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Zusammenfassung

Ein Hauptaspekt der psychometrischen Modellierung liegt in der Messung latenter Eigen-
schaften. Variablen oder Eigenschaften werden als latent bezeichnet wenn sie nicht direkt
messbar sind und durch andere, direkt beobachtbare, Variablen ersetzt werden müssen.

Item Response Daten dienen dazu, nicht unmittelbar beobachtbare Fähigkeiten oder Eigen-
schaften zu messen. Bei Intelligenztests beispielsweise muss jeder Teilnehmer versuchen eine
Reihe von Aufgaben zu lösen die so gestaltet sind, dass man mit ihnen die latente Eigen-
schaft Intelligenz messen kann. Die gängigste Art Item Response Daten zu modellieren ist
das Rasch Modell. Es verwendet einen Parameter für die Fähigkeit der Person und einen
Parameter für die Schwierigkeit der Aufgabe um die Wahrscheinlichkeit zu modellieren,
dass eine bestimmte Person eine bestimmte Aufgabe löst.

Die Messung latenter Eigenschaften ist auch das Ziel von Paarvergleichen, die zustande
kommen wenn zwei Objekte bezüglich bestimmter Eigenschaften verglichen werden. Bei-
spielsweise können sportliche Wettkämpfe zwischen zwei Kontrahenten als Paarvergleiche
bezüglich der Fähigkeiten der Kontrahenten gesehen werden. Außerdem können Paarver-
gleiche in experimentellen Designs verwendet werden um unbeobachtbare Eigenschaften
zu messen, beispielsweise die Attraktivität verschiedener Produkte. Das gängigste Paarver-
gleichsmodell ist das sogenannte Bradley-Terry-Luce Modell. Es modelliert die Wahrschein-
lichkeit, dass ein Objekt ein anderes übertrifft oder einem anderen Objekt gegenüber
bevorzugt wird mit Hilfe der Differenz zwischen den geschätzten Eigenschaften beider Ob-
jekte.

Sowohl das Rasch Modell als auch das Bradley-Terry-Luce Modell können in das Konzept
der Generalisierten Linearen Modelle eingebettet werden. Innerhalb dieses Konzepts sind
zahlreiche Erweiterungen möglich. In dieser Arbeit werden beide Modelle durch das Ein-
beziehen von Kovariablen erweitert, was zu allgemeineren Modellen führt. Das Einbeziehen
von Kovariablen eröffnet neue Einblicke in die Strukturen latenter Eigenschaften. Ins-
besondere können die recht starken Annahmen, die sowohl das Rasch Modell als auch das
Bradley-Terry-Luce Modell unterstellen, abgeschwächt werden. Die größere Flexibilität der
vorgeschlagenen Methoden führt aber auch zu einer größeren Komplexität der Modelle.
Regularisierungsmethoden erweisen sich als probates Instrument um mit der größeren An-
zahl an Parametern umzugehen und um zwischen notwendigen und unnötigen Parametern
zu unterscheiden. Die vorgeschlagenen Methoden werden anhand von verschiedenen Simu-
lationen und Anwendungen auf echte Daten veranschaulicht.

Im Rasch Modell sind die Kovariablen notwendig, um Aufgaben mit sogenanntem Differen-
tial Item Functioning (DIF) ausfindig zu machen. Differential Item Functioning tritt dann
auf, wenn die Wahrscheinlichkeit, eine Aufgabe zu lösen, sich für zwei Personen mit der
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gleichen Fähigkeit unterscheidet. Die vorgeschlagene Erweiterung des Rasch Modells er-
laubt es, dass die Aufgabenschwierigkeiten von personenspezifischen Kovariablen abhängen
und kann dadurch Aufgaben mit Differential Item Functioning ermitteln. Zur Schätzung
wurden verschiedene Methoden entwickelt: DIFlasso verwendet einen Penalisierungsansatz
während DIFboost auf Boosting Strategien basiert. Im Gegensatz zu den meisten existieren-
den Methoden um Differential Item Functioning aufzudecken ermöglicht es die Methode
sowohl kategoriale als auch stetige Kovariablen sowie mehrere Kovariablen gleichzeitig zu
verwenden.

Im Bradley-Terry-Luce Modell muss man zwischen objektspezifischen und subjektspezi-
fischen Kovariablen unterscheiden. Sowohl Attribute des Subjekts, das die Entscheidung
trifft, als auch Attribute der entsprechenden Objekte können möglicherweise die Entschei-
dung zwischen den Objekten beeinflussen. Unterschiedliche neue Modellierungsansätze
und Penalisierungsterme werden diskutiert die dazu geeignet sind, mit den Anforderun-
gen umzugehen, die sich aus den jeweiligen Typen von Kovariablen ergeben.



Summary

A main aspect in psychometric modeling is the measurement of latent traits. Variables or
traits are called latent if they can not be measured directly and need to be replaced by
other, directly observable, variables. This dissertation focuses on two popular methods to
analyze latent traits, namely item response methods and paired comparisons.

Item response data serve to measure not directly observable abilities or traits. For example,
in intelligence tests every participant faces a series of items which are designed to measure
the latent trait intelligence. The most popular way to model item response data is the
Rasch model. It uses one parameter for the ability of the person and one for the difficulty
of the item to model the probability that a specific person solves a specific item.

The measurement of latent traits is also the goal of paired comparisons which appear when
two objects are compared with respect to specific traits. For example, sport competitions
between two opponents can be seen as paired comparisons with respect to the abilities
of the opponents. Furthermore, paired comparisons can be used in experimental designs
to measure unobservable traits, for example the attractiveness of different products. The
most popular model for paired comparisons is the so-called Bradley-Terry-Luce model. It
models the probability that one object beats (or is preferred over) another object using the
difference between the estimated traits of both objects.

Both the Rasch model and the Bradley-Terry-Luce model can be embedded into the frame-
work of generalized linear models. Within the framework of generalized linear models,
several extensions are possible. In this thesis, both models are extended by the incorpora-
tion of covariates leading to more general models. The inclusion of covariates allows for new
insights into the structure of the latent traits. In particular, it allows to weaken the rather
strong assumptions implied by the Rasch model and the Bradley-Terry-Luce model. The
increased flexibility of the proposed models also leads to a higher complexity of the mod-
els. Regularization methods prove to be an effective instrument to deal with the increased
number of parameters and to differentiate between necessary and unnecessary parameters.
The proposed methods are illustrated in various simulations and real data applications.

In the Rasch model, the covariates are essential to identify items with differential item
functioning (DIF). Differential item functioning appears if the probability to solve an item
is different for persons with the same ability. The proposed extension of the Rasch model
allows for item difficulties to depend on person-specific covariates and, therefore, the new
model can identify items with differential item functioning. Different estimation methods
for the new model are developed: DIFlasso uses a penalty approach while DIFboost is
based on boosting strategies. In contrast to most existing methods to detect differential
item functioning, the methods allow to use both categorical and continuous covariates and
to use several covariates simultaneously.
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In the Bradley-Terry-Luce model, one has to distinguish between object-specific covariates
and subject-specific covariates. Both attributes of the subject that decides and attributes
of the respective objects can possibly affect the decision between the objects. Different new
modeling approaches and penalty terms are discussed which are suited to deal with the
challenges caused by the respective types of covariates.
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1. Introduction

Commonly, item response models and paired comparison models are treated as different
model classes, suited for different data situations. However, there is a great similarity be-
tween item response data and paired comparisons and, accordingly, between the respective
modeling approaches. Item response data appear when test persons face a certain number
of items which are designed to measure a specific latent trait of the test persons. Such
latent traits can, for example, be certain skills (e.g. intelligence) of the test persons or
attitudes towards a specific issue (e.g. xenophobia). In the simplest case only two out-
comes are possible, for example right or wrong answers or approving or disapproving of a
statement.

Paired comparison data occur if two objects or items compete in a certain way. The most
frequent occurrence of paired comparisons is when two objects are presented and raters
have to declare a preference for one or the other object. But also in other situations paired
comparisons appear, as, for example, in sport competitions between two players or teams.
Again, in the simple case only two outcomes are possible, namely the win/preference of one
object over the other.

Both in item response data and in paired comparisons, the outcome refers to the result of
a specific competition between two actors. Therefore, item response data can be seen as
a special type of paired comparison data. Tutz (1989) distinguishes between homogeneous
and heterogeneous paired comparisons. In this sense, item response data are heterogeneous
paired comparisons as the matched pairs are pairs of one item and one respondent. In
contrast, homogeneous paired comparisons treat matched pairs of two objects or items.

The basic and most popular models for these data are the Rasch model (RM) for item
response data and the Bradley-Terry or Bradley-Terry-Luce model (BTL) for paired com-
parison data. The Rasch model (Rasch, 1960) assumes that the probability that a person
solves an item is determined by the difference between one latent parameter representing
the person and one latent parameter representing the item. Let the random variable Ypi
represent the response where Ypi = 1 if person p solves item i and Ypi = 0 otherwise. With
the Rasch model the probability that person p solves item i is modeled by

P (Ypi = 1) = exp(θp − βi)
1 + exp(θp − βi)

p = 1, . . . , P , i = 1, . . . , I
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where θp is the person parameter and βi is the item parameter. In contrast, the Bradley-
Terry model (Bradley and Terry, 1952) for a competition between two objects ar and as
models the probability that ar beats as by

P (Y(rs) = 1) = exp(γr − γs)
1 + exp(γr − γs)

.

The parameters γr, r = 1, . . . ,m, are the trait parameters of the objects {a1, . . . , am}. The
random variable Y(rs) denotes the response where Y(rs) = 1 if object ar is preferred over as
and Y(rs) = 0 otherwise.

Comparing these two basic models, "the direct relationship between the RM and the BTL is
obvious" (Fischer and Molenaar, 1995). Both models are logit models, their linear predictors
represent the difference between the latent traits of both actors. The main difference is,
that the two actors are one item and one person for the Rasch model but two items for
the Bradley-Terry model. In this thesis, both models for homogeneous and heterogeneous
paired comparisons, in particular the Rasch model and the Bradley-Terry model, will be
extended in various ways. The proposed extensions are supposed to allow for more flexibility
in the modelling of item response and paired comparison data and for the inclusion of more
information than in classical modelling approaches. A main focus will be on the inclusion
of covariates.

All proposed methods will use regularization techniques for estimation. The main goal
of regularization is to prevent overfitting and to allow for unique solutions in ill-posed
problems, see Hastie et al. (2009) for an introduction into a broad variety of regulariza-
tion methods. In this thesis, two different regularization techniques will be used, namely
penalization and boosting. In penalization methods for regression models, the regular log-
likelihood is maximized with respect to a certain side constraint. The resulting penalized
likelihood

lp(β) = l(β)− λJ(β)

for a model with a general parameter vector β consists of the regular log-likelihood l(β)
and a penalty term J(β) in combination with a tuning parameter λ. Famous examples
for penalization methods are the ridge regression (Hoerl and Kennard, 1970) or lasso re-
gression (Tibshirani, 1996). While ridge restricts the L2 norm of the parameter vector
β = (β1, . . . , βp) using the penalty term

J(β) =
p∑
i=1

β2
i ,
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lasso restricts the L1 norm of the parameter vector with the penalty term

J(β) =
p∑
i=1
|βi|.

A main feature of penalization methods is shrinkage. The estimated coefficients are shrunk
toward zero leading to a decreased variance of the estimates. In total, although the shrink-
age effect goes along with biased estimates the decreased variance can lead to a decreased
mean square error. Some penalization methods as, for example, the lasso also provide a
dimension reduction in the covariate space. In the case of lasso, this means that lasso is
able to provide parameter estimates equal to zero. Therefore, lasso allows for automatic
parameter selection. In recent years, several penalty terms suited for different regression
models and different data structures were developed.

Boosting evolved within the machine learning community rather than in the statistical
modelling community. First approaches were proposed by Freund et al. (1996) and Tukey
(1977). In the context of regression models, boosting was developed by Friedman et al.
(2000) and extended, for example, by Bühlmann and Yu (2003) and Bühlmann and Hothorn
(2007a). The main feature of boosting is the principle that many weak learners are combined
into one joint and (hopefully) strong learner. In regression models, boosting combines many
weak learners into a joint model. The main goal is to gradually improve a certain loss
function, for example the L2 loss or specific likelihood functions. In this context, a learner
is considered to be a weak learner if it improves the respective loss function only by a little
amount. This concept helps to avoid overfitting as the procedures is not supposed to be
performed until convergence. Many boosting procedures, including the one proposed in this
thesis, also allow for variable selection.

Guideline through the Thesis

This thesis consists of 10 chapters and three appendices. Chapters 2 and 3 contain general
introductions into the most important topics treated in Chapters 4 and 5. Chapter 2 pro-
vides an introduction into the Rasch model, together with its most important assumptions
and properties and the typical estimation methods. Chapter 3 gives a short introduction
into the topic of differential item functioning. As Chapters 4 and 5 propose new methods
for the detection of differential item functioning, Chapter 3 also presents some of the most
popular methods for the detection of differential item functioning.

Chapter 4 proposes a new diagnostic tool for the identification of differential item function-
ing (DIF). In particular, an explicit model for differential item functioning is proposed that
includes a set of variables. In contrast to most classical approaches to detect DIF, which



4 1. Introduction

only allow to consider few (mostly two) subpopulations, the proposed model can handle
both continuous and categorical covariates. The ability to include a set of covariates en-
tails that the model contains a large number of parameters. Penalized maximum likelihood
estimators are used to solve the estimation problem and to identify the items that induce
DIF. It is shown that the method is able to detect items with DIF. Simulations and two
applications demonstrate the applicability of the method.

Chapter 5 continues the idea from Chapter 4 to identify differential item functioning using
several covariates at the same time and proposes a boosting algorithm instead of the penal-
ized likelihood approach. The covariates can be both continuous and (multi-)categorical,
and also interactions between covariates can be considered. The method works for the gen-
eral parametric model for DIF in Rasch models proposed in Chapter 4. Since the boosting
algorithm selects variables automatically, it is able to detect the items which induce DIF.
It is demonstrated that boosting competes well with traditional methods in the case of
subgroups. Furthermore, it outperforms the method proposed in Chapter 4 in the case
of metric covariates. The method is illustrated by an extensive simulation study and an
application to real data.

While Chapters 2-5 treat some basics and some new proposals in the context of item
response data and the inclusion of covariates, the following chapters consider methods
suited for paired comparison data. First, Chapter 6 introduces the basic Bradley-Terry
model together with the most important existing extensions of the model.

In traditional paired comparison models heterogeneity in the population is simply ignored
and it is assumed that all persons have the same preference structure. In Chapter 7, a new
method to model heterogeneity in paired comparison data is proposed. The preference of
an item over another item is explicitly modelled as depending on attributes of the subjects.
Therefore, the model allows for heterogeneity between subjects as the preference for an item
can vary across subjects depending on subject-specific covariates. Since by construction
the model contains a large number of parameters we propose to use penalized estimation
procedures to obtain estimates of the parameters. The used regularized estimation approach
penalizes the differences between the parameters corresponding to single covariates. It
enforces variable selection and allows to find clusters of items with respect to covariates.
We consider simple binary but also ordinal paired comparisons models. The method is
applied to data from a pre-election study from Germany.

In Chapter 8, a general paired comparison model for the evaluation of sport competitions is
proposed. It efficiently uses the available information by allowing for ordered response cat-
egories and team-specific home advantage effects. Penalized estimation techniques are used
to identify clusters of teams that share the same ability. The model is extended to include
team-specific explanatory variables. Therefore, in contrast to Chapter 7, object-specific co-
variates are considered instead of subject-specific covariates. It is shown that regularization
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techniques allow to identify the contribution of team-specific covariates to the success of
teams. The usefulness of the method is demonstrated by investigating the performance and
its dependence on the budget for football teams of the German Bundesliga.

In Chapter 9 an approach for the analysis and prediction of international soccer match
results is proposed. In contrast to Chapter 8, the result of one match is not modeled as an
ordered response. Instead, the number of scored goals is modeled directly using a Poisson
distribution. To account for the paired comparison structure of the data, the linear predictor
consists of differences between the covariates of both competing teams. Therefore, similar
as in Chapter 8 object-specific covariates are included in the model. Lasso approaches are
used to achieve variable selection and shrinkage. Based on preceding FIFA World Cups,
two models for the prediction of the FIFA World Cup 2014 are fitted and investigated.
Based on the model estimates, the FIFA World Cup 2014 is simulated repeatedly and
winning probabilities are obtained for all teams. Both models favor the actual FIFA World
Champion Germany.

In Chapters 4 and 5 the concept of effect stars is used to visualize parameter estimates
for DIF items, in chapter 7 effect stars are used to visualize estimates from the proposed
method BTLLasso. Originally, effect stars were proposed to visualize parameter estimates
in categorical response models, in particular for multinomial and ordinal logit models.
Therefore, in Appendix A the original concept of effect stars in the context of multinomial
logit models is introduced. The multinomial logit model is the most widely used model for
nominal multi-category responses. One problem with the model is that many parameters are
involved, another that interpretation of parameters is much harder than for linear models
because the model is non-linear. Both problems can profit from graphical representations.
Effect stars visualize the effect strengths by star plots, where one star collects all the
parameters connected to one term in the linear predictor. In contrast to conventional star
plots, which are used to represent data, the plots represent parameters and are considered
as parameter glyphs. The method is extended to ordinal models and illustrated by several
data sets.

In order to keep the single chapters self-contained, every chapter contains separate intro-
ductions to the relevant topics and a separate conclusion. Therefore, every chapter can also
be read separately but some topics will repeat themselves.

Contributing Manuscripts

Parts of this thesis were published as articles in peer reviewed journals, other parts were
published in proceedings of scientific conferences or as technical reports at the Department
of Statistics of the Ludwig-Maximilians-Universität München. In the following, chapter by
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chapter all contributing manuscripts are listed together with a declaration of the personal
contributions of the respective authors:

Chapter 4: Tutz and Schauberger (2015b). A Penalty Approach to Differential Item
Functioning in Rasch Models. Psychometrika 80 (1), 21 – 43

The project was initiated by Gerhard Tutz and further developed jointly by Gerhard Tutz
and Gunther Schauberger. Gunther Schauberger implemented the method and performed
the simulations and the real data analyses. Gunther Schauberger developed the correspond-
ing R-package DIFlasso. The manuscript was written close collaboration of both authors.
The original manuscript is extended by Section 4.6, which discusses concepts of variable
selection within the proposed method. Apart from this section and some minor modifica-
tions Chapter 4 and Tutz and Schauberger (2015b) match. The technical report 134 (Tutz
and Schauberger, 2012a) and the conference paper from the IWSM 2013 (Schauberger and
Tutz, 2013) contain preliminary work on the project.

Chapter 5: Schauberger and Tutz (2015b). Detection of Differential Item Functioning
in Rasch Models by Boosting Techniques. British Journal of Mathematical and Statistical
Psychology, published online

The project was initiated jointly by Gerhard Tutz and Gunther Schauberger. Main au-
thor of the manuscript was Gunther Schauberger in close collaboration with Gerhard Tutz.
Gunther Schauberger was responsible for the implementation of the method, of the sim-
ulation studies and the application to real data. Furthermore, Gunther Schauberger de-
veloped the corresponding R-package DIFboost. Apart from minor modifications Chapter
5 and Schauberger and Tutz (2015b) match. The conference paper from the IWSM 2014
(Schauberger and Tutz, 2014) contains preliminary work on the project.

Chapter 7: Schauberger and Tutz (2015c). Modelling Heterogeneity in Paired Compar-
ison Data – an L1 Penalty Approach with an Application to Party Preference Data. De-
partment of Statistics, LMU Munich, Technical Report 183

The project was initiated and realized in close collaboration. Gunther Schauberger as the
first author mainly wrote most of the manuscript and performed the presented analyses. He
was also responsible for the implementation of the method and the corresponding R-package
BTLLasso. The original manuscript is extended by Subsection 7.4.3 which discusses the
inclusion of twofold interactions in the application and by a paragraph applying the concept
of effect stars to the estimates of the proposed method. Apart from these extensions and
minor modifications Chapter 7 and Schauberger and Tutz (2015c) match. The conference
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paper from the IWSM 2015 (Schauberger and Tutz, 2015a) contains preliminary work on
the project.

Chapter 8: Tutz and Schauberger (2015a). Extended Ordered Paired Comparison Mo-
dels with Application to Football Data from German Bundesliga. Advances in Statistical
Analysis, 99 (2), 209 – 227

The manuscript was a joint project of Gerhard Tutz and Gunther Schauberger. Both
authors contributed to the manuscript. The data collection and all implementations were
done by Gunther Schauberger. The original manuscript is extended by Section 8.6 where the
analyses from the previous sections are applied to the data from another Bundesliga season.
Apart from this section and minor modifications Chapter 8 and Tutz and Schauberger
(2015a) match. The technical report 151 (Tutz and Schauberger, 2014) contains preliminary
work on the project.

Chapter 9: Groll, Schauberger, and Tutz (2015). Prediction of Major International Soccer
Tournaments Based on Team-Specific Regularized Poisson Regression: An Application to
the FIFA World Cup 2014. Journal of Quantitative Analysis in Sports 11 (2), 97 – 115

Andreas Groll and Gunther Schauberger initiated and conducted the project in close collab-
oration. In particular, they were equally responsible for the data collection, the implemen-
tation of the methods and the manuscript. Gerhard Tutz supervised the methodological
part of the manuscript and helped to improve the manuscript by extensive discussions.
Apart from minor modifications Chapter 9 and Groll et al. (2015) match. The technical
report 166 (Groll et al., 2014) contains preliminary work on the project.

Appendix A: Tutz and Schauberger (2013): Visualization of Categorical Response Mo-
dels: From Data Glyphs to Parameter Glyphs. Journal of Computational and Graphical
Statistics, 22 (1), 156 – 177

The manuscript was mainly drafted by Gerhard Tutz with contributions of Gunther
Schauberger. Gunther Schauberger was responsible for the implementation including the
corresponding R package EffectStars (Schauberger, 2014b) and for all visualizations in
the manuscript. He was strongly involved in all parts of the final manuscript. Apart from
minor modifications Appendix A and Tutz and Schauberger (2013) match. The technical
report 117 (Tutz and Schauberger, 2012a) and the conference paper from the IWSM 2012
(Schauberger and Tutz, 2012) contain preliminary work on the project.
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Software

Most computations in this thesis were done with the statistical program R (R Core Team,
2015), parts were implemented in C++ but are integrated in R. For most of the methods
proposed in this thesis add-on packages for R were developed which can be downloaded from
the Comprehensive R Archive Network (CRAN). In particular, the following R-packages
were developed:

DIFlasso provides the method DIFlasso proposed in Chapter 4 (Schauberger, 2014a).

DIFboost provides the method DIFboost proposed in Chapter 5 (Schauberger, 2015b).

BTLLasso provides the method BTLLasso proposed in Chapter 7 (Schauberger, 2015a).
The fitting algorithm of BTLLasso is implemented in C++ code which is integrated into
R using the packages Rcpp (Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel
and Sanderson, 2014).

EffectStars provides the concept of effect stars proposed in Appendix A (Schauberger,
2014b).



2. The Rasch Model

In the following, the basic Rasch model (Rasch, 1960) will be explained in more detail. The
Rasch model is considered to be a starting point of the item response theory (IRT) which
over the last decades replaced the classical test theory (CTT) as the most popular method
in the analysis of tests or questionnaires in general. The main difference between the CTT
and the IRT is that the IRT models a probabilistic distribution of the correct response
probability. The most general IRT model is the so called 3PL model (Birnbaum, 1968). It
models the probability of a specified response depending on item parameters and a person
parameter. Typically, such a specified response will simply be the (either correct or wrong)
answer on a test question. If person p, p = 1, . . . , P, tries to solve item i, i = 1, . . . , I, the
response is denoted as

Ypi =

1 person p solves item i

0 otherwise

Accordingly, the 3PL model is denoted by

P (Ypi = 1) = ci + (1− ci)
exp (ai(θp − βi))

1 + exp (ai(θp − βi))
.

Here, θp represents the person ability and βi represents the item difficulty. The parameters
ci and ai represent the guessing parameter and the discrimination parameter of item i.
The model is called 3PL model as one item i is characterized by three item parameters,
ai, βi, ci. From the 3PL model, the 2PL model and the 1PL model can be obtained as special
cases. In the 2PL model, it is assumed that no guessing is possible and the restriction
ci = 0, i = 1, . . . , I is applied. In the 1PL model (in the following referred to as the
Rasch model), additionally equal discrimination parameters are assumed by restricting
ai = 1, i = 1, . . . , I.

In the analysis of item response data, the Rasch model is the most popular choice. If person
p, p = 1, . . . , P, tries to solve item i, i = 1, . . . , I, this is specified by the Rasch model by

P (Ypi = 1) = exp(θp − βi)
1 + exp(θp − βi)
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where θp represents the latent person ability and βi represents the latent item difficulty.
For identifiability, a restriction on the parameters is needed. Frequently, either a person
parameter or an item parameter is set zero. Basically, the Rasch model simply represents a
binomial logit model and can, therefore, easily be embedded into the framework of gener-
alized linear models (GLMs) (McCullagh and Nelder, 1989). The Rasch model makes the
person abilities and the item difficulties comparable. For example, if the ability of person
p equals the difficulty of item i (i.e. θp = βi), the Rasch model will predict a probability of
0.5 that person p will solve item i.

2.1. Assumptions and Properties of the Rasch Model

The Rasch model is accompanied by four main assumptions, namely monotonicity, uni-
dimensionality, conditional independence and sufficiency, compare Hatzinger (1989) and
Kelderman (1984).

Monotonicity The solving probability P (Ypi = 1|θp, βi) is strictly monotone increasing for
θp ∈ R. Furthermore, P (Ypi = 1|θp, βi) → 0 for θp → −∞ and P (Ypi = 1|θp, βi) → 1
for θp →∞ holds. Therefore, with increasing ability, the probability to solve an item
increases.

Unidimensionality Given the item difficulty, the probability to solve an item solely depends
on the true value of the respective person on the latent trait. That means that
P (Ypi = 1|θp, βi, φ) = P (Ypi = 1|θp, βi) holds for any additional variable φ. Given the
ability parameter and the item difficulty, the solving probability does not depend on
any other variables φ.

Conditional independence Given the latent trait, the items have to be stochastically in-
dependent. Therefore, for equally able persons the solving probabilities for different
items are independent. Solving one item does not increase or decrease the probabil-
ity to solve another item. Conditional independence is also widely known as local
independence.

Sufficiency The total score of a person Sp = ∑
i Ypi contains the entire information for the

ability of the person. The score is a sufficient statistic for the person parameter θp,
persons with the same score have the same ability. Accordingly, also the number of
persons that solved an item i, namely Ri = ∑

p Ypi, is a sufficient statistic for the item
difficulty.

In the Rasch model (as in all IRT models), items can be visualized using so-called item
characteristic curves (ICCs). An ICC shows the probability of a correct response on the
respective item depending on the person parameter θp. Figure 2.1 exemplarily shows the
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ICCs for three items with different item difficulties. The main feature of ICCs in Rasch
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Figure 2.1.: Exemplary item characteristic curves for three items in a Rasch model

models is that they all share the same form (they have the same slope) and are only shifted
vertically depending on the respective item difficulty.

2.2. Estimation Approaches for the Rasch Model

To estimate the Rasch model, three different maximum likelihood approaches exist: Joint
maximum likelihood (JML), conditional maximum likelihood (CML) and marginal maxi-
mum likelihood (MML). JML simultaneously provides estimates both for the person pa-
rameters and the item parameters. CML and MML only provide item parameters, person
parameters have to be estimated separately.

Joint Maximum Likelihood Estimation

The joint maximum likelihood estimation of Rasch models is the easiest and most intuitive
estimation method. If an appropriate design matrix is built, it can easily be performed
using standard software for GLMs. Using the restriction θP = 0, the design matrix can be
seen from
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log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi = 1T

P (p)θ − 1T
I(i)β = xT

piδ,

where 1T
P (p) = (0, . . . , 0, 1, 0, . . . , 0) has length P − 1 with 1 at position p, 1T

I(i) =
(0, . . . , 0, 1, 0, . . . , 0) has length I with 1 at position i, and the parameter vectors are
θ = (θ1, . . . , θP−1), β = (β1, . . . , βI) yielding the total vector δT = (θT,βT). The design
vector linked to person p and item i is given by xT

pi = (1T
P (p),−1T

I(i)). Finally, the Rasch
model can be estimated by combining all single design vectors xpi into a design matrix and
by stacking all responses Ypi appropriately into a response vector.

Estimation based on JML faces two main problems. First, if a person solves all or no
items, its ability estimate will diverge to θp = ∞ or θp = −∞, respectively. Equivalently,
items that were solved by all or no persons will not have finite estimates although this case
is much more unlikely as in general the number of persons clearly exceeds the number of
items. After all, in both cases the respective person or item has to be removed from the
design matrix. Second, the estimates for the item parameters from JML are inconsistent
and biased for P → ∞ and I fixed, see e.g. Andersen (1973b, 1980). Therefore, in recent
years JML is decreasingly used in practice.

Conditional Maximum Likelihood Estimation

Nowadays, the conditional maximum likelihood method is the most popular choice. It is
based on the property, that the sum score Sp = ∑

i Ypi of a person p is sufficient for the
ability θp of person p. When conditioning on the sum scores the solving probabilities only
depend on the item difficulties. Therefore, CML initially only provides estimates for the
item parameters. Based on the item parameters, estimates for the person parameters can
be obtained in a second step.

Let yp = (yp1, . . . , ypI) represent the response pattern of person p with the corresponding
sum score sp = ∑

i ypi. Following Hatzinger (1989), the probability to observe the pattern
yp, conditional on the respective sum score Sp, is denoted by

P (Yp = yp|Sp = sp) = P (Yp = yp)
P (Sp = sp)

=
exp(θpsp) exp(−∑i βiypi)/

∏
p(1− exp(θp − βi))

exp(θpsp)γ(sp; β1, . . . , βI)/
∏
p(1− exp(θp − βi))

. (2.1)

Here, γ(sp; β1, . . . , βI) = ∑
y|sp

exp(−∑i βiypi) represents the elementary symmetric func-
tion and y|sp represents all possible response patterns with a sum score sp. It can be seen
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that all terms depending on θp can be eliminated from (2.1). Combining all possible sum
scores t = 0, . . . , I, the conditional likelihood can finally be denoted by

Lc = exp(−∑i βiri)∏
t γ(t; β1, . . . , βI)nt

,

where ri = ∑
p ypi denotes the number of persons that solved item i and nt is the number of

subjects with sp = t. Maximizing the conditional likelihood provides consistent estimates
for the item parameters when P →∞. Afterwards, the person parameters can be estimated
assuming the item parameters to be fixed. The conditional maximum likelihood shares the
problem of the joint maximum likelihood that for items solved by all or no persons and for
persons that solved all or no items, no finite estimates can be found.

Marginal Maximum Likelihood Estimation

Similar to the conditional maximum likelihood approach, the marginal likelihood approach
uses the trick to estimate the item parameters separately by eliminating the person param-
eters from the likelihood. In the case of the marginal likelihood, this is done by assuming
a certain distribution for the person parameters. Typically, the person parameters are as-
sumed to be normally distributed. With a given distribution, the person parameters can
be integrated out from the likelihood.

The person parameters are assumed to be a random sample of the distribution G(θ). Then
the probability to observe the pattern yp can be denoted by

P (Yp = yp) =
∫ ∞
−∞

P (yp|θp)dG(θp).

Using the parameters of the Rasch model, this can be denoted by

P (Yp = yp) = exp(βiri)
∫ ∞
−∞

exp(θpsp)∏I
i=1(1− exp(θp − βi))

dG(θp).

Finally, the marginal likelihood is defined as product over all persons of the probability
above. Then, the likelihood is a function depending on the item parameters and the distri-
bution G(θ) and can be maximized with regard to the respective parameters. Due to the
distributional assumption, using the marginal likelihood the estimates for the persons with
perfect scores or scores of zero are finite.





3. Differential Item Functioning

Psychological or educational tests are typically used to investigate a latent trait of a person
like the intelligence or other specific skills. For this purpose, appropriate items are needed
to provide a valid measurement of the respective trait. Items are considered to be unfair
if, for a specific item, two persons with the same underlying latent trait have different
probabilities to answer the item correctly. Then, the item functions differently for two
persons with the same value of the latent trait. Therefore, this phenomenon is called
differential item functioning (DIF). In former publications, DIF was also denominated by
the terms measurement bias or item bias, see, e.g., Lord (1980), Swaminathan and Rogers
(1990) or Millsap and Everson (1993). Nowadays, the more neutral term of differential item
functioning has widely prevailed.

Over the past decades, a vast amount of methods has been proposed to detect DIF. For an
overview of the most popular methods see, e.g., Holland and Wainer (2012), Millsap and
Everson (1993) or, more up to date, Magis et al. (2010). Typically, DIF is investigated by
testing if special (known) characteristics of the participants like gender or ethnicity alter
the probability to score on an item. Alternatively, also (unknown) latent classes could be
assumed to describe DIF as proposed by Rost (1990). Here one assumes, that a model
holds for all persons within a latent class but models for different classes differ. Since it
is unclear what the latent classes represent, interpretation is rather hard and much less
intuitive than for DIF between known groups. Therefore, latent class models have not
become an established tool in DIF detection.

DIF can be divided into uniform and nonuniform DIF. Uniform DIF means that the differ-
ence between the solving probabilities for an item is constant along the person abilities for
two equally able persons. In nonuniform DIF, the magnitude of the DIF effect depends on
the respective person ability. Figure 3.1 exemplarily shows the item characteristic curves
for items with uniform (left) and nonuniform (right) DIF between two subgroups of the
population. It can be seen, that for nonuniform DIF the item characteristic curves can also
be crossing. While the item is easier for group 1 than for group 2 on a low ability level it
is harder on a high ability level. Within the context of IRT models, nonuniform DIF can
be found in 2PL or 3PL models because only here the item characteristic curves can have
different slopes. In case of the Rasch model introduced in Chapter 2, only uniform DIF is
possible as all discrimination parameters are assumed to be fixed ai = 1, i = 1, . . . , I.
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Figure 3.1.: Exemplary item characteristic curves for an item with uniform (left) and nonuniform
(right) DIF between two subgroups

3.1. Popular Methods for DIF Detection

Traditional DIF methods are focused on the detection of DIF between two groups (reference
and focal group) of participants, typically males and females. In the following, the most
popular methods for the case of two group comparison are presented.

For DIF detection, the Mantel-Haenszel (MH) method has become a popular choice. It
was proposed by Holland and Thayer (1988) and is named by the Mantel-Haenszel statistic
proposed by Mantel and Haenszel (1959). The method can be described as an item-wise
contingency table method and is not based on an underlying IRT model. It can not de-
tect nonuniform DIF but only uniform DIF. The participants of the test are matched by
their total test score. For each distinct test score, a 2 × 2 table collects the number of
correct and incorrect answers for the reference and the focal group. Finally, a χ2-statistic
can be calculated across all contingency tables. A χ2-test with one degree of freedom is
performed.

Swaminathan and Rogers (1990) proposed the method of logistic regression which is based
on the item-specific model

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= β0 + β1Sp + β2Gp + β3SpGp,

where Gp represents the group membership (0: reference group, 1: focal group) and Sp
represents the total test score of person p. The parameters β2 and β3 can then be tested
by Wald or Likelihood-Ratio-Tests. Testing β2 represents a test on uniform DIF while a
test of β3 represents a test on nonuniform DIF. If only uniform DIF is investigated, the
interaction SpGp can be omitted.
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In contrast to both aforementioned approaches, the method of Lord (Lord, 1980) is explicitly
based on IRT models. In the case of two subgroups, separate IRT models are fitted for
the reference group and the focal group. Then, the differences of the item parameters are
tested using a χ2-test. If the difference between the item parameters corresponding to the
same item differs significantly from zero, the item is diagnosed as DIF item. In general, the
corresponding test statistic for item i is denoted byQi = (αiR−αiF )T(ΣiR−ΣiF )−1(αiR−αiF )
where αiR = (aiR, βiR, ciR) and αiF = (aiF , βiF , ciF ) collect all item parameters from the
models for the reference group and the focal group, respectively. ΣiR and ΣiF represent the
variance-covariance matrices of the respective estimates. In the case of the Rasch model
(1PL model), the test statistic is reduced to Qi = (βiR − βiF )2/(σ̂2

iR + σ̂2
iF ) with σ̂2

iR and
σ̂2
iF representing the estimated variances of the difficulty estimates βiR and βiF . In that

case, the detection of DIF is restricted to uniform DIF. For the method of Lord, asymptotic
normality of the item parameters is assumed.

All three aforementioned methods have been extended to the case of multiple groups instead
of one reference and one focal group. Somes (1986) and Penfield (2001) extended the MH
approach, Magis et al. (2011) extended the logistic regression method and Kim et al. (1995)
extended the method of Lord. All methods (together with their extension to multiple
groups) are implemented in the R-package difR (Magis et al., 2010, 2013).

3.2. Problems and Limitations

The presented methods of DIF detection share two main problems (Millsap and Everson,
1993). First, the tests are designed for only one covariate. In the case of multiple covariates
several tests have to be performed at the same time and the problem of multiple testing
arises. Therefore, correction strategies like the Bonferroni correction have to be applied
(e.g., Penfield, 2001). Second, the participants from different groups are matched by their
total test scores, assuming that the total test score is an appropriate measurement of the
latent traits of the participants. Therefore, one assumes that all other items (except for
the studied item) do not show DIF and are treated as so-called anchor items. Generally,
all DIF methods depend on anchor items. They are assumed to be DIF-free and serve as
references for the item under investigation. A contaminated set of anchor items (i.e. the
set contains DIF items) will lead to an increased error rate in DIF identification. For an
overview of different anchor strategies, see Kopf et al. (2015). Obviously, for a method
of DIF detection the assumption that all other items are DIF-free is rather paradoxical.
Especially if several items show DIF in favor of the same group, the test scores can be
considerably biased. Then, the test score is no longer a fair measurement and the qual-
ity of the DIF method will suffer. Therefore, an unbiased measure of the latent trait is
needed. For this purpose, so-called purification methods have been proposed, for example
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by Holland and Thayer (1988), Candell and Drasgow (1988) or Clauser et al. (1993). The
goal of these procedures is to iteratively detect DIF items and to exclude these items from
the calculation of the test score. Purification procedures are supposed to lead to an un-
contaminated measurement of the latent trait and to an improved selection performance of
the respective DIF detection method. In several publications, e.g. Wang and Su (2004) or
Fidalgo et al. (2000), purification methods turned out to provide a significant improvement
of the respective methods.



4. A Penalty Approach to Differential
Item Functioning in Rasch Models

4.1. Introduction

Differential item functioning (DIF) is the well known phenomenon that the probability of
a correct response among equally able persons differs in subgroups. For example, the dif-
ficulty of an item may depend on the membership to a racial, ethnic or gender subgroup.
Then the performance of a group can be lower because these items are related to specific
knowledge that is less present in this group. The effect is measurement bias and possi-
bly discrimination, see, for example, Millsap and Everson (1993), Zumbo (1999). Various
forms of differential item functioning have been considered in the literature, see, for exam-
ple, Holland and Wainer (2012), Osterlind and Everson (2009); Rogers (2005); Osterlind
and Everson (2009). Magis et al. (2010) give an instructive overview of the existing DIF
detection methods.

In this chapter we will investigate DIF in item response models, focusing on the Rasch
model. In item response models DIF is considered to be uniform, that is the probability
of correctly answering is uniformly greater for specific subgroups. Test statistics for the
identification of uniform DIF have been proposed, among others, by Thissen et al. (1993),
Lord (1980), Holland and Thayer (1988), Kim et al. (1995) and Raju (1988). More recently,
DIF has been embedded into the framework of mixed models (Van den Noortgate and
De Boeck, 2005) and Bayesian approaches have been developed (Soares et al., 2009). Also
the test concepts developed in Merkle and Zeileis (2013) could be helpful to investigate
dependence of responses on subgroups.

A severe limitation of existing approaches is that they are typically limited to the considera-
tion of few subgroups. Most often, just two subgroups have been considered with one group
being fixed as the reference group. The objective of the present chapter is to provide tools

This chapter is a modified version of Tutz and Schauberger (2015b), previous work on the issue can be
found in the technical report 134 (Tutz and Schauberger, 2012a) and the conference paper Schauberger
and Tutz (2013). See Chapter 1 for more information on the personal contributions of all authors and
textual matches.
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that allow for several groups but also for continuous variables like age to induce differential
item functioning. We propose a model that lets the item difficulties to be modified by a set
of variables that can potentially cause DIF. The model necessarily contains a large num-
ber of parameters which raises severe estimation problems. But estimation problems can
be solved by regularized estimation procedures. Although alternative strategies could be
used we focus on regularization by penalization, using penalized maximum likelihood (ML)
estimates. The procedure allows to identify the items that suffer from DIF and investigate
which variables are responsible.

More recently, Strobl et al. (2015) proposed a new approach that is also able to handle
several groups and continuous variables but uses quite different estimation procedures.
The proposed method will be compared to this alternative approach.

Chapter 4 is organized as follows. In Section 4.2 we present the model, in Section 4.3 we
show how the model can be estimated. Then we illustrate the fitting of the model by use
of simulation studies and real data examples.

4.2. Differential Item Functioning Model

We will first consider the binary Rasch model and then introduce a general parametric
model for differential item functioning.

