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Summary 

The mitochondria of non-bilaterian metazoans display a staggering diversity of genome 

organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may 

hold a key to understand the early evolution of the animal mitochondrion. Octocorals 

are unique members of Phylum Cnidaria, harboring several atypical mitochondrial 

genomic features, including a paucity of tRNA genes, various genome arrangements 

and the presence of novel putative mismatch repair gene (mtMutS) with various 

potential biological roles. Thus octocorals represents an interesting model for the study 

of mitochondrial biology and evolution. However, besides its utility in molecular 

phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA 

repair, oxidative stress response or gene expression; and there is a general lack of 

knowledge on the DNA repair capabilities and role of the mtMutS gene, response to 

climate-change, and mtDNA transcription in absence of interspersed tRNA genes of 

octocoral mitochondrial genome. In order to put the observed novelties in the octocoral 

mitochondria in an evolutionary and an environmental context, and to understand their 

potential functions and the consequences of their presence in conferring fitness during 

climate change induced stress, this study was undertaken. This dissertation aims to 

explore the uniqueness and diversity of octocoral mtDNA from an environmental as 

well as an evolutionary perspective.  

The thesis comprises five chapters exploring various facets of octocoral biology. The 

introductory section provides basic information and elaborates on the importance of 

studying non-bilaterian mitochondria. The first chapter sets the base for subsequent 

gene expression studies. Octocorals are extensively studied from a taxonomic and 

phylogenetic point of view. However, gene expression studies on these organisms have 

only recently started to appear. To successfully employ the most commonly used gene 

expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is 

necessary to have an experimentally validated, treatment-specific set of stably expressed 

reference genes that will support for the accurate quantification of changes in 

expression of genes of interest. Hence, seven housekeeping genes, known to exhibit 

constitutive expression, were investigated for expression stability during simulated 

climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated 
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and subsequently used in gene expression studies on Sinularia cf. cruciata, our model 

octocoral.  

The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in 

octocoral mitogenome calls for further investigations on the potential robustness of 

octocoral mitochondria to the increased oxidative stress. The second chapter presents a 

mitochondrion-centric view of climate-change stress response by investigating mtDNA 

damage, repair, and copy number dynamics during stress. The changes in gene 

expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were 

also monitored. A robust response of octocoral mitochondria to oxidative mtDNA 

damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-

specific regulation of the mtMutS gene was detected, indicating its potential 

involvement in stress response. The results highlight the resilience potential of octocoral 

mitochondria, and its adaptive benefits in changing oceans.  

The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing 

and maturation. The influence of paucity of tRNA genes on transcription of the 

mitogenome in octocorals has not been investigated. The third chapter steps in the 

direction to understand the mitogenome transcription by investigating the nature of 

mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs 

were detected. The majority of the mitochondrial transcripts were observed as 

polycistronic units (i.e. the mRNA carrying information for the synthesis of more than 

one protein). 5’ and 3’ untranslated regions were delineated for most protein-coding 

genes. Alternative polyadenylation (APA) of mtMutS gene and long non-coding RNA 

(lncRNA) for ATP6 were detected and are reported for the first time in non-bilaterian 

metazoans providing a glimpse into the complexity and uniqueness of mtDNA 

transcription in octocorals.       

The mismatch repair (MMR) mechanism plays a crucial role in mutation avoidance and 

maintenance of genomic integrity. Its occurrence in animal mitochondria remains 

equivocal. Octocorals are the only known animals to posses an mtDNA-encoded MMR 

gene, the mtMutS, speculated to have self-contained DNA repair capability.  In order to 

gain knowledge of the MMR activity in the octocoral mitochondria MMR assays using 

the octocoral mitochondrial fraction is necessary. A prerequisite for this assay is the 

availability of an MMR-substrate, which is a DNA fragment, usually a plasmid, 



Summary 

 
vii 

containing the desired mismatch lesion (i.e. a heteroduplex) and a nicked strand. 

However, the methods to prepare such a substrate are time consuming and technically 

demanding. Chapter four describes two convenient and flexible strategies that can be 

used in parallel to prepare heteroduplex MMR substrate using a common plasmid and 

routine molecular biology techniques. This method should aid in MMR investigations in 

general, helping to advance this field of research. 

The mtMutS gene mentioned above is a bacterial homolog, predicted to have been 

horizontally transferred to the octocoral mitogenome. However, unlike the bacterial 

mutS, which is extensively studied, protein expression studies of the octocoral mtMutS 

gene are lacking. To investigate the biological role of the mtMutS protein, in vitro, and 

to gain knowledge on its structure and function, the expression of the gene in a bacterial 

host is necessary. The fifth chapter discusses the characteristics of the mtMutS protein, 

the efforts to express it in E. coli and some necessary precautions to be taken while 

working with the expression of such mtDNA-encoded proteins for the research in 

future. 

This dissertation elucidates and contributes to the understanding of the unexplored 

complexity of non-bilaterian mitochondria. It deals for the first time with DNA repair, 

gene expression and gene function, encompassing an integrative analysis of DNA, RNA 

and proteins to achieve its goals. This study forms the basis for many future 

investigations on the molecular mitochondrial biology of octocorals as well as other 

non-bilaterians, augmenting the understanding of the evolution of animal mitochondria, 

and also its role in cellular and organismal homeostasis in the context of environmental 

change. 
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Introduction 

Octocorals, the softer members of reefs 

The great diversity of extant metazoans emerged from the simplest members of the 

animal kingdom such as sponges and corals (Lipps and Signor, 2013). These early 

branching animals occupy the base of animal tress of life; hold a key and provide us 

with an opportunity to understand the evolution of the vast animals diversity seen today.  

Among non-bilaterian metazoans, the cnidarian sub-class Octocorallia consists of 

extraordinarily diverse organisms found in all marine environments, encompassing 

more than 3400 species (Williams and Cairns, 2005; Daly et al., 2007), inhabiting all 

the world’s oceans in shallow waters, deep seamounts and submarine canyons. 

Octocorals are crucial in providing structure to reefs as well as supporting a variety of 

marine life including invertebrates and fishes (Stocks, 2004; Baillon et al., 2012; 

Figueroa and Baco, 2015). They exhibit an 8-fold radial symmetry and hence are 

commonly called, octocorals by virtue of their polyps bearing eight pinnate tentacles 

and eight internal mesenteries (Bayer, 1955). However, they are also known by several 

other names such as sea fans, sea pens, and sea whips based on their growth forms. 

They are most commonly referred to as soft corals due to a general lack of “stony" 

skeleton like that of the scleractinian or hard corals (Fabricius and Alderslade, 2001). 

Geological past 

Despite holding a key position at the base of the animal tree of life, preceding the 

evolution of most other metazoans except sponges, the fossil record for the members of 

Subclass Octocorallia is rather sparse, making it difficult to understand their emergence 

in the geological past. Earliest fossil remains in the form of fossilized spicules 

resembling living octocorals dating back to Cambrian period suggest their presence 

(Bengtson, 1981). Subsequent fossil records indicate the presence of sea fans and sea 

pens during the Paleozoic (Glinski, 1956; Bengtson, 1981). Octocoral fossils are, 

however, predominantly Cretaceous or Cenozoic (Deflandre-Rigaud, 1956; Kocurko 

and Kocurko, 1992). 



G. G. Shimpi: Molecular Biology of Octocoral Mitochondria 

 2 

In the absence of abundant evidence in the form of fossils, the understanding of the past 

and present of octocorals and its descendants relies largely on the history recorded in 

the genomes of extant members. And current molecular biological techniques could 

help us read this history providing a glimpse of important evolutionary transitions in the 

early evolution of Metazoa.  

The Mitochondrion, the tiny subcellular pocket of essential 

information  

Among the transitions that lead to the metazoan evolution so far, the key events that 

occurred early in animal history were the origin or multicellularity, and subsequently, 

the emergence of bilateral symmetry. Non-bilaterians, including octocoral, lie within 

these major transitions as connecting links. Undoubtedly, these transitions also correlate 

with multiple changes in mitochondrial genome architecture and organization (Lavrov, 

2007). Mitochondria are the remnants of an α-proteobacterial ancestor acquired during 

an ancient endosymbiosis event that gave rise to the eukaryotic life (Dyall et al., 2004). 

This small event that took place more than a billion years ago, shaped the vast diversity 

of eukaryotic, aerobic life on planet Earth. Since then, mitochondria have gone through 

a series of evolutionary transitions (Boore, 1999; Lavrov, 2007).  

The Mitochondrion possesses a double membrane just like its bacterial-ancestor and 

harbors its own circular genome, the mitogenome. During the course of evolution, the 

mitogenome has gone through several transitions, which predominantly include its 

compaction by transferring the content to the nuclear genome, loss of tRNA and 

ribosomal protein genes, changes in the genetic code and appearance of genetic 

novelties (Wolstenholme, 1992; Adams and Palmer, 2003). Most bilaterian animals 

possess broadly uniform mitogenome content, with 13 protein-coding genes essential 

for oxidative phosphorylation and energy production, 2 ribosomal RNA genes and 22 

transfer RNA genes while majority of protein complement require for normal 

functioning is encoded and provided by nuclear genome (Boore, 1999). These tiny 

organelles are extremely essential for aerobic life. In general, due to its fast evolutionary 

pace, the mitochondrial DNA (mtDNA) extensively used in phylogenetic and DNA 

barcoding studies and considered as one of the most suitable marker for species 

discrimination and to infer evolutionary relationships within or between different 

animal groups (Bernt et al., 2013), including non-bilaterians (McFadden et al., 2006; 
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Kitahara et al., 2010; Vargas et al., 2012). However, mitogenomes of non-bilaterians 

exhibit diverse properties as compared to the bilaterian ones, discussed below in details.  

Octocoral mitochondria, the atypical 

The general universality of the bilaterian metazoan’s quintessential mitogenome 

changes drastically towards the base of metazoan tree. Phylum Cnidaria is a hotspot of 

changes in genome architecture and organization. These changes are diverse as well as 

staggering, and include, loss of tRNA genes (Beagley et al., 1998), presence of group I 

introns (van Oppen et al., 2002; Fukami et al., 2007), additional protein coding genes 

and/or unknown ORFs and gene duplications in anthozoans (Pont-Kingdon et al., 1995; 

Flot and Tillier, 2007; Park et al., 2011; Lin et al., 2014), and linear mitogenomes in 

medusozoans (Voigt et al., 2008; Kayal et al., 2012). 

Octocorals also have undergone extraordinary modifications of its mitogenome content 

and organization marked by the presence of a single tRNA gene, an additional protein 

coding gene, and five different genome arrangements (Brockman and McFadden, 2012; 

Figueroa and Baco, 2015). The most peculiar feature of their mitogenome is the 

presence of putative mismatch repair gene, the mtMutS (Pont-Kingdon et al., 1995), 

which is present exclusively in octocorals; and is not reported for any other metazoan 

mitochondria so far. The exact function of this gene is still unknown, however, studies 

suggest that its unusual presence in octocoral mitochondria is a result of horizontal gene 

transfer from either a bacteria or a DNA virus, and that the mtMutS gene possess all the 

components to be able to perform a self-contained DNA repair function (Bilewitch and 

Degnan, 2011). 

Another feature of octocoral mitogenomes is the presence of different mitochondrial 

gene orders. Recent mitochondrial genome sequencing projects have revealed that there 

are at least five different mitogenomic arrangements present for the member of Subclass 

Octocorallia (Brugler and France, 2008; Uda et al., 2011; Brockman and McFadden, 

2012; Figueroa and Baco, 2014). The peculiarity of these genome rearrangements is that 

there are conserved blocks having a set of genes, which inverted or translocated 

together (Figure A). Recombination is suggested as the most likely driving force behind 

the observed changes in non-bilaterian mitogenome organization, however this remains 

speculative (Mao et al., 2014). 
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Moreover, octocoral mitogenome encode only a single tRNA gene (tRNAMet), contrary 

to the typical bilaterian mitogenome, which contains 22 tRNA genes. This paucity of 

tRNA genes in mitogenomes is puzzling, as the tRNA punctuation model is the only 

know model available for the processing and maturation of animal mitochondrial 

mRNA transcripts (Ojala et al., 1981; Temperley et al., 2010). How the mitochondrial 

mRNA are liberated from the precursor polycistronic transcription units in absence of 

these punctuation marks in non-bilaterians lacking tRNA is unexplored.      

DNA repair, the curator  

The genomic integrity of the cell is under the constant threat from exogenous as well as 

endogenous agents capable of damaging the DNA. To cope with the damaging insults 

and to maintain DNA without any changes that may affect cellular homeostasis and 

perpetuation, the cells posses several different DNA repair mechanisms. However, the 

activity and efficacy of DNA repair for nuclear and organellar DNA appears to be 

different. Nuclei have multiple DNA repair mechanisms whereas ability of 

Figure A: Schematic representation of different mitochondrial genome 
arrangements in Octocorallia from A to E. Each color represents a conserved 
block of genes. The inversion and translocation are depicted with arrows and 
dotted lines whereas, the bold line below genes represent the light strand. 
Letters a, b represent positions of the inverted repeats. Figure adopted from 
Brockman and McFadden (2012)   
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mitochondria appears limited in this respect (Boesch et al., 2011; Blasiak et al., 2013) 

(Figure B). 

  

 

In consequence, the rate of substitutions of the mtDNA is found to be several times 

higher than that of the nuclear DNA (nDNA) for most animals. In mammals, for 

example, substitutions accumulate up to 10 to 20 times faster in mitogenome than in 

nDNA (Brown et al., 1982). The ROS (reactive oxygen species) -induced damage is 

responsible for many more mutations in mtDNA than in nDNA (Shigenaga et al., 1994). 

Conjointly, the fast mutation rate can be attributed to less efficient DNA repair 

mechanism for mitochondria (Fernández-Silva et al., 2003; Boesch et al., 2011). Yet, 

not all animals show high mutation rate in mtDNA. It has been observed that 

anthozoans and sponges exhibit unusually slow rate of mtDNA sequence evolution, 

estimated to be 10-100X slower than other metazoans, and up to 5X slower than nuclear 

genes (Shearer et al., 2002; Hellberg, 2006; Huang et al., 2008; Chen et al., 2009). 

Interestingly, mtDNA divergence among closely related anthozoans is, in fact, lower 

than that of nDNA from the same taxa (van Oppen et al., 2001). These observations 

indicate that the evolutionary forces shaping non-bilaterian mitochondria are likely to be 

different than those for bilaterians animals. Understanding these forces could provide 

fundamental insights into mitogenome evolution in general. 

Figure B: DNA repair pathways know for nuclear genome and their 
occurrence in mitochondria. MMR –mismatch repair; NER–nucleotide 
excision repair; BER–base excision repair, NHEJ–Non-homologous end 
joining, HRR–homologous recombination repair. Adopted from Blasiak et al., 
2013 
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The mtMutS gene discussed earlier, has also been suggested as potentially responsible 

for the observed low mutation levels in octocoral mtDNA (Shearer et al., 2002; 

Hellberg, 2006) by virtue of its predicted DNA mismatch repair (MMR) functionality 

(Bilewitch and Degnan, 2011). Its role in observed genome rearrangements have also 

been argued (Brockman and McFadden, 2012). However, the exact function and the 

evolutionary as well as adaptive benefits of sheltering such a large horizontally 

transferred gene for mitochondria, cell and organism remains unknown, and calls for 

investigations.      

Changing oceans, oxidative stress and gene expression  

The rise in atmospheric CO2 as a result of increased anthropogenic activities is 

responsible for exerting a greater abiotic stress on coral ecosystems worldwide, and 

threatening their existence (Hughes et al., 2003). The consequences of elevated CO2 

levels comprise mainly, the rise in seawater temperatures, and the reduction in ocean 

pH; both of which result in an increased oxidative stress at cellular level severely 

affecting the coral health (Lough, 2008) leading to apoptosis, necrosis (Richier et al., 

2006; Tchernov et al., 2011); and ultimately causing mass bleaching events (Hughes et 

al., 2003), due to an additional stress by endosymbiotic dinoflagellates resulting in 

disrupting the symbiosis (Weis, 2008).  

Gene expression profiling has emerged as one of the best ways to understand the 

cellular response to increased oxidative stress at molecular level, providing deeper 

understanding of the fundamental questions about coral physiology during abiotic stress 

imparted on these organisms under such climate change scenarios (Seneca and Palumbi, 

2015). Prevalence of oxidative stress and the response of corals antioxidant defenses are 

crucial to our understanding of coral’s future in world’s changing oceans and 

environment (Lesser, 2006; Lesser, 2011).    

The energy status of the coral, like every other organism, determines its performance 

under stressful conditions and is crucial for survival (Lesser, 2013). Mitochondrion is 

the powerhouse of energy in coral host cells that produces ATP and/or NADPH, 

fulfilling all energy needs for metabolic pathways of the cell. Hence, mitochondria are 

vital to multicellular life being central to oxidative metabolism and energy production. 

However, being a hub of these important cellular events, mitochondria are cell’s 

greatest source of ROS and produces considerable quantities of superoxides and 
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hydrogen peroxide (H2O2) capable of damaging the macromolecules. Therefore, as a 

principle source of ROS, mitochondria are also the major site of oxidative damage; and 

the mtDNA is more prone to this damage (Sawyer et al., 2001). The ROS generated by 

mitochondria not only damages the mtDNA and elicits stress response but also triggers 

the release of cytochrome c and other pre-apoptotic protein-signaling cascade, 

ultimately leading to cell death (Gogvadze et al., 2006; Ott et al., 2007). Hence, the 

mitochondrial integrity is crucial for cellular and organismal homeostasis. However, the 

impact and response coral mitochondria and their function in abiotic stress tolerance are 

far from proper appreciation. In light of evidences discussed earlier about the unique 

slow mtDNA evolution and the unique gene repertoire, clearly more investigations are 

required on the response of non-bilaterians to oxidative damage in changing oceans 

from the mitochondrial perspective. This will not only provide insights into the global-

change biology of non-bilaterian fauna but also help use understand the potential 

mitogenomic novelties from an evolutionary point of view.   

Studying molecular biology of octocoral mitochondria, mtDNA repair, gene expression 

and transcription is the first step towards exploring and understanding the causes and 

consequences of mitochondrial genomic novelties among the members of early 

branching non-bilaterian, the octocorals, which will provide valuable insights into 

evolution of mitochondria, and its stress response biology.  

Aims of the study 

The project explores various facets of octocoral mitochondria by using molecular 

biology techniques. The aims of the study include,  

1. Establishment of experimentally validated, stably expressed reference genes to 

accurately quantify differential gene expression in octocorals during climate-change 

scenarios (Chapter 1). 

2. Understanding the oxidative stress response of octocoral mitochondria during 

climate-change related stress by monitoring the mtDNA damage, repair, and copy-

number dynamics, along with changes in nuclear stress-marker as well as mitochondrial 

genes during different climate-change scenarios (Chapter 2).  
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3. Examining the mitochondrial mRNA processing and maturation in absence of 

intervening tRNA genes along with characterization of mtMutS gene transcript to 

understand mitogenome and mtMutS transcription patterns (Chapter 3). 

4. Development of new method for preparation of heteroduplex DNA substrates for in 

vitro mismatch repair (MMR) assay (Chapter 4). 

5. Characterization and expression of mtMutS protein (Chapter 5).        

 

Authors Contributions 
 

Chapter 1:  

Evaluation and validation of reference genes for qPCR analysis to study climate 

change-induced stresses in Sinularia cf. cruciata (Alcyonidae: Octocorallia).  

Authors: Gaurav G. Shimpi, Sergio Vargas, Gert Wörheide 

GGS conceived of the study. GGS and SV designed the experiment. GW participated in 

the design of the study. GGS performed the experiments, analyzed, interpreted the data 

and drafted the manuscript. All authors contributed to the discussion. 

This chapter will be submitted as a standalone publication to the ‘Journal of Marine 

Experimental Biology and Ecology.   

 

Abstract 

Coral reef organisms, including octocorals, are facing the consequences of 

anthropogenic activities, such as increasing oceanic pH and sea surface temperature, 

threatening their long-term survival and well-being. Gene expression studies based on 

quantitative PCR (qPCR) are important tools to provide insight into the molecular basis 

of octocoral stress responses and their potential resilience mechanisms. However, a lack 

of experimentally validated, stably expressed reference genes for the normalization of 

gene expression using quantitative reverse transcriptase PCR (qPCR) methods limits 

such investigations among octocorals. Here, we assess the expression stability of seven 

candidate reference genes using a palette of statistical tools for valid qPCR-based gene 

expression studies on the octocoral Sinularia cf. cruciata during thermal (34°C) and 

low pH (pH 7.5) stress and determine the most suitable set of reference genes for such 

experiments. The reliability of the selected reference genes was confirmed in a qPCR 
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assay that targeted the heat shock protein 70 (HSP70) gene. The HSP70 gene was found 

to be significantly upregulated during thermal stress, whereas during low pH stress the 

expression level of this gene decreased. This study provides experimentally validated 

stress-specific sets of stably expressed reference genes during climate change-induced 

stresses, which will benefit future gene expression studies on Sinularia cf. cruciata as 

well as other octocorals. Our results also highlight the potentially different acclimation 

strategies of octocorals to different sources of abiotic stresses, contributing to our 

understanding of the potential for the adaptation of coral reef organisms to a changing 

world. 

 

Chapter 2:  

Robust mitochondrial response to oxidative DNA damage in octocorals 

Authors: Gaurav G. Shimpi, Sergio Vargas, Gert Wörheide 

GGS conceived of the study, designed and performed the experiment, analyzed and 

interpreted the data and drafted the manuscript. GW and SV participated in the design 

of the study. All authors contributed to the discussion. 

This chapter will be submitted as a standalone publication to the journal ‘Global Change 

Biology’. 

 

Abstract 

Changing oceans are responsible for exerting excess oxidative stress on coral reef 

ecosystems, including octocorals, which comprise a large part of cnidarian diversity. 

Mitochondrial response to oxidative stress is intricately related to cellular homeostasis 

due to the susceptibility of its genome to oxidative damage. Octocoral mitochondrial 

genomes possess a unique mismatch repair gene, mtMutS, potentially capable of 

counteracting the effects of oxidative stress induced mitochondrial DNA (mtDNA) 

damage. Despite this unique feature, the response of octocoral mitochondria to 

increased oxidative stress has not studied and remains largely unknown. Here we show 

that the octocoral Sinularia cf. cruciata subjected to elevated temperature and low pH 

exhibit a stress-specific response to these changes, and is capable of reversing acute 

oxidative mtDNA damage caused by exogenous agents like hydrogen peroxide (H2O2), 

suggesting a concomitant recovery of host cell mitochondria necessary for survival. 

Damage to mtDNA was evident with associated changes in mtDNA copy number 

during all treatments. Stress-specific transcriptional response was recorded for stress 
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biomarker as well as mitochondrial genes during climate change-related events, 

indicating an up-regulation of mtMutS gene transcripts despite significant reduction in 

COI expression during pH stress. mtDNA damage, repair and mtDNA copy number 

variations due to H2O2 toxicity were also quantified and subsequent mitochondrial 

recovery was monitored. Initial mtDNA damage was found reversed within 5 hr. Our 

results indicate differential stress-specific resilience strategies of octocoral mitochondria 

to reverse the oxidative stress and its associated damage. These experiments provide the 

first account on the response of octocoral mitochondria, with its unique gene repertoire 

among animals, to different stressors and highlight its potential competence in 

conferring resilience to the host cells during different climate change scenarios. 

 

Chapter 3:  

Mitochondrial RNA processing in absence of tRNA punctuations: lessons from 

octocorals 

Authors: Gaurav G. Shimpi, Sergio Vargas, Angelo Poliseno, Gert Wörheide 

GGS and SV conceived of the study. GGS designed and performed the experiment, 

analyzed and interpreted the data. GW and SV participated in the design of the study. 

AP contributed to briefly at completion phase and analyzed the data. GGS drafted the 

manuscript. All authors contributed to the discussion.  

This chapter will be submitted as a standalone publication to Molecular Biology and 

Evolution (MBE) Journal. 

 

Abstract 

Mitochondria, the energy-generators of eukaryotic cells, are semiautonomous units 

derived from a prokaryotic ancestor and known to possess a highly reduced though 

crucial complement of energy production machinery coded in their compact genomes. 

The diversity of these mitogenomes is staggering among early branching animals with 

respect to size, gene density and content, genome arrangements, and number of tRNA 

genes, especially in cnidarians. This last point is of special interest as tRNA cleavage 

drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-

RNA processing in animals. Information on the expression and processing of 

mitochondrial gene transcripts from non-bilaterian metazoans, some of which possess a 

single tRNA gene in their mitogenomes, is essentially lacking. Here we characterized 

the mature mitochondrial mRNA transcripts in species of the octocoral genus Sinularia 
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(Alcyoniidae:Octocorallia) using different molecular methods. Most mt-mRNAs were 

polycistronic units containing two or three genes and 5’ and/or 3’ untranslated regions 

(UTRs) of varied length. The octocoral specific, mtDNA-encoded mismatch repair 

gene, mtMutS, was found to undergo alternative polyadenylation (APA) suggesting a 

unique regulatory mechanism for this gene. In addition, a long noncoding RNA 

(lncRNA) complementary to the ATP6 gene (lncATP6), potentially involved in 

antisense regulation of its gene expression, was detected. Mt-mRNA processing in 

early-branching animals bearing a reduced mt-tRNA complement appears to be 

complex. Considering the variety of mitochondrial genome arrangements known in 

cnidarians our findings provide a first glimpse into mtDNA transcription, mt-mRNA 

processing and its complexity among the early branching animals and represent a first 

step towards understanding its evolutionary implications. 

 

Chapter 4:  

Alternate strategies for the construction of DNA heteroduplex plasmid substrates 

for in vitro mismatch repair assays 

Authors: Gaurav G. Shimpi, Sergio Vargas, Gert Wörheide 

GGS and SV conceived of the study, designed and performed the experiment. GW 

participated in the design of the study. GGS analyzed and interpreted the data, and 

drafted the manuscript. All authors contributed to the discussion. 

This chapter will be submitted as a standalone publication to the ‘DNA Repair’ journal 

as a methodological article. 

 

Abstract 

Mismatch repair (MMR) is one of the most important DNA repair mechanisms present 

in the cell, pivotal to maintain genomic integrity. The MMR assay, described in almost 

two decades ago, is the most basic and commonly used method to detect in vitro MMR 

activity of cellular extracts and/or expressed proteins. However, the ease of using this 

method is restricted by the lack of simple, reproducible and easy-to-adopt ways of 

preparing MMR substrates i.e., nicked plasmids containing defined lesions. Here, we 

demonstrate simple and reproducible strategies of preparing large quantities of pure 

heteroduplex plasmids containing defined mismatches. The strategies described involve 

the use of synthetic oligonucleotides, the commercially available plasmid pGEM-T, and 
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nicking enzymes. Alternatively, bacterial packaging cells lines containing engineered 

phagemid pGEM-T construct producing ssDNA without the need of helper phage can 

be utilized, hence providing added flexibility and choice. These integrated approaches 

help to prepare different mismatch substrates in large quantities, enhancing the usability 

of MMR assay and extending its range and accessibility to wider research groups.   

