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Zusammenfassung

In dieser Arbeit wird der Aufbau eines neuartigen, atomphysikalischen Experiments
beschrieben, das zum Ziel hat, stark wechselwirkende Vielteilchensysteme bestehend
aus polaren 23Na40K Molekülen zu erzeugen und zu studieren. Die anisotrope und lan-
greichweitige Dipol-Dipol Wechselwirkung zwischen den Molekülen sollte es möglich
machen, bisher nicht beobachtete Quanten-Vielteilchenzustände zu beobachten und pro-
totypische Gittermodelle der Festkörperphysik zu simulieren, die zur Beschreibung von
Quantenmagnetismus und Hochtemperatursupraleitern verwendet werden. Das 23Na40K
Molekül ist für diesen Zweck besonders gut geeignet, da es in einer zwei-Körper Kollision
chemisch stabil ist, fermionischer Quantenstatistik unterliegt und ein starkes Dipol Mo-
ment aufweist.
Die experimentelle Prozedur zur Erzeugung eines ultrakalten Quantengases aus hetero-
nuklearen Molekülen erfordert es, zuerst die elementaren Bestandteile des Moleküls
durch Laser- und Verdampfungskühlen in den Zustand der simultanen Quantenentartung
zu überführen. Die Wechselwirkung zwischen den bosonischen 23Na und den fermi-
onischen 40K Atomen lässt sich durch Ausnutzen einer Feshbach Streuresonanz mit einem
externen Magnetfeld kontrollieren. In der Nähe einer solchen Feshbach Resonanz werden
schwach gebundene 23Na40K Moleküle durch Radiofrequenzassoziation erzeugt.
In einem weiteren Schritt sollen diese Feshbach Moleküle durch eine stimulierte Raman
adiabatische Passage (STIRAP) in den rovibronischen und Hyperfein-Grundzustand des
Moleküls überführt werden. Die Differenz der Bindungsenergie wird hierbei nicht spontan
frei, was unweigerlich die Aufhebung der Quantenentartung des Molekülgases zur Folge
hätte, sondern wird durch stimulierte Emission kontrolliert abgeführt. Die Kombination
beider Methoden, der Feshbach Assoziation und der STIRAP, erlaubt es den Prozess der
Molekülbindung auf fundamentaler, quantenmechanischer Ebene zu steuern.
Um die STIRAP zu implementieren ist es notwendig, ein geeignetes molekulares
Zwischenniveau in einem elektronisch angeregten Zustand zu identifizieren, über welches
das Feshbach Molekül mit dem rovibronischen Grundzustand in einen zwei-Photonen
Übergang gekoppelt wird. Ein solches Zwischenniveau konnte durch hochauflösende
Molekülspektroskopie im elektronisch angeregten d3Π Zustand identifiziert werden.
Dieser Vibrationszustand (|3ΠΩ=1ν= 5〉) ist durch molekulare Spin-Orbit Wechselwirkung
an einen nah-resonanten Vibrationszustand im D1Π Zustand gekoppelt. Erst durch die
Beimischung dieses Spin-Singulett Zustands ist es möglich den rovibronischen Grundzus-
tand (ebenfalls Spin-Singulett) zu adressieren. Die zugehörige Übergangsfrequenz konnte
durch kohärente Zwei-Photonen Spektroskopie bestimmt werden. Durch elektromag-
netisch induzierte Transparenz wurden die Rabifrequenzen beider STIRAP Übergänge
bestimmt und die Kohärenzeigenschaften des Dunkelzustandes untersucht.
Bis zum heutigen Zeitpunkt ist es nicht möglich den identifizierten Zwischenzustand zu
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benutzen um 23Na40K Moleküle in den rovibronischen Grundzustand zu überführen. Das
Phasenrauschen der zum Einsatz kommenden Halbleiter-Laser konnte als limitierender
Faktor identifiziert werden. Darüberhinaus führt die spektroskopisch nicht auflösbare
molekulare Hyperfeinstruktur des |3ΠΩ=1ν = 5〉 Zustands zu einer Konfiguration in der
kein echter Dunkelzustand existiert, der für die STIRAP benutzt werden kann. Aus diesen
Gründen erscheint es unwahrscheinlich, dass das gegenwärtige STIRAP Schema (Halbleit-
erlaser, |3ΠΩ=1ν = 5〉 Zwischenniveau, resonante STIRAP) Grundzustandsmoleküle mit
hoher Effizienz erzeugen wird. Dieses Schema kann jedoch durch ein anderes ersetzt wer-
den, das erst kürzlich erfolgreich für den Grundzustands-Transfer von 23Na40K verwendet
wurde. Die günstigen Eigenschaften des 23Na40K Moleküls in Kombination mit dem hier
präsentierten Experimentaufbau sollten es daher in Zukunft möglich machen, dipolare
Vielteilchensysteme zu erzeugen und zu studieren.



Abstract

This thesis report describes the construction of a novel atomic physics experiment, that
should enable the study of quantum many-body system consisting of polar 23Na40K
molecules. The anisotropy and the long-range character of the dipole-dipole interaction
between these molecules should make it possible to observe novel quantum many-body
states and to simulate prototypical lattice models of solid state physics that are used to
describe quantum magnetism and the microscopic origin of high temperature supercon-
ductivity. For this purpose the 23Na40K molecule is particularly well suited, since it is
chemically stable in two-body collisions, features a fairly large dipole moment and obeys
fermionic quantum statistics.
In order to create an ultracold quantum gas of heteronuclear molecules it is necessary
to first prepare the constituent atoms in a state of simultaneous quantum degeneracy by
consecutive laser and evaporative cooling. The effective low temperature interaction in
this mixture of bosonic 23Na and fermionic 40K atoms can be controlled with an external
magnetic field by exploiting a Feshbach scattering resonance. In the vicinity of a Feshbach
resonance weakly bound 23Na40K molecules are created by radio frequency association. In
a next step these Feshbach molecules should be transferred to the rovibronic and hyperfine
groundstate of the molecule via stimulated Raman adiabatic passage (STIRAP). In this
process the difference in binding energy is not released spontaneously but is removed in
a controlled manner by stimulated emission. Both techniques combined - Feshbach asso-
ciation and STIRAP - constitute a way to fundamentally control chemical bond formation
on the quantum level.
In order to implement STIRAP it is necessary to identify a suitable molecular intermediate
level belonging to an electronically excited molecular state that facilitates a two-photon
coupling between the Feshbach molecule and the rovibronic groundstate. To this end we
have performed high resolution molecular spectroscopy and have identified a suitable
intermediate level in the electronic d3Π state. This vibrational level (|3ΠΩ=1ν = 5〉) is
coupled to a near-resonant vibrational level in the D1Π state. It is only the admixture of
this spin-singlet level that allows to address the equally spin-singlet rovibronic ground-
state. By using a narrow linewidth Raman laser system we have measured the binding
energy of the rovibronic groundstate in coherent dark state spectroscopy. In addition, the
observation of electromagnetically induced transparency (EIT) enabled us to determine the
Rabi frequencies of both STIRAP transitions and to characterize the coherence properties
of the dark state.
Up to date it has not been possible to populate the rovibronic groundstate by using the
identified intermediate state. The phase noise performance of the semiconductor lasers
that are employed in the Raman laser setup has been identified as the limiting param-
eter. Moreover, the spectroscopically not resolved molecular hyperfine structure of the
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|3ΠΩ=1ν= 5〉 level results in a near degenerate multi-level STIRAP configuration that does
not feature a true dark state which can be used for adiabatic transfer. For these reasons it
appears improbable that the current STIRAP scheme (semiconductor lasers, |3ΠΩ=1ν = 5〉
intermediate level, resonant STIRAP) will result in groundstate transfer with high effi-
ciency. However, the current STIRAP scheme could easily be changed to an alternative
one that very recently has been proven to work for groundstate transfer of 23Na40K. The
unique properties of the 23Na40K molecule in combination with the experimental setup
design that is presented in this report should make it possible to realize and study dipolar
many-body systems in near-future experiments.
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CHAPTER 1

