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1. EINLEITUNG 
 

Die Nieren des Menschen erhalten mit ca. 1200 ml Blut pro Minute etwa 20% des 

Herzzeitvolumens obwohl sie zusammen nur etwa 300 g wiegen. Neben der 

Hormonproduktion (Erythropoietin und Vitamin D), Regulation des Blutdrucks und Säure-

Basen-Haushalts oder der Ausscheidung harnpflichtiger Substanzen ist diese enorme 

Durchblutung der Niere vor allem notwendig, um die wohl wichtigste Aufgabe der Niere 

erfüllen zu können, nämlich die Regulation des Wasser- und Elektrolythaushalts – der 

Homöostase. 

 

Die diffusionsgewichtete Magnetresonanz-Bildgebung (MR-DWI) ermöglicht es, die Funktion 

der Niere zu untersuchen, indem sie Information über die Struktur von biologischem 

Gewebe durch die Messung der Diffusion von Wassermolekülen liefert (Mori et al., 2002; 

Müller et al., 1994; Prasad, 2006; Thoeny et al., 2006). Verglichen mit anderen MR-

Methoden benötigt sie keine exogenen nierenbelastenden Kontrastmittel (Ludemann et al., 

2009; Rossi et al., 2009). Zudem bietet die Magnetresonanztomographie grundsätzlich den 

Vorteil ohne jegliche Röntgenstrahlung, nicht invasiv und somit patientenschonend zu 

untersuchen. 

Mit der DWI wird die mikroskopische translationale Bewegung von Wassermolekülen in 

jedem einzelnen Voxel sichtbar gemacht. Durch den Weg, den die Wassermoleküle 

zurücklegen, ergibt sich ein Signalverlust, der umso stärker ist, je schneller sich die 

Wassermoleküle bewegen. Anhand des Signalabfalls kann eine Diffusionskonstante 

(Mittlerer Diffusionskoeffizient/MD) berechnet werden, welche neben der Diffusion auch 

von dem Blutfluss in den Kapillaren beeinflusst wird (Le Bihan et al., 1988).  

Zwei fortgeschrittene DWI-Methoden, werden derzeit in zahlreichen Arbeiten erprobt, um 

zusätzliche Informationen über die Mikrozirkulationskomponente oder die 

Diffusionsrichtung zu erhalten: Die Intravoxel Incoherent Motion (IVIM) und die Diffusions-

Tensor-Bildgebung (DTI): 

 

Die IVIM differenziert den Anteil der Perfusions- von der strukturellen 

Diffusionskomponente und kann somit mittels Alterationen der unterschiedlichen 
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Diffusionsparameter frühzeitig auf mikrostrukturelle und mikrozirkulatorische 

Veränderungen des Gewebes hinweisen (Le Bihan et al., 1986). 

 

Die Diffusion ist allerdings ein dreidimensionaler Prozess. In organisiertem Gewebe findet 

die molekulare Mobilität daher nicht zwingendermaßen in alle Richtungen gleich statt. Diese 

anisotropischen Eigenschaften zeigen sich vor allem in den Sammelrohren, den Nierentubuli 

und ihren begleitenden Gefäßen aufgrund der radialen Anordnung der genannten 

Strukturen (Fukuda et al., 2000) und können am besten mit der DTI beurteilt werden, welche 

eine Analyse der Diffusion in mehreren Richtungen erlaubt (Gürses et al., 2011). Mit Hilfe 

der DTI kann also weitere Information über die renale Mikrostruktur gewonnen werden, wie 

etwa die Veränderung der fraktionellen Anisotropie (FA) in Nierentumoren und 

Nierenarterienstenosen (Notohamiprodjo et al., 2008).  

Notohamiprodjo et al. (2014) kombinierten erstmalig die beiden Techniken der IVIM und DTI 

um den renalen tubulären Fluss näher untersuchen zu können. 

 

Auch in anderen Organen, wie etwa der Leber, wird die DWI zunehmend eingesetzt. Einige 

Studien haben gezeigt, dass der MD sehr hilfreich bei der Unterscheidung von benignen und 

malignen hepatischen Läsionen ist und somit als Biomarker in der Beurteilung des Erfolges 

einer Behandlungstherapie verwendet werden kann (Cui et al., 2008; Filipe et al., 2013; Koh 

et al., 2007; Mannelli et al., 2009; Parikh et al., 2008; Vallejo Desviat et al., 2013).  

 

Trotz Entwicklung von ultra-schnellen Pulssequenzen, wie die echo-planar-Bildgebung (EPI), 

Multielement-Spulen, höhere Feldstärken und beschleunigte Akquisistionsverfahren wie die 

parallele Bildgebung, bleibt die klinische Anwendung der DWI bei Untersuchungen der 

Bauchorgane wegen der Anfälligkeit für Artefakte, aufgrund von Pulsations-, Atmungs- oder 

Körperbewegungen, weiter eingeschränkt. Dies führt zu einer Degradierung des 

Bilddatenmaterials (Le Bihan, 1991; Namimoto et al., 1997; Tien et al., 1994; Tsuruda et al., 

1990). Aus diesem Grund gilt die MR-Diffusionsbildgebung bisher nur bei Untersuchungen 

des Gehirns als etabliert und wird dort unter anderem zum Nachweis von Infarkten 

verwendet (Buckley et al., 2003; Gray et al., 1998).  

Die Diffusionsparameter der Leber werden analog zur Niere am stärksten durch die 

Atembewegung beeinflusst (Kandpal et al., 2009; Taouli, Sandberg, et al., 2009). Es wurde 
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gezeigt (Schwartz et al., 1994), dass sich die Nieren während des Atemzyklus um bis zu 4 cm 

verschieben. DWI Untersuchungen der Niere wurden deshalb bislang überwiegend an 

Transplantatnieren durchgeführt (Rossi et al., 2009; Thoeny et al., 2011; Thoeny et al., 2006; 

Yang et al., 2004), da hier die atembedingte Bewegung weitgehend entfällt.  

 

Neben einer einfachen Ignorierung einer atembedingten Bilddegradierung, kann zur 

Vermeidung derselben versucht werden, eine Akquirierung der Daten während natürlicher 

Atempausen oder in möglichst gleichen Phasen des Atemzyklus (prospektive 

Atemtriggerung) durchzuführen. In der klinischen Anwendung konnten sich diese Verfahren 

jedoch noch nicht durchsetzen, da sie deutlich zeitintensiver sind und zudem eine 

Atempause bei den meisten Patienten nur für maximal 20 Sekunden möglich ist und daher 

für die DTI und IVIM nicht geeignet ist. 

Eine zeitsparende Bilddatengewinnung in freier Atmung mit anschließender neuartiger 

retrospektiver digitaler Bewegungskorrektur könnte hierbei eine attraktive Alternative im 

klinischen Alltag bedeuten.  

 

In dieser Arbeit wird der Einfluss dieser unterschiedlichen Methoden auf die absoluten 

Werte der einzelnen Diffusionsparameter der IVIM- (Mikrozirkulationsfraktion fp, 

Gewebediffusionskoeffizient Dt und Pseudodiffusionskoffizient Dp) und DTI- (Mittlerer 

Diffusionskoeffizient MD, Fraktionelle Anisotropie FA) Technik jeweils unter freier Atmung, 

unter Anwendung einer prospektiven Atemtriggerung sowie unter freier Atmung mit 

nachträglicher Bewegungskorrektur miteinander quantitativ verglichen sowie ihr Einfluss auf 

die Reproduzierbarkeit der DWI untersucht. Mit den Ergebnissen dieser Arbeit wird die 

Interpretierung und Vergleichbarkeit von DWI-Messungen mit verschiedenen 

Atemkompensationsmethoden ermöglicht. 

 

2. GRUNDLAGEN 
 

2.1. Magnetresonanztomographie 

 

Die Magnetresonanztomographie (MRT), oder auch Kernspintomographie, ist ebenso wie die 

Computertomographie (CT) ein Verfahren zur Erzeugung von Schnittbildern des 
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menschlichen Körpers. Allerdings verwendet die MRT im Gegensatz zur CT keine 

Röntgenstrahlung, welches im Folgenden kurz erläutert werden soll: 

  

Bereits 1946 erkannten Bloch und Purcell, dass jeder Atomkern mit einer ungeraden Anzahl 

von Protonen und/oder Neutronen einen eigenen Kerndrehimpuls, oder auch Kernspin 

(kurz: Spin) genannt, besitzt (Günther, 1986). Dies bedeutet, dass durch das Ungleichgewicht 

der Ladungen ständig eine Rotation der Atomkerne mit einer stoffspezifischen 

Geschwindigkeit um ihre eigene Achse erfolgt. Bewegte elektrische Ladungen wiederum 

induzieren ihr eigenes magnetisches Dipolmoment – werden also zu winzigen Magneten 

(Reiser et al., 2011). 

Da der menschliche Körper zum überwiegenden Teil aus Wasser besteht, ist das 

Wasserstoffatom mit seinem einzelnen Proton das wichtigste Atom mit Kerndrehimpuls. Im 

menschlichen Körper jedoch liegen diese Magnetfelder ungeordnet vor und kompensieren 

sich daher (Reiser et al., 2011). 

Setzt man den menschlichen Körper allerdings einem sehr starken äußeren Magnetfeld aus, 

so richten sich diese magnetischen Dipole entlang der Feldlinien entweder parallel oder 

antiparallel aus. Die Mehrzahl der Protonen nimmt die energetisch etwas günstigere 

Parallelposition ein, so dass eine messbare Nettomagnetisierung (Längsmagnetisierung) 

entsteht (Reiser et al., 2011; Reiser et al., 2002). 

Die Kerne bewegen sich im Magnetfeld auf eine ganz besondere Art und Weise. Sie rotieren 

in Form von Kreiselbewegungen mit einer bestimmten Frequenz um die z-Achse des äußeren 

Magnetfeldes. Diese Art der Bewegung wird Präzession genannt, die Geschwindigkeit mit 

der sich die Protonen bewegen, heißt Präzessionsfrequenz ω0. Diese Präzessionsfrequenz ω0 

(sog. Larmorfrequenz) ist abhängig von der Stärke des Magnetfeldes B0, sowie von der 

gyromagnetischen Konstante γ des spezifischen Kerns und wird durch die Larmor-Gleichung 

beschrieben (Stolzmann et al., 2012; van Geuns et al., 1999): 

 

ω0 ist die Präzessionsfrequenz in Hertz [Hz] oder Megahertz [MHz] 

ω0 = 
 

  
   B0 γ  ist die gyromagnetische Konstante 

   B0  ist die magnetische Flussdichte in Tesla [T] 
 

Die Protonen der Wasserstoffatome haben – der Larmor-Gleichung zufolge – eine 

bestimmte Präzessionsfrequenz. Wird nun dem System zusätzlich zum konstanten 

Magnetfeld Energie in Form eines Hochfrequenzimpulses (HF-Impuls) mit exakt der 
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spezifischen Präzessionsfrequenz ω0 zugeführt, können die Protonen einen Teil der Energie 

des HF-Impulses aufnehmen. Dieser Effekt wird als Resonanz bezeichnet und hat zur Folge, 

dass die parallel zu den Feldlinien des äußeren Magnetfeldes ausgerichteten Atomkerne 

durch die zusätzliche Energie in das energiereichere antiparallele Niveau springen können. 

Somit werden eine Synchronisierung der Präzessionsbewegung (sog. Phasenkohärenz) und 

eine Auslenkung des Nettomagnetisierungsvektors um 90 Grad von der z-Achse in die 

transversale xy-Achse erreicht. Das Ergebnis ist also ein quer zum angelegten Magnetfeld 

verlaufender Magnetvektor, die sogenannte Transversalmagnetisierung (Reiser et al., 2002). 

 

2.1.1. T1, T2, T2* Relaxation 

 

Wird nun der HF-Impuls – der  in der Regel von einer Sendespule (wie etwa einer Kopf- oder 

Körperspule) erzeugt wird – abgeschaltet, springen die Wasserstoffatome wieder in ihren 

ursprünglichen Zustand zurück, sie relaxieren. Die Zeit, die dabei benötigt wird um den 

Gleichgewichtszustand wieder zu erreichen, wird als Relaxationszeit bezeichnet. 

Unter der T1-Relaxationszeit (oder auch Spin-Gitter Relaxationszeit genannt) versteht man 

die Zeit, die benötigt wird, bis die Longitudinalmagnetisierung wieder auf 63 Prozent ihres 

Ausgangswertes angestiegen ist. Dabei richtet sich der Vektor der Nettomagnetisierung 

wieder entlang der Feldlinien des externen Magnetfelds B0 aus und wird durch die 

exponentiell verlaufende Energieabgabe des Atomkerns an seine Umgebung („das Gitter“, 

weshalb sie auch Spin-Gitter Relaxation genannt wird) verursacht. Da die T1-Relaxationszeit 

abhängig von dem externen Magnetfeld B0 und der energetischen Kopplung des Atomkerns 

an das Gesamtsystem ist, folgt daraus, dass für unterschiedliche Gewebe unterschiedliche 

T1-Zeiten vorhanden sind. So haben beispielsweise Gewebe, die reichlich Wasser enthalten, 

aufgrund der schnellen kleinen Wassermoleküle eine weit höhere T1-Relaxationszeit als 

fetthaltige Gewebe (Reiser et al., 2011; Reiser et al., 2002; Stolzmann et al., 2012; van Geuns 

et al., 1999).  

 

Unter der T2-Relaxationszeit (oder auch Spin-Spin-Relaxationszeit genannt) wird die Zeit 

bezeichnet, die benötigt wird bis die Transversalmagnetisierung auf 37 Prozent ihres 

Ausgangswertes herabgefallen ist. Nach dem Abschalten des HF-Impulses geht nach und 

nach die vorher aufgebaute Phasenkohärenz verloren, da einige Spins etwas voraus, andere 
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etwas hinterherlaufen. Man spricht bei diesem Vorgang von einer Dephasierung. Die 

einzelnen Magnetvektoren beginnen sich somit gegenseitig aufzuheben, anstatt zu addieren, 

sodass der resultierende Gesamtvektor, die transversale Magnetisierung, immer kleiner wird 

und schließlich ganz verschwindet.  

Im Gegensatz zur T1-Relaxation wird hierbei keinerlei Energie an die Umgebung abgegeben. 

Vielmehr beeinflussen sich die Spins gegenseitig durch rasch wechselnde lokale 

Magnetfeldänderungen benachbarter Spins. Daher auch der Name „Spin-Spin-Relaxation“.  

 

Von der reinen Spin-Spin-Wechselwirkung abgegrenzt werden muss die zeitlich konstante 

Inhomogenität des äußeren Magnetfeldes. Diese wird durch den Tomographen selbst, sowie 

durch den Körper der zu untersuchenden Person erzeugt. Somit kommt es zu einer 

zusätzlichen Dephasierung, sodass das Signal effektiv nicht mit T2, sondern rascher abfällt. 