Chapter 5:  

A cautionary tale of the octocoral mitochondrial mismatch repair (mtMutS) 

protein expression in E. coli 

Authors: Gaurav G. Shimpi, Sergio Vargas, Gert Wörheide 

GGS conceived of the study, designed and performed the experiment, analyzed and 

interpreted the data, and drafted the manuscript. GW and SV participated in the design 

of the study. All authors contributed to the discussion. 

This chapter will be submitted as a standalone publication. 

 

Abstract 

The octocoral mitochondrial mismatch repair gene, the mtMutS, is the only known 

organellar mismatch repair (MMR) gene in animal kingdom encoded entirely by the 

mitochondrial genome. A self-contained functional role has been proposed for this 

protein, which shares a common ancestor with the bacterial mutS proteins and appears 

to have been horizontally transferred to the octocoral mitochondria from an epsilon-

proteobacterium or a DNA virus. It is known that the mtMutS is transcribed, however, 

the presence of its protein product in the octocoral mitochondria and its biological 

activity remains to be experimentally determined. Here, we provide evidence pointing 

towards the presence of the mtMutS in the mitochondrial fraction. Artificially deleted 

cDNAs for mtMutS gene were detected due to the presence of direct repeats in the 

coding sequence. Moreover, we amplified, cloned and attempted to express the full 

mtMutS in E.coli. This was however not possible. A partial his6-tagged protein 

containing N- and C-terminal mtMutS domains was successfully expressed and purified 

using Ni2+ affinity chromatography from inclusion bodies. Bioinformatic analyses 

suggested a high local hydrophobicity as a contributing factor associated with 

difficulties in expressing mtDNA-encoded, potentially matrix-localized, non-membrane 

proteins inside bacterial hosts. 
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Chapter 1  

Evaluation and Validation of Reference Genes for qPCR 

Analysis to Study Climate Change-Induced Stresses in 

Sinularia cf. cruciata (Alcyonidae: Octocorallia) 

 

1.1 Introduction 
 

Coral-reefs consist of hard corals, soft corals, and the other flora and fauna associated 

with them and are popularly referred to as the rainforests of the oceans by virtue of the 

vast diversity of organisms they host and the goods and services they provide to 

mankind (Moberg and Folke, 1999). However, the rise in atmospheric CO2 due to 

increasing anthropogenic activities and the consequent rise in the seawater temperature 

and reduction in oceanic pH has resulted in a collapse of coral-dinoflagellate symbiosis 

(Weis, 2008) and decreased calcification as well as growth (Marubini et al., 2008). The 

apparent increase in oxidative stress at the cellular level (Lesser, 2006) leads to 

apoptosis and necrosis (Richier et al., 2006; Tchernov et al., 2011), and thus, severely 

affects coral health (Lough, 2008),  ultimately causing partial or complete colony 

mortality and mass bleaching events (Brown, 1997; Hughes et al., 2003). To gain a 

deeper understanding of the transcriptional response of corals to different sources of 

abiotic stress and the resulting adverse effects and/or potential resilience, different tools 

for gene expression profiling have been utilized (Lõhelaid, H et al., 2014; Maor-Landaw 

et al., 2014; Pratlong et al., 2015). Among them, quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR), or simply qPCR, is a reliable, 

reproducible and highly sensitive tool for the quantification of selected mRNA 

transcript levels. qPCR is the method of choice for pinpointing and validating the 

regulation of specific genes under specific conditions with precision in a cost-effective 

manner (Higuchi et al., 1993; Gibson et al., 1996; Heid et al., 1996; Fink et al., 1998; 

Schmittgen et al., 2000).  
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Despite the power and general applicability, accurate expression profiling using qPCR 

is influenced by several factors such as RNA quality, stability and purity, reverse 

transcription efficiency, and amplification efficiency (Vandesompele et al., 2002). 

These sources of variation make normalization of the samples, which may have been 

obtained from different sources, time-points and individuals, necessary (Radonić et al., 

2004). A commonly used normalization strategy involves assessing changes in the 

expression of target genes relative to one or more internal control genes also called the 

reference genes (RGs) (Freeman et al., 1999). However, the usefulness of the qPCR 

technique heavily relies on these internal/endogenous control genes, which presumably 

are stably expressed even during specific experimental treatments (Bustin, 2002; 

Vandesompele et al., 2002).  Housekeeping genes (HKGs) are typical RGs due to their 

constitutive expression in different tissues and under different conditions. However, not 

all HKGs are free from the influence of the experimental conditions and their 

expression levels may vary depending on the nature and extent of the treatments, 

leading to erroneous expression estimates of the gene of interest (Dheda et al., 2005). 

The use of inappropriate RGs, i.e., genes that may be influenced by the treatment, result 

in erroneous estimates of target transcript levels and loss or gain of statistical 

significance (Ferguson et al., 2010), and thus, adversely influence the outcome and 

conclusion of a study (Dheda et al., 2004; Dheda et al., 2005). Hence, an important 

consideration for the successful quantification of gene expression using qPCR is the 

selection of the reference(s) to be used for normalization. Consequently, proper 

evaluation and validation of a specific set of the most stably expressed RGs is a 

prerequisite for any gene expression study to avoid biases in determining target gene 

expression and to obtain an accurate and reliable estimation of the changes induced by 

the experimental treatments (Vandesompele et al., 2002; Bustin et al., 2009; Guénin et 

al., 2009; Kozera and Rapacz, 2013).  

Only a few published studies on the members of phylum Cnidaria carried out an 

analysis of gene expression to deal specifically with a systematic validation of internal 

control genes used (Pagarigan and Takabayashi, 2008; Rodriguez-Lanetty et al., 2008). 

Most other studies either utilized several different internal control genes or those 

recommended in the above-mentioned publications (DeSalvo et al., 2008; Meyer et al., 

2009; Meyer et al., 2011). Moreover, among cnidarians, a strong emphasis has been 

placed on scleractinian (stony) coral (Hexacorallia, Scleractinia) gene expression 

profiling while there is still a lack of information on experimentally validated, stably 
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expressed internal control genes for other cnidarians, such as those from the subclass 

Octocorallia. 

Octocorals (soft corals), a dominant benthic component of many coral reefs, are 

important constituents of a healthy reef ecosystem. The genus Sinularia is among the 

most widespread zooxanthellate soft coral belonging to the Octocorallia. These corals 

occur abundantly in the Indo-Pacific where they are one of the most dominant species 

of large ecological importance (Benayahu and Loya, 1977). Moreover, the members of 

this genus are pharmaceutically important because they produce a wide range of 

bioactive metabolites (Aceret et al., 1998; Ahmed et al., 2006; Lakshmi and Kumar, 

2009; Yang et al., 2013; Chen et al., 2015) that exhibit several different biological 

activities (Aceret et al., 1998; Li et al., 2005; Su et al., 2008). However, the ecological 

dominance of the Sinularia species is challenged by coral-bleaching events, where up to 

a 90% mortality rate has been recorded (Fabricius, 1995; Loya et al., 2001).  

If we aim to better understand the response and potential for the resilience of these 

organisms to climate change at the transcriptional level, we must determine a properly 

validated abiotic stress-specific set of RGs that can be used to accurately determine the 

effect of various abiotic stressors at the expression level using qPCR for the members of 

the subclass Octocorallia. Hence, in this study we evaluated the expression stability of 

seven genes using five different statistical methods during thermal and low-pH stress, 

the two important climate change-induced threats to reef organisms, focusing on the 

octocoral Sinularia cf. cruciata. We assessed the suitability of those seven genes as 

endogenous RGs for the relative gene expression quantification in qPCR assays using 

the HSP70 gene as a case in point. By investigating the best normalizing gene 

combination for each stress-type as well as the stress-specific differential expression of 

the HSP70 gene, this study aims to provide a basis for future gene expression studies on 

the genus Sinularia and other octocorals to gain a better mechanistic understanding of 

octocoral stress responses and their future in the changing oceans.  

1.2 Materials and Methods 

1.2.1 Coral collection and maintenance  
All of the corals used in this study were maintained in a closed circuit seawater 

aquarium under controlled conditions (Temperature 25 ± 1 °C, pH 8.2 ± 0.1). Every 

week, half of the seawater was changed with fresh artificial seawater. All of the corals 
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were maintained on a 12 h light / 12 h dark light-regime provided by LED light (GHL 

Mitras LX 6200-HV) at a light intensity of 14 ± 2 kLux. A similar light regime was 

used for both the control and the experimental system mentioned below.  

1.2.2 Experimental design 
To determine the effect of rising seawater temperature and decreasing pH on the gene 

expression stability of selected candidate genes, nubbins of Sinularia cf. cruciata were 

exposed to these conditions (see below). All of the experiments were performed in 

biological and technical triplicates, and the controls and the treated samples were snap 

frozen in liquid nitrogen and subsequently stored at -80°C until RNA extraction.  

1.2.2.1 Thermal stress experiment 

Three Sinularia nubbins of similar size were placed in an experimental 10 L tank 

exposed to acute thermal stress. The temperature in the experimental tank was raised 

gradually from 26 °C to 34 °C over a period of 2 h after which it was maintained at 34 

°C for a subsequent 6 h. Three control nubbins were maintained in a similar tank as the 

experimental tank but the temperature was kept at 26ºC during the entire course of the 

experiment. Strychar et al. (Strychar et al., 2005) observed a mortality of Sinularia sp. 

within 24 h upon exposure to the 34 °C temperature. Here, Sinularia cf. cruciata were 

therefore exposed to 34 °C for only 6 h to understand the short-term acute thermal stress 

response.  

1.2.2.2 Low pH stress 

The rise in carbon dioxide emissions is leading to a lowered oceanic pH apparent from a 

reported decreased pH of 0.1 units since the pre-industrial era and is predicted to further 

decrease by another 0.4 units by the end of this century (Haugan and Drange, 1996; Orr 

et al., 2005; Solomon et al., 2007; Kleypas and Langdon, 2013). Based on these report, 

to understand the effect low-pH, three Sinularia nubbins were subjected to lowered 

seawater pH by pumping carbon dioxide (CO2) into the experimental tank to maintain a 

stable low pH value of 7.5 units. The pH was first reduced to a value of 7.5 over a 

period of 2 h and then maintained at this value for 24 h. The pH value was recorded 

throughout the experiment and was observed to be constant at 7.5. The corals were 

sampled after this 24 h period. The control nubbins were maintained under a normal pH 

of 8.2, and the temperature in both of the tanks was kept constant at 26 °C.  
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1.2.3 Total RNA extraction and cDNA synthesis 
Total RNA was extracted from the control as well as the treated samples using TRIzol 

reagent (Invitrogen, USA) following the manufacturer’s instructions. Contaminating 

DNA was eliminated from the RNA extracts upon using RQ RNase-free DNase 

(Promega, USA) according to the manufacturer’s protocol. This treated RNA was 

precipitated using Sodium Acetate-Ethanol precipitation. The purity of the RNA was 

determined using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 

USA). The RNA samples with an absorbance at OD260/280 and OD260/230 ratio ~ 2.0 

were used for further analysis. The RNA integrity was verified by 1% agarose gel 

electrophoresis as well as by using Bioanalyzer (Agilent Inc., USA). The RNA extracts 

with a RIN value ≥ 7.5 were used for cDNA synthesis (data not shown). For each 

sample, approximately 1 µg of total RNA was reverse transcribed using the 

ProtoScript® II First Strand cDNA Synthesis Kit (New England Biolabs, Germany) 

employing an anchored oligo-(dT) primer in a 20 µl reaction according to the 

manufacturer’s instructions. 

1.2.4 Candidate reference genes 
The candidate genes β-actin (ACTB), α-tubulin (TUBA), β-tubulin (TUBB), elongation 

factor 1-α (EF1A), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal 

protein L12 (RPL12) and signal recognition particle 54 (SRP54) were amplified from 

the cDNA using previously described and newly designed degenerate primers 

(Appendix 1.6.1). In most of the cases a touchdown PCR approach was employed. The 

PCR conditions were as follows: 95 °C for 2 min followed by 10 cycles at 95°C for 20 

s, 55°C for 30 s, and 72°C for 60 s, reducing the annealing temperature by 1°C per 

cycle, followed by 25 cycles at 95°C for 20 s, 45°C for 30 s, and 72°C for 60 s. The 

PCR products were separated on a 1% agarose gel by electrophoresis. The PCR 

products showing a clear, single amplicon of the correct size were excised from a 1% 

agarose gel, purified using the NucleoSpin Gel and PCR purification kit (Macherey-

Nagel, Germany), and sequenced using BigDye Terminator v3.1 (Applied Biosystems, 

USA) and analyzed on an ABI 3730 DNA Analyzer at the Sequencing Service of the 

Department of Biology, LMU München. The sequences obtained were analyzed using 

Geneious 6.1 software (Biomatters Ltd.) (Kearse et al., 2012). Each gene was compared 

against the GenBank BLAST database to verify their homology and was aligned against 

cnidarian orthologous sequences available from GenBank. Additionally, the DNA 
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sequences were translated to amino acid sequences and submitted to CDART (Geer et 

al., 2002) to confirm the presence of each gene’s corresponding accurate conserved 

domain to assure sequence affiliation to a particular gene. Only high quality sequences 

were chosen for specific qPCR primer design. 

1.2.5 qPCR primers 
Primers for qPCR were designed from the above-mentioned DNA sequences using 

Primer3 (Untergasser et al., 2012). All of the guidelines for qPCR primer design 

(Rodriguez et al., 2015) were followed. pcrEfficiency (Mallona et al., 2011) was used 

for primer efficiency predictions, and only the primers that showed 100% in silico PCR 

efficiency were chosen for further experimentation. The specificity and efficiency of the 

selected primers were verified with qPCR using cDNA as a template (Appendix 1.6.4), 

and the sequence identity of these amplicons as well as the PCR efficiency were 

confirmed prior to performing the experimental qPCR assays. Details of all the qPCR 

primers designed for this study can be found in Table 1.1 

 
Table 1.1 Primers designed for qPCR with amplicon characteristics. 
 

No. 
Gene 

Primer Sequences (5' to 3') Size 
(bp) 

Amp.  
Tm(°C) 

Mean efficiency 

Symbol Thermal Low pH 

1 ACTB 
for: CCAAGAGCTGTGTTCCCTTC 

107 83.8 2.01 1.97 
rev: CTTTTGCTCTGGGCTTCGT 

2 TUBA 
for: AGATGCCGCCAATAACTACG 

100 81.3 2.04 1.96 
rev: TGTGCATTGATCAGCCAGTT 

3 TUBB 
for: ATGACATCTGTTTCCGTACCC 

115 80.5 2.04 1.99 
rev: AACTGACCAGGGAATCTCAAGC 

4 EF1A 
for: TCGCAGGCTGATTGTGCTGT 

283 82.5 1.97 1.96 
rev: GTTGTCTCCATGCCATCCAGA 

5 RPL12 
for: GCTAAAGCAACTCAGGATTGG 

141 80.5 2.02 1.97 
rev: CTTACGATCCCTTGGTGGTTC 

6 GAPDH 
for: GCACAACAAACTGTCTTGCACC 

128 80.2 2.01 1.96 
rev: CTTTGCAGAAGGTCCATCAAC 

7 SRP54 
for: TGGATCCTGTCATCATTGC 

184 79.5 2.05 1.97 
rev: TGCCCAATAGTGGCATCCAT 

8 HSP70* 
for: CCCCCTTATACTCCACTTCAAC 

274 83.5 2.01 2.02 
rev: GGTGTATTTCAACACGGCAAAG 

Note: * the target gene in this study 
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1.2.6 Quantitative Real-time RT-PCR (qPCR) 
The qPCR was performed on a Rotor-Gene Q 2plex system (Qiagen, Germany) using 

KAPA SYBR FAST universal mastermix (Peqlab, Germany) in 15 µl reactions 

containing 1 µl of diluted cDNA, 7.5  µl of 2X mastermix, and 250 to 400 nM of each 

primer. The two-step qPCR included an initial denaturation step of 3 min at 95 °C 

followed by 40 cycles of 95 °C for 10 s and 60 °C for 20 s. A non-template control was 

always included in each assay. A melting curve analysis was performed at the end of 

each qPCR to confirm amplification specificity (Appendix 1.6.4). Further, the amplified 

PCR products were also checked by agarose gel electrophoresis after each assay for 

confirmation (Appendix 1.6.5).  

1.2.7 Data Analysis 
After qPCR, the raw, non-baseline corrected fluorescence data were analyzed using 

LinRegPCR (Ramakers et al., 2003). This program performs baseline correction and 

linear regression analysis and calculates the quantification cycle (Cq) values and 

amplification efficiency for each amplification curve. These Cq values were used for 

further analysis.  

To assess the expression stability across each experimental condition and to rank the 

candidate RGs accordingly, four different methods were used, namely the comparative 

ΔCt method (Silver et al., 2006), geNorm (Vandesompele et al., 2002), BestKeeper 

(Pfaffl et al., 2004), and NormFinder (Andersen et al., 2004). All of these approaches 

use different assumptions to yield rankings for the most stably expressed RGs.  

Briefly, the comparative ΔCt is a simple approach that relies on the relative gene 

expression of a pair of genes within each sample to give an idea about the best reference 

gene. GeNorm measures the per gene average pairwise standard deviation (SD) of the 

Cq values to determine a stability value (M) and eliminates candidate genes with the 

lowest transcript stability (highest M value) in a stepwise manner to return only two 

candidate genes with the highest stability (lowest M values). GeNorm also determines 

the optimum number of RGs needed for normalization (see ref. for further details) 

(Vandesompele et al., 2002). NormFinder, on the other hand, selects the best reference 

gene by considering intra- and inter-group variation, rather than overall stability across 

the different sample groups (Andersen et al., 2004). NormFinder also determines the 

best combination of two genes depending on inter-group stability. GeNorm and 

NormFinder require relative quantities (RQ) as an input rather than Cq values directly. 
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BestKeeper uses the Cq values directly to rank the candidate genes based on the SD of 

the Cq values and carries out repeated pairwise correlation analysis to select the gene 

that is showing the lowest SD and is highly (and significantly) correlated with the 

remaining genes to select the best reference gene.  

In addition to these methods, RefFinder, a web tool integrating all four methods 

described above, was used to determine the ‘overall final ranking’ of the RGs 

(http://www.leonxie.com/referencegene.php).  

1.2.8 Reference gene validation and expression of the heat-shock 

protein 70 (HSP70) gene 
The heat shock protein 70 gene (HSP70) was used as a target to validate the selected 

reference genes and to analyze the stress-induced differential expression. HSP70 is one 

of the members of the heat shock protein family that functions as a molecular chaperone 

and is involved in protein biogenesis as well as stress responses. HSP70 gene 

expression has been used as an indicator of a coral’s stress status (van Oppen and Gates, 

2006), and its response to thermal stress (Haguenauer et al., 2013; Lõhelaid, H et al., 

2014) and air exposure (Teixeira et al., 2013) have been investigated in octocorals. The 

response of this gene to low seawater pH has not been investigated so far, despite the 

potential resilience of octocorals to decreased oceanic pH (Gabay et al., 2014). Gene 

expression analysis was performed using the method described by Pfaffl et al. (Pfaffl et 

al., 2002) implemented in REST 2009. Cq values, taking into account the mean PCR 

efficiency, were obtained from LinRegPCR. Initially, expression ratios were calculated 

for the target gene using one reference gene at a time to demonstrate their effect on the 

estimation individually, whereas the final analysis of target gene expression was 

performed using the two best RGs for a more accurate normalization, as described 

previously (Vandesompele et al., 2002). The statistical significance of the gene 

expression was tested using randomization and bootstrapping with 5000 iterations, and 

standard errors were calculated with the Taylor algorithm implemented in REST 2009. 

The data are represented as the mean ± SE, and REST p <0.05 was considered 

statistically significant. This study conforms to the MIQE guidelines (Bustin et al., 

2009). 
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3 Results  

1.3.1 Selection, amplification and sequencing of the reference genes 
Single bands of the expected size were obtained after performing PCRs using 

degenerate primer pairs and cDNA as a template. The sequence identities to the first 

GenBank Blast-match ranged from 77% for RPL12 to 86% for ACTB (Appendix 1.6.2). 

cDART (conserved Domain Architecture Retrieval Tool) confirmed the presence of 

conserved domains that belong to the targeted HKGs. Three other octocorals belonging 

to different genera were also sequenced using these primer pairs for comparison with 

varied success rates, and all of the sequences generated will be submitted to the 

European nucleotide archive.  

1.3.2 Primers for qPCR  
Gene-specific primers for qPCR were designed using nucleotide sequences obtained 

from S. cf. cruciata. All of the primer sets yielded a single PCR product, which ranged 

between 100 bp and 283 bp (Table 1.1) and belong to the species of interest. In addition, 

each primer pair yielded products displaying single peaks in their melting profile, 

suggesting primer specificity (Appendix 1.6.4, 1.6.5). LinRegPCR indicated a mean 

amplification efficiency value during each assay ranging between 96% and 106% 

(Table 1.1) for the selected RGs as well as the target gene, suggesting a very efficient 

qPCR system for the species and genes under study.  

1.3.3 Expression profiling of candidate reference genes 
The expression profiles of all the candidate RGs exhibited slight variability and 

different levels of abundance under both experimental conditions. Overall, the range of 

observed Cq values was between 13.73 (TUBA) and 25.93 (SRP54), irrespective of the 

type of abiotic stress. The remaining 5 RGs were expressed at moderate levels, with 

mean Cq values of 19.42, 21.83, 18.77, 20.15, and 22.59 during thermal stress, and 

15.31, 18.76, 16.01, 19.16, and 19.70 during pH stress for ACTB, TUBB, EF1A, RPL12, 

and GAPDH, respectively. The variability in the transcript abundance during pH stress 

was less compared to thermal stress (Figure 1.1). The target gene, as expected, showed 

high variability indicated by large boxes in Figure 1.1. 
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Figure 1.1 Distributions of the reference genes Cq values 

Box plot representing the expression levels of reference and target genes for (A) during thermal 

stress and (B) during low pH stress. Each box corresponds to 25% and 75% percentile while the 

line across the box represents the median. The whiskers indicate the maximum and minimum 

values, whereas the hollow circles indicate the outliers. 

 

The coefficient of variation (CV) value can be utilized as a first gross evaluation for the 

stability of RGs during multiple treatments. In general, during thermal stress, low CV 

values (CV < 6%) were observed for all of the candidate RGs indicating low variability. 

Similarly, during pH stress, CV was low for most of the genes (CV < 6%) except for 

EF1A, which exhibited high variability across the samples (CV=8.45%) (Table 1.2). 

There is an apparent variability in the expression of all the selected HKGs, suggesting 
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existent spatial and temporal alterations along with changes in the environmental 

conditions.  

 
Table 1.2 Descriptive statistics of candidate reference gene Cq values. 
 

Genes 
Thermal Stress pH Stress 

Min 
Cq 

Max 
Cq Mean SD CV 

(%) 
Min 
Cq 

Max 
Cq Mean SD CV 

(%) 
ACTB 18.73 20.21 19.42 0.49 2.53 14.35 16.30 15.31 0.79 5.13 
TUBA 15.19 19.04 16.63 0.93 5.61 13.73 14.40 14.11 0.24 1.69 
TUBB 21.18 22.71 21.83 0.57 2.63 17.90 19.65 18.76 0.65 3.47 
EF1A 17.21 20.32 18.77 0.90 4.79 14.54 18.52 16.01 1.35 8.45 
RPL12 19.20 20.88 20.15 0.55 2.73 18.09 20.97 19.16 0.97 5.05 

GAPDH 21.79 23.78 22.59 0.55 2.42 18.88 20.65 19.70 0.56 2.85 
SRP54 24.14 25.93 25.24 0.59 2.32 23.29 25.10 24.19 0.80 3.32 

Note: Minimum Cq value (Min Cq), Maximum Cq value (Max Cq), Mean, Standard deviation (SD), and 
Coefficient of variation (CV) are shown in the table. 
 

1.3.4 Expression stability of candidate reference genes 

1.3.4.1 ΔCt and geNorm analysis 

�Ct and geNorm are based on pairwise comparisons but employ different procedures 

and yield different outcomes. The most stable gene determined by the ΔCt method 

during thermal stress was RPL12 followed closely by TUBB, whereas TUBA was 

determined as the least stable RG. For low pH stress, ACTB was the most stably 

expressed RG and EF1A was found to be highly variable. Additionally, TUBB was 

consistently detected as the second most stable candidate reference gene in both the 

treatments using this method.  

geNorm analysis for the thermal stress experiment indicated TUBB and GAPDH as the 

most stable (M value for best gene combination 0.31), whereas TUBA was the least 

stable gene. In the pH stress samples, the same set of candidate RGs was found to be the 

most stable (M value for best gene combination 0.19), whereas EF1A was the least 

stable gene. Figure 1.2 shows the gene ranking according to their expression stability, 

and Table 1.3 indicates the M values.  
Additionally, geNorm also determined the optimal number of RGs required for accurate 

normalization. In both the experimental conditions, V2/3 were less than 0.15, the 

threshold value (Figure 1.3), indicating that two RGs are required to accurately 

normalize gene expression in both treatment groups.  
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Figure 1.2 Expression stability of the candidate genes determined by geNorm 

Genes on the X-axis and Stability value M on the Y-axis for (A) thermal stress and (B) pH 

stress. Genes were ranked from the least stable (left) to the most stable (right) based on the M 

value. The dotted line represents the threshold M value (0.50). 

Figure 1.3 Pairwise variation analysis of the putative reference genes by geNorm 
The pairwise variation (Vn / Vn+1) was analyzed between the normalization factors NFn and 

NFn+1 to determine the optimal number of reference genes required for accurate normalization. 
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A value below threshold 0.15 denotes that additional reference genes will not markedly improve 

normalization. 

1.3.4.2 BestKeeper and NormFinder analysis 

For thermal stress, BestKeeper and NormFinder determined a different order of gene 

stability rankings, with ACTB (SD=0.41) and RPL12 (Stability value = 0.126) top-

ranked by these methods, respectively. Additionally, BestKeeper selected EF1A as the 

least stable RG, whereas NormFinder selected GAPDH as the least stable reference 

gene, in disagreement with the other three methods. SRP54 was the third best gene for 

normalization as determined by both programs. Additionally, NormFinder 

recommended RPL12 and SRP54 as the best combination of reference genes for 

normalization (combined stability values = 0.085) based on the analysis of intra and 

inter-group variation (Figure 1.4).  

 

Figure 1.4 NormFinder analysis estimates of intra and intergroup variations 

Inter-group variation is represented on the Y-axis and genes on the X-axis. Errors bars show the 

intra-group variations for (A) thermal stress and (B) low-pH stress. Intergroup differences 

closer to zero and with minimal error (intragroup variations) depict higher expression stability. 

