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Zusammenfassung

Die Manipulation der Dynamik von Elektronen im Mikrokosmos setzt die präzise Erzeu-
gung von elektromagnetischen Feldern voraus. Dies wurde vor kurzem durch die Lichtfeld-
Synthese ermöglicht.

In meiner Doktorarbeit demonstriere ich erstmals die Erzeugung von kohärenter hoch-
harmonischer Strahlung im extem ultravioletten Spektralbereich mit Photonenergien von
bis zu ∼ 40 eV durch die Interaktion von ultrakurzen elektrischen Feldern mit dünnen
SiO2-Schichten.

Die Analyse der Wechselwirkung mit intensitäts-und schwingungsverlaufsgeregelten
elektrischen Feldern gibt einen detaillierten Einblick in die Physik hinter der Emission
und ermöglicht es die erzeugte Strahlung mit elektrischen multi-Petahertz Strömen in
Beziehung zu setzen, welche im SiO2-Kristall durch das ultraschnelle treibende Feld
des erzeugenden Laserpulses induziert werden. Desweiteren wurde hierdurch die erste
Sondierung der feinen Details des Energie-Dispersions Profils des Leitungsbands eines
Nichtleiters ermöglicht, welche bisher durch Standardelektronspektroskopie nicht zugänglich
waren. In dieser Arbeit werden weiterhin die ersten Schritte zur Erforschung des neuen
Gebiets der Festkörperphotonik im extem ultravioletten Spektralbereich getan.

Diese Doktorarbeit beschreibt auch wie optische Attosekundenpulse neue Möglichkeiten
zur Kontrolle gebundener Elektronen auf sub-fs Zeitskalen, über das ”Strong Field Ion-
ization Regime” hinaus bietet.

Durch die Messung der Vakuumultravioletstrahlung von elektrischen, präzise einstell-
baren Feldern ausgesetzten Krypton Atomen zeige ich Zugang zur nichtinstantenen, nicht-
linearen, elektrischen Erregungsantwort von gebundenen Elektronen.

Zusätzlich zur Untersuchung der feldgetriebenen Elektronendynamik in Materie wid-
met sich ein Teil dieser Doktorarbeit dem Design und der Umsetzung einer neuen Genera-
tion von Lichtfeld-Sythesizern welche die Lichtfeld-Synthese auf Terawatt Leistungsniveau
ermöglichen sollen.





Abstract

Manipulating electron dynamics in the microcosm requires precisely engineered electro-
magnetic fields. Such fields have been recently brought to life by virtue of light field
synthesis.

I demonstrate in this thesis that the interaction of ultrashort electric fields with thin
films of SiO2 enables the generation of coherent high order harmonic radiation in the
extreme ultraviolet ranging up to ∼ 40 eV for the first time.

Study of the interaction with intensity and waveform controlled electric fields provides
detailed insight into the physics of the emission and allows relating the emitted radiation
to multi-petahertz electronic currents induced in the bulk of SiO2 by the ultrafast driving
field. Moreover it allowed, for the first time, the probing of the fine details of the energy
dispersion profile of the conduction band of an insulator, previously inaccessible by stan-
dard electron spectroscopies. This work also takes the first steps towards exploring the
new area of solid-state photonics in the extreme ultraviolet region.

The thesis also details how optical attosecond pulses can now offer new capabilities
for controlling bound electrons on sub-fs time scales, beyond the strong field ionization
regime.

Recording the vacuum ultraviolet emission of Krypton atoms exposed to precisely
tunable electric fields I demonstrate access into the non-instantaneous nonlinear electronic
response of bound electrons.

In addition to investigating field driven electron dynamics in matter, part of the
thesis is devoted to design and implementation of a new generation light field synthesizer
apparatus aiming at the advancement of light field synthesis at the terawatt power level.
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Introduction

A vast majority of physical phenomena are manifestation of electron dynamics in the
microcosm. Because electromagnetic fields can apply forces to electrons they offer the
potential to control their dynamics and therewith other physical processes that are ensu-
ing the electronic excitation of matter. Therefore by using light fields, one can be actively
involved in steering microscopic processes by manipulating the electromagnetic field act-
ing on them. In turn, manipulation of the electromagnetic field requires knowledge of
light-matter interactions, thus a complete control of electrons and related processes re-
quires a complex combination of knowledge on both fundamental as well as technological
aspects.

Linear interactions between light and matter are processes easily encountered in daily
life. Phenomena as reflection, refraction, dispersion, absorption, diffraction are some of
the most important ones. Understanding of linear interaction has been pursued since the
beginning of human evolution to the foundation of the Snell-Descartes law and till today.
Knowledge of linear interaction between light and matter is of utmost importance in
modern technologies and sciences (for instance, development of sophisticated multilayer
optics [1] and photonic devices).

In contrast, nonlinear optical interactions are not commonly observed because usually
the intensity of conventional light sources is too weak and the light sources are not
coherent. With the invention of the laser [2], intense coherent light bursts of radiation
have opened the era of nonlinear optics [3] and control of matter. Rapid development of
tools has allowed the possibility to following light matter interactions in real time.

During the last decades, by capitalizing on nonlinear interactions, it has been possible
to generate extremely short laser pulses, reaching femtosecond time scale (1 fs = 10−15

seconds) and since last decade also the attosecond time scale [4]. Owing to the unique
properties of these pulses such as high temporal and spatial resolution, they are exten-
sively utilized for applications in ultrafast spectroscopy [5], laser-controlled chemistry [6],
frequency metrology [7], optical communications [8], biomedical applications [9], material
processing [10], etc. In physical sciences, ultrashort laser pulses are now serving as a basic
tool in investigating ultrafast phenomena, opening a new era of femtosecond spectroscopy
for which the field of ultrafast science has been awarded a Nobel prize.

Controlling and probing electrons have significantly benefited from generation of ul-
trashort laser pulses and their high time resolution. Yet ultrashort laser pulses are not
the fastest. In fact, light field exhibits a much steeper gradient than that of the cycle-
averaged quantity. By introducing controlled few cycle laser pulses, one can exert a
controlled, variable force on the electrons on the electronic time scale (attoseconds). This
signaled the new era of attosecond control and measurement [4].

Controlled electromagnetic forces, strong enough to trigger nonlinear interactions,
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induce electronic motion which can give rise to coherent extreme ultraviolet pulses (EUV),
a feat that can be attributed to modern attosecond science. Since the emitted pulses are
precisely synchronized to the incident laser pulses, they can be used in pump-probe
experiments, triggering and probing ultrafast dynamics. This marks a radically new
scientific possibility which is referred to as light wave electronics [11].

With the advent of light wave electronics, electronic wavepackets in atoms molecules
plasmas or solids can now be controlled with unprecedented resolution. By steering the
electronic wavepacket [12] (i.e. through the means of strong field ionization [13]), one can
control their classical trajectories such that their re-collision to parent ions enables one
to harvest detailed information related to the electronic structure [14] and the resultant
emitted light characteristics [15, 16].

All of above achievements have been possible by the use of high power few-cycle
laser pulses [14–16]. In order to reach even higher temporal precision and control, the
most direct way (not necessarily the most convenient) is to pursue shorter laser pulses in
optical frequencies also. Shorter laser pulses implies control over a considerably broader
spectral range and at the same time, superior spectral phase control. These scientific and
technical challenges have been recently addressed and have recently lead to the generation
of optical attosecond pulses [17].

EUV generation and spectroscopy

The nonlinear frequency conversion of light, based on intense nonlinear interactions of
light and matter, has formed the basis for extending applications of modern photonics and
spectroscopies to ranges of the electromagnetic spectrum that are typically inaccessible
using conventional optical technologies. Researchers can now routinely use laser-driven,
solid-state nonlinear devices to produce radiation in the terahertz (THz) [18], deep or
vacuum ultraviolet ranges [19], harnessing a great range of practical applications or fun-
damental studies of laser-matter interactions; however, to reach coherent EUV and X-ray
frequencies, researchers must rely on gas-phase media [12, 20–23] and surface plasmas
[24–28].

The laser-based generation of coherent EUV radiation from the bulk of solids could
open the way to the development of compact and potentially practical sources or devices
by benefiting from the properties of light in this spectral range. Moreover, and equally
importantly, such sources could be the basis for the extension of techniques of attosecond
measurement and strong-field control, currently revolving around broadband gas-phase
EUV emission [12, 14, 20, 29–32], into the condense phase. The laser-based generation of
EUV radiation would also enable the advancement of nonlinear microscopy [33], for which
the spatial resolution can benefit from the nanometer spectral range of the generated
photons or the ultrafast duration sustainable in this spectral range [30, 34–39]. Advances
of this type would be of particular importance for real-time measurement and control
of electronic and structural dynamics in condensed phase systems with unprecedented
resolution; however, in the absence of methods permitting the generation of coherent,
broadband EUV radiation in the bulk of solids, these possibilities have remained elusive.

Predicted in studies of nonperturbative laser-matter interactions [40, 41], high har-
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monic generation in bulk media was recently explored in crystalline semiconductors using
mid-infrared [42] and THz [43] driver fields, yielding coherent radiation covering the visi-
ble, deep and vacuum ultraviolet parts of the electromagnetic spectrum. Although exten-
sion to the extreme ultraviolet frequencies is supported by theoretical predictions [41], it
is experimentally constrained by material damage induced by intense laser drivers. Semi-
classical models [44] extended to these spectral ranges [42, 45–48] or more sophisticated
quantum mechanical treatments [43, 49] highlighted the role of intraband, laser-driven
dynamics such as the acceleration and nonlinear scattering of carriers in the extreme-
nonlinear response of solids and offered important first insights into the physical processes
underlying these experiments.

Although the above efforts comprise essential steps towards nonperturbative, fem-
tosecond controlled light sources, these efforts have not yet resulted in the broadband
generation of coherent EUV radiation in the bulk of solids and its attosecond control,
leaving this spectral and temporal regime beyond the reach of modern solid-state laser
technologies and spectroscopies.

Bound electron control

The attosecond response of bound electrons to electromagnetic fields, which is implied
by the energy (< 10 eV) required for a typical bound-state electronic excitation, repre-
sents a natural frontier for dynamic control of matter. Exploration of ultrafast control
of bound electrons in the vicinity of this frontier requires electromagnetic fields with well
defined characteristics: (i) the spectral response of the electrons is below the first ioniza-
tion energies (there is no ionized electrons), this also means the order of the interaction
has to be low; (ii) the incident electric fields have to be sufficiently intense to activate
nonlinear responses but also weak enough not to cause ionization; (iii) the consequent
nonlinear response has to be confined and be controllable within the attosecond time
interval. Because they naturally fulfill (ii) and (iii), laser pulses generated at optical
and nearby ranges have yielded spectacular examples of real-time measurements of fem-
tosecond atomic-scale dynamics [6], nonlinear control of such dynamics [50, 51] and even
photonics devices [52] that operate at femtosecond scales, but they have not yet attained
attosecond manipulation of bound-state electrons or the concomitant phenomena.

Direct extension of optical, laser-based control of bound-electrons from the femtosec-
ond to the attosecond domain requires synthesis of intense attosecond pulses that extend
over several octaves in optical and nearby frequencies, but such pulses have hitherto
remained beyond the reach of modern laser technologies until [17]. Coherent superposi-
tions of discrete spectral bands that span the above spectral range have enabled synthe-
sis of periodic, sub-fs-sculpted optical waveforms [53, 54] and thereby implementation of
waveform-sensitive quantum control [55] schemes of ultrafast manipulation of microscopic
process [56, 57]. However, their temporal resolution is constrained by the nanosecond-
to-femtosecond temporal envelope that is associated with the constituent bands. Recent
efforts in multi-octave synthesis based upon coherent supercontinuum sources have ad-
vanced the temporal confinement and control of isolated laser pulses into the single- and
sub-cycle domains [58, 59], but they have not yet reached the attosecond frontier.
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In the absence of attosecond optical lasers, attosecond science has capitalized on the
extreme nonlinearity of strong fields [12, 13, 60], typically ionizing processes [13] driven by
multi- or few-cycle pulses, to attain attosecond resolution and to demonstrate its basic
concepts [61]. Waveform-tailored, intense, few-cycle pulses have been used to attain
sub-femtosecond control [29] and measurement of electrons liberated by the field in the
ionization continua of atoms or molecules in the gas phase and the conduction bands of
solids [62] and the motion of electrons in atomic or molecular ions [14, 32, 58, 63–65].
Although these developments represent novel realms of electronic manipulation, they
have failed to implement attosecond control under perturbative or at least non-ionizing
regimes, which is required to extend attosecond science to a broad class of quantum
systems, such as atoms, molecules or solids in their neutral state, where femtosecond
science flourishes.

Attosecond extreme ultraviolet (EUV) pulses [30, 35–38, 66–68] that emerge in strong-
field processes are ideal for probing sub-cycle dynamics repetitively induced by optical
fields [58, 69, 70] over femtosecond ranges and for ultrafast attosecond triggering of elec-
tron dynamics [71–73], but their constrained waveform tunability, limited intensity, and
high (> 15 eV) central photon energy prevent them from being established as generic
tool for bound-state electron control of matter.

The thesis

In this thesis, my main contributions to proof-of-concept experiments in generation and
spectroscopy of EUV in solids, attosecond control of bound electrons, and laser develop-
ments are described below:

� In this work, I have shown that thin films of SiO2 exposed to intense, few-cycle to
sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy
to ∼ 40 eV. A systematic investigation of the semiclassical model, a quantum-
mechanical model and their comparison to the experimental data is carried out.
It reveals the close relation of the emitted EUV radiation to induced intraband
currents of multi-petahertz (PHz) frequency in bandwidth, in the lowest conduc-
tion band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy
to solids, we exploit the EUV spectra to gain access to fine details of the energy
dispersion profile of the conduction band that are as of yet inaccessible by pho-
toemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV
spectra to trace the attosecond control of the intraband electron motion induced
by sub-cycle optical transients. The generation of broadband EUV radiation by
driving the coherent nonlinear motion of electrons in solids not only advances high
order harmonic spectroscopy to the condensed phase but also promotes solid-state
laser photonics and electronics to a new frequency regime where they can find a
great deal of practical applications.

� We have made it possible to generate sub-cycle laser pulses whose duration is less
than one period of their carrier wave [58]. These pulses are still not short enough
to provide attosecond confinement and control. Ultimately, by utilizing sophisti-
cated spectral shaping together with the addition of the deep ultraviolet channel
to the existing synthesizer and related advancements, attosecond confinement and
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control of laser pulses have become real. Bound electrons have been controlled by
unprecedented degree of freedom through manipulation of these optical attosecond
pulses.

Furthermore, careful inspection of the vacuum ultraviolet spectra generated by the
medium under influence of the optical attosecond pulses shows indication of the
non-instantaneous optical response. By utilizing the numerical solution of a three
dimensional time dependent Schrödinger equation [74] as a benchmarking tool, a
great applicability of the developed models has been observed. Consequently, by
applying the models to the experimental spectrograms, we have unambiguously
showed that the reconstructed nonlinear polarization response is delayed with re-
spect to the instantaneous nonlinear response.

This application demonstrates the power of attosecond steering and probing of elec-
trons together with attosecond metrology [34]. Although our studies were limited
to Krypton atoms under a simplified model, attosecond non-instantaneity in the
optical response of bound electrons is to be explored in a broader range of bound
electronic systems because of the vast similarities in their electronic structures.

� Lastly, I have worked on a next-generation synthesizer that aims at advancing
optical attosecond pulse technology to the TW scale. Several technical advance-
ments have been made to improve even further the state-of-the-art of the pulse
synthesis. Highly efficient direct second harmonic generation (> 50% for ∼ 23 fs
incident pulses) which is very close to the theoretical limit calculated by nonlinear
propagation has been demonstrated. The resultant second harmonic pulses were
compressed to their Fourier limit of ∼ 13 fs. These high power (energy per pulse
> 1.5 mJ), short pulses are of great interest for ultrafast sciences. Furthermore,
a broadband supercontinuum (∼ 220 − 500 nm) generation through a hollow core
fiber has been demonstrated, to the best of my knowledge, the broadest ever using
the above second harmonic pulse as input of hollow core fiber. All of these advance-
ments contribute to an ever more elaborate attosecond waveform synthesizer that
should help driving experiments in atomic and molecular physics for years to come.

Structure of the thesis

� Chapter 1: Short introduction to light-matter interactions and overview of the
theory as well as some theoretical models utilized.

� Chapter 2: The experimental setup is described. Generation of optical attosecond
pulses.

� Chapter 3: Motivation towards developing TW scale waveform synthesizer and
introduction to supercontinuum generation, practical design as well as implemen-
tation of the synthesizer are shown. The results of highly efficient direct second
harmonic generation are reported and compared to simulations. Supercontinuum
generation and its subsequent spectrum division to five channels are also demon-
strated. Compression of pulses in some channels is shown.
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� Chapter 4: Short introduction and description of the experimental setup to gener-
ate EUV from solids. Measured results are reported extensively in several aspects.
Development of the semiclassical and quantum-mechanical model and their appli-
cations in interpreting the experimental data. Comparison to experimental results
is presented and an application to spectroscopy is derived.

� Chapter 5: Bound electron spectral responses of Kr under interaction with syn-
thesized light transients are recorded and showed. Several models describing the
phenomena are presented. Insight into non-instantaneous response is illustrated.

� Chapter 6: Conclusions.

List of publications directly related to this thesis

� T. T. Luu∗, M. Garg∗, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Gouliel-
makis. Extreme ultraviolet high-harmonic spectroscopy of solids.
Nature, vol. 521, no. 7553, pp. 498-502, 2015.

� M. T. Hassan∗, T. T. Luu∗, A. Moulet, O. Razskazovskaya, P. Zhokhov, M. Garg,
N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis. At-
tosecond optical control of bound electrons.
Nature, submitted.

� O. Razskazovskaya∗, T. T. Luu∗, M. Trubetskov, E. Goulielmakis, and V. Pervak.
Nonlinear absorption in dielectric multilayers.
Optica, submitted.

Further publications within the framework of the author’s dissertation

� M. T. Hassan, A. Wirth, I. Grguras, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak,
and E. Goulielmakis. Invited article: Attosecond photonics: Synthesis and control
of light transients.
Review of Scientific Instruments, vol. 83, no. 11, 2012.

� A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst,
R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz,
and E. Goulielmakis. Synthesized light transients.
Science, vol. 334, no. 6053, pp. 195-200, 2011.



Chapter 1

Light matter interactions: a few
elements

1.1 Weak field regime

1.1.1 Nonlinear polarization and nonlinear optical susceptibili-
ties

Media interact with an incoming light field depending on the field strength. If the light
field is weak (at the order of 1010 W/cm2 or less in terms of peak intensity - from now
on until the end of the thesis, peak intensity is regarded to the maximum instantaneous
peak intensity I = ε0cE

2
0 , not the cycle-averaged intensity I = 1/2ε0cE

2
0 as people usually

use), the response of the medium appears to be independent of the light intensity, but
when the incident peak intensity approaches the order of 1013 W/cm2 or less (thanks to
the invention of lasers [2]), the medium response will start to behave strongly dependent
on the field strength. At this regime of interaction, the medium will act as a catalyst,
stimulating the exchange of light waves’ momentum and energy, resulting in a creation
of new light waves at different frequencies (energy and momentum). The strength of this
mixing process depends on the medium and it can be derived from the time dependent
perturbation theory as in [75]. The medium’s polarization can be approximated as a
power series of the incident electric field (more details on the derivation can be found in
[75], Section 3.2):

P(t) = ε0
[
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + χ(4)E(t)4 + χ(5)E(t)5 + . . .

]
(1.1)

This polarization defines current density J = ∂P/∂t which is included in the Maxwell’s
equations. Therefore this polarization shapes how the generation of the new photons (or
mixing of incident photons) will be and hence it plays a crucial role in describing light
matter interaction.

In addition, the above equation shows the nonlinear polarization as a contribution of
all order terms together with the corresponding susceptibilities χn. The strength of χn

defines effectively which order of interaction should be taken into account for a particular
electric field strength.
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1.1.2 Nonlinear processes

For media that do not have inversion symmetry, all χ2·m terms (m is an positive integer)
exist. If a medium posses significantly high χ2 such that it dominates all other higher
order terms, this medium is responsible for all second order processes, for example, sum-
(second harmonic generation in particular) and difference- frequency generation and op-
tical parametric amplification. Among these processes, second harmonic generation will
be studied in details in Chapter 3.

On the other hand, once a medium has an inversion symmetry, effectively there are no
χ2·m terms, only the odd terms χ2·m+1 remain in the Eq. 1.1. In the lowest order consid-
eration of the available nonlinear term, χ3 is responsible for third order processes: third
harmonic generation, self- and cross- phase modulation and general four wave mixing.
Applications of these processes are utilized in Chapter 5.

1.2 Strong field laser physics

When the electric field intensity approaches 1014 W/cm2 or higher, the electric field
strength is comparable to the Coulombic fields and modifies strongly electronic dynamics
in atoms and molecules. In the other words, the electric field is strong enough so that
it bends the potential significantly, leaving the electrons high possibility to tunneling
out from the potential or in the extreme case; just leaving the potential directly. Due
to the oscillatory nature of light waves with cycles (possibly few) of oscillation, there
are possibilities that the electrons could be driven back to collide with the core, making
elastic or inelastic scattering. It is this regime of intensity that triggers many interesting
physics [76, 77] some of which are briefly reviewed below.

1.2.1 High order harmonic generation from gas targets

Although there are extensive reviews of HHG [78–80] and a detailed comprehensive tuto-
rial [81] was given, I attempt to outline some key developments in this area of research:

� First observations of HHG: McPherson et al. [82] and Ferray et al. [20] were the
first to report HHG spectrum generated from KrF∗ at 248 nm and Nd:YAG lasers
at 1064 nm up to the 17th (14.6 nm) and 33rd harmonics (32.2 nm) respectively.
Surprisingly, instead of a fast decreasing intensity expected from perturbative har-
monics at high order (more than 5), a formation of a plateau spectrum was observed
by exposing rare gases under these strong laser pulses.

� Simple man’s theory: One of the first numerical simulations trying to shed light
on this topic was the works of Kulander et at. [83] using the method previously
published [84]. By solving the 3D-TDSE numerically, the single atom response
spectrum can be evaluated from the time-dependent polarization. They showed
that the maximum high harmonic energy in the plateau region can be approxi-
mated by Emax ≈ Ip + 3Up where Ip is the ionization potential, Up = e2E2/4mω2 is
the ponderomotive energy of the released electrons with E, ω are the electric field
amplitude and carrier frequency. This model has shown significant applicability in
HHG: it determines the cutoff energy and its dependence on the ionization potential
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(choice of the atoms) and the electric field amplitude and carrier frequency (choice
of the laser parameters).
Even though a simple model for the driving of ionized electrons in the long wave-
length limit (which causes HHG) was reported earlier [85], it was after the works of
Kulander et al. that a robust simple man’s theory was developed and it is called a
three step model [12]: first (ionization step), the electric field is strong enough such
that it bends the Coulombic potential, an electron is tunneled out to the continuum
state. Secondly (propagation step), the released electron is driven by the electric
field and thirdly (recombination step), there are possibilities that the electron can
be recombined back to the ground state, generating an XUV photon whose energy
is given by Ip plus total ponderomotive energy ≈ Ip + 3.2Up.

� Further developments (simulations and experiments): Although a full 3D-
TDSE has been demonstrated it is too complicated to apply to complex systems.
Therefore a quantum theory with an approximation which is called strong field ap-
proximation (SFA) was developed [23, 86] which not only preserves the ideology
behind the three step model but also quantitatively gives good results for the cutoff
energy and partially the HHG spectrum.
Furthermore, from the idea of the three step model, the released electrons may miss
the ionized atom in the recombination step if the incident electric field is not lin-
early polarized. The HHG efficiency is therefore dramatically decreased. This effect
has been demonstrated experimentally [87] and investigated theoretically [88].
In addition, the macroscopic aspects of the HHG have been investigated and im-
proved such as the optimization of the laser parameters, carrier wave, gas medium,
temporal and spatial profiles. Due to the fact that the generated HHG are coherent
and completely synchronized to the driving electric field, XUV pulses are emitted
in the form of a train, each with attosecond duration and they are extremely sen-
sitive to the parameters of the incident electric field. Utilizing these pulses with
attosecond time window, electronic processes can be investigated with attosecond
resolution.

1.2.2 High order harmonic generation from plasma surfaces

When the laser intensity is strong enough such that most of the atoms (molecules) on
the surfaces are ionized, a dense layer of plasma is formed. This usually requires fo-
cused intensities larger than 1014 W/cm2 for nanosecond lasers up to more than 1016

for femtosecond laser pulses. The first experiment reported the observation of extended
harmonic series (2nd to 11th) of the fundamental frequency (10.6µm) down to 0.95µm
was done by Burnett et al. [89] in 1977. Soon, Carman et al. using similar techniques
had demonstrated HHG up to 29th order [90] and later up to 46th order [91] in 1981.
First theoretical description of this HHG was suggested by Carman et al. [90] and a
theory based on the step like structure of the generated plasmas density was proposed by
Bezzerides et al. [92]. In this picture, the electron performs an anharmonic motion under
influence of the incident electromagnetic field and the step-like plasma density and as a
result a series of odd and even harmonics are created.

