel, respectively and Rpb11 interface residues are highlighted as dark green 
sticks. (B) Boxplot representation of the heatmap describing Npa3 peptide-binding landscape of Rpb11-derived peptides in the 
presence of GTP, GDP and GMPPCP, respectively. Control experiments were performed without Npa3 and nucleotides to test cross-
reactivity of the anti-His antibody. Intensity distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 were defined 
as unbound (grey area). (C) Surface representations of Rpb11 show that Npa3 interacts with hydrophobic Rpb11-derived peptides 
located at the subunit interface to Rpb1. Left panel: Npa3 binding to Rpb11 peptides is depicted in yellow (signal intensity 3.5-3.75), 
orange (3.75-4) and red (>4) whereas unbound regions are in green (<3.5). Middle panel: Subunit interfaces are shown in black. 
Dashed lines indicate subunit positions in the assembled Pol II complex. Right panel: Surface charge of Rpb11. White solid lines 
highlight hydrophobic interface regions. Numbers correspond to the peptide numbers from the array (Table 19 and Table 20) (D) 
Putative Npa3 binding region of Rpb11. Residues involved in the subunit interface are shown as sticks and Npa3 binding interface 
residues are labeled. All structural figures were made using the Pol II structure pdb-code:1WCM (Armache, et al., 2005). 
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3.2.6. Npa3 binds Rpb4- and Rpb7-derived peptides at their subunit interface 
We also identified interactions of Npa3 with ten peptides in the Rpb4-Rpb7 interface (Rpb4 peptides 

833, 834, 837, 855; Rpb7 peptides 970, 971, 975, 976, 977, 984) (Figure 19 and Figure 20), consistent 

with a reported interaction of human GPN1 with Rpb4 and Rpb7 (Carre & Shiekhattar, 2011). Npa3 did 

not interact with a purified yeast Rpb4-Rpb7 complex (not shown), supporting the model that Npa3 

binds peptide regions located at the subunit interface that are only accessible during subcomplex 

assembly.  

Figure 19| Npa3 binds Rpb4-derived peptides located at the subunit interface to Rpb7. 
(A) Position of Rpb4 (dark red) and its interacting subunit Rpb7 (blue) in the assembled Pol II complex. The Rpb4/7 subcomplex 
is shown in the middle and right panel and Rpb4 interface residues are highlighted as dark red sticks. (B) Boxplot 
representation of the heatmap describing Npa3 peptide-binding landscape of Rpb4-derived peptides in the presence of GTP, 
GDP and GMPPCP, respectively. Control experiments were performed without Npa3 and nucleotides to test cross-reactivity  
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of the anti-His antibody. Intensity distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 were defined 
as unbound (grey area). (C) Surface representations of Rpb4 show that Npa3 interacts with hydrophobic Rpb4 peptides 
located at the subunit interface to Rpb7. Left panel: Npa3 binding to Rpb4 peptides is depicted in yellow (signal intensity 3.5-
3.75), orange (3.75-4) and red (>4) whereas unbound regions are in dark red (<3.5). Middle panel: Subunit interfaces of Rpb4 
are shown in black. Npa3-binding Rpb7 peptides at the same interface are shown. Dashed lines indicate subunit positions in 
the assembled Pol II complex. Right panel: Surface charge of Rpb4. White solid lines highlight hydrophobic interface regions. 
Numbers correspond to the peptide numbers from the array (Table 19, Table 20). (D) Putative Npa3 binding region of Rpb4. 
Residues involved in the interface are shown as sticks and Npa3 binding interface residues are labeled. All structural figures 
were made using the Pol II structure pdb-code:1WCM (Armache, et al., 2005). 

Figure 20| Npa3 binds Rpb7-derived peptides located at the subunit interface to Rpb4. 
(A) Position of Rpb7 (blue) and its interacting subunits in the assembled Pol II complex. The Rpb4/7 subcomplex is shown in 
the middle and right panel and Rpb7 interface residues are highlighted as sticks. (B) Boxplot representation of the heatmap 
describing Npa3 peptide-binding landscape of Rpb7-derived peptides in the presence of GTP, GDP and GMPPCP, respectively. 
Control experiments were performed without Npa3 and nucleotides to test cross-reactivity of the anti-His antibody. Intensity  
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Taken together, these data show that Npa3 binds numerous Pol II-derived hydrophobic peptides that 

are located at subunit interfaces, consistent with a function of Npa3 as an assembly chaperone for Pol II 

complex formation. 

 

3.2.7. Discussion and model for RNA polymerase II biogenesis 
Many macromolecular complexes were shown to require assembly chaperones for their biogenesis 

(Ellis, 2013), including the nucleosome (De Koning, et al., 2007; Avvakumov, et al., 2011), Rubisco (Liu, et 

al., 2010), the proteasome (Murata, et al., 2009), spliceosomal snRNPs (Chari, et al., 2008), and the 

ribosome (Karbstein, 2010). In contrast, biogenesis of the 12-subunit Pol II complex remains poorly 

understood. It was shown that Pol II biogenesis requires the R2TP/Prefoldin-like complex and the 

ATPase Hsp90 (Boulon, et al., 2010), a chaperone that is involved in the assembly of several protein 

complexes (Makhnevych & Houry, 2012), but additional assembly chaperones are likely required to 

enable correct Pol II assembly. 

Here we provide evidence that the new family of GPN-loop GTPases are Pol II assembly 

chaperones. We present the first structure of a eukaryotic GPN-loop GTPase, the GPN1 homolog Npa3 

from yeast. We show that Npa3 can adopt an open state with a hydrophobic pocket, that it can bind 

peptides derived from Pol II subunit interfaces, that it has chaperone activity, and that a chaperone 

substrate protein can stimulate its GTPase activity, which apparently triggers closing of the pocket. The 

latter observation is reminiscent to the reported stimulation of ATPase activity of chaperones Hsp70 

(Swain, et al., 2007; Smock, et al., 2010; Zhuravleva & Gierasch, 2011) and Hsp90 (McLaughlin, et al., 

2002) by substrate binding. GTPases were also shown to play a key role during ribosome assembly in 

bacteria (Britton, 2009) and in eukaryotes (Kressler et al., 2010). 

In the light of published data, our results close a gap in understanding Pol II biogenesis. In our 

model, GPN-loop GTPases first enable correct Pol II assembly in the cytoplasm (Figure 21). Assembled 

Pol II would then be recognized by Iwr1 and imported into the nucleus (Czeko, et al., 2011). Several lines 

of evidence argue for a role of GPN-loop GTPases in Pol II assembly rather than nuclear import of Pol II. 

First, GPN1, GPN2 and GPN3 interact with Pol II assembly intermediates (Boulon, et al., 2010). Second, 

GPN1 interacts with the CCT complex (Forget, et al., 2010), a chaperone complex with various functions 

distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 were defined as unbound (grey area). (C) 
Surface representations of Rpb7 show that Npa3 interacts with hydrophobic Rpb7 peptides located at the subunit 
interface to Rpb4. Left panel: Npa3 binding to Rpb4 peptides is depicted in yellow (signal intensity 3.5-3.75), orange (3.75-
4) and red (>4) whereas unbound regions are in blue (<3.5). Middle panel: Subunit interfaces of Rpb7 are shown in black. 
Npa3 binding Rpb4 peptides at the same interface are shown. Dashed lines indicate subunit positions in the assembled Pol 
II complex. Right panel: Surface charge of Rpb7. White solid lines highlight hydrophobic interface regions. Numbers 
correspond to the peptide numbers from the array (Table 19, Table 20). (D) Putative Npa3 binding region of Rpb7. 
Residues involved in the interface are shown as sticks and Npa3 binding interface residues are labeled. All structural 
figures were made using the Pol II structure pdb-code: 1WCM (Armache, et al., 2005). 
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(Leroux & Hartl, 2000) that interacts with Pol II subunits (Dekker, et al., 2008). Third, GPN-loop GTPases 

lack a nuclear localization signal (NLS), and mutations of GPN2 or GPN3 cannot be rescued by fusion of a 

NLS to Rpb3, whereas deletion of Iwr1 is partially rescued (Minaker, et al., 2013). Forth, in patients with 

myofibrillar myopathies, a neuromuscular disorder characterized by protein aggregates, human GPN1 

shows increased expression and accumulates with Rpb1 in the cytoplasm of muscle cells (Guglielmi, et 

al., 2015), consistent with a Pol II-specific chaperone function of GPN1. However, Npa3 may additionally 

play nuclear roles, because nucleocytoplasmic shuttling of GPN1/Npa3 has been reported (Forget, et al., 

2010; Staresincic, et al., 2011; Reyes-Pardo, et al., 2012; Forget, et al., 2013). 

From these results emerges the molecular basis of GPN-loop GTPase function. In our model 

(Figure 21), an exposed hydrophobic peptide region in a newly synthesized Pol II subunit triggers the 

opening of the Npa3 pocket in its GDP-bound state. Npa3 then traps exposed hydrophobic regions of 

Pol II subunits, preventing their misassembly and opening a time window for association with the 

cognate Pol II subunit. Peptide binding allosterically alters the active site, decreasing its affinity for GDP, 

to provoke GDP displacement, and increasing its affinity for GTP, to facilitate GTP rebinding. Subsequent 

GTP hydrolysis would lead to release of the bound Pol II subunit, to enable association with cognate 

subunits and Pol II assembly. Assembled Pol II is then recognized by Iwr1, which binds between the two 

largest polymerase subunits (Czeko, et al., 2011), and serves as an adaptor for import of Pol II into the 

nucleus. 
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Figure 21| Model for RNA polymerase II biogenesis. 
Whereas the ‘Npa3 cycle’ drives cytoplasmic assembly of Pol II, the ‘Iwr1 cycle’ drives Pol II nuclear import. In the Npa3 
cycle, pocket opening of Npa3∙GDP is induced by binding of hydrophobic regions of Pol II subunits that form interfaces in 
the assembled Pol II complex, thereby preventing misassembly (step 1). Pocket opening allosterically communicates with 
the active site, stimulates GDP displacement, and thereby facilitates GTP rebinding (step 2). GTP hydrolysis leads to release 
of Pol II peptides, facilitating formation of Pol II subunit interfaces and assembly of Pol II in the cytoplasm. In the Iwr1 cycle, 
assembled Pol II is recognized by Iwr1, which provides an import adaptor for nuclear import via its nuclear localization 
sequence (NLS). Iwr1 is recycled with the use of its nuclear export signal (NES).  

 

 



    RESULTS AND DISCUSSION 

65 
 

Figure 22| Additional Npa3∆C∆Loop crystallization conditions. 
Npa3∆C∆Loop was purified as described for wild-type Npa3 (2.3.1) (lower salt concentration than in ‘standard’ protocol 
for this construct). This prevents crystallization in the ‘standard’ condition and crystal shape but allows only low protein 
concentrations (< 1mg/ml) due to stability problems. Npa3∆C∆Loop was concentrated to 0.4 mg/ml and crystal were 
obtained by sitting drop vapor diffusion in 200 nl drops at 20°C in the indicated conditions. 

3.3. Further analysis of Npa3 and Npa3/GPN2 complexes 

Data presented in this chapter have been obtained during this thesis, but are not part of a publication. 