Introduction and Motivation

The realization of Bose-Einstein condensation and the observation of Fermi degeneracy in
dilute gases of ultracold atoms has significantly advanced our understanding of collective
quantum phenomena. In these systems the de Broglie wavelength associated with the
movement of the atoms becomes larger than the inter-particle separation, the atoms be-
come indistinguishable and quantum statistics governs system behavior. Well described
effects from low temperature condensed matter physics such as superfluidity and the
Bardeen-Cooper-Schrieffer (BCS) mechanism of superconductivity have been readily ob-
served with trapped ultracold atoms [1, 2]. During the last decade new experimental tech-
niques have been developed that considerably increase the scope of physical phenomena
that can be investigated with ultracold gases. First, magnetic field controlled scattering
resonances (Feshbach resonances) allow to tune the strength of the effective low tempera-
ture interaction in a quantum gas. In fermionic systems, which are stabilized by quantum
statistics against three-body molecule formation the elastic scattering cross-section can
approach the unitarity limit. In this situation all particles in a gas are correlated and the
system is said to be strongly interacting in contrast to weakly interacting systems that only
exhibit pairwise correlations. In addition, Feshbach resonances can be used to associate
weakly bound molecules in single or two component systems. In a two component Fermi
gas Feshbach resonances allow to investigate the BCS-BEC crossover region [3] where a
BCS superfluid of Cooper pairs that are correlated in momentum space can be converted
to a BEC of Feshbach molecules.
The second key development, trapping of ultracold atoms in periodic optical potentials
started a completely new branch of AMO physics: the quest to engineer prototype lattice-
models of solid-state physics using neutral atoms that move and interact in an optical
lattice in order to simulate the behavior of electrons in a crystal lattice. By controlling the
ratio between on-site interaction and the kinetic energy in an optical lattice a quantum
phase-transition from a superfluid many-body state to a strongly-correlated Mott insulator
state has been observed [4]. A review article from 2008 [5] gives an extensive overview
on how both techniques (Feshbach resonances and optical lattices) can be used to study
strongly correlated many-body phenomena. Recent developments include the engineering
of artificial gauge potentials in optical lattices [6, 7], as well as single-site and single atom
detection [8] and manipulation techniques [9].
Common to all these techniques is the fact that the van der Waals interaction between
neutral atoms reduces to an isotropic contact interaction in the low temperature limit. As
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a consequence, atoms only interact with each other when they occupy the same lattice
site. For this reason, lattice spin-models such as the Heisenberg and t-J model, which
are used to describe quantum magnetism and high TC superconductivity will be difficult
to investigate. To make this statement more concrete, consider that the formation of a
Mott-insulator in an optical lattice requires the on-site interaction U to be much larger
than the absolute value of the hopping matrix element t of the Bose-Hubbard model [5].
It is only in this configuration, where the many-body dynamics include the spin-exchange
interaction J = 4t2

U that is believed to be at the heart of high TC superconductivity in the
cuprates [10]. However, the Mott insulator requirement that U � t most certainly ex-
cludes to enter a regime where strong competition between spin exchange J that favors
an ordered state and particle hopping t is present. Note that it is commonly assumed that
high TC superconductivity in the cuprates appears in a parameter regime where J

t '
1
3

[10]. Moreover, magnetic ordering is predicted to appear in atomic Mott insulators only
at extremely low temperature that have not yet been achieved experimentally [5].
For this reason, as well as for many others (see review article [11]), considerable efforts
have been made to achieve quantum degeneracy and to enter the strongly correlated
regime for samples of ultracold polar molecules. In contrast to the van der Waals inter-
action, the dipole-dipole interaction between polar molecules is of long-range character
[12], it is anisotropic with changing polarity and (similar to the scattering length in the
vicinity of a Feshbach resonance) can easily be tuned by external electric fields. Com-
bined, the intriguing properties of the dipole-dipole interaction should make it possible
to explore much richer and much more complex many-body phenomena as compared to
ultracold gases of neutral atoms.
To date, direct cooling techniques allow to study samples of of chemically inert polar
molecules in the mK range. The attainable phase-space density however is still orders
of magnitude too small for reaching quantum degeneracy. In a complementary approach
weakly bound diatomic molecules are associated starting from samples of ultracold atoms
by using the strong coupling between unbound colliding atoms and a molecular bound-
state in the vicinity of a Feshbach resonance [13]. In a second step these so called Feshbach
molecules can be transferred to the rovibronic groundstate of the molecular potential by
stimulated Raman adiabatic passage (STIRAP) [14]. Controlling chemical bond formation
in this way, has been successfully applied to homonuclear 133Cs2 [15] and the alkaline-
earth element 84Sr2 [16, 17] as well as heteronuclear 40K87Rb [18], 87Rb133Cs [19, 20],
23N40K [21] molecules.
Recently 40K87Rb molecules have been trapped in an optical lattice and dipolar spin-
exchange interaction could be realized for deeply confined molecules in absence of par-
ticle tunneling [22]. In this experiment the spin-degree of freedom is encoded in two
rotational states of the groundstate molecule. As proposed in [23] spin-exchange is me-
diated by the dipole-dipole interaction between the molecules. For the 40K87Rb molecule
however it seems to be quite difficult to achieve a higher lattice filling fraction and to allow
for tunneling of molecules between the lattice sites. Experiments that studied the collision
properties of ultracold 40K87Rb molecules revealed an exothermic exchange reaction

40K87Rb+ 40K87Rb→ 40K2 +
87Rb2
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that prevents increasing phase-space density via evaporative cooling of molecules [24].
For certain molecules however this process is predicted to be endothermic [25] and there-
fore strongly suppressed at low temperatures. Table 1.1 lists the dipole moment of all
alkali-alkali molecules in SI units (i.e. 1D = 3.335 ·C ·m= 0.3935 · e− · a0). Entries that are
highlighted in bold script are predicted to be chemically stable.

