
Exploiting Prior Knowledge and Latent

Variable Representations for the

Statistical Modeling and Probabilistic

Querying of Large Knowledge Graphs

Denis Krompaß

München 2015

Exploiting Prior Knowledge and Latent

Variable Representations for the

Statistical Modeling and Probabilistic

Querying of Large Knowledge Graphs

Denis Krompaß

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Denis Krompaß

aus Passau

München, den 24.09.2015

Erstgutachter: Prof. Dr. Volker Tresp

Zweitgutachter: Prof. Dr. Steffen Staab

Tag der mündlichen Prüfung: 20.11.2015

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, §8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir

selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Denis Krompaß

- -

Name, Vorname

Ort, Datum Unterschrift Doktorand

Formular 3.2

Acknowledgements

During the last years, many people contributed to the successful completion of my PhD.

First of all, I want to thank my supervisor at Siemens and the Ludwig Maximilian Uni-

versity of Munich, Prof. Dr. Volker Tresp. To me, Volker is not just a supervisor but

a mentor who positively influenced my research and my personal development with his

experience and guidance. There has been no time, where he was not open for discussions

on various topics and ideas and his valuable inputs often helped me to drive my research

on these topics in the right directions. I further thank Dr. Matthias Schubert with whom I

did my first real steps in machine learning during my master thesis. He also recommended

Volker as a supervisor for my PhD and introduced me to him. I also want to thank Michal

Skubacz, Research Group Head of Knowledge Modeling and Retrieval, who funded my

PhD, conference trips, rental of cloud services and gave me the possibility to continue my

career in his group at Siemens. I am also very grateful to Prof. Steffen Staab to act as

second examiner of my thesis work.

Special thanks goes to Maximilian Nickel whose research inspired my own work to

a large extent. I also had the pleasure to work with Xueyan Jiang, Cristóbal Esteban,

Stephan Baier, Yinchong Yang, Sebnem Rusitschka and Sigurd Spieckermann and thank

them for a great working atmosphere and the sometimes long and constructive discussions.

In this regard, special thanks to Sigurd Spieckermann for in depth discussions on various

topics related to machine learning and for introducing me to Theano. Fortunately, we

will have the opportunity to continue working together in the near future as colleagues at

Siemens Corporate Technology in the research group Knowledge Modeling and Retrieval.

I especially thank my family for supporting me over all these years. To my brother

Daniel who introduced me to mathematics at the age of 5. My parents, Bertin and Marietta

who have always believed in and supported my career efforts even in very dificult times. To

viii Acknowledgements

Oma and OnkelP to which I could always turn for any matter or short and very relaxing

vacations in the “family headquarter”. My deep gratitude goes to Steffi who has always

supported me with her outstanding language and cooking skills. I also thank her for

introducing me to the many great things I was not aware of and for definitely broadening

my horizon in many aspects. Finally, I want to thank “den Jungs” for what I am sure, they

are aware of. (If not, then I will be happy to explain myself on the next annual meeting.)

Contents

1 Introduction 1

1.1 Learning in the Semantic Web . 4

1.2 Learning in Knowledge Graphs . 4

1.3 Contributions of this Work . 6

2 Knowledge Graphs 9

2.1 Knowledge-Graphs are RDF-Triplestores 12

2.1.1 RDF-Triple Structure . 13

2.1.2 Schema Concepts . 14

2.1.3 Knowledge Retrieval in Knowledge Graphs 16

2.2 Knowledge Graph Construction . 17

2.2.1 Curated Approaches . 18

2.2.2 Collaborative Approaches . 18

2.2.3 Automated Approaches on Semi-Structured Textual Data 18

2.2.4 Automated Approaches on Unstructured Textual Data 19

2.3 Popular Knowledge Graphs . 21

2.3.1 DBpedia . 21

2.3.2 Freebase . 22

2.3.3 YAGO . 23

2.4 Deficiencies in Today’s Knowledge Graph Data 24

3 Representation Learning in Knowledge Graphs 27

3.1 Representation Learning . 27

3.2 Relational Learning . 30

x CONTENTS

3.3 Statistical Modeling of Knowledge Graphs with Latent Variable Models . . 32

3.3.1 Notation . 33

3.3.2 RESCAL . 33

3.3.3 Translational Embeddings . 34

3.3.4 Google Knowledge-Vault Neural-Network 35

4 Applying Latent Variable Models to Large Knowledge Graphs 37

4.1 Latent Variable Model Complexity in Large Knowledge Graphs 38

4.2 Simulating Large Scale Conditions . 39

4.2.1 Data Sets . 40

4.2.2 Evaluation Procedure . 42

4.2.3 Implementation and Model Training Details 43

4.3 Experimental Results . 44

4.3.1 Link-Prediction Quality – TransE has Leading Performance 44

4.3.2 Optimization Time – RESCAL is Superior to Other Methods 46

4.4 Related Work . 47

4.5 Conclusion . 48

5 Exploiting Prior Knowledge On Relation-Type Semantics 51

5.1 Type-Constrained Alternating Least-Squares for RESCAL 52

5.1.1 Additional Notation . 56

5.1.2 Integrating Type-Constraints into RESCAL 57

5.1.3 Relation to Other Factorizations . 61

5.1.4 Testing the Integration of Type-Constraints in RESCAL 61

5.1.5 Conclusion . 65

5.2 Type-Constrained Stochastic Gradient Descent 65

5.2.1 Type-Constrained Triple Corruption in SGD 66

5.3 A Local Closed-World Assumption for Modeling Knowledge Graphs 67

5.3.1 Entity Grouping for RESCAL under a Local Closed-World Assumption 69

5.3.2 Link-Prediction in DBpedia with RESCAL 70

5.3.3 Conclusion . 71

5.4 Experiments – Prior Knowledge on Relation-Types is Important for Latent

Variable Models . 72

5.4.1 Type-Constraints are Essential . 74

5.4.2 Local Closed-World Assumption – Simple but Powerful 76

CONTENTS xi

5.5 Related Work . 77

5.6 Conclusion . 78

6 Ensemble Solutions for Representation Learning in Knowledge Graphs 79

6.1 Studying Complementary Effects between TransE, RESCAL and mwNN . 80

6.2 Experimental Setup . 82

6.3 Experiments – TransE, RESCAL and mwNN Learn Complementary Aspects

in Knowledge Graphs . 82

6.3.1 Type-Constrained Ensembles . 83

6.3.2 Ensembles under a Local Closed-World Assumption 84

6.4 Related Work . 85

6.5 Conclusion . 86

7 Querying Statistically Modeled Knowledge Graphs 87

7.1 Exploiting Uncertainty in Knowledge Graphs 89

7.1.1 Notation . 91

7.1.2 Probabilistic Databases . 92

7.1.3 Querying in Probabilistic Databases 95

7.2 Exploiting Latent Variable Models for Querying 99

7.2.1 Learning Compound Relations with RESCAL 102

7.2.2 Learning Compound Relations with TransE and mwNN 103

7.2.3 Numerical Advantage of Learned Compound Relation-Types 105

7.3 Evaluating the Learned Compound Relations 106

7.3.1 Experimental Setup . 106

7.3.2 Compound Relations are of Good Quality 107

7.4 Querying Factorized DBpedia-Music . 109

7.4.1 DBpedia-Music . 109

7.4.2 Experimental Setup . 109

7.4.3 Queries Used for Evaluation . 111

7.4.4 Learned Compound Relations Improve Quality of Answers 113

7.4.5 Learned Compound Relations Decrease Query Evaluation Time . . 119

7.5 Related Work . 120

7.6 Conclusion . 122

xii Contents

8 Conclusion 123

8.1 Summary . 123

8.2 Future Directions and Applications . 126

List of Figures

2.1 Result of Google Query “Angela Kasner” 10

2.2 Comparison of smart assistants . 11

2.3 Illustration of ontology described in Table 2.3 15

2.4 Graph representation of facts from Table 2.4 16

2.5 Illustration of automatic knowledge graph completion based on unstructured

textual data . 20

2.6 Distribution of facts per entity in DBpedia on a log scale. 24

5.1 Schematic of factorizing knowledge-graph data with RESCAL with and

without prior knowledge on type-constraints. 53

5.2 Exploiting type-constraints in RESCAL: Results on the Cora and DBpedia-

Music data sets . 63

5.3 Illustration of how the local closed-world assumption 68

5.4 Exploiting the local closed-world assumption in RESCAL: Results on the

DBpedia data sets . 70

7.1 Illustration of a knowledge graph before and after transforming and filtering

the extracted triples based on uncertainty 90

7.2 Evaluation of learned compound relations: AUPRC results on the Nations

data set . 108

7.3 Evaluation of learned compound relations: AUPRC results on the UMLS

data set . 108

7.4 Query evaluation times in seconds for queries Q1(x), Q2(x) and Q3(x) . . . 119

xiv List of Figures

List of Tables

2.1 Abbreviations for URIs . 12

2.2 Example of defining type-constraints with RDFS 15

2.3 Sample triples from the DBpedia ontology 15

2.4 Example triples from DBpedia on Billy Gibbons and Nickelback 16

4.1 Parameter complexity of latent variable models used in this work 38

4.2 Details on Freebase-150k, DBpedia-Music and YAGOc-195k data sets . . . 40

4.3 AUPRC and AUROC results of RESCAL, TransE and mwNN on the Freebase-

150k data set . 44

4.4 AUPRC and AUROC results of RESCAL, TransE and mwNN on the DBpedia-

Music data set . 45

4.5 AUPRC and AUROC results of RESCAL, TransE and mwNN on the YAGOc-

195k data set . 46

5.1 Details on Cora and DBpedia-Music data sets used in the experiments. . . 61

5.2 Comparison of AUPRC and AUROC result for RESCAL with and without

exploiting prior knowledge on relations types 73

5.3 Comparison of AUPRC and AUROC result for TransE with and without

exploiting prior knowledge on relations types 74

5.4 Comparison of AUPRC and AUROC result for mwNN with and without

exploiting prior knowledge on relations types 75

6.1 AUPRC results on Freebase-150k, DBpedia-Music and YAGOc-195, exploit-

ing type-constraints in the ensembles . 83

xvi Abstract

6.2 AUPRC results on Freebase-150k, DBpedia-Music and YAGOc-195, exploit-

ing the Local Closed-World Assumption in the ensembles 85

7.1 Probabilistic conditional table consisting of the the relation-type knows from

Figure 7.1a . 93

7.2 Probabilistic conditional table consisting of the relation-type friendOf from

Figure 7.1a . 95

7.3 Probabilistic conditional table consisting of the the relation-type bornIn . 98

7.4 Details on the Nations, UMLS and DBpedia-Music data sets used in the

experiments . 106

7.5 AUPRC, AUROC and LogLoss scores for evaluating Q1(x) on DBpedia-Music114

7.6 AUPRC, AUROC and LogLoss scores for evaluating Q2(x) on DBpedia-Music116

7.7 Top 25 ranked answers produced by evaluating query Q2(x) with learned

compound relations . 117

7.8 AUPRC, AUROC and LogLoss scores for evaluating Q3(x) on DBpedia-Music118

Abstract

Large knowledge graphs increasingly add great value to various applications that require

machines to recognize and understand queries and their semantics, as in search or question

answering systems. These applications include Google search, Bing search, IBM’s Wat-

son, but also smart mobile assistants as Apple’s Siri, Google Now or Microsoft’s Cortana.

Popular knowledge graphs like DBpedia, YAGO or Freebase store a broad range of facts

about the world, to a large extent derived from Wikipedia, currently the biggest web en-

cyclopedia. In addition to these freely accessible open knowledge graphs, commercial ones

have also evolved including the well-known Google Knowledge Graph or Microsoft’s Satori.

Since incompleteness and veracity of knowledge graphs are known problems, the statistical

modeling of knowledge graphs has increasingly gained attention in recent years. Some

of the leading approaches are based on latent variable models which show both excellent

predictive performance and scalability. Latent variable models learn embedding represen-

tations of domain entities and relations (representation learning). From these embeddings,

priors for every possible fact in the knowledge graph are generated which can be exploited

for data cleansing, completion or as prior knowledge to support triple extraction from un-

structured textual data as successfully demonstrated by Google’s Knowledge-Vault project.

However, large knowledge graphs impose constraints on the complexity of the latent em-

beddings learned by these models. For graphs with millions of entities and thousands of

relation-types, latent variable models are required to exploit low dimensional embeddings

for entities and relation-types to be tractable when applied to these graphs.

The work described in this thesis extends the application of latent variable models for

large knowledge graphs in three important dimensions.

First, it is shown how the integration of ontological constraints on the domain and range

of relation-types enables latent variable models to exploit latent embeddings of reduced

xviii Abstract

complexity for modeling large knowledge graphs. The integration of this prior knowledge

into the models leads to a substantial increase both in predictive performance and scala-

bility with improvements of up to 77% in link-prediction tasks. Since manually designed

domain and range constraints can be absent or fuzzy, we also propose and study an al-

ternative approach based on a local closed-world assumption, which derives domain and

range constraints from observed data without the need of prior knowledge extracted from

the curated schema of the knowledge graph. We show that such an approach also leads to

similar significant improvements in modeling quality. Further, we demonstrate that these

two types of domain and range constraints are of general value to latent variable models

by integrating and evaluating them on the current state of the art of latent variable models

represented by RESCAL, Translational Embedding, and the neural network approach used

by the recently proposed Google Knowledge Vault system.

In the second part of the thesis it is shown that the just mentioned three approaches

all perform well, but do not share many commonalities in the way they model knowl-

edge graphs. These differences can be exploited in ensemble solutions which improve the

predictive performance even further.

The third part of the thesis concerns the efficient querying of the statistically mod-

eled knowledge graphs. This thesis interprets statistically modeled knowledge graphs as

probabilistic databases, where the latent variable models define a probability distribution

for triples. From this perspective, link-prediction is equivalent to querying ground triples

which is a standard functionality of the latent variable models. For more complex querying

that involves e.g. joins and projections, the theory on probabilistic databases provides eval-

uation rules. In this thesis it is shown how the intrinsic features of latent variable models

can be combined with the theory of probabilistic databases to realize efficient probabilistic

querying of the modeled graphs.

Zusammenfassung

Wissensgraphen spielen in vielen heutigen Anwendungen wie Websuche oder automatis-

chen Frage-Antwort-Systemen eine bedeutende Rolle. Dabei werden Maschinen von Wis-

sensgraphen darin unterstützt, die Kernaspekte der Semantik von Benutzeranfragen zu

erkennen und zu verstehen. Prominente Beispiele, in denen die Integration von Wissens-

graphen einen beachtlichen Mehrwert geliefert hat, sind Googles und Microsofts Websuche

sowie IBMs Watson. Im mobilen Bereich sind vor allem auch diverse Assistenzsysteme wie

Google Now, Apple Siri und Microsoft Cortana nennenswert. Die wahrscheinlich bekan-

ntesten Wissensgraphen sind der kommerziell genutzte Google Knowledge Graph und Mi-

crosofts Satori, die vor allem die Websuche unterstützen. Freebase, DBpedia und YAGO

gehören zu den bekanntesten Beispielen für Wissensgraphen, die einen freien Zugriff auf

ihre Daten erlauben. Diese Graphen haben gemeinsam, dass sie eine breite Sammlung

von Fakten speichern, die zu einem großen Teil von Wikipedia stammen, der momentan

größten verfügbaren Web-Enzyklopädie. Trotz des großen Mehrwerts, den diese Graphen

bereits heute erbringen, gibt es einige Aspekte, die zu Einschränkungen und Problemen

bei der Anwendung führen. Zu diesen Aspekten gehören vor allem Unsicherheit und Un-

vollständigkeit der gespeicherten Fakten. Statistisch motivierte Verfahren zur Modellierung

dieser Graphen stellen einen Ansatz dar um diese Probleme zu adressieren. Dabei haben

sich insbesondere Latent Variable Models, die zum Bereich des Repräsentations-Lernens

gehören, als sehr erfolgversprechend erwiesen. Diese Modelle lernen latente Repräsenta-

tionen für Entitäten und Relationen, aus denen Schlussfolgerungen über die Richtigkeit

für jede mögliche Relation zwischen Entitäten abgeleitet werden können. Diese Schlussfol-

gerungen können dazu benutzt werden bestehende Wissensgraphen aufzubereiten, zu ver-

vollständigen oder sogar um die automatische Konstruktion von neuen Wissensgraphen

aus unstrukturierten Freitexten zu unterstützen, wie es im kürzlich veröffentlichten Google

xx Zusammenfassung

Knowledge Vault Projekt demonstriert wurde.

Die Modellierung von sehr großen Wissensgraphen stellt eine zusätzliche Herausforderung

für diese Modelle dar, da die Größe des modellierten Graphen direkten Einfluss auf die

Komplexität und damit auf die Trainingszeit der Modelle hat. Wissensgraphen mit Millio-

nen von Entitäten und Tausenden von unterschiedlichen Arten von Relationen erfordern

es, dass die Latent Variable Models mit niedrigdimensionalen latenten Repräsentationen

für Entitäten und die verschiedenen Relationen auskommen müssen.

Diese Doktorarbeit erweitert die Anwendung von Latent Variable Models auf große

Wissensgraphen in Bezug auf drei wichtige Aspekte.

Erstens, die Integration von Vorwissen über die Semantik von Relationen in Latent Vari-

able Models führt dazu, dass die Graphen mit niedrigdimensionalen latenten Repräsentatio-

nen besser modelliert werden können. Dieses Vorwissen steht in Schema-basierten Wissens-

graphen oft zur Verfügung. Dabei konnten durch die Berücksichtigung dieses Vorwissens

erhebliche Verbesserungen von bis zu 77% bei der Vorhersage von neuen Verbindungen im

Graphen erzielt werden. Zusätzlich wird ein alternativer Ansatz vorgestellt, eine Annahme

der lokalen Weltabgeschlossenheit, der angewendet werden kann wenn Vorwissen über die

Semantik von Relationen nicht verfügbar oder ungenau ist. Durch diese Annahme kann

die Semantik von Relationen auf Basis der vorhandenen Fakten im Graph abgeschätzt

werden und ist damit unabhängig von einem vorgegebenen Schema. Es wird gezeigt, dass

dieser Ansatz ebenfalls zu einer erheblichen Verbesserung in der Vorhersage-Qualität führt.

Ferner wird argumentiert, dass beide Arten des Vorwissens über die Semantik von Relatio-

nen, zum Einen extrahiert aus dem Schema des Wissensgraphen, zum Anderen abgeleitet

von der Annahme der lokalen Weltabgeschlossenheit, generell essentiell für Latent Variable

Models zur Modellierung von großen Wissensgraphen ist. Zu diesem Zweck werden beide

Arten von Vorwissen in drei Modelle, die den Stand der Technik repräsentieren integriert

und untersucht: die Latent Variable Models RESCAL, TransE und das neuronale Netz,

welches im Google Knowledge Vault Projekt verwendet wurde.

Die oben genannten drei Modelle haben durch Integration von Vorwissen eine gute

Vorhersage Qualität, modellieren jedoch den Wissensgraphen auf sehr unterschiedliche Art

und Weise. Für den zweiten Aspekt wird gezeigt, dass diese Unterschiede zwischen den

Modellen in Ensemble-Methoden ausgenutzt werden können um die Vorhersage Qualität

weiter zu verbessern.

Der dritte und letzte Aspekt, der in dieser Arbeit beschrieben wird, behandelt die ef-

fiziente Abfrage von statistisch modellierten Wissensgraphen. Zu diesem Zweck wird der

Zusammenfassung xxi

statistisch modellierte Wissensgraph als probabilistische Datenbank interpretiert, wobei

das Latent Variable Model die Wahrscheinlichkeitsverteilung der repräsentierten Fakten

definiert. Ausgehend von dieser Interpretation kann die übliche Vorhersage von neuen

Verbindungen im Graphen mit den Latent Variable Models als eine Abfrage dieser Daten-

bank nach einzelnen einfachen Fakten aufgefasst werden. Für komplexere Abfragen, die

zum Beispiel Joins oder Projektionen beinhalten können, stellt die Theorie der proba-

bilistischen Datenbank Auswertungsregeln bereit. Es wird gezeigt, wie wesentliche Eigen-

schaften der Latent Variable Models mit der Theorie der probabilistischen Datenbanken

kombiniert werden können um das effiziente Abfragen der statistisch modellierten Wissens-

graphen zu ermöglichen.

xxii Zusammenfassung

Chapter 1
Introduction

The rapidly growing Web of Data, e.g., as presented by the Semantic Web’s linked open

data cloud (LOD) [6], is providing an increasing amount of data in form of large triple

databases, also known as triple stores. The main vision of the Semantic Web is to create a

structured Web of knowledge from the content of the World Wide Web. The organization

of this structured knowledge can be distinguished in two different ways, by schema-free

or schema-based graph-based knowledge bases. In schema-free knowledge graphs open

information extraction techniques (OpenIE) [29, 30] identify entities and relations from text

documents and represent them by their surface names, that is the corresponding string from

the textual data. This approach has the advantage that no predefined vocabulary is needed,

but the entities and relation-types often lack proper disambiguation, e.g. the system might

not explicitly represent the knowledge that ”Angela Kasner” and ”Angela Merkel” refer to

the same real-world entity. In schema-based knowledge graphs on the other hand, one aims

to represent entities and relation-types by unique global identifiers. This representation

also stores the surface names of entities as literal entities, but in the best case all surface

names that refer to the same real-world entity are properly disambiguated through linking

them to the same unique global identifier. In Freebase [8] for example, ”Angela Kasner”

and ”Angela Merkel” both refer to the Freebase identifier /m/0jl0g. Additionally, all

entities and relation-types are predefined by a fixed vocabulary which is often semantically

enriched in not necessarily hierarchical ontologies. Through the semantics, entities become

real-world things like persons or cities that have various types of relationships and are often

enriched with a large amount of additional information that further describe them and

their meaning. The Freebase entity with identifier /m/0jl0g (Angela Merkel) for example

belongs to the class person and is the current chancellor of Germany, where chancellor is

2 1. Introduction

a governmental position. This kind of semantically rich description of real-world entities

adds great value to various applications such as web-search, question answering and relation

extraction. In these applications, entities and relation-types can be recognized by machines

and additional background knowledge can be acquired that better represents the intention

of the user. The Google Knowledge Graph is certainly the most famous example, where

such approach significantly improved the quality and user experience in web-search.

Today, hundreds of different knowledge graphs have emerged, which represent in part

domain specific (e.g. the Gene Ontology [2]), but also general purpose (e.g. Freebase)

knowledge. Besides academic efforts to construct large and extensive knowledge graphs

like Freebase, DBpedia [66], Nell [16] or YAGO [46], also commercially ones have evolved

including Google’s and Yahoo!’s Knowledge-Graph or Microsoft’s Satori. Based on au-

tomated knowledge extraction methods and partially also thanks to a large number of

volunteers that are contributing facts and perform quality control, some of the knowledge

graphs contain billions of facts about millions of entities, which are related by thousands

of different relation-types. Due to the effort of the linked open data initiative, entities have

been additionally interlinked between different knowledge graphs, allowing an easier inte-

gration of knowledge from different sources of the linked open data cloud. Especially the

possibility to combine different sources of information allows machines to consider more

diverse information and to better understand the notion of a given task, leading to im-

proved and new applications and services. Today, knowledge graphs power a various set of

commercial applications including well known search engines such as Google, Bing, Yahoo

or Facebooks’s Graph search, but also smart question answering systems such as the IBM

Watson [34] system, Apple’s Siri or Google Now.

Many knowledge graphs obtain semi-structured knowledge from Wikipedia1, the cur-

rently largest web encyclopedia, which solely relies on a large community of human volun-

tary contributors that add and edit knowledge to the repository. In addition, other sources

of information with varying quality and completeness are integrated, sometimes sacrificing

exhaustive quality control management to completeness.

Even though the available knowledge graphs have reached an impressive size, they still

suffer from incompleteness and contain errors. Additionally, the amount of contributions

of human volunteers is limited, decreasing with the size of the knowledge graph [101]. In

Freebase and DBpedia a vast amount of persons (71% in Freebase and 66% in DBpedia)

are missing a place of birth [25, 54]. In DBpedia 58% of the scientist do not have a fact that

1https://www.wikipedia.org/

3

describe what they are known for and 40% of the countries miss a capital. Also, information

can be outdated and facts can be false or contradicting. Due to the current size of prominent

knowledge graphs, exhaustive human reviewing of the represented knowledge has become

infeasible and resolving errors and contradictions often remains limited to popular entries

which are frequently queried. Contradicting to this observation is the common practice

that potentially erroneous new facts, which have not been edited or deleted in a period of

time, are assumed to be correct and remain in these database for a very long time until

detected [102]. In other words, it is expected that the error rate in unpopular entries is

much higher than in the more popular ones, and these errors are persistent.

Due to these problems, methods for the automatic construction of knowledge graphs

have emerged as a research field of their own. Especially approaches that evaluate the

quality of existing facts, detect errors, reason about new facts, and extract high quality

knowledge from unstructured text documents, are desired. Most of the knowledge con-

tained in e.g. Wikipedia is hidden in the free-text description of the articles and only a

small part of general information is covered by the Infoboxes which are primarily mined by

larger knowledge graphs like DBpedia, Freebase or YAGO. The NELL (Never-Ending Lan-

guage Learning) project [16] is one example, where a knowledge repository is continuously

extended through a web reading algorithm. In the Google Knowledge Vault system [25],

the relations extracted from a large corpus of unstructured text are combined with prior

knowledge mined from existing knowledge graphs (Freebase) to automatically extract high

confidence facts. This prior knowledge is in part derived by statistical models of existing

knowledge graphs that allow a large-scale evaluation of observed and unobserved facts.

The statistical modeling of large multi-labeled knowledge-graphs has increasingly gained

attention in the recent years and its application to web-scale knowledge graphs like DB-

pedia, Freebase, YAGO or the recently introduced Google Knowledge Graph, has been

shown. In contrast to traditional machine-learning approaches, where a mapping func-

tion on some outcome is learned based on a given fixed feature set, knowledge graph data

requires a relational learning approach. In the relational learning setting generally no

features are available, but the target outcome is derived from relations between entities.

Due to the absence of proper features for entities, representation learning approaches and

especially latent variable methods have been successfully applied to knowledge graph data.

These models learn latent embeddings for entities and relation-types from the data, which

provide better representations of their semantic relationships and can be interpreted as

learned latent explanatory characteristics of entities. It has been shown that latent vari-

4 1. Introduction

able models can successfully be exploited in tasks related to knowledge graph cleaning and

completion, where they predict the uncertainty of observed and unobserved facts in the

knowledge graph. Nevertheless, there has been little attention on the constraints on model

complexity that arise when these models are applied to very large knowledge graphs.

1.1 Learning in the Semantic Web

Until recently, machine learning approaches in the Semantic Web domain have mainly

targeted the ontologies of knowledge-bases on the schema level. In this context, the con-

struction and management of ontologies but also ontology evaluation, ontology refinement,

ontology evolution and especially ontology matching have been of major interest, where

these methods generate deterministic logical statements [7, 31, 39, 71, 32, 49, 65, 64, 68].

Furthermore, machine learning approaches have been exploited for ontology learning [14,

18, 19, 108, 88, 48]. Tensors have been applied to Web analysis in [52] and for ranking

predictions in the Semantic Web in [35]. An overview on mining the semantic web with

learning approaches is described in [91].

1.2 Learning in Knowledge Graphs

The central learning task in knowledge graphs is link-prediction. In link-prediction the

structure of the graph is learned to infer probabilities for ground triples that reflect if they

are likely to be part of the graph. In other words, we try to guess if present triples are

correct or if unobserved triples are likely to be true. In [104]; [82], [113] and [11] and [50]

factorization approaches were proposed for this task. Furthermore, [94] applied matrix

factorization for relation extraction in universal schemas. [82] introduced the RESCAL

model, a third-order tensor factorization, which exploits the natural representations of

triples in a third-order tensor. This model has been the target of many published works

that proposed various extensions for the original approach: [55] introduced non-negative

constraints, [81] presented a logistic factorization and [50] explicitly models the 2nd and 3rd

order interactions. [69] proposes a weighted version to allow RESCAL to deal with missing

data. The model structure of RESCAL is nowadays also often referred to as bilinear model,

bilinear layer or trigram model. [99] exploits such a bilinear layer in their neural tensor

network for knowledge graph completion. [36] combines a trigram and bigram model for

link-prediction in knowledge graphs (TATEC) and [114] pursues a similar approach but

1.2 Learning in Knowledge Graphs 5

with a reduced trigram model that is only able to model symmetric relations. In the

Google Knowledge Vault project [25] a multiway neural network architecture is exploited

to predict probabilities for ground triples that serve as priors for the automatic knowledge

graph construction from unstructured text. This model was shown to achieve a similar

prediction quality than the neural tensor network proposed by [99] even though it is of

significantly lower complexity. Furthermore, it was shown in the same work [25] that the

combination of this multiway neural network with the path ranking algorithm [60] lead

to significant improvements in link-prediction quality. Combining latent variable models

with graph feature models has also been proposed in [79] where it decreased the required

complexity of RESCAL by increasing the quality of the predictions at the same time.

In [12] the Semantic Matching Energy model (SME) is proposed, which was later refined

and improved in scalability by the translational embeddings model (TransE) [9]. Entities

and relation-types are represented by latent embedding vectors in these models and the

score of a triple is measured in terms of a distance-based similarity measure as motivated by

[74, 73]. In addition, TransE has been the target of other recent research activities. Besides

aspects of the bilinear model, [114] also exploits aspects from TransE in their proposed

framework for relationship modeling. [112] proposed TransH which improves TransE’s ca-

pability to model reflexive one-to-many, many-to-one and many-to-many relation-types by

introducing a relation-type-specific hyperplane in which the translation is performed. This

work has been further extended in [67] by introducing TransR that separates represen-

tations of entities and relation-types in different spaces; The translation is performed in

the relation-space. In [58], TransE has been shown to combine well with the approaches

proposed in [82, 25].

Besides developing new promising model structures to drive link-prediction quality,

there have also been efforts to consider prior knowledge about the data in the various

models to drive link-prediction quality. In [56, 17], it was shown that the integration of

prior knowledge about the domain and range of relation-types as provided by schema-based

knowledge graphs enables RESCAL to model the graph with significantly lower dimensional

embeddings for entities and relation-types. In addition, [56] proposed a local closed-world

assumption which can be applied to approximate the domain and range of relation-types in

case they are fuzzy or absent. Local closed-world assumptions are a known concept in the

semantic web domain [96]. Recently, the general nature of the observed benefits from the

integration of prior knowledge about relation-types into latent variable models has been

analyzed in [54]. In this work, it was demonstrated that in addition to RESCAL, also

6 1. Introduction

TransE, and the multiway neural network approach used in the Google Knowledge Vault

project benefit to a large extent from such prior knowledge.

General methods for link-prediction also include Markov-Logic-Networks [92] which

have a limited scalability and random walk algorithms like the path ranking algorithm [60].

[80] provides an extensive review on representation learning with knowledge graphs.

1.3 Contributions of this Work

In this thesis we will study latent variable models and their application to large schema-

based knowledge graphs and the made contributions can be summarized as follows:

First we will compare the state of the art of latent variable models that have been

proposed for semantic web data, RESCAL [82], Translational Embeddings [10] and the

Neural Network exploited by Google in their Google Knowledge Vault project [25] in the

context of large knowledge graphs. All three of these methods have proven to give state of

the art results in the central relational learning task, link-prediction in relational graphs [83,

56, 25, 9, 17]. Even though these approaches belong to the same class of methods, they

differ in many aspects, methodically and in their initial modeling assumptions.

Second, we will show that prior knowledge on the semantics of relation-types has to

be exploited in these models to drive prediction quality when applied to large knowledge

graphs. This prior knowledge can be extracted from the hand-curated schema of the

knowledge graphs as type-constraints on relation-types, or, as an alternative, it can be

derived directly from the data by a local closed-world assumption, which we propose in

this work. Both kind of prior knowledge lead to significant improvements in link-prediction

quality of latent variable model, but in contrast to the type-constraints, the local closed-

world assumption can also be applied on relation-types where type-constraints are absent

or fuzzy.

In our third contribution, we will show that besides efforts to improve the state of the

art latent variable models individually, these models are well suited for ensemble solutions

for link-prediction tasks. Especially the variants of these models that are of very low

complexity, meaning that they exploit a low dimensional embedding space, show great

complementary strengths.

In the context of link-prediction in knowledge graphs, latent variable models are tra-

ditionally used to generate confidence scores for every possible relation between entities

in a knowledge graph. These confidences are exploited to apply a binary classification on

1.3 Contributions of this Work 7

triples, which is the basis for complementing the graph with new triples. In our last con-

tribution, we demonstrate that statistically modeled knowledge graphs can be interpreted

as probabilistic databases. Probabilistic databases have a well founded theory which en-

ables complex querying with uncertainties through rules that goes beyond querying ground

triple. We will show how intrinsic features of the latent variable models can be combined

with the theory of probabilistic databases to enable efficient safe querying on knowledge

graphs that have been statistically modeled with latent variable models.

The afore mentioned contributions have been published in:

[58] Denis Krompaß, and Volker Tresp. Ensemble Solutions for Link-Prediction in Knowledge-

Graphs. ECML-PKDD Workshop on Linked Data for Knowledge Discovery. 2015

[54] Denis Krompaß, Stephan Baier and Volker Tresp. Type-Constrained Representation

Learning in Knowledge-Graphs. Proceedings of the 14th International Semantic Web

Conference (ISWC). 2015

[56] Denis Krompaß, Maximilian Nickel and Volker Tresp. Large-Scale Factorization of

Type-Constrained Multi-Relational Data. Proceedings of the International Confer-

ence on Data Science and Advanced Analytics (DSAA2014), 2014.

[57] Denis Krompaß, Maximilian Nickel and Volker Tresp. Querying Factorized Proba-

bilistic Triple Databases. Proceedings of the 13th International Semantic Web Con-

ference (ISWC, Best Research Paper Nominee), 2014.

This thesis is structured as follows: In the next chapter, we will give an introduction

to knowledge graphs as typically present in the Linked Open Data cloud, its representa-

tion as RDF-graph and the use and structure of ontologies in these graphs. We further

discuss general deficiencies of these knowledge graphs that motivate automatic approaches

for data-cleansing in, or construction of knowledge-graphs. In Chapter 3 we will give a

brief introduction to Representation and Relational Learning. In addition we will review

three latent variable methods that have been successfully applied to knowledge graphs and

represent the current state of the art in modeling knowledge graphs. Chapter 4 contains

our first contribution where we study the application of these methods to large knowl-

edge graphs in more detail. Chapter 5 will describe and motivate the integration of prior

knowledge on relation-types in form of type-constraints or a local closed-world assumption

into the latent variable approaches and give empirical proof that these models benefit to

a large extend from such information in link-prediction tasks. Subsequent to that we will

8 1. Introduction

motivate and discuss ensemble solutions based on state of the art latent variable models

for link-prediction to further drive prediction quality in chapter 6. Chapter 5 holds our last

contribution, where we introduce efficient probabilistic querying on knowledge-graphs that

have been statistically modeled with latent variable models. Exemplified on RESCAL,

we provide proof of concept for using latent variable models for answering probabilistic

queries, thereby we combine intrinsic features of the model and the theory of probabilistic

databases to increase efficiency. We conclude and summarize this thesis in chapter 8.