3.3.1. Additional Npa3∆C∆Loop crystallization conditions 
In addition to the crystallization conditions that led to the described structures (3.1), other conditions 

were identified to promote crystal growth of Npa3∆C∆Loop in complex with GDP or GMPPCP, 

respectively (Figure 22). Even though the crystals were very small and did not diffract synchrotron 

radiation, optimization of the conditions could may lead to bigger, diffracting crystals. The crystals 

showed different macroscopic shapes than the ones described and may serve as a starting point if a 

different crystal packing is desired. This could for instance be potentially interesting to analyze 

homodimeric Npa3 assemblies. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

 

3.3.2. Npa3 preferentially heterodimerizes with GPN2 and is required for its 
stable expression 
Attempts to recombinantly express various GPN2 constructs from S. cerevisiae in E. coli did hardly yield 

any protein neither in the soluble nor in the insoluble fraction (not shown) indicating that GPN2 is 

degraded within the cells. Recent studies reported that GPN2 is not able to homodimerize but 

heterodimerizes with Npa3 (Minaker, et al., 2013). We therefore co-transformed E. coli cells with 
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plasmids encoding both Npa3 without a tag and GPN2 with an N-terminal hexahistidine tag, 

respectively. Expression and subsequent Ni2+-affinity purification isolated stoichiometric Npa3/GPN2 

complexes that could be purified to homogeneity (Figure 23) with yields, equivalent to those of Npa3 

alone (approx. 100 mg per 4 liter E. coli culture). Notably, co-expression of N-terminal hexahistidine 

tagged Npa3 with untagged GPN2 also led to almost stoichiometric Npa3/GPN2 complexes (not shown), 

indicating that Npa3 has higher affinities for hetero- than for homodimerization. This is consistent with 

observations for GPN1 and GPN3 in mammalian cells (Mendez-Hernandez, et al., 2014). 

3.3.3. The Npa3/GPN2 complex does not interact with assembled Pol II 
Interaction of GPN2 with Pol II subunits has been reported (Boulon, et al., 2010; Forget, et al., 2010). We 

thus investigated whether the Npa3/GPN2 complex interacts with mature, complete assembled, 

purified Pol II using both analytical gel filtration and pull-down experiments with biotinylated Pol II. As 

observed for Npa3 alone (Figure 14) the Npa3/GPN2 complex did not interact with assembled Pol II 

(Figure 23) indicating that GPN2 interaction is restricted to the assembling polymerase. 

 

 

 

Figure 23| The Npa3/GPN2 complex does not interact with 
assembled, mature Pol II. 
(A) SDS-Page analysis of Pol II- and higher molecular weight 
fractions after analytical gel filtration (Superose 6 10/300, GE 
healthcare) upon incubation of Pol II with Npa3/GPN2-
nucleotide complexes. Purified  Pol II (12 µg), 5x molar excess of 
the purified Npa3/GPN2 complex and 1 mM GDP (left panel), 1 
mM GTP (middle panel) or 1 mM GMPPCP (right panel) were 
incubated over night at 4°C for nucleotide exchange and 
potential complex assembly. After gel filtration the fractions 
were TCA precipitated and analyzed by SDS-PAGE. Rpb3 bands 
were further analyzed by mass spectrometry because GPN2 
runs at a similar position on the gel (B) Streptavidin pull-down 
of biotinylated Pol II and associated factors. Purified Pol II was 
biotinylated at Rpb3 and 4.2 µg Pol II were incubated with 15x 
molar excess of the Npa3/GPN2 complex and 1 mM of the 
respective nucleotide over night at 8°C and 600 rpm. Marker: 
(top to bottom: 170, 130, 100, 70, 55, 40, 35, 25, 15, 10 kDa). 
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Figure 24| The C-terminal tail of both, Npa3 and GPN2 is not required for heterodimerization of the GPN-loop GTPases. 
SDS-PAGE analysis of Ni2+ affinity pull-downs after co-expression experiments using hexahistidine-tagged GPN2 variants 
and untagged Npa3 variants as described in the text. (A) Ni2+-affinity pull-down of hexahistidine-tagged GPN2∆C∆Loop 
(lacking the C-terminal tail and part of an internal loop) and full-length Npa3. (B) Ni2+-affinity pull-down of hexahistidine-
tagged full length GPN2 and Npa3∆C∆Loop (lacking the C-terminal tail and part of an internal loop). (B) Ni2+-affinity pull-
down of hexahistidine-tagged GPN2∆C∆Loop and untagged Npa3∆C∆Loop (both lacking the equivalent parts of the C-
terminal tail and an internal loop). 

3.3.4. The C-terminal tail is not required for Npa3/GPN2 complex formation 
In order to investigate the function of the C-terminal tail in Npa3/GPN2 complex formation we 

performed co-expression experiments using both, full-length and C-terminal deletion variants of 

hexahistidine-tagged GPN2 and untagged Npa3. Therefore we prepared a GPN2 variant lacking both the 

C-terminal tail (residues 265-347) and part of an internal loop (residues 206-211), (GPN2∆C∆Loop 

comprising residues 1-205 and 212-264), equivalent to the crystallized Npa3∆C∆Loop construct. Here, 

co-expression of untagged, full-length Npa3 with tagged GPN2∆C∆Loop and subsequent Ni2+-affinity 

purification isolated stoichiometric heterodimers, indicating that the C-terminal tail of GPN2 is not 

required for complex formation (Figure 24A). Vice versa, co-expression of tagged, full-length GPN2 with 

untagged Npa3∆C∆Loop also led to heterodimerization (Figure 24B). We then co-expressed both 

deletion variants, tagged GPN2∆C∆Loop and untagged Npa3∆C∆Loop (Figure 24C). Here, a single band 

was identified on the SDS gel due to the similar molecular weight of both constructs and analysis by 

mass-spectrometry revealed that both proteins co-eluted from the affinity column, indicating that none 

of the proteins requires the C-terminal tail for heterodimerization. 

 

 

 

 

 

 

 

 

 

3.3.5. Crystallization trials of Npa3/GPN2 complexes 
Because intense attempts to crystalize a full-length Npa3/GPN2 complex did not reveal crystals we 

tested various truncated constructs and combinations, including an Npa3∆C∆Loop/GPN2∆C∆Loop 

heterodimer (3.3.4). This complex represents the equivalent heterodimer to the crystallized Npa3 

variant. However, crystallization was hampered also in conditions were Npa3∆C∆Loop alone crystallized.



    CONCLUSION AND OUTLOOK 

68 
 

4. Conclusion and outlook 

In this thesis a combination of X-ray crystallography, site-directed mutagenesis, enzymatic activity 

assays, chaperone assays, protein-protein interaction techniques and a systemic Pol II peptide 

interaction screen were used to investigate the structure and function of the GPN-loop GTPase Npa3. In 

previous studies, functional characterization of Npa3 or its human homolog GPN1 mainly focused on 

cellular localization of Pol II subunits (Wild & Cramer, 2012), but biochemical and structural data were 

lacking and the question whether Npa3 functions in assembly or nuclear import of Pol II remained 

unanswered. In this thesis we report the first structure of a eukaryotic GPN-loop GTPase, show that it 

can adopt a closed GDP-bound state that reveals eukaryote-specific features, and a novel open GTP-

analog-bound state that exposes a conserved hydrophobic pocket. We further show that Npa3 has 

chaperone activity and that a chaperone substrate protein can stimulate its GTPase activity, which 

apparently triggers closing of the pocket. Using a systemic Pol II peptide interaction screen covering all 

regions of all 12 Pol II subunits we describe for the first time putative, particular interaction sites of a 

GPN-loop GTPase with Pol II subunits. We show that these regions are located at Pol II subunit 

interfaces and enriched in hydrophobic residues, consistent with a function of Npa3 as assembly 

chaperone. Such peptide arrays were successfully used in the past to characterize assembly chaperone 

interactions sites (Saschenbrecker, et al., 2007). The 15-residue long peptides can form small secondary 

structures, mimic partially folded Pol II subunit regions, and allow accessibility to Pol II subunit 

interfaces that are hard to grasp with conventional methods and bound by assembly chaperones.  

Our studies provide a framework for future validation and characterization of these interactions. 

Attempts to co-crystallize Npa3 with Rpb1- or Rpb11-derived peptides identified in our screen failed 

because they are hydrophobic and aggregated in the crystallization condition (not shown). 

Crystallographic studies of a fusion protein consisting of the crystallized Npa3 variant and a C-terminally 

fused Pol II peptide, separated by a short, flexible linker could solve the solubility problem and should 

allow peptide-binding to the nearby hydrophobic pocket. However, screening for new crystallization 

conditions may be required because crystal contacts separate the pocket from the C-terminus in the 

current crystal packing. Here, other crystallization conditions identified in this thesis to promote Npa3 

crystals growth (3.3.1) could provide a promising starting point for the identification of a different 

crystal packing. Further, here identified Npa3 interactions with Pol II subunits could for instance be 

verified with yeast two-hybrid assays as done for other assembly chaperones (Mao, et al., 2015) or 

recombinant co-expression experiments to additionally enable complex analysis. Structure-guided site-

directed mutagenesis of the hydrophobic Npa3 pocket could be used and impaired subunit interactions, 

Pol II assembly defects and growth defects could be analyzed.  
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In addition, structural characterization of Npa3 in complex with Pol II subunits or subassemblies 

should be of major interest for future Pol II biogenesis research. Our model (Figure 21) shows that Pol II 

subunit release from Npa3 is regulated by GTP hydrolysis and our high resolution crystal structures in 

combination with site-directed mutagenesis provide atomic details of how to abolish both processes 

and trap the complexes. For this, yeast cells expressing both, a functional Npa3 variant for cell viability 

and a tagged GTP hydrolysis-deficient mutant variant should allow purification of Npa3-bound Pol II 

subcomplexes. Further urea- (Kimura, et al., 1997) or α-amanitin (Boulon, et al., 2010) treatment of 

Pol II may be considered for subcomplex production. Chemical crosslinking and mass-spectrometry in 

combination with our Npa3 and the Pol II (Cramer, et al., 2000; Armache, et al., 2005) crystals structures 

could now be used to determine the complex architecture.  

Notably, no structure of any assembly factor in complex with Pol II subassemblies is available so 

far. Here, cryo-electron microscopy could be increasingly important in the future because recent 

advances in imaging hardware and processing software (Kuhlbrandt, 2014) may allow high resolution 

cryo-EM structures of Npa3-bound Pol II subassemblies and may also shed light into the structure and 

function of the C-terminal tail of Npa3 which is lacking in the crystal structure. 

In this study we showed that Npa3 is a Pol II assembly chaperone but the structure and function 

of its paralogs GPN2 and GPN3 is still unknown. However, they likely have similar, non-redundant 

functions and thus Npa3 may represents the founding member of a new family of assembly chaperones. 