4.2.1. The Binary Rasch Model

The most widespread item response model is the binary Rasch model (Rasch, 1960). It
assumes that the probability that a participant in a test scores on an item is determined
by the difference between two latent parameters, one representing the person and one
representing the item. In assessment tests the person parameter refers to the ability of the
person and the item parameter to the difficulty of the item. More generally the person
parameter refers to the latent trait the test is supposed to measure. With Ypi ∈ {0, 1} the
probability that person p solves item i is given by

P (Ypi = 1) = exp(θp − βi)
1 + exp(θp − βi)

p = 1, . . . , P , i = 1, . . . , I

where θp is the person parameter (ability) and βi is the item parameter (difficulty). A more
convenient form of the model is
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log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi, (4.1)

where the left hand side represents the so-called logits, Logit(P (Ypi = 1) =
log(P (Ypi = 1)/P (Ypi = 0)). It should be noted that the parameters are not identifiable.
Therefore, one has to fix one of the parameters. We choose θP = 0, which yields a simple
representation of the models to be considered later.

Under the usual assumption of conditional independence given the latent traits the maxi-
mum likelihood (ML) estimates can be obtained within the framework of generalized linear
models (GLMs). GLMs for binary responses assume that the probability πpi = P (Ypi = 1)
is given by g(πpi) = xT

piδ, where g(.) is the link function and xpi is a design vector linked
to person p and item i. The link function is directly seen from model representation (4.1).
The design vector, which codes the persons and items and the parameter vector are seen
from

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi = 1T

P (p)θ − 1T
I(i)β,

where 1T
P (p) = (0, . . . , 0, 1, 0, . . . , 0) has length P − 1 with 1 at position p, 1T

I(i) =
(0, . . . , 0, 1, 0, . . . , 0) has length I with 1 at position i, and the parameter vectors are
θ = (θ1, . . . , θP−1), β = (β1, . . . , βI) yielding the total vector δT = (θT,βT). The design
vector linked to person p and item i is given by xT

pi = (1T
P (p),−1T

I(i)).

GLMs are extensively investigated in McCullagh and Nelder (1989), short introductions
with the focus on categorical data are found in Agresti (2002) and Tutz (2012). The
embedding of the Rasch model into the framework of generalized linear models has the
advantage that software that is able to fit GLMs and extensions can be used to fit models
very easily.

4.2.2. A General Differential Item Functioning Model

In a general model that allows the item parameters to depend on covariates that characterize
the person we will replace the item parameter by a linear form that includes a vector of
explanatory variables. Let xp be a person-specific parameter that contains, for example,
gender, race, but potentially also continuous covariates like age. If βi is replaced by βi+xT

pγi
with item-specific parameter γi one obtains the model

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − (βi + xT

pγi) (4.2)
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For illustration, let us consider the simple case where the explanatory variable codes a
subgroup like gender, which has two possible values. Let xp = 1 for males and xp = 0 for
females. If item i functions differently in the subgroups, one has the item parameters

βi + γi for males and βi for females.

Then γi represents the difference of item difficulty between males and females. If one prefers
a more symmetric representation one can choose xp = 1 for males and xp = −1 for females
obtaining

βi + γi for males and βi − γi for females.

Then γi represents the deviation of the sub-populations in item difficulty from the baseline
difficulty βi. Of course in an item that does not suffer from differential item functioning,
one has γi = 0 and, therefore, items for males and females are equal.

The strength of the general model (4.2) is that also continuous covariates like age can
be included. Thinking of items that are related to knowledge on computers or modern
communication devices the difficulty may well vary over age. One could try to build more
or less artificial age groups, or, as we do, assume linear dependence of the logits. With xp
denoting age in years the item parameter is βi + ageγi. If γi = 0 the item difficulty is the
same for all ages.

The multi-group case is easily incorporated by using dummy-variables for the groups. Let
R denote the group variable, for example, race with k categories, that is, R ∈ {1, . . . , k}.
Then one builds a vector (xR(1), . . . , xR(k−1)), where components are defined by xR(j) = 1
if R = j and xR(j) = 0 otherwise. The corresponding parameter vector γi has k − 1
components γT

i = (γi1, . . . , γi,k−1). Then the parameters are

βi + γi1 in group 1, . . . βi + γi,k−1, in group k − 1 βi in group k.

In this coding the last category, k, serves as reference category, and the parameters
γi1, . . . , γi,k−1 represent the deviations of the subgroups with respect to the reference cate-
gory.

One can also use symmetric coding where one assumes ∑k
j=1 γij = 0 yielding parameters

βi + γi1 in group 1, . . . βi + γi,k−1, in group k − 1 βi + γik in group k.

In effect one is just coding a categorical predictor in 0− 1-coding or effect coding, see, for
example, Tutz (2012).

The essential advantage of model (4.2) is that the person-specific parameter includes all the
candidates that are under suspicion to induce differential item functioning. Thus one has
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a vector that contains age, race, gender and all the other candidates. If one component in
the vector γi is unequal zero the item is group-specific, the parameter shows which of the
variables is responsible for the differential item functioning. The model includes not only
several grouping variables but also continuous explanatory variables.

The challenge of the model is to estimate the large number of parameters and to determine
which parameters have to be considered as unequal zero. The basic assumption is that most
of the parameters do not depend on the group, but some can. One wants to detect these
items and know which one of the explanatory variables is responsible. For the estimation
one has to use regularization techniques that are discussed in Section 3.

Identifiability Issues

The general model uses the predictor ηpi = θp−βi−xT
pγi when person p tries to solve item i.

Even if one of the basic parameters is fixed, say, βI = 0, the model can be reparameterized
by use of a fixed vector c in the form

ηpi = θp − βi − xT
pγi = θp − βi − xT

p (γi − c)− xT
pc = θ̃p − βi − xT

p γ̃i,

where θ̃p = θp − xT
pc and γ̃i = γi − c. The parameter sets {θp, βi,γi} and {θ̃p, βi, γ̃i} de-

scribe the same model, the parameters are just shifted by xT
pc in the case of θ-parameters

and c in the case of γ-parameters. In other words, the model is overparameterized and
parameters are not identifiable. Additional constraints are needed to make the parameters
identifiable. However, the choice of the constraints determines which items are consid-
ered as DIF-inducing items. Let us consider a simple example with a binary variable xp,
which codes, for example, gender. Then the parameters are identifiable if one sets one
β-parameter and one γ-parameters to zero. With six items and the unconstrained param-
eters (γ1, . . . , γ6) = (5, 5, 5, 3, 3, 3) the constraint γ1 = 0 yields the identifiable parameters
(γ1, . . . , γ6) = (0, 0, 0,−2,−2,−2), whereas the constraint γ6 = 0 yields the identifiable
parameters (γ1, . . . , γ6) = (2, 2, 2, 0, 0, 0). In the first case one uses the transformation con-
stant c = 5, in the second case the transformation constant c = 3. When the θ-parameters
are transformed accordingly one obtains two equivalent parameterizations. But in the first
parameterization the second three items show DIF, in the second parameterization the first
three items show DIF. It can not be decided which of the item sets shows DIF because
both parameterizations are valid. The model builder fixes by the choice of the constraint
which set of items shows DIF. But this basic identifiability problem seems worse than it is.
When fitting a Rasch model one wants to identify the items that deviate from the model
but assumes that the model basically holds for the majority of items. Thus one aims at
identifying the maximal set of items for which the model holds. Thus, if, for example, the
unconstrained items can be given by (γ1, . . . , γ6) = (5, 5, 3, 3, 3, 2), the choice γ3 = 0 makes
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the items 3,4,5 Rasch-compatible and the rest has DIF. In contrast, γ6 = 0 makes item
6 Rasch-compatible but the rest has DIF. Therefore, a natural choice is γ3 = 0, where it
should be emphasized again that any choice is legitimate. The fitting procedure proposed in
the following will automatically identify the maximal set of items that is Rasch-compatible.
We will come back to that in the following but give here general conditions for the identi-
fiability of items.

In the general model with predictor ηpi = θp − βi − xT
pγi a set of identifiability conditions

is

(1) Set βI = 0, γT
I = (0, . . . , 0) (or for any other item).

(2) The matrix X with rows (1,xT
1 ), . . . , (1,xT

P ) has full rank.

(for a proof, see Appendix B). The first condition means that for one item the β and
the γ-parameters have to be fixed. It serves as a reference item in all populations. The
second condition is a general condition that postulates that the explanatory variables have
to contain enough information to obtain identifiable parameters. It is a similar condition
as is needed in common regression models. It should be noted that the condition is general,
the explanatory variables can be continuous or categorical. In the latter case, the matrixX
contains the dummy variables that code the categorical variable. As in regular regression,
in particular highly correlated continuous covariates affect the rank of the design matrix
and might yield unstable estimates. In the extreme case estimates are not unique because
they are not identifiable. Then, one might reduce the set of covariates. In the case where
estimates still exist but are unstable, nowadays regularization methods are in common use.
A specific form of regularization is also used in the following.

4.3. Estimation by Regularization

4.3.1. Maximum Likelihood Estimation

Let the data be given by (Ypi,xp), p = 1, . . . , P, i = 1, . . . , I. Maximum likelihood es-
timation of the model is straightforward by embedding the model into the framework of
generalized linear models. By using again the coding for persons and parameters in the
parameter vectors 1P (p) and 1I(i) the model has the form

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi − xT

pγi

= 1T
P (p)θ − 1T

I(i)β − xT
pγi.
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With the total vector given by (θT,βT,γT
1 , . . . ,γ

T
I ) one obtains for observation Ypi the design

vector (1T
P (p),−1T

I(i), 0, 0, , . . . ,−xT
p . . . , 0, 0), where the component −xT

p corresponds to the
parameter γi.

Although ML estimation is straightforward estimates will exist only in very simple cases, for
example, if the explanatory variable codes just two subgroups. In higher dimensional cases
ML estimation will deteriorate and no estimates or selection of parameters are available.

4.3.2. Penalized Estimation

In the following we will consider regularization methods that are based on penalty terms.
The general principle is, not to maximize the log-likelihood function, but a penalized ver-
sion. Let α denote the total vector of parameters, in our case αT = (θT,βT,γT

1 , . . . ,γ
T
I ).

Then one maximizes the penalized log-likelihood

lp(α) = l(α)− λJ(α),

where l(.) is the common log-likelihood of the model and J(α) is a penalty term that
penalizes specific structures in the parameter vector. The parameter λ is a tuning parameter
that specifies how serious the penalty term has to be taken. A widely used penalty term
in regression problems is J(α) = αTα, that is, the squared length of the parameter vector.
The resulting estimator is known under the name ridge estimate, see Hoerl and Kennard
(1970) for linear models and Nyquist (1991), Segerstedt (1992), LeCessie (1992) for the use
in GLMs. Of course, if λ = 0 maximization yields the ML estimate. If λ > 0 one obtains
parameters that are shrunk toward zero. In the extreme case λ → ∞ all parameters are
set to zero. The ridge estimator with small λ > 0 stabilizes estimates but does not select
parameters, which is the main objective here. Penalty terms that are useful because they
enforce selection are L1-penalty terms.

Let us start with the simple case of a univariate explanatory variable, which, for example,
codes gender. Then the proposed lasso penalty for differential item functioning (DIFlasso)
is given by

J(θT,βT,γT
1 , . . . ,γ

T
I ) =

I∑
i=1
|γi|,

which is a version of the L1-penalty or lasso (for least absolute shrinkage and selection
operator). The lasso was propagated by Tibshirani (1996) for regression models, and has
been studied intensively in the literature, see, for example, Fu (1998), Osborne et al. (2000),
Knight and Fu (2000), Fan and Li (2001) and Park and Hastie (2007). It should be noted
that the penalty term contains only the parameters that are responsible for differential
item functioning, therefore only the parameters that carry the information on DIF are
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penalized. Again, if λ = 0 maximization yields the full ML estimate. For very large λ all
the γ-parameters are set to zero. Therefore, in the extreme case λ→∞ the Rasch model is
fitted without allowing for differential item functioning. The interesting case is in between,
when λ is finite and λ > 0. Then the penalty enforces selection. Typically, for fixed λ, some
of the parameters are set to zero while others take values unequal zero. With a carefully
chosen tuning parameter λ the parameters that yield estimates γ̂i > 0 are the ones that
show DIF.

For illustration we consider a Rasch model with 10 items and 70 persons. Among the 10
items three suffer from DIF induced by a binary variable with parameters γ1 = 2, γ2 =
−1.5, γ3 = −2. Figure 4.1 shows the coefficient build-ups for the γ-parameters for one data
set, that is, how the parameters evolve with decreasing tuning parameter λ. In this data
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Figure 4.1.: Coefficient build-up for Rasch model with DIF induced by binary variable, dashed
lines are the items with DIF, solid lines are the items without DIF.

set ML estimates existed. We do not use λ itself on the x-axis but a transformation of λ
that has better scaling properties. Instead of giving the λ-values on the x-axis we scale it
by ‖γ̂‖/ max ‖γ̂‖, where max ‖γ̂‖ corresponds to the L2-norm of the maximal obtainable
estimates, that is, the ML estimates. On the right side of Figure 4.1 one sees the estimates
for λ = 0 (‖γ̂‖/max‖γ̂‖ = 1), which correspond to the ML estimates for the DIF model.
At the left end all parameters are shrunk to zero, corresponding to the value of λ, where
the simple Rasch model without DIF is fitted. Thus, the figure shows how estimates evolve
over diminishing strength of regularization. At the right end no regularization is exerted,
at the left side regularization is so strong that all γ-parameters are set to zero. The vertical
line shows the tuning parameter selected by BIC (see below), which represents the best



4.3 Estimation by Regularization 27

estimate for this selection criterion. If one uses this criterion all items with DIF (dashed
lines) are selected, obtaining estimates unequal zero. But for all items without DIF the
estimates are zero. Therefore in this data set identification was perfect.

In the general case with a vector of covariates that potentially induce DIF a more appro-
priate penalty is a modification of the grouped lasso (Yuan and Lin, 2006; Meier et al.,
2008). Let γT

i = (γi1, . . . , γim) denote the vector of modifying parameters of item i, where
m denotes the length of the person-specific covariates. Then the group lasso penalty for
item differential functioning (DIFlasso) is

J(θT,βT,γT
1 , . . . ,γ

T
I ) =

I∑
i=1
‖γi‖,

where ‖γi‖ = (γ2
i1 + · · · + γ2

im)1/2 is the L2-norm of the parameters of the ith item with
m denoting the length of the covariate vector. The penalty encourages sparsity in the
sense that either γ̂i = 0 or γij 6= 0 for j = 1, . . . ,m. Thus the whole group of parameters
collected in γi is shrunk simultaneously toward zero. For a geometrical interpretation of
the penalty, see Yuan and Lin (2006). The effect is that in a typical application only some
of the parameters get estimates γ̂i 6= 0. These correspond to items that show DIF.

Choice of Penalty Parameter

An important issue in penalized estimation is the choice of the tuning parameter λ. In our
case it determines the numbers of items identified as inducing DIF. Therefore, it determines
if all items with DIF are correctly identified and also if some are falsely diagnosed as
DIF-items. To find the final estimate in the solution path it is necessary to balance the
complexity of the model and the data fit. However, one problem is to determine the
complexity of the model, which in penalized estimation approaches is not automatically
identical to the number of parameters in the model. We worked with several criteria for
the selection of the tuning parameter, including cross-validation and AIC criteria with the
number of parameters determined by the degrees of freedom for the lasso (Zou et al., 2007).
A criterion that yielded a satisfying balancing and which has been used in the simulations
and applications is the BIC (Schwarz, 1978) with the degrees of freedom for the group lasso
penalty determined by a method proposed by Yuan and Lin (2006). Here, the degrees of
freedom (of penalized parameters γ) are approximated by

d̃fγ(λ) =
I∑
i=1

I(‖γi(λ)‖ > 0) +
I∑
i=1

‖γi(λ)‖
‖γML

i ‖
(m− 1).
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Since the person parameters and the item parameters are unpenalized, the total degrees of
freedom are df(λ) = I + P + d̃fγ(λ)− 1. The corresponding BIC is determined by

BIC(λ) = −2 · l(α) + df(λ) · log(P · I),

where l(α) is the log-likelihood of the current parameter vector α.

Identifiability and Estimation

As demonstrated at the end of Section 4.2 the model without constraints is not identifiable.
Moreover, the identification of DIF-items depends on the constraints that are used. Because
of the basic identifiability problem, one can define few or many items as DIF-items. The aim
to find the maximal set of Rasch-compatible items with a small set of items characterized as
DIF-items is strongly supported by the regularization approach. We first fit the full model
without constraints. Because of the regularization term the parameters are estimable,
although not identifiable, see Friedman et al. (2010), where this procedure has been used
in multinomial regression models. With growing smoothing parameter more and more
items are characterized as not being compatible with the Rasch model with the items that
have the strongest deviation from the Rasch model being the first ones that show in the
coefficient build-ups. In all cases that were considered the value of the smoothing parameter
chosen by our criterion was such that not all parameters showed DIF. Most often just few
parameters had estimates γ̂i 6= 0. Therefore, one of the items with γ̂i = 0 is chosen and
used as reference. By rearranging items, one of these items is denoted by I and one sets
βI = 0, γT

I = (0, . . . , 0), which is obtained by computing β̂i − β̂I for the item difficulties
and γ̂i − γ̂I for the γ-parameters, where β̂i, γ̂i denote the estimates for the full model.
This yields the identifiable parameters that are considered in the following simulations and
applications. Of course, in the simulations the true values are centered around the same
item.

Further Remarks

We focus on penalized ML estimation. Regularized estimation with penalty terms has
the advantage that the penalty term is given explicitly and, therefore, it is known how
estimates are shrunk. An alternative procedure that could be used is boosting as proposed
in Chapter 5. It selects relevant variables by using weak learners and regularization is
obtained by early stopping. Although the form of regularization is not given in an explicit
form it typically is as efficient as regularization with corresponding penalty terms. Also
mixed model methodology as used by Soares et al. (2009) to estimate DIF can be combined
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with penalty terms that enforce selection. However, methodology is in its infancy, see for
example Ni et al. (2010) or Bondell et al. (2010).

4.4. The Fitting Procedure At Work

In the present section it is investigated if the procedure is able to detect the DIF items.
This is done in a simulation study where it is known which items are affected by DIF.

Illustration

For illustration, we will first consider several examples. In the first example we have 70 per-
sons, 10 items, three with DIF (γT

1 = (−1, 0.8, 1), γT
2 = (−1.1, 0.5, 0.9), γT

3 = (1,−1,−1),
γT

4 = . . . = γT
10 = (0, 0, 0)). The upper panel in Figure 4.2 shows the coefficient build-ups
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Figure 4.2.: Coefficient build-up for Rasch model with DIF induced by three variables, dashed
lines are the items with DIF, solid lines are the items without DIF. Upper panel shows perfect
identification, in the lower panel identification is not perfect.
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for an exemplary data set. Now one item is represented by three lines, one for each co-
variate. Again, items with DIF are given by non-solid lines and items with DIF by solid
lines. In this data set the BIC criterion selects all the items with DIF and sets all items
without DIF to zero. In the lower panel one sees a data set where identification is not
perfect. It is seen that some items without DIF are falsely considered as inducing DIF. But
also in this data set the items with DIF are the first ones to obtain estimates unequal zero
when penalization is relaxed. The items without DIF obtain estimates unequal zero but
estimates are very small.

An example without DIF is seen in Figure 4.3. The setting is the same as before (P =
70, I = 10) but all γ-parameters are set to zero. It is seen that the procedure also works
well in the case of the Rasch model because all γ-parameters are estimated as zero.
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Figure 4.3.: Coefficient build-up for Rasch model without DIF .

For further illustration we show in the upper panel of Figure 4.4 the estimates of 100
simulated data sets for the same setting as in Figure 4.2. The boxplots show the variability
of the estimates, the stars denote the underlying true values. The β-parameters in the left
block represent the basic item parameter, which are estimated rather well. In the next
block the modifying parameters γis are shown for items with DIF and in the last block the
modifying parameters for items without DIF are shown. In this last block the stars that
denote true values are omitted since they are all zero. Overall, the estimates of the basic
β-parameters (first block) and the items without DIF (third block) are quite close to their
true values. In particular the estimates of the parameters that correspond to items without
DIF are zero or close to zero and are frequently diagnosed as not suffering from DIF. The γ-
parameters in the middle block, which correspond to items with DIF, are distinctly unequal
zero and, therefore, the DIF-items are identified. But the latter estimates are downward
biased because of the exerted penalization, which shrinks the estimates.
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Figure 4.4.: Upper panel: Box plots of estimates for Rasch model with DIF induced by three
variables, stars denote true values. Lower panel: the same model with a final ML step on selected
items.

The bias can be removed and estimators possibly improved by an additional refit. The fit of
the model in combination with the selection of the tuning parameter yields the set of items
that are considered as suffering from DIF. To avoid shrinkage and bias one can compute a
final un-penalized ML fit of the reduced model that contains only the parameters that have
been selected as being non-zero. In the lower panel of Figure 4.4 the estimates with a final
refit step are given. While the estimation of the basic β-parameters has hardly changed, the
downward bias in item parameters for items with DIF is removed. However, the estimates of
parameters for items without DIF automatically suffers. If one of these items is diagnosed as
DIF-item the final ML-fit yields larger values than the penalized estimate. The reduction
of bias comes with costs. As is seen from Figure 4.4 the variability for the procedure with
an additional ML step is larger. Penalization methods like lasso typically have two effects,
selection and shrinkage. By shrinking estimates extreme values are avoided and standard
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errors are smaller but bias is introduced. The final ML estimate aims at a new balance of
variance and bias but keeps the selection effect.

Simulation Scenarios

In the following we give results for selected simulation scenarios based on 100 simulations.
The person parameters are drawn from a standard normal distribution and we consider
scenarios with varying strength of DIF. The item parameters have the form βi + xT

pγi.
We always work with standardized person characteristics xp, that is, the components have
variance 1. A measure for the strength of DIF in an item is the variance Vi = var(βi+xT

pγi),
which for independent components has the simple form Vi = ∑

j γ
2
ij. For standardization

it is divided by the number of covariates m. The average of 1
m

√
Vi over the items with

DIF gives a measure of the strength of DIF in these items. The implicitly used reference
value is the standard deviation of the person parameters, which is 1. We use three different
strengths of DIF, strong, medium and weak. For the parameters of strong DIF, the DIF
strength is 0.25. For medium and weak DIF, the parameters from the strong DIF setting
are multiplied by 0.75 and 0.5, respectively. Accordingly, the DIF strengths for medium and
weak are 0.1875 and 0.125. An overall measure of DIF in a setting is the average of 1

m

√
Vi

over all items. For the strong scenario with 20 items one obtains 0.05, for the medium and
weak 0.038 and 0.025, respectively.

When calculating mean squared errors we distinguish between person and item parameters.
For person parameters it is the average over simulations of ∑p(θ̂p − θp)2/P . For items it
is the squared difference between the estimated item difficulty and the actual difficulty∑
p

∑
i[(βi + xT

pγi)− (β̂i + xT
p γ̂i)]2/(I · P ).

One of the main objectives of the method is the identification of items with DIF. The criteria
by which the performance of the procedure can be judged are the hits or true positives (i.e.
the number of correctly identified items with DIF) and the false positives (i.e. the number
of items without DIF that are falsely diagnosed as items with DIF).

The settings considered in the following are:

• Setting 1: 250 persons, 20 items, 4 with DIF on 5 variables, parameters (strong
DIF): γT

1 = (−0.8, 0.6, 0, 0, 0.8), γT
2 = (0, 0.8,−0.7, 0, 0.7), γT

3 = (0.6, 0, 0.8,−0.8, 0),
γT

4 = (0, 0, 0.8, 0.7,−0.5), γT
5 = . . . = γT

20 = (0, 0, 0, 0, 0), two variables binary, three
standard normally distributed.

• Setting 2: 500 persons, items as in setting 1,

• Setting 3: 500 persons, 20 items, 8 with DIF on 5 variables, items 1 – 4 as in setting
1, items 5 – 8 same as items 1 – 4
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• Setting 4: 500 persons, 40 items, 8 with DIF, items 1 – 8 same as in setting 3

• Setting 5: same as Setting 2, but the person abilities differ along with the first (binary)
covariate (θ|x1 = 1 ∼ N(1, 1), θ|x1 = 0 ∼ N(0, 1))

Settings 1-4 vary in the number of persons and the number of items with and without
DIF. In all of them the person parameters are not linked to the predictor. After all, it
can occur in practice that there is correlation between the abilities of persons and the
grouping variable. Therefore it is of interest if the performance of DIF detection suffers
from correlation. The last setting, setting 5, explicitly includes correlation between the
abilities and the first, binary predictor. Persons with predictor value x1 = 1 are assumed
to have higher abilities.

In Table 4.1 the MSEs as well as the hits and false positive rates are given for the fit of the
Rasch model (without allowing for DIF), the DIFlasso and the DIFlasso with refit. It is
seen that the accuracy of the estimation of person parameters does not depend strongly on
the strength of DIF. It is quite similar for strong and medium DIF and slightly worse for
weak DIF. Also the fitting of the Rasch model or DIFlasso yields similar estimates of person
parameters. The refit procedure, however, yields somewhat poorer estimates in terms of
MSE. The estimation of item parameters shows a different picture. DIFlasso distinctly
outperforms the Rasch model, in particular if DIF is strong the MSE is much smaller. The
refit is better than the normal DIFlasso in all of the settings except one. Therefore, when
the focus is on the estimation of item parameters, the refit can be recommended for a more
precise and unbiased estimation.

The effect of correlation between abilities and predictors is investigated separately. The
settings 2 and 5 use the same number of persons and parameters, but in setting 5 a binary
covariate is highly correlated with the person abilities. The MSEs can be seen from Table
4.1. In Figure 4.5 the MSEs for the two settings are compared to each other for strong DIF
with setting 2 being depicted in the left box plot and setting 5 in the right box plot. The
upper panel shows the box plots for the MSEs of the person parameters, the lower for the
item parameters. Again, it can be seen that for the person parameters the refit performs a
little worse than the regular DIFlasso and the Rasch Model. The correlation in setting 5
makes estimation harder for all three methods but the estimation of person parameters does
not suffer strongly. From the lower panel, which shows the MSEs for the item difficulties, it
is seen that the DIFlasso strongly outperforms the Rasch Model and that the refit improves
the estimation of the item-specific parameters. As for person parameters the correlation
affects the accuracy of estimation but not very seriously. Estimation accuracy in terms of
MSE does not suffer strongly from the presence of correlation.

Since our focus is on the identification of DIF-items the hits and false positive rates are of
particular interest. It is seen from the lower panel of Table 4.1 that the procedure works
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MSE person parameters MSE item parameters
Setting Rasch DIFlasso Refit Rasch DIFlasso Refit

P = 250 strong 0.341 0.344 0.376 0.368 0.149 0.121
1 I = 20 medium 0.349 0.350 0.370 0.233 0.145 0.128

IDIF = 4 weak 0.347 0.347 0.348 0.129 0.127 0.129
P = 500 strong 0.316 0.326 0.350 0.338 0.070 0.052

2 I = 20 medium 0.323 0.328 0.345 0.202 0.064 0.048
IDIF = 4 weak 0.331 0.332 0.341 0.105 0.069 0.062
P = 500 strong 0.326 0.327 0.367 0.650 0.106 0.077

3 I = 20 medium 0.327 0.328 0.358 0.378 0.096 0.069
IDIF = 8 weak 0.334 0.335 0.351 0.186 0.108 0.093
P = 500 strong 0.176 0.176 0.189 0.343 0.082 0.055

4 I = 40 medium 0.176 0.176 0.185 0.205 0.071 0.049
IDIF = 8 weak 0.181 0.180 0.185 0.110 0.081 0.073
P = 500 strong 0.333 0.342 0.366 0.355 0.091 0.058

5* I = 20 medium 0.338 0.343 0.359 0.210 0.078 0.052
IDIF = 4 weak 0.345 0.346 0.353 0.109 0.082 0.079

Setting true positives false positives
P = 250 strong 0.99 0.016

1 I = 20 medium 0.79 0.003
IDIF = 4 weak 0.04 0.000
P = 500 strong 1.00 0.022

2 I = 20 medium 1.00 0.013
IDIF = 4 weak 0.71 0.001
P = 500 strong 1.00 0.089

3 I = 20 medium 1.00 0.042
IDIF = 8 weak 0.77 0.002
P = 500 strong 1.00 0.030

4 I = 40 medium 1.00 0.013
IDIF = 8 weak 0.61 0.001
P = 500 strong 1.00 0.021

5* I = 20 medium 0.99 0.011
IDIF = 4 weak 0.52 0.001

Table 4.1.: MSEs for the simulation scenarios (upper panel) and average rates of hits/false positives
(lower panel).
* Setting 5 contains a binary covariate highly correlated with the person abilities.
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Figure 4.5.: Box plots of MSEs for setting 2 (left box plot) and setting 5 (right box plot) for strong
DIF.

well. If DIF is strong the hit rate is 1 or close to 1, for medium DIF one needs more persons
in the setting to obtain a hit rate of 1. Of course, for weak DIF identification is harder and
one will not always find all the items with DIF. For 250 persons and weak DIF, there is
not enough information anymore to have an acceptable selection performance. But the hit
rate increases strongly when the number of persons is increased to 500 persons (setting 2)
instead of 250 persons (setting 1).

One nice result is that the false positive rate is negligible. Although not all items with
DIF may be found, it hardly occurs that items without DIF are falsely diagnosed. Only
in setting 3 the false positive rate is slightly increased. When comparing the settings 2
and 5, which only differ because in the latter correlation between abilities and predictors is
present, it is seen that the hit rate suffers only for weak DIF. For strong and medium DIF
the performance is very similar. Together with the results for the MSEs, DIFlasso seems to
perform rather well also in the case where the performance of persons is linked to a binary
covariate. Differences in abilities and DIF are well separated.
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Comparison with Methods for Multiple Groups

The method proposed here works for vector-valued predictors but can be compared to ex-
isting methods that are limited to the handling of groups. Most of the established methods
for detection of uniform DIF use just two groups representing, for example, gender. Magis
et al. (2010) set up a nice framework and shortly introduce into the existing DIF methods.
For the case of one binary covariate they consider the Mantel-Haenszel (MH) method, de-
veloped by Mantel and Haenszel (1959) and applied to DIF by Holland and Thayer (1988),
the method of logistic regression (Swaminathan and Rogers, 1990) and Lord’s χ2-test (Lord,
1980). MH is a χ2-test where the performances of the groups are tested against each other
separately for all items, conditional on the total test score. For the method of logistic
regression, a logit model is fitted using the total test score, the group membership and an
interaction of test score and group membership as covariates. The response is the proba-
bility of a person to score on an item. For detection of uniform DIF, the parameter for the
group membership is tested by a likelihood ratio or a Wald test. Lord’s χ2-test uses the
null-hypothesis that the item parameters are equal within both groups. The parameters
are estimated by the maximum likelihood principle separately for the groups, then they
are tested against each other by a χ2-test. The methods can be generalized to the case of
multiple groups. This has been done by Somes (1986) and Penfield (2001) for MH, Magis
et al. (2011) for logistic regression and Kim et al. (1995) for Lord’s χ2 test. In R (R Core
Team, 2015), these methods are implemented in the package difR (Magis et al., 2013),
which is also described in Magis et al. (2010).

Since we are interested in the performance in the case of more complex predictors we give
the results of a simulation study where DIF in more than two groups is investigated. For the
comparison we use the implementation in difR (Magis et al., 2013). In the simulation study
three different settings are considered. The definition of the DIF strengths strong, medium
and weak is equivalent to the previous simulations. Each setting is run 100 times. We use
P = 500 persons and I = 20 items. The groups are defined by a factor with q categories
which is either q = 5 or q = 6. For the DIFlasso approach, this factor is represented by
q − 1 binary dummy variables. For the reference methods, we have the case of a q-groups
comparison. The number of DIF-items is either IDIF = 4 or IDIF = 8.

Table 4.2 shows the results for the selection performance of the single methods. It can
be seen, that DIFlasso is competitive for strong and medium DIF. It achieves even lower
false positive rates than the other methods. For weak DIF, however, the true positive
rate is smaller than for the competing methods. It selects too few variables resulting in
minimal false positive rates but too small true positive rates. The effect is ameliorated if
the number of groups and the number of DIF items increases. It should also be noted that
in the simple case of binary predictors the MH method and the other procedures designed
explicitly for this case outperform the general method proposed here. Thus for few groups
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Setting DIFlasso Lord Logistic MH

strong true positives 1.000 1.000 1.000 1.000
P = 500 false positives 0.016 0.020 0.063 0.058

1 I = 20 medium true positives 0.998 1.000 1.000 1.000
IDIF = 4 false positives 0.009 0.018 0.059 0.052
q = 5 weak true positives 0.410 0.938 0.978 0.970

false positives 0.000 0.018 0.056 0.049

strong true positives 1.000 1.000 1.000 1.000
P = 500 false positives 0.020 0.113 0.070 0.064

2 I = 20 medium true positives 1.000 1.000 1.000 1.000
IDIF = 4 false positives 0.013 0.024 0.061 0.063
q = 6 weak true positives 0.890 0.985 0.995 0.990

false positives 0.000 0.019 0.056 0.054

strong true positives 1.000 1.000 1.000 1.000
P = 500 false positives 0.053 0.042 0.118 0.113

3 I = 20 medium true positives 1.000 1.000 1.000 1.000
IDIF = 8 false positives 0.028 0.028 0.093 0.083
q = 5 weak true positives 0.530 0.946 0.980 0.981

false positives 0.001 0.021 0.064 0.062

Table 4.2.: Means of true positives and false positives for the simulations with multiple groups

and in particular for weak DIF the alternative methods are to be preferred. If the predictor
structure is more complex the proposed method works well and allows to investigate the
effect of vector-valued predictors.

Separating the Group Effects from the Abilities

In the following we briefly discuss how real differences in the populations in addition to DIF
could be explicitly incorporated in a model. The main problem is that one has to model
the effect of a grouping variable or, more general, a covariate on the ability of persons
and still have an identifiable model. For categorical covariates, which are considered in
the following, the separation of the group effect from DIF can be obtained by using an
ANOVA-type representation of the model. But because of nesting the design is not that of
a simple ANOVA model. Let the covariate be a categorical variable or factor like gender.
Then one has two groups of persons, males and females. Because individuals have their
own effects, individuals themselves can be seen as a factor. The third factor is determined
by the items. A useful representation of the model treats gender, or, more general, the
categorical covariate as a blocking factor. The individuals are the elements within a block,
where it is essential that there is no connection between the individuals in different levels of
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the blocking variable. For the representation, the index p for the individual is replaced by
the index (g, j), where g represents the level of the grouping variable (g = 1, . . . , G) and j
the individuals within blocks (j = 1, . . . , ng). There is no connection between observations
(g, j) and (g′, j), g 6= g′, but between observations (g, j) and (g, j′) because the latter are
from the same level of the blocking variable. For a general treatment of nesting, see, for
example, McCullagh and Nelder (1989).

The Rasch model (without DIF) for individual (g, j) and item i can then be represented
by the predictor

ηgji = η0 + αg + δgj − βi

with the usual symmetric side constraints ∑g αg = ∑
j δgj = ∑

i βi = 0. In the model the
person parameter θp has been replaced by the parameter η0+αg+δgj, where (g, j) represents
person p. The model contains the constant η0 and three factors, the grouping variable, the
persons, nested within groups, and the items. The parameter αg represents the effect of
the categorical covariate, which is separated from the effect δgj of person (g, j). The model
with DIF has the representation

ηgji = η0 + αg + δgj − (βi + γgi)

with the additional side constraints ∑g γgi = ∑
i γgi = 0. The additional parameters γgi

represent the interaction between the grouping variable and the items. It should be noted
that the factor item interacts only with the grouping variable, not with the persons. This
makes the model a very specific ANOVA-type model. Of course, alternative side constraints
can be used. For example,∑i βi = 0 can be replaced by βI = 0, or∑g αg = 0 can be omitted
if η0 is fixed by η0 = 0. Here we used symmetric side constraints because they are are most
often used in ANOVA-type models.

By using the embedding into the ANOVA framework with nesting structure one obtains
an identifiable model that separates the effect of the grouping variable from the persons.
It works also for more than one grouping variable by specifying main effects (and possibly
interaction effects) of the grouping variables and nesting the persons within the blocks.

4.5. Examples

4.5.1. Exam Data

Our first data example deals with the solution of problems in an exam following a course on
multivariate statistics. There were 18 problems to solve and 57 students. In this relatively
small data set two variables that could induce DIF were available, the binary variables
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level (bachelor student of statistics: 1, master student with a bachelor in an other area: 0)
and gender (male: 0, female: 1). Figure 4.6 shows the coefficient build-ups. With BIC as
selection criterion no item showed DIF. So we were happy that the results did not indicate
that the exam was preferring specific subgroups.
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Figure 4.6.: Coefficient build-ups for exam data.

In this simple case, in which potential DIF is induced by binary variables, which indicate
the sub populations, one can also use test statistics to examine if DIF is present because
ML estimates exist. The embedding into the framework of generalized linear models allows
to use the likelihood ratio test to test the null hypothesis γ1 = . . . , γI = 0 (for the theory
see, for example, Tutz (2012)). We consider the effects of gender and level separately. The
p-values are 0.28 for gender and 0.38 for level. The result supports that DIF is not present.
Alternatively, we used model checks based on conditional estimates as Andersen’s likelihood
ratio test (Andersen, 1973a), which is implemented in the R-package eRm, see Mair et al.
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(2012) and Mair and Hatzinger (2007). These tests resulted in p-values of 0.315 for gender
and 0.417 for level and also support that DIF is not an issue in this data set.

4.5.2. Knowledge Data

An example that has also been considered by Strobl et al. (2015) uses data from an online
quiz for testing one’s general knowledge conducted by the weekly German news magazine
SPIEGEL. The 45 test questions were from five topics, politics, history, economy, culture,
and natural sciences. We use the same sub sample as Strobl et al. (2015) consisting of 1075
university students from Bavaria, who had all been assigned a particular set of questions.
The covariates that we included as potentially inducing DIF are gender, age, semester of
university enrollment, an indicator for whether the student’s university received elite status
by the German excellence initiative (elite), and the frequency of accessing SPIEGEL’s online
magazine (spon).
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Figure 4.7.: Coefficient build-ups for covariate gender in Quiz Data; dashed vertical line indicates
BIC-optimal path point

Figure 4.7 shows as an example the coefficient build-ups for the covariate gender. At the
path point that was selected by the BIC criterion (dashed vertical line), 16 of the 45 items
showed DIF, which is not surprising because it is not a carefully constructed test that
really focusses on one latent dimension. In Figure 4.8, the estimated effects of the items
containing DIF are visualized. The upper panel shows the profile plots of the parameters
for the included covariates. For each item with DIF one profile is given. The lower panel
shows the strengths of the effects in terms of the absolute value of the coefficients. One
boxplot refers to the absolute values of the 16 parameters for one covariate. It is seen
that the strongest effects are found for the covariate gender, the weakest effects are in the
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variable elite, which measures the status of the university where the student is enrolled. It
should be noted that the importance of the single covariates for the DIF can be measured
by the absolute values of their coefficients since all covariates were standardized.
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Figure 4.8.: Upper panel: profile plot for coefficient estimates of items with DIF, profiles of the
four items with highest DIF are highlighted; lower panel: boxplots of absolute values of coefficient-
estimates for items with DIF

In Figure 4.8 (upper panel) four items are represented by dashed lines. They showed the
strongest DIF in terms of the L2-norm of the estimated parameter vector. All of them refer
to economics. For illustration, these four items are considered in more detail. They are

• Zetsche: "Who is this?" (a picture of Dieter Zetsche, the CEO of the Daimler AG,
maker of Mercedes cars, is shown).

• AOL: "Which internet company took over the media group Time Warner?"

• Organic: "What is the meaning of the hexagonal ’organic’ logo?" (Synthetic pesticides
are prohibited)

• BMW: "Which German company took over the British automobile manufacturers
Rolls-Royce?"
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The profiles for the items Zetsche, AOL and BMW are quite similar. They are distinctly
easier for male participants and for frequent visitors of SPIEGELonline. The item Organic
shows a quite different shape being definitely easier for females. It is also easier to solve for
students that are not frequent visitors of SPIEGELonline. The item differs from the other
three items because it refers more to a broad education than to current issues. Also, females
might be more interested in (healthy) food in general. In this respect female students and
students that do not follow the latest news seem to find the item easier. Therefore the
different profile.

In Figure 4.9, the estimates for the covariate-specific parameters in DIF-items are illus-
trated using effect stars, see also Appendix A. In effect stars, one star represents the
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Figure 4.9.: Effect stars for the four items with highest DIF

parameters corresponding to one group of parameters. The length of the rays corresponds
to the exponentials of the parameters. A circle with radius 1 represents the case of exp(0)
and, therefore, the no-effect case. Rays within the circle represent negative parameters,
rays beyond the circle represent positive parameters. In our application, all parameters
corresponding to one item are collected in a star. It can be seen that among the presented
items, the item organic is the only item with a positive gender effect.