Na K Rb Cs

Li 0.566 3.565 4.165 5.529
Na 2.759 3.306 4.607
K 0.615 1.837

Rb 1.237

Table 1.1 – Groundstate dipole moments in Debye for all possible alkali-alkali molecules. Molecules that are
predicted to be chemically stable (see [25]) are highlighted in bold script. Fermionic molecules involve either
6Li or 40K.

The lifetime of τ > 2s that has been recently observed for 87Rb133Cs and 23Na40K
molecules in the rovibronic (and hyperfine) groundstate indeed shows evidence for the
absence of this two-body loss channel [19, 21].
The 23Na40K molecule is a particularly promising candidate to realize a dipolar quantum
gas of molecules. Since all molecules that involve the fermionic isotope of lithium 6Li
are chemically unstable, 23Na40K is the fermionic molecule with the largest dipole mo-
ment among all alkali-alkali combinations. The dipole-moment of 2.7D is ' 4.5 times
larger than that of 40K87Rb, for which dipolar effects were clearly observable in experi-
ments. Since the dipole-dipole interaction scales quadratically with the dipole moment of
the molecule, 23Na40K offers a factor of ' 20 increase in interaction energy compared to
40K87Rb. In addition, the significant mass imbalance between bosonic 87Rb and fermionic
40K results in a unfavorable situation for molecule formation by Feshbach association.
When a 40K87Rb mixture is cooled to quantum degeneracy in a far detuned optical dipole
trap, the density overlap between both species decreases drastically due to Fermi pressure
when the degeneracy region is entered. For this reason Feshbach association is performed
just above the condensation temperature of 87Rb when 40K is still above the Fermi temper-
ature where quantum statistics does not significantly affect the density distribution. For
the 23Na40K mixture the situation is reversed and molecules association can be performed
at much higher phase-space density. For these reasons we decided to construct a novel
experimental apparatus that aims to realize quantum degeneracy for groundstate 23Na40K
molecules and should make it possible to enter the strongly correlated regime. The next
section presents in more detail which dipolar many-body phenomena can be studied with
groundstate polar molecules. I analyze the required physical parameter regime by refer-
ence to the 23Na40K molecule and our current experimental setup.
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Figure 1.1 – Geometry for two interacting dipoles that have been aligned by an external electric field.

1.1 Dipolar many-body physics with ultracold molecules

Due to their large intrinsic electric dipole moment, heteronuclear molecules are promis-
ing candidates for creating dipolar interacting quantum matter. Once prepared in the
rovibronic groundstate external electric fields can be used to orient the permanent dipole
moment of the molecules along an arbitrary direction in space. Rotational symmetry is
broken and the groundstate acquires a non-vanishing dipole moment. By this mechanism
tunable and anisotropic dipole forces can be induced between the molecules in a gas. At
low temperatures the internal structure of the molecules is decoupled from the many-
body dynamics of the system and the gas can be regarded as consisting of point particles
interacting via dipole-dipole and van der Waals interaction. A recent review article [26]
summarizes theoretical work on the physics of dipolar quantum gases. The many-body
phenomena that are presented all rely on the assumption that the constituent particles
of a quantum many-body system can effectively be regarded as point particles with no
internal structure interacting via dipole-dipole interaction:

Vdd(r1 − r2) =
d1 ·d2 − 3(d1 · r̂1)(d2 · r̂2)

4πε0(r1 − r2)3
. (1.1)

This formula can be derived [27] by calculating the potential energy of two electric dipoles
far apart from each other r � d. The description of point-like particles breaks down
at short inter particle distance where the internal structure of the molecules becomes
relevant. In a dilute, ultracold and weakly correlated gas the effect of the short range
potential can be parametrized by an effective contact interaction [26]. For polar molecules
that have been oriented by an external electric field (see Fig. 1.1) the combined effective
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interaction potential is then given by

V (r,θ ) =
2πħh2a(d2

eff)

m
δ(r) +

d2
eff(E)

4πε0r3
(1− 3cos2 θ ). (1.2)

The short range part of the interaction is parametrized by a s-wave scattering length that
now depends on the strength of the induced dipole moment deff. For fermionic molecules
the contact part of the interaction potential vanishes at low temperatures due to quantum
statistics. Therefore the potential for ultracold and polarized 23Na40K molecules reduces
to

Vdd(r,θ ) =
d2

eff(E)

4πε0r3
(1− 3 cos2 θ ). (1.3)

The strength of the induced dipole-dipole interaction is conventionally expressed in terms
of the dipolar length add :

add(E) =
md2

eff(E)

4πε0ħh2 (1.4)

This definition allows to relate the dipole-dipole interaction with the average inter-particle
distance in a trapped gas or the Fermi wave-vector kF of a Fermi gas at T = 0.
The effective dipole moment at a given electric field deff(E) can be estimated by numer-
ical diagonalization of the following Hamiltonian that describes a polar molecule in the
rovibronic groundstate in presence of a external electric field:

H = B0 · J(J + 1) + d̂ · E. (1.5)

Here B0 is the rotational constant of the rovibronic groundstate, d̂ the dipole operator and
E the external electric field. From the eigenvalues ε(E) of the diagonalized Hamiltonian

H =
∑

ε

ε(E)|ε〉〈ε| (1.6)

the induced dipole moment deff(E) in state |ε〉 at a given field E0 is obtained by

deff(E) =
dε(E)

dE
|E=E0

(1.7)

The first thing to note is, that the expectation value of the dipole operator in any eigenstate
of the rotation operator vanishes

d = 〈JmJ |d̂|JmJ 〉= 0 (1.8)

due to parity symmetry. Therefore, in absence of an external electric field, groundstate
molecules interact only via van der Waals forces. However, the dipole operator is non-
diagonal in the rotational basis {J = 0,1, 2, ..., mJ = −J , ..., J} and mixes states of opposite
parity. Since the rotational states become mixed by the linear Stark effect and the energy
splitting between states of opposite parity is given by the rotational constant B0 which for
alkali-alkali molecules is on the order of 1− 10GHz, the DC stark shift for polar molecules
is orders of magnitudes larger than for atoms. As a consequence the dressed molecular
groundstate in presence of an electric field |ε = 0〉 can acquire a dipole moment that
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Figure 1.2 – Energy of the three lowest rotational states of the vibronic groundstate as a function of the applied
electric field.

approaches the value of the intrinsic dipole moment. In order to estimate the effective
dipole moment that can realistically be induced for groundstate 23Na40K molecules, we
diagonalize the Hamiltonian fo equation 1.5 on a truncated basis set with J ≤ 5 where the
maximal value of J is chosen such that the dipole moment does change by less then 1%
when we include the next rotational state to the diagonalization procedure. Fig. 1.2 and
Fig. 1.3 display the eigenenergies of the three lowest lying rotational states and the dipole
moment of the groundstate as a function of magnetic field

In order to make the induced dipole moment as large as possible we decided to install
the required electric field electrodes inside the vacuum chamber in which our experiments
take place. In its current configuration we can safely apply ' 5kV/cm resulting in an
maximal induced dipole moment of deff ' 1.3D. We will use this value to estimate the
range of weakly and strongly interacting many-body effects that we can expect to observe
with 23Na40K.