Thanks to the fast progress in laser development, high intensity, high power laser
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systems can be implemented in the table-top scale and first observations of HHG from
solid target on a table top system were reported [24, 93]. Although one can choose
to perform particle-in-cell simulations [26, 27] to resolve the complex collective electron
dynamics under influence of strong field, it is found that a simpler model of oscillating
mirror provides good agreements to the particle-in-cell simulations [26]. Essentially, there
are two assumptions used in the oscillating mirror model: firstly, the detailed spatial
distribution of the electron density is neglected, the whole electrons can be represented
by a characteristic boundary (upon which the incident light is reflected) and the ions are
assumed to be fixed as an immovable background. Secondly, the incident electromagnetic
field is mostly reflected on this characteristic boundary surface hence the reflected light
incorporates the oscillatory motion of this boundary (driven by the electromagnetic field)
to its temporal profile as well as its spectrum. Using these assumptions, the motion of a
free electron in this characteristic electronic boundary (plasma surface) can be calculated
classically in both relativistic and non-relativistic regime [25], thus the spectrum of the
reflected light on this plasma mirror can be derived.

1.2.3 Attosecond physics

Emergence of isolated single attosecond pulses from the HHG [30, 34, 36, 66, 94] has
opened a new era of ultrafast sciences where steering and probing of the electronic dy-
namics can be performed in a radically high resolution. From the physical mechanism
of the generation of the HHG spectra and their corresponding XUV pulses in gases, one
can not only measure the generation of the XUV pulse but also control this process
by manipulating the released electrons (and their re-collisions as a consequence) by an
engineered electric field [15]. Furthermore, this degree of measurement and control of
the generation of attosecond XUV pulses is even extended more such that generation of
isolated sub-100 as pulses is possible [30]. The generation of attosecond pulses slowly
transformed the ultrafast sciences from femtosecond chemistry (where femtosecond light
pulses are used to trace chemical reactions) to attosecond physics (where light pulses as
short as attoseconds are utilized to pump and/or probe electronic processes which happen
on faster time scales than that of chemical reactions). All the tools, techniques as well
as their applications and implications of attosecond physics are thoroughly reviewed by
Krausz and Ivanov [4].

1.3 Theoretical consideration

In order to investigate the behavior of a quantum system under interaction with the inci-
dent electromagnetic fields, one has to solve the Time Dependent Schrödinger Equation
(TDSE) with the interacting electromagnetic field included in the time dependent Hamil-
tonian H (which is one of the most important theoretical tools to investigate ultrafast
phenomena [80]):

i~
∂Ψ(r, t)

∂t
= HΨ(r, t) (1.2)

From here, one can get the solution of the TDSE as follows:
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|Ψ(r,∆t)〉 = exp

(
− iH∆t

~

)
|Ψ(r, 0)〉 (1.3)

Knowledge of the temporal evolution of the wave function |Ψ(r, t)〉 gives us complete
information needed to calculate observables. However, more often than not, the form
of the Hamiltonian does not allow one to get the analytical solution thus generally a
numerical solution is needed. More specifically, because Eq. 1.3 requires exponential
function of the H operator while the Hamiltonian includes both the potential (whose
direct exponent maybe straightforwardly calculated) and momentum operator (whose
exponent mostly is problematic) therefore one must follow certain routes in order to
evaluate this numerically and efficiently.

Many problems can be treated within the framework of the single active electron
(SAE) approximation [95] where it is assumed that there is only one electron that is
actively interacting with the incident electromagnetic fields and a suitable single-electron
potential is selected. This approach has proven to treat well a variety of problems or even
multi-electron interactions [80].

Numerical solution of the one dimensional SAE TDSE is well tractable on a modern
personal computer for any given approach (see Appendix A.1 for a typical solution using
split-operator algorithm for the exponent operator evaluation and Fourier transform for
the momentum operator evaluation). The result of this calculation can already give us
tremendous amount of information related to the interaction process. From the weak field
response to the high order harmonic generation (HHG), etc, they can be captured by this
model. Typically one dimensional simulations of this kind could easily overestimate the
calculated polarization thus not giving realistic spectra. For a more precise simulation,
one needs to evaluate a three dimensional TDSE (still in the SAE approximation) [96].
In this case, most physical processes are taken into account. The calculation naturally
explain very well the perturbative response as well as resonant response. However, this
approach does pose some disadvantages: it is hard to separate different physical processes,
the dephasing time cannot be included as transparently as in the case of the density matrix
approach (although this can be included using complex potentials), etc, and finally the
calculation time is not as fast as the 1D simulations.

For the sake of having a more accurate tool describing the interaction processes, a
multi-electron TDSE or a time dependent density functional theory (TDDFT) [97–99]
might be needed. However, invoking such sophisticated calculations also means there is
a trade-off with the calculation time. One can get only few representative calculations
and it is time consuming to try to match the experimental data quantitatively.
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Chapter 2

Experimental setup - synthesis of
optical attosecond pulses

In quest to advancing manipulation and control of light pulses from nanosecond [100] to
picosecond [101–103], and femtosecond [104, 105] time scale, a great leap has been done
by the generation of synthesized light transients [58]. Instead of utilizing conventional
pulse shaping techniques (standard pulse shaper [103, 106], phase and amplitude masks
[107], spatial light modulators [108–110], acousto-optic modulators (AOM) [104, 111,
111], acousto-optic programmable dispersive filter (AOPDF) [112–114] and others [54,
115, 116]), direct waveform manipulation of light waves was performed with attosecond
resolution [117]. Here I will only outline experimental setup and the brief generation and
characterization of the attosecond pulses used in this thesis.

2.1 Experimental setup

2.1.1 Femtosecond carrier envelope phase-locked high power
laser amplifier

The front end of our experimental setup is a commercial femtosecond phase-locked, high
power laser amplifier (FemtopowerTM CompactTM Pro HE, Femtolasers GmbH), shown
in the left part of Fig. 2.1 which is an upgraded version of previous technologies [118].

A train of ultrashort pulses emerging from a Kerr-lens mode locked oscillator is seeded
into the 9-pass amplifier (1st amp) of the two-stage amplifier laser system. The ultrashort
pulses then undergo amplification, picking 3 kHz pulses, and are amplified to ∼ 1.3 mJ.
Because of the AOPDF, one can stretch the pulses to ∼ 25 ps using glass blocks without
suffering complicated high order spectra phase. Nonetheless, because the Dazzler helped
digging the bigger hole and making the broader spectrum, this came at the expense of the
amplified pulse’s energy. To compensate for that, we intentionally focused the pumping
green laser beam harder on the crystal (replacing the 27 cm focal length green lens to 25
cm focal length). This enhanced the amplification and put the crystal more in saturation
which stabilized better the pulse to pulse energy. However, the 1st amplifier becomes
much more dependent on alignment and ambient temperature, the thermal lensing is
more problematic and damage of Ti:Sapphire crystal is more likely to happen. Secondly,
the transmission grating compressor has eliminated the problems of the prism compressor:
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Figure 2.1: Schematic diagram of the laser system in Attoelectronics group.

narrow spectral width, limited compression range and self phase modulation inside the
prisms (in the other words: low power threshold). At the exit of the laser amplifier,
by measuring the pulses temporal profile with a Self-Referenced Spectral Interferometry
device [119] and providing feedback to the grating compressor as well as the Dazzler [120],
1 mJ, ∼ 22 fs pulses are obtained on the daily basis which are virtually Fourier limited
in duration with a bandwidth of ∼ 75 nm at ∼ 790 nm.

In the second-stage amplifier (2nd amp), a cryogenic cooling was utilized. For the
pumping power of ∼ 42 W from the DM60, the chiller (set temperature at −166 0C) is
able to cool the crystal down to ∼ 132 K without the seed beam and ∼ 127 K with the
seed beam on. In order to gain additional amplification while maintaining the pulses peak
intensity below the damage threshold of the crystal, the beam size (both seed and pump)
on the crystal is significantly enlarged in the 2nd amp (∼ 800µm instead of ∼ 300µm in
the 1st amp). After the grating compressor, we typically have ∼ 3 mJ and average power
of ∼ 9 W and almost transform limited pulses at ∼ 22 − 23 fs. For experiments carried
out in chapter 4 and 5, only the 1st amp has been used. For the developments in chapter
3, both amplifiers are used to deliver maximum possible energy/power.

Carrier envelope phase stabilization

CEP stabilization of the oscillator pulses In principle, by utilizing either a f-to-2f
[7, 121–123] or a f-to-zero technique [124], the CEP or (CE offset) of the laser pulse
train can be obtained. With the help of locking electronics, CEP stabilization can be
performed. Eventually phase noise less than 30 mrad in 20 s, with more than 24h of CEP
locking was demonstrated [125] using feed-forward scheme.

CEP stabilization of the amplified pulses In our lab, the f-to-2f technique is uti-
lized. More details of the implementation can be found in [126].
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Figure 2.2: CEP stabilization: current status. a, Measured CEP values of the amplified
pulses for ∼ 2 hours. The standard deviation of the CEP noise is < 100 mrad. b, Applied
feedback signal measured at the same time as the measurement of the CEPs.

By combining the CEP stabilization of both the oscillator and of the amplified (broad-
ened) pulses, CEP locking of the amplified (broadened) pulses is implemented and a
typical stabilization result is shown in Fig. 2.2.

Additional feedback loop It is often the case that the voltage range of the AOM is
not sufficient to overcome the long term drift of the pulses’ CEP inside the oscillator. As
a result, once the limit (voltage compensation range) of the AOM is reached, the wedges
were designed to move mechanically to compensate for that and consequently disturb the
CEP stabilization loop during its movement. Another feedback loop was implemented in
the system. It reads the output of the input of the AOM then depending on its value, it
will regulate the pumping power of the oscillator (Verdi V6) via RS-232 communication.
This precise and highly applicable approach has improved the long term operation of the
CEP stabilization significantly. In principle, as long as the beating signal fCEO (carrier
envelope offset frequency) remains within the locking range, the CEP stabilization of the
oscillator (hence of the complete system) will be maintained for several hours.

2.1.2 Light field synthesis: principles and implementation

For light field manipulation on picosecond and femtosecond time scales, a standard pulse
shaper [103, 106] can be used. It generally comprises of three steps: a device that can
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transform the pulse in time into its Fourier counterpart (most frequently being a grating
or prism) at which different frequencies are spatially displaced, a device that modulates
the different frequencies and a device that converts the pulse back to time domain, which
sometimes can be the first device, but aligned such that the pulse travels in opposite
direction. However, for broadband, high intensity laser pulses, a grating will have a
severe problem when the pulses’ spectral bandwidth exceeds one octave and a prism will
exhibits nonlinear behavior. Most of these shortcomings have been solved by the use of
dispersive optics. These dispersive mirrors have been designed to control the dispersion
[127] (chirped mirrors) and they are successfully applied to compress weak short pulses
[128] as well as short pulses at high peak power [129]. Supercontinuum generation by
focusing intense laser pulses into hollow core fiber together with the use of chirped mirrors
have broadened research scope using short pulses, high power laser sciences, eventually
gives birth to attosecond physics [4, 34]. Eventually, dispersive optics play an important
role in a light field synthesizer [58, 117].
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Figure 2.3: Principle of light field synthesis. a, A broadband coherent light source is
required. b, A synthesizer apparatus firstly divides the source into constituent channels (bands).
Pulses in each of the channels will be individually compressed and their relative phases will be
adjusted. Finally, all the channels are coherently superimposed [ spatially and temporally]
to create ultrashort synthesized light pulses at the exit of the synthesizer. Possible waveform
constructions are showed in the lower half panel given the source bandwidth of half, one, two,
or three octaves. c, A precise characterization apparatus is required to sample accurately the
field waveform and provide feedback to the waveform synthesizer. [Adapted from [117]].

The principle of light field synthesis is illustrated in Fig. 2.3 while a more elaborate
discussion on the synthesis, the light field synthesizer as well as the peripheral technologies
are detailed in [117]. With the scope of the thesis, I will briefly overview.
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The most broadband coherent light source

Practically, in our experimental setup, a coherent broadband source which extends spec-
trally over more than two optical octaves have been demonstrated [58, 117]. Further im-
provement of the hollow core fiber setup helped to extend the supercontinuum spectrum
down to the deep ultraviolet (DUV) region of the electromagnetic spectrum. Spectral
components extending to ∼ 200 nm are typically generated by our setup, as shown in
Fig. 2.4.
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Figure 2.4: Broadband supercontinuum spectra at the exit of the hollow core fiber.
a, Hollow core fiber setup. b, Output spectrum (dashed black line). Spectra of the individual
channels are shown in red, orange, blue and violet lines respectively. Adapted from [17].

Synthesizer apparatus

A schematic and a photograph of the light field synthesizer are shown in Fig. 2.5. The
main components of this synthesizer are:

� Division of the incoming pulses into 4 channels: Broadband dichroic beam
splitters play a key role in dividing the pulses. As an extension of the previous work
[58, 117], one more channel in the DUV region has been implemented [17]. The total
number of channels inside the synthesizer is now 4 with their bandwidth spanning as
ChNIR : 1100−700 nm, ChV is : 700−500 nm, ChV is−UV : 500−350 nm, ChUV−DUV :
350− 270 nm

� Manipulation of the light pulses in individual channels: Two mirrors in
each channels are put on delay lines controlled by translation stages for coarse and
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piezo-electric for fine tuning of relative temporal delays or relative spectral phases.
There are apertures, glass windows, and wedge pairs in each channel to adjust
their power, dispersion as well as their CEP. Furthermore, all the optics that are
used for the transportation of the individual beams inside each arm are dispersive
optics and allow compression of these pulses. In order to make sure that pulses in
each of the channels are well compressed, a Transient Gating - Frequency Resolved
Optical Gating (TG-FROG) apparatus [126] is utilized. The apparatus is based
on well known FROG technique [130, 131] and its variant TG-FROG [132]. This
apparatus is very universal such that it can be employed to measure the temporal
profile of pulses in all the channels without any modification to the setup.

� Coherent superposition of the pulses temporally and spatially: After the
light pulses in each arm have been well compressed, they are combined into one
beam by using the same dichroic beam splitters used for their division. However,
special care must be taken to make sure they overlap temporally and spatially.

� Passive and active path-length stabilization: Passive stabilization using a
cooling circuit made inside the monolithic board helps stabilizing the temperature
of the complete optical setup (all optical mounts are mounted directly on the board
without any extension posts). Additionally, an active path length stabilization
helps maintaining the relative phases between pulses in different channels by pro-
viding a slow feedback to piezo-electric stages mounted on the delay lines during
experiments.

2.1.3 Generation of isolated attosecond XUV pulses and its
characterization by attosecond streaking metrology

In our experimental setup, single isolated attosecond XUV pulses are generated by a
combination of a ultrashort laser pulse (preferably ∼ 2 cycles or less) and proper spectral
filtering of the cutoff region of the HHG spectrum (80− 120 eV).

Characterization of ultrashort laser and attosecond XUV pulses by attosecond
streaking

The characterization of attosecond XUV pulses is a considerable challenge. Powerful
techniques well developed in the past such as Frequency Resolved Optical Gating [130]
(FROG) or Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPI-
DER) [133] could not immediately be ported to the XUV domain. Attosecond streak
camera was suggested by J. Itatani, F. Krausz and P. B. Corkum et at. [134] and even-
tually realized by E. Goulielmakis et al. [94] and subsequently by others [36, 66].

In the attosecond streaking apparatus used in this chapter, an XUV pulse and an
optical pulse are collinearly focused on a Neon gas target, electrons from the valence
shells of Neon atoms will be photoionized by the XUV. The transition amplitude of these
electrons from the moment of release to its final continuum state |v〉 is described by
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[23, 134–136] (in atomic units):

a(v, τ) = −i
∫ ∞
−∞

eiϕ(t)dp(t)EXUV (t− τ)ei(W+Ip)tdt (2.1a)

ϕ(t) = −
∫ +∞

t

[
v ·A(t′) + A2(t′)/2

]
dt′ (2.1b)

where A(t) is the vector potential of the fundamental field, v is the final momentum
of the electrons, p(t) = v + A(t) is the instantaneous momentum of the electrons, dp

is the transition dipole matrix element from the ground state to the continuum state
|p〉, EXUV (t) is the XUV pulse temporal profile, W = v2/2 is the kinetic energy of the
electrons and Ip is the ionization potential of the streaking gas.
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Figure 2.6: Simulated isolated attosecond XUV pulse generation and its attosecond
streaking. a, Ultrashort laser pulses (Gaussian envelope, λcarrier = 700 nm, FWHM = 4 fs)
used for generation of single isolated attosecond pulses and attosecond streaking. Two CEP
settings are represented: ϕCE = 0 (solid blue line) and ϕCE = π/2 rad (solid red line) . b, HHG
spectra calculated from Lewenstein’s model for Neon. Same color code applies. c, Transmission
spectrum of 200 nm Zr filter (solid blue line) and reflection spectrum of the inner mirror (solid
green line). Their amplitudes are normalized. d,e, Attosecond streaking spectrogram calculated
for the filtered attosecond pulses for these two CEP settings and for Neon gas. The streaking
field used is 0.5 V/Å.

Figure 2.6a,b show the electric fields and the simulated HHG spectra respectively.
Since in the regime of short pulses, there exists CEP at which a broadband supercontin-
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uum is observed at the cutoff region of the HHG. Proper spectral filtering of this spectrum
(Fig. 2.6c) could lead to the generation of single isolated attosecond XUV pulses.

Fig. 2.6d,e show evidently the difference between a streaking trace of a single iso-
lated attosecond pulse and for the case of a double pulse (assuming that dp is constant
across the whole photoelectron spectrum). From these streaking traces, a complete recon-
struction of attosecond burst is possible through a FROG algorithm specifically tailored
for XUV pulses [136] (known as FROG CRAB). Although the technique used in FROG
CRAB, Principal Components Generalized Projections Algorithm - PCGPA [137], is very
efficient and reliable, it suffers two main drawbacks [138] for attosecond pulse applications:
boundary condition is not generally satisfied and impractical grid size requirements. A
new attosecond FROG algorithm, Least-Square Generalized Projections Algorithm - LS-
GPA, was proposed and implemented [138] that addressed above issues and accurately
characterized attosecond pulses from streaking measurements.

These above methods deal with the characterization of the fundamental fields as well
as the generated attosecond XUV pulses. However, for the purpose of characterizing only
the optical fields, provided that the generation of isolated attosecond pulses is guaranteed,
a much simpler method using evaluation of center of mass of the photoelectron spectrum
to calculate incident electric field was compared with PCGPA and LSGPA and turned
out to be accurate enough [117]. Intuitively, one could expect that the main feature of
the Fig. 2.6d is the vector potential of the electric field in Fig. 2.6a (blue solid line).

2.2 Optical attosecond pulse generation and charac-

terization

In quest to make ever shorter optical pulses beyond the state-of-the-art 2.1 fs pulses [58] we
have to inevitably expand the bandwidth of the laser pulses. Supercontinuum generation
from the hollow core fiber in our lab was optimized to support spectral bandwidth ranging
from 1100 to 270 nm (or 1.1 to 4.6 eV, Fig. 2.4). However, due to the intrinsic properties
of the SPM, the high and low energy spectra are weaker in intensity compared to the
central components. Therefore, proper spectra shaping is required and was actually
implemented as a special coating on a mirror in Fig. 2.7.

These efforts have eventually lead to the synthesis and generation of optical attosecond
pulses whose typical streaking spectrogram is illustrated in top left corner of Fig. 2.7.

In this regime of optical pulse duration, there is only one strong half cycle of the
optical field that drives the free electrons significantly compared to other half cycles.
In the streaking spectrogram, it shows up as a monotonic rise of the vector potential
of the field from the minimum photoelectron energy to maximum values. As a result,
the reconstructed electric field comprises of a dominant, nearly isolated, half-cycle peak
(centroid wavelength ∼ 530 nm) Fig. 2.8a. Its intensity profile (Fig. 2.8b) is roughly 4
times stronger than that of adjacent peaks. Consequently, the main half cycle contains
∼ 50 % of the total energy of the pulse. Evaluation of its duration on the basis of
the instantaneous intensity profile of the half-cycle peak in Fig. 2.8b yielded a FWHM
duration of ∼ 400 as, whereas an evaluation based on conventional definition of the
intensity envelope yielded ∼ 975 as. Light waveforms like the one shown in Fig. 2.8 will
be utilized in experiments discussed in later chapters.
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Carrier envelope phase decomposition and global phase

Since the concept of CEP is largely understood in the temporal domain, ϕCE = ω0 ·∆tpeak

while ∆tpeak is time difference between the peak of the envelope and the peak of the
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carrier wave of the electric field, the relationship F−1
[
|E(ω)| exp(i · (ϕ(ω) + ϕoffset

ω ))
]

=
Eenvelope(t) · cos(ω0(t + ∆tpeak)) (or ϕCE = ϕoffset

ω ) is true only for pulses longer than
∼ 1 cycle. Once the pulses are shorter than ∼ 1 cycle, the envelope changes drastically
outside the peak so that ∆tpeak is no longer a good measurement for the phase change of
the pulse. As a result, we use from this moment onward the term global phase [120, 139]
which corresponds to ϕoffset

ω in frequency domain and holds true for all physical pulses.
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Chapter 3

Towards a terawatt scale waveform
synthesizer

3.1 Introduction

A lager number of applications in strong field physics would benefit substantially from
higher temporal resolution and broader spectral bandwidth of an optical attosecond pulse.
However, for applications such as HHG in the keV range, the energy of these pulses must
be boosted to the terawatt (TW) levels. Here I discuss efforts toward extension of the
light field synthesizer to the TW scale, pushing towards generation of 1 keV photons
[140].

3.2 Concept

3.2.1 Supercontinuum generation

Although the topic of supercontinuum generation has been discussed throughly in the
book of Alfano [141] and excellent reviews of Dudley et al. [142] and Couairon and
Mysyrowicz [143], I will only review some important approaches that serve as a foundation
for our experiments.

Supercontinuum in hollow core fibers

Generally a broad supercontinuum generation bandwidth (450 − 2500 nm, [144] can be
obtained from bulk media ([145–152]), filamentation ([143, 144, 153, 154]), conventional
fibers and photonic crystal fibers ([142, 155]). Due to nice preservation of the mode,
supercontinuum generation in fibers is heavily utilized. However, these techniques are
not adequate for intense laser pulses, i.e. the energy of light pulse can be coupled and
transmitted is limited to the range of nJ . Therefore, even though short pulses down to 6
fs in 1987 [156] or even 5 fs in 1997 [157] have been demonstrated, their energy was still
in the order of nJ .

In order to increase the total output energy as well as to maintain the supercontinuum
bandwidth, another technique was put forward 20 years ago. Nisoli et al. [158] have
demonstrated the generation and compression of 10 fs, 240µJ from the input pulse of 140
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fs, 660 µJ using 140µm core size, 70 cm long fiber filled with Argon. The idea is that
instead of letting the relative weaker pulses to propagate in a solid core (which has very
high third order susceptibility), a stronger pulse (which can not be coupled to a medium
at the same conditions without causing damage) can be put into interaction with noble
gases (a lot less dense - total nonlinearity is less). Moreover, the outer cladding of the
fiber serves as a guiding structure. Even though the hollow core fiber does not provide
100 % transmission, one can find out a compromise between the transmitted power and
the generated supercontinuum. Because noble gases can sustain very high peak laser
pulses, high energy (power) input can be used, thus one can expect high energy (power)
output as well. In fact, 5 fs pulses at multi-gigawatt peak power were generated using
this technique [128] and eventually our synthesized light pulses [58, 117] benefited heavily
from this technique also.

High pulse energy approaches and our selection

However, there is also a limit for the peak energy (and pulse duration) one can use
for a hollow core fiber [159]. Generally, the quality of the mode and the transmitted
power will degrade if the incident pulse energy is more than 1 mJ. In order to solve this,
scientists have implemented another approach where differential pumping scheme [160]
is used. Using this technique, pulses with energy ∼ 5 mJ (60% conversion efficiency) and
a bandwidth of 650 − 900 nm were generated from ∼ 40 fs input pulses and they were
compressed to sub-10 fs. Eventually, pulses as short as 3.7 fs (1.2 mJ) were generated
using this technique [161].

Nevertheless, the above discussed techniques cannot satisfy the requirements of ultra-
short pulses in our experiments: spectrally extending more than two octaves and high
power at the same time. In our lab, a hollow core fiber setup without differential pump-
ing has been optimized such that it provides broadest reported spectrum [58, 117] (see
chapter 2).