Heterodimerization of Npa3/GPN1 with both paralogs was reported (Minaker, et al., 2013; Mendez-

Hernandez, et al., 2014) and likely needs to be considered to completely understand the function of 

Npa3. Interestingly, Npa3/GPN1 seems to preferentially heterodimerize with its paralogs because 

coexpression of human GPN1 and GPN3 (Mendez-Hernandez, et al., 2014) and recombinant co-

expression of yeast Npa3 and GPN2 (3.3.2) mainly leads to heterodimers. This, together with the 

proposed enzymatic mechanism that likely requires the ‘trans’-GPN-loop of a GPN-loop GTPase dimer 

for GTP hydrolysis (3.1.6; (Gras, et al., 2007)) and Pol II subunit release, may indicate an intriguing 

mechanism for Pol II assembly: Given that the other GPN-loop GTPases also function as assembly 

chaperones, they may bind Pol II regions at the opposite site of the interface than Npa3. In this case, 

GPN-loop GTPases could bring interacting subunits together by heterodimerization, orchestrate their 

assembly in a highly regulated manner and get released by GTP hydrolysis upon dimer formation to 

facilitate subunit association. To initially test this hypothesis, the Npa3/GPN2 complex could be used in 

our Pol II peptide array to analyze whether the presence of GPN2 leads to additional interactions on Pol 

II subunit regions that form interfaces with the ones identified for Npa3 binding. Further, this 

Npa3/GPN2 complex should be tested for chaperone activity, GPN2 hydrolysis-deficient mutants could 

be used for in vivo subunit pull-downs and the complex structures of GPN-loop GTPase heterodimers 
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should be investigated. Here, homology modeling of GPN2 and GPN3 with our Npa3 structure and 

analysis of their putative substrate binding pocket may give first insights into substrate specificities. 

Over the last decades, all efforts to recombinantly express and in-vitro assemble Pol II failed 

making analysis of its assembly steps including associated factors potentially challenging. Here, the 

addition of GPN-loop GTPases could be a prerequisite for subunit stability and interface formation and a 

step towards in vitro assembly. This would in fact allow many new possibilities to identify and analyze 

assembly intermediates, characterize assembly factor functions, and determine the chronological order 

of subunit assembly and chaperone action. For instance, it remains elusive whether Npa3 already 

interacts with nascent chains or at a later state of Pol II subunit maturation.  

  Further, regulation of Pol II biogenesis should be investigated in more detail because Npa3 is 

phosphorylated by Pcl1-PHO85, a cyclin-CDK complex involved in cell cycle progression (Keniry et al., 

2004; Albuquerque et al., 2008; Holt et al., 2009), indicating that Pol II biogenesis is linked to the cell 

cycle. This may regulate transcription by controlling the amount of assembled, functional Pol II, 

dependent on the specific needs of the cell. Additionally Pol I and Pol III biogenesis may need to be 

considered since they share subunits with Pol II (Vannini & Cramer, 2012) and biogenesis of all three 

polymerases is may mutually dependent.  

In this thesis we propose the cytoplasmic function of Npa3 but nucleocytoplasmic shuttling was 

reported (Forget, et al., 2010; Staresincic, et al., 2011; Forget, et al., 2013) indicating additional nuclear 

functions. One option would be that Npa3 not only assists cytoplasmic Pol II assembly but also nuclear 

disassembly of defective Pol II. Further, nucleocytoplasmic recycling of Pol II subunits may couple 

disassembly and assembly as observed for Rpb3 (Boulon, et al., 2010) and may be considered for Npa3 

function. To investigate disassembly, degradation and recycling of Pol II subunits, α-amanitin, a 

transcription inhibitor that specifically leads to degradation of nuclear Rpb1 has been shown to be an 

effective tool (Nguyen, et al., 1996; Jung & Lippard, 2006; Boulon, et al., 2010) and could be used to 

analyze Npa3 function in this processes. 

Taken together, the structural and functional data presented in this thesis provide novel insights 

into the role of GPN-loop GTPases in Pol II biogenesis and provide a framework for future analysis 

towards the understanding of this fundamental process. 
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5. Supplementary Information 

Table 20| Pol II-derived peptides tested for Npa3 binding. 

Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence  Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence 

Rpb1 1 1 15 MVGQQYSSAPLRTVK  Rpb1 42 165 179 GGCGNTQPTIRKDGL 

 2 5 19 QYSSAPLRTVKEVQF   43 169 183 NTQPTIRKDGLKLVG 

 3 9 23 APLRTVKEVQFGLFS   44 173 187 TIRKDGLKLVGSWKK 

 4 13 27 TVKEVQFGLFSPEEV   45 177 191 DGLKLVGSWKKDRAT 

 5 17 31 VQFGLFSPEEVRAIS   46 181 195 LVGSWKKDRATGDAD 

 6 21 35 LFSPEEVRAISVAKI   47 185 199 WKKDRATGDADEPEL 

 7 25 39 EEVRAISVAKIRFPE   48 189 203 RATGDADEPELRVLS 

 8 29 43 AISVAKIRFPETMDE   49 193 207 DADEPELRVLSTEEI 

 9 33 47 AKIRFPETMDETQTR   50 197 211 PELRVLSTEEILNIF 

 10 37 51 FPETMDETQTRAKIG   51 201 215 VLSTEEILNIFKHIS 

 11 41 55 MDETQTRAKIGGLND   52 205 219 EEILNIFKHISVKDF 

 12 45 59 QTRAKIGGLNDPRLG   53 209 223 NIFKHISVKDFTSLG 

 13 49 63 KIGGLNDPRLGSIDR   54 213 227 HISVKDFTSLGFNEV 

 14 53 67 LNDPRLGSIDRNLKC   55 217 231 KDFTSLGFNEVFSRP 

 15 57 71 RLGSIDRNLKCQTCQ   56 221 235 SLGFNEVFSRPEWMI 

 16 61 75 IDRNLKCQTCQEGMN   57 225 239 NEVFSRPEWMILTCL 

 17 65 79 LKCQTCQEGMNECPG   58 229 243 SRPEWMILTCLPVPP 

 18 69 83 TCQEGMNECPGHFGH   59 233 247 WMILTCLPVPPPPVR 

 19 73 87 GMNECPGHFGHIDLA   60 237 251 TCLPVPPPPVRPSIS 

 20 77 91 CPGHFGHIDLAKPVF   61 241 255 VPPPPVRPSISFNES 

 21 81 95 FGHIDLAKPVFHVGF   62 245 259 PVRPSISFNESQRGE 

 22 85 99 DLAKPVFHVGFIAKI   63 249 263 SISFNESQRGEDDLT 

 23 89 103 PVFHVGFIAKIKKVC   64 253 267 NESQRGEDDLTFKLA 

 24 93 107 VGFIAKIKKVCECVC   65 257 271 RGEDDLTFKLADILK 

 25 97 111 AKIKKVCECVCMHCG   66 261 275 DLTFKLADILKANIS 

 26 101 115 KVCECVCMHCGKLLL   67 265 279 KLADILKANISLETL 

 27 105 119 CVCMHCGKLLLDEHN   68 269 283 ILKANISLETLEHNG 

 28 109 123 HCGKLLLDEHNELMR   69 273 287 NISLETLEHNGAPHH 

 29 113 127 LLLDEHNELMRQALA   70 277 291 ETLEHNGAPHHAIEE 

 30 117 131 EHNELMRQALAIKDS   71 281 295 HNGAPHHAIEEAESL 

 31 121 135 LMRQALAIKDSKKRF   72 285 299 PHHAIEEAESLLQFH 

 32 125 139 ALAIKDSKKRFAAIW   73 289 303 IEEAESLLQFHVATY 

 33 129 143 KDSKKRFAAIWTLCK   74 293 307 ESLLQFHVATYMDND 

 34 133 147 KRFAAIWTLCKTKMV   75 297 311 QFHVATYMDNDIAGQ 

 35 137 151 AIWTLCKTKMVCETD   76 301 315 ATYMDNDIAGQPQAL 

 36 141 155 LCKTKMVCETDVPSE   77 305 319 DNDIAGQPQALQKSG 

 37 145 159 KMVCETDVPSEDDPT   78 309 323 AGQPQALQKSGRPVK 

 38 149 163 ETDVPSEDDPTQLVS   79 313 327 QALQKSGRPVKSIRA 

 39 153 167 PSEDDPTQLVSRGGC   80 317 331 KSGRPVKSIRARLKG 

 40 157 171 DPTQLVSRGGCGNTQ   81 321 335 PVKSIRARLKGKEGR 

 41 161 175 LVSRGGCGNTQPTIR   82 325 339 IRARLKGKEGRIRGN 
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Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence  Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence 

Rpb1 83 329 343 LKGKEGRIRGNLMGK  Rpb1 129 513 527 SPQSNKPCMGIVQDT 

 84 333 347 EGRIRGNLMGKRVDF   130 517 531 NKPCMGIVQDTLCGI 

 85 337 351 RGNLMGKRVDFSART   131 521 535 MGIVQDTLCGIRKLT 

 86 341 355 MGKRVDFSARTVISG   132 525 539 QDTLCGIRKLTLRDT 

 87 345 359 VDFSARTVISGDPNL   133 529 543 CGIRKLTLRDTFIEL 

 88 349 363 ARTVISGDPNLELDQ   134 533 547 KLTLRDTFIELDQVL 

 89 353 367 ISGDPNLELDQVGVP   135 537 551 RDTFIELDQVLNMLY 

 90 357 371 PNLELDQVGVPKSIA   136 541 555 IELDQVLNMLYWVPD 

 91 361 375 LDQVGVPKSIAKTLT   137 545 559 QVLNMLYWVPDWDGV 

 92 365 379 GVPKSIAKTLTYPEV   138 549 563 MLYWVPDWDGVIPTP 

 93 369 383 SIAKTLTYPEVVTPY   139 553 567 VPDWDGVIPTPAIIK 

 94 373 387 TLTYPEVVTPYNIDR   140 557 571 DGVIPTPAIIKPKPL 

 95 377 391 PEVVTPYNIDRLTQL   141 561 575 PTPAIIKPKPLWSGK 

 96 381 395 TPYNIDRLTQLVRNG   142 565 579 IIKPKPLWSGKQILS 

 97 385 399 IDRLTQLVRNGPNEH   143 569 583 KPLWSGKQILSVAIP 

 98 389 403 TQLVRNGPNEHPGAK   144 573 587 SGKQILSVAIPNGIH 

 99 393 407 RNGPNEHPGAKYVIR   145 577 591 ILSVAIPNGIHLQRF 

 100 397 411 NEHPGAKYVIRDSGD   146 581 595 AIPNGIHLQRFDEGT 

 101 401 415 GAKYVIRDSGDRIDL   147 585 599 GIHLQRFDEGTTLLS 

 102 405 419 VIRDSGDRIDLRYSK   148 589 603 QRFDEGTTLLSPKDN 

 103 409 423 SGDRIDLRYSKRAGD   149 593 607 EGTTLLSPKDNGMLI 

 104 413 427 IDLRYSKRAGDIQLQ   150 597 611 LLSPKDNGMLIIDGQ 

 105 417 431 YSKRAGDIQLQYGWK   151 601 615 KDNGMLIIDGQIIFG 

 106 421 435 AGDIQLQYGWKVERH   152 605 619 MLIIDGQIIFGVVEK 

 107 425 439 QLQYGWKVERHIMDN   153 609 623 DGQIIFGVVEKKTVG 

 108 429 443 GWKVERHIMDNDPVL   154 613 627 IFGVVEKKTVGSSNG 

 109 433 447 ERHIMDNDPVLFNRQ   155 617 631 VEKKTVGSSNGGLIH 

 110 437 451 MDNDPVLFNRQPSLH   156 621 635 TVGSSNGGLIHVVTR 

 111 441 455 PVLFNRQPSLHKMSM   157 625 639 SNGGLIHVVTREKGP 

 112 445 459 NRQPSLHKMSMMAHR   158 629 643 LIHVVTREKGPQVCA 

 113 449 463 SLHKMSMMAHRVKVI   159 633 647 VTREKGPQVCAKLFG 

 114 453 467 MSMMAHRVKVIPYST   160 637 651 KGPQVCAKLFGNIQK 

 115 457 471 AHRVKVIPYSTFRLN   161 641 655 VCAKLFGNIQKVVNF 

 116 461 475 KVIPYSTFRLNLSVT   162 645 659 LFGNIQKVVNFWLLH 

 117 465 479 YSTFRLNLSVTSPYN   163 649 663 IQKVVNFWLLHNGFS 

 118 469 483 RLNLSVTSPYNADFD   164 653 667 VNFWLLHNGFSTGIG 

 119 473 487 SVTSPYNADFDGDEM   165 657 671 LLHNGFSTGIGDTIA 

 120 477 491 PYNADFDGDEMNLHV   166 661 675 GFSTGIGDTIADGPT 

 121 481 495 DFDGDEMNLHVPQSE   167 665 679 GIGDTIADGPTMREI 

 122 485 499 DEMNLHVPQSEETRA   168 669 683 TIADGPTMREITETI 

 123 489 503 LHVPQSEETRAELSQ   169 673 687 GPTMREITETIAEAK 

 124 493 507 QSEETRAELSQLCAV   170 677 691 REITETIAEAKKKVL 

 125 497 511 TRAELSQLCAVPLQI   171 681 695 ETIAEAKKKVLDVTK 

 126 501 515 LSQLCAVPLQIVSPQ   172 685 699 EAKKKVLDVTKEAQA 

 127 505 519 CAVPLQIVSPQSNKP   173 689 703 KVLDVTKEAQANLLT 

 128 509 523 LQIVSPQSNKPCMGI   174 693 707 VTKEAQANLLTAKHG 
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Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence  Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence 