1.1.1 Weakly interacting dipolar Fermi gas

Identical fermionic polar molecules cannot be in the same quantum state. As a result
contact interaction is suppressed and the scattering potential is only given by the dipole-
dipole interaction of equation 1.3. For the same reason the many-body wavefunction of a
single component Fermi gas has to be completely anti-symmetric with respect to particle
exchange. The Hamiltonian of a trapped, weakly interacting (kF add � 1), dipolar Fermi
gas is then given by [26]:
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Figure 1.3 – Induced dipole moment of the absolute groundstate |J = 0mJ = 0〉 as a function of magnetic
field.

Ĥ =

∫

drΨ̂†(r)

�

−ħh2

2m
∇2 + Vt r(r)

�

Ψ̂(r)+

+
1
2

∫

drdr′Ψ̂†(r)Ψ̂†(r′)
�

Vdd(r− r′)
�

Ψ̂(r)Ψ̂(r′)

Here Vdd the dipole-dipole interaction of equation 1.3 and Vt r the external trapping po-
tential typically created by an optical dipole trap. This trapping potential is approximated
by a cylindrical harmonic trap:

Vt r(r, z,φ) = −V0 +
1
2

m(ω2
r r2 +ω2

z z2), (1.9)

with radial and axial trap frequencies ωr and ωz. The field operators Ψ̂(r) fulfill fermionic
anti-commutation relations:

{Ψ̂(r), Ψ̂†(r′)}= δ(r− r′)

{Ψ̂(r), Ψ̂(r′)}= {Ψ̂†(r), Ψ̂†(r′)}= 0.

The Fermi-Dirac distribution for the average occupation of a quantum state with energy εi

is given by:

nF D(εi) =
1

exp[(εi −µ)/kB T] + 1
, (1.10)
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where the temperature dependent chemical potential µ(T ) ensures that the Fermi-Dirac
distribution is properly normalized, i.e.

∑

i

nF D(εi) = N , (1.11)

where N is the total number of trapped fermions. The Fermi-Dirac distribution results in
a completely filled Fermi sphere for all levels with energy εi ≤

pF (r)2

2m as T → 0. If the
chemical potential at T = 0 (also called the Fermi energy εF ) is much larger than the level
spacing in the harmonic trap (which is given by the average trap frequency ħh(ωzω

2
r )

1/3),
the position dependent Fermi momentum pF (r) is given by the local density approximation
(LDA)

pF (r) =
Æ

2m[µ− Vt r(r)] (1.12)

Since the Fermi energy for a trapped gas is given by

εF = µ(T = 0) = ħh(ωzω
2
r )

1/3 · (6N1/3) (1.13)

the LDA is valid for particle numbers N ¦ 1000. Since the particle density n(r) is related
to the Fermi momentum via

n(r) =
pF (r)3

6π2ħh3 (1.14)

we can relate the density distribution in a harmonic trap directly to the total number of
particles and the trap geometry by using equation 1.12:

n(r) = n0

�

1−
r2

R2
r
−

z2

R2
z

�3/2

. (1.15)

Here the central density n0 of the Fermi gas is given by

n0 =
(2mεF )3/2

6π2ħh3 (1.16)

and the Thomas Fermi radii Rr/z by:

Rr/z =

�

2εF

mω2
r/z

�1/2

(1.17)

For a dipolar Fermi gas the weakly interacting regime is characterized by a configuration
where the kinetic energy due to the Pauli pressure is much larger then the strength of the
dipole-dipole interaction. In terms of the dipolar length add(E) this condition is expressed
as:

pF (r) · add(E)
ħh

= kF (r) · add(E)� 1 (1.18)

In this case the Pauli pressure stabilizes a dipolar Fermi gas against collapse due to the
attractive part of the dipole-dipole interaction. For a trapped gas the system will become
unstable and undergo collapse when

pF (0) · add(E)
ħh

' 1. (1.19)
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By solving for deff we arrive at a relation between central density n0 and the induced dipole
moment at which collapse is expected:

dmax =

√

√

√ 4πε0ħh2

(6π2n0)1/3
. (1.20)

1.1.2 Anisotropic Fermi liquid state

A Fermi gas of polar molecules with an induced dipole moment deff(E) and a temperature
above the BCS transition (see section 1.1.3) would constitute a single component real-
ization of a Fermi liquid [28] with anisotropic inter-particle interaction. Following the
arguments in [28] an interacting Fermi gas at low temperatures (T < TF ) is described in
terms of dressed fermionic quasi-particles. For a single-component Fermi gas the momen-
tum distribution function n(p) of the quasi-particles is defined by the following implicit
expression:

n(p) =
1

exp((ε[n(p)]−µ(T ))/T kb) + 1
, (1.21)

where the energy of the quasi-particles is defined by the functional derivative of the total
energy functional E[n(p)] with respect to the distribution function:

δE[n(p)]/V =

∫

dp
(2πħh)3

ε[n(p)]δn(p), (1.22)

where V is the volume occupied by the system. Note that due to the interaction between
the fermions in the gas the energy of the quasi-particles depends on the distribution of
all particles in the Fermi gas and is itself a functional of the distribution function n(p).
Including pairwise interactions between the quasi-particles the total change in energy of
the system in response to an infinitesimal change δn(p) in the distribution function is
given by:

δE/V =

∫

dp
(2πħh)3

ε(p)δn(p)

+
1
2

∫

dp
(2πħh)3

∫

dp′

(2πħh)3
f (p,p′)δn(p)δn(p′). (1.23)

Comparing equation 1.22 to 1.23 the energy functional of the quasi-particles appearing in
the distribution function 1.21 is identified with:

ε[n(p)] = ε(p) +
1
2

∫

dp′

(2πħh)3
f (p,p′)δn(p′), (1.24)

where the bare quasi-particle energy ε(p) is given by [26]:

ε(p) =
δE
δn(p)

|δn(p)=0 (1.25)

and the Landau interaction function f (p,p′) by:

f (p,p′) =
δ2E

δn(p)δn(p′)
|δn(p)=0. (1.26)
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For quasi-particles that exist close to the Fermi surface the quasi-particle dispersion rela-
tion can be approximated by

ε(p)'
pF

m∗
(p− pF ), (1.27)

where pF is the Fermi momentum and m∗ the effective mass which, for an anisotropic
interaction potential in general is a tensorial quantity.
For a weakly interacting (i.e. kF add(E) � 1) dipolar Fermi liquid with a homogeneous
density n(r) = n a Hatree-Fock approximation for the total energy is justified:

E
V
=

∫

dp
(2πħh)3

p2

2m
n(p)α

+
1
2

∫

dp
(2πħh)3

∫

dp′

(2πħh)3
n(p)αVdd(p− p′)n(p′)α. (1.28)

Using the variational Ansatz [26]

n(p)α = θ
�

p2
F −

1
α

p2
r −α

2p2
z

�

(1.29)

for the momentum distribution function and minimizing the total energy with respect to
α results in a deformed Fermi surface - a spheroid that is stretched in the direction of the
external electric field (α < 1). In this configuration the quasi-particle dispersion relation
is given by:

ε(p) =
p2

2m
−
∫

dp′

(2πħh)3
Vdd(p− p′)n(p′)α. (1.30)

In principle it should be possible to measure the quasi-particle dispersion relation with
Bragg-spectroscopy in an experiment analogous to [29]. Moreover, anisotropic Landau
zero sound [28, 26, 30] could be observable.