3.2.2 Concept of the TW synthesizer

Figure 3.1 illustrates key ideas of the approach taken here. In the first stage, by setting
a goal of getting 50% conversion efficiency for the SHG, the fundamental 3 mJ, 800 nm
pulses at ∼ 23 fs duration (completely compressed to its Fourier limit, as the leftmost
pulse) will be equally divided into two intense pulses, each has ∼ 1.5 mJ of energy. Both
the fundamental and the second harmonic pulses experience dispersion inside the SHG
crystal (BBO in this case), fundamental pulses will be broadened to ∼ 28 fs where SHG
pulses will be temporally broadened to more than 24 fs, due to the propagation inside
the crystal. Because of the limited bandwidth of the SHG conversion (or phase matching
curve), the fundamental pulse will experience higher conversion to second harmonic at
the center of the spectrum (more depletion at the center rather than on the edges),
resulting in a slightly broader effective bandwidth (shorter Fourier limit duration: ∼ 22
fs). For the SHG signal, if the fundamental spectrum has a Gaussian shape, one could
expect in the weak depletion regime the Fourier limit of the generated SH signals will be
Tfundamental/

√
2 where Tfundamental is the Fourier limit of the input pulses. However, since

we have a top-hat-like spectrum and the fundamental is strongly depleted, the above rule
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Figure 3.1: Conceptual diagram of the TW light field synthesizer.

does not apply precisely. The resulted SH pulses (bottom left blue pulse) has the Fourier
limit of ∼ 13 fs.

In the second stage, in order to get an efficient supercontinuum generation from a
hollow core fiber, the input pulse must be well compressed. Therefore, two compression
stages using chirped mirrors are utilized to this end. After exiting out from the hollow
core fibers, since SPM changes instantaneous phase of the electric field without changing
its temporal envelope profile, the main part of the generated supercontinuum will have
similar temporal duration as the input pulses (close to their Fourier limits).

Finally, in the third stage, the generated supercontinuum pulses from both fibers are
fed into the synthesizer. The pulses are divided into different channels and are eventually
compressed and merged follow the same methodology as in chapter 2.
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Implementation of the design to 3D mechanical drawing

Figure 3.2 illustrates a top view perspective of the design which shows three stages of
the apparatus as in the schematic diagram (Fig. 3.1). The first stage of this system is
actually the grayed part in Fig. 2.1 (top right). The total optical length of the system is
more than five meters. The experimental implementation follows closely this 3D design.

A number of technological advances have been implemented in this system. We can
only describe some representative ones, as illustrated in Fig. 3.3:

cba

Figure 3.3: 3D design: some technological advances. a, Output window of the hollow
core fiber setup at Brewster’s angle. b, Wedge pair and translation stages placed at Brewster’s
angel. c, Temporal delay stage in minimalist design.

� Brewster’s angle exit windows - Fig. 3.3a Because the Brewster’s angle does
not vary much for the whole bandwidth (∼ 270 to 1100 nm) for either BK7 or Fused
Silica glass material (ϕB = 56±1◦), the pulses will be almost completely transmitted
through the window as in Fig. 3.3a for vertically polarized field. Any fraction of the
beam which is not completely transmitted and exits through a separate part will
be utilized for the CEP stabilization of the slow loop (amplifier and fiber setup).

� Wedges pair and translation stages - Fig. 3.3b This wedge pair is designed
such that there is almost no reflection of the individual beams on the wedges pair
for the S-pol beam. This design also incorporates translation stages to optimize the
compression of pulses in the channels as well as their CEPs, and the same design
is used without modification to host electronically controlled translation stages for
fine tunning of relevant parameters.

� Simplification of a delay stage - Fig. 3.3c Instead of a 45◦ angle of incidence
(AOI) design incorporating a translation stage, in our new design, the mirror mount
is placed directly on Piezo stage which is hosted on a pedestal post. Because most
of the temporal delays required are in fs range (or the order of µm), even when the
AOI = 45◦, a temporal delay of 10 fs corresponds to ∼ 3µm and it means a spatial
displacement of ∼ 3µm of the reflected beam, which is negligible.
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3.3 Highly efficient second harmonic generation and

its compression

Ever since the demonstration of the first second harmonic generation (SHG) in a bulk
[162] and surface [163] of crystals, owing to the creation of the first laser [2], SHG has
been widely utilized not only in fundamental sciences but also in industrial applications.
Even though very high efficiency of SHG has been demonstrated, up to 92% for 30 ps
pulses [164] long time ago, attaining high conversion efficiency for shorter pulses is a lot
more difficult because of the phase matching requirements [75, 165] for coherent build-up
of the up-converted light.

Selection of proper birefringent crystals’ parameters could mitigate the group velocity
mismatch (GVM) due to dispersion at short pulse regime, nonetheless, in order to obtain
a broad bandwidth in SHG, one has to minimize the propagation length of the beam
inside the crystal. Consequently, the total flux build-up (or conversion efficiency) is
compromised. Several schemes have been proposed to overcome the phase matching
limitations. They can be classified in two groups based on their nature of phase matching
corrections . In the first group which we call passive phase matching correction, because
of the existence of various dispersion characteristics of birefringent crystals, there exists
combinations of crystals and wavelength ranges in which essentially the GVM is zero over
those spectral ranges. This is demonstrated in numerous experiments with wavelengths
from 1→ 1.5µm [166–168]. Recently, ∼ 55% conversion efficiency has been demonstrated
for ∼ 200 fs pulses using this technique [169]. The second group which we call active
phase matching correction is based on different geometries used to counter the wavelength
dependent refractive index that exists inherently. This group include achromatic phase
matching [170–172] and tilted quasi-phase-matched gratings [173] or multicrystal designs
[174].

Even though in principle, the techniques of active phase matching can work for an
arbitrary wavelength range, they require complex experimental setups, as well as, very
careful alignment (one can get huge angular and spatial chirp from this kind of arrange-
ment). Passive phase matching techniques require the existence of the crystal at the
given wavelength, for our case (∼ 800 nm) no crystal has been reported with the high
second order susceptibility. And overall, the total conversion efficiency of active phase
matching techniques is not very large because of many optics required. Generally, the
conversion efficiency is in the range of ∼ 20→ 30% [175, 176] for femtosecond pulses less
than ∼ 30fs. For achromatic broadband phase matching, the total efficiency is typically
lower (∼ 10% [177]).

In this setup, highly efficient SHG is essential for implementation of the scheme of
Fig. 3.1. We implement the SHG using the direct approach, without utilizing any of the
active or passive phase matching correction schemes. Theoretical consideration suggested
that we experimentally approached the high conversion efficiency reported to date.
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3.3.1 Efficient conversion efficiency: experimental results

Implementation and requirements

The first requirement for an efficient SHG setup is also the one easily to be overlooked:
spatial profile of the fundamental beam. Due to the inhomogeneity of the Ti:Sapphire
crystal as well as imperfections of transporting mirrors, the beam profile delivered to
experiments often has non-Gaussian shape and small diffraction rings. By changing the
design of the 2nd amp from one pass to two passes (done by Femtolasers), the single pass
gain amplification has been relaxed a lot. Eventually this led to a reduced pumping power,
almost negligible thermal lensing and the output beam profile is practically Gaussian
while maintaining the final output energy of ∼ 3 mJ per pulse. The output instability
increased but this is easily compensated by the beam pointing stabilization setup placed
after the 1st amp, before the 2nd amp.

The second requirement is an adequate temporal compression of the fundamental
pulses. If these pulses are not well compressed, different spectral components of a pulse
do not come at the same phase (also same moment in time), and as the result the three
wave mixing process or SHG is not efficient. Practically in the lab, we compress our
pulses to ∼ 23 fs which is virtually their Fourier limit duration.

Because the intensity needed for SHG must be of the order of ∼ 1012W/cm2, for our
pulses of ∼ 23 fs, ∼ 3 mJ this implies a beam size on the BBO of the order of several
mm. It means that a converging scheme must be implemented. Although a walk-off effect
is negligible in our case (the thickness of the BBOs is maximum ∼ 200µm), the phase
matching angle is crucial. The phase matching angle varies from 31.2 → 27.4◦ for the
center wavelength from 750 → 850 nm. This 3.8◦ is already the maximum angle (from
side to side) of a cone formed by focusing a beam whose width is ∼ 7 mm by a lens whose
focal length is of 1 m.

CX focusing beam

to Experiment

collimated beam

to Experiment

BS

BBOBBO

Power meter

BSf = 1.5 m
ba

Figure 3.4: Experimental setup. a, Experimental setup used gentle converging beam
scheme to attain optimal intensity on BBO. CX: Convex mirror (used to collimate the focusing
beam). The complete setup of BBO, BS and power meter and be translated horizontally. The
lens is placed for illustration only, in reality, mirror focusing is used to minimize dispersion. b,
Experimental setup providing collimated beam hitting the BBO.

Fig. 3.4 shows the setup used to optimize the conversion efficiency of the SHG. Not
only the phase matching is critical in this case but also the higher-than-second order
susceptibilities must be minimized. If the laser intensity inside the crystal exceed a
certain threshold, besides SHG, third order effects will not be negligible and will give rise
to white light generation, and self focusing, etc. Therefore in order to make the most
out of SHG, all other effects has to be as small as possible. By utilizing the setup in
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Fig. 3.4a, optimal exposure intensity (∼ 1012 W/cm2) is found whose beam diameter is
slightly less than 7 mm.

After knowing the suitable beam size (or incident intensity) of the beam on the BBO,
we replaced the optimizing setup by the collimated beam setup (Fig. 3.4b) which has two
advantages: the BBO can be flexibly positioned, the collimated beam exiting the BBO
does not cause any problem for the BS or any optics afterward.

Summary of the results

The BBO crystals (200µm, cut at θ = 29.1◦) are customized to have the width ∼ 15 mm
square shape. Under the above optimized condition, ∼ 4.48 W of the SHG was detected
behind the dichroic and the reflecting mirror. With power of the fundamental is ∼ 9.10
W (3 kHz, ∼ 3.03 mJ, measured 9 reflections on high reflectivity mirrors before arriving
on the BBO), the measured conversion efficiency is ∼ 49%. If we take into account
imperfections of the dichroic and reflecting mirrors, the effective conversion efficiency is
> 50%. To the best of my knowledge, this is a record SHG conversion efficiency from
∼ 23 fs pulses.

For thinner crystals such as 100µm BBO, the maximum conversion efficiency is
about ∼ 39% at the same configuration of incident pulses.

The high conversion efficiency comes at the same time with a SH beam of good
spatial profile. In fact, increasing the focusing intensity (by decreasing the beam size on
the BBO) could increase slightly the total SHG conversion efficiency, but the transmitted
fundamental beam develops a hot spot at the center, practically limiting potential use of
it.

Figure 3.5: Focused SHG spatial profile at highest conversion efficiency. The gener-
ated SHG beam is focused by a mirror with focal length of 2.0 m.

Fig. 3.5 shows a well behaved beam profile of the SHG at the focus with ellipticity
of ∼ 0.89. In conclusion, the setup provides highest possible SHG conversion efficiency
while maintaining good spatial profile of both the fundamental and the SH beams.
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3.3.2 Temporal characterization and compression

Compression of the fundamental pulses after SHG
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Figure 3.6: FROG measurement and reconstruction of the fundamental pulses
existing the BBO. a, Measured FROG spectrogram. b, Reconstructed FROG spectrogram.
c, Reconstructed temporal intensity profile and temporal phase. d, Reconstructed spectral
intensity profile and spectral phase.

The fundamental pulses leaving the BBO and before entering the fiber compressor,
propagate through various media: 200µm BBO (broaden the pulses to ∼ 28 fs), ∼ 1.2
mm inside the BS (thickness of the BS: 1 mm) which has GDD ∼ 43 fs2, 2 mm lens
(GDD ∼ 72 fs2), 0.5 mm window in front of the fiber housing (GDD = ∼ 18 fs2) and
finally about 3 m of propagation in air (GDD = ∼ 64 fs2). As a result, the total effective
GDD that the pulses have accumulated after the BBO is ∼ 460 fs2 which in the end
totally broadened the pulses from ∼ 21 fs (transform limit) before the BBO to ∼ 80 fs
before the entrance of the fiber.

Similarly to SHG, in order to have an efficient supercontinuum generation, it is impor-
tant to optimize these pulses to their Fourier limit. In this case, a simple combination of
chirped mirrors and pair of wedges could allow a good compression of the pulses’ tempo-
ral profile. Fig. 3.6 shows a typical example. The reconstructed spectrogram (Fig. 3.6b)
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Fused silica BK7 MgF2 Air
1 mm 1 mm 1 mm 1 m

GDD (fs2)
400 nm 97.4 121.8 50.0 49.4
800 nm 36.1 44.6 19.8 21.3

TOD (fs3)
400 nm 30.0 40.4 14.1 14.5
800 nm 27.4 32.0 13.7 19.8

Table 3.1: GDD and TOD values for typical optical media.

closely resembles the measured spectrogram (Fig. 3.6a). The pulses are compressed to
nearly Fourier limit duration (Fig. 3.6c) and their spectral phase exhibits tiny GDD and
negligible higher order chirp.

Compressions of the SH pulses

Compression of the SH fields is in principle more challenging than the compression of
the fundamental (∼ 800nm) pulses because of high dispersion and less developed pulse
compression techniques in this spectral range. Fig. 3.1 shows high order dispersion values
for typical optical media.

Because the SH pulses have to propagate through 0.5 mm of Fused Silica window
after the BBO and ∼ 3 m of propagation in Air, in total, the SH pulses will acquire a
GDD of∼ 320 fs2 after the BBO (∼ 100 fs if left uncompressed).

Fig. 3.7 illustrates compression of the temporal profile of the SH fields by chirped
mirrors optimized for this spectral range. The measured spectrogram (Fig. 3.7a) and
reconstructed spectrogram (Fig. 3.7b) show good agreement. The compressed pulses are
almost chirp free (their Fourier limit is ∼ 13 fs). Such pulses with duration of ∼ 13 fs
and energy of ∼ 1.5 mJ at 3 kHz are of significant value in ultrafast sciences and also
beyond the scope of this thesis.

During performing above experiments, we observed nonlinear response of the chirped
mirrors. All the details in this work exceed the scope of this thesis and they are covered
in another publication [178].

3.3.3 Theoretical investigation of second harmonic generation
efficiency

The fast pace of the development of personal computers has brought tremendous advan-
tages to numerical modeling. Nowadays, a large number of simple physical simulations
are tractable on a single computer and they have brought great supports to experiments
in terms of intuitive understanding as well as systematic optimization of the processes.
Even though for light pulse propagation and interaction with media, one can solve the
complete Maxwell’s equations directly [179–181] but this is often computationally de-
manding and provide somewhat limited physical intuitive picture. Practically in order
to have nonlinear effects, one has to involve strong electric fields which are not possible
to attain with continuous waves. The decomposition of the light pulse into its envelope
and phase [182, 183] allowed the use of slowly varying envelope approximation (SVEA)
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Figure 3.7: FROG measurement and reconstruction of the SHG pulses existing
the BBO, before the fiber. a, Measured FROG spectrogram. b, Reconstructed FROG
spectrogram. c, Reconstructed temporal intensity profile and temporal phase. d, Reconstructed
spectral intensity profile and spectral phase.

[183]. In this approximation, the differential propagation equations are reduced from
second order to first order which greatly improves the calculation time. Furthermore,
Brabec and Krausz [184] derived another approximation which is called slowly evolving
wave approximation (SEWA) and later more approximations are derived [185, 186]. A
comprehensive review and derivation of all of these approximations is provided in a great
article by Couairon and Kolesik et al. [187].

Although the wave equation comprises all the needed information for propagation of
waves in media, in order to take into account response of the media upon interaction
with light waves (SHG in this case), one has to apply the polarization creation terms
into the wave equation and propagate them. Following [188], we derived the nonlinear
coupled wave equations (more details in Appendix A) which describe the interactions of
light matter in uniaxial second order nonlinear materials and investigate their application
to our experimental data.
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Figure 3.8: Pulse propagation inside 200µm BBO. The incident electric field (solid light
red curve) is a chirp free pulse from a 80 nm bandwidth of a hyper Gaussian spectrum centering
at 800 nm. θ = 29.1◦ ϕ = 90◦. The peak incident electric field was set at 109 V/m (inside the
crystal). The depleted electric field after propagation (still in ordinary axis) is illustrated as
the solid red curve. The generated SH pulse (extraordinary axis) is depicted as the solid blue
curve.

Simulation results

Figure 3.8 shows the results (generated SH pulses, depleted fundamental pulses, and
incident fundamental pulses) of the pulses exiting the last slice of the medium after
200µm propagation inside BBO. Because dispersion in the medium and the fact that
new SH photons should be generated at the temporal center of the fundamental fields
(where electric field amplitude is highest), after some distance, the pulses are broadened
to such and extent that the temporal center of the SH and fundamental pulses no longer
overlap. The phase matching between the fundamental and the SH pulses is therefore
weaker, resulting in reduced generation of SH field in the next slices. As a result, after
200µm of propagation inside the BBO, although the SH pulses accumulated significant
energy from the incident pulses, leading to a serious depletion of the fundamental pulses,
the SH conversion efficiency starts to saturate.

With the use of absolute numbers representing the effective second order nonlinearity
of BBO [75, 189], absolute conversion efficiency can be calculated and represented in Fig.
3.8. In order to take into account the real beam parameters (beam size, energy per pulse,
temporal profile), one might think of a complete 3D propagation of the wave equation
for the exact calculation. However, the beam size is substantially large (> 5 mm) and
the propagation distance is short (several 100µm), the complete 3D wave equation could
be rewritten as a series of independent equations (Eq. A.12) where the peak electric field
maps the spatial beam profile.

Such a simulation result is illustrated in figure 3.9. For each crystal thickness, a very
dense grid of maximum peak intensities is generated and corresponding propagations are
performed. The results are mapped on a Gaussian profile and subsequently the absolute
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Figure 3.9: Calculated SHG conversion efficiency. A Gaussian beam profile is assumed.
Maximum intensities here are intensities at the center of the beam inside the medium.

SHG conversion efficiency is calculated. In fact, using this technique we can calculate the
exact SHG conversion efficiency for the exact beam profile. However, since the measured
spatial beam profile fits very well by a Gaussian, simplification of the full problem to a
cylindrically symmetric problem greatly improved the calculation time.

For our experimental parameters of the beam before hitting the BBO: peak electric
field ∼ 2.2 · 109 V/m � Ipeak ∼ 1.3 TW/cm2, the beam profile is ∼ 7 mm at 1/e2

and the energy per pulse is ∼ 3 mJ, the parameters of the electric field at the center of
the beam, right in the first slice of the BBO are: peak electric field ∼ 1.7 · 109 V/m �
Ipeak ∼ 0.77 TW/cm2. Fig. 3.9 explains nicely the achieved high conversion efficiency. At
∼ 0.77 TW/cm2, only the 150 and 200µm crystals provide the maximum SHG conversion
efficiency. For thin crystal (100µm), the conversion efficiency seems to increase as long
as the peak intensity increases. For thicker crystal, it could result in higher conversion
efficiency at lower peak intensity. However, they also reach saturation much earlier than
thinner crystals. Therefore, the focusing intensity has to be chosen such that it is just
enough to get maximum conversion efficiency but also it is not too high to cause higher
order nonlinear effects.

From Fig. 3.9, two small deviations of the simulation from experimental results can
be observed: firstly, it seems that a weaker peak intensity could provide even higher
conversion efficiency and at the same time relaxes the focusing conditions. Secondly, the
theoretically calculated conversion efficiency is close to ∼ 65% while in the experiment
we could not observe it. However, if one takes into account the inaccuracy of the re-
ported nonlinear susceptibility values of BBO, the imperfection of the real BBO and of
the fundamental beam, this is already an excellent agreement. We could optimize the
crystal thickness and focusing intensity even more to reach the theoretical upper limit as
illustrated in the above figure.

From the calculation of the SHG conversion efficiency, we notice that besides the
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properties of the crystals and the peak intensity at the center of the beam, the total
conversion efficiency does not depend on the beam size, but it depends on the beam
shape. As a result, one could optimize the conversion efficiency based on above criteria:
change the spatial profile so that it is more top-hat than Gaussian, change the beam size
while keeping the maximum peak intensity (this is very crucial for high energy pulses).
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Figure 3.10: Comparison of simulated and measured spectra. a, Simulated spectra are
annotated correspondingly by their color codes in the legend. The axis of the SHG spectrum is
displayed on top. b, Same as a, but these are the measured spectra.

In addition, we could also compare the measured spectra with the simulated spectra
as in Fig. 3.10 where a strong agreement is observed.

Firstly, one can observe easily the depletion of the fundamental spectrum after prop-
agation through 200µm BBO. Since the crystal is not infinitely thin thus the phase
matching curve has a limited bandwidth. For such a thickness, the phase matching curve
is narrow enough such that at the end of the propagation, the frequencies at the center
of the fundamental spectrum got up-converted much more than frequencies at the wings,
resulting in a depleted spectrum with a dip at the center. This dip virtually broadens
the effective bandwidth of the fundamental so that its Fourier limit is slightly shorter.

Secondly, three wave mixing process here gives rise to the creation of the wings of
the fundamental spectra (clearly seen around ∼ 850nm) for both measured and simu-

lated spectra. In this particular case, back conversion process (the term F
[
F−1
[
Ex(ω)

]
·

F−1
[
Ey(ω)

]]
in the Eq. A.12) is responsible for this.

Thirdly, the generated SHG pulse develops small wing in the high frequency side (more
in the simulation, less in the measurement) which could partially be explained from the
off-center phase matching angle. Since changing θ from 29.1◦ to 31.2◦ can change the
center phase matching wavelength from 800 to 750 nm. It means that in order to get
correct phase matching angle to within ±10 nm of the center wavelength, the precision of
θ has to be ∼ 0.4◦. Practically any slight imperfections of the crystal could compromise
the performance of the BBOs.

In conclusion, excellent agreement between simulation and experimental measured
results has been observed. This simulation serves as an important tool in interpreting
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the experimental results and also helps us to perform systematic optimization of the SHG
process.

3.4 Supercontinuum generation and their compres-

sion

3.4.1 Supercontinuum generation

Optimization

There are several important parameters that are needed to be tuned in order to get an
efficient supercontinuum in a fiber:

� Fiber core size:
Supercontinuum generation in gases requires certain range of intensity (several 1014

W/cm2) therefore a given pulse energy, duration will correspond to a given beam
size. For example, a Gaussian, 20 fs pulse at 800 nm with energy of 1 mJ will reach
∼ 6 ·1014 W/cm2 at the focusing size of ∼ 200µm (1/e2). The fiber core size will be
chosen such that it supports transmitted mode as well as high power at maximum
spectral broadening.
In our lab, using similar parameters as the above pulses, the fiber core size is
optimized to be ∼ 250µm for the fiber used to broaden the fundamental beam (red
fiber) previously. Since the pulse energy is improved to ∼ 1.5 mJ, the focusing
conditions do not change much, we also have optimal supercontinuum generation
with ∼ 250µm core size fibers.
For the hollow core fiber used to broaden the SH pulses (blue fiber), we found out
that among all the core sizes tested (160µm, 200µm, 250µm, 300µm, and 400µm),
the 200µm core size gave the best result in terms of spectral bandwidth and quality
of transmitted mode and high power.

� Gas type:
There is also a compromise between the third order susceptibility and other effects:
usually a molecule will have significantly stronger third order susceptibility com-
pared to a noble gas (see Fig. 3.11a for a comparison between SF6 and Neon).
However, it also has a lot higher probability of ionization, absorption, etc such that
for the same broadening (Fig. 3.11a), using Neon will give us almost three times
higher transmission compared to SF6. It means that absorption, ionization, etc, are
a lot more serious in SF6 rather than in Neon in the same experimental conditions.
Consequently, one has to try experimentally (it is hard to put all of these effects
into a simulation) and we found out that Neon is a good option for supercontinuum
generation in both fibers.

� Gas pressure:
Fig. 3.11b shows the dependence of supercontinuum generation at different pressure
for Neon. It is trivial that the higher the gas pressure is, the higher chance third
order effects will set in thus one can expect the effective bandwidth to increase as
the gas pressure increases. Nonetheless, there exists a pressure at which absorption



40 3. Towards a terawatt scale waveform synthesizer

400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

Sp
ec

tr
al

 in
te

ns
ity

 (a
rb

.u
.)

250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)
Sp

ec
tr

al
 in

te
ns

ity
 (a

rb
.u

.)

250 mbar

200 mbar
150 mbar

100 mbar 50 mbar

ba

Figure 3.11: Supercontinuum generation dependence on gas type and pressure. a,
Supercontinuum spectra measured behind the red fiber filled with 2 bar of Neon (solid blue
curve) or filled with 200 mbar of SF6 (solid green curve). b, Supercontinuum spectra measured
behind the blue fiber filled by SF6 with increasing gas pressure (50→ 250 mbar).

starts to be crucial, the transmission through the fiber drops dramatically and the
mode deviates strongly from the TEM00. Therefore, the gas pressure has to be
optimized carefully along with the other parameters.

