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Zusammenfassung (German)

Die gro�r•aumige Galaxienverteilung besteht aus Galaxien in konzentrierten Galaxienhaufen und
entlang Filament-•ahnlicher Strukturen, die sich am Rande von fast leeren Gebieten im Universum
("Voids") be�nden. Das jeweilige lokale Umfeld f•uhrt zu unterschiedlichen Entwicklungsverl•aufen
von Galaxien, die durch photometrische und spektroskopische Beobachtungsdaten charakterisiert
werden. Um die unterschiedlichen Galaxienumgebungen in Beobachtungsdaten oder numerischen
Simulationen zu klassi�zieren, ist es •ublich, die lokale Dichte jeder Galaxienumgebung zu sch•atzen,
was z.B. zu der Morphologie-Dichte-Relation f•uhrt. In dieser Arbeit wird zus•atzlich die lokale
Geometrie jeder Galaxie mit der "Skalierungs-Index-Methode" (SIM) gesch•atzt, die die Form der
lokalen Galaxienverteilung charakterisiert, z.B. die vorkommenden Filamentstrukturen in manchen
Galaxienregionen. Die neue Anwendung von SIM liefert Strukturinformationen •uber die Galax-
ienumgebungen, die mit den photometrischen und spektroskopischen Galaxieneigenschaften kor-
relieren. Dazu wurde eine Volumen-limitierte Stichprobe (0:05 < z < 0:1) mit 93873 Galaxien aus
dem "Sloan Digital Sky Survey" (SDSS) extrahiert und deren lokale Dichte und Geometrie f•ur ver-
schiedene Radien gesch•atzt. Die Stabilit•at der Geometriesch•atzung, deren Klassi�zierungsfehler
und der Einuss der Rotverschiebung wurden mit der Bootstrapmethode, mit Strukturprototypen
und mit simulierten Galaxienverteilungen untersucht. Verschiede Galaxienhelligkeits-, Farb-, und
Morphologieeigenschaften, sowie Indikatoren f•ur Sternentstehung wurden aus dem SDSS-Katalog
extrahiert. Zus•atzlich wurde aus diesen Daten die Sternentstehungsrate gesch•atzt. Die gefunde-
nen Relationen weisen darauf hin, dass die physikalischen Galaxieneigenschaften nicht nur mit
der lokalen Dichte korrelieren, sondern auch mit der von SIM gesch•atzten lokalen Geometrie,
was z.B. zu einer entsprechenden Morphologie-Geometrie-Relation f•uhrt. Basierend auf diesen
Ergebnissen l•asst sich feststellen, dass Galaxien in Filament-•ahnlichen Regionen blauer sind, eine
h•ohere H•au�gkeit von spiralf•ormigen Morphologien zeigen und eine h•ohere Sternentstehungsrate
vorweisen, wenn sie mit der Population aus konzentrierten Galaxienhaufen verglichen werden. Der
Vergleich mit Galaxien aus leeren Regionen im Universum zeigt, dass Galaxien in Filament-•ahn-
lichen Regionen r•oter sind, eine geringere Anzahl von spiralf•ormigen Morphologien haben und
eine geringere Sternentstehungsrate besitzen. Selbst wenn der Einuss der lokalen Dichte kor-
rigiert wurde, konnten diese Abh•angigkeiten der Galaxieneigenschaften von der lokalen Geome-
trie beobachtet werden. Diese Ergebnisse lassen darauf schlie�en, dass die lokale Geometrie die
Beschreibung der Galaxienumgebungen durch die lokale Dichte erweitert. Die gefunden Zusam-
menh•ange zeigen, dass Galaxien selbst au�erhalb von Gebieten mit hoher Dichte durch die lokale
Umgebung in ihrer Entwicklung beeinusst werden k•onnen. Dies l•asst sich z.B. an Galaxien in
Filament-•ahnlichen Strukturen beobachten, die sich in ihrer Entwicklungsgeschichte und in ihren
physikalischen Eigenschaften von anderen Galaxien unterscheiden.
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Abstract

The large-scale galaxy distribution consists of galaxies concentrated in clusters and along �lament-
like structures, which are found on the edges of mainly empty, void-like regions in the Universe.
These local environments can reect di�erent galaxy evolution histories that determine the ob-
served photometric and spectroscopic properties. To classify di�erent galaxy environments in
surveys or numerical simulations, the local density of each galaxy can be estimated leading e.g.
to the morphology-density relation. In this thesis, the local geometry of each galaxy is estimated
using the Scaling Index Method (SIM), which characterizes the shape of local galaxy distributions,
e.g. �lament-like galaxy neighborhoods. This new SIM application results in structural informa-
tion about the galaxy environments that is correlated with a set of photometric and spectroscopic
galaxy properties. Speci�cally, a volume-limited sample (0:05 < z < 0:1) with 93873 galaxies was
extracted from the Sloan Digital Sky Survey (SDSS) data and the local density and geometry were
estimated for a set of radii. The stability of the geometry estimation, classi�cation errors, and
the inuence of the redshift space distortions were investigated using bootstrap analysis, structure
prototypes, and mock catalogues, respectively. A set of galaxy luminosities, colors, morphology
indices, and indicators of star formation were extracted from the SDSS data and, in addition, the
star formation rate was calculated for all galaxies. The resulting relations indicate that physical
galaxy properties do not only correlate with the local density, but also with the local geometry
estimated by SIM leading e.g. to a morphology-geometry relation. According to these �ndings,
galaxies in �lament-like regions are bluer, contain more late-type morphologies, and have a higher
star formation than galaxies in clusters. Compared with galaxies in void-like regions, galaxies in
�lament-like regions are redder, contain more early-type morphologies, and have a lower star for-
mation. After correcting the relations for the inuence of the local density, the dependence of the
galaxy properties on the local geometry was still observed. This indicates that the local geometry
can extend the density-based description of the galaxy environments. The presented relations
suggest that galaxies outside high-density regions can still be a�ected by the local environment
during their evolution, e.g. in �lament-like structures, resulting in di�erent evolution histories and
observable properties.
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Chapter 1

Introduction

Observations of galaxy locations in the Universe have shown that luminous matter is not randomly
distributed. Instead, galaxies are concentrated in clusters and along �lament-like structures, which
are found on the edge of mainly empty, void-like regions in space. A key question in modern cos-
mology is to understand the evolution of the large-scale galaxy distribution in the Universe and
how the characteristics of the environment of galaxies a�ects their evolution and properties. For
instance, it is well known that intrinsic physical properties of galaxies correlate with the local
density of the environment (Hubble & Humason 1931). Modern galaxy surveys aim to expand
this understanding and allow to test theories explaining the origin of large-scale structure and the
physical properties of the embedded galaxies. To this end, sophisticated and novel descriptions of
the observed data can provide additional relations between the galaxy properties and the environ-
ment. The application of the Scaling Index Method to analyze the galaxy distribution represents
such a new approach and delivers an unique and local structure characterization.

1.1 Structure Formation in the ΛCDM Model

The standard cosmological model describes with a few parameters both the evolution of the Uni-
verse and astronomical observations on a wide range of scales from solar systems to the distribution
of galaxy clusters. In this power-law � cold dark matter (�CDM) model the Universe is spatially
at, homogenous and isotropic on large scales. Its energy density is composed of a small fraction of
radiation and neutrinos, 4% ordinary baryonic matter like electrons, protons, and neutrons, 23%
non-baryonic dark matter and 73% dark energy represented by Einstein's cosmological constant
�. Galaxies and other cosmic large-scale structures grew gravitationally from tiny primordial
uctuations that were adiabatic, nearly scale-invariant Gaussian random uctuations following
a power-law spectrum. The �CDM model �ts a wide range from of astronomical data like the
cosmic microwave background measured by the Wilkinson Microwave Anisotropy Probe (WMAP)
and the large-scale distribution of matter and galaxies as mapped by the Sloan Digital Sky Survey
(SDSS) and the Two Degree Galaxy Redshift Survey (2dFGRS). A minimal model with six cosmo-
logical parameters is su�cient to predict the statistical properties of those surveys: the density of
matter, the density of atoms, the expansion rate of the Universe, the amplitude of the primordial
uctuations, their scale dependence, and the optical depth of the Universe (Spergel et al. 2003,
2007; Tegmark et al. 2004a; Komatsu et al. 2010).

The �CDM model uses a general description for the dynamics of space-time together with
a metric to measure distances that both can be derived from Einstein's �eld equations, which
link the energy-impuls-tensor with the geometric properties of space-time (e.g. Hawking & Ellis
1973, Chap. 3). A special case of this approach is the Robertson-Walker-Metric, which follows
directly from the Cosmological Principle, the assumption that space is homogenous and isotropic
on large scales. The expansion of the Universe can then be described by a scale factor a(t),
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CHAPTER 1. INTRODUCTION 2

which measures the distance of two comoving points. This leads to the Friedmann Equations that
express the evolution of the scale factor a(t) as functions of the matter and radiation density �,
the pressure p, and the cosmological constant �.

Initial conditions for observed structures were established in the very early Universe where cos-
mic ination led to a homogenous, isotropic, and at space (Guth 1981, Albrecht & Steinhardt
1982, Linde 1983). During the hot, radiation dominated epoch, the Universe underwent an accel-
erated expansion approximately 10�34 s after the Big Bang. This exponential expansion inated
small, causal connected regions and attened the space-time geometry. Small quantum uctuations
in the relativistic gas were magni�ed to macroscopic density perturbations and gravitational waves.
A further success of the Ination theory is the accurate prediction of the nearly scale-invariant
spectrum of the Gaussian density uctuation. However, a complete scale invariant power spectrum
P (k) of these uctuations, the so-called Harrison-Zeldovich-Spectrum, P (k) / k, is not the best
�t to WMAP data (Spergel et al. 2007). These small primordial temperature uctuations are the
foundation for all cosmological structures that are imprinted in the cosmic microwave background
and provide the seeds for the largest structures. After the reheating of the primordial plasma at
the end of ination, the plasma cooled down to the point of the big bang nucleosynthesis were
the �rst nuclei of deuterium, helium and lithium were created. During this epoch, the dynamic
of the cosmic scale factor a(t) can be described by a radiation-dominated Friedmann Model with
the adiabatic expansion a(t) � t1=2; the cosmic temperature of the relativistic gas decreased with
T / a�1.

As the Universe expanded and cooled further, particles became non-relativistic, the �rst nuclei
formed from free protons and neutrons at a temperature T � 109 K, and the Universe became
matter dominated. At the end of this period of recombination marked by a redshift of zrec � 1000,
the nuclei had bound all free electrons, which suppressed the Thompson scattering with photons.
Matter and photons were decoupled and the Universe became transparent. The temperature of
the photons decreased further with T / a�1 and can be observed as today's cosmic microwave
background, the surface of last scattering, that follows a Planck spectrum at a temperature T0 =
2:728 K. Although the amplitude of cosmic structures did not grow substantially during this
epoch, the perturbations, which entered the horizon, oscillated sinusoidally resulting in the baryon
acoustic oscillations (Eisenstein et al. 2005) and in the cosmic microwave anisotropy. Matter
density uctuations decoupled from the overall expansion of the Universe; instead, over-dense
regions attracted the surrounding matter due to gravitational forces.

Dark matter began to collapse into a complex network of dark matter halos well before ordinary
matter for which the gravitational Jeans instability (Jeans 1902) is opposed by radiation pressure.
For cold dark matter only the growth of small-scale uctuations is prevented in the radiation
dominated Universe due to the small free-streaming length much smaller than a galaxy-scale
perturbation. The existing dark matter perturbations of di�erent scales evolved independently
and as the Hubble radius grew, larger density perturbations were causally connected and, during
matter domination, all perturbations grew through gravitational clustering. After the decoupling
of photons and electrons, luminous baryonic matter followed the gravitational clustering and
mirrored the evolution of the dark matter. The linear power spectrum of this matter distribution
has been estimated by galaxy surveys (Tegmark et al. 2004b) and the Lyman-� forest (Seljak et
al. 2005). On the largest scales, the galaxies and quasars are expected to follow the density �eld
of dark matter.

The structure evolution in the Universe began with dark matter that clumped immediately after
the Big Bang forming spherical halos. The baryons, in contrast, were initially kept from clumping
by their interactions with one another and with radiation and remained in a hot, gaseous phase.
As the Universe expanded, this gas cooled and the baryons were able to pack themselves together.
The �rst stars and galaxies coalesced out of this cooled gas in the centers of the dark matter halos
a few hundred million years after the big bang (Lehnert et al. 2010). The �rst structures were
small, low-mass dark matter halos, which merged with one another with a high probability to
form larger-mass systems, a 'bottom-up' process.

As long as the density deviations were small, the dark matter can be treated as a pressure-less
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uid that can be modeled by linear equations. When the local densities became substantially
denser than the mean density of the Universe, those approximations are invalid, since the dark
matter starts to form caustics in which particles' trajectories cross and form orbits. More so-
phisticated approaches like the Zeldovich approximation (Zeldovich 1970) or the Press-Schechter
formalism (Press & Schechter 1974) model the gravitational clustering further in the non-linear
regime to a certain extend and provide useful predictions. However, the dynamics are best under-
stood using N -body simulations suggesting that matter condenses in �laments and halos between
large voids forming a web-like structure of galaxy groups and clusters (White et al. 1987; Springel
et al. 2005).

1.2 Galaxy Evolution

During the evolution of the density uctuations, gravity has collected the dark matter in concen-
trations in dark matter haloes of di�erent scales. In larger dark matter haloes, baryons are dense
enough to radiate away enough energy to collapse into galaxies and stars. The most luminous
galaxies are formed in the most massive haloes, preferentially in regions of the highest local mass
density. Less luminous galaxies are developed in the less massive haloes that are found in regions
with lower local densities, in ridges of matter running between denser regions, forming a cosmic
web of �laments and sheets. An example for this large-scale structure of the galaxy distribution
can be observed in our immediate extragalactic neighborhood, the so-called Local Sheet (Peebles
& Nusser 2010).

Most galaxies in the Universe are located in groups and clusters of galaxies, which in turn
reside in larger systems - in superclusters of galaxies or in �laments crossing under-dense regions
between superclusters. The largest and richest superclusters are the largest coherent systems in
the Universe with characteristic dimensions of up to 100h�1Mpc. According to the Cold Dark
Matter model, groups and clusters of galaxies form hierarchically through the merging of smaller
systems (Knebe & M•uller 2000). The timescale of the evolution of groups depends on their global
environment (Tempel et al. 2009). As a result, the properties of groups depend on the environment
in which they are embedded: richer and more luminous groups are located in a higher-density
environment than smaller, less luminous groups (Einasto et al. 2003, 2005; Berlind et al. 2006).
Hence, an understanding of the properties and evolutionary state of groups and clusters of galaxies
in di�erent environments is important for the study of the galaxy distribution.

The present-day dynamical state of clusters of galaxies depends on their formation history and
galaxy interactions like merging a�ect the properties of galaxies in clusters (Binney & Tremaine
2008). The well-known morphology density relation states that early type, red galaxies are located
in clusters (in the central areas) while late type, blue galaxies can preferentially be found outside
of rich clusters, or in the outskirts of clusters (Butcher & Oemler 1978; Dressler 1980; Einasto &
Einasto 1987). An old question is whether the properties of galaxies depend on the cluster-centric
radius or on the local density of galaxies in clusters, or on both (Whitmore & Gilmore 1991;
Huertas-Company et al. 2009; Park & Choi 2009; Park & Hwang 2009).

1.3 Relations between Environment and Galaxy Properties

Studies have shown that the physical properties of galaxies are correlated and that many of them
depend on the stellar mass (Kau�mann et al. 2003a,b; Tremonti et al. 2004; Brinchmann et al.
2004). Massive galaxies consist of old stars, have a high mass-to-light ratio, low star formation
rates, little dust attenuations, high concentrations and stellar mass densities, and they often host
an active galactic nucleus (AGN, Miller et al. 2003). In contrast, low-mass galaxies have young
stellar populations, low mass-to-light ratios, high star formation rates, low concentrations and
surface mass densities, and they almost never contain an active nuclei. The gas-phase metallicity
of emission-line galaxies is also related to the stellar mass (Tremonti et al. 2004); the characteristic
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stellar mass of � 3� 1010M� was found where many galaxy properties change rapidly.
Many other galaxy properties can depend on the surrounding environment as well. The galaxy

luminosity function (e.g. Blanton et al. 2001, 2003b; Blanton & Moustakas 2009) is a fundamental
tool for the interpretation of observations and describes the number of galaxies per unit volume as
a function of the luminosity. In SDSS and 2dFRS data sets, the calculated luminosity functions
depend strongly on the local density of the environment: galaxies are more luminous in rich
clusters (De Propris et al. 2003) and marginally more luminous in groups (Mart��nez et al. 2002)
as compared to galaxies in the �eld (Madgwick et al. 2002). It was also shown that void galaxies
are fainter than wall galaxies (Hoyle et al. 2005), and that galaxies in �laments close to clusters
are more luminous due to interactions that induce rapid star formation (Braglia et al. 2007).

Galaxies colors reect their dominant star population and provides hints about the current star
formation and star formation history. Two main groups can be identi�ed in any galaxy surveys:
red galaxies are dominated by old, metal-poor red giants, whereas blue galaxies consist of young,
metal-rich stars. Although the observed galaxy colors correlate with the morphology (Humason
1936; Hubble 1936), colors can be studied for more distant galaxies in the SDSS (Strateva et al.
2001; Baldry et al. 2004; Balogh et al. 2004b). While the morphological types can be assigned
with some certainty only for nearby well-resolved galaxies, it is not possible for the fainter and
more distant galaxies. It has been shown that blue and red galaxies populate environments of
di�erent density (Hogg et al. 2003; Balogh et al. 2004b). The red population in galaxies is a
strong function of the local density for �xed luminosities, increasing from a fraction of � 20% of
the whole population in the lowest density environments up to � 70% in the highest; the blue
population shows only a marginal dependence on the environment (Balogh et al. 2004b). Since
the stellar population contains information about the star formation history and galaxy formation,
the question arises what physical mechanisms led to this relation between the environment and
the stellar population. A dominance of a red stellar population in galaxies can be explained by
an inability to form new stars due to a lack of available interstellar gas, which has to be shared
with neighbor galaxies e.g. in high-density regions like clusters. For galaxy clusters with redshifts
z > 0:2, the fraction of blue galaxies is higher (Butcher & Oemler 1978, 1984).

The color of galaxies is closely related to their morphological appearance that can be qualita-
tively described with the well-known Hubble sequence (Hubble 1926). The standard morphological
classi�cation scheme mixes elements that depend on the structure of a galaxy, e.g. bulge-to-disc
ratio, concentration ratio, and surface density, with elements reecting the star formation history,
like dust lanes and the spiral arms strength. Early-type galaxies show elliptical and lenticular mor-
phologies, have a ceased star formation rate and consist of an old population of red giant stars.
Late-type galaxies have spiral-like morphologies and are characterized by a high star forming rate
consisting of mainly young blue stars, which dominate the observed photometric properties. These
two main groups of galaxies dominate di�erent environments according to the morphology-density
relation (Hubble & Humason 1931; Dressler 1980; Postman & Geller 1984; Goto et al. 2003a).
Early photometric surveys indicated that the fraction of early-type galaxies is higher in clusters
of galaxies compared to low-density environments (Hubble 1926; Oemler 1974; Dressler 1980).
The morphology-density relation appears to be an universal characteristic of galaxy populations
(e.g. Postman & Geller 1984; Goto et al. 2003a; Smith et al. 2005). While a change of morphology
requires drastic interactions like ram pressure stripping (Quilis, Moore & Bower 2000), the stellar
population is mainly controlled by the supply of interstellar gas.

Since observations of the galaxy's morphology require the existence of luminous stars that
indicate the baryonic matter distribution within the galaxy, morphology and star formation are
correlated (e.g. Kennicutt 1998a; Christlein & Zabludo� 2005) and both are functions of the
environment. G�omez et al. (2003) observed that the star formation rate (SFR) changes as a
function of the local projected galaxy density using the SDSS Early Data Release. Especially
strongly star-forming galaxies, show a strong decrease with increasing density. Consistent results
were observed by Hashimoto et al. (1998), who investigated the inuence of environment densities
on the SFR in the Las Campanas Redshift Survey, and by Lewis et al. (2002), who studied the
same relations in the 2dF galaxy sample. Both groups were able to identify a critical density and
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radius, where the SFR of cluster galaxies changes from a speci�c SFR for �eld galaxies. At the
turnaround radius Rt ' 5Rv, with the cluster's viral radius Rv, the SFR becomes statistically
identical to the �eld. These results are in agreement with numerical simulations suggesting that
the main physical properties of the SFR is controlled by the amount of cool gas and the time since
the last interactions with a larger halo. Furthermore, the observations of G�omez et al. (2003)
are qualitatively consistent with the hierarchical models that structure formation can a�ect the
SFR of galaxies even beyond the virial radius. Studies indicate that correlations between the star
formation history of a galaxy and its environment extends to low densities and to large cluster-
centric radii (Lewis et al. 2002; G�omez et al. 2003; Balogh et al. 2004a).

Many of the observed relationships between the galaxy properties and the environment can be
explained with current models of galaxy formation and evolution. The properties depend either
only on the formation history of the dark matter halos ('nature') or on 'nurture' processes, such
as ram pressure and harassment. In the cold dark matter models, a galaxy-scale dark matter
halo forms through a series of mergers of sub-galactic objects. The �nal mass is determined by
the overdensity at the galaxy scale, which is statistically related to the density �eld at a larger
scale. Although other galaxy properties will depend on the �nal mass, a high variation in the
properties can be expected depending on di�erent scenarios how the �nal mass is assembled. For
instance, Gott & Thuan (1976) proposed that galaxy morphology is determined by the amount
of interstellar gas left over at the maximum collapse of the protogalaxy; they claim that at this
point, ellipticals had �nished star formation. Not only the amount of stellar gas depends on the
halo mass, but also the gas cooling processes. In dark matter halos of low mass, the infalling cold
gas is never shock-heated and will collapse directly onto the disk. In high-mass halos, the infalling
gas is �rst heated to the halo temperature by shocks. The gas remains pressure-supported and in
quasi-static equilibrium while it cools by radiative processes (White & Rees 1978; White & Frenk
1991; Cole et al. 2000).

In addition to those initial conditions and sub-galactic scale evolution, the local environment
can also a�ect the galaxy properties. In isolated areas of space, galaxies are able to accrete
intergalactic gas and form a disk, while in high density regions like clusters, galaxy interaction
are more likely, e.g. merging (Toomre & Toomre 1972; Kau�mann, White & Guiderdoni 1993;
Mulchaey & Zabludo� 1999). Mergers operate most e�ciently in galaxy groups or in the outskirts
of rich clusters (Gnedin 2003). Although merging cross-sections are low in the viralised regions
of clusters, galaxies can still be altered by the cumulative e�ect of many weak encounters (Moore
et al. 1996). A mechanism called ram pressure stripping removes gas and shuts o� star formation
when a galaxy orbits a hot cluster halo (Gunn & Gott 1972; Abadi, Moore & Bower 1999; Quilis,
Moore & Bower 2000). More processes that transform the morphology of spiral galaxies to early
types include the so-called harassment, when high-speed encounters of galaxies with other halos
typically in clusters cause impulsive heatings (Barnes & Hernquist 1991; Moore et al. 1996, 1998).
Strangulation (Larson, Tinsley & Caldwell 1980; Balogh et al. 2000) can also transform morphology
through a decline of star formation rate due to shut-o� of the newly accreted gas when a galaxy
enters a cluster or group environment and loses its hot gas reservoir. There is also observational
and theoretical support for that tidal forces in clusters can transform the infalling spirals (Moss
& Whittle 2000; Gnedin 2003). Another source of mutual inuence are tidal interactions between
close galaxies, which can induce bursts of star formation (Nikolic et al. 2004). It was shown in
numerical simulations that weak bulges in spiral galaxies facilitate the creation of bars during such
tidal interactions (Mihos & Hernquist 1996) and that tidally induced collisions of disk gas clouds
are e�ective mechanism to create barred and S0 galaxies in rich clusters (Byrd & Valtonen 1990).
These interactions create gas-poor elliptical galaxies in high-density regions, while low-density
regions remain dominated by more gas-rich spiral galaxies with high star-formation rates. This
evolution processes lead to many of the observed relationships, such as the morphology-density
relation (Dressler 1980; Postman & Geller 1984).
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1.4 Description of Large-scale Structure

Besides the observation of galaxy properties, the main objective of SDSS is to estimate statistical
properties of the large-scale structure of the three-dimensional galaxy distribution. This distri-
bution consists of galaxy clusters that are connected with �lament-like and wall-like connections,
which are found on the boundaries of large void-like regions. The commonly used statistical mod-
els for the main cosmological �elds such as the density, velocity, and gravitational potential are
based on Gaussian random �elds (e.g. Bardeen et al. 1986), which are completely determined by
their two-point correlation function (Totsuji & Kihara 1969; Peebles 1973, 1980) or power spec-
trum (Peacock 1999; Tegmark et al. 2004b; Cole et al. 2005). The main goal of spatial statistics
in cosmology is to estimate these two functions that can be directly related to simulations. How-
ever, since both functions describe only second order statistics, they do not reveal any information
about higher order or non-linear correlations in the galaxy distribution.

While these statistical measures are easily related to theoretical predictions and provide com-
prehensive information about the scale, amplitude, and even the nature of the deviations from a
uniform distribution, they at best yield only suggestive and global statistical measures for these
local structural patterns. To overcome this disadvantage, extension to this approach have been
investigated. Higher order correlations were estimated with three-point and four-point correlation
functions (Groth & Peebles 1977; Fry & Peebles 1978). The analysis of the density �eld in the
Fourier space was expanded by estimating the bi-spectrum (Scoccimarro et al. 1998, 2001) and
the Fourier space entropy (Coles & Chiang 2000), which can detect non-Gaussian signatures in
the density �eld.

Di�erent approaches have been proposed to extract more structural information from these
complex patterns in the galaxy distribution. The topological analysis of the large-scale structure
estimates the degree of connectivity of the galaxy distribution in the Universe. A �rst application
of this approach is to describe the pattern in the galaxy distribution with the abundance of empty
regions (Cressie 1993) using the void probability functions (White 1979; Ghigna et al. 1994),
which can be expressed as sum of N -point correlation functions. Once the galaxy distribution
has been smoothed with an appropriate �lter, more topological features can be extracted from
the isodensity surfaces. The results can be compared with theoretical distributions, e.g. Gaussian
density �elds, and non-linear properties can be detected. The topological genus statistic (Gott,
Dickinson & Melott 1986) measures the relative abundance of overdense clusters to void regions
and was estimated for the 2dFGRS (James et al. 2009) and a SDSS galaxy catalog (Gott et al.
2008), where on some scales slight deviation from the pure Gaussian �eld were found. An extension
of this analysis, the Minkowski Functionals (Mecke, Buchert & Wagner 1994) have been calculated
for galaxy surveys (e.g. Kerscher et al. 1998; Schmalzing & Diaferio 2000) like SDSS (Hikage et
al. 2003) and galaxy cluster catalogs (Kerscher et al. 1997, 2001), where signi�cant non-Gaussian
features in the large-scale spatial distribution of galaxy clusters were found as well.

A particular technique to quantify the �lamentary character of the galaxy clustering is based
on the minimal spanning tree (MST) that was introduced by Kruskal (1956). The MST is a graph
consisting of a set of N points (here galaxies) and the unique network of N �1 edges that link two
points. If there is a path between any pair of edges, the graph is called connected and a connected
graph with no circuits is called a tree. The MST is then the tree of minimal length that contains
all points. In cosmology, MST was used to determine the statistical signi�cance of �lament-like
features. This approach was used as a statistic to �nd clusters and �laments in the CfA redshift
survey (Barrow, Bhavsar & Sonoda 1985) and to demonstrate that �laments are real and not just
random alignments of galaxies (Bhavsar & Ling 1988).

1.5 Geometric Properties

Instead of quantifying the large-scale galaxy distribution with a global structure property, a further
approach can be to consider local statistics of the galaxy distribution. This structural information
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about the individual neighborhoods around galaxies can be related to galaxy properties that
have been altered due to galaxy interactions. For instance, the estimation of the local number
densities of galaxies within a speci�ed scale or the number of nearest neighbors led to the well-
known morphology-density relation (Hubble & Humason 1931; Dressler 1980). Local structure
statistics can address questions like what structural types of environments occur and whether the
local density alone is su�cient to distinguish between these di�erently shaped environments of
galaxies. If all possible environments cannot be separated with the local density, then di�erent
structural features extracted from the local environment should be considered to provide the
missing information. One can think of di�erent local spatial distributions of galaxy locations that
have di�erent geometry features but the identical local density. Even for these environments, the
galaxy's physical properties can still depend on the geometry of the local distribution, e.g. whether
the galaxies is located in a �lament-like or wall-like environment.

The existence of di�erent geometries like clusters, �laments and wall-like structures, is mo-
tivated and predicted by theoretical implications, e.g. the Zeldovich approximation (Zeldovich
1970), numerical simulations (White et al. 1987; Springel et al. 2005), and was observed in the
galaxy distribution (Doroshkevich et al. 2004). So far, the mentioned higher-order statistics (see
Section 1.4) have been used to extend the description of these structures with density estimators.
However, these global measures characterize the whole galaxy distribution due to averaging over
the considered volume. It is not possible to assign each galaxies to a geometry class. Instead,
recent approaches try to �nd regions in the galaxy distribution, which consist of speci�c geometries
like �laments (Colberg et al. 2005).

To provide such a local description for galaxy surveys, an estimation of local geometry can be
determined using the scaling index method (SIM, Jamitzky et al. 2001) that can provide a local
scaling index � for each galaxy. This scaling index measures the local scaling property of neighbor
galaxies within a given distance around the center galaxy. The scaling property distinguishes
between galaxy neighborhoods of point-like, line-like, plane-like, and low-density geometry, which
correspond to cluster, �lament, sheet, and void-like elements of the large-scale galaxy distribution,
respectively. The geometry can be characterized by a scale-dependent slope �(r) of the local
galaxy-galaxy correlation function, �(r) � r�[3��(r)]. For the estimation of �(r) a robust method
was used with simulated dark-matter distributions (Raeth et al. 2002; Huber 2002) and cosmic
microwave background data (Raeth & Schuecker 2003; R•ath et al. 2007; Rossmanith et al. 2009).