Die Zeitkonstante, die auch diesen zusätzlichen Faktor berücksichtigt, wird mit T2* 

bezeichnet und ist definitionsgemäß immer kürzer als T2. 

 

2.1.2. Repetitionszeit (TR) und Echo-Zeit (TE) 

 

Der bei der Längsrelaxation ausgehende magnetische Impuls der Protonen ist sehr klein. Um 

ein möglichst rauschfreies MR-Bild zu erhalten ist es daher notwendig, die Protonen einer 

bestimmten Schicht mehrmals nacheinander anzuregen und die gemessenen Signale 

elektronisch zu mitteln (Averaging). Eine Folge mehrerer HF-Impulse bezeichnet man als 

Pulssequenzen (Reiser et al., 2011). 

Als Repetitionszeit (TR) wird jene Zeit bezeichnet, die zwischen zwei aufeinanderfolgenden 

HF-Impulsen derselben Schicht verstreicht und eignet sich besonders gut die T1-Gewichtung 

festzulegen.  

 

Wird die TR nämlich kurz gewählt (unter ca. 600 ms), kann ein sehr starker T1-Kontrast 

erzielt werden. Der Grund dafür liegt darin, dass Gewebe mit kurzer T1-Zeit 

definitionsgemäß sehr rasch relaxieren, also nach erneuter HF Anregung viel Energie 

aufnehmen und nach dessen Abschaltung wieder an die Umgebung abgeben können – sie 

erscheinen im Bild hell. Die Atomkerne bei Geweben mit langer T1-Zeit hingegen relaxieren 
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langsam, wodurch nach einer kurzen Repetitionszeit erst wenige in der Längsmagnetisierung 

relaxiert vorliegen. Sie erzeugen somit weniger Signal und erscheinen im Bild dunkel. 

Wird die TR hingegen lang gewählt, haben alle Gewebe genügend Zeit zu relaxieren und die 

Signalabgabe bei Geweben mit kurzer sowie langer T1-Zeit wird ähnlich sein. 

 

Die Echo-Zeit (TE) ist diejenige Zeitspanne, die man nach der Anregung durch den HF-Impuls 

bis zur Messung des Signals verstreichen lässt und kann dazu verwendet werden eine T2-

Gewichtung zu erreichen. 

Wird die TE lang gewählt (mehr als ca. 60 ms), so haben Gewebe mit kurzer T2-Zeit zum 

Zeitpunkt der Messung schon viel Signalintensität verloren, erscheinen auf dem Bild also 

dunkel. Gewebe mit längerer T2-Zeit jedoch haben noch immer viele Spins in 

Transversalmagnetisierung vorliegen, sodass sie auf dem Bild hell erscheinen.  

Bei sehr kurz gewählter TE (weniger als ca. 30 ms), hat die T2-Relaxation gerade erst 

begonnen und die Signale sind praktisch noch kaum abgefallen, sodass kein relevanter 

Unterschied im Kontrast zwischen Gewebe mit kurzer und langer T2-Zeit erkannt werden 

kann. 

 

2.1.3. Räumliche Kodierung 

 

Wird das Magnetfeld über den ganzen Körper der zu untersuchenden Person hinweg gleich 

stark gewählt, haben alle Spins – entsprechend der Larmorgleichung – exakt die gleiche 

Larmorfrequenz und auch ein HF-Impuls würde immer den ganzen Körper gleichzeitig 

anregen. 

Damit selektiv eine ganz bestimmt Schicht angeregt werden kann, ist es daher nötig, einen 

magnetischen Gradienten (z.B. 25 mT/m) entlang des Magnetfeldes anzulegen. Für einen 

axialen Schnitt wird der Gradient entlang der Z-Achse (kaudo-kranial) und für einen 

vertikalen Schnitt in anteroposteriorer Richtung aufgebaut. Durch die Verwendung von 

Gradienten in allen 3 Ebenen, ist es möglich einen Schnitt in willkürlicher Richtung durch den 

Körper zu erhalten (van Geuns et al., 1999). 

Die Inhomogenität des Magnetfeldes bedeutet nun, dass eine fließende Änderung der 

Larmorfrequenz entlang der entsprechenden Achse vorliegt. Der HF-Impuls mit einer 

Frequenz versetzt nun genau eine einzige Schicht in Resonanz, der Rest des Körpers bleibt 
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unbeeinflusst. Um die Schichtdicke festzulegen, muss lediglich die Stärke des Gradienten 

verändert werden. 

Für die exakte Ortskodierung sind zwei weitere Schritte notwendig: eine Phasenkodierung 

und eine Frequenzkodierung.  

Für die Phasenkodierung wird nach dem HF Impuls ein weiterer Gradient (der sog. 

Phasengradient) aufgebaut, der eine Phasenverschiebung der angeregten Spins 

untereinander erzeugt. Nach Abschalten des Gradienten präzedieren zwar alle Spins wieder 

gleich schnell, aber die Phasenverschiebung bleibt bestehen. So kann jede Zeile innerhalb 

der Schicht durch ihre Phase unterschieden werden. Die Frequenzkodierung ist notwendig, 

um die Spins mit gleicher Phasenkodierung zu unterscheiden. Durch eine weitere 

Graduierung des Magnetfeldes kreisen die Spins in der bestimmten Phase wieder 

unterschiedlich schnell, sodass bei der Messung des MR-Signals dieser Spins nicht nur eine 

einzige Frequenz (nämlich die Lamorfrequenz ω0), sondern ein ganzes Frequenzspektrum 

empfangen werden kann. Durch die Frequenz und Phase ist somit jedes Volumenelement 

(Voxel) eindeutig identifiziert (Weishaupt et al., 1994). 

 

2.1.4. Diffusionsbildgebung (Diffusion weighted Imaging – DWI) 

 

Die molekulare Diffusion basiert auf der zufälligen thermischen molekularen Bewegung, 

welche Brownsche Molekularbewegung genannt wird. Der Diffusionskoeffizient D bestimmt 

die Mobilität der Moleküle und ist definiert als die mittlere Verschiebung (R2) in einem 

gegebenen Zeitintervall T (Le Bihan et al., 1988). So ist beispielsweise der 

Diffusionskoeffizient von Wasser in Wasser bei 25 °C 2,3 x 10-3 mm²/s, und die mittlere 

Diffusionsdistanz in 100 ms ungefähr 20 µm (James et al., 1973; Le Bihan et al., 1986). 

 

Die Intravoxel Incoherent Motion (IVIM) Bildgebung ist eine fortgeschrittene Technik der 

Diffusionsbildgebung, bei der diese mikroskopischen translationalen Bewegungen von 

Wassermolekülen in jedem einzelnen Voxel sichtbar gemacht werden. Die dabei verwendete 

Spin-Echo (SE) Technik, wurde schon vor einiger Zeit von Hahn (1950) und Carr et al. (1954) 

beschrieben. 

In Anwesenheit eines magnetischen Feld-Gradienten, bewirkt eine Verschiebung der Spins 

während der Echozeit (TE) einer Spin-Echo Sequenz (SE) eine Phasenverschiebung der 



 ~ 14 ~ 

transversalen Magnetisierung (Abbildung 1). Wenn ein gegebener Voxel Spins mit 

unterschiedlichen Geschwindigkeitsvektoren (Amplitude und/oder Richtung) während der TE 

beinhaltet, resultiert eine Verteilung der Phasenverschiebungen (Abbildung 2). Diese 

verminderte Phasenkohärenz in der transversalen Magnetisierung in dieser Voxel-Ebene 

produziert eine Spin-Echo Amplituden Abschwächung B, zusätzlich zu der, die bei dem spin-

spin Relaxationsprozess entsteht, sodass die Echo Signalamplitude S des Voxels 

folgendermaßen beschrieben werden kann: 

 

                          
  

  
  (Le Bihan et al., 1986) 

 

Abbildung 1: Die Spin-Bewegungen in Richtung des Magnetfeld Gradienten B produzieren aufgrund der 
veränderten Präzessionsfrequenz eine Phasenverschiebung φ der transversalen Magnetisierung, 
verglichen mit sich nicht bewegenden Spins.  

Entnommen von: Le Bihan et al. (1988) 

 

Abbildung 2: Wenn die Spins unterschiedliche Bewegungen in einem Voxel zeigen, resultiert eine 
Verteilung der Phasenverschiebungen Δ φ. Diese Verminderte Kohärenz der transversalen 
Magnetisierung vermindert die Echo Signalamplitude als eine Funktion der unterschiedlichen Spin 
Bewegungen und der verwendeten Feld Gradienten. Im Beispiel der molekularen Diffusion ist die Echo 
Dämpfung eine exponentielle Funktion des Diffusionskoeffizienten D.   

Entnommen von: Le Bihan et al. (1988) 
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Durch den Weg, den die Wassermoleküle zurücklegen, ergibt sich somit ein Signalverlust, 

der umso stärker ist, je schneller sich die Wassermoleküle bewegen. Eine starke 

Molekularbewegung führt demnach zu einem Signalverlust, während eine stark 

eingeschränkte Molekularbewegung einen Signalanstieg verursacht (Reiser et al., 2002; 

Weishaupt et al., 1994). Ursache der eingeschränkten Molekularbewegung können 

entweder eine erhöhte Zelldichte (z.B. bei Entzündungen durch ein leukozytäres Infiltrat 

oder Tumorinfiltration) oder eine Zellschwellung (Ödem) sein. 

Aufgrund dieser Tatsache wird die Diffusionsbildgebung schon seit einiger Zeit erfolgreich in 

der akuten Schlaganfall-Diagnostik angewandt. 

 

 

 

 
 
 
 
 

 
 

Die Sensitivität der magnetresonanztomographischen Diffusionsbildgebung wird durch den 

sogenannten b-Wert (s/mm²) angegeben. Er bestimmt den Signalverlust, der für eine 

gegebene Diffusionskonstante zu erwarten ist. Je höher der b-Wert ist, desto höher ist die 

Sensitivität der Diffusion mit zunehmender Dephasierung der Protonen und damit 

einhergehendem Kontrastverlust (Reimer, 2003). 

Die Signalabschwächung bei reiner Diffusion erfolgt nach folgender Formel: 

 

                 

 

Abbildung 3: Die eingeschränkte Molekularbewegung des 

zytotoxischen Ödems während eines Schlaganfalls im 

Versorgungsgebiet der linken A. cerebri posterior (Pfeil) 

bewirkt einen Signalanstieg, der als hyperintenses Areal 

bereits wenige Stunden nach dem Anfall im MR Bild auffällt.  

 

Entnommen von: Beslow et al. (2011) 
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Dabei entspricht Si der Signalintensität gemessen an den i-ten b-Werten und bi ist der 

korrespondierende b-Wert. S0 entspricht der Signalintensität bei b = 0 s/mm2. D bezeichnet 

die Diffusionskonstante in mm2/s (Thoeny et al., 2011).  

Nachfolgende Abbildung 4 veranschaulicht den Signalabfall bei reiner Diffusion graphisch: 

 

Abbildung 4: Signalabfall bei reiner Diffusion; modifiziert nach Koh et al. (2011) 

 

Wird eine Messung mit unterschiedlichen b-Werten wiederholt, kann die 

Diffusionskonstante quantitativ als Steigung der Kurve bestimmt werden. In der Literatur 

wird diese üblicherweise mit „Apparent Diffusion Coefficient“ (kurz: ADC) bezeichnet, dessen 

Wert eine Vereinigung aller molekularen Bewegungen darstellt.  Er ist null, wenn keine 

Bewegung stattfindet, und ist gleich dem Diffusionskoeffizienten D, wenn die Diffusion die 

einzige molekulare Bewegung bildet (Le Bihan et al., 1986).  

Betrachtet man die Niere, so kann eine Alteration des ADC beispielsweise bei der 

Niereninsuffizienz (Namimoto et al., 1999; Thoeny et al., 2005), Nierenarterienstenose (Xu et 

al., 2007; Yildirim et al., 2008), Steinobstruktionen (Thoeny et al., 2009) oder auch 

Nierentumoren (Chandarana et al., 2011; Squillaci et al., 2004; Taouli, Thakur, et al., 2009) 

beobachtet werden. Somit erlangt der ADC vorallem als frühzeitiger sensitiver Marker für 

beginnende renale Dysfunktionen klinische Relevanz. 
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Intravoxel Incoherent Motion (IVIM) 

In den anfänglichen Studien fand die Arbeitsgruppe um Le Bihan 1986 heraus, dass der ADC 

in vivo stets höher ist, als vorher vermutet wurde. Er entspricht also in der klinischen Realität 

nicht dem berechneten Diffusionskoeffizienten. Der Grund liegt darin, dass neben der 

Diffusion auch der Blutfluss des kapillaren Netzwerks – etwa 5700 Kapillaren pro mm3 im 

Cortex des Gehirns (Weiss et al., 1982) – in einem Voxel (Abbildung 5) einen Signalabfall 

erzeugt.  

Somit liefert der ADC Informationen sowohl über die Diffusion als auch die Perfusion des 

Gewebes zur selben Zeit (Le Bihan et al., 1988; Le Bihan, Turner, et al., 1992; Weishaupt et 

al., 1994). 

 

 

Wenn aufgrund des räumlich anatomischen Verlaufs der Kapillaren der Blutfluss während 

der Spin-Echo Sequenz mehrere Male die Richtung wechselt (Abbildung 5), ähnelt diese 

Bewegung in den Kapillaren dem Prozess der Diffusion. Dieser scheinbar ungerichteten und 

zufälligen Bewegung wird allerdings in Wahrheit klarerweise durch das Schlauchsystem der 

Kapillaren eine Richtung vorgegeben (Abbildung 6). Somit handelt es sich hierbei um eine 

Pseudodiffusion und auch ein Pseudodiffusionskoeffizient (im Weiteren D* genannt) kann 

definiert werden.  

Obwohl der Unterschied in der räumlichen Ausbreitung zwischen dem Prozess der Diffusion 

(im Nanometerbereich) und der Pseudodiffusion (mehrere 10 Mikrometer) fünf 

Größenordnungen sind, ist der Pseudodiffusions- gegenüber dem Diffusionskoeffizienten 

Abbildung 5: Anordnung der Kapillaren in einem 
Voxel 

Entnommen von: Le Bihan et al. (1988) 

Abbildung 6: Blutfluss in den Kapillaren 

Entnommen von: Le Bihan et al. (1988) 
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lediglich um eine Zehnerpotenz höher (Le Bihan, 2011). Dies ist deshalb der Fall, weil diese 

Koeffizienten die Effekte der Elementarteilchen-Geschwindigkeit und die Entfernung 

vereinen (Le Bihan & Turner, 1992). Bezogen auf die zurück gelegte molekulare Distanz ist 

die Diffusion verglichen zum Blutfluss der Pseudodiffusion nämlich ein sehr viel schnellerer 

Prozess. Durch die Nähe der Werte von D und D* ist es möglich, diese in der gleichen MRT-

Sequenz zu bestimmen, allerdings bedeutet dies auch, dass die Diffusions-MR-Bilder anfällig 

für Verunreinigungen durch die Mikrozirkulationseffekte von Blut sind (Le Bihan, 2011). 