Rpb1 175 697 711 AQANLLTAKHGMTLR  Rpb1 221 881 895 QSLDTIGGSDAAFEK 

 176 701 715 LLTAKHGMTLRESFE   222 885 899 TIGGSDAAFEKRYRV 

 177 705 719 KHGMTLRESFEDNVV   223 889 903 SDAAFEKRYRVDLLN 

 178 709 723 TLRESFEDNVVRFLN   224 893 907 FEKRYRVDLLNTDHT 

 179 713 727 SFEDNVVRFLNEARD   225 897 911 YRVDLLNTDHTLDPS 

 180 717 731 NVVRFLNEARDKAGR   226 901 915 LLNTDHTLDPSLLES 

 181 721 735 FLNEARDKAGRLAEV   227 905 919 DHTLDPSLLESGSEI 

 182 725 739 ARDKAGRLAEVNLKD   228 909 923 DPSLLESGSEILGDL 

 183 729 743 AGRLAEVNLKDLNNV   229 913 927 LESGSEILGDLKLQV 

 184 733 747 AEVNLKDLNNVKQMV   230 917 931 SEILGDLKLQVLLDE 

 185 737 751 LKDLNNVKQMVMAGS   231 921 935 GDLKLQVLLDEEYKQ 

 186 741 755 NNVKQMVMAGSKGSF   232 925 939 LQVLLDEEYKQLVKD 

 187 745 759 QMVMAGSKGSFINIA   233 929 943 LDEEYKQLVKDRKFL 

 188 749 763 AGSKGSFINIAQMSA   234 933 947 YKQLVKDRKFLREVF 

 189 753 767 GSFINIAQMSACVGQ   235 937 951 VKDRKFLREVFVDGE 

 190 757 771 NIAQMSACVGQQSVE   236 941 955 KFLREVFVDGEANWP 

 191 761 775 MSACVGQQSVEGKRI   237 945 959 EVFVDGEANWPLPVN 

 192 765 779 VGQQSVEGKRIAFGF   238 949 963 DGEANWPLPVNIRRI 

 193 769 783 SVEGKRIAFGFVDRT   239 953 967 NWPLPVNIRRIIQNA 

 194 773 787 KRIAFGFVDRTLPHF   240 957 971 PVNIRRIIQNAQQTF 

 195 777 791 FGFVDRTLPHFSKDD   241 961 975 RRIIQNAQQTFHIDH 

 196 781 795 DRTLPHFSKDDYSPE   242 965 979 QNAQQTFHIDHTKPS 

 197 785 799 PHFSKDDYSPESKGF   243 969 983 QTFHIDHTKPSDLTI 

 198 789 803 KDDYSPESKGFVENS   244 973 987 IDHTKPSDLTIKDIV 

 199 793 807 SPESKGFVENSYLRG   245 977 991 KPSDLTIKDIVLGVK 

 200 797 811 KGFVENSYLRGLTPQ   246 981 995 LTIKDIVLGVKDLQE 

 201 801 815 ENSYLRGLTPQEFFF   247 985 999 DIVLGVKDLQENLLV 

 202 805 819 LRGLTPQEFFFHAMG   248 989 1003 GVKDLQENLLVLRGK 

 203 809 823 TPQEFFFHAMGGREG   249 993 1007 LQENLLVLRGKNEII 

 204 813 827 FFFHAMGGREGLIDT   250 997 1011 LLVLRGKNEIIQNAQ 

 205 817 831 AMGGREGLIDTAVKT   251 1001 1015 RGKNEIIQNAQRDAV 

 206 821 835 REGLIDTAVKTAETG   252 1005 1019 EIIQNAQRDAVTLFC 

 207 825 839 IDTAVKTAETGYIQR   253 1009 1023 NAQRDAVTLFCCLLR 

 208 829 843 VKTAETGYIQRRLVK   254 1013 1027 DAVTLFCCLLRSRLA 

 209 833 847 ETGYIQRRLVKALED   255 1017 1031 LFCCLLRSRLATRRV 

 210 837 851 IQRRLVKALEDIMVH   256 1021 1035 LLRSRLATRRVLQEY 

 211 841 855 LVKALEDIMVHYDNT   257 1025 1039 RLATRRVLQEYRLTK 

 212 845 859 LEDIMVHYDNTTRNS   258 1029 1043 RRVLQEYRLTKQAFD 

 213 849 863 MVHYDNTTRNSLGNV   259 1033 1047 QEYRLTKQAFDWVLS 

 214 853 867 DNTTRNSLGNVIQFI   260 1037 1051 LTKQAFDWVLSNIEA 

 215 857 871 RNSLGNVIQFIYGED   261 1041 1055 AFDWVLSNIEAQFLR 

 216 861 875 GNVIQFIYGEDGMDA   262 1045 1059 VLSNIEAQFLRSVVH 

 217 865 879 QFIYGEDGMDAAHIE   263 1049 1063 IEAQFLRSVVHPGEM 

 218 869 883 GEDGMDAAHIEKQSL   264 1053 1067 FLRSVVHPGEMVGVL 

 219 873 887 MDAAHIEKQSLDTIG   265 1057 1071 VVHPGEMVGVLAAQS 

 220 877 891 HIEKQSLDTIGGSDA   266 1061 1075 GEMVGVLAAQSIGEP 
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Rpb1 267 1065 1079 GVLAAQSIGEPATQM  Rpb1 313 1249 1263 DAETEAEEDHMLKKI 

 268 1069 1083 AQSIGEPATQMTLNT   314 1253 1267 EAEEDHMLKKIENTM 

 269 1073 1087 GEPATQMTLNTFHFA   315 1257 1271 DHMLKKIENTMLENI 

 270 1077 1091 TQMTLNTFHFAGVAS   316 1261 1275 KKIENTMLENITLRG 

 271 1081 1095 LNTFHFAGVASKKVT   317 1265 1279 NTMLENITLRGVENI 

 272 1085 1099 HFAGVASKKVTSGVP   318 1269 1283 ENITLRGVENIERVV 

 273 1089 1103 VASKKVTSGVPRLKE   319 1273 1287 LRGVENIERVVMMKY 

 274 1093 1107 KVTSGVPRLKEILNV   320 1277 1291 ENIERVVMMKYDRKV 

 275 1097 1111 GVPRLKEILNVAKNM   321 1281 1295 RVVMMKYDRKVPSPT 

 276 1101 1115 LKEILNVAKNMKTPS   322 1285 1299 MKYDRKVPSPTGEYV 

 277 1105 1119 LNVAKNMKTPSLTVY   323 1289 1303 RKVPSPTGEYVKEPE 

 278 1109 1123 KNMKTPSLTVYLEPG   324 1293 1307 SPTGEYVKEPEWVLE 

 279 1113 1127 TPSLTVYLEPGHAAD   325 1297 1311 EYVKEPEWVLETDGV 

 280 1117 1131 TVYLEPGHAADQEQA   326 1301 1315 EPEWVLETDGVNLSE 

 281 1121 1135 EPGHAADQEQAKLIR   327 1305 1319 VLETDGVNLSEVMTV 

 282 1125 1139 AADQEQAKLIRSAIE   328 1309 1323 DGVNLSEVMTVPGID 

 283 1129 1143 EQAKLIRSAIEHTTL   329 1313 1327 LSEVMTVPGIDPTRI 

 284 1133 1147 LIRSAIEHTTLKSVT   330 1317 1331 MTVPGIDPTRIYTNS 

 285 1137 1151 AIEHTTLKSVTIASE   331 1321 1335 GIDPTRIYTNSFIDI 

 286 1141 1155 TTLKSVTIASEIYYD   332 1325 1339 TRIYTNSFIDIMEVL 

 287 1145 1159 SVTIASEIYYDPDPR   333 1329 1343 TNSFIDIMEVLGIEA 

 288 1149 1163 ASEIYYDPDPRSTVI   334 1333 1347 IDIMEVLGIEAGRAA 

 289 1153 1167 YYDPDPRSTVIPEDE   335 1337 1351 EVLGIEAGRAALYKE 

 290 1157 1171 DPRSTVIPEDEEIIQ   336 1341 1355 IEAGRAALYKEVYNV 

 291 1161 1175 TVIPEDEEIIQLHFS   337 1345 1359 RAALYKEVYNVIASD 

 292 1165 1179 EDEEIIQLHFSLLDE   338 1349 1363 YKEVYNVIASDGSYV 

 293 1169 1183 IIQLHFSLLDEEAEQ   339 1353 1367 YNVIASDGSYVNYRH 

 294 1173 1187 HFSLLDEEAEQSFDQ   340 1357 1371 ASDGSYVNYRHMALL 

 295 1177 1191 LDEEAEQSFDQQSPW   341 1361 1375 SYVNYRHMALLVDVM 

 296 1181 1195 AEQSFDQQSPWLLRL   342 1365 1379 YRHMALLVDVMTTQG 

 297 1185 1199 FDQQSPWLLRLELDR   343 1369 1383 ALLVDVMTTQGGLTS 

 298 1189 1203 SPWLLRLELDRAAMN   344 1373 1387 DVMTTQGGLTSVTRH 

 299 1193 1207 LRLELDRAAMNDKDL   345 1377 1391 TQGGLTSVTRHGFNR 

 300 1197 1211 LDRAAMNDKDLTMGQ   346 1381 1395 LTSVTRHGFNRSNTG 

 301 1201 1215 AMNDKDLTMGQVGER   347 1385 1399 TRHGFNRSNTGALMR 

 302 1205 1219 KDLTMGQVGERIKQT   348 1389 1403 FNRSNTGALMRCSFE 

 303 1209 1223 MGQVGERIKQTFKND   349 1393 1407 NTGALMRCSFEETVE 

 304 1213 1227 GERIKQTFKNDLFVI   350 1397 1411 LMRCSFEETVEILFE 

 305 1217 1231 KQTFKNDLFVIWSED   351 1401 1415 SFEETVEILFEAGAS 

 306 1221 1235 KNDLFVIWSEDNDEK   352 1405 1419 TVEILFEAGASAELD 

 307 1225 1239 FVIWSEDNDEKLIIR   353 1409 1423 LFEAGASAELDDCRG 

 308 1229 1243 SEDNDEKLIIRCRVV   354 1413 1427 GASAELDDCRGVSEN 

 309 1233 1247 DEKLIIRCRVVRPKS   355 1417 1431 ELDDCRGVSENVILG 

 310 1237 1251 IIRCRVVRPKSLDAE   356 1421 1435 CRGVSENVILGQMAP 

 311 1241 1255 RVVRPKSLDAETEAE   357 1425 1439 SENVILGQMAPIGTG 

 312 1245 1259 PKSLDAETEAEEDHM   358 1429 1443 ILGQMAPIGTGAFDV 
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Rpb1 359 1433 1447 MAPIGTGAFDVMIDE  Rpb1 405 1617 1631 PSYSPTSPSYSPTSP 