A corresponding estimate to a global �(r) relation was �rst obtained from a two-point correlation
function �(r) in the strong nonlinear regime r < 5h�1 Mpc (Peebles 1980; Davis & Peebles 1983),
where the slope of � / r� ,  = 1:8, leads to � = 3� = 1:2 independent of scale (e.g. Weinberg et
al. 2004). However, global statistics average over all local relations of each galaxy and, thus, provide
only information about the averaged and global clustering properties. Instead of this average,
the local scaling behavior of each galaxy neighborhood can provide a more detailed information,
which is now speci�c for each galaxy. This geometrical feature can be useful for the investigation
of galaxy evolution, which can depend on the galaxy's environment. Since correlations between
galaxy properties and environment extend to low-density regions and the outskirt of clusters, the
question arises if the di�erent geometric properties found in these regions are related to the galaxy
properties as well.

The local geometry can support the understanding of the origin of the observed relations between
galaxy properties and its environment. The standard cosmological paradigm is based on the model
of hierarchical clustering (White & Frenk 1991), where the large-scale structure of the present-day
Universe has evolved through merging from smaller structures to progressively larger ones. Density
uctuations on galaxy scales collapsed earlier and formed the over-dense regions in the Universe
seen today. Galaxies in high-density regions such as galaxy clusters formed even earlier and are
more evolved compared to galaxies in low-density regions such as void-like regions in space. Unlike
these members of void-like regions, galaxies in dense regions are more likely to be inuenced by
processes and interactions like stripping or harassment, which are typical for these environments.
By assigning a local geometry estimated by � to each galaxy, relations between observed galaxy
properties and di�erent classes of local environments can be compared. This approach provides
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further tests about the origin of these relations, for instance to address the question whether these
relations were established during the formation of galaxies ('nature') or are the product of various
processes during the galaxy's history ('nurture').

1.6 Galaxy Surveys

In order to construct a three-dimensional map of the Universe, galaxy surveys measure the redshift
of an object to measure its distance. The use of modern multi-�ber spectrographs increases the
number of available redshifts rapidly and allows to create wide-angle redshift surveys with a
large sky coverage. The Sloan Digital Sky Survey (SDSS, York et al. 2000) is the largest galaxy
redshift catalog ever compiled and o�ers the opportunity to accurately measure the dependency
of galaxy properties as a function of the environment. SDSS provides �ve-passband photometry
with medium resolution spectroscopy for each galaxy. The used ux-limited sample from the
fourth data release (Adelman-McCarthy et al. 2006) included roughly 3:8 � 105 from a total of
4:8 � 105 galaxies with measured redshifts at a median redshift of z0:5 = 0:10. The sky coverage
of the spectroscopic data set reached �4800 deg2. This large sample size and volume allow stable
estimations of statistical measures of the local galaxy environments. In addition, the SDSS catalog
includes many examples of the typical constituents of the large-scale structure, like cluster regions
that are connected with �lament-like structures. One of the previous large galaxy surveys, the
2dF galaxy redshift survey (2dFGRS) (Colless et al. 2003; Cole et al. 2005), has a similar median
redshift z0:5 = 0:11, but neither the large number of observed galaxies (2:2 � 105) nor the same
sky coverage (�1800 deg2). The 6dF galaxy redshift survey (6dFGRS) (Jones et al. 2009) has a
larger sky coverage of �17000 deg2, but a lower median redshift z0:5 = 0:053 and less galaxies
(1:6� 105).

1.7 Outline

This work is organized as follows: Chapter 2 provides more details about the used SDSS data
set along with the estimation of the photometric and spectroscopic galaxy properties. The local
geometry estimation is presented in Chapter 3, where the structural meaning, possible distortion,
and sources of errors are discussed. Chapter 4 presents the results including the relations between
the galaxy properties and the local density and geometry. These result are compared and discussed
in Chapter 5.



Chapter 2

SDSS Data

We describe the technical details of the SDSS data including the details about the used galaxy
subsamples, the photometric and spectroscopic measurements, and the calculated structure pa-
rameters.

2.1 SDSS Details

The Sloan Digital Sky Survey (SDSS)1 provides photometric and spectroscopic data covering
over � steradians of the northern Galactic cap. The wide-�eld 2.5 m telescope at Apache Point
Observatory, Sunspot, New Mexico, images the sky in �ve bands (u; g; r; i; z) between 3000 and
10000 �A (Fukugita et al. 1996; Gunn et al. 1998; Hogg et al. 2001; Smith et al. 2000). The used
drift-scanning, large-format mosaic CCD camera (Gunn et al. 1998) detects objects to a ux limit
of r � 22:5 mag.

One objective of SDSS is to obtain the spectra of almost 700; 000 galaxies with a magnitude
limit of r = 17:77 (Strauss et al. 2002). In addition, the spectra of 105 luminous red galaxies
(Eisenstein et al. 2001) and 105 quasars at redshifts z . 5:8 selected for optical spectroscopy
Richards et al. (2002) will be assessed. Many details about the spectroscopic target selection of
the main galaxy sample are found in Strauss et al. (2002). The descriptions of the observation
hardware, the data processing software, the measured quantities for each observed object, and an
overview of the properties of this data set are found in Early Data Release paper (Stoughton et
al. 2002).

The SDSS images are reduced and catalogs are produced by the SDSS pipeline PHOTO, which
measures the sky background and the seeing conditions. It detects stellar objects and measures
their photometric properties. The magnitudes are calibrated to a standard star network (Smith
et al. 2000), which is close to the AB system (Fukugita et al. 1996). All the magnitudes in SDSS
are asinh magnitudes (Lupton, Gunn, & Szalay 1999). Since the di�erence between the asinh
magnitudes and conventional logarithmic magnitudes is negligible in our sample, we apply no
conversion and treat asinh magnitudes as standard AB magnitudes.

For galaxy photometry, measuring ux is di�cult because galaxies possess di�erent radial surface
brightness pro�les and only poorly de�ned edges. The properties of the azimuthally averaged radial
pro�le I(r) of a galaxy can be expressed in a general form using S�ersic law, �rst introduced by
S�ersic (1968):

I(r) = A exp

[
�
(
r

r0

)1=n
]
; (2.1)

where A, r0, and n are free parameters quantifying the amplitude, size, and shape of the surface
brightness pro�le quantitatively. For n = 4, Equation (2.1) becomes de Vaucouleurs law and

1www.sdss.org

9
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Figure 2.1: Schematic ow chart of the main galaxy target selection algorithm from Strauss et al. (2002).

characterizes the pro�les of elliptical galaxies and bulge components of disk galaxies. For n = 1,
Equation (2.1) is a exponential law describing the radial pro�les of disk components of disk galaxies.
As found by Blanton et al. (2003b), galaxies with exponential pro�les tend to be blue with a low
luminosity and low surface brightness, while quite concentrated galaxies in the range n = 4 � 5
tend to be red with a high luminosity and high surface brightness.

In order to avoid photometric biases, galaxy uxes should be de�ned as a constant fraction of
the total galaxy's ux independent from the position and the distance of the galaxy. Two object
uxes that ful�ll this requirement are calculated by PHOTO, as described by Stoughton et al.
(2002). The �rst ux is the SDSS Petrosian magnitude system, a modi�ed version of the original
quantity introduced by Petrosian (1976). The essential feature of these magnitudes is that in the
absence of seeing a constant fraction of a galaxy's light is measured regardless of distance or size
(see Blanton et al. 2001 and Strauss et al. 2002 for more details). The second appropriate measure
of the ux of galaxies is the SDSS model magnitude, which is the best-�t model of a pure de
Vaucouleurs and a pure exponential pro�le to the two-dimensional image of each object (Blanton
et al. 2003b).

The spectroscopic target selection is described in Strauss et al. (2002). The SDSS �bers are allo-
cated to three main samples of galaxies, luminous red galaxies and quasars. The whole schematic
ow of the main galaxy target selection algorithm is given by Strauss et al. (2002) and is shown
in Figure 2.1. The three major selection criteria are

rPSF � rmodel > slimit; rpetro < rlimit; �50 < �50;limit: (2.2)

where rPSF is the r-band magnitude obtained �tting a point-spread function to the object, rmodel

is model magnitude and rpetro the SDSS Petrosian magnitude and �50 is the half-light surface
brightness, which is de�ned as the average surface brightness within the radius that contains half
of the Petrosian ux. The thresholds of the values vary across the sky in a well-understood way,
but for the bulk of the area, the limits are slimit = 0:3, rlimit = 17:77 and �limit = 24:5 mag. All
these quantities are corrected for galactic extinction according to the maps of Schlegel, Finkbeiner
& Davis (1998). The spectra cover the rest-frame wavelength from 3800-9200 �A at median redshift
with a resolution of R � 2000 and are obtained through a 300 diameter �bers. The k-corrections
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galaxies

all 382772
volume limited 93873
(0:05 < z < 0:1)

r= 2 h�1Mpc 62732
r= 3 h�1Mpc 50647
r= 5 h�1Mpc 34565
r= 8 h�1Mpc 18575
r= 10 h�1Mpc 11127
r= 15 h�1Mpc 2283

Table 2.1: The number of galaxies included in volume limited subsamples for di�erent radii r. Larger
radii lead to smaller galaxy samples.

eliminate the redshift dependence of the mean galaxy colors (Hogg et al. 2002) and are calculated
with the the routines given by Blanton et al. (2003a).

2.2 Volume Limited Subsample

For our analysis of the geometry of the local galaxy distribution, we de�ned a volume limited
galaxy samples. If the usually larger ux limited sample was used, the selection function and
local densities would become redshift dependent, which complicates the further analysis and the
interpretation of the results. Therefore, we extracted a volume-limited subsample of the fourth
data release (DR4) of the SDSS galaxies (Adelman-McCarthy et al. 2006).

To access the data, we used the SDSS Query Analyzer2 (sdssQA), a graphical user interface
that allows to compose SQL3 database queries. We used the query given in Appendix B.2 to
extract coordinates (redshift, right ascension, declination), photometric (model and petrosian
magnitudes), and spectroscopic (H�, H�, and [OII], see Section 2.7) properties of the galaxies in
our sample. The chosen ags include only objects from the main galaxy sample, and those objects
that inhere a galaxy-like spectroscopic signature.

The ux limited sample contains 382,772 galaxies that satisfy the requirement of our query.
An equatorial slice of this subsample for galaxies with z < 0:11 is illustrated in the upper panel
of Figure 2.2. By recreating the volume limited sample (Figure 2.2, lower panel) including only
galaxies with redshifts 0:05 < z < 0:11 and absolute magnitudes �24:5 < Mr < �19:9 + 5 log(h),
93879 galaxies remain in our catalog that are distributed in a volume of 1:58 � 107 h�3 Mpc3,
which results in a mean number density of hni = 0:0059h3 Mpc�3. The sample depth is about
320h�1 Mpc (z = 0:05) and ranges over 503h�1 Mpc (z = 0:11) along the right ascension axis.

In addition to the mentioned selection criteria, we excluded galaxies close to survey bound-
ary from the calculation of point statistics in the subsequent analysis. These galaxies introduce
edge e�ects and bias the sample means especially for the estimation of the local geometry (see
Section 3.1.3 for more details). To avoid this e�ect, we calculated the distances between each
galaxy and the sample boundary, and labeled all galaxies with a distance greater than 2r, where
r=(h�1 Mpc) = f2; 3; 5; 8; 10; 15g is a set of scales. In Table 2.1, we summarized the numbers of
galaxies for the di�erent samples with di�erent inclusion criteria. In the following sections, local
densities and geometry will be calculated for these various scales and galaxies close to the sample
boundary can be identi�ed with those labels.

2http://cas.sdss.org/astro/en/help/download/sdssQA/
3Structured Query Language



CHAPTER 2. SDSS DATA 12

Figure 2.2: Two dimensional projections of equatorial slices for the ux-limited sample (upper panel) and
volume limited sample (lower panel).
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Figure 2.3: The density contrast with top-hat �lter �th (solid line) is plotted against the density contrast
with Gaussian �lter �g (pointed line) for di�erent radii (upper left corner of each subpanel).

2.3 Density Estimators

In this work, the local galaxy density is used as a reference parameter for the evaluation of the
performance of the local geometry in its ability to characterize galaxy environments. Galaxies
and the underlying matter density �eld are not homogeneously distributed in the Universe and,
instead, show spatial uctuations. In cosmological models, the global, volume averaged mean
matter density h�i de�nes the dynamics and the fate the Universe, while local deviations from
h�i and their evolution with cosmic time are fundamental predictors of the statistics of the large-
scale galaxy distribution and galaxy formation (Peebles 1980; Peacock 1999). In cosmology, local
variations from h�i at the position ~x are expressed through the density contrast �m(~x) de�ned by

�m(~x) =
�(~x)
h�i
� 1; (2.3)

Here, we are mainly interested in the point statistics of the discrete galaxy distribution rather
than the continous matter density �eld. The corresponding term for the number density contrast
�gr (~x) of an arbitrary galaxy located at ~x can be written as

�g(~x; r) =
�(~x; r)
hni

� 1; (2.4)

where the radius r is a free parameter and de�nes the size of sampling sphere that includes
all neighbor galaxies that contribute to the local density. In general, a linear and deterministic
relation between the density uctuation �elds of galaxies and matter is assumed, �g = b �m, where
b is the galaxy biasing. However, more elaborate and nonlinear biasing schemes considering the
physics of galaxy evolution are necessary to explain e.g. certain aspects of galaxy formation in
high-density environments (Kaiser 1984; Mo & White 1996; Dekel & Lahav 1999; Taruya & Suto
2000; Seljak et al. 2005). These schemes indicate that higher order statistics are needed to fully
describe the resulting structures in the galaxy distributions.

The local galaxy density gains further physical relevance in measuring the local galaxy interac-
tion probability. The well-known morphology-density relation (Dressler 1980; Dressler et al. 1997;
Goto et al. 2003b) relates the evolution of galaxies with the surrounding galaxy number density.
Galaxy interaction occur more likely in high density regions like clusters, where galaxies are con-
centrated and strongly a�ected by the surrounding conditions. The estimation of the local density
provides a map of the interaction intensities, where di�erent density levels can be associated with
di�erent physical processes in galaxy evolution.
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Di�erent approaches have been used to estimate the local galaxy density which can lead to dif-
ferent physical interpretations. While the global density measures baryonic matter and luminosity
content in the Universe, the interpretation of local densities estimation depends on the used weight-
ing functions. Three major weighting functions can be found in astrophysical literature, namely
the top-hat density, Gaussian-�ltered density and adaptive density measures.

The standard top-hat density gives equal weight to galaxies within a certain radius r of the
central galaxy for which the local density is measured. The advantage of this approach is that
the physical scale, on which the density is measured, is identical with the radius and the physical
interpretation is straightforward. However, the density of cluster regions are underestimated on
scales larger than the typical cluster size (� 5h�1Mpc). On very small scales, discrete number
densities lead to a overestimation of the local density (e.g. Hogg et al. 2003).

Instead of using a top-hat �lter, Gaussian densities weight neighboring galaxies with a Gaussian
kernel. Close neighbor galaxies receive more weight and contribute more to the local density. The
density �eld is smoothed and continuous, especially on small scales with small number statistic.
In order to interpret the physical meaning, the kernel shape and the fuzzy edge of the �lter volume
must be considered. Gaussian kernels were used e.g. to calculate topological properties (genus
statistics) of the large-scale structure (Gott, Dickinson & Melott 1986) and small-scale clustering
(Hogg et al. 2003).

The third approach are adaptive density measures that estimate the local density on a scale
dependent of the environment of the galaxy. For each galaxy, the n-nearest neighbor galaxies are
identi�ed, where typical values in cosmology range from n = 3 to n = 10. The distance of this
nth-nearest neighbor determines the volume of interest and thus the local density. This method
is adaptive to the density �eld in the sense that the parameters of the density parameters are not
�xed (like the radius in the above two estimators) but are a function of the environment. This
has the advantage that densities of clusters are given more accurately and are not underestimated
like in the top-hat case. Adaptive measures are less noisier in low-density areas because the larger
sampling volume smoothes the surrounding density �eld. The disadvantage is that one looses the
physical scale dependence, an information crucial for environmental features. The comparison
between surroundings of an ensemble of galaxies should be performed with caution since densities
are measured with di�erent volumes dependent on one galaxy.

Note that, although top-hat and Gaussian densities estimations have di�erent properties, they
have in common that they assume isotropy for the surrounding galaxy distribution. Both esti-
mation take no account for the geometry of the galaxy distribution within the regions of interest.
In contrast, the n-nearest neighbor density accounts for spatial anisotropies in the surrounding
galaxy distribution. For example, these anisotropic environments are found in galaxies that are
embedded in �laments. For those �lament galaxies, the nearest neighbor density is more reli-
able density estimation. A comprehensive overview in the estimation of densities is provided by
Silverman (1986).

In the cosmological context, it is interesting that galaxy properties depend on the local density.
Neighboring galaxies inuence the merging history and thus the evolution. The galaxy formation
in galaxy clusters is di�erent from galaxies formed in under-dense regions. Moreover, not only the
observation, but the modeling of this environment dependent galaxy properties with simulations
is an active �eld of research (e.g. Springel et al. 2005). In the following sections, a set of galaxy
properties is presented, for which the dependence on the environment is investigated in the later
analysis.

2.4 Luminosity

The apparent brightness of galaxies can be measured directly and is the fundamental property
of any astrophysical object. The SDSS database provides measurements in �ve wave bands:
u; r; g; i; z. We extracted the corresponding apparent magnitudes mu;mr;mg;mi;mz from the
database and calculated the corresponding absolute magnitudes M . Following Peebles (1993), the
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Figure 2.4: Histograms of absolute magnitudes for the �ve bands. Mu has the largest dynamic range and
Mr has a sharp lower cut-o� due to the volume limited sample.

comoving distance DC is given by

DC = DH

∫ z

0

dz0

E(z0)
; (2.5)

with the Hubble distance DH = cH�1
0 and the cosmological model dependent function E(z) �√


M (1 + z)3 + 
Λ), with the matter density 
M = 0:3 and the vacuum energy density 
Λ = 0:7.
The distance modulus DM is de�ned by the magnitude di�erence of an object's bolometric ux
and it's apparent ux at 10pc:

DM � 5 log
(
DC

10pc

)
: (2.6)

The absolute magnitude M is de�ned to be identical to an object's apparent magnitude m of 10pc
distance:

M = m�DM �K(�); (2.7)

where K(�) is the k-correction (Oke & Sandage 1968; Blanton et al. 2003a). The k-correction
adjusts the redshifted wavebands and is applied in order to compare the spectra of galaxies at
di�erent redshifts. In Figure 2.4, the �ve distribution functions for each absolute magnitude is
shown. The wave-band Mu has the largest dynamic range and Mr has a sharp lower cut-o� due
to the volume limited sample.

2.5 Color

The color of a galaxy can be de�ned as the di�erence between two measurements of luminosity
at di�erent wavelengths. Galaxy colors quantify the stellar content of galaxies and allow to study
their evolution history even for faint galaxies (Strateva et al. 2001). Like apparent magnitude,
colors can be directly measured. From the absolute magnitudes presented in the previous section,
the following colors are used: u� r, g� r, r� i, r� z and i� z. In Figure 2.5, the corresponding
distribution functions for these color band are shown.

The colors u � r and g � r are commonly used in previous studies of the galaxy distribution
(Strateva et al. 2001; Baldry et al. 2004; Balogh et al. 2004b). For instance, Strateva et al. (2001)
showed that u� r is the best color band in order to distinguish two main galaxy population, the
blue galaxies (u� r < 2:3) and red galaxies (u� r � 2:3). Qualitatively, the strong bimodal shape
of the distribution function of the u � r in Figure 2.5 indicates the existence of two underlying
galaxy population. In the distribution function of g � r, this trend is still apparent, although not
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Figure 2.5: Colors histograms for di�erent colors. Note that di�erent bin sizes are applied.

that pronounced. The other three bands r � i, r � z and i � z were included to use the whole
spectrum of wavebands range provided by SDSS.

The physical meaning of the colors for the galaxy evolution is qualitatively well understood and
can be related to stellar populations. In this scenario, two main galaxy populations emerge in the
Universe: blue and red galaxies. Blue galaxies are dominated by young, metal-rich stars with a
lifetime of only � 107 years. In order to create new stars, galaxies need to cool and condensate
gas clouds where the conditions for star formation are suitable. Note that, another reason for the
identical galaxy color might be that all galaxies share the identical evolution history and are in the
identical stage of their evolution. Because this is very unlikely, we can assume that these galaxies
are actively star forming.

On the other hand, red galaxies are dominated by old red giants that are metal-poor. Thus, the
star formation in those galaxies is not prominent or at a very low level such that the light of young
stars can be neglected. There are various possible reasons for this lack of star formation, which
seem to be very common in the Universe because these galaxies form a whole population. The
most obvious could be the age of the galaxy: red galaxies are formed earlier than blue ones, thus
their supply of gas is exhausted and no new stars can form. In this context, color is an indicator
of age.

Besides this formation argument, there is the possibility of di�erent evolution histories. Some
galaxies may have formed in regions with less surrounding gas, e.g. where many galaxies in a small
regions of space are supplied from the same gas reservoir. Other galaxies could have su�cient gas
in there close proximity, but inhere not enough mass to drag the gas in their direction or do not
provide the the conditions for condensations, which is a crucial requirement for star formation.
Only cool and dense gas has a small enough Jeans length to clump together. This is a plausible
scenario for galaxy clusters, where the hot intra-cluster gas and deep gravitational potentials omit
gas cooling. In that case, the observed color reects di�erent galaxy evolution scenarios.

In the following sections we discuss star formation rate and morphology more closely. Yet already
these qualitative arguments indicate that galaxy colors provide useful physical information about
the dominant stellar population and the current star formation rate in the galaxy. They operate
as indicators for the age of a galaxy and the abundances of metals and dusts. The di�erences
in color of the two main galaxy populations indicate that galaxies are formed at di�erent times,
evolve di�erently or are located in di�erent environments. The following parameters will reveil
more accurate results.
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Figure 2.6: Histograms of the concentration index cin and its inverse 1=cin. Both de�nitions are related
to the morphology of galaxies.

2.6 Morphology

Apart from the photometric analysis of stellar objects, the imaging of galaxies provides the possi-
bility to classify the shape of the visible mass distribution, the morphology. Two main populations
emerge in the Universe, which consist of two fundamental components of galaxy structure: a at
disk component of stars, gas and dust, and a spheroidal component, the bulge, which is a central,
tightly packed group of stars that host one or more massive black holes in their center. Some
galaxies include both constituents, but there are galaxies without a signi�cant disk (ellipticals) or
without a pronounced bulge (spirals and irregulars). The disk galaxies are subdivided into those
with a high star formation rate (see next section) because of their rich abundance of gas and dust
(spirals and irregulars), and those with no star forming activity (S0 galaxies). These observed
morphologies of galaxies relate to di�erent formation mechanisms and evolution models, e.g. the
degree of interaction with the environment.

The di�erent morphologies of galaxies can be classi�ed by the well-known Hubble sequence
(Hubble 1926), which mainly distinguishes between elliptical, spiral and irregular galaxies. These
morphological types correlate with other galaxy properties, like the star formation rate (e.g. Ken-
nicutt 1998a). The Hubble sequence is based on three characteristics: the bulge-to-disk-ratio, the
tightness and the resolution of the spiral arms. There are two disadvantages involved with this
method: �rst, it is hard to automate and therefore ine�cient for large galaxy catalogues. Second,
the Hubble sequence is not suitable for investigations of star formation because the resolution of
the spiral arms depends particularly on the star formation rate. The structure of the spiral arms
is more likely highlighted due to signi�cant higher star formation activity along them.

Here, we use an automated method and choose an alternative classi�cation, the concentration
index cin, which is described e.g. by Morgan (1958), Shimasaku et al. (2001) and Goto et al.
(2003a,b). This index is de�ned as the ratio of the radius containing 50% of the Petrosian ux to
the radius containing 90% of the Petrosian ux as measured in the r-band:

cin =
r50

r90
: (2.8)

Low values of the concentration index (cin < 0:3) correspond to galaxies with a high central
concentration of luminosity (small bulge-to-disk ratio), typical for early-type morphology. Spiral
galaxies have a more uniform distributed luminosity because of the star-forming disk and are asso-
ciated with higher values cin > 0:4. Shimasaku et al. (2001) analyzed properties of morphological
classi�ed SDSS galaxies and observed a strong correlation between the Hubble scheme and the
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Figure 2.7: Completeness and contamination of early-type galaxies (solid line) and late-type galaxies
(dotted line) classi�ed by the concentration index C1 (from Shimasaku et al. 2001).

concentration index cin. In Figure 2.6, the distribution function for cin for our galaxy sample is
shown, as well the distribution function for the inverse concentration index 1=cin, which is used
in the literature as well (e.g. Rojas et al. 2004). The bimodal shape of both histograms indicates
the two main morphological types within the galaxy sample.

Using the concentration index, three di�erent classes are de�ned to distinguish the morphological
properties: all galaxies with cin � 0:33 are considered to be early-type, mixed type (irregular, S0)
galaxies have a values in the range (0:33 < cin � 0:375) and late-type galaxies have the highest
values (0:375 < cin < 1). Di�erent choices for the threshold for cin lead to di�erent completeness
and contamination fractions of the morphology classes as shown in Figure 2.7 from Shimasaku
et al. (2001). Our set of thresholds limits the contamination of the late-type galaxy sample to
5% at the expense of completeness. In general, the galaxy morphology correlates with the galaxy
color. Spiral galaxies appear bluer than elliptical and S0 galaxies are red. This relation connects
the physical processes on two di�erent scales, the global shape of the galaxy at ranges of 100
kpc and the physics of star formation on scales of the solar systems. The few di�erent shapes of
galaxies show that there should be few major formation and evolution possibilities for galaxies in
the universe.

Spiral galaxies have been able to collect gas from the surrounding reservoir and form disks with
spiral arms. In these spiral arms, stars are formed, which end in supernovae in quite a short time
(107 years). The shell from the stars is emitted and enriched the galaxy with metals. The large
number of young stars in the pronounced disk leads to the blue light and the creation of metals.
In contrast, elliptical galaxies possess no star forming disk. These galaxies were not able to form a
disk or lost the disk during their evolution e.g. by a galaxy-galaxy interaction. This lack of young
stars leads to a red color and a smaller metal abundance.

The dependence of these morphologies on the galaxy's environment is well-known (Hubble &
Humason 1931; Dressler 1980; Postman & Geller 1984; Dressler et al. 1997). Speci�cally, Postman
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& Geller (1984) observed that low-density �elds (. 5 galaxies Mpc�3; h = 1) mainly consist of
spiral galaxies; at a density . 600 galaxies Mpc�3 the fraction of S0 becomes greater than the
fraction of spirals and for densities & 3000 galaxies Mpc�3 the elliptical fraction rises steeply.
One possible interpretation is that galaxies share a common type at the beginning and traverse
through di�erent types due to subsequent evolution. For instance, during the process called 'ram
pressure stripping', a spiral's gas is removed and the galaxy turns into a S0 type (Gunn & Gott
1972). In order to constraint di�erent theories of galaxy formation and evolution, observations are
needed which compare the relation between several galaxy properties and the environment. We
follow this intention and include the morphology parameter to our analysis.

In addition to the environment dependence, observations could �nd relations between the mor-
phology of a galaxy and its star evolutions. Supernovae Type Ib, Ic and II are found only in Spirals
and Irregulars, where they occur only in spiral arms or close to HII-regions, typical star formation
regions. Those objects are young, massive population I stars. However, Supernovae Type Ia, the
fate of old, low-mass Population II stars, are common in elliptical galaxies. If a Supernova Type
Ia is found in spiral galaxy, it occurred in the central bulge region but within the spirals arms.

2.7 Measuring the Star Formation Rate in Galaxies

Galaxies are dynamical systems which can be classi�ed by their ongoing rate of star formation or
their history of star formation activity. Current research in cosmology investigates the relations
between the properties of the whole galaxy and the properties of the inhabitant stars. We in-
cluded this parameter to our analysis in order to link the purely statistical information about the
environment of a galaxy with its stellar content. This approach addresses the question whether
the stellar population of a galaxy predicts its environment or if the surrounding of the galaxy
constraints certain types of stars or limits star formation.

2.7.1 Indicators for Star Formation

The star formation rate (SFR) of galaxies can be indirectly determined from observational data
using various approaches (Kennicutt 1998a; Sullivan et al. 2001; Charlot & Longhetti 2001). The
most accurate approaches are to utilize the correlation of SFR with measurements of the (1) far-
infrared luminosity, which arises form dust-absorbed ultraviolet radiation from star formation, or
(2) the 1.4 GHz radio luminosity which results from synchrotron radiation generated by relativistic
electrons accelerated by Type II supernovae from stars of mass �7-8 M�. Indicators that are
sensitive to the ionized ux from massive stars (�5 M�), which include measurements of the (3)
ultraviolet continuum from young stars and the uxes of (4) nebular emission lines, generated in
regions ionized by the most massive early-type stars (�10 M�). Each of these techniques su�ers
form di�erent biases and calibration uncertainties but estimate the SFR of "normal" galaxies
consistently if these e�ects are corrected (Hopkins et al. 2001).

In this work, we estimate the SFR based on the H� recombination line (6564 �A), which is
one the most dramatic di�erences in the integrated spectrum of galaxies of di�erent types. All
nebular lines e�ectively re-emit the integrated stellar luminosity of galaxies below the Lyman
limit. Most analysis use the H� line as a sensitive probe of the young massive stellar population
(Lewis et al. 2002; G�omez et al. 2003), although other recombination lines, like e.g. H�, P�, P�,
are possible as well. The advantage of H� emission lines are their high sensitivity and the direct
coupling between the nebular emission and the SFR. However, the method is limited through the
sensitivity to uncertainties in extinction and the initial mass function. In addition it assumes, that
all star formation is traced by the ionized gas.

We also use the measurements of the forbidden emission line duplet [OII] �3727 in order to
compare the results with higher-redshift galaxies. The H� emission line is redshifted out of the
visible window beyond at z � 0:5 and bluer, higher order emission lines are not reliable tracers
of the SFR, because they are weak and inuenced by stellar absorption. The [OII] line is the
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strongest emission line in the blue regime of the spectrum. These excitations are not directly
coupled to the ionizing luminosity. Furthermore, they are more sensitive to metallicity and the
ionizing levels of the gas than the H� emissions. However, empirical calibrations can provide
quantitative SFR tracers, which is not done here.