1.1.3 BCS pairing and superfluidity

Due to the attractive part or the dipole interaction (see equation 1.3) the groundstate
of a dipolar Fermi gas as T → 0 is given by a superfluid of Cooper pairs. In the weakly
interacting regime the critical temperature for superfluidity is much smaller than the Fermi
temperature. The system is a BCS superfluid if

T < TC � TF (1.31)

and a dipolar Fermi liquid if
TC < T < TF . (1.32)

Due to the anisotropic character of the dipole-dipole interaction the pairing mechanism in
a single component dipolar Fermi gas differs from the attractive s-wave pairing [2] in a
two-component Fermi gas of neutral atoms. Negative matrix elements of the dipole-dipole
interaction only exist for collision channels with an odd value for the angular momentum
of collision L. At ultracold temperatures the p-wave channel dominates and the only
negative valued matrix element of Vdd in is due to:

〈L = 1mL = 0|1− 3cos2 θ |L = 1mL = 0〉= −
4π
5

. (1.33)
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BCS pairing corresponds to a non-zero value of the BCS order parameter defined by [26]:

∆(r1 − r1) = Vdd(r1 − r1)〈MBS|Ψ̂(r1)Ψ̂(r2)|MBS〉, (1.34)

where Ψ̂(ri) is a fermionic particle destruction operator. The order parameter is zero if the
many-body state |MBS〉 of the system is the Fermi liquid state. It is non zero in the BCS
groundstate |BCS〉 that is approximately given by [2]:

|BCS〉= N ′
�

∑

p

cpa†
pa†
−p

�N/2

|VAC〉, (1.35)

where the momentum dependent coefficients cp fulfill cp = c−p. Note that for the non-
interacting Fermi gas cp = θ (pF − p) at T = 0. In the BCS groundstate the order parameter
can be regarded as the wave function of the Cooper pairs.
For a homogeneous dipolar Fermi gas the critical temperature for BCS superfluidity can
be derived [26]:

kB TC(n, de f f , m) = 1.44εF exp

�

−
πεF

12nd2
eff · 4πε0

�

, (1.36)

where the Fermi energy is related to the mass m of the molecule and the density n via:

εF =
(6π2ħh3n)2/3

2m
. (1.37)

We can now estimate the BCS transition temperature for 23Na40K molecules as function of
the induced dipole moment deff(E). Fig. 1.4 shows TC as function of deff(E) for realistic
but optimistic values of the particle density n. The red arrows indicate the value of deff

at which the system will undergo collapse (i.e. kF (r) · add(E) = 1). Since the required
temperature are an order of magnitude smaller than the coldest temperatures that have
been observed even for atomic Fermi gases [29] it will be very challenging to observe
dipolar BCS superfluidity with our current experimental setup. In fact, by just substitut-
ing d2

max =
ħh3

m·pF
into equation 1.36 one arrives at a general upper bound for the critical

temperature of BCS superfluidity in terms of the Fermi temperature:

TC = 6.19 · 10−4TF . (1.38)

These considerations immediately motivate the use of strong confinement in the direction
of the external electric field in order to stabilize the system against collapse due to the
attractive part of the dipole-dipole interaction.

1.1.4 Dipolar many-body physics in 2D

The regime of strong interactions is entered when the strength of the interaction becomes
comparable or larger than the kinetic energy of the particles. In a 3D system however the
attractive part of the dipole-dipole interaction will result in a many-body instability and
ultimately in particle loss by chemical reactions when the induced dipole moment is in-
creased. Strongly interacting many-body states can realistically only be observed with po-
lar molecules if attractive head-to-tail collisions are suppressed by confining the molecules
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BCS super�uidity for 23Na40K in 3D
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Figure 1.4 – BCS transition temperature for a homogeneous sample of 23Na40K molecules as function of the
induced dipole moment for optimistic values of the particle density calculated by equation 1.36. The red arrows
indicate the value of the dipole moment where the system will undergo collapse (kF (r) · add(E ) = 1) due to
the attractive part of the dipole-dipole interaction.

in periodic optical potentials (2D confinement or optical lattice). A strong 2D confinement
can be realized by an optical standing wave along the direction of the external electric field
that is required to polarize the molecules. This situation has been analyzed in detail in
[31, 32] with an emphasis on chemically unstable molecular species such as 40K87Rb that
exhibit universal (i.e. species independent) inelastic collision rates at short inter-molecular
distances. Fig. 1 from [31] shows the proposed experimental configuration. The trapping
potential is given by [33]:

Vt r = −V0 · exp

�

−
2r2

w2(z)

�

· sin2(kz), (1.39)

where w(z) is the beam radius and k = 2π/λ the wave vector of the Gaussian laser beam
that is used to generate the periodic potential. V0 designates the depth of the trapping
potential. For low kinetic energy the trapping potential is approximately harmonic

Vt r(r, z,φ) = −V0 +
1
2

m(ω2
r r2 +ω2

z z2) (1.40)

The trapping frequency ωz along the direction of the electric field can be as large as
ωz ' 150kHz whereas ωr ' 0.1 − 1kHz. The harmonic oscillator length associated with
the strong confinement along the z-direction is defined as

aho =

√

√ ħh
mωz

(1.41)



1.1 Dipolar many-body physics with ultracold molecules 13

The long-range potential V (ρ, z) in this quasi-2D geometry for two polar molecules with
induced dipole moment deff is given by [32]:

V (ρ, z) =
1
2
µω2

z z2 +
ħh2(m2 − 1/4)

2µρ2
−

C6

r6
+

d2
eff

r3

�

1−
3z2

r2

�

. (1.42)

Here r = (ρ,φ, z) is the distance between the two molecules, µ the reduced mass, C6

the van der Waals coefficient and m the projection of the angular momentum of colli-
sion. For chemically reactive molecules two-body loss will occur with unit probability at
a typical interaction distance of ach ® 1nm [32]. The combination of low collision ener-
gies, a strong confinement in the z-direction and the repulsive part of the dipole-dipole
interaction can result in repulsive potential barrier (see Fig. 1 of [32]) that prevents
the molecules from entering the molecular core region where the chemical reaction takes
place. Since fermionic molecules in the same internal state can only collide in p-wave colli-
sions |m|= 1 an additional centrifugal barrier further stabilizes the system. For chemically
stable molecules (e.g. 23Na40K) two-body loss is absent and the dominant loss channel
will be three-body loss. In contrast to the reactive species, that do not exhibit scattering
resonances, the three-body loss rate could be drastically increased by the existence of near
threshold bound states [32]. Since the magnitude of the three-body loss coefficient has
not been estimated, it seems reasonable to treat the 23Na40K molecule in a quasi-2D ge-
ometry in the same way as a reactive molecule and obtain a worst case scenario when
considering collisional stability.
I will now follow the discussion in [31, 26, 34] and estimate whether it could be possible
to observe a quantum phase transition from a Fermi liquid to a dipolar crystal in a quasi-
2D geometry with 23Na40K using our current experimental setup. To this end the following
quantities have to be determined:

1. The critical 2D density at which a dipolar crystal is energetically favorable for a given
effective dipole moment deff at T = 0.