 

Die Arbeitsgruppe um Thoeny et al. (2005) war eine der Ersten die erkannten, dass 

unterschiedliche b-Werte zwischen Diffusion und Pseudodiffusion zu differenzieren 

vermögen. Sie berechneten dazu den ADC in der Niere gemittelt über alle b-Werte (ADCavg), 

sowie für niedrige (ADClow) und hohe b-Werte (ADChigh).  

Sie fanden heraus, dass die Verwendung von hohen b-Werten vor allem Information über 

die mikroskopische Wasserbewegung im extravasalen, extrazellulären Raum liefert, welche 

weitgehend der wahren Diffusion im Gewebe entspricht.  

Bei niedrigen b-Werten hingegen beeinflusst sowohl die Diffusion als auch die mikrokapillare 

Perfusion des Gewebes den Signalabfall im diffusionsgewichteten MR-Bild (Le Bihan, 2008).  

 

Bei der Berechnung des ADCavg wird angenommen, dass die Beziehung zwischen MR Signal 

und b-Werten eine monoexponentielle Funktion darstellt. Da – wie bereits erklärt – bei 

niedrigen und hohen b-Werten die Mikrozirkulation des Gewebes unterschiedlichen Einfluss 

auf den Signalabfall hat, fanden u.a. Wittsack et al. (2010) heraus, dass es sinnvoller sei, die 

diffusionsgewichteten MR-Daten der Niere mit einem biexponentiellen Modell zu 

beschreiben.  Folgende Formel wird hierbei angewandt (Grenier et al., 2003; Thoeny et al., 

2006): 

  

                                            

 

Dabei entspricht fp der Perfusionsfraktion, also dem Volumenanteil des Wassers in 

perfundierten Kapillaren. Dieser Anteil erfährt sowohl einen Fluss als auch eine Diffusion. 

Das Restvolumen (1 – fp) erfährt nur eine Diffusion. Diese Volumenfraktion entspricht den 

extrazellulären und intrazellulären Räumen (Le Bihan et al., 1988). 
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Dt stellt den Diffusionskoeffizienten des Gewebes (engl. tissue) dar und entspricht somit der 

„wahren“ Diffusion (mit dem Koeffizienten D) bei höheren b-Werten. Dp hingegen 

repräsentiert den Diffusionskoeffizienten der niedrigen b-Werte, der durch die Diffusion und 

vor allem auch durch die schnelle Mikrozirkulation, der Pseudodiffusion, beeinflusst wird 

(also D + D*) (Koh et al., 2011). 

 

 

 

 

 

Wenn die b-Werte deutlich größer als 1/Dp sind (z.B. bei Dp = 10µm2/ms, b-Wert 100s/mm2) 

ist die Pseudodiffusion so klein, dass die oben genannte Formel folgendermaßen vereinfacht 

werden kann:  

 

                      
             

 

Bei der sogenannten segmentierten Berechnung wird Dt wird dem monoexponentiellen 

Modell der asymptotisch hohen b-Werte (im Bereich b > 200 s/mm2) bestimmt. Sein 

Abbildung 7: Intravoxel incoherent motion (IVIM) mit biexponentieller Kurvenanpassung. Die 

Diffusionskoeffizienten können graphisch als Steigung der Kurve sichtbar gemacht werden. Den 

Effekt den die kapillare Mikrozirkulation bei niedrigen b-Werten auf den Signalabfall ausübt, ist 

durch die stärkere Steigung klar ersichtlich. Modifiziert nach: Koh et al. (2011) 
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Nullschnittpunkt S0 (1 - fp) = Sint führt zusammen mit dem ungewichteten (b = 0) Signal S0 zur 

Berechnung von fp: 

 

   
       

  
 

 

Dp wird über oben genannte Formel des biexponentiellen Modells mittels Dt and fp 

berechnet. Parametrische Karten des mittleren fp, Dp und Dt über allen Richtungen können 

nun generiert werden.  

 

Dieses Modell benötigt klarerweise mehr Rechenleistung zur Nachverarbeitung und auch 

eine aufwändigere und längerdauernde Akquisition, da der schnelle Signalabfall genau 

modelliert werden muss. Zhang et al. (2010) zeigten aber auch, dass die Verwendung des 

biexponentiellen Modells im Gegensatz zum monoexponentiellen Modell die Variabilität der 

Diffusionskoeffizienten in gesunden Nieren reduziert. Klinisch betrachtet kann die 

Kombination der IVIM Parameter zudem renale Tumorsubtypen mit höherer Genauigkeit 

differenzieren als das monoexponentielle Modell (Chandarana et al., 2012). 

 

Diffusion Tensor Imaging (DTI) 

Diffusion ist ein dreidimensionaler Prozess, bei der die molekulare Mobilität in Geweben 

keineswegs in alle Richtungen gleich ausgeprägt ist. Wenn die Wassermoleküle in alle 

Richtungen gleich weit diffundieren, spricht man von einer isotropen Diffusion. Diese 

Situation wird vor allem in Körperflüssigkeiten mit frei beweglichen Wassermolekülen 

erreicht und hat eine starke Signalabschwächung im resultierenden MR Bild zur Folge 

(Weishaupt et al., 1994). Ist es den Wassermolekülen nicht mehr möglich in alle Richtungen 

gleich weit zu „wandern“, spricht man von einer anisotropen Diffusion. Diese Anisotropie 

kann durch die physikalische Anordnung des Gewebes (wie etwa in flüssigen Kristallen) oder 

auch durch Hindernisse begründet werden, welche die molekulare Bewegung in eine 

Richtung behindern (Le Bihan et al., 2001). Die Diffusionsanisotropie wurde schon vor langer 

Zeit im Muskel beobachtet (Cleveland et al., 1976) und Ende der 1980er Jahre ebenso in der 

weißen Substanz des Hirns, bedingt durch die bündelförmige Organisation der Nervenfasern 

und ihre myelinisierte axonale Isolierung (Chenevert et al., 1990). 
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Während sich die diffusionsgewichtete MR-Bildgebung auf die Menge der im Gewebe 

vorherrschenden molekularen Bewegung beschränkt, geht die Diffusions-Tensor-Bildgebung 

(DTI) einen Schritt weiter und misst auch die Richtung der molekularen Mobilität . Um diese 

zusätzliche Information zu bekommen, ist es nötig, die Diffusionseigenschaften entlang der 

verschiedenen Achsen einzeln zu bestimmen. Dies wird erreicht, indem die Standard-DWI 

Akquisitionen mit Diffusionssensibilisierung entlang der verschiedenen Achsen wiederholt 

werden. Somit kann folgender 3x3 Tensor gebildet werden (Basser, 1995; Hagmann et al., 

2006): 

 

     
         

         

         

    (Merboldt et al., 1985) 

 

Dij steht für die Diffusion in Richtung ij (mit i und j = x, y oder z). Da dieser Tensor 

symmetrisch ist (also Dij = Dji), werden zumindest sechs verschiedene Messungen benötigt, 

um diesen Tensor zu bilden, obwohl üblicherweise 12 oder mehr Richtungen verwendet 

werden (Thoeny et al., 2011). Geometrisch können die Resultate als Diffusionsellipsoid 

dargestellt werden, indem aus der Tensormatrix die Richtungen der 3 Hauptachsen 

(Eigenvektoren 321 ,, vvv


) und deren jeweilige Länge (Eigenwerte λ1, λ2, λ3) bestimmt werden.  

Der primäre Eigenwert λ1 (axiale Diffusion) ist die größte und am wenigsten eingeschränkte 

Komponente und beschreibt in der Medulla die Bewegung entlang der tubulären Achse, z.B. 

den tubulärer Fluss oder den vaskulären Fluss entlang der Vasa recta (Cheung et al., 2010; 

Gaudiano et al., 2011). Um die Ergebnisse der DTI in vergleichbarer Art und Weise 

darzustellen, sind der mittlere Diffusionskoeffizient (MD), sowie die Fraktionelle Anisotropie 

(FA), als Maß der Gerichtetheit der Diffusion, die am häufigsten bei DTI Analysen genutzten 

Parameter und werden wie folgt berechnet (Basser et al., 1996): 
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Da auch in der Niere die molekularen Wasserbewegungen nicht in alle Richtungen gleich 

stark ausgeprägt sind, haben einige Arbeitsgruppen die DTI auch auf die Niere angewandt 

(Hueper et al., 2011; Hueper et al., 2012; Hueper et al., 2013; Notohamiprodjo et al., 2010; 

Notohamiprodjo et al., 2008; Ries et al., 2001).  

Notohamiprodjo et al. (2008) fanden dabei heraus, dass die fraktionelle Anisotropie (FA) in 

der Medulla größer ist als im Cortex, und dass die Medulla eine radiär orientierte Diffusion 

aufweist. Hueper et al. (2011-2013) konnten zeigen, dass es bei akuten sowie chronischen 

Nierenschädigungen zu einer Reduktion der FA kommt und selbst frühe mikrostrukturelle 

Veränderungen der Niere mittels DTI detektiert und quantifiziert werden können. 

 

2.1.5. Bewegungsartefakte, Atemtriggerung, Bewegungskorrektur 

 

Die Aufnahme diffusionsgewichteter MR-Bilder wird durch Bewegungen jeglicher Art des zu 

Untersuchenden empfindlich gestört. Dazu zählen aktiv induzierte Bewegungen, wie etwa 

das Bewegen eines Körperteils, aber auch passive Bewegungen, wie das durch die Atmung 

bedingte – und somit unvermeidbare – Heben und Senken des Brustkorbes, sowie die durch 

die damit verbundene Änderung der intrathorakalen Druckverhältnisse bedingte Bewegung 

der inneren Organe. Hierbei kommt es zur Entstehung von sog. Bildartefakten. Darunter 

versteht man allgemein Strukturen im Bild, die nicht mit der räumlichen Verteilung des 

Gewebes in der Bildebene übereinstimmen. Am häufigsten und auffallendsten sind dabei 

Bewegungsartefakte, die durch die Atmung, den Herzschlag, Augen- und 

Schluckbewegungen oder eine Bewegung des Patienten selbst während der Aufnahme 

entstehen (Weishaupt et al., 1994). 

 

Betrachtet man nun beispielsweise das periodische Heben und Senken des Brustkorbes 

während der Atmung, so wird dieser in der Einatmungsphase mehrmals in gleichmäßig 

voneinander entfernten Phasenkodierschritten abgebildet. Dies erzeugt quasi eine 

periodische Fehlkodierung und der Brustkorb wird als Doppel- oder Mehrfachstruktur örtlich 

versetzt abgebildet. Die entstehenden Bilder werden als Geisterbilder bezeichnet (ghosting-

Effekt) (Abbildung 8).  Aperiodische Bewegungen, wie etwa Augenbewegungen, verursachen 

hingegen Verschmierungen im Bild (Abbildung 9). 
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Nach Ergebnissen aus dem Jahre 1994 kann sich die Niere bei jedem Atemzug um bis zu 43 

mm verschieben (Schwartz et al., 1994). Zur Artefaktvermeidung wurden aus diesem Grund 

bislang diffusionsgewichtete Untersuchungen der Niere vorrangig an Transplantatnieren, 

welche keiner respiratorischen Mobilität unterliegen, durchgeführt (Thoeny et al., 2011; 

Thoeny et al., 2006). 

 

Bei Untersuchungen der Niere in vivo muss die Atmung so gut wie möglich vermieden oder 

kompensiert werden. Im Allgemeinen existieren mehrere Strategien um diese 

Artefaktbildungen zu reduzieren. Neben einer simplen Ignorierung der Bewegungsartefakte 

kann versucht werden, die Datenakquisition der Sequenzen so stark zu beschleunigen, dass 

sie während einer Atempause des Patienten vollständig abgeschlossen ist. Technisch wird 

dies mittels sogenannter fast-spin Echosequenzen mit einer hohen Anzahl an 

Refokussierungsimpulsen erreicht. Aufgrund der begrenzten Fähigkeit den Atem anzuhalten, 

zeigt sich hier eine limitierte Akquisition mit kurzen TE- und TR-Zeiten, sowie geringer 

Signalgewinnung.  

Eine weitere Möglichkeit stellt die prospektive Atemtriggerung dar, bei der die 

Datenakquisition stets bei gleicher Zwerchfellposition stattfindet. Dabei registriert ein mit 

Luft gefüllter Drucksensor, der mit einem elastischen Gurt am Hypchondrium befestigt wird, 

Abbildung 9: Verschmierungen aufgrund aperiodischer 
Augenbewegungen 

Entnommen: Hendrix et al. (2008) 

Abbildung 8: Geisterbilder im Bereich des Brustkorbes 
aufgrund von periodischen Atembewegungen 

Entnommen: Hendrix et al. (2008) 
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den Atemzyklus. Die MR Bilder werden nun anhand der Atemfrequenz möglichst im selben 

Abschnitt des Atemzyklus aufgenommen. 

Eine Alternative zur Atemtriggerung mittels Atemgurt stellt die navigator-getriggerte 

Bildgebung dar (TRON). Diese Technik verwendet ein Navigator Echo für eine kontinuierliche 

Echtzeit-Schichtverfolgung und Positionskorrektur. Folglich wird bei nicht verlängerter 

Scanzeit die Bildunschärfe reduziert (Ivancevic et al., 2009). Mit dieser Methode konnten de 

Crespigny et al. (1995) und Warach et al. (1995) bereits ischämische Pathologien des Gehirns 

näher differenzieren und charakterisieren. Diese Technik ist allerdings noch nicht für die 

IVIM oder DTI verfügbar. 

 

Da die Bewegungsartefakte bei Untersuchungen der Niere in vivo wegen der entstehenden 

Unschärfe der zu bestimmenden Diffusionsparameter nicht einfach ignoriert werden können 

und nur wenige Patienten den Atem ausreichend lange anhalten können, verwendet man 

vorzugsweise die Technik der prospektiven Atemtriggerung. Da mit dieser Methode die 

Untersuchung allerdings ein Vielfaches an Zeit mehr benötigt, als die Aufnahme in freier 

Atmung, hat sie sich in der Diffusionsbildgebung noch nicht durchgesetzt. Aus diesem Grund 

wäre für den klinischen Alltag eine Alternative zur atemgetriggerten Aufnahme äußerst 

interessant.  