In order to calculate the intensity of the spectral lines, we use their observed equivalent width
(EW) listed in the SDSS database. The EW is the wavelength interval of the continuum spectrum,
which includes the same total energy as the spectral emission line. In Figure 2.8, we show the
histograms of the EWs.

The relation between SFR and ionized ux is usually computed using an evolutionary synthesis
model, where only stars with masses of >10M� and lifetimes <20 Myr contribute signi�cantly to
the ionized ux. The emission lines provide an almost direct measurement of the SFR, independent
of the previous star formation history. In order to calculate the SFR of the galaxies, we use the
H� uxes calculated from line parameters measured by the SDSS spectroscopic data processing
pipeline (Stoughton et al. 2002) and the theoretical model by Kennicutt (1998b):

SFRH� (M� yr�1) =
L(H�)

1:27� 1034 W
(2.9)

where L(H�) is the observed luminosity in the H� line. This relation is valid for the optical thin
Case B recombination (no escape of Lyman � photons) with an initial mass function and a mass
range from 0.1 to 100 M� (Salpeter 1955). This assumption may cause an underestimation of the
SFR by a small factor if the line-emitting regions su�ers from extinction (Charlot & Longhetti
2001). In addition, a burst-like star formation will e�ect the average SFR over short time scales
(� 100 Myr) (Sullivan et al. 2001). Neither of these e�ects will inuence the following comparison
of galaxy populations with similar luminosity functions. Kennicutt (1998b) provides a discussion
about the e�ects of changing the mass scale or choosing a di�erent mass function.

2.7.2 Corrections

Before applying the calibration in Equation 2.9, the H� luminosities have to be corrected for stellar
absorption and for obscuration due to intrinsic dust content of the target galaxy. In addition,
aperture corrections have to be added, because the �ber diameter (3") can be smaller than the
target diameter and emission from the galaxy can be lost. The corrections where applied following
the prescription of Hopkins et al. (2003).

The Milky Way foreground obscuration is considered through the extinction corrections given
by the dust maps from Schlegel, Finkbeiner & Davis (1998). Luminosity attenuation by the
dust intrinsic to the star forming galaxy can lead to a more signi�cant underestimation of the
emission line ux. From the observed H� and H� uxes, the Balmer decrement FH�=FH� is used
to calculate the correction. The Balmer lines have to be corrected for stellar absorption, which
induces an overestimation of implied obscuration (references in Hopkins et al. 2003).

The EW of H� and H� are corrected for stellar absorption through adding the constant cor-
rection term EWc = 1:3 �A and EWc = 1:65 �A, respectively. This EW correction alters the the
emission line ux:

S =
EW + EWc

EW
F (2.10)

where S is the stellar absorption line ux for H� or H� and F is the observed line ux. Although
the median stellar absorption of the H� line is 2.6 �A, the SDSS pipeline Gaussian �t underestimates
the line emission by a factor of 2. Thus the correction of EWc = 1:3 �A seems appropriate. Finally,
the dust attenuation was estimated through the ux ratio SH�=SH� , assuming that this intrinsic
ratio is equal 2.86, and the Milky Way obscuration curve of Cardelli et al. (1989). Together, these
corrections lead to a factor (2:86�1SH�=SH�)2:114.

The aperture correction recovers an e�ective H� luminosity for the whole galaxy based on the
H� EW together with an estimation of the continuum luminosity for a galaxy from the photometric
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catalog at the observed H� wavelength. The stellar absorption corrected H� luminosities can be
estimated by (Hopkins et al. 2003, Equation (5)):

L(H�)(W ) = (EW(H�) + EWc)10�0:4(Mr�34:10) 3� 1018

[6564:61(1 + z)]2
: (2.11)

where Mr is the k-corrected absolute r-band AB magnitude which is calculated from the observed
r-band Petrosian magnitude. The last term converts the luminosity units to W �A�1. This cor-
rection assumes that �ber luminosity is representative for the whole galaxy and that the star
formation is uniformly distributed within the galaxy. For the used volume-limited sample used in
this work, the 300 aperture is equivalent to the median physical size of 4.1 kpc. The �ber probes a
signi�cant fraction of the galaxy, which is thus valid for the accuracy estimated by Hopkins et al.
(2003). Compared with other SFR estimates from global galaxy properties, like radio, far-infrared
or u-band continuum emission, this correction reproduces good results.

Including all corrections, the SFR indicated through the H� emission line is given by (Hopkins
et al. 2003, Equation (B2))

SFRH� (M� yr�1) =
L(H�)

1:27� 1034W

(
SH�=SH�

2:86

)2:114

: (2.12)

We used Equation (2.12) to estimate the star formation for each galaxy and investigated whether
these results depend on the local environment of galaxies (Chapter 4).

2.7.3 Physical Motivation

Cosmic star formation varied during the evolution of the Universe. Early star formation was
dominated by the creation of massive stars or star clusters because the gas cooling during the
collapse was less e�ective compared to later stages. Hydrogen did not support the cooling process.
Dust that contained heavier elements, which have higher cooling abilities, was not abundant yet.
After the supernovae of the �rst stars, the interstellar medium was more fragmented and enriched
with heavier elements. Both, the fragmentation of the depris and the heavier elements, increased
the cooling e�ciency of the matter, which could now form new, less massive stars.

Di�erent types of star formation explain other properties of galaxies, e.g. the color. A high
rate of star formation reects the on-going formation of stars which emit mainly blue light, while
red galaxies have a low rate of star formation. Although galaxy color is already an indirect
measurement of star formation, the direct measurement of star formation provides us with a more
accurate estimation on the amount of new stars and on the e�ciency of star production in each
galaxy.

The correlation between morphology and star formation is well-known: spiral galaxies are ac-
tively star forming, while elliptical galaxies ceased it some time ago. In order to investigate the
mutual inuence between environment and galaxy properties, it is still reasonable to include both
properties. Both are driven by di�erent physical processes that work on di�erent scales. In ad-
dition, star formation is a more sensitive to transitions between galaxies with di�erent stellar
activity. The morphology of galaxies might not be sensitive for smooth transition between di�er-
ent stellar activity. While a galaxy's star formation can be a�ected by small changes that even
occur in low-density regions, e.g. the supply of gas, the transformation of the morphology are
most likely in high-density regions.
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Figure 2.8: Top: Distribution of the observed H� EW for the galaxies in our sample. Bottom: The
distribution of the observed [OII] EW for the galaxies in our sample.



Chapter 3

Scaling Index Method

In this chapter, we introduce the geometry estimator �, which is derived form the two-point
correlation function. We survey the possible values of � and test its stability. An alternative
derivation of � can be found in the Appendix A.1.

3.1 Estimator of Local Geometry

3.1.1 Correlation Function

The de�nition of a stable estimator used for the classi�cation of the geometry of the galaxy distri-
bution around each galaxy is tightly connected to the well-known 2-point galaxy-galaxy correlation
analyses. The classical form of this method, the angular 2-point galaxy-galaxy correlation func-
tion w(�), was introduced by Totsuji & Kihara (1969) and Peebles (1973, 1980) to quantify the
observed clustering of galaxies distribution projected on the celestial sphere. We can de�ne w(�)
in such a way that the conditional probability dP12 of �nding two galaxies in the solid angles d
1

and d
2 at a angular separation � is given by

dP12 = n2
a [1 + w(�)] d
1d
2; (3.1)

where na is the angular mean density of galaxies projected on the sky. For a 3-dimensional data
set, an equivalent de�nition can be formulated for the spatial 2-point galaxy-galaxy correlation
function �(r):

dP12 = n2 [1 + �(r)] dV1dV2; (3.2)

where two galaxies are now found in the Volumes dV1 and dV1 separated by the distance r and
n corresponds to the mean space density. To calculate the correlation function �(r), the neighbor
galaxies of all galaxies within the distance range [r; r+dr] are counted and the results are averaged
over the whole sample. In this way, �(r) estimates the excess of clustering relative to a Poisson
distribution, which can be created by a random point process for a given density. In addition,
�(r) provides a mean and global scaling behavior of the galaxy sample for distance range [r; r+dr].
This global scaling behavior for can be categorized into three cases:

� if �(r) = 0, the galaxies are uniformly distributed (Poisson distribution);

� if �(r) > 0, the galaxy locations are correlated and embedded in a cluster pattern;

� and if �1 � �(r) < 0, the galaxies are anti-correlated, which occurs on scales typical for the
low-density regions in space (voids).

23
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Figure 3.1: SDSS redshift-space galaxy correlation function ξ(s) (filled circles, solid line) from Zehavi et
al. (2002). A power-law fit for the range 2h− 1Mpc < s < 10h − 1Mpc is plotted as a dot-dashed line. Open
squares show ξ(s) obtained from the Las Campanas Redshift Survey (LCRS, Tucker et al. 1997).

It is convenient to compute the correlation function ξ as (e.g. Peebles 1980; Landy & Szalay
1993)

ξ(r) =
Nobs

Nrand
− 1, (3.3)

where Nobs is the number of galaxy pairs in the observed sample with separations between r and
r + ∆r, and Nrand is the number of pairs in the same interval for the same number of galaxies
distributed randomly over an identical area. Observational determination of ξ for large-scale
galaxy distribution yields relationships of a power-law form:

ξ(r) = (r/r0)γ, (3.4)

which is characterized by a typical length scale r0 and the correlation dimension γ. Estimated
values for these parameters are r0 = 5.4h−1Mpc and γ = −1.77 in the range r ≤ 10h−1Mpc for
the CfA redshift survey Davis & Peebles (1983) and

ξSDSS(r) = (r/r0)−1.75, r0 = 6.1h−1Mpc (3.5)

in the range 0.1h−1Mpc < r < 16h−1Mpc for a SDSS galaxy sample (Figure 3.1, Zehavi et al.
2002, 2004). These results confirm the model of hierarchical galaxy formation and indicate the
foam-like structure of the three-dimensional galaxy distribution.

Both parameters, r0 and γ, characterize the galaxy clustering. The parameter r0 marks the scale
where ξ is equal to unity. For scales below r0 (ξ> 0), the galaxy clustering must be considered
to be in the nonlinear regime, whereas for scales above r0 (ξ< 0), the clustering patterns can be
modeled with linear theory. Thus, the typical length scale r0 estimates an upper limit for typical
structure size of the nonlinear objects, mainly the size of the virialised clusters. The exponent γ
reflects the scaling properties and the self-similar nature of the galaxy distribution. The observed
value γ ∼1.7 suggest that galaxies cluster mainly located along one dimensional structures like
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�laments ( = 1) and two dimensional structures like walls ( = 2). More details about the
correlation function analyses, like di�erent estimators and errors, can be found in e.g. Peebles
(1980) and Mart��nez & Saar (2002).

The correlation function � is important for the theoretical description of cosmic structure for-
mation. Linear analytic solutions for � can be calculated for the galaxy distribution at z = 0 from
the Gaussian density uctuations of the primordial Universe at z � 1000. The correlation function
�, however, has some limitations in providing a complete description of the clustering properties
of the galaxy distribution. The technique is a measurement of second order, i.e. an arbitrary
point distribution is completely described by the correlation function, only if all moments above
the second moments are zero. The point distribution is then completely described by its mean
clustering and its variance of clustering. If � completely describes the clustering properties of
galaxies, the galaxy distribution must be of second order and can be modeled with a Gaussian
density distribution.

According to Equation 3.2, the calculation of � assumes that galaxies are isotropically distributed
around an arbitrary galaxy. This assumption approximates well the clustering properties on global
scales & 10h�1Mpc larger than the typical sizes of observed structures. On smaller scales, however,
the gravitational force cannot be modeled by linear approximations which must be replaced by
approaches that incorporate nonlinear terms, e.g. the Zeldovich approximation (Zeldovich 1970).
This nonlinear evolution on small scales led to locally dense structures in the galaxy distribution
like clusters and �laments, where galaxies are not isotropically distributed. Hence, the correlation
function � cannot be considered to be a complete measurement of the local clustering properties.
Some problems can be solved by studying higher order moments, but these can be di�cult to
compute.

Further limitations of the correlation function include the assumption that the galaxy distribu-
tion becomes spatially homogenous on a length scale that can be smaller than that of the catalog
being analyzed. If this assumption is invalid, the amplitude of the correlation function and the
length scale r0 become scale dependent (Pietronero 1987). The correlation function is also limited
by fact that it averages over amplitudes on a given scale that may come from galaxy pairs located
di�erent environments. This can yield a large amplitude for � because of a large number of close
neighbors for a small fraction of the galaxies in the sample or because of smaller number of neigh-
bors for nearly all galaxies in the sample. The correlation function does not indicate how many
galaxies do contribute to the estimated value of clustering. Finally, this statistic is mostly applied
either to all galaxies or to galaxies of the same properties like color or morphology (e.g. elliptical-
elliptical pairs). Some environmental inuences on galaxy properties might only be understood if
all galaxies in an environment of a particular type are considered.

In the following sections, we develop a technique to describe the distribution of galaxies that
originated in the �eld of nonlinear dynamics. Instead of averaging over the environment and
clustering property of all galaxies and measure the excess of clustering relatively to a random
distribution (Equation 3.2), we calculate the slope of the local correlation function of each galaxy.
Di�erent galaxies can possess di�erent scaling relations because they are embedded in di�erent
environments. The two dimensional slice in Figure 2.2 shows that the prominent clusters, �laments
and voids are part of the cosmic web. It is interesting to assess a local scaling behavior, i.e. a
local scale length r0 and a local exponent , which appear to be di�erent for galaxies in di�erent
environments. This new local information can be crucial for the understanding of galaxy evolution
and formation histories, which are both local processes that created di�erent types of galaxies
in di�erent environments throughout the Universe. Although the correlation function does not
provide local scaling information, it can be used to derive a geometry estimator that includes this
local scaling behavior.

3.1.2 Global Geometry

In order to introduce a global scaling relation �(r) for the galaxy distribution, we use the 2-point
correlation function �(r) to calculate the mean local density hni within a sphere of radius r around
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a `representative' galaxy:
hn(r)i = �n [1 + �(r)]; (3.6)

where h�i represents the sample mean and �n is the mean density of the sample (see Chapter 2).
If no clustering is present in the galaxy sample, the sample mean of the local densities hn(r)i and
mean density �n are identical. To calculate the mean number of galaxies N(r) contained in sphere
with radius r around galaxies, hn(r)i is integrated over the sample Volume V of the sphere:

N(r) =
∫ r

0

hn(r0)idV (r0) = �n
∫ r

0

[1 + �(r0)] dV (r0): (3.7)

In the nonlinear regime with �(r) > 1 and r < 30h�1Mpc, the galaxy correlation function �(r)
is very close to have a constant slope and can be approximated by a power-law of the correlation
dimension ,

1 + �(r) / r� : (3.8)

This self-similar behavior for galaxy clustering suggests that the concept of fractal geometry may
apply (Mandelbrot 1982; Peebles 1993). Various fractal analyses have been applied to describe
the self-similar behavior, such as wavelet transforms (e.g. Martinez et al. 1993) and percolation
analysis (e.g. Klypin & Shandarin 1993). Here, we use the self-similar behavior to calculate the
mean number of neighbor galaxies N for all galaxies in the sample. The integration over a sphere
with the radius r then yields:

N(r) / �n
∫ r

0

r0� dV (r0) =
2��n

3� 
r3� : (3.9)

Thus, the local number of galaxies follows a power law, N(r) / r3� . In addition, a linear
expression can be found for the relation between numbers of galaxies in two spheres around a
representative galaxy, N(r1) and N(r2), with the given radii r1 and r2 (r2 > r1 > 0) by using
logarithmic di�erences (e.g. Best et al. 1996):

N(r2)
N(r1)

=
(
r2

r1

)3�

, lnN(r2)� lnN(r1)
ln r2 � ln r1

= 3� : (3.10)

The correlation dimension is the slope of the functional relation between lnN(r) and ln r and
describes how the number of neighbor galaxies scales with the radius. For the given radius interval
r1 < r < r2, we call the scaling relation between the lnN(r) and ln r the global scaling index �(r),

�(r1; r2) = 3� ; (3.11)

which is merely a di�erent de�nition for a correlation dimension. Instead of calculating the log-
arithmic di�erences between a chosen radius interval, a more general expression of this global
scaling index �(r) can be derived by performing a logarithmic derivation of Equation (3.9):

�(r) =
d lnN(r)

d ln r
=

r

N(r)
dN(r)

dr
= 3� ; (3.12)

where the requirement N(r) > 0 holds for r > 0, since the galaxy in the center of the sampling
volume is included in N(r). For the given radius interval, the derived scaling relation is radius
independent, �(r) = �. In general, the function �(r) values obtained at di�erent scales r constitute
to an overall scaling relation of the sample, � = h�(r)i, the mean scaling relation of all galaxies in
the sample and all possible volume spheres de�ned by the radius r. This overall scaling index can
be regarded as an galaxy distribution's fractal dimension that was derived similar to a box-counting
approach. In Appendix A.1, more details about this approach are presented.

The observed global value of  = �1:8 corresponds to a scaling index of �(r < 30h�1Mpc) =
1:2, which is between the correlation dimension of �lamentary structures (� = 1) and wall-like
structures (� = 2). In the homogenous regime at scales r > 30h�1Mpc , we have �(r) � 0 and
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the correlation dimension becomes �(r > 30) = 3, i.e. the dimension of the con�guration space.
Those examples indicate that the values of the scaling indices have an easy interpretation for
the overall structural organization of the galaxy distribution. Since the relative positions of the
galaxies are described by the scaling index �(r), which can be related to speci�c patterns, this
estimated structural property of a point distribution can be called geometry.

However, a radius independent and global scaling relation might not adequately represent all
existing structural information of the galaxy distribution. Based on the examples mentioned above,
we expect to measure di�erent scaling indices indicating di�erent geometries at di�erent radius
intervals. The SDSS correlation function in Figure (3.1) shows that the correlation function should
not be approximated over the whole range of radius r by one correlation dimension alone. Only
certain radius intervals can be approximated with a speci�c correlation dimension and, according
to our derivation, with a speci�c scaling index �(r).

�(r) = 3� (r) (3.13)

With the mean value of the global scaling index, certain scaling regimes cannot be identi�ed.
Instead, a radius dependent scaling index �(r) classi�es di�erent scaling regimes and a spatial
dependent scaling index could even classify galaxy environments with di�erent scaling properties.

3.1.3 Local Geometry

The global scaling relation �(r) can be considered as a measure for the average scaling of all local
scaling relations. Instead of calculating the sample property, these local scaling relations provide
the possibility to characterize the local geometry around each galaxy in the sample. For the local
case, we need to compute the local number of galaxies N(xi; r) for each of the N galaxies with
comoving positions fx1; :::;xNg and within a sample volume de�ned by the scaling radius r. Then,
we can calculate the local scaling relation �(xi; r). The corresponding relations between the global
and local properties become

N(r) = N�1
N∑
i=1

N(xi; r); and �(r) = N�1
N∑
i=1

�(xi; r): (3.14)

To calculate the local properties N(xi; r) and �(xi; r), we follow the derivation of the global scaling
index in the previous section. However, we assume now that each local environment around each
galaxy in the sample must be described with a local correlation function �(xi; r) and a local
correlation dimension (xi; r):

1 + �(xi; r) / r�(xi;r): (3.15)

This approach is motivated by observations of large-scale structure of the Universe, where galaxies
are located in di�erent structural parts of the cosmic web. Galaxies in clusters of galaxies have a
di�erent local correlation dimension than galaxies located in �lament-like shaped connections be-
tween the clusters. Like in the global case in Equation (3.12), we have to calculate the logarithmic
derivative of the local numbers of galaxies N(xi; r) in order to assess the local geometry �(xi; r)
for each galaxy:

�(xi; r) =
@ lnN(xi; r)

@ ln r
=

r

N(xi; r)
@

@r
N(xi; r) (3.16)

To solve this equation, we �rst need to de�ne an analytically stable estimator for N(xi; r). For the
global scaling index, we assumed that the average number of neighbor galaxies can be estimated
with a power-law that holds in the nonlinear regime (Equation 3.9). If we calculate the local
number of number of neighbor galaxies, this assumption might not be accurate for all environments;
for instance, galaxies in low-density regions (voids) contain only a few or no neighbor galaxies with
a given range. Rather than estimating a global average, we count the neighbors for each galaxy
for a given volume to assess the slopes of the local correlation function and the local geometry.
This counting leads to a discrete function N(xi; r) that is analytically unstable with respect to the
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derivation operator @=@r in Equation (3.16). Instead, the galaxy distribution can be represented
by a smoothed density �eld that is continuously di�erentiable.

To derive such an analytic stable estimator for N(xi; r), we introduce a density function n(x)
to represent the discrete galaxy locations,

n(x) =
N∑
j=1

�D(x� xj) (3.17)

using Dirac's delta �D(�), and a weighting function w(dij ; r) to get the local number of galaxies
N(xi; r),

N(xi; r) =
∫ 1

0

n(x)w(dij ; r) d3x =
N∑
j=1

w(dij ; r); (3.18)

with an index i = 1; :::; N and the Euclidean distance dij = jxi � xj j between the ith and the jth
galaxy. One possible choice for the weighting function w(dij ; r) is a top-hat �lter, which is de�ned
by the Heavyside function �(�):

wt(dij ; r) = �(r � dij) =
{

1 : for 0 � dij < r
0 : elsewhere: (3.19)

This window function wt(dij ; r) assigns equal weights to all galaxies within the distance r and
was already used to calculate the global scaling index. In general, any window function and any
distance measure could be used to calculate N(xi; r). To obtain analytic stable expressions, we use
a set of Gaussian window functions, which assign neighbor galaxies di�erent weights depending
on the distance to the center galaxy:

w(dij ; r) = exp[�(dij=r)q]; (3.20)

where the exponent q controls the weighting of the neighbor galaxies according to their distances
to the galaxy for which � is calculated. Increasing q leads to a more stepwise weighting function
and in the limit q ! 1, the weighting is equal to the weighting of the Heaviside function �. In
the case q = 2, the window function is the well-known Gaussian exponential function. Throughout
this work, we will use the exponent q = 2 to calculate �-values.

Inserting the expression for w(dij ; r) (Equation 3.20) in the de�nition for �(xi; r) (Equation 3.16)
yields the following estimator for �:

�(xi; r) =
2
∑N
j=1(dij=r)2 exp[�(dij=r)2]∑N

j=1 exp[�(dij=r)2]
: (3.21)

This estimator for � was tested with simulated dark matter distributions (Huber 2002; Raeth
et al. 2002), maps of cosmic microwave temperature uctuations (Raeth & Schuecker 2003; R•ath
et al. 2007), and texture analysis (Huber et al. 2009). The following sections illustrate the
meaning of �-values for speci�c geometry prototypes, such as �lament-like and void-like regions,
that typically occur in the galaxy distribution.

An advantage of the estimator in Equation (3.21) is the stability in low-density regions, i.e.
regions containing no or only a few galaxies. Even if galaxies have no neighbors within a certain
range, Equation (3.21) still provides analytically stable and reasonable results and assigns the
galaxy a point-like environment (� � 0). With this important feature, it is possible to identify
galaxies located in void-like regions and compare them with galaxies in di�erent environment
types. With a relative abundance of � 8%, void galaxies represent a group of galaxies with
distinct physical properties and evolution histories compared e.g. to galaxies located in clusters
(Rojas et al. 2004, 2005).

A limitation of this method is the sensitivity to edge e�ects especially for large radii. The
survey boundaries mimic an arti�cial environmental geometry, which has no physical meaning.
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For a given radius r, galaxies closer than 2r to those edges have to be remove in a conservative
manner ("minus estimator") like described in in Chapter 2. For the largest radii, the number of
galaxies in the �nal sample used for the analysis shrinks down to � 2000. The large size of the
SDSS galaxy sample allows the calculation of scaling relation for such large radii. Further must
be noted, that in general, there is no analytical expression for the local geometry rather than a
numerical result. The best choice for the radius parameter can depend on the data set and the
objective, what kind of geometries are of interest. Another degree of freedom can be introduced
by using an anisotropic distance measure.

3.1.4 Anisotropic Scaling Indices

The optimal selection of a �ltering scale, e.g. to estimate the density of a point process, is a well-
known problem in spatial statistics (e.g. Silverman 1986). For the large-scale galaxy distribution,
the local density of a galaxies in clusters or �laments can be under-estimated if the scaling radius
is larger than the diameters of the structures. In contrast, the local density of void galaxies can
be over-estimated if the scaling radius is much smaller than the diameter of the void-like region.
Since the best �ltering scale can depend on the geometry of a local structure, a unique, optimal
and overall scaling range for a galaxy sample does not hold the best classi�cation results for all
these structures.

Furthermore, instead of using one isotropic distance measure, which is applied for all galaxies,
one can think of an adaptive intensity estimator. This estimator can be dependent on the position
of the galaxy or dependent on certain properties of the galaxy. Here, we want to introduce such a
measure in order to contribute to the problem of the redshift space distortions, which are discussed
in the next section.

In general, the distance dij between two arbitrary galaxies located at the positions xi and xj
can be written as

d2
ij = dT

ij A dij ; (3.22)

where dij = xi � xj is the distance vector between the two galaxies. The matrix A contains the
distance metric; in the special chase of an unit matrix, A = diag(1; 1; 1), the metric is constant
and isotropic and the distance dij is equal to the Euclidean distance. All points with a given
equal distance from a galaxy are found on the surface of a sphere around the galaxy. With a
di�erent choice of A with non-diagonal elements, the distance measure dij becomes non-isotropic
and has an orientation. All points with a given equal distance from a galaxy are then found on a
non-spherical surface.

Here, we want to de�ne a local distance metric that depends on the location of the galaxy, the
right ascension γ and the declination �. Equidistant points are then located on the surface of a
ellipsoid. We �rst de�ne an anisotropic distance metric for the whole sample, where

Λ = diag(�1; �2; �3) (3.23)

represents the metric with the eigenvalues �1, �2 and �3. If �1 = �2 = �3, the metric de�nes an
isotropic distance measure, like used in Section 3.1.3. For all other cases with �1, �2, �3 > 0, the
sampling volume is no longer a sphere but an ellipsoid. The semi-axis of this ellipsoid e1, e2 and
e3 are given by the eigenvalues of the metric Λ:

�1x
2
1 + �2x

2
2 + �3x

2
3 = const; (3.24)

where the relation between the lengths of the three semi-axes is

ei
ej

=
√
�j
�i
; i; j = 1; 2; 3: (3.25)

In the following analysis, we will use the following set of ellipsoidal distance metrics Λ� de�ned
by one free parameter �:

Λ� = fΛ jΛ = diag(1; �2; �2)g; (3.26)
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where the relation between the long semi-axis and the two short semi-axes is e1=e2 = e1=e3 = �.
Then, the orientation of given distance metric Λ is rotated according to the right ascension γ and
the declination �:

A = A�(γ; �) = RT Λ� R; (3.27)

where the rotation matrix R = R(γ; �) includes the rotation around the y-axis (γ = 0�; � = 0�)
followed by a rotation around the z-axis (� = 90�):

R = R�R�

=

 cosγ sinγ 0
� sinγ cosγ 0

0 0 1

 cos � 0 sin �
0 1 0

� sin � 0 cos �


=

 cosγ cos � sinγ cosγ sin �
� cos � sinγ cos � � sin � sinγ
� sin � 0 cos �

 :

After the rotation, the local ellipsoidal distance metric points towards the observer throughout
the whole galaxy sample. We use A = A�(γ; �) to de�ne an anisotropic geometry estimator �A

for a given �:

��(xi; r) =
2
∑N
j=1(dT

ij A� dij=r2) exp[�(dT
ij A� dij=r2)]∑N

j=1 exp[�(dT
ij A� dij=r2)]

: (3.28)

This equation is a more general de�nition of the local geometry than Equation (3.21) because the
shape and orientation of the sampling volume are free parameters. The estimator can be adjusted
and optimized to the underlying galaxy distribution. Yet, the physical interpretation of results may
be ambiguous since the calculated geometries depend on the choice of those parameters included
in the metric, which weights the distance to neighbor galaxies accordingly. Neighbor galaxies
that are on the line-of-sight contribute more weights than the neighbor galaxies perpendicular to
the line-of-sight. This non-Euclidean weighting of distances between galaxies might reduce the
correlations between the geometry and galaxy properties, which are function of the Euclidean
distance.

However, the observed galaxy distribution includes inherent redshift distortion that displace
the location galaxies along the line-of-sight. This displacement can increase the distance between
two neighbor galaxies with a similar evolution history, which leads to a reduced correlation of
galaxy properties within the local environment. Because the anisotropic geometry estimator in
Equation (3.28) adds more weight to the neighbor galaxies along the line-of-sight, the e�ect of the
redshift distortions may be reduced.

In this work, we will use �� as an indicator for redshift space distortions. By adjusting the eigen-
values of the metric, those galaxy environment that are altered by the redshift space distortions
can be classi�ed. A motivation for the proper choice of the eigenvalues will given in Section 3.3.
This classi�cation can be helpful in the analysis of 'Fingers of God', clusters of galaxies that are
elongated due to the redshift-space distortions.

3.2 Illustration with 3D Toy Models

After the de�nition of the geometry estimator �, we present an overview of possible results for
�, which facilitates the interpretation for the measured geometries in the observed galaxy dis-
tribution of SDSS. We illustrate the values of � with the help of three dimensional toy models,
arti�cially created point distributions with certain properties. Every toy model mimics a single
isolated structure element of the observed large-scale galaxy distribution. The toy models allow
to investigate the geometrical properties of the structure elements without the interference from
neighboring structures. The volume surrounding the structure elements is �lled with a random
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point distribution with a mean density similar to the galaxy sample. This random distribution
simulates the background signal from the surrounding galaxy distribution. The geometry � for
the central point can be considered to be a typical value for each structure. By choosing a box
size much larger than the sampling volumes, edge e�ects can be avoided.

The �ve toy models are generated by placing each of the �ve major structure elements, clusters,
�laments, sheets, uniform regions and voids, in the centre of a box with the length 100h�1Mpc.
The space around these structure elements is �lled with a random point distribution with the
mean density 0:0059h3Mpc�3, the mean density of the volume limited sample of the SDSS sample
(Section 2.2).