 

For pH stress, NormFinder found ACTB as the most stable gene in agreement with the 

ΔCt method, whereas TUBA was determined as the least stable. The recommended best 
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combination of genes during this type of abiotic stress was ACTB and TUBB (combined 

stability values = 0.062); BestKeeper rankings based solely on SD were not congruent 

with NormFinder. BestKeeper ranked TUBA as the most stable gene, whereas EF1A 

was the least stable and the only gene showing an SD higher than 1. However, 

considering the coefficient of correlation (r), TUBB closely followed by ACTB were the 

most stable genes, and TUBA was found unsuitable due to its low r value (r=0.781) 

(Appendix 1.6.3).  

1.3.4.3 RefFinder 

The comprehensive stability ranking derived by RefFinder for thermal stress from most 

stable to least stable reference gene was as follows: RPL12 > TUBB > ACTB > 

GAPDH > SRP54 > EF1A > TUBA (Table 1.3). Similarly, for pH stress the stability 

ranking was as follows: ACTB > TUBB > SRP54 > RPL12 > GAPDH > EF1A >TUBA 

(Table 1.4). Table 1.3 and 1.4 summarize the stability values and gene ranking 

determined by all 5 of the methods mentioned above.  

 
Table 1.3 Gene Stability values and Rankings for thermal stress experiments. 

Gene 
ΔCt geNorm BestKeeper NormFinder RefFinder 

Rank Avg. 
SD 

Rank
* 

M 
value 

Rank
** SD Rank Stability 

Value Rank Stability 
Value 

ACTB 4 0.57 3 0.39 1 0.41 2 0.126 3 2.63 
TUBA 7 0.67 7 0.6 6 0.63 5 0.290 7 6.48 
TUBB 2 0.54 1 0.31 5 0.50 4 0.209 2 2.34 
EF1A 5 0.66 6 0.57 7 0.66 6 0.324 6 5.69 
RPL12 1 0.52 4 0.46 4 0.45 1 0.089 1 2.00 

GAPDH 6 0.67 1 0.31 2 0.41 7 0.345 4 3.03 
SRP54 3 0.55 5 0.49 3 0.45 3 0.137 5 3.08 

Table 1.4 Gene Stability values and Rankings for pH stress experiments. 

Gene 
ΔCt geNorm BestKeeper NormFinder RefFinder 

Rank Avg. 
SD 

Rank
* 

M 
value 

Rank
** SD Ran

k 
Stability 

Value Rank Stability 
Value 

ACTB 1 0.44 3 0.26 5 0.70 1 0.097 1 1.86 
TUBA 6 0.70 5 0.39 1 0.20 7 0.39 5 3.66 
TUBB 2 0.46 1 0.19 3 0.59 2 0.10 2 2.06 
EF1A 7 0.86 7 0.58 7 1.05 6 0.38 7 7.00 
RPL12 5 0.59 6 0.47 6 0.74 4 0.18 6 5.23 

GAPDH 4 0.52 1 0.19 2 0.47 5 0.21 3 2.38 
SRP54 3 0.49 4 0.29 4 0.75 3 0.16 4 3.46 

Note: * geNorm finds two most stable genes instead of one. 
** BestKeeper ranking is based on standard deviation alone.  
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Overall, as expected, the best reference gene varied depending on the treatment (RPL12 

in thermal and ACTB in pH stress), whereas the SRP54 gene, predominantly ranked as 

the third best gene during both treatments, is suitable for both abiotic stress experiments 

alongside ACTB showing an overlap. TUBA and EF1A were found to be the least stable 

during both of the treatments, rendering them unsuitable for the normalization of the 

qPCR assay for this system. TUBB during thermal stress and GAPDH in both of the 

treatment groups exhibited high overall ranking by virtue of an apparent high ranking in 

geNorm and BestKeeper analysis. However, further analysis established TUBB 

unsuitable in thermal stress and GAPDH in both of the treatments (discussed below). 

For further confirmation, the expression of the three least stable reference genes when 

normalized using the three most stable genes was clearly observed to exhibit changes in 

the expression of the least stable gene due to the experimental treatments (Appendix 

1.6.6).  

1.3.5 Validation of candidate reference genes and the differential 

expression of HSP70   
Heat-shock protein 70 gene (HSP70) was utilized as a proxy for analyzing 

normalization-bias introduced by individual candidate reference genes in gene 

expression quantification. The initial evaluation using a single gene for normalization 

clearly indicated that the HSP70 gene is under regulation due to both thermal and pH 

stress with significant changes in its expression pattern in both of the treatments 

(p<0.05) (Fig 5). The HSP70 transcripts were up-regulated in the thermal stress samples 

and down-regulated in the pH stress samples. However, as expected, the magnitude of 

HSP70 up/down regulation determined by qPCR varied considerably in both of the 

experimental groups depending on the reference gene used for normalization. The fold 

change estimates ranged between 4.2 and 10.10-fold for thermal stress and -2.2 to -6.7-

fold during pH stress depending on the RG used for normalization.  

In the thermal stress samples, the three best RGs, RPL12, SRP54, and ACTB, when used 

independently as normalizer to quantify the expression changes of the target gene-

HSP70, the fold changes in gene expression were inter-comparable and exhibited 

significant up-regulation (~7.4±0.4-fold, p<0.05). Use of the best 2 RGs 

(RPL12+SRP54) confirmed the observed estimate (7.5-fold, p<0.001) (Fig. 6). 

Additionally, the least stable genes as defined by RefFinder, i.e., TUBA and EF1A, 

tended to underestimate the HSP70 gene transcript levels. Moreover, NormFinder’s low 
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ranking genes such as GAPDH (7th) and TUBB (4th) resulted in overestimating the 

expression (thermal stress, Figure 1.5).  

In the pH stress samples, all seven RGs showed a similar pattern when used 

individually for normalization i.e., down-regulation of HSP70 was noted. However, the 

best genes, ACTB, TUBB, and SRP54, indicated a fold difference of comparable 

magnitude (~ -3.45±0.35-fold, p<0.05) (Figure 1.5). A decrease in the expression levels 

was clearly evident (-3.51-fold) when the two best RGs, (ACTB and TUBB) were 

utilized together to calculate the gene expression of the target gene (Figure 1.6). On the 

other hand, the least stable genes, TUBA (7th) and EF1A (6th), produced unreliable 

results by either overestimating or under representing the HSP70 gene response to pH 

stress (Figure 1.5), respectively, when compared to the estimates by the two most stable 

genes in each experimental group. 

 

 

Figure 1.5 Comparison of the relative expression of the HSP70 gene in both of the 
treatment groups using each RG separately for normalization 

Relative expression ± SE of target gene normalized with each candidate reference gene 
individually during (A) thermal stress and (B) low pH stress is represented. The X-axis 
represents the gene names, and NormFinder gene ranks are shown in the brackets (Thermal/low 
pH stress). The dotted red line represents the gene expression levels obtained using the best pair 
of reference genes according to NormFinder for each treatment (refer to Fig 6). REST2009 was 
used for the analysis. (* indicate REST p<0.05, 5000 iterations). 
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NormFinder clearly yielded more comparable results, as shown above. Hence, the 

NormFinder-determined best pairs of RGs (thermal= RPL12 and SRP54, pH stress= 

ACTB and TUBB) were used for the final analysis of HSP70 transcript levels. Thermal 

stress resulted in a 7.5-fold increase in HSP70 expression (p≤ 0.001), whereas the 

expression was 3.5-fold decreased in low-pH treated samples relative to the control 

group (p≤ 0.05) (Figure 1.6).  

 

Figure 1.6 Relative expression of the 

HSP70 gene normalized using a 

combination of the two best RGs 
The NormFinder-determined best 

combination of RGs during thermal stress 

(RPL12 + SRP54) and pH stress (ACTB + 

TUBB) used for the final analysis. The 

relative expression (fold change) values are 

depicted as the mean ± SE. REST2009 was 

used for the analysis. (* indicate REST    

p≤ 0.05, 5000 iterations). 

 

1.4 Discussion 
The genus Sinularia is a widely studied genus among octocorals with respect to 

population genetics (Bastidas et al., 2001), bleaching and symbiont loss (Strychar et al., 

2005; Sammarco and Strychar, 2013), cell culture (Khalesi et al., 2008), calcification 

(Jeng et al., 2011), and various secondary metabolites (Lakshmi and Kumar, 2009). 

Additionally, there are studies employing mRNA-pool profiling techniques using an 

informatics-based analysis of kinetic profiles (Hoover et al., 2007; Hoover et al., 2008). 

However, despite ecological as well as pharmacological importance, Sinularia has not 

been studied so far with respect to gene expression changes during climate change 

scenarios using the qPCR method. To our knowledge, this study is the first detailed 

determination of expression stability of seven candidate genes to be utilized for the 

normalization of gene expression in the genus Sinularia as well as octocorals, in 

general, subjected to different abiotic stresses. 
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One of the most essential facets of a successful qPCR assay is the stability of RGs over 

a spatio-temporal scale, between different samples, treatments, conditions, etc. 

However, finding such ideal RGs requires validation under those experimental 

conditions because a universally appropriate RG is nonexistent.  

The abiotic stressors or treatments chosen for the current study exhibit different modes 

of impact at the physiological and hence molecular levels on coral cells. Thermal stress, 

one of the major consequences of global warming, can result in mass coral bleaching 

(Hoegh-Guldberg et al., 2007) from disrupted coral-dinoflagellate symbiosis (Weis, 

2008). Additionally, the acidification of seawater is reported to reduce the calcification 

rate in corals, leading to compromised organismal fitness (Doney et al., 2009; Chan and 

Connolly, 2013). 

Previously, ACTB and RPL12 were found to be stably expressed in symbiotic and 

aposymbiotic Anthopleura elegantissima sea anemones using cDNA microarrays 

(Rodriguez-Lanetty et al., 2008). ACTB was also found to be the second most stable 

gene in a scleractinian coral subjected to excess temperature and nutrients (Pagarigan 

and Takabayashi, 2008). In present study, ACTB was the only gene, alongside novel 

SRP54, which overlapped in both treatment groups, ranking the best in low-pH and 

third in thermal stress samples. Hence, ACTB, a cytoskeletal structural proteins gene, is 

a widely used RG that shows promise here as well. Similarly, a novel gene, SRP54, a 

signal recognition particle encoding gene responsible for recognizing and targeting 

specific proteins to the endoplasmic reticulum in eukaryotes (Luirink and Sinning, 

2004), was detected as a suitable RG due to its stable expression for normalization 

during both of the treatments. On the contrary, TUBA, involved in cytoskeleton 

modulation, was found to be one of the least stable genes in both of the treatments and 

in thermal stress, respectively. Likewise, despite securing a second rank in both of the 

treatments, TUBB was found unsuitable and exhibited erroneous estimates in the 

thermal stress validation, but was suitable for pH stress. RPL12, on the other hand, was 

not found among the top 3 in the low-pH treatment despite ranking as the best RG for 

thermal stress. Moreover, EF1A was conjointly ranked lower by most of the methods in 

both of the treatment groups and hence is unsuitable for the normalization of gene 

expression. RPL12 (for example, in pH treatment), TUBB (in thermal stress) and 

GAPDH (in both treatments) should be cautiously used as a reference based on their 

apparent variability and instability in expression, as shown earlier in different systems 

(Thorrez et al., 2008; Kozera and Rapacz, 2013). These observations signify the need 
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for the proper validation of RGs for specific treatment groups independently. The target 

gene HSP70 is under strong regulation in both of the treatment groups apparent from 

the observed high magnitudes of changes (discussed below); however, the high 

variability from an actual change when less stable genes are used suggests that these 

RGs are likely to introduce greater error if the magnitude of the changes in gene 

expression is less than HSP70 in this case, and hence capable of completely 

contradicting the conclusion as demonstrated previously (Dheda et al., 2005; Ferguson 

et al., 2010).  

Gene stability rankings differ depending on the program used due to their different 

algorithms and analytical procedures (De Spiegelaere et al., 2015). Therefore, each 

strategy needs to be carefully evaluated while analyzing the actual stability of RGs for a 

particular experimental scenario. In the present study, differences in the stability 

rankings of RGs were evident. The geNorm results were found unreliable for thermal 

stress, as evident from the normalized HSP70 expression values. The RGs ranked the 

best by geNorm seemingly exaggerate the actual expression levels of the HSP70 gene 

estimated using the two best RGs. This observation is consistent with previous findings 

by Robledo et al (Robledo et al., 2014) who also found the geNorm results unreliable; 

however, geNorm was found useful for pairwise variation (V) analysis to detect the 

optimum RG required for the accurate normalization of gene expression.  

BestKeeper recommends the SD threshold as 1, above which the gene can be 

considered inconsistent (Pfaffl et al., 2004), whereas geNorm assumes an expression 

stability M value of 0.05 as a threshold (Vandesompele et al., 2002). Hence, both of 

these methods were found legitimate for eliminating the worst RGs. For example, the 

geNorm analysis demonstrated that TUBA and EF1A during thermal stress and EF1A 

during pH stress are the least stable (M > 0.05), whereas BestKeeper eliminated EF1A 

during pH stress (SD>1), similar to geNorm.  

NormFinder has advantages over other programs by taking into account intra and 

intergroup differences. In this study, the NormFinder results were relatively more 

congruent with the final cumulative rankings for the best RGs in both of the treatment 

groups. NormFinder determined RPL12 and ACTB as the most stable reference genes 

during thermal and pH stress, respectively. Additionally, this approach also allowed the 

assessment of inter-group variation (Figure 1.4), based on which the best combination 

of two RGs is determined. Therefore, we found the NormFinder ranking the most useful 

for the current study, corroborating the findings of Robledo et al (Robledo et al., 2014), 
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as this ranking benefits from the intra and inter-group comparison and results in the 

most conservative and accurate estimates of gene expression. As reported previously 

(Robledo et al., 2014), we also observed that the ΔCt, Bestkeeper and NormFinder 

results correlate better to each other than to the results obtained by geNorm. Notably, 

NormFinder proposed totally different pairs for both of the treatment groups that were 

also found valid. Hence, the choice of RG also depends on the treatment, accentuating 

the need and benefits of proper validation.  

To account for the discrepancies in the RG rankings among the different methods used, 

the RefFinder platform was used as a complementary tool that incorporates information 

from all four of the methods described above to establish a final comprehensive ranking 

of RGs per all seven genes during each treatment. Although RefFinder suffers from a 

few disadvantages, it yields an overall final stability ranking of the candidate RGs (De 

Spiegelaere et al., 2015). However, careful interpretation is necessary as the ranking of 

a less stable gene might get enhanced, for example, TUBB (during thermal stress) and 

GAPDH  (in both treatments) ranked by geNorm as the best RG, leading to their 

increased RefFinder overall rankings, which could lead to an inaccurate determination 

of transcript abundance if these genes were to be used as normalizers. Additionally, 

RefFinder considered BestKeeper’s SD but not the coefficient of correlation (r) and p 

value (second important criteria) for ranking the RGs, which wrongly resulted in a 

better ranking of unsuitable RGs (for example, GAPDH in thermal stress and TUBA 

during pH stress) (Appendix 1.6.3). These observations clearly highlight the need for 

careful validation of algorithms used for RG ranking and empirical determination of 

stable and/or suitable RGs for qPCR.  

Environmental stress results in major cellular and physiological changes in corals. For 

example, changes in the expression patterns of the genes responsible for metabolic 

pathways, biomineralization, oxidative stress response, apoptosis, and membrane 

transporters have been reported (Kaniewska et al., 2012); however, the stress responses 

of soft corals are generally poorly understood. To our knowledge, this is one of the first 

studies on octocoral Sinularia providing insights on the HSP70 gene expression pattern 

during simulated ocean warming and acidification scenarios using qPCR.  

The observed increase in HSP70 gene expression is congruent with previous studies on 

other octocorals that showed a similar trend for the HSP70 gene during thermal stress 

(Haguenauer et al., 2013; Lõhelaid, H et al., 2014), further demonstrating the likelihood 

of an octocoral host resisting future changing thermal conditions as suggested by 
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Madeira, et al. (Madeira et al., 2015). Contrary to thermal stress, the noticeable decrease 

in the expression levels of the HSP70 gene under low-pH conditions was incongruent 

with the previous findings that suggested no differential expression in Acropora 

digitifera larvae (Nakamura et al., 2012). Similarly, studies on sea urchin larvae and 

amphipod have reported a slight decrease or no significant change in HSP70 expression 

during acidification stress (Hauton et al., 2009; O’Donnell et al., 2009). The changes in 

the external pH resulting in acid/base imbalance are unlikely to result in cytoplasmic 

protein denaturation. Hence, HSP70 gene induction to refold denatured proteins is not 

necessary, unlike during thermal stress. Clearly, the focus here is on suppressing 

metabolism to reduce excess energy investment on unnecessary pathways, diverting it 

to important ones such as ion transport and energy production (Vidal-Dupiol et al., 

2013), which explains the down-regulation of HSP70. This finding clearly suggests 

stress-specific differential responses in S. cf. cruciata by mounting an adequate 

response to acute heat stress, whereas energy prioritization is the strategy under elevated 

CO2 conditions, contributing to resilience potential.  

1.5 Conclusions 
We provide the first systematic validation of suitable RGs for ocean acidification- and 

warming-induced abiotic stress related studies on the octocoral Sinularia cf. cruciata 

using the qPCR technique. The experimental condition-dependent validity of RGs was 

observed, wherein RPL12 during acute thermal stress and ACTB during low pH stress 

were detected as ideal RGs for accurate normalization. SRP54, a new reference gene not 

widely used, was found among the most stably expressed genes in either treatment and 

is an interesting target to complement the other “treatment-specific” genes. We also 

show a stress-dependent differential response of the octocoral on HSP70 transcriptional 

levels and highlight their specific strategies for potential resilience. We expect these 

results will provide the basis for future investigations directed towards increasing our 

understanding of the mechanisms involved in octocoral stress responses and their 

resilience to adverse future ocean conditions. 
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1.6 Appendix  
Appendix 1.6.1 Description of candidate reference genes and degenerate primers used. 

Appendix 1.6.2 BLAST results for selected HKGs sequenced using degenerate primers.  

Appendix 1.6.3 BestKeeper results.  

Appendix 1.6.4 Melting curves for all of the selected references and target gene 

amplicons. 

Appendix 1.6.5 Gel image showing the amplification for all of the genes under study. 

Appendix 1.6.6 Comparison between the least stable RGs and the most stable RGs 
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Appendix 1.6.3: BestKeeper output for (A) Thermal Stress and (B) pH Stress.  
 
A: Thermal Stress 
 
CP data of housekeeping Genes: 

      Genes ACTB TUBA TUBB EF1A RPL12 GAPDH SRP54 

 
HKG 1 HKG 2 HKG 3 HKG 4 HKG 5 HKG 6 HKG 7 

n 6 6 6 6 6 6 6 
geo Mean [CP] 19.42 16.60 21.83 18.75 20.15 22.58 25.23 
ar Mean [CP] 19.42 16.63 21.83 18.77 20.15 22.59 25.24 
min [CP] 18.73 15.19 21.18 17.21 19.20 21.79 24.14 
max [CP] 20.21 19.04 22.71 20.32 20.88 23.78 25.93 
std dev [± CP] 0.41 0.63 0.50 0.66 0.45 0.41 0.45 
CV [% CP] 2.09 3.80 2.28 3.54 2.26 1.83 1.78 
min [x-fold] -1.61 -2.67 -1.57 -2.92 -1.93 -1.73 -2.13 
max [x-fold] 1.73 5.42 1.84 2.96 1.66 2.29 1.63 
std dev [± x-fold] 1.32 1.55 1.41 1.59 1.37 1.33 1.36 

        BestKeeper  vs. HKG 1 HKG 2 HKG 3 HKG 4 HKG 5 HKG 6 HKG 7 
coeff. of corr. [r] 0.758 0.925 0.811 0.906 0.857 0.531 0.829 
p-value 0.001 0.001 0.001 0.001 0.001 0.023 0.001 

 
B: pH Stress 
 

CP data of housekeeping Genes:      
 Genes ACTB TUBA TUBB EF1A RPL12 GAPDH SRP54 

 HKG 1 HKG 2 HKG 3 HKG 4 HKG 5 HKG 6 HKG 7 
n 6 6 6 6 6 6 6 
geo Mean [CP] 15.29 14.10 18.75 15.96 19.14 19.69 24.18 
ar Mean [CP] 15.31 14.11 18.76 16.01 19.16 19.70 24.19 
min [CP] 14.35 13.73 17.90 14.54 18.09 18.88 23.29 
max [CP] 16.30 14.40 19.65 18.51 20.97 20.65 25.10 
std dev [± CP] 0.70 0.20 0.59 1.05 0.74 0.47 0.75 
CV [% CP] 4.60 1.39 3.14 6.54 3.87 2.37 3.12 
min [x-fold] -1.89 -1.29 -1.79 -2.60 -2.04 -1.73 -1.83 
max [x-fold] 1.97 1.22 1.85 5.61 3.46 1.90 1.86 
std dev [± x-fold] 1.61 1.14 1.49 2.03 1.65 1.37 1.67 

        
BestKeeper  vs. HKG 1 HKG 2 HKG 3 HKG 4 HKG 5 HKG 6 HKG 7 
coeff. of corr. [r] 0.985 0.781 0.935 0.946 0.945 0.878 0.948 
p-value 0.001 0.0027 0.001 0.001 0.001 0.001 0.001 
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Appendix 1.6.4 Melting curves for all of the selected references and target gene 

amplicons. 
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Appendix 1.6.5 Gel image showing the amplification for all of the genes under study. 
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Appendix 1.6.6 Comparison between the least stable RGs and the most stable RGs 
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This chapter will be submitted as a standalone publication to the journal ‘Global Change 

Biology’.   
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Chapter 2 

Robust Mitochondrial Response to Oxidative DNA 

Damage in Octocorals 
 

 

2.1 Introduction  

Since the advent of aerobic life on planet earth 2.5 Gyr (Falkowski et al., 2004), 

oxidative stress exerted by the production of cellular reactive oxygen species (ROS) has 

been associated with biological systems (Cadenas, 1989). The accumulation of ROS in 

the cellular environment when overwhelmed beyond possible quenching capacity 

results in damage to lipids, proteins and most importantly the DNA. Adverse 

consequences of global warming and changing oceans have long been implicated in 

imposing greater oxidative stress as a unifying mechanism for coral bleaching (Lesser, 

2006). Warming oceans, acidification accelerated by anthropogenic activities are 

causing increased stress on coral reef communities, resulting in partial or complete 

colony mortalities ultimately leading to affecting productivity and growth of these so 

called “rainforests of the ocean” on a global scale (Hughes et al., 2003; Hoegh-

Guldberg et al., 2007). However, despite ever-increasing knowledge about the biology 

and ecological implications of climate change induced stress on corals, the precise 

understanding of mitochondrial response that, in general, is known to underpin the 

process of cell death is still not understood entirely and remains underappreciated in 

corals.  

The energy status of the coral, like every other organism, determines its performance 

under stressful conditions and is crucial for survival (Lesser, 2013). Being an energy 

hub, mitochondria are a principle source of ROS, and consequently a major site of 

oxidative damage. Mitochondrial DNA (mtDNA) is particularly prone to this kind of 

damage (Sawyer et al., 2001) and genomic integrity of the mtDNA is constantly 

threatened by endogenous ROS. Besides damaging DNA, these ROS can elicit cellular 

stress response, which may result in triggering the release of cytochrome c and other 
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pre-apoptotic protein-signaling cascade, ultimately leading to cell death (Gogvadze et 

al., 2006; Ott et al., 2007). To cope with the DNA damage, cells posses a number of 

DNA repair mechanisms for both, nucleus as well as organelles. However, there are 

multiple DNA repair mechanisms for the nucleus whereas ability of mitochondria 

appears limited in this respect. Moreover, the fidelity and efficiency of DNA repair for 

nuclear and organellar DNA is speculated to be differ (Boesch et al., 2011) due to 

observed 10 to 20 times faster accumulation of mutations for animal mtDNA than the 

nuclear DNA (nDNA) (Brown et al., 1982; Shigenaga et al., 1994), potentially 

attributed to less efficient DNA repair mechanism for mitochondria (Fernández-Silva et 

al., 2003; Boesch et al., 2011). Reports also suggest that the oxidative stress induced 

mtDNA damage persist longer than the nDNA in human cells (Yakes and Van Houten, 

1997). Yet, the high mutation rate for mtDNA among animals is not ubiquitous as the 

non-bilaterians, such as anthozoans and sponges exhibit unusually slow rate of mtDNA 

sequence evolution (van Oppen et al., 2001; Shearer et al., 2002; Hellberg, 2006; Huang 

et al., 2008; Chen et al., 2009). 

A typical animal mitochondrial genome encodes 13 protein coding genes, 22 tRNA and 

2 ribosomal genes. No DNA repair or oxidative stress related protein-encoding genes 

are reported in animal mitochondrial genomes so far. However, the octocoral 

mitochondrial genomes are unique exception encoding a mismatch repair gene 

(mtMutS) not found in any other animal mitochondria studied so far (Pont-Kingdon et 

al., 1995; Pont-Kingdon et al., 1998). Although the exact function of this gene remains 

undetermined, its role in maintaining low variations and its involvement in mtDNA 

repair and gene rearrangements in the octocoral mitochondrial genomes have been 

proposed (Bilewitch and Degnan, 2011; Brockman and McFadden, 2012). mtDNA is 

widely known to be more susceptible to damage in presence of oxidative stress of any 

sort (Sawyer et al., 2001). Therefore, it is interesting to explore the potential benefit of 

harboring a large gene in a compact mitogenome (~3kb gene, ~16% of mitogenome 

size, largest among the octocoral mitogenome-encoded genes), the mtMutS gene, and its 

probable role in octocoral response to oxidative stress and the resulting DNA damage.  

Like most other animals, in cnidarians as well, the mitochondria are known as a 

principle source of cellular ROS (Blackstone, 2009), and the role of mitochondria in 

ROS generation has been studied in sea anemone (Dykens et al., 1992). Moreover, the 

molecular responses to climate change induced oxidative stress are well documented for 
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some members of this phylum and are reported to involve heat shock proteins and 

antioxidant enzymes (Kaniewska et al., 2012; Moya et al., 2012; Hennige et al., 2013; 

Gibbin et al., 2014; Rosic et al., 2014; Tarrant et al., 2014; Dixon et al., 2015). The 

ROS generated during oxidative stress imparted by any environmental stress is bound to 

cause DNA damage (Barzilai and Yamamoto, 2004). There are studies exploring the 

damage to nuclear DNA in response to oxidative stress and other DNA damaging agents 

among cnidarians (Lesser and Farrell, 2004; Nesa and Hidaka, 2008; Schwarz et al., 2013; Svanfeldt 

et al., 2014). Disruption of host mitochondrial integrity in symbiotic Aiptasia sp. has been 

demonstrated post thermal stress using microscopic observations (Dunn et al., 2012). 