Eine dieser möglichen Alternativen stellt die nachträgliche rechnergestützte 

Bewegungskorrektur (Co-Registrierung) der MR-Datensätze mittels des Programmes 

Firevoxel (verwendete Version Build 93, Henry Rusinek, Center for Biomedical Imaging, NYU 

New York) dar. Hierdurch können die MR Aufnahmen sehr zeitsparend – nämlich in freier 

Atmung des Patienten – aufgenommen werden.  Der Datensatz wird so bearbeitet, dass eine 

zuvor definierte Region (region of interest, ROI) weitgehend still steht, während sich das 

umgebende Gewebe überproportional stark bewegt. 

 

Klinische Relevanz erlangt die DWI vor allem in der Tumordiagnostik und –therapie. Orczyk 

et al. (2013) konnten beispielsweise nachweisen, dass eine präoperative Untersuchung 

mittels coregistrierter DW-MRI die pathologische Ausdehnung von Prostata-Karzinomen in 

einer klinisch ausreichenden Genauigkeit detektieren kann. Beim Ansprechen einer 

antitumorösen Therapie kommt es ebenso zu Veränderungen des MD im Gewebe, weshalb 
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die DWI auch als potenzieller zukünftiger Biomarker diskutiert werden kann (Padhani et al., 

2009). 

 

3. FRAGESTELLUNG UND EXPERIMENTELLE STRATEGIE 
 

Mit dieser Arbeit soll untersucht werden, inwiefern sich die Parameter der 

Diffusionsbildgebung der Niere bei unterschiedlichen Methoden der Bildakquirierung – 

nämlich unter freier Atmung, der prospektiven Atemtriggerung und unter freier Atmung mit 

nachträglicher Bewegungskorrektur – ändern. Wir erhoffen uns hierdurch eine Integration 

der diffusionsgewichteten MR-Bildgebung in die klinische Routine hinsichtlich der 

frühzeitigen Erkennung von pathologischen Veränderungen von Organsystemen auf 

mikrostruktureller Ebene. 

Die Qualität der Bewegungskorrektur kann durch den Vergleich des mittleren quadratischen 

Fehlers (RMSE) bzw. dem Variationskoeffizienten des RMSE (CV-RMSE) quantifiziert werden. 

Wir erwarten eine deutliche Reduktion des RMSE sowie des CV-RMSE bei Anwendung der 

Bewegungskorrektur. 

Als Diffusionsparameter vergleichen wir mit dieser Arbeit die Mikrozirkulationsfraktion fp, 

den Gewebediffusionskoeffizienten Dt und den Pseudodiffusionskoeffizienten Dp in der IVIM- 

sowie die fraktionelle Anisotropie FA und den mittleren Diffusionskoeffizienten in der DTI-

Bildgebung. 

Die Reproduzierbarkeit der Daten wird durch eine zweite Messung derselben Probanden 

bestimmt.  

Als Alternativhypothese nehmen wir an, dass die Reproduzierbarkeit der 

Diffusionsparameter unter Anwendung der Bewegungskorrektur steigt. Die Nullhypothese 

formuliert, dass kein Unterschied zwischen den Methoden besteht. 
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4. MATERIAL UND METHODEN 
 

4.1. Patientenkollektiv 

 

Für die Studie wurden insgesamt 8 körperlich gesunde (keine medizinische Vorgeschichte 

bezüglich Nierenerkrankungen, Bluthochdruck oder sonstigen vaskulären Erkrankungen) 

Freiwillige (5 weiblich und 3 männlich, Alter 22-38 Jahre) herangezogen. Alle waren 

Mitarbeiter des NYU Medical Centers, New York. Das mittlere Alter betrug 28 Jahre und es 

wurde von jedem Studienteilnehmer nach gründlicher Aufklärung über die Studieninhalte, 

die Studienziele, die gewährleistete Anonymität und die eventuellen Risiken eine schriftliche 

Einverständniserklärung seitens der NYU eingeholt. Es lag die Genehmigung der lokalen 

Ethikkomission vor.  

Um vergleichbare Untersuchungsbedingungen herzustellen, haben die Probanden 

unmittelbar vor der Untersuchung etwa 200ml Wasser getrunken und sind auf die Toilette 

geschickt worden. Zudem fanden die Untersuchungen immer zur selben Tageszeit statt.  

 

4.2. MRT-Protokoll 

 

Die Bildgebung wurde mit einem Kurzmagnet 3T Scanner (Magnetom VERIO, Siemens 

Healthcare Sector) mit 70 cm Öffnungsdurchmesser und einer maximalen Feldstärke von 45 

mT/m durchgeführt. 

Für den Signalempfang wurden eine 6-Element Körper-Matrix-Spule und die eingebaute 12-

Element Wirbelsäulen-Matrix-Spule verwendet. 

Die morphologischen Bildsequenzen beinhalteten eine axiale Bildgebung mit steady-state 

Präzessionssequenzen (True-FISP, TR 3.77 ms, TE: 1.52 ms, FA: 60°) um eine genauere 

Schichtpositionierung für die anschließende coronare half-Fourier single-shot turbo-spin-

echo (HASTE) zu erhalten (TR: 1200ms, TE: 81ms, FA: 180°). 

Die Parameter für die atemgetriggerten und freigeatmeten EPI-Sequenzen waren wie folgt: 

 

 

 

 



 ~ 27 ~ 

Schichtdicke 6 mm 

Echo-Zeit (TE) 79 ms 

Mittelungen 3 

b-Werte IVIM 0, 10, 30, 50, 80, 120, 250, 400, 600, 800 mm²/s 

Repetitionszeit (TR) 2600 ms 

Diffusionsrichtungen für IVIM 3 

Diffusionsrichtungen für DTI 6 

b-Werte DTI 0, 100, 400, 800 mm²/s 
 
Tabelle 1: MRT Parameter 

 

Um die Reproduzierbarkeit zu überprüfen, wurden die Freiwilligen nach einigen Tagen zur 

selben Tageszeit erneut gescannt. 

 

4.3. Bilddatenanalyse und Berechnung der Parameter 

 

Für die Berechnung der Parameter fp, Dp und Dt sowie zur Durchführung der 

Bewegungskorrektur wurde das Programm „FireVoxel“ – entwickelt vom NYU Medical 

Center, Department of Radiology, New York – verwendet.  

„FireVoxel“ wurde als flexibles Bildnachverarbeitungsprogramm entwickelt. Mit dieser 

Software ist es u.a. möglich DICOM-Daten zu sortieren und mit verschiedenen Routinen 

auszuwerten. Folgende Daten können ausgewertet werden: 

 

 2D- und 3D-Daten von Ultraschall, CT, MRT, SPECT und PET-Untersuchungen, 

 4D-Datenserien der oben genannten Methoden, 

 3D-/4D-Regionen, welche mit oben genannten Datentypen verknüpft sind. 

 

Die analysierten 3D-Diffusionsdatensätze entsprechen aufgrund der zusätzlichen Dimension 

(„Diffusionswichtung“) 4D-Datensätzen. Desweiteren ermöglicht „Firevoxel“ auch die 

Auswertung der dynamisch kontrastverstärkten MRT oder der Sauerstoffverstärkten BOLD-

MRT.  

Die nachträgliche Bewegungskorrektur (= Coregistrierung) unter freier Atmung akquirierter 

Daten ist eine Möglichkeit Bewegungsartefakte zu minimieren. Da das MRT Protokoll 

Zeitserien einer Anzahl von n Mengen liefert, werden diese – zu verschiedenen Zeiten 
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akquirierten Mengen – für die automatisierte Analyse räumlich coregistriert. Diese 

Coregistrierung basiert auf der normalisierten gegenseitigen Information (NMI).  

Es sei i  [1…n] der Zeit Index und Tij  die Transformation, die die Koordinaten der 

Ursprungsmenge i in die Zielmenge j abbildet. T wird berechnet um die NMI zwischen der 

Ziel und der transformierten Quelle zu maximieren. Diese Optimierung erfolgt in 2 Schritten: 

Einer gründlichen Suche über einem Raster von Translations- und Rotationsparametern 

verteilt in einem 6-dimensionalen Parameter Raum (Abbildung 10) und in einer schrittweisen 

Suche des lokalen Maximums der NMI, initialisiert an den wahrscheinlichsten Gitterpunkten. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Das zu registrierende Organ kann entweder durch eine Box oder einer ROI (region of 

interest) an einem einzelnen Zeitpunkt festgelegt werden (Abbildung 11). 

 

Abbildung 10: n-teiliger Graph. Horizontale Ache: Zeitpunkte. 
Vertikale Achse: Suchraum. Kanten: potenzielle Transformen.  

Entnommen: Mikheev A (2011) 
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Abbildung 11: Das Zielorgan – hier die rechte Niere – kann mit Hilfe einer 3D Box (grün) oder durch 
Freihandzeichnung der Konturen in 3 Slices (gezeigt in blau) definiert werden. Von diesen Konturen konstruiert 
das Programm die Ziel ROI (in rot dargestellt).  

Entnommen von: Mikheev A (2011) 

 

 

Weitere Informationen zum ständig weiter entwickelten Freeware-Programm sind auf der 

Homepage von Henry Rusinek und Artem Mikheev der NYU verfügbar: 

https://files.nyu.edu/hr18/public/. Die in dieser Arbeit verwendete Versionsnummer war 

Build 93. 

 

Die Auswertung wurde wie folgt durchgeführt: 

Die im DICOM Format vorliegenden Datensätze in koronarer Schichtung wurden in das 

Programm geladen. Es wurde eine zentrale Schicht bei einem b-Wert von 0 sec/mm2 

gewählt, um eine voxel-basierte ROI zu definieren. Diese ROI umfasste entweder die 

gesamte Niere unter weitgehendem Ausschluss der ableitenden Harnwege, nur den Cortex, 

oder nur die Medulla. Nachfolgende Abbildungen (Abbildung 12-14) zeigen anhand eines 

Beispiels, wie die ROI definiert wurden: 

 

https://files.nyu.edu/hr18/public/
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Im Rahmen der rigiden Bewegungskorrektur rechnet der oben beschriebene Algorithmus 

nun für die zuvor definierte ROI den Datensatz so um, dass diese bei steigenden b-Werten 

weitgehend still steht, während sich das restliche Bild um die ROI herum proportional stark 

bewegt. 

Nun wurden alle 18 (6 Diffusionsrichtungen mit je 3 Mittelungen) sich wiederholenden 

Serien für den identischen b-Wert vereint. Für jede Koordinate (x, y, z) wurde somit der Wert 

von allen Voxeln dieser Position in allen aufgenommenen Serien, welche Wiederholungen 

von dem aktuellen b-Wert sind, gemittelt. 

 

Durch diese nachträgliche Bearbeitung verlängert sich somit die Untersuchungszeit für den 

Patienten nicht. Abhängig von der Rechenleistung des Computers nimmt dieser Vorgang 

etwa 15-30 Minuten in Anspruch. 

 

Erfassung der Qualität des Registrierungsprozesses 

Die Qualität des Registrierungsprozesses lässt sich mit dem mittleren quadratischen Fehler 

(RMSE) darstellen, der die Verschiebung der ROI absolut misst. In freier Atmung sollte der 

RMSE weit höher sein, als bei Anwendung der Bewegungskorrektur. Er wird nach folgender 

Formel berechnet: 

 

RMSE =  
            

   
   

 
 

 

Abbildung 13: ROI des Cortex Abbildung 14: ROI der Medulla 

 
Abbildung 12: ROI der gesamten 
Niere 



 ~ 31 ~ 

Da mit sinkender Signalintensität (steigenden b-Werten) der RMSE naturgemäß ebenso 

abnimmt, ist ein weiterer wichtiger Weg die Registrierungsqualität zu verdeutlichen, den 

Variationskoeffizienten des RMSE (CV-RMSE) zu berechnen. Dieser bildet das Verhältnis des 

RMSE zu dem aggregierten gemittelten Signalabfall der einzelnen Koordinaten (x, y, z). Ein 

kleinerer Wert bedeutet weniger Varianz und somit eine bessere Registrierungsqualität. 

 

         
    

  
 

 

Sowohl der RMSE, als auch der CV-RMSE wurden für die einzelnen Diffusionswichtungen 

berechnet und notiert. 

 

Für die Berechnung der Mikrozirkulationsfraktion (fp), des Dp-Koeffizienten sowie des Dt-

Koeffizienten wurde das biexponentielle IVIM basierte Modell wie unter 2.1.4. verwendet. 

 

4.4. Statistische Analyse 

 

Von allen berechneten Parametern der DTI (MD und FA) und IVIM Messung (fp, Dp, Dt) 

werden der Mittelwert (MW) sowie die Standardabweichung (STD) notiert. Es wurden nach 

vorheriger Prüfung auf Normalverteilung gepaarte t-Tests verwendet um Unterschiede 

zwischen den einzelnen Messmethoden (freie Atmung, Bewegungskorrektur und 

Atemtriggerung) aufzuzeigen. Für alle statistischen Tests wurde für eine statistische 

Signifikanz ein p-Wert kleiner 0,05 vorausgesetzt.  Aufgrund der Übersichtlichkeit wird im 

Folgenden lediglich auf den ersten Besuch – also die erste MRT-Untersuchung – der 

Patienten eingegangen. 

Um die Reproduzierbarkeit der Messungen zwischen 1. und 2. Besuch der Probanden 

darzustellen, wurden Bland-Altman Plots erstellt. 

 

Alle statistischen Tests wurden mit SPSS 19.0 (IBM SPSS, Inc., Chicago, IL) und Excel 2007 

(Microsoft, Redmond, WA) durchgeführt. 
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Abbildung 17: RMSE bei Atemtriggerung  

5. ERGEBNISSE 
 

Insgesamt wurden 8 Probanden in die Studie eingeschlossen (5 Frauen [62,5%] und 3 

Männer [37,5%], mittleres Alter 28 Jahre, Alterspanne 22-38 Jahre). Alle Untersuchungen 

konnten für diese Arbeit verwertet werden. Eine genaue numerische Auflistung der IVIM 

und DTI-Daten ist aus Platzgründen im den Anhang zu finden. 

  

5.1. Intravoxel Incoherent Motion (IVIM) 

 

5.1.1. Fehlerreduktion durch die Bewegungskorrektur 

 

Mittlerer quadratischer Fehler (RMSE) 

Die nachfolgenden Abbildungen 15-17 zeigen Farbkarten, die den RMSE, also die absolute 

Verschiebung der ROI, bei freier Atmung der Patienten, bei freier Atmung mit 

anschließender Bewegungskorrektur der Daten und bei atemgetriggerter Messung, 

graphisch veranschaulichen. 

 

Die weißen Bildanteile stellen Areale starker Bewegung dar, wohingegen schwarze Bereiche 

Areale mit keiner oder geringer Bewegung symbolisieren. Es ist klar ersichtlich, dass der 

RSME der bewegungskorrigierten linken Niere kleiner ist als unter Atemtriggerung und 

dieser wiederum kleiner ist als unter freier Atmung. 