The toy models were created according to the following speci�cations:

� The cluster-like structure was created by a uniform distribution of 50 points within a sphere
radius equal 2.5 h�1Mpc. The central point has the density contrast �8 = 3:9 (top-hat �lter,
radius 8h�1Mpc).

� The filament-like structure was created by �lling a cylinder (radius 1h�1Mpc, length
20h�1Mpc) with 50 randomly distributed points; its central point has a density of �8 = 2:5.

� The sheet-like model was simulated with a at cylinder (radius 15h�1Mpc, height
1h�1Mpc) �lled by 100 points resulting in a density contrast of �8 = 1:9.

� A uniform region was created by �lling the whole box with a random distribution and
adding a point to the centre (�8 = 0:088).

� The void-like model for a void galaxy was created by a uniform distribution and removing
all galaxies within a radius of 10h�1Mpc around the central galaxy (�8 = �0:92).

The �ve toy models are shown in the �ve rows of Figure 3.2. Each panel in left and middle
column shows a 10h�1Mpc slice in the x-y-plane and x-z-plane of the toy model box, respectively.
The �gures in right column show two geometries for various radii r estimated for the central point:
the scaling index � and an approximation for �, a local slope m(r) given by Equation (3.12):

m(r) =
d lnN(r)

d ln r
� lnN(r + rc)� lnN(r � rc)

ln(r + rc)� ln(r � rc)
; (3.29)

where an arbitrary value of rc = 5h�1Mpc was chosen. In most models and for most radii,
the geometry � and the local slope m(r) have similar values. These examples indicate that the
geometry � indeed estimates the slope of the function lnN(r)= ln r, the change of number of
points within a radius interval. The overall slight deviation and the large di�erence of the void
toy model between �(r) and m(r) can be both explained by two di�erent weighting functions: a
smooth Gaussian-like sampling sphere was used for the estimation of �, whereas the slope m(r)
was calculated with a top-hat �lter.

In Figure 3.2, all toy models share a similar geometry behavior towards the lower and upper
limit. For decreasing radii r ! 0, no neighbor galaxies are included in the shrinking sampling vol-
ume. The geometry of the center galaxy appears to be a point-like structure, � � 0. For increasing
radii r > 10h�1Mpc , the large sampling volumes exceed the typical sizes of the structures. The
features of the structures become marginal in the volume average and the geometry index ap-
proaches the value of uniformly distributed pattern, � � 3, the dimension of the con�guration
space.

In addition to this observation, the extrema and slope changes of the function �(r) indicate
rough approximations for the sizes of modeled structures in the centre of the box. The cluster
model shows a clear geometry transition at the scale of the cluster radius of � 2:5 h�1Mpc.
Below this scale, mostly points within the cluster are covered by the sampling volume, which
were designed to be uniformly distributed. At the transition point of the cluster diameter, �
reaches its lowest value due to the concentrated, point-like geometry. For increasing radii, the
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Figure 3.2: Five toy models of structure elements in the galaxy distribution and their corresponding �-
values are shown (rows). Each panel in left and middle column shows a 10h�1Mpc slice in the x-y-plane
and x-z-plane of the toy model box, respectively. The right column shows two geometry estimations for
the central point as a function of the radius r: the scaling index � (solid line) and an approximation for
�, a local slope m(r) (dotted line, Equation 3.29).
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cluster density decreases and the �-value increases. In the �lament model, the central point of the
�lament has a constant, line-like geometry � � 1:3 for r < 8h�1Mpc. Without the surrounding
uniform distribution the geometry would be equal � = 1; the points of the uniform distribution
increase the denominator in Equation (3.12). For increasing radii, the geometry increases as well
and the radius, for which the geometry increases, marks a rough estimate for the half length of
the �lament. The sheet model has a constant value of � � 2:2 for r > 5h�1Mpc, which is similar
to the dimension of this at geometry. The uniform model show a transition at a similar radius,
but has a geometry value of � � 3, the dimensions of the con�guration space. The central point
of the uniform distribution has a point-like geometry for r . 5h�1Mpc because the mean distance
to the nearest neighbor is � 3:1h�1Mpc within this random distribution. The point in the center
of the void in the last row of Figure 3.2 is by de�nition a point-like geometry, thus � = 0 for
r < 5h�1Mpc . The geometry peaks for the radius range similar the size of the void and decreases
for larger radii.

These qualitative results from the toy models indicate that the size of the sampling volume, here
given by the choice the radius r, is crucial for the identi�cation of an existing pattern in the local
environment around a point distribution. The radius must be large enough to cover the typical
size of the pattern in order to calculate a similar geometry classi�cation as an observer would
manually assign to. If the radius is smaller, the point distribution within the pattern dominates
the classi�cation. If the radius is larger, neighbor patterns that are part of the surrounding network
of structures are included in the sampling volume. The resulting geometry is then an average over
all the included patterns or corresponds to the global properties of the network.

The choice of the radius thus inuences the discriminative power of the geometry estimator �.
Two main ranges for the radius r emerged where the � distinguishes best between structures in
the toy models: for r < 3h�1Mpc and r > 8h�1Mpc. Within each of those two intervals, the
geometries for each structure prototype can be ordered in the following manner:

r < 3h�1Mpc : �(cluster) > �(�lament) > �(sheet) > �(uniform) > �(void) (3.30)
r > 8h�1Mpc : �(cluster) < �(�lament) < �(sheet) < �(uniform) < �(void) (3.31)

In the range 3h�1Mpc < r < 8h�1Mpc , the �-r-relation shows di�erent transitions for the
di�erent geometries, which depend on the local density of the considered point. In this range, two
geometries can be distinguished, but no general interpretation for the �-values for all geometries
can be given.

The presented toy models show that the di�erent patterns of galaxy groups and alignments
result in di�erent local geometries that can be estimated and distinguished with the scaling index
�. The geometries classify the local environments not only by measuring the abundance of neighbor
galaxies, but also by including the information of their relative position. In addition to the local
density, the local geometry seems to be a necessary description for a galaxy's environment.

3.3 Correction for the Redshift Space Distortions

3.3.1 General Effect of Redshift Distortions

The pattern of the large-scale structure of the Universe is assessed by measuring the three dimen-
sional location of each galaxy in the sample: the two angle coordinates on the hemisphere and
the radial distances to the observer. These distances are measured in an indirect way using the
redshift z information of each galaxy, which is the result of the Hubble ow. For nearby galaxies
(z < 0:1), the radial, comoving distance r of a stellar system is given by

r = cz=H0: (3.32)

Apart from the overall motion of the galaxy distribution due to the Hubble ow, stellar systems
possess peculiar velocities v because they are attracted by gravitational potentials formed by
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groups or clusters of galaxies. For example, the Local Group is attracted by the Virgo Cluster and
both systems are moving towards the "Great Attractor" (Lynden-Bell et al. 1988; Bertschinger
et al. 1990). These peculiar velocities overlap with the Hubble ow and alter the linear relation
between the measured redshift and the proper distance of galaxies. The resulting distance s of a
luminous object in redshift space can be written by

s = r + r̂ � v=H0; (3.33)

where r is the distance in real space. The term v = r̂ �v is the peculiar velocity, where the galaxy's
velocity v is projected on the line-of-sight of an observer at r̂. Galaxies that move towards the
observer are blue shifted and appear closer, whereas galaxies that move away appear redder and
appear more distant. In general, these so-called redshift space distortions are systematic and
unavoidable measurement errors, if the redshift of an astronomical object is used as a distance
indicator. The most prominent consequence of redshift space distortions is the 'Fingers of God'-
e�ect where clusters appear elongated along the line of sight. In addition, �laments are stretched
along the line of sight and loose their line-like shape.

For instance, a galaxy cluster at z = 0:1 has a typical velocity dispersion of �v = 1000 km/s
(e.g. Carlberg et al. 1996). Due to the redshift distortions, the shift in radial distance of galaxies
within this cluster is js� rj � 10h�1Mpc . Assuming that this cluster has an isotropic, sphere-like
volume in real space, the cluster appears as an ellipsoid with a fraction of the semi-axis of � 10
in redshift space.

In Figure 3.3, the e�ects of the redshift space distortions on the large-scale structure are illus-
trated. Both panels show a two-dimensional slice of a simulated galaxy distribution (Cole et al.
1998, Section 3.3.2) . The upper part of the �gure shows the real space distribution, the lower part
the corresponding redshift space distribution. The high-density regions in the real space slice, are
clearly elongated towards the observer in the redshift space sample. In addition, thin �laments
appear broader in redshift space due to the peculiar velocities. Since the location of galaxies can
be changed by redshift space distortions, the classi�cation of environments and local structures is
inuenced as well.

These qualitative e�ects of the redshift space distortions were illustrated by Zehavi et al. (2002),
who estimated the clustering characteristics of di�erent galaxy types. The redshift-space correla-
tion function �(s) in Figure 3.1 di�ers from the real-space correlation function �(r) inferred from
the projected correlation function w(rp) in Figure 3.4 in the expected sense: �(s) is depressed on
small scales by velocity dispersions and enhanced on larger scales by coherent ows. In addition,
the slope of �(s) is shallower and the correlation length is larger s0 > r0.

In principle, the anisotropy on larger scales has implications for the matter density 
m. With
linear perturbation theory, a redshift-space distortion can be modeled with the real-space correla-
tion function �(r). This relation can be used to constrain the parameter �,

� � 
0:6
m =b; (3.34)

where the bias parameter b is the ratio of galaxy uctuations to mass uctuations (Kaiser 1987;
Hamilton 1998). A comprehensive, quantitative analysis of redshift space distortions is limited
because only linear approximation can be used and no analytical correction is available (Kaiser
1987; Hamilton 1998). An attempt to reconstruct the velocity �eld out of the observed galaxy
distribution in order to correct the distortions was made by Bertschinger et al. (1990). In addition,
simulations of the galaxy distribution can used to compare the e�ects of redshift space distortions
on the statistical measures by creating real space and redshift space samples of the identical
volume.

3.3.2 Estimating the Effect with Mock Catalogues

The e�ects of redshift distortions on statistical measures of the large-scale galaxy distribution can
be obtained by numerical simulations, so called mock catalogs. These arti�cial created galaxy
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Figure 3.3: Comparison between real space (upper panel) and in redshift shift space (lower panel) clustering
in with a mock catalogue. The slices are 4� thick in declination, ux limited and are limited to zmax = 0:11.
The region surrounded by the dashed line is magni�ed in Figure 3.5.
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lation functionwpðrpÞ by integrating !ðrp;"Þ over ",

wpðrpÞ # 2

Z 1

0
d" !ðrp;"Þ ¼ 2

Z 1

0
dy !r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ y2

q" #
; ð9Þ

where !r is the desired real-space correlation function (Davis
& Peebles 1983). In practice we integrate up to "max ¼ 40
h&1 Mpc, which is large enough to include most correlated
pairs and to give a stable result. The second equation (right-
hand side) above allows us to relate wp to the real-space
correlation function. In particular, for a power law
!rðrÞ ¼ ðr=r0Þ&#, the second integral can be done analyti-
cally, yielding

wpðrpÞ ¼ Ar1&#
p

with A ¼ r#0!ð0:5Þ!½0:5ð# & 1Þ(=!ð0:5#Þ ; ð10Þ

where C is the Gamma function.
Figure 7 shows wpðrpÞ for the full galaxy sample and the

best-fit power-law model, which corresponds to
!rðrÞ ¼ ðr=r0Þ&# with r0 ¼ 6:14) 0:18 h&1 Mpc and
# ¼ 1:75) 0:03. This fit to the slope and amplitude of the
correlation function is obtained using points in the range
0:1 h&1 Mpc < rp < 16 h&1 Mpc; the correlation coefficient
between r0 and #, measuring the normalized covariance of
the two estimates, is* &0:5, implying that the measures are
anticorrelated to a degree. Since the jackknife estimates of
the off-diagonal terms in the covariance matrix are noisy
and lead to an unstable matrix inversion in the $2 minimiza-
tion (unless we confine the fit to only a few bins), the best-fit
r0 and # values were obtained from the diagonal terms only.
As a result, we are not guaranteed to have unbiased esti-
mates of these parameters, but the visually evident goodness
of fit suggests that any such bias is negligible. The errors on
r0 and # were obtained from the variance in the estimates of
these quantities among the jackknife subsamples, again
using only the diagonal terms in the covariance matrix, as
described in the Appendix.

The real-space correlation function is characterized much
more accurately by a power law than the redshift-space cor-
relation function. Our value of # agrees well with results
from previous redshift surveys and angular clustering stud-
ies (e.g., Davis & Peebles 1983; Loveday et al. 1995; Table 1)
and with the slope derived from the SDSS angular correla-
tion function (Connolly et al. 2001). The value of r0 is also
similar to that obtained from other optically selected galaxy
samples, as can be seen in Table 1, though in some cases

TABLE 1

Clustering Results of Different Galaxy Redshift Surveys

Survey Ngal s0 #s r0 #
%12

(1 h&1Mpc)

SDSSa ....... 29,300 *8.0 *1.2 6.14) 0.18 1.75) 0.03 640) 60
2dFb.......... 15,123c . . . . . . 4.92) 0.27 1.71) 0.06 . . .
LCRSd ...... 26,400 6.3) 0.3 1.52) 0.03 5.06) 0.12 1.86) 0.03 570) 80
PSCze ........ 15,400 5.0 1.2 3.7 1.69 350) 60
CfA2f ........ 12,800 *7.5 *1.6 5.8 1.8 540) 180
ORSg ........ 8,500 7.6) 1.2 1.6) 0.1 6.1) 1.2 1.6) 0.1 . . .

Note.—Values of s0 and r0 are in units of h&1Mpc, %12 is in units of km s&1.
a We use comoving distances assuming "m ¼ 0:3 "# ¼ 0:7. With an Einstein–de Sitter model we get

r0 ¼ 5:7) 0:2 and %12ð1 h&1 MpcÞ ¼ 590) 50. Note that a power law is a poor fit to !ðsÞ, though a
good fit to !rðrÞ.

b Norberg et al. 2001; these are the fit parameters for a volume-limited sample of galaxies with
&19:5 < MbJ < &20, close toM+ ¼ &19:7 (Folkes et al. 1999).

c Here 15,123 refers to a volume-limited sample, drawn from a flux-limited sample containing
*160,000 galaxies.

d Tucker et al. 1997; Jing et al. 1998 (both assuming an EdSmodel).
e Jing et al. 2002, using 9400 galaxies (EdS cosmology). As galaxies are selected from the IRAS cata-

log, they are preferentially late types, and thus are more directly comparable to our ‘‘ blue ’’ galaxies
sample, see x 5.1.

f Values of s0 and #s are taken from de Lapparent, Geller, &Huchra 1988, using 1,800 galaxies of first
slice; r0 and # are based on Fig. 3 ofMarzke et al.’s 1995 analysis of CfA2 and SSRS2; %12 fromMarzke
et al. 1995.

g Hermit et al. 1996.

Fig. 7.—Projected correlation function wpðrpÞ ( filled circles). The solid
line is the best-fit power-law for wp, which implies the denoted power-law
for the real-space correlation function !rðrÞ. The fit is performed for
rp < 16 h&1Mpc.

180 ZEHAVI ET AL. Vol. 571

Figure 3.4: Projected correlation function wp(rp) (�lled circles) with a best �t for a power-law for wp
(solid line), which implies the denoted power-law for the real-space correlation function �r(r) (Zehavi et
al. 2002).

distributions provide the clustering information about both the real space and the redshift space.
By comparing the two distributions, the e�ect of the distortions on the geometry and density
measures can be estimated in a statistical sense. The results of this investigation can indicate the
typical scales and the magnitude of the e�ects, and can provide an approximation for the expected
error for measures obtained from the observed galaxy distribution.

For this analysis, the mock catalogues described by Cole et al. (1998)1 were used, which were
designed to mimic the properties of the SDSS data, e.g the survey volume. Furthermore, the mock
catalog includes a sophisticated bias scheme to identify galaxies in the simulated mass distribution.
From the di�erent data sets, we selected a galaxy distribution in a at background cosmology with
the matter density 
 = 0:3 and a cosmological constant � = 0:7. More details about selected the
mock catalog are given in the Appendix A.2. From the magnitude limited galaxy distribution,
a volume limited sample was de�ned according to the only waveband that is provided by in the
mock catalog, the bJ -band. Galaxies are included in this volume limited sample if they fall the
absolute magnitude range �22 < MbJ

< �18:9 and have redshift limit of z < 0:11. The mean
galaxy density of this sample results in �n = 0:0057h3Mpc�3.

Since the peculiar velocities of the galaxies in the mock catalog are known, one can create
two realizations of the identical galaxy distribution: a 'real space' sample with the true positions
of the galaxies, and a 'redshift space' sample that mimics the observed galaxy distribution by
including the redshift space distortions. For a selected position in the sample that corresponds to
the observer, the radial velocities parallel to the line of sight are included in the determination
of the distance to the observer by using Equation (3.33). The large-scale structure of the galaxy
distribution in redshift space sample can then be compared with the real space galaxy sample
without any redshift space distortions.

In Figure 3.3, the projection of two corresponding slices of the simulated galaxy distribution
1http://star-www.dur.ac.uk/∼cole/mocks/main.html
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Figure 3.5: Comparison between real space (left panel) and redshift space clustering (right panel). The
panel are two magni�ed areas of the corresponding, highlighted regions shown in Figure 3.3. The left
panel shows a 'Finger-of-God' prototype.

in the redshift space and the real space are shown. In the real space sample (upper panel),
high-density regions are more point-like clustered, and �laments and void-like regions are more
pronounced. In the redshift space (lower panel), the clusters are elongated along the line-of-sight
to the observer, which is located in the origin of each panel. Galaxies are shifted away from
the cluster's center and towards or away from the observer, depending on the galaxies' peculiar
velocity. The isotropic clustering in the real space appears more anisotropic in redshift space.
Due to the same e�ect, the line-like structure of �laments becomes broader and appears fuzzier.
However, on larger scales, the clustering of the galaxy distribution is very similar between in real
space and redshift space samples. The overall structure with large void areas, separated with
�laments and cluster-like areas is preserved.

The e�ects of the redshift space distortions on smaller scales are even more prominent in Fig-
ure 3.5, which consists of two magni�ed areas of the corresponding, highlighted regions shown in
Figure 3.3 (dashed lines). The two arrows point in each panel mark two identical position in the
two samples: a cluster region (left arrow) and a �lament region (right arrow). At both locations,
the galaxies in redshift space are shifted away from galaxy clusters or groups into the void-like
regions. For the cluster region, the galaxies in the redshift space sample are considerably shifted
within an elongated region, a prototype for a 'Finger-of-God', one of the most prominent redshift
space distortion.

These illustrations indicate that there are di�erences in the galaxy clustering between the real
space and the redshift space sample and that those di�erences are scale dependent. Any statistical
measure that classi�es the local environment of an observed galaxy dependent on the distance and
location of surrounding galaxies will be a�ected by these distortions. This might lead to wrong
classi�cations in observed data. However, not all galaxies might be a�ected by this error alike
because the redshift space distortions depend on the scale of the volume of interest and on the
environment in which a galaxy is located.

3.3.3 Scale Dependence

In order to investigate the inuence of the redshift distortions on the geometry, the di�erence ��

between the geometries in the real space, �r, and in the redshift sample, �s, is calculated for each
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radius �� ��

(h�1 Mpc) � � � �

2 0.172 0.441 -0.091 0.286
3 0.203 0.451 -0.048 0.269
5 0.124 0.408 0.002 0.202
8 0.040 0.295 0.020 0.131
10 0.009 0.235 0.025 0.103
15 -0.025 0.148 0.023 0.066

Table 3.1: The global redshift error distributions for the geometry � and the density �.

galaxy and for a set of radii:
�� = �s � �r: (3.35)

For the local density contrast, a corresponding error function �� can de�ned for the di�erence
between �r and �s

�� = �s � �r: (3.36)

In order to avoid edge e�ects, galaxies are excluded if their distance to the simulation boundary
is smaller than 2r (minus estimator, see Chapter 2).

In Figure 3.6, the e�ect of the redshift distortions on the geometry and density estimators
is shown for di�erent radii. The �rst row shows the distributions of the geometries �r and �s

(pointed line) in real and redshift space, respectively. In the second row, the distribution of the
geometry di�erences �� is plotted and the dashed line corresponds to a �t to a Gaussian function
A exp[�(�� � �)2=(2�2)]. The mean value � and the standard deviation � of �� are given in
Table 3.1. The rows c) and d) in Figure 3.6 are the corresponding results for the density � and
the density error ��.

The geometry di�erences are large at small scales r < 5h�1Mpc, the typical cluster scale, where
redshift space distortions are very prominent due to high velocity dispersions. On average, geome-
try values in redshift space are biased towards higher values (�� < 0, Table 3.1) that indicates less
pronounced structure elements. On larger scales (r � 8h�1Mpc ), the mean di�erence is close to
zero and the standard deviation decreases. Thus, the e�ects on the geometry are less pronounced
on the scales beyond the cluster scales and comparable with a randomly distributed noise. This
scale dependence is consistent with the work of Fry & Gaztanaga (1994) who demonstrated with
a correlation analysis that the ow of clustering power is shifted from small to the large scales due
to redshift space distortions.

The corresponding results for local density di�erences are shown in Figure 3.6 c,d). On the
smallest scales, the redshift space density is lower and the error function �� is biased towards
negative values. In redshift space, the compact clusters appear elongated and the galaxy members
are distributed over a larger volume. The lognormal �t does not model the error function. On
large scales r � 8h�1Mpc, the same e�ect results in higher estimated densities in redshift space,
where galaxies clustering is reduced and less void galaxies are found. The overall error of the
redshift e�ects is similar to a noise-like behavior and can be modeled by a lognormal �t.

Geometry and density are both a�ected by redshift space distortions on small scales and the
absolute value of the error decreases with increasing radii. On cluster size scales, both properties
are not measured accurately because the clusters are elongated to more �lament-like structures.
A correlation analysis of the both spaces con�rmed that through the redshift space distortions
correlation power is lost on scales smaller that cluster sizes; this power is transferred to larger
scales (e.g. Kaiser 1987).
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Figure 3.6: The e�ect of the redshift distortions on the geometry and density estimators is shown a
set of radii (columns). Row a) shows the geometry distribution of �r and �s (pointed line) in real and
redshift space, respectively. Row b) shows the distribution of the geometry di�erence �α; the dashed line
corresponds to a Gaussian �t. Row c) shows the density distribution of �r and �s (pointed line) in real
and redshift space, respectively. Row d) shows the distribution of the density di�erence �δ; the dashed
line corresponds to a lognormal �t.
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3.3.4 Dependence on the Environment

Apart from the scale dependence, the redshift space distortions can depend on the local environ-
ment, which can be classi�ed with the geometry estimator � and the density contrast �. It is
interesting whether the distortions are a function of the surrounding large-scales structure, espe-
cially the observed redshift space structure. This would allow us to approximate the error with
simulations, estimate it with observational data and apply error corrections. Both applications of
this section will be incorporated in the observed relation in Chapter 4.

In Figure 3.7, the geometry error function �� is plotted as a function of the geometry and
density in real and redshift space. The upper row, Figure 3.7 a), visualizes the relation with
the real space geometry �r. On typical cluster scales r � 5h�1Mpc, the redshift error is anti-
correlated. For �r . 1:5, the value of the real geometry is overestimated by the observed redshift
geometry �s. These galaxies in low density and void-like regions appear to be closer to structures
like �laments and walls. Mock galaxies with �r & 1:5 at this scales are found in clustered regions of
space. The apparent di�usion of structures lead to a less homogenous environment and therefore
to smaller values in geometry �s. On larger scales r � 8h�1Mpc, a systematic relation between
�r and �� is only seen for � . 2. The geometry values for these scales correspond mainly to
clusters and �laments in real space. They appear less structured in redshift space and are observed
with a higher value �s > �r: clusters appear more �lament-like, �laments appear wall-like. The
correlation is not immanent for �r & 2. The values of �� are randomly scattered around the zero
point and show the stochastic nature in the redshift space distortions. In general, the redshift
space distortions are most dramatic on the smaller scales, as already detected in the precedent
section.

In Figure 3.7 b), the geometry distortions are plotted against the observable geometry �s. Com-
pared to the strong relation at the smallest scale r = 2h�1Mpc, the correlation decrease with
increasing radius r. In addition, the error shows a more stochastic behavior with increasing radius
and the magnitudes of the errors decrease. These results indicate that a linear approach to correct
the redshift space distortions is not appropriate. However, for radii r > 5h�1Mpc, the distortions
become small, j��j < 0:2, and, on average, independent on the large-scale environment.

Further insight about the environment dependance is gained through the relations between the
local density in real space �r and the geometry distortions �� for all radii in Figure 3.7 c). On
scales r � 5h�1Mpc, there is a dependence on the density of the environment, which can be
separated into two regimes. For �r . 3, the mean value of the redshift distortions is �� � 0 and
only the variance increases with increasing density to maximum value. For the lowest densities
�r < 0, the geometry distortions become negligible small, j��j < 0:1. In the second regime �r & 3,
�� correlates with the density and the variance in each density bin stays constant. The transition
density between the two regimes and the typical scales correspond to the dense environments
like galaxy clusters, where the 'Finger-of-God' e�ect is a dominant geometry altering e�ect. The
geometry distortions are biased towards positive values, which means that estimated redshift
space geometry �s is, on average, lower than the corresponding real space value. In addition, the
magnitude of the error increases with the density on these scales. Similar results are found for
dependance on the observable redshift space density �s in Figure 3.7 d) on the scales r � 3h�1Mpc,
although the the geometry distortions depend less on the density �s. For the scales r > 3h�1Mpc,
the geometry distortions are mostly scattered symmetrically around �� = 0 similar to a random
noise. Comparing the again the two densities on all scales, in redshift space less high density
environments are estimated than in real space. Hence, with the observable redshift space density
not all real space cluster regions with strong geometry distortions can be detected.

In summary, the redshift space distortions change the value of the geometry estimator on all
scales and depends on the environment. The biggest error are most likely to occur on small
scales (r � 5h�1Mpc) and in dense, cluster-like environments. However, there is a correlation
between the observable redshift geometry and the real space geometry for those radii. For larger
scales the errors decrease their magnitude but get stochastic with no signi�cant dependence on
the environment. We use these insights to model a real space geometry out of redshift space
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Figure 3.7: The di�erence between real space and in redshift shift space geometry �α as a function of the
real space geometry �r (row a), redshift space geometry �s (row b), real space density �r (row c), and the
redshift space density �s (row d). The columns correspond to di�erent radii (upper right corner). The
point distributions in each sub-�gure are represented by gray contour plots indicating levels of 10%, 30%,
50%, and 70% of the distribution; points outside these thresholds are plotted. In addition, the median
(black solid line) and the 25th and 75th percentiles (dashed lines) are plotted, where all points were equally
distributed to 10 bins.
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radius C0 C1 C2 C3

(h�1 Mpc)

2 -0.118 0.439 -0.180 0.506
3 -0.364 0.362 -0.132 0.497
5 -0.477 0.231 -0.081 0.353
8 -0.407 0.141 -0.086 0.182
10 -0.355 0.111 -0.070 0.109
15 -0.258 0.080 -0.062 0.021

Table 3.2: The coe�cients C0 (corresponds to a constant), C1 (geometry �s), C2 (density �s), and C3

(anisotropic geometry �A
s ) for the linear regression �t.

properties. These corrections are created by di�erent approaches.

3.3.5 Linear Regression Fit

The straightforward approach to predict the real space geometry �r on the basis of redshift
properties is to �nd correlations between the observable properties of the galaxies and the intrinsic
error �� due to the redshift space distortions which are gained through the simulations. Hence,
we assume that �� is a function of an arbitrary set of parameters that classify the environment
in the redshift space. Here, we use the geometry �s, the density �s, and the anisotropic geometry
�A

s :
�� = ��(�s; �s; �

A
s ): (3.37)

This choice is motivated by the results from the previous section, where �s and �s correlated with
�s. The anisotropic geometry �A

s uses an ellipsoid sampling volume parallel to the line-of-sight
and is sensitive to 'Finger-of-God'-e�ect by construction. This approach aims to model mainly
the distortion in high-density regions (clusters) and neglects the small e�ects for low-density
regions (�eld galaxies). This is reasonable because cluster galaxies have signi�cant higher peculiar
velocities and, therefore, a higher radial displacement than �eld galaxies.

For a representative galaxy at the position xi, the error �� at the radius r can be �tted by the
following linear approach:

��(xi; r) = sijCT
j (3.38)

where
sij = (1; �s(xi; r); �̂s(xi; r); �A

s (xi; r)) (3.39)

is a line vector including a constant, the redshift space variables geometry, density and anisotropic
geometry, respectively. For scaling reasons, we use �̂s = ln(1 + �s) to ensure that the values of
variables are found in a similar range. The corresponding coe�cients for a given radius are stored
in the line vector

Cj = (C0; C1; C2; C3): (3.40)

By applying a linear regression �t (Isobe et al. 1990; Akritas & Bershady 1996), these coe�cients
can be assessed for a given radii in Equation (3.38) and an estimated real space geometry �reg

r can
then be written as

�reg
r = �s ���; (3.41)

where �� includes the estimated coe�cients Cj . All galaxies in mock sample (Section 3.3.2) were
used to assess the coe�cients Cj and the results are presented in Table 3.2.

The dependence of the redshift error decrease with the sample radius as can be seen from the
values of the coe�cients. On small scales (r � 5h�1Mpc), a strong linear dependence on �s (C1)
was found, as well a strong correlation with the anisotropic geometry estimator �A

s (C3). This
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means that an increasing value of � corresponds to increased mean redshift error. On these scales,
regions with galaxies cluster regions have the highest values of �s and large redshift distortions.
The same is valid for the anisotropic case, where a large value correspond to the cluster region
where the redshift error is highest. Thus, C4 has a the highest value on the smallest scale.
The dependence on the density C3 shows a negative correlation: the density in the s-space is
underestimated with increasing density, because the volumes of clusters are increased through the
elongation.