4.6. DIFlasso with Variable Selection

The main objective of DIFlasso is to detect items containing DIF by regularization methods.
After all, the proposed group-lasso type penalty term does not perform variable selection.
For an item diagnosed as DIF item, every coefficient will be unequal zero, i.e. every co-
variate will have an effect. However, the results from the general knowledge test from
Subsection 4.5.2 suggest that variable selection could be a desirable tool for our analysis.
Clearly, the variables gender, age and spon seem to be important variables for the DIF items
we found. The covariates semester and elite have rather small estimates for all items and
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are likely not to induce any DIF. Therefore, an automatic method to select the variables
actually inducing DIF could be useful.

For that purpose, two strategies seem sensible. The first possibility is to replace the group-
lasso type penalty term by a simple lasso-type penalty. The respective penalty term can
be denoted as

J(θT,βT,γT
1 , . . . ,γ

T
I ) =

I∑
i=1

m∑
j=1
|γij|.

Every additional (compared to the basic Rasch model) item-specific parameter is penalized
separately with respect to its absolute value. Therefore, every single of these parameters
can be estimated as zero exactly and be eliminated from the model. If every parameter
corresponding to a covariate j is eliminated from the model (γij = 0 for i = 1, . . . , I),
covariate j is completely eliminated from the model. In such a case, variable selection is
realized. Yet, this concept is less focused on the issue of detecting DIF items. Every item i

with at least one parameter unequal zero, i.e. γ̂ij 6= 0 holds for at least one j, j = 1, . . . ,m,
is diagnosed to be a DIF item.

The second possibility to perform variable selection is to extend the regular DIFlasso
method by a post-selection step. The idea is to calculate another regularized model based
on the items selected by DIFlasso. Instead of using the complete model (4.2), the reduced
model

log
(
P (Ypi = 1)
P (Ypi = 0)

)
=

θp − (βi + xT
pγi) i ∈ A

θp − βi i /∈ A
(4.3)

is used where A denotes the active set of items where DIF was found by DIFlasso. Therefore,
item-specific parameters are used for DIF items only. To perform variable selection, we
again use the regularization technique of group lasso. But, instead of grouping by items we
group by covariates. The penalty term for the post-selection step in DIFlasso is therefore
denoted as

J(θT,βT,γT
1 , . . . ,γ

T
IA

) =
m∑
j=1
‖γ.j‖, (4.4)

where γ.j denotes the vector of item specific parameters for the j-th covariate γ.j =
(γ1j, . . . , γIAj). IA denotes the number of items in the active set A and m denotes the
number of covariates. This penalty term allows for explicit variable selection. Model se-
lection is again performed by model selection criteria, we again recommend the BIC. With
decreasing penalty parameter, the covariate vectors enter the model as a whole. If the
BIC-optimal penalty parameter is chosen large enough, some variables will be excluded
from the model.
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4.7. An Alternative Method

In contrast to most existing methods the proposed procedure allows to include all vari-
ables that might lead to DIF and identify the items with DIF. Quite recently Strobl et al.
(2015) proposed a new procedure that is also able to investigate the effect of a set of vari-
ables. Therefore, it seems warranted to discuss the differences between our method and the
recursive partitioning approach advocated by Strobl et al. (2015).

Recursive partitioning is similar to CARTs (Classification and Regression Trees), which
were propagated by Breiman et al. (1984). For a more recent introduction see Hastie
et al. (2009), or from a psychological viewpoint Strobl et al. (2009). The basic concept
of recursive partitioning and tree methods in regression models is to recursively partition
the covariate space such that the dependent variable is explained best. In the case of
continuous predictors partitioning of the covariate space means that one considers splits in
single predictors, that is, a predictor X is split into X ≤ c and X > c where c is a fixed
value. All values c are evaluated and the best split is retained. If a predictor is categorical
splits refer to all possible subsets of categories. Recursive partitioning means that one finds
the predictor together with the cut-off value c that explains the dependent variable best.
Then given X ≤ c (and the corresponding sub sample) one repeats the procedure searching
for the best predictor and cut-off value that works best for the sub sample with X ≤ c. The
same is done for the sub sample with X > c. The procedure of consecutive splitting can be
visualized in a tree. Of course, there are many details to consider, for example, one has to
define what best explanation of the dependent variable means, when to stop the procedure
and other issues. For details see Breiman et al. (1984).

In item response models the partitioning refers to the predictors that characterize the
persons. That means when using the person-specific variable X, for example, age, it is
split into X ≤ c and X > c. The Rasch model is fit in these sub populations yielding
different estimates of item parameters. Then one has to decide if the difference between
item estimates before splitting and after splitting is systematic or random. If it is systematic
the split is warranted. For the decision Strobl et al. (2015) use structural change tests, which
have been used in econometrics (see also Zeileis et al. (2008)). Although the basic concept
is the same as in the partitioning in regression models, now a model is fitted and therefore
the method is referred to as model based partitioning. For details see Strobl et al. (2015).

For the knowledge data Strobl et al. (2015) identified gender, spon and age as variables that
induce DIF. This is in accordance with our results (Figure 4.8), which also identified these
variables as the relevant ones. By construction the partitioning approach yields areas, in
which the effect is estimated as constant. The partitioning yielded eight subpopulations, for
example, {female, spon ≤ 1, age ≤ 21} and {male, spon ≤ 2− 3, age ≤ 22}. Within these
subspaces all items have estimates that are non-zero. Items that have particularly large
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values are considered as showing DIF. It is not clear what criterion is used to identify the
items that actually show DIF. Strobl et al. (2015) just describe 5 items that seem to have
large values. Therefore, one can not compare the two approaches in terms of the number
of selected items.

Let us make some remarks on the principles of the recursive partitioning approach to DIF
and the penalization method proposed here.

Recursive partitioning can be considered a non-parametric approach as far as the predictors
are concerned. No specific form of the influence of predictors on items is assumed. But, in
the case of continuous variables implicitly a model is fitted that assumes that the effects
are constant over a wide range, that is, over X ≤ c and X > c given the previous splitting.
In contrast, our penalization approach assumes a parametric model for DIF. Although
it can be extended to a model with unspecified functional form, in the present version
it is parametric. An advantage of parametric models is that the essential information is
contained in a modest number of parameters that show which variables are influential for
specific items. A disadvantage of any parametric model is that it can be misspecified. The
partitioning approach, considered as a more exploratory tool, is less restrictive, although
assuming a constant value over wide ranges is also a restriction.

An advantage of the parametric model, if it is a fair approximation to the underlying
structure, is the use of familiar forms of the predictor, namely a linear predictor, which,
of course, can include interactions. In contrast, partitioning methods strongly focus on
interactions. Typically in each consecutive layer of the tree a different variable is used
in splitting. The result is smaller and smaller subpopulations which are characterized
as a combination of predictors. The subpopulations {female, spon ≤ 1, age ≤ 21} and
{male, spon ≤ 2− 3, age ≤ 22}, found for the knowledge data seem rather specific.

A potential disadvantage of tree based methods is their instability. A small change of data
might result in quite different splits. That is the reason why tree-based methods have been
extended to random trees, which are a combination of several trees on the same data set,
see Breiman (2001).

The penalty approach uses an explicit model for DIF, and the model is separated from the
estimation procedure. In the partitioning approach the model and the fitting are entwined.
For practitioners it is often helpful to have an explicit form of the model that shows how
parameters determine the modelled structure. Moreover, in the penalty approach an explicit
criterion is used to determine how many and which items show DIF. The ability to identify
the right items has been evaluated in the previous section.

Of course, none of the models is true. Neither is the effect constant within an interval of age
as assumed in the partitioning approach nor is the effect linear as assumed in the suggested
model. But, as attributed to Box, although all models are wrong some can be useful. Since
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the models are not nested a goodness-of-fit tests could yield a decision. But goodness-of-fit
as a measure for the adequacy of a model is a tricky business in partitioning models as well
as in regularized estimation procedures, in particular in the framework of item response
models. Therefore, not much is available in terms of goodness-of-fit, although it might be
an interesting topic of future research.

One basic difference seems to be that the penalty approach uses all covariates, with the
variables that are of minor relevance obtaining small estimates, but selects items. The
partitioning approach selects variables, or, more concisely combinations of covariates, but
then estimates all items as having an effect, that is, estimates are unequal zero. Thus
penalty approaches focus on the selection of items, partitioning methods on the selection
of combinations of covariates.

4.8. Concluding Remarks

A general model for DIF that is induced by a set of variables is proposed and estimation
procedures are given. It is shown that the method is well able to identify items with DIF.
The concept is general, with modifications it can be extended to models that include items
with more than two categories as, for example, the graded response model (Samejima, 1997)
or the partial credit model (Masters, 1982). Also the assumption that items are modified in
the linear form xT

pγi can be relaxed to allow for additive functions f1(xp1) + · · ·+ fm(xpm)
by using, for example, P-spline methodology (Eilers and Marx, 1996).

The estimation used here is penalized unconditional ML estimation. Alternative regularized
estimators could be investigated, for example, estimators based on mixed models methodol-
ogy. Also the regularization technique can be modified by using boosting techniques instead
of penalization.

The method is implemented in the R package DIFlasso (Schauberger, 2014a) and is avail-
able from CRAN. It uses the the coordinate ascent algorithm proposed in Meier et al. (2008)
and the corresponding R package grplasso (Meier, 2009).



5. Detection of Differential Item
Functioning in Rasch Models by
Boosting Techniques

5.1. Introduction

In the beginnings of item response theory (IRT) the focus was on the Rasch model (Rasch,
1960) and its extensions to the 2PL and 3PL model by Birnbaum (1968). The Rasch model
assumes that every person has a fixed latent ability and every item has a fixed difficulty.
The difference between ability and difficulty determines the probability that a person solves
an item. The extensions from Birnbaum (1968) attenuated this assumption by introducing
two additional item parameters, for discrimination and guessing. Since then, item response
theory has been a topic of intensive research and has been extended in various ways.

A well-known problem in item response models is that the probability to score on an item
might vary over persons with the same latent ability. This may be caused by certain
characteristics of the persons like gender, age, or race or by other unknown (latent) classes
within the tested population. The phenomenon is known under the name Differential Item
Functioning (DIF). If an item is detected to have DIF one option is to remove the item
because it does not provide a fair measurement of the respective trait.

There is a wide range of literature on DIF in general, see, for example, Holland and Wainer
(2012) and Millsap and Everson (1993). A very popular choice to detect DIF is the Mantel-
Haenszel (MH) method. It is based on a test statistic proposed by Mantel and Haenszel
(1959) and was used to detect DIF in item response theory by Holland and Thayer (1988).
Various other methods to identify items which induce DIF have been proposed, for example,
Swaminathan and Rogers (1990) and Lord (1980). Magis et al. (2010) set up a framework
for the existing DIF methods and gave an excellent overview on currently available methods
along with a software implementation (Magis et al., 2013).

This chapter is a modified version of Schauberger and Tutz (2015b), previous work on the issue can be
found in the conference paper Schauberger and Tutz (2014). See Chapter 1 for more information on the
personal contributions of all authors and textual matches.
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The essential drawback of the MH method and most of the other existing methods is that
they are limited to identify DIF between two subgroups, e.g., for male and female par-
ticipants. Some methods for multiple subgroups have been developed, see Somes (1986),
Penfield (2001), Magis et al. (2011) and Kim et al. (1995). Gonçalves et al. (2013) set
up a quite general Bayesian multifactor model for the detection of DIF in the 3PL model
(Birnbaum, 1968). But methods that are able to handle DIF induced by continuous covari-
ates or by a whole vector of covariates at the same time are scarce. Recently, Strobl et al.
(2015) proposed to use tree methodology whereas Magis et al. (2015) used penalization
techniques. The proposed method is strongly related to the approach proposed in Chapter
4 using regularization techniques.

In this Chapter, a new and efficient method is proposed for the detection of DIF in Rasch
models that can deal with several (continuous and categorical) covariates and also interac-
tions between the covariates simultaneously. The method is based on boosting techniques
which have been developed more recently in the machine learning community (Freund et al.,
1996) and in statistics (Bühlmann and Hothorn, 2007a), but their potential has not yet been
exploited to uncover structures in item response models.

In Section 5.2, a DIF model is given in which DIF is explicitly represented by parameters.
Section 5.3 introduces the idea of boosting in general, whereas Section 5.4 describes in
detail the proposed estimation algorithm. Sections 5.5 and 5.6 illustrate the method by
applications to both simulated and real data sets and compare it to existing approaches.

5.2. Differential Item Functioning Model

In the binary Rasch model the probability for a person to score on an item is determined
by a parameter for the latent ability of the person and a parameter for the item difficulty.
In the case of P persons and I items, the Rasch model is given by

P (Ypi = 1) = exp(θp − βi)
1 + exp(θp − βi)

p = 1, . . . , P , i = 1, . . . , I, (5.1)

where Ypi represents the response of person p on item i. It is coded by Ypi = 1 if person p
solves item i and Ypi = 0 otherwise. Both the person parameters, θp, p = 1, . . . , P , and the
item parameters, βi, i = 1, . . . , I, are unknown and have to be estimated. Alternatively,
model (5.1) can be given in the form

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi, (5.2)
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where the left hand side specifies the so-called log-odds or logits. As model (5.2) is not
identifiable in this general form, a restriction on the parameters is needed. A common
choice, that is also used in the following, is θP = 0. Alternatively, also one item parameter
or the sum of all item parameters could be restricted to zero.

In item response models, DIF appears if an item has different difficulties depending on
characteristics of the person which tries to solve the item. Therefore, DIF changes the item
difficulty depending on covariates of the participants. This concept can be formalized by

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − (βi + xT

pγi), (5.3)

where xT
p = (xp1, . . . , xpm) denotes a person-specific covariate vector of length m and,

again, the restriction θP = 0 is used. This general Differential Item Functioning Model
(DIF model) is an extension of the Rasch model (5.2) allowing for person-specific item
difficulties βi + xT

pγi. The item-specific parameters γT
i = (γi1, . . . , γim) determine how the

covariates xp1, . . . , xpm influence the difficulty of item i for person p. The original Rasch
model corresponds to the special case where γi = 0 for all items. The general model (5.3)
was proposed in Chapter 4, a special case of the model was considered by Paek and Wilson
(2011). However, estimation methods were quite different from the approach suggested
here.

The main problem with the general DIF model is thatm·I additional parameters (compared
to the Rasch model) have to be estimated. Since each item has its own parameter per
covariate, the number of parameters in the model can be huge. As the full DIF model
is not identifiable, Maximum likelihood (ML) estimation is no option in this case. One
possibility to overcome this problem are penalization methods where a penalized likelihood
is maximized. For example, the ridge estimator (Hoerl and Kennard, 1970) or the lasso
estimator (Tibshirani, 1996) can still be calculated when regular ML estimation fails. In
Chapter 4 penalization methods of this type were used. Here we propose a quite different
method, namely boosting. Boosting is an algorithmic procedure with origins in machine
learning, see, for example, Freund and Schapire (1997).

Boosting as a method of statistical learning was developed by Friedman et al. (2000) and
extended, for example, by Bühlmann and Yu (2003), Tutz and Binder (2006), Bühlmann
(2006) and Bühlmann and Hothorn (2007a). Boosting in basic regression methods is avail-
able for the statistical software R (R Core Team, 2015), which will be used for all following
calculations. It is, for example, implemented in the add-on package mboost, see Hothorn
et al. (2013), which is also used for our computations.

One strength of boosting is, that it is able to select relevant terms in the predictor even in
very high dimensional settings. This establishes the link to DIF in item response models.
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The general assumption for our model is that only some of the items show DIF and only for
these items item-specific parameters γi have to be estimated. Therefore, detection of DIF
means selection of variables, or, in parametric models, selection of parameters that should
be included in the model and, therefore, have estimates unequal zero. If a whole vector
γi is set to zero, the difficulty of item i does not depend on the covariates and no DIF is
present.

Generally, in the following all covariates are assumed to be standardized. This has the
advantage that the covariates have the same scale and, therefore, can be compared di-
rectly. Especially, estimates for the item-specific covariates γip can be compared directly
and represent the size of the respective DIF effect.

5.3. Basic Boosting Procedures

Before developing boosting procedures for DIF models, in this section we briefly consider
the basic concept of boosting and the choice of tuning parameters. The adaptation to DIF
models will be considered in the consecutive sections. We start with the linear model, where
boosting is much easier to conceptualize, and then proceed to boosting for generalized linear
model (GLM).

Let us first consider a linear regression model

yi = β0 +
p∑
j=1

xijβj + εi, i = 1, . . . , n,

for p covariates. If p is very large and it is suspected that not all covariates are influential,
maximum likelihood estimation is a bad choice because of its instability in high-dimensional
settings. In contrast, boosting is able to fit additive structures even in high-dimensional
settings by successively fitting only parts of the model.

A basic ingredient of boosting is the specification of the so-called base learners f̂(·). The
base learners specify the structure that is fitted within one step of the procedure. Since
we want to fit a linear model, the base learners are the ordinary least squares (OLS)
estimators

f̂(x) = β̂sxs

for single covariates s = 1, . . . , p. That means within one step only one covariate is used.
Although all the updates of all covariates are evaluated, in each boosting step a specific
covariate s∗ is selected that yields the greatest reduction of the residual sum of squares
given the previous estimate. Let η̂(l−1) represent the current linear predictor (the current
model fit) from the previous boosting step l − 1, then the residual of the ith observation
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is ui = yi − η̂(l−1). In the lth step one fits a linear model for only one covariate on the
data (ui, xis), i = 1, . . . , n, and then selects the best predictor, which is used to update the
linear predictor. Thus boosting is a stepwise procedure, which iteratively improves the fit
by fitting a model to the current residuals. Tukey (1977) proposed the so-called "twicing",
which means, after fitting a model one fits it again on the residuals. Boosting means not
only two but many iterative fits. The following algorithm can be seen as the basic boosting
procedure for linear models.

L2 Boost in Linear Models

Step 1 (Initialization)
Given data {yi,xi}, fit the base procedure to yield the function estimate η(0)(xi).
Typically one fits an intercept model obtaining η(0)(xi) = β̂0 .

Step 2 (Iteration: Fitting of base learners and selection)
For l = 1, 2, 3, . . . , compute the residuals ui = yi− η̂(l−1)(xi) and fit the base learners
to the current data {ui,xi}.

(a) One fits by minimizing least squares, that is, for fixed j one minimizes

n∑
i=1

(ui − βjxij)2,

obtaining β̂j. (b) Selection means that one determines s∗ such that

s∗ = arg min
j

n∑
i=1

(ui − β̂jxij)2.

(c) The improved fit is obtained by the update

η̂(l)(xi) = η̂(l−1)(xi) + νβ̂s∗xis∗ .

Step 3 (Stop)
Iterate Step 2 until l = lstop is reached.

In step 2, the linear predictor is updated by η̂(l)(xi) = η̂(l−1)(xi) + νβ̂s∗xis∗ , which serves
to compute the residuals in the following boosting step. It should be noted that the linear
structure is maintained and only one component of the linear predictor is updated. Let
η̂(l−1)(xi) have the linear form

∑p
j=1 β̂

(l−1)
j xij, then the addition of νβ̂s∗xis∗ changes only the

weight on the variable s∗. The parameter ν, 0 < ν ≤ 1, is used as a shrinkage parameter.
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This shrinkage parameter makes the base learners "weak" and, therefore, prevents overfit-
ting because only small steps towards the optimal solution are made. For this purpose, ν
has to be chosen sufficiently small, ν = 0.1 is a common choice. The procedure corresponds
to a stepwise fitting of the linear model. In every step, one of the coefficients is updated
by a rather small amount. The weakness of the learner is important because only then the
fit is efficient (Bühlmann and Yu (2003) and Bühlmann (2006)). The smaller ν is chosen,
the weaker the learner gets but the more boosting steps are required. If one does not stop,
boosting is a complicated way of obtaining the maximum likelihood estimate. The selection
effect is obtained by stopping the procedure before it converges. Then, only the variables
that obtained non-zero weights are included in the model and one obtains a regularized es-
timate. Bühlmann (2006) showed that the procedure is consistent for underlying regression
functions that are sparse in terms of the L1-norm.

Boosting can also be seen as a stepwise optimization of a specific loss function. For the
linear regression model, the optimized loss function is the L2 loss between the response and
the linear predictor. In this context, boosting can be seen as a gradient descent method
and sometimes is called gradient boosting. For the (slightly modified) L2 loss function

L(y, η) = 1
2(y − η)2,

the gradient is given by the residuals

∂L(y, η)
∂η

= y − η.

Therefore, instead of stepwise fitting of the residuals boosting can be seen as repeated
fitting of the response with a so called offset , which is a known constant. In our case it is
given by the estimate of the previous step η̂(l−1)(xi). The least squares estimate uses the
criterion

n∑
i=1

(ui − βjxij)2 =
n∑
i=1

(yi − (η̂(l−1)(xi) + βjxij))2. In the latter form it is seen that
one minimizes the least squares criterion for the original data yi, but including the known
constant η̂(l−1)(xi) in the fit.

The iterative fitting with an offset offers a way to obtain boosting estimates also for
generalized linear models (GLM). A GLM is in particular determined by the structure
µi = E(yi|xi) = h(ηi), where h() is a known response function and the linear predictor has
the form ηi = ∑p

j=1 βjxij. One difference between the L2 boost and a generalized linear
model boosting is that in the boosting step one cannot fit a GLM to the residuals because,
for example, with binary data, residuals are not from {0, 1}. The role of the residuals is
taken by the offset.

Typically, the boosting algorithm is repeated for a large predefined number of steps lstop.
After the end of the algorithm, an appropriate criterion is used to determine the optimal
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number of steps lopt. This can either be done by information criteria like AIC or BIC or
by the method of cross validation. For the example of the linear model, this corresponds
to a model selection between lstop possible models. The first model simply represents a
null model where no covariates are included. With every boosting step, a new covariate is
added or (if the respective covariate has been selected before) the parameter of a covariate
is updated. As the base learners are asssumed to be “weak”, successive models only differ
slightly from each other. This makes it more likely for the optimal model to be found.
Implicitly, this model selection corresponds to variable selection. Typically, in the finally
chosen model lopt, not all of the possible predictors have been chosen and, therefore, are
excluded from the final model. Thus, lopt is the most important regularization parameter
for the boosting algorithm. A quite different approach to bypass the problem of overfitting
is stability selection, which is described in detail in a following section and which will be
applied to our DIFboost algorithm.

5.4. Boosting in Differential Item Functioning

5.4.1. The DIF Model as a Generalized Linear Model

The Rasch model and also the more general DIF model (5.3) can be embedded into the
framework of generalized linear models (GLM).

Let the data be given by (Ypi,xp), p = 1, . . . , P, i = 1, . . . , I. For simplicity, we use the
notation 1T

P (p) = (0, . . . , 0, 1, 0, . . . , 0) and 1T
I(i) = (0, . . . , 0, 1, 0, . . . , 0), where 1P (p) and 1I(i)

have lengths P −1 and I and have the value 1 at positions p and i, respectively. Therefore,
the vectors are constructed in a way that they can be seen as dummy variables for the
corresponding persons and items, respectively. Then, model (5.3) can be represented as

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi − xT

pγi

= 1T
P (p)θ − 1T

I(i)β − xT
pγi = zT

piα. (5.4)

Here, αT = (θT,βT,γT
1 , . . . ,γ

T
I ) denotes the complete parameter vector containing θT =

(θ1, . . . , θP−1) and βT = (β1, . . . , βI). The design vector for the person p and the item
i is denoted by zT

pi = (1T
P (p),−1T

I(i), 0, . . . , 0,−xT
p , 0, . . . , 0). In zpi, the position of the

component −xp corresponds to the parameter γi in α.

In general, model (5.4) represents the structural component of a GLM for binary response
with logit link. GLMs are extensively investigated in McCullagh and Nelder (1989), intro-
ductions with the focus on categorical data are found in Agresti (2002) and Tutz (2012).
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Of course, also the regular Rasch model can be represented in the GLM framework by

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi = 1T

P (p)θ − 1T
I(i)β, (5.5)

where the design vector and the parameter vector reduce to (1P (p),−1I(i)) and (θT,βT),
respectively.

5.4.2. The DIFboost Algorithm

The objective of our approach is to detect DIF by boosting the logistic DIF model (5.3).
Because selection refers to DIF-effects only, it is sensible to start the boosting selection
procedure after the basic Rasch model has been fitted. The initial step is to fit the regular
Rasch model (5.5). The result from this step are parameter estimates for the person param-
eters and the item parameters. The model fit from this first step is used as starting point
for the further steps where boosting techniques are used to select potential DIF-effects. A
similar approach was used by Boulesteix and Hothorn (2010) in a quite different context.
In the following, our algorithm is described in detail.

The starting point for the algorithm is to fit a regular Rasch model to our data. This
is done by embedding the Rasch model into the logistic regression model (5.5). It can be
estimated by standard software as, for example, the function glm for the statistical software
R (R Core Team, 2015). Then, one obtains estimates θ̂T = (θ̂1, . . . , θ̂P−1) for the person
parameters and β̂T = (β̂1, . . . , β̂I) for the item difficulties. For a single observation, a linear
predictor η̂pi = θ̂p − β̂i can be calculated which can be used to predict the probability of
person p to score on item i to be P (Ypi = 1) = exp(η̂pi)

1+exp(η̂pi) . The linear predictors from the
Rasch model for all person-item combinations are collected in η̂RM = (η̂11, η̂12, . . . , η̂IP) and
are passed on to the further steps of the algorithm.

For the boosting steps, the Rasch model (5.2) is extended to the more general DIF model
(5.3). The parameters of the DIF model determine the base learners that are used. In
our case, the model consists of three components, namely the person parameters, the item
parameters and the item-specific covariate parameters. Therefore, each of these components
serves as a possible base learner:

η̃(xp, p, i) =


θ̃p, p = 1, . . . , P − 1
β̃i, i = 1, . . . , I
xT
p γ̃i, i = 1, . . . , I

(5.6)
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It is noteworthy that all base learners are linear. Nevertheless, they refer to different types
of components that contain differing numbers of parameters (e.g. γ̃i vs. β̃i). In cases like
this, it is essential to ensure that all base learners share the same complexity so that the
chances to be chosen are balanced. The complexity of base learners is determined by their
degrees of freedom, which can be adapted by using internal penalty terms. In the case
of linear base learners typically ridge penalties are used. Therefore, all the base learners
presented above are restricted to have one degree of freedom by applying a ridge penalty
when fitting the model. For more details on the complexity of base learners, see Hofner
et al. (2011).

In every boosting step, only one of the base learner is updated, namely the one which yields
the strongest reduction of an adequate loss function. The loss function that is used,

L(Ypi, π̃pi) = −(Ypi log(π̃pi) + (1− Ypi) log(1− π̃pi)), (5.7)

is the negative log-likelihood of a logit model with binary response. For boosting step l,
this can be denoted by

η̃∗(xp, p, i) = argmin
θ̃p,β̃i,xTγ̃i

∑
p,i

L(Ypi, π̃pi)

where the fitted probability π̃pi is calculated by fitting the model

π̃pi = exp(η̃(l))
exp(1 + exp(η̃(l))) with predictor η̃(l) = η̃(l−1) + η̃(xp, p, i),

separately for every base learner from (5.6).

The estimates for the single candidates of the base learner are obtained by fitting logit
models where the linear predictor from the current model fit is used as known offset and
the respective base learner is the only predictor. Therefore, based on the current model
fit, in every step only the base learner with the highest gain of information is updated. An
additional parameter ν, 0 < ν < 1, regulates the step size of the parameter updates. It is
chosen sufficiently small (typically ν = 0.1) and only allows for small changes in every step.
The parameter ν makes the base learners “weak” and is used to prevent quick overfitting.
This procedure is repeated for a predefined number of steps lstop.

For the first boosting step, the offset is chosen to be the linear predictor η̂RM from the Rasch
model, η̃(0) = η̂RM. This provides two advantages: First, the person parameters θ and item
parameters β are, in contrast to the item-specific covariate parameters γi, essential for the
interpretability of model (5.3). Therefore, it is sensible to prevent those parameters from
being excluded from the model. From this point of view, the offset provides starting values
for the person and item parameters. Second, the object of our approach is to detect the
improvement of the model fit by extending the Rasch model to the DIF model. Therefore,
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we start from the model fit of the regular Rasch model. The boosting steps (possibly) add
the information from the covariates. At some point during the boosting procedure, it can
become necessary to adapt the person or the item parameters. Consequently, they can also
be chosen as base learners within the boosting algorithm.

Typically, the model fitted after lstop steps is overfitted and, therefore, not desirable. Two
different strategies exist to finally identify the optimal model. One possibility is early
stopping. Here, an optimal boosting step lopt has to be found, either by an information
criterion or by cross-validation. By early stopping, the boosting algorithm has the desirable
effect of variable selection. The final model will only contain some of the possible parameters
from model (5.3), namely the ones that have at least once been found to be the best base
learner before the optimal step lopt. The second option is stability selection, which will
be discussed in detail later. For our analysis, we tried both early stopping using the BIC
criterion and stability selection with similar results. As stability selection provided slightly
more stable results, the option of early stopping is omitted for the rest of the chapter.

DIFboost algorithm

In the following, the outlined DIFboost algorithm is shortly sketched:

DIFboost

Step 1 (Initialization)

- Fit (5.5) for given scores Ypi and initialize the offset η̃(0) = η̂RM .

- Initialize θ̃p = 0, p = 1, . . . , P − 1, β̃i = 0 and γ̃i = 0, i = 1, . . . , I

- Set l = 0

Step 2 (Iteration)

- l→ l + 1

- Fit a logit model for every possible base learner where η̃(l−1) is used as offset

- Select the best base learner η∗(xp, p, i)

- Update the linear predictor by

η̃(l) = η̃(l−1) + νη̃∗(xp, p, i)

Step 3 (Stop)
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Iterate Step 2 until l = lstop is reached.

5.4.3. Illustrating Example

For illustration, first a single simulated data set will be considered. The data set is randomly
drawn from Setting 2 (medium) of the simulation study in Section 5.5.2. We have P = 500
persons, I = 20 items (4 items with DIF, 16 without DIF) and m = 5 covariates, lstop = 500
boosting steps are performed.

Figure 5.1 shows the coefficient paths along the boosting steps from l = 0 to l = lstop =
500.
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Figure 5.1.: Boosting paths of item-specific parameters γ̂ir for exemplary data set; solid paths
represent DIF items, dashed paths represent non-DIF items; dashed vertical line represents theo-
retically optimal boosting step lopt

The solid black lines represent the paths of the four DIF items, the DIF-free items are
represented by dashed gray lines. Every item is represented by five paths because m = 5
covariates are used to find DIF. This makes the plot hard to digest as it is hard to distinguish
between the different items. Figure 5.2 reduces the plot to one path per item. Here, a path
represents the Euclidean norm of the item-specific parameter vectors γi of the corresponding
item i. This plot is much clearer and easier to interpret than Figure 5.1 although some
information is suppressed. The DIF items (black solid lines) can clearly be separated from
the other items (dashed gray lines) because they are updated much earlier in the boosting
algorithm and, therefore, seem to be much more informative for the response. The dashed
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Figure 5.2.: Boosting paths of Euclidian norms of item-specific parameter vectors γ̂i for exemplary
data set; solid paths represent DIF items, dashed paths represent non-DIF items; dashed vertical
line represents theoretically optimal boosting step lopt

vertical line represents the theoretically optimal model where all DIF items are in the model
and all DIF-free items are excluded.

5.4.4. Stability Selection

Choosing the optimal number of boosting steps via the BIC (or any other information
criterion) has some drawbacks and may, therefore, not always be the best choice. One
drawback is that the variable selection implied by the BIC can be unstable. Variables (or
more precisely base learners) only have to be chosen in one single boosting step to be part
of the final model. Therefore, it may happen that some items are diagnosed to have DIF
although they have minimal coefficient estimates. This could lead to an increased false
positive rate. Another drawback is that information criteria such as the BIC or the AIC
use the degrees of freedom. Bühlmann and Hothorn (2007a) or Hofner et al. (2011). For
example, the degrees of freedom can be determined using the hat matrix of the boosting
algorithm, as proposed by Bühlmann and Hothorn (2007a) and Hofner et al. (2011). Yet,
this is very time-consuming and also led to controversial methodological discussions, see
Hastie (2007) and Bühlmann and Hothorn (2007b).

These drawbacks can be avoided by the concept of stability selection which was developed
by Meinshausen and Bühlmann (2010). It is a very general approach which can be applied
to a broad range of methods that include variable selection. It is based on the common
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idea of model/variable selection by subsampling. This can be computationally beneficial
because it allows for parallelized computations. Furthermore, it addresses the problem of
unstable variable selection by pooling over many subsamples.

For the DIF model (5.3), stability selection can be obtained in the following way: For a
predefined number of replications B,

⌊
P
2

⌋
persons are drawn randomly from the original

data set. The data set for one replication consists only of the observations in this subsample
of persons. For each of the subsamples, the boosting algorithm is executed until lstop. Then,
one counts how often a specific base learner was selected at each specific step l = 0, . . . , lstop.
This gives the probabilities Π̂l

i (or rather the relative frequencies over the B replications)
of the base learner i to be in the model at a specific boosting step l. The probabilities are
illustrated by so-called stability paths along the boosting steps as displayed in Figure 5.3.
Finally, all base learners are selected with stability paths beyond a certain threshold value.
These base learners represent the most frequent elements within the selected active set and,
therefore, have to be considered as influential. In our application, we want to know which
items have DIF and, therefore, we are only interested in the stability paths for γi for all
items.

Stability selection is mainly determined by two parameters. The first parameter is q,
which denotes how many distinct base learners are taken into the model when boosting the
subsamples. As soon as q base learners have been selected, the procedure is stopped for the
respective subsample. If less than q base learners are selected at l = lstop, lstop has to be
increased. In the following, we choose 60% as a reasonable upper bound of the percentage
of DIF-Items within a test and, therefore, q = 0.6 ·I. The second parameter is the threshold
value for the selection probabilities of the single base learners which is denoted by π0. It is
used to finally determine the set Ŝstable of stable base learners. This set is defined by

Ŝstable =
{
i : max

l=1,...,lstop

(
Π̂l
i

)
≥ π0

}
.

According to Meinshausen and Bühlmann (2010), the threshold value should be chosen
within a range of π0 ∈ (0.6, 0.9), also depending on the choice of q and the desired sparseness
of the final model.

Although two parameters have to be determined in advance, stability selection proved to
be very stable. Especially the choice of q turned out not to be crucial as long as it is
chosen in a reasonable range. The main tuning parameter of the procedure is the threshold
parameter π0. In our analysis, π0 = 0.9 turned out to be a good choice. The threshold
parameter π0 is comparable to the level of significance in test-based procedures. In the
simulation studies presented in the following section, π0 = 0.9 caused false positive rates
of about 5% if no DIF was present which is a popular choice for the level of significance in
test-based procedures.
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We use stability selection as a method of variable selection, but it does not provide param-
eter estimates. Estimates for the identified DIF effects are obtained by fitting a final DIF
model for the selected items by maximum likelihood estimation. For illustration, Figure
5.3 shows the stability paths for the simulated data set from subsection 5.4.3 where four
out of 20 items have DIF. We used q = 0.6 · I = 12 and B = 500 subsamples. The stability
paths for the 4 DIF items are drawn with solid lines. They can clearly be separated from
the stability paths of the DIF-free items which are drawn with dashed lines. The threshold
value π0 = 0.9 is depicted by a dashed horizontal line. With the given threshold value, all
DIF items are identified, all DIF-free items are not selected.
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Figure 5.3.: Stability paths for exemplary data set; solid paths represent DIF items, dashed paths
represent non-DIF items; dashed horizontal line represents threshold values π0 = 0.9

5.4.5. Identifiability

Without any further constraints, the DIF-Model (5.3) is not identifiable. If person p tries
to solve item i, let the linear predictor be denoted by ηpi = θp − βi − xT

pγi. We set θP = 0,
which is a common constraint to obtain identifiability in simple Rasch models. However,
in the DIF model a fixed vector c allows to reparameterize the linear predictor to obtain

ηpi = θp − βi − xT
pγi = θp − xT

pc︸ ︷︷ ︸
θ̃p

−βi − xT
p (γi − c)︸ ︷︷ ︸

γ̃i

.

Thus, the parameter sets {θp, βi,γi} and {θ̃p, βi, γ̃i} describe the identical model. This
identification problem could be solved by restricting at least one item (the so-called reference
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item R) to have parameters γR = 0. But, by definition this item can not have DIF and,
therefore, would have to be chosen carefully. In particular, the choice of the reference item
(or the corresponding c) determines how many items show DIF (see also Chapter 4). A
sensible strategy is to select the constraints in a way that only few items show DIF. In this
respect the boosting approach offers a natural solution. The starting point of the algorithm
is the Rasch model and, therefore, the best model fit if no DIF is permitted. Step by step,
the DIF parameters are updated. During the boosting algorithm, every item which has not
yet been chosen as a DIF item can be used as reference item. Therefore, the models are
identifiable as long as at least one item is left out. In practice, one of the left-out items is
chosen to be the reference item R and for reasons of simplicity, we then use the additional
restriction βR = 0 instead of θP = 0.

5.5. Simulation Study

A simulation study is performed to illustrate the performance of the method in terms of
identification of DIF items. First, the method is compared to established methods of DIF
detection. This is done by simulation settings with only one binary or multi-categorical
covariate which can also be handled by existing methods. The second part of the simulation
will deal with settings with several (both continuous an categorical) covariates. These
settings can not be compared directly to established methods and are compared to the
recently published approach of DIFlasso from Chapter 4.

5.5.1. Comparison to Established Methods

Methods

Typically, in publications DIF is considered only for two groups, namely reference group and
focal group. The standard method for this purpose is the Mantel-Haenszel (MH) method
proposed by Holland and Thayer (1988). The methods consists in computing a χ2-test that
compares the performances of the groups separately for all items, conditional on the total
test score.

Alternative methods are, among others, Lord’s χ2-test (Lord, 1980) and the logistic re-
gression method (Swaminathan and Rogers, 1990). In Lord’s χ2-test, for each group the
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parameters are estimated separately. Afterwards, a χ2-test is used that tests the null hy-
pothesis of equal item parameters for both groups. The logistic regression method for the
detection of uniform DIF uses the model

log
(
P (Ypi = 1)
P (Ypi = 0)

)
= β0 + β1sp + β2xp (5.8)

for every item i, where sp is the total test score of person p and xp encodes the group
membership. A test on uniform DIF is performed by a likelihood ratio test (α = 0.05) on
the null hypothesis H0 : β2 = 0. Model (5.8) can be extended by including a parameter
for the interaction between the total test score and the group membership. This parameter
could be used to test for non-uniform DIF. After all, as the focus of this chapter is on
uniform DIF, this extension will not be considered here.

For the more general case of multi-group comparisons, the presented methods have been
extended by Somes (1986) and Penfield (2001) for MH, Kim et al. (1995) for Lord’s χ2 test,
and Magis et al. (2011) for logistic regression.

All results from the present chapter, including this simulation study, have been conducted
by the statistical software R (R Core Team, 2015). The three reference methods for the
simulation study are implemented in the add-on package difR, see Magis et al. (2010) and
Magis et al. (2013). The level of significance was chosen to be α = 0.05 for all performed
tests.

Settings

The simulation study encompasses five different settings. Each setting is performed for
different strengths of DIF, where the strength is measured by

1
IDIF

IDIF∑
i=1

 1
m

√√√√ m∑
j=1

γ2
ij

 ,
and IDIF encodes the number of DIF-items. The term

m∑
j=1

γ2
ij represents the variance of the

item difficulties βi+xT
pγi for standardized covariates, where m again encodes the number of

covariates. Therefore, the DIF strength in the simulations is measured as the mean of the
variance of the item difficulties while accounting for the number of covariates. For details
on measuring the DIF strength, see Chapter 4. The DIF strength in the simulation varies
between 0.3 (very strong), 0.15 (strong), 0.1125 (medium) and 0.075 (weak).

For each setting, P = 500 persons and I = 20 items were generated, abilities θ and
difficulties β were drawn from standard normal distributions. The number of groups and
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the number of DIF items are varied. In the following, we present the five used settings
and the used parameters for ‘strong‘ DIF, for a different DIF strength the parameters are
simply multiplied by a suited factor.

Setting 1 IDIF = 4 DIF items, k = 2 groups, γ1 = 0.15, γ2 = −0.15, γ3 = 0.1, γ4 =
−0.2, γ5, . . . , γ20 = 0

Setting 2 IDIF = 8 DIF items, k = 2 groups, γ1 = γ5 = 0.15, γ2 = γ6 = −0.15, γ3 = γ7 =
0.1, γ4 = γ8 = −0.2, γ9, . . . , γ20 = 0

Setting 3 same as Setting 1, but the abilities are highly correlated with the group
membership: θi|xi = 0 ∼ N(0, 1), θi|xi = 1 ∼ N(1, 1)

Setting 4 IDIF = 4 DIF items, k = 5 groups, γ1 = (0.4, 0, 0.3,−0.3), γ2 =
(0.5, 0.4,−0.2, 0),
γ3 = (0,−0.2, 0.4, 0.3), γ4 = (−0.2, 0.4, 0, 0.4), γ5 = . . . = γ20 = (0, 0, 0, 0)

Setting 5 IDIF = 8 DIF items, k = 5 groups, γ1 = γ5 = (0.4, 0, 0.3,−0.3), γ2 = γ6 =
(0.5, 0.4,−0.2, 0), γ3 = γ7 = (0,−0.2, 0.4, 0.3), γ4 = γ8 = (−0.2, 0.4, 0, 0.4),
γ9 = . . . = γ20 = (0, 0, 0, 0)

In addition, the general settings 1,3, and 4 were run under the assumption that no DIF is
present (IDIF = 0). The only difference between the corresponding settings 1 and 3 is that
in setting 3 the abilities correlate with the group membership.