Results

Fig. 3.12 shows the optimized output spectra. The spectrum of the blue fiber extends
from 230− 500nm and it supports a pulse with duration of ∼ 1.5 fs. To my knowledge,
this is the broadest supercontinuum generation recorded by seeding the hollow core fiber
with the SH pulses of the 800 nm fundamental pulses. Additionally, the spectrum of the
red fiber extends from 500− 1050 nm and it supports a pulse with duration of ∼ 2.6 fs.

3.4.2 Division of the channels

We intentionally divide the current synthesizer into 5 channels which have almost equal
bandwidth (in frequency). The starting wavelength is 220 nm (this is almost the limit
of UV absorption in air) and the end wavelength is 1500 nm (where limited spectral
broadening can be detected at this side of the spectrum). As a result, the channels
are divided as follows: starting from 220 − 270 nm (Ch0), from 270 − 350 nm (Ch1),
350− 500 nm (Ch2) which are all generated by the blue fiber (bottom fiber setup in Fig.
3.1); 500 − 670 nm (Ch3), and lastly 670 − 1500 nm (Ch4) which are generated by the
red fiber (top fiber setup in Fig. 3.1).

Placing the barrier at 500 nm between the two fiber setups not only makes use of
the long wavelength components generated from the blue fiber (input pulses are SHG
pulses) but also relaxes the supercontinuum generation of the red fiber (input pulses are
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Figure 3.12: Supercontinuum generation behind the red (800 nm input puses) and
blue (400 nm input pulses) fiber. a, Optimized output spectrum behind the blue fiber. b,
Optimized output spectrum behind the red fiber.

fundamental 800 nm pulses). By having less gas pressure (higher gas pressure was needed
to generate wavelengths down to ∼ 270 nm), this relaxation will give a trivial boost to
the transmission of the beam while maintaining a good spatial profile.

3.4.3 First steps in the compression of pulses in the channels

A successfully built synthesizer setup requires adequate compression of the individual
channels, temporal and spatial overlap as well as their synchronization (or stabilization)
units as discussed in chapter 2. In principle, the temporal, spatial overlap, and synchro-
nization (stabilization) units are designed very similarly to the previous generation of
synthesizer. What is very critical here is the compression of the pulse in the 5th channel
(220− 270 nm) which is challenging and never explored before.

Compression of pulses in the channel 3 and 4

The FROG measurements for pulses in each channel are measured and correspondingly
compensated. For channel 4 and 3 (from 670 − 1500 nm and from 500 − 670 nm),
compression was effective with well established multilayer technologies [1]. The temporal
profiles of pulses in the channels are approximately compressed close to their Fourier limit
durations. Fig. 3.13 and Fig. 3.14 show the results of the dispersion compensation where
the pulses are compressed to ∼ 7.8 fs and ∼ 6.9 fs whereas their Fourier limits are ∼ 6.7
fs and ∼ 6.0 fs respectively.
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Figure 3.13: FROG measurement and reconstruction of pulses in channel 4. a, Mea-
sured FROG spectrogram. b, Reconstructed FROG spectrogram. c, Reconstructed temporal
intensity profile and temporal phase. d, Reconstructed spectral intensity profile and spectral
phase.
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Figure 3.14: FROG measurement and reconstruction of pulses in channel 3. a, Mea-
sured FROG spectrogram. b, Reconstructed FROG spectrogram. c, Reconstructed temporal
intensity profile and temporal phase. d, Reconstructed spectral intensity profile and spectral
phase.
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Figure 3.15: FROG measurement and reconstruction of pulses in channel 2. a, Mea-
sured FROG spectrogram. b, Reconstructed FROG spectrogram. c, Reconstructed temporal
intensity profile and temporal phase. d, Reconstructed spectral intensity profile and spectral
phase.
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Figure 3.16: FROG measurement and reconstruction of pulses in channel 1. a, Mea-
sured FROG spectrogram. b, Reconstructed FROG spectrogram. c, Reconstructed temporal
intensity profile and temporal phase. d, Reconstructed spectral intensity profile and spectral
phase.
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Compression of pulses in the channel 0, 1, and 2

For the channels seeded by the pulses behind the blue fiber, the compression is a lot
more challenging. At the moment, because of the huge dispersions the pulses in these
channels encounter during propagation, we can only manage to compress a part of their
total spectral phase.

In particular for channel 2 (from 350 − 500 nm) in Fig. 3.15, a considerable second
order dispersion (GDD) was uncompressed even after 12 reflections on the chirped mirrors.

More specifically, the measured spectral phase in Fig. 3.15d suggests that the remain-
ing GDD is ∼ 150 fs2. If all of this spectral phase is compensated properly, the pulse
will have its Fourier limit of ∼ 5.7 fs. Simulation suggests that a GDD compensation
equivalent to ∼ −1.6 mm of Fused Silica is sufficient to make this spectral phase flat,
the pulse will be compressed down to ∼ 5.9 fs. However, due to the imperfections of the
chirped mirrors, addition of number of reflections would further compromise the efficiency
and transmission.

Fig. 3.16 shows the current status of the compression of the channel 1 (from 270−350
nm). In this case, the dispersion compensation problem is even more challenging. The
measurement results are shown in Fig. 3.16. The reason for non-flat spectral phase
seems to be that the chirped mirrors compensate differently for different spectral bands.
Fig. 3.16d illustrates that the spectral phase likely has a negative GDD for the lower
wavelength part (from ∼ 250−300 nm) and positive GDD for the higher wavelength part
(from ∼ 300− 350 nm).

Finally, pulses in the lowest channel of the synthesizer (channel 0: 220− 270 nm) has
not been compressed so far. Their spectral phases are recorded and considered for next
iteration of chirped mirrors.

3.4.4 Energy of pulses in different channels

Table 3.2 summaries result on the power of the pulses exiting from the three stage syn-
thesizer. The SHG conversion efficiency is 50%, the fundamental beam after the BBO
get reduced slightly due to the imperfection of the beam splitter that splits the blue and
the red beam (the designed transmission for the ∼ 800 nm beam is < 95% which means
that practically the transmission is lower than that). After that, the chirped mirrors used
for compensating the SH beam decrease ∼ 30% energy of the SH pulses. The counterpart
in the fundamental beam decrease around 5%. Next are the fibers, the blue beam does
not have high transmission ∼ 25%, the red beam got ∼ 50%. After the synthesizer, the
power of all the channels reduces even more, making only ∼ 1.2W ⇐⇒ 400µJ .

Table 3.3 summarized in details the reflectivity of the rectangular chirped mirrors.
The losses of 80 → 90% is very high. Certainly one can argue in this case that since
the beam splitters are designed not to have sharp cut in spectrum, this could explain
that some of the spectral components transmitting (reflecting) on the BSs, going to
the rectangular chirped mirrors will not be reflected. However, in any cases, the total
transmission (reflectivity) of the complete pack (BSs + CMs) is 10− 20 %.
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Total power input: ∼ 9.1W
After BBO and Beam splitter

Blue beam Red beam
∼ 4.45W ∼ 4W (5% due to BS)

After CMs and transport mirrors, in front of fibers
∼ 2.9W ∼ 3.7W

After fibers
∼ 700mW ∼ 1.75W

After the complete synthesizer
Ch0 Ch1 Ch2 Ch3 Ch4
∼ 1mW ∼ 5mW ∼ 61mW NA NA

All channels All channels
∼ 67mW ∼ 1.1W

All channels, after the complete synthesizer
∼ 1.2W ⇐⇒∼ 400µJ

Table 3.2: Power of pulses in all stages of the apparatus, represented from top down as the
direction of the beam propagation

Before the stack Rectangular chirped mirrors After the stack
∼ 412mW Ch2: 12 reflections ∼ 92mW
∼ 50mW Ch1: 10 reflections ∼ 10mW
∼ 26mW Ch0: 6 reflections ∼ 2mW

Table 3.3: The losses due to the reflection on the chirped mirrors stack are from 80→ 90%

Effect of the power/energy per pulse on the FROG characterizations

Usually for a reasonable FROG measurement in our setup, the input pulse should have
the energy of ∼ 1µJ or more (applicable for pulses in the channels while compressed, i.e.
∼ 10 fs) for us to have reasonable statistics (at 3 kHz). As a result, for an uncompressed
pulse whose duration is a lot longer, its energy per pulse has to be also higher in order
for the third order processes to be activated. Nonetheless, table 3.2 shows the fact that
at the end of the synthesizer, we have ∼ 1 mW power (∼ 0.3µJ) of the pulses in the
channel 0 and ∼ 5 mW power (∼ 2µJ) of the pulses in the channel 1. Because these
pulses are not compressed yet, their duration can range up to ∼ 1 ps (at the order of
100 times longer than the chirped free case). As a consequence, the peak intensity of the
pulse focusing on the fused silica sample is not great enough to have third order response.
Therefore, measuring the FROG spectrogram using these powers is a big challenge.

3.5 Next steps for the TW synthesizer

Since much of the time of the PhD work was focused on the exploring the exciting physics
underlying the HHG and spectroscopy in solids (represents in the next chapter) as well
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as attosecond nonlinear delayed response, there was limited time devoted to enhancing
the current technologies and exploring new capabilities such as the works carried out in
this chapter. Nevertheless, significant progress has been made. The next steps can be
described below.

3.5.1 Compression and optimization

� Fiber optimization: Although the output parameters of the supercontinuum
after the red fiber are close to optimum values (specified by [58]), better results
are possible utilizing finer tunning of the input parameters. Furthermore, since
the supercontinuum after the blue fiber has very low transmission (∼ 25 %) at the
moment, there is room for improvements. The best possible scenario might be a
different combination of gas type, fiber length, and fiber core size.

� Optimization of compressing pulses in the channels: Even though pulses in
channel 3, 4 are compressed, their FROG traces still suggest that better results can
be obtained by tunning high order chirps to eventually flatten the spectral phase
completely.

� Compression of pulses in channel 0, 1, 2: This is a challenging task because
the energy per pulse in these channels are much weaker, they also suffer from
higher dispersions due to shorter wavelengths. With knowledge of the existing
FROG traces, one can compress pulses in channel 1, 2 in the reasonable time frame.
However, compression of pulses in channel 0 depends strongly on optimization of
the blue fiber.

� Beam pointing stabilization: Since the TW waveform synthesizer is generally a
big interferometer, having a stable beam pointing is crucial for any experiments. All
the necessary steps are prepared, one only needs to assemble the complete system
and perform testings.

3.5.2 Spatial and temporal overlap

Spatial overlap Essentially the steps are similar to what has been described in [117].
Nevertheless, we have improved the scheme by designing a compact, most direct measure-
ment of the beam profile at the focus (in HHG chamber) by only one reflection. The new
design should help enhancing the quality of beam at the focus regardless of the number
of channels.

Temporal overlap Currently the 4-channel-synthesizer utilizes two spectrometers to
resolve spectral interferences between 4 channels. In the new design, the beam will still
be divided into two, but with proper spectral range and resolution.

3.5.3 HHG and streaking experiments

Overall, it is the HHG and attosecond streaking that properly characterize the properties
of the generated transients just as in the previous generation of light field synthesizer.
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In fact, with the current setup of our HHG chamber, we could focus the new beam to
reach intensities up to ∼ 1016 W/cm2. At this regime of intensity, it has been shown
theoretically that generation of 1 keV high order harmonics from gases is possible [140].
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Chapter 4

EUV high harmonic generation and
spectroscopy in solids

4.1 Introduction

In this chapter, we study the EUV generation using progressively shorter driving fields
ranging from few-cycle to half-cycle (optical attosecond pulses) and attain the regime
of attosecond manipulation of electron dynamics entailing the radiative processes. The
field waveform of laser transients, synthesized in the visible and flanking spectral ranges,
have been used for inducing the macroscopic polarization in the bulk of thin (∼ 125
nm) polycrystalline SiO2 nanofilms, yielding a coherent EUV radiation that extended
to photon energies up to ∼ 40 eV without inducing damage to the nonlinear medium.
Semiclassical and quantum-mechanical calculations of intraband current density have
reproduced the key trends in our experimental spectra and offer physical insight into
this control. Our experiments have established the emitted radiation as a sensitive probe
for optical-field-driven, attosecond, electronic processes in condensed matter as well as a
novel compact, solid-state light source in the EUV spectral range.

4.2 EUV generation and control in SiO2

4.2.1 Generation and basic properties

Selection of the samples

The selection of SiO2 in our quest for laser-driven EUV generation in bulk solids was
motivated by its wide bandgap of ∼ 9 eV (measured by [190] and calculated by [191,
192]), which (i) is responsible for the high damage threshold [193] of SiO2 compared with
semiconductors or metals, enabling exposure to intense optical fields (> 1.3 V/Å) and
(ii) allows the study of nonperturbative interactions by laser pulses spectrally centered
around the visible and nearby ranges, where the field manipulation of light [58] and
its attosecond control or confinement [117] have recently attained attosecond resolution.
The combination of (i) and (ii) further extend the damage threshold to even higher field
strengths (more than ∼ 2 V/Å [69]). To mitigate both nonlinear and linear distortions of
driving and generated fields during propagation in the medium, we opted for thin (∼ 125
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nm) films of polycrystalline SiO2 (amorphous material made up from multiple short-range
crystals). Moreover, this thickness of SiO2 was also estimated to be compatible by order
of magnitude with a medium-length supporting coherent build-up of EUV (subsection
4.4.1), based on simple considerations [194].

Experimental setup for EUV generation in SiO2
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Figure 4.1: Spectral measurements of EUV generation in SiO2. a, One concave
spherical rhodium mirror line-focused the generated EUV beam onto the entrance slit of the
spectrometer. One aluminum filter (∼ 100 nm) is placed between to transmit only the EUV. b,
Representative spectrum recorded for 1.5-cycle pulse as incident electric field and its peak field
strength of ∼ 1.04 V/Å.

In our experimental setup, a concave spherical rhodium mirror is installed right after
the SiO2 sample to route the beam to the spectrometer. Furthermore, the spherical radius
of the mirror is designed to project the focal spot (circular shape) of the EUV beam onto
the spectrometer perfectly. Since the incident angle is large (∼ 66◦), the spherical mirror
will act as a toroidal mirror (with horizontal radius equals vertical radius). The image
of the focal spot is a thin line, its thickness is defined via the effective horizontal focal
length, and its length is defined via the effective vertical focal length of the mirror.
Furthermore, the aluminum filter (∼ 100 nm) is installed between the spectrometer and
the focusing mirror to filter out the low frequencies coming mostly from the incident field.
The experimental apparatus is shown in Fig. 4.1a.

Since the reflectivity of the rhodium mirror is relatively flat at our spectral range
(IMD, [195]) the signals we recorded on the spectrometer are close to the true EUV
spectra (without taking into account wavelength and intensity calibration). The spectra
are measured on a commercial spectrometer (McPherson) in which the multi-channel
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plate/phosphor’s screen is coupled by fiber to a camera (Andor). The camera can be
cooled down to −40◦ C to reduce dark current, improving signal to noise ratio. Because
the combination of multi-channel plate/phosphor’s screen and camera can be moved along
the Rowland circle, photons of different energies propagated through the entrance slit will
all be focused on the corresponding positions (angles) of the camera setup.

Fig. 4.1b shows a representative spectrum recorded when the sample is exposed to a
(approximately) 1.5-cycle pulse whose maximum field strength is ∼ 1.04 V/Å (inside the
sample so that the screening factor ∼ 80% derived from the Fresnel formula is accounted
for).
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Figure 4.2: Representative attosecond streaking spectrograms of the pulses used
in the experiment. a, b, Streaking spectra of the 1.5-cycle pulses and optical attosecond
pulses. c,d, Reconstructed electric fields for the spectrograms a and b.

For all the spectra at different waveforms reported below, the electric field used in
the experiment is characterized by attosecond streaking (see Fig. 4.2). To synthesize the
1.5-cycle pulses, we physically block the deep UV and UV-visible channels (discussed
in more details in Chapter 5), leaving only the photons whose wavelengths are longer
than 500 nm. The spatial overlap and temporal overlap locking are kept intact for the
remaining two channels. The result is that the combination of the other two (visible and
near infrared) channels already makes a relatively short pulse with carrier wavelength
λc ∼ 700 nm and the intensity envelope duration of ∼ 2.8 fs (we call it ∼ 1.5 cycle pulses
because the envelope is longer than the carrier period of ∼ 2.3 fs). The electric field after
being characterized by attosecond streaking is scaled up to the corresponding spectra
measurements with the help of the iris-power calibration (correlation). Similarly, the
optical attosecond pulses are created by utilizing all the available channels, the results of
this is shown in Fig. 4.2b.

After exposing the 1.5-cycle pulses at different field amplitudes (Fig. 4.3a illustrates
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Figure 4.3: EUV generation in SiO2. a, Incident electric field characterized by attosecond
streaking and scaled to the maximum peak field strength used in the experiment. b, Spectra
recorded for increasing field strengths (∼ 0.71− 1.04 V/Å) denoted by the same color. Dashed
lines indicate the noise floor. c, Scaling of the cutoff energy as a function of the incident electric
field strength. Blue dots are experimental data points. Blue solid line is the linear fitting of the
experimental data. d,e,f, Spectral intensity of the 11th, 13th, 15th harmonics are represented
by blue dots respectively. The experimental errors of the electric field strength are indicated by
blue bars. Adapted from [196].

the maximum electric field), we measured the radiated spectra (Fig. 4.3b) accordingly.
Furthermore, the wavelength calibration is done by employing the gas HHG spectra in
the plateau region generated from few-cycle pulses.

From the intensity scaling of the generated spectra, discernible features are:

� Harmonic-like structure. The measured spectra exhibit well defined spectral
peaks, both in the logarithmic scale as well as in the linear scale (Fig. 4.1b) with
regular spacing of ∼ 3.5 eV which is exactly 2ωc of our carrier wave (λc ∼ 700
nm). In addition, the position of the peaks confirms the harmonic-like structure
of our spectra. There is a small 9th harmonic, followed by three strong harmonics:
11th, 13th, 15th and the cutoff 17th harmonic.

� Formation of a robust multi-ten-eV broad plateau and nonperturbative
behavior. In the gas-phase HHG [197, 198], spectrum exhibits a plateau, which
reflects the nonperturbative characteristics of the process. Here, the high harmon-
ics generated from SiO2 also display a broad plateau region extending from 15 eV
to more than 25 eV, covering several harmonics, evidently underlying the nonper-
turbative character of the physics involved. The nonperturbative character of the
generated EUV spectra can be further confirmed by examining the spectral inten-
sity of single harmonics (from 11th to 15th) as a function of electric field strength.
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Fig. 4.3d,e,f makes use of the spectra in Fig. 4.3b together with other recorded
spectra recorded at interim values of field strength but not plotted in Fig. 4.3b.

� Linear dependence of the cutoff energy on the field strength. By defining
the cutoff energy as the highest harmonic peak resolvable (discernible) before the
onset of noise, Fig. 4.3c shows that the cutoff energy is linearly dependent on the
incident electric field strength. This dramatically differs from HHG in gases, where
the cutoff scales as a square of the field.

4.2.2 Attosecond control of electron dynamics

The above experiment (Fig. 4.3) establish the generation of coherent EUV radiation
from bulk dielectrics and verify key predictions of semiclassical theories, such as the
formation of a plateau and a linear scaling of the cutoff energy versus the incident field
strength, in analogy to studies in other spectral ranges [43, 46]. Nevertheless, above
experiments do not identify the conditions of control of the underlying electronic process
nor attain it experimentally. To elaborate on this essential aspect, we took advantage of
the capabilities offered by our second-generation light field synthesizer [139] and exposed
our samples to various, precisely-characterized driving fields in terms of pulse duration,
carrier frequency, intensity and global phase.

General control scheme

In this section, the first waveform has not only the longest central wavelength (λc ∼ 800
nm) but also the longest pulse duration (∼ 7 fs). We created it (Fig. 4.4a) simply by
blocking all the other three channels of our synthesizer (same techniques used in Chapter
2, leaving only channel near infrared passes through (few-cycle pulses). As a consequence,
there was no need of spatial overlap and temporal locking, the synthesizer is a lot simpler
and easier to use.

After characterizing the electric field at ϕG = 0 via attosecond streaking (Fig. 4.4a,
solid blue line, scaled up), this field and its counterpart with different global phase
ϕG = π/2 rad (solid red line) are applied consecutively to the SiO2 sample. Their EUV
spectra are shown in Fig. 4.4b (filled blue and red areas, respectively). We observed that
the harmonic-like structure remains and harmonic spacing changes to ∼ 3 eV which is
compatible to the carrier frequency, which is slightly less than that in Fig. 4.3a. The
spectra show limited sensitivity to the global phase.

Since the foundation of the attosecond physics, the extreme nonlinearities emerging
from the exponential rule of tunneling ionization [13] and the quadratic dependence of
the quiver energy of electrons to the incident field [12] are already demonstrated in the
few-cycle regime [29, 94]. Surprisingly, these degrees of control were not presented here
because only the minor differences between two EUV spectra were found.

When we progressively shorten the pulse durations (to a 1.5-cycle pulses), more devi-
ation of the EUV spectra at one phase setting compared to the others is observed. Fig.
4.4d shows the similar behavior as we have learned in the intensity scaling measurement
(Fig. 4.3): the radiated EUV spectra feature harmonic-like structure, existence of a
plateau region. Spectral differences (mostly amplitude) between the two EUV spectra at
low energy range (∼ 16−22 eV) are observed but they do not differ much at high energy
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Figure 4.4: EUV emission dependence on global phase for few cycle and 1.5-cycle
pulses. a, Electric fields (few-cycle pulses) used to excite the SiO2 sample at two different
global phase settings: ϕG = 0 rad (blue solid line) and ϕG = π/2 rad (red solid line). b,
Captured EUV spectra of HHG radiation for electric fields at two global phases (same colors).
c,d, Same as a,b, but with the 1.5-cycle pulses as incident electric fields. Adapted from [196].

range (above 22 eV). As a result, the subtle change in the spectral intensity observed for
two different global phase settings here does emphasize the limited control of the electric
field waveforms to the generated radiation, furthermore implying that the physics in this
case differs significantly to the physics underlying HHG in gas-phase systems.

EUV emission control using attosecond light transients

By physically blocking only the DUV channel, we synthesized an electric field that is
characterized by attosecond streaking as in Fig. 4.5a - solid blue line (scaled up). Because
this pulse has the duration of∼ 1.7 fs while its carrier wavelength∼ 640 nm and its carrier
period ∼ 2.1 fs, we call it a single-cycle pulse.

The generated EUV spectra recorded from this pulse and its global phase changed
counterpart are illustrated in Fig. 4.5b. Noticeable spectral differences can be seen across
the whole spectra. At this limit of the pulse compression, the EUV spectra do not differ
only in amplitude but also in their shapes, especially from ∼ 20− 25 eV.

All of above investigations of the radiated EUV spectra dependence on the electric
field waveforms deduce the need to study the behavior of coherent EUV radiation at the
ultimate limit of pulse compressions: attosecond light transients. Fig. 4.5c illustrates the
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Figure 4.5: EUV emission dependence on global phase for single-cycle pulses and
attosecond light transients. a, Electric fields (single-cycle pulses) used to excite the SiO2

sample at two different global phase settings: ϕG = 0 rad (blue solid line) and ϕG = π/2 rad
(red solid line). b, Captured EUV spectra of HHG radiation for electric fields at two different
global phases (same colors). c,d, Same as a,b, but with the attosecond light transients as
incident electric fields. Adapted from [196].

electric fields measured by attosecond streaking (solid blue line, scaled up) and the same
electric field but its spectral phase is shifted by π/2 rad (solid red line, scaled up). This
is the extreme limit of pulse compression with the effective bandwidth broader than 2
octave, the carrier wavelength ∼ 530 nm and effectively this is a half cycle pulse with an
instantaneous intensity profile duration of ∼ 400 as (shown in Chapter 2, Fig. 2.8a). The
recorded EUV spectra (Fig. 4.5d) show remarkable differences compared to the single
cycle case and complete difference in contrast to the few-cycle and 1.5-cycle cases. Indeed,
when the sample is excited by an optical attosecond pulse, the spectrum (filled blue area)
exhibits no harmonic peaks, there is only a broad supercontinuum expanding more than
15 eV. Conversely, when the sample is hit by the same pulse but its spectral phase is
shifted by π/2 rad, the radiated spectrum (filled red area) displays more discernibly two
harmonic peaks, each one spanning more than 5 eV. Overall, this behavior of the EUV
spectra is very similar to what have been observed for HHG in gases at the cut off region
when driven by few cycle laser pulses [29], but in our case, the pulses have to be a lot
shorter and faster.

In conclusion, by changing the electric field waveforms from the few-cycle pulses to at-
tosecond light transients, we observed from negligible control with no spectral differences
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to substantial control with broadband supercontinuum opposed to harmonic-like spec-
trum at two different global phase settings. This characteristics of the generated EUV
spectra is significantly different from HHG in gases thus suggesting a different physical
mechanism underlying these processes.