On larger scales (r � 8h�1Mpc), the dependence on �s vanishs due to the decreasing inuence of
redshift space distortion in cluster regions. Not the peculiar velocities in high-density regions are
dominating but the coherent large-scale galaxy ow into regions with lower density (e.g. voids).
The anisotropic geometry �A

s , although still not negligible, is sensitive to cluster regions and looses
importance, too. Whilst the isotropic counterpart �s is still important up to r = 10h�1Mpc , it
achieves minor dependence at the largest scale like the density. Still present is the constant shift
of the correction, the value of C0, which is independent of the environment. This analysis again
con�rms the result, that the redshift space distortions have their greatest e�ect on the geometry
on the smallest scales. Here, the e�ects are dependent on the environment, while on larger scales
the e�ects become smaller and almost constant for all environments, i.e. that the redshift space
distortions can be treated as a stochastic noise.

Before the estimated real-space geometry �reg
r is compared with the true real-space geometry

�r in Section 3.3.8, more approaches to correct for the redshift space distortions are presented.

3.3.6 Principal Components Analysis (PCA)

After introducing the di�erent parameters in order to characterize the environment of each galaxy,
it is interesting to investigate the manifold of these variables in the parameter space. One can
calculate the number of independent variables of the observed manifold to determine the intrinsic
dimensionality of the problem. Furthermore, the relations between the observed quantities can be
visualized. This can be accomplished by the principal component analysis (PCA), a well-known
statistical tool for multivariate, astronomical data sets. For a set of correlated variables, the PCA
technique identi�es a substantially smaller set of uncorrelated variables. The analysis searches
for the independent principal components, a few linear combinations of the original parameters
that capture most of the information (variance) of the original parameters. The �rst principal
component accounts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability. Further description and applications
can be found in Deeming (1964), Brosche (1973), Murtagh & Heck (1987), Efstathiou & Fall (1984),
and Folkes et al. (1999).

In general, a classi�cation scheme for any set of objects can be established by assuming a
set of distinct principal components X. These components are de�ned in such a way that, for
the observable quantities s, there exist m relations s = s(X). The problem of classi�cation is
then solved by inverting the transformation: X = X(s). Since we possess no a priori knowledge
about the functional form of s(X), we follow an empirical approach and derive a set of principal
components X that are orthogonal linear combinations of the original variables, such that an
inversion of X(s) is possible. The PCA is a systematic method which follows this approach.

Consider a sample of N galaxies (i = 1; : : : ; N), each with M parameters (j = 1; : : : ;M). If sij
are the original measurements of the parameters, then construct the mean subtracted values:

sij = ŝij � �sj (3.42)

where �sj = 1
N

∑N
i=1 ŝij is the sample mean. The covariance matix is then given by

Cjk =
1
N

N∑
i=1

sij s
T
ki; 1 � j �M; 1 � k �M: (3.43)
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The matrix C = (Cjk) is symmetric and can be reduced to a diagonal form:

UTCU = diag(�1; : : : ; �M ); (3.44)

where U = fuT
1 ; : : : ;u

T
Mg is the matrix in which the jth column is the eigenvector uj of C

corresponding to the eigenvalue �j . The axis along which the variance is maximal has the largest
eigenvalue �1. It is convenient to sort the eigenvectors by their eigenvalues in decreasing order.
With matrix U of all eigenvectors a new set of varibles X can be constructed that are orthogonal
to each other:

X = sU: (3.45)

With this linear transformation, we can construct a set of variables Xj that are orthogonal linear
combinations of the observed set of parameters sj . Those variables X are the principal components
of the observation. The eigenvalue �j is then the independent variance of the data in the directions
of the principal components Xj .

The inversion the transformation is given by

s = XUT; (3.46)

since U is orthogonal by de�nition (UUT = 1). Because the principal components with the small
eigenvalues are poorly constrained, it is reasonalbe to reduce the set variables the axis with the
highest variances. Using only P principal components (P < M), the approximated variables s̃ are
given by

s̃ = XUT
P ; (3.47)

where the columns of the matrix UP = fuT
1 ; : : : ;u

T
P g consists of the reduced set of principal

components uj .
Note, that the results of the PCA method depend on the scaling of the parameters. The

principal components are not unique and depend on the relative scaling of the variables si, as
well of the their functional form, e.g. whether we use ln(1 + �) or � for the calculation. The
physical interpretation of the principal components must be done carefully. Here, we use the PCA
as tool in order to investigate whether the observational points s lie within a subspace of the
M -dimensional hyperspace. Thus, we look for degeneracies among the physical parameters which
may be unresolved by the observation.

We computed the eigenvalues and the principal components for the parameters listed in Ta-
ble 3.3. For each radii, the four principal components are sorted by the their eigenvalues and are
given in the four columns on the right side, and the corresponding eigenvalue �, the fractional
variance (FV), and the cumulative fractional variance (CFV) in the three columns on the left.
The four elements of a principal components assign weights, so-called 'loading factors', to the four
variables geometry �s, local density �̂s = ln(1 + �s), anisotropic geometry �A

s , and geometry dis-
tortions ��. These weights reect the correlation and linkage of a variable with a given principal
component.

For the smallest scale r = 2h�1Mpc, the �rst principal component PC1 explains 67.8% of
the variance in the data set, while �rst two PCs together explain 85.8% and �rst three PCs
jointly explain 96.9% of the variance. Because PC1 depends mostly on the geometry �s and
the local density �̂s, it can be referred to as the component of the cluster environment. The
geometry distortions �� have a large weight on PC2 with FV of 18%, which means that this
variable contributes to the considerable amount of information that is not explained by the other
variables. The anisotropic geometry �A

s has a strong linkage to PC4 with the low fractional
variance FV=3.1%. Similar results were found for the scale r = 3h�1Mpc. Both, PC1 and PC2,
are linked with the geometry and the local density as well, but together only explain 77.8% of the
variance.

On the scales r = 5h�1Mpc and r = 8h�1Mpc, the results are less conclusive. For both radii,
PC1 and PC2 explain less of the variance contained in the data set, and both PCs are linked
with geometry, density, and anisotropic geometry. The characteristics of the cluster environment
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�s �̂s �A
s �� � FV [%] CFV [%]

r = 2h�1Mpc
PC1 0.679 0.687 0.059 0.253 0.662 67.8 67.8
PC2 0.094 -0.422 -0.030 0.901 0.176 18.0 85.8
PC3 0.663 -0.499 -0.458 -0.318 0.109 11.2 96.9
PC4 0.301 -0.318 0.886 -0.151 0.030 3.1 100.0
r = 3h�1Mpc
PC1 0.612 0.750 0.101 0.229 0.608 57.0 57.0
PC2 -0.628 0.564 0.408 -0.347 0.222 20.8 77.8
PC3 -0.299 -0.073 0.381 0.872 0.186 17.4 95.2
PC4 0.375 -0.338 0.823 -0.259 0.051 4.8 100.0
r = 5h�1Mpc
PC1 0.127 -0.788 -0.573 -0.184 0.433 42.2 42.2
PC2 0.895 0.317 -0.282 0.136 0.330 32.1 74.3
PC3 0.128 -0.419 0.336 0.834 0.180 17.5 91.8
PC4 0.408 -0.321 0.692 -0.503 0.084 8.2 100.0
r = 8h�1Mpc
PC1 0.493 -0.441 -0.749 -0.050 0.496 54.5 54.5
PC2 -0.820 -0.478 -0.245 -0.196 0.207 22.7 77.2
PC3 0.183 -0.738 0.529 0.375 0.136 14.9 92.1
PC4 0.226 -0.178 0.314 -0.905 0.072 7.9 100.0
r = 10h�1Mpc
PC1 0.488 -0.373 -0.789 -0.014 0.479 59.2 59.2
PC2 -0.858 -0.156 -0.453 -0.185 0.167 20.7 79.9
PC3 0.069 0.909 -0.384 -0.149 0.113 13.9 93.8
PC4 0.145 -0.104 0.157 -0.971 0.050 6.2 100.0
r = 15h�1Mpc
PC1 -0.404 0.253 0.878 -0.029 0.381 59.9 59.9
PC2 0.848 -0.235 0.462 0.109 0.175 27.6 87.5
PC3 0.330 0.936 -0.119 -0.040 0.059 9.3 96.8
PC4 -0.091 0.071 -0.030 0.993 0.020 3.2 100.0

Table 3.3: The four principal components (PC) for each reach radius are shown. The four columns on
the left of each line consists of the principal components components (loading factors) for the variables
geometry �s, local density �̂s = ln(1 + �s), anisotropic geometry �A

s , and geometry distortions �α. The
three columns on the right show the eigenvalue �, fractional variance (FV) and cumulative FV (CFV) for
the corresponding principal components.



CHAPTER 3. SCALING INDEX METHOD 46

radius C0 C1 C2 C3

(h�1 Mpc)

2 0.633 2.072 -2.193 6.183
3 -1.471 1.497 -1.343 3.267
5 -1.736 0.857 -0.836 1.465
8 -0.693 0.291 -0.605 0.479
10 -0.478 0.166 -0.291 0.204
15 -0.277 0.089 -0.108 0.029

Table 3.4: The coe�cients for the transformation from the coordinate system de�ned by the principal
components to the original coordinate systems for a given radius (rows).

become less dominant and the variety of all environment reduces the correlations within the
variables. Thus, more variables (information) are needed to explain the full variance and no
variable is obsolete. This leads to the high observed value of FV (up to 8.2%) for PC4.

On the scales r = 10h�1Mpc and r = 15h�1Mpc, the anisotropic geometry has the highest
absolute weight for the PC1. Together with high linkage of the geometry �s, PC1 and PC2 refer
to the detection of the elongated cluster regions, the 'Finger-of-Gods', which are the main and
dominant e�ect of the redshift distortions and have a distinct geometry. On these scales, the
density provides only few information and has a strong linkage with PC3. The large sampling
volume underestimated small high-density regions, where the redshift distortion are large; the
sensitivity to clusters is reduced and the changes in the galaxy environment cannot be detected.
The variable �� is linked with PC4 and contributes the least information.

In summary, the results in Table 3.3 indicate that the PCA analysis works best on the small and
the large scales of the used set of radii where the data set could be reduced to three independent
principal components which together still explain more than 95% of the variance. On small scales,
PC1 refers to cluster regions, the origin of geometry distortions, that still have a high density in
redshift space and can be characterized by geometry and density estimators. On the large scales,
PC2 refers to the main redshift space distortions, the Finger-of-God, which have a high linkage
with the anisotropic geometry. For completeness, the coe�cients for the transformation from the
PC coordinate system into the original coordinate systems are given in Table 3.4.

3.3.7 Environment Fit

A third approach to model the redshift space distortions can be created by using the mock catalog
as a reference galaxy distribution that includes all possible galaxy environments. One can assume
that such a 'library' includes all possible galaxy environments which have the full information of
the e�ect of the redshift distortions because the velocities of the mock galaxies are known. By
�nding the closest match between an observed galaxy and a simulated library galaxy in redshift
space, one can use the real space properties of the simulated galaxy as an estimate for the real
space property of the observed galaxy.

Here, we use observed environment properties of the SDSS galaxies which de�ne their surround-
ing in the redshift space (s-space) and �nd the best �tting s-space environment in the simulated
library. Then, we assume that the real space (r-space) properties between observation and sim-
ulation are a priori similar which is justi�ed by the construction of the mock catalog (see Chap-
ter 3.3.2). The r-space geometry of the best �t mock galaxy in the library can then be used for
an estimation of the r-space geometry of the observed galaxy.

In addition of the construction of the mock catalog, the validity of this approach depends on
the best possible classi�cation of the s-space environment. In order to compare the results with
the other two approaches, we use again use the arbitrary set of three properties: the isotropic
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geometry �s, the local density with �s and the anisotropic geometry �s. All three together classify
the geometry of the galaxy distribution and are sensitive to the redshift space distortions. We
de�ne the �tting function ξm of a mock galaxy m and an representative observed galaxy as the
sum over squared di�erence of the used environment properties at the radii ri:

ξm =
6∑
i=1

�2
�(ri) + �2

�(ri) + �2
�A(ri) (3.48)

where
��(ri) = �m;s(ri)� �s(ri) (3.49)

is the geometry di�erence between the value of the mock galaxy �m;s and the observed value �s

at the radius ri. The used radii ri are identical with the set of radii of the previous analysis:
ri=(h�1Mpc) = f2; 3; 5; 8; 10; 15g. The density di�erence �� = ln(1 + �m;s) � ln(1 + �s) and
the discrepancy in the anisotropic geometry ��A = �A

m;s � �A
s are de�ned in the corresponding

manner. The function ξm provides a quantitative decision to �nd the mock galaxy m0 that is
most similar to the observed galaxy in s-space, ξ0m = min(ξm), in order to use the corresponding
r-space geometry:

�lib
r � �m′;rjγm′=min(γm): (3.50)

In order to reduce the sensitivity to outliers and to increase the statistical stability, not only one
mock galaxy with the minimal value of ξm′ is taken, but the average of a set of 10 mock galaxies
with the 10 smallest values of ξm is used for each observed galaxy. This mean real space geometry
of these mock galaxies is chosen to be the estimated r-space geometry for an observed galaxy �lib

r :

�lib
r =

10∑
i=1

�mi;r=10: (3.51)

To evaluate the performance of this approach, the mock catalog is divided in a test sample with
2000 randomly selected galaxies and a reference sample including the remaining galaxies. For the
galaxies in the test sample, the environment �t that is described in Equation (3.48) was performed.
For the test sample, the mean and standard deviation of the minimum value is ξm′ = 0:19� 0:12,
of the 10th-smallest value ξm;10th = 0:46 � 0:20, and the mean of all the 10 smallest values
ξm;10 = 0:36 � 0:16. In comparison, the overall mean value was, on average, signi�cantly larger,
ξm = 9:5 � 4:6. This con�rms the trivial fact that galaxies reside in di�erent environments.
By applying density and geometry measures, those environments can be classi�ed into structure
groups, e.g. the group of cluster members. For each galaxy, there exists another galaxy in the
sample, which was assigned to the same structure group and, thus, has similar structure and
presumably similar physical properties. This will be discussed further in Chapter 4 and 5.

After the calculation of the mapping, the true r-space geometry �r can then be compared with
the estimated r-space geometry �lib

r by calculating a error function similar to Equation (3.35):

�lib
� = �lib

r � �r: (3.52)

In Table 3.5, the test sample's mean and standard deviation of �lib
� are shown. In addition,

the results are visualized in Figure 3.8. The following section will discuss the performance and
compare it with the results of the other two approaches which were presented in the previous
sections.

3.3.8 Evaluation of the Corrections

After presenting the di�erent approaches to estimate the value of the r-space geometry from
observable s-space properties, the performance of the di�erent approaches are evaluated using the
data from the mock catalog. The test and reference sample described in the previous section
were used for this analysis. For each galaxy in the test sample, the true geometry di�erence ��



CHAPTER 3. SCALING INDEX METHOD 48

radius �� �reg
� �lib

� �pca
�

(h�1 Mpc) � � � � � � � �

2 0.182 0.445 0.020 0.395 0.026 0.371 0.071 1.335
3 0.211 0.453 0.013 0.408 0.016 0.384 0.076 1.068
5 0.122 0.412 -0.000 0.388 0.008 0.376 -0.040 0.906
8 0.035 0.308 -0.001 0.295 0.010 0.278 -0.107 0.752
10 0.003 0.245 -0.001 0.238 0.005 0.227 -0.121 0.670
15 -0.033 0.150 0.003 0.146 0.002 0.159 -0.143 0.549

Table 3.5: The mean � and standard deviation � of the true and the estimated geometry di�erences are
given for the di�erent radii (rows) and di�erent correction approaches.

was compared with the estimated geometry di�erences �reg
� , �lib

� , and �pca
� , which were assessed

by the regression �t, the library �t, and the PCA analysis, respectively. All the estimated error
function are de�ned similar to Equation (3.52).

In Table 3.5, the mean � and standard deviation � of the true and the estimated geometry
di�erences are given for the di�erent radii. On small scales, the true geometry di�erence is
biased towards positive values and has a large scatter. This indicate that the redshift shift space
geometry is overestimated on average. For scales larger than r = 3h�1Mpc, the bias and the
scatter decreases for increasing radii because the e�ect of redshift distortions becomes stochastic
noise with � � 0 on those scales (see Section 3.3.3).

For the error functions �reg
� and �lib

� , similar results were found. On all scales, the mean value
is close to zero, � � 0, and the scatter � decreases with increasing radius. Compared to ��,
� is only marginally biased on the small scales r � 5h�1Mpc, whereas the scatter � is slightly
reduced or similar between the true and the two estimated error functions on all scales. The
standard deviation of �reg

� is 12% smaller at the smallest scale and 5% at the largest. The library
�t �lib

� performed better on almost all scales, e.g. 17% less scattering at the radius r = 2h�1Mpc;
however, not for the largest radii, where a 8% higher standard deviation was observed. Thus,
the two corrections are able to correct for the generall trend of the redshift space distortion
to overestimate the geometry at small scales but have no signi�cant e�ect on the larger scales
(r � 8h�1Mpc). Especially the library �t indicates that there is still information contained in the
redshift environment from which an acceptable real space geometry can be estimated.

The PCA approach does not estimate acceptable geometry corrections, although the bias on
small scales is slightly reduced. On all scales, the error function �pca

� has a large scatter (up to
� = 1:335 for r = 2h�1Mpc) which is considerable higher than for the true geometry di�erence. In
addition, the PCA approach induces a negative bias on the large scales which is not present in the
true geometry di�erence nor the other two estimated geometry di�erences. This bad performance
of the PCA approach may be explained by the non-Gaussian distribution of the used data. The
PCA method assumes that each variable is distributed close to a Gaussian function. If this
assumptions is not ful�lled, the calculation of the principal components is sensitive to outliers
and non-Gaussian tails of the data variables. In Figure 3.7, those non-Gaussian properties are
prominent on all scales for relations between geometry, density and geometry di�erence. Although
the PCA corrections cannot be used, the method is still useful for a qualitative understanding of
the results (see Section 3.3.6).

In addition to performance of the corrections on each scale, it is interesting to investigate how the
estimated geometry di�erence depend on the galaxy's environment. It was shown in Section 3.3.4
that the redshift space distortion depend on the structure element a galaxy is embedded in and
one can presume that the corrections show a similar behavior. In Figure 3.8, the four error
distributions are plotted as a function of the true r-space geometry �r.

Again, the functions �reg
� and �lib

� (Figure 3.8 b, c, respectively) show a similar behavior. Both
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Figure 3.8: The true geometry di�erence �α = �s − �r as a function of the real space geometry �r
(panel a) ) for the six di�erent radii (columns). The estimated geometry di�erences �reg

α = �reg
r − �r,

�lib
α = �lib

r − �r, and �pca
α = �pca

r − �r are presented in the panels b), c), and d), respectively. The data
is divided into 10 bins which includes the same number of data points. The abscissa of each data bin is
marked with its mean value; the horizontal error bar indicates the bin's half distance to the neighbor bin
on each side. The ordinate of each bin is marked with its median value; the lower and upper value of the
vertical error bars correspond to the 25% and 75% percentile of the data, respectively.
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preserve the overall shape of the of the true geometry di�erence �� and only apply some minor
corrections. On the small scales, both corrections have a smaller bias and a smaller scatter
for small �r-values, �r < 1:5 (r = 2h�1Mpc) and �r < 2 (r = f3; 5gh�1Mpc), but assign a
larger negative error for the larger �r-values (e.g. cluster regions). On the larger scales, both
corrections are slightly biased towards negative values for �r > 2. In addition, on the largest scale
r = 15h�1Mpc, both corrections have a positive bias for �r < 2, which is not prominent in the
true geometry di�erence, and �lib

� is slightly more biased for larger bins �r > 2. In contrast, the
function �pca

� (Figure 3.8 d) has a huge scatter on the small scales r � 5h�1Mpc, but, compared
to the other two corrections, a similar behavior for the larger scales, where the assumptions of
the PCA method seem to hold for the used data set. In general, those plots suggest that the best
corrections of the redshift space distortions are limited due to the fact that the distortions are
nonlinear and not reversible.

Because the r-space geometry is not available in the later analysis of the observed data, the
dependence of the observable s-space geometry is investigate in Figure 3.9 as well. On the small
scales r � 5h�1Mpc, �� (panel a) correlates with the geometry �s, but for all corrections (panels
b, c, d) the mean values in each bin are close to independent from �s. This indicates that the
corrections work by averaging out the mean distortions based on redshift space properties. For
�reg
� and �lib

� , only the standard deviation correlates mildly with the small scales geometry of
the environment. At these scales, larger geometry values correspond to the cluster environments
where the high peculiar velocity dispersion increases the variation of redshift space distortions.
Again, �pca

� has a high scatter on the small scale. For r � 8h�1Mpc, all panels in Figure 3.9
show similar behaviour in terms of bias and scatter.

In conclusion, the redshift space distortion are present on all scales with di�erent e�ects. The
most prominent e�ect was found in the cluster environments and on scales similar to the cluster
dimensions. However, the redshift space geometry is still a good approximation for the true real
space geometry. In estimating the real space geometry with mock catalogs, the environment
dependent bias and mean deviation from the true r-space value can be reduced by at most 17%.

3.4 First Results for the SDSS Galaxies

After the de�nition of the geometry estimator � and the systematical redshift space distortions,
�rst results for the observed SDSS galaxy sample are presented in order to evaluate the signi�cance
of the results. In Chapter 4, these results are used to investigate the relations between the geometry
and others physical properties galaxies.

3.4.1 3D Results

The distribution function of the s-space geometry � for the SDSS galaxy sample described in
Chapter 2 are given in Figure 3.10 for di�erent radii (in the following discussion, � without the
any index denotes the observed, redshift geometry). The histograms include a broad spectrum
of geometries which correspond to di�erent environments that are present in the galaxy sample.
Not only high density galaxies (cluster regions) and low density galaxies (void-like regions) are
found, but in addition, the � spectrum indicates that �lament-like regions (� � 1) and wall-like
regions (� � 2) are present in the galaxy distribution. While the mean value of the geometry
distributions increase with the radius, the variation is almost constant. Note, that equal values of
� have a di�erent meaning for di�erent scales and can correspond to di�erent environments (see
Section 3.2).

For the radii r � 3h�1Mpc , the smallest values (� < 1) were calculated for galaxies in un-
derdense, void-like regions. Here, the distance between neighbor galaxies is large and only a
few galaxies are located within the sampling volume. Those galaxies are not connected to any
small-scale structure and have a point-like value of � � 0. The higher values of the distribu-
tion correspond to higher density regions where the clustering of the neighbor galaxies appears
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Figure 3.9: The true geometry di�erence �α = �s − �r as a function of the redshift space geometry �s
(panel a) ) for the six di�erent radii (columns). The estimated geometry di�erences �reg

α = �reg
r − �r,

�lib
α = �lib

r − �r, and �pca
α = �pca

r − �r are presented in the panels b), c), and d), respectively. The data
is divided into 10 bins which includes the same number of data points. The abscissa of each data bin is
marked with its mean value; the horizontal error bar indicates the bin's distance to the neighbor bin on
each side. The ordinate of each bin is marked with its median value; the lower and upper value of the
vertical error bars correspond to the 25% and 75% percentile of the data, respectively.
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Figure 3.10: Histograms for the geometry estimator � calculated from SDSS galaxy sample for di�erent
radii. The radius is given in the upper left corner of each box and bin width is 0:1. Note that the number
of galaxies for the di�erent radii is di�erent (see Chapter 2)

homogeneous.
For larger radii r � 10h�1Mpc, the interpretation is di�erent because the low-density galaxies

are found in the tail of the distribution. The members of the galaxy clusters are de�ned through
the smaller values because they appear point-like if the sampling volume is larger than the typical
cluster size. The intermediate radii r = 5h�1Mpc and r = 8h�1Mpc can be regarded as the
transition scales between the intra-cluster scales and regions where �eld galaxies are included in
the classi�cation of the environment because of the shape and size of the weighting function.

Although the interpretation for speci�c values of � can be di�erent for each radius, all �-
distributions have in common that their opposite tails are populated with opposite types of galaxy
environments, i.e. the high- and low-density regions. The galaxies in between these extreme
environments are not only found within regions with a broad range of intermediate density, but
also are embedded in environments with distinct geometry properties, e.g. �lament-like and wall-
like structures, that can be estimated and distinguished with �. The central question of this
work, whether this transition of geometry attends with a transition of certain photometric or
spectroscopical properties of the galaxy similar to the known correlation between density and
physical properties of galaxies, is addressed in Chapter 4.

The calculated �-distributions can be compared with other topology and geometry measures like
the Minkowski Functionals that have shown the existence of non-isotropic structure like walls and
�laments apart from the isotropic cluster and void-like environments (e.g. Schmalzing & Diaferio
2000). The presented geometry estimator � is in agreement with these results that a spectrum of
geometries is found in di�erent galaxy environments, like �laments and sheets. The result from
Schmalzing & Diaferio (2000), that most galaxies reside in sheet-like structures (e.g. "pancakes"),
is corroborated by the �-distribution for the radii r � 5h�1Mpc , where galaxies with � � 2 is the
most abundant group. The following section provides an illustration of geometry results found in
galaxy distributions.
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3.4.2 Illustration in 2D

In order to illustrate the relationship between local geometrical properties in the galaxy distribu-
tion and the scaling index �, an representative region was reduced to two spatial dimensions and
each galaxy was marked with the individual �-value. In Figure 3.11, a thin slice was extracted
from the volume limited SDSS galaxy sample and projected to a plane. Each column corresponds
to a certain �-range and each galaxy was marked with symbols if its �-value falls into this range.
Additional �gures of similar type can be found in the Appendix A.3.

This �gure visualizes that di�erent galaxy environment have di�erent geometry properties.
Galaxies in dense regions have values of � � 2 (column C) for r � 3h�1Mpc; this corresponds
to an uniform distribution of points in two spatial dimensions. For r � 8h�1Mpc, the identical
galaxies have values of � � 0:5 (column A), which corresponds to point-like structures. The
situation is switched for galaxies in void-like regions: small �-values on small scales (column A),
and large �-values on larger scales (column D). The columns in Figure 3.11 thus illustrate the
transition between the low- and high-density regions at a speci�c scale, which was discussed in
the previous section. The rows emphasize the transition between the di�erent scales, where the
meaning and the interpretation of the geometry estimation changes with the size of the sampling
volume.

In between the low- and high-density regions, �lament-like structures emerge, which cannot be
de�ned with a certain density level, but which can be classi�ed with the geometry estimator �.
For instance, at the radius r = 8h�1Mpc, the dense cluster regions in column A are connected
with �lament-like structures of galaxies in column B. Furthermore, galaxies in the �lament-like
structure surround the galaxies in the void-like regions (columns C and D). Because void and
cluster galaxies have very di�erent physical properties, it is interesting to investigate the physical
properties of galaxies in �lament-like structures, as mentioned in the previous section. Besides,
one can investigate the inuence of those �lament structures on current galaxy formation and
evolution models.

Note, that this illustration was performed in two spatial dimensions to simplify the visualization
and interpretation. With this example, wall- of sheet-like structures are not present and projection
e�ects might a�ect the observed structure. The following section will address this point by using
dark matter simulations.

3.4.3 Comparison with a Dark Matter Simulation

For a short qualitative legitimation for using a two dimensional (2D) sample for our illustration in
the previous section and in order to illustrate some general aspects, the observed galaxy distribu-
tion is compared with a simulated dark matter distribution (Huber 2002). From this simulation
data, a two dimensional, projected subsample of dark matter points was created which has similar
size and number density like the galaxy region used in Section 3.4.2.

In the upper panel of Figure 3.12, the relation between the �-values and the local density
contrast �15 calculated for the two dimensional galaxy sample are shown for r = 15h�1Mpc.
Here, � < 1 belong to galaxies in clusters, � � 1 to �lament-like structures , � � 2 to uniform,
and � > 2 to void regions. The relation between � and the density contrast �15 is not linear. At
a constant density level, various geometry values are found that correspond to di�erently shaped
local environments. For instance, similar density levels can be found in clusters, �lament-like or
uniform regions. This implies that the classi�cation of environments with local density can be
degenerated and di�erently shaped structures in the galaxy distribution cannot be distinguished.
With the additional use of the geometry estimator �, complementary information is added, the
degeneration is broken, and distinct galaxy environments can be identi�ed. This idea of a more
sophisticated description of the galaxies environments is used in the following chapters.

In middle panel of Figure 3.12, the corresponding relation between � and �15 is plotted for
a thin slice through the simulated dark matter distribution. Qualitatively similar relations are
found in the dark matter distribution and in the observed galaxies distribution. This comparison
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=

Figure 3.11: Galaxy distribution encoded with di�erent � ranges. A slice of thickness 4h�1Mpc was
extracted from the volume limited SDSS galaxy sample, projected to a plane and two dimensional �-values
were calculated. The rows correspond to di�erent radii, which are given in the left column. The columns
and the symbols correspond to di�erent �-intervals: A: � < 1:2, B: 1:2 ≤ � < 1:7, C: 1:7 ≤ � < 2:4, and
D: � ≥ 2:4.
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Figure 3.12: Comparison between the geometry-density relation ranges for the observed galaxy distribution
(upper panel) and a simulated dark matter distribution (middle panel) in two dimenstion. Lower panel:
Comparison between the 2D-� and 3D-� in the dark matter distribution.
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suggest that galaxies trace the large-scale structure of the dark matter distribution, and that
dark and baryonic matter are found in similar environments. Models of galaxy formation predict
that galaxies are created within the density peaks of the dark matter distribution. This bias
explains that more low-density regions (voids) are found in the galaxy distribution compared to
the dark matter distribution, where even low-density regions are homogeneously populated with
dark matter.

The lower panel shows a relation between two-dimensional �2D and the corresponding three-
dimensional �3D. Both are strongly correlated and the main di�erence between 2D and 3D is
a shift to higher �-values, �3D � �2D + 1. The additional dimension in the con�guration space
increases the geometry values as well, because a random and uniform 3D region corresponds to
� � 3. Because of this correlation, it is legitimate to use a two dimensional analysis to illustrate
the meaning of geometry and to gain some useful insights into the description of environments.