2. The melting temperature at which the crystal will be destroyed by thermal fluctua-
tions.

3. The critical 2D density at which the system will become unstable due to chemical
reactions.

Note that it will be impossible to observe dipolar crystallization if the system becomes
unstable before the critical density for the dipolar crystal is reached. I assume that the
maximal dipole moment is given by dmax = 1.35D (see section 1.1) and the trapping
frequency in z-direction is ωz = 150kHz. According to [34] the dipolar crystallization
density is reached when

kF · add =
p

4πn2D · add ' 25, (1.43)

where kF is the Fermi momentum and n2D the 2D density of molecules. At the maximally
attainable dipole moment of dmax = 1.35D crystallization requires a 2D density of:

n2D ¾ 1.7 · 109 1
cm2

(1.44)
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The maximal interparticle distance is given by amax ¶ 245nm. According to [26, 31] the
potential barrier given by equation 1.42 stabilizes the system for interparticle distances
that are larger then

amin =

�

12d2
eff

4πε0mω2
z

�1/5

' 120nm (1.45)

The first thing to note is that the system should become crystalline before it becomes unsta-
ble. The (classical) melting temperature of a dipolar crystal is related to the interparticle
distance a via [26]:

Tmel t '
0.089D2

4πε0a3kB
(1.46)

For the interval amin < a < amax the melting temperature ranges from 700nK to 82nK.
The exact phase diagram (in the parameter space spanned by the temperature T and the
interaction strength

p

4πn2D · add) is still being debated on and many open questions
remain to be explored experimentally (compare the discussions in [26, 34]).

1.1.5 Lattice models and quantum magnetism

Another class of potential experimental configurations that could be realized with ultra-
cold polar molecules is concerned with long-range interacting lattice spin-models. This
section is mainly based on the original publications [23, 35] and motivated by the first
experimental observation of dipolar spin-exchange interaction for lattice confined 40K87Rb
molecules [22]. In this section I will again estimate the relevant experimental parameters
for the 23Na40K molecule and our current experimental setup.
In [23] it is shown how polar molecules that are trapped in the lowest band of a 3D optical
lattice can be used to simulate a generalization of the t-J model that is believed to capture
the essential mechanism responsible for high temperature superconductivity [10]. This
generalization is termed the t-J-V-W model. The tight-binding Hamiltonian of this model
is given by:

H = −
∑

〈i, j〉m

t[b†
im b jm + h.c.] +

1
2

∑

i 6= j

|r1 − r2|−3

×
�

JzSz
i Sz

j +
J⊥
2
(S+i S−j + S−i S+j ) + V nin j +W (niS

z
j + n jS

z
i )
�

. (1.47)

The first term in 1.47 describes tunneling of the molecules between neighboring lattice
sites. The operator c†

im creates a fermionic molecule at lattice site i in a dressed (by
DC or MW electric fields) rotational state |m〉 with m ∈ {m0, m0}. The gain in energy is
determined by the hopping matrix element t between adjacent sites i, j [36]:

t = −
∫

d3rw(r− ri)

�

−ħh2∇2

2m
+ Vt rap(r)

�

w(r− r j), (1.48)

where the Wannier fuctions w(r− ri) are related to the lowest band Bloch function ψ0k(r)
of the optical lattice via a discrete Fourier transform [37]:

ψ0k(r) =
∑

i

w(r− ri)exp(iri · k). (1.49)



1.1 Dipolar many-body physics with ultracold molecules 15

The second term is the dipole-dipole interaction. The remaining operators that appear
in 1.47 are defined as: nim = c†

imcim, ni =
∑

n jm, S+i = c†
im0

cim1
, Sz

i = (nim0
− nim1

)/2.
The coupling coefficients Jz (spin-spin interaction) ,V (density-density interaction) and
W (spin-density interaction) are related to the induced dipole moment of each dressed
rotational state [35], whereas J⊥ (spin-exchange interaction) arises from the transition
dipole moment between the rotational states. It is shown in detail in [23] that by using
suitable electric DC and MW fields that couple and dress the six lowest lying rotational
states all four coupling parameters can be controlled. In contrast to the cold atom real-
ization of the t-J model [38] where J � t, it is possible to tune Jz and J⊥ independently
from each other and from the hopping matrix element t. In [22] a next-neighbor spin
exchange interaction with J⊥/2h ' 50Hz has been realized with 40K87Rb molecules in a
3D optical lattice (λ = 1064nm). However, the lattice filling fraction of ' 10% did not
allow to observe strong correlations. Replacing 40K87Rb by 23Na40K would increase the
next-neighbor spin-exchange interaction to J⊥/2h ' 1kHz. In addition, the absence of the
two-body loss mechanism for the 23Na40K molecule should facilitate to achieve a higher
lattice filling fraction and also to allow for particle tunneling. For these reasons the ob-
servation of the competition between spin-exchange and particle tunneling in a strongly
correlated many-body system seems to be feasible by using 23Na40K molecules.
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CHAPTER 2

The experimental setup

The main task of this PhD project was the construction of a novel experimental apparatus
deliberately designed to study dipolar interactions in an ultracold sample of fermionic
23Na40K molecules. The complete project can be subdivided into sequential experimental
steps:

1. Preparation of a degenerate Bose-Fermi mixture of 23Na and 40K atoms.

2. Identification of Feshbach resonances suitable for molecule association.

3. Association of weakly bound Feshbach molecules as a starting point for coherent
groundstate transfer.

4. Identification of a suitable molecular three-level system by high-resolution molecular
spectroscopy that can be used for STIRAP to the rovibronic groundstate.