 

 

Abbildung 15: RMSE bei freier Atmung  

 

Abbildung 16: RMSE bei Korrektur der 
linken Niere 
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Die nachstehenden Graphiken (Abbildung 18, Abbildung 19) zeigen den RMSE bei freier 

Atmung der Patienten mit und ohne Bewegungskorrektur, sowie in atemgetriggerter 

Messung bei 10 unterschiedlichen Signalintensitäten von 0 bis 800 s/mm2: 

 

 

 

Abbildung 18: IVIM RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 
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Abbildung 19: IVIM RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

Wir stellten fest, dass die linke Niere einen um durchschnittlich 26,0% höheren RMSE 

aufwies, als die rechte.  

Insgesamt konnte in beiden Nieren eine deutliche Fehlerreduktion bei den 

bewegungskorrigierten Daten verglichen zu den Messungen unter freier Atmung erzielt 

werden (mittlere Fehlerreduktion in der linken Niere von 36,7% und in der rechten Niere von 

39,1% ). 

Eine Reduktion des mittleren RMSE unter Anwendung der Bewegungskorrektur verglichen 

mit atemgetriggerten Sequenzen konnte in der linken Niere sogar mit 44,7% und in der 

rechten Niere mit 45,8% verzeichnet werden. 

Alle Ergebnisse waren mit einem p-Wert < 0,01 hoch statistisch signifikant. 
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Variationskoeffizient des RMSE (CV-RMSE) 
 

Die nachstehenden Graphiken (Abbildung 20, Abbildung 21) zeigen den CV-RMSE, also das 

Verhältnis des absoluten Fehlers zu dem aggregierten gemittelten Signalabfall der einzelnen 

Koordinaten (x,y,z), bei freier Atmung der Patienten mit und ohne Bewegungskorrektur, 

sowie in atemgetriggerter Messung bei 10 unterschiedlichen Signalintensitäten von 0 bis 800 

s/mm2. Es zeigt sich eine deutliche Verringerung des CV-RMSE unter Bewegungskorrektur im 

Vergleich zur freien Atmung und Atemtriggerung. 

 

 

Abbildung 20: IVIM CV-RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 
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Abbildung 21: IVIM CV-RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur 
und Atemtriggerung 

 

Es zeigte sich in der linken Niere zwar erneut ein um durchschnittlich 1,5% höherer CV-RMSE 

als in der rechten Niere, allerdings war dieser Unterschied bei keiner der drei verwendeten 

Methoden signifikant (p > 0,05). 

Insgesamt konnte in beiden Nieren jedoch eine signifikante Fehlerreduktion (p < 0,01) bei 

den bewegungskorrigierten Daten verglichen zu den Messungen unter freier Atmung erzielt 

werden (mittlere Fehlerreduktion in der linken Niere von 40,5% und in der rechten Niere von 

42,3%). 

Eine Reduktion des mittleren CV-RMSE unter Anwendung der Bewegungskorrektur 

verglichen mit der Atemtriggerungsmethode konnte in der linken Niere mit 35,5% und in der 

rechten Niere mit 36,1% verzeichnet werden (p < 0,01). 
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5.1.2. Mikrozirkulationsfraktion (fp) 

 

Es konnte gezeigt werden, dass fp bei Anwendung der Bewegungskorrektur um 5,8 – 16,2% 

signifikant (p < 0,01 bei der ganzen Niere und < 0,05 bei Cortex und Medulla) niedriger war, 

als unter freier Atmung. Im Vergleich zur atemgetriggerten Messung war dieser Unterschied 

allerdings nicht signifikant (p > 0,05). 

Die Standardabweichung von fp sank unter Bewegungskorrektur im Vergleich zur freien 

Atmung ebenfalls signifikant (p < 0,01) um 14,5 – 21,1%. Verglichen zur atemgetriggerten 

Messung wurde eine signifikante Senkung der Standardabweichung nur für die gesamte 

Niere (p < 0,01) und die Medulla (p < 0,05) beobachtet. Nachfolgende Diagramme 

(Abbildung 22) veranschaulichen dies graphisch. 
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Abbildung 22: Mikrozirkulationsfraktion (fp) und die Standardabweichung (STD) bei freier Atmung (FB), freier 
Atmung mit Korrektur (FB_korr.) sowie Atemtriggerung (Triggered) [%], * markiert Signifikanz 

 

5.1.3. Pseudodiffusionskoeffizient Dp 

 

Es zeigte sich, dass bei der gesamten Niere sowie dem Cortex, Dp bei Anwendung der 

Bewegungskorrektur um 8,5 – 14,4% signifikant (p < 0,01 bzw. < 0,05 bei Cortex) niedriger 

war als unter freier Atmung. Beim Vergleich zur atemgetriggerten Akquisition war dieser 

Unterschied allerdings nicht signifikant (p > 0,05) nachweisbar. Die Standardabweichung von 

Dp sank mit Bewegungskorrektur im Vergleich zur freien Atmung ebenfalls statistisch 

signifikant (p < 0,01 bei der gesamten Niere und Cortex, p < 0,05 bei der Medulla) um 13,4 – 

15,2%. Im Vergleich zur Atemtriggerung wurde eine signifikant niedrigere 

Standardabweichung nur für die gesamten Niere (p < 0,01) beobachtet. Nachfolgende 

Diagramme (Abbildung 23) veranschaulichen dies graphisch. 
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Abbildung 23: Dp und die STD bei freier Atmung, Bewegungskorrektur und Atemtriggerung [10
-3

 mm
2
/s]; * 

markiert Signifikanz 
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5.1.4. Gewebediffusionskoeffizienten Dt 

 

Es konnte gezeigt werden, dass bei der gesamten Niere sowie dem Cortex, Dt bei 

Anwendung der Bewegungskorrektur um 1,9 – 6,2% signifikant (p < 0,05) höher war, als bei 

Messung unter freier Atmung. Beim Vergleich zur atemgetriggerten Messung konnte 

allerdings kein signifikanter Unterschied (p > 0,05) nachgewiesen werden. Die 

Standardabweichung von Dt sank unter Bewegungskorrektur im Vergleich zur freien Atmung 

signifikant (p < 0,05 bei der gesamten Niere und Cortex, p < 0,01 bei der Medulla) um 9,3 – 

27,8%. Im Vergleich zur atemgetriggerten Messung wurde keine signifikante Senkung der 

Standardabweichung (p < 0,05) beobachtet. Nachfolgende Diagramme (Abbildung 24) 

veranschaulichen dies graphisch:  
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Abbildung 24: Dt und die STD bei freier Atmung, Bewegungskorrektur und Atemtriggerung [10
-3

 mm
2
/s]; * 

markiert Signifikanz 

 

5.2. Diffusionstensorbildgebung (DTI) 

 

5.2.1. Fehlerreduktion durch die Bewegungskorrektur 

 

Mittlerer quadratischer Fehler (RMSE) 

Die nachstehenden Graphiken (Abbildung 25, Abbildung 26) zeigen den RMSE bei freier 

Atmung der Patienten mit und ohne Bewegungskorrektur, sowie in atemgetriggerter 

Messung bei vier unterschiedlichen Signalintensitäten von 0 bis 800 s/mm2. 

Es zeigt sich eine signifikante Verringerung des RMSE unter Bewegungskorrektur im 

Vergleich zur freien Atmung und Atemtriggerung. 
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Abbildung 25: DTI RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

 

 

Abbildung 26: DTI RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 
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Wir stellten fest, dass die linke Niere einen um durchschnittlich 24,2% höheren RMSE 

aufwies, als die rechte Niere.  

Insgesamt konnte in beiden Nieren eine deutliche Fehlerreduktion bei den 

bewegungskorrigierten Daten verglichen zu den Messungen unter freier Atmung erzielt 

werden (mittlere Fehlerreduktion in der linken Niere von 30,1% und in der rechten Niere von 

31,4% ). 

Eine Reduktion des mittleren RMSE unter Anwendung der Bewegungskorrektur verglichen 

zur Atemtriggerung war in der linken Niere mit 36,7% und in der rechten Niere mit 36,8% 

annähernd identisch. Alle Ergebnisse waren mit einem p-Wert < 0,01 hoch statistisch 

signifikant. 

 
 
Variationskoeffizient des RMSE (CV-RMSE) 
 

Die nachstehenden Graphiken (Abbildung 27, Abbildung 28) zeigen den CV-RMSE, also das 

Verhältnis des absoluten Fehlers zu dem aggregierten gemittelten Signalabfall der einzelnen 

Koordinaten (x,y,z), bei freier Atmung der Patienten mit und ohne Bewegungskorrektur, 

sowie unter Atemtriggerung bei 4 unterschiedlichen Signalintensitäten von 0 bis 800 s/mm2.  

Auch der CV-RMSE zeigt eine deutliche Verringerung unter Bewegungskorrektur im Vergleich 

zur freien Atmung und Atemtriggerung. 
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Abbildung 27: CV-RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

 

Abbildung 28: CV-RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 
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Beim CV-RMSE zeigte sich kein signifikanter Unterschied zwischen der linken und der 

rechten Niere. 

Insgesamt konnte in beiden Nieren jedoch eine signifikante Fehlerreduktion (p < 0,01) bei 

den bewegungskorrigierten Daten verglichen zu den Messungen unter freier Atmung erzielt 

werden (mittlere Fehlerreduktion in der linken Niere von 34,2% und in der rechten Niere von 

36,0%). 

Eine Reduktion des mittleren CV-RMSE unter Anwendung der Bewegungskorrektur 

verglichen zur Atemtriggerung konnte in der linken Niere mit 25,7% und in der rechten Niere 

mit 30,9% verzeichnet werden (p < 0,01). 

 

5.2.2. Mittlerer Diffusionskoeffizient (MD) 

 

Es konnte gezeigt werden, dass der MD bei Anwendung der Bewegungskorrektur um 3,1 – 

9,6% signifikant (p < 0,01) niedriger war, als bei Messung unter freier Atmung. Im Vergleich 

zur Atemtriggerung war dieser Unterschied mit 3,6 – 4,4% signifikant geringer (p < 0,01). Die 

Standardabweichung der MD Messung sank unter Bewegungskorrektur im Vergleich zur 

freien Atmung ebenfalls signifikant (p < 0,01) um 20,2 – 25,0%. Im Vergleich zur 

atemgetriggerten Messung wurde eine signifikante Senkung (p < 0,01 für den Cortex und p < 

0,05 für die Medulla) der Standardabweichung um 7,3 – 17,8% beobachtet. Nachfolgende 

Diagramme (Abbildung 29) veranschaulichen dies graphisch:  
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Abbildung 29: MD und die STD bei freier Atmung, freier Atmung mit Korrektur und Atemtriggerung [10
-3

 
mm

2
/s], * markiert Signifikanz 

 

5.2.3. Fraktionelle Anisotropie (FA) 

 

Es zeigte sich, dass die FA des Cortex bei Anwendung der Bewegungskorrektur um 13,3% 

niedriger, in der Medulla jedoch um 16,1% höher war als bei Messung unter freier Atmung 

(p < 0,01). Beim Vergleich zur Atemtriggerung war die bewegungskorrigierte FA des Cortex 

ebenso um 12,8% erniedrigt (p < 0,01). Eine Erhöhung der FA der Medulla um 2,7% war 

allerdings nicht signifikant (p > 0,05).  

Die Standardabweichung von FA sank unter Bewegungskorrektur im Vergleich zur freien 

Atmung ebenfalls signifikant (p < 0,01) um 27,1 – 27,5%. Im Vergleich zur atemgetriggerten 

Messung wurde eine signifikante Senkung der Standardabweichung um 28,9 – 43,9% (p < 

0,01) beobachtet. Nachfolgende Diagramme (Abbildung 30) veranschaulichen dies 

graphisch: 
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Abbildung 30: FA und die STD bei freier Atmung, freier Atmung mit Korrektur und Atemtriggerung, * markiert 
Signifikanz 

 

5.3. Reproduzierbarkeit 

 

Für eine Aussage zur Reproduzierbarkeit wurden die Probanden nach einigen Tagen erneut 

untersucht. Die absolute Differenz der entsprechenden Parameter zwischen der 1. und der 

2. Messung  wurde in den nachfolgenden Bland-Altman Plots jeweils auf der y-Achse, die 

Mittelwerte der Parameter zwischen 1. und 2. Messung auf der x-Achse aufgetragen. 

Idealerweise besteht kein Unterscheid zwischen den beiden Messungen, die Differenz 

beträgt also 0. Die gestrichelten Linien bilden das 95% Konfidenzintervall und entsprechen 

den Übereinstimmungsgrenzen („limits of agreement“).   
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Die nachfolgenden Tabellen werden nicht im Text zitiert und erklärt.  

 

5.3.1. IVIM Parameter (fp, Dp und Dt) 

 

   
Freie Atmung Bewegungskorrigiert Atemgetriggered 

   
Differenz Mittelwert Differenz Mittelwert Differenz Mittelwert 

   
            

fp 

GANZ 
MW -0,05 24,21 -0,94 22,16 -3,44 25,28 

STABW 9,27 2,72 7,26 3,01 9,92 5,97 

CORTEX 
MW 0,57 25,80 -0,85 22,29 -1,04 25,15 

STABW 13,82 4,59 8,99 5,52 10,35 6,40 

MEDULLA 
MW -2,55 16,58 -1,69 14,62 0,88 14,85 

STABW 7,77 3,48 4,88 3,12 6,88 3,49 

Dp 

GANZ 
MW -0,03 15,94 0,14 14,50 -1,95 17,01 

STABW 3,60 1,40 3,26 1,66 4,86 2,32 

CORTEX 
MW -0,53 16,74 0,21 14,01 -2,68 16,76 

STABW 4,30 2,42 5,76 1,29 6,54 4,43 

MEDULLA 
MW 0,23 13,59 0,93 12,78 -2,99 15,15 

STABW 5,34 1,97 4,99 1,98 5,06 4,35 

Dt 

GANZ 
MW -0,06 1,72 -0,03 1,74 0,02 1,76 

STABW 0,17 0,12 0,14 0,11 0,18 0,16 

CORTEX 
MW -0,10 1,73 -0,06 1,81 -0,06 1,82 

STABW 0,24 0,15 0,17 0,12 0,23 0,14 

MEDULLA 
MW 0,00 1,77 -0,01 1,76 -0,10 1,83 

STABW 0,19 0,14 0,14 0,14 0,25 0,15 
 
Tabelle 2: Vergleich der Reproduzierbarkeit der Parameter fp, Dp und Dt für die gesamte Niere, den Cortex und 
die Medulla 

 

Betrachtet man die gesamte Niere, so konnte durch die Bewegungskorrektur im Vergleich zu 

den anderen Akquirierungsmethoden bei allen untersuchten Parametern (fp, Dp oder Dt) eine 

verbesserte Reproduzierbarkeit erreicht werden. So sanken die Übereinstimmungsgrenzen 

der Bewegungskorrektur von fp im Vergleich zur freien Atmung um 21,7%, von Dp um 9,3% 

und von Dt um 14,9%. Vergleicht man die Bewegungskorrektur mit der Atemtriggerung, 

wurde eine Reduktion der Übereinstimmungsgrenzen bei fp von 26,8%, bei Dp von 32,8% und 

bei Dt von 19,6% erreicht. 