Still, the full three dimensional information gained from the galaxy distribution is crucial in
order to estimate geometrical features of the large-scale structure. Although low-dimensional
surveys may give a good impression about the dominance of the voids and clusters, which are
present in e.g. pencil beams as well, the full volume of the SDSS survey is required. Instead of
generating a general picture of the texture of large-scale structure, this work intends to classify the
environments of galaxies without any projection e�ects, which can change the structure properties,
e.g. introducing more clustering (Kaiser & Peacock 1991; Peacock 1999, Section 16.6).

Regarding the interactions between di�erent types of matter, semi-analytic simulations of galaxy
formation indeed predict a direct connection between the galaxy distribution and the underlying
dark matter halos. Here, the question emerges at what scales the sampling volume traces the dark
matter halos and on what scale one really samples the galaxy distribution. On the small scales,
the density or geometry measures estimate an environment that is dominated by galaxies from the
same dark matter halo. Galaxies that originate from the same halo presumably share the similar
evolution and formation history, and thus have similar physical properties, like the morphology of
the galaxy or its star formation history. Therefore, there is rather a strong correlation between the
properties of the host dark matter halo (e.g. mass) and its inhabited galaxies than an dependency
on galaxy interactions. This relation is observed by estimating the small-scale environment; the
e�ect of the large-scale structure can be excluded. However, with increasing scales, the galaxies
from neighboring halos and the neighboring large-scale structure are included in the sampling
volume of the estimator. Then, the correlation between galaxy properties and the environment
cannot only be explained by the characteristic of the host halo, but interactions between the
galaxies have to be considered.

By distinguishing between the inuence of the dark matter halo on the small-scale statistic and
the inuence of the large-scale galaxy distribution on large-scale clustering, the underlying physical
processes can also be separated. In the dark matter halos, the e�ects should be drastic, e�cient
and fast, like the ram pressure stripping. The classical morphology-density relation is then just a
consequence of this model. On the contrary, interactions between galaxies are ine�ective and take
more time, e.g. tidal interactions.

A even more general aspect from this discussion is the 'nature or nurture' problem in galaxy
formation, if galaxies are born in di�erent environments or if they had the identical initial condi-
tions but di�erent evolution histories. By using a small sampling volume, physical properties of
galaxies with independent initial conditions (nature) can be investigated, because the formation
conditions are de�ned by dark matter halos. A larger sampling volume includes more e�ects of
galaxy interactions in the past and is thus more sensitive to the condition during the galaxy's
evolution (nurture).

3.5 Error Analysis

After the de�nition of the geometry measure �, it is important to understand the magnitude, de-
pendencies and e�ects of possible statistical and intrinsic errors that are included its estimation.
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The e�ect of the redshift space distortions, and the stability and the classi�cation error of the
geometry estimator are estimated and discussed using SDSS data and simulated galaxy distribu-
tions. Edge e�ects as a possible source of error were excluded by using the minus estimator for the
later analysis, i.e. we use only galaxies that have large enough distance to the survey boundary
(see Chapter 2).

3.5.1 Stability Tests with Bootstrapping

After the introduction of the scaling index, the statistical errors of this geometry estimator, its
stability, are calculated on each scale. The random error is determined to judge how stable the
geometry can be measured for a speci�c galaxy and how sensitive it is towards uctuations in the
environment. For this purpose, the bootstrap method is used, which was �rst introduced by Efron
(1979). More applications in �eld of astrophysics can be found e.g. by Barrow, Bhavsar & Sonoda
(1984), who use the method to analyze the galaxy clustering. An advantage of this approach is
that the bootstrap method estimates the errors without any assumptions about the underlying
data distribution. It can be used for a broad range of problems, where the standard error cannot
be acquired with ordinary methods, e.g. from a set of di�erent realizations or ensembles. A
comprehensive description and a comparison with similar methods such as 'Jackknife' can be
found in Efron & Tibshirani (1993).

The bootstrap method extract errors from a original data set by creating a set of speci�c
data distributions randomly drawn from the original data, so-called Monte-Carlo simulations or
bootstrap samples. For the estimation of the geometrical stability, one Monte-Carlo environment
is created for a representative galaxy at xi by de�ning a local volume and by drawing galaxies
with replacement out of the original sample around the center of the galaxy. The number of all
neighbor galaxies within a distance 2r, N�, de�ne the number of the galaxies in each Monte-Carlo
environment, the bootstrap sample. Note, that a neighbor galaxy can appear several times in the
bootstrap sample, or cannot be represented at all. For each bootstrap sample b = 1; : : : ; NB, a
geometry value �B(xi; b) is calculated for the center galaxy. After repeating the procedure for
each of the NB bootstrap samples, the estimated geometry variance for center galaxy at xi can be
written as

�2
�(xi) =

1
NB � 1

NB∑
b=1

[�B(xi; b)� h�B(xi)i]2; (3.53)

where the mean geometry of the bootstrap samples is given by

h�B(xi)i =
1
NB

NB∑
b=1

�B(xi; b): (3.54)

The bootstrap error evaluates how much weight one neighbor galaxy contributes to the total cal-
culation of the geometry value for the center galaxy. With the resampling, some neighbor galaxies
are missing or presented several times in some of the bootstrap samples. The corresponding ge-
ometry value reects if and how the geometry depends on single neighbor galaxies. The whole set
of bootstrap samples provide an measure of stability and can be used to estimate the variance.
One would already expect, that the estimation of � is more stable on larger scales because more
neighbor galaxies are included in the sampling volume and results are less dependent on single
neighbor galaxies.

In Figure 3.13, the relations between � and the bootstrap error ��, and between � and the
number of neighbor galaxies N� (within a distance of 2r) are plotted. The bootstrap method
was performed with NB = 100 bootstrap samples for each galaxy. In Table 3.6, the statistics of
these two relations are summarized. In addition, N0 denotes the number of galaxies, where too
few galaxies, N� < 3, were found within the distance to create bootstrap samples. As expected,
the bootstrap error decreases with increasing radius, due to the larger sampling volume and the
increasing number of neighbor galaxies. Furthermore, the error is dependent on the environment:
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Figure 3.13: The relations between the � and the bootstrap error �α (upper panel), and between � and
the number of neighbor galaxies Nα (lower panel) for di�erent radii (columns). The four contour lines
mark the levels where 90% (outer contour), 70%, 50%, and 30% (inner contour) of all points are included.

within dense cluster regions, the geometry estimation is more stable than for galaxies within void
regions which seem to possess a rather fragile geometry.

However, this is a slight drawback of the bootstrap approach that one cannot measure an reliable
error for galaxies in void-like environments on the small scales. In these regions, no or only a few
galaxy neighbors are found within the chosen distance 2r by construction. Either this approach
cannot be used to calculate an error, which is the case for some galaxies N0 (Table 3.6), or large
magnitudes of errors were assessed due to a small number statistic and a high sensitivity to outliers.
For the N0 void galaxies an exception rule is introduced: if there are not enough neighbor galaxies
within the sampling volume for certain radius, the calculated bootstrap error of the next larger
radius is assigned. Because more galaxies are then used at the chosen radius, the resulting error
may be underestimated there.

On the other hand, it seems reasonable to assume that a galaxy without any close neighbors
has a quite obvious and trivial point-like geometry because the surrounding emptiness of such a
galaxy environment is the very de�nition of a void-like region. Yet, it is necessary to evaluate the
information content of each data point in an observed galaxy sample because the observation can
produce spurious e�ects itself including non-existing data points or wrong locations (e.g. redshift
space distortions). It is likely, that the presented prescription overestimates the errors in low-
density regions and can be regarded as an conservative upper limit. In all the other environments,
the bootstrap error provides a good estimate of the local stability which cannot be provided with
standard techniques.

Another insight that is gained from Figure 3.13 is the moderate correlation between the geom-
etry � and N� on small scales (r � 5h�1Mpc ). Here, the lowest and highest values, � < 1 and
� > 2:5 have only a smaller variation within the number of neighbor galaxies. This implies, that
the geometry is correlated with the local number of galaxies within a certain distance and, thus,
with the local density. However, on the larger scales (r � 8h�1Mpc ), the environments with
a similar number of neighbor galaxies, were assigned with di�erent �-values and, thus, are not
identical and can be di�erentiated with the geometry information. This result, that the geometry
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radius h��i hlog(1 +N�)i N0

(h�1 Mpc)

2 1.102� 1.114 0.174� 0.375 1983
3 0.650� 0.779 0.561� 0.340 135
5 0.227� 0.300 1.088� 0.261 -
8 0.063� 0.066 1.618� 0.184 -
10 0.034� 0.029 1.870� 0.137 -
15 0.011� 0.008 2.361� 0.086 -

Table 3.6: Mean bootstrap errors 〈�α〉 for each radius r calculated with 100 Monte-Carlo environments
for each galaxy. Nα are the number of neighbor galaxies within the distance 2r. N0 denote the number
of galaxies with too few neighbor galaxies, Nα < 3, in order to calculate the �α (see text).

is complementary to the local density and that a full description of environments should include
both measures, supports the �ndings in Section 3.4.3, where a similar conclusion was found.

3.5.2 Classification Errors

After the investigation of the stability, classi�cation rates of the geometry estimator � are quanti-
�ed based on representative case studies for each environment. The questions arise, how reliable
a galaxy's environment can be characterized and what is the rate of the misclassi�cations. For
this purpose, an independent reference classi�cation is required in order to compare it with the
results of the geometry analysis. In case of cluster- and void-like regions, it is straightforward
because those environment well-de�ned by their local number density and those regions can be
easily distinguished from all other environments. For this reason, those possible environments
the local density will be our reference. The situation is di�erent for �lament-like and wall-like
structures which can only be manually con�rmed by an observer.

In this work, a case study is performed to approach this question. Prototypes of the main
environment classes de�ned by their local density are created as a reference. The geometry results
from observed environments are then compared with with the results from those reference models.
First, the environments are de�ned by their density and the geometry is calculated. Then, geom-
etry thresholds are de�ned in order to judge the misclassi�cation on the basis of the density. For
this analysis, the simulated galaxy data from the mock catalogs (Section 3.3.2) was used because
the classi�cation errors of environments should be estimated independently from other intrinsic
errors like the redshift space distortions.

Galaxies within cluster and void-like region were de�ned by a certain density threshold and
then corresponding geometry distributions were calculated. In Figure 3.14, the �-histograms for
three environment groups are shown for the di�erent radii. The environments were de�ned by the
following prescription: a cluster galaxy must have a large density contrast at small scales density,
�(r = 3h�1Mpc) � 10, whilst a galaxy found in a void-like region has a low density contrast,
�(r = 5h�1Mpc) � �0:2. Those thresholds correspond with the values obtained by Rojas et
al. (2005). All other galaxies are embedded in presumably �lament-like, wall-like, and uniformly
distributed regions. The geometry distribution of the cluster galaxies (solid lines) represent the
largest values on the smallest scale, includes intermediate values at the transition radius r =
5h�1Mpc , and mainly consist of smaller values for radii r � 8h�1Mpc . This shift of the cluster
histogram again reects the insight, that interpretation of the geometry is scale dependent. On
small scales, the galaxies inside of clusters are almost homogeneously distributed. From outside,
most cluster appear not perfectly spherical, but more like attened ellipsoid which resembles a
thick disc. This explains why the mean geometry value of cluster is �(r = 2h�1Mpc) � 2. On
the larger scales r � 8h�1Mpc , the point-like concentrated number density of galaxies lead to
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Figure 3.14: The �-distributions for cluster galaxies (solid lines), galaxies in void-like regions (dashed
lines), and galaxies in the remaining environments (shaded area) for di�erent radii.

the smallest geometry values within the whole distribution. The mean values of � � 1:5 can be
explained by the fact that the clusters are embedded in the cosmic web of �laments and walls,
which contribute to the geometry estimation on these scales as well.

One advantage of the scaling index method can be that it assigns similar values to galaxy groups
and clusters, although both have di�erent local densities. If a galaxy group has a slightly lower
density than the chosen threshold, it will not be included in the cluster sample, although the group
galaxies might have similar properties compared to the cluster galaxies. A full classi�cation cannot
be expected because if one uses density as a reference because there is no clear threshold between
cluster and non-cluster galaxies. Either a cluster sample is not complete, or it is contaminated
with more galaxy groups.

Galaxies in void-like regions (Figure 3.14, dashed lines) have a point-like geometry due to no
or only a few neighbors galaxies at small scales r � 3h�1Mpc . Again, the radius r = 5h�1Mpc
represents a transition scale, where the sampling volume is large enough to include the surrounding
galaxies at the boundary of each void. With increasing radius (r � 8h�1Mpc), this e�ect continues
for galaxies in the underdense regions which then have a mean geometry of � � 3:5.

The remaining galaxies (gray shaded histogram) are embedded in �lament-like, wall-like, and
uniformly distributed regions of space. The geometry distribution of those galaxies remains mainly
between the two extreme density classes, cluster and void galaxies. Its mean geometry increases
form � � 1 at r = 2h�1Mpc, to � � 2:5 at at r = 2h�1Mpc.

Regarding the potential of separating the three classes with the geometry �, cluster and void
galaxies can easily be distinguished on most scales except for r = 5h�1Mpc, where all three
distributions have a large overlap. The third class, which includes �laments, walls, and uniform
regions, can best be discriminated from the other two classes on the smallest scale and for r �
8h�1Mpc. It is interesting that the transition r = 5h�1Mpc is close to the correlation length
r0 in Equation (3.5) of the two-point galaxy-galaxy correlation function. This length marks the
transition between the linear and non-linear regime in the description of the galaxy clustering. It is
assumed that the linear regime can be well-described with any second moment statistic. However,
the presented histograms imply that even on larger scales, which are considered to be part of
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the linear regime, the assumptions of an isotropic environment might not be appropriate. In this
regime, the geometry � that includes higher statistical moment is still able to distinguish between
di�erent existing environment classes.

3.5.3 Case Studies with Geometry Prototypes

After using the simulated data from the mock catalog, selected geometry prototypes are extracted
form the projected, two-dimensional SDSS galaxy distribution. These prototypes are elements
of the galaxy distribution that are dominated by one of the typical geometry classes. A set of
prototypes was de�ned and selected by visual inspection for cluster, �lament-like, void-like and
uniformly distributed regions. Galaxies in wall-like regions were excluded in this two-dimensional
illustration.

In Figure 3.15, four cluster prototypes are presented with the surrounding galaxy distribution
and corresponding geometry for the radii r = 2h�1Mpc and r = 15h�1Mpc. All cluster regions
have mostly uniform values for radii smaller than the cluster-size (2h�1Mpc). The prototypes
are embedded into the surrounding cosmic web and are not disconnected, individual parts of the
large-scale structure. Hence, the point-like geometries of the cluster itself is embedded in mostly
�lamentary environment which leads to the observed mode � � 1 at the larger radius. In addition
to this e�ect, redshift space distortions elongate the cluster which can be seen at the Prototypes
2 and 4. The richness of the Prototypes 3 and 4 is small and those examples represent galaxy
groups, which have a similar geometry to clusters but a lower local density.

Prototypes for galaxies in �lament-like regions in Figure 3.16 possess string-like values around
� � 1. The chosen prototypes have a clear string-like orientation due to the gravitational e�ects
during the evolution of the large-scale structure. Since most �laments structures connect two
distant galaxy clusters, it is not obvious to decide whether a galaxy is still part of the �lament or
is already located in the outskirts of a cluster. In addition, as mentioned above, clusters and groups
of galaxies can be part of �lament-like structures. There will be always a fuzzy transition between
cluster and �lament galaxies close to high-density regions, which complicates a clear classi�cation.
However, in the low-density regions, there are still galaxies, which are aligned onto a string-like
structure and the geometry can distinguish those galaxies from others, as seen in Prototype 1. At
the larger scale, the dominant value is � � 1. The other prototypes have slightly higher values
of � � 1:5 due to the fact that the �laments are connected to di�erent environments. Here, the
small scale geometry provides no robust information, because the small sampling volume around
each �lament galaxy does not include the complete structure formed by neighbor galaxies.

Uniformly distributed regions of space can exist on almost all scales in the large-scale structure
as well as in the local environment and certainly on the large scales, where the Universe becomes
uniform. In Figure 3.17, prototypes of the uniform regions in the local environment of galaxies
are shown. In the projection, environments of the black marked galaxies have no well de�ned
geometry. However, at both radii, all prototypes have a similar mean geometry, which indicates
a scale invariant geometry that is expected for uniform regions. Prototype 1 and 2 are similar to
a broad �laments, while the prototypes 3 and 4 are part of large wall. The full three dimensional
information is needed in order to clearly distinguish whether a galaxy is member of a wall, �lament-
like or a cluster regions.

The prototypes of galaxies in void-like regions in Figure 3.18 reside in clearly low density regions.
Large geometry values � � 3 were calculated at the large scales. At the small radii r = 2h�1Mpc,
a small geometry was found because few neighbors galaxies lead to the point-like geometry. The
radius where the transition between this both extremes geometries occurs can be considered as a
rough estimate for size of the void region. For instance, Prototype 2 is the smallest void region,
which leads to a lower geometry on large scales compared to the others prototypes. Beyond the
void region, it is quite common that those void galaxies are surrounded by �lament-like structures
and clusters.

In Figure 3.19, the �-distributions for each prototype class are summed up from the previous
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Figure 3.15: Four cluster prototypes (black) with the surrounding galaxy distribution (gray). The right
column shows the histograms for the prototype's geometry � for r = 2h�1Mpc (pointed line) and r =
15h�1Mpc (solid line).
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Figure 3.16: Four prototypes for galaxies in �lament-like regions (black) with the surrounding galaxy
distribution (gray). The right column shows the histograms for the prototype's geometry � for r =
2h�1Mpc (pointed line) and r = 15h�1Mpc (solid line).
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Figure 3.17: Four prototypes for galaxies in uniform-like regions (black) with the surrounding galaxy
distribution (gray). The right column shows the histograms for the prototype's geometry � for r =
2h�1Mpc (pointed line) and r = 15h�1Mpc (solid line).
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Figure 3.18: Four prototypes for galaxies in void-like regions (black) with the surrounding galaxy distri-
bution (gray). The right column shows the histograms for the prototype's geometry � for r = 2h�1Mpc
(pointed line) and r = 15h�1Mpc (solid line).
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Figure 3.19: Summary of all geometry values of the each of the four prototypes. In the upper panel, each
histogram corresponds to one environment: clusters (solid thin line), �laments (dotted line), uniforms
(solid thick line) and voids (dashed line). The lower panel shows the �-distribution for the whole sample.
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illustrations for the radius r = 15h�1Mpc . The geometry distributions easily distinguish between
the cluster and void-like regions, as well between those both groups and the rest. The distinction
between the �laments and the uniformly distributed environments is less obvious. Due to the
projection in these illustrations, the full three dimensional information that is contained in the
three-dimensional sample is not available. In addition, the choice of the those environments
prototypes was performed manually and might be su�er from selection e�ects. Although this
weakness of the presented illustration, insights into the meaning of the geometry � are gained,
which supports the principal existence of di�erently shaped environments.

A more quantitative reference might be useful and could be used in order to separate one-
dimensional �laments, two-dimensional sheets and walls and the three dimensional uniformly
distributed regions. Such a reference could be established by a cross validation with other non-
linear methods that also estimate the geometrical or topological features of the galaxy distribution,
e.g. the Minkowski Functionals. However, most of those methods cannot be applied for a local
environment, like the geometry estimator � does, and only calculate global estimates. Thus, a
direct comparison of prototypes with other methods is di�cult, although the global results are in
agreement with them.



Chapter 4

Results

In this chapter, the relations between the environment of galaxies and their photometric and spec-
troscopic properties are presented. For the used volume-limited SDSS galaxy sample (Section 2.2),
the change of the luminosity, color, morphology, and indicators of star formation with the local
geometry and the local density is shown.

4.1 Luminosities

The luminosities of the galaxy is one of the basic photometric observable. Divided into the �ve
bands, the absolute magnitudes may provide already a �rst hint towards environment dependent
star formation. It is assumed that e.g. the blue band continuum, Mu, reects a blue population of
star within the galaxies. Those stars were formed recently and indicate an active star formation
due to a high abundance of gas.

In Figure 4.1, the absolute magnitudes of the �ve SDSS bands, Mu, Mg, Mr, Mi, and Mz, are
plotted as a function of the local density contrast � for each radii. Galaxies in dense regions of
space have a higher blue band magnitudes Mu, i.e. emit less luminosity, compared to galaxies
in low density regions. For the red bands Mr, Mi, and Mz, the opposite is found: galaxies in
high-density environments emit more luminosity than galaxies in low-density environment. The
intermediate band Mg shows only a slight correlation for the latter trend. Infrared light from the
z-band can indicate the presence of dust which absorbs ultraviolet starlight from young massive
O- and B-stars and emits this energy in as thermal radiation at infrared wavelength. Since this
e�ect would reduce the correlations, the shown relation are rather a lower limit.

All the observed correlations between the local density and the luminosities are most prominent
on the smaller scales r � 5h�1Mpc, where the density is sensitive to the dark matter halos of
massive clusters which host luminous red galaxies. On the larger scales, the correlation decrease
because the large sampling volume smoothes the local environment, and the scatter of the bins
increases due to the lower number of galaxies.

In Figure 4.2, the absolute magnitudes are plotted as a function of the local geometry �. Again,
the galaxies in cluster environments (� > 2, r = 2h�1Mpc; and � < 2, r � 8h�1Mpc) emit less
light in the blue band Mu, and less light in red bands Mr, Mi and Mz, compared to galaxies in
void-like regions (� < 0:5, r = 2h�1Mpc; and � > 3, r � 8h�1Mpc). Only a minor relation was
found for the Mg. The correlations are slightly weaker for the smaller scales compared to the local
density, but slightly stronger on the scales r � 8h�1Mpc. For the relations at r = 3h�1Mpc and
for u-band at r = 5h�1Mpc, no signi�cant trends were found.

Galaxies with a local density in an intermediate range are found in between the two extreme
density regions. The geometry estimator assigns them di�erent values that correspond to galaxies
in �lament-like, wall-like or uniformly distributed environments. Regarding the luminosity, those
galaxies can be de�ned as a transition class between galaxies in clusters and galaxies in void-like

68
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Figure 4.1: The mean absolute magnitudes Mu, Mg, Mr, Mi, and Mz as a functions of the local density
contrast � at the given radii. In each subplot, the data is represented by 12 bins with an equal number of
data points. The horizontal error bars of each bin indicate the width; the vertical errors of the y-axis the
formal 1� Poisson error.
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Figure 4.2: The mean absolute magnitudes as a functions of the geometry estimator � at the given radii.
In each subplot, the data is represented by 12 bins with an equal number of data points. The horizontal
error bars of each bin indicate its width; the vertical errors of the y-axis the formal 1� Poisson error.
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regions. Galaxies in �lament-like and wall-like regions are closer to the class of cluster galaxies and
show are redder spectrum than galaxies in void-like regions. Galaxies in the uniformly distributed
regions are closer to the class of void galaxies and emit more blue band luminosity than the cluster
galaxies. This indicates that di�erent parts of the visible large-scale structure emit di�erent light
which can be correlated with the local geometry.

4.2 Galaxy colors

In Figure 4.3, the relations between the galaxy colors u� r, g � r, r � i, r � z, and i� z and the
local density contrast are shown. On all scales, red galaxies that emit more luminosity at shorter
wavelength, e.g. u� r > 2:4 and g� r > 0:8, are found in environments with higher densities and
blue galaxies are located in low density regions. This is in agreement with the results obtained
by Strateva et al. (2001) and Baldry et al. (2004). It also forti�es the results from the luminosity
relations and con�rms the models of galaxy formations, where galaxies in clusters are dominated
by old, red stars and, in contrast, that the galaxies in void-like regions emit more blue light from
younger, recently formed stars. Note, that the more red galaxies are found in the galaxy sample.
Due to the binning with a constant number of bins, the red color ranges, e.g. u � r > 2:5, are
represented with more bins than the galaxies with blue colors.

The relation between the colors of galaxies and the local geometry in shown in Figure 4.4.
There is a clear relation between the mean intrinsic color of galaxies and the mean geometry of
its environment. All scales indicate that cluster regions mainly consist of red galaxies, void-like
regions of blue galaxies, and that �lament-, wall-like and uniformly distributed regions represent
the transition geometries with a mix of both colors. The color and geometry are stronger related
than the luminosity and geometry. In general, the color index is a preferred way to describe the
stellar population of galaxies because it is less sensitive to the size and the total luminosity of
galaxies.

4.3 Morphology

The concentration index cin de�ned by the bulge-to-disk ratio r50=r90 (Section 2.6), is used to
examine the relation between the estimated galaxy morphology and its environment. The pho-
tometric property cin indicates the visual shape of galaxies which can be divided in two groups:
ellipticals, with a concentrated luminosity pro�le, have a low value of cin and spirals, with a more
di�use shaped pro�le, have a higher value of cin. Note that the concentration index cin has not
been corrected for any seeing e�ects. However, as shown by Goto et al. (2003b), the seeing depen-
dence of cin in the SDSS data is weak for galaxies in the redshift interval 0:05 < z < 0:1, which
is very close to the redshift range adopted in this work.

4.3.1 Concentration Index

In Figure 4.5, the mean concentration index is plotted against the density contrast for several radii.
On all scales, galaxies with a decreasing bulge-to-disk-ratio are found along denser environments.
This common trend is consistent with the well-known morphology-density-relation (Dressler 1980;
Goto et al. 2003a). The relation is prominent on small scales r � 5h�1Mpc, typical sizes of clusters,
and becomes slightly shallower on larger scales, where the larger sampling volume underestimates
high-density regions.

The relation between mean geometry � and mean concentration index cin is shown in Figure 4.6.
The correlation between those two properties is again scale-dependent. On the smallest radius
r = 2h�1Mpc, we see two regimes, one for � < 1, where cin decreases with growing �, and one for
� � 1, where cin stays constant. Mainly spiral galaxies with larger values of cin are found below
� < 1, thus their environment is mostly empty within this small sampling volume. These galaxies
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Figure 4.3: The mean colors index as a functions of the mean galaxy density contrast � at the given radii.
In each subplot, the data is represented by 12 bins with an equal number of data points. The horizontal
error bars of each bin indicate its width; the vertical errors of the y-axis the formal 1� Poisson error.
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Figure 4.4: The mean colors index as a functions of the geometry estimator � at the given radii. In each
subplot, the data is represented by 12 bins with an equal number of data points. The horizontal error
bars of each bin indicate its width; the vertical errors of the y-axis the formal 1� Poisson error.
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Figure 4.5: The mean concentration index cin as a functions of the mean galaxy density contrast � at the
given radii (upper left corner of each panel). In each subplot, the data is represented by 12 bins with an
equal number of data points. The horizontal error bars of each bin indicate its width; the vertical errors
of the y-axis the formal 1� Poisson error.

Figure 4.6: The mean concentration cin as a function of the mean geometry � at the given radii (upper
left corner of each panel). In each subplot, the data is represented by 12 bins with an equal number of
data points. The horizontal error bars of each bin indicate its width; the vertical errors of the y-axis the
formal 1� Poisson error.
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are found in a point-like environment . Above the critical value � � 1, no relation between cin and
� is observed. In this regime, galaxies with a low cin (e.g. ellipses) have �lamentary or uniform
distributed neighbors within the radius, e.g. in a cluster.

At r = 3h�1Mpc and r = 5h�1Mpc , no global relation is observed, instead these scales seem
to represent the transition from low small radius to the larger. The relation consists of the two
slopes, the negative found at the smallest scale, and a positive, found at r > 5h�1Mpc. It is
interesting that these two radii are typical cluster scales. Beyond this scales, cluster are clearly
identi�ed because the sample volume includes all cluster member and not only a fraction of it. The
relations at the intermediate radii r � 8h�1Mpc is signi�cantly correlated, where cin increases
with increasing �. Clusters (� < 2) are populated with galaxies of the lowest bulge-to-disk-ratio
cin, void-like regions (� > 3) with high cin galaxies (spirals). In between these two extrema of
the �-cin-relation, there is a progressive incline. With this observed correlation, we can infer that
galaxies with a geometry class between the two extrema (e.g. �laments) must have a intermediate
bulge-to-disk-ratio between the extrema as well. This result indicates that galaxies in �laments
are morphological di�erent form cluster or void galaxies.

In order to distinguish between the morphology-density relation and morphology-geometry re-
lation, the mean geometry � and the mean concentration index cin are plotted for a three density
contrast �8 intervals in Figure 4.7. The average concentration index decreases for a constant radius
from the low-density to high-density bin, which reects the morphology dependence. In addition,
the plot suggest that galaxies embedded in an environment with a similar density but di�erent
geometries can have di�erent bulge-to-disk-ratios, which corresponds to di�erent morphologies. In
the lowest density contrast bin �8 < 0, the concentration index decreases with increasing �. In
the other two density intervals, the both galaxy properties are correlated for radii r > 3h�1Mpc.
Especially for galaxies the high density regions �8 > 2, the geometry assigns di�erent values which
correlate with the concentration index. This may apply to the galaxies in �lament-like regions that
are located close the outskirts of cluster. Furthermore, this plot visualizes the scale-dependence of
the geometry estimator for a constant density bin. For instance, the low-density bin (left column)
mainly consist of galaxies in void-like regions, which have smallest �-values for r = 2h�1Mpc and
the largest values for r = 15h�1Mpc.

4.3.2 Morphological Types

In addition to the presented plots, the concentration index can be used to group the galaxies
sample into morphological types. In Figure 4.8, the fraction of spiral galaxies (cin < 0:33), mixed-
type galaxies (0:33 � cin < 0:375), and elliptical galaxies (cin � 0:375) is plotted for local density
contrast. Using this de�nition, the spiral galaxies are the most abundant morphological type. The
grouping illustrates even more that the fraction of spiral galaxies declines with increasing density,
while the fraction of elliptical galaxies increases. On all scales, the elliptical galaxies represent the
largest fraction of galaxies in the highest density bin, while this morphological type represents the
smallest fraction in the lowest density bin.