4.3 Theoretical description

After exploring the spectral characteristics and their dependencies to the global phase of
the generated EUV spectra, we perform the semiclassical and quantum-mechanical simu-
lations according to Refs. [41, 44–46, 49, 199, 200] and compare them to our experimental
data.

4.3.1 Semiclassical model

In the reciprocal space (or k-space), the crystal momentum of electron is described by
the so called “acceleration theorem” [201]. It was shown that motion of electron in the
electromagnetic field can be described by the following equations:

vν =
dr

dt
=

1

~
Eν(k)

dk
, (4.1)

dk

dt
= − e

~

(
E +

1

c
v ×B

)
(4.2)

m0 is the mass of free electron, e > 0 is the elementary charge, Eν(k) is the dispersion of
the band ν, E and B are electric, magnetic fields.

We considering the non-relativistic regimes, where v×B� E then Eq. (4.2) reduces
to

dk(t)

dt
= − e

~
E(t) (4.3)

The charge carriers gain momentum and kinetic energy from the electric field. If the
field is strong enough to push the electrons to the edges of the Brillouin zone, we have
three possibilities. First, the electron may perform the transition to the upper bands
via interband Zener tunneling [202] or multiphoton process. Second, the electron may
scatter (with other electrons, phonons, etc). Finally, it can stay in the same band and
perform the Bloch oscillation [201] with the frequency ωB = eEa/~, which determines
the corresponding energy of emitted radiation due to decelerated motion of electron in
the lattice. Here, a is the lattice constant.

Following [45], we consider the pre-existing Gaussian electronic wavepacket fν(k, t0) in
the first conduction band (ν = c) at initial moment of time t0. We neglect the interband
transitions and electron-electron interactions. Also, we neglect the current induced by
holes in the valence band, because the simulations have shown that their contribution is
negligible.

As it is shown, electron exposed to a laser pulse gains momentum from the field and
explores the regions where the bandstructure is non-parabolic (see Fig. 4.6). Decelerated
motion in these regions induces the radiation of high harmonics.
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Figure 4.6: Dynamics of electron wavepacket in the semiclassical picture. Valence
band is presented as semi-transparent. The bandgap is denoted as Eg. The incident electric
field accelerates the electron wavepacket along the field polarization, which is directed along the
Γ–M direction of the Brillouin zone. Adapted from [196].

The Boltzmann equation, which governs the dynamics of a system, contains only the
acceleration term

∂

∂t
f(k, t) = − e

~
E(t)

∂

∂k
f(k, t) (4.4)

and has the following analytical solution

f(k, t) = f0

(
k +

e

~
A(t), t0

)
, (4.5)

where

A(t) =

∫ t

t0

E(t′)dt′

is the vector potential of the laser field.
This means that the electric field pushes the electron wave packet forward and back-

ward in the k-space while keeping the overall shape of the electron wave packet.
Finally, we calculate the current density of conduction band electrons as

J(t) = − 2e

(2π)3

∫
BZ

vc(k)fc(k, t)d
3k (4.6)

Propagation effects

In general, if one has the absolute amplitude of the current, it can be inserted directly to
the Maxwell’s equations to obtain the exact solution. This often requires costly calcula-
tion including the propagation in 3D space.

In our case, the simpler approach can be used to determine the spectrum of intensity.
From the derivation of the first order propagation equation in the frequency domain A.9,
one can see that the creation term ∂E(r,ω)

∂z
on the left hand side primarily depends on the

dispersion (absorption) term ik(ω)E(r, ω), the diffraction term i
2k(ω)
∇2
⊥E(r, ω), and the
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nonlinear polarization term iω
2ε0n(ω)c

PNL(r, ω). We see that the generated electric field in

frequency domain is proportional to ω ·PNL(r, ω). Dimensional analysis of the Ampere’s
law shows that ω · PNL(ω) ∝ J(ω), which means that the radiated spectrum S(ω) is

proportional to
∣∣F[J(t)

]∣∣2.

The observed spectrum is usually the total coherent superposition of radiated waves
recorded after propagation. Therefore, we need to take into account dispersion (absorp-
tion, gain) and diffraction terms. Without solving exact propagation equation, we know
that for a short-distance propagation, the dispersion term can be neglected, and the term
∇2
⊥E(r, ω) can be solved by simple multiplication in the momentum space1. Finally, the

solution of this operation is proportional to ω · E(r, ω). Therefore, the main effect of
the diffraction term is to make the low frequencies (long wavelengths) to diffract more,
hence making them weaker in the far field and the high frequencies (short wavelengths) to
diffract less, hence making them stronger when both are compared relatively. As a result,
one can approximate the final observed spectrum in the far field, after propagation inside
the medium, as proportional to additional ω in the electric field in frequency domain, i.e.

S(ω) ∝
∣∣F[dJ(t)

dt

]∣∣2.

Above mentioned propagation effects are only applicable, if we are really measuring
the spectra in a far field region. However, if a collimating mirror (or any focusing optics)
is being used to collect the emitted radiation onto the slit of the spectrometer (which is
usually the case) to improve the signal strength, then the diffraction no longer applies,
hence the detected spectra would be similar to the spectra generated at the exit of a
medium. In this case, we do not need to apply diffraction effect in the propagation of the
signal from the end of the generating medium to the entrance slit of the spectrometer.
The diffraction effect inside the sample (or in gas nozzle in other cases) still applies. In
conclusion, the above discussion illuminates that in our particular case here, the most
appropriate first order approximation of our spectrum is S(ω) ∝ |ωJ(ω)|2 without using
the full propagation calculation.

4.3.2 Semiconductor Bloch equations

To verify the results of semiclassical simulations we also considered a quantum mechanical
model based on the semiconductor Bloch equations (SBEs) [203, 204] together with the
inclusion of the driving electric fields [205].

These equations serve as a great tool to study dephasing processes via Four-Wave
Mixing or to study the carrier dynamics leading to extreme nonlinear optical response of
a quantum system [41, 43, 49, 199], etc. Even though there was no direct comparison to
show the differences between the multiple two-level systems to the SBEs, Golde et al. [199]
have pointed out the enhancement of generation of the odd harmonics in semiconductor
equations compared to the single two-level system.

Furthermore, when one considers the electronic excitations driven by the strong field,
one realizes that the many-body Coulomb interaction will start playing a role. In fact,
once the electrons and holes are generated in the conduction and valence bands, Coulomb
interaction between them will inevitably affect their dynamics and consequently modify
the total optical response of the system [203, 206]. However, it has been shown [199]

1Not to be confused with the crystal momentum k-space.
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that in the regime of extreme nonlinear optics (strong field physics), the emission of
a system being driven by a strong field will have little contribution from the Coulomb
interaction. The main contribution to the radiated photons comes from light-matter
interaction and the Coulombic forces only play an important role in weak field regimes.
Therefore within the scope of the thesis, we only consider the SBEs with the omission of
the Coulomb interaction [41]. Since the derivation of this quantum mechanical model is
rather complicated, its derivation will not be described here and it is recommended to
consult more complete treatment of this topic in [203, 204].

In the independent particle approximation, the equations describing the dynamics of
interband coherence pk and populations of electrons fe,k and holes fh,k can be written as
[41]

i~
∂

∂t
pk =

(
Ee,k + Eh,k − i

~
T2

)
pk − (1− fe,k − fh,k)dk · E(t) + ieE(t) · ∇kpk (4.7a)

~
∂

∂t
fλ,k = −2Im[dk · E(t)p∗k] + eE(t) · ∇kfλ,k. (4.7b)

Here, λ = e, h is the index, which specifies either electron or hole, Ee,k = Ec,k and
Eh,k = −Ev,k are energies of the corresponding carriers, T2 is the dephasing period, dk is
the dipole matrix element characterizing the transitions between the two bands.

The total interband polarization P(t) and intraband current density J(t) are given by

P(t) =
∑
k

(
dkpk(t) + c.c.

)
(4.8)

J(t) =
∑
λ,k

−2evλ,kfλ,k(t), (4.9)

where vλ,k is the group velocity of the λth band defined by Eq. (4.1).
If we utilize the same consideration that has been done before (for the case of semi-

classical model), we can see that the spectrum generated at the source point is S(ω) ∝∣∣F[dP(t)
dt

+ J(t)
]∣∣2. Then correspondingly, the most appropriate way to estimate our

spectrum at the detection point is to take first order approximation for the propagation,

finally we get the spectrum S(ω) ∝
∣∣ω2P(ω)+iωJ(ω)

∣∣2. In this case, P(ω) = F
[
P(t)

]
and

J(ω) = F
[
J(t)

]
. This consideration agrees to what has been suggested before by Golde,

Meier, and Koch [41]. However, in their recent publication [43], they have adapted to a

slightly different formula: S(ω) ∝
∣∣ωP(ω) + iJ(ω)

∣∣2.
Additionally, if one wants to investigate the spectra generated by the polarization

and current separately, one can have the interband polarization spectrum: Sinter(ω) =∣∣ω2P(ω)
∣∣2 and intraband current spectrum: Sintra(ω) =

∣∣ωJ(ω)
∣∣2. This is unarguably

a strong advantage of the theoretical calculations. One can separate different terms
in an equation and investigate their effects individually while this is not yet feasible
experimentally.

While an analytical solution is available for the semiclassical model, it has been shown
[199, 207, 208] that the approximations and simplifications are not enough to derive
an analytical solution for the SBEs with realistic experimental parameters. Therefore,
numerical techniques have to be employed to find solutions for such equations. Several
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techniques suggested in the consideration of the semiclassical model have been tested and
it turns out that a combination of second order discretization scheme in k-space and an
adaptive Runge–Kutta 4-5 integrator provided satisfactory results.

Semiconductor Bloch equations for multiple bands

On the other hand, if we look to elaborate the current two band model, we can see
that adding more levels (bands) into our current SBEs might bring the model closer to
reality. However, by selecting the length gauge representation of the SBEs as we have
shown above, one difficulty immediately comes as an intrinsic problem of the numerical
calculation in the length gauge at band degeneracies. When we consider multiple bands
(levels) of the band structure in solids, there are level crossings which if not treated well,
will lead to unphysical (numerical) results. One solution is to switch to velocity gauge
representation using the solution of the density matrix equations in 1D [209] or more
sophistically employing TDDFT [210, 211]. In fact, employing the velocity gauge results
in a set of uncoupled equations [209] that is easy to scale up (include more number of
bands) and it is free from effects of degeneracies. However, the velocity gauge approach
also has a number of its own problems: it is hard to put phenomenological dephasing
time into the equations, strict requirements for input parameters [209], numerical errors
at low frequencies [200], etc. As a result, a good solution might be to use the length gauge
representation but with proper implementation of the numerical issues as demonstrated
in [200].

Nonetheless, by treating the degeneracies well (smooth them using numerical tech-
niques), one can just expand the original equations to multiple bands, as fully described
by S. W. Koch et al. [43]. We found that this is a convenient way of extending the model
given the existence of the numerical solution of the two band model, thus we adopted
this extension for our simulations.

4.3.3 Applications of numerical simulations to experimental data

After having described two models and their numerical implementation, we utilize the
precisely characterized electric field waveforms as the input to the simulations and inves-
tigate calculated results.

Input parameters to the numerical simulations

Electric fields utilized in simulations In order to give a coherent view throughout
the text, all the electric fields, regardless of being described in (a.u.) (atomic units) or
V/Ångstrom (SI), they are the fields inside the samples unless specifically mentioned
otherwise. The real applied fields inside the sample would then be scaled down compared
to field in vacuum by Fresnel’s formula for the S-pol and P-pol beam:

Tt,⊥ =
2

1 + nt/ni · cos(θt)/ cos(θi)
, (4.10a)

Tt,‖ =
2

nt/ni + cos(θt)/ cos(θi)
(4.10b)
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Here nt , ni are the refractive indices of the transmitted and incident medium, θt , θi
are the transmitted/incident angle. Generally for our experiments here, normal incident
geometry is used thus the fields inside the sample are ∼ 0.8 times the field strengths
outside (neglecting interference effects due to thin film).
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Figure 4.7: Band structure of α-quartz. Calculated with Wien2K software package [212].
Adapted from [196].

Band structure of SiO2 and dipole matrix elements The band structure and
dipole matrix elements are extracted from Wien2K [212], and Virtual NanoLab [213].
For our case, considering α-quartz, they both offer similar results to each other as well
as to Schlüter [191] using self-consistent pseudopotentials.

As a result, for the semiclassical model (involving only one band, in our current con-
sideration), we used the existing results from Schlüter [191]. However, for the quantum-
mechanical model, we need to have dipole matrix elements as well, thus we opted to use
the exact expression of the dipole matrix elements: momentum matrix elements divided
by energy difference. [203].

Consideration of multiple bands and directions

Practically, for the numerical solution of the SBEs, the calculation time increases as
the number of bands included in the consideration increases. Therefore, knowing an
optimal number of bands can help us substantially in getting the most out of the model
such that the accuracy or precision of the calculation is not compromised. For this
purpose, we performed a calculation of multiple band SBEs including eight valence bands
and six conduction bands. Since in this model, the strength of the generated signal
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Figure 4.8: Time-averaged populations in the lowest conduction bands. Multiple
band SBEs calculated using the 1.5-cycle pulse from Fig. 4.3a at the peak field strength of
1 V/Å. The bands are selected along the Γ–M direction. The average of population is taken
from −2 to 2 fs. Adapted from [196].

depends strongly on the amplitude of the population of electrons (and holes) that are
excited to conduction (or valence) bands, we examine the time-averaged population in
the conduction bands as illustrated in Fig. 4.8.

The result of this simulation, in this case, shows that the excitation to the lowest
conduction band is dominant and it drops nearly exponentially for higher conduction
bands. Even though we understand that the total emitted spectra is the coherent sum
of all the emission from different bands, this simulation already suggests we can restrict
our computationally demanding quantum-mechanical simulations to a single valence and
conduction band without compromising much the interpretation.

Furthermore, since we know that there are different directions where the laser polar-
ization can be aligned to with respect to the crystal axes, a perfect consideration should
take into account all the directions (or integration in 4π directions - 3D). However, for
the sake of simplicity, we calculate the generated spectra in the region of interest using
band dispersions for different directions (for the semiclassical only, the SBEs would yield
similar results), as demonstrated in Fig. 4.9.

Fig. 4.9 demonstrates that if the laser polarization is aligned to other directions, Γ–K
and Γ–A, the yield of the emitted spectra will be order of magnitude smaller than when
the laser polarization aligned along the Γ–M direction. As a result, we consider only Γ–M
direction in all the simulations below.
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Figure 4.9: Intensity spectra calculated with a semiclassical model for different
orientations of the field polarization (1.5-cycle pulse). The spectrum for the Γ − A
direction (red line) is too weak to be seen on the linear scale. Adapted from [196].

Role of interband coherence

From the Eq. 4.7a, it is clear that both the intraband and interband dynamics are coupled.
As a result, the intraband excitation modifies the interband excitation and consequently
enhances the generation of high order harmonics [41], but most of the radiation still comes
from the interband polarization. Therefore in our experiments, one could naturally expect
the interband polarization to play a significant role in the EUV emission. And because
in our semiclassical simulations, the interband excitation is not taken into account thus
this model might not be applicable for our experiments.

To seek a transparent answer to the above problem, we compare the intensity depen-
dence of the 11th harmonic in our experiments (Fig. 4.3) with that predicted, for the same
harmonic peak, from the interband and intraband excitations in our quantum-mechanical
and semiclassical simulations, as illustrated in Fig. 4.10. The results highlight the excel-
lent reproduction of the experimental yield dependence by the semiclassical simulation
and the intraband term of the quantum-mechanical model, and poor agreement with
the yield calculation from the interband polarization term. This fact supports: (i) other
physical mechanisms that enhance the existence of electrons in the conduction band,
for instance, because of the defect states or doped materials, etc eventually boosts the
importance of the semiclassical model or explains the validity of the assumption of a
pre-existing electron wavepacket in the conduction band; (ii) the real dephasing time of
the interband polarization is on a time scale much faster than the longitudinal-optical
(LO) phonon oscillation period τLO ≈ 27 fs [214] that we have assumed as the dephasing
time in our simulations.
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Figure 4.10: Intensity yield of the 11th harmonic in our experiments (blue dots
with error bars) compared to semiclassical and quantum-mechanical simulations.
The pulse profile is shown in Fig. 4.3a. All the simulations are done using the Γ−M direction.
Error bars depict the standard deviations of the values extracted from several data sets recorded
under identical conditions. Adapted from [196].

Role of dephasing

As a next step, we investigate the importance of the phenomenological dephasing time
that is included in the SBEs (Eq. 4.7aa). Fig. 4.11 shows the results of a quantum-
mechanical simulation for 1.5-cycle pulses using the dephasing time T2 = 27 fs and the
field strength E0 = 0.7 V/Å.

Fig. 4.11a illustrates nicely the time dependent electron wavepacket dynamics in the
conduction band. One can observe easily the existence of the bubbles which is a strong
indication of the interband polarization as a function of time. Furthermore, not only the
interband polarization is indicated but also the intraband excitations are revealed very
well as explained next. Along the k-axis, the electron wave packet is dragged (acceler-
ated/decelerated) by the electric field and eventually when the electron wave packet is
dragged to the edges of the zone, Bloch oscillation occurs as illustrated by the arrows.

Additionally, we split the intraband and interband terms in the calculation and plot
their associated intensity profiles (|Pinter|2 and |Pintra|2, filtered in the region > 15 eV) and
their spectra Sinter(ω), Sintra(ω) as well as their total spectrum Stotal(ω) (Fig. 4.11b-f).
The results show that all the spectra exhibit a strong component at ∼ 16 eV. However,
only the intraband current has significant spectral intensity at higher photon energies.
There exits also harmonic structure in the intraband spectrum. In contrast, the interband
term and the total spectrum have very little spectral components higher than 20 eV (the
interband term is much stronger in amplitude thus it dominates the total spectrum). In
conclusion, at the current setting of the dephasing time and the electric field strength,
the spectra produced by only the intraband excitation show similar cutoff energy as the
experimental ones. However, the spectra produced only by the interband excitation (or
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Figure 4.11: Two-band quantum-mechanical simulations for 1.5-cycle pulses (E0 =
0.7 V/Å). The exact electric field is taken from Fig. 4.3a. a, Temporal dynamics of the electron
wavepacket in the conduction band calculated for the peak field strength E0 = 0.7 V/Å and
dephasing time T2 = 27 fs. b, c, Temporal intensity profiles of the EUV field induced by
intraband current and interband polarization, respectively, in the spectral region > 15 eV. d, e,
f, Spectra induced by intraband, interband polarization, and total contributions. All spectra are
convoluted with 1 eV experimental resolution to ease comparison with the experiment. Arrows
indicate one instance of Bloch oscillations. Adapted from [196].

total excitations) do not show similar trend.
By further reducing the dephasing time, the interband spectra seem to increase the

cutoff energy and show the harmonic-like spectrum as recorded experimentally. Never-
theless, only reducing the dephasing time is not enough, in order to get close agreement
to experimental spectra, we had to increase the electric field strength (up to ∼ 3 time
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Figure 4.12: Two-band quantum-mechanical simulations for 1.5-cycle pulses (E0 =
2 V/Å). The exact electric field is taken from Fig. 4.3a. a, Temporal dynamics of the electron
wavepacket in the conduction band calculated for the peak field strength E0 = 2 V/Å and
dephasing time T2 = 1 fs. b, c, Temporal intensity profiles of the EUV field induced by
intraband current and interband polarization, respectively, in the spectral region > 15 eV. d, e,
f, Spectra induced by intraband, interband polarization, and total contributions. All spectra are
convoluted with 1 eV experimental resolution to ease comparison with the experiment. Adapted
from [196].

stronger). Fig. 4.12 illustrates a typical result at the dephasing time T2 = 1 fs and electric
field strength E0 = 2 V/Å. Firstly, the temporal electron dynamics (Fig. 4.12a) shows
a substantially strong interband excitation. The absolute maximum population is ∼ 0.4
which is extremely high because it means that almost half of the electrons are removed
from the valence band and put into the conduction band and at this regime, even mul-
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tiple band simulations are not realistic enough. At this regime of electric field intensity,
there is also a lot of Bloch oscillations resulting from very strong intraband currents. The
collective effects of the ultrafast dephasing time and strong electric field introduce high
cutoff energy photons in both intraband and interband spectra. The emitted spectra at
this regime agrees to certain extent the measured experimental spectra.

However, an increase of electric field intensity by approximately one order of mag-
nitude is completely unrealistic compared to our experimental conditions. Simulations
performed in [215, 216] have also shown that agreement with experimental data can be
achieved under assumption of ultrafast dephasing, T2 = 1 fs. Nonetheless, they are all
theoretical papers and there has not been any experimental demonstration so far showing
such an extremely fast dephasing time, to the best of our knowledge.

In conclusion, these findings highlight the need for more accurate models of electron
dephasing, which may overcome the limitations of conventional treatments, e.g., the
Markov approximation and the completed-collision limit [217, 218]. For current modeling,
we refrain from using unrealistic numbers hence for all simulations afterward, we use
T2 = 27 fs (T2 = 1 fs is not realistic in our perspective).

Comparison with experimental data

We performed multiple simulations (quantum-mechanical and semiclassical) on different
electric field waveforms, for all cases from few-cycle, 1.5-cycle, single cycle, to half-cycle
(optical attosecond light transient). The results are illustrated in Fig. 4.13 and 4.14.

Firstly, by considering the dynamic range created by different electric field waveforms
(total of 8 waveforms at different settings) and how excellent is the agreement between
the semiclassical results (Fig. 4.13i, t and Fig. 4.14i, t) to the experimental spectra
(Fig. 4.4c, d and Fig. 4.5c, d), we can conclude that the semiclassical model captures
the experimental results very well. Even though the intraband term of the SBEs also
seems to reproduce the experimental spectra (at least by the few-cycle pulses) as in Fig.
4.13g, p, 4.14g, p, by direct comparison, it is still inferior to the semiclassical model. The
interband polarization term can hardly make any connection to the experiments.

Secondly, the reasonable reproduction by both the semiclassically and quantum-
mechanically simulated intraband currents allows linking the temporal electron dynamics
underlying our simulations with those in our experiments. For few-cycle pulses (Fig.
4.13a,b), excitation of the currents and concomitant radiation extend temporally over
several field cycles. The current profile (Fig. 4.13c,e, red and blue curves) in this case
is temporally displaced by a CEP variation of the optical driving field, but its structure
remains virtually unaffected, resulting in nearly in-variable spectra (Fig. 4.13g,i) against
the variation of this pulse parameter in agreement with our experiments (Fig. 4.4a).
By contrast, half-cycle pulses confine and control electronic currents to the optical cycle
(Fig. 4.13l,n) with CEP. This control is manifested in the spectra domain by wideband
modulations of the broadband emitted spectra (Fig. 4.13p,t) and their continuum shape
to the structured one in accordance with our experiments (Fig. 4.5d).

The CEP-based manipulation of the emitted spectra originated from an extreme non-
linear process has served for years as a paradigm of sub-cycle confinement and control
in attosecond physics[12, 29, 219]. Our experiments and simulations support the notion
that this paradigm is also applicable for strong field-driven electron dynamics and EUV
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Figure 4.13: Comparison of quantum-mechanical (QM) and semiclassical (SC) mod-
els for a few and half-cycle pulse. a, b, Temporal dynamics of the electron wavepacket in
the first conduction band for few-cycle pulse with ϕ = 0 and ϕ = π/2, respectively (Fig. 4.4a).
c, Temporal intensity profiles of the EUV field induced by intraband current in the spectral
region > 15 eV for ϕ = 0 (blue curves) and ϕ = π/2 (red curves). d, Same as c but for
the interband polarization. e, Same as c, but calculated from semiclassical model. f, Spectral
intensity of radiation, induced by interband polarization. g, Spectra induced by intraband cur-
rents. h, Total emitted spectra (inter- and intraband contributions). i, Spectra calculated from
semiclassical model. j-t, same as a-i but for the half-cycle pulses (Fig. 4.5b). All spectra are
convoluted with 1 eV experimental resolution. Adapted from [196].
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Figure 4.14: Comparison of quantum-mechanical (QM) and semiclassical (SC) mod-
els for attosecond light transients. a, b, Temporal dynamics of the electron wavepacket in
the first conduction band for 1.5-cycle pulse with ϕ = 0 and ϕ = π/2, respectively (Fig. 4.4b).
c, Temporal intensity profiles of the EUV field induced by intraband current in the spectral
region > 15 eV for ϕ = 0 (blue curves) and ϕ = π/2 (red curves). d, Same as c but for
the interband polarization. e, Same as c, but calculated from semiclassical model. f, Spectral
intensity of radiation, induced by interband polarization. g, Spectra induced by intraband cur-
rents. h, Total emitted spectra (inter- and intraband contributions). i, Spectra calculated from
semiclassical model. j-t, same as a-i but for the single-cycle pulses (Fig. 4.5a). All spectra are
convoluted with 1 eV experimental resolution. Adapted from [196].
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emission in bulk solids. As half-cycle drivers are confined to a de facto sub-femtosecond
interval (its duration τ < 1 fs), these broadband spectral modulations offer evidence of
the attosecond confinement and control of the induced multi-PHz intraband currents, and
represents a unique and generic tool for tracing coherent strong-field dynamics in solids.