 360 1437 1451 GTGAFDVMIDEESLV   406 1621 1635 PTSPSYSPTSPSYSP 

 361 1441 1455 FDVMIDEESLVKYMP   407 1625 1639 SYSPTSPSYSPTSPS 

 362 1445 1459 IDEESLVKYMPEQKI   408 1629 1643 TSPSYSPTSPSYSPT 

 363 1449 1463 SLVKYMPEQKITEIE   409 1633 1647 YSPTSPSYSPTSPSY 

 364 1453 1467 YMPEQKITEIEDGQD   410 1637 1651 SPSYSPTSPSYSPTS 

 365 1457 1471 QKITEIEDGQDGGVT   411 1641 1655 SPTSPSYSPTSPSYS 

 366 1461 1475 EIEDGQDGGVTPYSN   412 1645 1659 PSYSPTSPSYSPTSP 

 367 1465 1479 GQDGGVTPYSNESGL   413 1649 1663 PTSPSYSPTSPAYSP 

 368 1469 1483 GVTPYSNESGLVNAD   414 1653 1667 SYSPTSPAYSPTSPS 

 369 1473 1487 YSNESGLVNADLDVK   415 1657 1671 TSPAYSPTSPSYSPT 

 370 1477 1491 SGLVNADLDVKDELM   416 1661 1675 YSPTSPSYSPTSPSY 

 371 1481 1495 NADLDVKDELMFSPL   417 1665 1679 SPSYSPTSPSYSPTS 

 372 1485 1499 DVKDELMFSPLVDSG   418 1669 1683 SPTSPSYSPTSPSYS 

 373 1489 1503 ELMFSPLVDSGSNDA   419 1673 1687 PSYSPTSPSYSPTSP 

 374 1493 1507 SPLVDSGSNDAMAGG   420 1677 1691 PTSPSYSPTSPSYSP 

 375 1497 1511 DSGSNDAMAGGFTAY   421 1681 1695 SYSPTSPSYSPTSPN 

 376 1501 1515 NDAMAGGFTAYGGAD   422 1685 1699 TSPSYSPTSPNYSPT 

 377 1505 1519 AGGFTAYGGADYGEA   423 1689 1703 YSPTSPNYSPTSPSY 

 378 1509 1523 TAYGGADYGEATSPF   424 1693 1707 SPNYSPTSPSYSPTS 

 379 1513 1527 GADYGEATSPFGAYG   425 1697 1711 SPTSPSYSPTSPGYS 

 380 1517 1531 GEATSPFGAYGEAPT   426 1701 1715 PSYSPTSPGYSPGSP 

 381 1521 1535 SPFGAYGEAPTSPGF   427 1705 1719 PTSPGYSPGSPAYSP 

 382 1525 1539 AYGEAPTSPGFGVSS   428 1709 1723 GYSPGSPAYSPKQDE 

 383 1529 1543 APTSPGFGVSSPGFS   429 1713 1727 GSPAYSPKQDEQKHN 

 384 1533 1547 PGFGVSSPGFSPTSP   430 1717 1731 YSPKQDEQKHNENEN 

 385 1537 1551 VSSPGFSPTSPTYSP  Rpb1/2 431   QDEQKHNENENSRMS 

 386 1541 1555 GFSPTSPTYSPTSPA   432   KHNENENSRMSDLAN 

 387 1545 1559 TSPTYSPTSPAYSPT   433   NENSRMSDLANSEKY 

 388 1549 1563 YSPTSPAYSPTSPSY   434   RMSDLANSEKYYDED 

 389 1553 1567 SPAYSPTSPSYSPTS  Rpb2 435 4 18 LANSEKYYDEDPYGF 

 390 1557 1571 SPTSPSYSPTSPSYS   436 8 22 EKYYDEDPYGFEDES 

 391 1561 1575 PSYSPTSPSYSPTSP   437 12 26 DEDPYGFEDESAPIT 

 392 1565 1579 PTSPSYSPTSPSYSP   438 16 30 YGFEDESAPITAEDS 

 393 1569 1583 SYSPTSPSYSPTSPS   439 20 34 DESAPITAEDSWAVI 

 394 1573 1587 TSPSYSPTSPSYSPT   440 24 38 PITAEDSWAVISAFF 

 395 1577 1591 YSPTSPSYSPTSPSY   441 28 42 EDSWAVISAFFREKG 

 396 1581 1595 SPSYSPTSPSYSPTS   442 32 46 AVISAFFREKGLVSQ 

 397 1585 1599 SPTSPSYSPTSPSYS   443 36 50 AFFREKGLVSQQLDS 

 398 1589 1603 PSYSPTSPSYSPTSP   444 40 54 EKGLVSQQLDSFNQF 

 399 1593 1607 PTSPSYSPTSPSYSP   445 44 58 VSQQLDSFNQFVDYT 

 400 1597 1611 SYSPTSPSYSPTSPS   446 48 62 LDSFNQFVDYTLQDI 

 401 1601 1615 TSPSYSPTSPSYSPT   447 52 66 NQFVDYTLQDIICED 

 402 1605 1619 YSPTSPSYSPTSPSY   448 56 70 DYTLQDIICEDSTLI 

 403 1609 1623 SPSYSPTSPSYSPTS   449 60 74 QDIICEDSTLILEQL 

 404 1613 1627 SPTSPSYSPTSPSYS   450 64 78 CEDSTLILEQLAQHT 



    SUPPLEMENATRY INFORMATION 

76 
 

 
Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence  Pol II 
subunit 

Peptide 
No. 

Start 
a.a. 

End 
a.a. 

Sequence 

Rpb2 451 68 82 TLILEQLAQHTTESD  Rpb2 497 252 266 STLQVKLYGREGSSA 

 452 72 86 EQLAQHTTESDNISR   498 256 270 VKLYGREGSSARTIK 

 453 76 90 QHTTESDNISRKYEI   499 260 274 GREGSSARTIKATLP 

 454 80 94 ESDNISRKYEISFGK   500 264 278 SSARTIKATLPYIKQ 

 455 84 98 ISRKYEISFGKIYVT   501 268 282 TIKATLPYIKQDIPI 

 456 88 102 YEISFGKIYVTKPMV   502 272 286 TLPYIKQDIPIVIIF 

 457 92 106 FGKIYVTKPMVNESD   503 276 290 IKQDIPIVIIFRALG 

 458 96 110 YVTKPMVNESDGVTH   504 280 294 IPIVIIFRALGIIPD 

 459 100 114 PMVNESDGVTHALYP   505 284 298 IIFRALGIIPDGEIL 

 460 104 118 ESDGVTHALYPQEAR   506 288 302 ALGIIPDGEILEHIC 

 461 108 122 VTHALYPQEARLRNL   507 292 306 IPDGEILEHICYDVN 

 462 112 126 LYPQEARLRNLTYSS   508 296 310 EILEHICYDVNDWQM 

 463 116 130 EARLRNLTYSSGLFV   509 300 314 HICYDVNDWQMLEML 

 464 120 134 RNLTYSSGLFVDVKK   510 304 318 DVNDWQMLEMLKPCV 

 465 124 138 YSSGLFVDVKKRTYE   511 308 322 WQMLEMLKPCVEDGF 

 466 128 142 LFVDVKKRTYEAIDV   512 312 326 EMLKPCVEDGFVIQD 

 467 132 146 VKKRTYEAIDVPGRE   513 316 330 PCVEDGFVIQDRETA 

 468 136 150 TYEAIDVPGRELKYE   514 320 334 DGFVIQDRETALDFI 

 469 140 154 IDVPGRELKYELIAE   515 324 338 IQDRETALDFIGRRG 

 470 144 158 GRELKYELIAEESED   516 328 342 ETALDFIGRRGTALG 

 471 148 162 KYELIAEESEDDSES   517 332 346 DFIGRRGTALGIKKE 

 472 152 166 IAEESEDDSESGKVF   518 336 350 RRGTALGIKKEKRIQ 

 473 156 170 SEDDSESGKVFIGRL   519 340 354 ALGIKKEKRIQYAKD 

 474 160 174 SESGKVFIGRLPIML   520 344 358 KKEKRIQYAKDILQK 

 475 164 178 KVFIGRLPIMLRSKN   521 348 362 RIQYAKDILQKEFLP 

 476 168 182 GRLPIMLRSKNCYLS   522 352 366 AKDILQKEFLPHITQ 

 477 172 186 IMLRSKNCYLSEATE   523 356 370 LQKEFLPHITQLEGF 

 478 176 190 SKNCYLSEATESDLY   524 360 374 FLPHITQLEGFESRK 

 479 180 194 YLSEATESDLYKLKE   525 364 378 ITQLEGFESRKAFFL 

 480 184 198 ATESDLYKLKECPFD   526 368 382 EGFESRKAFFLGYMI 

 481 188 202 DLYKLKECPFDMGGY   527 372 386 SRKAFFLGYMINRLL 

 482 192 206 LKECPFDMGGYFIIN   528 376 390 FFLGYMINRLLLCAL 

 483 196 210 PFDMGGYFIINGSEK   529 380 394 YMINRLLLCALDRKD 

 484 200 214 GGYFIINGSEKVLIA   530 384 398 RLLLCALDRKDQDDR 

 485 204 218 IINGSEKVLIAQERS   531 388 402 CALDRKDQDDRDHFG 

 486 208 222 SEKVLIAQERSAGNI   532 392 406 RKDQDDRDHFGKKRL 

 487 212 226 LIAQERSAGNIVQVF   533 396 410 DDRDHFGKKRLDLAG 

 488 216 230 ERSAGNIVQVFKKAA   534 400 414 HFGKKRLDLAGPLLA 

 489 220 234 GNIVQVFKKAAPSPI   535 404 418 KRLDLAGPLLAQLFK 

 490 224 238 QVFKKAAPSPISHVA   536 408 422 LAGPLLAQLFKTLFK 

 491 228 242 KAAPSPISHVAEIRS   537 412 426 LLAQLFKTLFKKLTK 

 492 232 246 SPISHVAEIRSALEK   538 416 430 LFKTLFKKLTKDIFR 

 493 236 250 HVAEIRSALEKGSRF   539 420 434 LFKKLTKDIFRYMQR 

 494 240 254 IRSALEKGSRFISTL   540 424 438 LTKDIFRYMQRTVEE 

 495 244 258 LEKGSRFISTLQVKL   541 428 442 IFRYMQRTVEEAHDF 

 496 248 262 SRFISTLQVKLYGRE   542 432 446 MQRTVEEAHDFNMKL 
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Rpb2 543 436 450 VEEAHDFNMKLAINA  Rpb2 589 620 634 REKELKIFTDAGRVY 