In Figure 4.9, the fractions of the three morphological types is plotted as a function of the
local geometry. The fraction of spiral galaxies is highest in the void-like regions, decreases in
the �lament-like, wall-like and uniformly distributed environments, and reaches its minimum in
the cluster regions. To separate the morphology-density relation from the morphology-geometry
relation, similar relations were created for given density intervals in Figure 4.10. The density e�ect
is again reected in each line (constant radius) of this �gure, where the fractions of spiral galaxies
decrease and the fractions of elliptical galaxies increase from the low-density to the high-density
interval. In addition to this environment dependence, relations between the morphology and the
geometry can be found within a given density interval. For r = 2h�1Mpc in the low-density
interval and for r � 3h�1Mpc, in the intermediate and high-density interval, the morphological
types of galaxies depend on the geometry of their local environment of similar density.
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Figure 4.7: The mean concentration cin is plotted as a function of the mean geometry � for given density
contrast �8 at r = 8h�1Mpc (colums) and for di�erent radii (rows). In each subplot, the data is represented
by 7 bins with an equal number of data points. The horizontal error bars of each bin indicate its width;
the vertical errors of the y-axis the formal 1� Poisson error.
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Figure 4.8: The fractions of morphological types are plotted as a function of the local density contrast.
In each subplot, the data is represented by 12 density bins with an equal number of data points. The
fraction of elliptical galaxies (diamonds, cin < 0:33), mixed-type galaxies (triangles, 0:33 ≤ cin < 0:375),
and spiral galaxies (stars, cin ≥ 0:375) is plotted for each density contrast bin. The vertical error bars
indicate the formal 1� Poisson error.
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Figure 4.9: The fractions of morphological types are plotted as a function of the local geometry. In each
subplot, the data is represented by 12 geometry bins with an equal number of data points. The fraction of
elliptical galaxies (diamonds, cin < 0:33), mixed-type galaxies (triangles, 0:33 ≤ cin < 0:375), and spiral
galaxies (stars, cin ≥ 0:375) is plotted for each geometry bin. The vertical errors of the y-axis indicate
the formal 1� Poisson error.
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Figure 4.10: The fractions of morphological types are plotted as a function of the mean geometry � for
three density contrast intervals �8 (at r = 8h�1Mpc) (colums) and for di�erent radii (rows). In each
subplot, the data is represented by 7 bins with an equal number of data points. The vertical error bars
correspond to the formal 1� Poisson error.
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Figure 4.11: The mean H� EW (black line) as a function of the galaxy density contrast � at the given
radii. In each subplot, the data is represented by 12 bins with an equal number of data points. The errors
of the x-axis are the width of the bin; the errors of the y-axis the formal 1� Poisson error. In addition,
the median (gray line) and 25th and 75th percentile (gray, dotted lines) of the distribution are shown.

4.4 Star Formation

After the presentation of the photometric observations of galaxies, spectroscopic properties are
plotted as a function of the local environment. For this purpose, the intensities of two emission
lines that indicate the level of star formation were extracted from the SDSS data base.

4.4.1 Indicators of Star Formation

In Figure 4.11 and Figure 4.12, the mean intensities of the emission lines H� and [OII], respectively,
are both shown both as a function of local density contrast �. Galaxies in low-density regions have
lower intensities in both emission lines which indicates more star formation in those environments.
The intensities decrease with increasing local density. Galaxies that are found in the tail of the
H�-distribution at EW> 5 �A (Figure 2.8) have the broadest emission lines and strongly depend
on the density, especially on the smaller scales r � 5h�1Mpc. Slightly weaker but still signi�cant
relations were found for the [OII] emission lines.

In all density bins, the EW distributions are non-Gaussian which is shown by the inequality of
the mean and median values. The EW-values are skewed to low values and have a long tail to
large, positive values. The skewness is similar in each bin, but the high-density regions possess
only a small fraction of galaxies (. 25%) with high emissions EW> 5 �A. It appears that low and
normal star-forming galaxies are found in all density regimes, but that the strong star-forming
galaxies are mainly found in low-density regions.

A di�erence between the H� and the [OII] is found for the 25th percentiles lines which follow
di�erent slopes. The H� 25th percentile is almost constant with the density contrast because the
H� EWs � 5 �A are dominated and narrowed by stellar absorption. These e�ects make Balmer
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Figure 4.12: The mean [OII] EW as a functions of the galaxy density contrast � at the given radii. In each
subplot, the data is represented by 12 bins with an equal number of data points. The errors of the x-axis
are the width of the bin; the errors of the y-axis the formal 1� Poisson error. In addition, the median
(gray line) and 25th and 75th percentile (gray, dotted lines) of the distribution are shown.

line only weakly sensitive to the stellar population of galaxies older than a few gigayears. The
[OII] EW are una�ected by stellar absorption and reect the common trend of declining emission
line ux into the high-density regions.

After the relations with the density and the general comments, the emission line intensities
of H� and [OII] are plotted as a function of the local geometry in Figure 4.13 and Figure 4.14,
respectively. Galaxies in cluster-like regions have the lowest intensities in the emission lines, while
in the void-like regions galaxies with the highest intensities are found. In between, galaxies in
�lament-like, wall-like and uniformly distributed regions have intermediate intensities and, thus,
may represent an transition between the low- and high-density regions, as well as an transition
between region with high and low star formation.

On the smallest scale r � 2h�1Mpc, the EW distributions are shifted to lower values for large
�. Galaxies with the strongest H� and [OII] emissions are mainly found in low-density, void-
like regions which correspond to a � < 1 The trend contiunes less pronounced in the � > 1
regime, where galaxies with lower H� and [OII] emission are found within a more populated
environment as sampled with this small radius: �lament-like regions, groups and clusters. The
radii r = 3h�1Mpc and r = 5h�1Mpc, represent the transition scales, where the �-values of
di�erent geometries overlap. At the larger scales, r � 8h�1Mpc, a low �-value corresponds to low
H� and [OII] emissions. Galaxies with a broad emission line populated structures with � > 2:5,
i.e. uniformly distributed and void-like geometries. At r = 15h�1Mpc, the highest geometry
bin shows a drop of intensity in both emission lines. This drop of star formation for galaxies in
large void-like regions may be explained by spiral galaxies that consumed all the gas in their local
environment, so-called passive spiral galaxies.

In general, all geometry bins have di�erent mean and median values of EW throughout the
diagrams but both follow the identical overall trend. Both emission lines, H� and [OII], have
similar trends and resemble eachother regarding their dependence on the local geometry. Again,
the main di�erence between these two emission lines is the 25th percentile, which is constant for
H� EW but follows the trend in the case of [OII]. As mentioned above, the measured H� EWs
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Figure 4.13: The black line represents the mean H� EW as a functions of the local geometry � at the
given radii in h�1Mpc (upper left corner in each panel). Each bin contains 600 galaxies, the bin for the
highest � contains 298 galaxies. The errors of the x-axis are the width of the bin; the errors of the y-axis
the formal 1� Poisson error. In addition, the median (gray line) and 25th and 75th percentile (gray, dotted
lines) of the distribution are shown.

Figure 4.14: The black line represents the mean [OII] EW as a functions of the local geometry � at the
given radii in h�1Mpc (upper left corner in each panel). Each bin contains 600 galaxies, the bin for the
highest � contains 298 galaxies. The errors of the x-axis are the width of the bin; the errors of the y-axis
the formal 1� Poisson error. In addition, the median (gray line) and 25th and 75th percentile (gray, dotted
lines) of the distribution are shown.
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are obscured by stellar absorption, whereas are the [OII] EW not.
Di�erent environments can be identi�ed through their typical �-value on each scale and each

of these geometries exhibit di�erent amount of emission line ux. To exclude the density e�ects
in the relations, the emission line intensities are plotted as a function of the geometry for given
denisity levels. In Figure 4.15 and Figure 4.16, the mean emission line EWs of H� and [OII],
respectively, are presented in this manner.

At r = 2h�1Mpc, the low- and medium-density regions show a relation between the geometry
and the intensity of both emission lines. The geometry estimator � distinguishs between di�erent
environments of similar low density and di�erent star formation. Therefore, the geometry may
indicate on-going galaxy evolution beyond the dense cluster regimes. On the scales between
r = 3h�1Mpc and r = 10h�1Mpc, the intensities of the emission lines depend on the geometry
in the high-density regimes, and slightly in the medium-density regimes. Galaxies in �lament-like
regions close to the outskirts of cluster may have similar densities like the cluster members but
have a di�erent local geometry. The largest scale r = 15h�1Mpc, no signi�cant trend was found.
Again, each row illustrates the drop of the average emission line intensities from the low-density to
the high-density interval, while the columns show the scale-dependence of the geometry estimator.
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Figure 4.15: The mean H� EW as a function of the local geometry � for given density contrast bin �
for three density contrast intervals �8 (at r = 8h�1Mpc) (colums) and for di�erent radii (rows). In each
subplot, the data is represented by 7 bins with an equal number of data points. The horizontal error bars
correspond to the width of the geometry bin; the vertical error bars to the formal 1� Poisson error.
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Figure 4.16: The mean [OII] EW as a function of the local geometry � for given density contrast bin �
for three density contrast intervals �8 (at r = 8h�1Mpc) (colums) and for di�erent radii (rows). In each
subplot, the data is represented by 7 bins with an equal number of data points. The horizontal error bars
correspond to the width of the geometry bin; the vertical error bars to the formal 1� Poisson error.
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4.4.2 Estimated Star Formation Rate

After the relations between the environment and the indicators of star formation, the emission
line H� is used to estimate the actual star formation rate (SFR). As mentioned above, the line
H� might be obscured by absorptions which can be corrected for each galaxy, as described in
Section 2.7.

In Figure 4.17, the relation between SFR and the local density contrast is shown and con�rms
the results gained from the intensity H� EW. On the small scales r � 5h�1Mpc, galaxies in lowest
density bin have the highest mean SFR of � 0:32 M�yr�1(median SFR � 0:14 M�yr�1). With
increasing density, the SFR decreases to roughly half this maximal value for galaxies in the highest
density bin (mean SFR of � 0:15 M�yr�1, median SFR � 0:05 M�yr�1). While for r = 8h�1Mpc
and r = 10h�1Mpc, the relation is slightly reduced but still present and for r = 15h�1Mpc , the
relation between SFR and density is not signi�cant anymore.

In Figure 4.18, the mean SFR is shown as a function of the local geometry. On the small
scale r = 2h�1Mpc and the scales r = 8h�1Mpc and r = 10h�1Mpc , the di�erent geometries
have di�erent SFRs. For instance at r = 10h�1Mpc , cluster galaxies have a mean SFR of
� 0:18 M�yr�1(median SFR � 0:05 M�yr�1), and galaxies in �lament-like, wall-like and unifromly
distributed regions have a mean SFR of � 0:26 M�yr�1(median SFR � 0:08 M�yr�1), and galaxies
in void-like regions have a mean SFR of � 0:32 M�yr�1(median SFR � 0:16 M�yr�1). Thus,
galaxies in void-like regions have a two to three times higher SFR than galaxies in cluster region,
and galaxies in �lament-like, wall-like or uniformly distributed regions have roughly a 1.5 times
higher SFR than cluster galaxies. The scales r = 3h�1Mpc and r = 5h�1Mpc represent the
transition scales, and on the largest scale r = 15h�1Mpc , the large error bars dominated the
relation.

In order to separate the density e�ects, the estimated SFR is plotted as a function of the geom-
etry for three density level in Figure 4.19. Relations between the geometry and SFR independent
from the density were found on the smallest scale r = 2h�1Mpc in the low-density and medium
density interval, as well between r = 3h�1Mpc and r = 8h�1Mpc for almost all density intervals.
In the low-density interval at r = 8h�1Mpc, galaxies in void-like regions (� � 4) have mean SFR
of � 0:38 M�yr�1, and galaxies in �lament-like and wall-like regions (� � 2) have a mean SFR of
� 0:30 M�yr�1. This may indicate that even in low-density regions � < 0, galaxies are found in
environments with di�erent geometries and those geometries are related with di�erent SFRs.
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Figure 4.17: The mean star formation rate estimated from emission line H� (SFRHα, black line) is plotted
as a function of the local density contrast � at the given radii. In each subplot, the data is represented
by 12 bins with an equal number of data points. The errors of the x-axis are the width of the bin; the
errors of the y-axis the formal 1� Poisson error. In addition, the median (gray line) and 25th and 75th
percentile (gray, dotted lines) of the distribution are shown.
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Figure 4.18: The mean star formation rate estimated from emission line H� (SFRHα, black line) is plotted
as a function of the local geometry � at the given radii. In each subplot, the data is represented by 12
bins with an equal number of data points. The errors of the x-axis are the width of the bin; the errors of
the y-axis the formal 1� Poisson error. In addition, the median (gray line) and 25th and 75th percentile
(gray, dotted lines) of the distribution are shown.
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Figure 4.19: The mean star formation rate estimated from emission line H� (SFRHα, black line) is plotted
as a function of the local geometry � for three density contrast intervals �8 (at r = 8h�1Mpc) (colums)
and for di�erent radii (rows). In each subplot, the data is represented by 7 bins with an equal number
of data points. The horizontal error bars correspond to the width of the geometry bin; the vertical error
bars to the formal 1� Poisson error.



Chapter 5

Discussion

The Scaling Index Method was applied to estimate the local geometry of galaxy environments in
a SDSS sample in order to understand the relation between local large-scale structure and galaxy
properties. Compared with the local density, the geometry estimation provides complementary
information by assigning each environment a speci�c value that corresponds to a certain shape,
like clusters, �lament-like, wall-like, uniformly distributed or void-like regions. Various relations
were found between those local structure properties and other observable, physical properties of
galaxies, namely e.g. color, morphology and star formation, which will have implications on the
understanding of the cosmic large-scale structure and the evolution of the embedded galaxies. The
following chapter discusses those implications, reviews possible sources of errors and compares the
results with the literature.

5.1 SDSS Galaxy Sample

The SDSS was chosen for this work because it provides are large galaxy sample that can be used
to apply new methods for the analysis of the large-scale galaxy distribution. The used ux-limited
sample from the fourth data release (Adelman-McCarthy et al. 2006) included roughly 3:8 � 105

from a total of 4:8� 105 galaxies with measured redshifts at a median redshift of z0:5 = 0:10. The
sky coverage of the spectroscopic data set reached �4800 deg2. This large sample size and volume
allow stable estimations of statistical measures of the local galaxy environments. In addition, the
SDSS catalog includes many examples of the typical constituents of the large-scale structure, like
cluster regions that are connected with �lament-like structures. One of the previous large galaxy
surveys, the 2dF galaxy redshift survey (2dFGRS) (Colless et al. 2003; Cole et al. 2005), has a
similar median redshift z0:5 = 0:11, but neither the large number of observed galaxies (2:2� 105)
nor the same sky coverage (�1800 deg2). The 6dF galaxy redshift survey (6dFGRS) (Jones et al.
2009) has a larger sky coverage of �17000 deg2, but a lower median redshift z0:5 = 0:053 and less
galaxies (1:6� 105).

For this work, it was important to use a large galaxy sample because the �nal analysis was
performed with a strongly reduced data set. First, a volume-limited sample with 9:4�104 galaxies
was extracted from the ux-limited sample. This step was done to achieve a homogenous mean
density within the sample and to exclude any redshift dependent selection e�ects. These selection
e�ects may a�ect the calculation of the local geometry estimator � and the local density contrast
� and the resulting classi�cation of the environment of galaxies may not be conclusive.

In a second step, galaxies close to the boundaries of the survey were excluded from the analysis
to avoid any edge e�ects, which can lead to spurious classi�cations of the local environment. This
approach of dealing with edge e�ects is called "minus estimator" or "reduced sample estimator"
(Kerscher et al. 1998; Kerscher 1999). Without corrections, the geometries of galaxies at the
boundary of the sample volume are biased towards wall-like environments because part of their

90
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local environment is within the sample and the other part is outside. In addition, the local densities
are underestimated as well. To calculate the local geometry and density without edge e�ects, the
minus estimator was applied as a function of the radius. For larger radii, less galaxies remained
in the galaxy sample and the variance of estimations increased. For the radii r � 10h�1Mpc, the
remaining galaxies were su�cient to retrieve statistical stable relations. Only for the largest radius
r = 15h�1Mpc, the small number of galaxies led sometimes to large error bars and, thus, to non-
conclusive results (e.g. the morphology-geometry relation, Figure 4.6). An alternative approach of
the minus estimator, which excludes many observed galaxies, might be to create an arti�cial galaxy
distribution with speci�c statistical properties outside the survey boundaries. The edges and holes
of the survey mask can be �lled with randomly distributed data points with a density similar to the
galaxy distribution (e.g. Rossmanith et al. 2009). For instance, the statistical moments of second
order could be calculated from the existing galaxy distribution with the two-point correlation
function and an arti�cial point distribution with the identical second order statistics can be created
with e.g. a surrogate method (Raeth et al. 2002). However, the galaxy distribution cannot be
completely described by the two-point correlation function, and thus cannot mimic the geometries
that exist in the real galaxy distribution at low redshift values. This lack of information can
introduce new source of errors and selection e�ects. Even with this approach, edge e�ects can still
be present for those galaxies that are close to the boundary and include points from the arti�cial
distribution outside the sample volume. To avoid those uncertainties, the minus estimator was
used as a conservative measure to exclude edge e�ects, and, due to the large sample size of the
SDSS galaxy data set, signi�cant results were still obtained.

Another advantage of the SDSS data is the large amount of accessible photometric and spec-
troscopic measurements for each galaxy. For instance, whereas 2dFGRS only provides one band
bj , SDSS was designed to measure �ve luminosity bands, which can be used to de�ne di�erent
color indices for the galaxies. With this data, it is possible to investigate various relations between
the intrinsic physical properties of a galaxy and the structure information from the local environ-
ment. The modeling of the physical galaxy properties as a function of the new local structure
properties like the scaling index will support the understanding of galaxy evolution and provides
testable constraints for numerical models of galaxy formation. Connecting the local processes
within a galaxy with the large-scale interaction with its neighbor galaxies is still one of the key
questions in modern cosmology. The new structure statistic � was related with a full set of galaxy
properties provided by the SDSS data and new insights were found that extend the well-known
morphology-density relation.

5.2 Environment Classification

Instead of measuring the local density, the geometry estimator � provides complementary infor-
mation and assigns each galaxy a geometry value that can be related to the shape of the local
distribution of all neighbor galaxies within a certain distance. Typical geometries that are found
in the large-scale galaxy distribution are cluster, �lament-like, wall-like, uniformly distributed,
and void-like regions. Those di�erent constituents of the cosmic web were also found by other
authors that applied di�erent approaches, e.g. on the SDSS (Doroshkevich et al. 2004; Pandey &
Bharadwaj 2006) and the 2dFGRS data (Pimbblet et al. 2004, see Section 5.3). In addition, the
analysis of selected prototypes and toy models supported the existence of the di�erent geometries
and veri�ed the ability of the introduced estimator � to distinguish between those classes of galaxy
environments.

For galaxies in cluster and void-like regions, the density provides su�cient information because
those geometries are de�ned by their local abundance of neighbor galaxies. In those galaxy envi-
ronments, the geometry and density measures are related. However, for all the existing geometries
in between these two extreme environment classes of low or high density, the geometry � is able
to identify galaxies that are located in �lament-like, wall-like, and uniformly distributed regions
independent from the local density. Furthermore, it was shown that the geometry estimator dis-
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tinguishes between environments of galaxies that have a similar density, but di�erent physical
properties, e.g. star formation rate.

This additional information that is o�ered by the geometry can be explained by its di�erent
approach to characterize the galaxy environment. The geometry � is a non-linear measure that
estimates a local dimension of the surrounding galaxy distribution based on scaling relations within
a given distance from the center galaxy. For instance, the environments of galaxies in �lament-
like regions have a local dimension � � 1. This means that these environments can be roughly
approximated by geometrical objects of a reduced dimensionality of 1, like lines or thin cylinders
that include the neighbor galaxies. Environments of galaxies located in uniformly distributed
regions have a local dimension of � � 3, the dimensions of the con�gurations space, and cannot be
represented by geometrical objects of lower dimensionality. In this view, the geometry � identi�es
those regions in the galaxy distribution that occupy volumes of a lower dimensionality than the
con�guration space. Individual galaxies in these lower dimensional volumes have had less spatial
degrees of freedom during the large-scale structure formation, which not only can lead to a di�erent
local scaling behavior as measured by � today, but also to di�erent local physical properties.

In contrast, the local density estimated with a top-hat �lter just counts the neighbor galaxies
within the given volume independent from the individual distances of each neighbor. Hence, same
density values are assessed even if the relative distances of the neighbor galaxies inside the local
volume were changed. For any center galaxy in a �lament-like region, the local environment is
not isotropically distributed and the local density will be underestimated because the average
distance between the neighbor galaxies is actually lower. If the neighbor galaxies around the
center galaxy were uniformly distributed, the density would be identical but the average distance
between the galaxies would be larger. Unlike the geometry estimator �, the local density does not
measure the local scaling behavior or the local dimension of the galaxy distribution. Thus, the
density describes well the local mean distance between galaxies in cluster, void-like and uniformly
distributed regions, while the geometry indicates the better description for galaxies in �lament-like
and wall-like regions, which cannot be de�ned by the local density alone.

The estimation of the local mean distance within the galaxy distribution reects the local
probability of galaxy interactions during the evolution of the large-scale structure. Because the
absence or occurrence of di�erent interactions can lead to speci�c physical properties of galaxies,
the classi�cation of the galaxy environments supports the understanding of galaxy evolution and
can provide constraints for semi-analytic models. For instance, close galaxies share the same local
gas reservoir and are more likely to merge, exchange gas, and to be a�ected by tidal forces. Those
interactions alter the physical properties of the galaxies, e.g. by boosting the star formation rate
that changes the color of a galaxy as well. In cluster and void-like regions, the local mean distance
between galaxies is related to the local density and galaxy interactions. This explains e.g. the
classical morphology-density relation (see Section 5.5), which is mainly found within and close to
clusters, where the local density is strongly related with the inuence of galaxy interactions like
merging and ram-pressure stripping (Dressler 1980; Postman & Geller 1984; Goto et al. 2003a). In
�lament-like and wall-like regions, the local geometry is more related to both, the mean distance
between galaxies and the probability of galaxy interactions, which leads e.g. to the observed color-
geometry relation (Figure 4.4). These relations can result from interactions that still depend on
the distance between two galaxies but do not require such extreme conditions, such as a high
density of galaxies and hot gas that are found in galaxy clusters. Since the local density can not
adequately estimate the probability of interactions for all constituents of the large-scale structure,
the local geometry should be included to achieve a better description of the observed relations.

Whereas the geometry of galaxy environments indicates interactions during the evolution of
galaxies, which depend on the mean distance, the question arises if the geometry can reveal
information about the formation conditions of galaxies. In general, it is unclear if galaxy properties
depend only on the environment that is observed today, or whether the mass of the dark matter
halo during the formation of the galaxy determines the physical properties as well (Berlind et al.
2005). On small scales of about� 1h�1Mpc, galaxy properties are more related to the local density
and to the mass of the local dark matter halo. Larger radii sample a larger local environment
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that includes more neighboring halos; this can reveal relations with the large-scale structure in
which a galaxy is embedded. In addition, small halos host only one galaxy, whereas large massive
halos include several galaxies that share an insu�cient gas supply and whose star formation is
truncated at an early stage. Larger halos result in cluster regions, which are well-described by the
local density on small scales and their formation conditions. Thus, the local densities on small
scales are more related with processes and conditions during the formation phase within large
halos and with the galaxy properties that followed from those conditions. However, galaxies also
emerged from smaller halos in the dark matter distribution, e.g. in �lament-like regions, where the
geometry provides a good environment description on scales larger than the halo size. Here, the
geometry is less correlated with the local density and is more related with the evolution history
that determines the properties of the galaxies. By measuring the observable galaxy distribution
(baryons), one is measuring the underlying dark-matter distribution that includes �lament-like
structures as well. Because of the two di�erent results from density and geometry, the observable
relations depend on the scale and on the used measure to classify the local environment: if the
local density is used on small scales of � 1h�1Mpc, relations can be found that reect mainly the
galaxy formation within the large dark matter halos. If the local geometry is used on larger scales,
the results reect those galaxy interactions that have inuenced the evolution of the galaxies since
their formation.

5.3 Large-scale Structure Statistics

The picture that emerges from the results of the geometry estimator � shows a network of galaxies
that are concentrated in clusters, �laments, and walls surrounding large empty voids. Although
commonly used statistical measures like the 2-point correlation function (Section 3.1.1; Totsuji &
Kihara 1969; Peebles 1973, 1980) provide comprehensive information about the scale, amplitude,
and even the nature of the deviations from a uniform distribution, they at best yield only suggestive
statistical measures for these structural patterns. Apart from the geometry estimator, other new
approaches have been developed to analyze the structural features of the galaxy distribution in
more detail.

The general topological analysis of the large-scale structure estimates the degree of connectivity
of the galaxy distribution in the Universe. Once the redshift surveys have been smoothed with
an appropriate �lter, the topological features can be extracted from the isodensity surfaces. The
results can be compared with theoretical distributions, e.g. Gaussian density �elds, and non-
linear properties can be detected. The topological genus statistic (Gott, Dickinson & Melott
1986) measures the relative abundance of overdense clusters to void regions and was estimated for
the 2dFGRS (James et al. 2009) and a SDSS galaxy catalog (Gott et al. 2008), where on some
scales slight deviations from the pure Gaussian �eld were found. An extension of this analysis, the
Minkowski Functionals (Mecke, Buchert & Wagner 1994) have been calculated for galaxy surveys
(e.g. Kerscher et al. 1998; Schmalzing & Diaferio 2000) like SDSS (Hikage et al. 2003) and galaxy
cluster catalogs (Kerscher et al. 1997, 2001), where signi�cant non-Gaussian features in the large-
scale spatial distribution of galaxy clusters were found as well. Both the topological analysis and
the geometry estimator � can detect non-linear structure components in the galaxy distribution. In
contrast to the geometry estimator, these topological measures extract a global structure property
for the complete galaxy sample. They can not be used to classify structure attributes of the
local galaxy distribution that omits a direct comparison between galaxy properties and the galaxy
environment. In addition, the geometry � does not only detect non-linear structures but allows
to localize and label the corresponding galaxies, e.g. �lament galaxies. The advantage of this
approach is that the structure classi�cation of individual galaxies can be related the their physical
properties and that subsets of galaxies with a speci�c geometry can be created and studied, e.g.
a set of �lament galaxies.

A particular technique to quantify the �lamentary character of the galaxy clustering is based
on the minimal spanning tree (MST) that was introduced by Kruskal (1956). The MST is a
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graph for a set of N points (here galaxies) that establishes a unique network of N � 1 edges
that link pairs of points. If there is a continuous path between all pairs of edges the graph is
called connected; a connected graph with no circuits is called a tree. The MST is then the tree
of minimal length that contains all points. In cosmology, MST has been used to determine the
statistical signi�cance of �lament-like features. It was introduced by Barrow, Bhavsar & Sonoda
(1985) as a statistic to �nd clusters and �laments in a sample of 489 galaxies selected from the
CfA redshift survey. Using the same survey, Bhavsar & Ling (1988) demonstrated that the MST
is a useful tool to show that �laments are real and not random alignments. In particular, they
have shown that �lament-like structures appear to radiate from the central regions of clusters. An
e�ect that con�rms the early view of Einasto, Joeveer & Saar (1980) that clusters were placed at
the intersection of crossing �laments. These main insights about �laments could also be con�rmed
with the geometry estimator �. The histogram of the � distribution for the SDSS galaxy sample
indicated an intermediate structure class of galaxies that are neither part of a cluster nor a void-
like region. The investigated prototypes showed that the � values of these intermediate class
corresponds to galaxies in �lament-like structures.

Further applications of MST approach included the extraction of several quantitative distribu-
tions, for instance the number of edges per galaxy or the distribution of the edge length within the
tree (van de Weygaert 1991; Krzewina & Saslaw 1996). Frequency histograms of the MST edge
length were used by Doroshkevich et al. (1999) to analyze the galaxy distribution and to compare it
with cosmological N -body simulations. In galaxy samples extracted from the Las Campanas Red-
shift Survey and SDSS, a similar analysis provided additional evidence for a network of structures
that consists of a system of rich sheet-like structures, which in turn surround large underdense
regions crossed by a variety of �lamentary structures (Doroshkevich et al. 2001, 2004). In addition,
the typical cell size of the �lamentary network was estimated to be � 10h�1Mpc.

Instead of analyzing the patterns of the galaxy locations, another type of cosmological statistics
quanti�es the shape and abundance of the prominent void-like regions within the galaxy distribu-
tion. This approach is motivated by an equivalence theorem by Cressie (1993, p. 625) proving that
a point process can be completely described by its set of void probabilities. Since the complete
shape of the void space cannot be quanti�ed for observed or simulated data sets, the probability is
calculated to �nd an empty sphere-shaped volume in the galaxy distribution, the so-called "void
probability function" (White 1979; Ghigna et al. 1994; Rojas et al. 2004). It can be shown that
the void probability function can be de�ned as an in�nite series of n-point correlation functions
of arbitrary order n (White 1979). Although this measure thus contains non-linear structure in-
formation like the geometry estimator �, it was shown that di�erent realizations of dark matter
distributions with an identical two-point correlation function were better distinguished with the
geometry estimator � (Huber 2002). This can be explained by the spherical volumes of the void
probability function that does not account for the true shapes and geometries of the observed void-
like regions. In addition, the void probability estimates a global measure for the whole sample
and does not classify the surrounding structure of individual galaxies. The geometry � combines
the ability to detect galaxies in void-like regions, to measure non-linear structure components and
to assign structure labels for each galaxy.

5.4 Luminosity and Colors

As shown in the results section, the di�erent local geometry features of the environment of galaxies
can be related to their physical properties like luminosity and color. The galaxy luminosity function
(e.g. Blanton et al. 2001, 2003b) is a fundamental tool for the interpretation of observations and
describes the number of galaxies per unit volume as a function of the luminosity. In SDSS and
2dFRS data sets, the calculated luminosity functions depend strongly on the local density of the
environment: galaxies are more luminous in rich clusters (De Propris et al. 2003) and marginally
more luminous in groups (Mart��nez et al. 2002) as compared to galaxies in the �eld (Madgwick
et al. 2002). It was also shown that void galaxies are fainter than wall galaxies (Hoyle et al.
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2005). These relations can be extended with the presented geometry estimator towards a more
precise description of the local environment. Our results con�rm the dependence of the luminosity
on the environment and suggest that luminosity is related to the local geometry of the galaxy
environment as well: cluster galaxies are more luminous than galaxies in wall-like regions and
�laments and the faintest galaxies are found in void-like regions. This is in agreement with the
observation that galaxies in �laments close to clusters are more luminous due to interactions that
induce rapid star formation (Braglia et al. 2007).