Results

For every setting, 100 replications were performed. Table 5.1 shows the results for DIFboost
(q = 12 and π0 = 0.9) and the three reference methods in terms of true positive rate (TPR)
and false positive rate (FPR). The true positive rate is determined by the rate of correctly
identified DIF items. Therefore, higher values represent better performance. The false
positive rate represents the rate of DIF-free items which have been assigned to be DIF
items by mistake. Higher values represent worse performance.

For weak or medium DIF in settings 1-3, DIFboost outperforms MH and Lord in terms of
TPR with similar FPR. Logistic regression shows both higher TPR and FPR. For strong
and very strong DIF, DIFboost shows lower FPR than the competitors. In the multi-group
settings 4-5, DIFboost again shows very low FPR but also partly lower TPR. All in all, all
methods show rather similar results, DIFboost compares well to the competitors. This also
holds for the settings where no DIF is present. Again, Lord shows the lowest FPR and by
far does not reach the intended α-level of 5%.
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Setting DIFboost MH Lord Logistic

very strong TPR 0.725 0.765 0.733 0.810
FPR 0.030 0.037 0.025 0.049

P = 500 strong TPR 0.305 0.292 0.260 0.343

1 I = 20 FPR 0.041 0.034 0.026 0.048
IDIF = 4 medium TPR 0.190 0.168 0.147 0.203
k = 2 FPR 0.041 0.034 0.026 0.046

weak TPR 0.117 0.087 0.085 0.140
FPR 0.041 0.037 0.026 0.048

IDIF = 0 no DIF FPR 0.041 0.037 0.024 0.445

very strong TPR 0.705 0.782 0.757 0.823
FPR 0.019 0.044 0.033 0.051

P = 500 strong TPR 0.281 0.300 0.258 0.347

2 I = 20 FPR 0.029 0.034 0.026 0.047
IDIF = 8 medium TPR 0.198 0.179 0.161 0.217
k = 2 FPR 0.036 0.035 0.027 0.045

weak TPR 0.114 0.095 0.080 0.133
FPR 0.040 0.037 0.024 0.042

very strong TPR 0.677 0.685 0.692 0.735
FPR 0.034 0.044 0.031 0.062

P = 500 strong TPR 0.212 0.195 0.185 0.258

3∗ I = 20 FPR 0.045 0.041 0.031 0.059
IDIF = 4 medium TPR 0.150 0.128 0.120 0.170
k = 2 FPR 0.048 0.040 0.031 0.059

weak TPR 0.075 0.082 0.065 0.100
FPR 0.051 0.043 0.029 0.059

IDIF = 0 no DIF FPR 0.048 0.041 0.029 0.056

strong TPR 0.990 1.000 0.993 1.000
P = 500 FPR 0.027 0.049 0.017 0.058

4 I = 20 medium TPR 0.875 0.910 0.845 0.927
IDIF = 4 FPR 0.026 0.051 0.015 0.056
k = 5 weak TPR 0.570 0.593 0.470 0.608

FPR 0.031 0.049 0.016 0.053
IDIF = 0 no DIF FPR 0.047 0.052 0.017 0.51

strong TPR 0.976 0.999 0.995 1.000
P = 500 FPR 0.008 0.072 0.027 0.077

5 I = 20 medium TPR 0.866 0.944 0.884 0.942
IDIF = 8 FPR 0.008 0.062 0.020 0.063
k = 5 weak TPR 0.552 0.624 0.471 0.645

FPR 0.012 0.052 0.017 0.055

Table 5.1.: True positive rates (TPR) and false positive rates (FPR) from five different simulation
settings comparing DIFboost to the reference methods MH, Lord and Logistic regression
∗ the person abilities from Setting 3 are highly correlated with the group membership.

As an additional investigation, we compare the methods by the help of ROC-curves where
the TPR is plotted against the FPR, see Magis et al. (2015) for a similar analysis. For
that purpose, the settings presented above were used, but with varying parameters. For
the reference methods, the level of significance was varied while for DIFboost we varied
the threshold parameter π0. The goal was to provide a comparison of the methods that
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is not confounded by the choice of these parameters. Exemplarily, Figure 5.4 shows the
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Figure 5.4.: ROC-curves for all weak settings in the simulation study comparing DIFboost to the
reference methods MH, Lord and Logistic regression

ROC-curves for all weak settings, the ROC-curves for the other strengths shows similar
tendencies and are dropped for the sake of brevity. Again, it can be seen that in general
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the performance of all methods is very similar. After all, two tendencies can be seen
from the curves. First, DIFboost handles situations with many DIF items better than its
competitors. Therefore, it outperforms its competitors in setting 2 and especially in setting
5. Relative to its competitors, it improves from setting 1 to setting 2 and also from setting
4 to setting 5 when 8 instead of 4 items have DIF. Second, DIFboost seems to perform
better in more complex situations with more than two groups. Relative to its competitors,
it improves from setting 1 to setting 4 and from setting 2 to setting 5 (when k = 2 is
changed to k = 5). Finally, in setting 5 (with both k = 5 and IDIF = 8) DIFboost clearly
outperforms its competitors.

5.5.2. Simulations with Many Covariates

Methods

As DIFboost can include many covariates at the same time and is able to handle continuous
covariates, the method can be used in much more general settings than explored in the
previous section. In the following, we present a simulation study for settings, where several
possibly DIF-inducing covariates are available. The reference methods from the previous
section cannot be used in these situations. Consequently, we compare the methods to the
method of DIFlasso from Chapter 4.

The method of Rasch trees (Strobl et al., 2015) can also handle several (possibly continuous)
variables simultaneously. After all, this method only provides groups within the respondents
with equal item parameters. It does not provide an actual identification of DIF items as,
between different groups, all item parameters are different. Therefore, this method can not
be used for comparison when it comes to identification of DIF items and will not be used
in the simulation study.

Settings

Four different settings are considered, each with I = 20 items and m = 5 covariates (2
binary, 3 continuous). Again, abilities θ and difficulties β are drawn from standard normal
distributions. The number of persons and the number of DIF items are varied. For each
setting, ‘strong‘, ‘medium‘ and ‘weak‘ DIF is used with DIF strengths 0.3, 0.15 and 0.1125.
In the following, we present the four used settings and the used parameters for ‘medium‘
DIF, for a different DIF strength the parameters are simply multiplied by a suited factor.

Setting 1 P = 250 persons, IDIF = 4 DIF items, γ1 = (−0.5, 0.4, 0, 0, 0.5),
γ2 = (0, 0.5,−0.4, 0, 0.3), γ3 = (0.4, 0, 0.5,−0.5, 0), γ4 = (0, 0, 0.5, 0.4,−0.2),
γ5, . . . ,γ20 = (0, 0, 0, 0, 0)
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Setting 2 same as Setting 1, but with P = 500 persons

Setting 3 same as Setting 2, but with IDIF = 8 DIF items, items 5–8 same as items 1–4

Setting 4 same as Setting 2, but the abilities are highly correlated with the group
membership: θi|xi = 0 ∼ N(0, 1), θi|xi = 1 ∼ N(1, 1)

Again, for settings 1,2 and 4 also no-DIF settings are simulated, where 2 differs from 4 as
in the latter the abilities are correlated with the group membership.

Results

Table 5.2 shows the results for 100 replications of the different simulation settings in terms
of true positive rates (TPR) and false positive rates (FPR).

Setting DIFboost DIFlasso

strong TPR 1.000 1.000
P = 250 FPR 0.024 0.024

1 I = 20 medium TPR 0.873 0.228
IDIF = 4 FPR 0.028 0.000
m = 5 weak TPR 0.642 0.030

FPR 0.029 0.000
IDIF = 0 no DIF FPR 0.053 0.000

strong TPR 1.000 1.000
P = 500 FPR 0.011 0.036

2 I = 20 medium TPR 1.000 0.983
IDIF = 4 FPR 0.029 0.004
m = 5 weak TPR 0.948 0.383

FPR 0.026 0.000
IDIF = 0 no DIF FPR 0.051 0.000

strong TPR 1.000 1.000
P = 500 FPR 0.002 0.118

3 I = 20 medium TPR 0.990 0.993
IDIF = 8 FPR 0.007 0.021
m = 5 weak TPR 0.900 0.294

FPR 0.008 0.001

strong TPR 1.000 1.000
P = 500 FPR 0.016 0.028

4∗ I = 20 medium TPR 0.968 0.890
IDIF = 4 FPR 0.031 0.006
m = 5 weak TPR 0.873 0.228

FPR 0.033 0.000
IDIF = 0 no DIF FPR 0.065 0.000

Table 5.2.: True positive rates (TPR) and false positive rates (FPR) for four different simulation
settings comparing DIFboost to DIFlasso
∗ the person abilities from Setting 4 are highly correlated with one of the binary covariates.
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For medium and especially for weak DIF, DIFboost clearly outperforms DIFlasso in terms
of TPR. Also, DIFlasso shows increased FPR in some settings whereas DIFboost is very
stable regarding FPR. Therefore, DIFboost proved to be a very interesting alternative
regarding the DIF detection for several covariates. For the settings with no DIF, it is no
surprise that DIFlasso has a lower FPR than DIFboost. Still, the chosen parameters for
DIFboost provide FPRs around 5% and, therefore, if no DIF is present the procedure can
be compared to a test procedure with a level of significance α = 0.05.

5.6. DIF in the Intelligence-Structure-Test 2000 R

In the following, the method is applied to data from the Intelligence-Structure-Test 2000 R
(I-S-T 2000 R; source of supply is Testzentrale Göttingen, Herbert-Quandt-Str. 4, 37081
Göttingen, Tel. (0049-551) 999-50-999, www.testzentrale.de), developed by Amthauer
et al. (2001). The test is a fundamentally revised version of its predecessors I-S-T 70
(Amthauer et al., 1973) and I-S-T 2000 (Amthauer et al., 1999). Generally, it aims at
measuring the ability of deductive reasoning of the participants. It consists of three basic
modules on verbal intelligence, numerical intelligence and figural intelligence. Each of these
modules is divided into three subtests where each subtest consists of 20 items. For example,
the module for numerical intelligence consists of the subtests numerical calculations, number
series and numerical signs. Further details on the I-S-T 2000 R and its predecessors can be
found, for example, in Schmidt-Atzert et al. (1995), Brocke et al. (1998) and Schmidt-Atzert
(2002).

The data origin from a test on 273 students from different faculties from the university of
Marburg, Germany, aged between 18 and 39 years. The data have already been analysed in
Bühner et al. (2006), where the data were used to test if the I-S-T 2000 R is Rasch-scalable
using mixed Rasch models (Rost, 1990).

We will analyse the items of the subtest sentence completion from the module verbal intel-
ligence. Three covariates were used as possibly DIF inducing covariates, gender (0: male,
1: female), age (in years) and the interaction between gender and age.

Figure 5.5 shows the stability paths for DIFboost, where, in accordance with the simulation
study, the parameters q = 0.6 · I = 12 and π0 = 0.9 are chosen. It is seen, that four items
are identified to have DIF, namely the Items 8, 9, 11 and 15.

We illustrate the coefficients of the DIF-items by effect stars, see also Appendix A. Since the
logit link is used, the exponentials of the coefficients represent the effects of the covariates on
the odds P (Ypi=1)

P (Ypi=0) . The length of the rays corresponds to the exponentials of the respective
coefficients. The circle around each star has a radius of exp(0) = 1 and, therefore, represents
the no-effect case. Both gender and age were standardized prior to the analysis so that the

www.testzentrale.de
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Figure 5.5.: Stability paths for DIFboost for the items of the subtest sentence completion; dashed
line represents the threshold π0 = 0.9; items 8, 9, 11 and 15 are diagnosed as DIF items

size of the coefficient estimates is comparable. Figure 5.6 shows the effect stars for the
estimated coefficients and the item descriptions of the DIF items.

Generally, a ray beyond the circle represents positive coefficients. With positive coefficients,
the difficulty of the respective item is increased if the corresponding covariate is increased
while the probability to solve the item is decreased. Item 9, for example, has a negative
coefficient for gender. Therefore, this item is easier for female participants as female is
encoded by 1. After all, since also the interaction between gender and age is considered,
one has to look at all coefficients at a time. With growing age, the difficulty increases for
female participants.

Figure 5.7 shows for each DIF-item the effects of both gender and age on the probability
to score on the respective item. Separately for male (solid lines) and female (dashed lines)
participants, the probability to score on the respective item is depicted along the covariate
age. For simplicity, the plots refer to a person with a ’mean’ ability according to the
estimates of the θ parameters. Figure 5.7 demonstrates the effect of the interaction term.
As the probabilities to score on an item can intersect, the main effects of age or gender should
not be interpreted separately but always with respect to the interaction term. The ability
to include interaction terms in this manner can be seen as a big improvement compared to
existing methods of DIF detection allowing for new insights on the occurrence of DIF. In
extreme cases, both the main effects for gender and age could even be negligible but the
interactions term could still be influential.
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Mercury is a/an ...?
a) metal b) mineral c) solution d) mixture e) alloy

Fathers are ...? (more) experienced than their sons.
a) always b) usually c) much d) less e) fundamentally

Every river has ...?
a) fishes b) bridges c) ships d) gradients e) rapids

A watch always needs (a) ...?
a) battery b) case c) numbers d) energy e) hands

Figure 5.6.: Effect stars and item descriptions for items with DIF in the subtest sentence comple-
tion (IST 2000 R, Amthauer et al., 2001) detected by DIFboost
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Figure 5.7.: Probabilities to score on items depending on gender and age for all DIF-items. Solid
lines represent male, dashed lines represent female participants.

Therefore, item 9 can not generally be assumed to be easier for female participants. This
holds only for participants younger than 30 years, but the order changes for older partic-
ipants. Items 11 and 15 are, in general, easier for male participants, in particular if they
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are rather young. For growing age this difference slowly vanishes, in item 11 the effect is
even reversed for higher age.

For comparison, the data also were analyzed with the method of Rasch trees (Strobl et al.,
2015), the corresponding Rasch tree is plotted in Figure 5.8.
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Figure 5.8.: Rasch tree for subtest sentence completion. Highlighted items represent items diag-
nosed to be DIF items by other methods.

By recursive partitioning of the covariate space, one tries to find groups within the obser-
vations which have the same item parameters. In our case, only one partition was found
in the data, namely male and female participants. For age, no significant difference was
found. When using recursive partitioning, the item parameters are estimated separately
within the groups. The estimates are also shown in Figure 5.8. The estimates for the items
diagnosed as DIF items from the other methods are highlighted. But, by far the highest
difference between both groups seems to be for item 14 which is the hardest item for male
participants and the easiest item for female participants. However, all other methods did
not identify item 14 to be a DIF item. That means, Rasch trees may yield quite differ-
ent results than other methods when trying to identify DIF items. To our knowledge, no
systematic investigation that compares Rasch trees and alternative methods is available.
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5.7. Concluding Remarks

A new method called DIFboost is proposed to detect DIF that is induced by several co-
variates simultaneously. In the case of DIF in subgroups, the method competes well with
established methods for DIF detection. For the more general case of several, possibly con-
tinuous covariates, it outperforms the competitive DIFlasso approach from Chapter 4.

In contrast to the established test procedures, DIFboost is able to identify DIF items
without the specification of anchor items. In most other methods, one assumes that the
other items have no DIF and, therefore, all items besides the investigated item serve as
anchor items. Besides this strategy, there exist other possibilities to find anchor items,
see, e.g., Kopf et al. (2015) or Woods (2009). After all, the need for anchor items remains
problematic, especially if many possible covariates have to be considered.

DIFboost is a model-based method. This provides two further advantages over test-based
methods. First, the problem of multiple testing is avoided. Generally, DIF tests perform
one test per item and covariate. A test is designed to restrict the probability of a type
I error to a certain level. After all, if there are many covariates and many items, there
are many tests and the problem of multiple testing arises. To control for that, correction
strategies as, for example, the Bonferroni adjustment become necessary.

Second, unlike tests, the DIFboost method provides parameter estimates which allow for
a deeper look into the data structure and gives interpretable results. The linear effects of
the covariates can be complemented by the incorporation of interaction effects or by using
smooth functions for the covariates effects. Therefore, model-based methods do not only
tell us which items have DIF but also provide valuable information about the underlying
covariate effects.

For simplicity, the presented approach is limited to the Rasch model. However, extensions
to other models are possible and should be investigated in future research. For example,
the boosting algorithm seems well suited to an extension to the 2PL model. The parameter
estimation in the 2PL model is rather complicated because of its multiplicative structure.
By using boosting concepts, this problem can be tackled in a stepwise way. In particular,
the discrimination parameters can be used as further base learners that are updated only
for those items that call for it.



6. The Bradley–Terry Model

In the previous chapters, concepts for the inclusion of covariates into item response mod-
els, in particular into the Rasch model, were treated. The proposed methods allow for a
generalization of the Rasch model by including additional information of the subjects into
the model. In the following chapters, similar concepts for paired comparison models will be
proposed. Therefore, in this chapter the Bradley-Terry model as the most popular model
for paired comparison data will be introduced.

6.1. The Basic Bradley–Terry Model

The Bradley-Terry model is the indisputable standard model for the modeling of paired
comparison data, see Agresti (2002) and Bradley (1984) for basic introductions. Originally,
it was proposed by Bradley and Terry (1952). Sometimes, the Bradley-Terry model is also
referred to as the Bradley-Terry-Luce (BTL) model indicating the connection of the model
to Luce’s choice axiom formulated in Luce (1959). Luce‘s choice axiom states that the
decision between two objects is not influenced by other objects. This statement is also
known as the independence from irrelevant alternatives.

As indicated in Chapter 1, the Bradley-Terry model has a strong connection to the Rasch
model (see Chapter 2) and can be seen as its counterpart for homogeneous (instead of
heterogeneous) paired comparisons. Assuming a set of items {a1, . . . , am}, in its most
simple form the Bradley-Terry model is denoted by

P (ar � as) = P (Y(r,s) = 1) = exp(γr − γs)
1 + exp(γr − γs)

.

The response of the model represents the probability that a certain item ar is preferred
over another item as, ar � as. This response can be formalized in the random variable
Y(r,s) which is defined to be Y(r,s) = 1 if ar is preferred over as and Y(r,s) = 0 otherwise.
The parameters γr, r = 1, . . . ,m, represent the attractiveness or strength of the respective
items. For identifiability, a restriction on the parameters is needed, for example∑m

r=1 γr = 0
or γm = 0.
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The basic Bradley-Terry model can be embedded into the framework of generalized linear
models (GLMs) and is simply estimated as a binary logit model. The linear predictor ηrs
can simply be rewritten using dummy variables for the objects involved in the respective
pair (r, s) by

η(rs) = γr − γs = x
(r,s)
1 γ1 + · · ·+ x(r,s)

m γm = (x(r,s))Tγ.

Here, the components of the vector x(r,s) = (x(r,s)
1 , . . . , x(r,s)

m ) are given by

x
(r,s)
j =


1 j = r

−1 j = s

0 otherwise.
.

Using these variables, an appropriate design matrix can be built and standard software
for generalized linear models, more precisely for binomial logit models, can be used for
estimation.

6.2. Extensions of the Bradley–Terry Model

Tutz (1986) and Agresti (1992) extended the Bradley-Terry model to the case of ordered
response, for example to allow for a 5-point scale (much better, slightly better, equal,
slightly worse, much worse). In particular, a category for ties is often necessary for various
applications, for example in sport competitions. For K different response categories, the
model considers the cumulative probabilities

P (Y(r,s) ≤ k) = exp(θk + γr − γs)
1 + exp(θk + γr − γs)

with k = 1, . . . , K denoting the the possible response categories. The parameters θk repre-
sent the so-called threshold parameters for the single response categories, they determine
the preference for specific categories. In particular, Y(r,s) = 1 represents the maximal pref-
erence for item ar over as and Y(r,s) = K represents the maximal preference for item as
over ar. In general, for ordinal paired comparisons it can be assumed that the response
categories have a symmetric interpretation so that P (Y(r,s) = k) = P (Y(s,r) = K − k + 1)
holds. Therefore, the threshold parameters should be restricted with θk = −θK−k and, if
K is even, θK/2 = 0 to guarantee for symmetric probabilities. The threshold for the last
category is fixed to θK = ∞ so that P (Y(r,s) ≤ K) = 1 will hold. The probability for
a single response category can be derived from the difference between two adjacent cate-
gories, P (Y(r,s) = k) = P (Y(r,s) ≤ k) − P (Y(r,s) ≤ k − 1). To guarantee for non-negative
probabilities for the single response categories one restricts θ1 ≤ θ2 ≤ . . . ≤ θK . The ordinal
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Bradley-Terry model corresponds to a cumulative logit model and can be estimated using
methods from this general framework.

In some specific paired comparisons it can be decisive in which order the competing items
are presented. Typical examples are sports events. Here, the first-mentioned team typically
is the team playing at its home ground where it might have a (home) advantage over its
opponent. Therefore, the assumption that the response categories are symmetric does not
hold anymore and the model needs to be adapted accordingly. Extending the basic models
by an additional parameter δ, the binary Bradley-Terry model is denoted by

P (Y(r,s) = 1) = exp(δ + γr − γs)
1 + exp(δ + γr − γs)

and the ordinal model is denoted by

P (Y(r,s) ≤ k) = exp(δ + θk + γr − γs)
1 + exp(δ + θk + γr − γs)

.

Here, δ denotes the order effect which is simply incorporated into the design matrix by an
additional intercept column. If δ > 0, it increases the probability of the first-named object
ar to win the comparison or, in case of an ordinal response, to achieve a good result. Given
the order effect, the symmetry assumption for the response categories still holds.





7. Modelling Heterogeneity in Paired
Comparison Data

7.1. Introduction

Paired comparisons are a well established method to measure the relative preference or
dominance of objects or items. The aim is to find the underlying preference scale by
presenting the items in pairs. The method has been used in various areas, for example, in
psychology, to measure the intensity or attractiveness of stimuli, in marketing, to evaluate
the attractiveness of brands, in social sciences, to investigate the value orientation (e.g.
Francis et al. (2002)). In all these applications the items or stimuli are presented in an
experiment. But paired comparison are also found in sports whenever two players or teams
compete in a tournament. Then, the non-observable scale to be found refers to the strengths
of the competitors. Paired comparisons can be obtained from ranked data (Francis et al.,
2010) or from scale data (Dittrich et al., 2007). In this kind of data, respondents rank
a predefined number of items or assign values from a Likert scale to the items, always
referring to a certain attitude of the respondents towards the items. Building differences
between the ranks or scales yields (binary or ordered) paired comparison data. We consider
an application that shows how to analyse scales for the preference of parties by paired
comparisons. In a German pre-election study the respondents were asked to scale the most
renowned German parties. The focus of the analysis is on the inclusion of subject-specific
covariates to account for the heterogeneity in the population and to investigate which
variables determine the preference. More precisely, we investigate which clusters of parties
are distinguished by specific covariates allowing that some covariates have no effect on the
preference at all.

The most widely used model for paired comparison data is the Bradley-Terry-Luce model. It
has been proposed by Bradley and Terry (1952) and is strongly linked to Luce’s choice axiom
(Luce, 1959). The basic model has been extended in various ways allowing for dependencies
among responses, time dependence or simultaneous ranking with respect to more than

This chapter is a modified version of the technical report 183 (Schauberger and Tutz, 2015c), previous
work on the issue can be found in the conference paper Schauberger and Tutz (2015a). See Chapter 1
for more information on the personal contributions of all authors and textual matches.
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one attribute. Overviews are found in the review of Bradley (1976), the monograph of
David (1988) and more recently in the review of Cattelan (2012). The method proposed in
this chapter can be applied both to binary and ordered response. Former approaches for
ordered responses in paired comparisons include Tutz (1986) and Agresti (1992). Dittrich
et al. (2004) also combine ordered responses and the inclusion of covariates, yet in a quite
different modelling approach using log-linear models and without variable selection.

When persons choose between a pair of items most models assume that the strengths of
the items are fixed and equal for all persons. Heterogeneity over persons has rarely been
modeled explicitly. Exceptions are Turner and Firth (2012) or Francis et al. (2010), where
categorical covariates are considered, but the application is very low dimensional with just
two covariates, one with two and one with four categories. Also in Francis et al. (2002)
covariates are included. Their model allows even for smooth effects of subject-specific
covariates, but the fitting procedure that is proposed is also restricted to few variables.
More recently, Casalicchio et al. (2015) presented a boosting approach that is able to include
explanatory variables. An alternative approach has been proposed by Strobl et al. (2011).
It is based on recursive partitioning techniques (also known as trees) and automatically
selects the relevant variables among a potentially large set of variables.

The method proposed here is an alternative to handle the inherently high dimensional
estimation problem that comes with the inclusion of explanatory variables. Maximum
likelihood estimation is replaced by penalized estimation methods. By using a specific L1-
type penalty, the method is able to fit in high dimensional settings and to form clusters of
items regarding the variables that generate heterogeneity.

In Section 7.2 the basic Bradley-Terry-Luce model for binary and ordered response is in-
troduced. Then the model is extended to include subject-specific covariates. Section 7.3
contains the integration of the proposed model into the framework of generalized linear
models and the penalty term is introduced. Section 7.3 also describes the implementation
of the algorithm, the search for the optimal tuning parameter and the calculation of boot-
strap confidence intervals. In Section 7.4, the method is applied to data from the German
Longitudinal Election Study (GLES).

7.2. Bradley-Terry Models with Covariates

7.2.1. The Basic Model

Let {a1, . . . , am} denote the set of objects or items to be compared in a paired compari-
son experiment. The basic Bradley-Terry model (Bradley and Terry, 1952) specifies the
probability that item ar is preferred over as as



7.2 Bradley-Terry Models with Covariates 79

P (ar � as) = exp(γr − γs)
1 + exp(γr − γs)

,

where, for reasons of identifiability, we use the restriction ∑m
r=1 γr = 0. The parameters

γr, r = 1, . . . ,m, represent the attractiveness of the items {a1, . . . , am}. The interpretation
as strength parameters is straightforward. For γr = γs, the probability that ar is preferred
over as is 0.5, for growing distance γr − γs the probability increases.

With the random variable Y(r,s) = 1 if r � s and Y(r,s) = 0 otherwise one obtains the logit
model

log
(
P (Y(r,s) = 1)
P (Y(r,s) = 0)

)
= γr − γs.

7.2.2. Bradley-Terry Models with Ordered Response

In some applications, paired comparison data can or should not be reduced to binary
decisions. For example in sport events like football matches where also draws are possible,
simple binary paired comparisons are not appropriate. A model that allows for ordinal
responses is the cumulative Bradley-Terry-Luce model (Tutz, 1986) which has the form

P (Y(r,s) ≤ k) = exp(θk + γr − γs)
1 + exp(θk + γr − γs)

(7.1)

with the same restriction ∑m
r=1 γr = 0.

The parameters θ1, . . . , θK represent threshold parameters for the different levels of the
response Y(r,s) ∈ {1, . . . , K}. The response Y(r,s) = 1 corresponds to a strong preference
of ar over as and Y(r,s) = K corresponds to a strong preference of as over ar. The basic
Bradley-Terry model can be seen as a special case of model (7.1) for binary response with
K = 2.

The strength parameters γ1, . . . , γm have the same interpretation as in the binary model.
With increasing γr the probability for low response categories, and therefore the strong
preference of ar over as is increasing while the probability for large response categories
denoting dominance of as decreases. The threshold parameters determine the preference
for specific categories. The threshold for the last category K is restricted to θK = ∞ so
that P (Y(r,s) ≤ K) = 1 holds. It is sensible to put further restrictions on the threshold
parameters to ensure equal probabilities for corresponding categories if the order of the
paired comparison is reversed. Therefore, we use the restrictions θk = −θK−k and, if K
is even, additionally θK/2 = 0. These restrictions ensure, for example, that Y(r,s) = 1
(maximal preference of ar over as) has the same probability as Y(s,r) = K. Due to these
restrictions, bK−1

2 c (free) threshold parameters have to be estimated. In the special case
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of binary response (K = 2) all threshold parameters are omitted and the model reduces to
the ordinary Bradley-Terry model. If an order effect is required, for example to model the
home advantage in sport competitions, an additional parameter can be included. For the
application considered here no order effect is needed and therefore is omitted.

Formally, model (7.1) is a cumulative logit model, also called a proportional odds model.
For a response variable consisting of K ordered categories, one models K − 1 cumulative
probabilities P (Y(r,s) ≤ 1), . . . , P (Y(r,s) ≤ K − 1). The probability for a single response
category is represented by the difference P (Y(r,s) = k) = P (Y(r,s) ≤ k) − P (Y(r,s) ≤ k − 1).
Therefore, P (Y(r,s) ≤ k) has to be greater or equal P (Y(r,s) ≤ k − 1) for k = 1, . . . , K to
have non-negative probabilities for all single categories. As the probabilities only differ with
respect to the threshold parameters, this is ensured if θ1 ≤ θ2 ≤ . . . ≤ θK .

7.2.3. Heterogeneity in the Bradley-Terry Model

The models considered so far assume that all persons have the same preference structure.
Heterogeneity in the population is simply ignored. A more sensible assumption is that
preferences depend on covariates that characterize the person that chooses.

Let Yi(r,s) denote the response of person i for given pair of items (r, s) and xT
i = (xi1, . . . xip)

be a person-specific covariate vector. It is assumed that the strength of the preference of
item ar for person i is determined by γir = βr0+xT

i βr. That means there is a global strength
parameter βr0 but the effective strength is modified by the covariates. The parameter
βTr = (βr1, . . . , βrp) contains the effect of the covariates on item ar. The corresponding
model has the form

P (Yi(r,s) ≤ k | xi) = exp(θk + γir − γis)
1 + exp(θk + γir − γis)

= exp(θk + (βr0 + xT
i βr)− (βs0 + xT

i βs))
1 + exp(θk + (βr0 + xT

i βr)− (βs0 + xT
i βs))

= exp(θk + βr0 − βs0 + xT
i (βr − βs))

1 + exp(θk + βr0 − βs0 + xT
i (βr − βs))

(7.2)

As in model (7.1), the sum-to-zero constraints ∑m
r=1 βrj = 0 with j = 0, 1, . . . , p are used

for identifiability.

The model allows for different preference structures in sub populations. For illustration let
us consider the simple case where the person-specific variable codes a subgroup like gender,
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which has two possible values. Let xi = 1 for males and xi = 0 for females. Then the
strengths parameters for item r are

βr0 + βr for males and βr0 for females.

The βr represents the difference in attractiveness of item ar between males and females.
When items ar and as are compared the dominance in the male population is determined by
(βr0−βs0) + (βr−βs), in the female population by (βr0−βs0). Thus the female population
is like a reference population with dominance determined by the difference in the basic
parameters (βr0 − βs0). The preference in the male population is modified by the term
βr− βs, and can be quite different. If one prefers a more symmetric representation one can
choose xi = 1 for males and xi = −1 for females obtaining for the strengths parameters for
item r

βr0 + βr for males and βr0 − βr for females.

Then βr represents the deviation of the attractiveness of item r from the baseline attrac-
tiveness βr0. When items ar and as are compared the dominance in the male population is
determined by (βr0 − βs0) + (βr − βs), in the female population by (βr0 − βs0)− (βr − βs).
Thus the difference of the basic parameters βr0 − βs0 is augmented by βr − βs in the male
population and reduced by the same value in the female population.

The model accounts for the heterogeneity in the population by explicitly linking the attrac-
tiveness of alternatives to explanatory variables. The weight parameters βr reflect how the
attractiveness of a specific alternative depends on the covariates.

7.3. Penalized Estimation

The main problem with the general model (7.2) is the number of parameters that are in-
volved. One has (with the given restrictions)

⌊
K−1

2

⌋
threshold parameters and for each

item the (p+1)-dimensional parameter vector (βr0,βr). In general, not all covariates might
have a (different) influence on all m items. Therefore, we propose to use a penalized like-
lihood approach instead of ordinary maximum likelihood estimation to reduce the number
of involved parameters and to select the relevant variables. In a first step we embed the
estimation into the framework of generalized linear models (GLMs) and then introduce
penalty terms.
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7.3.1. Embedding into Generalized Linear Models

First, the ordinal Bradley-Terry model is embedded into the framework of Generalized
Linear Models (GLMs). In the ordinal Bradley-Terry model without covariates the linear
predictor η(r,s)k = θk + γr − γs can be given as

η(r,s)k = θk + x
(r,s)
1 γ1 + · · ·+ x(r,s)

m γm = θk + (x(r,s))Tγ,

where x(r,s)
l = 1 if l = r, x(r,s)

l = −1 if l = s, and x
(r,s)
l = 0 otherwise, encodes the

considered pair. The whole vector x(r,s) has the simple form x(r,s) = 1r − 1s, where
1r = (0, . . . , 0, 1, 0, . . . , 0) has length m with 1 at position r. In this model the strength
of an item is the same for all persons, which is a strong assumption ignoring potential
heterogeneity.

In the general model with covariates, and therefore explicit modelling of heterogeneity, the
linear predictor has the form

ηi(r,s)k = θk + βr0 − βs0 + xT
i (βr − βs)

= θk +
p∑
j=0

xij(βrj − βsj) = θk +
p∑
j=0

m∑
l=1

xijx
(r,s)
l βlj

where xi0 = 1 is a fixed intercept. Here, xT
i = (xi1, . . . , xip) represents a covariate vector

associated to person i and, therefore, the linear predictors for the same pair are different
for persons. For j > 0 the predictor is determined by interactions between xij and the
items, which reflects the underlying structure that the item strength is modified by the
covariates.

The link between the linear predictor and the probability P (Yi(r,s) ≤ k | xi) is deter-
mined by the logistic distribution function. It should be noted that the ordered response
is transformed into a multivariate response yT

i(r,s) = (yi(r,s)1, . . . , yi(r,s)q) with q = K − 1
binary variables where yi(r,s)k = 1 if Yi(r,s) ≤ k and yi(r,s),k = 0 if Yi(r,s) > k. With
πi(r,s)k = exp(ηi(r,s)k)/(1 + exp(ηi(r,s)k)), the covariance structure for such a multivariate
response is given by

Cov(yi(r,s)) =


πi(r,s)1(1− πi(r,s)1) πi(r,s)1(1− πi(r,s)2) · · · πi(r,s)1(1− πi(r,s)q)

πi(r,s)1(1− πi(r,s)2) πi(r,s)2(1− πi(r,s)2)
...

...
. . .

...

πi(r,s)1(1− πi(r,s)q) · · · · · · πi(r,s)q(1− πi(r,s)q)
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Because of the restrictions θk = −θK−k and, if K is even, θK/2 = 0, the design matrix
for the threshold parameters has a special form. As stated above, for a response with
K categories, bK−1

2 c different threshold parameters have to be estimated. Therefore, the
part of the design matrix corresponding to the paired comparison (r, s) of one person is a
(K − 1)× bK−1

2 c matrix. This matrix is given by



1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1
0 · · · 0 −1
... . .

. 0

0 −1
...

−1 0 · · · 0



or



1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1
0 · · · · · · 0
0 · · · 0 −1
... . .

. 0

0 −1
...

−1 0 · · · 0


for K uneven or even, respectively. As stated above, for K = 2 the model reduces to a
GLM with binomial distributed response and all threshold parameters are eliminated from
the model.

7.3.2. Selection by Penalization

In regression models with β as the parameter vector penalization approaches maximize the
penalized likelihood

lp(β) = l(β)− λJ(β),

where l(β) is the usual log-likelihood and J(β) is a penalty term that penalizes specific
structures in the parameter vector. The parameter λ is a tuning parameter that specifies
how seriously the penalty term has to be taken. A simple penalty term that could be
used is the squared length of the parameter vector J(β) = βTβ = ∑

β2
i , known as ridge

penalty, see, for example Hoerl and Kennard (1970), Nyquist (1991), Segerstedt (1992),
LeCessie (1992). Then, for λ = 0 maximization yields the ML estimate. If λ > 0 one
obtains parameters that are shrunk toward zero. For appropriately chosen λ the ridge
estimator stabilizes estimates. A disadvantage of the ridge estimator is that it does not
select variables. Thus no reduction of the model is obtained. An alternative penalty is
the L1-penalty, also known as lasso (Tibshirani, 1996), which is able to select variables.
Instead of the squared parameters one penalizes the absolute values of the parameters with
the penalty term J(β) = ∑ |βi|. For penalized likelihood estimation, it is essential that
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all covariates are on comparable scales. Therefore, in the following it is assumed that all
covariates are standardized.

However, the simple lasso cannot be used directly since penalty terms for paired comparison
models have to account for the specific structure of the model. In particular, in model
(7.2) one has the parameters of the regular (ordinal) BTL model, namely the threshold
parameters and, for each item r, a parameter βr0 for its basic attractiveness. They form the
basic model and, therefore, will not be penalized. In the general model one has additional
parameters for the interaction between the items and the covariates. These parameters will
be penalized to obtain the interactions that are actually needed. The proposed penalty
term has the form

J(α) =
p∑
j=1

∑
r<s

wrsj|βrj − βsj|,

where r, s ∈ {1, . . . ,m}, wrsj is a weight parameter and the parameters are collected in
αT = (θ1, . . . , θK−1, β10, . . . , βmp). The penalty has the effect that the parameters referring
to the same covariate are shrunk towards each other. For large values of λ, the differences
are shrunk to exactly zero so that the effect of a covariate is the same for two (or more
items). Therefore, the penalty yields clusters of items which share the same effect of a
certain covariate. With growing tuning parameter, these clusters become bigger until all
items form one single cluster. In that case, due to the sum-to-zero constraints all parameters
are zero and the covariate is irrelevant for the attractiveness of the items. The penalty is
a L1-type fusion penalty rather than a simple lasso. Similar penalties have been used for
the modelling of factors in GLMs by Bondell and Reich (2009), Gertheiss and Tutz (2010)
and Oelker et al. (2014). More recently, penalties of this form have also been used in the
modelling of paired comparison models by Masarotto and Varin (2012) and will also be used
in Chapter 8. However, these applications do not use the penalty term for the modelling
of heterogeneity by inclusion of covariates.

For illustration, Figure 7.1 shows the coefficient paths corresponding to a covariate j for
a toy example with m = 5 items. The paths are drawn along the (normed) penalty term∑
r<s
|βrj − βsj| for covariate j. It can be seen that the penalty enforces a clustering of the

items when the penalty is increased. In the unpenalized model, all items form clusters of
their own. With increasing penalty, items 1 and 4 form a cluster, later item 3 is integrated
into that cluster. Next, also items 2 and 5 form a cluster and finally all items form one
single cluster. If all items share the same parameter (all parameters are zero) that means
that the respective covariate is eliminated from the model. Therefore, the proposed penalty
term enforces both clustering of items and variable selection at the same time.

Zou (2006) proposed the so-called adaptive lasso as an extension of the regular lasso. In
contrast to regular lasso, it provides consistency in terms of variable selection. In the
adaptive lasso, the single penalty terms are weighted with the inverses of the unpenalized
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Figure 7.1.: Exemplary coefficient paths for a covariate j in a setting with m = 5 different items

ML-estimates. In a similar way the weight parameters wrsj are defined by wrsj = |βML
rj −

βML
sj |−1. The effect is that small differences in the ML-estimates are penalized stronger than

bigger differences which has the effect that the clustering of the parameters is enforced.

7.3.3. Implementation

L1 penalized cumulative logit models have, e.g., been used in Archer and Williams (2012)
and are implemented for R (R Core Team, 2015) in Archer (2014a) and Archer (2014b).
However, these implementations are limited to lasso type penalties for coefficients. They
cannot be used to penalize differences between parameters as required in the paired com-
parison case. Moreover, in order to obtain consistent estimates we want to include the
weights wrsj. For that purpose, a new fitting algorithm was implemented that is able to
fulfill these requirements. It is based on the idea of approximating penalties proposed by
Oelker and Tutz (2015), which is implemented in the R-package gvcm.cat (Oelker, 2015),
yet not for cumulative logit models. For shorter computation time, the fitting algorithm
itself is implemented in C++ and integrated into R using the packages Rcpp (Eddelbuettel
et al., 2011; Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson, 2014).
The code is available on CRAN in the R-package BTLLasso (Schauberger, 2015a).
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7.3.4. Choice of Penalty Parameter

The performance of penalized estimation methods is essentially determined by the choice
of the tuning parameter λ. It determines which covariates modify the attractiveness and
forms the clusters within the chosen covariates. Mostly, two different approaches are used to
determine tunings parameters, namely model selection criteria and cross-validation. Model
selection criteria like the AIC (Akaike, 1973) or the BIC (Schwarz, 1978) try to find a
compromise between the complexity of the model and the model fit. The complexity of
a model is determined by its degrees of freedom. While for ML estimation, the degrees
of freedom simply correspond to the number of parameters, the degrees of freedom for
penalized likelihood approaches, in particular with a penalty applied on differences, are
not straightforward. Therefore, we use cross-validation. In cross-validation, the data set is
divided into a predefined number of subsets. Each subset is once used as a test data set
while the remaining subsets serve as training data. The model is fitted (for a predefined
grid of values for the tuning parameter λ) on the training data while the test data are
used for prediction. Then, the predictive performance in the test data can be measured,
for example by using the deviance. Moreover, this procedure provides a measure of the
predictive performance of the model for every value from the predefined grid of tuning
parameters. The tuning parameter with the best performance is chosen. We adapted this
general principle to our specific case. The persons or subjects are treated as the observation
units so that all paired comparisons corresponding to one person are in the same subset.