Ähnlich verhielten sich die Parameter auch in der Medulla. fp konnte bei 

Bewegungskorrektur im Vergleich zur freien Atmung um 37,2%, Dp um 6,6% und Dt um 
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25,5% niedrigere Übereinstimmungsgrenzen aufweisen. Verglichen mit der Atemtriggerung 

sanken diese bei fp um 29,1%, bei Dp 1,5% bzw. bei Dt um 42,2%. 

Bei isolierter Betrachtung des Cortex wurde bei den Parametern fp und Dt ebenfalls eine 

Senkung der Übereinstimmungsgrenzen um 34,9% bzw. 28,6% verglichen zur Aufnahme in 

freier Atmung und 13,1% bzw. 25,7% im Vergleich zur Atemtriggerung erreicht. Bei Dp 

beobachteten wir allerdings bei freier Atmung um 34,2% niedrigere 

Übereinstimmungsgrenzen als bei der Bewegungskorrektur. Verglichen mit der 

Atemtriggerung war die Bewegungskorrektur allerdings auch bei Dp mit 11,9% niedrigeren 

Übereinstimmungsgrenzen besser reproduzierbar. Diese Effekte waren jedoch alle mit 

einem p-Wert größer 0,05 nicht signifikant. 

 

Bei den Parametern fp und Dp konnte unter Anwendung der Bewegungskorrektur auch eine 

signifikante (p < 0,01) Verringerung zwischen erster und zweiter Messung von 8,5 bzw. 9,0% 

beobachtet werden.  

Eine Verringerung der Parameter wurde auch bei Vergleich der bewegungskorrigierten 

Parameter zu der atemgetriggerten Messung beobachtet. Allerdings war hier eine 

signifikante Verringerung um 14,7% nur für den Parameter Dp gegeben. 

 

Vergleicht man die Atemtriggerung mit der freien Atmung, so wurde hinsichtlich des 

Mittelwertes der beiden Besuche eine nicht signifikante Steigerung um 2,5 – 6,7% 

beobachtet. 

 

Aus Gründen der Übersichtlichkeit werden im Folgenden für die Parameter fp, Dp und Dt nur 

die Bland-Altman Plots mit Markierung der gesamten Niere als ROI angeführt (Abbildung 31-

33). Die Plots für eine weitere differenzierte Unterteilung in Cortex und Medulla befinden 

sich im Anhang (Abbildung 1-6). 
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Abbildung 31: Reproduzierbarkeit des Parameters fp bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit deutlicher Verringerung 
der Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). 
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Abbildung 32: Reproduzierbarkeit des Parameters Dp bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit Verringerung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur (strichlierte 
Linien). 

. 
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Abbildung 33: Reproduzierbarkeit des Parameters Dt bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit Verringerung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). 

. 
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5.3.2. DTI Parameter (MD und FA) 

 

   
Freie Atmung Bewegungskorrigiert Atemgetriggered 

   
Differenz Mittelwert Differenz Mittelwert Differenz Mittelwert 

   
            

MD 

CORTEX 
MW -0,03 2,37 0,00 2,28 -0,01 2,37 

STABW 0,13 0,08 0,07 0,06 0,14 0,05 

MEDULLA 
MW 0,03 2,28 0,05 2,05 0,04 2,15 

STABW 0,11 0,09 0,10 0,07 0,18 0,09 

FA 

CORTEX 
MW 0,00 0,25 0,00 0,22 -0,01 0,24 

STABW 0,04 0,02 0,02 0,01 0,03 0,01 

MEDULLA 
MW 0,01 0,38 0,01 0,44 -0,01 0,43 

STABW 0,07 0,03 0,03 0,02 0,04 0,01 
 
Tabelle 3: Vergleich der Reproduzierbarkeit der Parameter MD und FA für den Cortex und die Medulla 

 

Analog zu den IVIM Parametern konnte auch bei den DTI Diffusionsparametern (MD und FA)  

durch die Bewegungskorrektur im Vergleich zu der freien Atmung oder Atemtriggerung eine 

verbesserte Reproduzierbarkeit erreicht werden. 

So sanken die Übereinstimmungsgrenzen des MD bei Bewegungskorrektur im Vergleich zur 

freien Atmung um 46,6% im Cortex und um 14,1% in der Medulla. Verglichen mit der 

Atemtriggerung sanken diese um 50,8% im Cortex und um 44,6% in der Medulla. Diese 

Ergebnisse waren mit einem p-Wert kleiner 0,01 signifikant. 

Eine noch deutlichere Reduktion der Übereinstimmungsgrenzen konnte jedoch bei der FA 

beobachtet werden. So sanken diese unter Anwendung der Bewegungskorrektur verglichen 

mit der freien Atmung signifikant um 61,4% im Cortex und um 57,6% in der Medulla. Im 

Vergleich zur Atemtriggerung sanken sie signifikant um 46,0% im Cortex, in der Medulla mit 

32,5% jedoch nicht signifikant (p < 0,05).  

 

Beim  Parameter MD konnte unter Anwendung der Bewegungskorrektur auch eine 

signifikante (p < 0,01) Verringerung zwischen erster und zweiter Messung von 3,8% - 9,8% 

erzielt werden. FA verringerte sich signifikant (p < 0,01) im Bereich des Cortex um 13,7%, im 

Bereich der Medulla erhöhte sie sich jedoch um 15,5%. 

Dieser Trend war gleichermaßen signifikant beim Vergleich der bewegungskorrigierten 

Parameter mit der atemgetriggerten Messung zu beobachten.  

Nachfolgende Bland-Altman-Plots veranschaulichen dies graphisch (Abbildung 34-37):  
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Abbildung 34: Reproduzierbarkeit des Parameters MD bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit deutlicher Verringerung 
der Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). ROI ist der Cortex 
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Abbildung 35: Reproduzierbarkeit des Parameters MD bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit Verringerung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur (strichlierte 
Linien). ROI ist die Medulla 
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Abbildung 36: Reproduzierbarkeit des Parameters FA bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit deutlicher Verringerung 
der Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). ROI ist der Cortex 
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Abbildung 37: Reproduzierbarkeit des Parameters FA bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemtriggerung mit deutlicher 
Verringerung der Übereinstimmungsgrenzen unter Anwendung der 
Bewegungskorrektur (strichlierte Linien). ROI ist die Medulla 
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6. DISKUSSION 
 

Die Degradierung des Bilddatenmaterials aufgrund von Pulsations-, Atmungs- oder 

Körperbewegung bedingt trotz intensiver Forschung weiterhin eine eingeschränkte klinische 

Anwendung der diffusionsgewichteten Magnetresonanztomographie vor allem in der 

Untersuchung von abdominellen Organen (Le Bihan, 1991; Namimoto et al., 1997; Tien et 

al., 1994; Tsuruda et al., 1990).  

Zeitintensive Methoden wie Aufnahmen während Atempausen oder in möglichst gleichen 

Phasen des Atemzyklus – mittels Atemgurt oder Navigatortriggerung – konnten sich bisher 

zur Vermeidung von Artefaktbildungen in der klinischen Anwendung nicht durchsetzen. 

 

In dieser Arbeit wurde eine neuartige nachträgliche digitale Bewegungskorrektur, der unter 

freier Atmung aufgenommenen MR-Diffusions-Datensätze, verwendet und die 

Diffusionsparameter (MD, FA, fp, Dp und Dt) mit denen unter freier Atmung sowie 

atemgetriggerter Aufnahme verglichen. Es zeigten sich unter Anwendung der 

Bewegungskorrektur signifikant stabilere Diffusionsparameter mit einer verbesserten 

Reproduzierbarkeit. Als großer Vorteil verlängert sich durch die nachträgliche Bearbeitung 

die Untersuchungszeit für den Patienten nicht. Je nach Rechenleistung des Computers 

nimmt die Bewegungskorrektur etwa 15-30 Minuten in Anspruch.  

 

In einem ersten Konsens (Padhani et al., 2009; Thoeny et al., 2009) wurde für die 

Untersuchung von Tumoren die einfache DWI Akquisition in freier Atmung empfohlen. 

Allerdings stellt sich die Untersuchung der Niere in freier Atmung sehr schwierig dar, da dies 

das Organ mit der höchsten Atemverschieblichkeit ist (Schwartz et al., 1994).  

Eine große Anzahl von Arbeiten, die sich mit dem Problem der Bewegungskorrektur 

auseinandersetzen, existiert auf dem Gebiet der Neuroradiologie. So wurden beispielsweise 

mehrere Bildnachbearbeitungsverfahren entwickelt um die Verzerrungseffekte durch 

Restwirbelströme zu reduzieren bzw. zu verhindern (Andersson et al., 2002; Bernarding et 

al., 2000; Haselgrove et al., 1996; Kober et al., 2012; Mangin et al., 2002). 

Auch in der Diagnostik von Mamma-, Prostata- und oropharyngealen Plattenepithel-

Karzinomen wird die Bewegungskorrektur zunehmend eingesetzt und zeigt eine 



 ~ 59 ~ 

Verringerung der Varianz der Diffusionsparameter und eine bessere Reproduzierbarkeit 

(Arlinghaus et al., 2011; Chawla et al., 2013; De Luca et al., 2011).  

Eine weitere klinische Anwendung erlangt die Bewegungskorrektur in der Strahlentherapie, 

in der anatomische Bezugsmarkierungen – welche für die Eingrenzung des zu bestrahlenden 

Gebietes nötig sind – bewegungskorrigiert werden und somit die Mitbestrahlung von 

Nachbarstrukturen verringert wird (de Boer et al., 2013; Smitsmans et al., 2011; van der 

Wielen et al., 2008).  

 

6.1. Fehlerreduktion 

 

Es kam unter Anwendung der Bewegungskorrektur zu einer signifikanten Reduktion des   

mittleren quadratischen Fehlers sowie dessen Variationskoeffizienten, was als Erfolg der 

Bewegungskorrektur zu interpretieren ist. Interessant ist jedoch, dass bei einigen Probanden 

sowohl in der DTI- als auch in der IVIM-Messung unter Atemtriggerung ein höherer Fehler 

auftrat als bei Messung in freier Atmung. Möglicherweise ist dieser Effekt darauf 

zurückzuführen, dass der Atemgurt bei verstärkter und unregelmäßiger Atmung des 

Patienten den Atemzyklus falsch definiert und es somit zu einer fehlerhaften Registrierung 

kommt. 

Bei graphischer Betrachtung der Fehlerreduktion mittels Farbkarten ist gut erkennbar, dass 

diese v.a. am Rand der definierten Region auftritt. Hiermit könnte erklärt werden, warum 

unter freier Atmung v.a. der Cortex verfälschte Daten liefert. 

Auffällig war auch, dass die linke Niere um durchschnittlich 26% höhere Fehler aufwies als 

die rechte Niere. Als Erklärung können die anatomischen Verhältnisse – wie etwa eine 

räumliche Bewegungseinschränkung der rechten Niere durch die Leber – herangezogen 

werden, die höhere kardial- sowie pulmonal-induzierte Bewegungsartefakte der linken Niere 

hervorrufen. Dieses Phänomen ist auch in der Literatur bekannt und führte oftmals dazu, 

dass die linke Niere von vornherein von den Messungen ausgeschlossen und somit bewusst 

nur die rechte Niere untersucht wurde (Sigmund et al., 2012). 

Der Vorteil der Registrierung ist also eine bei steigender Diffusionswichtung weitgehend still 

stehende Niere, wodurch es zu einer wesentlich exakteren Berechnung der 

Diffusionsparameter kommen kann. 
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6.2. Funktionelle Parameter  

 

Es ist bereits seit vielen Jahren bekannt, dass speziell in der Niere die anatomische Struktur 

und die Funktion eng miteinander verknüpft sind (Lemley et al., 1987). 

In den letzten Jahren wurden zahlreiche Studien veröffentlicht, die einen veränderten 

mittleren Diffusionskoeffizienten als sensitiven Indikator für renale Dysfunktionen ansehen. 

So verringert sich der MD bei Nierenarterienstenosen (Xu et al., 2007; Yildirim et al., 2008), 

Niereninsuffizienz (Namimoto et al., 1999; Thoeny et al., 2005), Pyelonephritis (Thoeny et 

al., 2005), Steinobstruktionen (Thoeny et al., 2009), Pyonephrose (Cova et al., 2004), 

Nierentumoren (Chandarana et al., 2011; Squillaci et al., 2004; Taouli, Thakur, et al., 2009) 

und akuter Transplantatabstoßung (Hueper et al., 2011; Thoeny et al., 2006; Yang et al., 

2004). Neuere Studien konnten sogar nachweisen, dass die Diffusionsparameter mit 

einzelnen Stadien der Nierenfunktionsstörung bei der Glomerulonephritis (Feng et al., 2014) 

sowie der chronischen Niereninsuffizienz (Wang et al., 2014) korrellieren, d.h. hier eine 

direkte klinische Relevanz besteht. 

Trotz dieser vielversprechenden Erkenntnisse zeigen sich jedoch erhebliche Variationen der 

einzelnen Diffusionsparameter der Niere. In gesunden Nieren beispielsweise variieren die 

publizierten MD-Werte von 2,0 bis 4,1 x  10-3 mm2/sec im Cortex und von 1,9 bis 5,1 x  10-3 

mm2/sec in der Medulla (Zhang et al., 2010). Dies kann jedoch auch an einer 

unterschiedlichen Akquisition bzw. Bewegungskorrektur liegen. 

Mit einem MD-Wert von 2,2 – 2,5 x  10-3 mm2/s im Cortex und 2,0 – 2,4 x  10-3 mm2/s in der 

Medulla lagen unsere erhobenen Werte somit also im Referenzbereich der genannten 

Studien. Die höheren MD-Werte im Cortex verglichen zur Medulla wurden auch in früheren 

Studien bestätigt (Thoeny et al., 2011; Zhang et al., 2010) und sind möglicherweise auf das 

höhere Blutvolumen und die größeren tubulären Durchmesser im Cortex zurückzuführen 

(Sigmund et al., 2012). 