Chapter 2
Knowledge Graphs

In this chapter we will give an introduction to knowledge graphs as used in the semantic

web domain, where we focus on schema-based knowledge graphs. Thereby we will cover the

motivation behind knowledge graphs, their structure and range of applications. In addition

we will also discuss deficiencies of currently available knowledge graphs that basically

motivate the statistical modeling of them.

Knowledge graphs or graph-based knowledge bases are databases that store facts about

the world as relations between entities. Entities are real-world things or objects like per-

sons, music tracks or locations and represent the nodes in the knowledge graph. Entities

can have additional attributes that further describe them, for example height, reach and

weight in case of an entity that represents a box-champion. The links in the knowledge

graph are defined through relation-types, which define a certain type of relationship be-

tween entities. The relation-type friendOf for example relates person entities with each

other, where the relation-type bornIn relates person entities with location entities.

The content of knowledge graphs is composed of single pieces of information also referred

to as facts. These facts are often stored as subject-predicate-object triples that fully

define the graph, where each triple represents a relational tuple of entities. For example,

the fact that Albert Einstein is born in Ulm can be represented by the triple (Albert -

Einstein, bornIn, Ulm), where Albert Einstein and Ulm are the subject and object

entities, respectively, and bornIn is the predicate relation-type. From this triple, a human

can directly connect his prior knowledge with the entities and the relation-type. This prior

knowledge, acquired through experience and training allows humans to understand that the

fact is about a person and his birthplace. The human expert might further know that this

person is a famous scientist and that Ulm is a city. If we want machines closer to the human

10 2. Knowledge Graphs

Figure 2.1: Result of Google Query “Angela Kasner”

understanding of the notion of real-world entities, we have to explicitly provide them with

information that represents semantic relationships between entities. In contrast to schema-

less knowledge graphs, schema-based knowledge graphs contain additional information

that describe the semantics of entities and relation-types. The schema often contains an

ontology for this purpose that defines e.g. class hierarchies for entities, where every entity

in the graph assigned to one or several of these classes.

Referring to the previous example, we would have to represent the knowledge that

the entity Albert Einstein is an instance of the class famous scientist and famous -

scientist is a subclass of person in the knowledge graph or its schema. This kind of

semantic knowledge has become very useful for areas related but not limited to search

11

Figure 2.2: Mobile smart assistants answering the question about the height of the Eiffel
Tower. Image was taken from [109]

and question answering, as successfully demonstrated by Google’s search engine or IBM’s

Watson system. As an example, consider the question “who is the most famous scientist?”.

If we assume that a machine can understand that this question is about a person (e.g.

through the keyword “who”), the search space can already be restricted to person entities

represented in the knowledge graph.

Further, the knowledge graph can be exploited to aggregate more information than

given by a query to guess on the intentions of the users. Assuming that the search query

“Angela Kasner” is entered in a search application (e.g Google), the search engine will

recognize that the query is about Angela Merkel, the current chancellor of Germany, since

it automatically exploited information from the knowledge graph (Figure 2.1).1 As a con-

sequence, the combination of Angela Kasner and Angela Merkel results in highest ranked

documents that are discussing the past of Angela Merkel. This can be interpreted as

the attempt of the machine to guess on the intention of the user, which in this case was

interpreted as the interest in getting biographic information on Angela Merkel.

In the domain of natural language processing, the information provided by knowledge

graphs is exploited for word-sense disambiguation, entity resolution and relation extraction.

1The Google Knowledge Graph is in part powered by Freebase [8] which e.g. links “Angela Kasner”
and “Angela Merkel” to the same Freebase id m/0jl0g by the relation-type alias (which is also the basis
for the “Also known as” listing in Freebase entries).

12 2. Knowledge Graphs

Table 2.1: Abbreviations for URIs used in this work for better readability of triples.

Name-Space Abbreviation
http://dbpedia.org/ontology/ dbpo:

http://dbpedia.org/resource/ dbpr:

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf:

http://www.w3.org/2000/01/rdf-schema# rdfs:

The combination of natural text extraction methods and knowledge graphs have led to very

sophisticated question answering system, as impressively shown by the IBM Watson system

which beat human champions in Jeopardy!, but also by popular smart mobile assistants

e.g. Apple’s Siri, Microsoft’s Cortana or Google Now (Figure 2.2).

Today, a wide range of knowledge-graphs are available, in part domain specific as e.g.

the Gene Ontology [2], but also general purpose ones like e.g. Freebase [8] or YAGO [46]

that contain general knowledge partially extracted from Wikipedia, the currently biggest

online encyclopedia. Freebase has been acquired by Google in 2010 and powers in part the

Google Knowledge Graph [98] and the recently published Google Knowledge Vault [25].

This graph supports Google’s search engine and is also exploited in various other applica-

tions developed by Google as for example Top Charts or Google Now. In addition, thanks

to the effort of the linked open data initiative [6], many of these knowledge graphs have

been interlinked, allowing a facilitated integration of various data sets in an application.

2.1 Knowledge-Graphs are RDF-Triplestores

Generally, graph based knowledge-bases like YAGO [46] or DBpedia [66] store their facts

as triples that more or less follow the W3C Resource Description Framework (RDF) [61]

standard. The RDF defines the data model for the Semantic Web. The choice to represent a

labeled, directed graph through triples was driven by the goal of least possible commitment

to a particular data schema, by using the simplest possible structure for representing such

information. RDF allows a rich structuring of semantic web data. In this section, we will

only cover the most important concepts relevant for this thesis and refer the interested

reader to [44]. Further we will use the name-space abbreviations shown in Table 2.1 for

better readability of triples.

2.1 Knowledge-Graphs are RDF-Triplestores 13

2.1.1 RDF-Triple Structure

RDF-triples follow a subject-predicate-object (s, p, o) pattern, where the subject is filled

through resources or blank nodes, the predicate resource represents the relationship2 be-

tween the subject and the object entity and the object can be resources, blank nodes or

literals.

Resources

In a RDF-triple, resources are represented by their Internationalized Resource Identifier

(IRI), a generalization of the Uniform Resource Identifier (URI), which can be an Uniform

Resource Locator (URL). Resources are the “things” in the knowledge graph like persons

or locations but also abstract concepts. Throughout the rest of this thesis, we generally

refer to resources that occur as subject or object in a RDF-triple if we speak of entities.

Additionally, the term relation-type always refers to resources that occur as predicates in

such a triple. As an example, consider the triple (dbpr:Angela Merkel, dbpo:birthPlace,

dbpr:Hamburg), extracted from DBpedia. In this triple, dbpr:Angela Merkel is the sub-

ject entity, dbpr:Hamburg the object entity and dbpo:birthPlace the predicate relation-

type that relates Angela Merkel to her birthplace Hamburg.

Literals

Literals are the direct embedding of values into the graph such as dates, strings or numbers

that describe a resource. The different textual representations for the entity that represents

the resource Angela Merkel, “Angela Merkel” and “Angela Kasner” or the birth-date are

for example literals. In difference to resources or blank nodes, literals should never occur

as subjects in a triple, or in other words, literal nodes in the graph are not supposed to

have any outgoing links.

Blank Nodes

Blank nodes are auxiliary nodes that do not provide any explicit content but allow the

construction of e.g. higher order facts. In order to differentiate resources from blank nodes,

each blank node is identified by a node identifier instead of an IRI. The node identifier is

required to enable multiple resources to reference on the same blank node. Blank nodes

2Also often referred to as properties or relation-types.

14 2. Knowledge Graphs

are omitted from upcoming discussions, because they are not explicitly considered by the

methods proposed and discussed in this work for knowledge graph modeling.

2.1.2 Schema Concepts

As mentioned in the introduction of this chapter, entities are generally typed in schema-

based knowledge graphs, meaning that they have been assigned to predefined classes that

are organized in an ontology that is part of the schema. An ontology describes a data model

of the target domain of the graph including the vocabulary that describes this domain. In

addition, these ontologies can be used to represent implicit knowledge by defining subclass

hierarchies which can be materialized through reasoning. For example, consider all triples

of the form (<?>, rdf:type, dbpo:MusicalArtist) present in DBpedia, where <?> is used

as a variable for all entities that have been assigned to the class MusicalArtist. With an

ontology that contains the subclass relationship (dbpo:MusicalArtist, rdfs:subClassOf,

dbpo:Person), we can implicitly represent the knowledge that all entities that are musical

artists are also persons.

Light-weight ontologies can be defined through the RDF-Schema (RDFS) [20] concepts,

which allow the definition of classes and class hierarchies. In Table 2.3 a small section of

the DBpedia ontology is represented in RDFS, the corresponding ontology is visualized

below in Figure 2.3. More complex ontologies can be constructed with the Web Ontology

Language (OWL) [85] but in general, more complex ontologies increase the computational

costs for reasoning. When constructing ontologies, there is always a trade-off between the

complexity of the defined ontology and the efficiency of the appropriate reasoner. We refer

to [1] for more details on OWL.

Besides the entities that can be semantically refined through ontologies, also relation-

types can be semantically described using RDFS as well. In knowledge graphs, generally

two types of relation-types exist, DatatypeProperties and ObjectProperties, where the for-

mer relates entities to literals and the latter relates entities to entities. Also, relation-

types can form hierarchies. In correspondence to rdfs:subClassOf, RDFS offers the

rdfs:subPropertyOf concept to define hierarchies of relation-types that can be exploited

by reasoners. A comprehensible example for such a hierarchy are couples that have a mar-

riage and those that have a happy marriage. Clearly, the person entities that are related

by a happy marriage are also implicitly related by marriage.

Besides enabling the definition of relation-type hierarchies, RDFS offers the concepts

rdfs:domain and rdfs:range to implement type-constraints. These two concepts describe

2.1 Knowledge-Graphs are RDF-Triplestores 15

Table 2.2: Defining type-constraints on the relation-type dbpr:bandMember using RDFS

id Subject Predicate Object
1 dbpr:bandMember rdfs:domain dbpo:Band

2 dbpr:bandMember rdfs:range dbpo:Person

Table 2.3: Section extracted from the DBpedia ontology represented in RDFS. Breakdown
of abbreviations can be inferred from Table 2.1

Subject Predicate Object
dbpo:Artist rdfs:subClassOf dbpo:Person

dbpo:MusicalArtist Gibbons rdfs:subClassOf dbpo:Artist

dbpo:Writer rdfs:subClassOf dbpo:Artist

dbpo:Singer rdfs:subClassOf dbpo:MusicalArtist

dbpo:MusicalDirector rdfs:subClassOf dbpo:MusicalArtist

dbpo:MusicComposer Gibbons rdfs:subClassOf dbpo:Writer

dbpo:SongWriter rdfs:subClassOf dbpo:Writer

the semantics of a relation-type by explicitly defining which entity classes should be related.

Obviously, the relation-type dbpo:birthPlace should not be used to relate instances of the

class dbpo:Person with each other, but persons to locations (dbpo:Location). In Table

2.2 type-constraints on the relation-type dbpr:bandMember are shown. dbpr:bandMember

is defined to relate instances of the class dbpo:Band to instances of the class dbpo:Person.

Person

Artist

Writer MusicalArtist

SongWriter MusicComposer MusicalDirector Singer

subClassOf

subClassOf subClassOf

subClassOf subClassOf subClassOf subClassOf

Figure 2.3: Illustration of ontology described in Table 2.3

16 2. Knowledge Graphs

Table 2.4: Example facts from DBpedia regarding the resources Billy Gibbons and Nick-
elback. The breakdown of abbreviations can be inferred from Table 2.1

id Subject Predicate Object
1 dbpr:Billy Gibbons dbpo:associatedBand dbpr:Nickelback

2 dbpr:Billy Gibbons rdf:type dbpo:Person

3 dbpr:Nickelback rdf:type dbpo:Band

4 dbpr:Billy Gibbons dbpo:instrument dbpr:Fender Telecaster

5 dbpr:ZZ Top dbpo:bandMember dbpr:Billy Gibbons

6 dbpr:Billy Gibbons dbpo:genre dbpr:Hard rock

7 dbpr:Nickelback dbpo:genre dbpr:Hard rock

Billy
Gibbons

Fender
Telecaster

ZZ TOP

Person

Hard
Rock

Nickelback

Band

instrument

bandMember

type

genre

associatedBand

type

genre

Figure 2.4: Graph representation of facts from Table 2.4

2.1.3 Knowledge Retrieval in Knowledge Graphs

As previously shown, RDF provides an easy and comprehensible way to describe and define

knowledge as a graph of facts. In the following, we will show in a more concrete case how

actual knowledge (and its facts) are represented and made accessible to machines.

In Table 2.4, a RDF-Triplestore consisting of 7 triples extracted from DBpedia is shown.

From the first triple (dbpr:Billy Gibbons, dbpo:associatedBand, dbpr:Nickelback), a

human can easily understand that it describes a person named Billy Gibbons, that is

somehow associated with the rock band Nickelback.3 A human with more expertise on

the band ZZ-Top could automatically connect other knowledge about Billy Gibbons as

3Billy Gibbons appeared on Nickelback’s album All the Right Reasons.

2.2 Knowledge Graph Construction 17

e.g. that he is a guitarist of the rock band ZZ-Top. A similar principle is applied in

knowledge graphs where the connections to associated information of entities are the links

in the graph. Based on all facts of Table 2.4, we are able to construct a small knowledge

graph (Figure 2.1.3) that can be traversed by machines, or queried, to aggregate relevant

information.

RDF-structured data sets can be queried to retrieve and manipulate data. One of

the most popular query languages for this task is the semantic query language SPARQL4,

which shares common principles with many other query languages such as SQL. This query

language allows a user to define queries that consist of triple patterns with disjunctions

and conjunctions of these patterns. The following simple example shows how SPARQL

works in principle:

PREFIX dbpr: <http://dbpedia.org/resource/>

PREFIX dbpo: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?somebody

WHERE{

?somebody dbpo:instrument dbpr:Fender_Telecaster.

?somebody rdf:type dbpo:MusicalArtist.

dbpr:ZZ_Top dbpo:bandMember ?somebody.

}

In the top part we simply defined abbreviations for the name-spaces for better readability

of the subsequent SPARQL query (PREFIX). In the actual SPARQL query, we ask for

an entity in the database (denoted by ?somebody) that is a musical artist (?somebody

rdf:type dbpo:MusicalArtist) and band member of the rock band ZZ-TOP that plays

a Fender Telecaster. When using the SPARQL-Endpoint5 of DBpedia to evaluate the

above query 6, the entity dbpr:Billy Gibbons is returned.

2.2 Knowledge Graph Construction

In this section, we will describe how knowledge graphs are constructed in principle. Basi-

cally, knowledge graph construction can be achieved by different kinds of approaches that

4SPARQL Protocol and RDF Query Language.
5Services that process SPARQL queries.
6http://dbpedia.org/sparql

18 2. Knowledge Graphs

require different levels of human involvement. The order in which these approaches are

described next approximately reflects the size of the resulting knowledge graph and the

chronology in which they have been applied.

2.2.1 Curated Approaches

Curated approaches contain the earliest knowledge graphs that were mainly constructed by

a small group of human experts. The first knowledge graphs for computers, originally de-

noted as semantic nets, were invented in 1956 for machine translation of natural languages

[93]. A prominent example for a widely used knowledge graph, initially constructed by

the Cognitive Science Laboratory of Princeton University, is WordNet [33]. WordNet has

a central role in many applications in the natural language processing domain. From all

available knowledge graphs, curated knowledge graphs are clearly the most accurate ones

and complete ones. Unfortunately, due to their dependence on human experts, they are

not very scalable and normally cover highly specialized domains that can be represented

by small graphs.

2.2.2 Collaborative Approaches

Collaborative knowledge graph construction relies on a large community of voluntary con-

tributors that add new facts to the knowledge graph. Additionally, the editing and quality

control is also based on these contributors. Even though collaborative approaches can

lead to large knowledge bases, such as Wikipedia [37] or in part the Freebase [8] knowl-

edge graph, their scalability is always dependent on their popularity; popularity has direct

impact on the size of the community of contributors. In addition, the growth of such knowl-

edge graphs will eventually decrease, because it becomes harder for the broad community

of contributors to add new triples to the graph. Besides the graph in a whole, also the

contained topics are dependent on popularity and as a consequence, less popular content

generally lacks extensive revision.

2.2.3 Automated Approaches on Semi-Structured Textual Data

Fully automatic construction approaches such as YAGO [46], DBpedia [66] or Freebase [8]

extract their content from semi-structured sources such as tables (e.g. Wikipedia Infoboxes)

and the schema (e.g. WordNet Taxonomy or the Wikipedia category system) or structured

sources such as other knowledge graphs. The concepts extracted from semi-structured data

2.2 Knowledge Graph Construction 19

often lack proper disambiguation. For example, in Wikipedia Infoboxes a person can be

related by multiple concepts to his birthplace, such as “Place of birth”, “born in” or

“birthplace”, which all have the same semantics. Similarly, different ontologies used by

different knowledge graphs are often not properly interlinked. These ontologies often share

semantically equal entities and classes, but the mapping of entities and classes between

the ontologies is often absent. To solve these issues, the extraction of facts is backed

by hand-curated rules that properly resolve disambiguation. The advantage of this kind

of automated approach is its scalability and the reduced amount of human involvement,

leading to very accurate knowledge representations. The growth and quality of knowledge

graphs that are constructed this way are not directly dependent on a large community

of voluntary contributors, but on the quality of their data sources. These sources are of

course dependent on a large community of contributors that provide the semi-structured

data. As a consequence, these automatically constructed knowledge graphs also suffer from

similar deficiencies as the collaborative constructed ones, especially incompleteness.[102]

2.2.4 Automated Approaches on Unstructured Textual Data

Due to the problems observed in the other three approaches, the main goal of the most

recent research efforts is the construction or completion of knowledge graphs based on

unstructured textual data. In Wikipedia, the currently largest online encyclopedia on the

web, only a small fraction of its content is covered by the semi-structured infoboxes. The

majority of information in Wikipedia, and generally on the Web, is contained in unstruc-

tured textual data, that is the natural language description of the articles. The NELL

(Never Ending Language Learner) project [16] tries to “read the web” to extract new facts

from unstructured textual web content. Recently, [25] proposed an approach where the

statistical modeling of existing knowledge graphs (Freebase) can be combined with rela-

tion extractors applied on unstructured text documents to complement the content of these

knowledge graphs accurately on a large scale. The principle of this approach is illustrated

in Figure (2.5). In the first step, a text extraction tool is applied on textual data for

triple extraction, which additionally provides a measure of confidence (a probability) that

represents the belief of the extractor that this relation is true. In parallel, the confidence of

statistical models which have been applied to the knowledge graph data is retrieved for the

same triple. These statistical models can be latent variable models, which are in the focus

of this thesis, but also graph feature models (e.g. path ranking algorithm) are exploited

for this task ([25] used a combination of both). For the final decision on which triples are

20 2. Knowledge Graphs

Unstructured Textual Data

Russel-Einstein-Manifesto

...Later, with the British philosopher
Bertrand Russell, Einstein signed the

Russell-Einstein Manifesto, which high-
lighted the danger of nuclear weapons....

Known Knowledge Graph

A.
Einstein

B.
Russel

Math

Russel-
Einstein
Manifesto

knows

interestIn

interestIn

author

P (True|s = Einstein, p = author, o = REM) P (True|s = Einstein, p = author, o = REM)

NLP Extractor
confidence

Prior belief from
knowledge graph
modeling

A.
Einstein

B.
Russel

Math

Russel-
Einstein
Manifesto

Combine
Probabilities

A triple is added to the
knowledge graph if the
final probability exceeds
a predefined threshold. knows

interestIn

interestIn

author

author

Figure 2.5: Illustration of the principle behind automatic knowledge base completion based
on unstructured textual data as proposed by [25]. REM abbreviates Russel-Einstein Man-
ifesto. Text was extracted from http://en.wikipedia.org/wiki/Albert Einstein.

2.3 Popular Knowledge Graphs 21

added to the graph, the confidences provided by the various methods are combined. It was

shown in [25] that this approach significantly increased the accuracy of relation extraction

from natural language text.

2.3 Popular Knowledge Graphs

In this part we will describe three widely used knowledge graphs in more detail that were

also the primary source of data of the experiments conducted in this thesis, namely DBpedia

[66], Freebase [8] and YAGO [46]. All of these knowledge graphs heavily rely on data from

Wikipedia and are part of the Linked Open Data (LOD) cloud, an initiative that aims for

the goal of interlink various open RDF-structured data sets on the web [6]. The Wikipedia

online encyclopedia is with no doubt one of the most widely used source of knowledge in

the Internet today. Its content is maintained by thousands of contributors and used by

millions of people daily. Even though Wikipedia contains a lot of information, its search

and querying capabilities are limited to find whole articles. For example, it is difficult to

find all mountains above a certain height in the German alps. As already discussed in this

chapter, these kind of queries can be easily answered by knowledge graphs, because they

contain structured content.

2.3.1 DBpedia

The DBpedia [66] community project was started in 2006 with the goal to create a struc-

tured representation of Wikipedia that follows the Semantic-Web standards. DBpedia

serves as a machine accessible knowledge graph that enables complex querying on data from

Wikipedia. Besides the natural language content, Wikipedia articles are often enriched in

structured information such as Infobox templates, article categorizations, geo-coordinates

and links to other online-resources. Hereby, Wikipedia Infoboxes are the most valuable

source of information for DBpedia, because their purpose is to list the most relevant facts

of the corresponding article (especially for famous people or organizations). DBpedia pro-

vides an automatic extraction framework to retrieve facts from Wikipedia articles and

stores them in a RDF-Triplestore. Here, the heterogeneity in the Wikipedia Infobox sys-

tem has been a problem, because the authors did not follow one standard structure, but

used different Infoboxes for the same type of entity or different relation-type names for

semantically equal relationships.

A big step forward in terms of data quality could be achieved in 2010, when a community

22 2. Knowledge Graphs

effort has been initiated to homogenize and disambiguate the description of information in

DBpedia. Through this effort, an ontology schema has been developed and the alignment

between Wikipedia Infoboxes and this ontology has been leveraged by community-provided

mappings that disambiguate relation-types, entities and classes. Besides disambiguation,

these mappings also include the typing of resources and specific data-types for literals. In

absence of those mappings, the resources extracted from the Infoboxes are saved as literal

values, because their semantics are unclear to the extractor. However, even though data

quality is improving, it is unlikely that DBpedia will reach the quality of manually curated

data sets. In the current release (DBpedia2014), the DBpedia ontology consists of 658

classes which are related by 2,795 different relation-types. These 658 classes count 4,233,000

instances, of which 735,000 are places, 1,450,000 persons and 241,000 organizations. In

total, the English version of DBpedia contains 583 million facts, but multilingual DBpedia

(129 languages are included) counts approximately 3 billion RDF-triples. In addition,

DBpedia provides a large amount of links to external data sets on instance and schema

level.

DBpedia has become a central hub of the Linked Open Data cloud and numerous

applications, algorithms and tools are using its content. In addition, DBpedia provides

different types of data sets for various purposes. One example is the Lexicalization data

set which is especially useful in NLP related tasks. This data set contains alternative

names for entities and properties together with several measures that indicate observed

frequency of the ambiguity of terms.

2.3.2 Freebase

Similar to DBpedia, Freebase [8] is also a RDF-based graph database, but in contrast to

DBpedia, Freebase does not solely rely on structured information extracted from Wikipedia

Infoboxes. Freebase also integrates information from many other external databases, for

example MusicBrainz, WordNet and many more. In addition, facts are directly added

and reviewed by a large community of voluntary contributors. This is a big difference to

DBpdia, where data could only be changed by editing the corresponding Wikipedia article.

In Freebase, real world things or concepts are termed as topics, where each topic has an

article on Freebase. Not all entities in Freebase are topics, there also exist literals that relate

specific values to the topics. In addition, blank nodes are used to represent more complex

facts. Similar to DBpedia, Freebase also contains ObjectProperties and DatatypeProperties.

The former relation-types relate topics to entities that are no literals and the latter relate

2.3 Popular Knowledge Graphs 23

topics to (typed) literals. In Freebase, relation-types have type-constraints, which are

denoted as expected types that correspond to the rdfs:range and rdfs:domain constraints.

The Freebase ontology (called Schema) does not represent an inheritance hierarchy, but

groups entity types into domains, which can also be edited by the community using an

online interface.

Currently, Freebase consists of 47 million topics, 70,000 relation-types and 2.7 billion

facts about them. In 2010, Freebase (Metaweb) was acquired by Google and now powers in

part Google’s Knowledge Graph [98] and the recently published Google Knowledge Vault

[25]. In 2014, Google announced a retirement of Freebase in mid 2015 and that it will be

integrated in Wikimedia-Foundation’s Wikidata project [110].

2.3.3 YAGO

YAGO (Yet Another Great Ontology) is an automatically generated high quality knowledge

graph that combines the information richness of Wikipedia Infoboxes and Wikipedia’s

category system with the clean taxonomy of WordNet. The YAGO project is basically

motivated by two observations: First, Wikipedia offers a very broad view on the knowledge

of the world, but its category system is not well suited as an ontology. Second, WordNet

offers a very clean and natural ontology of concepts, but falls short in describing real

world entities like authors, musicians etc. YAGO maps the Wikipedia categories on the

WordNet ontology with a precision of 95%, thereby successfully linking these two sources of

information. The YAGO entities are assigned to more than 350,000 different classes and all

relations in YAGO are attached with a confidence value. It further defines a simple model,

the YAGO model, that extends RDFS to allow the representation of n-ary relations, but

which in contrast to complexer ontology languages, such as OWL-Full, is still decidable.

The n-ary relations are realized by introducing fact identifiers that can easily be integrated

in RDF. These identifiers represent blank nodes in the graph that refer to whole facts,

which in turn can be used as reference in other facts to realize n-ary relations. As an

example, the fact

Albert Einstein hasWonPrize Nobel Prize in Physics inYear 1921

can be represented by determining the core fact and assigning an identifier to it

#1: Albert Einstein hasWonPize Nobel Prize in Physics

and using this identifier as reference for the second fact

#2: #1 inYear 1921

24 2. Knowledge Graphs

0 2 4 6 8 10 12 14

log(Facts)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
so

u
rc

e
s

%

Figure 2.6: Distribution of facts per entity in DBpedia on a log scale.

In its current version (YAGO2), YAGO contains more than 10 million entities and

about 120 million facts about them. In the upcoming version (YAGO3), the knowledge

graph will be combined with information from multilingual Wikipedia.

In contrast to DBpedia, which basically constructs a RDF representation of Wikipedia’s

Infoboxes, YAGO extracts only a small number of the relation-types and corresponding

relations to guarantee consistency and high precision of the knowledge-graph.

2.4 Deficiencies in Today’s Knowledge Graph Data

As already mentioned in the introduction of this work, knowledge graphs generally suffer

from incompleteness and inconsistencies in their data.

In terms of inconsistencies, it can be expected that the majority of contributions are

correct, but nevertheless errors caused by misunderstanding of the schema, due to general

carelessness or by false contributions are not rare.

The magnitude of incompleteness in these graphs can be illustrated by the following

facts regarding very popular DBpedia and Freebase knowledge graphs. In English DB-

pedia7, 66% of the entities typed as persons are missing a place of birth and 58% of the

scientist do not have a fact that describes what they are known for. In addition, 40% of

7DBpedia2014, mapping-based properties (cleaned)

2.4 Deficiencies in Today’s Knowledge Graph Data 25

all countries miss a capital and 80% of the capitals do not have a leader. Even 2% of the

entities are not assigned to any class. In Freebase, 71% of persons are missing a place

of birth and 75% do not have a nationality [25]. Generally, it can be expected that the

amount of missing information is even higher for less popular entities and relation-types.

Besides missing information, the amount of triples for each entity also varies to a large

extent in the knowledge graphs, as shown in Figure 2.6 for DBpedia. It can be observed

that the distribution is heavy-tailed (note the log scale) and only a minority of about

16,000 out of 4.5 million entities in DBpdia takes part in more than 100 facts (triples).

However, this small fraction of entities (0.34%) occurs in 18.7% of all facts. About 50% of

all entities occur in less than or equal to 5 facts and 500,000 (11%) have only one fact. It

can be concluded that the vast majority of entities in DBpedia is not well described, while

in contrast a large amount of information is available for a very small fraction of entities.

The reasons for this incompleteness are manifold, but the major cause lies in the fact

that most of the information available today is contained in natural text documents which

is hard to extract. It is certain that it is intractable for the community of voluntary

contributors to structure this data manually, even a reliable quality control for all facts

stored in knowledge graphs has become unreachable.

Today, growth and quality of knowledge graphs is still highly dependent on the various

communities of voluntary contributors. Recently, it has been observed that the growth

of Wikipedia, which serves as a central knowledge repository for many knowledge graphs,

has eventually plateaued [101]. There are multiple explanations for this observation, for

instance that due to the size of the database and the large community of contributors the

internal bureaucracy has increased. Nevertheless, one of the main reasons lies in the fact

that the amount of opportunities to contribute knowledge for the broad majority of the

community decreases with the size of the database. This fact also reflects the observation

that in Wikipedia a decline in editor and page growth was observed [101].

To tackle the deficiencies observed in available knowledge graphs, automatic approaches

that support quality control in knowledge graphs, and boost the growth and increase

completeness are in great need. In Section 2.2.4, approaches are described that tackle the

relation mining from unstructured textual data sources by exploiting statistical models

for knowledge graphs. These models are capable of evaluating triple quality in knowledge

graphs, which can be exploited for completion and cleansing tasks for such graphs. Latent

variable models have been successfully exploited for the statistical modeling of knowledge

graphs and it was shown that these models scale to web-scale data sets.

26 2. Knowledge Graphs

Chapter 3
Representation Learning in Knowledge

Graphs

In this chapter, we will cover the basics of representation learning in knowledge graphs.

First, we will give a brief introduction to representation and relational learning, before we

will discuss three representation learning algorithms in more detail that have been applied

to knowledge graph data, namely RESCAL [82], Translational Embeddings [9] and the

neural network approach used in the recent Google Knowledge Vault project [25].

3.1 Representation Learning

Generally, the predictive modeling capabilities of machine learning algorithms rely on the

quality of the data that define the problem context. Here, quality refers to different impor-

tant aspects that can be considered in different ways by these models: First, the noise in

the data. Machine learning algorithms are data driven models, therefore it is not surprising

that it is harder for them to detect dependencies and patterns in noisy data since noise can

distort and mask important signals and correlations. Noise in the data is present in every

real-world data set such as e.g. data recorded by sensor measurements of machines used in

an industrial production environment. Reasons for noise in the data can be manifold and

its removal is often connected to a trade-off between noise reduction and signal loss. In

machine learning, robust and generalizing models on noisy data can be trained by applying

regularization on the model parameters during training.

Second, the capability of the features present in the data to sufficiently explain the

distribution of the target variables of the problem task to solve. Obviously, to recognize

28 3. Representation Learning in Knowledge Graphs

if the recorded data contains enough information to model a problem task can be very

challenging. There might be confounding factors that are not recorded in the data, but

have a dramatic impact on the target outcome. Dependent on the importance of the

confounding factors for the modeling, a learning task can become infeasible. In a less

dramatic case, but still very challenging, the recorded factors (features) contain enough

information to reason on the target distribution, but correlations are hidden or not obvious

enough to be easily recognized by the learning algorithm. As a simple example, consider a

lung cancer risk prediction task where no information about the patient’s smoking habits

are included in the data (e.g. if the patient is a smoker and how many cigarettes are

consumed every day). It is generally known that there is a strong correlation between

smoking and lung cancer risk. However, in the latter case there might be other features

present in the data from which we could conclude on the smoking habits of a patient

(e.g. a combination of age, teeth color, blood pressure, blood sodium level etc.), which

themselves do not have an obvious correlation with lung cancer. Traditional machine

learning methods have problems to extract and organize such discriminative information

from the data. In this situation, feature engineering can often be applied to manually

or semi-automatically construct additional features that incorporate human prior (expert)

knowledge which explain the target variables more obvious to the learning algorithm. For

the previous example we would introduce a “smoker” feature in the data that is derived

from the other features by a human expert or through some given formula exploited as

basis function. Unfortunately, feature engineering has the disadvantages that it can be

quite labor-intensive and often domain experts have to be consulted for suitable feature

construction (e.g. in the lung cancer risk prediction example we would need physicians

that are familiar with clinical traits of smokers).

Representation Learning, often also referred to as feature learning, proposes a different

approach that avoids the dependence on labor extensive feature engineering, but tries to

automatically discover good latent features that disentangle hidden correlation present in

the data. However, in difference to the raw input or hand engineered features which most

often have a clear interpretation, these learned latent features are often hard to interpret.

In Representation Learning a transformation of the raw input data into a new latent

feature space is learned, where this feature space consists of explanatory factors that are

more useful for a classifier or other predictor. Even though this latent feature space is a

better basis for the learning task to solve than the feature space spanned by the original

raw features, this does not mean that it has to be more complex. In fact, the opposite is

3.1 Representation Learning 29

often the case since raw data often contains redundant dependencies or large amounts of

other dispensable information that is not necessary for representing the underlying data

generating function. Tensor/matrix factorization or Autoencoders are typical approaches

where the latent feature space is enforced to be much smaller than the original feature space

in order to learn the most general factors that are important to explain the distribution of

the data. [45, 41, 105, 51]

Expressive new representation of input data can be learned in a supervised or unsu-

pervised setting. In the supervised setting, the new representations are directly learned

with respect to the given labels from the supervised task, thereby leading to latent factors

that disentangle correlations to the target variable. This approach is often executed with

neural networks, where the first layer is responsible for learning the first raw feature trans-

formation which is combined to generate the final output, or in case of deep networks (e.g.

convolutional neural networks for image recognition), to form the input for further feature

transformations to realize complex latent representation hierarchies.

Learning good representations for a target task can be difficult if the amount of labeled

training data falls short in comparison to the complexity of the learning problem. Good

representations can also be learned in an unsupervised settings and exploited, if desired,

in a supervised learning task as a fixed input data transformation or as initialization

for the representation layer in a neural network. It is often convenient to assume that

representations that explain much of the distribution of the input data tend to also explain

much of the target distribution. In addition, generally plenty of data for a unsupervised

learning scenario is available or can be collected very easily. As an example, consider a

document topic classificator which exploits latent representations of words. Intuitively, we

would directly assume that the topic of a document is dependent on the distribution of

words in a document and therefore learning representations that explain the distribution

of words in a document, independent from the topic, should be beneficial for the topic

classification. In difference to the topic learning task, where only a limited amount of

labeled training data is available, for the unsupervised learning task that tries to learn

good representations of words that explain the distribution of words in documents, almost

unlimited amounts of training data is available.[28, 86]

Probably the best known representation learning approach is the Singular Value De-

composition (SVD), which is also exploited in the Principal Component Analysis (PCA)

and learns latent factors that explain most of the variance observed in the data. Non-

negative matrix factorization has been exploited in text or image processing [59, 63] where

30 3. Representation Learning in Knowledge Graphs

in case of the images, the latent factors could be interpreted as local structures like eyes,

ears or noses. Factorization Machines [89] have been quite successful in recommendation

settings, learning latent representations for users and items. Higher order tensor factor-

ization methods were used on various data set such as EEG data where the latent factors

have been exploited to analyze epileptic seizures [76]. Tensor factorization has also been

exploited in image processing tasks e.g. for Tensor Faces [107], a generalization of Eigen-

faces [106], that additionally considers various perspectives of face images as additional

modes in the tensor.