However, susceptibility of mtDNA to the excess ROS generated by electron transport 

chain (ETC) in its proximity is of prime concern for cellular homeostasis during stress. 

The mitochondrial response during and/or after oxidative stress ultimately decides the 

fate of an organism (Turrens, 2003). Nevertheless, despite the uniqueness of octocoral 

mitochondrial genomes, their response to oxidative stress has never been studied. A 

combined assessment of mt-genome integrity, potential for mtDNA recovery, the 

response of mtMutS as well as other stress biomarkers genes, (such as heat shock 

protein 70 (HSP70), glutathione peroxidase (GPX) and Cu/Zn superoxide dismutase 

(CuZnSOD)) in response to the increase oxidative stress resulting from different climate 

change related as well as exogenous sources is missing for the members of soft corals 

(Octocorallia).  

Here, we aim to study how octocoral mitochondria respond to different abiotic stressors 

and an exogenous DNA damaging agent induced oxidative stress. We use a sensitive 

quantitative real-time PCR based approach to assess the extent of mtDNA damage 

caused by common climate change-related stressors such as thermal and low-pH, as 

well as exogenous hydrogen peroxide (H2O2), and the capacity of octocoral Sinularia 

cf. cruciata to repair damaged mtDNA. We followed the dynamics of mtDNA copy 

number to understand the associated changes during the mitochondrial recovery 

process. The gene expression of two mitochondrial and three nuclear genes involved in 

oxidative stress response was also assessed. This is one of the first attempts to integrate 

gene expression and mtDNA damage/repair quantification to explore the ability of 

octocorals to mitigate and resist the climate change-induced oxidative stress events, and 

represents a first step towards developing fundamental/mechanistic mitochondria-

centric/inclusive models of stress tolerance in octocorals.  
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2.2 Materials and Methods  

2.2.1 Coral collection and maintenance  

Coral colonies were obtained from a commercial source. They were subsequently cut 

into several pieces that were allowed to grow independently in a closed circuit seawater 

aquarium at Molecular Geo- and Palaeobiology lab, LMU Munich. The corals were 

kept under controlled conditions (25 ± 1 °C, pH 8.2 ± 0.1) with a biweekly exchange of 

50% fresh artificial seawater. All the corals were maintained on 12 h light / 12 h dark 

light-regime provided by LED light (GHL Mitras LX 6200-HV) at a light intensity of 

14 ± 2 kLux. Similar light regime was used for both, control as well as experimental 

systems mentioned below.  

 

2.2.2 Gene identification, sequencing and qPCR primers 

Identitities of the organisms under study were confirmed using the mtMutS gene 

(McFadden et al., 2009).  

For relative quantification of gene expression using qPCR, reference genes were 

validated in a treatment-specific manner and those genes found to exhibit stable 

expression in Sinularia cf. cruciata during thermal and low-pH stress were used for 

qPCR normalization (unpublished data). Sequences of stress-related genes were 

obtained from shallow transcriptomic data (unpublished), their identities were 

confirmed by BLASTn, BLASTp and CDART, a domain search tool (Geer et al., 2002), 

and were used for qPCR primer design.  

For semi-long run qPCR (SLR-qPCR) and mt-number (detailed below), a large (1057 

bp) fragment spanning mitochondrial COII-igr-COI genes was sequenced using 

previously reported primers (McFadden et al., 2011) and a new primer binding 100 bp 

upstream to the 3’ end of this large fragment was designed (short fragment). Nuclear 

ACTB gene primers for comparison to determine mtDNA copy number were same as 

those used for gene expression. Primer designing was performed using Primer3 and 

Geneious 6.1 was used for sequence analysis (Kearse et al., 2012). Melting curves 

(Appendix 2.6.1), electrophoresis and sequencing confirmed the specificity of all the 
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primer pairs used. Sequences obtained will be submitted to European Nucleotide 

Archive (ENA). 

2.2.3 Experimental oxidative stress and DNA damage treatments 

To determine the effect of oxidative stress due to rising seawater temperature, decreased 

pH (both sub-lethal) and hydrogen peroxide (H2O2) (acute toxicity) on mtDNA damage, 

mtDNA copy number variations and gene expression the nubbins of Sinularia cf. 

cruciata were exposed to these conditions (see below). All experiments were performed 

in biological as well as technical triplicates unless otherwise stated and the controls as 

well as treated sample tissues were preserved in absolute ethanol for DNA extraction or 

were snap frozen in liquid nitrogen and subsequently stored at -80°C until RNA 

extraction. Same DNA extracts and concentrations were used for both, mtDNA damage 

quantification as well as mtDNA/nDNA ratios. 

2.2.3.1 Thermal stress  

Three Sinularia cf. cruciata nubbins of similar size were placed in an experimental 10L 

tank and the temperature in the tank was raised gradually from 26 °C to 34 °C over a 

period of 2 h and was maintained at 34 °C for 6 h thereafter. Three controls were 

maintained in a similar tank as the experimental tank but temperature was kept at 26ºC 

during the course of the experiment.  

2.2.3.2 Low pH stress 

Three Sinularia cf. cruciata nubbins were exposed to low seawater pH by pumping 

carbon dioxide (CO2) into the seawater of a 10L experimental tank to maintain a stable 

low pH value of 7.5. The pH was first reduced to 7.5 over a period of 2 h and then 

maintained at this value for 24 h. The pH value was recorded throughout the experiment 

and it was observed to be constant at 7.5. Corals were sampled after 24 h exposure. 

Control samples were maintained under normal pH of 8.2 during the course of 

experiment and the temperature in both tanks was kept constant at 26 °C. 

2.2.3.3 Hydrogen Peroxide treatment: 

For this treatment, three independent DNA damage experiments were performed at 

different times on independently growing nubbins. A 5 mM H2O2 concentration was 

used for acute toxicity and extensive DNA damage. H2O2 is potent DNA damaging 

agent and one of the reactive oxygen intermediates generated during oxidative stress in 
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mitochondria and is known to remain stable in seawater and to readily diffuse across 

biological membranes (Lesser, 2011). The experiments were performed in 2L tanks. A 

tissue sample was taken as a ‘time-zero’ control. Subsequently, 30% v/v H2O2 (Sigma-

Aldrich) was added to a final concentration of 5 mM to the seawater. Corals remained 

in this solution for 30 min. After tissue sampling (Labeled as ‘Treatment’), the corals 

were kept at initial control conditions for recovery. During recovery two tissue 

samplings were performed each after 1h and 5h (Labeled as ‘Rec-time’) of the 

treatment. Additionally, two other octocorals namely, Sinularia sp., and Briareum sp., 

were treated similarly and the recovery was monitored for 1 h.  

2.2.4 Total RNA extraction and cDNA synthesis 

Total RNA was extracted from control as well as treated samples exposed to thermal 

and pH stress using Trizol reagent (Invitrogen, USA) following the manufacture's 

instructions. Contaminating DNA was eliminated from RNA extracts with the help of 

RQ RNase-free DNase (Promega, USA) according to manufacture's protocol. The 

treated RNA was further purified using Sodium Acetate- Ethanol precipitation. Purity of 

RNA was determined using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher 

Scientific, USA). RNA samples with absorbance at OD260/280 and OD260/230 ratio ~ 

2.0 were used for further analysis. RNA integrity was also verified by 1% agarose gel 

electrophoresis as well as using a Bioanalyzer (Agilent Inc.). RNA extracts with a RIN 

value ≥ 7.5 were used for cDNA synthesis (data not shown). For each sample, ~1 µg of 

total RNA was reverse transcribed using ProtoScript® First Strand cDNA Synthesis Kit 

(NEB, Germany) employing an anchored oligo-(dT) primer in 20 µl reaction according 

to manufacture's instructions. 

2.2.5 Quantitative Real-time RT-PCR (qPCR) 

The qPCR was performed on a Rotor-Gene Q 2plex system (Qiagen, Germany) using 

KAPA SYBR FAST universal mastermix (Peqlab, Germany) in 15 µl reactions 

containing 1 µl diluted cDNA, 7.5 µl 2X mastermix, and 250 to 400 nM each primer. A 

two-step qPCR including an initial denaturation step of 3 min at 95 °C followed by 40 

cycles of 95 °C for 10 s and 60 °C for 20 s. A non-template control was always included 

in each assay. Melting curve analysis was performed at the end of each qPCR to 

confirm amplification specificity and amplification products were also checked by 
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agarose gel electrophoresis after each assay. Details on the primers used can be found in 

Table 2.1.  

2.2.6 DNA extraction:  

Extraction of total DNA from control and treated coral tissues was performed using 

NucleoSpin Tissue kit (Macherey-Nagel, Germany) following manufacture’s 

instructions. DNA quality and purity was determined using Nanodrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, USA), which showed a high quality DNA 

(A260/A280 > 1.8). 

2.2.7 Semi-long run qPCR (SLR-qPCR) 

To quantify mtDNA damage a semi-long run quantitative PCR (SLR-qPCR) was 

performed as described previously (Rothfuss et al., 2010). Briefly, a large fragment 

(1057 bp) and a small fragment (100 bp) of same mitochondrial region was amplified 

using KAPA SYBR FAST universal mastermix (Peqlab, Germany) in 15 µl reactions 

containing 1x mastermix, and 500 nM each forward and reverse primer and 5 ng total 

DNA. The cycling conditions consists of a pre-incubation step at 95 °C for 3 min 

followed by 40 cycles of 95 °C for 10 sec, 60 °C for 20 sec for small fragment, and 95 

°C for 10 sec, 58 °C for 20 sec and 72 °C for 30 sec for large fragment. The 

mitochondrial regions, primers and PCR efficiencies are listed in Table 2.2. Each 

sample was assayed in triplicates, and the amplicon specificity was monitored by 

melting curve analysis as well as by gel electrophoresis. Cq values and mean PCR 

efficiency (E) for the primer pair was obtained using LinRegPCR program. Cq values 

were efficiency-corrected using the formula “efficiency-corrected-Cq#=#Cq * (log(E) / 

log(2))” (Kubista M, 2007) and used in the calculation of mitochondrial lesion 

frequency (MLF) using the formula, “Lesion rate (lesions/10kb) =  (1 − 2 –(Δ long – Δ short)) 

× (10000 [bp] ⁄ size of long fragment [bp])” (Rothfuss et al., 2010). Isolated DNA from 

non-treated controls was used as reference whereas Cqs of the large and small 

mitochondrial fragments were used for DNA damage quantification. 
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Table 2.2: Description of qPCR primers used for mtDNA damage and mitochondrial 

copy number quantification 

No.  Gene fragments Genes  Primer Sequences (5' to 3') Size 
(bp) 

Tm 
(°C) E 

1 Small mt-fragment COI 
f-TAATTCTACCAGGATTTGG 

97 75.8 1.95 
r-ATCATAGCATAGACCATACC 

2 Large mt-fragment COII-COI 
f-CCATAACAGGACTAGCAGCATC 

1057 82.3 1.76 
r-ATCATAGCATAGACCATACC 

3 Nuclear fragment ACTB 
f-CTTTTGCTCTGGGCTTCGT 

107 83.5 1.96 
r-CCAAGAGCTGTGTTCCCTTC 

E represents LinRegPCR amplification efficiency. f = forward, r= reverese. 

 

2.2.8 Determination of mtDNA copy number 

To determine the effect of experimental treatments on mitochondrial degradation, the 

mtDNA/nDNA ratio (i.e mtDNA copy number) was calculated before and after 

treatment using qPCR as described above. Equal amount of total DNA was used to 

amplify nuclear gene (ACTB) and one mitochondrial gene (COI) in control and 

treatment samples and the ratios of mtDNA/nDNA were obtained using Livak’s method 

(Livak and Schmittgen, 2001) with non-treated sample served as control and ACTB Cq 

values as reference. Primer details are listed in Table 2.2.  

For comparison of initial mitochondrial number among all control samples used during 

each experiment, which were done at different times during the span of 3 years on 

nubbins obtained from same colony, a ratio of COI versus ACTB gene fragment was 

obtained for each control separately. The geometric mean of these ratios was calculated 

and each mtDNA/nDNA ratio was divided by this value to obtain relative mitochondrial 

copy number for control samples in using REST2009 (single time-zero control for each 

H2O2 treatment experiment and triplicate control samples for thermal and low pH 

treatment each).  

2.2.9 Data Analysis 
The raw, non-baseline corrected fluorescence data obtained after qPCR baseline 

corrected using LinRegPCR (Ramakers et al., 2003) and Cq values and amplification 

efficiency for each amplification curve were calculated using this program. These Cq 
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values were used for mtDNA damage-repair, mtDNA copy number and gene expression 

analyses. 

Gene expression analysis was performed using the method of (Pfaffl et al., 2002) 

implemented in REST2009. Cq values corrected by the mean PCR efficiency were 

obtained from LinRegPCR. Multiple, treatment-specific multiple reference genes were 

used for normalization (Vandesompele et al., 2002; Bustin et al., 2009). Fold changes in 

the expression of target or stress related genes (HSP70, GPX, CuZnSOD, COI and 

mtMutS) were calculated using RPL12, SRP54 and ACTB during thermal stress, and 

ACTB, TUBB, and SRP54 during pH stress, as reference genes. These sets of genes 

were found to be the most stably expressed reference genes during the respective stress 

treatments (unpublished data). Statistical significance of gene expression was tested 

using randomization and bootstrapping with 10000 iterations, and standard errors were 

calculated with the Taylor algorithm implemented in REST 2009. Data is represented as 

mean ± SE and REST’s p <0.05 was considered as a threshold for statistically 

significance. 

The present study conforms to the Minimum Information for Publication of 

Quantitative Real-Time PCR guidelines (Bustin et al., 2009).  

 

2.3 Results: 

2.3.1 Effect of thermal and pH stress on mtDNA (Sub-lethal treatments) 
Significant mtDNA damage was detected during both sub-lethal thermal and low-pH 

stress. During elevated seawater temperature (6 h exposure), the corals exhibited 1.29 

lesions per 10 kb DNA (p <0.05). However, the damage was higher (3.22 lesions per 10 

kb DNA; p <0.01) after 24 h exposure to low-pH stress (Figure 2.1A). The mtDNA 

copy number variation was also monitored for these treatments. The mtDNA copy 

number variation showed opposite trend, decreasing (mtDNA/nDNA = 0.68, p <0.05) in 

response to thermal stress and increasing, with respect to the controls during pH stress 

(mtDNA/nDNA = 1.57, p <0.01) (Figure 2.1B).  
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Figure 2.1 Thermal and low-pH stress induced mtDNA damage, recovery kinetics and 
mitochondrial copy number variation. 

(A) Quantification of mtDNA lesion frequency (MLF) per 10 kb DNA by SLR-qPCR 
amplification of total DNA from Sinularia cf. cruciata exposed separately to elevated 
temperature (34 °C) for 6 h and reduced pH for 24 h. (B) In parallel, mitochondrial copy 
number was determined by amplifying one mitochondrial fragment and normalized using 
one nuclear fragment. Untreated controls (26 °C or pH 8.2) were used as reference during 
respective experiments. Data represents the mean ± SE of biological triplicates. * 
Statistical significant at p < 0.05; ** Statistical significant at p < 0.01. 
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2.3.2 Effect of thermal and pH stress on antioxidant defense and 

mitochondrial genes 
HSP70 was strongly induced (>7 folds change; p <0.05) during thermal stress while the 

expression GPX decreased (-6.1 folds) and that of CuZnSOD was slightly affected (-1.4 

fold). COI expression was detected to vary greatly though overall it showed an upward 

trend with 2.2 folds increase. The mtMutS gene was similarly upregulated with a 1.4 

fold increase in transcript abundance (Figure 2.2).   

Low pH stress resulted in the downregulation of HSP70 (-1.87 fold, p <0.05), GPX      

(-1.71 fold, p <0.05) and CuZnSOD expression decreased. Mitochondrial gene COI was 

also downregulated (-2.8 fold; p <0.05) but the mtMutS was significantly upregulated 

(1.25 fold, p <0.05) (Fig. 2). The expression difference between these two 

mitochondrial genes is as much as 4 folds (p <0.001).  

Figure 2.2 Relative expression of stress-related and mitochondrial genes post thermal and 

low-pH stress. 
Changes in transcript levels of 3 stress response gene, HSP70, GPX, and CuZnSOD; and 2 
mitochondrial genes, COI and mtMutS were assessed. Normalization was performed using 
validated sets of three reference genes namely ACTB and SRP54 during either and RPL12 and 
TUBB during thermal and pH stress, respectively. Bars represent the mean expression value 
(fold change ± SE) relative to untreated controls (26 °C or pH 8.2) of three biological replicates. 
Asterisks (*) denote significantly higher or lower expression relative to respective controls 
(REST; p < 0.05). 
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2.3.3 Effect of acute H2O2 stress on mtDNA and recovery dynamics 

The response of octocoral mtDNA to excess acute DNA damage induced by a high 

concentration of potent DNA damaging agent, H2O2, was quantified and subsequent 

recovery kinetics was monitored.  

The first experiments showed a dramatic effect of H2O2 treatment on mtDNA damage, 

inducing 9 lesions per 10 kb. This damage was completely reversed after 1 h recovery 

and an excess repair was observed as indicated by a negative lesion frequency (-9.6 

lesions per 10 kb). Excess repair was still observed after 5 h when the lesion frequency 

was -6.6 per 10 kb (Figure 2.3A).  

On a second experiment performed, the mtDNA damage was not as high as it was 

observed during the first experiment and only 2.4 lesions per 10 kb were observed after 

30 min exposure to H2O2. Lesions increased (3.4 lesions per 10 kb) after 1 h recovery 

and were reverted only after 5 h recovery (-2.4 lesion per 10 kb) (Figure 2.3A).  

During the third experiment, the observed lesion frequency was minimum  (0.4 lesions 

per 10 kb) after 30 min exposure. This was followed by damage reversal indicated by 

lesion frequencies of -1.1 and -4.2 lesions after 1hr and 5 h recovery, respectively. In all 

experiments the mtDNA damage was reversed and an excess repair was observed 

within 5 h post-treatment (Fig. 2.3A). An additional experiment performed together 

with two other soft corals, Sinularia sp. and Briareum sp., also exhibited mtDNA 

damage followed by a damage reversal after 1 hr recovery (Appendix 2.6.2).  

2.3.4 mtDNA copy number variations upon acute H2O2 induced 

mtDNA damage 
The accumulation of lesions in the mtDNA beyond the threshold levels result in 

blockage of the transcription as well as replication leading to mtDNA degradation 

(Alexeyev et al., 2013). We evaluate the impact of H2O2 driven mtDNA damage on 

mtDNA replication after treatment and its recovery as a proxy. Mitochondrial DNA 

copy number relative to nuclear DNA was monitored during each independent 

experiment to understand the recovery kinetics and its correlation to the DNA damage 

extent compared to time-zero control. During first experiment, the mtDNA copy 

number decreased to almost half with respect to the control after 30 min H2O2 exposure 
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indicating degradation of severely damaged mtDNA during the treatment. This was 

rapidly reversed after 1 h recovery to 2 folds excess with respect to the time-zero 

control. mtDNA copy number remained high (1.7 X control) after the remaining 

recovery period (Figure 2.3B). During the second experiment however, mtDNA copy 

number increased during the 30 min treatment. It remained 1.5 fold higher after 1 h 

recovery and subsequently returned to a value equivalent to the time-zero control. No 

degradation was observed. During the third experiment, there was no detectable 

increase or decrease during the treatment or the recovery period and mtDNA copy 

number ranged from 0.97 to 1.1 during the course of experiment (Figure 2.3B).  

 

Figure 2.3 Hydrogen peroxide 
induced mtDNA damage, 
recovery kinetics and 
mitochondrial copy number 
variation. 

(A) Quantification of mtDNA 
lesion frequency (MLF) per 10 kb 
DNA by SLR-qPCR amplification 
of total DNA from Sinularia cf. 
cruciata exposed to 5 mM H2O2 
for 30 min (designated as 
‘Treatment’) followed by 
recovery for 1 hr and 5 hr 
(designated as ‘Rec-1H’ and ‘Rec-
5H’, respectively). Data 
represents the mean ± s.e.m. of 
three replicates. (B) In parallel, 
mitochondrial copy number 
variation was determined by 
amplifying a mitochondrial 
fragment and normalized using a 
nuclear fragment. Non-treated 
time-zero corals were used as a 
reference sample during 
respective experiments. Three 
independent experiments 
performed at different times.  
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2.3.5 Comparison of mtDNA copy number among experimental 

control samples 
To further understand the reasons for differential responses of mtDNA damage and 

mtDNA copy number of genetically identical coral under similar initial conditions at 

different times, the mtDNA/nDNA ratios of the controls (time-zero) tissue DNA were 

compared with each other aiming to find a probable correlation. The mtDNA copy 

number was found lowest for the control samples of experiment1 and highest during the 

third H2O2 experiment. The difference between first and third experiment was 5.5 fold 

mtDNA copies and 5.2 fold difference in mtDNA copy number between first and 

second experiment. The thermal and pH stress mtDNA copy numbers where found to be 

similar to the second and third H2O2 experiment rather than those observed for the first 

one (Figure 2.4).  

 

Figure 2.4 Comparison of initial mtDNA copy numbers among experimental controls. 

Initial mitochondrial copy number variation was determined by amplifying a mitochondrial 
fragment and normalized using a nuclear fragment. The differences in the Cq values of 
mitochondrial gene versus nuclear gene were calculated using 2 -ΔCq. The geometric mean of the 
values obtained for all controls served as a baseline (represented by the dotted line in figure), 
which was used to calculate the ratios. Time-zero controls for H2O2 experiments and untreated 
controls (in triplicate) for thermal and pH stress were used for comparison. Data represents the 
mean ± SE. 
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2.4 Discussion  
Octocorals are unique members of the Phylum Cnidaria, especially with respect to their 

unique mitochondrial genomes, which encode an additional ~3 kb putative mismatch 

repair gene (Pont-Kingdon et al., 1995), a bacterial homolog. While most studies on 

coral stress response focus on coral-dinoflagellate symbiosis, calcification, bleaching, 

heat and acidification stress (Hoegh-Guldberg et al., 2007), the investigations on 

mtDNA damage, repair and gene expression during climate change-related 

environmental stress are lacking.  This study is the first of its kind in this context. Here, 

the importance of the mtMutS gene during stress response was demonstrated and shown 

that the host mitochondria are capable of reverting the extensive oxidative damage to 

mtDNA. 

Oxidative stress in marine ecosystems is a well-known phenomenon with adverse 

effects on marine organisms (Lesser, 2006). Corals exhibit a typical stress response at 

cellular level to a variety of insults imparted by various environmental stresses. Thermal 

and low-pH stress has long been implicated in exerting oxidative stress on corals 

(DeSalvo et al., 2008; Soriano-Santiago et al., 2013), and the reef-building or hard 

corals response to the increased temperature, as a zooxanthellate host system, has been 

extensively studied (Lesser, 2006; Lesser, 2011). Studies exploring the response of 

octocorals to such environmental stresses have recently started to emerge (Haguenauer 

et al., 2013; Sammarco and Strychar, 2013; Teixeira et al., 2013; Lõhelaid, H et al., 

2014; Lõhelaid, Helike et al., 2014; Woo et al., 2014), exploring the physiological as 

well as transcriptomic changes. However, response of several key genes responsible for 

antioxidant defenses such as, CuZnSOD, GPX, along with mitochondrial genes, has not 

been investigated so far. 

Different studies have shown upregulation of heat shock protein gene HSP70 in 

response to thermal stress in octocorals as well as other cnidarians, pointing towards the 

existence of a conserved mechanism among cnidarians to mitigate heat stress 

(Rodriguez-Lanetty et al., 2009; Lõhelaid, H et al., 2014). The results of present study 

corroborate this observation and further highlight the importance of the HSP70 during 

thermal stress response in this group of organisms as exhibited by a very strong 

induction of HSP70 in the octocoral Sinularia cf. cruciata. Interestingly, we found a 

significant down-regulation of HSP70 gene in acidified seawater in contrast to the 

previous studies that found either an increase in expression (Moya et al., 2015) or no 
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differential expression of this gene in early life stages of acroporid corals under ocean 

acidification conditions (Nakamura et al., 2012). Studies on other invertebrates (non-

cnidarian) have reported either a decrease or no significant change in HSP70 expression 

during stress induced by seawater acidification (Hauton et al., 2009; O’Donnell et al., 

2009). It implies that the HSP70 gene induction is not required during low-pH stress, as 

the external pH changes resulting in acid/base imbalance may not necessarily result in 

denatured cytoplasmic proteins, unlike heat stress during which refolding of denatured 

proteins require assistance. The coral might try to compensate for the stress by 

suppressing unnecessary metabolic pathways, investing energy into the important ones, 

which explains down-regulation of HSP70. 

GPX gene, encoding glutathione peroxidase, a key antioxidant enzyme that catalyzes 

the conversion of harmful H2O2 to H2O with the help of reduced glutathione, plays an 

important role in ROS detoxification (Halliwell, 2006). Surprisingly, GPX was 

downregulated during both thermal and low-pH treatments. Depletion of the glutathione 

pool during initial hours of exposure to stress could be the reason for the observed 

decrease in GPX expression (Sagara et al., 1998; Downs et al., 2000). Furthermore, the 

sea anemone genome has found to contain 12 GPX isozyme genes (Goldstone, 2008), 

hence it is also possible that the GPX isozyme gene assessed here does not participate in 

oxidative stress response at this stage and or under circumstances studied here. 

Additionally, another gene involved in antioxidant defense CuZnSOD, occurs 

predominantly in the cytosol of eukaryotes (Halliwell, 2006), remained relatively 

unaffected during both stress conditions. Nonetheless, because three different members 

of SOD multigene family have been described in sea anemone along with several 

isoforms of CuZnSOD, it is likely that the other SODs or their isoforms are involved in 

scavenging superoxide radicals under these conditions (Plantivaux et al., 2004; Richier 

et al., 2005). 

Mitochondrial DNA integrity is a prerequisite for cellular homeostasis as it encodes the 

most crucial component of electron transport chain (ETC) involved in oxidative 

phosphorylation and energy production. The energy budget plays a crucial role in corals 

for survival during environmental stress (Lesser, 2013). Therefore, it’s necessary to 

appreciate the changes in mitochondrial gene expression during oxidative stress as a 

proxy to understand its impact at cellular as well as organismal levels. Hence, to 

identify the impact of climate change exerted oxidative stress on mitochondria of the 

host, the expression of one key gene, cytochrome c oxidase subunit I (COI)- a crucial 
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component of complex IV of ETC, and other unique genes, mtMutS, with putative 

mtDNA repair function were assessed for changes in expression. Earlier it has been 

shown that the thermal stress adversely affects ATPase gene expression, also a 

component of Complex IV in Aiptasia sp., correlating to compromised mitochondrial 

structure and functionality (Dunn et al., 2012). It is also evident here from the observed 

lesions and decreased mtDNA copy number during thermal stress. However, no 

negative effect on COI and mtMutS gene expression likely due to low level of mtDNA 

damage suggests less compromised mitochondrial integrity in Sinularia cf. cruciata in 

response to acute short-term thermal stress. 