7.3.5. Confidence Intervals

In contrast to maximum likelihood estimators, for estimators from penalized likelihood ap-
proaches one cannot use the information matrix to obtain standard errors or confidence in-
tervals. Therefore, alternative techniques have to be used. We propose to use the bootstrap
method for that purpose. The main idea of bootstrap is to replace an unkown distribution
by the respective empirical distribution function. Then, for a predefined number of boot-
strap iterations B, a subsample from the empirical distribution function is drawn. In our
case, for a single bootstrap iteration, n persons are drawn from the original sample with
replacement. The proposed procedure is applied to the sampled data set, including the
model selection using cross–validation. Therefore, the additional variance originating from
the process of model selection is incorportated in the resulting confidence intervals. Finally,
for every parameter bootstrap confidence intervals can be calculated using the empirical
α/2 and 1− α/2 quantiles from the B bootstrap estimates for the respective parameter.
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7.4. Application to Pre-Election Data from Germany

The proposed method is applied to data from the German Longitudinal Election Study
(GLES), see Rattinger et al. (2014). The GLES is a long-term study of the German electoral
process. It collects pre- and post-election data for the several federal elections.

7.4.1. Data

The data we are using here originate from the pre-election survey for the German federal
election in 2013. In this specific part of the study, the participants (n = 1155 after elim-
inating all incomplete cases) were asked to rank the most important parties (CDU/CSU,
SPD, Greens, Left Party, FDP, we eliminated the smaller parties AfD and the Pirate Party)
for the upcoming federal election on a scale from −5 to +5. Plass et al. (2015) used the
data in the context of modelling approaches for undecidedness. The ranks Zr reflect the
general opinions of the participants of party r where +5 represents a very positive and −5
represents a very negative opinion. The main goal of this application is to analyse which
characteristics of the participants are connected to the opinions of the single parties. For
that purpose, we generated paired comparisons out of the rankings. A similar approach for
the analysis of rank data using paired comparisons was proposed by Francis et al. (2010).
They also discuss the advantages of a paired comparison approach to model this form of
data. For each participant, the differences between the ranks of all parties were calculated,
ending up with ordered paired comparisons with values between −10 and 10. The response
was narrowed down to an ordered response with five categories. The data now represent
paired comparisons between all parties measured on an ordered five-point scale:

Zr − Zs ∈ {6, 10} 7→ Y(r,s) = 1 : "I strongly prefer party r over party s"
Zr − Zs ∈ {1, 5} 7→ Y(r,s) = 2 : "I slightly prefer party r over party s"

Zr − Zs = 0 7→ Y(r,s) = 3 : "I have equal opinions of parties r and s"
Zr − Zs ∈ {−5,−1} 7→ Y(r,s) = 4 : "I slightly prefer party s over party r"
Zr − Zs ∈ {−10,−6} 7→ Y(r,s) = 5 : "I strongly prefer party s over party r"

Within the GLES study, several characteristics of the participants are observed that possibly
could affect the preference for the single parties. For our application, the following covariates
are considered:

• Age: age of participant in years

• Gender: female (1); male (0)
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• East Germany: East Germany/former GDR (1); West Germany/former FRG (0)

• Personal economic situation: good or very good (1); neither/nor, bad or very bad (0)

• School leaving certificate: Abitur/A levels (1); else (0)

• Unemployment: currently unemployed (1); else (0)

• Attendance in Church/Mosque/Synagogue/...: at least once a month (1); else (0)

• Have you been a German citizen since birth: yes (1); no (0)

7.4.2. Results

In the following, the results for the proposed method are presented for a model where all
covariates described above are considered as possibly influential variables. The optimal
model is determined by 10-fold cross-validation. Figure 7.2 shows the deviances obtained
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Figure 7.2.: Deviance path for 10-fold cross-validation, dashed vertical line represents model with
lowest deviance.

by cross-validation plotted against the (normed) size of the penalized differences. Strong
penalization corresponds to values close to 0, weak penalization to values close to 1. The
dashed vertical line represents the model with the lowest deviance. Figure 7.3 shows the
corresponding coefficient paths for the threshold parameters θ1 and θ2 and the party-specific
intercepts β10, . . . , βm0. These parameters are not penalized. In principle, they might be
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Figure 7.3.: Coefficient paths for all unpenalized parameters (threshold parameters θ1 and θ2
and party-specific intercepts). Dashed vertical line represents optimal model according to 10-fold
cross-validation.

different for different tuning parameters λ. In the current application, it is seen that both
the threshold parameters and the intercepts hardly change along their paths.

Figure 7.4 shows the corresponding coefficient paths for the eight covariates. The coefficient
paths are drawn separately for each covariate. It is seen how the penalty term enforces
clustering of the different parties. The dashed vertical lines represent the optimal model
according to the 10-fold cross-validation.

The coefficient paths allow for interesting insights into how the preference of the voters for
certain parties depends on characteristics of the voters themselves. Let us first consider the
covariate unemployment. With respect to unemployment, the parties can be divided into
two main clusters. The Left party and the Greens in one cluster, CDU, SPD and FDP in
another cluster. As a global tendency one sees that unemployed persons tend to prefer the
younger parties (Greens and Left Party) while the tendency to the more established parties
(SPD, CDU, FDP) is reduced. In the optimal model, the second cluster of parties can be
further divided into a cluster of SPD and FDP and a cluster only consisting of CDU. For
gender, four different clusters are identified in the final model. The Greens are much more
attractive for female than for male voters and form a cluster of their own. The SPD and
the Left party seem almost equally attractive for males and females while the CDU and
the FDP are more attractive for males. For the variable school leaving certificate, a very
sparse solution with only two clusters (Greens vs. all other parties) emerged confirming
the reputation of the Greens to be a party for academics. The German citizenship was
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Figure 7.4.: Coefficient paths separately for all eight covariates. Dashed vertical lines represent
optimal model according to 10-fold cross-validation.

completely eliminated from the model, naturalized citizens do not systematically prefer
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other parties than citizens that were German citizens since birth. The variables age and
church attendance have a specific impact on the preference of parties and every party forms
a cluster of its own.

Similar to the results in chapters 4 and 5, again effect stars (see Appendix A for more
details) can be used to visualize the results. As seen in Figure 7.4, the coefficients can be
grouped by covariates. Therefore, per covariate one effect star can be plotted to visualize the
effect of the respective covariate for all parties. Figure 7.5 shows the respective effect stars
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Figure 7.5.: Effect stars for all eight covariates illustrating parameter estimates corresponding to
cv-optimal model.

illustrating the estimates corresponding to the optimal model found by cross-validation. As
usual in effect stars, the lengths of the rays correspond to the exponentials of the respective
estimates. The dashed circle has a radius equal to exp(0) = 1 and, therefore, represents
effects equal to zero. In most cases, the estimates vary around the circle. Some effects
are outside the circle representing positive effects and some effects are within the circle
representing negative effects. The covariate German citizenship is eliminated from the
model and, therefore, all effects are located exactly on the no-effect circle. In contrast to
Figure 7.4, effect stars only show the actual estimates instead of the complete paths. This
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allows for a better comparability between the effects of different covariates. A disadvantage
of effect stars is that the cluster effect of the penalty is not displayed anymore.
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Figure 7.6.: Paths representing the sums of absolute differences for all eight covariates. Dashed
vertical line represents optimal model according to 10-fold cross-validation.

Figure 7.6 shows the paths for whole covariates represented by the sum of absolute differ-
ences between all parameters corresponding to one covariate. Every covariate is represented
by a single path. With the used penalty term, the sum of the absolute differences between
all parameters corresponding to one covariate can be seen as a measure of effect strength for
this covariate. Again, one has to keep in mind that all covariates have been standardized.
It can be seen that, not very surprisingly, the personal economic situation of the voters is
the most important modifier of the preference of a party in the data set. Yet, the first co-
variate that is included (for decreasing tuning parameter λ) is the covariate East Germany.
Even 23 years after the German reunification, the differences between the former GDR and
the former FRG were still extremely relevant in 2013. Also the covariates age and church
attendance have very strong effects. Again, it can be seen that the variable German citizen-
ship since birth is eliminated from the model. Figure 7.6 can provide valuable additional
information on the paths depicted in Figure 7.4 where the variable importance is harder to
recognize due to the different scales in the single plots.

Finally, B = 500 bootstrap iterations were performed to receive confidence intervals. Fig-
ure 7.7 depicts the estimates of all (penalized) parameters together with the corresponding



7.4 Application to Pre-Election Data from Germany 93

●

●

●

●

●

−0.3 −0.1 0.1 0.2 0.3

Age

CDU

SPD

FDP

Left Party

Greens

(in years)

●

●

●

●

●

−0.15 −0.05 0.05 0.15

Gender

CDU

SPD

FDP

Left Party

Greens

female (1); male (0)

●

●

●

●

●

−0.2 0.0 0.1 0.2 0.3 0.4

East Germany

CDU

SPD

FDP

Left Party

Greens

East Germany (1); West Germany (0)

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

Pers. econ. situation

CDU

SPD

FDP

Left Party

Greens

(very) good (1); else (0)

●

●

●

●

●

−0.15 −0.05 0.05 0.15

School certificate

CDU

SPD

FDP

Left Party

Greens

Abitur/A levels (1); else (0)

●

●

●

●

●

−0.15 −0.05 0.05 0.15

Unemployment

CDU

SPD

FDP

Left Party

Greens

currently unemployed (1); else (0)

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2 0.3

Church attendance

CDU

SPD

FDP

Left Party

Greens

at least once a month (1); else (0)

●

●

●

●

●

−0.10 −0.05 0.00 0.05

German citizen

CDU

SPD

FDP

Left Party

Greens

yes (1); no (0)

Figure 7.7.: Parameter estimates and 95% bootstrap confidence intervals separately for all eight
covariates.

95% bootstrap confidence intervalls. It can be seen if two clusters differ significantly from
each other. For example, the parameters for the Left party and the Greens are not signifi-
cantly different for church attendance although they are splitted into two different clusters.
For the covariate unemployment, no parameter is significantly different from zero although
three different clusters were estimated. Except for the covariates unemployment and Ger-
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man citizenship, for all other covariates at least one coefficient differs significantly from
zero.

7.4.3. Inclusion of Twofold Interactions

In a further step, a model with all covariates as main effects and all interactions between
two covariates is considered. In total, this results in a model with 8 main effects and
28 twofold interactions as possible influence variables. Figure 7.8 shows the sums of
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Figure 7.8.: Paths representing the sums of absolute differences for all eight covariates and all
twofold interactions. Dashed vertical line represents optimal model according to 10-fold cross-
validation.

the absolute differences for all influence variables. Similar to the main effects model, the
covariates personal economic situation, church attendance, age and East Germany are the
most important influence variables. Yet, there are also some important interactions, like
for example the interaction between East Germany and church attendance. In total, 13 out
of all possible 28 influence variables are eliminated completely from the model. The labels
in Figure 7.8 only show the names of the influence variables which entered the model.

Again, 95% bootstrap confidence intervals (B = 500) were calculated for all parameters (not
shown here). Figure 7.9 shows all twofold interactions where at least one parameter was
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Figure 7.9.: Coefficient paths separately for all eight covariates and for all significant twofold
interactions. Dashed vertical lines represent optimal model according to 10-fold cross-validation.

significantly different from zero. The paths of the main effects are very similar to Figure 7.4
and are left out for the sake of brevity. Except for the covariates German citizenship and
unemployment, all main effects were significant (i.e. at least one parameter was significant
different from zero). The interactions allow for additional insights into how covariates affect
the preferences for the single parties. Exemplarily, we examine the interaction between age
and the personal economic situation. Following the main effects, the preference for the Left
party is decreased with growing age and if voters are in a good economic situation. After
all, the interaction between both covariates has a negative effect. Therefore, for voters in a
good economic situations the preference for the Left party increases with growing age.

7.5. Concluding Remarks

A model that explicitly accounts for heterogeneity in (possibly ordered) paired comparison
models is proposed. The heterogeneity is modeled by the incorporation of subject-specific
covariates. The model is estimated using a specific L1-type penalty. The penalty has two
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main features: First, the penalty clusters items with regard to certain covariates. There-
fore, one can identify clusters of items whose preferences are equally affected by a covariate.
Second, the penalty can eliminate whole covariates from the model indicating that the re-
spective covariates do not affect the preference for one or another item. Bootstrap intervals
can be calculated which can be used to check if certain parameters differ significantly.

In particular the ability to select and cluster distinguishes the method from the few methods
that are able to include covariates in paired comparison models. Francis et al. (2010) and
Francis et al. (2002) include covariates but do not select the relevant ones, Casalicchio
et al. (2015) presented a boosting approach that is able to select explanatory variables but
is unable to detect clusters. Moreover, an advantage of penalty methods over boosting
approaches is that the structure of the regularization is more clearly defined. In contrast to
Strobl et al. (2011), where the underlying structure is searched for by recursive partitioning
techniques, we consider a parametric model that allows for easy interpretation of parameters
and clustering.

The proposed method could be extended in various ways. First, the restriction of the
covariate effects to linear terms could be weakened by allowing for smooth covariate effects.
A big challenge with such an approach would be to find an appropriate penalty term to
have a similar cluster effect as for the linear terms. Second, the model could be extended
by item-specific covariates similar to Chapter 8. For the application to the data from the
GLES in this chapter, this would correspond to the inclusion of party-specific covariates,
for example the popularity of the respective leading candidates.



8. Extended Ordered Paired Comparison
Models with Application to Football
Data

8.1. Introduction

Bayern München has been the dominating team in the season 2012/2013 of the German
football league Deutsche Bundesliga. The dominance can be seen from the ranking accord-
ing to the final points order. In the Bundesliga the winning team gains 3 points, the losing
team receives nothing, and both teams gain 1 point if the match is drawn. This scheme of
distributing points according to the outcome of the match can be seen as an ad hoc measure
of the strengths of teams. But it is not without problems. In particular, if a team wins it is
irrelevant if the adversary was a weak or a strong team. In the same way, each team gains
one point in a draw, although, if the difference in strengths is large, the performance is weak
for the stronger team but strong for the weaker team. A more elaborate way to measure
the strength of teams is by considering the strength of a team as a latent trait and the per-
formance, that is, the observable results, as determined by the latent traits of both teams.
Models of this type have some tradition in statistics, in particular Bradley-Terry (BT-)
models have been used to model competitions. Proposed by Bradley and Terry (1952),
the model has been widely used to measure underlying strength in sport competitions.
Dynamic models were considered, for example, by Fahrmeir and Tutz (1994), Knorr-Held
(2000), Glickman and Stern (1998), and, more recently, by Cattelan et al. (2013).

In this chapter, we analyse the results of the German Bundesliga. We use a general latent
trait model that does not only account for draws but allows for ordinal response categories
that represent the competition results, thereby aiming at the efficient use of the information
in the data. The model also includes an effect that represents the advantage in playing at
home, which can also vary over teams. Aspects of the model have been already proposed
in the literature. Models that allow for a draw were proposed by Rao and Kupper (1967),

This chapter is a modified version of Tutz and Schauberger (2015a), previous work on the issue can be
found in the technical report 151 (Tutz and Schauberger, 2014). See Chapter 1 for more information on
the personal contributions of all authors and textual matches.
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Davidson (1970) and used to model sports tournaments by Cattelan et al. (2013). Models
that allow for any number of ordered response categories were proposed by Tutz (1986) and
Agresti (1992). Heterogeneity of the home advantage has been considered by Kuk (1995),
Knorr-Held (2000), and Glickman and Stern (1998), but only for models with a draw. An
approach to find clusters of teams that can not be distinguished has been proposed by
Masarotto and Varin (2012). Here, it is extended to work in the general model and also to
find clusters of teams with the same home advantage.

In a second step it is investigated how much of the variation in the strengths of the teams is
explained by team-specific covariates. It is especially interesting how much of the strength
of a team is explained by the budget. Is Bayern Munich the best team because it is the
richest club in Germany? For the analysis the estimated strength parameters are used and
a model that includes effects of covariates is proposed. Estimation is based on penalization
methods that allow to group the abilities of teams. We analyse the German Bundesliga
data and demonstrate that the model with explanatory variables yields useful estimates.

In Section 8.2 we briefly describe the data. In Section 8.3 we introduce the general ordinal
model and give results for the Bundesliga. Section 8.5 is devoted to the inclusion of team-
specific explanatory variables.

8.2. German Bundesliga

Before defining latent trait models, which will be quite general for the modelling of compe-
tition results, we briefly describe the structure of the German Bundesliga competition. The
tournament comprises m = 18 teams, we analyse the matches played in the 50th season
of the Bundesliga from August 24, 2012 to May 18, 2013 . The tournament structure is
that of a double round-robin, each team competes twice against all the other teams, once
on home ground and once away. On average, 42.5% of the matches were won by the home
team, 25.5% of the matches ended with a draw and 32% of the matches were won by the
away team. Table 8.1 shows the results ranked according to the final points order.

Two aspects from the final ranking are unique occurences in the history of the Bundesliga.
Bayern München was the dominating team for the season and set several new records. For
example, Bayern München gained the highest number of points and victories for a team
in one season. For the Spielvereinigung Greuther Fürth, it was the first participation in
the German Bundesliga, they were the first team without a victory on home ground for a
whole season.
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Points Home Away Ability QSE Rank
FC Bayern München 91 44 47 2.562 0.377 1
Borussia Dortmund 66 33 33 1.361 0.314 2

Bayer 04 Leverkusen 65 39 26 0.983 0.306 3
FC Schalke 04 55 33 22 0.460 0.300 4

Eintracht Frankfurt 51 31 20 0.350 0.300 6
Sport-Club Freiburg 51 28 23 0.409 0.300 5

Hamburger SV 48 26 22 0.023 0.300 11
Borussia Mönchengladbach 47 29 18 0.235 0.300 7

Hannover 96 45 32 13 0.074 0.300 9
1. FC Nürnberg 44 27 17 0.057 0.300 10
VfB Stuttgart 43 19 24 -0.183 0.302 13
VfL Wolfsburg 43 17 26 0.000 0.300 12

1. FSV Mainz 05 42 26 16 0.084 0.300 8
SV Werder Bremen 34 20 14 -0.272 0.303 14

FC Augsburg 33 20 13 -0.562 0.307 16
1899 Hoffenheim 31 19 12 -0.616 0.308 17

Fortuna Düsseldorf 30 21 9 -0.287 0.303 15
SpVgg Greuther Fürth 21 4 17 -0.956 0.315 18

Table 8.1.: Final ranking of the German Bundesliga 2012/2013 including points in home matches
and away matches; the last three columns show the estimated abilities, quasi standard errors
and the ranking corresponding to the estimated abilities for the ordered model including a home
advantage parameter

8.3. Ordered Paired Comparison Model with Home
Advantage

In the following, latent trait models are considered. The basic concept is that the probability
of winning or losing is determined by the underlying strengths of teams. While the strengths
are fixed the result of a competition is a random variable. The models can be used in all
competitions where two teams or players compete in a tournament like tennis, football, and
chess. In some sports there is a clear winner, in others draws can occur. Another feature
that depends on the form of competition is that home effects can occur. In particular, in
football playing at the home ground seems to be advantageous. We will consider a general
model that can account for all these effects.

8.3.1. The Basic Binary Bradley-Terry Model

Let {a1, . . . , am} denote the set of teams or players that compete. In the simplest case when
a team can only win or lose the relation between the underlying strengths of the teams and
the outcome can be modeled by the Bradley-Terry model (Bradley and Terry, 1952), which
specifies for the probability that ar beats as
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P (ar � as) = exp(γr − γs)
1 + exp(γr − γs)

.

The parameters γr, r = 1, . . . ,m, can be interpreted as the strengths of the teams
{a1, . . . , am}. For γr = γs the probability that ar wins against as is 0.5, for growing
distance γr − γs the probability increases accordingly.

With the random variable Y(rs) = 1 if r � s and Y(rs) = 0 otherwise one obtains the logit
model

log
(
P (Y(rs) = 1)
P (Y(rs) = 0)

)
= γr − γs.

The model in this form is not identifiable because strengths parameters γr + c for fixed
value c yield the same probabilities. Therefore, a constraint is needed. We choose to fix
one parameter, that is, γm is set to zero defining object am to be the reference object. In
our case the reference team is Wolfsburg.

8.3.2. Ordinal Models Including the Advantage in Playing at Home

Let now the success of team ar in a match between team ar and as be measured on an ordinal
scale represented by Y(rs) ∈ {1, . . . , K}, for odd K, where low numbers denote dominance
of team ar and high numbers dominance of team as. The scale is assumed to be symmetric
regarding the two teams. That means the numbers 1 to K represent categories like "strong
dominance of team ar", "weak dominance of team ar" "draw", "weak dominance of team
as", "strong dominance of team as". In the simplest case, where K = 3, the responses are
"team ar wins", "draw", "team as wins". But to exploit the information contained in the
results of matches one might also consider the differences in scored goals as indicators of
dominance. In the application we use a difference of at least 2 goals as an indicator for
strong dominance and work with a 5-point scale. A model that allows for ordered responses
is the cumulative type model

P (Y(rs) ≤ k) = F (η(rs)k), η(rs)k = θk + γr − γs, (8.1)

where F (.) is a symmetric distribution function, which in Bradley-Terry type models is the
logistic distribution function. The linear predictor η(rs)k contains the difference in strengths
γr − γs and so-called threshold parameters that account for the frequency of the response
categories. The symmetry of the response categories entails the restrictions θk = −θK−k,
t = 1, . . . , [K/2]. That means, in particular, that for teams with identical strengths, γs = γr,
one obtains P (Y(rs) = k) = P (Y(rs) = K + 1 − k). For the most important case K = 3
one obtains P (Y(rs) = 1) = P (Y(rs) = 3), that means that the probability of winning is the
same for both teams. Similar restrictions are needed if the number of response categories
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K is even, which is relevant only in competitions that do not allow for a draw (see Tutz
(1986)).

The cumulative model (8.1) is able to use the information contained in ordered responses;
with more categories better estimates are to be expected. In the literature alternative
models have been proposed. In particular, the adjacent category model, proposed by Agresti
(1992) is an alternative that also uses the full information in ordinal data. It is an extension
of the three category model of Davidson (1970), which can also be estimated within a
log linear model framework (Dittrich et al., 2004). Further applications of the adjacent
categories model are found in Dittrich et al. (2000), Böckenholt and Dillon (1997a) and
Böckenholt and Dillon (1997b).

Home Effects

When modelling competitions one also has to account for the advantage deriving from
playing at home. Let the first index of response Y(rs) represent the home team. To include
the advantage of the home team, the linear predictor is extended to

η(rs)k = δ + θk + γr − γs,

where δ represents the home effect. It is typically positive and, therefore, increases the
probability for low response categories that correspond to the dominance of team ar. It is
easily derived that for K = 3 and equal strength, γr = γs, δ reflects the proportion of odds
for winning of team ar and winning of team as,

δ = 1
2 log

(
P (Y(rs) = 1)/(1− P (Y(rs) = 1))
P (Y(rs) = 3)/(1− P (Y(rs) = 3))

)
.

However, it is questionable that the home effect is the same for each team. Some teams
may profit more from playing at home than others. A team-specific home effect is obtained
by using the predictor

η(rs)k = δr + θk + γr − γs.

In this general model the γ-parameters do not represent the strengths of teams per se
because performance depends on whether playing at home or not. Again, for K = 3 and
equal strength, γr = γs, the home effect when playing at the home ground of team ar is
given by the proportion of odds for winning (of team ar) against losing

δr = 1
2 log

(
P (Y(rs) = 1)/(1− P (Y(rs) = 1))
P (Y(rs) = 3)/(1− P (Y(rs) = 3))

)
.
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But in the general model, the proportion of odds for winning (of team ar) against losing
when playing at the home ground of the second team as are not just the inverse of the
proportion when playing at the home of team ar as in the model with constant home
effect.

By defining γ̃r = δr + γr, the predictor obtains the form η(rs)k = θk + γ̃r − γs. As in the
basic model (8.1), the result of a match is determined by the difference of strength, but
now it is γ̃r − γs. Therefore, γ̃r represents the strength when playing at home and γr the
strength when not playing at home.

8.3.3. Fitting the Model

Estimation of the cumulative model can be embedded into the framework of generalized lin-
ear models (GLMs), which were thoroughly investigated by McCullagh and Nelder (1989).
For data Y(rs) ∈ {1, . . . , K}, r, s ∈ {1, . . . ,m} the linear predictor can be written as

η(rs)k = δr + θk + γr − γs = δr + θk + x
(r,s)
2 γ2 + · · ·+ x(r,s)

m γm = δr + θk + (x(r,s))Tγ,

where the components of the (m− 1)-vector x(r,s) are given by

x
(r,s)
j =


1 j = r

−1 j = s

0 otherwise.

Thus, it is a cumulative model with threshold θk, the additional parameter δr and "predictor"
x(r,s). The predictor can also be given by x(r,s) = 1r − 1s, where 1r = (0, . . . , 0, 1, 0, . . . , 0)
has lengthm−1 with 1 at position r. Cumulative models have been considered in particular
by McCullagh (1980), estimation within the framework of multivariate GLMs was consid-
ered by Fahrmeir and Tutz (2001) and by Tutz (2012). The embedding into this framework
allows to use the familiar goodness-of-fit statistics as well as likelihood ratio statistics to
test hypotheses if one assumes that the observations given the abilities are independent.

8.3.4. Football Data

We first consider the modelling of the football data under the assumption that the home
advantage is global, that is, it does not depend on the team. Then, one has one strength
parameter for each team and does not have to distinguish between the strength when playing
at home or away. In the following, we try to use the available information by using a 5-point
scale to evaluate the performance in a competition. The categories refer to "winning with



8.3 Ordered Paired Comparison Model with Home Advantage 103

a difference of at least two goals", "winning with a difference of less than two goals" and
"draw" as the middle category.

Global Home Effect Model

The estimated home advantage is δ̂ = 0.293; for the threshold parameters one obtains
θ̂1 = −θ̂4 = −1.66 and θ̂2 = −θ̂3 = −0.65. If one assumes that two teams have equal
abilities, the threshold parameters correspond to probabilities of 0.41 for a victory of the
home team, 0.31 for a draw and 0.28 for a victory of the away team. Thus the home
advantage can definitely not be ignored. The tendency is also seen from the averages
over all games, because 42.5% of the matches were won by the home team, 25.5% of the
matches ended with a draw and 32% of the matches were won by the away team. But these
numbers are averages over games played by teams with differing abilities. The strength
of the latent trait model is that the home advantage takes this variation of abilities into
account when estimating the home advantage. Table 8.1 shows the estimated abilities
together with the ranks according to the final points. It is seen that for the best teams
the rank is in accordance with the estimated abilities but in the middle part of the table
there are some permutations. However, quasi standard errors, computed following Firth
and De Menezes (2004) suggest that the permutations are not to be taken too seriously.
This will be investigated in more detail in Section 8.4.

Team-Specific Home Effects

The question if home effects are team-specific is investigated by computing the likelihood
ratio test for the hypothesis that all effects are equal, yielding a value of 24.69 on 17 degrees
of freedom, which corresponds to a p-value of 0.102. Therefore it is not significant when
using significance level 0.05, but nevertheless it is small. If one uses a 3-point scale that
only distinguishes between "winning", "draw" and "losing", the p-value is 0.022, which is
definitely smaller. In Table 8.2 the estimates and the corresponding ranks are given when
one distinguishes between home and away strength. As always in the applications we use
the more informative 5-point scale. It is seen that for the best performers the order is very
stable. It is the same when playing at home or away or when not distinguishing between the
two. But one also finds large differences. For example, Hannover has rank 4 at home, but
rank 17 when playing away with a difference of 1.167 in abilities. For Wolfsburg the ranks
are just the opposite, it has rank 17 at home and rank 4 when playing away. Wolfsburg is
also one of the few teams that have larger ability when playing away with a negative value
for the home effect.
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Overall Home Away
Ability Rank Ability Rank Ability Rank

FC Bayern München 2.562 1 1.871 1 2.220 1
Borussia Dortmund 1.361 2 0.901 2 0.729 2

Bayer 04 Leverkusen 0.983 3 0.851 3 0.013 3
FC Schalke 04 0.460 4 0.191 6 -0.505 6

Eintracht Frankfurt 0.350 6 0.258 5 -0.782 11
Sport-Club Freiburg 0.409 5 -0.068 8 -0.334 5

Hamburger SV 0.023 11 -0.490 11 -0.708 8
Borussia Mönchengladbach 0.235 7 -0.020 7 -0.722 9

Hannover 96 0.074 9 0.338 4 -1.505 17
1. FC Nürnberg 0.057 10 -0.140 9 -0.999 14
VfB Stuttgart -0.183 13 -1.024 16 -0.564 7
VfL Wolfsburg 0.000 12 -1.262 17 0.000 4

1. FSV Mainz 05 0.084 8 -0.293 10 -0.782 10
SV Werder Bremen -0.272 14 -1.014 15 -0.803 12

FC Augsburg -0.562 16 -0.881 13 -1.541 18
1899 Hoffenheim -0.616 17 -0.966 14 -1.486 16

Fortuna Düsseldorf -0.287 15 -0.695 12 -1.204 15
SpVgg Greuther Fürth -0.956 18 -2.278 18 -0.906 13

Table 8.2.: Comparison of the estimated abilities from the model with a global home advantage
to the estimated abilities from the model with team-specific home advantages

Ranks and Abilities

The traditional measure for the performance of teams is the number of gained points sum-
marized over all games. It is interesting to investigate, how this measure that is defined
by the association of the football league is related to the abilities found by the fitting of
a latent trait model. It turns out that the correlation is quite high. For the 50th season
we obtained a correlation of 0.982, which means that gained points and abilities measure
almost the same. One may wonder if this is an effect of the specific scheme, which gives
winning team 3 points, the losing team nothing, and both teams 1 point if the match is
drawn. Is this scheme appropriate under the assumption that the latent trait model is
an adequate representation of the link between the observations and the latent abilities?
Therefore, we shortly investigate how the scheme of distributing points influences the corre-
lation between number of points and estimated abilities. In a general scheme, the winning
team gains w > 0 points, the losing team nothing and both teams d > 0 points if the match
is drawn. It is easily derived that for constant proportion w/d one obtains up to a scaling
factor the same number of points. Because a scaling factor is irrelevant when computing
the correlation, it suffices to vary only one of the two parameters w and d. Without loss
of generality we set d = 1. Figure 8.1 shows the dependence of the correlation on the
gained points for winning w (bold faced curve). It is seen that the maximum is obtained
for w = 2.2, which is not far from the 3 points fixed in the regulations. The curve decreases
slowly beyond its maximum. That means, also much higher points could be given to the
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winning team and still the number of points would be in strong accordance with the abili-
ties. The strong correlation found for the data could be related to the double round robin
structure of the tournament. In paired comparisons, where not all pairs are evaluated,
we expect lower correlations. To investigate the effects we have drawn sub samples of the
paired comparisons containing 50% of the pairs. Two specific sub samples are the results
of the first round and the second round. Figure 8.1 shows the corresponding correlations.
It is seen that, depending on the sample, correlations can be much smaller. That means,
in particular, for an ongoing season, when not all matches have been played, the ranking
by points and abilities are less strongly connected.

1 2 3 4 5 6
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85
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95

w

r
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Total season
First round
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Random subsample

Figure 8.1.: Correlations plotted against the points gained when winning for the whole season
(bold faced curve), first round (dashed), second round (dashed dotted) and several sub samples.

8.4. Identification of Clusters

A disadvantage of simply measuring the performance of teams by points is that there is no
information on the precision of this measurement tool. In contrast the latent trait model
allows to evaluate which teams are really to be distinguished. One way is to consider the
standard errors, which contain the information about the relevance of differences between
the estimated abilities. An alternative approach is to explicitly aim at finding clusters
of teams which share the same ability by using regularization techniques. Clustering tech-
niques proposed by Bondell and Reich (2009) and Gertheiss and Tutz (2010) have been used



106 8. Extended Ordered Paired Comparison Models with Application to Football Data

by Masarotto and Varin (2012) to cluster abilities in a paired comparison model which al-
lows for draws. In this section we will use these techniques in the general case of ordinal
response data. In Section 8.4.2 the method is extended to find clusters of abilities as well
as clusters of home advantages.

8.4.1. Clustering of Teams

One way of obtaining regularized estimates is to use penalty terms that yield structured
estimates. Instead of maximizing the log-likelihood, one maximizes the penalized log-
likelihood

lp(β) = l(β)− λJ(β),

where l(β) denotes the familiar un-penalized log-likelihood, λ is a tuning parameter, and
J(β) is a penalty term. A specific penalty term, which enforces the clustering of abilities
and which will also be useful later, is given by

J(β) =
∑
r<s

wrs|γr − γs|, (8.2)

where wrs are specific weights. The penalty is a fusion type penalty, which enforces the
fusion of abilities. By using the L1-norm it enforces, in particular, that for growing λ

abilities are set equal. The effect of the penalty is also seen by looking at extreme values of
the tuning parameter λ. If λ→∞, all strength parameters γr are estimated as identical.

Cluster Ability
1 FC Bayern München 2.26
2 Borussia Dortmund 1.06
3 Bayer 04 Leverkusen 0.73
4 FC Schalke 04; Sport-Club Freiburg; Eintracht Frankfurt 0.01
5 Borussia Mönchengladbach; 1. FSV Mainz; Hannover 96; 0.00

1. FC Nürnberg; Hamburger SV; VfL Wolfsburg
6 VfB Stuttgart; SV Werder Bremen; Fortuna Düsseldorf -0.04
7 FC Augsburg; 1899 Hoffenheim -0.33
8 SpVgg Greuther Fürth -0.70

Table 8.3.: Clusters of teams with corresponding abilities.

In the case of a global home advantage the procedure typically yields distinct clusters.
Figure 8.2 shows the coefficient paths with the weights given by wrs = |γ̂(ML)

r −γ̂(ML)
s |−1, where

γ̂(ML)
r denotes the maximum likelihood estimate of team ar. For details of this weighting

scheme, which yields more stable coefficient paths than un-weighted fusion penalties, see
Gertheiss and Tutz (2010) and Masarotto and Varin (2012). The straight lines in Figure
8.2 represent the BIC (Schwarz, 1978) and the AIC (Akaike, 1973) criterion. Based on the
BIC criterion one finds that the 18 teams are divided into eight clusters with abilities being
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Figure 8.2.: Coefficient paths for ability parameters in the model with a global home advantage
using an adaptive L1-penalty.

identical within clusters. Table 8.3 shows the clusters and the corresponding estimated
abilities. It is seen that the three best teams and the worst team form clusters of their
own. The second worst cluster contains two teams. All other teams are collected in three
big clusters, which have rather similar abilities. In fact, if one measures abilities only up
to one digit, they form just one big cluster.

8.4.2. Clustering of Teams and Home Effects

Clustering becomes much more difficult if one suspects team-specific home advantages be-
cause then one has to distinguish the strength when playing at home and the strength
when playing away. A penalty term that clusters the home advantage, δr, the abilities
when playing at home, γr + δr, as well as the abilities when playing away, γr, is

J(β) =
∑
r<s

wrs|γr − γs|+
∑
r<s

urs|γr − γs + δr − δs|+
∑
r<s

vrs|δr − δs|.
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with wrs = |γ(ML)
r −γ(ML)

s |−1, urs = |γ(ML)
r −γ(ML)

s + δ(ML)
r − δ(ML)

s |−1, and vrs = |δ(ML)
r − δ(ML)

s |−1.
It enforces clustering of both abilities and the home advantage. For the selection of the
optimal tuning paramater λ, we again use the BIC criterion

BIC(λ) = −2 · l(β) + df(λ) · log(n),

where n is the number of observations. It depends on the degrees of freedom df(λ) of
the respective model. For penalized models, the degrees of freedom do not equal the
number of parameters in the model because of the effects of shrinkage and variable selection.
Therefore, following Buja et al. (1989), the degrees of freedom are calculated by tr(2H −
HTH). Here, H represents the hat matrix obtained in the last Fisher scoring step in
the penalized iteratively re-weighted least squares (PIRLS) algorithm that is used. The
algorithm and the corresponding hat matrix are described in more detail by Oelker and
Tutz (2015).

Cluster (ability home) Ability
1 FC Bayern München 1.84
2 Borussia Dortmund 0.61
3 Bayer 04 Leverkusen 0.44
4 Hannover 96; FC Schalke 04; Eintracht Frankfurt; -0.21

Sport-Club Freiburg
5 Borussia Mönchengladbach; 1. FC Nürnberg; 1. FSV Mainz 05; Hamburger SV -0.22
6 Fortuna Düsseldorf -0.48
7 FC Augsburg; SV Werder Bremen; VfB Stuttgart; 1899 Hoffenheim -0.50
8 VfL Wolfsburg -0.55
9 SpVgg Greuther Fürth -1.56
Cluster (ability away) Ability
1 FC Bayern München 1.68
2 Borussia Dortmund 0.17
3 Bayer 04 Leverkusen; VfL Wolfsburg 0.00
4 Sport-Club Freiburg; FC Schalke 04 -0.65
5 Borussia Mönchengladbach; VfB Stuttgart; Hamburger SV; -0.66

Eintracht Frankfurt; 1. FSV Mainz 05; SV Werder Bremen;
1. FC Nürnberg; SpVgg Greuther Fürth

6 Fortuna Düsseldorf -0.91
7 Hannover 96; 1899 Hoffenheim;FC Augsburg -0.94
Cluster (home advantage) Ability
1 Hannover 96 0.73
2 Eintracht Frankfurt; Bayer 04 Leverkusen; 1. FC Nürnberg; 0.44

Borussia Mönchengladbach; FC Schalke 04; FC Augsburg;
1899 Hoffenheim; 1. FSV Mainz 05; Fortuna Düsseldorf

3 Sport-Club Freiburg; Hamburger SV; Borussia Dortmund 0.43
4 SV Werder Bremen; FC Bayern München; VfB Stuttgart 0.15
5 VfL Wolfsburg -0.55
6 SpVgg Greuther Fürth -0.90

Table 8.4.: Clusters of teams when distinguishing between abilities when playing at home and
playing not at home, and clusters of home advantages.
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Figure 8.3.: Coefficient paths for home abilities, away abilities and home advantages in the model
with team specific home advantages using an adaptive L1-penalty

Figure 8.3 shows the coefficient build-ups and Table 8.4 the corresponding clusters. For
the strong teams one obtains very similar classes, but in particular in the middle different
clusters are found when playing at home and away. Clustering of the home effect yields
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essentially 5 classes; Hannover is a class of its own, the big clusters 2 and 3 are hardly
different and there are even two clusters with negative home advantage.

8.5. Accounting for Explanatory Variables

Scaling of teams by use of paired comparison models yields estimated abilities but does not
explain why some teams are better than others. If one wants to explain the variation in
abilities, a natural way is to include covariates in the model. The most interesting variables
are variables that characterize the clubs and, therefore, the teams, in contrast to variables
that are shared by both teams like day of the week or weather when playing. Explanatory
variables of the latter type are more interesting when items are compared and preference
is to be modeled as a function of characteristics of the person that chooses. Explanatory
variables of this type have been considered in Chapter 7 and, for example, by Dittrich et al.
(1998) when modeling the preference for European universities.

8.5.1. A Model with Team-Specific Explanatory Variables

Let the data be given by (Y(rs), r, s ∈ {1, . . . ,m},x1, . . . ,xm) where Y(rs) ∈ {1, . . . , K}
denotes the ordinal response and xr is a vector of explanatory variables linked to team ar.
Exemplarily, we will consider the budget of a club, which should be influential because the
budget determines if a club is able to get the best and most expensive players.

In a general model that accounts for team-specific variables, the strength of the teams, γr,
is replaced by γr + xT

rα yielding the linear predictor

η(rs)k = δr + θk + γr − γs + (xr − xs)Tα.

In this model, parameters are not identifiable because the parameters γr can not be distin-
guished from the parameters γ̃r = γr + xT

rα. Therefore, additional constraints are needed
to obtain unique estimates. A very restrictive model that is identifiable has been proposed
by Springall (1973). He obtains identifiability by setting γr = 0, r = 1, . . . ,m. The corre-
sponding model assumes that the explanatory variables totally determine the abilities. It
is hardly appropriate when a limited number of explanatory variables is available.

A much better and more flexible way to constrain estimates is to use a random effects
model. By assuming that the strengths are random effects, for example, by assuming
γr ∼ N(0, σ2), parameters can be estimated within a random effects model, see Turner and
Firth (2012) who used random effects models to account for correlations between responses.
An alternative approach that is advocated here is to use penalized estimation procedures
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within a fixed effects model framework. If one assumes that teams are clustered one can
use the penalty (8.2). It penalizes the abilities that are not explained by covariates, γr,
r = 1, . . . ,m, but not the parameter α. If the tuning parameter gets large, λ → ∞,
all strength parameters γr are estimated as identical and the total strength is determined
solely by xT

rα as in the model proposed by Springall (1973). By using a regularization
term with positive tuning parameter the parameters are defined and estimable, compare
also Friedman et al. (2010), where this procedure has been used in overparameterized
multinomial regression models. The choice between fixed and random effects was discussed
extensively in Townsend et al. (2013). One advantage of fixed effects models is that they
do not have to assume that random effects and covariates are uncorrelated although this is
not a problem in the present application. The bigger advantage is that fusion penalties are
easily incorporated into the estimation procedure.
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Figure 8.4.: Coefficient paths for ability parameters in the model with a global home advantage
and the budget (in 100 millions) using an adaptive L1-penalty

In Subsection 8.5.2, we will show that the fixed effects approach with penalties is able
to estimate parameters. But first we show how the performance of football teams in the
German Bundesliga can be explained by the budget. We use budgets as published by
the German sports magazine Kicker (Kicker, August 20, 2012) given in millions. Figure
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8.4 shows the coefficient paths for the coefficients plotted against varying strength of the
constraints. Here, we use budget in 100 millions for better visibility of the coefficient path.
It is seen that the effect of budget is very stable across constraints. As expected, when
including the budget different clusters are found because now the γ-parameters represent
the abilities that are not explained by the budget. For example, now Borussia Dortmund
forms a cluster of its own, whereas Bayern München is in a cluster together with Eintracht
Frankfurt and Mainz.