More recently, deep learning approaches have gained much popularity and have been

applied in a variety of fields, including speech recognition and signal processing, object

recognition, natural language processing (NLP) and multi-task learning, often representing

the current state of the art with leading performance on various benchmark sets [22, 53,

72]. The representations learned by these models, as for example in convolutional neural

networks in the context of images, have even outperformed approaches that exploited

sophisticated feature engineering through human experts. We refer to [4] for a very good

review on representation learning with deep architectures at this point.

In difference to the various types of data representation learning has been applied to,

with knowledge graphs we are dealing with graph structured data where the nodes are de-

fined through their connections in the graph and not solely on a fixed set of features that

describe them. Similar to the word setting in NLP, the raw data is often purely symbolic,

meaning that we have just the URI of the entity (or words in the NLP setting) and the

context this symbol appears in without any features that describe the characteristics of

the entity. Having expressive distributed representations of entities that contain the gen-

eral explanatory factors for the dependencies observed in the graph makes these symbolic

URIs comparable, meaning that similar entities that share a similar representation should

have similar connections in the graph. In a sense, the goal of representation learning in

knowledge graphs is to disentangle the semantics of entities solely based on the observed

relationships between entities in the graph. Learning from these relationships is referred

to as Relational Learning which we will discuss in the next section.

3.2 Relational Learning

In (traditional) non-relational learning settings, the data consist mainly of features that

describe measured characteristics of instances (or entities), as for example in an arbitrary

3.2 Relational Learning 31

population study that collects attributes like size, age, gender, employee, academic degree

etc. of different persons. Generally when dealing with this kind of data sets, independence

between these instances is assumed to simplify the learning problem. As a consequence,

the learning algorithm will only model dependencies between the given features and some

target variable we want to predict. For example, consider the learning problem where we

want to predict the income of persons based on the schematically described data set from

the previously mentioned population study. In this case, the learner will predict the income

for each person individually without considering any dependence on the other persons in

the data set.

In a relational learning setting we eventually discard this strict independence assump-

tion by exploiting data that explicitly reflects dependencies between the instances in the

learning algorithms. Referring to the previous example, we might also know which of the

persons in the data are friends or work in the same company. Assuming dependencies

between entities in the data generally increases the complexity of the learning problem,

which can become intractable. Today’s relational learning algorithms have managed to

decrease complexity to a manageable size allowing an application on even very large data

sets.

There are dependency patterns that are present in relational data that can be exploited

by relational learning algorithms, but not by non-relational learners [78]. In relational data,

it is often observed that entities with similar characteristics are related to each other. This

observation is termed homophily and is exploited for predicting relations between similar

entities, but also to predict attributes. As an example, persons with the same age, income

and academic background might be employed at the same company. Further, if they work

in the same company, they might even know each other or are even friends. Stochastic

equivalence on the other hand describes the observation that similar entities form groups

and that the relationships observed in the graph can be explained by the relationships

of these groups. This dependency can be exploited for clustering of entities, but also

for predicting new relationships, since the members of one group tend to have similar

relationships to members of other groups. Additionally, the relational data might contain

global dependencies, which can be understood as (complex) rules that can be exploited by

the learning algorithm. For example, actors that played in movies with high ratings are

probably rich.

The exploitation of these dependencies, which are also present in graph based knowledge

representations, make relational learning algorithms especially attractive for applications

32 3. Representation Learning in Knowledge Graphs

in knowledge graphs. There exist a wide range of relational learning algorithms and in

this work we only consider statistical relational learning methods, which model statistical

dependencies observed in the knowledge graph. More specific, we focus on latent variable

methods that learn distributed representations for entities and relation-types and have

been successfully applied to the relational domain. The main application of these methods

in knowledge graphs is link-prediction, meaning that the learning algorithms propose new

relations between existing entities that can be added to the graph to enrich its knowledge

content. Link-prediction is the basis for tasks related to knowledge graph cleansing and

completion and plays a central role in automatic knowledge graph construction methods

based on unstructured textual information (see Chapter 2.2.4). Further, the learned dis-

tributed representations of entities can be exploited for link-based clustering, but also for

entity resolution, often used in tasks related to the disambiguation of entities. For the in-

terested reader, we refer to [80] for an extensive review on relational learning in knowledge

graphs.

3.3 Statistical Modeling of Knowledge Graphs with

Latent Variable Models

In the following we will briefly review the latent variable models RESCAL, TransE and the

neural network approach used in the recent Google Knowledge Vault project [25] (denoted

as multiway neural network (mwNN) in the following) in more detail. We selected these

models for a number of reasons:

• To the best of our knowledge, these latent variable models are the only ones which

have been applied to large knowledge graphs with more than 1 million entities,

thereby proving their scalability [9, 25, 83, 17, 56].

• All of these models have been published at well respected conferences and have been

the basis for the most recent research activities in the field of statistical modeling of

knowledge graphs (see the related work in Chapter 4.4).

• These models are very diverse, meaning they are very different in the way they model

knowledge graphs. These differences cover a wide range of possible ways a knowledge

graph can be statistically modeled; the RESCAL tensor-factorization is a bilinear

model, whereas the distance based TransE models triples as linear translations and

3.3 Statistical Modeling of Knowledge Graphs with Latent Variable Models33

mwNN exploits non-linear interactions of latent embeddings in its neural network

layers. Further, RESCAL uses a Gaussian likelihood function that can be minimized

very efficiently via ALS, but as a drawback it has to exploit closed-world assump-

tions1. Knowledge graphs are generally not containing any negative evidence and

therefore considering all unobserved triples as missing instead of false seems more

appropriate. TransE exploits a margin bases ranking loss function that better in-

tegrates the notion of missing triples. Nevertheless, in some cases it can be argued

that many triples can be treated as negative evidence. In [25] it is assumed that if

a subject predicate pair s,p is observed in the data, than all possible triples (s,p,·),
where · can be substituted by any entity observed in the data, are either positive

(if observed in the data) or negative evidence. This assumption is motivated by the

observation that if triples for a subject predicate pair are added to the graph, they

are fairly complete and most unobserved triples will be very likely false. In this case,

it can make sense to minimize a Bernoulli likelihood loss function as done by the

mwNN model.

We belief that because of the reasons above, these models are well suited to show the

generality of the contributions of this thesis for the application of latent variable models

in the context of large knowledge graphs.

3.3.1 Notation

In the following, X will denote a three-way tensor, where Xk represents the k-th frontal

slice of the tensor X. X or A denote matrices and xi is the i-th col vector of X. A single

entry of X will be denoted as xi,j,k. Further (s,p,o) will denote a triple with subject entity

s, object entity o and predicate relation-type p, where the entities s and o represent nodes

in knowledge graph that are linked by the predicate relation-type p. The entities belong

to the set of all observed entities E in the data.

3.3.2 RESCAL

RESCAL [82] is a three-way-tensor factorization model that has been shown to lead to

very good results in various canonical relational learning tasks like link-prediction, entity

resolution and collective classification [83]. One main feature of RESCAL is that it can

exploit a collective learning effect when used on relational data, since an entity has a unique

1All combinations of triples that are not observed in the graph are treated as negative evidence.

34 3. Representation Learning in Knowledge Graphs

representation over occurrences as a subject or as an object in a relationship and also over

all relation-types in the data. When dealing with semantic web data, multi-relational data

is represented as triples that have a natural representation in a third-order adjacency tensor

X of shape n×n×m, where n is the amount of observed entities in the data and m is the

amount of relation-types. Each of the m frontal slices Xk of X represents an adjacency

matrix for all entities in the data set with respect to the k-th relation-type.

Given the adjacency tensor X, RESCAL computes a rank d factorization, where each

entity is represented via a d-dimensional vector that is stored in the factor matrix A ∈ Rn×d

and each relation-type is represented via a frontal slice Rk ∈ Rd×d of the core tensor

R, which encodes the asymmetric interactions between subject and object entities. The

embeddings are learned by minimizing the regularized least-squares function

LRESCAL =
m∑
k

‖Xk −ARkA
T‖2

F + λA‖A‖2
F + λR

m∑
k

‖Rk‖2
F , (3.1)

where λA ≥ 0 and λR ≥ 0 are hyper-parameters and ‖ ·‖F is the Frobenius norm. The cost

function can be minimized via very efficient Alternating-Least-Squares (ALS) that effec-

tively exploits data sparsity [82] and closed-form solutions. During factorization, RESCAL

finds a unique latent representation for each entity that is shared between all relation-types

in the data set.

The confidence score θs,p,o of a triple (s, p, o) is predicted by RESCAL through recon-

struction by a vector-matrix-vector product

θs,p,o = aTs Rpao (3.2)

from the latent representations of the subject and object entities as and ao, respectively,

and the latent representation of the predicate relation-type Rp.

3.3.3 Translational Embeddings

In [9] a distance-based model was proposed for learning low-dimensional embeddings of

entities (TransE), where relationships are represented as translations in the embedding

space. The approach assumes for a true triple that a relation-type specific translation

function exists that is able to map (or translate) the latent vector representation of the

subject entity to the latent representation the object entity. The confidence of a fact

is expressed by the similarity of the translation from subject embedding to the object

3.3 Statistical Modeling of Knowledge Graphs with Latent Variable Models35

embedding.

In case of TransE, the translation function is defined by a simple addition of the latent

vector representations of the subject entity as and the predicate relation-type rp. The

similarity of the translation and the object embedding is measured by the L1 or L2 distance.

TransE’s confidence θs,p,o in a triple (s, p, o) is derived by

θs,p,o = −δ(as + rp, ao), (3.3)

where δ is the L1 or the L2 distance and ao is the latent embedding for the object entity.

The embeddings are learned by minimizing the margin-based ranking cost function

LTransE =
∑

(s,p,o)∈T

max{0, γ + θs′,p,o − θs,p,o}+ max{0, γ + θs,p,o′ − θs,p,o} (3.4)

with {s′, o′} ∈ E

on a set of observed training triples T through Stochastic Gradient Descent (SGD), where

γ > 0 is the margin and the corrupted entities s′ and o′ are drawn from the set of all

observed entities E . Note that subject and object entities are never replaced at the same

time. Instead, for one triple out of T two corrupted ones are sampled where either the

subject or the object entity is replaced by a random entity. During training, it is enforced

that the latent embeddings of entities have an L2 norm of 1 after each SGD iteration.

3.3.4 Google Knowledge-Vault Neural-Network

The Google Knowledge Vault project [25] pursues an automatic construction of a high

quality knowledge graph. In this regard a multiway neural network (mwNN) based model

for predicting prior probabilities for triples from existing knowledge graph data was pro-

posed to support triple extraction from unstructured web documents. The confidence value

θs,p,o for a target triple (s, p, o) is predicted by

θs,p,o = σ(βTφ (W [as, rp, ao])) (3.5)

where φ() is a nonlinear function like e.g. tanh, as and ao describe the latent embedding

vectors for the subject and object entities and rp is the latent embedding vector for the

predicate relation-type p. [as, rp, ao] ∈ R3d×1 is a column vector that stacks the three

embeddings on top of each other. W and β are neural network weights and σ() denotes

36 3. Representation Learning in Knowledge Graphs

the sigmoid function. The model is trained by minimizing the Bernoulli cost-function

LmwNN = −
∑

(s,p,o)∈T

log θs,p,o −
c∑

o′∈E

log(1− θs,p,o′) (3.6)

through SGD, where c denotes the number of corrupted triples sampled under a local

closed-world assumption as defined by [25], where only the object entity is corrupted by

a random entity drawn from E . Note that we only sample observed triples (which are

assumed to be true) and the corrupted triples generated from these are all treated as

negative evidence.

Chapter 4
Applying Latent Variable Models to Large

Knowledge Graphs

In this chapter we study the different latent variable models introduced in Chapter 3.3

with regard to their application to large knowledge graphs. Due to their size, large knowl-

edge graphs require to constrain the complexity of the latent embeddings for entities and

relation-types exploited by these models. These constraints are mostly disregarded in the

discussions and conclusions of related literature, but are very important to consider when

selecting and applying these models to large data sets. In the following sections we will

give more details to these constraints and describe their impact on TransE, RESCAL and

mwNN. We further simulate the application of these models (link-prediction) on large

knowledge graphs based on various data sets, in order evaluate their performance in such

a setting.

Own contributions in this chapter are part of our prior work on the contributions

described in Chapter 5. The experimental results regarding the area under precision recall

curve (AUPRC) and area under receiver characteristic (AUROC) scores shown in Tables

4.3, 4.4 and 4.5 have been published in

[54] Denis Krompaß, Stephan Baier and Volker Tresp. Type-Constrained Representa-

tion Learning in Knowledge-Graphs. 14th International Semantic Web Conference

(ISWC). 2015

38 4. Applying Latent Variable Models to Large Knowledge Graphs

Table 4.1: Parameter complexity of models regarded in this work, where n is the amount
of entities and m the number of relation-types present in the data. d denotes the size of
the latent space or rank of the factorization and l is the number of hidden units in the
second layer of the mwNN model.

Model Parameter Complexity
RESCAL O(nd+md2)
TransE O(nd+md)
mwNN O(nd+md+ ld+ l)

4.1 Latent Variable Model Complexity in Large Knowl-

edge Graphs

When comparing the RESCAL, TransE and mwNN latent variable models based on their

parametrization complexity shown in Table 4.1, RESCAL has clearly the highest complex-

ity, because it scales quadratic with the chosen embeddings dimension d and the amount of

relation-types m present in the data. TransE on the other hand has the most parsimonious

parametrization followed by the mwNN model, which both scale linearly with respect to

the chosen dimensionality d of the embeddings. In addition to the other models, mwNN

has an additional parameters of size l present in the hidden neural network layers. When

dealing with large knowledge graphs, these differences in parameter complexity between

RESCAL, TransE and mwNN become negligible for the following two reasons:

• Generally, knowledge graphs contain millions of entities, but the amount of relations

types is only in the thousands. Therefore, the complexity of nd, which depends on

the amount n of entities observed present in the knowledge graph and the chosen

dimensionality d of the latent embeddings, will dominate the parameter complexity

in all three models.

• For the statistical modeling of large knowledge graphs the latent embeddings have

to be meaningful in low dimensional latent spaces; higher dimensionality can cause

unacceptable runtime performances and high memory loads.

It can be concluded from these two reasons that the choice of a tractable dimensionality for

the latent embeddings is mostly dependent on the number of nodes (entities) in the graphs.

As a consequence, these algorithms cannot be applied to learn very high dimensional

complex embeddings in large knowledge graphs and therefore they have to learn a low

4.2 Simulating Large Scale Conditions 39

number of very meaningful factors that explain the data. Since all models have to exploit

a similar dimensionality for the learned embeddings, the training time and expressiveness of

the model will mainly dependent on the optimization algorithm and modeling assumptions.

ALS optimized models, i.e. RESCAL, that can exploit closed form solutions allow a faster

model optimization than models that exploit stochastic gradient descent. However, as a

drawback, the choice of the target loss function is limited to a Gaussian likelihood function.

In addition, a closed-world assumption has to be used, which does not consider the notion

of missing data. In chapter 5 we will show how local closed-world-assumptions can be

exploited to increase RESCAL’s capability to consider missing data in its closed form

solution updates exploited in ALS (see also [56, 54]). TransE and mwNN are optimized

through stochastic gradient descent, which generally lead to longer training times. On the

other hand, SGD allows a more careful loss function design which often better represents the

underlying assumptions observed in the data regarding missing values and the distribution

of the data.

4.2 Simulating Large Scale Conditions

In this section we describe our experimental setup in which we simulate the application of

RESCAL, TransE and mwNN to large knowledge graphs. Our experimental setup covers

two important aspects:

• We test these models with reasonably low complexity levels, meaning that we enforce

low dimensional latent embeddings for entities and relation-types which simulates

their application to very large data sets where high dimensional embeddings are

intractable. In [25] for example, a latent embedding length (parameter d in Chapter

3.3) of 60 was used.

• We extracted diverse data sets from instances of the Linked-Open Data Cloud,

namely Freebase, YAGO and DBpedia, because it is expected that the needed com-

plexity of the models is also dependent on the particular data set the models are

applied to. From these knowledge graphs we constructed data sets that will be used

as representatives for general purpose knowledge graphs that cover a wide range of

relation-types from a diverse set of domains, domain focused knowledge graphs with

a specific (smaller) amount of entity classes and relation-types, and high quality

knowledge graphs.

40 4. Applying Latent Variable Models to Large Knowledge Graphs

Table 4.2: Data sets used in the experiments.

Data Set Source Entities Relation-Types Triples
DBpedia-Music DBpedia 2014 321,950 15 981,383
Freebase-150k Freebase RDF-Dump 151,146 285 1,047,844
YAGOc-195k YAGO2-Core 195,639 32 1,343,684

In the remainder of this section we will give details on the extracted data sets and the

evaluation, implementation and training of RESCAL, TransE and mwNN.

4.2.1 Data Sets

In the following, we describe how we extracted the different data sets from Freebase,

DBpedia and YAGO. Note that as described in Chapter 2.1.2, knowledge graphs contain

type-constraints that predefine the link structure in graphs; they restrict relation-types

to relate only certain classes of entities. We consider these relation-types only in our

evaluation, but not in the models, because this is also not done in the original works of

these algorithms. Integrating prior knowledge about type-constraints in latent variable

models will be covered in Chapter 5. In Table 4.2 some details about the size of these data

sets are given.

Freebase-150k

Freebase does not solely rely on structured information extracted from Wikipedia articles,

but also integrates information from many other external databases e.g. MusicBrainz,

WordNet and many more. Resources in Freebase are referred to as topics. We downloaded

the current materialized Freebase rdf-dump1 and extracted all triples that represent facts

involving two Freebase topics that have more than 100 relations to other topics. As a final

constraint, we excluded relation-types that are part of less than 100 triples or which did

not have both rdfs:domain and rdfs:range triples. Given the domain and range classes

of the relation-types, we also excluded entities that are not an instance of any of those

classes. Nevertheless, we observed that some triples violate the extracted type-constraints.

Freebase is fairly incomplete and therefore we assumed that these triples are correct, but

the inconsistent entities are missing rdf:type assignments. We did not try to predict the

correct type of the entities in this cases, instead we assumed that these entities belong

1https://developers.google.com/freebase/data

4.2 Simulating Large Scale Conditions 41

to the domain or range of the relation-type where the inconsistency was observed. More

technically, if we observe for a triple (s, p, o) that e.g. subject entity s disagrees with the

type-constraints of relation-type p, then we simply add the index of entity s to the index

vector domainp, which is used to extract all entities from E that belong to the domain

of relation-type p. This data set will simulate a general purpose knowledge graph in our

experiments.

DBpedia-Music

DBpedia contains the structured information extracted from Wikipedia Infoboxes. For

the DBpedia-Music data set, we downloaded the owl-ontology, mapping-based-properties

(cleaned), mapping-based-types and heuristics from the canonicalized data sets of the

current release of DBpedia2. We extracted triples from 15 pre-selected Object-Properties;

musicalBand, musicalArtist, musicBy, musicSubgenre, derivative, stylisticOrigin,

associatedBand, associatedMusicalArtist, recordedIn, musicFusionGenre, music-

Composer, artist, bandMember, formerBandMember, genre, where genre has been ex-

tracted to include only those entities that were covered by the other object-properties to

restrict it to musical genres. We discarded all triples of entities that occurred less than

twice and for all of the remaining entities that are not assigned to any class, we assigned

them to owl#Thing. The rdfs:domain and rdfs:range concepts for the above relation-

types were extracted from the DBpedia ontology, where we defined the domain or range of

a relation-type as owl#Thing if absent. Similar to the Freebase data set, we also observed

that some triples disagree with the domain and range constraints of the corresponding

relation-type and treated them similarly to the Freebase data set. In our experiments, this

data set will simulate a domain specific knowledge graph.

YAGOc-195k

YAGO (Yet Another Great Ontology) is an automatically generated high quality knowledge

graph that combines the information richness of Wikipedia Infoboxes and its category

system with the clean taxonomy of WordNet. We downloaded the core data set from the

YAGO website3 that contains facts between YAGO-instances. In addition, we downloaded

the schema information including the rdf:type, rdfs:range and rdfs:domain triples.4

2http://wiki.dbpedia.org/Downloads2014
3http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/yago/downloads/
4yagoSchema and yagoTransitiveType

42 4. Applying Latent Variable Models to Large Knowledge Graphs

We only included entities that had at least 5 occurrences and that share the types used

in the rdfs:domain and rdfs:range triples. We also excluded relation-types for which

less than 100 triples could be observed after pruning the entities could be observed. In

contrast to the other two data sets, all triples agreed with the domain and range constraints

of the relation-types and therefore no further editing of the data set was needed. This

YAGO subsample will be used as representative for a high quality knowledge graph in our

experiments.

4.2.2 Evaluation Procedure

We evaluate RESCAL, TransE and mwNN on link prediction tasks, where we delete triples

from the data sets and try to re-predict them without considering them during model

training. For model training and evaluation we split the triples of the data sets into

three sets, where 20% of the triples were taken as holdout set, 10% as validation set for

hyper-parameter tuning and the remaining 70% served as training set5. In case of the

validation and holdout set, we sampled 10 times as many negative triples for evaluation,

where the negative triples were drawn such that they did not violate the given domain and

range constraints of the knowledge graph. Also, the negative evidence of the holdout and

validation set are not overlapping. In knowledge graph data, we are generally dealing with

a strongly skewed ratio of observed and unobserved triples, through this sampling we try

to mimic this effect to some extent since it is intractable to sample all unobserved triples.

After deriving the best hyper-parameter settings for all models, we trained all models with

these settings using both the training and the validation set to predict the holdout set (20%

of triples). We report the Area Under Precision Recall Curve (AUPRC) for all models. In

addition, we provide the Area Under Receiver Operating Characteristic Curve (AUROC),

because it is widely used for this problem even though it is not well suited as evaluation

measure in these tasks due to the imbalance of (assumed) false and true triples.6 The

discussions and conclusions will be primarily based on the AUPRC results.

We also evaluate the training time of the models, where we measure the runtime in

seconds for model training and the number of epochs used until convergence when trained

on the validation and training set (80% of triples). In addition we give the mean time per

training epoch and the corresponding standard-deviation for better comparison.

5Additional 5% of the training set were used for early stopping.
6AUROC includes the false-positive rate which relies on the amount of true-negatives that is generally

high in these kind of data sets, often leading often to misleading high scores.

4.2 Simulating Large Scale Conditions 43

4.2.3 Implementation and Model Training Details

All models were implemented in Python using in part Theano [5]. Theano code for TransE

is provided by the authors, but we replaced some parts of the original implementation that

allowed a significantly faster training.7 We made sure that our implementation achieved

very similar results to the original model on a smaller data set8 (Results not shown).

The Google Knowledge-Vault multiway neural network (mwNN) was also implemented

in Theano. Since there are not many details on model training in the corresponding work

[25], we added elastic-net regularization combined with DropConnect [111] on the network

weights and optimized the cost function using mini-batch adaptive gradient descent [26].

We randomly initialized the weights by drawing from a zero mean normal distribution

where we treat the standard deviation as an additional hyper-parameter. The corrupted

triples were sampled with respect to the local closed-world assumption discussed in [25].

We fixed the amount of corrupted triples per training example to five.9

For RESCAL, we used the ALS implementation provided by the author10, but extended

it in such a way that it supports a more scalable early stopping criteria based on a small

validation set.

For hyper-parameter tuning, all models were trained for a maximum of 50 epochs and

for the final evaluation on the holdout set for a maximum of 200 epochs. For all models,

we sampled 5% of the training data as validation set and computed the change in AUPRC

for early stopping on this set. For ALS, we stopped training if the AUPRC score did not

increase more than 1E−4 for five epochs in a row and kept the best known configuration.

In case of the SGD optimized models, we computed the AUPRC twice in an epoch and

stopped training after the AUPRC score has also not increased 10 times in a row for 1E−4.

All models were trained with an Intel Xeon E5-2680 v2 (Amazon EC2 c3 instance)

using 4 threads (OpenBLAS).

7Slower runtime is mainly caused by the ranking function used for calculating the validation error, but
the consideration of trivial zero gradients during the SGD-updates also caused slowdowns.

8http://alchemy.cs.washington.edu/data/cora/
9We tried different amounts of corrupted triples and five gave the most stable results across all data

sets.
10https://github.com/mnick/scikit-tensor

44 4. Applying Latent Variable Models to Large Knowledge Graphs

Table 4.3: AUPRC and AUROC results of RESCAL, TransE and mwNN on the Freebase-
150k data set. The right columns show total training time, epochs needed for training,
mean time per epoch, standard deviation of training times per epoch.

Freebase-150k
Model d AUPRC AUROC Train(s) Epochs µTime σTime

RESCAL 10 0.327 0.616 101 6 12.2 2.5
TransE 10 0.548 0.886 11,942 148 80.5 1.2
mwNN 10 0.437 0.852 1,730 18 92.0 7.8
RESCAL 50 0.453 0.700 371 6 49.2 7.8
TransE 50 0.715 0.890 18,020 120 149.5 5.1
mwNN 50 0.471 0.868 2,115 14 144.2 12.1
RESCAL 100 0.514 0.753 1,723 13 118.8 11.7
TransE 100 0.743 0.892 18,515 73 252.1 1.1
mwNN 100 0.512 0.879 5,568 21 254.1 18.4

4.3 Experimental Results

Below, we provide the empirical results for RESCAL, TransE and mwNN with respect

to their link prediction quality and training times at different levels of model complexity

(varying the dimensionality d of the latent embeddings) on the data sets described in

Section 4.2.1. The results can be seen in Table 4.3,4.4 and 4.5. These tables follow the

same structure, where each table represents our measurements for all three models with

respect to one data set, e.g. Table 4.3 shows the link-prediction results and training time

measurements for RESCAL, TransE and mwNN for the Freebase-150k data set. The first

four columns show the AUPRC and AUROC scores achieved in the link-prediction task

by each model with respect to the chosen embeddings dimension d. The last four columns

describe the corresponding training time measurements for these models: Total training

time in seconds, epochs needed until convergence, mean time per epoch in seconds 11.

4.3.1 Link-Prediction Quality – TransE has Leading Performance

From the AUPRC results shown in Table 4.3,4.4 and 4.5, it can be clearly concluded that

TransE achieves the highest link-prediction quality on all data sets and all allowed latent

embeddings vector lengths. Even at the lowest model complexity with an embedding length

of 10, it outperforms the other models even if these models exploit higher dimensional

11These are the pure times per epoch excluding other pre-computations like e.g. initialization etc., and
as a consequence µTime ∗ Epoch ≤ Train(s).

4.3 Experimental Results 45

Table 4.4: AUPRC and AUROC results of RESCAL, TransE and mwNN on the DBpedia-
Music data set. The right columns show total training time, epochs needed for training,
mean time per epoch, standard deviation of training times per epoch.

DBpedia-Music
Model d AUPRC AUROC Train(s) Epochs µTime σTime

RESCAL 10 0.307 0.583 40 6 4.8 0.5
TransE 10 0.701 0.902 7,496 108 69.3 2.3
mwNN 10 0.436 0.836 564 10 53.9 0.4
RESCAL 50 0.362 0.617 205 11 15.7 4.1
TransE 50 0.748 0.911 13,316 72 182.3 9.2
mwNN 50 0.509 0.864 5,043 25 198.0 19.8
RESCAL 100 0.416 0.653 503 13 33.1 8.8
TransE 100 0.745 0.903 62,072 76 811.9 21.1
mwNN 100 0.538 0.865 8,950 31 282.6 19.2

embeddings. For example, on the Freebase-150k data set TransE achieves an AUPRC score

of 0.548 (d = 10), where RESCAL and mwNN achieve only 0.514 and 0.512, respectively,

with an embedding length of 100. On the DBpedia-Music and YAGOc-195k we can observe

similar differences in AUPRC.

RESCAL seems to have problems in capturing structure of the data when exploiting

very low dimensional embeddings (d = 10). On all data sets, it clearly has the lowest link-

prediction quality in these cases, achieving only an AUPRC of 0.327 (Freebase-150k), 0.307

(DBpedia-Music) and 0.507 (YAGOc-195k). In the first two cases, the best configuration

is already found after one epoch (Epoch=6 in the Tables 4.3 and 4.4 12). In order to rule

out any issues with the early stopping criteria, we let RESCAL train for more epochs in a

separate experiment, but the AUPRC score was indeed getting worse, because the latent

factors were pushed against zero.

The neural network model performs better than RESCAL with very low-dimensional

embeddings, achieving an AUPRC score of 0.437 (Freebase-150k) , 0.436 (DBpedia-Music),

and 0.600 (YAGOc-195k), where RESCAL only achieved 0.327, 0.307 and 0.507. We

assume that the non-linear interaction of the embeddings in the neural network layers

help the model to capture data structure at this low model complexity level. With longer

embeddings of d = 100, RESCAL catches up to mwNN and even outperforms it in some

cases. On the general purpose knowledge graph (Freebase-150k), both have similar link-

prediction quality (Table 4.3), where mwNN outperforms RESCAL in case of the domain

12Training is stopped if the AUPRC is not improved after 5 epochs, we keep the best configuration.

46 4. Applying Latent Variable Models to Large Knowledge Graphs

Table 4.5: AUPRC and AUROC results of RESCAL, TransE and mwNN on the YAGOc-
195k data set. The right columns show total training time, epochs needed for training,
mean time per epoch, standard deviation of training times per epoch.

YAGOc-195k
Model d AUPRC AUROC Train(s) Epochs µTime σTime

RESCAL 10 0.507 0.621 117 21 5.0 0.4
TransE 10 0.793 0.904 9,862 113 86.6 1.3
mwNN 10 0.600 0.949 4,508 45 99.5 6.1
RESCAL 50 0.694 0.787 210 13 13.9 2.1
TransE 50 0.849 0.960 7,928 41 190.5 10.1
mwNN 50 0.684 0.949 5,742 23 241.5 21.3
RESCAL 100 0.721 0.800 576 18 28.3 4.4
TransE 100 0.816 0.910 15,682 43 360.0 13.4
mwNN 100 0.655 0.957 10,434 36 288.7 16.8

specific DBpedia-Music data set (Table 4.4) and RESCAL outperforms mwNN in case of

the high quality YAGOc-195k data sets (Table 4.5).

4.3.2 Optimization Time – RESCAL is Superior to Other Meth-

ods

In this subsection we have a closer look at some practical aspects observed when training

the different models. In the right columns of the tables 4.3,4.4 and 4.5, we give some

characteristic measurements regarding the training of the different models. As expected,

RESCAL has generally the lowest total training times and mean time per epoch, especially

with latent embedding vectors of length 10. In addition, RESCAL has only two additional

hyper-parameters that control the L2-regularization of the factor matrix A and core tensor

R. The combination of simplicity and speed makes RESCAL especially suitable for quick

solutions in large scale problems.

TransE on the other hand clearly has the longest training times, even though it is quite

simple. For the Freebase data set and all different embedding dimensions, it took between

3-5h (11,942-18,515 sec) to train this model until convergence, whereas the neural network

took only 0.5-1.5h (1,730 - 5,568 sec) and RESCAL ran 2 minutes to half an hour. The

main reason for this lies in the fact that it needs the most epochs until convergence due to

its fixed learning rates. It is worth noticing that the training time per epoch is increasing

dramatically on the DBpedia-Music data set when an embedding length of 100 is used.

4.4 Related Work 47

The DBpedia-Music data set has the most entities (321,950) and TransE seems to be more

sensitive to an increase in the size of entities. We profiled the code to ensure that this

increase in time was not caused by some inefficient code snippet and observed that the

main part of the runtime is indeed spent in the gradient calculation. Furthermore, we

found this model quite straight-forward to tune (only three additional hyper-parameters),

but its long training times limit its applicability to very large data sets. Note that our

implementation of this models is already magnitudes faster than the original code provided

by the authors, which took over a day to converge on these data sets.

In exception to the previously mentioned case where TransE’s training time per epoch

dramatically increased on the DBpedia-Music data set, the mwNN model has similar train-

ing times per epoch as TransE. However, the total training time of mwNN is significantly

lower since it needs significantly less epochs to convergence due to the adaptive gradient

optimization. As a drawback, we found this model quite hard to tune, because it has a

multitude of hyper-parameters. We clearly spent the most effort here.

4.4 Related Work

Tensors have been applied to Web analysis in [52] and for ranking predictions in the

Semantic Web in [35]. [90] applied tensor models to rating predictions. Using factorization

approaches to predict ground atoms was pioneered in [104]; [82], [113], [11], and [50]

applied tensor models for this task, where [82] introduced the RESCAL model. [94]

applied matrix factorization for relation extraction in universal schemas. The RESCAL

model has been the basis of multiple recently published works: [55] introduced non-negative

constraints, [81] presented a logistic factorization and [50] explicitly models the 2nd and

3rd order interactions.

[99] recently proposed a neural tensor network which we did not consider in our study

since it was observed that it does not scale to larger data sets [17, 25]. Instead we exploit a

less complex and more scalable neural network model proposed in [25] which could achieve

comparable results to the neural tensor network of [99].

[12] proposed the Semantic Matching Energy model (SME), which was later refined and

improved in scalability by the translational embeddings model (TransE) introduced in [9].

Entities and relation-types are represented by latent embedding vectors in these models

and the score of a triple is measured in terms of a distance-based similarity measure as mo-

tivated by [74, 73]. TransE [9] has been he target of other recent research activities. [114]

48 4. Applying Latent Variable Models to Large Knowledge Graphs

proposed a framework for relationship modeling that combines aspects of TransE and the

neural tensor network proposed in [99]. [112] proposed TransH which improves TransE’s

capability to model reflexive one-to-many, many-to-one and many-to-many relation-types

by introducing a relation-type-specific hyperplane where the translation is performed. This

work has been further extended in [67] by introducing TransR which separates representa-

tions of entities and relation-types in different spaces, where the translation is performed in

the relation-space. An extensive review on representation learning with knowledge graphs

can be found in [80].

Latent variable methods have been combined with graph-feature models which lead to

an increase of prediction quality [25] and a decrease of model complexity [79]. Further,

it has been shown in [54] that the prediction quality of latent variable models, such as

RESCAL, TransE and the neural network used in the Google Knowledge Vault system, can

also be significantly improved at lower model complexities by integrating prior knowledge

on relation-types, i.e. type-constraints extracted from the knowledge graph schema.

General methods for link-prediction also include Markov-Logic-Networks [92] which

have a limited scalability and random walk algorithms like the path ranking algorithm [60].