Semiclassical description of the HHG beyond the nearest-neighbor approxi-
mation

Although the numerical solution of the SBEs and the Boltzmann equation 4.4 can shed
light on the generated EUV and its dependence on the parameters, if we notice that
basically for certain simple function of the electric fields, the Boltzmann equation 4.4 can
be solved analytically and also its resultant current density Eq. 4.6 [207].

In fact, if we assume an electric field: E(t) = E0 cos(ω0t+ ϕ), and a Bloch frequency
ωB = eaE0/~ given the band dispersion E(k), it is shown [207] that the peak of the odd
harmonics order N in the radiated spectrum can be written as: [196]

Irad(Nω0) ∝ (Nω0)2 · J2
N

(
ωB
ω0

)
(4.11)

with JN is the Bessel function of the first kind, order N .
Clearly in this case, the appearance of the Bessel function J2

N

(
ωB

ω0

)
already indicates a

non-perturbative behavior of the radiated spectra. Furthermore, evaluation of the Bessel
function at different peak electric fields (ωB) also supports the nonlinear as well as the
saturation behavior of the spectra intensity, as observed experimentally in Fig. 4.3. How-
ever, very strong dependence of the radiated spectra on the conduction band dispersion
profile (seen in evaluation of SBEs and semiclassical model for different band dispersions)
and the above consideration suggested the decomposition of the band dispersion profile
into multiple harmonics.

One can decompose the energy dispersion of the i-th band Ei(k) into the Fourier series

Ei(k) =
nmax∑
n=0

εi,n cos(nka) (4.12)

where nmax denotes the maximum number of distant neighbors considered in the model
[196].

In this case, the analytical result similar to Eq. 4.11 can be obtained [196]

Irad(Nω0) ∝ (Nω0)2

∣∣∣∣∣
nmax∑
n=1

nεnJN
(nωB
ω0

)∣∣∣∣∣
2

(4.13)

note that Eq. 4.13 differs from Eq. 4.11 by the
∑

and the n factor both inside the
sum as well as in front of ωB inside the Bessel function. Eq. 4.13 has a big advantage in
interpreting our experimental data thanks to it fast evaluation.

Figure 4.15 summaries all the important features one could derive from Eq. 4.13 as
well as the natural idea behind it. By investigating and understanding the influence of
the conduction band structure, the electric fields to the radiated spectrum, we selectively
choose the conduction band in Γ–M direction (Fig. 4.15a) as calculated by Schlüter
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Figure 4.15: Semiclassical picture of the field-driven electron dynamics in SiO2.
a, An electron wavepacket driven by the field in the lowest conduction band along the Γ −M
direction of the Brillouin zone. b, Spatial harmonic components of the band dispersion resulting
from Eq. 4.12. Relative amplitudes are scaled, for clarity. Adapted from [196].

[191]. Even though the selection of this band was explained in subsection 4.3.3, we can
qualitatively add to the fact: (i) this is the lowest conduction band that is the most
isolated from higher bands. The highest energy spacing between this band and the next
bands ensures the least probability for the electron wave packet to do interband transitions
[202], keeping most of the electron wave packet within the same band, allowing only Bloch
oscillations and influencing the Bragg scattering from collisions of the electron wave packet
to the band as well as to the Brillouin zone edges. (ii) Furthermore, by spanning close to
3.5 eV, this band provides relatively large group velocity vg to the electrons that eventually
contributes to the generated current or radiated spectrum. As a result, this conduction
band contributes as a highest weight in the total radiated spectrum if accounted for all the
bands (Fig. 4.9). In particular, this band can be decomposed into its Fourier series with
higher frequency components as in Fig. 4.15b. Because a cos(ka) function could represent
most of the band structure, all the higher order terms cos(2ka), cos(3ka), cos(4ka), etc
exist in the decomposition but with much weaker weights. Therefore they have to be
scaled up to be visible at the same amplitude of the first cos(ka) term.

Acceleration or deceleration of the electron wave packet in the first term cos(ka)
automatically mean a lot higher acceleration (deceleration) or a lot more oscillations
in the same time window on the higher terms cos(2ka), cos(3ka), cos(4ka), etc in the
decomposition. Naturally the same incident electric field can drive the electron wave
packet to generate photon ∼ ωB in the lowest order term but if we consider the higher
order terms, this same electric field can generate photon ∼ n · ωB.

Because the electric fields used in our experiment are in principle more complex than
just the cosinusoidal approximation (E = E0 cos(ωt)) thus in order to get a realistic pic-
ture, we conducted the semi-classical simulation using the separately decomposed bands
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Figure 4.16: Semiclassical picture of the field-driven electron dynamics in SiO2 -
continued. a, Contributions to the EUV spectra from each of the spatial harmonics for the
field of Fig. 4.3a at the amplitude E0 = 0.8 V/Å. The total emitted spectrum (black curve)
aggregates contributions from all spatial harmonics. b, Simulated spectra for the electric field
waveform (Fig. 4.3a) for the realistic band shown in Fig.4.15a as a function of the peak field
strength E0. Color-coding corresponds to field strengths of Fig. 4.3b. c, d, e, Contributions
of spatial harmonics n = 4, 5, 6 to the intensity yields of EUV harmonics of orders N = 11, 13,
and 15 versus field amplitude E0. Adapted from [196].

(Fig. 4.15b) under a same electric field as in Fig. 4.3a. The results are illustrated in Fig.
4.16a. Evidently, being excited by the same electric field, the lowest order term, cos(ka)
has a very fast dropping cutoff (solid blue curve). The spectra generated by progressively
higher order terms reach higher cut off and eventually the calculation using the complete
Γ−M band structure (all terms in the decomposition are included) generates strongest
intensity as well as the highest cut off energy (solid black curve). In the other words,
the higher the terms involved in the decomposition, the higher the cut off energy the
generated spectra will exhibit at this current electric field strength. At higher electric
field strength, the saturation of the Bessel function makes it hard to predict the behavior
of the spectral components as well as cutoff energies.

Intensity scaling measurements and spectroscopy application

If the first conduction band in the Γ–M direction in [191] is represented by a series of
spatial harmonics, it will be rewritten as (in eV unit):

Ec(k) = 10.6− 1.669 cos(ka) + 0.0253 cos(2ka)− 0.0098 cos(3ka) (4.14a)

+ 0.0016 cos(4ka) + 0.0263 cos(5ka)− 0.0052 cos(6ka) (4.14b)

+ 0.0103 cos(7ka) + 0.0005 cos(8ka) + . . . (4.14c)
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By applying this Fourier series on the incident electric field as in Fig. 4.3a for a variety
of field strengths as used in the experiment, the semiclassical simulations (Fig. 4.16b)
yield an excellent agreement with experimental spectra (Fig. 4.3b).

Furthermore, evaluation of the Eq. 4.11 for each of the high order spatial harmonic
terms (4a, 5a, 6a) as a function of the incident field strengths are shown in Fig. 4.16c,d,e
(for 11th, 13th, 15th harmonic order respectively). Clearly, different spatial harmonic or-
ders have different intensity scaling laws and they exhibit either exponential (4a, 5a)
or saturated scaling behavior (6a in Fig. 4.16c,d,e). With the combination of them
represented by Eq. 4.13, another strong agreement between this simulation and the
experimental results can be reached, as illustrated in Fig. 4.17.
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Figure 4.17: Energy cutoff and intensity scaling of EUV emission in SiO2. a, Scaling
of the cutoff energy Ecutoff (blue dots with error bars) with the field amplitude E0. Linear
fitting of the measured data (blue line) and results of semiclassical simulations (red line). b,
c, d, Yield dependence for harmonics of order N = 11, 13, and 15 on the field amplitude (blue
dots). Red curves represent fittings based on the Eq. 4.13 , including all spatial harmonics up
to nmax. Green curves in b, d, represent the fittings of experimental data with Eq. 4.13, where
only one spatial harmonic (n = 5 and n = 6, respectively) was taken into account. Error bars
depict the standard deviations of the values extracted from several data sets recorded under
identical conditions. Adapted from [196].

It is not straight forward to verify the cutoff scaling law (linear dependence of the
cutoff energy versus the electric field strength) analytically because our electric fields
are not representable analytically. (For the case of a constant electric field, the linear
dependence is trivial via the Bloch frequency formula ωB = aeE/~). However, it is fairly
easy to verify this numerically. In fact, numerical simulations using either Eq. 4.13 or the
solving the Bolztmann equation (Eq. 4.4) both give a consistent result that is the linear
dependence of the cutoff energy versus field strength. Evidently, one can see a strong
agreement between the measured dependency and the simulated linear dependence in
Fig. 4.17a.

The key advantage of the Eq. 4.13 is that its allow one to investigate the scaling of
spectral intensity as a function of the incident electric field strength in the approximation
of the cosinusoidal form. Therefore, we try to use Eq. 4.12 as a basis and fit Eq. 4.13 to
the experimental data and we expect to get back the band dispersion in the representation
of multiple high order spatial harmonics. The results of the fitting can be summarized as
follows:
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� Excellent fitting: As one can observe in Fig. 4.17b, c , d, the degree of agreement
between the measured data (blue dots) and the fitted results (red curves) is great.
Because the data are represented in the logarithmic y-axis thus while the fitting is
done in the linear scale, it means that a small deviation in the weak field strength
∼ 0.6 V/Å is negligible. In fact, all of the deviation between experimental data and
fitted results are well within the error bars of the experiments.

� Only few spatial harmonic orders play a role: The results of the fitting sug-
gest that not all the spatial harmonic orders, for instance 1a to 8a in this particular
fitting, are of equal importance. In particular, it was found out that only certain
orders, mostly 5a and 6a, are the main component in the fitting. Again, Fig. 4.16a
has given us a clear explanation: only these orders and higher orders are contribut-
ing the most in the emitted EUV in this spectral range (for this given electric
field). Hence the highest contributing terms will certainly play more important role
in determining the generated spectral intensity, and consequently showing up in the
result of the fitting.

� Fine details of the band dispersion is captured: Because we cannot calculate
the absolute values of the spectral intensity as well as the imperfect calibration of
the measured spectra, we cannot extract the absolute εn from the fitting. However,
the ratio between the εn is maintained due to the fact that each spatial harmonics
gives different scaling laws (Fig. 4.16c,d,e) thus the combination of them is unique
and it is this unique combination which is reconstructed through the fitting. In
particular, from the fitting we have ε5/ε6 ∼ −5.1 ± 0.6 which is almost identical
to the calculated value (ε5/ε6 ∼ −5.6) of the first conduction band of SiO2 in the
Γ–M direction (Eq. 4.14) [191]. Semiclassical simulations take into account only
these two terms (ε5, ε6) produce almost identical spectra compared to Fig. 4.13,
4.14 where the complete series of bandstructure in the Γ–M direction is included.

In conclusion, not only the Fourier decomposition of the band dispersion profile helps
interpreting the experimental data, explaining the physical nature of the emitted EUV but
it also further advances our capability by extracting the correct parameters representing
the band dispersion profile. Spectroscopically, this opens the door to measuring in the
most direct way the dispersion profiles of the conduction bands. If one wants to calculate
the resolution of this technique, a sensitivity to the 6th spatial order means a crystal
momentum resolution of π/(6a) ∼ 0.1/Å which is nearing that of modern angular resolved
photoemission spectroscopy [220].

Linear fit of the cutoff energy scaling

Close inspection of the Eq. 4.13 reveals that for maximum number of distant neighbors
included in the consideration nmax, the highest characteristic distance in the crystal is
Rmax = nmaxa and consequently the maximum energy that a photon can be emitted from
driven electrons is Emax = nmax~ωB. This suggest the maximum measured cutoff energy
is linearly dependent on the electric field strength (through ωB) as well as the effective
maximum number of distant neighbors (nmax).

In fact, Fig. 4.18 shows that if a linear fitting of the experimental data is performed
we found out Rcutoff ∼ 30 Å and ncutoff = 6.2 ± 0.5. Furthermore, extrapolation of the
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Figure 4.18: Linear fit of the experimental cutoff energy versus field (extension of
Fig. 4.17a). Blue line is the linear regression with the least squares method, which gives the
cutoff energy Ecutoff = 0.6± 2.0 eV at E0 = 0. Adapted from [196].

linear fitting to zero field E0 = 0 yields a cutoff energy Ecutoff = 0.6 ± 2.0 eV. This
additionally strengthens the link between the emitted radiation and the induction of
intraband currents considered in the semiclassical model where Ecutoff = 0 at zero field is
predicted.

Experimental setup for beam profile measurement

After characterizing the electric fields by the attosecond streaking, we replaced the streak-
ing target by the ultrathin SiO2 sample as in Fig. 4.19a. After making sure that there
is only well characterized optical beam reflected on the outer mirror, the small annu-
lar beam is focused onto the SiO2 sample. Because the incoming beam is annular, any
generated coherent photons will be directed collinearly to the axis of propagation of the
incident electric field. One thin aluminium filter (∼ 100 nm) is placed after the sample,
before the multi-channel plate (MCP).

A simple imaging setup was installed to project the beam profile of the EUV (> 15
eV) radiation on the phosphor’s screen onto our camera. The measured profile (after
calibration) Fig. 4.19b shows a well behaved, Gaussian-like beam. The ellipticity is
calculated through 2D Gaussian fitting of the real beam profile and turns out to be
∼ 0.9. The beam width evaluated by full width at half maximum (FWHM) is ∼ 4.8 mm
and by 1/e2 is ∼ 9.0 mm for the broad axis and for the other axis are ∼ 4.2 and ∼ 7.7
mm respectively. Therefore, the calculated divergence of the beam from the averaged
FWHM value is θ ∼ 5.2 mrad.

Spatial profile and coherent of the generated EUV beam

Additionally, one can further study the measured beam profile in the far field and try
to contrast it with the simulated one using above described theory. Because the gen-
erated EUV spectra are different at different incident electric field strengths, naturally
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Figure 4.19: Measurement of the coherent EUV radiation beam profile. a, Ultraw-
ideband pulses (bandwidth ∼ 1.1→ 4.6 eV) which are synthesized after a light field synthesizer
and characterized by attosecond streaking. Red waveform represents 1.5-cycle pulses as inci-
dent electric fields. The SiO2 sample replaced the position of the streaking target afterward. b,
3D plot of the captured EUV beam profile taken from an multi-channel plate/phosphor image
intensifier which is placed ∼ 87 cm downstream from the sample. One aluminium filter (∼ 100
nm) is installed to block the driving electric field frequencies.

this will lead to an evolution of emitted EUV spectra across the focal spot of the in-
cident beam. Studies of space-time characteristics of this type are very important and
eventually support the characterization of electric fields in femtosecond and attosecond
regimes [16, 221]. Since in our case the laser beam profile is relatively big (∼ 20µm,
Fig. 4.20a,b), we can safely assume that there is no cross talk between different positions
on the focal spot. Therefore, we could use directly the intensity scaling simulation (cal-
culated semiclassically) results together with the intensity profile of the incident electric
field to generate a spatially resolved EUV spectrum as displayed in Fig. 4.20c for the case
the peak field strength is ∼ 1.04 V/Å. This shows how different spectral components are
generated at different positions on the focal spot (on the sample). It is clear that mainly
the odd harmonics are being generated. The size of the them as well as their intensities
gradually decrease as we look at higher photon energies. As a consequence, the total
emitted EUV profile (Fig. 4.20d) is mainly dominated by the 15−20 eV photon energies.

Nonetheless, this is the simulated beam profile emitted at the generation point (near
field), the beam in the far field can be calculated from linear propagation. In this case,
we have to use the wave equation A.6 neglecting the polarization term because this beam
propagates in vacuum. (

∇2 + k2(ω)
)
E(r, ω) = 0 (4.15)
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Figure 4.20: Spatially resolved EUV spectrum in the near and far field (simulation).
a, Measured laser beam profile in the focus. b, Cross sections of the laser beam profile along
X and Y-axis. c, Generated EUV spectral intensity as a function of the photon energy across
the beam profile. d, Integrated EUV beam profile in the near field. e, f, Same as c and d, but
for the far field (note the difference of y-axes units between c and e). Adapted from [196].

By applying the envelope decomposition [222] as in Eq. A.7 and slowly varying
amplitude approximation, after some steps we have:

2ik(ω)
∂U(r, ω)

∂z
+
∂2U(r, ω)

∂x2
+
∂2U(r, ω)

∂y2
= 0 (4.16)

which is very similar to the first order propagation equation in frequency domain, A.9. If
we transform U(r, ω) to its k-space using Fourier transform: U(kx, ky, z, ω) = F2D

[
U(r, ω)

]
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and make use of the Fourier identity A.4, Eq. 4.16 becomes:

2ik(ω)
∂U(kx, ky, z, ω)

∂z
= (kx2 + ky2)U(kx, ky, z, ω) (4.17a)

=⇒ U(kx, ky, z, ω) = U(kx, ky, 0, ω) · e−iz
kx2+ky2

2k(ω) (4.17b)

From Eq. 4.17bb, we can finally calculate the profile U(x, y, z, ω) given the initial
profile U(x, y, 0, ω) by the following expression:

U(x, y, z, ω) = F−12D

[
F2D

[
U(x, y, 0, ω)

]
· e−iz

kx2+ky2

2k(ω)

]
(4.18)

Applying Eq. 4.18 to the generated EUV profile in the near field as in Fig. 4.20c, we
get the EUV profile Fig. 4.20e in the far field, after ∼ 87 cm of propagation as in the
experiments. Because the wave equation is solved in free space thus there is no coupling
between the frequencies thus the harmonic structure in the near field remains the same
in the far field. However, the beam profile of the 19 eV components seems to be bigger
than 15.5 eV components in the far field and there is a halo around the lowest frequencies
that results in a weak ring in the total beam profile Fig. 4.20f.
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Figure 4.21: Intensity and phase profiles of the EUV harmonics in the focus. Spatial
profile of the laser field (solid sepia curve). Solid dark blue curve is the spectrally integrated
EUV profile (see Fig. 4.20d). Spatial phase profiles of different EUV harmonic orders N = 11,
13, 15, 17 are shown by solid green, red, black, and blue curves, respectively. Adapted from
[196].

According to Fig. 4.21, there is a very small phase shift of the emission latterally
across the pump focal spot. From the direct comparison of the X-axis profile of the
measured and simulated beam in the far field (Fig. 4.22), excellent agreement has been
observed. The simulated EUV beam profile in the far field has the width ∼ 9.0± 1.0 mm
while the measured profile (Fig. 4.19b) has the width ∼ 9.0± 0.8 mm, defined via 1/e2.
This remarkable agreement suggests the coherence of the emitted radiation and supports
the validity of the semiclassical model of HHG.



4.4 Further considerations 81

-10 -5 0 5 10
X (mm)

In
te

ns
ity

 (a
rb

.u
.)

0

0.5

1

Figure 4.22: Comparison of measured and simulated beam profile. X-axis profile (red
curve) of Fig. 4.19b and far field beam profile (blue curve) calculated using semiclassical model
and free space propagation. Error bars depicted the standard deviation of the values extracted
from several data sets recorded under identical experimental conditions. Adapted from [196].

4.4 Further considerations

4.4.1 Phase matching (first order propagation) consideration of
EUV radiation in SiO2 thin films

The two models above which helped us to understand the basics of physical processes
inside bulk crystals and their associated EUV radiation are just fundamental first steps.
EUV radiation at source points can only be detected at the detection points if the gen-
erated photons undergo significant coherent build-up such that they arrive on detectors
at measurable intensity. Due to the fact that hardly any material has constant refrac-
tive indexes over the ultrabroad range from the fundamental carrier frequency to the
EUV frequencies, the fundamental carrier wave will travel at different speed compared to
the EUV photons which are generated by the fundamental waves. Hence the generated
EUV photons will lag behind (in most cases) compared to the fundamental waves as
they propagate though a medium. After a certain amount of propagation distance, the
previously generated EUV photons will acquire enough phase mismatch that makes de-
structive interference with their newly generated photons. This leads to the oscillation of
the total generated EUV intensity along the propagation axis and it undoubtedly limits
the ultimate intensity that could be generated significantly.

There are different ways to minimize the difference in propagation speed, enhance the
total coherent build-up, and ensure the phase matching capability of the fundamental
waves and generated high frequency waves, these are called phase matching optimizations
[75]. Although the most precise and accurate way to calculate the total optical response
of a system finally is to solve the Maxwell’s equations in conjunction with a model that
describes the generation processes (semiclassical model or SBEs in this case), it is rather
complicated because it includes dispersion (or absorption, gain), diffraction and all kinds
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of other spatial effects. One might try to reduce the complexity from a 3-D calculation
to a 1-D calculation. However, because our spectral region of interest is so broad, its
phase matching requirements will be difficult to achieve. Constant et al. [194] has
suggested a convenient way to consider phase matching optimizations and demonstrated
HHG with high conversion efficiency (∼ 4 · 10−5). Since the principles of phase matching
consideration apply to all kinds of media, we calculate our phase matching requirements
based on their work [194]:

Lm > 3La (4.19a)

Lc > 5La (4.19b)

Here Lm is the length of the medium, the attenuation (or absorption) length La is
defined as: La = c/(2ωk) = c~/(2Ek), Ek is the photon energy of the wave vector k in
consideration. The coherence length Lc is defined as: Lcoherence = 2π/∆k, ∆k = nq/λq−q·
n0/λ0 is the wave vector mismatch between the fundamental λ0, with refractive index n0

and the qth harmonics λq, with refractive index nq.
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Figure 4.23: Phase matching considerations of EUV radiation in SiO2 thin films.
a, Coherence and absorption (attenuation) length as a function of photon energy. b, Build-up
of EUV flux versus propagation length calculated for different photon energies (annotated in
legend).

Fig. 4.23 shows an evaluated coherence length and attenuation length for the case of
SiO2 thin films and their corresponding flux build-up. Since this consideration depends
strongly on the refractive indexes acquired for SiO2, we utilized here the parameters
from Palik [223] because it provides the parameters for our range of interest completely.
Comparable results (within 10% accuracy) can be obtained using the parameters from
Henke et al. [195]. However, the data from Henke et al. did not provide parameters for
photon energies higher than 30 eV thus using data from Palik is a proper choice.
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For the low energy photons, Fig. 4.23a demonstrates that the requirement Eq. 4.19b
is satisfied easily and Eq. 4.19a means that our medium has to be > 90 nm in order
to collect photons at ∼ 40 eV effectively. However, the Eq. 4.19b is not satisfied well
at high energies which indicates that we might not have high flux at this energy range.
Indeed, the total flux calculation as a function of different photon energies and different
propagation lengths in Fig. 4.23b shows that we can have most efficient flux build-up at
∼ 100 nm for our range of interest. Therefore, a selection of SiO2 film with a thickness of
∼ 125 nm as we did in our experiments was reasonable and it also introduced the least
effects of nonlinear and linear distortions of our driving fields while propagating through
the medium.

For sample with thickness close to ∼ 250 nm, the result of Fig. 4.23 suggest that the
total radiated EUV flux will be similar to that of ∼ 125 nm. However, the heat dissipa-
tion for the thicker sample will be better than the thinner ones but more importantly,
the electric field waveforms can be changed significantly compared to the thinner cases.
Because of this reason, we prefer to carry out experiments with the thinner samples first
so that less parameters will be included in the studying of the physical picture.

4.4.2 Crystallinity of samples: determination of microcrystals
size

We investigated our samples using an EUV synchrotron source. The EUV absorption
in the L2, 3 edge of SiO2 has been measured with a spectral resolution < 0.1 eV, it is
displayed on Fig. 4.24 (solid blue curve). The presence of the spin-orbit doublet in
the core exciton at 106 eV has been reported to be a proof of crystallinity of SiO2 (the
doublet is smeared out in totally amorphous samples)[224, 225]. To be more quantitative,
we applied the procedure described in Ref. [224] by deconvoluting the spin-orbit doublet
(dashed red curve) and fitting with a Gaussian (solid green curve), the FWHM of which
is 0.52 eV. According to Ref. [225], the result of this fitting demonstrates short-range
order with a coherence radius above 20 Å meaning average size of > 40 Å.