5. Preparation of a high phase-space density sample of groundstate molecules by STI-
RAP.

6. Application of strong electric fields to induce dipole forces between the molecules.

7. Detection of dipolar many-body effects in different trap geometries (3D, 2D, optical
lattice).

This chapter gives an overview of the design considerations, setup construction and
the experimental implementation. The various subsystems are described and their per-
formance is characterized. The current experimental setup is capable of creating a high
density degenerate Bose-Fermi mixture of 23Na and 40K atoms in their lowest energy hy-
perfine state configuration (i.e. F = 1, mF = −1 for 23Na and F = 9/2, mF = 9/2 for 40K).
The mixture can be transported in vacuum to a separate glass science cell, where quantum
degeneracy is obtained for both species. The internal state configuration of the atoms can
be prepared with high efficiency (> 95%) by coherent RF manipulations. Precise control of
an external magnetic field then enables us to address inter-species Feshbach resonances. In
the vicinity of a Feshbach resonance the magnitude and sign of the low-temperature inter-
particle interaction can be adjusted at will by changing the external magnetic field. More-
over the least bound vibrational state of the spin-triplet 23Na40K groundstate potential
can be populated by RF association of Feshbach molecules. In addition, photo-association
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spectroscopy of the near-degenerate 23Na40K mixture can be performed as well as high res-
olution spectroscopy of Feshbach molecules. To this end a narrow linewidth Raman laser
system has been constructed, that allowed us to observe coherent population trapping in a
molecular three level system formed by the Feshbach molecule, the rovibronic groundstate
and an intermediate level in the spin-orbit coupled d3Π/D1Π complex. This laser system
will also be used in future STIRAP experiments. In order to realize strong dipole forces
between groundstate molecules the setup features in-vacuum field electrodes that allow
us to apply the electric fields of ' 5kV/cm. The attainable effective dipole moment for
groundstate molecules de f f ' 1.3D would result in interaction energies that are one order
of magnitude lager compared to previous experimental realizations of ultracold ground-
state molecules [18]. Finally, the large optical access of the science cell facilitates the
future implementation of optical lattices and a high resolution imaging system.

2.1 Design considerations

The design of our experimental setup is targeted on maximizing the effects of dipolar
interactions. Therefore the key quantities that need to be considered for setup design are
the strength Sdd of the dipole-dipole interaction between the molecules in a quantum gas
with density n0 given by (compare equation 1.3):

Sdd =
d2

e f f

4πε0
n0 (2.1)

and the Fermi energy of the gas as T → 0:

εF =
ħh2

2m
(6π2n0)

2
3 . (2.2)

Here de f f is the induced dipole moment in presence of an external electric field. The ratio
of both quantities is given by:

Sdd

εF
=

2md2
e f f

4πε0ħh2(6π2)2/3
· n

1
3
0 (2.3)

For a given type of molecule (see section 1) setup design is therefore focused on creating
high density samples of groundstate molecules and on realizing strong electric fields. In
addition, the implementation of a 1D or 3D optical lattice is required for observing new
quantum states of matter [39] or the simulation of spin lattice models with long-range
interactions [23]. Moreover, a high resolution imaging system could become imperative
for observing density modulations due to dipole forces or even dipolar crystallization phe-
nomena. This reasoning motivates the following design decisions:

1. Separate the atom sources for 40K and 23Na from the part of the setup where laser
and evaporative cooling take place. This should ensure better vacuum quality and
larger initial atom numbers.

2. Include an intermediate magnetic trap after the initial magneto optical trap (MOT)
phase to facilitate efficient sympathetic cooling of fermionic 40K by bosonic 23Na.
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3. Load a single beam optical dipole trap after pre-cooling in the magnetic trap and
transport the mixture to a separate glass science chamber with large optical access
and good vacuum quality.

4. Place electrodes for generating strong electric fields inside the vacuum system with-
out obstructing optical access.

5. Place magnetic field coils and RF equipment around the science cell for precise mag-
netic field control and efficient hyperfine state manipulation.

6. Construct a versatile and frequency tuneable Raman laser system for high-resolution
molecular spectroscopy and coherent groundstate spectroscopy.

The next sections describe the various subsystems of the experimental setup in detail.

2.2 Overview

The system architecture for the complete experimental setup is displayed in Fig. 2.1. Ultra-
cold samples of 40K and 23Na atoms have to be prepared in an ultra high vacuum (UHV) en-
vironment (p < 10−11mbar) that serves as thermal insulation and suppresses background
gas collisions. The UHV system also comprises the sources for both atomic species. For
laser cooling and imaging, a separate laser system is required for each chemical element.
Additional laser systems have been constructed in order to trap, transport and evapora-
tively cool the 23Na40K mixture in optical dipole traps as well as perform high resolution
molecular spectroscopy on 23Na40K molecules. Radio frequency (RF) (ω< 2π ·1GHz) and
microwave (ω > 2π · 1GHz) (MW) equipment is required to perform internal state ma-
nipulations on both atomic species. Magnetic field coils and fast, high precision current
controllers are used to generate various magnetic fields for atom trapping, to compensate
environmental fields, to induce a Zeeman splitting between internal states of the atoms
and to address magnetic field controlled scattering resonances. Finally, high voltage power
supplies generate in combination with in vacuum steel electrodes static electric fields that
can produce a DC Stark shift on molecular transitions and will be used to induce the
dipole moment for groundstate molecules inside the vacuum chamber. All subsystems are
controlled from a central real-time experiment control unit with a timing resolution of
4µs. In the current configuration the control system features 32 digital to analog con-
verters that are used for remote control of various experimental parameters (e.g. laser
frequencies, laser intensities, magnetic field values, etc.) and 96 digital output channels
that are used for precisely timed switching of relevant equipment. Every experimental run
is finished by taking one or several absorption images of the atomic or molecular samples,
that have been prepared and manipulated during the preceding experimental sequence.
Image processing and data analysis is performed on a standard personal computer via
custom developed software written in Python.
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Figure 2.1 – Current system architecture of the experimental setup. Ultracold atomic and molecular samples
are prepared, manipulated and imaged inside a ultra high vacuum environment. All relevant subsystems inter-
act with the atoms and molecules via magnetic, electric, RF, MW or laser fields (red arrows). The experiment
is controlled (blue arrows) via a real-time processing unit while images of the ultracold gases are processed
and analyzed on a separate personal computer.