4.5 Conclusion

For the statistical modeling of large knowledge graphs, latent variable models require to

capture the dependencies in the graph within low dimensional latent embeddings of entities

and relation-types, since high dimensional embeddings can cause intractable training times

and memory loads. As an example, the embeddings matrix for the whole of Freebase (∼ 40

million entities, i.e. topics) will consume 16 TB of memory if an embedding length of

100,000 would be chosen (considering single precision floats). The computational costs of

such huge embedding matrices will be tremendous.

From the experimental results discussed in Section 4.3.1, we can conclude that TransE

is most capable of learning meaningful low dimensional embeddings, but with the price

of significantly higher training times than RESCAL. RESCAL on the other hand has a

significantly worse link-prediction quality than TransE when exploiting very low dimen-

sional embeddings, but is optimized extremely fast. Opposing these two extremes, one

difference becomes directly apparent: the way these models handle missing data. TransE

optimizes a max-margin ranking loss function that considers every triple as missing that

is not observed in the data. Therefore, the loss function focuses on highlighting the true

4.5 Conclusion 49

triples in the data. RESCAL on the other hand uses a closed-world assumption. RESCAL

factorizes a large third order tensor and optimizes a reconstruction penalty that considers

all possible combinations of triples in the data in every update. It is not surprising that,

due to the overwhelming amount of assumed negative evidence in the data, the reconstruc-

tion error is best minimized by approximating a tensor with almost no signals (everything

is zero) if a low amount of parameters is available. The mwNN model is in the middle of

the other two models in terms of prediction quality when exploiting very low dimensional

embeddings, probably due to its local closed-world assumption that includes aspects of

both approaches. In the case of RESCAL or mwNN there have been extensions proposed

that combine them with graph feature models to increase their link-prediction capabilities

with lower dimensional embeddings [79, 25].

However, even though the aspect of missing data seems a plausible explanation for

the observed differences in quality of the prediction results between all three models, it

masks one important aspect of knowledge graphs that is not considered by any of these

methods, –a knowledge graph is not a complete graph–. In addition to true, missing and

(assumed) false triples we have to deal with the fact that there are combinations of entities

and relation-types that should not occur at all, because they do not make any sense.

The differentiation from these “impossible” triples is provided through type-constraints on

relation-types (see Chapter 2.1.2). Incorporating this kind of prior knowledge on the graph

structure dramatically decreases the amount of possible worlds the latent variable models

have to consider when modeling knowledge graphs. In the next chapter we will show how

this prior knowledge can be integrated in latent variable models and study their general

value for the statistical modeling of knowledge graphs with latent variable models.

50 4. Applying Latent Variable Models to Large Knowledge Graphs

Chapter 5
Exploiting Prior Knowledge On

Relation-Type Semantics

We have illustrated in Chapter 2.1.2 that besides storing facts about the world, schema-

based knowledge graphs are backed by rich semantic descriptions of entities and relation-

types that allow machines to understand the notion of things and their semantic rela-

tionships. Generally, entities in knowledge graphs like DBpedia, Freebase or YAGO are

assigned to one or multiple predefined classes (or types) that are organized in an often

hierarchical ontology. These assignments represent for example the knowledge that the en-

tity Albert Einstein is a person and therefore allow a semantic description of the entities

contained in the knowledge graph. The organization of entities in semantically meaningful

classes further permits a semantic definition of relation-types. The RDF-Schema offers

among others the concepts rdfs:domain and rdfs:range for this purpose. Annotations

that describe relation-type semantics provide valuable information to machines, e.g. that

the marriedTo relation-type should relate only instances of the class person.

In this chapter we study the general value of prior knowledge about the semantics of

relation-types and entities for the statistical modeling of knowledge graphs with latent

variable models. We show how the annotated semantics provided by the rdfs:domain

and rdfs:range concepts can be effectively exploited in latent variable models, thereby

improving the link prediction quality significantly on various data sets.

Additionally, we address the issue that type-constraints can also suffer from incomplete-

ness; rdfs:domain or rdfs:range concepts are absent in the schema or the entities miss

proper typing even after materialization. In this regard, we motivate and study a local

closed-world assumption that approximates the semantics of relation-types solely based

52 5. Exploiting Prior Knowledge On Relation-Type Semantics

on observed triples in the graph. We provide empirical proof that this prior assumption

on relation-types generally improves link-prediction quality in case proper type-constraints

are absent or fuzzy.

This chapter is structured as follows: In the following section, we extend RESCAL’s

efficient optimization algorithm such that type-constraints are considered without loosing

the its great scalability properties. Furthermore, we discuss a series of proof of concept

experiments which show that RESCAL benefits to a large extent from the integration

of prior knowledge on relation-types. The integration of prior knowledge about type-

constraints is not limited to RESCAL, but can also be integrated in the stochastic gradient

optimized models exploited by TransE and mwNN. We show how this can be accomplished

in in Section 5.2. In Section 5.3 we motivate and describe a local closed-world assumption

on relation-types that can be exploited by latent variable models in case proper type-

constraints are absent or fuzzy. In the final part of this chapter (Section 5.4) , we analyze

the general value of type-constraints and the proposed local closed-world assumption in

more detail based on extensive experiments on all models and various representative data

sets. We provide related work in Section 5.5 and conclude in Section 5.6.

Own contributions in this chapter are published in

[56] Denis Krompaß, Maximilian Nickel and Volker Tresp. Large-Scale Factorization of

Type-Constrained Multi-Relational Data. International Conference on Data Science

and Advanced Analytics (DSAA2014), 2014.

[54] Denis Krompaß, Stephan Baier and Voker Tresp. Type-Constrained Representation

Learning in Knowledge-Graphs. In Proceedings of the 14th International Semantic

Web Conference (ISWC), 2015

where Section 5.1 and Section 5.3 cover the main contributions published in [56] but with

improved notation. The contributions published in [54] are depicted in Section 5.2 and

Section 5.4.

5.1 Type-Constrained Alternating Least-Squares for

RESCAL

RESCAL as proposed by [82][83] does not consider or support type-constraints, but posts

a closed-word assumption on the complete adjacency tensor. A closed-world assumption

5.1 Type-Constrained Alternating Least-Squares for RESCAL 53

≈

Persons Companies Cities Sectors
A

A
T

S
e
c
to

rs
 C

it
ie

s
 C

o
m

p
a
n
ie

s

P
e
rs

o
n
s

Persons Companies Cities Sectors

 S
e
c
to

rs
 C

it
ie

s
 C

o
m

p
a
n
ie

s

P
e
rs

o
n
s

fieldOfExpertise

employee

locatedIn

knownCompetitor

knows

Relatio
n-Ty

pes

Relatio
n-Ty

pes

X

(a) A partially observed tensor that is factorized by RESCAL

R
≈X

A

ATknows:

Person ⨯ Person

knownCompetitor:

Company ⨯ Company

locatedIn:

Person,Company ⨯ City

employee:

Person ⨯ Company

fieldOfExpertise:

Person, Company ⨯ Sector

^
Persons Companies Cities Sectors

S
e
c
to

rs
 C

it
ie

s
 C

o
m

p
a
n
ie

s

P
e
rs

o
n
s

Relatio
n-Ty

pes

(b) Factorizing with respect to domain and range constraints of the relations

Figure 5.1: Schematic of factorizing knowledge-graph data with RESCAL without (a)
and with (b) considering type-constraints. For better understanding, we used data from
a hypothetical knowledge-graph in the figures. The colored boxes on the left side of the
equations represent the regions in the adjacency matrices that are defined by the domain
and range constraints. Every entry in the adjacency tensor that is not within these colored
regions violates these constraints. In both approaches (a,b), the data is factorized into
the same latent factor structure, a shared latent representation for the entities (factor
matrix A) and an interaction core tensor R. By the coloring of the right factor matrices
we illustrate which data from the left side has impact on the latent representations. The
difference between considering and not considering the given type-constraints becomes clear
when comparing for example the latent representations of cities. Only the triples that relate
cities and that lie in the blue region in the tensor are actually defined, but the original
RESCAL additionally includes unobserved relations of cities (as negative evidence) that lie
outside of this region due to its closed-world assumption. By integrating type-constraints
into the model, only triples from the colored regions are exploited in the factorization (b).

54 5. Exploiting Prior Knowledge On Relation-Type Semantics

corresponds to the assumption that an entity can be related to any other known entity in the

database. Especially in general purpose knowledge graphs such as Freebase or DBpedia

this assumption has many disadvantages. Most of the relation-types are specialized to

express relations between certain classes of entities, explicitly excluding a vast amount of

relations to other entity classes. In Figure 5.1.a we illustrate this by an example regarding

a hypothetical knowledge-graph about companies and their employees. For RESCAL,

the data is stored in a three-way adjacency tensor (Chapter 3.3.2), but in difference to

multi-relational data sets e.g. the Nations or Kinship data sets1, the different relation-

types are not always defined for all the entities. Instead, we are dealing with a partially

observed tensor where, as indicated by the colored blocks in the adjacency tensor, the

potentially observable parts are predefined through each relation-type’s type-constraints2.

For example, the relation-type knownCompetitor only relates entities of the class company

to each other (red block in last frontal slice) or the relation-typ employee relates entities

of the class company with entities of the class person (green block in second frontal slice of

tensor X in Figure 5.1.a). On the other hand, obviously meaningless relations between the

same class of entities (persons and companies) using the fieldOfExpertise relation-type

are excluded (e.g. the relation (John Smith, fieldOfExpertise, IBM)).

By ignoring prior knowledge about type-constraints all possible combinations of enti-

ties and relation-types are considered during factorization that include a vast amount of

meaningless triples. These meaningless triples have a significant impact on the embeddings

of entities and relation-types learned by RESCAL. In addition, they increase the sparsity

of the adjacency tensor by several magnitudes, what causes additional problems by its own

when factorizing the data. It is expected that the larger and heterogeneous the knowledge

graph, the more of these trivial false triples are implicitly represented in the tensor and

the more severe is the impact on the factorization and the latent embeddings.

To understand the problem in more detail, we have to take a closer look at how RESCAL

learns the embeddings during factorization. Let us consider the relation-type locatedIn

in Figure 5.1.a. The blue block in the adjacency tensor represents the triples that agree

with the type-constraints, namely entities of the classes person and company are being

related to instances of the class city. By considering the RESCAL update for the latent

1http://alchemy.cs.washington.edu/data/
2Assuming a clean knowledge graph as for example YAGO where all relation-types have such constraints.

5.1 Type-Constrained Alternating Least-Squares for RESCAL 55

embedding of entities

A = [
∑
k

XkART
k + XT

kARk][
∑
k

RkA
TART

k + RT
kATARk]

−1,

and especially the part that covers relation-type locatedIn

A = [...+ XlocatedInART
locatedIn + XT

locatedInARlocatedIn + ...]

[...+ RlocatedInA
TART

locatedIn + RT
locatedInA

TARlocatedIn + ...]−1 (5.1)

where XlocatedIn is the adjacency matrix for the relation-type locatedIn, A and RlocatedIn

are the embedding matrices for the entities and the relation-type, respectively, it can be

directly seen that RESCAL does not consider prior knowledge about type-constraints. The

top part of Equation 5.1 that contains the sparse adjacency matrix XlocatedIn causes not

any problems, since all unobserved entities are multiplied by zero and drop out of the

equation. However, in the lower part of the Equation 5.1 (the inverse), the embedding of

every entity is considered for all relation-types, thereby having a tremendous impact on the

inverse and the final update of the entity embeddings. This observation is illustrated by

the different coloring in factor matrix A in Figure 5.1.a. Besides the triples (observed and

unobserved) that agree with the type-constraints, also triples that violate them contribute

to the learned latent embeddings (indicated by the white boxes).

Accordingly, since the latent embedding matrices of relation-types are dependent on

the complete set of latent embeddings of the entities during model training3, they are

considering explicitly all possible relations between entities and therefore a vast amount

of meaningless triples. We highlight this fact by the blur or the core-tensor R in Figure

5.1.a.

For larger knowledge graphs, the overwhelming number of negative evidence (mean-

ingless triples are treated as negative evidence due to the closed-world assumption) will

push the factors to zero because of the reconstruction penalty (Equation 3.1), especially

when pursuing a low rank factorization (which we are interested in). Of course, this can

be counteracted by choosing a sufficiently high rank that allows the model to spend some

parameters to learn the rarely observed true signals in the data. This approach can suffice

for small data sets but as discussed in Chapter 4, with real knowledge graphs that contain

millions of entities a high rank factorization can quickly become intractable; A high rank

3The R-update of RESCAL relies on the Singular-Value-Decomposition of the factor matrix A.

56 5. Exploiting Prior Knowledge On Relation-Type Semantics

has a dramatic impact on the runtime4 and memory consumption of RESCAL.

In order to integrate type-constraints as given by the rdfs:domain and rdfs:range

triples, we have to guarantee that all triples that violate the type-constraints are ignored

for all relation-types during factorization. In other words, for each relation-type we want

to factorize the corresponding knowledge-graph with respect to the subset of entities that

agrees with the type-constraints and suits the semantics of the corresponding relation.

Therefore, the factorization of each frontal slice of the adjacency tensor, in which each

frontal slice represents an adjacency matrix for one relation-type, might be completely

different in shape to the ones of the other frontal slices (Figure 5.1.b) because we exclude

entities. Strictly speaking, we dismiss the representation of the triples in a uniformly

shaped third-order adjacency tensor in favor of a list of frontal slices of arbitrary shape in

which each of these frontal slices explicitly excludes triples that violate the corresponding

type-constraints. Nevertheless, we want to exploit the same factorization structure than

RESCAL, but where each adjacency matrix of the relation-types only influences the latent

embeddings of a smaller subset of entities unless all entities are included in the union of

classes covered by the domain and range constraints. The goal of this approach is indicated

by the factorization in Figure 5.1.b, the latent embeddings are clean. By “clean” we mean

that no meaningless triples contribute to the latent embeddings of entities or relation-types

(no white boxes in A and no blur in core tensor R).

Factorizing the list of frontal slices efficiently can be achieved by integrating the type-

constraints directly into the RESCAL Least-Squares cost function and by exploiting a sim-

ilar Alternating Least-Squares optimization scheme. For this reason, the type-constraints

have to be encoded in a way that can be exploited by the optimization algorithm as we

will show next.

5.1.1 Additional Notation

In addition to the notation used in Chapter 3.3.1, X̂k will denote the frontal-slice Xk

where only subject entities (rows) and object entities (columns) are included that agree

with the domain and range constraints of relation-type k. Additionally, we denote X[z,:]

for the indexing of multiple rows from the matrix X, where z is a vector of indices and “:”

the colon operator generally used when indexing arrays. We further denote domaink as

the sorted indices of all entities that agree with the domain constraints of relation-type k.

Accordingly, rangek denotes these indices for the range constraints of relation-type k.

4RESCAL scales cubic with the rank.

5.1 Type-Constrained Alternating Least-Squares for RESCAL 57

5.1.2 Integrating Type-Constraints into RESCAL

The integration of type-constraints in the RESCAL ALS optimization algorithm requires

a suitable representation of these type-constraints. We represent the type-constraints for

each relation-type as two vectors containing unique entity indices that we construct a

priori from the data and the given rdfs:domain and rdfs:range concepts. These entity

indices correspond to the order of entities in the latent entity embedding matrix A (and the

tensor X). We denote these vectors as domaink and rangek, where the former contains the

indices of entities that belong to classes defined by the domain and the latter to the classes

defined by the range of the relation-type k. These index vectors are exploited to extract

the sub-adjacency matrices from each frontal slice in the adjacency tensor X to construct

the previously mentioned new representation of the knowledge graph as a list of adjacency

matrices of arbitrary shape (Figure 5.1.b). By exploiting this new data representation and

the two index vectors, RESCAL’s regularized Least-Squares cost function is adapted to

L =
∑
k

‖X̂k −A[domaink,:]RkA
T
[rangek,:]

‖2
F + λA‖A‖2

F + λR
∑
k

‖Rk‖2
F , (5.2)

where A represents the latent embeddings for the entities and Rk the embeddings for the

relation-type k. For each relation-type k the latent embedding matrix A is indexed by the

corresponding domain and range constraints in order to exclude all entities that disagree

with the type constraints. X̂k denotes the adjacency matrix for the subgraph that agrees

with the type-constraints of relation-type k. Note that, if the adjacency matrix X̂k defined

by the sub-graph of relation-type k and its type-constraints has the shape nk ×mk, then

A[domaink,:] is of shape nk × d and A[rangek,:] is of shape mk × d, where d is the dimension

of the latent embeddings (or rank of the factorization).

Even though the cost function defined in Equation 5.2 looks very similar to the cost

function of RESCAL (Equation 3.1), it contains important differences since we are actually

factorizing a list of matrices of arbitrary shapes (denoted by the “̂ ”) instead of uniformly

shaped frontal tensor slices. However, through the similar formulation of the optimization

problem we are still able to exploit the nice scalability properties of RESCAL. In the next

two subsections, we provide details on the ALS updates of the factor matrix A and the core

Tensor R of type-constrained RESCAL. The full algorithm is illustrated in Algorithm 1,

where domainX denotes the list of index vectors domaink and rangek for each relation-

type k present in the data (tensor X).

58 5. Exploiting Prior Knowledge On Relation-Type Semantics

Algorithm 1 Type-Constrained RESCAL
.

Require: Adjacency Tensor: X, Type-Constraints in X: (domainX,rangeX)

1: function RESCAL TC(X, r, λA, λR,domainX, rangeX) . r: rank of factorization,
λA, λR: regularization parameters

2: X̂ = shrinkX(X,domainX, rangeX) . Apply Type-Constraints on X
3: A,R = initialize(X,r) . based on eigendecomposition of

∑
k(Xk + XT

k) [3]
4: repeat
5: A← updateA(X̂,A,R,domainX, rangeX, λA) . Equation 5.3

6: R← updateR(X̂,A,domainX, rangeX, λR) . Equation 5.5
7: until convergence or max iteration reached
8: return A,R
9: end function

Type-Constrained Update of the Factor Matrix A

For the ALS updates, we exploit the indexing on factor matrix A to avoid the impact of

type-constraint violating triples on the latent embeddings. However, due to the introduced

variety caused by the different type-constraint definitions for each relation-type k, some

computational overhead compared to the original updates has to be introduced. For the

latent embedding of the i-th entity we get

ai =

[∑
k

X̂kA[rangek,:]R
T
k + X̂T

kA[domaink,:]Rk

]
i

[∑
k

1domaink(i)Ek + 1rangek(i)Fk

]−1

with Ek = RkA
T
[rangek,:]

A[rangek,:]R
T
k , Fk = RT

kAT
[domaink,:]

A[domaink,:]Rk

(5.3)

where ai is the i-th row vector of A that represents the latent embedding of the i-th entity

and 1 is the indicator function. 1domaink denotes the indicator function of the set of entity

indices contained in the domain of relation-type k and 1rangek vice versa for the range.

The most obvious difference to the original RESCAL A-update lies in the fact that we

cannot update the complete factor matrix A as efficiently at once. The original update

only requires the calculation of one inverse that can be exploited for all latent embeddings

of entities. In the new update, the inverse in Equation 5.3 is dependent on the range and

domain constraints and whether the entity is included or excluded by those constraints

for each relation-type k as subject or as object. Each indicator function 1 sets one whole

summand to zero if the index of an entity is not included in the index vector for the

5.1 Type-Constrained Alternating Least-Squares for RESCAL 59

domain or the range, respectively. Note that in the current form, we have to calculate as

many inverses as there are entities in the knowledge graph. This can become extremely

expensive when a high rank for the factorization is used (the inverse of d×d matrices have

to be computed). Fortunately, we can exploit the fact that domain and range constraints

are on class level and therefore entities of the same class are sharing the same inverses,

reducing the number of computed inverses per update in the worst to the number of classes

covered by the type-constraints. In addition, we discussed Chapter 4 that d is required

to be small when RESCAL is applied to large knowledge graphs leading to significantly

reduced computational loads when computing the inverses.

On the other hand, some computation have become more efficient because they incor-

porate on the much smaller matrices X̂T
k , A[domaink,:]

and A[rangek,:] for each relation-type.

Type-Constrained Update of Core Tensor R

We are still able to utilize an efficient closed-form solution for the update of the latent

embeddings for relation-types (core tensor R). Nevertheless, we have to consider that each

frontal slice Rk has to be updated with respect to two different sets of latent embedding

vectors contained in A, namely A[domaink,:]
and A[rangek,:]. For each frontal slice of R we

get the following closed-form solution for the update:

Rk = ((C⊗B)T (C⊗B) + λI)−1(C⊗B)Tvec(X̂k) (5.4)

with B = A[domaink,:]
and C = A[rangek,:].

As in [78], we can exploit the following property of the singular value decomposition (SVD)

regarding the Kronecker product of two matrices [62]

C⊗B = (UC ⊗UB)(ΣC ⊗ ΣB)(VT
C ⊗VT

B),

with B = UBΣBVB
T and C = UCΣCVC

T , leading to the much more efficient update for

Rk

Rk = VB(P ~ UT
BX̂kUC)VT

C (5.5)

60 5. Exploiting Prior Knowledge On Relation-Type Semantics

where ~ denotes the Hadamard product and P is defined as follows: Let Q be defined as

a diagonal matrix and where its diagonal entry qii is given by

qii =
DBiiDCii

D2
Bii

D2
Cii

+ λ

with DB = ΣB ⊗ ΣB and DC = ΣC ⊗ ΣC.

Then P can be constructed by a column-wise reshape of the diagonal in Q.

Note, that we are generally dealing with different domain and range constraints for

each relation, therefore A[domaink,:] and A[rangek,:] will differ for each Rk. In contrast to

the updates in RESCAL we cannot use the result of one SVD on the factor matrix A for

all frontal slice updates of R. In our case we have to perform two SVDs for each updated

Rk. This seems less efficient at the first moment, but the SVDs are only calculated on the

much smaller factor matrices A[domaink,:] and A[rangek,:].

Attributes

In [83], RESCAL was extended to integrate knowledge about attributes of entities. In this

work, the information of attributes of entities was explicitly separated in an additional

matrix, but factorized simultaneously with the tensor to couple the latent representations

of entities. As discussed in the same work, the attributes could have also been integrated

directly into the tensor by treating them as additional entities. Unfortunately, this ap-

proach leads to a dramatic increase in size and sparsity of the tensor; the frontal slices

would be of shape (n + a) × (n + a) instead of n × n, where n denotes the amount of

entities and a the amount of attributes. Type-constrained RESCAL supports the integra-

tion of attributes without any additional adaption of the algorithm, because relations to

attributes can be represented as just another type-constrained adjacency matrix X̂attr. By

typing these attributes properly (which is the case in schema-based knowledge graphs) and

by providing the corresponding type-constraints for datatype properties5, type-constrained

RESCAL can even distinguish different kinds of attributes that might be specific for certain

classes of entities.

5Datatype properties denote all relation types that relate entities with literals.

5.1 Type-Constrained Alternating Least-Squares for RESCAL 61

Table 5.1: Details on Cora and DBpedia-Music data sets used in the experiments.

Data Set Entities Relations Facts adjacency tensor X
Cora 2,497 10 47,547 2,497 × 2,497 × 10
DBpedia-Music 311,474 7 1,006,283 311,471×311,474×7

5.1.3 Relation to Other Factorizations

The algorithm behind type-constrained RESCAL can be seen as a generalized 2-mode

third order tensor factorization methods that contains one global factor matrix for the first

and second mode factors. Through this structure, type-constrained RESCAL can mimic

other popular 2-mode tensor factorizations very easily. If no type-constraints are available,

type-constrained RESCAL transforms into RESCAL. If subject and object entities are

not overlapping and the type-constraints for all relation-types are the same, we would get

a Tucker2 [105] decomposition. If we have equal range constraints for all relations that

are disjunct from the various domain constraints of all relations (which are also disjunct

from each other), we would get a similar decomposition as PARAFAC2 [42] (but Rk is not

diagonal).

5.1.4 Testing the Integration of Type-Constraints in RESCAL

Below, we will measure the impact of integrating type-constraints into the RESCAL ALS

optimization on link-prediction quality and scalability of RESCAL. We conducted link-

prediction experiments on two different data sets for this purpose. First, we evaluate

against the comparably small Cora6, which links authors, titles and venues through citation

records. For the second data set, we extracted relation-types from the music domain

of DBpedia ({Genre, RecordLabel, associatedMusicalArtist, associatedBand, musicalArtist,

musicalBand, album}. Characteristic dimensions of these data sets can be inferred from

Table 5.1.

From each data set, we constructed a partially observed adjacency tensor, where each

frontal slice corresponds to the adjacency matrix of one relation-type. We defined the type-

constraints based on prior knowledge about the data (Cora) or in case of the DBpedia Data

set based on schema information extracted from the corresponding ontology (rdfs:domain

and rdfs:range concepts).

We evaluate the prediction-quality based on link-prediction tasks and measure the

6http://alchemy.cs.washington.edu/data/cora/

62 5. Exploiting Prior Knowledge On Relation-Type Semantics

mean Area Under Precision Recall Curve (AUPRC) score after 10 fold cross-validation.

For hyper-parameter-tuning and final evaluation, we used the same data and routine for

the 10-fold-cross-validation, but we used different seeds for splitting the data into subsets.

For the 10-fold cross-validation, we split each data set into 10 random subsets where each

subset included observed and unobserved triple which agree with the given type-constraints.

In case of the smaller Cora data set, each of these subsets included one tenth of all possible

triples sampled from the type-constrained tensor. For the DBpedia-Music data set it is

intractable to sample one tenth of the type-constrained tensor due to the huge amount

of possible triples. Instead, each of the ten subsets contained one tenth of the observed

triples and we randomly sampled 10 times as many unobserved triples and treated them as

negative evidence. We made sure that there are no overlaps between the negative evidence

of the ten subsets used for cross-validation. In each iteration of the 10-fold cross-validation

all true triples contained in one subset are removed from the tensor (set to zero) and the

remaining tensor is used for training RESCAL. After training, we predict confidences for

all triples contained in this subset and compute the AUPRC for the predicted ranking.

We measure and compare the training time in seconds for evaluating the impact of type-

constraints on the scalability of RESCAL. As discussed in Section 5.1.2, the integration of

type-constraints causes computational overhead, especially when computing the inverses in

the update of the factor-matrix A. In case of type-constrained RESCAL, the class-based

grouping of entities is included in those measurements. All experiments are conducted

with an Intel(R) Xeon(R) CPU W3520 @2.67GHz. In all experiments, RESCAL and

Type-Constrained RESCAL were trained for 20 epochs (iterations) of Alternating Least-

Squares.

Link-Prediction on Cora

With (RESCAL+TC, blue) and without (RESCAL, red) considering type-constraints,

RESCAL performs comparable well on the Cora data set (Figure 5.4.a). Both achieve

a maximum score of approx. 0.96 in AUPRC at a rank of 500 (Random: 0.013). By

considering type-constraints, it can be observed that the prediction quality increases much

faster at lower ranks up to 100. Both approaches achieve similar bad results at a rank of

one (0.11 in AUPRC), but for a rank of 25 the integration of type-constraints pays already

off, improving the link-prediction quality about 21% in AUPRC from 0.66 to 0.8. At a

rank of 100, RESCAL with type-constraints reaches already almost its maximum score of

0.96 whereas the original RESCAL algorithm achieves only 0.89 and needs an four-fold

5.1 Type-Constrained Alternating Least-Squares for RESCAL 63

0
10
0

20
0

30
0

40
0

50
0

rank

0.0

0.2

0.4

0.6

0.8

1.0

A
U
P
R
C

RESCAL

RESCAL+TC

Random

(a) Cora: Rank Vs AUPRC

0
10
0

20
0

30
0

40
0

50
0

rank

0

10

20

30

40

50

60

70

80

90

T
im

e
(s
)

RESCAL

RESCAL+TC

(b) Cora: Rank Vs Runtime

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
U
P
R
C

RESCAL

RESCAL+TC

Random

(c) DBpedia-Music: Rank Vs AUPRC

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

rank

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s
)

RESCAL

RESCAL+TC

(d) DBpedia-Music: Rank Vs Runtime

Figure 5.2: Results on the Cora and DBpedia-Music data sets. Shown is the performance
of RESCAL with (blue) and without (red) the integration of type-constraints on these
data sets. A random ranking is indicated in grey. (a,c) Plotted are the rank used for
the factorization against the Area Under Precision Recall Curve (AUPRC) score on the
link prediction tasks. (b,d) Shown are the training times in seconds against the rank
(dimensionality of the latent embeddings d) used in the factorization

increase in complexity (rank) to achieve the same score.

In Figure 5.4.b we compare the training time of RESCAL in seconds with and without

the integration type-constraints. The computational overhead caused by the integration

of type-constraints can be clearly seen, but the runtime increases at a very similar pace.

Nevertheless, when also considering the link prediction quality measured in AUPRC from

Figure 5.4.a, we can argue that the integration of type-constraints results in a low-rank

64 5. Exploiting Prior Knowledge On Relation-Type Semantics

factorization of much higher quality. Type-constrained RESCAL needs less parameters and

less time to achieve good link-prediction results. We already mentioned that by considering

type-constraints, RESCAL reaches its maximum performance already at a rank of 100 for

which it needs 8 seconds, but without, it needs a four times higher rank of 400 for a similar

score leading to a runtime of 57 seconds.

Link-Prediction on DBPedia-Music

The DBpedia-Music data set is considerably larger than the Cora data set and we observe

clear differences between RESCAL and its extension (Figure 5.4.c and d). Again, RESCAL

with integrated type-constraints (RESCAL+TC) is shown in blue whereas the original

algorithm is shown in red. Plotted are the rank of the factorization against the final mean

AUPRC (Figure 5.4.c) and the training time in seconds (Figure 5.4.d) after 20 epochs of

ALS. The consideration of type-constraints clearly pays of when applying RESCAL to this

data set, beating the original approach in terms of AUPRC at any shown rank especially at

ranks below 200 (RESCAL: 0.663, RESCAL+TC: 0.770). As observed with the Cora data

set, RESCAL’s prediction quality starts to catch up at higher ranks and it is expected to

hit a comparable performance at some very high rank not covered by the plot. Considering

the maximum AUPRC score of the original RESCAL algorithm, which is 0.734 at a rank

of 400, by integrating type-constraints into RESCAL this score can already be achieved at

a rank of 100. At a rank of 400 it achieves a significantly better score of 0.792.

When comparing the runtime of both methods (Figure 5.4.d), it can be observed that in

contrast to the observations for the Cora data set, the training time of both approaches is

comparable, but the extended approach starts to slightly outperform the original approach

at ranks higher than 300. A reason for this might be that despite the computational

overhead generated by integrating type-constraints, the training time seems to benefit

from the incorporation of much smaller matrix multiplications in the updates (due to the

type-constraints), outweighing the penalty caused by the computational overhead. These

size difference between the type-constrained factor matrices (A) becomes more prominent

at higher ranks. With increasing rank, these smaller matrices grow much slower in their

absolute size than the complete factor matrix A and therefore the runtime suffers less from

an increase in rank (and even compensates for the more complex inverse calculation in the

A-updates).

When considering both, the prediction quality and the measured training time, the

value of type-constraints for RESCAL becomes even more prominent. RESCAL without

5.2 Type-Constrained Stochastic Gradient Descent 65

type-constraints reaches an AUPRC score of 0.734 using a rank of 400 after approximately

one hour, whereas its extension needed only 9 minutes (rank 100) for the same link pre-

diction quality.

5.1.5 Conclusion

From the results of the conducted experiments an integration of type-constraints as given

by the knowledge graph’s schema seems very promising. We have seen that despite the

computational overhead introduced into RESCAL by integrating type-constraints, the im-

pact on the actual runtime of the algorithm is rather low when RESCAL exploits a similar

rank for the factorization. The reason for this lies in the fact that in part the integration

of type-constraints results in more efficient computations in the updates. However, by

considering that the integration of type-constraints on relation-types results in a better

low rank factorization and corresponding embeddings for entities and relation-types, the

gained improvements are far more prominent. With the integration of type-constraints,

RESCAL is able to achieve similar link-prediction scores at a much lower rank than the

original algorithm that ignores type-constraints. This decrease in complexity leads to an

order of magnitude lower runtime (seven times on Cora and six times on DBpedia-Music)

and model complexity (4 times with both data sets). The better low rank factors are a

direct result of the tremendous decrease of the sparsity of the adjacency tensor, allowing

type-constrained RESCAL to focus on the correlations and dependencies between real data.

We have discussed that RESCAL pushes the learned latent factors to zero if the sparsity

of the adjacency tensor is to high, because it primarily focuses fitting the learned func-

tion to the overwhelming amount of negative evidence present in the data. The observed

benefits in training time and required model complexity are very interesting for modeling

large knowledge-graphs, which can only be feasible if we are able to learn meaningful low

dimensional latent embeddings for entities and relation-types.

5.2 Type-Constrained Stochastic Gradient Descent

We have seen in the previous section that RESCAL benefits to a large extend from prior

knowledge about relation-types in the form of type-constraints as given by the knowledge

graph’s schema. In this regard, it is especially notable that this prior knowledge has a

positive influence on the low dimensional embeddings learned from the data by RESCAL.

The integration of schema information is not limited to RESCAL or other ALS optimized

66 5. Exploiting Prior Knowledge On Relation-Type Semantics

models, but can also be exploited in latent variable models that exploit sampling based

optimization algorithms such as stochastic gradient-descent for optimization, i.e. TransE

(Chapter 3.3.3) and mwNN (Chapter 3.3.4). One argument for integrating type-constraints

into RESCAL is that it decreases the sparsity of the adjacency tensor, thereby avoiding

that RESCAL focuses on the overwhelming amount of negative evidence when learning

the latent embeddings for entities and relation-types. Sparsity is not an issue in both,

TransE and mwNN, because they are optimized through corruption of observed triples.

Nevertheless, the corrupted triples are unconstrained, meaning that in large heterogeneous

knowledge graphs such as Freebase, large amounts corrupted triples will violate the type-

constraints. As a consequence, these algorithms have a strong bias towards learning the

difference between type-constraints violating triples and non-violating true triples. In

other words the learned latent factors have to additionally explain the type-constraints

and therefore higher dimensional embeddings are needed to learn the dependencies between

meaningful triples that agree to the sense of the relation-types. In the following subsection,

we will describe how the integration of type-constraints can be achieved in TransE and

mwNN in more detail. As denoted in Section 5.1.1, for the following sections domaink

contains the entity indices that agree with the domain constraints of relation-type k and

rangek denotes these indices for the range constraints of relation-type k.

5.2.1 Type-Constrained Triple Corruption in SGD

In contrast to RESCAL, TransE and mwNN are both optimized through mini-batch

Stochastic Gradient Descent (SGD), where a small batch of randomly sampled example

triples is used in each iteration of the optimization to drive the model parameters to a local

minimum. Generally, knowledge graph data does not explicitly contain negative evidence,

i.e. false triples7, and is generated in this algorithms through corruption of observed triples

(see Chapter 3.3.3 and 3.3.4). In the original algorithms of TransE and mwNN the cor-

ruption of triples is not restricted and can therefore lead to the generation of triples that

violate the semantics of relation-types. For integrating knowledge about type-constraints

into the SGD optimization scheme of these models, we have to make sure that none of the

corrupted triples violates the type-constraints of the corresponding relation-types. We can

accomplish this by applying the type-constraints for each sampled true triple (s, p, o) on

a set of entities E from which s′ and o′ are sampled. For TransE we update Equation 3.4

7There are of course undetected false triples included in graph which are assumed to be true.