In contrast, during low-pH stress, a significant reduction in COI gene transcripts 

indicates severely compromised mitochondrial integrity by this treatment. This is also 

supported by observed higher number of mitochondrial lesions than thermal stress. Here 

it is interesting to note that the observed increase in mtDNA copies implies that the 

damaged mitochondria were retained, and replicated, which could recover under 

favorable conditions rather than destined to degradation, using complementation of 

mitochondrial function by fusion, sharing DNA when mutation load is low, as observed 

in animals (Kazak et al., 2012) discussed below in detail. The changes in seawater pH 

result in changing the carbonate chemistry thereby elevating the oxidative stress and 

DNA damage has been reported previously in marine organisms (Lesser, 2006; Wang et 

al., 2009). Prolonged exposure to oxidative stress results in reduced expression of 

mitochondrial genes shown previously in several studies on other animals (Austin et al., 

1998; Crawford et al., 1998; Schwarze et al., 1998; Morel and Barouki, 1999) 

corroborates observed COI downregulation during pH stress. Despite that the mtMutS 

gene was significantly overexpressed suggesting an increased need of mtMutS gene 

product during low-pH stress that indeed resulted in mtDNA damage. This up-

regulation of mtMutS was despite the significant down-regulation of COI gene as 

discussed earlier. Mitochondrial genes not involved in energy production pathways 

(such as the mtMutS) are generally co-expressed with the OXPHOS genes (van 

Waveren and Moraes, 2008). Our observation of COI and mtMutS upregulation during 

thermal stress is congruent with these observations. However marine organisms are 

known to exhibiting metabolic suppression in response to elevated CO2 (Pörtner, 2008; 

Kaniewska et al., 2012). Hence, a decrease in COI and other stress-response genes 

expression during a prolonged and coral host-oriented acidification stress is anticipated. 

However, the decoupling of expression between COI and mtMutS, and the significant 
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upregulation of the later during pH stress highlights its importance, likely as a mtDNA 

repair protein, in the octocoral stress response. Moreover, it is clear from the observed 

differences in mitochondrial as well as stress-related gene expression changes between 

thermal and pH stress that the octocorals and their mitochondria exhibit different 

strategies to tackle the stressors differing in nature. 

Another main goal of the present study was to evaluate the capability of octocoral 

mtDNA to recover from severe mtDNA damage. Hydrogen peroxide (H2O2), a principle 

mediator of oxidative stress, was used as a DNA damaging agent due to its natural 

occurrence and longer stability in seawater as well as high membrane permeability 

(Lesser, 2011) allowing it to diffuse freely throughout the cell and causing DNA 

damage via Fenton reaction (Henle et al., 1996). H2O2 is formed photochemically in 

seawater under natural conditions and its effects have been studied in relation to 

metabolic activities on stony corals (Higuchi et al., 2009).  

Spatiotemporal changes in normal physiological conditions among independently 

growing coral nubbins over a long period of time may have resulted in variable initial 

impact of H2O2 induced mtDNA damage evident from different MLF after each 

treatment. Nonetheless, observed complete recovery along with an excess repair within 

5 h is noteworthy. Excess repair is likely when the basic low-level mtDNA lesions 

present under normal physiological state (time-zero controls) are also reversed due to an 

induced process of damage recovery. Increase in mtDNA copy number can also lead to 

observed excess repair (e.g. Experiment 1 recovery). Likewise, a strong correlation is 

evident between mtDNA copy number and MLF. Processes such as mitochondrial 

fission, fusion and degradation, discussed below in detail, are underpinning the 

observed fluctuations in mtDNA copy number and can be correlated to quantity/extent 

of mtDNA damage. It has been previously shown that higher incidence of lesions leads 

to mtDNA degradation (Shokolenko et al., 2009), much like during first experiment 

where mtDNA copies reduced to half. In such stress situations cell survival depends on 

mitochondrial fusion, whereby cross-complementation of undamaged mtDNA, along 

with sharing of RNA, lipid and protein components, results in rescuing two 

mitochondria leading to maximized oxidative capacity during environmental stress and 

recovery (Youle and van der Bliek, 2012). Moreover, the lesions represent a blockage in 

the replication and transcription and hence the presence of efficient mtDNA repair 

machinery is likely to help in its rapid recovery by complementing the replication 

process (Li, 2008). The second H2O2 experiment somewhat mimics the pH stress in 
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terms of both MLF and mtDNA copy number changes during treatment, where retention 

mtDNA copies with low damage (less MLF), perhaps below threshold, is evident. Least 

MLF and unchanged mtDNA copies during third experiment provide an example of 

redundancy discussed below. 

The mitochondrial copy number can vary based on energy requirements of the cells 

and/or oxidative stress conditions (Lee and Wei, 2005). It has also been suggested that 

cells with low mtDNA number are more susceptible to mtDNA damage and that high 

copy numbers confers buffering via redundancy (Meyer and Bess, 2012). The 

observation of higher initial mtDNA copies during last two H2O2 experiments in 

association with minimum fluctuations in MLF and mtDNA copy number during 

treatment indicates that the higher initial mtDNA/nDNA ratio is essential to mitigate the 

oxidative stress from its onset. It remains to be elucidated, however, what affects the 

initial mt-number under normal physiological conditions in octocorals. Polyp density 

(polyp number per unit surface area) may differ (Clayton, 1985) over a period of time 

and it is likely that this parameter was variable during the independent experiments 

spaced apart in time. Mitochondrial number also varies greatly depending on metabolic 

activity and energy requirements of cells and tissues (Dunn et al., 2012). Polyp as a 

functional unit of colony is metabolically very active, and hence likely to have high 

mitochondrial numbers. Consequently any differences in polyp density are likely to 

result in differences in mitochondrial numbers. The particular state of coral prior to the 

experiments could have affected the initial mtDNA/nDNA ratios of the independent 

experiments. However, further studies would be needed to understand the normal level 

of variations in mtDNA copy numbers in corals to undercover the causes of this 

variation. However, the initial as well as stress-affected mtDNA copy number variation 

remains underappreciated among corals and our present study signifies its importance 

during coral stress response assessment. 

Recently, it has been shown that the human MutS homolog 5 (hMSH5) protein localizes 

in mitochondria, binding to mtDNA, interacting with DNA Polymerase gamma 

(POLG), and it’s overexpression leads to efficient repair of oxidative lesions 

(Bannwarth et al., 2012). It is tempting to speculate that the elevated transcript levels of 

mtMutS gene during prolonged pH stress and mtDNA damage observed in our study 

indicates its role in enhancing the replication fidelity and/or DNA repair capabilities of 

host mitochondria during oxidative stress response. We are, however, aware that the 

evident mtDNA repair observed in the current study is a multifactorial phenomenon 
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involving other, still unexplored, molecular mechanisms in need of detailed future 

investigations. In this respect, functional studies of the mtMutS gene are still required, 

as is the characterization of other, if any, associated proteins involved in mtDNA repair 

in octocorals. The gene expression of nuclear encoded mitochondrial genes, such as 

POLG, mitochondrial DNA-directed RNA polymerase (POLRMT), mitochondrial 

single-stranded DNA binding proteins (mtSSB) and mitochondrial transcription factor A 

(TFAM), along with several other key players responsible for the maintenance of 

mitochondria deserved to be investigated. Alongside, comparisons of mtDNA repair 

capacity among different classes of cnidarians will clearly aid in advancing our 

understanding of the biology of coral stress response. 

2.5 Conclusions 
Here we present, for the first time, a mitochondria-centric view and emphasize its 

importance during global climate change scenarios among corals; by investigating 

mtDNA damage, repair, mtDNA copy number variations coupled with gene expression. 

We demonstrate the stress-specific gene expression strategies and upregulation of 

mtMutS gene during acidification stress. Additionally, we show that octocoral host 

mitochondria are capable of reversing the acute toxic stress-caused mtDNA damage, 

hence demonstrating their resilience potential. Recent evidences suggest that the corals 

are capable of acclimating to thermal stress via physiological plasticity (Bellantuono et 

al., 2012), transcriptome changes (Bay and Palumbi, 2015; Seneca and Palumbi, 2015) 

and/or by developing successful associations with more heat-tolerant symbionts 

(Keshavmurthy et al., 2014). There are also studies showing that the octocoral tissue 

can act as a barrier to resist adverse effect of lowered pH (Gabay et al., 2013; Gabay et 

al., 2014). Considered together all these evidences along with their resilient 

mitochondria point towards a potential for acclimation and positive future for some 

octocorals in changing future oceans.  

2.6 Appendix  
2.6.1 Melting Curves 
2.6.2 mtDNA damage in other octocoral species after exposure to 5mM hydrogen 
peroxide for 30 min. 
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2.6.1 Melting Curves 
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2.6.1 Melting Curves (continued) 
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2.6.1 Melting Curves (continued) 
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Appendix 2.6.2 mtDNA damage in other octocoral species after exposure to 5mM 
hydrogen peroxide for 30 min. 
 

 
Two octocoral species (Sinularia sp. and Briareum sp.) were exposed to 5 mM H2O2 
for 30 min (Treatment) and MLF was quantified followed by 1 h recovery (Rec-1H) and 
quantification. 
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Chapter 3 

Mitochondrial RNA Processing in Absence of 

tRNA Punctuations: Lessons from Octocorals 
 

 

3.1 Introduction 
The great diversity of animals emerged from the ancestors of simplest members of the 

animal kingdom such as sponges and corals i.e., the non-bilaterians. Two major 

evolutionary events occurred early in the animal history forging the majority of animals, 

as we know them today: the origin of multicellularity, and the origin of bilateral 

symmetry. Multiple genomic changes accompanied these morphological transitions, and 

the genome sequencing projects give us a glimpse into these changes (Scientists et al., 

2014). Undoubtedly, these transitions also correlate with multiple changes in 

mitochondrial genome (mitogenome) architecture and organization (Lavrov, 2007). The 

metazoan mitochondrial genome underwent reductive evolution, transferring most of its 

genome content to the nucleus (Berg and Kurland, 2000; Adams and Palmer, 2003). 

The majority of these alterations in mitogenome content include loss of ribosomal 

protein genes, and some tRNA genes, changes in the genetic code, disappearance of 

introns, and further compaction of mitochondrial DNA (mtDNA). As an aftermath, a 

quintessential animal mitochondrial genome harbors only 13 genes encoding essential 

energy pathway proteins, 2 ribosomal RNA genes and 22 transfer RNA genes. This 

composition is invariable among bilaterians in terms of gene content (Boore, 1999). 

However, alterations in mitogenome content, size and organization are more prominent 

and peculiar among most basal, multicellular, non-bilaterian animal members of the tree 

of life. The mitogenomes of non-bilaterian metazoan phyla comprise several novelties 

compared to typical animal mitogenomes. These include, the presence of group I introns 

in sponges and scleractinians (van Oppen et al., 2002; Rot et al., 2006; Szitenberg et al., 

2010; Erpenbeck et al., 2015), additional protein coding genes and/or unknown ORFs 

and gene duplications in anthozoans (Pont-Kingdon et al., 1995; Flot and Tillier, 2007; 

Park et al., 2011; Lin et al., 2014), linear mitogenomes in calcisponges and 
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medusozoans (Voigt et al., 2008; Lavrov et al., 2013), among other. Therefore, as a 

hotspot of mitochondrial genome diversity, early branching animals present a unique 

opportunity to understand evolution of mitochondrial genome architectures as well as 

the fundamental processes governing its functionality and maintenance from a bottom-

up perspective i.e., from early-branching to modern animals. 

The significantly reduced but extremely crucial repertoire of genes present in animal 

mitogenomes is fundamental to its functions, and to gain deeper understanding of these 

processes it is essential to understand the expression and processing of mitochondrial 

gene transcripts. The information available so far on the mitogenome transcription 

originates from bilaterian members of animal kingdom (Coucheron et al., 2011; Mercer 

et al., 2011; Mounsey et al., 2012). The canonical animal mitogenome is known to 

transcribe symmetrically as polycistronic precursors spanning the entire heavy (H-) and 

light (L-) strands (Temperley et al., 2010). The tRNAs act as punctuation marks 

whereby the 22 tRNA interspersed throughout the mitogenome are recognized and 

cleaved off at 5’ and 3’ ends by mitochondrial RNase P and RNase Z, respectively 

(Ojala et al., 1981; Rossmanith, 2012). The genes within these precursors are 

simultaneously liberated for maturation following this mt-tRNA processing. 

Consequently, most of the mature mitochondrial mRNAs are monocistronic units with 

the exception of ATP8-ATP6 and ND4L-ND4, which are known to exist as bicistronic 

elements. All messagers end with the post-transcriptional addition of 40-45 adenosines 

for maturation, which also completes the stop codon at 3’ end of mRNA in most cases 

(Nagaike et al., 2008). The animal mt-mRNAs are either devoid of the untranslated 

regions (UTRs), or tend to have very short UTRs, consisting of 1-2 nucleotides flanking 

the mature mRNAs (Temperley et al., 2010). All these studies are, however, confined to 

a small number of vertebrates. To our knowledge, the exploration of mature 

mitochondrial mRNA transcripts and characterization of UTRs is still lacking for the 

non-bilaterian animals.  

Among non-bilaterians, octocorals (Anthozoa: Octocorallia) are unique members due to 

their atypical mitochondrial genome organization. As many as five different gene 

arrangements have been reported among the octocorals studied so far (Brugler and 

France, 2008; Uda et al., 2011; Brockman and McFadden, 2012; Figueroa and Baco, 

2015), all with an exceptionally reduced complement of transfer RNAs (a single 

tRNAMet gene) and the presence of additional gene, a unique mismatch repair gene 

(mtMutS) (Pont-Kingdon et al., 1995; Pont-Kingdon et al., 1998), closely related to the 
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non-eukaryotic MutS7 lineage from epsilon-proteobacteria or DNA viruses  (Bilewitch 

and Degnan, 2011). This gene has been speculated to have a role in the slow rate of 

mtDNA evolution (Shearer et al., 2002; Hellberg, 2006), intramolecular recombination 

and genome rearrangements (Brockman and McFadden, 2012), and predicted a self-

contained mismatch repair function (Bilewitch and Degnan, 2011). Considering the 

mutation pressure as a key factor leading to reduced genome content in metazoan 

mitochondria (Lynch et al., 2006), the occurrence of such a large gene occupying 

almost 16% of the mitogenome in octocorals is somewhat surprising. The presence of 

mRNA transcript suggested its availability for translation into a protein product 

(Bilewitch and Degnan, 2011). However, 20 years after its discovery (Pont-Kingdon et 

al., 1995) and despite of being extensively used for phylogenetic studies as an the only 

rapidly evolving mitochondrial marker among octocorals (McFadden et al., 2011), a 

thorough understanding of transcriptional processing and maturation of mtMutS gene 

remains uninvestigated.  

Octocoral mitogenomes contain a single gene for tRNA located subsequent to COIII on 

the L-strand. Cleavage of this tRNA from the precursor RNA will only “liberate” COIII 

mRNA at its 5’ end. In such a scenario, that is, How the individual mitochondrial gene 

mRNAs are released for maturation from the long polycistronic precursors in the 

absence of punctuation marks (i.e. tRNAs) in octocoral mitochondria remains a 

mystery, as to date, no information on mitogenome transcription pattern, description of 

the mature mt-mRNA transcripts, and their 5’and 3’ UTRs (if any) is available for non-

bilaterian metazoans. 

In absence of knowledge on precise boundaries of the mRNA in octocoral 

mitogenomes, despite all the novelties they confers, the understanding of biology and 

evolution of animal mitochondria remain incomplete. Here we characterize the 

mitogenome transcription of an early branching non-bilaterian, the octocoral Sinularia 

cf. cruciata. (Alcyoniidae: Octocorallia). We describe the 5’ and 3’ boundaries and 

UTRs of mature mitochondrial mRNAs and thoroughly characterize the transcription of 

the mtMutS gene. Our results provide the first glimpse of unique features and 

complexity of non-bilaterians mitochondrial transcriptome.  
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3.2 Materials and methods 

3.2.1 Specimens 
Coral colonies were obtained from a commercial source and maintained in a closed 

circuit seawater aquarium at Molecular Geo- and Palaeobiology lab, LMU, Munich. 

Two species of the genus Sinularia were used for current investigation. Sinularia cf. 

cruciata was utilized for the majority of the experiments, whereas additionally, a second 

Sinularia sp. was used for RT-PCR screening, RHAPA and antisense mRNA detection 

(see below). All the references to the nucleotide positions refer to the full mitochondrial 

genome of Sinularia piculiaris (GenBank accession NC_018379) (Kayal et al., 2013). 

The mitogenome of S. cf. cruciata was completely sequenced (Appendix 3.6.4), 

whereas the regions investigated here for the other Sinularia sp. were also sequenced, 

both were found predominantly conserved with respect to S. piculiaris.   

3.2.2 Total RNA extraction and cDNA synthesis 
TRIzol reagent (Invitrogen, USA) was utilized for the extraction of total RNA as per the 

manufacture's instructions. RNA was dissolved in 100 µl DEPC treated water and 

contaminating DNA was eliminated from RNA extracts by performing a DNase (RQ1 

RNase-free DNase, Promega, USA) treatment at 37 °C for 30 min. Treated RNA was 

purified after inactivation of the DNase and its purity of RNA was determined using a 

Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, USA). RNA samples 

with absorbance at OD260/280 and OD260/230 ratios ~ 2.0 were used for further 

analysis. RNA integrity was also verified by 1% agarose gel electrophoresis as well as 

using a Bioanalyzer (Agilent Inc.). RNA extracts with a RIN value ≥ 7.5 were used for 

cDNA synthesis (data not shown). These extracts were stored at -80 °C until use. 

3.2.3 Reverse-transcription PCR (RT-PCR) 
RNA extracts were PCR controlled in order to detect amplifiable levels of small DNA 

fragments. Only RNA extracts devoid of any amplification were used in RT-PCR 

experiments. For each sample, ~1 µg of total RNA was reverse transcribed using 

ProtoScript® II First Strand cDNA Synthesis Kit (New England Biolabs, USA) 

employing an anchored oligo-(dT) primer in 20 µl reactions according to manufacture's 

instructions. 
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RT-PCR sequencing primers were designed using the published mitochondrial genomic 

sequence of Sinularia piculiaris, GenBank accession NC_018379.1 (Kayal et al., 2013). 

Screening for the presence of the polycistronic mRNAs was done using the primers 

enlisted in Table 3.1.  

 

Table 3.1: RT-PCR screening for mature mRNA transcripts spanning two or more genes 
 
Sr. 
No.  

Primer Pair 
Forward/Reverse Regions 

Length 
(bp) igr+Gene* 

RT-PCR 
DNA cDNA 

1 C2-18173/C1-839 COII-COI 1051 951 ! " 

2 C1-743/12S-2240 COI-12S 1498 658 ! " 

3 N1-3534/CB-4128 ND1-CYTB 595 479 ! ! 

4 CB-4539/N6-4995 CYTB-ND6 457 152 ! ! 

5 CB-4539/N3-5623 CYTB-ND6-ND3 1085 ND6+182 ! " 

6 N6-4972/N3-5623 ND6-ND3 652 182 ! ! 

7 N6-4972/N3-5841 ND6-ND3 870 400 ! ! 

8 N6-4972/N4L-6141 ND6-ND3-ND4L 1170 ND3+291 ! ! 

9 N3-5520/M-6801 ND3-ND4L-mtMutS 1282 ND4L+638 ! ! 

10 N3-5520/M-7220 ND3-ND4L-mtMutS 1701 ND4L+1057 ! ! 

11 N3-5520/M-8298 ND3-ND4L-mtMutS 2779 ND4L+2135 ! ! 

12 N3-5520/M-8838 ND3-ND4L-mtMutS 3319 ND4L+2675 ! ! 

13 M-8725/16S-9408 mtMutS-16S 683 259 ! ! 

14 16S-10966/N2-11765 16S-ND2 800 639 ! " 

15 N2-12177/N5-12636 ND2-ND5 458 118 ! ! 

16 N5-12973/N4-15325 ND5-ND4 2353 989 ! " 

17 N4-14818/C3-16480 ND4-COIII 1663 599 ! " 

18 N4-15725/A6-17060 ND4-COIII-ATP6 1336 COIII+226 ! " 

! Positive amplification 
     " No amplification 
     Primer codes= first part indicates the gene name and the number indicates 5' end of primer corresponding 

to S. piculiaris mitogenome (NC_018379) 
Asterisk (*) indicates bps into the gene downstream to the igr 
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3.2.4 Analysis of 5’ and 3’ ends  
Two different approaches were used for analyzing the transcript ends of mature 

mitochondrial mRNA species.  

3.2.4.1 Circularized RT-PCR (cRT-PCR) 

Isolation of mRNA from total RNA was performed using Dynabeads® mRNA 

purification kit (Invitrogen). 100 ng of polyA-selected mRNA as well as total RNA 

were circularized using T4 RNA ligase I (New England Biolabs) following the 

manufacture’s protocol. The circularized RNA was purified and used for cRT-PCR and 

5’/3’ end screening using the method described by (Slomovic and Schuster, 2013). 

cDNA synthesis was performed as described above using gene-specific reverse primers 

(listed in Table 3.2). 
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3.2.4.2 Rapid amplification of cDNA ends (5’and 3’ RACE) 

First strand synthesis was performed to obtain the template for 5’ and 3’ RACE PCRs 

using SMART™ RACE cDNA Amplification Kit (CLONETECH Inc.) following the 

supplier’s protocol. Approximately ~1 µg of total RNA was used for cDNA synthesis to 

obtain two separate pools of 5’-RACE-Ready cDNA and 3’-RACE-Ready cDNA. 

RACE PCR reactions were the performed using different gene-specific primers and 

adaptors primers as per the supplier’s instructions (see Table 3.2).  

3.2.5 Cloning, sequencing and sequence analysis of amplified products 

Amplified products were either extracted from the 1% agarose gel or purified using 

NucleoSpin Gel and PCR Purification Kit (MACHEREY-NAGEL, Germany) and 

cloned using a TOPO TA Cloning Kit (Invitrogen). The clones obtained were PCR 

amplified, precipitated and sequenced using ABI BigDye v3.1 sequencing chemistry on 

an ABI 3730 DNA Analyzer Sequencing instrument. Sequences obtained were edited 

and aligned to the mitogenomes of S. piculiaris (NC_018379) analyzed using 

Geneious® 6.1.6 software (Biomatters) (Kearse et al., 2012). mtDNA sequences from 

the other two Sinualria species were also aligned for comparison.  

3.2.6 Detection and quantification of alternative polyadenylation (APA) 

RNase H alternative polyadenylation assay or RHAPA (Cornett and Lutz, 2014) was 

employed to determine and quantify alternative polyadenylation of the mtMutS mRNA 

transcripts. For the first time, we coupled this assay with quantitative real-time PCR 

technique (qPCR) for accurate estimation of the abundance of alternative transcripts. 

Primers used for removing the 3’ end poly(A) tail was 5’-

CATTTCGGGATGGTAGCTCC-3’, which hybridized to mtMutS mRNA between 

positions 8819-8838. This DNA-RNA hybrid was digested with the help of RNase H 

resulting in a truncated mtMutS mRNA with an associated loss of the 3’region adjacent 

to the poly(A) tail. This RNA was purified using RNA Clean & Concentrator™ kit 

(Zymo Research) and reverse transcribed using oligo(dT) as described above. A control 

RT-PCR using primers binding to the adjacent regions of the RNase H digested site 

ensured the successful digestion of the 3’ including and poly(A) tail of mature, full 

mRNA species. This was followed by a quantitative real-time PCR (qPCR) assay to 

determine abundance-levels of transcript upstream and downstream of digested mRNA 

region. Primer details can be found in Appendix 3.6.1.   
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3.2.7 Strand-Specific RT-PCR  
Strand-specific RT-PCR was performed as described previously (Ho et al., 2010) for the 

detection of antisense RNA transcripts of the ATP6 gene in both Sinularia species. 

Earlier, we observed one of the clones containing a RACE adaptor ligated at 3’end of 5’ 

RACE-ready cDNA suggesting the presence of antisense transcript for ATP6 gene, also 

noted previously in porcine brain (Michel et al., 2000). Two antisense strand-specific 

primers were used for cDNA synthesis (AAR1. 5’-TTACTCCTACTGCCCATATTG-

3’ and AAR2. 5’-TGTAGTTCGGATAATTGGGGG-3’), whereas sense strand specific 

primer (SAF. 5’-TTAGCAGCCAATCGAACACC-3’) as well as an anchored oligo(dT) 

employed separately for first strand synthesis. For RT-PCR, AAR1-SAF primer pair 

was used.  

3.2.8 Experimental treatment 
Three coral nubbins of Sinularia cf. cruciata were exposed to two different stress 

conditions, such as thermal stress (temperature=34 °Cfor 6 h) and low-pH stress (pH 

=7.5 for 24 h). Primers binding to different mtMutS gene regions, like 5’ region, central 

region and 3’end region were used for qPCR to determine the relative abundance of 

transcript having these regions among mRNA variants. COI was used as proxy for 

comparison and stress-specific sets of three reference genes were used for normalization 

of gene expression during each condition (Thermal stress= RPL12+SRP54+ACTB and 

low-pH stress= ACTB+TUBB+SRP54). (For primer details see Appendix 3.6.2).  

 

3.2.9 Quantitative Real-time RT-PCR (qPCR) and data analysis 
Rotor-Gene Q 2plex system (QIAGEN) was utilized for the qPCR analysis. The KAPA 

SYBR FAST universal mastermix (Peqlab) was used in 15 µl reactions containing 1 µl 

diluted cDNA, 7.5µl 2X mastermix, and 250 to 400 nM each primer. A two-step qPCR 

including an initial denaturation step of 3 min at 95 °C followed by 40 cycles of 95 °C 

for 10 s and 60 °C for 20 s. A non-template control was always included in each assay. 

Melting curve analysis was performed at the end of each qPCR to confirm amplification 

specificity and amplification products were also checked by agarose gel electrophoresis 

after each assay.  

Fluorescence data obtained after qPCR was analyzed using LinRegPCR, which 

determines Cq values and PCR efficiencies (Ruijter et al., 2009). Using these values 
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further analysis of gene expression and statistical tests were performed using REST 

2009 (QIAGEN) as described previously (Pfaffl et al., 2002).  