Figure 4.24: Estimation of short range order length from EUV absorbance. Measured
EUV absorbance (solid blue curve), spin orbit deconvoluted absorbance (dashed red curve) and
Gaussian fit of core-exciton spike (solid green curve). Adapted from [196].
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4.4.3 Other consideration of theoretical models

The two models utilized in our discussion so far are based on real acceleration and scat-
tering of the electron wave packet in the conduction band (with and without taking into
account other electron dynamics) which plainly requires the involvement of the differen-
tiation in k-space. If one wants to consider the effective mass (which is used to construct
an analogy of the electrons in the bands in solids as free particles in real space), one could
reduce the burden getting the solutions of a differential equation (or coupled differential
equations) and find a simpler analytical solution instead which is similar to our results
(Eq. 4.13)

In fact, it has been shown by Ghimire et al. in [42] and with more details in [46] that
a nonlinear current density will be created:

J(t) =
Ne2

m∗ω0

∞∑
n,s=1

n2bn
2s− 1

[
J2s−2

(
n
ωB
ω0

)
+ J2s

(
n
ωB
ω0

)]
E sin

(
(2s− 1)ω0t

)
(4.20)

when a small electron densityN is accelerated under influence of an electric field E cos(ω0t).
Here m∗ is the effective mass of the band in consideration, bn = cnd

2m·/~2 are the scaled
Fourier coefficients corresponding to coefficients cn making up the band structure using
cosinusoidal assumption ε(k) =

∑
cn cos(ndk), d is the lattice constant. Ji is the ith

order Bessel function of first kind. ωB = eEd/~ is the Bloch frequency corresponding to
the maximum electric field.

In addition, Golde, Meier, and Koch have shown nicely even before in [41] that a
similar expression for the current density can be achieved:

J(t) = −edω∆2
∞∑
N=0

J2N+1

(ωB
ω0

)
sin
(

(2N + 1)ω0t
)
·
∑
k0

nk0(t) cos(k0d) (4.21)

where the effective ω∆ = (∆e + ∆h)/(2~) and nk0(t) is the time dependent population
of the electrons in the conduction band.

The current density in Eq. 4.20 does assume there are some electrons already in
the conduction band and the nonlinear current is generated through acceleration and
scattering of the electron wave packet in the conduction band. In Eq. 4.21, they added
the last term on the right hand side to take into account the interband excitations.
Nevertheless, both of the equations visibly show that there is contribution of the odd
high harmonic terms ((2s − 1)ω0 in Eq. 4.20 or (2N + 1)ω0 in Eq. 4.21) to the total
current densities in temporal domain which broadens their associated spectra.



Chapter 5

Bound electron control in Krypton

5.1 Bound electron control in Krypton atoms

In this chapter, we show that intense (> 50 GW), field-tailored, optical attosecond pulses
(∼ 400 as, chapter 2) are capable of providing attosecond control in bound electrons.
Broadband manipulation of vacuum ultraviolet (VUV) spectra that emanated from neu-
tral Kr atoms, driven by waveform-controlled optical attosecond pulses, revealed attosec-
ond dynamics of bound-electron dipoles, which are a close analogy to those of ionized
atoms in strong fields [29, 63, 226]. Our experiments highlight capability of these tools
for porting the basic paradigms of attosecond control from continuum-state (ionization)
to bound-state (neutral) electrons. Electrons in Kr atoms exposed to ultrafast excitation
by these pulses reveal, for the first time, the frontiers of nonlinear electronic response,
manifested as an attosecond-scale non-instantaneity of the induced dipole, as captured
in our measurements.

5.1.1 Two level model - adiabatic response

To demonstrate the power of optical attosecond pulses in advancing nonlinear control of
bound-state electrons to attosecond scales, we performed simulations in which a bound
electronic system was modelled as a two-level atom. In the quasi-static approximation
for a low frequency electric field, the induced dipole moment in a two level model can be
calculated by [227], Eq. (8):

d(t) = d
2dF sin(ωt)√

4d2F 2 sin2(ωt) + ω2
0

(5.1)

where the electric field is described by F (t) = F sin(ωt), d is the transition dipole moment
of the two levels (chosen to match the nonlinear properties of Kr), ω0 is the energy
difference between the two levels. The transient transition frequency can also be written
analytically as:

ω0(t) =
√
ω2

0 + 4d2F 2 sin2(ωt) (5.2)

This is a Stark shift (shifting of energy levels under influence of electric field) and as
the time dependent function suggests, the transient energy level depends rigorously on
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the strength and the phase of the incident electric field. Even though this is a result
obtained for a two level model, Eq. 5.2 in principle can serve as an intuitive picture
representing the bound electrons response of Kr atoms under incident electric fields.

We exposed this model atom (Eq. 5.1) to three different electric fields applied in
our experiments: (i) a single-cycle pulse (Fig. 5.1a); (ii) a considerably shorter, optical
attosecond pulse (Fig. 5.1d); and (iii) a chirped but spectrally equivalent pulse (Fig.
5.1g). All three driving fields were synthesized and used in the experiments described
below. Importantly, the peak intensity was restricted at levels (∼ 4 · 1013 W/cm2) for
which simulations based on solution of the 3D-TDSE for Kr predict < 0.2% ionization
(Table 5.1), i.e., the electrons remain virtually bound.

Peak intensity 1 2 4 6 8 10
∗1013 W/cm2

Ionization probability (%) 0.0018 0.06 0.18 0.84 1.38 2.4

Table 5.1: Ionization probability calculated for different pulse intensities using the 3D-TDSE
[74]

Following an investigation method based on previous studies in the strong-field regime
of control [29, 32], we plot the nonlinear electron dipoles induced by these case-study
driving fields as a function of their global phase (Fig. 5.1) along with a significant
fraction of their corresponding dipole spectra in the range of 5 − 15 eV. For illustration
purposes, the energies of the electronic resonances of Kr are also indicated (dashed grey
lines).

Close inspection of the induced nonlinear dipoles and their respective spectra shown
in Fig. 5.1a,b reveals that single-cycle pulses - which have been demonstrated to at-
tain attosecond control under a strong field, as, for instance, manifested by the multi-eV
broad, CEP-sensitive emission of EUV radiation [29, 30, 226] - are here unable to sig-
nificantly modify the emitted spectra by variation of their global phases. This result
implies that in the time domain, other than a shift of its absolute phase, the induced
few-femtosecond dipole remains virtually unchanged (Fig. 5.1a) under this variation. In
contrast, compression of the driver field to a half-cycle (Fig. 5.1d,e,f) not only allows
confinement of the nonlinear dipole to a fraction of the oscillating field but also enables
its dynamic control with global phase (double- vs. single-polarization bursts) within its
de facto sub-femtosecond time interval of action. As a result, the polarization, and conse-
quently the emitted spectra, suffers a broadband (several eV) modulation with ϕG (Fig.
5.1f), which, in close analogy with that of ionized electrons in strong field experiments,
highlights attosecond control of the nonlinear dipole. When the chirped but spectrally
equivalent pulse in Fig. 5.1g is used to drive the system, spectral control is retained,
but it becomes asynchronous: various parts of the emitted spectrum follow a different
modulation phase with respect to ϕG (Fig. 5.1i), thereby revealing fragmentation of the
nonlinear dipole into several half-cycles (Fig. 5.1g) instead of the single or double burst
displayed in Fig. 5.1d. The above simulations illustrate that porting concepts of attosec-
ond control to bound electrons calls for compression of optical fields to time scales that
are nearly an order of magnitude shorter than those typically required for attosecond
control based on ionization.
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Figure 5.1: Field induced nonlinear control of bound electrons. a, Time dependent
electric fields (solid red lines) and their respective dipole moments (rescaled, filled areas) of
a single cycle pulse, d, of an optical attosecond pulse and g, a chirped optical attosecond
pulse at two global phase settings (ϕ = 0 (red areas) and ϕ = π/2 rad (blue areas). b,e,h,
Corresponding spectra in the range 5.5 → 15 eV (ϕ = 0 (red lines) and ϕ = π/2 rad (blue
lines). Dashed gray lines indicate resonant emissions of Kr. c,f,i, Emitted spectra as a function
of the global phase.
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5.1.2 Experimental setup

To experimentally explore the above control possibilities, we used the same setup as
shown in Fig. 2.7, where now the streaking gas target can be replaced by a quasi-static
gas cell which is filled with Krypton (Kr) at ∼ 80 mbar, Fig. 5.2a. The nanometric
precision 3-axis stage allows one to accurately move both the targets at the same place
which ensures that the Kr gas target will be exposed with the same electric field recorded
by attosecond streaking. The emitted VUV spectrum is line-focused on the slit of the
VUV spectrometer. The spectrometer is set to measure spectra ranging from 5 to 14 eV
which constitute the energy range from the end of the fundamental pulses to the first
ionization potential of Kr (Ip ∼ 14 eV), respectively. The sampled spectra are illustrated
in Fig. 5.2b.
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Ne gas target
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Figure 5.2: Experimental setup for bound electron control in Krypton. a The
optical attosecond pulses are focused on the Kr gas target. Emitted spectra are recorded on
a spectrometer placed after a focusing mirror. b, Spectra recorded at identical experimental
conditions except the global phase is changed from ϕ = 0 (solid red line) to ϕ = π/2 rad (solid
blue line). Different normalizations are used for two different spectral ranges, 5.5− 8.5 eV and
8.6− 15 eV.

Since the emitted spectra extend to a very large frequency range, calibration of both
the energy axis as well as the spectral intensity axis becomes important. To this end,
we employed a calibrated Deuterium lamp (McPherson) that supports 115 → 380 nm
(or 3.3 → 10.8 eV) and use this as a calibration source for our spectrometer. By using
polynomial fitting, we could calibrate our spectra up to photon energies of 10.8 eV,
the higher photon energies were calibrated by using atomic spectral data from National
Institute of Standards and Technology. Because of the presence of 1200 grooves/mm
grating, the spectra were recorded at two different grating positions. All fragmented
spectra are patched to give the final spectrum.

We performed systematic measurements of the emitted spectra from Kr atoms by uti-
lizing different electric fields, each of them at different global phase settings and different
intensities. The result of these measurements is discussed in the next section.
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5.1.3 Attosecond control of bound electrons

The captured spectra were quasi-continua over several electron volts (5.5 to 10 eV) (Fig.
5.3a), whereas in the range 10-14 eV, they exhibited discrete peaks that coincided well
with the electronic transitions of atomic Kr. These spectra demonstrate the capability of
optical attosecond pulses to nonlinearly excite virtually any quantum level in the range
1 − 14 eV, including the complete bound electronic state manifold of Kr, and already
suggest their potential for attosecond control.

Variation of the global phase (Fig. 5.3a) of these pulses yielded a pronounced broad-
band modulation of the VUV emission both below (5.5 − 10 eV) and within the range
of electronic resonances (10 − 14 eV), thereby verifying the key features of the control
schemes discussed in Fig. 5.1.

A spectrally equivalent but longer optical waveform in Fig. 5.3d precisely reproduced
the predictions of Fig. 5.1i, i.e., it yielded asynchronous amplitude modulation of different
parts of the emitted spectrum, thereby revealing the fragmentation of the dipole to several
rather than 1-2 half-field cycles.

In close analogy, a pulse synthesized by our apparatus to entail approximately a single
optical cycle by physically suppressing a part (> 3 eV) of the high-frequency spectrum
of the optical attosecond pulse (Fig. 5.3f bottom right) with a comparable peak (non-
ionizing) intensity failed to generate broadband nonlinear excitation or its control through
variation of the global phase (Fig. 5.3f); this result agrees well with the predictions of
our modelling, which are shown in Fig. 5.1c. These results highlight that in the absence
of the extreme nonlinearities of ionizing fields, optical attosecond pulses are the key
to manipulation of bound electrons on the natural sub-femtosecond time scale of their
motion.

5.2 Theoretical description

5.2.1 Proof-of-concept simulations

To shed light into capabilities of optical attosecond pulses in controlling bound electrons
and possibly explaining experimental data, we performed theoretical simulations of light
matter interaction invoking 3D-TDSE [74] for Kr and an instantaneous model in which
polarization response of a system under interaction with electric field is: P (t) ∝ A ·
E(t)3 +B · E(t)5. The results of the simulations are shown in Fig. 5.4.

While the temporal profile of the calculated polarization responses (Fig. 5.4a) provides
limited insight except absolute time difference of the responses, a time-frequency analysis
(more details in chapter 6) as in Fig. 5.4b (left panel) can offer much more intuition. This
technique is based on Gabor transformation or short time windowing and has been used
by Yakovlev et al. [228]) or Muecke [45] to represent moments of generation of different
harmonics in the HHG. In short, it is a trace composed of spectra at different time delays
whose formula is written by:

S(ω, τ) =

∣∣∣∣F[E(t) ·G(t− τ)
]∣∣∣∣2 (5.3)
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Figure 5.3: Attosecond control of bound electrons in Kr. a, VUV spectra generated
in neutral krypton driven by an optical attosecond pulse, c, a spectrally equivalent but chirped
waveform generated by a phase shift of the UV band by π/2 rad, and e, a single-cycle pulse.
b, d, and f, Spectrograms composed of 22 VUV spectra (5.5− 15 eV) recorded as a function of
ϕG for the above waveforms. The spectrograms represent the average of four data sets recorded
under identical conditions. Representative field waveforms for ϕG = 0 and ϕG = π/2 rad are
displayed on the bottom right of each spectrogram. Adapted from [139].
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Figure 5.4: Delayed nonlinear response of bound electrons in Kr - Simulations. a,
Electric field (blue line), polarization response calculated from 3D-TDSE simulation (black line),
and adiabatic model (red line). b, Time-frequency analysis of the polarization calculated from
adiabatic model (left panel) and global phase spectrogram of the same model (right panel).
c, Same as b but for the polarization calculated from 3D-TDSE simulation. Instantaneous
intensity of the electric fields (red lines) is plotted on top to show time reference. d, Filtered
(0−8 eV) polarization responses calculated from 3D-TDSE for three intensities: 4 ·1013, 6 ·1013,
and 8 · 1013 W/cm2 (black, blue, and yellow lines). Inset in d shows delays between adiabatic
polarization response and 3D-TDSE polarization responses. Adapted from [139].
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where E(t) is the induced current, the gate function G(t) is any filter function (a
Gaussian is generally used).

Under the instantaneous model, synchronized emission of all frequencies can be ob-
served for the entire range of the spectrum. Furthermore, there is a precise time syn-
chronization between the generated emission and the incident electric field. However,
time-frequency analysis of the calculated polarization response from the 3D-TDSE Fig.
5.4c (left panel) shows evidently asynchronous moments of emission of different spectral
components. Clear retardation of more than 1 fs can be seen for emission in resonant
range of Kr (10− 14 eV).

Similar differences between the instantaneous model and 3D-TDSE simulation can
be observed in the global phase spectrograms (Fig. 5.4b and c, right panels). Even
though results in global phase spectrograms may not be interpreted as directly as in
time-frequency analysis, asynchronous modulation of the global phase at maximum spec-
tral intensities (white dashed line) in c (compared to straight line in b) still suggests
time-related features of the nonlinear polarization responses from 3D-TDSE compared to
instantaneous model.

In order to compare directly the polarization responses in time domain, we filtered
out the high energy components (> 9 eV) and plotted the resultant nonlinear, non-
resonant responses calculated from all the models as in Fig. 5.4d. Evidently, the nonlinear
responses from 3D-TDSE are delayed with respect to their instantaneous counterpart.
Furthermore, the delay increases as the intensity of incident electric field increases.

5.2.2 Benchmarking the simple model

Above consideration illustrates how the polarization responses from the 3D-TDSE differ
from the instantaneous model. Although 3D-TDSE simulation can give a great deal of
information as well as resemble reality, extracting physical processes out from it or fitting
an experimental data can hardly be done. Therefore, by introducing a simple model as
follows

P (t) ∝ A · E(t)3 +B · E(t)5 + C · E(t− dt)5 (5.4)

we attempt to reconstruct experimental data.
However, benchmarking this simple model by 3D-TDSE simulations is required before

sustainable conclusions can be drawn from it.
Fig. 5.5a shows the spectrogram obtained from the 3D-TDSE simulation for optical

attosecond pulses at the intensity of ∼ 4 · 1013 W/cm2 and the fitted spectrogram using
the simple model is illustrated in Fig. 5.5b. It is evident that the fitted spectrogram
reproduces most of the features of the simulated spectrogram: broadband and intense
spectra at ϕ = 0, minimal and rising spectra (higher amplitude at higher photon energies)
at ϕ = π/2 rad, asynchronous amplitude modulation as a function of the global phase, and
furthermore, the relative spectral amplitude is also well captured. This reproducibility
is additionally verified by comparison of the nonlinear polarization response from the
3D-TDSE and the response extracted from the fitting for the case of ϕ = 0 (Fig. 5.5c)
and ϕ = π/2 rad (Fig. 5.5d).

As a result, the great agreement between the simulated and fitted spectrograms
demonstrates a possibility that the experimental spectrograms 5.3 can be also analyzed
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Figure 5.5: Reconstruction of the 3D-TDSE simulation of the polarization response
of Kr atom. a, Series of nonlinear spectra (5.5 − 8 eV) calculated as a function of the
global phase ϕ of the experimental optical attosecond pulse (Intensity ∼ 4 · 1013 W/cm2). b,
Reconstructed spectrograms utilizing the simple model. The calculated polarizations through
TDSE of the attosecond light transient for ϕ = 0 (c) and ϕ = π/2 rad (d) are band-pass-
filtered (5.5− 8 eV) and shown in blue lines together with the reconstructed polarizations (red
curves), and the instantaneous polarizations (green curves). Adapted from [139].

to a great extent by the simple model.

5.2.3 Probing attosecond nonlinear delayed responses

Having confirmed the validity of the simple model to reconstruct the polarization response
calculated from the 3D-TDSE model, we attempt reconstruction of the experimental data
utilizing this model. The results are shown in Fig. 5.6.

Over the whole intensity range of our experiments, good agreement can be observed
between the experimental spectrograms and the reconstructed ones. Main spectral mod-
ulations at global phase values (−1, 0, 1 · π rad) are precisely captured for all intensities.
Furthermore, asynchronous modulation of the spectra as a function of the global phase
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from 5 − 7 eV are also reconstructed. Additionally, the small kink at the energy range
∼ 7.5 eV is reproduced and more importantly the relative change in spectral amplitude
(stronger at higher energies for high intensities) can be reliably reproduced for three
intensities.

Above agreements between the experimental data and the reconstructed ones show
the simple model as a reliable model to capture the experimental results. As a result,
Fig. 5.6c shows filtered polarization responses of the instantaneous model and of the
simple model utilizing reconstructed coefficients. Different electric field intensities result
in different reconstructed delays with respect to the instantaneous polarization. Moreover,
the reconstructed delays are in great agreement with the delays previously obtained from
3D-TDSE simulations (Fig. 5.4).

To conclude, the analysis presented here offers the first insights into attosecond non-
linear delayed response of bound electrons in Kr. We believe that extension of the current
models with more sophisticated theories may soon enable further understanding into dy-
namics of electrons in bound systems, opening up new possibilities in attosecond physics
and related technologies.
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Figure 5.6: Delayed nonlinear response of bound electrons in Kr - Experiments.
a, A portion (5.5-8 eV) of the measured global phase spectrogram at three different peak
intensities (i, ii, iii). b, Corresponding reconstructed spectrograms by the simple model. c,
Retrieved polarization responses at three intensities: 4 ·1013, 6 ·1013, and 8 ·1013 W/cm2 (black,
blue, and yellow lines) in contrast with the adiabatic dipole in red line. The inset in c shows
the delay between the adiabatic polarization response and the retrieved polarization responses.
Adapted from [139].
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Chapter 6

Conclusions

6.1 EUV high harmonic generation and spectroscopy

in solids

I have shown that efforts in this thesis have lead to demonstration of coherent EUV
generation from solids with photon energies extending up to 40 eV by exposing the
samples to strong and ultrashort incident electric fields. The emitted radiation exhibit
harmonic structure where all the peaks are associated with the odd harmonics of the
fundamental incident electric field frequencies except for the case of single-cycle pulses
and optical attosecond pulses. Knowledge from the comprehensive intensity scaling of
the measured spectra as a function of the electric field strength gave us solid foundation
for investigation of the underlying physics. The linear dependence of the cut off energy
on electric field strength, the nonperturbative behavior of the spectral intensity scaling
as a function of field strength at different harmonic orders validated the semiclassical
picture representing the Bloch oscillations together with acceleration (deceleration) of
the electron wavepacket under incident field as the main cause of the EUV radiation.
Bragg scattering of the electrons from the high order spatial harmonics of the conduction
band gave rise to the emitted EUV. Decomposition of the conduction band into its Fourier
series and fitting the intensity scaling using semiclassical model supported the first direct
measurement of the conduction band dispersion profile, making the very first step in EUV
spectroscopy in solids. The resolution obtained using our technique already approaches
that of the modern angular resolved photoemission spectroscopy (ARPES) [220].

Weak global phase dependence of the emitted spectra was observed for few cycle
pulses, the dependence slightly increased as the pulses get shorter and ultimately half
cycle pulses (optical attosecond pulses) change drastically the spectra from super contin-
uum to harmonic like spectrum. This does not only show the capability of manipulating
the emitted EUV but also offered means to understanding the physical mechanisms in-
volved. The radiation emerged by driving the coherent nonlinear motion of electrons in
bulk solids represents an extension of solid-state laser photonics and electronics to a new
regime of great potential for scientific and technological inquiries. Attosecond control
of electronic motion revealed by the emitted radiation opens up opportunities for both
steering and tracing strong field processes in solids as they occur in real-time as well as
the sub-femtosecond engineering of their transient dynamics.



98 6. Conclusions

6.2 Bound electron control and attosecond nonlinear

delayed response

As the first application of optical attosecond pulses our experiments on Kr have shown for
the first time, to the best of our knowledge, complete, broadband bound electron control
as represented by its associated VUV emission. Further analysis of the spectrograms
together with comparison to numerical solution of a 3D-TDSE in the non-resonant part
of the emitted VUV spectra suggests first insights of delayed response as an intrinsic
property of a multi-electron system being driven by optical attosecond pulses.

6.3 TW scale field synthesizer

I have illustrated the design of the TW field synthesizer, a new generation of synthesizer
which aims at synthesizing much more sophisticated, more powerful optical attosecond
pulses than the current tools [58]. The encouraging results hold promise for the future
applicability of the device.



Appendix A

Simulations and additional
experimental data

A.1 Nonlinear coupled wave equations for second or-

der nonlinear interactions

We are going to follow conventional derivations to end up with the first order propagation
equation, then the polarization terms will be put into effects (SHG) such as in [188].

From the Maxwell’s equations in the form of differential equations, if we consider a
case at which there are no free currents (J = 0), no free charges (ρ = 0), we can write
down the coupled Maxwell’s equations into:

∇×∇× E +
1

c2

∂2

∂t2
E = − 1

ε0c2

∂2

∂t2
P (A.1)

Where we already identify c = 1/√µ0ε0. And P = P(r, t) is the total polarization
response of the system. Then we make use of the curl’s identities:

∇×∇× E = ∇(∇ · E)−∇2E (A.2)

If E is a transverse plane wave, the first term of the right hand side vanishes. In
general, if we assume the first term to be negligible then we come toward the wave
equation in time domain:

∇2E− 1

c2

∂2

∂t2
E =

1

ε0c2

∂2

∂t2
P (A.3)

However solving this equation in time domain is a costly computational task. We can
transform it to frequency domain using the Fourier identity for differentiation:

∂

∂t
E(t) = F−1

[
iωF

(
E(t)

)]
= F−1

[
iωE(ω)

]
(A.4)

Here F and F−1 are the Fourier transform and inverse Fourier transform respectively.
Clearly by applying Fourier transform on both sides of the equation A.3 and using identity
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A.4, we have:

∇2F
[
E(r, t)

]
− 1

c2
F

[
∂2

∂t2
E(r, t)

]
=

1

ε0c2
F
[ ∂2

∂t2
P(r, t)

]
(A.5a)

∇2E(r, ω)− 1

c2
F

[
F−1

[
iωF

[
F−1
[
iωF

[
E(r, t)

]]]]]
=

1

ε0c2
F

[
F−1

[
iωF

[
F−1
[
iωF

[
P(r, t)

]]]]]
(A.5b)

∇2E(r, ω) +
ω2

c2
E(r, ω) = − ω2

ε0c2
P(r, ω) (A.5c)

Equation A.5c is the wave equation in the frequency domain. However at this stage,
we should note that P = Ptotal = PLinear+Nonlinear. If we write down PLinear(ω) =
ε0χ

(1)(ω)E(ω) and ε(1)(ω) = 1 + χ(1), ε(1)(ω)ω2/c2 = k2(ω), the wave equation becomes:

(
∇2 + k2(ω)

)
E(r, ω) = − ω2

ε0c2
PNL(r, ω) (A.6)

By assuming [182, 183]:

E(r, ω) = U(r, ω) · eik(ω)z (A.7)

where U(r, ω) is an envelope function. After some expansion and utilizing (slowly
varying envelope approximation):

∣∣∣ ∂2

∂z2
U(r, ω)

∣∣∣� 2k(ω)
∣∣∣ ∂
∂z

U(r, ω)
∣∣∣ (A.8)

and decomposing ∇2 = ∂2/∂2
z + ∇2

⊥, we get the first order propagation equation in
frequency domain

( ∂
∂z
− ik(ω)

)
E(r, ω) =

i

2k(ω)
∇2
⊥E(r, ω) +

iω

2ε0n(ω)c
PNL(r, ω) (A.9)

In this equation, ik(ω) is the term responsible for the absorption, gain or dispersion of
the wave in the medium. The first term on the right hand side is the diffraction term (with
second derivative ∇2

⊥ on x, y), the second term on the right hand side is the nonlinear
polarization expressed in frequency domain which is responsible for all the nonlinear
effects happening in the medium. This equation in general provides huge advantage in
solving numerical problems as compared to the full wave equation A.3. Nevertheless,
from the derivation of the approximation, this first order propagation equation cannot
be applied if there is backward propagating wave [184], the complex amplitude changes
rapidly or the beam is focused, etc.