5.3 A Local Closed-World Assumption for Modeling Knowledge Graphs 67

and get

LT CTransE =
∑

(s,p,o)∈T

∑
(s′,p,o′)∈T ′

max{0, γ + θs′,p,o′ − θs,p,o} (5.6)

with s′ ∈ E[domainp] ⊆ E , o′ ∈ E[rangep] ⊆ E ,

whereas, in difference to Equation 3.4, we enforce by s′ ∈ E[domainp] ⊆ E that the subject

entities are only corrupted through the subset of entities that belong to the domain and

by o′ ∈ E[rangep] ⊆ E that the corrupted object entities are sampled from the subset of

entities hat belong to the range of predicate relation-type p. For mwNN, we corrupt only

the object entities through sampling from subset of entities o′ ∈ E[rangep] ⊆ E that belong

to the range of the predicate relation-type p and get accordingly

LT CmwNN = −
∑

(s,p,o)∈T

log θs,p,o −
c∑

o′∈E[rangep]
⊆E

log(1− θs,p,o′) . (5.7)

In difference to ALS optimized RESCAL, the integration of type-constraints has no direct

impact on the update computation as in case of RESCAL, because we apply the constraints

only on the triple corruption procedure. The type-constrained sampling of corrupted triples

can be realized very efficiently because for any target triple (s, p, o), we simply have to

randomly sample entity indices from the precomputed index vectors domainp for subject

corruption or respectively from rangep for object corruption. The value of type-constraints

for link-prediction with these models will be empirically studied and discussed in Section

5.4.1

5.3 A Local Closed-World Assumption for Modeling

Knowledge Graphs

Type-constraints as given by schema-based knowledge graphs tremendously reduce the pos-

sible worlds of the statistically modeled knowledge graphs. Unfortunately, type-constraints

can also suffer from incompleteness and inconsistency present in the data. Even after

materialization, entities and relation-types might miss complete typing, leading to fuzzy

type-constraints, leading to disagreements of true facts and present type-constraints in the

knowledge graph. For relation-types where these kind of inconsistencies are quite frequent,

we cannot simply apply the given type-constraints without the risk of loosing true triples.

68 5. Exploiting Prior Knowledge On Relation-Type Semantics

Lucy

John

Jane

Jack

Berlin

Munich

Erlangen

Horsevisit
edvi

sit
ed

visite
d

visited

visited

visited Relation-Type visited:

domain:
{Jack,John,Jane,Lucy}

range:
{Berlin,Munich}

Figure 5.3: Illustration of how the local closed-world assumption is applied to approximate
domain and range constraints for a relation-type. The coloring of the nodes indicates which
entities would belong to the same class. All person entities (Jack,John,Jane and Lucy) are
assigned to the domain of relation-type visited, because the graph contains triples where
these entities occur as subject. For the range only the cities Munich and Berlin are added
and the other entities are excluded from the range, because no relation visited has been
observed in the graph where they occur as object.

On the other hand, if the domain and range constraints themselves are missing, as e.g. in

schema-less KGs, we might consider many triples that do not have any semantic meaning.

We argue that in these cases a local closed-world assumption (LCWA) can be applied,

which approximates the domain and range constraints of the targeted relation-type not

on class level, but on instance level based solely on observed triples. The idea is shown

in Figure 7.1. Given all observed triples, under this LCWA the domain of a relation-type

k consists of all entities that are related by the relation-type k as subject. The range

is accordingly defined, but contains all the entities related as object by relation-type k.

Of course, this approach can exclude entities from the domain or range constraints that

agree with the type-constraints given by the RDFS-Schema concepts rdfs:domain and

rdfs:range and the model simply ignores them during model training when exploiting

the local closed-world assumption (only for the target relation-type). On the other hand,

nothing is known about these entities (in object or subject role) with respect to the target

relation-type and therefore treating them as missing can be a valid assumption. In case of

the ALS optimized RESCAL, we reduce the size and sparsity of the data by this approach,

which has a positive effect on model training compared to the alternative, a closed-world

5.3 A Local Closed-World Assumption for Modeling Knowledge Graphs 69

assumption that considers all entities to be part of the domain and range of the target

relation-type [56]. For the stochastic gradient descent optimized TransE and mwNN mod-

els, the corruption of triples will result in triples from which we can expect that they do

not disagree with the semantics of the corresponding relation-type.

5.3.1 Entity Grouping for RESCAL under a Local Closed-World

Assumption

In difference to the type-constraints, which were defined on entity class level, with the local

closed-world assumption we deliberately ignore the class membership of entities. As a con-

sequence, we loose the possibility to organize entities in large groups to reduce the amount

of inverses that have to be computed in the A-updates. We can reduce the amount of

different inverses by analyzing the data in a preprocessing step to group entities that share

the same pattern of inclusion in the approximated domain and range constraints through-

out all relation-types. Nevertheless, in large knowledge graphs where a large amount of

relation-types are present and completeness of entities will vary, the grouping will be less

successful, resulting in a large amount of small groups. Below, we will empirically study

the impact of the local closed-world assumption on the scalability of RESCAL using a large

knowledge graph extracted from DBpedia8 [66]. We extracted all entities with at least five

relations and all relation-types that have at least 1000 facts. The resulting graph contained

2,255,018 entities, 511 relation-types and 16,945,046 triples. The corresponding adjacency

tensor is of shape 2,255,018×2,255,018×511.

For evaluation and hyper-parameter-tuning we performed 10-fold cross-validation and

report the mean Area Under Precision Recall Curve (AUPRC) on a link prediction task.

We performed a similar 10-fold cross-validation procedure as used in Section 5.1.4 with the

DBpedia-Music data set, only in this case we defined the domain and range constraints

based on the local closed-world assumption 9. We also sampled 10 times as many negative

triples from the tensor and ran RESCAL with and without considering the local closed-

world assumption for 20 epochs of ALS. The experiment was conducted with an Intel(R)

Xeon(R) CPU W3520 @2.67GHz.

8http://wiki.dbpedia.org/Downloads39?v=pb8; Data set: Mapping-based Properties (Cleaned)
9The domain and range constraints are expected to be not perfectly covering the type-constraints

defined by DBpedia’s schema, but will suffice to study the impact of the LCWA on RESCAL at this point

70 5. Exploiting Prior Knowledge On Relation-Type Semantics

0 10 20 30 40 50

rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
U
P
R
C

RESCAL

RESCAL+LCWA

Random

(a) DBpedia: Rank Vs AUPRC

0 10 20 30 40 50

rank

0

2

4

6

8

10

12

14

16

T
im
e
(h
)

RESCAL

RESCAL+LCWA

(b) DBpedia: Rank Vs Runtime

Figure 5.4: Results on the DBpedia data sets. Shown is the performance of RESCAL with
(blue) and without (red) the exploiting the local closed-world assumption on relation-types
from the DBpedia Data set. A random ranking is indicated in grey. (a) Plotted are the
rank used for the factorization against the score in Area Under Precision Recall Curve
(AUPRC) on a link prediction task. (b) Shows the training times in hours with increasing
rank used for the factorization.

5.3.2 Link-Prediction in DBpedia with RESCAL

Especially when dealing with a data set of this size (the partially observed tensor is of

shape 2,255,018 × 2,255,018 × 511), it is important to use models which achieve high

prediction quality with low dimensional embeddings, because every additional dimension

in the factorization consumes approximately 18 MB of additional memory. We are also

dealing with a high amount of relation-types (511), which hardens the grouping of entities.

On average we were able to assign the 2,255,018 million entities to approximately 410,000

groups in each training set, thereby decreasing the amount of different inverses per A-

update about a factor of five.

With respect to the link-prediction quality, it can be inferred from Figure 5.4.a that

due to the sparsity of the tensor (6.52 × 10−9 %) RESCAL (red line in the figure) has

problems in capturing the data structure when disregarding any prior assumption on the

relation-types, resulting in a factorization of low quality at a very low rank (0.345 AUPRC,

rank 50). At a rank of 5 the performance is barely above a random ranking (RESCAL:

0.119, Random: 0.112). As expected and discussed in Section 5.1, we observed that the

coefficients in the factor matrices A and the core tensor R for RESCAL are all very close

to zero, meaning that RESCAL indeed tried to fit the overwhelming amount of zeros in

5.3 A Local Closed-World Assumption for Modeling Knowledge Graphs 71

the data.

In comparison, by integrating approximated domain and range constraints (through

the local closed-world assumption), better factors that clearly capture structure in the

data could be learned at a rank of 5, resulting in an increased link-prediction quality of

0.511 in AUPRC (RESCAL+LCWA, blue line in Figure 5.4.a). Furthermore, at a rank of

50 the factorization starts to become of reasonable quality (0.667)10 whereas the original

algorithm clearly fails (0.345). It can be expected that the original RESCAL will actually

achieve similar results when exploiting a sufficiently high rank but, as discussed in Chapter

4, for very large data sets a high rank is intractable or at least a powerful computer system

needed.

In Figure 5.4.b, we show the runtime of both RESCAL approaches after 20 epochs of

ALS. It can be clearly seen that the training time differences are significantly diverging

with higher ranks and the consideration of the approximated domain and range constraints

clearly decreases RESCAL’s training time. By exploiting the LCWA, the data can be fac-

torized with a rank of 50 in about 3.5 hours (RESCAL+LCWA, AUPRC: 0.667) whereas

the original algorithm needs almost 16 hours (RESCAL, AUPRC: 0.345). On a multi-

relational data set of this size, where relation-types incorporate only a small subset of

entities, the calculations in the updates based on the much smaller factor matrices be-

come very efficient and the larger amount of inverse computations per A-update become

insignificant. With increasing rank the gap in training time is expected to increase even

further.

5.3.3 Conclusion

Type-constraints of relation-types from schema-based knowledge graphs are not neces-

sarily always present or can be fuzzy. We proposed an alternative local closed-world

assumption that can be applied in these cases. This local closed-world assumption ap-

proximates domain and range constraints solely based on observed triples in the graph.

In case of RESCAL, the approximated domain and range constraints do not consider the

class membership of entities and therefore the grouping of entities, which is exploited for

decreasing the amount of inverse computations in the A-updates (Section 5.1.2), is less

efficient. Based on our experiments on a very large sample from the DBpedia knowledge

graph, we were able to show that this drawback is negligible. In fact, we could observe

that the local closed-world assumption adds great value to RESCAL, improving runtime

10The corresponding Area under ROC curve is 0.84.

72 5. Exploiting Prior Knowledge On Relation-Type Semantics

and link-prediction quality significantly by exploiting low-dimensional embeddings at the

same time.

5.4 Experiments – Prior Knowledge on Relation-Types

is Important for Latent Variable Models

In the previous sections, we have shown how prior knowledge about relation-types can be

integrated in ALS optimized RESCAL and SGD optimized TransE and mwNN. We showed

that in case of RESCAL, domain and range constraints as given by the schema of the

knowledge graph or derived by a local closed-world assumption increase the link-prediction

quality significantly, if integrated into the optimization algorithm. In this section, we want

to study the general value of prior knowledge on the semantics of relation-types for the

statistical modeling of knowledge graphs with latent variable models. In the first setting,

we assume that curated type-constraints extracted from the knowledge graph’s schema are

available. In the second setting, we explore the local closed-world assumption proposed

in Section 5.3. Our experimental setup covers three important aspects which will enable

us to make generalizing conclusions about the importance of such prior knowledge when

applying latent variable models to large knowledge graphs:

• We test various representative latent variable models that cover the diversity of these

models in the domain. As motivated in the introduction of Chapter 3.3, we belief

that RESCAL, TransE and mwNN are especially well suited for this task.

• We test these models at reasonable low complexity levels, meaning that we enforce

low dimensional latent embeddings, which simulates their application to very large

data sets where high dimensional embeddings are intractable. In [25] for example,

the dimensionality of the latent embeddings (d in Chapter 3.3.4) was chosen to be

60.

• We extracted diverse data sets from instances of the Linked-Open Data Cloud,

namely Freebase, YAGO and DBpedia, because it is expected that the value of prior

knowledge about relation-type semantics is also dependent on the particular data

set the models are applied to. From these knowledge graphs, we constructed data

sets that will be used as representatives for general purpose knowledge graphs that

cover a wide range of relation-types from a diverse set of domains, domain focused

5.4 Experiments – Prior Knowledge on Relation-Types is Important for
Latent Variable Models 73

knowledge graphs with a smaller variety of entity classes and relation-types and high

quality knowledge graphs.

In tables 5.2,5.3 and 5.4 our experimental results for RESCAL, TransE and mwNN are

shown. All of these tables have the same structure and compare different versions of exactly

one of these methods on all three data sets. Table 5.2 for example shows the results for

RESCAL and Table 5.4 the results of mwNN. The first column in these tables indicates the

data sets the model was applied to (Freebase-150k, Dbpedia-Music or YAGOc-195 11) and

the second column which kind of prior knowledge on the semantics of relation-types was

exploited by the model. None denotes the original model that does not consider any prior

knowledge on relation-types, where Type-Constraints denotes that the model has exploited

the curated domain and range constraints extracted from the knowledge graph’s schema

and LCWA that the model has exploited the local closed-world assumption (Section 5.3)

during model training. The last two columns show the AUPRC and AUROC scores for

the various model versions on the different data sets. Each of these two columns contains

three sub-columns that show the AUPRC and AUROC scores at different enforced latent

embedding lengths: 10, 50 or 100.

Table 5.2: Comparison of AUPRC and AUROC result for RESCAL with and without
exploiting prior knowledge about relations types (type-constraints or local closed-world
assumption (LCWA)) on the Freebase, DBpedia and YAGO2 data sets. d is representative
for the model complexity, denoting the enforced dimensionality of the latent embeddings
(rank of the factorization).

Prior
Knowledge
on Semantics

AUPRC AUROCRESCAL
d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.327 0.453 0.514 0.616 0.700 0.753
Type-Constraints 0.521 0.630 0.654 0.804 0.863 0.877
LCWA 0.579 0.675 0.699 0.849 0.886 0.896

DBpedia-Music
None 0.307 0.362 0.416 0.583 0.617 0.653
Type-Constraints 0.413 0.490 0.545 0.656 0.732 0.755
LCWA 0.453 0.505 0.571 0.701 0.776 0.800

YAGOc-195k
None 0.507 0.694 0.721 0.621 0.787 0.800
Type-Constraints 0.626 0.721 0.739 0.785 0.820 0.833
LCWA 0.567 0.672 0.680 0.814 0.839 0.849

11Details on these data sets are descibed in Section 4.2.1.

74 5. Exploiting Prior Knowledge On Relation-Type Semantics

Table 5.3: Comparison of AUPRC and AUROC result for TransE with and without ex-
ploiting prior knowledge about relations types (type-constraints or local closed-world as-
sumption (LCWA)) on the Freebase, DBpedia and YAGO2 data sets. d is representative
for the model complexity, denoting the enforced dimensionality of the latent embeddings.

Prior
Knowledge
on Semantics

AUPRC AUROCTransE
d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.548 0.715 0.743 0.886 0.890 0.892
Type-Constraints 0.699 0.797 0.808 0.897 0.918 0.907
LCWA 0.671 0.806 0.831 0.894 0.932 0.931

DBpedia-Music
None 0.701 0.748 0.745 0.902 0.911 0.903
Type-Constraints 0.734 0.783 0.826 0.927 0.937 0.942
LCWA 0.719 0.839 0.848 0.910 0.943 0.953

YAGOc-195
None 0.793 0.849 0.816 0.904 0.960 0.910
Type-Constraints 0.843 0.896 0.896 0.962 0.972 0.974
LCWA 0.790 0.861 0.872 0.942 0.962 0.962

5.4.1 Type-Constraints are Essential

The experimental results shown in Table 5.2, 5.3 and 5.4 give strong evidence that type-

constraints as provided by the knowledge-graph’s schema are generally of great value to

the statistical modeling of knowledge graphs with latent variable models. For all data sets,

the prior information on type-constraints significantly improved the link-prediction quality

of all models and latent embedding lengths significantly. For RESCAL for example, it

can be inferred from Table 5.2 that its AUPRC score on the Freebase-150k data set gets

improved from 0.327 to 0.521 at the lowest model complexity (d = 10). With higher model

complexities the relative improvements decrease, but stay significant (27% at d = 100 from

0.514 to 0.654). On the DBpedia-Music data set the improvements are also quite large in

AUPRC, e.g. for d = 10 from 0.362 to 0.490. In case of the YAGOc-195k data set we only

observe large improvements for the lowest model complexity (23% for d = 10), but much

lower improvements for higher dimensional embeddings with d = 50 or d = 100 (between

2 to 4% in AUPRC score). The benefit for RESCAL in considering type-constraints was

expected due to the results shown in Section 5.1.4 and [17, 56], but the other models show

significantly improvements as well when considering type-constraints.

For TransE, we could observe the biggest improvements in case of the Freebase-150k

and DBpedia-Music data sets (Table 5.3), where the AUPRC score increases for d = 10

from 0.548 to 0.699 in Freebase-150k and for d = 100 from 0.745 to 0.826 in DBpedia-

5.4 Experiments – Prior Knowledge on Relation-Types is Important for
Latent Variable Models 75

Table 5.4: Comparison of AUPRC and AUROC result for mwNN, the Neural Network
model used in [25] with and without exploiting prior knowledge about relations types
(type-constraints or local closed-world assumption (LCWA)) on the Freebase, DBpedia
and YAGO2 data sets. d is representative for the model complexity, denoting the enforced
dimensionality of the latent embeddings.

Prior
Knowledge
on Semantics

AUPRC AUROCmwNN
d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.437 0.471 0.512 0.852 0.868 0.879
Type-Constraints 0.775 0.815 0.837 0.956 0.962 0.967
LCWA 0.610 0.765 0.776 0.918 0.954 0.956

DBpedia-Music
None 0.436 0.509 0.538 0.836 0.864 0.865
Type-Constraints 0.509 0.745 0.754 0.858 0.908 0.913
LCWA 0.673 0.707 0.723 0.876 0.900 0.884

YAGOc-195
None 0.600 0.684 0.655 0.949 0.949 0.957
Type-Constraints 0.836 0.840 0.837 0.953 0.954 0.960
LCWA 0.714 0.836 0.833 0.926 0.935 0.943

Music. Also, in case of the YAGOc-195k data set the link-prediction quality could be

improved from 0.793 to 0.843 with d = 10.

Especially the multiway neural network approach (mwNN) seems to improve the most

by considering type-constraints for relation-types into the model (Table 5.4). For Freebase-

150k, we observe improvements up to 77% in AUPRC for d = 10 from 0.437 to 0.775. On

the DBpedia-Music data set, the type-constraints improve mwNN from 0.436 to 0.509

(d = 10) and from 0.538 to 0.754 in AUPRC (d = 100). In case of the YAGOc-195k data

set the approach with type-constraints is also clearly superior.

Besides observing that the latent variable models are superior when exploiting type-

constraints at a fixed latent embedding dimensionality d, it is worth noticing that the

biggest improvements are most often achieved at the lowest model complexity (d = 10),

which is especially interesting for the application of these models to very large data sets.

At this low complexity level the type-constraint supported models even outperform more

complex counterparts that ignore type-constraints, e.g. on Freebase-150k mwNN reaches

0.512 AUPRC with an embedding length of 100 but by considering type-constraints this

models achieves 0.775 AUPRC with an embedding length of only 10.

76 5. Exploiting Prior Knowledge On Relation-Type Semantics

5.4.2 Local Closed-World Assumption – Simple but Powerful

In Section 5.4.1 we have declared based on empirical results that type-constraints are very

important for the statistical modeling of knowledge graphs with latent-variable models.

Unfortunately, type-constraints are not always available or can be fuzzy for some relation-

types due to incompleteness of the underlying knowledge graph. The local closed-world

assumption (LCWA) discussed in Section 5.3 offers an alternative in these cases because

it relies solely on observed triples.

It can be observed from tables 5.2, 5.3 and 5.4 that similar to the type-constraints, the

approximation of domain and range constraints through the Local Closed-World Assump-

tion generally leads to large improvements in link prediction results over the same models

that do not consider any prior knowledge about relation-types, especially at the lowest

model complexities (d = 10). For example, TransE gets improved from 0.715 to 0.806 with

d = 50 in the Freebase-150k data set, mwNN improves its initial AUPRC score of 0.600

(d = 10) on the YAGO data set to 0.714 and RESCAL’s AUPRC score jumps from 0.327

to 0.579 (d = 10). The only exception to these observation is RESCAL when applied to

the YAGOc-195k data set. For d = 50, RESCAL’s AUPRC score decreases from 0.694 to

0.672 and for d = 100 from 0.721 to 0.680 when considering the LCWA in the model. The

type-constraints of the relation-types in the YAGOc-195 data set are defined over a large

set of entities (we evaluate on the type-constrained knowledge graph). When applying

type-constraints to the YAGOc-195k data set, 22% of all possible triples are covered. It

seems that a closed-world assumption is more beneficial for RESCAL than a LCWA in this

case.

Even though the LCWA has a similar strong impact on link-prediction quality than

the curated type-constraints, there is no evidence in our experiments that the LCWA can

generally replace the semantic prior knowledge about entity types and type-constraints on

relation-types given by the schema of the knowledge-graph. For the YAGOc-195k data

set the AUPRC scores for the models that exploit the LCWA are often clearly worse

than their counterparts that use the type-constraints extracted from the knowledge graph.

TransE with type-constraints achieves an AUPRC score of 0.896 whereas LCWA supported

TransE reaches only 0.861 with an embedding length of 50. For d = 10, mwNN with type-

constraints reaches an AUPRC score 0.836 whereas the application of the LCWA leads

only to 0.714.

In case of the other two data sets the message is not as clear. RESCAL achieves its

best results when exploiting LCWA instead of type-constraints, whereas TransE shows

5.5 Related Work 77

better performance only for latent embeddings of length 50 and 100 but not with a length

of 10. For d = 100, the combination of TransE and the LCWA improves the AUPRC

score to 0.831 (0.808 with type-constraints) in Freebase-150k and 0.839 (0.783 with type-

constraints) in DBpedia-Music. At the lowest model complexity (d = 10) on the other

hand, the integration of type-constraints is superior over the LCWA.

For mwNN the observations are the opposite to those of the TransE extensions in case

of DBpedia-Music. In case of the Freebase-150k data set the integration of the extracted

type-constraints is always clearly better, reaching 0.815 in AUPRC with an embedding

length of 10 (0.765 with LCWA).

5.5 Related Work

A general overview on the related work in the field of statistical modeling of knowledge

graphs with latent variable models is provided in Chapter 4.4. Integrating domain and

range constraints as given by the knowledge graph’s schema into RESCAL has also been

proposed by [17]. Local closed-world assumptions are a known concept in the semantic

web domain [96]. The neural network approach used in the Google Knowledge Vault

System, in this work denoted as mwNN, also exploits a local closed-world assumption for

corrupting triples (negative sampling). As described in Chapter 3.3.4, this local closed-

world assumption only excludes unobserved subject entities from the negative sampling.

In difference to the local closed-world assumption used in this chapter, the object entity of

an observed triple can be corrupted through any entity present in the knowledge graph.

In case of RESCAL, prior information on type-constraints can also be integrated by

the method proposed in [69], which introduced a weighted loss functions for RESCAL. Via

such loss functions relational type-constraints are integrated in the RESCAL optimization

by assigning zero weights to triples that are excluded through type-constraints. Unfortu-

nately, the scalability of RESCAL gets lost when using this type of weighted loss function.

The Hadamard (element wise) matrix product with the weighting tensor leads to expen-

sive matrix operations in the gradients, since a materialization of a complete frontal slice

reconstructed from the learned latent representation of the data is required (the product

ARkA
T), which is dense. Besides the high computational costs that arise during this ma-

terialization in the gradient, the memory requirements for this materialization itself will

be extensive which makes this approach impractical for large knowledge graphs. For ex-

ample, consider the music domain of DBPedia (321,950 entities). The materialization of

78 5. Exploiting Prior Knowledge On Relation-Type Semantics

a single frontal slice (ARkA
T) will need approximately 829 GB of memory (considering

double precision floats).

5.6 Conclusion

In this chapter, we have motivated and studied the general value of prior knowledge about

the semantics of relation-types extracted from the schema of the knowledge-graph (type-

constraints) or approximated through a local closed-world assumption for the statistical

modeling of knowledge graphs with latent variable models. We have shown that this

prior knowledge can be integrated in the ALS optimized RESCAL, but also in the SGD

optimized TransE and mwNN models without sacrificing the scalability of these models.

Our experiments give clear empirical proof that the curated semantic information of type-

constraints significantly improves link-prediction quality of TransE, RESCAL and mwNN

(up to 77%) and can therefore be considered as essential for latent variable models when

applied to large knowledge graphs. In this regard, the value of type-constraints becomes

especially prominent when the model complexity, i.e. the dimensionality of the embeddings,

has to be very low which is an essential requirement when applying these models to very

large data sets.

Since type-constraints are not always present or can be fuzzy (due to e.g. insufficient

typing of entities) we further showed that an alternative, a local closed-world assumption

(LCWA), can be applied in these cases that approximates domain and range constraints on

instance rather on class level solely based on observed triples. This LCWA leads to similar

large improvements in the link-prediction tasks than the type-constraints, but especially

at a very low model complexity the integration of type-constraints seemed superior. In our

experiments we used models that either exploited type-constraints or the LCWA, but in

a real setting we would combine both, where type-constraints are used whenever possible

and the LCWA in case type-constraints are absent or fuzzy.

Chapter 6
Ensemble Solutions for Representation

Learning in Knowledge Graphs

We have motivated in Chapter 3.3 that RESCAL[82], TransE [9] and the multiway neural

network proposed in [25] (mwNN) represent the diversity of state of the art latent vari-

able models for the statistical modeling of knowledge graphs. In the last chapter, we have

shown that these models can be improved individually by integrating prior knowledge

about relation-types in form of type-constraints or derived through a local closed-world

assumption. In this regard and in Chapter 4.3, we could observe that these models also

differ in their link-prediction capabilities when applied to large knowledge graphs under

realistic settings. A large amount of literature is putting a lot of effort in finding the

best model for a certain use-case in the context of knowledge graphs, e.g. link-prediction,

selling the proposed method as the superior overall model. From our opinion, it is often

disregarded that these models might model different aspects of the data and therefore even

models with lower prediction quality are able to contribute non redundant dependencies

learned from the data. In all of our experiments, TransE often significantly outperformed

the other two methods on the tested data sets in link-prediction tasks, but we argue that

all three methods are substantially different in multiply aspects regarding their modeling

assumptions and technical details and therefore chances are high that they learn different

patterns in the data that can be complemented. In this chapter, we study the comple-

mentary potential of these models by combining them in very simple ensembles. We also

consider type-constraints and the local closed-world assumption in the individual models,

due to their importance for the statistical modeling of knowledge graphs (see Chapter 5).

Based on the conducted experiments on multiple datasets, we show that TransE’s link

80 6. Ensemble Solutions for Representation Learning in Knowledge Graphs

predictions are complemented by predictions made by RESCAL and mwNN.

The content of this chapter is completely covered in:

[58] Denis Krompaß and Volker Tresp. Ensemble Solutions for Representation Learning

in Knowledge Graphs ECML Workshop on Linked Data for Knowledge Discovery.

2015

6.1 Studying Complementary Effects between TransE,

RESCAL and mwNN

The main characteristic of a good ensemble is its composition out of very diverse single

predictors that learn and recognize different patterns in the data. Through the diversity

of the different predictors often complementary effects can be observed that drive overall

prediction quality. As discussed in chapter 3.3, there is a large diversity between RESCAL,

TransE and mwNN. RESCAL assumes normally distributed variables minimizing a least-

squares loss function, whereas mwNN assumes Bernoulli distributed variables minimizing

a logistic loss function. TransE on the other hand minimizes a max-margin based ranking

loss function. Furthermore, RESCAL is a third-order tensor factorization method that

is optimized through alternating least-squares, whereas TransE is a distance based model

and mwNN a neural network that are both optimized through stochastic gradient-descent

combined with negative sampling. In addition, mwNN and TransE differ in the way they

corrupt triples for the negative sampling. In TransE, two corrupted triples are sampled for

each true triple, where in each corrupted triple the subject or object entity is replaced (but

never at the same time). mwNN generates negative triples by only corrupting the object

entities with randomly sampled entities. In difference to the other methods, TransE does

not include any regularization besides enforcing an L2-norm of 1 for the latent embeddings

of the entities. RESCAL uses a L2 regularization and we minimized mwNN with elastic

net regularization and additional DropConnect [111] on the network weights.

For our study, we build simple ensembles in which we combine the link-predictions of

RESCAL, TransE and mwNN. The final probability of a triple is then derived from the

6.1 Studying Complementary Effects between TransE, RESCAL and mwNN81

combination of these predictions by

P (xs,p,o = 1|Θ) =
1

n

n∑
θm∈Θ

P (xs,p,o|θms,p,o) (6.1)

where Θ ⊆ {θRESCAL, θTransE, θmwNN}

and P (xs,p,o = 1|θms,p,o) =
1

1 + exp{−(ωm1 θ
m
s,p,o + ωm0)}

(6.2)

with θRESCALs,p,o = aTs Rpao (Equation 3.2),

θTransEs,p,o = −δ(as + rp, ao) (Equation 3.3),

θmwNNs,p,o = σ(βTφ (W [as, rp, ao])) (Equation 3.5),

where xs,p,o is the target variable that indicates if a triple (s, p, o) consisting of the subject

and object entities s and o and the predicate relation-type p is true.

Θ holds the pool of model parameters the ensemble combines for the prediction. We

are evaluating all possible combinations of models, therefore Θ can be just a subset of

the three, RESCAL, TransE and mwNN. For the ensemble, we train and find the best

hyper-parameters for each model θRESCAL, θTransE and θmwNN independently, but the

predicted confidence scores for triples generally differ between all model; mwNN predicts

values between 0 and 1, whereas RESCAL can return any value in R and TransE returns

negative distances. We could have applied a simple meta-learner, e.g. a simple logistic

regression or a feed-forward neural network with one hidden layer to auto-balance the

outputs of the tree methods, but we expected that such a meta learner could blur the

individual contribution of each single-predictor in the link-prediction tasks. Instead, we

use a Platt-Scaler [87] for each model based on a small subsample of the training data

to get properly scaled probabilities (Equation 6.2). A Platt-Scaler is basically a logistic

regression model that takes exactly one input (the output θms,p,o of the model m) and maps

it to the interval [0, 1]. The scalars ωm1 and ωm0 in Equation 6.2 denote the learned weight

and bias of the logistic regression (Platt-Scaler) for the model m.

In difference to the other two methods, mwNN already predicts probabilities for triples.

Nevertheless, we also learned a Platt-Scaler for this model in order to calibrate the prob-

abilities of all models on the same data set. For the final probability of a triple (s, p, o),

we apply the scalers to the confidence score θms,p,o of each model m to get the probability

P (xs,p,o|θms,p,o), that is the probability of the triple (s, p, o) given the model m. Subsequent

to that, we simply combine each of these probabilities by computing the arithmetic mean

(Equation 6.1).

82 6. Ensemble Solutions for Representation Learning in Knowledge Graphs

6.2 Experimental Setup

With our experiments we study if TransE, RESCAL and mwNN are good targets for

combination to drive link-prediction quality. We will further check if one model is not

contributing any additional knowledge to the ensemble by evaluating ensembles where

only two of the three models are combined. The above two steps are evaluated in two

settings, where in the first setting the models are exploiting type-constraints extracted

from the knowledge-base schema and in the second setting they solely use the local closed-

world assumption (LCWA) proposed in Chapter 5.3. With the second setting we check

if LCWA based models are also learning complementary information. As discussed in

chapter 5.3 the LCWA has the benefit that it can be exploited without the need of prior

knowledge about the types of the entities and the typing of the relation-types. Therefore

they can be applied to single relation-types or whole knowledge-graphs where information

about type-constraints is absent or fuzzy. We evaluate the different ensembles on link-

prediction tasks, using the same data sets (Freebase-150k, Dbpedia-Music, YAGOc-195k)

and evaluation procedure as described in Chapter 4.2.1 and 4.2.2. The ensembles were also

implemented in python using the code of RESCAL, TransE and mwNN, which has been

described in Chapter 4.2.3. After hyper-parameter tuning we retrained all models using

the best hyper-parameters on the validation and training set and used 5% of this combined

training set for learning the Platt-Scalers for each model (RESCAL, TransE and mwNN).

We report the Area Under Precision Recall Curve (AUPRC) score for each ensemble and

in addition we report the AUPRC for the best single predictor as comparison.

6.3 Experiments – TransE, RESCAL and mwNN Learn

Complementary Aspects in Knowledge Graphs

In Table 6.1 the AUPRC results on the extracted data sets from Freebase, YAGO and

DBpedia for the first setting are shown, where all models exploit the type-constraints given

by the RDF-Schema concepts. Table 6.2 shows the same for the second setting where the

models solely exploited the Local Closed-World Assumption. ALL represents the ensemble

consisting of TransE, RESCAL and mwNN and the beneath three models represent the

ensembles that combine all possible pairs of models, e.g. mwNN + TransE represents the

ensemble consisting of mwNN and TransE. Best Single Predictor represents the best model

out of TransE, RESCAL or mwNN on the same link-prediction task. Which of the three

6.3 Experiments – TransE, RESCAL and mwNN Learn Complementary
Aspects in Knowledge Graphs 83

Table 6.1: AUPRC results on data sets, exploiting Type-Constraints in the models.
Model←d indicates the dimensionality of the latent embeddings used by the models.

Model←d=10 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.846 0.815 0.883
mwNN + TransE 0.820 0.817 0.881
mwNN + RESCAL 0.795 0.519 0.821
TransE + RESCAL 0.757 0.748 0.859
Best Single Predictor (mwNN) 0.775 (TransE) 0.734 (TransE) 0.843

Model←d=50 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.892 0.827 0.902
mwNN + TransE 0.876 0.825 0.900
mwNN + RESCAL 0.835 0.756 0.845
TransE + RESCAL 0.819 0.783 0.891
Best Single Predictor (mwNN) 0.815 (TransE) 0.783 (TransE) 0.896

Model←d=100 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.904 0.843 0.911
mwNN + TransE 0.893 0.842 0.909
mwNN + RESCAL 0.852 0.762 0.862
TransE + RESCAL 0.826 0.825 0.901
Best Single Predictor (mwNN) 0.837 (TransE) 0.826 (TransE) 0.896

models had the best AUPRC score is shown in the brackets next to the corresponding

score in that row. d is the chosen dimensionality of the embeddings or the rank of the

factorization in case of RESCAL (e.g. Model ← d = 100 indicates that all models were

trained with a fixed embedding dimensionality of 100).