Another interesting physical parameter of galaxies are their colors, which reect the dominant
star population in the galaxy and provide insights about the current star formation and star
formation history of galaxies. Due to the observed bimodal shape of color histogram (Figure 2.5),
a color threshold can be used the de�ne two main groups in any galaxy sample: Red galaxies are
dominated by old, metal-poor red giants, whereas blue galaxies consist of young, metal-rich stars.
Although the observed galaxy colors correlate with the morphology (Humason 1936; Hubble 1936,
Section 5.5), an advantage of the galaxy colors is the fact that they can be studied for more distant
galaxies in the SDSS (Strateva et al. 2001; Baldry et al. 2004; Balogh et al. 2004b). While the
morphological types can be assigned with some certainty only for nearby well-resolved galaxies,
it is not possible for the fainter and more distant galaxies. If there is a relationship between
the observed galaxy color and the morphological type, this relation may replace morphological
segregation in studies of galaxy properties all the way to the limit at which one can perform a
reliable star-galaxy separation.

Similar to the morphology, galaxy colors correlate with the galaxy density (Figure 4.3). It
has been shown that blue and red galaxies populate environments of di�erent density (Hogg
et al. 2003; Balogh et al. 2004b). The red population of galaxies is a strong function of local
galaxy density for �xed luminosities, increasing from 20% of the population in the lowest density
environments to 70% at the highest, while the blue population show only a marginal dependence
on the environment (Balogh et al. 2004b). Since the stellar population contains information about
the star formation history and galaxy formation, the question arises what physical mechanisms
led to this relation between the environment and the stellar population. A dominance of a red
star population in a galaxy can be explained by an inability to form new stars owning to a lack of
available interstellar gas, which has to be shared e.g. in high-density regions like galaxy clusters.
As a consequence to the observations that both, the galaxy colors and the supply of gas, are
dependent on the environment's galaxy density, one can also expect that the star formation rate
of galaxies is a function of the environment as well (Section 5.6). This dependency results from the
environment's inuence on the stellar population during galaxy formation or due to interactions
during the galaxy's evolution, or both. For instance, galaxies in high-density dark matter halos
evolved fast, formed stars early and �nished their gas supply earlier than �eld galaxies in the past
which leads to the redder star population today. In contrast, blue galaxies in low-density regions
formed later, evolved slower, formed stars at a lower rate, and have had larger gas supply (no
neighbor galaxies), which is still su�cient to form young blue stars.

The observed color-geometry relation (Figure 4.4) is sensitive to evolutionary e�ects by aug-
menting the characterization of the environment by the local density with an estimate for the
local geometry. The evolution of a galaxy can include di�erent stages of e.g. star forming activity
and galaxy-galaxy interactions that cause its physical properties. Those evolutionary stages can
correspond and correlate with the di�erent geometric types of environments a galaxy is passing
through or is absorbed by. Parallel to the change and evolution of the stellar population of the
galaxy, the environment of the galaxy can change due to its peculiar velocity caused by gravita-
tional forces. However, it is suggested that those di�erent environments can have similar galaxy
densities but di�erent geometry values in terms of how the neighbor galaxies are located relative
to each other.

This scenario of a evolution of the galaxy environment's geometry may be of most importance
for �eld galaxies, since they were formed outside of the larger dark-matter halos that were the
origins for galaxy clusters. In this scenario, blue galaxies in void-like regions are attracted by
�lament-like structures or a cluster region, and eventually fall into them. During this transition,



CHAPTER 5. DISCUSSION 96

the increasing number of close neighbor galaxies can induce a burst in the star formation rate
and deplete the gas supply. As shown by the geometry estimator, galaxies in �lament-like regions
have properties that correspond to such a transition stage: brighter and redder compared to
galaxies in void-like regions, but still less bright and bluer than cluster galaxies. This observation
cannot be explained by a speci�c type of galaxy formation alone, because then there would be
no environment dependency. Instead, certain processes during the galaxy evolution must be
considered that inuence the physical properties of galaxies in those environments. While the
fate and the properties of a galaxy are determined by its formation in a large dark-matter halo
together with many other galaxies, the properties of galaxies in void-like regions can change as
well and can depend on their change of local environment.

5.5 Morphology

The color of galaxies is closely related to their morphological appearance that can be qualitatively
described with the well-known Hubble sequence (Hubble 1926). Early-type galaxies (elliptical
and lenticular morphologies) have a ceased star formation rate and consist of an old population of
red giant stars. Late-type galaxies (spiral morphology) are characterized by a high star forming
rate and consist of mainly young blue stars, which dominate the observed photometric properties.
Those two main groups of galaxies dominate di�erent environments according to the morphology-
density relation (Dressler 1980; Postman & Geller 1984; Goto et al. 2003a), which was con�rmed
in this work (Figure 4.5), by estimating the morphology with the concentration index. Even
early photometric surveys indicated that the fraction of early-type galaxies is higher in clusters of
galaxies compared to low density environments (Hubble 1926; Oemler 1974; Dressler 1980). Based
on these observations, the morphology-density relation appears to be an universal characteristic
of galaxy populations (e.g. Postman & Geller 1984; Goto et al. 2003a; Smith et al. 2005). In
quantitative terms, the morphological fractions are distributed over 3 magnitudes of projected
galaxy densities, from the environments of cluster galaxies (' 1000h2Mpc�2) to those of �eld
galaxies (. 10h2Mpc�2). Overall the morphology-density relation is slightly weaker than the
color-density relation; while a change of morphology requires drastic interactions like ram pressure
stripping (Quilis, Moore & Bower 2000), the stellar population is mainly controlled by the supply
of interstellar gas.

A new �nding in this work was the morphology-geometry relation (Figure 4.6) that indicates
a correlation between the morphology of a galaxy and a quantitative measure for the geometry
of its environment, the geometry estimator �. At a radius r = 10h�1Mpc, the morphological
mix of galaxies is dominated by high fractions of elliptical galaxies for small geometry values
(cluster-like regions), while the largest geometry values (void-like regions) are dominated by spiral
galaxies. In between those two regimes, a transition was found in terms of both, morphology
and geometry. The fraction of spirals increases with increasing geometry values from cluster-like
regions to �lament-like and wall-like regions, and reaches the highest values in the void-like regions.

Both, the observed morphology-density and the morphology-geometry con�rm the local environ-
ment's inuence on the morphology of galaxies, which is based on the e�ects of interactions between
neighbor galaxies and the supply of interstellar gas. Late-type galaxies (high concentration index)
are mainly found in under-dense regions, where the evolution of the disk is barely disturbed by
any kind of interaction with neighbor galaxies or the cluster gas. High density regions consist of
galaxies with low concentration indices, like elliptical galaxies. In these environments, galaxies
were inhibited to form a disk due to the cluster collapse in the early stages of their evolution, the
hot inter-cluster medium that prevented star formation, and the high probability of interactions
with close neighbor galaxies. The importance of this interaction probability is also shown by the
relation between the morphology and the distance to the cluster center, the morphology-radius re-
lation, which was found to be more fundamental than the morphology-density relation (Whitmore
& Gilmore 1991; Whitmore et al. 1993). The cluster environment slows down the formation of the
disk of close galaxies and increases the amount of hot gas in the cluster leading to a correlation
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between the fraction elliptical galaxies and its X-ray properties (Whitmore et al. 1993). Also, S0
galaxies are considered as remnants of spiral galaxies whose gas was stripped away or evaporated
(Dressler 1980).

Compared to the local density, the geometry estimator � can provide new insights in the relation
between morphology and environment by identifying speci�c types of galaxies in e.g. �lament-
like environments. In some cases, the connection between galaxy color and morphology cannot
be easily explained with the model mentioned above. Some spiral galaxies have been observed
to have a low concentration index, an indication of an elliptical morphology, because the star
formation in the disk ceased due to gas shortage. Such spiral galaxies with none of the typical
emission lines, so-called "anemic galaxies" (van den Bergh 1976), "passive" spirals (Couch et al.
1998) or "k-type" spirals (Dressler et al. 1999), are found in the in-falling regions of clusters.
Goto et al. (2003a) suggested that passive spirals represent an intermediate stage in the galaxy
evolution between the spiral and elliptical morphology. Numerical simulations indicate that passive
spirals can provide valuable information about less dramatic but long-term environmental e�ects
on galaxy evolution (Bekki, Couch & Shioya 2002). The existence of passive spirals can explain
an intermediate morphology class of galaxies in �lament-like or wall-like regions as found by the
morphology-geometry relation. These results indicate that galaxies in �lament-like and wall-like
regions are morphological di�erent from galaxies in cluster or void-like regions and can be regarded
as a transition class between those two extreme density environments. Furthermore, not only the
the number of close neighbors (local density) seem to be important to the evolution of galaxies,
but also how these neighbors are distributed (local geometry).

The morphology-geometry further augments the classic morphology-density relation because
the observations and implications of environmental e�ects on galaxy properties are extended to
lower density regions. Studies investigating the morphology-density relation mainly include clus-
ter galaxies and galaxies close to clusters (e.g. Dressler 1980; Postman & Geller 1984; Goto et al.
2003a), whereas the SDSS sample used in this work contains a representative set of large-scale
structure elements of the galaxy distribution including geometrically di�erent low-density environ-
ments. These environments have not been considered yet to have any e�ect on galaxy evolution
or formation, because the previously used density measures show no correlation with di�erent
galaxy properties beyond the outskirts of clusters. In this study, a correlation was found for even
low-density regions because the geometry of galaxy environments provides additional information
that reects a local probability of interactions. The possible process which accounts for this rela-
tion must be di�erent form the well-known interactions with hot cluster plasma, like ram-pressure
stripping or gas evaporation (Gunn & Gott 1972; Dressler 1980; Abadi, Moore & Bower 1999;
Quilis, Moore & Bower 2000) due to the lack of high densities. Instead, a less dramatic but long-
term e�ect on galaxy evolution must be considered instead, for instance tidal interactions (Nikolic
et al. 2004). The existence of passive spirals points out that those mild but persistent processes
are indeed possible and responsible for the properties of some galaxies in low-density regions.

Beyond these regions, the inuence of environments of distinct geometries can be imprinted in
the physical properties of galaxies. During their evolution, galaxies can be members of di�erent
environments changing and adapting their properties according to the properties of the region. A
possible scenario for an evolution history can be the formation in a low-density region, to drift
into a �lament-like environment, and then being pulled into a cluster region. The intermediate
density of �lament-like regions is between the extreme densities of void-like and cluster-like regions,
and thus correlates with the intermediate probability of interactions with neighboring galaxies:
galaxies in �lament-like regions are likely to have more interactions than in void-like regions
and less interactions than in clusters. The morphology-geometry relation suggests that �lament
galaxies belong to a intermediate transition environment with the corresponding intermediate mix
of morphological types like spiral and elliptical galaxies.

A similar e�ect of environment transitions is known for the morphology-density relation: galaxies
are "pre-processed" in galaxy groups before they are pulled into the cluster regime. Caused by this
intermediate state before entering the cluster, the morphology-density relation is even observed in
the outskirts of clusters beyond its viral radius. This argument further supports the intermediate
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morphology of �lament galaxies, since the ends of �lament structures are connected to clusters
and ow into them due to the gravitational attraction.

5.6 Star Formation

The observation of the galaxy's morphology requires the existence of luminous stars that indicate
the baryonic matter distribution within the galaxy. Since the morphology depends on the density
of the environment, the question arises whether the star formation rate (SFR) of a galaxy depends
on environment properties as well. There is no de�nite separation between this dependency from
other relations, since the morphological type and the environment are strongly correlated (Dressler
1980; Postman & Geller 1984; Goto et al. 2003a), as well as the morphology and the star formation
(e.g. Kennicutt 1998a). Since the SFR is crucial for the understanding of the galaxy evolution,
it is interesting to quantify the inuence of the environment speci�ed by local density and local
geometry estimations.

With the local galaxy density, a strong relationship between the SFR and environment was found
in this work. On scales r � 10h�1Mpc, the SFR indicators, the distributions of H� and [OII]
EWs, changed as a function of the density. Especially the 75th percentile of those distributions, i.e.
strongly star-forming galaxies, show a strong decrease with increasing density. This observation
corresponds with results from G�omez et al. (2003), who found that the distributions of H� and
[OII] EWs change as a function of the local projected galaxy density using the SDSS Early Data
Release. They characterized the e�ect in three ways: a shift in the overall distribution to lower SFR
values with increasing density, strongly star-forming galaxies (H� EW > 5 �A) that are noticeably
decreased in high-density regions, and a characteristic scale in the correlation between SFR and
density at a galaxy density of ' 1h�2

75 Mpc�2. Consistent results were observed by Hashimoto et al.
(1998), who investigated the inuence of environment densities on the SFR in the Las Campanas
Redshift Survey, and by Lewis et al. (2002), who studied the same relations in the 2dF galaxy
sample. Both groups were able to identify a critical density and radius, where the SFR of cluster
galaxies changes from a speci�c SFR for �eld galaxies. At the turnaround radius Rt ' 5Rv with
the cluster's viral radius Rv, the SFR becomes statistically identical to the �eld. Those results
are in agreement with numerical simulations suggesting that the main physical properties of the
SFR is controlled by the amount of cool gas and the time since the last interactions with a larger
halo. For instance, Diaferio et al. (2001) predicted that the mean SFR should be lower than the
�eld out to 2Rv. In addition, the results of G�omez et al. (2003) are qualitatively consistent with
hierarchical models showing that structure formation can a�ect the SFR of galaxies beyond the
virial radius. Future studies can show if simple models are adequate or additional physical models
are needed to explain the e�ect on the SFR in galaxies that are located in more distant cluster
infall regions between 2Rv to 4Rv.

With the local geometry, a novel relationship between the SFR and the environment was found
even outside high-density regions (see Figures 4.13, 4.14, 4.18). For scales r � 10h�1Mpc, the
used SFR indicators are functions of the geometry estimated by the scaling index �. The lowest
SFR was observed for galaxies in cluster-like environments, whereas galaxies in �lament-like and
wall-like environments showed higher SFRs. Galaxies in void-like environments had on average
the highest SFR. Similar to the results obtained with the local density, the strongly star forming
galaxies showed the highest sensitivity in respect to the geometry of galaxy environments. In
order to exclude the e�ect of the density, these relations were also plotted for galaxies with similar
local density. It was shown that even in this case, relations between the local geometry and the
SFR indicators were obtained (see Figures 4.15, 4.16, 4.19). These results indicate an existing
correlation between SFR and the local geometry that is partially independent from the local
density. Since various di�erent local geometries constitute the large-scale structure of the galaxy
distribution, these relations can be used to formulate constrains for numerical simulations and
models of galaxy evolution.

The continuous transition between the two extreme regimes, a high SFR in void-like environ-
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ments on the one side and a low SFR in cluster-like environments on the other, can be explained
by a simpli�ed, yet plausible scenario for galaxy evolution and indicates a correlation between star
formation history and geometry history of a galaxy. Typical spiral galaxies arise in low-density
regions, aggregate gas from the interstellar medium and form blue stars. They are attracted by
close elements of the large-scale galaxy distribution such as �lament-like environments, which ow
towards galaxy clusters. When such early-type galaxies enter a cluster region, di�erent mecha-
nisms like ram pressure stripping or harassment deplete the galaxies' gas and transform them into
a late-type galaxy. During this evolution path through the di�erent environments, the SFR can
be altered resulting in a speci�c signature in the star formation history. If only the well-known
e�ects of the cluster environment alter galaxies properties, only cluster galaxies would have a
di�erent SFR compared to other galaxies in the �eld. Then, the relation between environment
and SFR would be similar to a step function, where the SFR changes at a critical geometry from
a typical value for �eld galaxies to a typical value for cluster galaxies. Instead, the smooth and
continuous transitions in relations between the geometry and the measured SFRs (Figure 4.13
and Figure 4.14) indicate that galaxies in �lament-regions have di�erent SFRs compared to both,
cluster-like and void-like regions.

This observation indicates that the SFR can be changed in �lament-like regions by interactions
between galaxies and physical processes. One possible source of mutual inuence can emerge from
a burst of star formation induced by tidal interactions between close galaxy pairs (Nikolic et al.
2004), which are more likely in �lament-like regions. It was shown in numerical simulations that
weak bulges in spiral galaxies facilitate the creation of bars during tidal interactions (Mihos &
Hernquist 1996). The bar allows gas to ow towards the galaxy's nucleus. The following induced
star formation continues even after the galaxies are widely separated. In contrast, a strong bulge
stabilizes the galaxy and inhibits bar formation, which leads to less star formation. Another
reason for the observed relations can be the smaller gas supply in �lament galaxies. Usually, more
interstellar gas is available around galaxies in void-like regions compared to cluster regions. Since
galaxies in �lament-like regions share the gas reservoir with close neighbors, their gas supply is
more limited compared to galaxies in void-like regions, but more abundant compared to cluster
galaxies. The limited gas supply can lead to reduced star formation. It is also possible that the
star formation ceases if the gas supply drops below a certain threshold (e.g. Madau, Pozzetti &
Dickinson 1998; Bruzual & Charlot 2003).



Chapter 6

Summary

The Scaling Index Method (SIM) was applied on a volume-limited SDSS galaxy sample in order
to investigate the correlation between the local geometry of galaxy environments and the physical
galaxy properties. With this new application of the SIM approach, it is possible to assign each
galaxy a characteristic number that corresponds to e.g. a uniform, �lament-like, wall-like, cluster-
like or void-like sub-region within the galaxy distribution. This local geometry characteristic
extends and complements previously used local density estimations by not only counting the
occurrence of local galaxy neighbors, but also considering the shape of the local galaxy distribution
in terms of scaling relations. By assigning each galaxy a SIM value, di�erent classes of galaxy
environments were identi�ed and classi�ed in order to compare their physical properties. Such
a representation provided relevant insights into the connection between the large-scale structure
of the galaxy distribution and the understanding of evolution histories of individual galaxies that
induced several new relations between these properties.

Speci�cally, it was shown that the local scaling properties estimated by this new SIM approach
correlate with the physical galaxy properties like luminosity, color, morphology, and indicators of
star formation. Apart from the well-known dependence of these galaxy properties on the local
galaxy density, e.g. morphology-density relation, the results indicate a new dependence on the
shape of the local galaxy environment, which was expressed by the morphology-geometry relation.
While the initial conditions during the galaxy formation, e.g. the halo mass, have a strong inuence
on galaxies especially in galaxy clusters, the results show that galaxies outside high-density regions
can still be a�ected by the environments during their evolution, e.g. in �lament-like structures.
Di�erent types of environments, as categorized by SIM, inuence the residing galaxies di�erently,
e.g. due to the local galaxy-interaction probability or by providing di�erent levels of gas supply.
This dependence of the galaxy properties on the local geometry remained even for environments
with constant densities, which indicates that local geometry extends and complements the previ-
ously used density-based structure descriptions of galaxy environment classes that are relevant for
the galaxy evolution.

It was shown that the estimation of the local geometry using the SIM approach o�ers several
advantages for the analysis of observed galaxy distribution. Compared to other geometrical or
topological measures, it calculates a local structure index for every galaxy, which is useful for
the analysis of galaxy properties. Paired with the clear interpretation of SIM, the structure
information can be easily visually con�rmed, if necessary, and constrained subsamples of certain
geometry classes can be created. For this purpose, the interpretation of certain SIM values was
demonstrated with simpli�ed structure models that mimic certain structure elements in the galaxy
distribution, e.g. �lament-like and wall-like environments. The stability of the geometry estimation
was analyzed and con�rmed by considering the e�ects of possible sources of errors, including
intrinsic redshift distortions, and by using numerical simulations of the SDSS galaxy distribution.

Possible extensions of the SIM approach include the use of a non-isotropic distance measure and
the analysis of more galaxy properties like metallicity or di�erent types of surveys, e.g. quasars. A

100



CHAPTER 6. SUMMARY 101

further application of the SIM approach can be the analysis of numerical simulations of the galaxy
distributions, where the correlations between galaxy properties and geometry can be compared
with relations found in galaxy surveys. In addition, the analysis of the local geometry as a function
of time for individual galaxies can address questions about what environments are occupied dur-
ing the galaxy evolution and how di�erent evolution histories lead to di�erent galaxy properties
observed today.



Appendix A

Additional Resources

A.1 Derivation of the Geometry Estimator from the Theory
of Fractals

The two-point correlation function of galaxies has a nearly constant slope over a wide range of
distances (see Section 3.1.2). This self-similar behavior for galaxy clustering suggests that the
concept of fractal geometry may apply (Mandelbrot 1982; Grassberger & Procaccia 1983; Peebles
1993). Various fractal analyses have been applied, such as wavelet transforms (e.g. Martinez et
al. 1993) and percolation analysis (e.g. Klypin & Shandarin 1993). In this Appendix, we use this
self-similar behavior to provide an alternative derivation of a geometry estimator, the scaling index
method.

Consider a given point set S which is a fractal object and can be de�ned on a natural probability
measure d�. Then, there is a decomposition into the subset S�:

S =
⋃
�

S�: (A.1)

The variable � is a continuos variable which describes the local scaling properties of the fractal
object S and can be considered a local scaling exponent:

�i = lim
�!0

log pi(�)
log �

; (A.2)

where i = 1; : : : ; N(�) and N(�) is the number of necessary cubes with the edge length � to cover
point set S. We de�ne the probability pi(�) as

pi(�) =
∫
Ki

d�(~x); (A.3)

estimates the number of points in the cube Ki at the location ~x. The scaling exponent �i is the
slope of log pi(�) as a function of log � as describes how fast the points in the cubes decrease with
the decreasing �. In case of �i = const for all i, S is a mono-fractal. If two slopes are found, S is
a bifractal, and if even more scaling exponents are found, we call S a multifractal.

In most applications, the point set under consideration is �nite and the the limit � ! 0 in Eq.
(A.2) is not de�ned. For these cases, Grassberger et al. (1988) introduced the "crowding index"
�ci (�) de�ned by

�ci (�) =
log pi(�)

log �
; (A.4)
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and only �nite values of �. Further, it is assumed that the cubes are locally isotropic. In the
limit �! 0, �ci becomes �i.

A limitation of this box-counting approach and fractal dimension in general, is that it is based
on weak mathematical concepts. Pointwise dimensions of multifractals can not be calculated for
�nite point distributions. In addition, it is di�cult to calculate fractal dimensions and various
estimations reported di�erent results. The application and interpretation for astrophysical appli-
cations and more discussions are found in Atmanspacher et al. (1989), Colombi et al. (1992), and
Borgani (1995).

A.2 Details about Mock Catalogues

The mock catalogs, the numerical simulation of the observed large-scale galaxy distribution, as
used in in Section 3.3 were created by Cole et al. (1998). For our analysis, we used their cosmo-
logical model L3, which is based on the cold dark matter scenario (CDM) and uses a functional
form of the matter power spectrum P (k) / f(q)kn given by Bardeen et al. (1986), where q = k=�
and k = 2�=� is the wavenumber in units of hMpc�1. The index n is the slope of the primordial
power spectrum, n = 1, as predicted in the simplest models of ination. The description of the
power spectrum is completed by two further parameters, the shape parameter � = 0:172 and the
amplitude �8 = 1:05, the linear theory root-mean-square uctuations of the mass contained in
spheres of radius 8 h�1Mpc . These primordial density uctuations evolve in the background
cosmological model speci�ed by the density parameter 
0 = 0:3 and the cosmological constant
� = 0:7. The baryon fraction was �xed using the constraint from primordial nucleosynthesis,

b = 0:0125h�2 (Walker et al. 1991), where a value of h = 0:65 was chosen.

A.3 Additional Plots: SIM Results for Galaxy Sample

In order to illustrate the meaning of geometry and the scaling index �, a example region which was
reduced to two spatial dimensions was marked with the individual �-values (see also Section 3.4).
A thin slice with a thickness of 4h�1Mpc was extracted from the volume limited SDSS galaxy
sample and projected to a plane. Each row corresponds to a certain �-range and each galaxy was
marked with symbols if its �-value falls into this range marked in the histogram on the right.
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Figure A.1: Galaxy distribution encoded with di�erent � ranges for the radius r = 2h�1Mpc
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Figure A.2: Galaxy distribution encoded with di�erent � ranges for the radius r = 3h�1Mpc .
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Figure A.3: Galaxy distribution encoded with di�erent � ranges for the radius r = 5h�1Mpc .
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Figure A.4: Galaxy distribution encoded with di�erent � rangesfor the radius r = 8h�1Mpc .
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Figure A.5: Galaxy distribution encoded with di�erent � ranges for the radius r = 10h�1Mpc .
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Figure A.6: Galaxy distribution encoded with di�erent � ranges for the radius r = 15h�1Mpc .



Appendix B

Source Code

B.1 SIM Source Code

The C++ source code is presented for calculation of the scaling index � including a kD-tree
implementation to �nd close neighbor galaxies:

#include "kdtree2.hpp"
#include <boost/multi_array.hpp>
#include <vector>
#include <iostream>
#include <fstream>

using namespace boost;
using namespace std;

// define, for convenience a 2d array of floats.
typedef multi_array<float,2> array2dfloat;

int main() {

//*** read data file
long n_ele,n_columns,d,i,j,ir;
//file with particles for which density is calculated
char *data="/home/mhuber/Software/kdtree2.24/src-c++/input.ib";
char *output="/home/mhuber/Software/kdtree2.24/src-c++/output.ib";

const int n_rad=6;//number of different radii
float const r[n_rad]={2.,3.,5.,8.,10.,15.};//radius r_0
float const qp=2.;//exponent
float r2[n_rad];
for(i=0;i<n_rad;i++) r2[i]=pow(r[i],qp);// for later calulation
float const treshold=pow(4.*r[n_rad-1],2); // (4*max_radius)^2
float dummy2; //dummy variables
vector<float> arri(n_rad),abaj(n_rad); //numerator and denominator for later calc.

//*** load data file
ifstream chunk(data);
chunk.read( (char *) &n_columns, sizeof n_columns); // all particles
chunk.read( (char *) &n_ele, sizeof n_ele); // all particles
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cout << "number of all particles: " << n_ele <<" columns: " <<n_columns<< endl;

float * x = new float[n_ele];
chunk.read( (char *) x, n_ele*4);
float * y = new float[n_ele];
chunk.read( (char *) y, n_ele*4);
float * z = new float[n_ele];
chunk.read( (char *) z, n_ele*4);
chunk.close();

//*** prepare for search;
vector<float> qv(3);

float **alpha= new float *[n_rad]; //initialize alpha matrix
for(ir=0;ir<n_rad;ir++) alpha[ir]= new float[n_ele];
for(ir=0;ir<n_rad;ir++)
for(j=0;j<n_ele;j++) alpha[ir][j]=0.;

kdtree2* tree;
kdtree2_result_vector results;
array2dfloat realdata;
realdata.resize(extents[n_ele][3]);
d=3;
for (i=0; i<n_ele; i++) {
realdata[i][0] = x[i];
realdata[i][1] = y[i];
realdata[i][2] = z[i];

}

//*** create tree and rearrange
tree = new kdtree2(realdata,true);
tree->sort_results = true; //sort results

//*** calculate alphas
for(i=0;i<n_ele;i++){
for(j=0;j<d;j++)
qv[j]=realdata[i][j];

tree->r_nearest(qv,treshold,results);
for(ir=0;ir<n_rad;ir++){
arri[ir]=0.;
abaj[ir]=0.;

}
for (unsigned int k=0; k<results.size(); k++) {
for(ir=0;ir<n_rad;ir++){

dummy2 =results[k].dis/r2[ir];
arri[ir]+=dummy2*exp(-dummy2);
abaj[ir]+=exp(-dummy2);

}
}//k loop
for(ir=0;ir<n_rad;ir++)
alpha[ir][i]= (qp*arri[ir])/abaj[ir];

if((i+1)%50000==0) cout<<round(100.*(i-1)/n_ele)<<"% done.. "<<endl;
}//i loop
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delete tree;

//*** write results to file
ofstream fout(output);
fout.write( (char *) &n_rad, sizeof n_rad);
fout.write( (char *) &n_ele, sizeof n_ele);
for(ir=0;ir<n_rad;ir++) fout.write( (char *) alpha[ir], n_ele*4 );
fout.close();
delete [] x; delete [] y;delete [] z;
return(0);
}

B.2 SDSS Queries

The photometric and spectroscopic data for the galaxies was extracted with the SQL database
tool sdssQA. The following de�nitions were used to extract the data:

SELECT
-- object IDs
G.objID,
-- coordinates
S.ra,S.dec,S.z,
--modelMag_u,modelMag_g,modelMag_r,modelMag_i,modelMag_z,
G.dered_u,G.dered_g,G.dered_r,G.dered_i,G.dered_z,
G.modelMagErr_u,G.modelMagErr_g,G.modelMagErr_r,
G.modelMagErr_i,G.modelMagErr_z,

--extinction_u,extinction_g,extinction_r,extinction_i,extinction_z
G.petroMag_r,G.petroMagErr_r,G.extinction_r,
G.petroR50_r,G.petroR50Err_r,G.petroR90_r,G.petroR90Err_r

-- spectral data:
-- H_alpha
L1.ew,L1.ewErr,L1.continuum,
-- H_beta
L2.ew,L2.ewErr,L2.continuum,
-- OII
L3.ew,L3.ewErr,L3.continuum,
-- OIII
L4.ew,L4.ewErr,L4.continuum,
-- OIII 2
L5.ew,L5.ewErr,L5.continuum

FROM Galaxy G, SpecObj S, SpecLine L1, SpecLine L2,
SpecLine L3,SpecLine L4, SpecLine L5

WHERE
S.bestObjID=G.ObjID
and (G.primTarget & 0x00000040) > 0 -- main galaxy sample
and S.specClass=2 -- spetro. galaxy

and S.specObjID=L1.specObjID -- connect two tables
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and S.specObjID=L2.specObjID -- connect two tables
and S.specObjID=L3.specObjID -- connect two tables
and S.specObjID=L4.specObjID -- connect two tables
and S.specObjID=L5.specObjID -- connect two tables

and L1.lineID=6565 -- Ha line
and L2.lineID=4863 -- Hb line
and L3.lineID=3727 -- OII line
and L4.lineID=4960 -- OIII line
and L5.lineID=5008 -- OIII 2 line
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