The estimated parameter α̂ = 2.16, obtained for λ chosen by BIC, implies strong depen-
dence on the budget. In order to get an impression on the reliability of the parameter
estimate of the budget at the BIC-optimal λ, we conducted a parametric bootstrap analy-
sis. The corresponding bootstrap confidence interval for α̂ is [1.55; 2.77]; it supports that
budget does have an influence on the team abilities that is not to be neglected.
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Figure 8.5.: Budgets (in millions) versus estimated abilities for all teams from the Bundesliga
season 2012/2013; lines represent linear and additive model fit

The effect of the budget can also be tackled in a different way. In Figure 8.5 the estimated
abilities are plotted against the budget. In addition, it shows the fit of a linear regression
model and a smoothed version. The smooth model was fitted by use of penalized B-splines
(also called P-splines), see Eilers and Marx (1996), with the smoothing parameter chosen
by the generalized cross-validation (GCV) criterion. Up to about 70, the linear model fits
well, beyond 70 the fit of the non-linear model is determined by just two observations,
Wolfsburg and Bayern München. The adjusted R-squared of the linear model is 0.49, that
means almost 50% of the variation in abilities is explained by the budget. For the non-
linear model the value increases to 0.58 but one can suspect over-fitting. When accepting
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the linear model as a simple model that shows almost the same explanatory strength as the
non-linear model, one can infer that Wolfsburg (with a budget of 90) is an underachiever.
Given the high budget, which is partly due to the fact that the city of Wolfsburg is the
home of Volkswagen, the ability is rather low. This holds even in the non-linear model.
Bayern München, the club with the highest budget, still shows a positive deviation from
the fitted expectation, which is strong for the linear and weak for the the non-linear model.
A distinct overachiever is Dortmund (budget of 48.5), which shows one of the strongest
deviations from both models. Beyond the identification of over- and underachievers, it is
seen that budget is a strong explanatory variable for the ability of a team.

8.5.2. Evaluation of Penalized Estimation

Since parameters are not identifiable maximum likelihood can not be used to estimate the
parameters in the model with explanatory variables. We demonstrate in a small simulation
study that penalized estimation procedures are able to solve the identifiability problem and
can be used to obtain sensible estimates. As true coefficients, we chose values derived from
the coefficient estimates of the model fit for the real data from the Bundesliga. We used
the thresholds θ1 = −1.66, θ2 = −0.65, δ = 0.29 and the budget parameter α = 2.13. The
team abilities were divided into 5 groups with the coefficients γ1 = γ2 = γ3 = 2.07, γ4 =
γ5 = γ6 = 1.73, γ7 = γ8 = γ9 = γ10 = 1.40, γ11 = γ12 = γ13 = γ14 = γ15 = γ16 = γ17 = 0.88,
γ18 = 0.
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Figure 8.6.: Box plots of coefficient estimates for 100 simulation iterations; estimates for teams
with equal abilities are collected in one box; stars denote true values

Figure 8.6 shows the box plots for 100 simulations when using a small tuning parameter
λ. Stars denote the true parameter values. In particular, the threshold parameters and the
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home advantage parameter are estimated with high accuracy. As expected, the variation
of estimates is stronger for the abilities. But, and most important, the parameter of the
explanatory variable is estimated rather well. It should be noted that for larger values of
the tuning parameter, for example, when λ is chosen by an information criterion, due to
shrinkage effects the team effects will be slightly biased.

8.6. Application to the Data from Bundesliga Season
2013/2014

All previous sections in this chapter considered data from the Bundesliga season 2012/2013.
In this section, we present all analyses from the previous sections applied to the respective
data from the Bundesliga season 2013/2014 and compare the new results to the results
from the season 2012/2013.

8.6.1. Ranks and Abilities

Points Home Away Ability QSE Rank
FC Bayern München 90 46 44 2.541 0.366 1
Borussia Dortmund 71 35 36 1.360 0.311 2

FC Schalke 04 64 38 26 1.313 0.310 3
SV Bayer 04 Leverkusen 61 33 28 1.104 0.305 4

VfL Wolfsburg 60 36 24 1.051 0.305 5
Borussia Mönchengladbach 55 36 19 0.927 0.303 6

FSV Mainz 05 53 33 20 0.455 0.300 9
FC Augsburg 1907 52 30 22 0.568 0.300 8
1899 Hoffenheim 44 27 17 0.613 0.300 7

Hannover 96 42 29 13 0.013 0.304 13
Hertha BSC Berlin 41 21 20 0.232 0.301 10

Werder Bremen 39 24 15 0.000 0.304 15
Eintracht Frankfurt 36 20 16 0.122 0.302 11
Sport-Club Freiburg 36 22 14 0.012 0.304 14

VfB Stuttgart 32 19 13 0.092 0.303 12
Hamburger SV 27 18 9 -0.472 0.313 16
1. FC Nürnberg 26 14 12 -0.498 0.314 17

Eintracht Braunschweig 25 18 7 -0.512 0.315 18

Table 8.5.: Final ranking of the German Bundesliga 2013/2014 including points in home matches
and away matches; the last three columns show the estimated abilities, quasi standard errors
and the ranking corresponding to the estimated abilities for the ordered model including a home
advantage parameter

Table 8.5 shows the final ranking of the German Bundesliga in the season 2013/2014. As in
the previous season, Bayern München won the championship. The table shows the points
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each team won in total and separated between points won at home and away. The abilities
are estimated by an (unpenalized) model with a global home advantage. It can be seen
that the abilities would result in a slightly different ranking than the points. For example,
according to the estimated abilities Stuttgart would perform much better than according
to their points, for Werder Bremen we see the contrary effect.

8.6.2. Team-specific Home Effects

For the abilities in Table 8.6, a model with team-specific home advantages (or home effects,
few teams actually have a home disadvantage) is fitted. For example, in away matches
Hertha BSC Berlin has a considerably higher ability than in home matches. Nevertheless,
even Hertha BSC Berlin won one point more in home matches than in away matches (see
Table 8.5).

Overall Home Away
Ability Rank Ability Rank Ability Rank

FC Bayern München 2.541 1 2.522 1 2.968 1
Borussia Dortmund 1.360 2 1.248 7 1.871 2

FC Schalke 04 1.313 3 2.171 2 0.965 4
SV Bayer 04 Leverkusen 1.104 4 1.439 5 1.179 3

VfL Wolfsburg 1.051 5 1.734 4 0.809 5
Borussia Mönchengladbach 0.927 6 1.814 3 0.384 9

FSV Mainz 05 0.455 9 1.253 6 -0.112 14
FC Augsburg 1907 0.568 8 0.836 9 0.556 7
1899 Hoffenheim 0.613 7 1.189 8 0.416 8

Hannover 96 0.013 13 0.815 10 -0.525 17
Hertha BSC Berlin 0.232 10 0.140 16 0.637 6

Werder Bremen 0.000 15 0.260 14 0.000 13
Eintracht Frankfurt 0.122 11 0.396 11 0.235 10
Sport-Club Freiburg 0.012 14 0.292 13 0.088 12

VfB Stuttgart 0.092 12 0.393 12 0.172 11
Hamburger SV -0.472 16 -0.332 17 -0.332 16
1. FC Nürnberg -0.498 17 -0.571 18 -0.198 15

Eintracht Braunschweig -0.512 18 0.174 15 -1.023 18

Table 8.6.: Comparison of the estimated abilities from the model with a global home advantage
to the estimated abilities from the model with team-specific home advantages

Borussia Dortmund seems to show the most prominent difference between the abilities on
home ground and away. While Dortmund is the second best team away it is only the 7th
best team on home ground. This is even more noteworthy as the stadium of Dortmund is
often considered to be the best football stadium in the world with the highest capacity in
the Bundesliga. Therefore, the support of Dortmund in its own stadium is extraordinary,
after all the performance of Dortmund is better in away matches than in home matches.
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8.6.3. Identification of Clusters

Figure 8.7 shows the coefficient paths for the abilities of the single teams in the model with
a global home advantage. The abilities (or rather the differences between the abilities) are
penalized with an L1-penalty and, therefore, shrunk toward zero. This enforces clusters
within the teams where a cluster entails teams with similar abilities.
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Figure 8.7.: Coefficient paths for ability parameters in the model with a global home advantage
using an adaptive L1-penalty.

Cluster Ability
1 FC Bayern München 2.11
2 Borussia Dortmund; FC Schalke 04 0.84
3 Borussia Mönchengladbach; Bayer 04 Leverkusen; VfL Wolfsburg 0.70
4 1. FSV Mainz; FC Augsburg; 1899 Hoffenheim; 0.26
5 Sport-Club Freiburg; Eintracht Frankfurt; Hannover 96; Hertha BSC Berlin 0.00

VfB Stuttgart; SV Werder Bremen
6 1. FC Nürnberg; Eintracht Braunschweig; Hamburger SV -0.38

Table 8.7.: Clusters of teams with corresponding abilities.

Table 8.7 shows the resulting clusters if the optimal path point in Figure 8.7 is chosen by
BIC. In total we end up with 6 clusters while there were 8 clusters in table 8.3 for the season
2012/2013. Like in the previous season, the first cluster is the champion Bayern München,
seemingly playing in a league of its own. The last cluster entails the two relegated teams
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Braunschweig and Nürnberg as well as the Hamburger SV, who had to play relegation
matches to stay up in the Bundesliga. In the previous season, the last three teams had
been split into two clusters.

8.6.4. Clustering of Teams and Home Effects
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Figure 8.8.: Coefficient paths for home abilities, away abilities and home advantages in the model
with team specific home advantages using an adaptive L1-penalty

Figure 8.8 shows the paths for the model with team-specific home effects, compare Figure
8.3 for season 2012/2013. Again, it can be seen that Borussia Dortmund has the most
negative home effect (for the unpenalized case). While the abilities home and away show
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more different clusters than in the season 2012/2013, the home advantage only has four
different clusters if model selection is done by BIC.

8.6.5. Accounting for Explanatory Variables

In this subsection, the inclusion of the budget of the teams is considered. In Figure 8.9,
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Figure 8.9.: Budgets (in millions) versus estimated abilities for all teams from the Bundesliga
season 2013/2014

the budget (in millions) of the teams is plotted against the respective estimated abilities.
The solid line represents the LS estimator of the respective linear model (R2 = 0.69). In
contrast to the data from 2012/2013, the correlation is clearly linear, the fit of an additive
model resulted in a linear model. The plot shows that the abilities of a team highly depend
on the budget of the respective club.

Figure 8.10 shows the coefficient paths for the ability parameters if the budget is incorpo-
rated in the model (and a global home effect). Again, this results in clusters of teams with
similar abilities. In this case, the abilities are interpreted as the abilities if the budget is al-
ready eliminated by the model. Again, if the optimal path point is chosen by BIC 6 clusters
are found. Taking the budget into account, the Hamburger SV had the worst performance of
all teams. The best performance had the cluster of the teams Augsburg, Mönchengladbach,
Leverkusen, Wolfsburg, Hoffenheim, Mainz and Dortmund. Bayern München, although
having a season with total dominance of the league, only appear in the second cluster. The
effect strength of the budget is very similar to the effect in the previous season.
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Figure 8.10.: Coefficient paths for ability parameters in the model with a global home advantage
and the budget (in 100 millions) using an adaptive L1-penalty

8.7. Concluding Remarks

All calculations in this chapter have been conducted by using the statistical software R (R
Core Team, 2015). Most of the available add-on packages for paired comparison models in
R are restricted to the case of binary response and cannot deal with ordered response. The
most popular packages are prefmod (Hatzinger and Dittrich, 2012) and BradleyTerry2
(Turner and Firth, 2012). The former uses the log linear representation of BT-models and
can handle draws in the response variable. The latter can also handle covariates by assuming
random effects for the ability parameters but only in the case of binary responses.

Here we favor a direct approach to the fitting of ordinal paired comparison models (without
regularization) that is based on the embedding into the framework of generalized linear
models. By including the restrictions on the thresholds and the construction of specific
design matrices that include the effect of home advantages BT models for ordered response
can be fitted by using the add-on package VGAM (Yee, 2010). It also allows to use alternative
link functions. The procedure, but without team-specific covariates and regularization, has
been implemented in the package ordBTL (Casalicchio, 2013).
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In our extended framework we have to also include penalty terms. A very general approach
that allows to combine a variety of different penalties in univariate GLMs has been proposed
by Oelker and Tutz (2015), and is available in the package gvcm.cat (Oelker, 2015). With
the help of Margret Oelker it has been adapted such that also cumulative logit models can
be fitted.



9. Prediction of Soccer Tournaments
Based on Regularized Poisson
Regression

9.1. Introduction

In the last few years various approaches to the statistical modeling of major international
soccer events have been proposed, among them the Union of European Football Associations
(UEFA) Champions League (CL; Karlis and Ntzoufras, 2011, Eugster et al., 2011), the
European football championship (EURO; Leitner et al., 2010a, Zeileis et al., 2012, Groll
and Abedieh, 2013) or the Fédération Internationale de Football Association (FIFA) World
Cup (Leitner et al., 2010b; Stoy et al., 2010; Dyte and Clarke, 2000). In particular, the
current FIFA World Cup 2014 in Brazil is accompanied by various publications trying
to predict the tournament winner, see, e.g., Zeileis et al. (2014), Goldman-Sachs Global
Investment Research (2014), Silver (2014) and Lloyd’s (2014).

In general, statistical approaches to the modeling of soccer data can be divided into two
major categories: the first ones are based on the easily available source of “prospective" in-
formation contained in bookmakers’ odds, compare Leitner et al. (2010a) and their follow-up
papers. They already correctly predicted the finals of the EURO 2008 as well as Spain as
the 2010 FIFA World Champion and as the 2012 EURO Champion. The winning probabil-
ities for each team were obtained simply by aggregating winning odds from several online
bookmakers. Based on these winning probabilities, by inverse tournament simulation team-
specific abilities can be computed by paired comparison models. Using this technique the
effects of the tournament draw are stripped. Next, pairwise probabilities for each possible
game at the corresponding tournament can be predicted and, finally, the whole tournament
can be simulated. Using this approach, Zeileis et al. (2014) predicted the host Brazil to
win the FIFA World Cup 2014 with a probability of 22.5%, followed by Argentina (15.8%)
and Germany (13.4%).

This chapter is a modified version of Groll et al. (2015), previous work on the issue can be found in the
technical report 166 (Groll et al., 2014). See Chapter 1 for more information on the personal contributions
of all authors and textual matches.
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It should be noted that this method will always predict the team that has the lowest
(average) bookmaker odds as the tournament winner and, hence, is implicitly assuming that
all available information is covered by the bookmakers expertise. This is not unrealistic, as
one can indeed expect bookmakers to use sophisticated models when setting up their odds,
as they have strong economic incentives to rate the team strengths of soccer teams correctly.
Although the bookmakers‘ models certainly contain covariate information of the competing
teams, at least indirectly, an alternative approach is to explicitly model the influence of
covariates on the success of soccer teams.

This task leads to the second category of approaches that are based on regression models.
A simple standard linear regression approach was used by Stoy et al. (2010) to analyze the
success of national teams at FIFA World Cups. The success of a team at a World Cup is
measured by a defined point scale that is supposed to be normally distributed. Beside some
sport-specific covariates also political-economic, socio-geographic as well as some religious
and psychological influence variables are considered. Based on this model, a prediction for
the FIFA World Cup 2010 was obtained.

In contrast to Stoy et al. (2010), most of the regression approaches directly model the
number of goals scored in single soccer matches, assuming that the number of goals scored
by each team follows a Poisson distribution model, see, e.g., Maher (1982), Lee (1997),
Dixon and Coles (1997), Dyte and Clarke (2000), Rue and Salvesen (2000) and Karlis and
Ntzoufras (2003). For example, Dyte and Clarke (2000) predict the distribution of scores in
international soccer matches, treating each team’s goals scored as conditionally independent
Poisson variables depending on two influence variables, the FIFA world ranking of each team
and the match venue. Poisson regression is used to estimate parameters for the model and
based on these parameters the matches played during the 1998 FIFA World Cup can be
simulated.

Similarly, Goldman-Sachs Global Investment Research (2014) set up a regression model
based on the entire history of mandatory international football matches—i.e., no friendlies—
since 1960, ending up with about 14,000 observations. The dependent variable is the number
of goals scored by each side in each match, assuming that the number of goals scored by a
particular side in a particular match follows a Poisson distribution. They incorporate six ex-
planatory covariates: the difference in the Elo rankings1 between the two teams, the average
number of goals scored/received by the competing teams over the last ten/five mandatory
international games, a dummy variable indicating whether the regarding match was a World
Cup match, a dummy variable indicating whether the considered team played in its home
country, a team-specific dummy variable indicating whether the considered team played on
its home continent. Finally, based on the estimated regression parameters, a probability

1 The Elo ranking is a composite measure of national football teams’ success, which is based on the entire
historical track record and which, in contrast to the FIFA ranking, is available for the entire history of
international football matches (see Elo, 2008).
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distribution for the outcome of each game is obtained and a Monte Carlo simulation with
100,000 draws is used to generate the probabilities of teams reaching particular stages of
the tournament, up to winning the championship. The forecast tournament winner at the
FIFA World Cup 2014 is Brazil with a rather high winning probability of 48.5%, followed
by Argentina (14.1%) and Germany (11.4%).

At this point, we also want to mention other prediction approaches, which cannot be clas-
sified into one of the two aforementioned major categories of statistical approaches for
modeling soccer data. For example, Dobson and Goddard (2011) or Forrest and Simmons
(2000) use discrete choice models for the modeling of match outcomes. Concerning the
prediction of the FIFA World Cup 2014, an approach proposed by Silver (2014) is based on
the so-called Soccer Power Index (SPI). The SPI is a rating system, which uses historical
data on both the international and club level to predict the outcome of a match. The algo-
rithm uses several years of data, taking into account goals scored and allowed, quality of the
lineup fielded, and the location of the match. In addition, the index weights recent matches
more heavily, and also takes into account the importance of the match – e.g., World Cup
matches count much more than friendly matches. Based on the SPI, Silver (2014) forecasts
again Brazil as the tournament winner at the FIFA World Cup 2014, also with a rather
large winning probability of 45.2%, followed by Argentina (12.8%) and Germany (11.9%).

The other alternative approach is from a more economical perspective: the London insur-
ance market Lloyd’s (2014) uses players wages and endorsement incomes together with a
collection of additional indicators to construct an economic model, which estimates players
incomes until retirement. These projections form the basis for assessing insurable values by
players age, playing position and nationality. As Germany and Spain are associated with
the largest estimated insured values, according to this approach they turn out to be the
top favorites for winning the current World Cup.

In the approach that we propose here we focus on international soccer tournaments, here
applied to FIFA World Cups, and use a Poisson model for the number of goals scored by
competing teams in the single matches of the tournaments. Several potential influence
variables are considered and, additionally, team-specific effects are included in the form of
fixed effects, resulting in a flexible generalized linear model (GLM). Incorporating a method
for the selection of relevant predictors, we obtain a regularized solution for our model. The
variable selection is based on suitable L1-penalization techniques and is performed with
the grplasso function from the corresponding R-package (see Meier et al., 2008). As an
application, the approach is used to fit data from previous FIFA World Cups and finally,
based on the obtained estimates, the FIFA World Cup 2014 is predicted.

It should be noted that in contrast to other team sports, such as basketball, ice-hockey or
handball, in soccer pure chance plays an important role. A major reason for this is that,
compared to other sports, in soccer fewer points (goals) are scored and thus singular game
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situations can have a tremendous effect on the outcome of the match. One consequence is
that every now and then alleged (and unpredictable) underdogs win tournaments. There
are countless examples in history for such events, throughout all competitions. We want
to mention only some of the most famous ones: Germany’s first World Cup success in
Switzerland 1954, known as the “miracle from Bern”; Greece’s victory at the EURO 2004;
FC Porto’s triumph in the UEFA CL season 2003/2004. Nevertheless, it can be interesting
to investigate the relationship and dependency structure between different potentially in-
fluential covariates and the success of soccer teams (in our case in terms of the number of
goals they score).

The rest of the chapter is structured as follows. In Section 9.2, we introduce the team-
specific Poisson model for the number of goals. Section 9.3 entails a description of the data
for the application to the FIFA World Cup, including a list of possible influence variables.
Furthermore, the model is fitted to the data and used to predict the FIFA World Cup 2014.
Note that all computations have been performed by use of the statistical software R (R
Core Team, 2015).

9.2. Model and Estimation

Our proposed model concentrates on the number of goals a team scores against a specific
opponent. For every team, specific attack and defense parameters are considered. Further-
more, the covariates of both teams, which might have an influence on the number of scored
goals, are considered in the form of differences.

Let for n teams yijk, i, j ∈ {1, . . . , n}, i 6= j, denote the number of goals scored by team i

when playing team j at tournament k. The considered model has the form:

yijk|xxxik,xxxjk ∼ Pois(λijk)

log(λijk) = β0 + (xxxik − xxxjk)Tβββ + atti − defj. (9.1)

It is assumed that the number of goals that team i scores follows a Poisson distribution
with given team-specific parameters and covariates of both teams. In addition, the two ob-
servations of one match are assumed to be independent, given the team-specific parameters
and covariates.

The linear predictor consists of the attacking parameter atti of the team i and the defending
parameter defj of its opponent j. The covariates of team i at tournament k are collected in
a vector xxxik = (xik1, . . . , xikp)T of length p. In the following, we assume that the covariates
of each team can vary over different tournaments (but not within a tournament). Each
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covariate is incorporated as the difference between the respective covariates of both teams.
The covariate effects are collected in the vector βββ = (β1, . . . , βp)T and β0 represents the
intercept.

If the linear predictor of the model is re-formulated, it can be denoted by

ηijk = β0 + (xxxik − xxxjk)Tβββ + atti − defj
= β0 + xxxT

ikβββ + atti − xxxT
jkβββ + defj

= β0 + γi − δj.

Here, γi = xxxT
ikβββ + atti and δj = xxxT

jkβββ + defj represent the total attack ability of team i and
defense ability of team j, respectively. Hence, atti and defi act as additional parameters
covering ability differences that are not covered by the covariate effects yet. This denotation
emphasizes that the model can be seen as a paired comparison model as the linear predictor
is mainly composed of the difference of the abilities of two opponents.

Generally, the estimation of the covariate effects will be obtained by regularized estimation
approaches. The idea is to first set up a model with a rather large number of possibly
influential variables and then to regularize the effect of the single covariates. This regular-
ization aims at diminishing the variance of the parameter estimates and, hence, to provide
lower prediction error than the unregularized maximum likelihood estimator. The basic
concept of regularization is to maximize a penalized version of the log-likelihood l(ααα) where
ααα = (α1, . . . , αp)T represents a general parameter vector. More precisely, one maximizes
the penalized log-likelihood

lp(α) = l(α)− λJ(α) , (9.2)

where λ represents a tuning parameter, which is used to control the strength of the pe-
nalization. In practice, this tuning parameter has to be chosen either by suitable criteria
for model selection or by cross-validation. Model selection criteria are usually based on
a compromise between the model fit (e.g. in terms of the likelihood) and the complexity
of the model, like AIC (Akaike, 1973) or BIC (Schwarz, 1978). The penalty term J(α)
can have many different shapes. Hoerl and Kennard (1970) suggested the so-called ridge
penalty

J(α) =
p∑
i=1

α2
i ,

where the sum over the squares of all parameters in the model is penalized. The ridge
penalty has the feature to shrink the respective parameter estimates towards zero. After all,
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ridge cannot set estimates to zero exactly and, therefore, can not perform variable selection.
In our analysis, we will use a penalty based on the absolute values of the parameters instead
of the squared values resulting in a so-called least absolute shrinkage and selection operator
(LASSO) penalty. The LASSO estimator was originally proposed by Tibshirani (1996) and
uses the penalty

J(α) =
p∑
i=1
|αi|. (9.3)

In contrast to the ridge penalty, LASSO can provide parameter estimates, which are exactly
zero and, therefore, enforces variable selection.

The team-specific ability parameters atti and defj are considered as fixed effects and are
coded by dummy variables within the design matrix. From this perspective, the attack
(and, analogously, the defense) variables are seen as categorical covariates with as many
categories as there are teams2. One assigns 1 to the dummy variables associated with atti, if
the goals of team i are considered, and 0 otherwise. Similarly, one assigns -1 to the dummy
variables associated with defj, if team j is the opponent, and 0 otherwise. An extract of
the corresponding design matrix is given in Table 9.2.

In the following, both team-specific effects corresponding to one team are treated as a
group. Hence, the original LASSO penalty from equation (9.3) has to be modified ap-
propriately according to the so-called Group LASSO penalty proposed by Yuan and Lin
(2006). The Group LASSO penalizes the L2-norm of the respective parameter vectors
(att1, def1)T, . . . , (attn, defn)T. Hence, the parameters of attack and defense abilities of sin-
gle teams are simultaneously shrunk towards zero and, if shrunk exactly to zero, excluded
from the model. Besides, the covariate effects β are penalized using the ordinary LASSO
penalty from equation (9.3). Altogether, the penalty term for model (9.1) is given by

J(α) =
p∑
i=1
|βi|+

√
2

n∑
i=1

√
att2i + def 2

i .

The prefactor
√

2 controls for the group sizes of the groups of team-specific parameters,
compare Yuan and Lin (2006) or Meier et al. (2008). Another advantage of penalization
is the way correlated predictors are treated. If two predictors are highly correlated, the
parameter estimates are stabilized by the penalization. The chosen LASSO penalty tends
to include only one of the predictors and only includes the second predictor if it entails
additional information for the response variable. Therefore, if several variables possibly
contain information on the strength of teams they can be used simultaneously. The most

2 Usually, for reasons of identifiability, categorical predictors with k factor levels are coded by k−1 dummies.
However, the regularization approach introduced in the following (with λ > 0) provides unique estimates
despite the issues of identifiability.
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informative variable is chosen automatically by the penalty term. The model can easily be
fitted by use of the grplasso function from the corresponding R-package (see Meier et al.,
2008).

Note that, alternatively, similar to the model used in Groll and Abedieh (2013) the team-
specific effects could be estimated as random effects. Then, the attack and the defense
parameter of team i are assumed to be multivariate normally distributed. In this case,
the ability parameters are automatically regularized by the assumption of a distribution
and only the covariate effects β are explicitly penalized by using LASSO. The algorithm
glmmLasso proposed in Groll and Tutz (2014) can be used to fit this model. However, this
results in a model more focused on team-specific effects than covariate effects due to the
different, namely lower, penalization of the random team-specific effects. Therefore, this
modeling approach is not pursued in the following.

9.3. Application

In the following, the proposed model is applied to data from previous FIFA World Cups
and is then used to predict the FIFA World Cup 2014 in Brazil.

9.3.1. Data

In this section, we give a brief description of the used covariates. For each participating
team, the covariates are observed either for the year of the respective World Cup (e.g. GDP
per capita) or shortly before the start of the World Cup (e.g. FIFA ranking). Therefore,
the covariates of a team vary from one World Cup to another and, hence, the model allows
for a prediction of a new World Cup based on the current covariate realizations.

Economic factors

GDP per capita. The gross domestic product (GDP) per capita represents the economic
strength of a country. To account for the general increase of the GDP, a ratio of the GDP
per capita of the respective country and the worldwide average GDP per capita is used.
The GDP data were collected from is the website of the United Nations Statistics Division
(http://unstats.un.org/unsd/snaama/dnllist.asp).

Population. The population size of a country may have an influence on the success of a
national team as small countries will have a smaller amount of players to choose from.
The population size is used as a ratio with the respective global population to account for

http://unstats.un.org/unsd/snaama/dnllist.asp
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the general growth of the world population. The data source is the website of the world
bank (http://data.worldbank.org/indicator/SP.POP.TOTL).

Sportive factors

ODDSET odds. Bookmakers’ odds on the probability to win a World Cup already entail
a great amount of covariates and information about the respective team and, therefore,
can be assumed to be a good predictor for the success of a national team? The odds
were provided by the German state betting agency ODDSET. The bookmakers’ odds
are converted into winning probabilities by taking the inverse of the odds followed by
elimination of the bookmakers’ margin. Hence, the variable reflects the probabilities of
ODDSET for each team to win the respective World Cup3.

FIFA ranking. The FIFA ranking provides a ranking system for all national teams mea-
suring the performance of the team over the last four years. The exact formula for the
calculation of the FIFA points and all rankings since implementation of the FIFA ranking
system can be found at the official FIFA website (http://de.fifa.com/worldranking/
index.html). Since the calculation formula of the FIFA points changed after the World
Cup 2006, the rankings according to FIFA points are used instead of the points4.

Home advantage

Host. The host of the World Cup could have an advantage over its opponents because of
the stronger support of the crowd in the stadium. Therefore, a dummy variable for the
respective host of the World Cup is included.

Continent. Before the World Cup 2014, many discussions revolved around the climatic
conditions in Brazil and who would deal best with these conditions. One could assume
that teams from the same continent as the host of the World Cup (including the host
itself) may have advantages over teams from other continents, as they might better get
along with the climatic and cultural circumstances. A dummy variable for the continent
of the World Cup host is included.

3 The possibility of betting on the overall cup winner before the start of the tournament is quite novel.
For example, the German state betting agency ODDSET offered the bet for the first time at the FIFA
World Cup 2002.

4 The FIFA ranking was introduced in August 1993.

http://data.worldbank.org/indicator/SP.POP.TOTL
http://de.fifa.com/worldranking/index.html
http://de.fifa.com/worldranking/index.html
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Factors describing the team’s structure

The following variables are thought to describe the structure of the teams. Each variable
was observed with the final squad of 23 players nominated for the respective World Cup.

(Second) maximum number of teammates. If many players from one club play together in
a national team, this could lead to an improved performance of the team as the teammates
know each other better. Therefore, both the maximum and the second maximum number
of teammates from the same club are counted and included as covariates.

Average age. The average age of all 23 players is observed to include possible differences
between rather old and rather young teams.

Number of Champions League (Europa League) players. The European club leagues are
valuated to be the best leagues in the world. Therefore, the competitions from teams
between the best European teams, namely the UEFA Champions League and the UEFA
Europa League (previously UEFA Cup) can be seen as the most prestigious and valuable
competitions on club level. As a measurement of the success of the players on club level,
the number of players in the semi finals (taking place only weeks before the respective
World Cup) of these competitions are counted.

Number of players abroad. Finally, the national teams strongly differ in the numbers of
players playing in a league of the respective country and players from leagues of other
countries. For each team, the number of players playing in clubs abroad (in the season
previous to the respective World Cup) are counted.

Factors describing the team’s coach

Also covariates of the coach of the national team may have an influence on the performance
of the team. Therefore, the age of the coach and the duration of the tenure of the coach are
observed. Furthermore, a dummy variable is included, if the coach has the same nationality
as his team or not.

Unfortunately, the covariate ODDSET odds is not available before the FIFA World Cup
2002. But as this covariate can be assumed to contain already a lot of expertise and
information about an upcoming World Cup, we decided to perform a separate analysis for
the FIFA World Cup data from 2002-2010 (from now on denoted by WC2002), including
the odds. But as this results in a quite small data basis, another analysis will be performed
on a data set including the World Cups from 1994-2010, excluding the covariate ODDSET
odds (from now on denoted by WC1994).
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Note that the differences of the three binary variables host, continent and nationality, which
originally have been encoded with {0, 1}, lead to new categorical variables with the three
factor levels -1, 0 and +1. For each of these new categorical covariates we use dummy
encoding with -1 as the reference category and, hence, obtain two columns per covariate
in the design matrix, e.g. host0 and host1, corresponding to the factor levels 0 and 1,
respectively. The dummy variables corresponding to one categorical covariate are treated
as groups and, hence, are also penalized by a Group LASSO penalty, similar to the attack
and defense ability parameters.

It should be noted that at the FIFA World Cup 2014 the national team of Bosnia and
Herzegovina participated for the very first time. Therefore, for this team no estimates of its
team-specific effects are available. Analogously, the national team of Colombia participating
also at the FIFA World Cup 2014 did not participate in any of the FIFA World Cups from
2002-2010. In order to obtain nonetheless reasonable estimates for the team-specific effects
of such teams, which can then be used for the prediction of the FIFA World Cup 2014, we
collect all teams that have only participated once in the tournaments from the respective
data basis in a group called newcomers. Therefore, these teams share the same team-
specific ability parameters. Exemplarily, for the WC2002 data this concerns the following
12 teams: Angola, China, Czech Republic, Ireland, New Zealand, North Korea, Senegal,
Slovakia, Togo, Trinidad & Tobago, Turkey, Ukraine.

As already mentioned, in the model specification of model (9.1) from Section 9.2 all covari-
ates are considered in the form of differences. For example, in the first match of the FIFA
World Cup 2002 in Japan and South Korea, where France played against Senegal (which is
among the group of newcomers in our sample), the French team had an average age of 28.30
years, was on first place in the current FIFA ranking and had a winning probability given by
the ODDSET odds of 15%, while Senegal’s team had an average age of 24.30 years, was on
42th place in the current FIFA ranking and had a winning probability of 1%. Hence, when
the goals of France are considered, this results in the following differences for the metric
covariates: age = 28.30 − 24.30 = 4.00, rank = 1 − 42 = −41, odds = 0.15 − 0.01 = 0.14.
For the categorical variable host ∈ {−1, 0, 1} we get host = 0− 0 = 0, which results in the
entries host0 = 1 and host1 = 0 in the two columns of the design matrix corresponding
to the dummy encoding, as the factor level −1 was chosen as the reference category. An
extract of the design matrix part, which corresponds to the covariates is presented in Ta-
ble 9.1. The matrix resulting from the encoding of the team-specific effects is illustrated in
Table 9.2.
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Goals Team Opponent Age Rank Odds Host0 Host1 ...
0 France Newcomer 4.00 -41 0.14 1 0 ...
1 Newcomer France -4.00 41 -0.14 1 0 ...
1 Uruguay Denmark -2.10 4 -0.00 1 0 ...
2 Denmark Uruguay 2.10 -4 0.00 1 0 ...
1 Denmark Newcomer 3.10 -22 0.01 1 0 ...
1 Newcomer Denmark -3.10 22 -0.01 1 0 ...
0 France Uruguay 3.00 -23 0.14 1 0 ...
0 Uruguay France -3.00 23 -0.14 1 0 ...
...
...

...
...

...
...

...
...

. . .

Table 9.1.: Extract of the design matrix part which corresponds to the covariates.

FRA.att FRA.def NEW.att NEW.def URU.att URU.def DEN.att DEN.def
1 0 0 -1 0 0 0 0
0 -1 1 0 0 0 0 0
0 0 0 0 1 0 0 -1
0 0 0 0 0 -1 1 0
0 0 0 -1 0 0 1 0
0 0 1 0 0 0 0 -1
1 0 0 0 0 -1 0 0
0 -1 0 0 1 0 0 0
...

...
...

...
...

...
...

. . .

Table 9.2.: Encoding of the team specific-effects

9.3.2. Estimation Results

In this section, we present the fit of model (9.1) from Section 9.2 on the basis of both
data sets, i.e. the FIFA World Cups 1994-2010 and 2002-2010, which is then used for the
prediction of the FIFA World Cup 2014.

As pointed out in Section 9.2 we use LASSO-type penalization approaches to fit the
model (9.1). The crucial step is now to determine the optimal value of the tuning parameter
λ from equation (9.2). Note that different levels of sparseness are obtained depending on
the selection of the optimal tuning parameter λ. In general, information criteria such as
Akaike’s information criterion (AIC, see Akaike, 1973) or the Bayesian information criterion
(BIC, see Schwarz, 1978), also known as Schwarz’s information criterion, could be used,
but as our main focus is on achieving good prediction results in order to be able to provide
a realistic forecast of the FIFA World Cup 2014, we decided to use 10-fold cross validation
(CV) based on the conventional Poisson deviance score 5. The corresponding 10-fold CV
results are illustrated in Figure 9.1, exemplarily for the WC1994 data.

5 As two observations corresponding to the goals of the same match belong together, we do not exclude
single observations from the training data, but single matches.
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Figure 9.1.: Deviance for 10-fold CV for Model (9.1), exemplarily for the FIFA World Cup data
1994-2010; the optimal value of the penalty parameter λ is shown by the vertical line.
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Figure 9.2.: Coefficient paths of the covariate effects vs. the penalty parameter λ, exemplarily for
the FIFA World Cup data 1994-2010; the optimal value of the penalty parameter λ is shown by
the vertical line.

Additionally, in Figure 9.2 the coefficient paths for the (scaled) covariates are shown along
the penalty parameter λ. Note that in order to correctly apply the LASSO algorithms,
all covariates (both binary and continuous) were scaled to have mean 0 and variance 1.
Besides, Figure 9.3 illustrates the coefficient paths of the team-specific attack and defense
parameters. In Table 9.3, the fixed effects estimates for the (scaled) covariates are shown
for both data sets. The optimal tuning parameter λ, which minimizes the deviance shown
in Figure 9.1, leads to a model with 10 (out of possibly 17) regression coefficients different
from zero for the WC1994 data set. The paths illustrated in Figure 9.2 show that the
first covariate to be selected is the FIFA rank, followed by the number of CL players and
number of UEFA players (when the penalty parameter λ decreases). Together with the
fact that the estimated effects of these three covariates also exhibit the highest absolute
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(b) Team-specific defense parameters

Figure 9.3.: Coefficient paths of the team-specific attack (a) and defense effects (b) vs. the penalty
parameter λ, exemplarily for the FIFAWorld Cup data 1994-2010; the optimal value of the penalty
parameter λ is shown by the vertical lines.

values, this indicates that the three covariates offer the highest explanatory power among
all regarded covariates. The estimated coefficients show the intuitively expected effects:
better, i.e. lower, FIFA ranks and more players that have been successful with their clubs
in the UEFA Champions or Europa League have positive effects on the number of goals
scored. It is also worth mentioning that at the optimal tuning parameter, for several teams
the ability estimates are still zero, compare Figure 9.3.

In general, similar graphs are obtained for the smaller WC2002 data, which includes the
ODDSET odds as a covariate. The major difference is that the ODDSET odds are the
first variable to enter the model, followed by the FIFA rank. This confirms the supposition
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WC 1994-2010 WC 2002-2010
CL players 0.149 0.075

UEFA players 0.066 0
Age Coach 0 -0.017

Tenure Coach 0 -0.071
Legionaires 0 0

Max. # teammates 0 0
Sec. max # teammates -0.053 0

Age 0 0
Rank -0.153 -0.167
GDP 0.024 0.042
Odds - 0.113

Population -0.031 -0.060
Continent0 0.001 0.010
Continent1 0.000 -0.003

Nation Coach0 0 0
Nation Coach1 0 0

Host0 0.019 0
Host1 0.028 0

Table 9.3.: Estimates of the covariate effects for the FIFA World Cups 1994-2010 and 2002-2010.

that the bookmakers’ odds cover already a lot of information and, hence, provide strong
explanatory power in the context of the success of soccer teams. Again, also the number of
CL players, the third covariate that enters the model, seems to play an important role.

The model including the odds is sparser with only 9 out of 18 regression coefficients different
from zero. A possible explanation is that the ODDSET odds already include a lot of
information from other covariates, as for example the host effect, which has been found in
the WC1994 data.