In den letzten Jahren wurde durch mehrere Studien bestätigt, dass die fraktionelle 

Anisotropie in der Medulla höher ist, als im Cortex (Fukuda et al., 2000; Kataoka et al., 2009; 

Notohamiprodjo et al., 2008; Ries et al., 2001). Unsere Messungen konnten dies bestätigen 

und zeigten eine um durchschnittlich 79% größere FA in der Medulla als im Cortex, wobei 

der Unterschied bei der bewegungskorrigierten Messung mit 109% am deutlichsten zu 

verzeichnen war. Der Grund für diese hohe Anisotropie ist der radiär orientierte Aufbau der 

Tubuli und Sammelrohre, die in das Nierenbecken münden (Notohamiprodjo et al., 2008).  
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Bei akuten oder chronischen Nierenschädigungen wie diabetischer Nephropathie oder 

akuter Transplantatabstoßung kommt es aufgrund der Änderung der renalen Mikrostruktur 

zu verringerten MD-Werten (Namimoto et al., 1999). 

Die Parameter fp, Dp und Dt sind ebenfalls vergleichbar mit Werten aus der Literatur (Binser 

et al., 2010; Eisenberger et al., 2010; Thoeny et al., 2006; Yamada et al., 1999; Zhang et al., 

2010). Die große Spannweite der veröffentlichten Werte könnte auch auf die Wahl der 

einzelnen verwendeten Diffusionswichtungen zurückzuführen sein (Zhang et al., 2012). Klar 

ist, dass mehrere b-Werte für eine Differenzierung zwischen Diffusion und Pseudodiffusion 

nötig sind, jedoch variierte die Anzahl der verwendeten b-Werte in den letzten 

veröffentlichen Studien zwischen minimal 5 und maximal 16 Werten (Dyvorne et al., 2014). 

Die von uns verwendeten b-Werte entsprachen hinsichtlich Wichtung und Anzahl gängigen 

Protokollen mit einer Vielzahl geringerer und wenigen höheren b-Werten.  

 

Wir konnten zeigen, dass durch die Anwendung der Bewegungskorrektur die 

Diffusionsparameter insgesamt deutlich stabiler, d.h. abnehmende Standardabweichung, 

und die Mittelwerte meist geringer als bei den Messungen in freier Atmung oder 

Atemtriggerung waren. Eine statistische Signifikanz war hierbei nicht immer in allen 

definierten Regionen gegeben, was allerdings auch auf die geringe Anzahl von 8 Probanden 

sowie der zum Teil relativ großen Variabilität der Parameter, z.B. Dp, zurückzuführen sein 

könnte.  

An dieser Stelle sei auch erwähnt, dass die Regionen aufgrund ihrer manuellen Definierung 

vermutlich auch individuell unterschiedlich eingezeichnet werden. Somit hängt es auch sehr 

stark von der Erfahrung des Untersuchers ab, ob diese den entsprechenden anatomischen 

Strukturen richtig zugeteilt werden. Goh et al. (2008) erkannten bereits, dass die Definierung 

der ROIs, z.B. Ganztumor etc., eine nicht zu unterschätzende Fehlerquelle beherbergt. 
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6.3. Reproduzierbarkeit 

 

Die Reproduzierbarkeit einer Studie ist wichtig, da sie eine Aussage über die 

Wiederholbarkeit der klinischen Ergebnisse gibt. Um die Reproduzierbarkeit dieser Arbeit 

beurteilen zu können, wurden die Probanden nach einigen Tagen erneut untersucht. 

Insgesamt zeigte sich bei allen Parametern der IVIM (fp, Dp, Dt) eine gute Reproduzierbarkeit 

mit einer allerdings nicht signifikanten Senkung der Übereinstimmungsgrenzen bei 

Anwendung der Bewegungskorrektur im Vergleich zur Aufnahme in freier Atmung oder 

Atemtriggerung. Die Nullhypothese, die formuliert, dass kein Unterschied zwischen den 

Methoden besteht, kann somit nicht sicher verworfen werden.  

Bei den Parametern der DTI (MD, FA) hingegen zeigte sich eine signifikante Senkung der 

Übereinstimmungsgrenzen unter Verwendung der Bewegungskorrektur. Hier kann die 

Nullhypothese mit p < 0,01 verworfen werden. 

 

Wir konnten beobachten, dass die einzelnen Diffusionsparameter eine sehr hohe Variabilität 

aufweisen, sodass möglicherweise noch zahlreiche andere, bisher unbekannte 

Einflussfaktoren Auswirkung auf die Diffusionswerte haben. Bisher ist bekannt, dass die 

renalen Diffusionsparameter bei unterschiedlichem Hydratationszustand des Probanden 

variieren (Müller et al., 1994; Sigmund et al., 2012). Da die Untersuchungen jedoch immer 

zur selben Tageszeit durchgeführt wurden und die Probanden unmittelbar vor der 

Untersuchung auf die Toilette geschickt wurden sowie etwa 200ml Wasser getrunken haben, 

kann davon ausgegangen werden, dass der Hydratationszustand der Nieren ähnlich war. 

 

Auffällig war, dass die Übereinstimmungsgrenzen der atemgetriggerten Messung oftmals 

höher waren, als unter freier Atmung. Diese Beobachtungen decken sich jedoch mit den 

Ergebnissen vorhergehender Arbeiten (Braithwaite et al., 2009; Kwee et al., 2008). In diesen 

an der Leber durchgeführten Studien wurde bereits vermutet, dass dies in einem 

Missverhältnis der endexpiratorischen Zwerchfellstellung zwischen aufeinanderfolgenden 

Triggerereignissen begründet liegen muss und der Erfolg der Atemtriggerung bei 

wiederholten Messungen somit stark von der Atmung des Patienten abhängt. Auch eine 

systematisch höhere Blutflussrate am Ende der Expiration kann als mögliche Ursache 

diskutiert werden. 
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6.4. Limitationen 
 

Die atmungsbedingte Bewegung der Niere erfolgt in neben anteroposteriorer Richtung, 

Rotation und Deformation überwiegend in kranio-kaudaler Richtung. Der von uns in der 

atemgetriggerten Messung verwendete Atemgurt, registriert allerdings nur die Bewegungen 

der Bauchwand. Da diese Bewegungen jedoch nicht komplett übereinstimmen müssen, kann 

dies als möglicher Erklärungsversuch herangezogen werden, warum bei manchen Patienten 

bei der atemgetriggerten Messung erhöhte Fehler und eine schlechtere Reproduzierbarkeit 

gezeigt werden konnte.  

Zur Bewegungskorrektur verwendeten wir eine rigide 2D-Registrierung ohne Deformation. 

Damit auch anteroposteriore Bewegungen ausgeglichen werden, sollte als 

Weiterentwicklung auch eine 3D nicht rigide Registrierung untersucht werden. 

Neben der Atmung sind auch die Pulsationsbewegungen der Niere eine weitere Quelle, die 

Bewegungsartefakte verursachen können. Einige Studien haben diesen Einflussfaktor in ihre 

Überlegungen mit einbezogen und eine elektrokardiale Triggerung verwendet (Müller et al., 

1994; Mürtz et al., 2000; Siegel et al., 1995). Da eine kombinierte kardial-respiratorische 

Triggerung als sinnvoll nachgewiesen wurde (Binser et al., 2010), sollte auch eine 

Kombination der Bewegungskorrektur mit einer elektrokardialen Triggerung weiter 

untersucht werden. 

Kürzlich durchgeführte Studien konnten auch nachweisen, dass die unterschiedlichen 

Fließgeschwindigkeiten des Blutes abhängig vom kardialen Zyklus in der Systole und Diastole 

signifikant unterschiedliche Diffusionskoeffizienten ergeben (Heusch et al., 2013; Wittsack et 

al., 2012). Dieser Einfluss sollte bei der Interpretation der Diffusionsparameter berücksichtigt 

werden. 

Weiterhin wurden in unserer Studie ausschließlich junge, gesunde und kooperative 

Freiwillige untersucht, die dazu in der Lage waren normal und regelmäßig zu atmen. Bei 

kranken, unkooperativen und unregelmäßig atmenden Patienten, könnten bei der 

atemgetriggerten Messung weniger verlässliche Werte erhoben werden. Außerdem ist 

bekannt, dass sich der renale MD von Kindern signifikant während der Kindheit ändert 

(Jones et al., 2003), sodass möglicherweise der MD der Niere langsam im Laufe der Jahre 

abnimmt.  
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Wie bereits oben erwähnt, ist die Bewegungskorrektur der Datensätze sehr rechenintensiv 

und muss an einem separaten Rechner stattfinden, d.h. es ist ein Datentransfer notwendig. 

Um eine Datenportierung zu vermeiden, ist eine Integration in die klinische Routine 

wünschenswert. 

 

6.5. Schlussfolgerung 

 

Die Ergebnisse dieser Arbeit zeigen, dass die nachträgliche digitale Bewegungskorrektur als 

eine vielversprechende zeit- und kosteneffiziente Alternative zur Vermeidung von 

Artefaktbildungen bei diffusionsgewichteten magnetresonanztomographischen Datensätzen 

der Niere angesehen werden kann. Stabile Diffusionsparameter bei gleichzeitig guter 

Reproduzierbarkeit sprechen für die Empfehlung einer raschen Einbindung in den klinischen 

Alltag. 
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7. ZUSAMMENFASSUNG 
 

Die diffusionsgewichtete MR-Bildgebung visualisiert Wasserbewegungen auf molekularer 

Ebene und liefert ohne Gabe von Kontrastmitteln, Informationen über die renale 

Ultrastruktur. Trotz fortschreitender technologischer Entwicklungen, wie ultraschneller 

Pulssequenzen, bleibt die Niere weiterhin schwierig zu untersuchen, da eine atem- und 

kardial-induzierte Bewegung der Niere eine Degradierung des Bilddatenmaterials verursacht 

und somit eine hohe Varianz der Diffusionsparameter beobachtet wird. Es gilt also diese 

Bewegungsartefakte bei möglichst geringem Zeitverlust so gut wie möglich zu vermeiden.  

 

Ziel dieser Arbeit war es, die retrospektive computergestützte Bewegungskorrektur von 

Aufnahmen in freier Atmung mit nicht korrigierten und mit in Atemtriggerung akquirierten 

Sequenzen zu vergleichen. Die Diffusionsparameter der Diffusions-Tensor-Bildgebung (DTI) 

zur Erfassung der Diffusionsanisotropie  – MD und FA – sowie der Intravoxel Incoherent 

Motion (IVIM) zur Differenzierung der Pseduodiffusion von der Gewebediffusion – fp, Dp und 

Dt – wurden hinsichtlich quantitativer Abweichungen und Reproduzierbarkeit untersucht. 

Für die Durchführung der Bewegungskorrektur wurde das Programm „FireVoxel“ in der 

Version Build 93 – entwickelt vom NYU Medical Center, Department of Radiology, New York 

– verwendet. In einer zentralen Schicht wurde mittels voxel-basiert definierter Region die zu 

korrigierende Niere markiert und anschließend mittels rigider 2D Co-Registrierung der 

Datensatz so bearbeitet, dass die Region bei steigender Diffusionswichtung weitgehend still 

steht. Die Diffusionsparameter MD und FA wurden selektiv für den Cortex und die Medulla 

und fp, Dp und Dt zusätzlich zu Cortex und Medulla auch für die gesamte Niere bestimmt. 

 

Es konnte gezeigt werden, dass es unter Anwendung der Bewegungskorrektur im Vergleich 

zur freien Atmung zu einer signifikanten (p < 0,01) Reduktion des mittleren quadratischen 

Fehlers (RMSE) sowie dessen Variationskoeffizienten (CV-RMSE) von jeweils über 30% kam. 

Zudem konnte unter Anwendung der Bewegungskorrektur eine signifikant geringere (p < 

0,05) Standardabweichung der einzelnen Diffusionsparameter gezeigt werden. Auch wurden 

meist signifikant niedrigere Diffusionsparameter gemessen als bei Akquirierung unter freier 

Atmung oder mit Atemtriggerung. 
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Hinsichtlich der Reproduzierbarkeit der Parameter der DTI beobachteten wir eine 

signifikante (p < 0,01) Verringerung der Übereinstimmungsgrenzen von bis zu 61,4% bei 

Verwendung der Bewegungskorrektur verglichen zur Akquisition in freier Atmung. 

Die Übereinstimmungsgrenzen der Parameter der IVIM verringerten sich ebenfalls um bis zu 

37,2% verglichen zur freien Atmung, allerdings war hier eine Signifikanz, bei starker 

interpersoneller Variation, z.B. aufgrund unterschiedlicher Hydration, nicht nachweisbar. 

 

Zusammenfassend konnten wir zeigen, dass eine nachträgliche Bewegungskorrektur 

diffusionsgewichteter MR-Datensätze der Niere deutlich stabilere Werte mit guter 

Reproduzierbarkeit und so eine zeitlich effiziente Akquisition mit optimierter Bildqualität 

liefert. Für die Zukunft wäre eine Integration der digitalen Bewegungskorrektur in die 

klinische Routine sehr empfehlenswert um zeit- und kosteneffizient sowie nicht invasiv 

pathologische Veränderungen auf mikrostruktureller Ebene mittels diffusionsgewichteter 

MR-Bildgebung erkennen und frühzeitig behandeln zu können. 
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13. ANHANG 
 

b-Werte (s/mm2) 0 10 30 50 80 120 250 400 600 800 

            
Freie Atmung 

Mittelwert 27,7 34,3 32,5 34,4 33,0 31,1 23,6 20,6 15,9 12,7 

SD 13,7 13,5 10,4 11,7 9,5 8,9 5,9 5,1 2,6 2,5 

Bewegungskorrigiert 
Mittelwert 14,8 17,4 17,6 18,0 18,0 18,9 17,0 15,5 12,6 10,3 

SD 6,2 6,4 6,0 5,9 5,0 5,1 3,8 4,4 2,6 2,2 

Atemtriggerung 
Mittelwert 36,9 39,3 37,7 35,0 34,8 34,6 29,5 22,4 18,6 14,8 

SD 17,8 16,7 16,5 11,2 10,5 11,4 11,0 5,3 2,9 1,8 
Tabelle 1: IVIM RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 10 30 50 80 120 250 400 600 800 

            
Freie Atmung 

Mittelwert 21,7 28,2 24,4 28,2 27,3 25,4 20,0 16,4 13,3 10,8 

SD 10,6 9,0 7,0 9,7 8,2 7,9 6,2 4,2 2,4 2,2 

Bewegungskorrigiert 
Mittelwert 10,8 13,0 12,6 13,8 13,7 14,5 14,1 12,1 10,5 9,0 

SD 4,4 5,0 4,3 4,5 4,5 5,0 4,5 3,7 2,9 2,6 

Atemtriggerung 
Mittelwert 24,6 29,9 30,2 28,7 27,8 28,5 23,6 18,6 15,5 12,2 

SD 9,5 10,7 13,6 10,6 8,9 10,1 8,4 5,0 3,2 2,1 
Tabelle 2: IVIM RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 10 30 50 80 120 250 400 600 800 