 544 440 454 HDFNMKLAINAKTIT   590 624 638 LKIFTDAGRVYRPLF 

 545 444 458 MKLAINAKTITSGLK   591 628 642 TDAGRVYRPLFIVED 

 546 448 462 INAKTITSGLKYALA   592 632 646 RVYRPLFIVEDDESL 

 547 452 466 TITSGLKYALATGNW   593 636 650 PLFIVEDDESLGHKE 

 548 456 470 GLKYALATGNWGEQK   594 640 654 VEDDESLGHKELKVR 

 549 460 474 ALATGNWGEQKKAMS   595 644 658 ESLGHKELKVRKGHI 

 550 464 478 GNWGEQKKAMSSRAG   596 648 662 HKELKVRKGHIAKLM 

 551 468 482 EQKKAMSSRAGVSQV   597 652 666 KVRKGHIAKLMATEY 

 552 472 486 AMSSRAGVSQVLNRY   598 656 670 GHIAKLMATEYQDIE 

 553 476 490 RAGVSQVLNRYTYSS   599 660 674 KLMATEYQDIEGGFE 

 554 480 494 SQVLNRYTYSSTLSH   600 664 678 TEYQDIEGGFEDVEE 

 555 484 498 NRYTYSSTLSHLRRT   601 668 682 DIEGGFEDVEEYTWS 

 556 488 502 YSSTLSHLRRTNTPI   602 672 686 GFEDVEEYTWSSLLN 

 557 492 506 LSHLRRTNTPIGRDG   603 676 690 VEEYTWSSLLNEGLV 

 558 496 510 RRTNTPIGRDGKLAK   604 680 694 TWSSLLNEGLVEYID 

 559 500 514 TPIGRDGKLAKPRQL   605 684 698 LLNEGLVEYIDAEEE 

 560 504 518 RDGKLAKPRQLHNTH   606 688 702 GLVEYIDAEEEESIL 

 561 508 522 LAKPRQLHNTHWGLV   607 692 706 YIDAEEEESILIAMQ 

 562 512 526 RQLHNTHWGLVCPAE   608 696 710 EEEESILIAMQPEDL 

 563 516 530 NTHWGLVCPAETPEG   609 700 714 SILIAMQPEDLEPAE 

 564 520 534 GLVCPAETPEGQACG   610 704 718 AMQPEDLEPAEANEE 

 565 524 538 PAETPEGQACGLVKN   611 708 722 EDLEPAEANEENDLD 

 566 528 542 PEGQACGLVKNLSLM   612 712 726 PAEANEENDLDVDPA 

 567 532 546 ACGLVKNLSLMSCIS   613 716 730 NEENDLDVDPAKRIR 

 568 536 550 VKNLSLMSCISVGTD   614 720 734 DLDVDPAKRIRVSHH 

 569 540 554 SLMSCISVGTDPMPI   615 724 738 DPAKRIRVSHHATTF 

 570 544 558 CISVGTDPMPIITFL   616 728 742 RIRVSHHATTFTHCE 

 571 548 562 GTDPMPIITFLSEWG   617 732 746 SHHATTFTHCEIHPS 

 572 552 566 MPIITFLSEWGMEPL   618 736 750 TTFTHCEIHPSMILG 

 573 556 570 TFLSEWGMEPLEDYV   619 740 754 HCEIHPSMILGVAAS 

 574 560 574 EWGMEPLEDYVPHQS   620 744 758 HPSMILGVAASIIPF 

 575 564 578 EPLEDYVPHQSPDAT   621 748 762 ILGVAASIIPFPDHN 

 576 568 582 DYVPHQSPDATRVFV   622 752 766 AASIIPFPDHNQSPR 

 577 572 586 HQSPDATRVFVNGVW   623 756 770 IPFPDHNQSPRNTYQ 

 578 576 590 DATRVFVNGVWHGVH   624 760 774 DHNQSPRNTYQSAMG 

 579 580 594 VFVNGVWHGVHRNPA   625 764 778 SPRNTYQSAMGKQAM 

 580 584 598 GVWHGVHRNPARLME   626 768 782 TYQSAMGKQAMGVFL 

 581 588 602 GVHRNPARLMETLRT   627 772 786 AMGKQAMGVFLTNYN 

 582 592 606 NPARLMETLRTLRRK   628 776 790 QAMGVFLTNYNVRMD 

 583 596 610 LMETLRTLRRKGDIN   629 780 794 VFLTNYNVRMDTMAN 

 584 600 614 LRTLRRKGDINPEVS   630 784 798 NYNVRMDTMANILYY 

 585 604 618 RRKGDINPEVSMIRD   631 788 802 RMDTMANILYYPQKP 

 586 608 622 DINPEVSMIRDIREK   632 792 806 MANILYYPQKPLGTT 

 587 612 626 EVSMIRDIREKELKI   633 796 810 LYYPQKPLGTTRAME 

 588 616 630 IRDIREKELKIFTDA   634 800 814 QKPLGTTRAMEYLKF 
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Rpb2 635 804 818 GTTRAMEYLKFRELP  Rpb2 681 988 1002 GTIGITYRREDMPFT 

 636 808 822 AMEYLKFRELPAGQN   682 992 1006 ITYRREDMPFTAEGI 

 637 812 826 LKFRELPAGQNAIVA   683 996 1010 REDMPFTAEGIVPDL 

 638 816 830 ELPAGQNAIVAIACY   684 1000 1014 PFTAEGIVPDLIINP 

 639 820 834 GQNAIVAIACYSGYN   685 1004 1018 EGIVPDLIINPHAIP 

 640 824 838 IVAIACYSGYNQEDS   686 1008 1022 PDLIINPHAIPSRMT 

 641 828 842 ACYSGYNQEDSMIMN   687 1012 1026 INPHAIPSRMTVAHL 

 642 832 846 GYNQEDSMIMNQSSI   688 1016 1030 AIPSRMTVAHLIECL 

 643 836 850 EDSMIMNQSSIDRGL   689 1020 1034 RMTVAHLIECLLSKV 

 644 840 854 IMNQSSIDRGLFRSL   690 1024 1038 AHLIECLLSKVAALS 

 645 844 858 SSIDRGLFRSLFFRS   691 1028 1042 ECLLSKVAALSGNEG 

 646 848 862 RGLFRSLFFRSYMDQ   692 1032 1046 SKVAALSGNEGDASP 

 647 852 866 RSLFFRSYMDQEKKY   693 1036 1050 ALSGNEGDASPFTDI 

 648 856 870 FRSYMDQEKKYGMSI   694 1040 1054 NEGDASPFTDITVEG 

 649 860 874 MDQEKKYGMSITETF   695 1044 1058 ASPFTDITVEGISKL 

 650 864 878 KKYGMSITETFEKPQ   696 1048 1062 TDITVEGISKLLREH 

 651 868 882 MSITETFEKPQRTNT   697 1052 1066 VEGISKLLREHGYQS 

 652 872 886 ETFEKPQRTNTLRMK   698 1056 1070 SKLLREHGYQSRGFE 

 653 876 890 KPQRTNTLRMKHGTY   699 1060 1074 REHGYQSRGFEVMYN 

 654 880 894 TNTLRMKHGTYDKLD   700 1064 1078 YQSRGFEVMYNGHTG 

 655 884 898 RMKHGTYDKLDDDGL   701 1068 1082 GFEVMYNGHTGKKLM 

 656 888 902 GTYDKLDDDGLIAPG   702 1072 1086 MYNGHTGKKLMAQIF 

 657 892 906 KLDDDGLIAPGVRVS   703 1076 1090 HTGKKLMAQIFFGPT 

 658 896 910 DGLIAPGVRVSGEDV   704 1080 1094 KLMAQIFFGPTYYQR 

 659 900 914 APGVRVSGEDVIIGK   705 1084 1098 QIFFGPTYYQRLRHM 

 660 904 918 RVSGEDVIIGKTTPI   706 1088 1102 GPTYYQRLRHMVDDK 

 661 908 922 EDVIIGKTTPISPDE   707 1092 1106 YQRLRHMVDDKIHAR 

 662 912 926 IGKTTPISPDEEELG   708 1096 1110 RHMVDDKIHARARGP 

 663 916 930 TPISPDEEELGQRTA   709 1100 1114 DDKIHARARGPMQVL 

 664 920 934 PDEEELGQRTAYHSK   710 1104 1118 HARARGPMQVLTRQP 

 665 924 938 ELGQRTAYHSKRDAS   711 1108 1122 RGPMQVLTRQPVEGR 

 666 928 942 RTAYHSKRDASTPLR   712 1112 1126 QVLTRQPVEGRSRDG 

 667 932 946 HSKRDASTPLRSTEN   713 1116 1130 RQPVEGRSRDGGLRF 

 668 936 950 DASTPLRSTENGIVD   714 1120 1134 EGRSRDGGLRFGEME 

 669 940 954 PLRSTENGIVDQVLV   715 1124 1138 RDGGLRFGEMERDCM 

 670 944 958 TENGIVDQVLVTTNQ   716 1128 1142 LRFGEMERDCMIAHG 

 671 948 962 IVDQVLVTTNQDGLK   717 1132 1146 EMERDCMIAHGAASF 

 672 952 966 VLVTTNQDGLKFVKV   718 1136 1150 DCMIAHGAASFLKER 

 673 956 970 TNQDGLKFVKVRVRT   719 1140 1154 AHGAASFLKERLMEA 

 674 960 974 GLKFVKVRVRTTKIP   720 1144 1158 ASFLKERLMEASDAF 

 675 964 978 VKVRVRTTKIPQIGD   721 1148 1162 KERLMEASDAFRVHI 

 676 968 982 VRTTKIPQIGDKFAS   722 1152 1166 MEASDAFRVHICGIC 

 677 972 986 KIPQIGDKFASRHGQ   723 1156 1170 DAFRVHICGICGLMT 

 678 976 990 IGDKFASRHGQKGTI   724 1160 1174 VHICGICGLMTVIAK 

 679 980 994 FASRHGQKGTIGITY   725 1164 1178 GICGLMTVIAKLNHN 

 680 984 998 HGQKGTIGITYRRED   726 1168 1182 LMTVIAKLNHNQFEC 
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Rpb2 727 1172 1186 IAKLNHNQFECKGCD  Rpb3 773 132 146 PIIQDKEGNGVLICK 