 

3.3 Results 

3.3.1 RT-PCR screening for mature mRNA transcripts spanning two 

or more genes 
In the absence of tRNA punctuation marks, to determine the presence of mature 

polycistronic mRNA transcripts, we conducted RT-PCR using primers for adjacent 

protein coding gene regions, away from protein start/stop codons, and amplifying parts 

of both genes and their intergenic regions (IGRs). Amplification was observed using all 

primer pairs for all the gene-regions screened using DNA as a template. However, using 

cDNA as a PCR template, mitogenomic regions spanning two adjacent genes were 

amplified for most but not all genes, suggesting the presence of several bicistronic as 

well as tricistronic mature mRNA transcripts (see Table 3.1). The regions spanning 

COI-12S, CytB-ND6-ND3, 16S-ND2, ND5-ND4, ND4-COIII, and COII-COI did not 

yield any detectable PCR products, suggesting most other regions screened are parts of 

polycistronic transcription units. These results allowed us locate the boundaries of the 

mature mRNA transcripts.  

3.3.2 Characterization of 5’ and 3’ ends of mtMutS gene mRNA 
 5’-RACE mapped the 5’ end of the mtMutS gene upstream of ND3 start codon with a 

long 31bp 5’UTR suggesting that this gene is transcribed as a tricistronic unit together 

with ND3 and ND4L (Figure 3.1). Using several mtMutS-specific primers we were 

unable to detect any alternate 5’ end using RACE PCR. However, when cRT-PCR was 

employed, an internal mtMutS 5’end was detected at 6565-position which is 389bp 

downstream of the annotated mtMutS start codon, indicating that either a monocistronic 

mtMutS species encompassing two out of four protein domains exist, or a sign of 

existence of truncated polyadenylated transcripts. An additional single thymine, which 

is not present in the DNA sequence of any Sinularia species as determined visually by 

BLAST search, was detected at 5’ end of the message. The region flanking this start 

position is highly conserved in the genus with no substitutions in the vicinity of this 

5’end.  Hence, this thymine residue indicates the potential RNA editing of mtMutS 
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internal transcript. When sequenced with the opposite primer, a 3’end for this transcript 

was observed at a position 8962, which is 187bp upstream to the annotated stop codon. 

This transcript ended with UAA clearly followed by a polyA-tail. The stop codon, 

however, is not in frame. Hence, if or how it is used during translation as a termination 

signal remains unknown.  

 

 

Figure 3.1 The mtMutS mRNA transcript variants. 

(A) Schematic of the mtMutS gene as a tricistronic transcription unit with different poly(A) tail 
positions (not to scale) shown as dark blocks. pA=poly(A)-tail. Below is the internal transcript. 
(B) The 5’ end of ND3-ND4L-mtMutS tricistronic transcript. The 5’ UTR region is underlined. 
Shaded box depicts start codon. Arrow above indicates 11bp deletion in S. cf. cruciata 
compared to S. piculiaris. # indicates detection using both, RACE and cRT-PCR methods. (C) 
Alternatively polyadenylated mtMutS mRNAs. Position of the poly(A) start is indicated. 
 

Surprisingly, at least 6 different 3’ ends were detected for the mtMutS gene mRNA 

using both methods. These were found to end at position 6767, 6792, 6932, 8773, 8962 

(described above), and 8989 besides the annotated in-frame stop codon at position-9150 
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(Figure 3.1). These messages end in with two types of codon before polyadenylation, 

such as GAA and UAA. Only one of them (i.e., 8989) was found to complete UAA-stop 

codon by with the addition of poly(A) tail. Notably, none of these end-codons are in-

frame, as observed earlier for the internal transcript. Full mtMutS gene as per annotation 

along with different possible regions spanning from ND3 5’-end until mtMutS 3’-end 

were screened using RT-PCR confirmed the presence of all possible transcript variant 

described above (See Appendix 3.6.3 for details). 

Additionally, the gene-specific cRT-PCR yielded several unprocessed precursor RNAs 

spanning 3’mtMutS-5’16S-5’ND3 regions. Several clones containing similarly 

structured pre-mRNAs were observed suggesting a strong presence of unprocessed pre-

mRNAs/rRNAs of various lengths for this particular region. 5’RACE detected a 

truncated 16S transcript starting at a position 10684 further corroborating the presence 

of unprocessed RNA in the sample.  

3.3.3. Mapping the ends of other mitochondrial protein coding gene 

mRNAs 
Along with the mtMutS gene, the mRNA and/or mature transcriptional units of several 

other protein coding genes were mapped. The COI mRNA was start precisely at 

position 1 and has a 4bp 5’UTR upstream to this start codon. We also detected the 3’end 

this gene, which was unknown due to the absence of proper stop codon at the 3’ end of 

COI gene. The COI mRNA terminates at a position 1590 after creating a stop codon 

(UAA) by addition of the last A during polyadenylation for maturation of the mRNA. 

This suggests that the polyadenylation takes place after the first TA nucleotides (nts) 

immediately following the annotated (uncertain) 3’ end in Sinularia spp. This may also 

occur in other octocorals in which the precise COI stop codon is not known, however, 

this needs to be confirmed in others members also. This confirms that the COI is a 

monocistronic gene expressed as a single unit.  

Three different 5’ ends for the CytB mRNA were detected. One of these 5’ends initiated 

at position 3683, exactly two codons (6bp) downstream from the annotated start, 

without any 5’UTR. The other two were downstream from this 5’end at positions 3926 

and 3970. The first two messengers were detected using both the methods whereas the 

third one was observed with only with cRT-PCR.  

As suggested by the initial RT-PCR screening, the CytB mRNA was found to continue 

into the ND6 gene. Consequently, no 3’end could be detected for CytB mRNA 
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suggesting it to be a bicistronic unit co-expressed with ND6 gene. A polyadenylated 

ND6 mRNA 3’end was detected with an 8bp 3’UTR. However, as reported previously 

in other animals (Slomovic et al., 2005), the possible presence of variable length mRNA 

extending further can not be excluded, as apparent from the RT-PCR results indicating 

amplification of the region spanning ND6-ND3-ND4L mRNA.  

Solely based on cRT-PCR, the mature mRNA ends were detected for the ND2-ND5 

dicistronic unit and for the ND4 gene. Only the 5’end for the former could be detected, 

which has a single base as 5’UTR before the start codon at position 11185, not 11158 as 

it is annotated. Similarly, a 12bp 5’UTR was detected for the ND4 mRNA along with a 

44bp 3’UTR after the stop codon at position 15879.  

Initial RT-PCR results indicated the presence of a COII-ATP8-ATP6 tricistronic 

mRNA. End mapping corroborated this observation. COII mRNA was found to contain 

a 3bp 5’UTR whereas an 83bp long 3’UTR was detected after the stop codon of ATP6. 

The ends of the protein coding genes ND1 and COIII remain undermined, which most 

likely are monocistronic messages based on initial RT-PCR results. For more details on 

UTRs of the mature mt-mRNAs see Figure 3.2.  
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Figure 3.2 Mapped 5’ and 3’ ends of mature mitochondrial mRNAs. 

(A) Schematic representation of Sinularia mito-transcriptome arrangement. Arrows above show 
transcription orientation. Lines below denote the transcription units (mono- and polycistronic 
transcripts). Asterisk (*) shows the transcription units for which alternate ends were detected. 
(B) Summary of 5’ end mapping for mt-mtRNAs. The 5’ UTR regions are underlined. Shaded 
boxes depict start codons. # indicates detection using both, RACE and cRT-PCR methods. 
Nucleotide positions of the first base of start codons are indicated. (C) Summary of 3’ end 
mapping for mt-mtRNAs. The 3’ UTR regions are underlined. Colored boxes show stop codons. 
Nucleotide positions of the last base of stop codons are indicated. (D) Alternative starting 
positions of CytB-ND6 mRNA. 
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3.3.4 Detection and quantification of alternatively polyadenylated for 

mtMutS messengers 
Further confirmation of alternative polyadenylation of mtMutS messengers in the 

normal mt-mRNA pool was attained using RHAPA method. 

Real-time PCR based quantification of different variants using primer pairs binding the 

5’region (immediate downstream of the start codon), the central region and the 3’region 

(cleaved off with RNase H) (2 primer pairs each) suggested a variable expression levels 

of these parts of the mtMutS gene. The central region, which includes partial domain III 

region of mtMutS, was 6.35±0.3 fold more abundant than the 3’end whereas the 

transcript containing the 5’part was 1.8±0.15 fold higher relative to the extreme 3’end 

of the mtMutS mRNA transcript (Figure 3.3). This observation suggests the existence of 

different variants of the same gene under normal conditions in the mature mt-mRNA 

pool of octocorals.  

 

 

Figure 3.3 Relative quantification of mRNA transcript abundance. 

(A) Quantification alternatively polyadenylated mtMutS transcripts. ACTB gene served as 
reference. Comparison was performed against 3’ region cleaved-off after RNase H digestion 
(mtMutS-C1, C2). Data shows relative expression ± SD of technical triplicates for two Sinularia 
species. (B) Changes in transcript levels of mitochondrial genes COI and mtMutS (5’, central 
and 3’ part) were assessed. Normalization was performed using validated sets of three reference 
genes (Thermal stress= RPL12+SRP54+ACTB, and low-pH stress= ACTB+TUBB+SRP54). Bars 
represent the mean expression value (fold change ± SE) relative to untreated controls (26 °C or 
pH 8.2) of three biological replicates.  * Statistical significant at p < 0.05; *** Statistical 
significant at p < 0.001. 
 

We further investigated the gene expression pattern of these 3 regions under two stress 

conditions. The three primer pairs binding 5’, central and 3’ parts of mtMutS gene 

indicated comparable relative expression values during thermal stress conditions 

suggesting a balanced expression of different mtMutS variants and/or a full mRNA. 
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Slight upregulation was observed for both mtMutS as well as COI genes without any 

significance difference. On the contrary, during exposure to low-pH conditions, the 

5’end portion was detected as significantly upregulated (1.3±0.1; p<0.001) indicating its 

preferential expression. The COI gene was also found to be significantly downregulated 

under this condition (-3.6±0.6; p<0.05). Surprisingly, the central and 3’end regions did 

not show any significant differential expression and were slightly downregulated (-1.35 

and -2.1 fold, respectively) as opposed to the 5’part of the gene (Figure 3.3), indicating 

the higher presence of alternatively polyadenylated mtMutS mRNAs coding for only the 

first protein domain.  

3.3.5 Antisense ATP6 mRNA  
We detected the presence of an antisense mRNA transcript complementary to ATP6 

gene coding strand using 5’RACE approach. Five different starting points were 

determined for these antisense transcripts at positions 16849, 16891, 16895, 16896, and 

16932. The reverse primer used for PCR was specific to the antisense strand and bind 

the heavy strand at the position 17060, which indicates that this antisense transcript is 

longer than 200bp, polyadenylated (i.e. reverse transcribed using anchored oligo-dT), 

and lacking open reading frames (ORFs). Therefore, this RNA species can be 

categorized as long noncoding RNA (lncRNA) (Rinn and Chang, 2012).  

Antisense strand-specific RT-PCR as described earlier resulted in the successful 

amplification of an internal region after strand-specific reverse transcription further 

corroborating the presence of the ATP6 lncRNA (lncATP6).  

3.4 Discussion 
Using different experimental approaches we describe, for the first time, the complex 

mitogenome expression patterns present in early branching animals. The precise ends of 

most mature mt-mRNAs were assessed for the first time in octocorals. Most mature 

protein-coding mRNAs detected were bicistronic or tricistronic units, with the exception 

of COI, ND4 and putatively, ND1 and COIII. The occurrence of polycistronic mature 

mRNAs potentially stems from the paucity of tRNA punctuation marks in octocoral 

mitogenome. The majority of mature transcription units were detected to possess 5’ and 

3’ UTRs, contrary to what is known for bilterians in general. Moreover, occurrence of 

alternative polyadenylation (APA) of the mtMutS mRNA transcript, long non-coding 

antisense ATP6 RNA (lncATP6) and unprocessed mRNA intermediates indicate very 
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distinctive ways of mitogenomes expression. These novel features detected provide a 

glimpse into a unique and complex mitochondrial transcription mechanism for early 

branching members metazoan.  

Evolution of specific mechanisms for expression of the mitogenome was necessitated 

by the reduced gene repertoire and compact nature of this crucial cell organelle with its 

own genome evolved from the α-proteobacterium-like ancestor (Gray, 1993; Dyall et 

al., 2004). In cnidarians, which harbor only 16±2 genes contrary to a typical animal 

mitogenome containing 37 genes in total, reduction in gene content, but not the genome 

size, is remarkable to some extent. Our understanding of the mitogenome 

transcription/expression patterns and regulation is currently limited to a handful of 

bilaterian members of the animal kingdom (Stewart and Beckenbach, 2009; Coucheron 

et al., 2011; Mercer et al., 2011). However, such attempts are lacking for non-

bilaterians. Information on the mitochondrial transcriptomes of three sea anemones 

(Emblem et al., 2014) have added to our understanding the potential complexity of 

mitochondrial transcription and highlighted the need for a better understanding of the 

evolutionary processes leading to different strategies of mitochondrial transcription and 

regulation.  

Processing of mt-tRNAs interspersed in the mitogenomes of animals holds a key to 

liberating protein-coding mRNAs from polycistronic precursors leading to their 

maturation and availability for translation (Ojala et al., 1981). Most studies so far have 

reported that majority of processing events adhere to tRNA punctuation model except 

for the occurrence bicistronic transcription units like ATP8-ATP6 and ND4L-ND4 

apparently due to overlapping ORFs in animals (Stewart and Beckenbach, 2009; 

Temperley et al., 2010; Coucheron et al., 2011). In cnidarians, however, presence of 

only one or two tRNA genes in the mitogenomes point towards the utilization of an 

unknown mechanism of mRNA maturation or existence of a different post-

transcriptional regulatory system for mitochondrial gene expression. Our observation of 

4 polycistronic units comprising 10 (out of 14) different genes is staggering, and 

suggests a potentially unique mt-mRNA processing as well as gene expression 

mechanism in octocorals. Our findings may also apply to other early branching animals 

with a paucity of mt-tRNA genes.  

The untranslated regions (UTRs) flanking the mature mRNA transcripts play a crucial 

role in post-transcriptional regulation of gene expression (Mignone et al., 2002). 

However, in the case of mitogenomes, the mature mRNA transcripts are generally 



G. G. Shimpi: Molecular Biology of Octocoral Mitochondria 
 

 86 

devoid of, or having only few (≤3) nucleotides as UTRs (Temperley et al., 2010). The 

presence of 5’UTRs for transcriptional units such as COI, ND3-ND4L-mtMutS, ND2-

ND5, ND4, and COII-ATP8-ATP6 mRNA, as well as, 3’UTRs for CytB-ND6, ND4, 

COII-ATP8-ATP6 suggests a putative role of these UTRs in tight regulation of these 

genes and represent, to our knowledge, the first report of the presence of long UTRs in 

mature mt-mRNAs.  

Different studies have detected at least five diverse mitogenome arrangements in 

octocorals all of which appear to preserve four conserved gene blocks and the inversion 

or translocation of one these blocks led to five mitogenome arrangements (Brockman 

and McFadden, 2012; Figueroa and Baco, 2015). It has been suggested that the 

occurrence of the genes in conserved clusters is selectively advantageous, for instance, 

as the genes can be co-transcribed and processed in a similar way (Dowton and 

Campbell, 2001; Brockman and McFadden, 2012). However, the evidence on selection 

favoring a particular mitochondria gene order is sparse in cnidarians, as they exhibit 

high diversity of mitogenome arrangements with no sharing of gene boundaries, 

particularly in subclass Hexacorallia (Brockman and McFadden, 2012). Our results 

indicate that the transcriptional units possess genes from two distinct adjacent gene 

blocks (e.g. the polycistronic transcription units CytB-ND6 and ND3-ND4L-mtMutS), 

contradicting the hypothesis of co-transcription as a selective force in keeping these 

genes together in conserved blocks in the mitochondria of octocorals. Moreover, it also 

indicates that different mitogenome rearrangements detected so far in octocorals may 

have different mature mt-mRNA transcript structures and transcription patterns, 

highlighting the potential complexity of mitochondrial transcription among non-

bilaterians, and the need for research in order to better understand mitochondrial 

evolution in these animal groups.  

The mtMutS gene present in octocorals is thought to underpin several peculiar processes 

not present in typical animal mitochondria. The presence of such a large gene seemingly 

uninvolved in energy production, within a streamlined organelle genome dedicated to 

this task is mysterious as well as interesting. The second largest gene in Sinularia 

piculiaris mitogenome, ND5 1818bp long is known to be the most tightly regulated 

protein-coding gene in other animals (Bai et al., 2000). Thus it could be hypothesized 

that the transcription of mtMutS is tightly regulated as well. Consistent with this 

hypothesis we observed distinct mtMutS variants resulting from the use of different 

polyadenylation site internal to the full mtMutS gene. It clearly indicates the presence of 
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alternative polyadenylation (APA) occurring in octocoral mitochondria. Primary 

function of RNA polyadenylation in plants mitochondria and bacteria is to promote 

RNA degradation (Mohanty and Kushner, 2011), whereas in mammals the poly(A) tails 

provide stability to the mature mRNA and create the stop codon, if it is not complete 

(Nagaike et al., 2008). Polyadenylated truncated transcripts destined to degradation 

have also been detected in mammals (Slomovic et al., 2005); however, the abundance of 

such messengers is low and they are generally difficult to detect using standard 

methods. All the mtMutS variants reported here were readily detectable indicating their 

potential functional role.  

Interestingly, the transcripts detected were differentially expressed. Under normal 

conditions a transcript variant encompassing Domain III and V of mtMutS (position 

6565-8962) was more abundant than either the 5’or 3’end regions. These domains are 

central to the structure of the mutS gene (Domain III) and display ATPase functionality 

(Domain V) (Obmolova et al., 2000; Bilewitch and Degnan, 2011). Under low-pH 

conditions, stringent upregulation (p < 0.001) was detected only for the 5’end 

mRNAvariant; whereas, downregulation was found for the central and 3’regions. The 

Domain I, encoded in the 5’-end variants, possess the conserved residues responsible 

for mismatch recognition (Bilewitch and Degnan, 2011). The overexpression of this 

variation may be interpreted as a necessity for increased mismatch recognition in the 

mitochondria. Exposure to thermal stress, however, did not result in differential 

expression. All mRNA variants were expressed in equal abundance or there was no 

alternative polyadenylation. The method used doesn’t allow distinguishing between 

these possibilities. Alternative polyadenylation plays a crucial role in regulating the 

gene expression (Lutz and Moreira, 2011). Hence, the occurrence of alternative 

polyadenylation for the mtMuts gene mRNA is a novel finding in octocoral 

mitochondria serving a putative regulatory function for mtMutS gene expression. The 

precise start and end points of each mtMutS mRNA variant deserved to be determined to 

better understand how the start-stop codons are chosen during translation. Additionally, 

protein studies need to be conducted in order to corroborate the localization and 

functionality of these transcripts and their products.   

Long noncoding RNAs (lncRNAs) have been recently described in the mitochondria of 

mammals, primarily for ND5, ND6 and CytB, and are shown to interact with their 

mRNA complement, which may have roles in stabilizing the mRNA and/or blocking 

the access of mitochondrial ribosome, thereby inhibiting translation (Rackham et al., 
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2011). The presence of a lncRNA transcript for ATP6 (lncATP6) in Sinularia 

mitochondria is striking, and indicated that the regulation of mitochondrial expression 

using lncRNAs evolved early in Metazoa and is ancient. 

The dependency of mitochondrial biogenesis on the nuclear genome is evident, as more 

than 99% of mitochondrial proteome is nuclear DNA-encoded including mt-tRNAs, 

which are imported in mitochondria after their expression in the cytosol (Salinas-Giege 

et al., 2015). Loss of mt-tRNAs in cnidarians is suggested to be genuine and occurred in 

association with loss of nuclear-encoded mt-aminoacyl-tRNA synthetases (Haen et al., 

2010). This scarcity of mt-tRNAs in octocoral mitochondria, thus, indicates a greater 

dependency on nuclear encoded tRNAs than for bilaterian mitochondria. However, the 

retention of a single mt-tRNA for formyl-methionine suggests the bacteria-like 

characteristic and reflects its very specific mitochondrial function. Nevertheless, the 

general paucity of tRNAs and varied rearrangements in mitogenomes indicate a highly 

complex and perhaps a unique system for mRNA processing in cnidarian mitochondria.  

3.5 Conclusions 
Recent studies on the human mitochondrial transcriptome revealed an unexpected 

complexity in expression, processing, and regulation of mt-mRNAs (Mercer et al., 

2011; Rackham et al., 2012). Our results shed first light on a potentially more complex 

nature of these processes in the mitochondria of early branching animals by virtue of 

their “special" and diverse mitogenomes. Overall, mitochondrial mRNA processing in 

octocorals appears to be drastically different from bilaterians likely due to the lack of 

tRNAs as punctuation marks. The presence of polycistronic mature mRNAs for the 

majority of genes agrees with this hypothesis. The occurrence of alternately 

polyadenylated transcripts for the mtMutS gene, the existence of 5’ and 3’ UTRs, and 

the presence of lncATP6 transcripts are additional features highlighting the complexity 

of the post-transcriptional modifications used by early branching metazoans. More 

research will contribute to better understand the mitobiology of early branching animals 

from functional perspective. This will certainly only increase our knowledge on the 

evolutionary innovation that shaped the evolution of these organisms.  
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3.6 Appendix  
Appendix 3.6.1 qPCR primers used for quantification of alternative transcripts. 

Appendix 3.6.2 Quantitative real-time PCR (qPCR) primers for gene expression.  

Appendix 3.6.3. Positive PCR amplification of cDNA using primers binding different 

regions of ND3-ND4L-mtMutS transcription units. 

Appendix 3.6.4 Sinularia cf. cruciata mitogenome sequencing results. 
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Appendix 3.6.1 qPCR primers used for quantification of alternative transcripts. 

 

No.  Gene Gene 
Name Primer Sequences (5' to 3') 

Amplicon 
Size (bp) 

A. Reference gene primers 
 

1 ACTB β-Actin 
for: CCAAGAGCTGTGTTCCCTTC 

107 
rev: CTTTTGCTCTGGGCTTCGT 

B. The mtMutS gene primers 
 

1 mtMutS-A1 6284-6402 
for: GCATGAGCCCGATACTTCTAGT 

119 
rev: ACGAAGCAACTTGTTCAATGG 

2 mtMutS-A2 6284-6740 
for: GCATGAGCCCGATACTTCTAGT 

457 
rev: CCGGGTTACTTTGTCCCTGTCCG 

3 mtMutS-B1 6676-6961 for: CAGCCATGAATGGGCATAG 286 
rev: TSGAGCAAAAGCCACTCC 

4 mtMutS-B2 6676-6801 for: CAGCCATGAATGGGCATAG 126 
rev: TTAAACCTACCCCCGAGTCC 

5 mtMutS-C1 9014-9095 for: GGTGCCAGTTTGTTCAAGC 82 
rev: ATGTCCTGGGGTTCTCTTCC 

6 mtMutS-C2 9014-9149 for: GGTGCCAGTTTGTTCAAGC 136 
rev: TTACTCAGTTCCACTGTC 

 

The nucleotide positions indicated for different mtMutS primers are as per S. 
piculiaris (NC_018379) mitogenome 
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Appendix 3.6.2 Quantitative real-time PCR (qPCR) primers for gene expression.  

 

No.  Gene Gene Name Primer Sequences (5' to 3') 
Amplicon 
Size (bp) 

A. Reference genes primers 
 

1 ACTB β-Actin 
for: CCAAGAGCTGTGTTCCCTTC 

107 
rev: CTTTTGCTCTGGGCTTCGT 

2 TUBB β-Tubulin 
for: ATGACATCTGTTTCCGTACCC 

115 
rev: AACTGACCAGGGAATCTCAAGC 

3 RPL12 Ribosomal protein 
L12 

for: GCTAAAGCRACTCAGGATTGG 
142 

rev: CTTACGATCCCTTGSTGGTTC 

4 SRP54 Signal recognition 
partical 54 

for: TGGATCCTGTCATCATTGC 
184 

rev: TGCCCAATAGTGGCATCCAT 

B. Target gene primers 
 

1 COI Cytochrome c 
oxidase subunit 1 

for: ACGGCTTGATACACCTATGTTGTGG 
200 

rev: TACCGAACCAATAGTAGTATCCTCC 

2 mtMutS-5’ 6284-6402 
for: GCATGAGCCCGATACTTCTAGT 

119 
rev: ACGAAGCAACTTGTTCAATGG 

3 mtMutS-
Central 8726-8838 for: GCCCTCTCAATATGGCATTG 113 

rev: CACTTCGGGATGGTAACTCC 

4 mtMutS-3’ 9014-9149 for: GGTGCCAGTTTGTTCAAGC 136 
rev: TTACTCAGTTCCACTGTC 

 

The nucleotide positions indicated for different mtMutS primers are as per S. piculiaris 
(NC_018379) mitogenome.  
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Appendix 3.6.3. Positive PCR amplification of cDNA using primers binding 

different regions of ND3-ND4L-mtMutS transcription units. 

 

Sr. 
No.  

Primer Pair 
Forward/Reverse Region Position Length 

(bp) 

1 M-6177/M-9150 Complete mtMutS/Start-Stop codons 6177-9149 2972 
2 N4L-6092/M-8838 ND4L-mtMutS 6092-8838 2746 
3 N3-5520/M-7220 ND3-ND4L-mtMutS 5520-7220 1700 
4 N3-5520/M-6801 ND3-ND4L-mtMutS 5520-6801 1281 
* Primers Sequence (5'---> 3') 

  1 M-6177 ATGAATCAGATACCTATGC 
  2 M-9150 TTACTCAGTTCCACTGTC 
  3 N4L-6092 GCCATTATGGTTAACTATTAC 
  4 M-8838 CACTTCGGGATGGTAACTCC 
  5 N3-5520 ACTACTTATCGTCAGCGGAAC 
  6 M-7220 AGGCAATAAGTCCAATTGATATTCTGCTCG 

7 M-6801 TTAAGCCAACCCCCGAGTCC 
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Appendix 3.6.4 Sinularia cf. cruciata mitogenome sequencing results. 