Now we want to consider the case of BBO type I ooe phase matching (i.e. the two input
waves are in ordinary axis and the output second harmonic wave is in extraordinary axis).
It is instructive to break down the first order propagation equation A.9 into two coupled



A.1 Nonlinear coupled wave equations for second order nonlinear
interactions 101

equations with x representing the ordinary axis and y representing extraordinary axis
(neglecting the diffraction term):

∂

∂z
Ex(ω) = ikx(ω)Ex(ω) +

iω

2ε0nx(ω)c
PNL

x(ω) (A.10a)

∂

∂z
Ey(ω) = iky(ω)Ey(ω) +

iω

2ε0ny(ω)c
PNL

y(ω) (A.10b)

Midwinter and Warner [229] described detailed progress in order to calculate the
effective value for the susceptibility tensor for the polarization response. We can write
down the result for the case of θ, ψ as input parameters, deff = d31 · sin(θ)−d22 · sin(3ψ) ·
cos(θ) whereas d22 = 2.2 · 10−12m/V taken from [75] and d31 = 0.16 · 10−12m/V taken
from [189]. If we take into account the degeneracy of all possible processes in second
harmonic generation, we will have:

PNL
x(ω) = 4ε0deff · F

[
F−1
[
Ex(ω)

]
· F−1

[
Ey(ω)

]]
(A.11a)

PNL
y(ω) = 2ε0deff · F

[(
F−1
[
Ex(ω)

])2
]

(A.11b)

As a result, we can write equation A.10 as:

∂

∂z
Ex(ω) = ikx(ω)Ex(ω) +

i2deffω

nx(ω)c
· F
[
F−1
[
Ex(ω)

]
· F−1

[
Ey(ω)

]]
(A.12a)

∂

∂z
Ey(ω) = iky(ω)Ey(ω) +

ideffω

ny(ω)c
· F
[(

F−1
[
Ex(ω)

])2
]

(A.12b)

Eq. A.12 is the main coupled equations to be solved numerically for our given electric
fields. It is almost identical to Eq. 22 in [188] except that their equation is more general
for the different types of interaction (other than type I phase matching). Even though
one can generalize these as in [230], we found out that a simple 1D propagation based on
Eq. A.12 is sufficient to interpret our experimental data and provide valuable insights.

Additional notes

Usually one more step is done additionally to the Eq. A.12 that is to move the frame of
reference to the moving frame (together with the carrier wave of the incident pulse, for
example) [184, 186] with τ = t− β1 · z where β1 is the first order dispersion term of the
medium. We can apply this to Eq. A.12 by replacing the terms kx,y(ω) and nx,y(ω) by
kx,y(ω)− kx,y(ωc) and nx,y(ω)−nx,y(ωc) where Xc denotes the values at the carrier wave.
This moving frame suppresses the possibility of the electric field reaching the limited grid
boundaries.

One should also take good care for the calculation of the refractive indexes. The values
used in this consideration are taken from [231] then proper calculation of the ordinary
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and extraordinary refractive indexes at θ angle is done based on Eq. 2.3.8 of [75]. This
ensures the phase matching of the fundamental (o) and SH (e) pulses during propagation.

Similarly, this equation can be numerically integrated by standard time integrators.
However, a careful inspection at the form of the formula suggests high applicability of the
exponential Euler method: the first terms in the RHS of Eq. A.12 are the linear terms,
the second terms are the nonlinear terms in the exponential Euler formula. As a result,
integrating this equation using the exponential Euler method gains more than one order
of magnitude in terms of speed with acceptable accuracy compared to the RK4, making
the exponential Euler formula the most suitable method in this case.

It has been proven (Appendix A, [188]) that Eq. A.12 above as well as Eq. 22 in
[188] nicely preserve the total energy of the electric fields during propagation inside the
medium. Therefore this is a very good check for the numerical convergence (and/or
accuracy) of the simulation. All the simulation results shown in chapter 3 satisfy the
energy conservation tolerance of less than 1%.

A.2 One dimensional TDSE

A.2.1 Setting up the Hamiltonian

We are going to outline detailed procedure for a numerical solution of the one dimensional
TDSE. The full TDSE 1.2 can be cast in the 1D form:

i~
∂Ψ(x, t)

∂t
= HΨ(x, t) (A.13)

where the Hamiltonian H can be written as:

H = T + V =
−~2

2m

∂2

∂x2
+ V (x) (A.14)

Here we should note that V = V (x) − x · E(t) = V (x, t) under the influence of the
incident electric field.

A.2.2 Choosing the potential

Since the form of the Coulombic potential is problematic at x = 0 hence for the 1DTDSE,
a modified model potential (with deviation from the real Coulombic potential) is widely
used. This is often called the soft core potential [80] and is written as:

V (x) =
−q√
x2 + a2

(A.15)

where q and a2 are chosen values such that the model potential provides similar
ionization potential (or excited state energies) as the real atomic system of interest. If
one chooses (q; a2) = (1; 2) then we get the Ip = 13.6 eV which is the real ionization
potential of Hydrogen. (q; a2) = (1; 0.5) matches the Helium ionization potential of
Ip = 24.2 eV.
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In our case, we choose (q; a2) = (1; 1.1) as this combination provides similarly the first
excited state energy of Kr (∼ 10 eV) and the ionization potential is not very high (∼ 17
eV).

A.2.3 Calculating the ground state

In order to start the time propagation, we would need the ground state of the model
system. There are mainly two ways to calculate this:

Imaginary time propagation

If we assume that an arbitrary wavefunction ψ(r, t) can be expanded as from a basics
En, ψn(r) as: [232]

ψ(r, t) =
∑
n

cn · exp(−iEnt)ψn(r) (A.16)

then by replacing δt = −i · δt, the above equation can be rewritten as:

ψ(r, δt) =
∑
n

cn · exp(−Enδt)ψn(r) (A.17)

Eq. A.17 means that after some propagation time, the newly calculated wavefunction
will be mainly contributed by the ground state wavefunction (with minimum E0) ψ0(r).
Therefore, one has to implement the time propagation perfectly, then run the imaginary
time propagation to get the ground state wavefunction. Only then one would be able to
run the real time propagation.

Diagonalization of the Hamiltonian

The other method follows precisely the definition of the Schrödinger equation: the en-
ergies are the eigenvalues of the stationary Hamiltonian and the wavefunctions are its
eigenvectors. We can write the Hamiltonian (Eq. A.14) in the matrix form:

H =
−~2

2m


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 1 −2

+


V (x0) 0 0 · · · 0

0 V (x1) 0 · · · 0
0 0 V (x2) · · · 0
...

...
...

. . .
...

0 0 0 0 V (xn)

 (A.18)

where the term ∂2

∂x2
has been replaced by the corresponding matrix operator which can be

easily proven (second order finite difference). V (x) is purely a 1D potential that we have
constructed using the soft-core model (without the electric field). Once the Hamiltonian
is written in the matrix form, its eigenvalues and eigenvectors can be easily found using
standard mathematical packages.
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A.2.4 Time propagation: split operator method

Since the solution of the TDSE can be written as in Eq. 1.3, in order to get the numerical
solution, we have to evaluate Eq. 1.3 at single time propagation steps. However, it is
not straightforward to evaluate H because H involves both V - which can be directly
evaluated in real space - and T which cannot be directly evaluated in real space. Fleck
and Feit et al. [233, 234] have developed a novel propagation scheme that can be used
both for solving the pulse propagation using the wave equation or to solve the TDSE
(they are both hyperbolic type of PDE only with an exception that the TDSE has an
imaginary i included). The technique involves switching the basis (or spaces) that we can
directly evaluate the operators in combination with a symmetric splitting of the kinetic
(or potential) operator [232, 235]:

exp

(
−i∆tH

~

)
= exp

(
−i∆tV

2~

)
exp

(
−i∆tT

~

)
exp

(
−i∆tV

2~

)
+O(∆t3) (A.19)

or equivalently:

exp

(
−i∆tH

~

)
= exp

(
−i∆tT

2~

)
exp

(
−i∆tV

~

)
exp

(
−i∆tT

2~

)
+O(∆t3) (A.20)

Since we represent our wavefunction |Ψ(x, t)〉 = |Ψ(r, t)〉, the term exp
(−i∆tV

2~

)
|Ψ(x, t)〉

can be directly evaluated with V = V (x) as an array (not a matrix). However, the term
−~2
2m

∂2

∂x2
as the kinetic operator cannot be evaluated that easily. Nevertheless, as we have

from Eq. A.4, the derivatives here can be evaluated through the Fourier transforms.
More specifically, the kinetic operator acting on the wavefunction for a limited time step
∆t can be solved as:

exp

(
−i∆tT

~

)
|Ψ(x, 0)〉 = F−1

[
exp

(−i∆t
~
· −k2 · F

[
Ψ(x, 0)

])]
(A.21)

where k is the Fourier counterpart of the real-space coordinate x. Eventually, the
wavefunction in the next time step can be fully calculated as:

|Ψ(x,∆t)〉 = exp

(
−i∆tV (x)

2~

)
·F−1

[
exp

(−i∆t
~
·−k2·F

[
exp

(
−i∆tV (x)

2~

)
·|Ψ(x, 0)〉

])]
(A.22)

A.2.5 Boundary condition

Usually we have to specify the grid in real space big enough such that the electron
wavefunction is fully captured. However, there is always small part of the wavefunction
extends to the boundary of the grid. If this is not treated carefully, it will be reflected
back and the simulation will give inaccurate results.

There are mainly two ways to circumvent such an effect: use a smooth filter to cut
down the amplitudes of the wavefunctions that are near the two edges; apply an imaginary
potential (absorbing potential) as discussed in [235]. In our simulation, a simple hyper-
Gaussian filter is used.
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A.2.6 Extracting the polarization response

Once we have the full wavefunction as a function of time |Ψ(x, t)〉, an usual observable
is the time dependent dipole moment that could be extracted as:

d(t) = 〈Ψ(x, t)|x |Ψ(x, t)〉 (A.23)

and the resultant emission spectrum can be evaluated routinely as S(ω) =
∣∣F[d(t)

]∣∣2.

Moreover, if we look at the form of A.23 which heavily weights the behavior of the
electrons far from the center as opposed to the physical reality that the center and the
edges should have equal contributions. Therefore, K. J. Schafer et al. [80] suggested that
instead of evaluating the dipole moment as above, one can perform similar calculation
but on the acceleration of the electrons:

a(t) =
d2

dt2
〈x〉 = −〈[H, [H, x]]〉 (A.24)

and consequently the emitted spectrum can be calculated as: S2(ω) =
∣∣F[a(t)

]
/ω2
∣∣2.

However, within the scope of our simulations, we have not found that the second
method is superior to the original one. It only took more calculation time because of
the evaluation of the commutators. Therefore we used the first method in all of our
calculations.

A.2.7 Results

Figure A.1 shows a typical result calculated from the 1D TDSE for an attosecond light
transient. Since we used the soft core potential thus the potential does not drop to −∞
as we approach the center of the system (Fig. A.1b). The ground state wavefunction
(Fig. A.1c) was calculated using both methods and they give consistent energy at a
precision of < 0.1%. The dipole response of the system (Fig. A.1d) exhibits a very
strong linear response. All the nonlinear responses are too weak to be seen in this scale.
The emitted spectrum shows, as a result, a very strong fundamental spectrum (spectrum
of the incident laser) and resonant lines start to show up at ∼ 10 eV and more. This is
in agreement with experiments since at the same intensity of 1 · 1013 W/cm2, only some
resonant emissions are recorded. In order to have HHG, the incident laser pulses have to
have much higher peak intensity (of the order of 1014 W/cm2 and more).

Finally, if we compare the global phase spectrogram in Fig. A.1f to the experimental
results (Fig. 5.3) and simulated results using two level model (Fig. 5.1), a striking
agreement can be reached: they both show strong emission of VUV radiation when the
global phase is zero and drops strongly otherwise. Even though there are deviations of
the 1D TDSE to the experimental results, this already gives us a powerful tool to validate
other simpler simulations: optical Bloch equations or simple high order nonlinearities.

Improvement of the current 1D TDSE to the full 3D code could give a lot more
reliability in terms of interpreting the experimental results.
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Figure A.1: One dimensional Time Dependent Schrödinger Equation. a, Electric
field used in the simulation at ϕ = 0 and peak intensity I = 1 · 1013 W/cm2. b, Soft core
potential at (1;1.1). c, Normalized electron density (zoomed in). d, Dipole response. One
cannot see the ripples after the peak of the pulses because they are too weak to be seen in this
scale. e, Emitted spectrum. f, Spectrogram of the dipole response at different global phase
settings of the electric field in a,.

A.3 Optical Bloch equations

Usually it is hard to separate different physical processes which are involved thus here
we would like to turn to a simpler approach where instead of describing the complete
electronic wave function, we represent the system using density operator. The equation
governs the motion in this representation is then called Optical Bloch Equation.

A.3.1 Density matrix and its time evolution

The topic of density operator and its formalism was first pioneered by J. von Neumann
in 1927 that could describe physical observables by a combination of pure and mix states.
Later, it is covered in brief in quantum mechanics textbooks [236] and there is a full book
devoted for it by Karl Blum [237]. However, here we will just derive its application for
our experiments.

Consider a general case for a N-level system where we could write the Hamiltonian
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as the sum of the system (field free) Hamiltonian H0 plus an interaction H(t) with an
optical light field E(t):

H = H0 + H(t) (A.25)

with H(t) = −µ · E(t) and the H0 is expressed by:

H0 =


ε1 0 · · · 0
0 ε2 · · · 0
...

...
. . .

...
0 0 · · · εn

 (A.26)

Here, ε1, ε2, . . . εn are the energies of the first (ground) and second (first excited),
. . . and nth state. µ is the so-called transition dipole operator or dipole matrix element
dij. Since the transition probability from ith state to jth state has to be equal to the
transition from jth state to ith state. This means µij = µji

µ =


0 µ12 · · · µ1n

µ21 0 · · · µ2n
...

...
. . .

...
µn1 µn2 · · · 0

 (A.27)

All the values of µ1j orµi1 are found based on the strength of those resonant lines.
One can use to the great extent the database from NIST [238] which includes oscillator
strengths for variety of systems. The other off-diagonal elements are hard to find because
they depend strongly on the particular simulation we are aiming at. After taking these
dipole matrix elements into account, we can rewrite A.25 as

H =


ε1 −µ12 · E(t) · · · −µ1n · E(t)

−µ21 · E(t) ε2 · · · −µ2n · E(t)
...

...
. . .

...
−µn1 · E(t) −µn2 · E(t) · · · εn

 (A.28)

By changing the representation of the system to density matrix instead of wave func-
tion, we then come up to the Liouville - von Neumann equation instead of the Schrödinger
equation 1.2:

d

dt
ρ =

1

i~
[H, ρ] (A.29)

Here ρ = ρij is density matrix representing the system of interest. The diagonal terms
are the population of the system in the ground state ρ11 and the excited states ρii. All
the off diagonal terms are representing the polarization or coherence of the transitions
between the states.

At this step, the equation A.29 is practically coupled differential equations (ODEs).
They can be ordinary of partial differential equations, depending on the choice of the
EM field gauge. The total number of ODEs is n2 where n is the number of energy levels
taken into account in the simulation. We can effectively numerically integrate these in a
matrix form using any of the time integrators (Runge-Kutta or multi-steps,. . . ) to solve
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these as a function of time. Practically in this case, a fourth order Runge-Kutta (RK4)
provides acceptable precision.

Finally, after solving equation A.29 to find ρij(t), we can calculate the polarization
response of the system using the quantum mechanical averaging of the transition dipole
moment:

d(t) =
∑
i,j

µij ·
[
ρij(t) + ρji(t)

]
= 2Re

[∑
i,j

µij · ρi,j(t)
]

(A.30)

Dephasing or relaxation times

Nevertheless, the equation A.29 in this form by definition does not take into account
the natural dephasing (relaxation) time of the states which results in the fact that the
solution of this equation will give infinitely narrow spectral lines in principle. In practice,
the linewidth of the resonant lines is defined by the propagation time (the time span at
which we let the integrator run). We can practically cut this propagation time such that
the simulated line-widths are similar to reality. However, there is a much more elegant
way, which is to account for the natural line broadening of the states by adding the
dephasing phenomenologically Γij as ([239], eq. 62):

d

dt
ρ =

1

i~
[H, ρ]− ρΓ (A.31)

where ρΓ = ρΓ
ij = Γij · ρij.

However, in this case one should be very careful since Γij is a total effective dephasing
rate. This is by no means a complete description of the natural dephasing (relaxation) of
the model system interacting with a thermal bath. Detailed consideration of the system
in this interaction relaxing to the thermal equilibrium is treated in the excellent book of
Mukamel ([240], Appendix 6A). Nonetheless, the for purpose of our thesis, this simple
treatment turns out to be very useful and this applies to an open system (whereas the
consideration in [240] deals with a closed system) where in reality the excited states
naturally decay, specifying the openness of the system of interest.

Equation A.31 in general can provide great intuitive understanding of the system
under the influence of the laser pulses. As long as the pulses does not contain several
cycles (approximately one cycle and less in our case) and its peak electric field is weak
enough (less than ∼ 1V/Å ↔ Ipeak less than 4 · 1013W/cm2) the response of the N level
system is close to the response calculated from the TDSE meaning that the description
using pure and mixed states here is an accurate description of the system under weak
fields. It does not only capture the resonant emissions (intrinsic properties) but also
captures very well the perturbative behavior of the system. Furthermore, under influence
of incoming electric field, the shift of the energy levels (AC Stark shift) is also described
by diagonalizing the time dependent Hamiltonian of the system.

In conclusion, using the density matrix approach together with the inclusion of the
relaxation time, one could possibly investigate the behavior of a quantum system under
relatively weak electric fields.
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A.4 Polarization expressed through nonlinear opti-

cal susceptibilities

Here, we attempt to deconvolute the response of the system even further by working
in the perturbative picture. From the perturbation theory applied on the system under
interaction with an external field [75] as in Chapter 1, Eq. 1.1, the polarization can be
rewritten as:

P(t) = ε0
[
χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + χ(4)E(t)4 + χ(5)E(t)5 + . . .

]
(A.32)

Because the system of interest is Kr gas, its inversion symmetry destroys the even order
terms as χ(2), χ(4), . . . = 0, leaving only the odd order terms to be effective. Therefore
the total polarization of the system can be rewritten as P(t) = ε0

[
χ(1)E(t) + χ(3)E(t)3 +

χ(5)E(t)5 + . . .
]
.

On the other hand, if we break down the incident electric field E(t) assuming linear
polarization E(t) = E(t) as:

E(t) =
Eenvelope(t) · eiϕ(t) + Eenvelope(t) · e−iϕ(t)

2
=
EH(t) + EH(t)∗

2
, (A.33)

where EH(t) = H[E(t)] is the Hilbert transform of the real electric field, its envelope can
be described as Eenvelope(t) = |EH(t)|, and its phase is ϕ(t) = tan−1

[
Im[EH(t)]/Re[EH(t)]

]
.

Finally, using this decomposition, we can rewrite the total polarization, neglecting the
linear part, as:

P (t) ∝ χ(3) ·

[ THG︷ ︸︸ ︷
EH(t)3 +

SPM-like︷ ︸︸ ︷
3EH(t)2EH(t)∗ + 3EH(t)EH(t)∗2 +

THG︷ ︸︸ ︷
EH(t)∗3

8

]
(A.34a)

+ χ(5) ·

[ FHG︷ ︸︸ ︷
EH(t)5 +

other terms︷ ︸︸ ︷
5EH(t)4EH(t)∗ + . . .+ 5EH(t)EH(t)∗4 +

FHG︷ ︸︸ ︷
EH(t)∗5

32

]
+ . . .

(A.34b)

Fig. A.2 shows possible multi-photon pathways (a) as well as the effective spectral
bandwidths associated to different nonlinear processes (b) for the case of optical attosec-
ond pulses. One can easily see that all the spectrum of interest (5.5→ 14 e) can be well
captured by the third and fifth order nonlinear susceptibilities. However, if one try to
separate the third order processes into third harmonic generation (THG) and self-phase-
modulation-like as suggested in Eq. A.34, each of them will contribute to a different
final spectrum, Fig. A.2. From this point on, the physical picture describing the mea-
sured non-resonant VUV emission is almost transparent. From 5.5 to 8.0 eV, there are
contributions from the THG as well as SPM processes. Each of these processes carry
their intrinsically different phases (3ϕ(t) and ϕ(t)) while the total third order suscepti-
bility (χ(3)) takes all of them into account. As a result, their interference patterns change
dynamically as a function of the amplitude and phase of each process.
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Figure A.2: Perturbative response - multi-photon picture. a, Representative multi-
photon transitions on a Kr Jablonski diagram assuming third and fifth order nonlinearity.
Representative resonant transitions are indicated as horizontal solid blue lines. Light gray arrows
indicate few, out of infinite, possible transitions. b, Spectra corresponding to the fundamental
incident light (solid blue curve), self-phase-modulation-like process (solid cyan curve), third
harmonic generation (solid purple curve), third order nonlinearity (solid green curve), fifth
order nonlinearity (solid red curve) and fifth order harmonic generation (solid yellow curve,
multiplied by 10 times because it is very weak). Horizontal dashed gray lines on top left are
representative resonant lines and their relative strength.

Evaluation of the Eq. A.34 in the non-resonant part of the VUV spectrum (not shown
here) yields almost identical spectrograms as the ones calculated from the two level model
for all the incident electric fields (single-cycle pulses, optical attosecond pulses and chirped
optical attosecond pulses). Therefore, one can conclude that the main features recorded
from the VUV spectrograms can be explained intuitively by the third order susceptibility
(or related third order processes). However, more importantly, it imposes a condition at
which such a strong global phase dependence as in Fig. 5.3b can exist, that the effective
spectral bandwidth has to be sufficiently broad, the THG and the SPM terms expand
strongly such that they have spectral overlap. It is this spectral overlap that significantly
affects VUV spectral amplitude as a function of the global phase. It is without this
critical condition that a single-cycle pulse (Fig. 5.3f) could not show any global phase
dependence effect.
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A.5 Supercontinuum generation in hollow core fiber

A.5.1 Pulse duration versus gas pressure

This is the measurement done with channel 3 of the TW synthesizer (λ = 500− 670nm).
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Figure A.3: Duration of the channel 3 in the TW synthesizer as a function of the hollow core
fiber gas pressure.

From the figure A.3 we can see that in this particular case, the pulse duration or the
second order of the chirp does not change so much. From an equal simulation (similar
bandwidth or pulse duration), the change of chirp in this case is ≤ 200µm of Fused Silica.
As a result, we could safely say that the nonlinearities causing the supercontinuum do not
change so much the spectral phase within each individual channel. Thus the individual
channels after the end of the fiber (not the fiber housing which includes the Brewster
windows) are close to Fourier Limit (the dispersion induced by the gas itself is very small
- theoretically expected).

One observation: an increase in the pressure goes a long with a very slight change
in the chirp recorded in the FROG. We saw that the FROG traces get chirped toward
negative direction (negatively chirped) once we increased the pressure inside the fiber
housing. However, this change is very subtle as indicated by the pulse duration.

A.5.2 Output power versus gas pressure

Figure A.4 shows us the different measured powers with respect to pressure changes. So
for this channel, the power drops around only ∼ 8% when we increase the pressure by
almost twice. This shows the insensitivity of the output power to the gas pressure, most
likely due to the long carrier wave this channel posses.
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Figure A.4: Power throughput as a function of the gas pressure of the same channel 3.



Appendix B

Data Archiving

The experimental raw data, evaluation files, and original figures can be found on the Data
Archive Server of the Laboratory for Attosecond Physics at the Max Planck Institute of
Quantum Optics:
/afs/rzg/mpq/lap/publication_archive

The data are organized as follows:
\Chapter X\Figs\X.X.X

with X is the number specifying the order of the chapters or figures.
Inside each chapter, there would be corresponding figures. All the raw experimen-

tal data, Matlab codes and .pdf figures are stored by the corresponding name in the
corresponding figure folder.
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