9.3.3. Goodness-of-fit

It is well-known that the scores of both competing teams in a soccer match are correlated.
Several approaches to handle the correlation have been proposed in the literature. For
example, in an unregularized setting McHale and Scarf (2006, 2011) model the dependence
by using bivariate discrete distributions and by specifying a suitable family of dependence
copulas. One of the first works investigating the topic of dependency between scores of
competing soccer team is the fundamental article of Dixon and Coles (1997). They have
shown that the joint distribution of the scores of both teams can not be well represented by
the product of two independent marginal Poisson distributions of the home and away teams.
They suggest to use an additional term to adjust for certain under- and overrepresented
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match results. After all, these findings are based on the marginal distributions and only
hold for models where the predictors of both scores are uncorrelated. However, the model
proposed by Dixon and Coles (1997) includes team-specific attack and defense ability pa-
rameters and then uses independent poisson distributions for the numbers of goals scored.
Therefore, the linear predictor for the number of goals of a specific team depends both on
parameters of the team itself and its competitor. When fitting such a model to our World
Cup data it turned out that the estimates of the attack and defense abilities of the teams
are positively correlated. Therefore, although independent Poisson distributions are used
for the scores in one match, the linear predictors and, accordingly, the predicted outcomes
are (negatively) correlated. This holds both for the model of Dixon and Coles (1997) and,
even more, for our proposed model where the linear predictors additionally entail covariates
of both teams. To check if this phenomenon represents the actual correlations between the
scores in one match in an appropriate manner, we compared the correlations between the
real outcomes and the predictions from our model, exemplarily for the WC1994 data. We
measured the correlation between 10,000 predictions for every match from the data set and
compared it to the actual correlation between the scores in these matches. While we found
a rank correlation (Spearman) of ρdata = −0.0882 for the real outcomes, the predictions
from our model have a rank correlation of ρmodel = −0.0908. The correlations according to
Bravais-Pearson show similar results, rdata = −0.1387 and rmodel = −0.0968. Alternatively,
one can also investigate the residuals of the fitted model. If the model is representing the
correlation structure in the data appropriately, the residuals belonging to the same match
should be uncorrelated. For the WC1994 data we found correlations (accompanied by 95%
bootstrap confidence intervals) according to Bravais-Pearson of 0.0198 (CI: [-0.0867;0.1283])
for the deviance residuals and of 0.0062 (CI: [-0.0977;0.1141]) for the Pearson residuals, re-
spectively. In general, the point estimates show that the actual residuals of our model are
uncorrelated. Still, due to the rather low number of observations, we obtain rather wide
confidence intervals. Altogether, the correlations within the linear predictors for both teams
competing in a match seem to fully account for the correlation between the scores of those
teams and there is no need for further adjustment.

In a second step, we examined the actual distributions of the numbers of goals and compared
them to the following (conditional) probabilities predicted by our model: separately for
each plausible score from 0 to 5 goals we compared the observed proportion of the score
in the data set with the probabilities for this score predicted by the model on only those
observations showing this score. Figure 9.4 shows the corresponding boxplots, both using
the WC1994 data (upper plot) and the WC2002 data including the odds (lower plot).
The boxplots represent the probabilities of the respective scores predicted by our model,
conditioned on those observations, whose actual number of goals equate to those scores. The
red lines represent the relative frequencies of the respective scores in the data set. Note that
if no statistical model is available the relative frequencies would serve as a natural, simple
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Figure 9.4.: Conditional probabilities of the numbers of goals predicted by the model for the
FIFA World Cup data 1994-2010 (a) and by the model for the 2002-2010 data set (b). Red lines
represent the relative frequencies of the respective scores in the data set and the corresponding
absolute frequencies are displayed on top of every boxplot.

basis for the sampling of scores. So every statistical model should be able to compete
with these relative frequencies in the sense that it should produce conditional predicted
probabilities for each score exceeding these frequencies as far as possible. It can be seen
that the model shows a good prediction performance regarding the number of goals. For
example, for those 191 observations with an actual number of goals of zero, we observed a
median of the conditional predicted probabilities of 36,1%, while the proportion in the data
set for scores of zero was only 31,0%. In general, for all scores, the predicted conditional
probabilities exceed the relative frequencies in the majority of cases. With respect to this
criterion, the model for the data set including the odds (World Cups 2002-2010) performs
slightly better than the model on the WC1994 data.
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Another important aspect when modeling soccer matches based on (Poisson distributed)
scores is a possible underestimation of draws, see e.g. Dixon and Coles (1997) and Karlis
and Ntzoufras (2003). For the actual match outcome (i.e. win of team A, draw or win of
team B) we performed an analysis similar to the different number of goals shown above.
Separately for all three possible match outcomes we compared the relative frequencies of the
outcome to the predicted probabilities of the respective true match outcome, conditioned on
only those matches showing this outcome, see Figure 9.5. Interestingly, the first-mentioned
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Figure 9.5.: Conditional probabilities of the actual match outcome (i.e. win team A, draw or win
of team B) predicted by the model for the WC1994 data (a) and by the model for the WC2002
data (b). Red lines represent the relative frequencies of the respective outcomes in the data set
and the corresponding absolute frequencies are displayed on top of every boxplot.

teams win more often than the second-mentioned teams. This is probably a consequence
of the FIFA arrangement of the matches in the group stage and the round of sixteen.
Hence, it seems reasonable to distinguish between wins of the “home” and “away” teams.



138 9. Prediction of Soccer Tournaments Based on Regularized Poisson Regression

Although draws are generally predicted less well than wins of one of the teams, we found
no systematic underestimation of draws. Again, the performance on the WC2002 data is
slightly better.

9.3.4. Prediction Power

In the following, we try to asses the performance with respect to prediction of our model.
At http://www.oddsportal.com/soccer/world/world-cup-2014/results/ “three-way”
odds6 for all 64 matches of the FIFA World Cup 2014, averaged over 16 well-known book-
makers, are provided. By taking the three quantities p̃r = 1/oddsr, r ∈ {1, 2, 3} and by
normalizing with c := ∑3

r=1 p̃r in order to adjust for the bookmakers’ margins, the odds
can be directly transformed into probabilities using p̂r = p̃r/c

7. On the other hand, let
Gij denote the random variables representing the number of goals scored by team i in a
certain match against team j and Gji the goals of its opponent, respectively. Then, we can
compute the same probabilities by approximating p̂1 = P (Gij > Gji), p̂2 = P (Gij = Gji)
and p̂3 = P (Gij < Gji) for each of the 64 matches of the FIFA World Cup 2014 using
the corresponding Poisson distributions Gij ∼ Poisson(λ̂ij), Gji ∼ Poisson(λ̂ji), where
the estimates λ̂ij and λ̂ji are obtained by our regression models. Based on these predicted
probabilities, the average probability of a correct prediction of a FIFA World Cup 2014
match can be obtained. For the true match outcomes ωm ∈ {1, 2, 3},m = 1, . . . , 64, it is
given by p̄three-way := 1

64
∑64
m=1 p̂

δ1ωm
1m p̂

δ2ωm
2m p̂

δ3ωm
3m , with δrm denoting Kronecker’s delta. The

quantity p̄three-way serves as a useful performance measure for a comparison of the predictive
power of the model and the bookmakers’ odds and is shown for both data sets in Table 9.4.
It is striking that the predictive power of our model compares well with the bookmakers’
odds for both data sets, especially if one has in mind that the bookmakers odds are usually
released just some days before the corresponding match takes place and, hence, are able
to include the latest performance trends of both competing teams. In general, the out-of-
sample prediction seems very satisfying to us, with slightly better results for the WC2002
data.

If one puts one’s trust into the model and its predicted probabilities, it could serve as the
basis of the following betting strategy: for every match one would bet on the three-way
match outcome with the highest expected return, which can be calculated as the product
of the model’s predicted probability and the corresponding three-way odd offered by the
bookmakers. We applied this strategy to the model results of both data sets, yielding a

6 Three-way odds consider only the tendency of a match with the possible results victory of team 1, draw
or defeat of team 1 and are usually fixed some days before the corresponding match takes place.

7 The transformed probabilities only serve as an approximation, based on the assumption that the book-
makers’ margins follow a discrete uniform distribution on the three possible match tendencies.

http://www.oddsportal.com/soccer/world/world-cup-2014/results/
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return of 33.52% for WC2002 and 19.28% for WC1994, when for all 64 matches equal-sized
bets are placed. Again, this is a very satisfying result with an advantage for WC2002.

WC1994 WC2002 bookmakers’ odds
40.15% 40.33% 41.45%

Table 9.4.: Average probability p̄three-way of a correct prediction of a FIFA World Cup 2014 match
for our model on both data sets and the bookmakers’ odds.

In Table 9.5, the corresponding estimates of the (unscaled) fixed team-specific attacking
and defending effects are summarized, exemplarily for the WC2002 data. In contrast to
the covariate effects from Table 9.3, we present the unscaled effects here, as this allows a
direct comparison of both the attack and defense parameters of different teams. As already
pointed out in Section 9.2, the full attack or defense abilities of team i are represented by
the terms xxxT

ikβββ + atti and xxxT
ikβββ + defi, respectively, and not only by the parameters atti

and defi. Therefore, atti = defi = 0 simply indicates that for such teams no additional
attack or defense effects are needed. In general, larger team-specific attack or defense
parameters, respectively, increase the team’s performance. It is striking that compared
to all other teams Germany and Brazil both have rather high attacking and defending
abilities: Germany’s attack is on 1st place, its defense is on 3rd place; Brazil’s attack is on
2nd place, its defense on 5th place. In this context, also the parameters of Switzerland are
interesting. Switzerland has a rather bad attack, but the best defense parameter among
all the teams. This can be easily explained, as Switzerland has received only a single goal
in its seven games at the World Cups 2006 and 2010, but on the other hand only scored
five goals in these seven matches. Table 9.5 also provides the exponentials of the ability
parameters. Due to the used (log-)link, they represent the multiplicative (or divisive) effects
of the respective parameters on the response scale. In the current example, this means that
the number of goals Switzerland concedes are divided by 1.8 compared to the case where
Switzerland would not have an additional defense parameter.

9.3.5. Probabilities for FIFA World Cup 2014 Winner

We used both estimates from the two models fitted on the WC1994 and the WC2002 data
to simulate the tournament progress of the FIFA World Cup 100,000 times. As we have
seen above that the model on the WC2002 data performs slightly better than the WC1994
model with respect to all regarded goodness-of-fit and prediction criteria, we present in this
section only the prediction results of the model based on the WC2002 data. The results
corresponding to the WC1994 data can be found in Appendix C.
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estimated attack parameters estimated defense parameters
1. GER 0.237 1.267 1. SUI 0.599 1.821
2. BRA 0.114 1.121 2. ALG 0.205 1.227
3. URU 0.101 1.106 3. GER 0.181 1.199
4. CRC 0.099 1.104 4. HON 0.065 1.067
5. RSA 0.060 1.062 5. BRA 0.057 1.059
6. BEL 0.042 1.043 6. FRA 0.046 1.047
7. POR 0.019 1.019 7. POR 0.030 1.031
8. ARG 0.000 1.000 8. PAR 0.021 1.021
9. AUS 0.000 1.000 9. ARG 0.000 1.000
10. CHI 0.000 1.000 10. AUS 0.000 1.000
11. CRO 0.000 1.000 11. CHI 0.000 1.000
12. DEN 0.000 1.000 12. CRO 0.000 1.000
13. ECU 0.000 1.000 13. DEN 0.000 1.000
14. ENG 0.000 1.000 14. ECU 0.000 1.000
15. GHA 0.000 1.000 15. ENG 0.000 1.000
16. GRE 0.000 1.000 16. GHA 0.000 1.000
17. ITA 0.000 1.000 17. GRE 0.000 1.000
18. CIV 0.000 1.000 18. ITA 0.000 1.000
19. JPN 0.000 1.000 19. CIV 0.000 1.000
20. MEX 0.000 1.000 20. JPN 0.000 1.000
21. NED 0.000 1.000 21. MEX 0.000 1.000
22. NEW 0.000 1.000 22. NED 0.000 1.000
23. NGA 0.000 1.000 23. NEW 0.000 1.000
24. RUS 0.000 1.000 24. NGA 0.000 1.000
25. KOR 0.000 1.000 25. RUS 0.000 1.000
26. ESP 0.000 1.000 26. KOR 0.000 1.000
27. SWE 0.000 1.000 27. ESP 0.000 1.000
28. USA 0.000 1.000 28. SWE 0.000 1.000
29. SVN -0.002 0.998 29. USA 0.000 1.000
30. PAR -0.003 0.997 30. SVN -0.009 0.991
31. POL -0.005 0.995 31. POL -0.012 0.988
32. IRN -0.040 0.960 32. URU -0.019 0.981
33. SRB -0.047 0.954 33. RSA -0.022 0.978
34. HON -0.083 0.921 34. BEL -0.085 0.918
35. FRA -0.198 0.821 35. CMR -0.090 0.914
36. SUI -0.202 0.817 36. IRN -0.097 0.907
37. CMR -0.204 0.815 37. SRB -0.153 0.858
38. TUN -0.234 0.791 38. TUN -0.297 0.743
39. ALG -0.340 0.712 39. CRC -0.526 0.591
40. KSA -0.495 0.610 40. KSA -0.788 0.455

Table 9.5.: (Unscaled) estimates of the team-specific attacking effects atti and their exponentials
exp(atti) (left) and defending effects defi and their exponentials exp(defi) (right) for the WC2002
data.
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Note here that one advantage in comparison to several other prediction approaches is
that we are able to draw exact match outcomes for each match by drawing the goals
of both competing teams from the predicted Poisson distributions, i.e. Gij ∼ Poisson(λ̂ij),
Gji ∼ Poisson(λ̂ji), with estimates λ̂ij and λ̂ji from the WC2002 model. This allows us
to precisely follow the official FIFA rules when determining the final group standings8. If
a match in the knockout stage ended in a draw, we simulated another 30 minutes of extra
time using scoring rates equal to 1/3 of the 90 minutes rates. If the match then still ended
in a draw, the winner was calculated simply by coin flip, reflecting a penalty shoot out.

Based on these simulations, for each of the 32 participating teams probabilities to reach
the next stage and, finally, to win the tournament are obtained. These are summarized
in Table 9.6 together with the winning probabilities based on the ODDSET odds for com-
parison. In contrast to most other prediction approaches for the FIFA World Cup 2014
clearly favoring Brazil, we get a neck-and-neck race between Germany and Brazil, finally
with better chances for Germany. The major reason for this is that with a high probability
in the simulations both Germany and Brazil finish their groups on the first place and then
face each other in the semi final. In a direct duel, the model concedes Germany a thin
advantage with a winning probability of 51,7% against 48,3%. The favorites Germany and
Brazil are followed by the teams of Switzerland, Spain, Argentina and Portugal. Similarly,
for the WC1994 data Germany has the highest probability to win the trophy, followed by
Spain and Brazil, see Table C.1 in Appendix C.

In a second step, we investigate how the model (and the respective winning probabilities)
change when the data set is successively extended by the completed matches of the current
World Cup in each stage. For example, after the group stage the model is refitted including
all 48 matches from the group stage. Then, for the round of 16 the qualified teams from
the group stage are known and used for the prediction of the round of 16. For example,
according to the initial model Costa Rica appeared to be a clear underdog and only had
low chances to reach the round of 16 (7.7%). Based on the initial model, in the upcoming
knockout match against Greece, Costa Rica’s probability to qualify for the quarter finals
was estimated to be 27.8%, whereas the adapted model yields an increased probability of
42.8%. Therefore, the model accounted for the good performance of Costa Rica in the group
stage and, indeed, Costa Rica actually defeated Greece in a penalty shootout. A similar
effect comes up for the following quarter final between Costa Rica and the Netherlands
where the chances of Costa Rica are increased from 19.3% to 32.9%. Again, the real match
was actually quite close with Netherlands winning in another penalty shootout. Table 9.7
summarises the adapted probabilities for all stages, again based on 100,000 simulation runs.

8 The final group standings are determined by (1) the number of points, (2) the goal difference and (3) the
number of scored goals. If several teams coincide with respect to all of these three criteria, a separate
chart is calculated based on the matches between the coinciding teams only. Here, again the final standing
of the teams is determined following criteria (1)-(3). If still no distinct decision can be taken, the decision
is taken by lot.
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Round Quarter Semi Final World Oddset
of 16 finals finals Champion

1. GER 91.4 77.9 57.0 39.2 27.6 14.2
2. BRA 91.8 67.9 54.4 30.9 20.0 20.3
3. SUI 84.2 62.0 35.0 21.6 12.5 0.7
4. ESP 84.2 52.0 37.8 21.6 12.1 10.9
5. ARG 90.6 53.2 26.7 15.5 7.3 14.2
6. POR 60.2 38.6 20.2 10.4 3.6 2.4
7. BEL 82.5 36.3 19.8 9.3 3.4 5.9
8. ENG 70.4 41.2 14.7 5.5 1.8 3.5
9. CRO 58.1 26.1 15.5 5.1 1.6 0.7
10. FRA 51.2 26.5 9.8 4.6 1.1 3.5
11. ITA 56.8 31.8 10.8 4.4 1.3 3.5
12. NED 55.7 21.3 11.8 4.1 1.2 3.5
13. URU 65.1 37.3 11.6 4.1 1.2 2.8
14. COL 60.6 31.5 10.7 4.0 1.2 3.9
15. CIV 58.3 26.3 9.2 2.9 0.6 0.7
16. CHI 42.9 13.5 7.3 2.5 1.0 2.0
17. GRE 53.2 22.5 7.3 2.1 0.4 0.7
18. USA 27.2 13.0 5.4 2.0 0.4 0.7
19. MEX 42.0 14.7 5.8 1.9 0.3 0.7
20. GHA 21.2 8.7 4.0 1.8 0.5 0.7
21. RUS 51.3 11.5 4.3 1.4 0.3 1.2
22. HON 28.3 10.5 3.6 1.2 0.3 0.1
23. KOR 41.4 9.7 3.4 1.0 0.0 0.2
24. BIH 48.2 17.1 3.8 0.8 0.1 0.5
25. ECU 36.3 14.8 3.4 0.8 0.1 0.7
26. JPN 27.9 7.7 1.7 0.4 0.0 0.5
27. ALG 24.8 4.3 1.1 0.4 0.1 0.1
28. NGA 39.4 12.5 2.1 0.2 0.0 0.4
29. IRN 21.8 3.4 0.4 0.2 0.0 0.1
30. AUS 17.2 2.8 0.8 0.1 0.0 0.2
31. CMR 8.1 1.7 0.5 0.0 0.0 0.2
32. CRC 7.7 1.7 0.1 0.0 0.0 0.1

Table 9.6.: Estimated probabilities (in %) for reaching the different stages in the FIFA World Cup
2014 for all 32 teams based on 100,000 simulation runs of the FIFA World Cup 2014 and based
on the estimates of the WC2002 data together with winning probabilities based on the ODDSET
odds.
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Round Quarter Semi Final World
of 16 finals finals Champion

1. GER 91.4 78.5 71.2 48.7 72.5
2. ARG 90.6 58.9 49.9 57.6 27.5
3. BRA 91.8 76.7 54.2 51.3 0.0
4. NED 55.7 59.2 67.1 42.4 0.0
5. BEL 82.5 65.6 50.1 0.0 0.0
6. COL 60.6 81.1 45.8 0.0 0.0
7. CRC 7.7 42.8 32.9 0.0 0.0
8. FRA 51.2 71.8 28.8 0.0 0.0
9. GRE 53.2 57.2 0.0 0.0 0.0
10. SUI 84.2 41.1 0.0 0.0 0.0
11. MEX 42.0 40.8 0.0 0.0 0.0
12. USA 27.2 34.4 0.0 0.0 0.0
13. NGA 39.4 28.2 0.0 0.0 0.0
14. CHI 42.9 23.3 0.0 0.0 0.0
15. ALG 24.8 21.5 0.0 0.0 0.0
16. URU 65.1 18.9 0.0 0.0 0.0
17. ESP 84.2 0.0 0.0 0.0 0.0
18. ENG 70.4 0.0 0.0 0.0 0.0
19. POR 60.2 0.0 0.0 0.0 0.0
20. CIV 58.3 0.0 0.0 0.0 0.0
21. CRO 58.1 0.0 0.0 0.0 0.0
22. ITA 56.8 0.0 0.0 0.0 0.0
23. RUS 51.3 0.0 0.0 0.0 0.0
24. BIH 48.2 0.0 0.0 0.0 0.0
25. KOR 41.4 0.0 0.0 0.0 0.0
26. ECU 36.3 0.0 0.0 0.0 0.0
27. HON 28.3 0.0 0.0 0.0 0.0
28. JPN 27.9 0.0 0.0 0.0 0.0
29. IRN 21.8 0.0 0.0 0.0 0.0
30. GHA 21.2 0.0 0.0 0.0 0.0
31. AUS 17.2 0.0 0.0 0.0 0.0
32. CMR 8.1 0.0 0.0 0.0 0.0

Table 9.7.: Estimated (adapted) probabilities (in %) for reaching the next stages in the FIFA
World Cup 2014 for all 32 teams based on 100,000 simulation runs of the FIFA World Cup 2014.
After each round, the data set (WC2002) is extended with by the matches already played and the
model is refitted. Only actual matches from the World Cup are simulated.
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In Appendix C, Table C.2 shows the respective (adapted) probabilities for the WC1994
data.

9.3.6. Most Probable Tournament Outcome

Finally, based on the 100,000 simulations, we also provide the most probable tournament
outcome, exemplarily for the WC2002 data. Here, for each of the eight groups we selected
the most probable final group standing, also regarding the order of the first two places, but
without regarding the irrelevant order of the teams on place three and four. The results
together with the corresponding probabilities are presented in Table 9.8.

Group A Group B Group C Group D
39% 26% 15% 19%

1. BRA 1. ESP 1. COL 1. ENG

2. CRO 2. NED 2. GRE 2. ITA

MEX CHI JPN URU

CMR AUS CIV CRC

Group E Group F Group G Group H
19% 29% 38% 23%

1. SUI 1. ARG 1. GER 1. BEL

2. FRA 2. BIH 2. POR 2. RUS

ECU NGA GHA ALG

HON IRN USA KOR

Table 9.8.: Most probable final group standings together with the corresponding probabilities for
the FIFA World Cup 2014 based on 100,000 simulation runs and on the estimates of the WC2002
data.

It is obvious that there are large differences with respect to the groups’ balances. While in
Group A and Group G the model forecasts Brazil followed by Croatia as well as Germany
followed by Portugal with rather high probabilities of 39% and 38%, respectively, other
groups such as Group C, Group D and Group E seem to be quite close.
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Based on the most probable group standings, we also provide the most probable course of the
knockout stage, compare Figure 9.6. Finally, according to the most probable tournament
course the German team will take home the World Cup trophy. Although according to the
model this reflects the most probable tournament outcome, it only has a very low overall
probability of 1.49 · 10−6 % (given as the product of all single probabilities of Table 9.8
and Figure 9.6). Hence, deviations of the true tournament outcome from the model’s most
probable one are not only possible, but very likely.

GERGER - ESP

BRA - GER

BRA - COL

BRA - NED 76%

COL - ITA 51%
79%

SUI - GER

SUI - BIH 69%

GER - RUS 86%

67% 52%

ESP - ARG

ESP - ENG

ESP - CRO 68%

ENG - GRE 60%
65%

ARG - BEL

ARG - FRA 62%

BEL - POR 56%

51%

57%

63%

Figure 9.6.: Most probable course of the knockout stage together with corresponding probabilities
for the FIFA World Cup 2014 based on 100,000 simulation runs and on the estimates of the
WC2002 data.

In fact, if we compare the most probable tournament outcome of the FIFA World Cup 2014
from Table 9.8 and Figure 9.6 with the true one, several differences become obvious. In
general, several underdogs, such as e.g. Algeria, Costa Rica, USA or Chile have reached
the round of sixteen, while several favorites, such as e.g. Spain, Italy, England or Portugal,
dropped out already in the group stage. This could not be adequately represented by the
model. Nevertheless, beyond the round of sixteen, the model’s predicted tournament course
gets closer and closer to the true one, with three out of four semi-finalists predicted correctly
and finally, with Germany correctly predicted as the World Champion.
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9.4. Concluding Remarks

A team-specific generalized linear Poisson model for the number of goals scored by soccer
teams facing each other in international tournament matches is set up. As an application,
the FIFA World Cups 1994-2010 and 2002-2010, respectively, serve as the data basis for an
analysis of the influence of several covariates on the success of national teams in terms of the
number of goals they score in single matches. Procedures for variable selection based on an
L1-penalty, implemented in the R-package grplasso, are used. A detailed goodness-of-fit
analysis is presented and suitable “out-of-sample” performance measures for prediction are
considered, which are based on the three-way tendencies of the considered matches.

The fitted models were used for simulation of the FIFA World Cup 2014. According to
these simulations, Germany and Brazil turned out to be the top favorites for winning the
title, with an advantage for Germany. Besides, the most probable tournament outcome is
provided.

A major part of the statistical novelty of the presented work lies in the use of penalty terms
for covariate effects in combination with team-specific abilities. It allows to include many
covariates simultaneously and performs automatic variable selection. In the case of high
correlation between certain covariates, the estimation procedure is stabilized by the penal-
ization. If several high correlated variables possibly contain information on the response, the
LASSO tends to include the predictor with the highest explanatory power. Furthermore,
as the basic model used throughout this chapter is in general not identified, the penal-
ized likelihood approach nevertheless allows for unique estimates. Theoretically, this would
also allow for the estimation of effects of covariates not varying over different tournaments,
which are un-separable from team-specific effects in an unpenalized estimation.

Another important aspect is that the team-specific ability parameters need not necessarily
be constant, but instead could evolve over time since composition and performance of the
teams might change over time. In this context we want to mention a very recent publication
of Koopman and Lit (2015). They assume a bivariate Poisson distribution for the goals
in English Premier League matches, with intensity coefficients that change stochastically
over time by modeling the teams’ ability parameters as first order auto-regressive processes.
However, due to certain general differences in the structure of national league and FIFA
World Cup data it is not straightforward, how this approach can be adopted to the present
data situation. Nevertheless, the idea of time-varying ability parameters in modeling in-
ternational soccer data sounds promising to us and could be the starting point for future
research.



10. Conclusion and Outlook

The focus of this thesis is on the extension of models for heterogeneous (i.e. item response
data) and homogeneous paired comparisons, mainly by the inclusion of different kinds of
covariates. In particular, the Rasch model and the Bradley-Terry model are used as basis
and extended in various ways.

Extensions of IRT Models

In the first part of this concluding chapter, the basic Rasch model and the proposed ex-
tension of the Rasch model are recapitulated. Furthermore, possible further extensions of
different IRT models are considered. Following the notation from Chapter 2, the Rasch
model is denoted by

P (Ypi = 1) = exp(θp − βi)
1 + exp(θp − βi)

when person p and item i is considered. In Chapters 4 and 5, the Rasch model is extended
by a term considering (subject-specific) covariates xp. The resulting model, referred to as
the DIF model, is denoted by

P (Ypi = 1|xp) =
exp(θp − (βi + xT

pγi))
1 + exp(θp − (βi + xT

pγi))
. (10.1)

The model is called DIF model as it can be used to detect items with differential item
functioning. For that purpose, two different estimation strategies were proposed. Both
strategies are based on regularization techniques, namely penalization and boosting. The
regularization techniques allow for feature selection and, therefore, are able to select the
DIF items.

Within the item response theory, the Rasch model is a very popular yet quite restrictive
model. It can be seen as special case of the general Birnbaum model or 3PL model which
is denoted by

P (Ypi = 1) = ci + (1− ci)
exp (ai(θp − βi))

1 + exp (ai(θp − βi))
.
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Instead of only one parameter characterizing an item, the 3PL model has 3 item parameters.
Beside the item difficulty βi, it contains the discrimination parameter ai and the guessing
parameter ci. In the Rasch model (or 1PL model), the restrictions ai = 1 and ci = 0 are
applied. In the so-called 2PL model, the discrimination parameters ai can vary and only
ci = 0 is applied. An obvious extension of the model proposed in Chapters 4 and 5 would
be to use the 2PL or even the 3PL and to extend it by covariate effects.

In particular, extending the 2PL model could be an interesting tool for DIF analysis. In
the proposed DIF model, the item difficulty βi is replaced by the term βi +xT

pγi to identify
uniform DIF. If (in the 2PL model) the discrimination parameter ai would be replaced by
the term ai+xT

pδi, such a model could be used to identify non-uniform DIF. Non-uniform is
characterized by item characteristic curves with different slopes, for example between two
subgroups of the population like males and females. Therefore, if xp would simply refer to
gender, any estimate δi 6= 0 would indicate that item i has non-uniform DIF with respect
to the subgroups males and females. Consequently, similar to the concept proposed in
Chapters 4 and 5 this idea could be extended to a whole vector of person-specific covariates
xp possibly containing both categorical and continuous covariates. Clearly, such a model
would be a challenge in terms of estimation. Because of its multiplicative form, the 2PL
model can not be embedded into the framework of generalized linear models. Typically,
a marginal likelihood approach is chosen, see also Section 2.2. This estimation concept
could be combined with a penalty approach similar to Chapter 4 for an automatic selection
of items with non-uniform DIF. Furthermore, also boosting concepts similar to Chapter
5 could be applied possibly circumventing the problem of the multiplicative nature of the
linear predictor.

Another possible extension of the proposed DIF model (10.1) could be to include item-
specific covariates. Let us consider the knowledge data from Subsection 4.5.2. For the
DIFlasso method, person-specific covariates were used to find DIF items with respect to
these covariates. The items were supposed to measure the latent trait general knowledge.
The items can be divided into five topics, namely politics, history, economy, culture, and
natural sciences. Therefore, the items themselves have special characteristics that could
influence the probability that a person solves a specific item. A possible extension of model
(10.1) by item-specific covariates could be denoted by

P (Ypi = 1|xp, zi) =
exp(θp − (βi + xT

pγi + zT
i δ))

1 + exp(θp − (βi + xT
pγi + zT

i δ)) .

If zi contains the information on the topic of item i (in dummy coding), δ would contain
parameters characterizing a general level of difficulty of the single topics. The model is
not identifiable as in principle the terms βi and zT

i δ are not separable. Therefore, for
such a model additional restrictions or an additional penalty term have to be applied.
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Theoretically, the global effects δ could be replaced by person-specific effects resulting in
the model

P (Ypi = 1|xp, zi) =
exp(θp − (βi + xT

pγi + zT
i δp))

1 + exp(θp − (βi + xT
pγi + zT

i δp))
.

Applied to the topics of the items, in this model every person would have its own difficulty
parameter for every topic. Therefore, one could for example see if a specific person performs
better on items in history or natural science. However, this would involve a tremendous
increase of the number of parameters, namely one parameter per person and item-specific
covariate. Therefore, even if appropriate penalty terms were applied such a model would
probably lead to problems concerning computation time and especially interpretability.

Extensions of Paired Comparison Models

In the second part of this chapter, the proposed extensions of paired comparison models
and possible future extensions are discussed. In the following, the case of ordered paired
comparisons is skipped for the sake of simplicity. The respective extensions are straight-
forward. According to the notation from Chapter 6, the basic Bradley-Terry model can be
denoted by

P (Y(r,s) = 1) = exp(γr − γs)
1 + exp(γr − γs)

considering a comparison between objects ar and as.

Inclusion of Subject-specific Covariates

In this thesis, the Bradley-Terry model is extended in two different ways. First, in Chapter
7 the Bradley-Terry model is extended by the inclusion of subject-specific covariates. The
respective application considered data on party preference from Germany. As the data
originate from the party preference of different persons, obviously subject-specific covariates
are attributes of the interviewed persons like age, gender or educational level. Therefore,
the extended model can be denoted by

P (Yi(r,s) = 1 | xi) = exp(γir − γis)
1 + exp(γir − γis)

(10.2)

with γir = βr0 + xT
i βr

where xi contains characteristics of subject i. In this model, the subject-specific covariates
are connected to object-specific parameters βr = (βr1, . . . , βrp). To control for the increas-
ing complexity of the model, penalty terms are used for the estimation. The object-specific
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parameters are penalized using the penalty term J(α) = ∑
j

∑
r<swrsj|βrj − βsj|. The re-

spective parameters are shrunk toward each other and can be merged or even be eliminated
from the model.

Inclusion of Object-specific Covariates

Second, in Chapter 8 the Bradley-Terry model is extended by the inclusion of object-specific
covariates. The respective model can be denoted by

P (Y(r,s) = 1 | zr, zs) = exp(γr − γs)
1 + exp(γr − γs)

(10.3)

with γr = βr0 + zT
rα

where zr contains characteristics of object ar. Exemplarily, this extension is done for a
model for the German Bundesliga. The competing objects in this model are the respective
football clubs. The object-specific covariate we consider is the budget of the clubs. The main
difference between the inclusion of subject-specific and object-specific covariates is that the
effects of object-specific covariates are not separable from the regular strength/attractivity
parameters βr0 of the objects. Therefore, such a model is not identifiable. The model
in Chapter 8 is made estimable by the penalty term J(β) = ∑

r<swrs|βr0 − βs0|. Beside
providing a unique solution of the estimation problem, the penalty term shrinks the strength
parameters of the teams toward each other and can find clusters of teams with the same
strength parameters.

Combining Subject-specific and Object-specific Covariates

An obvious extension of the proposed models would be to include subject-specific and
object-specific covariates into a model simultaneously. Clearly, for such a model the esti-
mation techniques, or rather the penalty terms, will depend on the respective application.
Exemplarily, these differences shall be discussed in the following with respect to the appli-
cations from Chapters 7 and 8.

Combining models (10.3) and (10.4), a general model including both subject-specific and
object-specific covariates could be denoted by

P (Yi(r,s) = 1 | xi, zr, zs) = exp(γir − γis)
1 + exp(γir − γis)

(10.4)

= exp(βr0 − βs0 + xT
i (βr − βs) + (zr − zs)Tα)

1 + exp(βr0 − βs0 + xT
i (βr − βs) + (zr − zs)Tα)

with γir = βr0 + xT
i βr + zT

rα.



151

Beside the fact that in Chapter 7 subject-specific covariates are used while in Chapter
8 object-specific covariates are used, another fundamental difference exists, namely the
number of objects. While in the party preference data only five different objects appear,
for the German Bundesliga 18 objects have to be distinguished. Therefore, for the party
preference data it is neither necessary nor desirable to reduce the complexity of the main
effects βr0 in model (10.5) by finding clusters within the objects. In contrast, this is a
sensible strategy for the application on the Bundesliga data.

Both for the party preference data and for the Bundesliga data a combination of subject-
specific and objects-specific covariates is conceivable. For the party preference data, object-
specific covariates would have to be covariates characterizing the respective parties. For
example, one could include the number of party members, a variable indicating if the party
currently is a governing party or a oppositon party or a variable indicating if the leading
candidate of the party is male or female. As long as the number of object-specific covariates
is rather small, the respective parameters probably would not need to be penalized.

In the case of the Bundesliga data, subject-specific covariates would be covariates character-
izing the respective match or match-day. Exemplarily, the weather conditions, the weekday
or the number of spectators could be considered. Every considered covariate would have a
separate parameter per team. Therefore, a penalty term equal to the penalty proposed for
the subject-specific covariates in the party preference data seems mandatory.

Inclusion of Subject-object-specific Covariates

In the case of the party preference data, beside subject-specific and object-specific covari-
ates even a third kind of covariates is conceivable, possibly called subject-object-specific
covariates. Subject-object-specific covariates differ both between subjects and between ob-
jects. In the original pre-election data set GLES (Rattinger et al., 2014) used in Chapter
7 such variables appear. For example, the participants are asked about certain political
topics like the topic of climate change. The respondents are supposed to report both their
self-perception and their perception of the single parties toward this topic on a Likert scale
with 11 ordered levels, corresponding to the following statements:

Level 1: Fight against climate change should take precedence, even if it impairs economic
growth.

Level 11: Economic growth should take precedence, even if it impairs the fight against
climate change.

The absolute difference between these perceptions can be seen as the (self-perceived) ab-
solute distance between the person (subject) and the parties (objects) with respect to a
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political topic. A model combining the subject-specific covariates from Chapter 7 with
such subject-object-specific covariates can be denoted by

P (Yi(r,s) = 1 | xi, zir, zis) = exp(γir − γis)
1 + exp(γir − γis)

(10.5)

= exp(βr0 − βs0 + xT
i (βr − βs) + (zir − zis)Tα)

1 + exp(βr0 − βs0 + xT
i (βr − βs) + (zir − zis)Tα)

with γir = βr0 + xT
i βr + zT

irα.

Similar to object-specific covariates, only one parameter per covariate is necessary. There-
fore, for a rather small number of covariates the inclusion of a further penalty term is
possible but not mandatory. For the exemplary covariate climate change, the respective
parameter could be interpreted as relevance of the topic climate change. The term zir− zis
contains the difference between the absolute distances of the parties ar and as and the
subject i toward climate change. If this difference is positive, party ar has a higher distance
to person i than party as. Therefore, the respective effect α will probably be negative in-
dicating that a person will rather prefer a party with a position close to the self-perception
of the person, and vice versa. Parameters close to zero indicate that the topic is not very
relevant for the decision between parties while extremely negative parameters indicate a
high relevance of the topic.

Instead of including one global parameter for all parties, such an effect could also be party-
specific. Then, party-specific effects are estimated representing the effect of the distance
between a person and a party. Now, the effect of the position toward climate change is not
equal but may vary between parties possibly showing that the topic climate change has a
different relevance for different parties. Such a model can be seen as a further extension of
model (10.5) which can be denoted by

P (Yi(r,s) = 1 | xi, zir, zis) = exp(γir − γis)
1 + exp(γir − γis)

(10.6)

= exp(βr0 − βs0 + xT
i (βr − βs) + zT

irαr − zT
isαs)

1 + exp(βr0 − βs0 + xT
i (βr − βs) + zT

irαr − zT
isαs)

with γir = βr0 + xT
i βr + zT

irαr.

Here, subject-object-specific covariates are considered together with object-specific param-
eters. Implicitly, subject-object-specific covariates have already been considered in this
thesis, both with global and object-specific parameters. In Chapter 8, different order ef-
fects were incorporated, in case of the Bundesliga application also referred to as home
advantages. In particular, a global home advantage and team-specific home advantages
were considered. A home advantage can be encoded by the subject-object-specific covari-
ate zir = 1 for the home team ar in match i and zis = 0 for the away team (and all
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other teams). Therefore, considering zir together with a global effect as in model (10.5)
or with a team-specific effect as in model (10.6) corresponds to either considering a global
or team-specific home advantages. Object-specific parameters instead of global parameters
strongly increase the complexity of the model. Therefore, in contrast to the case of global
effects as in model (10.5) regularization seems necessary, as done for the team-specific home
advantages in Chapter 8.

Paired Comparisons Outside the Bradley-Terry Framework

In Chapter 9, a paired comparison model outside the Bradley-Terry framework is consid-
ered. For data from several FIFA World cups in football, a Poisson model for the number of
goals scored by a team against a specific opponent is fitted. Therefore, for every paired com-
parison (for every match) two outcomes are considered, namely the scores of both teams.
The model can be considered to be a paired comparison model as the linear predictor con-
tains the difference between traits of both competing teams. More precisely, the difference
between the attack ability of one team and the defense ability of the other team is consid-
ered. Compared to the Bradley-Terry model this model has two main advantages for the
modelling of football tournaments: As the purpose of the application lies in the prediction
of the FIFA world cup, it is necessary to predict exact match outcomes (i.e. the scores of
both teams) instead of only distinguishing between wins, draws or losses. Otherwise, an
appropriate prediction of the group stage is not possible. Second, it is easier to distinguish
between the two important abilities in football, namely attack and defense. The application
in Chapter 9 showed that also with this model the inclusion of covariates is reasonable.

Conclusion

In conclusion, this thesis proposes a variety of extensions to existing models for item re-
sponse and paired comparison models. It is demonstrated that the proposed extensions
can be very useful for the statistical analysis of item response and paired comparison data.
Furthermore it is demonstrated that regularization techniques provide valuable tools for
estimation and a better interpretability of the proposed models. Nevertheless, there are
many aspects left that require further attention and should be the target of future research.
I hope, this thesis can provide a contribution to some unanswered questions within the
topic of modelling item response and paired comparison data.

In the firm believe that Banksy’s theory also holds for dissertations:

I have a theory that you can make any
sentence seem profound by writing the name
of a dead philosopher at the end of it.

Plato
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A. Visualization of Categorical
Response Models

A.1. Introduction

In Chapters 4, 5 and 7, so-called effect stars were used to visualize the parameter estimates
of the proposed methods. Originally, effects stars were proposed to visualize parameter
estimates in multinomial or ordered logit models. After all, they are more generally appli-
cable for all kinds of models with a certain group structure within the parameter estimates.
In the context of DIF detection with the DIF model (4.2) as proposed in Chapters 4 and
5, all parameters corresponding to one item form a group of parameters. Therefore, all
parameters corresponding to one item can be visualized in one effect star. In chapter 7,
the parameters can be grouped by covariates and one star represents all parameters corre-
sponding to one covariate. For a better understanding of the basics and the interpretation
of effect stars, in the following the principle concept of effect stars in categorical response
models is outlined in detail.

Multinomial response models are a common tool in categorical data analysis with well-
established theory. But in applications, in particular in the case of many response categories,
it is often tedious to keep track and interpret all of the parameters. Therefore tools for
visualization of the effects of explanatory variables will be helpful for practioners.

In multivariate data analysis visualization techniques have a long tradition. Skillfully de-
vised graphical methods allow one to look into data and uncover features of the underlying
data generating process. They are used to explore data and also to present results. Vari-
ous books and articles are devoted to graphical representations of data, see, in particular,
Cleveland (1985), Kastellec and Leoni (2007), and the Handbook of Data Visualization
(Chen et al., 2008).

This chapter is a modified version of Tutz and Schauberger (2013), previous work on the issue can be
found in the technical report 117 (Tutz and Schauberger, 2012b) and the conference paper Schauberger
and Tutz (2012). See Chapter 1 for more information on the personal contributions of all authors and
textual matches.
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In the following the focus is not on visualization of data but on the visualization of fitted
models to help in the interpretation of parameters. The aim of closer linkage of statis-
tical modelling with graphics is investigated in the case of categorical response models.
Categorical response models like the multinomial logit models represent a challenge if the
number of response categories and/or the number of explanatory variables is large. Even
for moderate numbers of explanatory variables one obtains a large number of parameters
and the impact of the predictors on the response variable is hard to investigate because of
the transformation to logits. While the increase or decrease of the mean response is easily
seen in linear models, the effect on logits is much harder to explain to practioners.