 
Figure 3.6.4.A The complete mitogenome of Sinularia cf. cruciata and genomic comparisons with 

Sinularia peculiaris. A:  Graphical view of the mitochondrial genome of Sinularia cf. cruciata with 

genome size and gene annotations. GC content is shown in black, GC skew is plotted for the entire 

sequence in green (GC skew +) and purple (GC skew -). The inner pink ring shows the BLAST hit 

detected by the blastn search against Sinularia peculiaris mitogenome. B: Sliding window analysis of the 

complete mitogenomes of Sinularia cf. cruciata and Sinularia peculiaris. Nucleotide diversity across the 

genome is shown by the black line in a window of 500 bp (25 bp steps). Grey panels show the most 

variable regions across the two Sinularia species.   
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Table 3.6.4.B Mitochondrial genome organization of Sinularia cf. cruciata 

Species Gene Feature Position Codon Strand 
Length 
(bp) IGRs 

!! !!   Start Stop Start Stop       

Sinularia 
cf. 
cruciata 

COI CDS 1 1613 ATG  TA H 1613 135 
12S rRNA 1749 2673   H 925 4 
NDI CDS 2678 3649 ATG TAG H 972 27 
CytB CDS 3677 4843 ATG TAA H 1167 30 
ND6 CDS 4874 5431 ATG TAG H 558 44 
ND3 CDS 5476 5829 ATG TAG H 354 19 
ND4L CDS 5849 6142 ATG TAA H 294 13 
mtMutS CDS 6156 9137 ATG TAA H 2982 9 
16S rRNA 9147 11114   H 1968 31 
ND2 CDS 11146 12519 ATG TAG H 1374 -13 
ND5 CDS 12507 14324 ATG TAA H 1818 97 
ND4 CDS 14422 15870 ATG TAA H 1449 56 
tRNA-Met tRNA 15927 15997   L 71 39 
COIII CDS 16037 16822 ATG TAG L 786 64 
ATP6 CDS 16887 17594 ATG TAA L 708 24 
ATP8 CDS 17619 17834 ATG TAA L 216 22 
COII CDS 17857 18618 ATG TAA L 762 112 
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Chapter 4 

Alternate Strategies for the Construction of DNA 

Heteroduplex Plasmid Substrates for in vitro Mismatch 

Repair Assays 

 

4.1 Introduction 

Maintaining integrity of the genetic material is a fundamental cellular process. And cells 

exhibit a vast repertoire of DNA repair mechanisms. Mismatch repair (MMR) is a 

pivotal DNA repair mechanism that acts upon wrongly incorporated (mismatching) 

bases during DNA replication increasing replication fidelity by 20-400-fold (Marinus, 

2012). Moreover, it aids in correcting mismatches arising from other biological sources 

and helps to avoid illegitimate recombination and their detrimental effects on the cell 

and the organism (Jiricny, 2013). Since MMR malfunction is linked to development of 

various types of cancers (Modrich and Lahue, 1996; Hsieh and Yamane, 2008), it is 

important to gain a precise understanding of the pathways leading to mismatch 

correction, and of the proteins involved and their activities in vitro as well as in vivo.  

In vitro DNA mismatch repair assays greatly facilitate the rapid assessment of MMR 

activity detection and/or its deficiency in various cellular/organellar extracts (Thomas et 

al., 1995; Corrette-Bennett and Lahue, 1999; Mason et al., 2003). MMR assay utilizes 

an overlapping restriction endonuclease site with a mismatch, which upon repair 

restores either of the sites available to be cleaved by one of the restriction enzymes, thus 

indicating a mismatch repair. The prerequisite for these assays is the availability of 

appropriate amounts of substrate containing defined mismatched lesions. Several 

methods have been described so far to prepare different heteroduplex substrates for 

MMR assays. In general, they involve the annealing of a single-stranded f1 phage DNA 

to an identical double stranded plasmid containing a single base mutation (Thomas et 

al., 1995; Corrette-Bennett and Lahue, 1999). This requires access to such specialized 

phages bearing a mismatch on a complementary strand of double stranded DNA 
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plasmids, their culturing and maintaining.  This is generally technically demanding and 

consuming, involving multiple preparative steps, and may lead to low starting substrate 

yield. Another difficulty of using phage DNA is the lack of unique restriction sites 

limiting its utility. These limitations reduce the usability MMR assays to only 

specialized laboratories. Other methods involve the preparation of plasmid variants 

using several site-directed mutagenesis steps and the treatment of each batch of 

substrate with nicking endonucleases followed by a chromatographic and/or streptavidin 

bead-based purifications (Tsai-Wu et al., 1999; Wang and Hays, 2000). Consequently, 

difficulties are commonplace during the preparation of specific MMR substrates 

containing a single defined lesion and a single nick acting as a strand discrimination 

signal (Larson et al., 2002). Yet these substrates are essential to assess the actual 

biological response of MMR proteins. 

Here we describe two simple and efficient strategies for the producing large quantities 

of G/T and A/C heteroduplex substrates with high purity and reproducibility for in vitro 

MMR assays. We used a commonly available and easily accessible high copy number 

plasmid pGEM-T with multiple cloning sites (MCS), for the development of these 

methods. These strategies can be used in parallel providing methodological choice and 

involve the use of routine standard laboratory methods and reagents (e.g. restriction 

enzymes). The first strategy is modified from (Wang and Hays, 2000) and utilizes the 

nicking endonucleases; whereas the second strategy involves the use of “bacterial 

packaging cell lines” which secrete the phagemid DNA in culture medium without the 

need of helper phage, producing large amounts of ssDNA which can later be annealed 

to linear double-stranded plasmid DNA to obtain heteroduplex substrates. Both these 

strategies are integrated and can be utilized interchangeably. In addition, these methods 

will help to increase accessibility of MMR assays to more laboratories. Although, the 

strategies described here lead to the production of G/T and A/C mismatches, they can be 

easily adapted to produce various kinds of substrates with different lesions such as 

base/base mismatches, insertion/deletion substrates, and substrates with DNA loops, 

among others. Hence, these strategies are highly flexible to modifications and can be 

easily adapted according to specific requirements.  
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4.2 Materials 

4.2.1 Reagents, and Enzymes  

Restriction enzymes SacI, SmaI, NdeI, NcoI, nicking endonucleases Nt.BbvCI, 

Nb.BbvCI Nt.BspQI as well as special enzymes such as Klenow DNA polymerase, Calf 

Intestinal Alkaline Phosphatase (CIP), and T4 polynucleotide kinase were purchased 

from New England Biolabs (USA). T4 DNA ligase was acquired from Promega (USA). 

The Plasmid-safe DNase was purchased from Epicentre biotechnologies (USA). All the 

other chemicals were from Sigma-Aldrich (USA). 

4.2.2 Kits, Plasmids and Oligonucleotides 

Plasmid extraction was performed using peqGOLD plasmid miniprep kit II (Peqlab). 

NucleoSpin Gel and PCR clean-up kit (Macherey-Nagel, Germany) was utilized for 

enzymatic reaction cleanup. The pGEM-T easy vector was obtained from Promega 

(USA).  The M13cp plasmid used for preparation of bacterial packaging cell line was 

kindly provided by Dr. A. R. M. Bradbury (Chasteen et al., 2006). Four 43mer 

oligonucleotides were synthesized by Metabion (Germany) (Figure 4.1). 

 

Figure 4.1 Synthetic oligonucleotides used and their features.  

(A) The synthetic 43mer oligonucleotide pairs are shown, which upon annealing form a homoduplex with 

SmaI and SacI site each, used in present study. The nicking endonuclease sites and sticky overhangs are 

also depicted. The nucleotides forming a heteroduplex later are shown in small-bold-italic letters. 

(B) Other overlapping restriction site combinations that can be used in current setup instead of SmaI-SacI 

(* indicates that the 6th or 7th nucleotide downstream of the 5’end of synthetic oligos need to be changed 

in order to use XbaI-BamHI combination).  
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4.3 Results 

4.3.1 Preparation of the parent plasmid 

The pGEM-T plasmid was modified in order to incorporate the two desired 

oligonucleotide pairs with unique restriction sites (SmaI and SacI) each, not available in 

the plasmid. This was an optional step dependent on the choice of restriction enzyme 

sites needed for analysis. Choosing a different oligoduplex pair would eliminate the 

requirement of this step (see Figure 4.1B for alternative options). In order to delete the 

preexisting SacI site, 10 µg of the pGEM-T plasmids were double-digested overnight at 

37°C with NdeI and SacI (10U each). The resulting linear plasmid with overhangs was 

purified and treated subsequently with Klenow DNA polymerase (10U) to digest the 3’ 

overhang and to fill-in the 5’ overhang. The incubation was performed at 25°C for 25 

min, and was followed by the addition of EDTA to a final concentration of 10mM, and 

the enzyme inactivation at 75°C (20 min). This reaction resulted in removal of 10 

nucleotides in total, and eliminated the with SacI site. The resultant linear plasmid with 

blunt ends was purified, self-ligated (re-circularized) using T4 DNA ligase and used to 

transform into DH5α cells for propagation. The absence of SacI site was confirmed by 

sequencing and the resulting plasmid was referred as pGSacI-minus.  

4.3.2 Construction of separate plasmids with either SmaI or SacI sites 

each 

Synthetic oligonucleotides containing one restriction site each for SacI or SmaI were 

mixed in equal amounts, heat denatured and allowed to re-anneal slowly. This process 

yielded a 39bp double-stranded homoduplex DNA with 4bp overhangs complementary 

to the overhang generated by NcoI (see Figure 4.1A for the features of synthetic oligos). 

These re-annealed homoduplexes were phosphorylated with the help of T4 

polynucleotide kinase (NEB) following the supplier’s protocol to facilitate ligation into 

a linear plasmid with dephosphorylated overhangs (pGSacI-minus). 

The pGSacI-minus plasmid from the previous step was digested with NcoI, purified and 

treated with Calf intestinal alkaline phosphates (CIP) following the manufacture’s 

protocol, in order to avoid re-circularization of the NcoI-digested plasmid. The re-

annealed phosphorylated homoduplex DNA oligos with overhangs were then ligated to 
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the dephosphorylated pGSacI-minus using T4 DNA ligase (Promega) as per 

manufacture’s instructions. This ligation reaction was transformed into chemically 

competent DH5α cells by heat shock. The clones obtained after 15 h were PCR 

amplified and sequenced for confirmation of successful ligation of the desired 

homoduplexes into the plasmids. Two types of clones were selected for each plasmid 

construct: those having G nucleotide (nt) on the top strand (pGSM-t) or having G nt at 

the bottom strand (pGSM-b), in case of SmaI construct. Similarly, for SacI construct, 

clones obtained were pGSA-t or pGSA-b depending on the occurrence of T nt on top or 

bottom strand, respectively (Figure 4.2). A single cloning and transformation step 

yielded all four plasmids due to bidirectional cloning with sticky NcoI ends. 
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Figure 4.2 Recombinant plasmids and their usage-combinations for heteroduplex 
preparation. 

(A) Four variants of pGEM-T-derived plasmids generated by homoduplex oligonucleotide 
ligation. The nucleotides leading to formation of heteroduplex later are shown along with 
important restriction and nicking endonuclease sites.  
 
(B) Different combinations leading to formation of G/T and A/C heteroduplex are shown in the 
form of equations.  
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4.3.3 Preparation of ssDNA 

Two different strategies were applied to obtain ssDNA from either of the plasmids 

depending on the mismatch required. The first strategy depends on the use of nicking 

endonucleases treatment, followed by Exonuclease III digestion. The second strategy, 

on the other hands, exploits the phagemid properties of the original engineered 

construct, described below.  

4.3.3.1 Nicking endonuclease + Exonuclease III based mismatch repair substrate 

production 

This strategy is modified from the one described earlier by Zhou et al. (Zhou, Bisheng 

et al., 2009). Both pGSM and pGSA contain two unique nicking endonuclease sites, one 

site for Nt.BspQI is inherent to pGEMT plasmid whereas the other nicking site, 

recognized by either Nt.BbvCI or Nb.BbvCI depending on the strand needs to be 

digested, was introduced by the oligo-homoduplex ligated to it. The addition of this 

recognition site adds flexibility as it allows to nick either the top strand or the bottom 

strand. After nicking the plasmids Exonuclease III digestion results in the complete 

removal of the nicked strand. The resulting single stranded DNA can then be used for 

heteroduplex preparation as described in section 4.3.4.  

4.3.3.2 Using phagemid to produce ssDNA  

The most frequently utilized approaches for the preparation of ssDNA use phagemids, 

which are derived from the single-stranded bacteriophage M13, fd, or f1, and are 

capable of replicating as plasmids in bacterial hosts (Blondel and Thillet, 1991). The 

pGEM-T has properties of phagemid as it contains an f1 origin enabling ssDNA 

replication and packaging into phage particles. Therefore, it was chosen for the current 

study to produce ssDNA with the help of a phage display system. However, a novel 

approach was utilized to overcome the need of a helper phage. DH5α cells were 

transformed with the plasmid M13cp making them “bacterial packaging cell 

lines”(Chasteen et al., 2006). M13cp is an M13-based helper plasmid that contains the 

phage genome without its packaging signal/origin and a chloramphenicol resistant gene. 

The absence of packaging signal makes it incapable of packaging its own DNA. 

However, when a phagemid (e.g. pGSM or pGSA which contain f1 origin) is 

transformed into M13cp containing cells, they replicate the phagemid, producing 
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ssDNA. (See (Chasteen et al., 2006) for more details). The M13cp transformed cells 

were grown overnight on plates containing chloramphenicol (25 µg/mL). These M13cp-

cells were made chemically competent using a the protocol described in (Inoue et al., 

1990), and used as bacterial packaging cell lines as to produce large quantities of pure 

ssDNA from the phagemids pGSM and pGSA without the need of a helper phage.   

For this, M13cp-cells were transformed with the recombinant plasmids pGSM and 

pGSA using a heat shock transformation protocol and grown on LB agar-ampicillin-

chloramphenicol plates. Colonies from each transformation were picked and grown 

overnight in LB-ampicillin-chloramphenicol media at 30°C at 250 r.p.m. The bacterial 

cells were separated form the broth by pelleting, and the ssDNA extraction from the 

supernatant was performing using PEG-Phenol-chloroform extraction and ethanol 

precipitation as described previously (Sambrook and Russell, 2001). Simultaneously, a 

silica column-based protocol described previously was also employed (Zhou, B. et al., 

2009). Using this approach large amount of specific ssDNA was produced. The four 

plasmid/phagmid constructs described above, namely pGSM-t, pGSM-b, pGSA-t, and 

pGSA-b led to the production of circular ssDNAs containing C-, G-, A- and T-

nucleotides at the target restriction site, respectively. 

4.3.4 Heteroduplex synthesis 

To synthesize the desire heteroduplex, 1 µg ssDNA prepared as described above was 

mixed with 350ng of plasmid linearized using ScaI (or NaeI) and containing non-

complementary base at the target restriction site. Slow annealing was done after 

denaturing the mixture for 5 min at 94°C on a heat block. The annealed mixture was 

digested with plasmid-safe ATP-dependent DNase (Epicentre Biotechnologies, USA). 

This reaction leads to degradation of all linear as well as single-stranded leftover DNA 

in the reaction, leaving only the nicked heteroduplex plasmid. See Figure 4.3 for the 

schematic illustration of steps required. This plasmid was subsequently purified using 

the NucleoSpin Gel and PCR cleanup kit and was quality controlled on a 1% agarose 

gel (Figure 4.4). This procedure led to the generation of a G/T or an A/C mismatch.  



G. G. Shimpi: Molecular Biology of Octocoral Mitochondria 
 

 104 

 

 

Figure 4.3 The heteroduplex substrate preparation protocol. 

Flow chart shows the procedure for preparation of G/T and A/C heteroduplex substrates for MMR 
assay, in brief. Both methods of obtaining circular ssDNA are depicted (refer to the text for details). 
pGSM.t and pGSA.b plasmids were used for this particular procedure. Similarly the plasmids 
pGSM.b and pGSM.t (Figure 2) can also be used.  
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4.4 Conclusion 

We devised simple, convenient, reproducible, and flexible parallel strategies to prepare 

heteroduplex DNA plasmids containing varied mismatch lesions. These strategies can 

be easily adopted in any molecular biology laboratory with basic facilities, making the 

in vitro MMR assay more accessible. The bacterial packaging cell lines can be used as a 

source of ssDNA in large quantities for many other applications without the need of 

additional helper phages.       

 
 
 
 
 

Figure 4.4 Electrophoretic analysis 

1% agarose gel showing linear pGSA.b plasmid (lane 1); circular ssDNA (lane 2); heteroduplex 
plasmid after denaturation and re-annealing (lane 3) with the uppermost band is heteroduplex (with a 
nick), middle band is excess linear plasmid and lower faint band is circular ssDNA; purified G/T 
heteroduplex substrate after Plasmid-safe DNase treatment (lane 4); 2-Log DNA ladder (lane 5). (See 
supplement S1 for original image both G/T and A/C on one gel). Restriction digestion and sequencing 
was performed to confirm the presence of mismatched bases. 
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4.5 Appendix  

 

Figure 1: Gel image showing results of electrophoretic analysis of both G/T and A/C 

heteroduplexes. 

Circular ssDNA (lane1), Heteroduplex (HD) as a positive control (lane 2), G/T HD 

(upper band) after re-annealing step (lane 3), purified G/T HD (lane 4), A/C HD (upper 

band) after reannealing (lane 5), purified A/C HD (lane 6), and 2-Log DNA ladder (lane 

7). 
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Chapter 5 

A Cautionary Tale of the Octocoral Mitochondrial DNA-

encoded Mismatch Repair (mtMutS) Protein Expression in 

E. coli 
 

5.1 Introduction  
Mismatch repair (MMR) is a pivotal DNA repair mechanism dedicated to maintaining 

the genomic integrity of the nuclear DNA. MMR proteins primarily involved in 

recognizing and repairing the mismatched bases belong to the mutS homolog family (Su 

and Modrich, 1986). Moreover, mutS homologs are also capable of recognizing small 

DNA insertions/deletion loops (IDLs) along with unpaired bases (Parker and Marinus, 

1992). The mismatch correction by these MMR proteins during DNA replication 

enhances the DNA replication fidelity by several folds thereby reducing the mutation 

load (Modrich and Lahue, 1996). Hence, MMR malfunction has also been linked to the 

development of various types of cancers (Modrich and Lahue, 1996; Hsieh and 

Yamane, 2008). Several isoforms of mutS homologs have been identified in most 

eukaryotes. The core mutS homolog (MSH) family of proteins, however, is 

evolutionarily highly conserved throughout taxonomic domains, forming a 

monophyletic group among eukaryotes (Culligan et al., 2000). MMR pathways and the 

role of mutS homologs have been extensively studied in varied organisms in last 50 

years after its discovery (Fishel, 2015).  

Mitochondria, the tiny cellular powerhouses, evolved from an ancient endosymbiosis of 

a bacteria-like ancestor, harbor their own compact genomes (Gray, 1993). The integrity 

of this small but crucial genetic material is fundamental for the cellular homeostasis as 

essential proteins involved in energy production are encoded in the mitochondrial 

genomes. The reactive oxygen species (ROS) generated as a result of electron leakage 

from the electron transport chain (ETC) during oxidative phosphorylation (OXPHOS) 

tends to damage the mitochondrial DNA (mtDNA), which is highly susceptible to this 

oxidative damage due to its proximity to ETC (Richter et al., 1988). The damage and 

mutation of mtDNA has been linked to several neurodegenerative diseases, ageing and 
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cancer (Wallace, 2005; Greaves et al., 2012). Although cell possesses a myriad of repair 

mechanisms for nuclear DNA (nDNA) repair, the activity and efficacy of mitochondria 

mtDNA repair appears limited (Boesch et al., 2011; Cline, 2012; Alexeyev et al., 2013); 

despite the presence of several repair pathways including base excision repair, direct 

reversal, and double-strand break repair. Studies indicate that the occurrence of 

mismatch repair (MMR) in animal mitochondria is likely (Mason et al., 2003; de Souza-

Pinto et al., 2009), however the presence of MMR ability due to the MutS protein 

Homolog (MSH)-like protein is not known.  

Surprisingly, Octocoral mitochondrial genomes harbor an additional gene, a mutS 

bacterial homolog (Pont-Kingdon et al., 1995) not found in any other metazoan 

mitochondrial genome sequenced so far. This octocoral mitochondrial mismatch repair 

gene or mtMutS appears to be of bacterial or viral origin and likely to have been 

horizontally transferred to the mitogenome of octocorals (Bilewitch and Degnan, 2011). 

The mtMutS is known to be transcribed and bioinformatic analyses suggest a potential 

self-contained mismatch repair function due to presence of all four domains sufficient 

for this activity in the protein coding region of the gene (Bilewitch and Degnan, 2011). 

However, the exact role of mtMutS gene product remains undetermined despite that the 

gene has been speculated to be involved in the maintenance of observed low variation in 

mtDNA of octocorals (Shearer et al., 2002; Hellberg, 2006), and in mismatch as well as 

recombination repair (Bilewitch and Degnan, 2011; Brockman and McFadden, 2012). 

Therefore, the mtMutS gene product is an ideal candidate to further enhance our 

understanding of organellar MMR and to elucidate the structure, potential self-

contained functionality as well as the origin of this unique mitochondrial protein. 

Because the mtMutS is a bacterial homolog, here we strive to express mtMutS protein 

and its domains using in an E.coli bacterial expression system. We discuss several 

properties of the gene and the protein under investigation and provide precautionary 

measures and future directions for successful expression of mtMutS and similarly 

challenging proteins using E.coli expression systems. 
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5.2 Materials and methods 

5.2.1 Strains and plasmids 
The octocoral species, Sinularia cf. cruciata used in the present study was purchased 

and kept in a control, salt water, closed-circuit aquarium at Molecular Geo- & 

Paleobiology lab, LMU, Munich. The full-length mtMutS gene was initially cloned 

using pCR4-TOPO vector (Invitrogen) and Escherichia coli DH5α cells were 

transformed with the resulting plasmid. The expression vector used was pET15b, which 

after cloning was expressed in Origami™ B (DE3) cells (Novagen).  

5.2.2 Isolation of Mitochondria 
To detect the presence of protein product of mtMutS gene, mitochondrial fraction was 

extracted using the Mitochondria Isolation Kit for Tissue (Thermo-Fisher) following the 

supplier’s instructions. Intact mitochondria were observed under the fluorescent 

microscope (Lyca) at 40X magnification. Mitochondrial pellet was boiled with SDS-

PAGE sample buffer and applied to the gel. Mitochondrial proteins were analyzed on 

10% SDS-PAGE. Cytosolic fraction was used for comparison.  

5.2.3 Nucleic acid extraction and cDNA synthesis 
Genomic DNA from Sinularia cf. cruciata was isolated using NucleoSpin Tissue kit 

(Macherey-Nagel) whereas total RNA extraction was performed using TRIzol reagent 

(Invitrogen), both following the manufacture's instructions. The final RNA pellet was 

dissolved in 100 µl DEPC treated water and the contaminating DNA was eliminated 

from RNA extracts by performing a DNase treatment at 37 °C for 30 min using The 

RQ1 RNase-free DNase (Promega). The RNA was purified after inactivating the DNase 

as per manufacture's protocol. The purity of RNA was determined using a Nanodrop 

ND-1000 spectrophotometer (Thermo Fisher Scientific). RNA samples with absorbance 

at OD260/280 and OD260/230 ratio ~ 2.0 were used for reverse transcription. RNA 

integrity was also verified by 1% agarose gel electrophoresis. These extracts were 

stored at -80 °C until use. In total, ~1 µg of total RNA was reverse transcribed in 20 µl 

reactions using the ProtoScript® First Strand cDNA Synthesis Kit (NEB, Germany) 

with an anchored oligo-(dT) primer according to the manufacture's instructions. 
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5.2.4 PCR amplification, cloning and construction of recombinant 

expression vectors 
The full-length mtMutS gene was amplified from genomic DNA and cDNA using 

primers, 5’- AGACCGCATATGATGAACCAGATACCTATGC -3’ (NdeI, forward) 

and 5’- AGACCGGGATCCTTACTCAGTTCCACTGTC -3’ (BamHI, reverse). These 

primers include cloning sites for NdeI and BamHI to facilitate cloning (bold 

nucleotides). PCR and RT-PCR were performed in a 50 µl reactions using Crimson 

LongAmp™ Taq DNA polymerase (New England Biolabs) following the supplier’s 

protocol. A touchdown thermal profile consisting of 3 min denaturation at 95°C 

followed by 10 cycles of 94°C-20sec, 55°C-40sec, 72°C-3min, followed by 20 cycles at 

94°C-20sec, 55°C-40sec, 72°C-3min, and an additional extension of 5 min was used for 

PCR amplification on a Thermocycler (Biometra). The PCR products were 

subsequently checked for amplification on 1% agarose gel and were initially cloned into 

pCR4-TOPO vector using the TOPO cloning kit (Invitrogen) following the 

manufacturer’s instructions. Clones containing mtMutS gene were sequenced to verify 

the insert identity and those colonies containing the desired construct (i.e. pCR4-

mtMutS) were propagated for plasmid preparation. Clones were were overnight in LB 

Medium and the plasmid were extracted using PeqGOLD Miniprep kit II (PeqLab). 

These plasmids and the expression vector pET15b vectors digested using NdeI-BamHI 

restriction enzymes. The digestion products were visualized on 1% agarose gels and the 

bands of interest were cut and purified with the NucleoSpin Gel and PCR clean-up kit 

(Macherey-Nagel). Directional cloning was performed into NdeI-BamHI sites of 

pET15b using T4 DNA ligase (Promega). The resulting pET15b-mtMutS recombinant 

plasmids were sequenced to confirm the presence of in-frame full-length mtMutS gene 

sequence and further used for protein expression (see below).  

5.2.5 Domain isolation and cloning 
The attempts at cloning the full mtMutS gene yielded at least three variants of it. On 

close inspection of DNA sequences it was established that these clones originated from 

the amplification product of artificially deleted cDNA (see (Cocquet et al., 2006) for 

more details). One of the clones containing in-frame complete mtMutS-Domain I (N-

terminal), and homing endonuclease (HNH) domain (C-terminal) was cloned into 

pET15b for protein expression (pET15b-MD1-HE).  
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5.2.6 Protein Expression and solubilization 
The Origami B (DE3) E. coli cells were transformed with either pET15b-mtMutS or 

pET15b-MD1H expression plasmids via heat shock. The resulting colonies were 

selected on LB agar plates supplemented with Ampicillin (50 µg/ml), Kanamycin (50 

µg/ml) and Tetracycline (12.5 µg/ml). 10ml volume of LB medium containing the 

antibiotics mentioned above was inoculated with well-grown single colonies that were 

allowed to grow overnight at 37°C. 500ml LB medium containing appropriate antibiotic 

amounts was inoculated with this 10ml primary culture and allowed to grow at 37°C 

until the OD600 was 0.8. The expression of recombinant proteins was achieved by IPTG 

induction, followed by growth for 4 to 6 hours at different temperatures ranging from 

15°C to 37°C. Different IPTG concentrations ranging from 0.1mM to 1mM were tested 

for induction of expression. Bacterial cells were harvested by centrifugation (10 min at 

4800g, 4°C) and the cells pellets were stored at -80°C for further use.  

Proteins were extracted by suspending the cells in resuspension buffer (50mM 

NaH2PO4, 300mM NaCl, pH 8.0). This buffer was complemented with 8M Urea 

depending on the nature of protein expressed. Lysis was achieved using sonication on 

ice followed by centrifugation at 10,000g for 30min at 4°C. 

Affinity purification of the proteins was performed done using Protino Ni-IDA pre-

packed columns (Macherey-Nagel, Germany) following the manufacturer’s instructions 

for either soluble or insoluble protein purification, depending on the requirement. The 

proteins were eluted with the help of 250mM imidazole. Elution fractions were 

analyzed in 12% SDS-PAGEs.  