6.3.1 Type-Constrained Ensembles

From Table 6.1, it can be observed that the ensemble consisting of all three models (with

type-constraints) is clearly outperforming the best single predictor on all data sets and

with all different embedding dimensions (10,50,100). On the Freebase-150k data set, we

see the biggest improvements with an embedding length of 10 and the ensemble increases

the AUPRC score from 0.775 to 0.846 in this case. For d = 100 the score improves form

0.837 to 0.904 in AUPRC. In the other two data sets we observe large improvements for

the lowest embedding dimensionality of 10 (11% on DBpedia-Music and 5% on YAGOc-

195k), but for higher dimensional embeddings (d = 50 and d = 100) the improvements are

84 6. Ensemble Solutions for Representation Learning in Knowledge Graphs

decreasing or vanishing (YAGOc-195k).

The improvements observed for the really low embedding vector dimensionality of 10

are of special interest. As discussed in Chapter 4, in a Web-Scale application of these

algorithms it is of high interest to have meaningful embeddings in a very low dimensional

latent space because higher dimensional representations can lead to long or even intractable

runtimes for model training and tuning. It can be observed that the ensemble consisting

of TransE, RESCAL and mwNN with a embedding length of 10 reaches comparable link

prediction results than the best single predictor with an embedding vector length of 100.

On the Freebase-150k data set the ensemble reaches an AUPRC score of 0.846, on DBpedia-

Music 0.815 and YAGOc-195k 0.883 with d = 10, whereas the best single predictor reaches

0.837, 0.826 and 0.896, respectively, with d = 100.

When it comes to the contribution of each single predictor to the ensemble, we observe

that in case of the Freebase data set all models are contributing to the superior perfor-

mance of the ensemble, but TransE and mwNN are responsible for the biggest increase in

AUPRC. For example, with d = 10 TransE+mwNN achieves an AUPRC of 0.820 whereas

mwNN+RESCAL reaches 0.795 and TransE+RESCAl 0.757. On the DBpedia-Music and

YAGOc-195k data set, RESCAL does not add any significant value to the ensemble, e.g.

for d = 50 mwNN+TransE have the highest AUPRC score of the pairwise ensembles reach-

ing already 0.825 on DBpedia-Music and 0.900 on YAGOc-195k, whereas the maximum

performance of the complete ensemble (ALL) lies at 0.827 and 0.902.

As a final remark we could observe from the results shown in Table 6.1 that RESCAL or

mwNN best complement with TransE. The combination of mwNN and RESCAL generally

shows less improvements in AUPRC compared to the best single predictor performance of

those two (compare with Tables 5.2, 5.3 and 5.4), indicating that these two models learn

more similar patterns from the data.

6.3.2 Ensembles under a Local Closed-World Assumption

The results for the LCWA ensemble are shown in Table 6.2. We see the largest improve-

ments on the Freebase-150k data set, where the ensemble improves the AUPRC score

compared to the best single predictor from 15% (d = 10) to 9% (d = 100). Also, all predic-

tors (RESCAL,TransE, mwNN) contribute to the performance of the ensemble, since all

ensembles consisting of two models achieve a significantly lower AUPRC score in this case.

The highest pair-ensemble (TransE + RESCAL) achieves 0.763 (d = 10), 0.876 (d = 50)

and 0.899 (d = 100) whereas the full ensemble achieves 0.775, 0.886 and 0.909. On the

6.4 Related Work 85

Table 6.2: AUPRC results on data sets, exploiting the Local Closed-World Assumption
in the models. Model←d indicates the dimensionality of the latent embeddings used by
the models.

Model←d=10 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.775 0.787 0.825
mwNN + TransE 0.729 0.780 0.820
mwNN + RESCAL 0.649 0.661 0.679
TransE + RESCAL 0.763 0.746 0.806
Best Single Predictor (TransE) 0.671 (TransE) 0.719 (TransE) 0.790

Model←d=50 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.886 0.841 0.899
mwNN + TransE 0.854 0.841 0.890
mwNN + RESCAL 0.820 0.661 0.828
TransE + RESCAL 0.876 0.746 0.878
Best Single Predictor (TransE) 0.806 (TransE) 0.839 (TransE) 0.861

Model←d=100 Freebase@100 DBpedia-Music Yago-Core@5
ALL 0.909 0.844 0.900
mwNN + TransE 0.884 0.844 0.890
mwNN + RESCAL 0.852 0.734 0.847
TransE + RESCAL 0.899 0.845 0.886
Best Single Predictor (TransE) 0.831 (TransE) 0.848 (TransE) 0.872

DBpedia-Music data set the ensemble only improves the best single predictor for very low

dimensional embeddings (d = 10) from 0.719 to 0.787. For a embedding vector length

of 50 and 100 the ensemble does not improve the best single predictor in this data set.

The ensemble constantly improves the best single-predictor on the YAGOc-195k data set

of about 0.03 to 0.04 in AUPRC for all embedding vector lengths. We also see a small

improvement of the full ensemble opposed to the best ensemble consisting of TransE and

mwNN. As in case of the type-constrained ensembles, we can also observe from Table 6.1,

that mwNN and RESCAL best complement with TransE.

6.4 Related Work

The related work on the statistical modeling of knowledge graphs is described in Chapter

4.4 and the integration of prior knowledge about relation-types in Chapter 5.5. There

86 6. Ensemble Solutions for Representation Learning in Knowledge Graphs

has been little amount of work on combining latent variable models for link-prediction

in knowledge graphs. Very recently, [36] combined two independent models of different

complexity in an ensemble (TATEC) to improve link-prediction. As in [99] a three-way

model is combined with a two-way model in this case, but in TATEC the two models

are trained independently and combined later. [43] used a bagging approach to combine

various classification algorithms (e.g. Support-Vector-Machines, K-Nearest-Neighbor) for

link-prediction, but could not observe any significant improvements over the best single

predictors.

6.5 Conclusion

In this work we showed that the the predictions of three leading latent variable models for

link-prediction in large knowledge-graphs are indeed complementary to each other and can

be exploited in an ensemble solution to improve overall link-prediction quality. We observed

in our experiments that especially TransE learns substantially different aspects of the data

than RESCAL and mwNN. RESCAL and mwNN on the other hand are more similar to

each other, even though these two models differ in various aspects. We further showed

that an ensemble consisting of all three methods brings substantially higher prediction

quality on all used data sets and all settings when the models need to exploit a very low

dimensional embedding space (d = 10). The LCWA can also be exploited in the ensemble

when the type-constraints for properties are absent or fuzzy. On the DBpedia-Music and

YAGOc-195 data set we observed that with a higher dimensional latent embedding space

the improvements become less significant.

Chapter 7
Querying Statistically Modeled Knowledge

Graphs

It is a known fact that the Web of Data is fairly incomplete and contains incorrect infor-

mation, as triples are missing and existing triples can be false. Generally, information in

the form of triples extracted from such data is afflicted with uncertainty that is persis-

tent in the source data, has been introduced by human curators or information extraction

methods. In many cases, the valuable information about uncertainty is discarded and some

threshold is applied to filter more probable triples, which is dependent on the extraction

technique applied. When accessing these data sets, we typically only see what is left after

this pruning step and the information about the uncertainties is irreparably lost.

In the previous chapters, we have shown that latent variable models are powerful mod-

els that are especially well suited for the statistical modeling of knowledge graphs and that

generate confidence values for observed and unobserved triples which can be exploited for

the completion and cleansing of knowledge graphs. In other words, these models reintro-

duce a measure of uncertainty into the graph that represents the beliefs of the model into

observed and unobserved triples derived from the learned dependencies in the data. Ap-

plying latent variable models for link-prediction tasks can be seen as querying these models

for ground triples to derive probabilities that describe the likelihood of their occurrences

over the vast amount of possible deterministic instantiations (worlds) of the graph. Prob-

abilistic databases (PDBs) naturally consider multiple possible instances of a database via

the possible worlds semantics and account for uncertainty in the data by assigning a prob-

ability distribution over all of these database instances [100]. As a conclusion, we could

interpret the statistically modeled knowledge graph as a probabilistic database, where the

88 7. Querying Statistically Modeled Knowledge Graphs

latent variable model is defining the underlying probability distribution of triples. As such,

we could proceed and exploit these modeled graphs for complex querying that goes beyond

the querying of ground triples. Querying probabilistic databases has a clear interpretation

as generalization of deterministic relational database querying.

When applying PDBs to large triple stores, various key challenges need to be addressed.

First, we have to consider storage requirements. A common assumption in PDBs is tuple

independence, or in our case triple independence, which requires a representation of each

triple’s uncertainty. Unless default values are used, representing the individual uncertainty

levels can lead to huge storage requirements.

Second, probabilistically correct and efficient querying. Although individual triples

are assumed to be independent, complex queries introduce dependencies such that correct

query answering becomes, in the worst case, intractable.

These two challenges are intertwined, since we cannot explicitly represent the uncer-

tainty values of all possible triples, and the generation of these uncertainties “on the fly”

during query evaluation can introduce intractable evaluation complexity.

In this chapter, we will address these issues by exploiting intrinsic features of latent

variable models, i.e. RESCAL, TransE and mwNN, when evaluating safe queries on prob-

abilistic knowledge graphs derived from these models.

This chapter is structured as follows: In the next section, we will give an introduction

to the theory of probabilistic databases and extensional query evaluation, which is used

for evaluating safe queries. In Section 7.2, we will discuss how latent variables can be

exploited for probabilistic querying of statistically modeled knowledge graphs. We will

further describe how the efficiency of query evaluation can dramatically improved by ex-

ploiting intrinsic features of these models. Subsequent to that, we will empirically analyze

the proposed approach based on RESCAL in Section 7.3 and 7.4. We provide related work

in Section 7.5 and conclude in Section 7.6.

A large part of the contributions covered in this chapter are published in:

[57] Denis Krompaß, Maximilian Nickel and Volker Tresp. Querying Factorized Proba-

bilistic Triple Databases. Proceedings of the 13th International Semantic Web Con-

ference (ISWC, Best Research Paper Nominee), 2014.

In addition, this chapter includes various extentions to the content published in [57]:

1. We describe how compound relations can also be learned with TransE [9] and the

multiway neural network (mwNN) [25] in Section 7.2.

7.1 Exploiting Uncertainty in Knowledge Graphs 89

2. For the learning of compound relations type-constraints were considered by RESCAL

[82], TransE and mwNN as described in Chapter 5 in both, the methodology (Section

7.2) and experiments (Section 7.3 and 7.4).

3. We included a brief discussion on the numerical advantages of learned compound

relations in the context of extensional query evaluation rules in Section 7.2.3.

4. We conducted more extensive experiments in Section 7.3, evaluating the proposed

approach based on all possible compound relations that could be constructed from

the UMLS and Nations datasets.

5. The DBpedia-Music Dataset has been extracted from the more recent DBpedia re-

lease DBpedia2014.

6. In addition to the area under receiver characteristic (AUROC) which we used in

[57] to analyze the ranking of the returned answers after the probabilistic querying of

factorized DBpedia-Music (Section 7.4), we also report the area under precision recall

curve (AUPRC) for a better analysis of the ranking of these answers and the logloss

score to analyze and discuss the quality of the generated probabilities associated with

these answers.

7.1 Exploiting Uncertainty in Knowledge Graphs

Knowledge graphs are generally deterministic representations of world knowledge, i.e.

triples, but in reality only represent one possible instantiation of the graph that has been

derived from a large set of partially uncertain triples. Uncertainties naturally occur with

triples for multiple reasons. The uncertainty of a contribution might reflect the confidence

of a human contributor into the added fact, which might in turn depend on the level of

expertise of the contributor. This uncertainty is rather low in small graphs that are built

by a small group of experts, whereas it increases in larger graphs where in principle every

human can contribute. Automated information extraction methods such as NELL nat-

urally generate probabilities when performing e.g. relation extraction from unstructured

texts. Also rule based approaches as used in DBpedia or YAGO lead to extraction of

triples that introduce some degree of uncertainty into the data. Uncertainty can also be

dependent on the source of information. Knowledge graphs such as Freebase include triples

from different sources, where these sources themselves vary in reliability.

90 7. Querying Statistically Modeled Knowledge Graphs

Lucy

Jim

Jane

Jack

know
s,

p=0.7

k
n
ow

s,
p
=

0.4

knows, p=0.3

friendOf, p=0.4

fri
en

dOf,
p=0.8

Extracted Triples p
(Jack,knows,Jane) 0.7
(Jack,knows,Jim) 0.4
(Jack,knows,Lucy) 0.3

(Jane,friendOf,Lucy) 0.4
(Jim,friendOf,Lucy) 0.8

(a) Raw triples provided by a hypothetical information extraction pipeline

Lucy

Jim

Jane

Jack

know
s

fri
en

dOf

Remaining Triples p
(Jack,knows,Jane) 1.0
(Jim,knows,Lucy) 1.0

(b) Graph left after pruning the graph in (a) with p ≥ 0.5

Figure 7.1: Illustration of a knowledge graph before (a) and after (b) transforming and
filtering the extracted triples based on uncertainty.

7.1 Exploiting Uncertainty in Knowledge Graphs 91

In most of the cases, a post processing step is performed on these triples, thereby

discarding the uncertainties by including only triples with a sufficient certainty level. In

Google’s Knowledge Vault only triples with a certainty above 0.9 are included and the rest

is discarded. Generally, valuable information is hidden in the uncertainty of triples, even by

those with a large uncertainty. This can be exemplified by considering the hypothetical set

of extracted triples and corresponding graph shown in Figure 7.1a. This graph consists of

four person entities (Jim, Jane, Jack, Lucy), two different kinds of relationships (friendOf,

knows) and we are also provided with the probabilities of these triples. Not all of these

triples have a very high probability, e.g. (Jack, knows, Lucy), p = 0.3. In general, triples

with low probabilities are pruned out of the knowledge graph based on some threshold.

In Figure 7.1b this is exemplified based on a threshold of 0.51. The remaining triples are

considered to be correct and the probabilities are discarded, thereby transforming the set

of uncertain triples into a deterministic database (or graph). A simple query on each of

these two graphs (Figure 7.1a and b) illustrates the impact on information loss of such an

approach. Let us consider the query ∃y.(knows(Jack, y), friendOf(y, Lucy)) that asks if

the entity Jack knows someone who is a friend of Lucy. Asking this query on the pruned

deterministic database instance will result in no answer because there is none such person

in the database. On the other hand, if we would exploit all initial triples with their

probabilities, we could infer that there is such a person with a fairly high probability of

0.662, which is higher than the threshold used for the pruning. In order to exploit the

valuable information that is provided by the uncertainty of triples and its potential, a

database system must be able to understand and process triples with their probabilities.

Next, we will give some basic background on the theory of probabilistic databases, which

allow probabilistic inference from uncertain data for processing and answering database

queries. The theory of probabilistic databases offers a system to exploit probabilities of

triples for probabilistic inference in order to compute query answers.

7.1.1 Notation

In the following sections we exploit the syntax of non-recursive datalog rules for queries of

the form

Q(x, z) : −L1(x, y), L2(y, z)

1In a real setting, a much higher threshold is used.
2This probability can be simply computed through the independent-project rule (Equation 7.5); we

assumed that any person knows and is a friend of itself.

92 7. Querying Statistically Modeled Knowledge Graphs

whereQ(x, y) is the head of the rule of queryQ with head variables x and y. L1(x, y), L2(y, z)

is the body of the rule consisting of a conjunction (denoted by the “,”) of the two relational

atoms L1 and L2. As generally used in relational calculus, ∨ and ∧ will denote a logical dis-

junction and conjunction, respectively. Further ∃y will denote the existential quantifier for

the variable y. The active domain ADom of a database is the set of all constants occurring

in the database. Q[ā/x̄] represents the query where the variable x̄ has been substituted by

the constants ā where ∀a ∈ ā : a ∈ ADom. Further, DomX is the domain of a random

variable X; the set of values that can be assigned to X. Φ will denote a propositional

formula consisting of disjunctions, conjunctions and negation (denoted as ¬) of random

variables. As used in set theory we will denote the union of two sets as
⋂

and express a

subset dependency of two sets as ⊆. We will interchangeably use the notation (s, p, o) or

p(s, o) to represent triples, where the latter notation is also referred to as relational tuple.

In that context, p indicates the predicate relation-type and s and o are the subject and

object entities, respectively.

7.1.2 Probabilistic Databases

Probabilistic databases (PDB) have been developed to extend database technologies to

handle uncertain data. A general overview is provided by [100]. PDBs build on the

concept of incomplete databases, which, in contrast to deterministic databases, represent

multiple possible instances (worlds) of a database. One example how these multiple worlds

can emerge is by looking at mutual exclusive relations as the e.g. birthplace relation-

type. Obviously, a person can only have one birthplace, nevertheless it could happen that

in dependence from which document the information is extracted we might get multiple

possible places. An incomplete database would resolve these contradictions by separating

these triples in different possible worlds Wi ∈W, where W is the finite set of all possible

worlds. From an incomplete database we do not know which of the worlds in W is the cor-

rect or exact database instance. Probabilistic databases additionally consider a probability

distributions over these worlds, where
∑

Wi∈W P (Wi) = 1, to differentiate these worlds.

Since an explicit representation of all possible worlds is impractical and can be infeasible

if the amount of possible worlds is very large, probabilistic conditional tables (pc-tables) are

used as a representation system. In this representation system each pc-table represents one

relation-type and each tuple t in this table is annotated with a propositional formula Φt ∈ Φ

over mutually independent random variables Xj, where Φ is the set of all propositional

formulas in the database.

7.1 Exploiting Uncertainty in Knowledge Graphs 93

Table 7.1: Probabilistic conditional table consisting of the the relation-type knows from
Figure 7.1a

knows

Subject Object Φ p
Jack Jane X1 0.7
Jack Jim X2 0.4
Jack Lucy X3 0.3

The set of all values that can be assigned to Xj is defined by its domain, denoted as

DomXj . Furthermore, the set Θ of all possible assignments to the random variables in Φ is

of complexity Θ = DomX1×...×DomXj×...×DomXm and defines a probability distribution

over the assignments of the random variables. Due to the independence assumption, the

probability for a specific assignment θ ∈ Θ can be computed by

P (θ) =
m∏
j=1

P (Xj = bj) with bj ∈ DomXj .

From the probabilities of assignments θ we are able to compute the probability for a

possible world Wi ∈W by

P (Wi) =
∑

θ∈Θ:W θ=Wi

P (θ),

meaning that we add up the probabilities of the assignments θ that lead to the associated

world W θ. Computing all possible worlds is in the worst case exponential in the number

of random variables in Φ, since we have to try every assignment θ of the set of all possible

assignments Θ on the variables in Φ. For the same reason, computing the probability of

a single possible world is exponential as well, since we have to compute and add up the

probabilities of all valuations on Φ that lead to the possible world W θ. These kinds of

problems are assigned to the complexity class #P (sharp-P), which includes the set of

counting problems associated with the non-polynomial decision problems.

In this work we only consider boolean random variables (DomXj = {true, false}) for

triples, because with knowledge graph data triples are either true or false. We further

assume triple independence (i.e. tuple-independent databases), therefore annotating every

ground triple with exactly one boolean random variable. In this case, the database includes

exactly n boolean random variables and the set of all possible assignments Θ is of size 2n,

where n is the number of ground triples in the database which is typically in the millions

94 7. Querying Statistically Modeled Knowledge Graphs

to billions.

In Table 7.1, an example PDB representation of the knows relation-type shown in Figure

7.1a using pc-tables is shown. Each subject/object tuple t is annotated with a propositional

formula Φt in this table, which in this case is just the random variable Xt that has been

assigned to the ground triple. Generally the probability p for a tuple t is derived from the

set of satisfying assignments ω(Φt) of the random variables in the propositional formula Φt

with

P (Φt) =
∑

θ∈ω(Φt)

P (θ), (7.1)

where for ground tuples, the set of satisfying assignments only consists of Xt = true, which

is the confidence of the e.g. information extractor method used for extracting the triple (re-

lational tuple). For convenience, we have omitted the explicit representation of the counter

events, that is a certain triple is believed to be false, denoted by the propositional formula

¬Xj. Relational tuples can be annotated with more complex propositional formulas, e.g.

after a join of pc-tables. Computing the probability of these formulas can then be reduced

to finding all satisfying assignments, which is also exponential in the number of random

variables in Φt.

The probabilistic database shown in Table 7.1 includes 23 possible worlds. The possible

world W consisting only of the triple (Jack, knows, Jane) can be only generated by the

assignment θ = {X1 = True,X2 = false,X3 = false} and its probability is therefore

given by

P (W) = P (X1 = true) · P (X2 = false) · P (X3 = false) = 0.7 · 0.6 · 0.7 = 0.294.

In the above example, we started from ground triples which have very simple propo-

sitional formulas (just one random variable). Pc-tables that arose from manipulations of

tables with ground triples, e.g. joins, can lead to very complex propositional formulas for

each tuple t represented in the compound pc-table. The complexity of these propositional

formulas has great impact on the way queries on these databases can be evaluated, since

evaluating queries boils down to evaluating propositional formulas, which is exponential in

the number of random variables. Fortunately, it is possible to sometimes avoid exponen-

tial algorithm runtimes if certain independence assumptions hold on the query structure.

Querying probabilistic databases will be discussed next.

7.1 Exploiting Uncertainty in Knowledge Graphs 95

Table 7.2: Probabilistic conditional table consisting of the relation-type friendOf from
Figure 7.1a

friendOf

Subject Object Φ p
Jane Lucy Y1 0.4
Jim Lucy Y2 0.8

7.1.3 Querying in Probabilistic Databases

Query evaluation in PDBs remains a major challenge. In particular, scalability to large

domains is significantly harder to achieve when compared to deterministic databases.

Of interest here is the possible answer semantics which calculates the probability that

a given tuple t is a possible answer to a query Q in any world W ∈W of a PDB D. For

the marginal probability over all possible worlds, we get

P (t ∈ Q) =
∑

W∈W:t∈Q(W)

P (W) (7.2)

where Q(W) is the query with respect to one possible world of D. In the previous section,

we have discussed that the above formulation is exponential, because computing P (W) for

all possible worlds is exponential in the number of random variables present in the set of

all propositional formulas Φ and therefore in the number of ground triples in the database

D.

An important concept in query evaluation is the lineage expression ΦD
Q of a possible

answer tuple t to Q with respect to D. The lineage is the propositional formula that

represents the event of the output tuple t to a query over the possible worlds W of D. For

example, on the probabilistic database consisting of the collection of pc-tables shown in

Table 7.1 and 7.2, the lineage ΦQ of the query Q : −∃y.knows(Jack, y), friendOf(y, Lucy)3

consists of the propositional formula:

ΦQ = X1Y1 ∨X2Y2

The concept of lineage allows a reduction of the query evaluation problem to the evaluation

of propositional formulas. In contrast to the formulation in Equation 7.2, the evaluation

of propositional formulas (Equation 7.1) is “only” exponential in the number of random

3We ask if Jack knows someone who is a friend of Lucy.

96 7. Querying Statistically Modeled Knowledge Graphs

variables included in the propositional formula of the lineage (i.e. the set of ground triples

needed for evaluating the query). Further, computing the lineage expression itself for a

query Q(x̄) with head variables x̄ and a possible tuple ā is polynomial in the set of all

constants occurring in the database D (the active domain) and exponential in the number

of variables in the query expression Q 4. As a conclusion, since the size of the lineage

is polynomial in the size of the database and the evaluation of a propositional formula

is exponential in the number of included random variables, the evaluation of the lineage

expression is also in the worst case exponential in the size of the database.

Fortunately, not all queries necessarily lead to an evaluation that is exponential in the

size of D. Often, independence assumption within the query expressions can be exploited

that lead to polynomial query evaluations. Extensional query evaluation is concerned with

queries where the entire probabilistic inference can be computed in a database engine

and thus can be processed as effectively as the evaluation of standard SQL queries. This

queries are denoted as safe. Safe queries can be directly evaluated on query level, with-

out the need to evaluate propositional formulas, except for evaluating the propositional

formulas of ground relational tuples, which are each annotated by a single independent

boolean random variable.5 Queries that are not safe are denoted as unsafe. These queries

can be evaluated by exploiting intensional query evaluation, which evaluates the proposi-

tional formulas. Every relational query can be evaluated this way, but the data complexity

depends dramatically on the query being evaluated, and can be hard for #P .6 Never-

theless, even though some queries might require intensional query evaluation, extensional

query evaluation sometimes might provide a good approximate that suffices for the target

application.

For our contribution, we will focus on extensional query evaluation and safe queries,

respectively, because they are of major importance for the contributions of this chapter.

Intensional query evaluation is not a target of this chapter and we refer to [100], Chapter

5 for details on intensional query evaluation using rules or circuits.

4Not to be confused with the number of random variables in ΦQ(x̄).
5This also holds for more expressive probabilistic databases, since these databases can be decomposed

to tuple-independent databases. [100], Chapter 4
6Generally all unsafe queries are in #P and all safe queries are polynomial. This is known as the

dichotomy theorem. Nevertheless, due to the notion of the sufficient syntactic independence assumption
we might classify certain safe queries as unsafe and perform intensional query evaluation.

7.1 Exploiting Uncertainty in Knowledge Graphs 97

Extensional Query Evaluation

Extensional query evaluation only depends on the query expression itself and the lineage

does not need to be computed. During the evaluation process, several rules are applied to

the query in order to divide it into smaller and easier sub-queries until it reduces to ground

tuples with elementary probability values. Queries that can be completely simplified to

ground tuples with extensional evaluation rules are safe, in the sense mentioned above.

This evaluation procedure relies on identifying independent probabilistic events in the

query that can be separated, e.g. in case of a join into a conjunction of two simpler queries,

where the probabilities of the two sub-queries can simply be multiplied.

It can be decided that two queries are independent probabilistic events if they are

syntactically independent. Syntactic independence of two propositional formulas ΦQ1 and

ΦQ2 is given if V ar(ΦQ1)∩V ar(ΦQ2) = ∅, where V ar(Φ) denotes the set of random variables

Φ depends on (known as the support of Φ). Unfortunately, the determination of the support

of a propositional formula is in general co-NP-complete. In extensional query evaluation it

often suffices to exploit a sufficient condition for syntactic independence for this purpose

which can determine if queries are independent probabilistic events in polynomial time.

The sufficient condition syntactic independence is given by V (ΦQ1) ∩ V (ΦQ2) = ∅, where

V (Φ) denotes the set of random variables that are observed in Φ. Clearly, V ar(ΦQ1) ⊆
V (Φ) and therefore propositional formulas that fulfill the sufficient condition for syntactic

independence are also syntactically independent (but the converse does not hold). In tuple-

independent databases, each ground tuple is associated with a random variable. Therefore

two sub-queries Q1 and Q2 are guaranteed to be independent probabilistic events if they

do not unify, meaning that they share no common tuple.7 Note that it can be decided if

two sub-queries are independent solely based on the query syntax without the need of the

lineage expression.

Extensional query evaluation can be implemented via the application of six rules [100],

with three of them, especially the independent-project rule, being of major importance for

the remaining chapter.

• Independent Join:

P (Q1 ∧Q2) = P (Q1) · P (Q2) (7.3)

7Due to the absorption law, there can be syntactically independent queries that unify.

98 7. Querying Statistically Modeled Knowledge Graphs

Table 7.3: Probabilistic conditional table consisting of the the relation-type bornIn

bornIn

Subject Object Φ p
Jack Rome Z1 0.4
Jack London Z2 0.5

• Independent Union:

P (Q1 ∨Q2) = 1− (1− P (Q1)) · (1− P (Q2)) (7.4)

• Independent-Project:

P (∃x.Q) = 1−
∏

a∈ADom

(1− P (Q[a/x])) (7.5)

This rule is applied to queries of the form ∃x.Q if x is a separator variable.8

For instance, consider our running example, the probabilistic database consisting of the

pc-tables shown in Tables 7.1, 7.2 and additionally Table 7.3. Consider further that we

want to know the probability that Jack is born in Rome and that he knows someone who

is a friend of Lucy. This query can be written as a conjunction of two sub-queries Q1 and

Q2,

Q1 : − bornIn(Jack, Rome) (7.6)

Q2 : − ∃y.(knows(Jack, y), friendOf(y, Lucy)) . (7.7)

Q1 asks if Jack is born in Rome and Q2 asks if Jack knows somebody who is a friend of

Lucy. By exploiting the independent join rule on Q1 and Q2 and the independent-project

rule on Q2, this query can be evaluated as

P (Q1 ∧Q2) = P (bornIn(Jack, t))

×

(
1−

∏
a∈ADom

[1− P (knows(Jack, a)) · P ((friendOf(a, Lucy))]

)
. (7.8)

8x is a separator variable if it occurs in all relational atoms in Q and if in the case that atoms unify, x
occurs at a common position.

7.2 Exploiting Latent Variable Models for Querying 99

Note that a person can know many other persons and therefore the knows relations in Q2

are not mutually exclusive. This induces a complex expression that is not simply the sum

or the product of probabilities.

7.2 Exploiting Latent Variable Models for Querying

As discussed in the introduction for this chapter, we can exploit latent variable models

for learning a probability distribution over all possible triples (with considering type-

constraints) of the knowledge graph. This probability distribution can be exploited for

constructing a probabilistic database. The naive approach for realizing probabilistic query-

ing on this database would be to infer all probabilities from the latent variable model and

save them in the database together with the corresponding triples. Then, we could query

this database as any other probabilistic database, exploiting extensional and intensional

query evaluation algorithms.

Obviously, this approach is intractable for larger knowledge graphs, because the amount

of possible triples is simply too large. The Freebase sample shown in Table 4.2 contains

already 57 billion possible triples and saving these triples together with the probabilities

would consume approximately 1TB of storage9. Note that this sample is considerably small

compared to whole Freebase, e.g. it contains only 0.3% of the Topic entities and 0.4% of

the relation-types of Freebase (see Chapter 2.3.2).

As an alternative, we could compute the probabilities “on demand” for those triples

that are of interest for the current query or sub-query and apply the query evaluation

rules afterwards. This approach would avoid storage explosion, but introduces additional

computational load on the query evaluation, which can be tremendous. Note that no

matter if the query is safe or unsafe we would have to compute |V ar(ΦQ)| probabilities,

which is the number of random variables (i.e. ground triples) the query depends on. Below,

we exemplify this issue based on a series of simple safe queries.

Consider the relational tuple knows(Jane, Jim). The probability of this relation is

computed from a latent variable model θ (any of the methods described in Chapter 3.3)

by

P (knows(Jane, Jim)) = ψ(θJane,knows,Jim),

where θs,p,o denotes the confidence of the latent variable model into the relation that Jane

9Considering that each triple is saved by 32 bit integer values and the probability by one 32 bit float
value.

100 7. Querying Statistically Modeled Knowledge Graphs

knows Jim and ψ(x) ∈ (0, 1] maps this confidence value to a valid probability space through

e.g. Platt Scaling (see Equation 6.2 or [87]).

If we need to know the probability that anybody knows Jim (Q : −∃y.knows(y, Jim)

we would have to compute |ADom| evaluations of the latent variable model. If we further

assume the query

Q : −∃y.knows(Jack, y), friendOf(y, Lucy),

which is evaluated by applying the independent-project rule as

P (Q) =

(
1−

∏
a∈ADom

[1− P (knows(Jack, a)) · P ((friendOf(a, Lucy))]

)
,

we can observe that it needs 2×|ADom| evaluations of the latent variable model. In many

cases it can also be of interest to extract a ranking over all persons in the database that

are a friend of Lucy with

Q(x) : −∃y.knows(x, y), friendOf(y, Lucy),

to get the persons that most likely know friends of the entity. For his query we would need

2 × |ADom|2 evaluations of the latent variable model. The structure of the above query

can even lead to cubic evaluations in |ADom| of the model, if we modify the query to

Q(x) : −∃y.(knows(x, y),∃z.friendOf(y, z)),

where we introduced another existential quantifier for the second variable in the relation-

type friendOf by querying for all persons that know someone who has friends. This query

is evaluated as

P (Q(x)) =

(
1−

∏
a1∈ADom

[1− P (knows(x, a1)) ·

(
1−

∏
a2∈ADom

[1− P (friendOf(a1, a2))

))

The complexity is mainly caused by nested computations introduced by the existentially

quantified query variables and their product-aggregation in the independent-project rule

(Equation (7.5)).

It is expected that the computation of the probabilities from the latent variable models

will have significant negative impact on the total query evaluation time, especially when

evaluating with the independent-project rule.

7.2 Exploiting Latent Variable Models for Querying 101

The key idea is to reduce the amount of evaluations of latent variable models through

approximating safe sub-queries of the type ∃x.Q by exploiting intrinsic features of latent

variable models. Through this approach, we avoid costly evaluations of sub-queries and ad-

ditionally construct materialized views that have a memory efficient latent representation.

To illustrate the proposed approach, consider the queries Q1 and Q2 from Equations 7.6

and 7.7. Q1 does not include any existential quantifier and therefore we simply compute

the probability value from the model. In Q2, an existential quantifier for the variable y is

present. As discussed before, the calculation of queries that have a similar structure as Q2

can become very expensive. To overcome this problem, we approximate the probabilistic

answer to Q2 by a two-step process. First, we create a newly formed compound relation

knowsFriendOf, which represents the database view generated by Q2,

Q2(x, z) : −knowsFriendOf(x, z).

To create the compound relation, we use the deterministic and sparse representation of the

affected relations from Q2 and join them into a single relation. This avoids the expensive

calculation of probabilities for each instance of the active domain of y and can be computed

efficiently, as the deterministic join is not expensive, if the (deterministic) domain is sparse.

However, the representation of Q2 would only be based on the available deterministic

information so far and would not utilize the probabilistic model of the knowledge graph

computed by the latent variable model. Hence, in a second step we now need to derive

probabilities for the triples in the newly formed compound relation. Fortunately, all that

is needed to derive these probabilities under a latent variable model such as RESCAL

or TransE is to compute a latent representation of the newly created compound relation

knowsFriendOf, which can be done very efficiently.10 Depending on the latent variable

model, the procedure for learning the latent representation of the compound relation differs.

In the next subsection we will describe how a new compound relation can be learned with

RESCAL, TransE and the multiway neural network approach exploited in the Google

Knowledge Vault project (mwNN).

10Note that it is assumed for the new compound relation that all triples are independent and for this
reason it can be exploited as view. Generally, extensional query evaluation exploits the possible answers
semantics which is not compositional, meaning that the computed probabilities do not represent a proba-
bilistic database, but a collection of probabilities that cannot be exploited for further querying.

102 7. Querying Statistically Modeled Knowledge Graphs

7.2.1 Learning Compound Relations with RESCAL

Let X̂(∗) denote the newly created type-constrained compound relation and domain(∗)

and range(∗) its domain and range, which can be easily derived from the joined relation-

types. Furthermore, assume that a meaningful latent representation of the entities has

been explored via the factorization of the deterministic triple store. Since the RESCAL

model uses a unique representation of entities over all relations, all that is needed to

derive probabilities for a new relation is to compute its latent representation R(∗). The big

advantage of the proposed method is that R(∗) can now be derived by simply projecting

X̂(∗) into the latent space that is spanned by the type-constrained embedding matrices

of entities A[domain(∗),:]
and A[range(∗),:]

. This can be done very efficiently. Consider the

type-constrained ALS update for the core tensor R from Chapter 5.1.2. Essentially, what

is necessary is to calculate the latent matrix for the materialized view, i.e., R(∗) as

R(∗) = ((C⊗B)T (C⊗B) + λI)−1(C⊗B)Tvec(X̂k) (7.9)

with B = A[domain(∗),:]
and C = A[range(∗),:].