There has been some work in the visualization of categorical data. In particular graph-
ical methods for the analysis of multiway contingency tables in the form of mosaic plots
(Friendly, 1994; Theus and Lauer, 1999; Meyer et al., 2008) are widely used. But categorical
response models that also contain continuous predictors cannot be reduced to contingency
tables without loss of information. Therefore, for the general case of categorical responses
mosaic plots are not very helpful. More recently, in Fox and Andersen (2006) and Fox
and Hong (2009) the work on effect displays for generalized linear models (Fox, 2003) was
extended to multinomial and proportional-odds logit models, available in the effects pack-
age (Fox, 2003; Fox and Hong, 2009). The proposed effect displays depict fitted category
probabilities including pointwise confidence envelopes and are typically used for visualiza-
tion of high-order terms. The package provides several kinds of displays for polytomous
logit models.

The objective of this appendix is to develop alternative graphical methods for the general
case of categorical response models with all types of regressors. In Section A.2 we briefly
sketch the multinomial logit model and the interpretation of parameters. In Section A.3
more traditional tools for the graphical representation of the effect of explanatory variables
in the form of probability plots are considered. The main tool, graphical tools for the
visualization of parameters, is given in Section A.4. We conclude with an extension to
ordinal response models.

A.2. The Multinomial Logit Model

In the following we shortly summarize the essential properties of the multinomial logit
model, which is the most frequently used model in regression analysis for un-ordered cat-
egorical responses and is extensively treated, for example, in Agresti (2002). For response
Y ∈ {1, . . . , k} and the vector of explanatory variables x it has the form

P (Y = r|x) = exp(βr0 + xTβr)
Σk
s=1 exp(βs0 + xTβs)

, (A.1)
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where βT
r = (βr1, . . . , βrp). Since parameters β10, . . . , βk0, βT

1 , . . . ,βββ
T
k are not identifiable

additional constraints are needed. One option is to chose one of the response categories as
reference category. For example, by setting βk0 = 0, βk = 0, category k is chosen as the
reference category and interpretation of all parameters refers to this category. Alternatively
one can use the symmetric side constraints ∑k

s=1 βs0 = 0, ∑k
s=1 β

T
s = (0, . . . , 0). In both

cases one has k−1 intercepts and p(k−1) effects of predictors, where p denotes the length of
x. Even for moderate number of predictors, say 10, and 5 response categories, one obtains
40 parameters that represent effects of predictors. The result is a lengthy list of parameter
estimates that contains the relevant information but it takes some skill and time to evaluate
the effects.

The large number of parameters is due to the multi-dimensionality of the model. The
response variable Y ∈ {1, . . . , k} hides the fact that the response is actually multivari-
ate. This becomes obvious by considering the distribution of the response. By defining
dummy variables y1, . . . , yk−1 with Y = r ⇔ yr = 1 the possible outcome vectors of
length k − 1 are given by (1, 0, . . . ), (0, 1, 0, . . . ) . . . (0, 0, . . . , 0). With probabilities given
by πr(x) = P (Y = r|x) = P (yr = 1|x) the vector yT = (y1, . . . , yk−1) follows a multi-
nomial distribution y ∼ M(1,π(x)), where πT(x) = (π1(x), . . . , πk−1(x)) represents the
vector of response probabilities. A closed representation of the (k − 1)-dimensional model
as a multivariate generalized linear model (GLM) uses the form g(π(x)) = Xβ with
(k − 1)-dimensional link function g, design matrix X and all the parameters collected in
βT = (β10, . . . , βk−1,0,β

T
1 , . . . ,β

T
k−1). Maximum likelihood estimation and parameter tests

can be derived within the framework of multivariate GLMs (see, for example, Tutz, 2012).

For the interpretation of the parameters it is essential to specify the identifiability constraint
that is used. If k is chosen as the reference category one obtains

log
(
P (Y = r|x)
P (Y = k|x)

)
= βr0 + xTβr, r = 1, . . . , k − 1, (A.2)

where the log-odds compare P (Y = r|x) to the probability P (Y = k|x). Then the param-
eters reflect the effect of predictors on the relation between category r and the reference
category k. Symmetric side constraints are less often used although there is a nice inter-
pretation of parameters. For symmetric side constraints the interpretation refers to the
"mean" response defined by the geometric mean

GM(x) = k

√√√√ k∏
s=1

P (Y = s|x) =
(

k∏
s=1

P (Y = s|x)
)1/k

.
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It is easily derived that

log
(
P (Y = r|x)
GM(x)

)
= βr0 + xTβr, r = 1, . . . , k,

holds. Therefore, βr reflects the effects of x on the logits when P (Y = r|x) is compared to
the geometric mean response GM(x).

When visualizing effects we will focus on symmetric side constraints because effects do not
refer to the assigned reference category but to all of the categories. Also the results of
testing hypotheses and corresponding p-values are easier to interpret. If H0 : βrj = 0 is
rejected for the model with reference category k the jth variable distinguishes significantly
between response Y = r and Y = k. IfH0 : βrj = 0 is rejected for the model with symmetric
side constraint the jth variable distinguishes between response Y = r and Y 6= r.

A.3. Traditional Methods of Visualization: Probability
Plots

When visualizing the effects of predictors the main problem with the multinomial logit
model is that the link function is not linear. Although odds are an intuitive concept, the
log-odds in equation (A.2) are not appropriate to obtain some feeling for the impact of
predictors. Therefore, a traditional way to visualize the effect of explanatory variables
is the plotting of response probabilities against the values of specific covariates, see, for
example, Agresti (2002).

For illustration we will consider the modelling of party choice with data from the German
Longitudinal Election Study. The response categories refer to the dominant parties in
Germany, in particular, the Christian Democratic Union (CDU: 1), the Social Democratic
Party (SPD: 2), the Liberal Party (FDP: 3), the Green Party (4) and the Left Party (Die
Linke: 5). With the five response categories nine predictors were collected, age in years,
political interest (1: less interested, 0: very interested), religion (1: evangelical, 2: catholic,
3: otherwise), regional provenance (west; 1: former West Germany, 0: otherwise), gender
(1: male, 0: female), union (1: member of a union, 0: otherwise), satisfaction with the
functioning of democracy (democracy; 1: not satisfied, 0: satisfied), unemployment (1:
currently unemployed, 0: otherwise), and high school degree (1: yes, 0: no).

Table A.1 shows the estimated parameters together with standard errors. It is seen that
even in this simple example with moderate number of predictors and response categories
many parameters have to be investigated. A simple way to illustrate the effect of a metric
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Table A.1.: Estimates of multinomial logit model for party preference data, symmetric side con-
straints.

Intercept Age Religion (2) Religion (3) Democracy Pol.Interest
CDU 1.397 0.308 0.404 -0.358 -0.766 0.202
SPD 0.469 0.148 -0.196 -0.428 -0.360 0.337
FDP -0.345 -0.111 0.090 0.326 0.002 -0.264
Greens -1.096 -0.398 -0.127 0.286 0.008 0.214
Left Party -0.425 0.053 -0.171 0.174 1.116 -0.488

Unemployment Highschool Union West Gender
CDU -0.514 0.156 -0.408 -0.330 -0.262
SPD 0.127 -0.221 0.400 0.389 -0.191
FDP -0.560 0.051 -0.509 0.025 0.254
Greens -0.071 0.563 -0.391 0.639 -0.019
Left Party 1.018 -0.549 0.907 -0.723 0.218

Standard Errors
Intercept Age Religion (2) Religion (3) Democracy Pol.Interest

CDU 0.224 0.069 0.163 0.168 0.139 0.147
SPD 0.245 0.072 0.166 0.172 0.148 0.160
FDP 0.312 0.094 0.239 0.218 0.194 0.191
Greens 0.327 0.097 0.234 0.213 0.193 0.203
Left Party 0.313 0.094 0.233 0.205 0.229 0.185

Unemployment Highschool Union West Gender
CDU 0.366 0.169 0.212 0.156 0.135
SPD 0.314 0.189 0.184 0.172 0.142
FDP 0.498 0.218 0.289 0.207 0.187
Greens 0.421 0.208 0.273 0.222 0.184
Left Party 0.301 0.243 0.216 0.194 0.181

covariate like age is to plot the response probabilities against age. But, of course, in a non-
linear model as the logit model, the form of the function strongly depends on the values of
the other parameters. In Figure A.1 the probabilities are given for two sets of values, one
where all other predictors have value 0, one where all other predictors have value 1. It is
seen that not only the level but also the slope of the curves can vary with the chosen value
for the other variables. For example, the curve for the Social Democratic Party (SPD)
is rather flat in the upper panel, but increasing in the lower panel. When explanatory
variables are categorical, bar plots with the probabilities corresponding to the height of the
bars can be used. Figure A.2 shows the effect of unemployment on the choice probabilities.
It shows, for example, that unemployed persons have a stronger preference for the left party,
preference for CDU decreases. The tendency is the same if different values are chosen for
the other variables (Figure A.3), but effect strength is quite different. If the other variables
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Figure A.1.: Estimated probabilities for party preference against age, all other variables fixed at
value 0 (upper panel), all other variables fixed at value 1 (lower panel).

have value 1, the probability for CDU is among the lowest if voters are unemployed. Thus
the values of the unplotted variables can and do make a difference in the response profiles
for the predictor variable which is plotted.
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Figure A.2.: Bar plot of estimated probabilities for party preference for unemployment=0 (left)
and unemployment=1 (right), all other categorical variables fixed at value 0, age at 50.
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Figure A.3.: Bar plot of estimated probabilities for party preference for unemployment=0 (left)
and unemployment=1 (right), all other categorical variables fixed at value 1, age at 50.

A.4. Glyphs for the Visualization of Parameters

The disadvantage of bar plots as well as curves is that they show effects under the constraint
that the other predictors have fixed chosen values. The plots vary with the chosen values.
An alternative approach that is propagated here is to visualize the effect strength that is
contained in the parameters rather than the probabilities.

We will use glyphs that have traditionally been used to visualize data. Various glyphs have
been proposed in the literature, among them profile glyphs (Du Toit et al., 1986), Chernoff
faces (Chernoff, 1973) and stars (Anderson, 1957, Siegel et al., 1972, Gnanadesikan, 1977).
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We will focus on star plots, but instead of using them to visualize data, they are used to
visualize parameters. The parameters of the logit model themselves are less appropriate
since they contain the effect on logits, which do not carry much intuition. A much better
way is to focus on the odds that stand behind the log-odds (or logits).

A.4.1. Star Plots for Parameters

The main tool is the representation of the odds of a model with symmetric side constraints
as

P (Y = r|x)
GM(x) = exp(βr0 + xTβr) = eβr0ex1βr1 . . . expβrp = eβr0(eβr1)x1 . . . (eβrp)xp .

From
P (Y = r|x1, . . . , xj + 1, . . . xp)/GM(x1, . . . , xj + 1, . . . xp)

P (Y = r|x1, . . . , xj, . . . xp)/GM(x1, . . . , xj, . . . xp)
= eβrj

it is seen that eβrj represents the multiplicative effect of variable j on the odds
P (Y = r|x)/GM(x) if xj increases by one unit.

In "effect stars", which are proposed here, the lengths of the rays emanating from the
center of the plot represent the exponentials of the parameters. Thus one obtains a star
plot for each variable that shows how strong the impact of the predictor on the response
is and what form it takes. In addition, we include a (shaded) unit circle around the
center that corresponds to the no-effects case, where β1j = · · · = βkj = 0 or, equivalently,
eβ1j = · · · = eβkj = 1 holds. Therefore, the deviation from the circle shows the strength of
the preference for one category as the deviation from the circle. If the ray is outside the
circle the increase in the predictor increases the probability of the corresponding category, if
it is inside the circle the increase in the predictor decreases the response probability. Stars
are standardized such that the maximal length of a ray has the same value. This value also
scales the radius of the unit circle.

Figure A.4 shows the effect stars for the main effect model fitted to the party choice data,
where the quantitative variable age has been standardized. Let us consider the effect of age.
It is immediately seen that with increasing age the Christian-democratic party (CDU) is
more strongly favored while, in particular, the response probability for the Greens decreases.
An additional feature that is included is the significance of the deviation. The value in
brackets given at each ray is the p-value of the hypothesis H0 : βrj = 0 for the model with
symmetric side constraint. The effects of age on responses CDU, SPD and Greens turned
out to be significant at the level 0.05, the former two with positive (outside the circle),
the latter with negative effect (within the circle). In addition, the overall p-value for the
hypothesis that one variable can be neglected, that is, H0 : β1j = · · · = βkj = 0, is given



A.4 Glyphs for the Visualization of Parameters 165

CDU
(0.000)

SPD
(0.056)

FDP
(0.268)

Greens
(0.001)Left Party

(0.175)

CDU
(0.000)

SPD
(0.041)

FDP
(0.236)

Greens
(0.000)

Left Party
(0.577)

CDU
(0.013)

SPD
(0.237)FDP

(0.706)

Greens
(0.587)

Left Party
(0.466)

CDU
(0.033)

SPD
(0.013)

FDP
(0.137)

Greens
(0.179)

Left Party
(0.394)

CDU
(0.000)

SPD
(0.015)FDP

(0.994)

Greens
(0.963)

Left Party
(0.000)

CDU
(0.169)

SPD
(0.035)

FDP
(0.169)

Greens
(0.296)

Left Party
(0.008)

CDU
(0.160)

SPD
(0.687)

FDP
(0.261)

Greens
(0.864)

Left Party
(0.001)

CDU
(0.358)

SPD
(0.243)FDP

(0.813)

Greens
(0.007)

Left Party
(0.023)

CDU
(0.055)

SPD
(0.029)

FDP
(0.078)

Greens
(0.154)

Left Party
(0.000)

CDU
(0.034)

SPD
(0.024)

FDP
(0.906)

Greens
(0.004)

Left Party
(0.000)

CDU
(0.052)

SPD
(0.180)FDP

(0.175)

Greens
(0.915)

Left Party
(0.225)

Intercept Age
(0.000)

Religion
(2: catholic, 0.080)

Religion
(3: other religion, 0.017)

Democracy
(1: not satisfied, 0.000)

Pol.Interest
(1: less interested, 0.013)

Unemployment
(1: unemployed, 0.013)

Highschool
(1: highschool, 0.019)

Union
(1: member, 0.000)

West
(1: west, 0.000)

Gender
(1: male, 0.151)

Figure A.4.: Effect stars showing the exponentials of parameters, p-values at the rays refer to
hypothesis H0 : βrj = 0, p-values given with the variable description refer to hypothesis H0 :
β1j = · · · = βkj = 0.

with the description of the variable. For example, age turned out to be highly significant
(0.000), whereas the effect of gender was weak (p-value of 0.151).
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The advantage of the effect star plots is that all the effects of the variables are shown simul-
taneously. Discrete as well as continuous variables are given in the same representation. In
addition to the direction of the effect seen from the shape of the star, information on the
significance of specific effects is included, as well as information about the whole variable.

Relevant features are easily seen from the shape of the stars. For example, very strong
deviations from the circle are found for the variables democracy, unemployment and union.
All these variables have a strong effect in favor of the left party. Deviations from the star
in favour of the Greens are seen for the variables high school and west. Supporters of the
Greens are found among more educated persons from the former west.

A.4.2. Extensions and Alternatives

The presentation can be extended to include standard errors. Let serj denote the standard
error for estimation of βrj. Then, an approximative confidence interval for the exponential
is given by [exp(β̂rj − 1.96serj), exp(β̂rj + 1.96serj)]. By plotting the lower and the upper
limit one obtains an inner and an outer star.
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Figure A.5.: Effect stars with reliability intervals for two variables (party preference data)

Figure A.5 shows the plots of two predictors for the party preference data. If p-values are
large, for example, for FDP and the left party for variable age, and FDP for variable west,
the circle is covered by the corresponding intervals whereas for highly significant predictors,
for example, CDU for variable age, the corresponding intervals are outside or within the
circle. Inclusion of standard errors is certainly helpful but with many stars information
content can be high. One strategy is to look first at all the stars without reliability intervals
and then pick out the interesting ones and look at them more closely.
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It should be noted that star plots for the exponentials of the parameters have the same
form if a reference category is chosen. But then a more appropriate circle is the circle with
radius defined by the reference category. The radius is fixed by the length of the ray for
the reference category. Figure A.6 shows effects of two variables with reference category
CDU. Now rays inside the circle show that the predictor decreases the preference for the
corresponding category when compared to the reference category. Rays outside the circle
represent the opposite effect. But in both cases interpretation is in relation to the specified
reference category (CDU). Consequently the p-values given now refer to the null hypothesis
H0 : βrj = 0 for parameters constrained by fixing the reference category.
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Figure A.6.: Effect stars with reference category (party preference data)

In Figure A.4 the main effect model was represented by star plots. Also interaction terms
can be represented as stars but the representation is less useful than for main effect models.
The reason is that the effects of variables that are included in an interaction effect are
more difficult to interpret. For simplicity we consider one interaction term that turned out
to be significant, namely the interaction between age and the binary variable democracy
(1: not satisfied, 0: satisfied). Figure A.7 shows the stars for the marginal terms and the
interaction. The stars for the other variables hardly change when the interaction is included
and therefore are not shown. Compared to Figure A.4 one sees that the main effect of
democracy hardly changes while the main effect of age is quite different. Nevertheless,
interpretation differs from that of the main effect models. The effect of age now represents
the age slope among those who are satisfied and the effect of democracy represents the
difference between not satisfied and satisfied at mean age because age was standardized.
The interaction effect contains the modification of the effect of one variable by the other. It
represents the difference in age slope between not satisfied and satisfied. It is seen that the
preference for the big parties, SPD and CDU, increases stronger with age in the not satisfied
group than in the satisfied group whereas for the green and the left party the dependence
on age is weakened if voters are not satisfied with democracy. Since interpretation is much
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harder when interaction effects are included alternative visualization tools as given in the
next section are to be recommended.
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Figure A.7.: Marginal and interaction term stars for standardized age and democracy (1: not
satisfied, 0: satisfied) for party preference data.

A.4.3. Alternative Displays

Star plots visualize parameters of fitted models. The plots are especially simple for main
effect models when predictors are binary or are measured on a metric scale level. Then
one star collects all the parameters connected to one explanatory variable. For categorical
predictors with more than two categories several stars are linked to one predictor. The
same holds when interactions are included. Then one has at least three stars that are
linked to two variables. Although the interaction star as a visualization of the underlying
effects is interpretable, the effect of a variable is not easily seen since it has to be seen in
combination with the variable with which it interacts. The effect displays proposed by Fox
and Andersen (2006) are able to visualize the effects of interaction terms quite nicely by
allowing other predictors marginal to a given term to be set at average or other values.
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Figure A.8.: Effect plot for the interaction of age and democracy

For illustration we consider the interaction effect between the variables age and democracy,
for which stars are given in Figures A.8 and A.9. Figure A.8 shows the typical effect plots as
curves and Figure A.9 shows the "stacked area" displays also offered by the effects package
(Fox, 2003; Fox and Hong, 2009). They visualize what the interaction star in Figure A.7
shows only qualitatively, that the preference for the big parties, SPD and CDU, increases
stronger with age if voters are not satisfied, for the green and the left party the effect slope
decreases if voters are not satisfied. In particular the stacked area display visualizes nicely
the effect of age and democracy on the response. Nevertheless, it should be noted that the
effects on the probabilities are shown for fixed values of the other variables, in our case they
have been chosen by mean values. If other values are chosen the effects on probabilities
might change.

One can also plot the linear predictor itself, which means the effect on the logits. This
plots would essentially show the same form of effects (but shifted) for other values of
the rest of the variables, but it has the disadvantage that it is much harder to think in
logits than in probabilities. For binary responses the effects package offers the option to
label the response axis nonlinearly on the probability scale. Then one can see the effect
on probabilities from the scaling. For multinomial the scaling is not so straightforward
because it depends on the logits that were chosen, that is, the reference category that
has been fixed. In their application Fox and Hong (2009) also rely on probability plots
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Age*Democracy effect plot
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Figure A.9.: Stacked area display for the interaction of age and democracy.

to visualize the effects in multinomial models. Star plots avoid the dependence on the
reference category by using symmetric side constraints. By using odds rather than logits
the effect strength is somewhat more intuitive.

The essential difference between stars and effect displays provided by the effects pack-
age is that stars visualize parameters with effect strength referring to specific odds and
effect displays visualize the effects on probabilities or logits as curves. Effects displays are
strong tools especially for interaction effects because they include the marginal effects. Af-
ter screening the effects by star plots it is certainly a good idea to look at the plots provided
the effects package, which, in particular for metric predictors, show the continuous de-
pendence on the predictor. One other advantage of the effects package is that smooth
effects of continuous predictors can be included. Although one might construct stars that
visualize smooth effects it would destroy the simplicity of the visualization by stars (see
concluding remarks).

A.4.4. Further Examples

For further illustration we consider brand choice data. The data refer to different
brands of coffee. The purchases of coffees of 2111 households were collected by the
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Figure A.10.: Graphs for brand choice data with seven predictors and fixed radius. It is seen that
stars for the significant predictors, mount, social level, price sensitivity and education, deviate
strongly from the circle.

Gesellschaft für Konsumforschung (Society for Consumer Research) and are available at
http://www.statistik.lmu.de/service/datenarchiv/kaffee/kaffee.html or in the
R-package EffectStars (Schauberger, 2014b). The brands were named after the shops,
which offer a regular brand and a special brand, Aldi, AldiSpecial, Jacobs, JacobsSpecial,
Eduscho, EduschoSpecial, Tchibo, TchiboSpecial. The binary covariates were the number of
packages bought (amount; 1: ≥ 2), age (1: ≥ 50), social level (1: low), monthly income (1:
≥ 2500), persons in household, price sensitivity (1: sensitive), education (1: high school).
Figure A.10 shows the corresponding glyphs. Three of the predictors are not significant,

http://www.statistik.lmu.de/service/datenarchiv/kaffee/kaffee.html
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namely age, income, and persons in household. It is seen that the corresponding stars are
very close to the circle. For the significant predictors the stars deviate strongly from the
no-effects circle. Naturally, the interpretation of the single effects refers to the brands con-
sidered. One sees, for example, that the brands, offered by the cheap discounter Aldi, are
preferred if the social level is low. The stars are scaled in a different way, namely by fixing
the radius of the unit circle. What works well in this example can be less advantageous for
other data (see next example).

An often used example with a categorical predictor is the alligator food choice considered
in Agresti (2002). In the study by the Florida Game and Fresh Water Commission the
response is the primary food type in categories fish, invertebrate, reptile, bird, and other.
The explanatory variables are size, dichotomized into ≤ 2.3, > 2.3, gender (1: male, 0:
female), and the lake where the reptiles lived (four categories, 1: George, 2: Hancock, 3:
Oklawaha, 4: Trafford), see Agresti (2002). A problem with categorical variables like the
lake is that a reference category has to be chosen. This can be avoided by using effect
coding for the predictor by using a symmetric side constraint. Let the categorical variable
A have values 1, . . . ,m, and βr,A(j) denote the parameter for category j of the predictor
and response category r. Then the symmetric side constraint is given by ∑m

j=1 βr,A(j) = 0.
Interpretation of parameters with the symmetric side constraint does not refer to an increase
by one unit but always refers to a mean over categories. Let GM(A = j,xR) denote the
geometric mean defined in Section 2 with the predictor A being in category j and the rest
of the variables represented by xR. With this notation one derives for the multinomial
model

eβr,A(j) = P (Y = r|A = j,xR)/GM(A = j,xR)∏m
s=1 P (Y = r|A = s,xR)/GM(A = s,xR) ,

which compares the odds for predictor value A = j, P (Y = r|A = j,xR)/GM(A = j,xR),
to the geometric mean response probability over all categories of variable A for fixed xR.

For effect coded predictors one gets as many stars as categories whereas one has one less if
a reference category is chosen (see religion in the party preference example). Figure A.11
shows the resulting glyphs with effect coding for the lakes. It is seen that size of the alligator
changes the food preference; larger alligators have a stronger preference of bird and reptiles.
Also the lake makes a difference showing that different food is preferred or available in the
lakes. Here the advantage of the symmetric side constraint is that preference has not to
be interpreted with respect to an arbitrarily chosen reference lake. For illustration in this
example we hold the radius constant instead of the maximal length of rays. The option to
fix the radius is included in the EffectStars package.
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Figure A.11.: Food choice for alligator data depending on size gender and lake with fixed radius.

A.5. Ordinal Response Models

The graphical tool of parameter glyphs can also be used to uncover structures in ordinal
response models as the cumulative type models or the sequential type models (for example,
Agresti, 2009). For simplicity, we restrict consideration to logit models. Let the response Y
take values from ordered categories {1, . . . , k}. The cumulative logit model has the general
form

log
(
P (Y ≤ r|x)
P (Y > r|x)

)
= γ0r + xTγr, r = 1, . . . , k − 1,

or
P (Y ≤ r|x) = exp(γr0 + xTγr)

1 + exp(γ0r + xTγr)
, r = 1, . . . , k − 1,

The sequential logit model (also called continuation ratio model) has the form

log
(
P (Y = r|x)
P (Y > r|x)

)
= γ0r + xTγr, r = 1, . . . , k − 1,

or
P (Y = r|Y ≥ r,x) = exp(γr0 + xTγr)

1 + exp(γ0r + xTγr)
, r = 1, . . . , k − 1.
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The model is strongly related to discrete hazard models if the response refers to categorical
survival. Then the probability P (Y = r|Y ≥ r,x) represents the probability of failure in
(time) category r given category r is reached, which is a discrete hazard. For details see,
for example, Tutz (2012).

In both models the predictor has the form ηr = γ0r + xTγr. By allowing for category-
specific effects γT

r = (γr1, . . . , γrp) the model has as many parameters as the multinomial
logit model. In its simpler version, where γr = · · · = γk−1 = γ holds, the cumulative
type model is also called the proportional odds model. Only in this form does it fully
use the ordering of the response categories. An intermediate case, where only some of the
parameters are category-specific is the partial proportional odds model (for example, Cox,
1995, Brant, 1990, Peterson and Harrell, 1990). With many predictors it is a demanding
problem to find out which parameters can be specified as global, that is, not varying over
categories, and which ones as category-specific. In the exploration of the general model
star plots can be helpful.

For the representation of effects it is useful to represent the models in a slightly different
form. The cumulative logit model can be written as

P (Y ≤ r|x)
P (Y > r|x) = eγr0ex1γr1 . . . expγrp = eγr0(eγr1)x1 . . . (eγrp)xp .

Therefore, the exponential eγrj represents the multiplicative effect of variable j on the
cumulative odds P (Y ≤ r|x)/P (Y > r|x) if xj increases by one unit. It is the effect on the
dichotomization into response categories {1, . . . , r} and {r + 1, . . . , k}. For the sequential
logit model one obtains

P (Y = r|x)
P (Y > r|x) = eγr0ex1γr1 . . . expγrp = eγr0(eγr1)x1 . . . (eγrp)xp .

Therefore, the exponential eγrj represents the multiplicative effect of variable j on the
continuation ratio odds P (Y = r|x)/P (Y > r|x) if xj increases by one unit.

In a star plot for the effects of variable xj the length of the rays is given by eγ1j , . . . , eγk−1,j .
As in the multinomial logit model the (dashed) unit circle refers to the case where the jth
variable can be neglected, that is, γ1j = · · · = γk−1,j = 0. The p-value of the likelihood ratio
test for the corresponding hypothesis H0 : γ1j = · · · = γk−1,j = 0 is denoted by p-rel since
the relevance of the jth predictor is tested. When compared to the circle the stars show
if the effects are larger than 1 (outside the circle) or smaller than 1 (inside the circle). In
the sequential model that means that a variable that has values within the circle decreases
the odds P (Y = r|x)/P (Y > r|x), rays outside the circle represent variables that increase
the odds. The interpretation of stars is the same as for the multinomial model, that is,
closeness to the unit circle means that the variable is not influential.
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For illustration we consider the data from the German Munich founder study. Data were
collected on business founders who registered their new companies at the local chambers of
commerce in Munich and surrounding administrative districts. The focus was on survival
of firms measured in 7 categories, the first six represent failure in intervals of six months,
the last category represents survival beyond 36 months. Various covariates are available,
economic sector (1: industry, manufacturing companies and building sector, 2: commerce,
3: service industry), legal form (1: small trade without entry in the register of companies,
2: one man business merchant, 3: GmbH, GmbH & CoKG, 4: GbR, KG, OHG), location
(0: residential area, 1: business area, industrial area or mixed), new (0: new foundation,
1: partial take-over, take-over, miscellaneous), pecuniary reward (0: main occupation, 1:
additional occupation), seed capital (1: > 25000, 0: ≤ 25000), equity capital (1: yes, 0:
no), debt capital (1: yes, 0: no), market (0: local market, 1: national market), clientele (0:
wide spread, 1: small amount of important customers), education of founder (1: A-levels, 0:
minor), gender of founder (1: male, 0: female), experience (1: > 10 years, 0: ≤ 10), number
of employees (1: > 2 , 0: ≤ 2), age of founder. The data of the Munich founder study
have also been used by Brüderl et al. (1992) and Kauermann et al. (2005) and are available
from the Central Archive for Empirical Social Research, University of Cologne, Germany
(http://www.gesis.org/en/institute/). We restrict our analysis to those firms that
were founded completely new, which leaves us with 1224 cases. We fitted the full sequential
logit model with all 18 predictors but show only four of the stars that resulted. Figure
A.12 shows the stars for sector3, legal3, location, and new foundation. It is seen that the
first two variables are highly significant. The variable sector3 has all values outside the
circle, meaning that the odds increase if the firm is in the service industry as compared to
reference category 1 (industry). For variable legal3 the star is distinctly inside the circle
meaning that legal form 3 decreases the odds when compared to reference categry 1 (small
trade). For the other variables, location and new foundation, the stars are very close to the
circle. Consequently both predictors are not significant (see value in brackets).

In ordinal models a second effect is interesting, namely if the effects are category-specific or
global, that is, do the effects of variables vary across response categories or not. Therefore,
a second (dotted) circle refers to the model with global effects only, that is, γ1j = · · · =
γk−1,j = γj. We fit the model that contains all predictors with category-specific effects
with the exception of predictor j, which has global effect and include the circle with radius
exp(γj). The interpretation of stars with respect to the dotted circle is different. Closeness
to this circle means that the variable is global, strong deviation signals that it is category-
specific. The hypothesis H0 : γ1j = · · · = γk−1,j = γj investigates if the proportional odds
assumption holds for the jth predictor. The corresponding p-value of the test is denoted
by p-global since the test investigates if the predictor has global effect. Figure A.13 again
shows the stars for only some predictors although the full model has been fitted. All of
the predictors that are shown have significant effects (p-rel< 0.05). For predictors sector3,

http://www.gesis.org/en/institute/
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Figure A.12.: Stars for four predictors of the founder study with circles referring to the no-effects
case. For the significant variables, sector3 and legal3 the stars are far away from the no-effects
circle, for the significant variables, location and new foundation, they are quite close.

legal3 and clientele the hypothesis that effects are global is not rejected (p-global> 0.05).
The corresponding stars are close to the dotted circle, although not close to the dashed
circle, which represents relevance. For variables legal2 and debt capital the stars are far
away from the dotted circle and the hypothesis that the effects are global is rejected. For
the latter variable the dashed and the dotted circle are very close, which means that the
estimated global effects are very small. However, the variable is influential, but influence
becomes relevant only if one allows for category-specific variables. This is one of the cases
where variables are excluded if one assumes a model that is too simple but is seen to be
relevant if one uses a model that is sufficiently flexible.

In the illustrations we used the sequential model. There are two reasons. First, the category-
specific effects for the sequential model have a simple interpretation. Second, the cumulative
model often raises problems when a model with category-specific effects is fitted. Maximum
likelihood (ML) estimates may not exist because the parameter space is restricted in a
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Figure A.13.: Stars for five predictors of the founder study. Deviation from the dashed circle implies
relevance of the predictor, deviation from the dotted circle implies that predictor is category-
specific.

complicated way, one has to postulate that γ10 +xTγ1 ≤ · · · ≤ γk−1,0 +xTγk−1 holds for all
possible predictor values. If the maximum likelihood estimate does not exist an alternative
is to use in the star plot for variable xj values from the fitting of the global model, which
gives the circle, and values from the fitting of the model

log
(
P (Y ≤ r|x)
P (Y > r|x)

)
= γr0 + x1γ1 + · · ·+ xjγrj + · · ·+ xpγp,

where only variable xj has category-specific effects. But even then ML estimates often
deteriorate.

A.6. Concluding Remarks

We proposed a method to visualize the fitted effects of a categorical response model. The
method allows to identify the direction as well as the strength of the effects. For ordinal
models it is distinguished between the relevance of a predictor and how strongly the effects
vary across the categories. Both aspects can be seen from the corresponding stars. The full
strength of the visualization method is seen if one looks at the stars for all the covariates. In
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particular in the ordinal response case we showed only selected stars although much more
predictors were used.

Star plots visualize parametric effects and therefore are useful for parametric models. They
should not be used if a metric variable is included in polynomial form and therefore repre-
sented by a group of parameters. Also if multi-category predictors or interaction effects are
included one predictor is represented by more than one parameter for each response cate-
gory and therefore several stars are linked to one predictor. In the case of a multi-category
predictor in the typically used parametrization the parameters refer to a chosen reference
category and so do the stars. If the predictor has m categories one obtains m−1 stars that
have to interpreted as contrasts to the reference category. If one wants to avoid a reference
category one can use a symmetric side constraint and obtains m stars, one for each cate-
gory of the predictor. For illustration the symmetric side constraint has been used to code
the predictor lake in the alligator food example. When interaction effects are included at
least two stars are linked to one predictor and some care is needed when interpreting stars
because interpretation of parameters is much harder.

From one perspective star plots can be seen as profile plots rendered in polar coordinates.
Therefore, profile plots are an alternative, in particular for multinomial models. But we
think that stars plots are more pleasing to the eye and the inclusion of the results of
significance tests, in particular for ordinal models is easier in star plots.

All the computations were done by use of the free software R (R Core Team, 2015). The R
package EffectStars (Schauberger, 2014b) that generates and plots effect stars is available
at CRAN. It contains many options to modify the resulting stars.



B. Identifiability of the DIF Model

Proposition

Let for the parameters of the general DIF model (4.2) with predictor ηpi = θp−βi−xTp γi be
constrained by βI = 0, γTI = (0, . . . , 0) and let the matrix X with rows (1,xT1 ), . . . , (1,xTP )
have full rank. Then parameters are identifiable.

Proof

Let two sets of parameters be given that fulfill the constraints such that

ηpi = θp − βi − xT
pγi = θ̃p − β̃i − xT

p γ̃i

for all persons and items. From considering item I and person p one obtains by using
βI = β̃I = 0 and γT

I = γ̃T
I = (0, . . . , 0) that θp = θ̃p holds. Therefore, one has βi + xT

pγi =
β̃i + xT

p γ̃i for all p, i, which for item i can be written in matrix form as

X(βi,γi)T = X(β̃i, γ̃i)T.

One can multiply on both sides of the equation with XT, and, since X has full rank, with
the inverse (XTX)−1, obtaining (βi,γi)T = (β̃i, γ̃i)T. Alternatively one can use the single
value decomposition of X.
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Round Quarter Semi Final World Oddset
of 16 finals finals Champion

1. GER 86.1 68.1 52.3 32.8 20.5 14.2
2. ESP 91.3 64.1 47.5 31.7 19.5 10.9
3. BRA 93.0 64.9 48.2 30.8 19.1 20.3
4. POR 73.3 51.1 35.1 18.7 9.3 2.4
5. URU 71.3 50.7 22.5 11.5 5.1 2.8
6. BEL 82.8 36.9 22.4 10.2 4.3 5.9
7. ITA 67.2 46.3 19.5 9.4 4.0 3.5
8. SUI 72.3 45.6 19.7 8.5 3.5 0.7
9. ARG 77.6 44.5 18.9 7.8 3.1 14.2
10. CRO 64.9 26.2 13.8 6.0 2.1 0.7
11. FRA 62.2 35.4 13.7 5.3 1.9 3.5
12. COL 76.3 33.4 10.9 4.1 1.3 3.9
13. ENG 47.3 28.1 9.5 3.7 1.3 3.5
14. CHI 50.1 18.0 8.6 3.3 1.0 2.0
15. NED 44.9 15.1 6.9 2.5 0.7 3.5
16. BIH 56.6 25.2 7.9 2.4 0.7 0.5
17. ALG 49.3 13.2 5.6 1.6 0.4 0.1
18. CIV 61.3 21.4 5.5 1.7 0.4 0.7
19. USA 23.2 10.7 4.8 1.5 0.4 0.7
20. ECU 38.8 17.3 4.8 1.3 0.3 0.7
21. NGA 39.3 14.2 3.4 0.8 0.2 0.4
22. RUS 42.7 9.0 3.5 0.8 0.2 1.2
23. GHA 17.4 7.2 2.9 0.7 0.2 0.7
24. MEX 28.0 6.9 2.4 0.7 0.2 0.7
25. JPN 43.0 11.5 2.2 0.5 0.1 0.5
26. HON 26.6 9.8 2.2 0.5 0.1 0.1
27. IRN 26.4 7.9 1.6 0.3 0.1 0.1
28. KOR 25.2 3.8 1.1 0.2 0.0 0.2
29. CRC 14.2 5.6 1.0 0.2 0.0 0.1
30. CMR 14.0 2.3 0.6 0.1 0.0 0.2
31. AUS 13.7 2.4 0.6 0.1 0.0 0.2
32. GRE 19.4 3.1 0.3 0.1 0.0 0.7

Table C.1.: Estimated probabilities (in %) for reaching the different stages in the FIFA World Cup
2014 for all 32 teams based on 100,000 simulation runs of the FIFA World Cup 2014 and based
on the estimates of the WC1994 data together with winning probabilities based on the ODDSET
odds.
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Round Quarter Semi Final World
of 16 finals finals Champion

1. GER 86.1 81.4 68.4 53.2 73.9
2. ARG 77.6 48.4 47.5 54.8 26.1
3. BRA 93.0 76.6 73.3 46.8 0.0
4. NED 44.9 66.0 67.0 45.2 0.0
5. BEL 82.8 65.7 52.5 0.0 0.0
6. CRC 14.2 68.0 33.0 0.0 0.0
7. FRA 62.2 68.8 31.6 0.0 0.0
8. COL 76.3 41.6 26.7 0.0 0.0
9. URU 71.3 58.4 0.0 0.0 0.0
10. SUI 72.3 51.6 0.0 0.0 0.0
11. USA 23.2 34.3 0.0 0.0 0.0
12. MEX 28.0 34.0 0.0 0.0 0.0
13. GRE 19.4 32.0 0.0 0.0 0.0
14. NGA 39.3 31.2 0.0 0.0 0.0
15. CHI 50.1 23.4 0.0 0.0 0.0
16. ALG 49.3 18.6 0.0 0.0 0.0
17. ESP 91.3 0.0 0.0 0.0 0.0
18. POR 73.3 0.0 0.0 0.0 0.0
19. ITA 67.2 0.0 0.0 0.0 0.0
20. CRO 64.9 0.0 0.0 0.0 0.0
21. CIV 61.3 0.0 0.0 0.0 0.0
22. BIH 56.6 0.0 0.0 0.0 0.0
23. ENG 47.3 0.0 0.0 0.0 0.0
24. JPN 43.0 0.0 0.0 0.0 0.0
25. RUS 42.7 0.0 0.0 0.0 0.0
26. ECU 38.8 0.0 0.0 0.0 0.0
27. HON 26.6 0.0 0.0 0.0 0.0
28. IRN 26.4 0.0 0.0 0.0 0.0
29. KOR 25.2 0.0 0.0 0.0 0.0
30. GHA 17.4 0.0 0.0 0.0 0.0
31. CMR 14.0 0.0 0.0 0.0 0.0
32. AUS 13.7 0.0 0.0 0.0 0.0

Table C.2.: Estimated (adapted) probabilities (in %) for reaching the next stages in the FIFA
World Cup 2014 for all 32 teams based on 100,000 simulation runs of the FIFA World Cup 2014.
After each round, the data set (WC1994) is extended with by the matches already played and the
model is refitted. Only actual matches from the World Cup are simulated.
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Group A Group B Group C Group D
43% 33% 24% 22%

1. BRA 1. ESP 1. COL 1. URU

2. CRO 2. CHI 2. CIV 2. ITA

MEX NED JPN ENG

CMR AUS GRE CRC

Group E Group F Group G Group H
22% 24% 36% 24%

1. SUI 1. ARG 1. GER 1. BEL

2. FRA 2. BIH 2. POR 2. ALG

ECU NGA GHA RUS

HON IRN USA KOR

Table C.3.: Most probable final group standings together with the corresponding probabilities for
the FIFA World Cup 2014 based on 100,000 simulation runs and on the estimates of the WC1994
data.
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ESPGER - ESP

BRA - GER

BRA - ITA

BRA - CHI 77%

COL - ITA 60%
68%

SUI - GER

SUI - BIH 64%

GER - ALG 82%

70% 51%

ESP - POR

ESP - URU

ESP - CRO 73%

URU - CIV 71%
66%

ARG - POR

ARG - FRA 54%

BEL - POR 58%

62%

60%

50%

Figure C.1.: Most probable course of the knockout stage together with corresponding probabilities
for the FIFA World Cup 2014 based on 100,000 simulation runs and on the estimates of the
WC1994 data.
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