 728 1176 1190 NHNQFECKGCDNKID   774 136 150 DKEGNGVLICKLRKG 

 729 1180 1194 FECKGCDNKIDIYQI   775 140 154 NGVLICKLRKGQELK 

 730 1184 1198 GCDNKIDIYQIHIPY   776 144 158 ICKLRKGQELKLTCV 

 731 1188 1202 KIDIYQIHIPYAAKL   777 148 162 RKGQELKLTCVAKKG 

 732 1192 1206 YQIHIPYAAKLLFQE   778 152 166 ELKLTCVAKKGIAKE 

 733 1196 1210 IPYAAKLLFQELMAM   779 156 170 TCVAKKGIAKEHAKW 

 734 1200 1214 AKLLFQELMAMNITP   780 160 174 KKGIAKEHAKWGPAA 

 735 1204 1218 FQELMAMNITPRLYT   781 164 178 AKEHAKWGPAAAIEF 

 736 1208 1222 MAMNITPRLYTDRSR   782 168 182 AKWGPAAAIEFEYDP 

Rpb2/3 737   ITPRLYTDRSRDFMS   783 172 186 PAAAIEFEYDPWNKL 

 738   LYTDRSRDFMSEEGP   784 176 190 IEFEYDPWNKLKHTD 

 739   RSRDFMSEEGPQVKI   785 180 194 YDPWNKLKHTDYWYE 

 740   FMSEEGPQVKIREAS   786 184 198 NKLKHTDYWYEQDSA 

Rpb3 741 4 18 EGPQVKIREASKDNV   787 188 202 HTDYWYEQDSAKEWP 

 742 8 22 VKIREASKDNVDFIL   788 192 206 WYEQDSAKEWPQSKN 

 743 12 26 EASKDNVDFILSNVD   789 196 210 DSAKEWPQSKNCEYE 

 744 16 30 DNVDFILSNVDLAMA   790 200 214 EWPQSKNCEYEDPPN 

 745 20 34 FILSNVDLAMANSLR   791 204 218 SKNCEYEDPPNEGDP 

 746 24 38 NVDLAMANSLRRVMI   792 208 222 EYEDPPNEGDPFDYK 

 747 28 42 AMANSLRRVMIAEIP   793 212 226 PPNEGDPFDYKAQAD 

 748 32 46 SLRRVMIAEIPTLAI   794 216 230 GDPFDYKAQADTFYM 

 749 36 50 VMIAEIPTLAIDSVE   795 220 234 DYKAQADTFYMNVES 

 750 40 54 EIPTLAIDSVEVETN   796 224 238 QADTFYMNVESVGSI 

 751 44 58 LAIDSVEVETNTTVL   797 228 242 FYMNVESVGSIPVDQ 

 752 48 62 SVEVETNTTVLADEF   798 232 246 VESVGSIPVDQVVVR 

 753 52 66 ETNTTVLADEFIAHR   799 236 250 GSIPVDQVVVRGIDT 

 754 56 70 TVLADEFIAHRLGLI   800 240 254 VDQVVVRGIDTLQKK 

 755 60 74 DEFIAHRLGLIPLQS   801 244 258 VVRGIDTLQKKVASI 

 756 64 78 AHRLGLIPLQSMDIE   802 248 262 IDTLQKKVASILLAL 

 757 68 82 GLIPLQSMDIEQLEY   803 252 266 QKKVASILLALTQMD 

 758 72 86 LQSMDIEQLEYSRDC   804 256 270 ASILLALTQMDQDKV 

 759 76 90 DIEQLEYSRDCFCED   805 260 274 LALTQMDQDKVNFAS 

 760 80 94 LEYSRDCFCEDHCDK   806 264 278 QMDQDKVNFASGDNN 

 761 84 98 RDCFCEDHCDKCSVV   807 268 282 DKVNFASGDNNTASN 

 762 88 102 CEDHCDKCSVVLTLQ   808 272 286 FASGDNNTASNMLGS 

 763 92 106 CDKCSVVLTLQAFGE   809 276 290 DNNTASNMLGSNEDV 

 764 96 110 SVVLTLQAFGESEST   810 280 294 ASNMLGSNEDVMMTG 

 765 100 114 TLQAFGESESTTNVY   811 284 298 LGSNEDVMMTGAEQD 

 766 104 118 FGESESTTNVYSKDL   812 288 302 EDVMMTGAEQDPYSN 

 767 108 122 ESTTNVYSKDLVIVS   813 292 306 MTGAEQDPYSNASQM 

 768 112 126 NVYSKDLVIVSNLMG   814 296 310 EQDPYSNASQMGNTG 

 769 116 130 KDLVIVSNLMGRNIG   815 300 314 YSNASQMGNTGSGGY 

 770 120 134 IVSNLMGRNIGHPII   816 304 318 SQMGNTGSGGYDNAW 

 771 124 138 LMGRNIGHPIIQDKE  Rpb3/4 817   NTGSGGYDNAWMNVS 

 772 128 142 NIGHPIIQDKEGNGV   818   GGYDNAWMNVSTSTF 
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 819   NAWMNVSTSTFQTRR   865 182 196 SLACDTADEAKTLIP 

Rpb4 820 2 16 NVSTSTFQTRRRRLK   866 186 200 DTADEAKTLIPSLNN 

 821 6 20 STFQTRRRRLKKVEE   867 190 204 EAKTLIPSLNNKISD 

 822 10 24 TRRRRLKKVEEEENA   868 194 208 LIPSLNNKISDDELE 

 823 14 28 RLKKVEEEENAATLQ   869 198 212 LNNKISDDELERILK 

 824 18 32 VEEEENAATLQLGQE   870 202 216 ISDDELERILKELSN 

 825 22 36 ENAATLQLGQEFQLK   871 206 220 ELERILKELSNLETL 

 826 26 40 TLQLGQEFQLKQINH  Rpb4/5 872   ILKELSNLETLYMDQ 

 827 30 44 GQEFQLKQINHQGEE   873   LSNLETLYMDQENER 

 828 34 48 QLKQINHQGEEEELI   874   ETLYMDQENERNISR 

 829 38 52 INHQGEEEELIALNL  Rpb5 875 1 15 MDQENERNISRLWRA 

 830 42 56 GEEEELIALNLSEAR   876 5 19 NERNISRLWRAFRTV 

 831 46 60 ELIALNLSEARLVIK   877 9 23 ISRLWRAFRTVKEMV 

 832 50 64 LNLSEARLVIKEALV   878 13 27 WRAFRTVKEMVKDRG 

 833 54 68 EARLVIKEALVERRR   879 17 31 RTVKEMVKDRGYFIT 

 834 58 72 VIKEALVERRRAFKR   880 21 35 EMVKDRGYFITQEEV 

 835 62 76 ALVERRRAFKRSQKK   881 25 39 DRGYFITQEEVELPL 

 836 66 80 RRRAFKRSQKKHKKK   882 29 43 FITQEEVELPLEDFK 

 837 70 84 FKRSQKKHKKKHLKH   883 33 47 EEVELPLEDFKAKYC 

 838 74 88 QKKHKKKHLKHENAN   884 37 51 LPLEDFKAKYCDSMG 

 839 78 92 KKKHLKHENANDETT   885 41 55 DFKAKYCDSMGRPQR 

 840 82 96 LKHENANDETTAVED   886 45 59 KYCDSMGRPQRKMMS 

 841 86 100 NANDETTAVEDEDDD   887 49 63 SMGRPQRKMMSFQAN 

 842 90 104 ETTAVEDEDDDLDED   888 53 67 PQRKMMSFQANPTEE 

 843 94 108 VEDEDDDLDEDDVNA   889 57 71 MMSFQANPTEESISK 

 844 98 112 DDDLDEDDVNADDDD   890 61 75 QANPTEESISKFPDM 

 845 102 116 DEDDVNADDDDFMHS   891 65 79 TEESISKFPDMGSLW 

 846 106 120 VNADDDDFMHSETRE   892 69 83 ISKFPDMGSLWVEFC 

 847 110 124 DDDFMHSETREKELE   893 73 87 PDMGSLWVEFCDEPS 

 848 114 128 MHSETREKELESIDV   894 77 91 SLWVEFCDEPSVGVK 

 849 118 132 TREKELESIDVLLEQ   895 81 95 EFCDEPSVGVKTMKT 

 850 122 136 ELESIDVLLEQTTGG   896 85 99 EPSVGVKTMKTFVIH 

 851 126 140 IDVLLEQTTGGNNKD   897 89 103 GVKTMKTFVIHIQEK 

 852 130 144 LEQTTGGNNKDLKNT   898 93 107 MKTFVIHIQEKNFQT 

 853 134 148 TGGNNKDLKNTMQYL   899 97 111 VIHIQEKNFQTGIFV 

 854 138 152 NKDLKNTMQYLTNFS   900 101 115 QEKNFQTGIFVYQNN 

 855 142 156 KNTMQYLTNFSRFRD   901 105 119 FQTGIFVYQNNITPS 

 856 146 160 QYLTNFSRFRDQETV   902 109 123 IFVYQNNITPSAMKL 

 857 150 164 NFSRFRDQETVGAVI   903 113 127 QNNITPSAMKLVPSI 

 858 154 168 FRDQETVGAVIQLLK   904 117 131 TPSAMKLVPSIPPAT 

 859 158 172 ETVGAVIQLLKSTGL   905 121 135 MKLVPSIPPATIETF 

 860 162 176 AVIQLLKSTGLHPFE   906 125 139 PSIPPATIETFNEAA 

 861 166 180 LLKSTGLHPFEVAQL   907 129 143 PATIETFNEAALVVN 

 862 170 184 TGLHPFEVAQLGSLA   908 133 147 ETFNEAALVVNITHH 

 863 174 188 PFEVAQLGSLACDTA   909 137 151 EAALVVNITHHELVP 

 864 178 192 AQLGSLACDTADEAK   910 141 155 VVNITHHELVPKHIR 
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 911 145 159 THHELVPKHIRLSSD   957 114 128 ETDPLRIAMKELAEK 