It was shown in Chapter 5.1.2 that this closed-form solution can be calculated more effi-

ciently by exploiting the singular value decomposition of the type-constrained factor ma-

trices A[domain(∗),:]
= UBΣBVT

B and A[range(∗),:]
= UCΣCVT

C, leading to

R(∗) = VB(P ~ UT
BX̂(∗)UC)VT

C (7.10)

where ~ represents the Hadamard (element-wise) matrix product and P has been defined

as follows (Chapter 5.1.2): Let Q be defined as a diagonal matrix and its diagonal entry

qii be given by

qii =
DBiiDCii

D2
Bii

D2
Cii

+ λ

with DB = ΣB ⊗ ΣB and DC = ΣC ⊗ ΣC.

Then P can be constructed by a column-wise reshape of the diagonal in Q.

The calculation of the latent representation R(∗) for the newly created compound

relation-type can now be done in O(r3 + n(∗)r +m(∗)r + pr), where p represents the num-

ber of nonzero entries in X̂(∗), r represents the rank of the factorization, and where n(∗)

represents all entities in the domain and m(∗) represents all entities in the range of the

7.2 Exploiting Latent Variable Models for Querying 103

compound relation-type (∗). Please note that the computation of R(∗) is now linear in all

parameters regarding the size of the triple store and cubic only in the number of latent

components r that are used to factorize the triple store. As such, it can be computed

efficiently even for very large triple stores. Furthermore, for each query of the same type,

the same latent representation can be reused, i.e. R(∗) only needs to be computed once.

7.2.2 Learning Compound Relations with TransE and mwNN

Similar to RESCAL, we are also able to learn new latent representations for compound

relation-types with TransE and mwNN, but in contrast to RESCAL we are not able to

exploit a closed-form solution for this. Let again X̂(∗) denote the newly created compound

relation with type-constraints domain(∗) and range(∗), which have been derived from the

joined relation-types. We also assume that the latent representations for the entities have

been inferred from a sufficient amount of data such that they are stable. In other words, we

assume that we have already found good representations for entities. Further, in case of the

neural network model, we also assume that the network weights have reached a stable local

minimum. We then learn the new representation of the compound relation-type through

stochastic gradient descent considering all model parameters as constant except for the

new latent representation r(∗). Below, we will provide the update rules for both models,

TransE and mwNN, for learning r(∗).

Updating r(∗) with TransE

For each triple (s, (∗), o) drawn from the compound relation (∗), the loss function of TransE

is given as

LT C(∗)TransE = max{0, γ + θs′,(∗),o − θs,(∗),o}+ max{0, γ + θs,(∗),o′ − θs,(∗),o} (7.11)

where s′ ∈ E[domain(∗)] ⊆ E , o
′ ∈ E[range(∗)] ⊆ E ,

and where for any triple (s, p, o), θs,p,o = −δ(as + rp, ao).

104 7. Querying Statistically Modeled Knowledge Graphs

We update the latent representation r(∗) of the compound relation X̂(∗) with respect to the

triple (s, (∗), o) as

r(∗),t+1 = r(∗),t − α
∂LT C(∗)TransE

∂r(∗),t
(7.12)

with

∂LT C(∗)TransE

∂r(∗),t
=



0 if θs,(∗),o − θs′,(∗),o ≤ γ ∧ θs,(∗),o − θs,(∗),o′ ≤ γ

2ao′ − 2ao if θs,(∗),o − θs′,(∗),o ≤ γ

2as − 2as′ if θs,(∗),o − θs,(∗),o′ ≤ γ

2ao′ − 2ao + 2as − 2as′ else.

In the above update, the index t denotes the learned latent representation r(∗) after t

updates. Further, α denotes the learning rate.

Updating r(∗) with mwNN

For each triple (s, (∗), o) drawn from the compound relation (∗), the loss function of mwNN

is given as

LT C(∗)mwNN = − log θs,(∗),o −
c∑

o′∈E[range(∗)]
⊆E

log(1− θs,(∗),o′) (7.13)

where for any triple (s, p, o), θs,p,o = σ(βTφ (W [as, rp, ao])).

We update the latent representation r(∗) of the compound relation X̂(∗) with respect to the

triple (s, (∗), o) as

r(∗),t+1 = r(∗),t −
α√∑t

t′=1

(
∂LT C(∗)

mwNN,t′

∂r(∗),t′

)2
· ∂L

T C(∗)
mwNN

∂r(∗),t
(7.14)

with

∂LT C(∗)mwNN

∂r(∗),t
= − 1

θs,(∗),o
·
∂θs,(∗),o
∂r(∗),t

−
c∑

o′∈E[range(∗)]
⊆E

1

1− θs,(∗),o′
· −

∂θs,(∗),o′

∂r(∗),t

where for any triple (s, p, o)

∂θs,p,o
∂rp

= θs,p,o(1− θs,p,o)βT
([

1− φ(W [as, rp, ao])
2
]
•Wr

)

7.2 Exploiting Latent Variable Models for Querying 105

Again, the index t denotes the learned latent representation r(∗) after t updates and in

Equation 7.14 the fraction incorporating the learning rate α describes the adaptive learning

rate [26]. Wr denotes only that part of the weight matrix W that interacts with the

latent representations of relation-types in the matrix product W [as, rp, ao]. • denotes the

column-wise product between a vector and a matrix.

7.2.3 Numerical Advantage of Learned Compound Relation-Types

In addition to the decrease in evaluations of the latent variable model to generate the

required probabilities there is also a numerical advantage of the learned compound relation

regarding its probabilities. Consider the query

Q(x) : −∃y.knows(x, y), friendOf(y, Lucy),

which can be evaluated with the independent-project rule as

P (Q(x)) =

(
1−

∏
a∈ADom

[1− P (knows(x, a)) · P ((friendOf(a, Lucy))]

)
.

For relation-types with a large domain or range, the above product can range over thou-

sands of different values of a, namely all entities that are in common by the range of the

first relation-type (in the above example knows) and the domain of the second relation-

type (friendOf in the above example). As a consequence, the product of all probabilities∏
a∈ADom[1− P (knows(x, a)) · P ((friendOf(a, Lucy))] will quickly evolve beyond machine

precision. As a simple example, assume that the above product loops over 10,000 entities.

It makes no difference if the probabilities 1 − P (knows(x, a)) · P ((friendOf(a, Lucy)) are

all 0.99 or 0.01. The probability for the query P (Q(x)) will be exactly 1.0 for any x.

Obviously, ranking the results is pointless in this case. Note that due to the structure of

the independent-project rule, substituting the product of probabilities through the sum of

logarithmic probabilities,

P (Q) = 1− exp(
∑

a∈ADom

log(1− P (knows(Jack, a)) · P ((friendOf(a, Lucy)))),

does not provide a solution for this problem because the exponent will be a very large

negative value.

The learned compound relation-types on the other hand will contain probabilities that

106 7. Querying Statistically Modeled Knowledge Graphs

Table 7.4: Data sets used in the experiments.

Data Set Entities Relation-Types Triples
Nations 14 56 2,565
UMLS 135 49 6,752
DBpedia-Music 71,804 7 508,169

have an order, because they will not exceed machine precision. Furthermore, in case

P (Q(x)) is a sub-query, the learned compound relation will influence the probability of

the whole query, which is not the case for the probabilities of the compound relation-type

derived by extensional query rules. These are very likely to be exactly 1.

7.3 Evaluating the Learned Compound Relations

First, we will study the quality of the learned compound relation-types in general, before

turning to actual probabilistic querying of statistically modeled knowledge graphs. For

this reason we conducted experiments on various smaller and simple benchmark data sets,

namely the Nations and UMLS data sets 11. With these data sets, we are able to materialize

all compound relations and will also not run into numerical problems (Section 7.2.3).

Therefore, we can easily study the quality of the learned compound relation-type. We do

this by comparing the ranking of the probabilities in the compound relation-types that have

been constructed through extensional query evaluation or through learning as described

in the previous section. Furthermore, we are exploiting the RESCAL tensor factorization

method in the experiments, due to its superior fast training times.12

7.3.1 Experimental Setup

For both data sets, Nations and UMLS (Table 7.4), we followed the same procedure. We

started by searching for the best hyper-parameters based on 80% of the triples through

10-fold cross-validation and used the best parameter setting to retrain the model on the

complete data sets. From the resulting factorization, we constructed all possible compound

relations of the form ∃y.Li(x, y), Lj(y, z) in two different ways. First, we exploit extensional

query evaluation and even though the resulting compound relation is not a view, it still

11http://alchemy.cs.washington.edu/data/
12In addition, due to the results from Chapter 5.4 it can be expected that the results of TransE or

mwNN will be at least of similar quality as the results obtained through RESCAL.

7.3 Evaluating the Learned Compound Relations 107

represents valid probabilities of each triple in the compound relation. Second, we learn the

compound relation-types as views as described in Section 7.2.1 (Equation 7.10).

For the comparison of both approaches, we assume that the extensional query evalua-

tion results in a correct ranking of probabilities in the compound relation-type (our gold

standard). For this reason we binarize the compound relation-type derived through exten-

sional query evaluation, where the top k triples with the highest probability are assumed

true (or one) and the other are assumed as false (or zero). We define k as the number

of true triples in the deterministic compound relation between the deterministic versions

of the relation-types Li and Lj. We then compare the ranking of triples in the learned

compound relation to the above defined gold standard derived from the extensional query

evaluation in terms of the Area Under the Precision Recall Curve (AUPRC). In addition,

we also report the results when comparing the gold standard against a random ranking.

For each compound relation we repeated the comparison against random ten times and

used the median as final score.

We report the median13 and standard deviation of the AUPRC scores on all possible

compound relation-types (without self joins), where we only considered compound relations

that contained more than 10 triples.

7.3.2 Compound Relations are of Good Quality

In Figures 7.2 and 7.3 the results for the Nations and UMLS data sets are shown. Generally,

the compound relation-types learned from the deterministic compound relation-type result

in a very similar ranking as the compound relation-type obtained by the extensional query

evaluation rules, which served as gold standard.

In case of the Nations data set, 2,354 compound relations were evaluated. The ranking

in the learned compound relation-type agrees with the ranking of the gold standard with a

median AUPRC score of 0.8248 and for 83 compound relation-types the AUPRC score is

above 0.99 (standard deviation is 0.2174). The ranking of a random relation-type on the

other hand results in clearly less agreement with the gold standard (grey bar), as expected.

For the UMLS data set, 631 compound relation-types were evaluated. In this case,

we have strong agreement between both kinds of compound relation-types, the learned

compound relation and the one derived through extensional query evaluation. The median

AUPRC score is almost perfect (0.9970) and clearly differs from the agreement achieved

by a random relation-type (AUPRC:0.0034).

13We report the median because of its robustness to outliers.

108 7. Querying Statistically Modeled Knowledge Graphs

0.0

0.2

0.4

0.6

0.8

1.0
AU

PR
C

0.8248

0.2628

Learned
Compound
Relation
Random
Relation

(a) Results based on all 2354
compound relations

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C

0.8271

0.3366

Learned
Compound
Relation
Random
Relation

(b) negativeBehaviorToAllied-
NationOf

Figure 7.2: AUPRC results on the Nations data set. We compare the ranking of triples
in the compound relations learned from the deterministic compound relation to the gold
standard (orange bars); the gold standard is the compound relation derived through ex-
tensional query evaluation rules. The AUPRC score for random compound relations is
shown in grey. (a) Median AUPRC scores of all 2,354 computed compound relations. (b)
AUPRC score for a single compound relation (negativeBehaviorToAlliedNationOf)

From the results it can be inferred that the approximation of the compound relation-

types by learning the deterministic compound relation-type is very promising to be applied

in a query evaluation setting on knowledge graphs, which we will study next.

7.4 Querying Factorized DBpedia-Music

In this section, we study the application of latent variable models for querying knowl-

edge graphs with uncertainties. We further compare the two approaches discussed before,

namely approximating sub-queries by learning compound relations with the latent vari-

able model and by evaluating solely based on extensional query evaluation rules. For the

knowledge graph, we extracted relation-types, entities and type-constraints from the music

domain of DBpedia [66] and exploited RESCAL as latent variable model.

7.4.1 DBpedia-Music

DBpedia contains the structured information extracted from Wikipedia Infoboxes. For

the DBpedia-Music data set, we downloaded the owl-ontology, mapping-based-properties

7.4 Querying Factorized DBpedia-Music 109

0.0

0.2

0.4

0.6

0.8

1.0
AU

PR
C

0.9970

0.0034

Learned
Compound
Relation
Random
Relation

(a) Results based on all 631
compound relations

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C

1.0000

0.0438

Learned
Compound
Relation
Random
Relation

(b) associatedAndResultOf

Figure 7.3: AUPRC results on the UMLS data set. We compare the ranking of triples in the
compound relations learned from the deterministic compound relation to the gold standard
(orange bars); the gold standard is the compound relation derived through extensional
query evaluation rules. The AUPRC score for random compound relations is shown in
grey. (a) Median AUPRC scores of all 631 computed compound relations. (b) AUPRC
score for a single compound relation (associatedAndResultOf)

(cleaned), mapping-based-types and heuristics from the canonicalized data sets of the

current release of DBpedia14. We extracted triples from 7 pre-selected Object-Properties;

musicalBand, musicalArtist, associatedMusicalArtist, recordLabel, album, genre,

associatedBand, where genre has been extracted to include only those entities that were

covered by the other object-properties to restrict it to musical genres. We discarded all

triples of entities that occurred less than five times and for all of the remaining entities

that are not assigned to any class we assigned them to owl#Thing. The rdfs:domain

and rdfs:range concepts for the above relation-types were extracted from the DBpedia

ontology, where we defined the domain or range of a relation-type as owl#Thing if absent.

The triples that disagreed with the domain and range constraints of the corresponding

relation-type were added to the type-constraints of that relation-type.

7.4.2 Experimental Setup

We split the data set into a test and training set, where 20% of the triples are contained in

the test set and 80% in the training set. For hyper-parameter tuning we performed 10-fold

14http://wiki.dbpedia.org/Downloads2014

110 7. Querying Statistically Modeled Knowledge Graphs

cross-validation on the training set. The final model is trained on the complete training set

with the best hyper-parameters. We exploit this model for evaluating the various queries

on the DBpedia-Music data set in two ways:

1. We evaluate the queries solely based on extensional query evaluation rules, using the

probabilities generated by the trained model.

2. We evaluate the same queries based on extensional query evaluation rules, but with

additionally approximating suitable sub-queries by learning the compound relation-

type from the deterministic version of the compound relation with the latent variable

model (RESCAL).

The quality of the answers (the ranking of probabilities) generated by the two query

evaluation approaches is evaluated against three ground truths:

1. The deterministic answers of the database consisting of the training set. We evaluate

the inference of known answers.

2. The deterministic answers which were not included in the training set (answers of

(test set ∪ training set) \ answers of training set). We evaluate the inference of new

answers.

3. The deterministic answers of the database consisting of the whole data sets (answers

of (test set ∪ training set)). We evaluate the total inference quality.

We measure the AUPRC, AUROC and the Logarithmic Loss. The Logarithmic Loss,

logloss = − 1

N

N∑
i=1

(yilog(pi) + (1− yi)log(1− pi)) ,

is widely used to evaluate the quality of the probabilities generated by statistical models,

whereas in difference to the AUPRC and AUROC a better performance is indicated by a

lower value.

We further compare the computation time when evaluating the queries purely rule

based with the evaluation procedure where we exploit extensional rules and approximate

sub-queries through compound relations learned by the model. All models are implemented

in python and the runtime measurements were taken with an Intel(R) Xeon(R) CPU E7-

4850 v2. We factorized the knowledge graph data with RESCAL using a rank of 200.

7.4 Querying Factorized DBpedia-Music 111

7.4.3 Queries Used for Evaluation

We will now describe the various queries used for the experiments and also give details to

their computation.

1. What songs or albums from the Pop-Rock genre are from musical artists that have/had

a contract with Atlantic Records?

Q1(x) : −genre(x,Pop rock)∧

∃y.(musicalArtist(x, y) ∧ recordLabel(y,Atlantic Records)).

This query is evaluated by extensional query evaluation rules as

Q1(x) = P (genre(x, z))×[
1−

∏
b∈ADom

1− P (musicalArtist(x, b) · P (recordLabel(b,Atlantic Records))

]
.

and by exploiting the learned compound relation songsAndAlbumsFromRecordLabel

learned from compound relation consisting of the relation-types musicalArtist and

recordLabel as

Q1(x) = P (genre(x,PopRock))×

P (songsAndAlbumsFromRecorLabel(x,Atlantic Records)) ,

2. Which musical artists from the Hip Hop music genre were involved in a single that

was produced by Shady (SD), Aftermath (AM) or Death Row (DR) records?

Q2(x) : −∃y.(genre(x, {Hip hop music,Hip hop})∧

musicalArtist(y, x) ∧ recordLabel(y, {SD,AM,DR}))

112 7. Querying Statistically Modeled Knowledge Graphs

This query is evaluated by extensional query evaluation rules as

Q2(x) =

1−
∏

a∈{Hip hop music,Hip hop}

1− P (genre(x, a))

×
1−

∏
b∈ADom

1− P (musicalArtist(b, x)

1−
∏

c∈{SD,AM,DR}

1− P (recordLabel(b, c))

 .
and by exploiting the learned compound relation musicalArtistWithSongsByRecord-

Label learned from compound relation consisting of the transpose of the relation-type

musicalArtist and relation-type recordLabel as

Q2(x) =

1−
∏

a∈{Hip hop music,Hip hop}

1− P (genre(x, a))

×
1−

∏
c∈{SD,AM,DR}

1− P (musicalArtistWithSongsByRecordLabel(x, c))

 .

3. Which musical artists from the Hip Hop music genre are associated with musical

artists that have/had a contract with Interscope Records and are involved in an

album whose first letter is a ”T”?

Q3(x) : −genre(x,Hip hop music)∧

∃y.(associatedMusicalArtist(x, y) ∧ recordLabel(y, Interscope Records))∧

∃z.∃t.(musicalArtist(z, x) ∧ album(z, {Album T.*}))

7.4 Querying Factorized DBpedia-Music 113

This query is evaluated by extensional query evaluation rules as

Q3(x) =

1−
∏

a∈{Hip hop music,Hip hop}

1− P (genre(x, a))

×
[

1−
∏

b∈ADom

1− P (assocMusicalArtist(x, b) · P (recLabel(b, Interscope Records))

]
×1−

∏
c∈ADom

1− P (musicalArtist(c, x)

1−
∏

d∈{Album T.*}

1− P (album(c, d))

 .
and by exploiting the learned compound relations associatedMusicalArtistFrom-

RecordLabel, learned from compound relation consisting of the relation-types as-

sociatedMusicalArtist and recordLabel, and musicalArtistFromAlbum, learned

from compound relation consisting of the relation-types musicalArtist and album,

as

Q3(x) =

1−
∏

a∈{Hip hop music,Hip hop}

1− P (genre(x, a))

×
P (associatedMusicalArtistFromRecordLabel(x, Interscope Records))×1−

∏
d∈{Album T.*}

1− P (musicalArtistFromAlbum(x, d))

 .
7.4.4 Learned Compound Relations Improve Quality of Answers

The results for the queries Q1(x), Q2(x) and Q3(x) are shown in Table 7.5, 7.6 and 7.8,

respectively. In general, the generated answers of both evaluation approaches that exploit

the probabilities generated by the latent variable models (“Extensional” and “Learned”

in the Tables) are always clearly better than random answers (“Random” in the Tables),

independent from the query or the ground truth the answers are evaluated against.

When comparing the two approaches, the approach that exploits the compound rela-

tions learned from the deterministic compound relations results generally in better prob-

abilities for the answer. This conclusion can be drawn from the fact that the LogLoss

score of this query evaluation approach is always significantly better (LogLoss scores of

“Learned” in the Tables. Lower values are better.). In case of the AUPRC and AUROC

114 7. Querying Statistically Modeled Knowledge Graphs

scores, it depends on the query and corresponding ground truth the answers are evaluated

against.

Evaluation of Query Q1(x)

Table 7.5: AUPRC, AUROC and LogLoss scores for evaluating Q1(x) on DBpedia-Music:
What songs or albums from the Pop-Rock genre are from musical artists that have/had a
contract with Atlantic Records?. Compared are three different evaluation procedures for the
query. Extensional denotes the evaluation based on pure extensional query evaluation,
where RESCAL is used to generate the probabilities. Learned additionally approximates
sub-queries to avoid evaluations through the independent-project rule. Random denotes a
ranking of random probabilities. We further compare the answers of these methods against
three different set of answers which are described in the column Ground Truth.

Evaluating Q1(x) (RESCAL)
Ground Truth Evaluated with AUPRC AUROC LogLoss

Extensional query rules only 0.4738 0.9620 0.6708
Learned compound relation 0.6338 0.9915 0.0993

Known Answers
(Training set)

Random answer 0.0038 0.5 0.9986
Extensional query rules only 0.3849 0.9042 0.6563
Learned compound relation 0.5714 0.9503 0.0934

All Answers
(Test set ∪
Training set) Random answer 0.0072 0.5 0.9968

Extensional query rules only 0.2484 0.8390 0.6931
Learned compound relation 0.1893 0.9027 0.1237

New Answers
(All Answers \
Known Answers) Random answer 0.0032 0.5 1.0038

The evaluation results of query Q1(x), What songs or albums from the Pop-Rock genre

are from musical artists that have/had a contract with Atlantic Records?, are shown in

Table 7.5. Regarding the ground truths, the amount of (“Known Answers”) is 71 out of

19,257 possible answers. In addition, there are 66 new answers produced if the test set is

added to the deterministic database. When comparing the query evaluation that exploits

pure extensional query evaluation (“Extensional”) with the evaluation approach that addi-

tionally approximates sub-queries through learned compound relation-types (“Learned”),

three important observations can be made. First, the latter approach is better in retriev-

ing known answers which the deterministic database consisting of the training set would

produce (AUPRC of 0.6338 vs. 0.4738). The former on the other hand seems to result in

a better ranking of new answers that could only be given by the database comprising the

whole data set (training and test set), where it reaches an AUPRC of 0.2484 compared to

7.4 Querying Factorized DBpedia-Music 115

0.1893 of the other approach.

Second, from the AUROC scores we can infer that the approach that exploits the

learned compound relations has a slightly better recall than the approach that relies solely

on extensional query evaluation. For the known answers it achieves an AUROC of 0.9915

and for new answers 0.9027, whereas the “Extensional” evaluation reaches only 0.9620 and

0.8390.

Third, as mentioned early, both evaluation approaches differ significantly in their

LogLoss scores. The evaluation with learned compound relation clearly outperforms the

other method with a logloss score of 0.0993 for known answers and 0.1237 for new answers,

whereas pure extensional query evaluation is 0.6708 and 0.6931. This has a significant

impact on the interpretation of the AUPRC score. We can conclude that even though the

evaluation with learned compound relations results in a worse ranking, the resulting prob-

abilities are much more meaningful. Meaningful probabilities allow us to easily filter the

answers generated by the evaluation approach, discarding answers with lower probability.

In other words, we can directly determine if an answer is likely to be wrong.

Evaluation of Query Q2(x)

The evaluation results of query Q2(x), Which musical artists from the Hip Hop music

genre involved in a single that was produced by Shady, Aftermath or Death Row records?,

are shown in Table 7.6. The deterministic ground truths consist of 28 (“Known An-

swers”) out of 23,269 possible answers and the test set resulted in 8 additional “New

Answers” (36 answers in total). The results are very similar to query Q1(x) when compar-

ing the query evaluation with extensional rules only, with the approach that exploits the

learned compound relation to partially avoid expensive evaluations of sub-queries with the

independent-project rule. Again, the LogLoss score is significantly better, but it is also

notable that a really low AUPRC score can be observed for the latter approach (0.0194).

From the top 25 ranking of this evaluation method on this query shown in Table 7.7, it

can be inferred that the low AUPRC is very likely caused by incompleteness of the corre-

sponding deterministic DBpedia-Music knowledge graph. The answers (rows) that are not

highlighted are present in the ground truth generated from the whole data (training set

∪ test set). The answers highlighted in green are answers that are true, but are missing

in the ground truth. The Hip Hop artists Xzibit had a contract with Aftermath/Shady

records and was featured on Eminem’s Album The Marshall Mathers LP among others.

For example, G-Unit released the EP G-Unit Radio Vol One that was produced by Shady

116 7. Querying Statistically Modeled Knowledge Graphs

Table 7.6: AUPRC, AUROC and LogLoss scores for evaluating Q2(x) on DBpedia-Music:
Which musical artists from the Hip Hop music genre involved in a single that was produced
by Shady, Aftermath or Death Row records? Compared are three different evaluation pro-
cedures for the query. Extensional denotes the evaluation based on pure extensional query
evaluation, where RESCAL is used to generate the probabilities. Learned additionally
approximates sub-queries to avoid evaluations through the independent-project rule. Ran-
dom denotes a ranking of random probabilities. We further compare the answers of these
methods against three different set of answers which a described in the column Ground
Truth.

Evaluating Q2(x) (RESCAL)
Ground Truth Evaluated with AUPRC AUROC LogLoss

Extensional query rules only 0.4358 0.9512 1.0360
Learned compound relation 0.6817 0.9914 0.0745

Known Answers
(Training set)

Random answer 0.0013 0.5 1.0015
Extensional query rules only 0.4258 0.9494 1.0331
Learned compound relation 0.5999 0.9612 0.0741

All Answers
(Test set ∪
Training set) Random answer 0.0016 0.5 1.0013

Extensional query rules only 0.3769 0.9420 1.0448
Learned compound relation 0.0194 0.8542 0.0839

New Answers
(All Answers \
Known Answers) Random answer 0.0022 0.5 0.9970

Records. RBX had contracts with Aftermath Entertainment and Deathrow Records and

is featured on the debut album of the rapper Snoop Dogg. The answers highlighted in

yellow are answers that are not true, but are also not absurd. Raekwon signed a contract

with Aftermath Entertainment but the planned album Only Built For Cuban Linx... Pt.

II was postponed and released later from another record label. N.W.A is only partially

true since some of its band members, namely Dr. Dre and Ice Cube are included in the

ground truth answer pool. Rick Ross seems to be the only Hip Hop artist who never had

a contract with one these record labels, but he was featured on multiple albums that were

produced by Interscope Records; Aftermath Entertainment is part of Interscope Records.

Evaluation of Query Q3(x)

The evaluation results of query Q3(x), Which musical artists from the Hip Hop music genre

are associated with musical artists that have/had a contract with Interscope Records and are

involved in an album whose first letter is a ”T”?, are shown in Table 7.8. The deterministic

ground truths consist of 35 (“Known Answers”) out of 23,269 possible answers and the

test set resulted in 32 additional “New Answers” (67 answers in total).

7.4 Querying Factorized DBpedia-Music 117

Table 7.7: Top 25 ranked answers produced by evaluating query Q2(x) with learned com-
pound relations. The first column is the ranking index, the second the computed probability
and the third column holds the answer entities. The rows highlighted in green are correct
answers which are not present in the ground truth. Rows marked in yellow denote answers
that are fuzzy, but partially true. Red rows indicate wrong answers. Rows that are not
highlighted are part of the ground truth.

Index Probability Answer Entity
1 1.0 http://dbpedia.org/resource/The Game (rapper)

2 1.0 http://dbpedia.org/resource/50 Cent

3 1.0 http://dbpedia.org/resource/Snoop Dogg

4 1.0 http://dbpedia.org/resource/Eminem

5 1.0 http://dbpedia.org/resource/Dr. Dre

6 1.0 http://dbpedia.org/resource/Nate Dogg

7 1.0 http://dbpedia.org/resource/Lil Wayne

8 0.999999999994 http://dbpedia.org/resource/Tha Dogg Pound

9 0.999999996251 http://dbpedia.org/resource/Xzibit

10 0.999999991058 http://dbpedia.org/resource/Outlawz

11 0.999999988918 http://dbpedia.org/resource/Kendrick Lamar

12 0.99999994572 http://dbpedia.org/resource/Akon

13 0.999999884401 http://dbpedia.org/resource/Stat Quo

14 0.999999795433 http://dbpedia.org/resource/Ice Cube

15 0.999999742962 http://dbpedia.org/resource/D12

16 0.999999518562 http://dbpedia.org/resource/Lloyd Banks

17 0.999998715023 http://dbpedia.org/resource/Cashis

18 0.999988920703 http://dbpedia.org/resource/N.W.A

19 0.999986804569 http://dbpedia.org/resource/Mark Batson

20 0.999983339586 http://dbpedia.org/resource/Kurupt

21 0.999978967051 http://dbpedia.org/resource/Young Buck

22 0.999973330498 http://dbpedia.org/resource/G-Unit

23 0.999971504099 http://dbpedia.org/resource/Raekwon

24 0.999958233629 http://dbpedia.org/resource/Rick Ross

25 0.999933133205 http://dbpedia.org/resource/RBX

In difference to query Q1(x) and Q2(x), the answers derived through pure extensional

query evaluation on the probabilities generated by RESCAL are ranked better against

both, “Known Answers” and “New Answers” than the other approach (“Learned”). “Ex-

tensional” reaches 0.4811 in AUPRC on the answers derived from the training set and

0.2869 in AUPRC on the new answers that could only be produced by combining all triples

from the test and training set. The “Learned” approach that approximates sub-queries

118 7. Querying Statistically Modeled Knowledge Graphs

Table 7.8: AUPRC, AUROC and LogLoss scores for evaluating Q3(x) on DBpedia-Music:
Which musical artists from the Hip Hop music genre are associated with musical artists that
have/had a contract with Interscope Records and are involved in an album whose first letter
is a ”T”? Compared are three different evaluation procedures for the query. Extensional
denotes the evaluation based on pure extensional query evaluation, where RESCAL is used
to generate the probabilities. Learned additionally approximates sub-queries to avoid
evaluations through the independent-project rule. Random denotes a ranking of random
probabilities. We further compare the answers of these methods against three different set
of answers which a described in the column Ground Truth.

Evaluating Q3(x) (RESCAL)
Ground Truth Evaluated with AUPRC AUROC LogLoss

Extensional query rules only 0.4811 0.9592 1.0314
Learned compound relations 0.4303 0.9888 0.3839

Known Answers
(Training set)

Random answer 0.0015 0.5 0.9999
Extensional query rules only 0.3957 0.9076 1.0234
Learned compound relations 0.3320 0.9632 0.3773

All Answers
(Test set ∪
Training set) Random answer 0.0029 0.5 1.0007

Extensional query rules only 0.2869 0.8499 1.0396
Learned compound relations 0.1589 0.9338 0.3930

New Answers
(All Answers \
Known Answers) Random answer 0.0014 0.5 0.9965

by learning the compound relation-types reaches only 0.4303 and 0.1589 in these cases.

Nevertheless, as in the case of Q1(x) and Q2(x), the LogLoss score is significantly better

for this approach. By approximating the sub-queries, a LogLoss score of 0.3839 could

be achieved when compared against the “Known Answers” and 0.3930 when compared

against the “New Answers”. Note that the answers generated by the pure extensional

query evaluation result in very bad probability values that have a similar LogLoss score

as random probabilities (1.0314 for “Known Answers” and 1.0396 for “New Answers”).

As in the case of the other queries, we can argue that the answers generated by exploit-

ing learned compound relations in addition to extensional query evaluation are of much

higher quality than the answers generated from the pure extensional query evaluation.

The ranking (AUPRC) of the former approach is worse than the ranking of the latter, but

since it produces much more meaningful probabilities (measured by the LogLoss score),

the recognition of uncertain answers is facilitated.

7.4 Querying Factorized DBpedia-Music 119

7.4.5 Learned Compound Relations Decrease Query Evaluation

Time

0

5

10

15

20

25

Ev
al
ua

tio
n
Ti
m
e
(s
)

23.4642

0.8413

Extensional
Query
Rules Only
Learned
Compound
Relations

(a) Evaluation Time Q1(x)

0

5

10

15

20

25

Ev
al
ua

tio
n
Ti
m
e
(s
)

20.2939

0.7652

Extensional
Query
Rules Only
Learned
Compound
Relations

(b) Evaluation Time Q2(x)

0

10

20

30

40

50

60

70

Ev
al
ua

tio
n
Ti
m
e
(s
)

61.3424

5.0111

Extensional
Query
Rules Only
Learned
Compound
Relations

(c) Evaluation Time Q3(x)

Figure 7.4: Query evaluation times in seconds for queries Q1(x) (a), Q2(x) (b) and Q3(x)
(c). The blue bars (Extensional Query Rules Only) always denote an evaluation of the
query using pure extensional query evaluation on the probabilities generated by the latent
variable model (RESCAL). The orange bars (Learned Compound Relations) also denote
an evaluation by extensional query evaluation, but where the application of independent-
project rules is partially avoided in sub-queries by approximating these sub-queries through
learned compound relations. The evaluation time was measured with an Intel(R) Xeon(R)
CPU E7-4850 v2 (OpenBLAS, 24 threads)

In Figure 7.4 the evaluation times in seconds for query Q1(x) (a), Q2(x) (b) and Q3(x)

(c) are shown. The blue bars always represent the evaluation of the query on probabilities

derived through modeling the knowledge graph with RESCAL with pure extensional query

evaluation rules. The orange bars on the other hand represent the second approach that

approximates sub-queries by learning compound relations with RESCAL. Thereby the

computation of the independent-project is partially avoided. Clearly, the evaluation by

the second approach, which exploits these learned compound relations, is 12-27 times

faster than the first approach which exploits solely extensional query evaluation rules. For

the first two queries, the approximation of sub-queries leads to a decrease in evaluation

time from approximately 20 seconds (23.4642 seconds for Q1(x) and 20.2939 for Q2(x)) to

less than one second (0.8413 seconds for Q1(x) and 0.7652 for Q2(x)). For query Q3(x) the

runtime is decreased from 61 seconds to 5 seconds.

120 7. Querying Statistically Modeled Knowledge Graphs

A Comment on the Difference in Evaluation Time of Extensional Query Eval-

uation in Comparison to the Publication “Querying Factorized Probabilistic

Triple Databases”

In [57], we reported much larger evaluation time for query Q3(x) when evaluating this

query solely through extensional query evaluation rules. In fact, we reported that this

query remained unanswered after 6 hours. It might be surprising that we reported in

the previous section that this query is answered by the same evaluation procedure in 61

seconds.

This large difference in evaluation time is caused by different algorithms that were used

to compute the independent-project rule. In [57], we made the restriction that it should

be possible to evaluate the query on commodity hardware. For this reason we avoided

any materialization of whole relation-types leading to a dense (type-constrained) frontal

slice of the tensor. In most of the knowledge graphs there exist relation-types that are

unbounded, meaning that domain or range constraints are defined over owl#Thing. For

large knowledge graphs which contain millions of entities, a materialization of this kind of

relation-types from the learned latent variable model becomes quickly intractable due to

the huge amount of values (probabilities) that are computed (one for each possible triple).