5.2.7 In silico analysis of DNA/Protein sequences 
DNA and protein sequence analysis was performed using Geneious 6.1 (Biomatters, 

New Zealand) (Kearse et al., 2012). Internal repeats in the mtMutS DNA sequence were 

detected using a web tool FAIR (Find All Internal Repeats) 

(http://bioserver1.physics.iisc.ernet.in/fair/). A web tool called Rare Codon Calculator 

(RaCC) was used for detecting the presence of rare codons in the mtMutS gene 

sequence (http://nihserver.mbi.ucla.edu/RACC/). Hydrophobicity analysis was done 

using the Kyte-Doolittle (KD) method (Kyte and Doolittle, 1982). Additionally, 

Pepcalc.com provided by Innovagen AB, (Lund, Sweden) was used for hydropathicity 

profiling.  
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5.3 Results and discussion 

5.3.1 Mitochondria preparation and localization of mtMutS analogous 

protein band 
The sequenced complete mtMutS gene in S. cf. cruciata is 2986bp long (993 amino 

acid, theoretical molecular weight = 112.99 kD). The sequences will be submitted to 

European Nucleotide Archive (ENA). The prepared mitochondrial fraction from S. cf. 

cruciata tissue, when examine by SDS-PAGE and Coomassie Brilliant Blue staining 

yielded one band approximately of the predicted similar molecular weight (Figure 

5.1A). No protein band was observed at that position in the cytosolic fraction control. 

Although this is a good candidate for the mtMutS protein, due to absence of specific 

antibodies against this protein, the identity of the observed band remained 

undetermined. 

 

 

Figure 5.1 Mitochondria isolation and the mtMutS protein localization 

(A) 10% SDS-PAGE showing the band at analogous position to octocoral mtMutS protein (112.99 kDa) 

in lane 3; lane1, Precious Plus Dual Color Protein Marker (Bio-rad, USA); lane 2, cytosolic fraction of S. 

cf. cruciata. (B) Fluorescent microscopic images showing isolated mitochondrial fraction. The red dots in 

both images represent chlorophyll from Symbiodinium sp. (broad autofluorescence), whereas the blue (in 

upper image) and the green (in lower image) exhibit the fluorescence from the octocoral mitochondrial 

NADH (excitation at 360 nm, emission at 470 nm longpass) and oxidized flavoproteins FAD++ (excitation 

at 440-490 nm, emission at 515 nm longpass), respectively.  
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Sinularia cf. cruciata is a zooxanthellate octocoral forming a mutualistic relationship 

with unicellular algal symbionts belonging to Symbiodinium sp., which resides in the 

endoderm of the host. To examine the possibility of co-isolation of symbionts during 

mitochondrial isolation and to determine the purity of preparation, we observed the 

isolated mitochondrial fraction using fluorescence microscopy. The reduced form of 

NAD+ (NADH) is a natural fluorophore present in the mitochondria, making it emit 

autofluorescence with maximal excitation and emission spectra in the region of 340 and 

450 nm, respectively (Rodrigues et al., 2011). Similarly, oxidized flavoproteins, FAD++, 

from isolated mitochondria emit autofluorescence at 520 nm with excitation spectra 

between 430-470 nm (Frostig et al., 2009). The chlorophyll pigment from 

Symbiodinium, on the other hand, also exhibit autofluorescence properties with a 

persistent broad fluorescence range making it readily detectable (Loram et al., 2007; 

Murchie and Lawson, 2013). The mitochondria isolation was partially successful, as the 

isolate was observed to contain contaminating symbionts (Figure 5.1B). Thus, despite 

our observation of a protein band of expected size of mtMutS in the mitochondrial 

fraction, the lack of specific antibodies and presence of symbionts in the extracts the 

identity of this band remains uncertain.  

5.3.2 Construction of recombinant vectors for mtMutS protein 

production 
The coding sequence of S. cf. cruciata mtMutS gene from genomic DNA and cDNA 

was successfully cloned into pET15b expression vector. This vector contains a stretch 

of six histidine (his6) residues at the N-terminal region, which co-translate with the 

protein of interest acting as a tag and facilitating purification using metal affinity 

chromatography (Figure 5.2A). Additionally, an in-frame deleted cDNA fragement 

comprising the N-terminal mutS-Domain I, and the C-terminal HNH-domain was also 

successfully cloned. The octocoral mtMutS protein is predicted to be comprised of four 

domains, out of which Domain I is suggested to have resemblance with mismatch 

recognition domains, whereas the 3’end region of the mRNA translates into an HNH 

homing endonuclease (Bilewitch and Degnan, 2011). The artificially deleted cDNAs are 

formed through intramolecular template switching during reverse transcription, if the 

RNA template contains a direct repeat of ≥8 nucleotides and result in alternate 

transcripts, which are artifacts (Cocquet et al., 2006). The mtMutS gene is nearly 3kb in 
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length, contains several such repeats of up to 14bp in length detected using an online 

tool called FAIR (Senthilkumar et al., 2010). Cloning of mtMutS gene RT-PCR product 

revealed at least 3 alternative variants of mtMutS transcripts generated during cDNA 

synthesis as explained above. A 9bp direct repeat (5’-CTCAAGTTT-3’) contributed to 

the formation of the deleted cDNA containing sequence of N-and C-terminal domains 

of mtMutS. Higher temperature of reverse transcription helped to avoid occurrence of 

deleted cDNAs, as suggested previously (Cocquet et al., 2006). The insert from the 

pCR4-TOPO plasmid was sub-cloned into pET15b resulting in pET15b-MD1-HE 

construct (Figure 5.2B).   

 

Figure 5.2 The construction of expression plasmids 

The expression plasmids constructs bearing histidine-tagged, (A) full-length mtMutS protein, 

and (B) partial mtMutS protein containing N- and C-terminal domains. Insertion sites (NdeI, 

BamHI), Ribosome binding site, 6X histidine tag, T7 promoter and terminator, and amino acid 

sequence are shown. Repeat region is indicated for the later. Region upstream of repeat is 

Domain 1 and downstream belongs to HNH domain. 
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5.3.3 Expression and purification  
The E.coli Origami B (DE3) cells transformed with the full mtMutS protein construct 

i.e., pET15b-mtMutS failed to express any detectable amount of the 112.99 kDa 

protein. Several protocols were used to obtain an expressed protein including varying 

concentrations of IPTG and different induction temperatures. However, none of the 

attempts resulted in expression of this protein in E. coli. Several studies have exploited 

similar approaches to express bacterial mutS protein with success (Biswas and Hsieh, 

1996; Takamatsu et al., 1996; Wu and Marinus, 1999; Stanislawska-Sachadyn et al., 

2003). However, despite of being a bacterial homolog protein expression was not 

possible for the octocoral mtMutS gene. Several reasons may contribute to the failure of 

protein expression (discussed by (Rosano and Ceccarelli, 2014)). In this case, the large 

size of the protein of interest, stretches of hydrophobic amino acid residues, and codon 

usage may have led to expression failure (discussed below). 

Nevertheless, protein expression of pET-MD1-HE containing two mutS domains (220 

amino acids, 25.115 kDa excluding his6-tag) was successful using the same approach. 

The expressed protein was found to be insoluble, forming inclusion bodies in E.coli 

cells. This insoluble protein was purified using a buffer containing strong denaturant 

such as Urea, and was successfully purified using metal affinity chromatography 

(Figure 5.3). In vitro refolding and solubilization was attempted under variety of 

conditions described by (Burgess, 2009), which included dialysis (Sorensen et al., 

2003), and on-column refolding (Zhu et al., 2005). However, the protein was difficult to 

refold using these established methods, and highest possible concentration of soluble 

protein from inclusion bodies was obtained using a protocol described by Santos et al. 

(2012), which is based on stepwise dialysis in the presence of glycerol (Santos et al., 

2012). Nevertheless, even using this method only a small fraction of protein (20%) 

could be solubilized. 

Disparities in codon bias are thought to be one of the major contributing factor in failure 

to achieve heterologous protein expression in E. coli host (Gustafsson et al., 2004). The 

presence of rare codons may have negative influence on protein expression capacity in 

E. coli (Tøndervik et al., 2013). Comparison of rare codon usage between octocoral 

mtMutS studied here and extensively studied E. coli mutS gene (GenBank ID: 

AP009048) suggests that the mtMutS has as many as 70 rare codons including 28 Arg 

codons, whereas E. coli comprise only 11 including 3 Arg codons. On the other hand, 
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the smaller counterpart of mtMutS gene expressed successfully here in E. coli consists 

of 19 rare including 10 Arg codons (Appendix 5.1). These observations indicate that, 

even though the octocoral mtMutS gene is a bacterial derivative, codon usage differs 

greatly. 

 

The evident difficulties in expression/solubilization of these proteins may correlate with 

the high hydrophobicity of the mtMutS protein. The hydropathy profile of the full 

mtMutS protein indicates, as expected due to its function likely in the matrix, absence 

of any possible transmembrane regions (Figure 5.4A). However, this protein possesses 

regions of high hydrophobicity. A comparison of hydrophobicity plots between the 

extensively studied E.coli mutS protein (Wu and Marinus, 1999; Lamers et al., 2000) 

and the octocoral mtMutS studied here indicates an apparent difference in amino acid 

composition and hydrophobicity profile. The mtMutS exhibited significantly higher 

local hydrophobicity compared to E.coli mutS protein (Figure 5.4B). Similarly, the 

domain fusion construct amino acid sequence also possessed residues with high 

hydrophobicity (Figure 5.4C). These differences may have cause the in failure of 

expression for the formar and the successful expression of the later.  

 

Figure 5.3 Protein expression and purification 

The 12% SDS-PAGE gel showing overexpression and purification of fused N- 
and C-terminal domains of mtMutS protein. Lane1, Precious Plus Dual Color 
Protein Marker (Bio-rad, USA); lane 2, total lysate from control E. coli 
(pET15b); lane 3, lysate from expressed partial mtMutS (pET15b-MD1H), lane 
4, Protein Marker as above; lane 5 and 6, Ni-IDA column was through; lane 7 
and 8, purified his6-tagged partial mtMutS protein (Domain 1-HNH). 
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Figure 5.4 Comparison of hydropathicity 
(A) Hydropathicity profile of E. coli mutS protein (green profile), (B) S. cf. cruciata 

mtMutS protein (red profile) where red bars above the plot indicate hydrophobic 

regions, and (C) partial expressed mtMutS protein (blue profile). Hydropathicity was 

calculated using sliding window of 17 residues for A and B and 9 residues for C. The x-

axis denotes amino acid number and y-axis present hydrophobicity value. The bars in 

the background represent PepCalc (Innovagen) hydropathy analysis. Amino are color-

coded based on their properties. The regions above zero indicate hydrophobic and 

below zero are hydrophilic stretches.  
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Typical animal mitochondria features very compact genomes, as most of their gene 

content is transferred to the nuclear genome (Boore, 1999). However, octocoral mtMutS 

is the largest gene in their mitochondrial genomes occupying as much as 16% of it. 

Their genomes are also known for high occurrence of reorganization through 

intramolecular recombination (Brockman and McFadden, 2012). Maintenance of a large 

gene such as mtMutS, which is also know to be fastest evolving gene in octocoral 

mitogenomes, points towards a strong selection pressure enabling its continuous 

presence, as speculated earlier (Bilewitch and Degnan, 2011). On the other hand, 

according to the “hydrophobicity hypothesis”, the intracellular gene transfer from 

mitochondrial to nuclear genome was assisted by reduction in local hydrophobicity of 

encoded proteins suggesting only hydrophobic protein-coding genes remained in the 

metazoan mitochondrial genome (Daley et al., 2002). On the contrary, the observed 

high hydrophobicity of mtMutS protein indicates its possible transformation from a less 

hydrophobic (bacterial homologs, such as E. coli discussed above) to a more 

hydrophobic protein for retaining its putative function in the octocoral mitochondria. 

However, more studies are needed in order to understand the presence and the role of 

this unique gene and protein in octocoral mitochondria. 

5.4 Conclusions 
We show potential presence of the mtMutS protein in the mitochondrial fraction of S. 

cf. cruciata and discuss the difficulties associated with its expression using E.coli 

expression system. Additionally, we demonstrated the presence of artificially deleted 

cDNA for mtMutS gene due to the presence of direct repeat indicating a need for 

caution during cDNA synthesis. We were unable to determine the biological function of 

mtMutS protein and its isolated domains. However, the successful expression and 

purification of a recombinant protein comprising fused N-terminal and C-terminal 

domains will help to generate polyclonal antibodies against the full protein for its 

detection in mitochondria, as well as to further understand the biological activities of 

mismatch recognition and binding of the mtMutS-Domain I and homing endonuclease 

function in future. 

5.5 Appendix  
Appendix 5.5.1 Rare Codon Analysis  (RaCC) of full-length mtMutS gene and mtMuS-

Domain I-HNH fusion protein 
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Appendix 5.5.1 Rare Codon Analysis  (RaCC) of full length mtMutS gene and 
mtMuS-Domain I-HNH fusion protein 

 

A. Full length mtMutS gene  

 
 

  

RaCC results:

Red = rare Arg codons AGG, AGA, CGA
Green = rare Leu codon CTA
Blue = rare Ile codon ATA
Orange = rare Pro codon CCC

for the following input sequence:

atg aac cag ATA cct atg caa tat ttt aat tta gcg gag gag aat tat tct aag tat ggg
tta tca gta atc caa ctt atc cag att ggt aag ttc tat gaa ctt tgg cat gag CCC gat
act tct agt aag cac CGA gta tgc tct caa gcc gag tta tta gtt gag tca tcg aca CGA
agt AGG cct tta gag gta aca tcc CCC att gaa caa gtt gct tcg tta ctt gat atg AGA
ATA ATA tca CCC agt aaa AGA tct ttg ctt caa atg gga ttt cca atc tat tcc ctt act
acc cat tta acc act ttg ttg gat aaa ggt tgg act gtt gta gtt att gat gaa tta gtc
act ggt aaa tcc ggg cca aaa caa cgc gca gta tct caa gtt tat tct cct agt tgc aat
tca gaa gat tgt tcg gaa tta tcc tat gtg tta tca att tat ttt tct caa gac aac tta
CTA ggt att act tta ttt tca gcc atg aat ggg cat agt ATA atg ttt cct gtc tct tga
acg gac AGG gac aaa gta acc cgg tta tta gtc agt tat cgt att AGA gaa ATA gta att
tgg gtg gac tcg ggg gta ggt tta aat gtt tta ATA aat aag ATA tat aat tta tta att
ggt tgg aat tta ttc CCC tct gaa cct aat gct aaa att gaa gtt atg ggg gaa gta CTA
acc aat tta ccg tgt tat tta tct tat AGG tac gaa aat aat aat aag gag tgg ctt ttg
ctt cat att tat ATA ggc act aac gca gag tgg ttg aac aaa aat tat caa aaa tat acc
ctt agt aag ATA ttt caa agt act tgg aca gaa aat gtt gat cag gca aat tta att agt
ctt tta gga gta tta caa ttt att aaa gat CGA aac cct aat ctt att aag aat ctt caa
ctt cct gag tgt tat aat tct gtt gtc agt CCC tta aat tta ATA tta tgt aat CGA gca
gaa tat caa ttg gac tta tta cct aag AGG ggg aag ttg ggt ggt tta ctt aat ctg gtt
gat tat tgt tct act gca atg ggt aaa AGA ctt ttc aaa ttt AGA ctt ctt aac cct att
aca gat tat tct gaa tta aat ctt cgt tat aag gag att gct ATA ttt aaa caa tta ctt
gac AGG aaa ATA ttt gac aat ttc gag tta aaa cac att aaa gat tta tct tct tta cat
cgt caa tgg gca ATA tgt gcc tca agt gat act acc ttg tcc cct aaa aag tta agt caa
att tac cac tct tat ttg ttt gct aat cag tta ATA agt aaa ttg ATA aat aat aaa tga
att aac att caa tta cct cct tta atc gga CCC caa CTA gaa tcg tta att gaa gaa ATA
ggt caa gtt ttt caa gta aat aat ctt tta ggt gat ttc aaa gat gta tta cag cca act
gat aat CTA act aac tta ctt gcg caa caa caa act tta AGG gcc caa ctt aca gag tgg
gcc gaa caa att tca aat att gtg ttt caa gac aca att tct att aaa gcc gaa tat ttt
aat aaa gag ggt tat gct ttt tct att tta tct aaa aag tta act aag tta gaa cat tac
atg act aat gct tct ATA tct aat aat tca att att gta ttg ggt aaa AGA gga agc cac
cat ATA att act agt cct act att cat aaa gta tca atc gaa tta aat tta tta gaa gag
caa att aat act tac gtt aaa caa act tat aac cag gaa ctt aaa AGA tta tat ttt agt
tat tct gaa ctt ttt tcg CCC tta gta aat atg att tct aaa tta gat gtt gca tta agc
ggg gct att gcg gct att aaa ttc aat tat act aaa cct tgc tta aca CTA gcg aaa CCC
caa caa acc aaa ggt ttt ATA gaa gca att aac tta CGA cac cca tta gta gaa caa tta
aac act caa gaa gaa tgt gta gct cat aat att agt tta gag gat aag gga atg tta ATA
ttc tca gta aat ggt gca ggt aaa tct act CTA ctt AGA gca atc gga atc aac gta atc
tta gct caa gca gga atg tat gta gct gca gat tca ttt aaa tta AGG cct tat aat tat
tta att act cgt att tta ggg gga gac gat ctt cat aaa ggc caa ggt act ttt gag gtc
gaa atg AGA gat ctt tca act ATA tta aag tta ggt aat tat aac agt tta ATA tta ggt
gac gaa att tgt cat gga aca gaa gtt agt tca gga aca gcg ATA ttg gct gca aca att
gaa AGA tta aca act gca caa act agt ttt gtt ctt tct act cat tta cat CGA gtt tgt
tct tta att gat tcg cca gtt cgg tgc tat cat tta tct gtt att caa caa gaa gat tcg
ggc CTA att tat gaa cgt aaa ttg aaa cct ggc cca ggg CCC tct caa tat ggc att gaa
gtt atg ggt cac ATA att aat gat aaa aaa ttt tat aac agt gct ttg aaa tac cgt aaa
ctt att aac tgg gag CTA cca tcc CGA aat gag ttt agc cct tta aca gta ttc cgc cct
tct aaa tat aat gct caa gtt ttt att gat tcg tgt gaa ATA tgc gga gct cca gca gaa
gct att cac cac att caa cct aag agt gaa ttt aaa aat caa cct gag AGA tta tgt aat
aaa aaa tta aat CGA aaa tct aac ttg gtg cca gtt tgt tca agc tgc cat tta aat att
cac AGA aat aaa atc tct att tta ggt tgg aag AGA acc cca gga cat aag aaa tta tat
tgg gtt tat ctt aat gaa tct tta gac agt gga act gag taa

RaCC Results http://nihserver.mbi.ucla.edu/RACC/racc.cgi?dna_seq=AT...

1 of 2 02/11/15 19:38
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A. Full length mtMutS gene (continued) 

 
  

The length is: 2982 nucleotides

Number of total single rare Arg codons: 28
occurring at codons:
46, 60, 62, 80, 87, 183, 196, 250, 311, 339, 350, 370, 375, 402, 514, 577, 616, 673,
713, 736, 763, 802, 818, 889, 937, 945, 962, 972

Number of tandem rare Arg codon double repeats: 0
Number of tandem rare Arg codon triple repeats: 0

Too lazy to beautify this new part right now...Results are in order for Arginine, Leucine,
Isoleucine, and Proline, respectively (delimited by numbers 1.1, 2.1, 3.1, 4.1 for singles; 1.2, 2.2,
3.2, 4.2 for doubles; etc.).
Single rare codons at positions:
46 60 62 80 87 183 196 250 311 339 350 370 375 402 514 577 616 673 713 736 763
802 818 889 937 945 962 972 (agg)|(aga)|(cga)1.1 161 240 473 503 657 711 842 886
cta2.1 4 81 82 174 198 212 215 265 284 335 395 404 425 452 456 480 566 582 667
700 768 778 795 865 914 ata3.1 39 69 84 226 331 471 627 660 854 ccc4.1

Double rare codons at positions:
(agg)|(aga)|(cga)1.2 cta2.2 82 ata3.2 ccc4.2

Triple rare codons at positions:
(agg)|(aga)|(cga)1.3 cta2.3 ata3.3 ccc4.3

Cameron Mura
cmura@ucsd.edu

RaCC Results http://nihserver.mbi.ucla.edu/RACC/racc.cgi?dna_seq=AT...

2 of 2 02/11/15 19:38
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B. mtMuS-Domain I-HNH fusion protein 

 
 

 

RaCC results:

Red = rare Arg codons AGG, AGA, CGA
Green = rare Leu codon CTA
Blue = rare Ile codon ATA
Orange = rare Pro codon CCC

for the following input sequence:

atg aac cag ATA cct atg caa tat ttt aac tta gcg gag gag aat tat tct aag tat gga
tta tca gta atc cag ctt atc cag att ggt aag ttc tat gaa ctt tgg cat gag cct gat
act tct agt aag cag CGA gca tac tct caa gcc gag tta tta atg gaa tca tcg ATA CGA
aat AGG CCC tta gaa gta aca tcc CCC att gaa caa gtt gct tcg tta ctt gat atg AGA
ATA ATA tca CCC ggt aaa AGA tcc ttg ctt caa atg ggg ttt cca atc tat tct ctt act
acc cat CTA agc acc ttg ttg gat aaa ggt tgg act gtt ATA gtt att gat gaa tta gtc
act ggt aaa tcc ggg cca aaa caa cgc gca gta tct caa gtt ttt att gat tcg tgt gaa
ATA tgc gga gct cca gca gag gct att cac cac att caa cct aag agt gaa ttt aaa agt
caa cct gaa aaa tta tgt aat AGA aaa tta aat CGA AGA tct aac ttg gtg cca gtc tgt
tca aac tgt cat tta gat att cat AGA aat aaa atc tct att tta ggt tgg aag AGA acc
cca gga cat aag aaa tta tat tgg gtt tat ctt aat gag tct tta gac agt gga act gag
taa

The length is: 663 nucleotides

Number of total single rare Arg codons: 10
occurring at codons:
46, 60, 62, 80, 87, 168, 172, 173, 189, 199

Number of tandem rare Arg codon double repeats: 1
occurring at codons:
173

Number of tandem rare Arg codon triple repeats: 0

Too lazy to beautify this new part right now...Results are in order for Arginine, Leucine,
Isoleucine, and Proline, respectively (delimited by numbers 1.1, 2.1, 3.1, 4.1 for singles; 1.2, 2.2,
3.2, 4.2 for doubles; etc.).
Single rare codons at positions:
46 60 62 80 87 168 172 173 189 199 (agg)|(aga)|(cga)1.1 103 cta2.1 4 59 81 82 114
141 ata3.1 63 69 84 ccc4.1

Double rare codons at positions:
173 (agg)|(aga)|(cga)1.2 cta2.2 82 ata3.2 ccc4.2

Triple rare codons at positions:
(agg)|(aga)|(cga)1.3 cta2.3 ata3.3 ccc4.3

Cameron Mura
cmura@ucsd.edu

RaCC Results http://nihserver.mbi.ucla.edu/RACC/racc.cgi?dna_seq=AT...

1 of 1 02/11/15 19:50
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Concluding Remarks 
 

Octocorals, by virtue of the novelties of their mitogenomes, provide unique opportunity 

to understand mitochondrial biology from the environmental as well as the evolutionary 

perspective. For this dissertation several aspects of octocoral mitochondrial biology 

were investigated, which included mtDNA repair, gene and protein expression, and 

transcription; providing first glimpse into the complexity of non-bilaterian mitochondria 

and their potential for enhancing our understanding of important molecular event 

occurring in mitochondria, oxidative stress response and their adaptive as well as 

evolutionary implications. 

Quantitative RT-PCR (qPCR) is considered a gold standard for its sensitivity and 

accuracy in gene expression profiling with some quality control. The first systematic 

validation of suitable reference genes for ocean acidification- and warming-induced 

abiotic stress related qPCR-based studies on the octocoral Sinularia cf. cruciata is 

provided. The experimental condition-dependent validity of RGs was observed, 

Moreover, a stress-dependent differential response of the octocoral HSP70 

transcriptional levels was reported; highlight their specific strategies of potential 

resilience. We expect these results will aid gene expression studies and provide the 

basis for future investigations directed towards increasing our understanding of the 

genetic mechanisms involved in octocoral stress responses and their resilience to 

adverse future ocean conditions. 

A mitochondria-centric outlook on oxidative stress response with an emphasis on the 

response of mitochondria during global climate change scenarios among corals was 

presented. MtDNA damage repair quantification and copy number dynamics revealed a 

rapid reversal of to oxidative stress induced mtDNA damage, recorded for the first time 

in non-bilaterians. We demonstrated the stress-specific gene expression strategies 

exhibited by octocorals and upregulation of mtMutS gene during acidification stress 

supporting its potential role in mtDNA repair. 

A potentially complex nature of mitochondrial mRNA processing in early branching 

metazoan was explored for the first time. The “special" and diverse mitogenome of 
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octocorals revealed drastically different patterns of mtDNA transcription from 

bilaterians, likely due to the lack of tRNAs as punctuation marks. The presence of 

polycistronic mature mRNAs for the majority of genes agrees with this hypothesis. The 

occurrence of alternately polyadenylated transcripts for the mtMutS gene, the existence 

of 5’ and 3’ UTRs, and the presence of lncATP6 transcripts are additional features 

highlighting the complexity of the post-transcriptional modifications used by early 

branching metazoans. The project contributes to better understand the mitobiology of 

early branching animals from functional perspective, which will certainly only increase 

our knowledge on the evolutionary innovation that shaped the evolution of these 

organisms. 

Simple, convenient, reproducible, and flexible parallel strategies were developed to 

prepare heteroduplex DNA plasmids containing varied mismatch lesions. These 

strategies can be easily adopted in any molecular biology laboratory with basic 

facilities, making the in vitro MMR assay more accessible. The bacterial packaging cell 

lines can be used as a source of ssDNA in large quantities for many other applications 

without the need of additional helper phages 

The potential presence of the mtMutS protein is shown in the mitochondrial fraction of 

S. cf. cruciata and the difficulties associated with its expression using E.coli expression 

system are discussed. Although, we were unable to determine the biological function of 

mtMutS protein and its isolated domains, the successful expression and purification of a 

recombinant protein comprising fused N-terminal and C-terminal domains will help to 

generate polyclonal antibodies against the full protein for its detection in mitochondria, 

as well as to further understand the biological activities of mismatch recognition and 

binding of the mtMutS-Domain I and homing endonuclease function in future. 

The project covered diverse aspect of mitochondrial biology of octocorals, revealing its 

complexity, uniqueness and importance, providing a strong foundation for future studies 

in the direction of understanding early branching metazoan mitochondria from 

mechanistic, functional and evolutionary perspectives. 
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