 912 149 163 LVPKHIRLSSDEKRE   958 118 132 LRIAMKELAEKKIPL 

 913 153 167 HIRLSSDEKRELLKR   959 122 136 MKELAEKKIPLVIRR 

 914 157 171 SSDEKRELLKRYRLK   960 126 140 AEKKIPLVIRRYLPD 

 915 161 175 KRELLKRYRLKESQL   961 130 144 IPLVIRRYLPDGSFE 

 916 165 179 LKRYRLKESQLPRIQ   962 134 148 IRRYLPDGSFEDWSV 

 917 169 183 RLKESQLPRIQRADP   963 138 152 LPDGSFEDWSVEELI 

 918 173 187 SQLPRIQRADPVALY  Rpb6/7 964   SFEDWSVEELIVDLM 

 919 177 191 RIQRADPVALYLGLK   965   WSVEELIVDLMFFIK 

 920 181 195 ADPVALYLGLKRGEV   966   ELIVDLMFFIKDLSL 

 921 185 199 ALYLGLKRGEVVKII   967   DLMFFIKDLSLNITL 

 922 189 203 GLKRGEVVKIIRKSE  Rpb7 968 3 17 FIKDLSLNITLHPSF 

 923 193 207 GEVVKIIRKSETSGR   969 7 21 LSLNITLHPSFFGPR 

 924 197 211 KIIRKSETSGRYASY   970 11 25 ITLHPSFFGPRMKQY 

 925 201 215 KSETSGRYASYRICM   971 15 29 PSFFGPRMKQYLKTK 

Rpb5/6 926   SGRYASYRICMMSDY   972 19 33 GPRMKQYLKTKLLEE 

 927   ASYRICMMSDYEEAF   973 23 37 KQYLKTKLLEEVEGS 

 928   ICMMSDYEEAFNDGN   974 27 41 KTKLLEEVEGSCTGK 

Rpb6 929 2 16 SDYEEAFNDGNENFE   975 31 45 LEEVEGSCTGKFGYI 

 930 6 20 EAFNDGNENFEDFDV   976 35 49 EGSCTGKFGYILCVL 

 931 10 24 DGNENFEDFDVEHFS   977 39 53 TGKFGYILCVLDYDN 

 932 14 28 NFEDFDVEHFSDEET   978 43 57 GYILCVLDYDNIDIQ 

 933 18 32 FDVEHFSDEETYEEK   979 47 61 CVLDYDNIDIQRGRI 

 934 22 36 HFSDEETYEEKPQFK   980 51 65 YDNIDIQRGRILPTD 

 935 26 40 EETYEEKPQFKDGET   981 55 69 DIQRGRILPTDGSAE 

 936 30 44 EEKPQFKDGETTDAN   982 59 73 GRILPTDGSAEFNVK 

 937 34 48 QFKDGETTDANGKTI   983 63 77 PTDGSAEFNVKYRAV 

 938 38 52 GETTDANGKTIVTGG   984 67 81 SAEFNVKYRAVVFKP 

 939 42 56 DANGKTIVTGGNGPE   985 71 85 NVKYRAVVFKPFKGE 

 940 46 60 KTIVTGGNGPEDFQQ   986 75 89 RAVVFKPFKGEVVDG 

 941 50 64 TGGNGPEDFQQHEQI   987 79 93 FKPFKGEVVDGTVVS 

 942 54 68 GPEDFQQHEQIRRKT   988 83 97 KGEVVDGTVVSCSQH 

 943 58 72 FQQHEQIRRKTLKEK   989 87 101 VDGTVVSCSQHGFEV 

 944 62 76 EQIRRKTLKEKAIPK   990 91 105 VVSCSQHGFEVQVGP 

 945 66 80 RKTLKEKAIPKDQRA   991 95 109 SQHGFEVQVGPMKVF 

 946 70 84 KEKAIPKDQRATTPY   992 99 113 FEVQVGPMKVFVTKH 

 947 74 88 IPKDQRATTPYMTKY   993 103 117 VGPMKVFVTKHLMPQ 

 948 78 92 QRATTPYMTKYERAR   994 107 121 KVFVTKHLMPQDLTF 

 949 82 96 TPYMTKYERARILGT   995 111 125 TKHLMPQDLTFNAGS 

 950 86 100 TKYERARILGTRALQ   996 115 129 MPQDLTFNAGSNPPS 

 951 90 104 RARILGTRALQISMN   997 119 133 LTFNAGSNPPSYQSS 

 952 94 108 LGTRALQISMNAPVF   998 123 137 AGSNPPSYQSSEDVI 

 953 98 112 ALQISMNAPVFVDLE   999 127 141 PPSYQSSEDVITIKS 

 954 102 116 SMNAPVFVDLEGETD   1000 131 145 QSSEDVITIKSRIRV 

 955 106 120 PVFVDLEGETDPLRI   1001 135 149 DVITIKSRIRVKIEG 

 956 110 124 DLEGETDPLRIAMKE   1002 139 153 IKSRIRVKIEGCISQ 
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 1003 143 157 IRVKIEGCISQVSSI   1049 10 24 CNNMLYPREDKENNR 

 1004 147 161 IEGCISQVSSIHAIG   1050 14 28 LYPREDKENNRLLFE 

 1005 151 165 ISQVSSIHAIGSIKE   1051 18 32 EDKENNRLLFECRTC 

 1006 155 169 SSIHAIGSIKEDYLG   1052 22 36 NNRLLFECRTCSYVE 

Rpb7/8 1007   AIGSIKEDYLGAIMS   1053 26 40 LFECRTCSYVEEAGS 

 1008   IKEDYLGAIMSNTLF   1054 30 44 RTCSYVEEAGSPLVY 

 1009   YLGAIMSNTLFDDIF   1055 34 48 YVEEAGSPLVYRHEL 

 1010   IMSNTLFDDIFQVSE   1056 38 52 AGSPLVYRHELITNI 

Rpb8 1011 4 18 TLFDDIFQVSEVDPG   1057 42 56 LVYRHELITNIGETA 

 1012 8 22 DIFQVSEVDPGRYNK   1058 46 60 HELITNIGETAGVVQ 

 1013 12 26 VSEVDPGRYNKVCRI   1059 50 64 TNIGETAGVVQDIGS 

 1014 16 30 DPGRYNKVCRIEAAS   1060 54 68 ETAGVVQDIGSDPTL 

 1015 20 34 YNKVCRIEAASTTQD   1061 58 72 VVQDIGSDPTLPRSD 

 1016 24 38 CRIEAASTTQDQCKL   1062 62 76 IGSDPTLPRSDRECP 

 1017 28 42 AASTTQDQCKLTLDI   1063 66 80 PTLPRSDRECPKCHS 

 1018 32 46 TQDQCKLTLDINVEL   1064 70 84 RSDRECPKCHSRENV 

 1019 36 50 CKLTLDINVELFPVA   1065 74 88 ECPKCHSRENVFFQS 

 1020 40 54 LDINVELFPVAAQDS   1066 78 92 CHSRENVFFQSQQRR 

 1021 44 58 VELFPVAAQDSLTVT   1067 82 96 ENVFFQSQQRRKDTS 

 1022 48 62 PVAAQDSLTVTIASS   1068 86 100 FQSQQRRKDTSMVLF 

 1023 52 66 QDSLTVTIASSLNLE   1069 90 104 QRRKDTSMVLFFVCL 

 1024 56 70 TVTIASSLNLEDTPA   1070 94 108 DTSMVLFFVCLSCSH 

 1025 60 74 ASSLNLEDTPANDSS   1071 98 112 VLFFVCLSCSHIFTS 

 1026 64 78 NLEDTPANDSSATRS   1072 102 116 VCLSCSHIFTSDQKN 

 1027 68 82 TPANDSSATRSWRPP   1073 106 120 CSHIFTSDQKNKRTQ 

 1028 72 86 DSSATRSWRPPQAGD  Rpb9/10 1074   FTSDQKNKRTQFSMI 

 1029 76 90 TRSWRPPQAGDRSLA   1075   QKNKRTQFSMIVPVR 

 1030 80 94 RPPQAGDRSLADDYD   1076   RTQFSMIVPVRCFSC 

 1031 84 98 AGDRSLADDYDYVMY   1077   SMIVPVRCFSCGKVV 

 1032 88 102 SLADDYDYVMYGTAY  Rpb10 1078 4 18 PVRCFSCGKVVGDKW 

 1033 92 106 DYDYVMYGTAYKFEE   1079 8 22 FSCGKVVGDKWESYL 

 1034 96 110 VMYGTAYKFEEVSKD   1080 12 26 KVVGDKWESYLNLLQ 

 1035 100 114 TAYKFEEVSKDLIAV   1081 16 30 DKWESYLNLLQEDEL 

 1036 104 118 FEEVSKDLIAVYYSF   1082 20 34 SYLNLLQEDELDEGT 

 1037 108 122 SKDLIAVYYSFGGLL   1083 24 38 LLQEDELDEGTALSR 

 1038 112 126 IAVYYSFGGLLMRLE   1084 28 42 DELDEGTALSRLGLK 

 1039 116 130 YSFGGLLMRLEGNYR   1085 32 46 EGTALSRLGLKRYCC 

 1040 120 134 GLLMRLEGNYRNLNN   1086 36 50 LSRLGLKRYCCRRMI 

 1041 124 138 RLEGNYRNLNNLKQE   1087 40 54 GLKRYCCRRMILTHV 

 1042 128 142 NYRNLNNLKQENAYL   1088 44 58 YCCRRMILTHVDLIE 

 1043 132 146 LNNLKQENAYLLIRR   1089 48 62 RMILTHVDLIEKFLR 

Rpb8/9 1044   KQENAYLLIRRMTTF   1090 52 66 THVDLIEKFLRYNPL 

 1045   AYLLIRRMTTFRFCR   1091 56 70 LIEKFLRYNPLEKRD 

 1046   IRRMTTFRFCRDCNN  Rpb10/11 1092   FLRYNPLEKRDMNAP 

Rpb9 1047 2 16 TTFRFCRDCNNMLYP   1093   NPLEKRDMNAPDRFE 

 1048 6 20 FCRDCNNMLYPREDK   1094   KRDMNAPDRFELFLL 
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Rpb11 1095 2 16 NAPDRFELFLLGEGE  

 1096 6 20 RFELFLLGEGESKLK  

 1097 10 24 FLLGEGESKLKIDPD  

 1098 14 28 EGESKLKIDPDTKAP  

 1099 18 32 KLKIDPDTKAPNAVV  

 1100 22 36 DPDTKAPNAVVITFE  

 1101 26 40 KAPNAVVITFEKEDH  

 1102 30 44 AVVITFEKEDHTLGN  

 1103 34 48 TFEKEDHTLGNLIRA  

 1104 38 52 EDHTLGNLIRAELLN  

 1105 42 56 LGNLIRAELLNDRKV  

 1106 46 60 IRAELLNDRKVLFAA  

 1107 50 64 LLNDRKVLFAAYKVE  

 1108 54 68 RKVLFAAYKVEHPFF  

 1109 58 72 FAAYKVEHPFFARFK  

 1110 62 76 KVEHPFFARFKLRIQ  

 1111 66 80 PFFARFKLRIQTTEG  

 1112 70 84 RFKLRIQTTEGYDPK  

 1113 74 88 RIQTTEGYDPKDALK  

 1114 78 92 TEGYDPKDALKNACN  

 1115 82 96 DPKDALKNACNSIIN  

 1116 86 100 ALKNACNSIINKLGA  

 1117 90 104 ACNSIINKLGALKTN  

 1118 94 108 IINKLGALKTNFETE  

 1119 98 112 LGALKTNFETEWNLQ  

 1120 102 116 KTNFETEWNLQTLAA  

 1121 106 120 ETEWNLQTLAADDAF  

Rpb11/12 1122   NLQTLAADDAFMSRE  

 1123   LAADDAFMSREGFQI  

 1124   DAFMSREGFQIPTNL  

Rpb12 1125 2 16 SREGFQIPTNLDAAA  

 1126 6 20 FQIPTNLDAAAAGTS  

 1127 10 24 TNLDAAAAGTSQART  

 1128 14 28 AAAAGTSQARTATLK  

 1129 18 32 GTSQARTATLKYICA  

 1130 22 36 ARTATLKYICAECSS  

 1131 26 40 TLKYICAECSSKLSL  

 1132 30 44 ICAECSSKLSLSRTD  

 1133 34 48 CSSKLSLSRTDAVRC  

 1134 38 52 LSLSRTDAVRCKDCG  

 1135 42 56 RTDAVRCKDCGHRIL  

 1136 46 60 VRCKDCGHRILLKAR  

 1137 50 64 DCGHRILLKARTKRL  

  1138 54 68 RILLKARTKRLVQFE  

 1139 56 70 LLKARTKRLVQFEAR  
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Figure 25| Analysis of Npa3 binding to peptides derived from Rpb2, Rpb3, Rpb5, Rpb6, Rpb9, Rpb11 and Rpb12. 
Boxplot representation of the heatmap describing the Npa3 peptide-binding landscape in the presence of GTP, GDP and 
GMPPCP, respectively. Control experiments were performed without Npa3 and nucleotides to test cross-reactivity of the anti-
His antibody. Intensity distribution is shown in logarithmic scale. Peptides with signal intensity <3.5 were defined as unbound 
(grey area). Red boxes indicate false-positive binding of the antibody to the peptides, either directly or in overlapping regions. 
These peptides were not used for further analysis. Peptide numbers are shown for Npa3 binding peptides above the boxplots.  
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Pa Pyrococus abyssi 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
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PDB Protein data bank 
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RNA ribonucleic acid 
RMSD Root mean square deviation 
RPAP RNA polymerase II-associated proteins 
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rpm  rounds per minute 
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TF transcription factor 
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