To avoid this explosion in memory we can compute Q3(x) step by step or block-wise, but

this will lead to a significant increase in computation time. In [57], we report the evaluation

times based on this memory saving algorithm.

In the previous section, we discarded this restriction and materialized whole relations

to compute the queries, i.e. the evaluation through independent-project rule, much more

efficiently. It has to be kept in mind that this approach would need a very powerful

computer system for larger knowledge graphs and can even then be intractable. Even

more impressive, the proposed approach, which partially avoids the evaluation through

the independent-project rule by learning compound relations (exploiting intrinsic features

of the a priori learned latent variable model), is still magnitudes (12-17 times) faster in

evaluating the studied queries than the purely rule based evaluation.

7.5 Related Work

Probabilistic databases (PDB) have gained much interest in recent years and an overview

over the state of the art is provided by [100]. Important ongoing research projects include

the MayBMS project [47] at Cornell University, the MystiQ project [13] at the University

7.5 Related Work 121

of Washington, the Orion project [97] at the Purdue University, and the Trio project [75]

at the Stanford University. The idea of materialized views on PDBs has been developed

in [23], where it was proposed to materialize probabilistic views to be used for query

answering at runtime.

Uncertainty in Semantic Web ontologies has been addressed in BayesOWL [24] and

OntoBayes [115]. Furthermore, PR-OWL [21] is a Bayesian Ontology Language for the

Semantic Web. The link between PDBs, Description Logic and Semantic Web data struc-

tures has been explored by [38, 15, 70]. In contrast to these approaches, we start with a

deterministic triple store and then derive probabilities via the factorization. Common to

all these approaches is the challenge of efficient querying.

In this chapter and in [57] we performed a probabilistic ranking of candidate query an-

swers as done by the top-k querying approaches [27, 84, 95]. However, in difference to these

approaches we are pruning low-confidence answers. In these top-k querying approaches,

the computation of exact probabilities for the potential top-k answers are avoided by using

lower and upper bounds for the corresponding marginal probabilities. Unfortunately, none

of these approaches, apart from [27], can avoid extensive materializations in finding answer

candidates [103].

As discussed in Chapter 4.4, tensors and other latent variable models have been applied

to Web analysis, especially in the context of link-prediction. Link-prediction can be seen

as querying a statistically modeled knowledge graph for ground triples. In [83], the YAGO

ontology was factorized and meaningful predictions of simple triples in selected subgroups

of YAGO were derived through the reconstruction from the low rank representation of the

triple store. In this sense, [9, 25, 99] also applied their models for the evaluation of indepen-

dent triples, but never addressed complex querying on the predictions. In this chapter and

[57], we study the significantly more difficult problem of complex querying with predicted

triple confidence values (including existentially quantified variables). In this regard, we re-

alize extensional query evaluation on safe queries which can induce complex dependencies

between individual predicted triple probabilities throughout the database. In particular,

we are concerned with how these queries can be executed efficiently, without the need for

extensive materialization of probability tables, by exploiting the factorized representation

during querying. In difference to [57], we additionally exploit type-constraints of relation-

types when modeling the knowledge graph and during query evaluation. It was shown

in the Chapter 5 and [54, 17, 56] that latent variable models generally benefit to a large

extent from such prior knowledge on relation-types.

122 7. Querying Statistically Modeled Knowledge Graphs

7.6 Conclusion

In this chapter we have demonstrated that knowledge graphs that are statistically modeled

with latent variable models can be interpreted as probabilistic databases and can be queried

by exploiting the probabilities generated by these models. This approach goes clearly be-

yond querying for ground triples which is basically performed when applying these models

for link-prediction. In this context, we focused on safe queries which can be evaluated in

polynomial time by extensional query evaluation rules. We used latent variable models to

represent probabilities for a huge amount of triples very efficiently, since it is intractable to

explicitly represent the probabilities for every possible triple (considering type-constraints)

of the knowledge graph. As a drawback, the probabilities have to be computed “on the

fly” when evaluating the queries, which causes additional computational overhead. This

computational overhead can be especially severe if sub-queries have to be evaluated using

the independent-project rule. We showed that the evaluation of sub-queries through the

independent-project rule can be partially avoided by predicting compound relations from

the initial deterministic knowledge graph with the pre-trained latent variable model. In

our first set of experiments, we gave empirical poof that the evaluation of sub-queries of the

form Q(x, z) : −L1(x, y), L2(y, z), using the extensional query evaluation rules or using the

predicted compound relation L3(x, z), results in a similar ranking of probabilities. We fur-

ther applied both approaches for querying DBpedia-Music, a sub-graph of DBpedia which

contains entities and relation-types that are related to music. From the experimental re-

sult, we can conclude that the approximation of sub-queries through predicted compound

relations has many advantages over the evaluation of the queries with pure extensional

evaluation rules. First, the query evaluation time is reduced by multiple factors, even

when disregarding memory consumption aspects (which lead to faster computations) when

evaluating by the independent-project rule. Furthermore, the learned memory efficient rep-

resentation of the compound relation-types can be stored and used as precomputed views

to further decrease query evaluation time in subsequent queries. Second, it results in signif-

icantly more meaningful probabilities for the derived answers for the various queries. This

observation is particularly interesting, because it allows a more reliable identification of

uncertain answers. Third, the approximation of sub-queries through predicted compound

relations avoids numerical problems when applying the independent-project rule, where a

product of a large number of probabilities has to be computed. In general, the approach

is not restricted to the ∃x.Q type queries, but can always be employed when views can be

used to simplify the probabilistic query.

Chapter 8
Conclusion

8.1 Summary

In this work, we have studied the application of latent variable models for the statistical

modeling of large knowledge graphs. The statistical modeling of these graphs plays an

important role in tasks related to completion and cleansing, but also for the automatic

construction of knowledge graphs from unstructured textual data. Due to their size, large

knowledge graphs are especially challenging to model because they introduce additional

constraints on the statistical model, i.e. limiting the complexity of the embedding space

of the latent representations for relation-types and entities. Enforcing large embeddings

to increase the expressiveness of latent variable models will inevitably lead to very long to

intractable training times and high memory consumption when exploiting them for these

graphs. For this reason, it has to be considered that the latent variable models have to be

parsimonious in their number of parameters to be tractable. Examples include Google’s

Knowledge Vault system, where the used neural network exploits latent embedding vectors

of length no more than 60 to model the entities and relation-types of Freebase, which

has millions of entities and thousands of relation-types. Throughout this work, we have

considered three different latent variable models that cover the current state of the art in

scalable latent variable models for the statistical modeling of large knowledge graphs. The

first, RESCAL, is a very efficient third order tensor factorization method which exploits

the natural representation of triples in a third-order tensor. The second, Translational

Embeddings (TransE) model interprets triples as translations in the latent embedding

space, and the third, mwNN is the earlier mentioned multiway neural network approach

used in the Google Knowledge Vault system.

124 8. Conclusion

In our initial experiments presented in Chapter 4, we compared these models under the

constraints imposed by large knowledge graphs. From these experiments, we observed that

the prediction quality of all three models on selected data sets from Freebase, DBpedia and

YAGO was often of moderate quality when these models are limited in their complexity.

TransE clearly achieved the highest prediction quality in the link-prediction tasks when

compared with the other two models, but RESCAL is clearly superior in terms of training

times and it has a low number of hyper-parameters, decreasing model tuning effort to

a minimum. The multiway neural network model (mwNN) resulted in a similar link-

prediction quality than RESCAL, but with significantly longer training times. This model

is also the most complex one in terms of hyper-parameters, resulting in a high effort for

hyper-parameter tuning.

It is intractable to generally increase the dimensionality of the latent embeddings for

entities and relation-types to improve the expressiveness of latent variable models when

modeling large knowledge graphs. For this reason we require a different approach to reduce

the complexity of the modeling tasks that will empower the latent variable models to focus

on the important aspects of the data. We showed in Chapter 5 that prior knowledge

on relation-types in form of type-constraints, as provided by the schema of knowledge

graphs, is one effective way to reduce this complexity with great impact on the modeling

quality. For all three latent variable models and a diverse set of triple data extracted

from Freebase, DBpedia and YAGO, we were able to observe improvements up to 77% in

link-prediction quality in terms of Area Under Precision Recall Curve. Due to the many

aspects in which these models differ and the fact that they have been the major targets

for extensions from multiple research groups around the globe, we further argue that the

observed improvements are not limited to the studied three models (RESCAL, TransE

and mwNN), but that the integration of prior knowledge on relation-types is of general

value to latent variable models when modeling knowledge graphs. In addition, we could

observe similar large improvements when exploiting a local closed-world assumption on

relation-types instead of type-constraints. The great advantage of this local closed-world

assumption lies in the fact that it is independent from any prior knowledge about the

knowledge graph’s schema, but is solely based on observed triples in the graph. We could

not observe from our experiments that the integration of the local closed-world assumption

leads to generally better results than the integration of curated type-constraints into the

latent variable models. For this reason, the local closed-world assumption should be applied

on those relation-types where type-constraints are missing or fuzzy. In difference to type-

8.1 Summary 125

constraints, the local closed-world assumption can also be applied to schema-less knowledge

graphs.

Besides improving models individually, a different way to improve link-prediction is to

combine diverse predictors in ensemble methods. We have provided and discussed empirical

proof in Chapter 6 that due to their large amount of differences, RESCAL, TransE and

mwNN are well suited for combination in an ensemble solution for link-prediction in large

knowledge graphs. In the conducted experiments the ensemble always resulted in superior

prediction quality with improvements of up to 15% on top of the improvements achieved

through the integration of type-constraints in the individual models. Especially TransE was

observed to learn different aspects of the data than RESCAL or mwNN and the combination

of the TransE with the other two models resulted in the largest improvements over the

best single predictor incorporated in the ensemble. These improvements were observed to

be especially large when the models exploited very low dimensional embedding for entities

and relation-types, where the ensemble method achieved a similar performance as the best

single predictor that was allowed to exploit 10 times higher dimensional embeddings.

When applying latent variable models to knowledge graphs for link-prediction, this is

basically a singular event. We model the given deterministic knowledge graph once and

extract the triple confidences which are exploited for complementing or cleaning the triples

in the graphs in a follow up step, and discard the model afterwards. In Chapter 7, we

described a new interpretation of the trained statistical model as probabilistic database

which extends its application beyond predicting confidences for ground triples. This new

interpretation allows us to exploit the theory of probabilistic databases for complex proba-

bilistic querying of these graphs. Since it is intractable to pursue the naive approach, where

we materialize all possible triple probabilities and simply apply probabilistic rules for query

evaluation, we showed that an alternative approach, which recycles the learned latent rep-

resentations of entities and relation-types, makes probabilistic safe querying tractable on

statistically modeled large knowledge graphs. As a drawback, this alternative approach

introduces additional computational load which can lead to significantly increased query

evaluation times, even though the queries are safe and especially if the independent-project-

rule on a large amount of entities is applied. We proposed to learn compound relations

by exploiting intrinsic features of the latent variable model and showed that the learned

compound relations lead to very good approximations of an instead applied independent-

project-rule decreasing the total query evaluation time dramatically (12-27 times faster).

Furthermore, these learned compound relations avoid numerical issues that can arise when

126 8. Conclusion

the independent project rule is applied on a large set of probabilities. In our experiments,

where we queried the music domain of DBpedia, the evaluation approach which combines

extensional query evaluation rules with learned compound relations resulted in clearly more

meaningful probabilities for the produced answers.

8.2 Future Directions and Applications

Knowledge graphs are of great value for a wide set of applications today, but they also

suffer from many deficiencies. Especially incompleteness is one of the major problems in

these graphs that can only be tackled with the support of reliable automated approaches.

For this reason, there is a high demand for statistical models which support in applications

such as knowledge graph construction, completion and cleaning, but also for dealing with

uncertainties. Latent variable models have proven to be well suited for the modeling of

knowledge graphs, but due to the limitations imposed by the size of large knowledge graphs,

we belief that these models have to be combined with prior knowledge on the graph or its

structure to unfold their full potential. The integration of prior knowledge about relation-

types lead to improved low dimensional embeddings of entities and relation-types that

are of interest for tasks related to disambiguation and link-based clustering in large scale

applications.

Furthermore, there are many aspects in which RESCAL, TransE and KVNN differ

(see discussion in Chapter 3.3) and which have to be analyzed more deeply. Identifying

these models’ key aspects that have the most beneficial impact on link-prediction quality

can give rise to a new generation of latent variable approaches that could further drive

knowledge-graph modeling. Nevertheless, we expect that it will be very difficult for the

current state of the art latent variable models to capture the complete underlying structure

and dependencies of the whole knowledge graph under the complexity limits imposed by

large knowledge graphs on the embedding space. The combination of latent variable models

with graph-feature models as proposed by [25, 80] or the combination of diverse models of

low complexity as proposed in this work offer an efficient way to increase link-prediction

quality. Unfortunately, these ensemble methods will not result in better embeddings for

entities or relation-types which are of major interest for various applications that rely on

embeddings reflecting the semantics of entities and relation-types. A possible solution to

this problem is offered by Deep Learning approaches where the complexity of the learning

task can be covered by a hierarchy of neural network layers that result in latent features

8.2 Future Directions and Applications 127

that reflect more complex dependencies observed in the graph. In contrast to the other

latent variable approaches, the deeper layers in the neural network hierarchy are not directly

dependent on the size of the knowledge graph as the first embedding layer and will therefore

not necessarily explode in the amount of parameters. A potential successful application

of Deep Learning for link-prediction in knowledge graphs is currently an open research

question, but very promising.

Additionally, in some cases the truthfulness of a triple might not only be dependent on

single ground triples, as considered by the latent variable models discussed in this work,

but on complex associations of facts that actually represent whole paths in the knowledge

graphs (e.g. nested facts). It might be beneficial to consider these paths in a whole and

not as a composition of independent atomic triples when modeling the knowledge graphs

[77, 40]. Models that are able to additionally consider these paths are of special interest

for querying knowledge graphs and could further complement the probabilistic querying of

knowledge graphs proposed in Chapter 7.

128 8. Conclusion

Bibliography

[1] Dean Allemang and James Hendler. Semantic Web for the Working Ontologist -

Effective Modeling in RDFS and OWL. Morgan Kaufmann/Elsevier, 2nd revised

edition. edition, 2011.

[2] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, and

G. M. Rubin & G. Sherlock. Gene ontology: tool for the unification of biology.

Nature Genetics, 25:25–29, May 2000.

[3] Brett W. Bader, Richard A. Harshman, and Tamara G. Kolda. Temporal analysis

of semantic graphs using asalsan. 2013 IEEE 13th International Conference on Data

Mining, 0:33–42, 2007.

[4] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–

1828, August 2013.

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-

canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-

gio. Theano: a CPU and GPU math expression compiler. In Proceedings of the

Python for Scientific Computing Conference (SciPy), June 2010.

[6] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.

Semantic Web Inf. Syst., 5(3):122, 2009.

130 BIBLIOGRAPHY

[7] Stephan Bloehdorn, Peter Haase, York Sure, and Johanna Vlker. Ontology evolution.

In John Davies, Rudi Studer, and Paul Warren, editors, Semantic Web Technologies

— Trends and Research in Ontology-Based Systems, chapter 4, pages 51–70. John

Wiley & Sons, Chichester, West Sussex, UK, June 2006.

[8] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-

base: A collaboratively created graph database for structuring human knowledge. In

Proceedings of the 2008 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA, 2008. ACM.

[9] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J.C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 26, pages 2787–2795. Curran As-

sociates, Inc., 2013.

[10] Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances

in Neural Information Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held December 5-8,

2013, Lake Tahoe, Nevada, United States., pages 2787–2795, 2013.

[11] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning

structured embeddings of knowledge bases. In AAAI, 2011.

[12] Antoine Bordes, Xavier Glorot Jason Weston, and Yoshua Bengio. A semantic match-

ing energy function for learning with multi-relational data. CoRR, abs/1301.3485,

2013.

[13] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christopher Ré,

and Dan Suciu. Mystiq: a system for finding more answers by using probabilities.

In SIGMOD Conference, pages 891–893, 2005.

[14] Paul Buitelaar, Daniel Olejnik, and Michael Sintek. A protg plug-in for ontology

extraction from text based on linguistic analysis. In Proceedings of the 1st European

Semantic Web Symposium (ESWS04), pages 31–44. Springer, 2004.

BIBLIOGRAPHY 131

[15] Andrea Cal̀ı, Thomas Lukasiewicz, Livia Predoiu, and Heiner Stuckenschmidt.

Tightly integrated probabilistic description logic programs for representing ontology

mappings. In FoIKS, pages 178–198, 2008.

[16] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell.

Toward an architecture for never-ending language learning. In Proceedings of the

Conference on Artificial Intelligence (AAAI), pages 1306–1313. AAAI Press, 2010.

[17] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed tensor

decomposition of knowledge bases for relation extraction. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

1568–1579. Association for Computational Linguistics, 2014.

[18] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Learning concept hierarchies

from text corpora using formal concept analysis. J. Artif. Int. Res., 24(1):305–339,

August 2005.

[19] Philipp Cimiano and Johanna Völker. Text2onto: A framework for ontology learning

and data-driven change discovery. In Proceedings of the 10th International Conference

on Natural Language Processing and Information Systems, NLDB’05, pages 227–238,

Berlin, Heidelberg, 2005. Springer-Verlag.

[20] World Wide Web Consortium. Rdf schema 1.1, Feb 2014.

[21] Paulo Cesar G. da Costa, Kathryn B. Laskey, and Kenneth J. Laskey. Pr-owl: A

bayesian ontology language for the semantic web. In ISWC-URSW, 2005.

[22] G.E. Dahl, Dong Yu, Li Deng, and A. Acero. Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition. Audio, Speech, and Lan-

guage Processing, IEEE Transactions on, 20(1):30 –42, jan. 2012.

[23] Nilesh N. Dalvi, Christopher Re, and Dan Suciu. Queries and materialized views on

probabilistic databases. J. Comput. Syst. Sci., 77(3):473–490, 2011.

[24] Zhongli Ding, Yun Peng, and Rong Pan. A bayesian approach to uncertainty mod-

elling in owl ontology. In Proceedings of the International Conference on Advances

in Intelligent Systems - Theory and Applications, 2004.

132 BIBLIOGRAPHY

[25] Xin L. Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-

scale approach to probabilisitic knowledge fusion. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

601–610, 2014.

[26] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159,

July 2011.

[27] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. Top-k query processing in

probabilistic databases with non-materialized views. Research Report MPI-I-2012-5-

002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,

Germany, June 2012.

[28] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal

Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning?

J. Mach. Learn. Res., 11:625–660, 2010.

[29] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld. Open infor-

mation extraction from the web. Commun. ACM, 51(12):68–74, December 2008.

[30] Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam

Mausam. Open information extraction: The second generation. In Proceedings of

the Twenty-Second International Joint Conference on Artificial Intelligence - Volume

Volume One, IJCAI’11, pages 3–10. AAAI Press, 2011.

[31] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2007.

[32] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. Dl-foil concept learning in

description logics. In Filip Zelezn and Nada Lavrac, editors, ILP, volume 5194 of

Lecture Notes in Computer Science, pages 107–121. Springer, 2008.

[33] Christiane Fellbaum, editor. WordNet: an electronic lexical database. MIT Press,

1998.

[34] D. A. Ferrucci. Introduction to ”this is watson”. IBM J. Res. Dev., 56(3):235–249,

May 2012.

BIBLIOGRAPHY 133

[35] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank: Rank-

ing semantic web data by tensor decomposition. In International Semantic Web

Conference, pages 213–228, 2009.

[36] Alberto Garcia-Duran, Antoine Bordes, Nicolas Usunier, and Yves Grandvalet. Com-

bining two and three-way embeddings models for link prediction in knowledge bases.

In arXiv:1506.00999, 2015.

[37] J. Giles. Special Report: Internet encyclopaedias go head to head. Nature, 438, 2005.

[38] Rosalba Giugno and Thomas Lukasiewicz. P-shoq(d): A probabilistic extension of

shoq(d) for probabilistic ontologies in the semantic web. In JELIA, 2002.

[39] Marko Grobelnik and Dunja Mladeni. Knowledge Discovery for Ontology Construc-

tion, pages 9–27. John Wiley & Sons, Ltd, 2006.

[40] Kelvin Gu, John Miller, and Percy Liang. Traversing knowledge graphs in vector

space. CoRR, abs/1506.01094, 2015.

[41] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions

for an” explanatory” multi-modal factor analysis. UCLA Working Papers in Pho-

netics, 16(1):84, 1970.

[42] Richard A. Harshman. Parafac2: Mathematical and technical notes. UCLA working

papers in phonetics, 22:30–47, 1972.

[43] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. Link

prediction using supervised learning. In In Proc. of SDM 06 workshop on Link

Analysis, Counterterrorism and Security, 2006.

[44] John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean.

Semantic Web Programming -. Wiley, New York, 1. auflage edition, 2009.

[45] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313(5786):504–507, 2006.

[46] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Ger-

ard de Melo, and Gerhard Weikum. Yago2: Exploring and querying world knowledge

in time, space, context, and many languages. In Proceedings of the 20th International

134 BIBLIOGRAPHY

Conference Companion on World Wide Web, WWW ’11, pages 229–232, New York,

NY, USA, 2011. ACM.

[47] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: a

probabilistic database management system. In SIGMOD Conference, 2009.

[48] Tuyen N. Huynh and Raymond J. Mooney. Online structure learning for markov logic

networks. In Machine Learning and Knowledge Discovery in Databases - European

Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings,

Part II, pages 81–96, 2011.

[49] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on coun-

terfactuals for concept learning in the semantic web. Appl. Intell., 26(2):139–159,

2007.

[50] Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski. A

latent factor model for highly multi-relational data. In NIPS, pages 3176–3184, 2012.

[51] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[52] Tamara G. Kolda, Brett W. Bader, and Joseph P. Kenny. Higher-order web link

analysis using multilinear algebra. In ICDM, pages 242–249, 2005.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C.J.C. Burges, L. Bottou,

and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[54] Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation

learning in knowledge graphs. In Proceedings of the 13th International Semantic Web

Conference (ISWC), 2015.

[55] Denis Krompaß, Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Non-negative

tensor factorization with rescal. In ECML/PKDD 2013 Workshop on Tensor Methods

for Machine Learning, 2013.

[56] Denis Krompaß, Maximilian Nickel, and Volker Tresp. Large-scale factorization of

type-constrained multi-relational data. In Proceedings of the 2014 Conference on

Data Science and Advanced Analytics, 2014.

BIBLIOGRAPHY 135

[57] Denis Krompaß, Maximilian Nickel, and Volker Tresp. Querying factorized prob-

abilistic triple databases. In Proceedings of the 13th International Semantic Web

Conference (ISWC), 2014.

[58] Denis Krompaßand Volker Tresp. Ensemble solutions for link-prediction in knowl-

edge graphs. In Proceedings of the 2nd Workshop on Linked Data for Knowledge

Discovery co-located with European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases (ECML PKDD 2015), 2015.

[59] Amy N. Langville, Carl D. Meyer, and Russell Albright. Initializations for the non-

negative matrix factorization, 2006.

[60] Ni Lao, Tom Mitchell, and William W. Cohen. Random walk inference and learning

in a large scale knowledge base. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, EMNLP ’11, pages 529–539, 2011.

[61] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. Resource descrip-

tion framework (rdf) model and syntax specification, 1998.

[62] Alan J. Laub. Matrix analysis - for scientists and engineers. SIAM, 2005.

[63] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factor-

ization. In NIPS, pages 556–562, 2000.

[64] Jens Lehmann. Dl-learner: Learning concepts in description logics. J. Mach. Learn.

Res., 10:2639–2642, December 2009.

[65] Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm

for the ALC description logic. In Inductive Logic Programming, 17th International

Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, volume 4894 of Lec-

ture Notes in Computer Science, pages 147–160. Springer, 2008.

[66] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören

Auer, and Christian Bizer. DBpedia - a large-scale, multilingual knowledge base

extracted from wikipedia. Semantic Web Journal, 2014.

[67] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity

and relation embeddings for knowledge graph completion. In AAAI, 2015.

136 BIBLIOGRAPHY

[68] Francesca A. Lisi and Floriana Esposito. An ILP perspective on the semantic web. In

SWAP 2005 - Semantic Web Applications and Perspectives, Proceedings of the 2nd

Italian Semantic Web Workshop, University of Trento, Trento, Italy, 14-16 December

2005, 2005.

[69] Ben London, Theodoros Rekatsinas, Bert Huang, and Lise Getoor. Multi-

relational learning using weighted tensor decomposition with modular loss. CoRR,

abs/1303.1733, 2013.

[70] Thomas Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-

7):852–883, 2008.

[71] Alexander Maedche and Steffen Staab. Ontology learning. In HANDBOOK ON

ONTOLOGIES, pages 173–189. Springer, 2004.

[72] Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Luks Burget, and Jan Cernock.

Empirical evaluation and combination of advanced language modeling techniques. In

INTERSPEECH, pages 605–608. ISCA, 2011.

[73] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In C.J.C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 26, pages 3111–3119. Curran As-

sociates, Inc., 2013.

[74] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-

tinuous space word representations. In Proceedings of the 2013 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 746–751, Atlanta, Georgia, June 2013. Association for

Computational Linguistics.

[75] Michi Mutsuzaki, Martin Theobald, Ander de Keijzer, Jennifer Widom, Parag

Agrawal, Omar Benjelloun, Anish Das Sarma, Raghotham Murthy, and Tomoe Sug-

ihara. Trio-one: Layering uncertainty and lineage on a conventional dbms (demo).

In CIDR, pages 269–274, 2007.

[76] Morten Mrup. Applications of tensor (multiway array) factorizations and decomposi-

tions in data mining. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery,

1(1):24–40, 2011.

BIBLIOGRAPHY 137

[77] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector

space models for knowledge base completion. CoRR, abs/1504.06662, 2015.

[78] Maximilian Nickel. Tensor factorization for relational learning. PhDThesis, Ludwig-

Maximilian-University of Munich, August 2013.

[79] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in rela-

tional factorization models by including observable patterns. In Advances in Neural

Information Processing Systems 27, pages 1179–1187. Curran Associates, Inc., 2014.

[80] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A re-

view of relational machine learning for knowledge graphs: From multi-relational link

prediction to automated knowledge graph construction. In arXiv:1503.00759, 2015.

[81] Maximilian Nickel and Volker Tresp. Logistic tensor factorization for multi-relational

data. In Structured Learning: Inferring Graphs from Structured and Unstructured

Inputs (ICML WS), 2013.

[82] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for

collective learning on multi-relational data. In ICML, pages 809–816, 2011.

[83] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable

machine learning for linked data. In WWW, pages 271–280, 2012.

[84] Dan Olteanu and Hongkai Wen. Ranking query answers in probabilistic databases:

Complexity and efficient algorithms. In ICDE, pages 282–293, 2012.

[85] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.

W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/

owl2-overview/.

[86] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,

Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543,

2014.

[87] John C. Platt. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. In Advances in large margin classifiers, pages 61–74.

MIT Press, 1999.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

138 BIBLIOGRAPHY

[88] Hoifung Poon and Pedro Domingos. Unsupervised ontology induction from text.

In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, ACL ’10, pages 296–305, Stroudsburg, PA, USA, 2010. Association for

Computational Linguistics.

[89] Steffen Rendle. Factorization machines. In Proceedings of the 10th IEEE Interna-

tional Conference on Data Mining. IEEE Computer Society, 2010.

[90] Steffen Rendle, Leandro Balby Marinho, Alexandros Nanopoulos, and Lars Schmidt-

Thieme. Learning optimal ranking with tensor factorization for tag recommendation.

In KDD, pages 727–736, 2009.

[91] Achim Rettinger, Uta Lösch, Volker Tresp, Claudia D’Amato, and Nicola Fanizzi.

Mining the semantic web. Data Min. Knowl. Discov., 24(3):613–662, May 2012.

[92] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learn-

ing, 62(1-2):107–136, 2006.

[93] Richard H. Richens. Preprogramming for mechanical translation. Mechanical Trans-

lation, 1:20–25, 1956.

[94] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation

extraction with matrix factorization and universal schemas. In HLT-NAACL, pages

74–84, 2013.

[95] Christopher R, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation on

probabilistic data. In in ICDE, pages 886–895, 2007.

[96] Kunal Sengupta, Adila Alfa Krisnadhi, and Pascal Hitzler. Local closed world se-

mantics: Grounded circumscription for owl. In Proceedings of the 10th International

Conference on The Semantic Web - Volume Part I, ISWC’11, pages 617–632, Berlin,

Heidelberg, 2011. Springer-Verlag.

[97] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne E. Hambr-

usch, and Rahul Shah. Orion 2.0: native support for uncertain data. In SIGMOD

Conference, pages 1239–1242, 2008.

[98] Amit Singhal. Introducing the knowledge graph: things, not strings, May 2012.

BIBLIOGRAPHY 139

[99] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Rea-

soning with neural tensor networks for knowledge base completion. In NIPS, pages

926–934, 2013.

[100] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic

Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,

2011.

[101] Bongwon Suh, Gregorio Convertino, Ed H. Chi, and Peter Pirolli. The singularity

is not near: slowing growth of wikipedia. In WikiSym ’09: Proceedings of the 5th

International Symposium on Wikis and Open Collaboration, pages 1–10, New York,

NY, USA, 2009. ACM.

[102] Chun How Tan, Eugene Agichtein, Panos Ipeirotis, and Evgeniy Gabrilovich. Trust,

but verify: Predicting contribution quality for knowledge base construction and cu-

ration. In WSDM, 2014.

[103] Martin Theobald, Luc De Raedt, Maximilian Dylla, Angelika Kimmig, and Iris Mil-

iaraki. 10 years of probabilistic querying - what next? In ADBIS, 2013.

[104] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Materializing

and querying learned knowledge. In First ESWC Workshop on Inductive Reasoning

and Machine Learning on the Semantic Web (IRMLeS 2009), 2009.

[105] Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-

chometrika, 31:279–311, 1966.

[106] Matthew Turk and Alex Pentland. Eigenfaces for recognition. J. Cognitive Neuro-

science, 3(1):71–86, January 1991.

[107] M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear analysis of image ensem-

bles: Tensorfaces. In IN PROCEEDINGS OF THE EUROPEAN CONFERENCE

ON COMPUTER VISION, pages 447–460, 2002.

[108] Paola Velardi, Roberto Navigli, Alessandro Cucchiarelli, and Francesca Neri. Evalua-

tion of OntoLearn, a methodology for automatic population of domain ontologies. In

Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, editors, Ontology Learning

from Text: Methods, Applications and Evaluation. IOS Press, 2006.

140 BIBLIOGRAPHY

[109] Brittany Vincent. Siri vs. cortana vs. google now: Why apples siri is best, 2015.

[110] Denny Vrandečić. Wikidata: A new platform for collaborative data collection. In

Proceedings of the 21st International Conference Companion on World Wide Web,

WWW ’12 Companion, pages 1063–1064, New York, NY, USA, 2012. ACM.

[111] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regular-

ization of neural networks using dropconnect. In ICML (3), volume 28 of JMLR

Proceedings, pages 1058–1066. JMLR.org, 2013.

[112] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph em-

bedding by translating on hyperplanes. In AAAI, July 2014.

[113] Hendrik Wermser, Achim Rettinger, and Volker Tresp. Modeling and learning

context-aware recommendation scenarios using tensor decomposition. In ASONAM,

pages 137–144, 2011.

[114] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embeddings

entities and relations for learning and inference in knowledge bases. In In ICLR-2015,

2015.

[115] Yi Yang and Jacques Calmet. Ontobayes: An ontology-driven uncertainty model. In

CIMCA/IAWTIC, pages 457–463, 2005.

	Introduction
	Learning in the Semantic Web
	Learning in Knowledge Graphs
	Contributions of this Work

	Knowledge Graphs
	Knowledge-Graphs are RDF-Triplestores
	RDF-Triple Structure
	Schema Concepts
	Knowledge Retrieval in Knowledge Graphs

	Knowledge Graph Construction
	Curated Approaches
	Collaborative Approaches
	Automated Approaches on Semi-Structured Textual Data
	Automated Approaches on Unstructured Textual Data

	Popular Knowledge Graphs
	DBpedia
	Freebase
	YAGO

	Deficiencies in Today's Knowledge Graph Data

	Representation Learning in Knowledge Graphs
	Representation Learning
	Relational Learning
	Statistical Modeling of Knowledge Graphs with Latent Variable Models
	Notation
	RESCAL
	Translational Embeddings
	Google Knowledge-Vault Neural-Network

	Applying Latent Variable Models to Large Knowledge Graphs
	Latent Variable Model Complexity in Large Knowledge Graphs
	Simulating Large Scale Conditions
	Data Sets
	Evaluation Procedure
	Implementation and Model Training Details

	Experimental Results
	Link-Prediction Quality – TransE has Leading Performance
	Optimization Time – RESCAL is Superior to Other Methods

	Related Work
	Conclusion

	Exploiting Prior Knowledge On Relation-Type Semantics
	Type-Constrained Alternating Least-Squares for RESCAL
	Additional Notation
	Integrating Type-Constraints into RESCAL
	Relation to Other Factorizations
	Testing the Integration of Type-Constraints in RESCAL
	Conclusion

	Type-Constrained Stochastic Gradient Descent
	Type-Constrained Triple Corruption in SGD

	A Local Closed-World Assumption for Modeling Knowledge Graphs
	Entity Grouping for RESCAL under a Local Closed-World Assumption
	Link-Prediction in DBpedia with RESCAL
	Conclusion

	Experiments – Prior Knowledge on Relation-Types is Important for Latent Variable Models
	Type-Constraints are Essential
	Local Closed-World Assumption – Simple but Powerful

	Related Work
	Conclusion

	Ensemble Solutions for Representation Learning in Knowledge Graphs
	Studying Complementary Effects between TransE, RESCAL and mwNN
	Experimental Setup
	Experiments – TransE, RESCAL and mwNN Learn Complementary Aspects in Knowledge Graphs
	Type-Constrained Ensembles
	Ensembles under a Local Closed-World Assumption

	Related Work
	Conclusion

	Querying Statistically Modeled Knowledge Graphs
	Exploiting Uncertainty in Knowledge Graphs
	Notation
	Probabilistic Databases
	Querying in Probabilistic Databases

	Exploiting Latent Variable Models for Querying
	Learning Compound Relations with RESCAL
	Learning Compound Relations with TransE and mwNN
	Numerical Advantage of Learned Compound Relation-Types

	Evaluating the Learned Compound Relations
	Experimental Setup
	Compound Relations are of Good Quality

	Querying Factorized DBpedia-Music
	DBpedia-Music
	Experimental Setup
	Queries Used for Evaluation
	Learned Compound Relations Improve Quality of Answers
	Learned Compound Relations Decrease Query Evaluation Time

	Related Work
	Conclusion

	Conclusion
	Summary
	Future Directions and Applications