            
Freie Atmung 

Mittelwert 188,3 246,0 254,8 277,3 292,6 298,8 303,6 346,5 362,7 383,1 

SD 82,9 78,9 72,5 67,1 69,1 72,0 64,0 75,7 53,0 51,2 

Bewegungskorrigiert 
Mittelwert 96,1 120,9 128,7 139,3 153,7 171,3 200,7 239,7 267,1 290,1 

SD 28,6 31,9 28,1 29,9 25,6 29,2 25,3 42,5 38,7 40,5 

Atemtriggerung 
Mittelwert 193,0 221,5 232,5 236,1 249,0 269,1 297,4 307,6 344,7 372,0 

SD 88,7 79,3 83,9 71,0 63,2 72,3 90,1 65,8 56,6 65,1 
Tabelle 3: IVIM CV-RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

Tabelle 4: IVIM CV-RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 10 30 50 80 120 250 400 600 800 

            
Freie Atmung 

Mittelwert 180,1 252,5 239,9 282,6 296,9 302,9 309,9 338,7 372,3 411,4 

SD 79,9 70,5 63,5 77,0 66,3 81,0 65,0 58,1 48,8 77,2 

Bewegungskorrigiert 
Mittelwert 87,5 112,1 116,4 136,0 144,5 166,1 202,7 231,5 270,5 318,2 

SD 23,8 25,1 21,7 25,7 25,8 32,0 29,3 37,3 38,0 72,0 

Atemtriggerung 
Mittelwert 170,3 214,6 229,6 241,7 246,0 270,7 294,9 308,1 348,9 368,0 

SD 92,2 85,2 100,4 98,4 80,1 87,6 96,6 81,7 75,7 67,9 
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Freie Atmung Bewegungskorrektur Atemtriggerung 

 
fp STD fp STD fp STD 

 
            

Ganze Niere 24,85 14,60 23,38 12,76 19,21 13,70 

  22,18 17,50 18,70 14,29 15,10 13,54 

  28,10 21,29 19,98 14,95 28,53 16,11 

 
21,26 12,64 21,32 12,31 26,27 15,27 

 
26,63 17,97 24,03 15,70 30,86 22,47 

 
24,75 14,16 20,34 10,31 18,72 15,08 

  18,23 13,82 17,89 13,17 24,03 12,17 

  27,49 9,70 27,87 10,18 21,45 12,85 

Mittelwert 24,19 15,21 21,69 12,96 23,02 15,15 

              

Cortex 24,84 9,76 18,84 5,32 15,82 4,87 

  26,03 18,05 15,69 8,52 11,58 5,02 

  38,76 22,35 25,40 12,78 27,74 8,56 

  20,75 10,72 21,94 10,18 27,42 10,62 

  25,78 17,29 19,72 8,33 33,90 21,09 

  25,43 11,46 22,22 6,65 20,24 11,63 

  18,96 12,11 22,12 12,61 28,62 9,63 

  28,08 8,42 28,99 9,67 22,92 11,66 

Mittelwert 26,08 13,77 21,86 9,26 23,53 10,38 

              

Medulla 16,48 8,96 17,94 5,91 12,36 4,35 

  11,37 5,49 11,29 5,50 11,52 5,60 

  15,30 8,24 8,67 4,43 17,34 6,48 

  15,44 7,66 13,52 6,68 24,12 11,51 

  15,74 7,15 13,26 7,36 13,54 8,28 

  14,09 8,24 13,34 6,41 10,37 5,60 

  12,29 7,18 9,84 5,11 16,07 7,23 

  21,77 7,50 22,35 6,27 14,09 8,35 

Mittelwert 15,31 7,55 13,78 5,96 14,93 7,18 
 

Tabelle 5: Ergebnisse der Mikrozirkulationsfraktion fp unter freier Atmung, Bewegungskorrektur und 
Atemtriggerung für die gesamte Niere, den Cortex und die Medulla [%] 

  



 ~ 84 ~ 

 
Freie Atmung Bewegungskorrektur Atemtriggerung 

 
Dp STD Dp STD Dp STD 

       Ganze Niere 13,34 7,05 13,75 6,99 14,85 8,05 

  16,60 9,01 17,10 8,55 14,63 9,10 

  16,27 8,95 15,08 7,77 13,85 7,92 

 
15,62 9,60 13,08 7,54 13,59 8,90 

 
16,31 9,11 15,53 7,85 21,28 10,40 

  17,53 8,46 14,79 7,10 20,07 10,13 

  17,73 10,90 14,44 8,23 13,80 8,65 

  14,04 6,84 12,81 5,27 15,03 8,17 

Mittelwert 15,93 8,74 14,57 7,41 15,89 8,92 

  
      Cortex 12,66 5,71 14,52 6,48 14,96 6,30 

  14,30 7,22 16,24 7,10 10,07 5,92 

  16,07 9,14 11,30 4,96 11,47 3,50 

  17,84 9,86 11,61 6,60 19,13 6,78 

  18,19 8,43 16,58 7,15 19,42 10,23 

  17,13 7,25 13,49 4,83 16,16 8,76 

  19,91 10,58 15,94 7,24 17,83 8,41 

  15,74 7,22 13,24 5,08 13,85 7,10 

Mittelwert 16,48 8,17 14,12 6,18 15,36 7,13 

  
      Medulla 11,47 7,20 11,61 5,80 14,48 6,39 

  16,72 8,88 15,82 8,80 10,07 6,70 

  11,62 8,53 14,25 7,45 11,30 5,29 

  14,88 8,29 11,85 7,19 19,31 7,79 

  16,40 9,40 14,51 8,79 15,56 9,51 

  11,49 7,16 15,09 7,12 17,20 6,51 

  13,42 9,52 11,45 6,94 9,31 6,30 

  13,64 6,01 11,39 4,17 12,82 8,40 

Mittelwert 13,71 8,12 13,25 7,03 13,76 7,11 
 
Tabelle 6: Ergebnisse des Diffusionskoeffizienten Dp unter freier Atmung, Bewegungskorrektur und 
Atemtriggerung für die gesamte Niere, den Cortex und die Medulla [10

-3
 mm

2
/s] 
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Freie Atmung Bewegungskorrektur Atemtriggerung 

 
Dt STD Dt STD Dt STD 

 
  

     Ganze Niere 1,5280 0,3675 1,5675 0,3370 1,6650 0,3220 

  1,6620 0,4815 1,7320 0,3955 1,7755 0,2980 

  1,7205 0,5045 1,8765 0,3780 1,7610 0,4025 

 
1,6185 0,3860 1,5980 0,3560 1,6285 0,3970 

 
1,7335 0,5020 1,7300 0,4315 1,7780 0,6020 

  1,5965 0,4035 1,6105 0,3450 1,6720 0,4770 

  1,8215 0,4640 1,8590 0,4945 1,7875 0,4065 

  1,8360 0,3920 1,8030 0,4380 2,0280 0,3660 

Mittelwert 1,69 0,44 1,72 0,40 1,76 0,41 

  
      Cortex 1,5940 0,2485 1,7005 0,1760 1,8105 0,1645 

  1,6160 0,4610 1,8515 0,1915 1,9520 0,1190 

  1,4935 0,5605 1,8595 0,2815 1,7705 0,2095 

  1,6450 0,3320 1,6250 0,2935 1,6440 0,2085 

  1,7975 0,4380 1,8265 0,2095 1,5545 0,6370 

  1,7660 0,3220 1,7490 0,1550 1,7450 0,2495 

  1,7515 0,4080 1,7875 0,4660 1,8605 0,3290 

  1,7560 0,3705 1,8470 0,4955 2,0320 0,3125 

Mittelwert 1,68 0,39 1,78 0,28 1,80 0,28 

  
      Medulla 1,5810 0,1830 1,5475 0,1525 1,6985 0,1370 

  1,7390 0,1855 1,7075 0,1495 1,6940 0,1095 

  1,7785 0,1675 1,8795 0,1095 1,7145 0,1585 

  1,7010 0,2045 1,6940 0,1595 1,5990 0,2135 

  1,7540 0,1740 1,7280 0,1560 1,8515 0,2085 

  1,6560 0,1540 1,6790 0,1270 1,8045 0,1350 

  2,0360 0,2010 1,9885 0,1610 1,8460 0,1850 

  1,9270 0,2245 1,8490 0,1940 1,9400 0,2070 

Mittelwert 1,77 0,19 1,76 0,15 1,77 0,17 
 
Tabelle 7: Ergebnisse des Diffusionskoeffizienten Dt unter freier Atmung, Bewegungskorrektur und 
Atemtriggerung für die gesamte Niere, den Cortex und die Medulla [10

-3
 mm

2
/s] 
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b-Werte (s/mm2) 0 100 400 800 

      
freie Atmung 

Mittelwert 31,02 33,86 20,67 13,03 

SD 17,30 14,64 5,85 3,46 

Bewegungskorrigiert 
Mittelwert 16,54 22,18 15,96 10,90 

SD 12,42 10,19 4,32 2,81 

Atemtriggerung 
Mittelwert 31,83 36,76 23,58 14,87 

SD 16,76 14,09 6,21 2,49 
Tabelle 8: DTI RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 100 400 800 

      
freie Atmung 

Mittelwert 25,86 27,21 16,85 10,52 

SD 13,90 9,52 4,19 2,16 

Bewegungskorrigiert 
Mittelwert 14,66 16,12 12,61 8,79 

SD 10,33 7,15 3,42 1,97 

Atemtriggerung 
Mittelwert 25,97 30,39 18,48 11,72 

SD 15,76 12,58 4,16 1,85 
Tabelle 9: DTI RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 100 400 800 

      
freie Atmung 

Mittelwert 227,26 348,90 384,11 423,82 

SD 121,13 158,86 122,36 77,87 

Bewegungskorrigiert 
Mittelwert 115,67 216,82 272,54 335,39 

SD 69,43 107,52 83,09 75,46 

Atemtriggerung 
Mittelwert 191,07 294,99 352,74 390,70 

SD 105,97 114,33 125,08 67,73 
Tabelle 10: DTI CV-RMSE der linken Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 

 

b-Werte (s/mm2) 0 100 400 800 

      
freie Atmung 

Mittelwert 235,71 335,05 372,37 417,85 

SD 131,51 129,02 112,23 69,36 

Bewegungskorrigiert 
Mittelwert 129,95 182,60 253,42 326,78 

SD 95,58 62,10 55,61 55,70 

Atemtriggerung 
Mittelwert 205,15 316,60 350,84 393,95 

SD 153,68 150,68 116,60 77,33 
Tabelle 11: DTI CV-RMSE der rechten Niere unter freier Atmung, freier Atmung mit Bewegungskorrektur und 
Atemtriggerung 
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Freie Atmung Bewegungskorrektur Atemtriggerung 

 
MD STD MD STD MD STD 

 
            

Cortex 2,39 0,43 2,34 0,33 2,39 0,45 

  2,30 0,37 2,26 0,33 2,47 0,40 

  2,25 0,46 2,31 0,32 2,40 0,34 

 
2,42 0,42 2,30 0,32 2,32 0,39 

 
2,39 0,45 2,26 0,32 2,34 0,35 

  2,43 0,40 2,33 0,33 2,36 0,41 

  2,44 0,46 2,26 0,29 2,40 0,38 

  2,27 0,45 2,27 0,35 2,24 0,39 

Mittelwert 2,36 0,43 2,29 0,32 2,36 0,39 

              

Medulla 2,26 0,49 2,02 0,41 2,03 0,40 

  2,19 0,49 2,02 0,34 2,13 0,50 

  2,16 0,43 2,03 0,36 2,12 0,36 

  2,30 0,45 2,12 0,38 2,08 0,41 

  2,32 0,43 2,12 0,38 2,29 0,37 

  2,38 0,42 2,20 0,39 2,19 0,37 

  2,36 0,49 2,00 0,33 2,25 0,44 

  2,34 0,44 2,04 0,43 2,16 0,39 

Mittelwert 2,29 0,45 2,07 0,38 2,15 0,40 
 
Tabelle 12: Ergebnisse des MD unter freier Atmung, Bewegungskorrektur und Atemtriggerung für den Cortex 
und die Medulla [10

-3
 mm

2
/s] 
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Freie Atmung Bewegungskorrektur Atemtriggerung 

 
FA STD FA STD FA STD 

 
            

Cortex 0,22 0,05 0,20 0,04 0,24 0,05 

  0,24 0,05 0,22 0,05 0,23 0,05 

  0,27 0,05 0,22 0,05 0,23 0,05 

 
0,23 0,06 0,20 0,05 0,24 0,06 

 
0,26 0,07 0,20 0,05 0,26 0,05 

 
0,27 0,05 0,23 0,04 0,24 0,05 

  0,27 0,06 0,23 0,04 0,26 0,06 

  0,25 0,06 0,22 0,04 0,24 0,05 

Mittelwert 0,25 0,06 0,21 0,04 0,24 0,05 

              

Medulla 0,38 0,08 0,47 0,06 0,44 0,07 

  0,35 0,07 0,45 0,06 0,43 0,08 

  0,36 0,07 0,43 0,06 0,40 0,08 

  0,35 0,09 0,47 0,05 0,42 0,08 

  0,38 0,08 0,47 0,07 0,43 0,08 

  0,39 0,08 0,41 0,06 0,42 0,09 

  0,46 0,09 0,44 0,05 0,44 0,09 

  0,40 0,07 0,41 0,05 0,40 0,09 

Mittelwert 0,38 0,08 0,44 0,05 0,42 0,08 
 
Tabelle 13: Ergebnisse der FA unter freier Atmung, Bewegungskorrektur und Atemtriggerung für den Cortex 
und die Medulla 
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Abbildung 1: Reproduzierbarkeit des Parameters fp bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemgetriggerung mit deutlicher 
Verringerung der Übereinstimmungsgrenzen unter Anwendung der 
Bewegungskorrektur (strichlierte Linien). ROI ist der Cortex 
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Abbildung 2: Reproduzierbarkeit des Parameters fp bei freier Atmung, freier Atmung 
mit Bewegungskorrektur und Atemgetriggerung mit deutlicher Verringerung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur (strichlierte 
Linien). ROI ist die Medulla 
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Abbildung 3: Reproduzierbarkeit des Parameters Dp bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemgetriggerung mit geringer Erhöhung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur (strichlierte 
Linien). ROI ist der Cortex 
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Abbildung 4: Reproduzierbarkeit des Parameters Dp bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemgetriggerung mit Verringerung der 
Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur (strichlierte 
Linien). ROI ist der Medulla 
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Abbildung 5: Reproduzierbarkeit des Parameters Dt bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemgetriggerung mit deutlicher Verringerung 
der Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). ROI ist der Cortex 
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 Abbildung 6: Reproduzierbarkeit des Parameters Dt bei freier Atmung, freier 
Atmung mit Bewegungskorrektur und Atemgetriggerung mit deutlicher Verringerung 
der Übereinstimmungsgrenzen unter Anwendung der Bewegungskorrektur 
(strichlierte Linien). ROI ist die Medulla 
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