2.3 Ultra high vacuum system

The computer aided design (CAD) model shown in Fig. 2.2 displays the current vacuum
system. The optical assemblies that are used for laser beam routing are constructed around
the vacuum system. Together they constitute the main part of the experimental setup and
are located on a separate vibration isolated optical table in the center of the laboratory.
The various laser systems are held by two additional tables. Optical fibers connect them
to the main setup. The enclosure of each table is temperature stabilized to ±0.1◦C and
equipped with air flow boxes that provide a dust free environment for the optical setups.
The main features of the setup are a spin-flip Zeeman slower for 23Na atoms, a 2D-MOT for
40K, a steel chamber with re-entrant windows and anti-Helmholtz coils, the glass science
cell with electric field electrodes and a large surface pump chamber that has been coated
with a non-evaporative getter (NEG) material. The dual-species MOT and the subsequent
magnetic trap are operated in the steel MOT chamber. After combined evaporation in the
magnetic trap the mixture is transported to the science cell by a moving optical dipole
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trap. Two different source regions for both atomic species are separated form the main
experimental chamber by differential pumping sections to ensure a vacuum quality of
p < 10−11mbar inside the MOT chamber and the glass science cell. A beam of cold 23Na
atoms is generated by a spin-flip Zeeman slower. 23Na vapor effuses with an average ax-
ial velocity of ' 900m/s from a custom designed recirculating atom oven kept at 330◦C.
The reflow tube in combination with a small aperture skimmer significantly reduces the
amount of 23Na that is lost during setup operation - the initial sample of 25g of purified
23Na is still in use after more than 3 years of operation. The oven is followed by a pneu-
matic atomic beam shutter, a dual stage differential pumping section, an all-metal gate
valve and the water cooled coil assembly of the Zeeman slower. A NEG pump is attached
to the zero field section of the Zeeman slower. The cold beam of 40K atoms is generated
by a standard 2D-MOT assembly that is kept at 60◦C and separated from the main experi-
mental chamber by a single stage differential pumping section. The stainless steel MOT
chamber features re-entering bucket windows that allow for a short distance between the
atomic samples in the center of the chamber and the water cooled magnetic field coil as-
sembly. The field coils are connected in Anti-Helmholtz configuration and can generate a
magnetic quadrupole trap with a maximal field gradient of ' 1000G/cm along the sym-
metry axis. The same coils are also used for MOT operation at a gradient of ' 10G/cm.
The beams for dual species laser cooling, imaging, dipole trapping and molecular spec-
troscopy enter the MOT chamber through AR coated, non-magnetic vacuum viewports. A
non-AR coated glass science cell is attached to the MOT chamber. Electric field electrodes
are installed inside the glass cell and isolated by a Markor support structure. The elec-
trodes are connected via a high voltage vacuum feed through. UHV is sustained by three
ion pumps located at the source sections and a separate pump chamber that consists of
a large surface tube that is coated by NEG material, a Titanium sublimation pump and
an additional ion pump. The inside of the MOT chamber is also coated by the same NEG
material. Vacuum quality is measured at the source sections and the pump chamber by
Bayard-Alpert ionization gauges.

2.4 23Na40K Bose-Fermi mixture - overview of the experimen-

tal sequence

Fig. 2.3 illustrates how degenerate Bose-Fermi mixtures of 23Na40K atoms are produced in
our experimental setup. Cold beams of both species are generated by a spin-flip Zeeman
slower [40] and a 2D-MOT [41]. Inside the stainless steel chamber a standard D2-line
dual species MOT is simultaneously operated. Initial MOT loading is followed by a com-
pressed MOT (C-MOT) [42] phase that increases the central density of the atomic gas by
reducing the photon scattering rate. We achieve this by decreasing the repump power and
increasing the detuning of the cooling laser beams.

After compression in the C-MOT is completed, the MOT lasers and field gradient are
switched off and both species are optically pumped by a circularly polarized dual wave-
length laser beam to the low field seeking stretched states (i.e. |F = 2mF = 2〉 for 23Na
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Figure 2.2 – CAD model of the current UHV system. The source regions for both atomic species are separated
form the main experimental chamber. The MOT chamber features re-entering bucket windows and a water
cooled magnetic field coil assembly that is used for MOT operation and a magnetic quadrupole trap. The
beams for laser cooling, imaging, dipole trapping and molecular spectroscopy enter the MOT chamber through
AR coated, non-magnetic vacuum viewports. A glass science cell is attached to the MOT chamber. Electric
field electrodes are installed inside the glass cell. UHV is sustained by three ion pumps located at the source
sections and a high yield pump chamber. Vacuum quality is measured by Bayard-Alpert ionization gauges.
More details are given in the main text

and |F = 9/2mF = 9/2〉 for 40K). We then swiftly ramp on the magnetic quadrupole
trap to a gradient of 250G/cm. We use three pairs of compensation coils to ensure best
overlap between the C-MOT position and the center of the magnetic trap. A plug laser
(λ = 532nm, P = 5W, w0 = 50µm) is directed to the center of the magnetic trap in or-
der to suppress so called Majoranan losses [43] - diabatic spin-flips to high field seeking
states. The field gradient is then gradually lowered to 8.25G/cm a value at which only
both stretched states are still supported against gravity. This obligatory spin-purification
step is necessary to suppress spin-exchange collision [1] - which do not occur for atoms
in their stretched states due to conservation of angular momentum. After a spin puri-
fied sample has been obtained the field gradient is again increased to 250G/cm and the
23Na40K mixture is cooled from an initial temperature of ' 2mK to ' 6µK by forced MW
evaporation on the F = 2 → F = 1 hyperfine transition of 23Na. The large inter-species
scattering length of ' −690a0 [44] facilitates efficient sympathetic cooling of fermionic
40K atoms. In order to avoid the detrimental effects of intra-species and inter-species
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Figure 2.3 – Schematic illustration of the experimental setup that is used to produce degenerate Bose-Fermi
mixtures of 23Na40K atoms. Cold beams of 23Na and 40K are generated by a Zeeman slower and a 2D-MOT.
The atoms are simultaneously laser cooled in a dual color MOT inside a stainless steel chamber that is isolated
from the high pressure oven regions by differential pumping sections. After MOT loading is completed the
mixture is evaporatively cooled to ' 6µK in a plugged magnetic quadrupole trap. The mixture is then loaded
to a single beam dipole trap and transported to the science cell, where quantum degeneracy is obtained by
subsequent evaporation in a crossed dipole trap.

three-body loss the magnetic field gradient is gradually decreased to 40G/cm during the
evaporation sequence. Since the three-body loss rate scales quadratically with the den-
sity of 23Na for both loss channels whereas the thermalization coefficient only linearly,
runaway evaporation defined by [45]

dnNa/d t
nNa(t)

= −α
dNNa/d t
NNa(t)

, with α > 0 (2.4)

can be maintained during the entire evaporation sequence. Here dNNa/d t
NNa(t)

is the instan-
taneous loss rate of 23Na atoms due to the evaporation process and nNa is the density
of 23Na atoms. Runaway evaporation occurs when the density in the trap increases al-
though the total atom number decreases by evaporation. It is termed runaway, because
with increasing density also the thermalization rate increases and therefore evaporation
efficiency [45]. 2.1MHz above trap floor MW evaporation is stopped and the magnetic
field gradient is decreased to 0.1G/cm. Simultaneously, a single beam optical dipole trap
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(λ = 1064nm, P = 7.5W, w0 = 40µm) that is overlapped with the potential minimum of
the magnetic trap is ramped to full power. In addition, a magnetic guiding field of ' 1G
is applied along the symmetry axis of the magnetic trap. Directly after dipole trap loading
we perform a Landau Zener MW sweep for 23Na from |F = 2, mF = 2〉 to |F = 1, mF = 1〉
in order to suppress inelastic hyperfine state changing collisions [44]. The mixture is now
spin polarized in the lowest energy hyperfine state combination

|F = 1, mF = 1〉Na ⊗ |F = 9/2, mF = 9/2〉K (2.5)

The mixture is then transported in 0.75s to the glass science cell by moving the focus
position of the single beam dipole trap using an air bearing translation stage. In the science
cell a 14.5G guiding field is applied along the direction of gravity. The final evaporation
step to quantum degeneracy is then performed in a crossed dipole trap formed by the
transport trap and an additional laser beam (λ = 1550nm, P = 4W, w0 = 100µm). The
relative atom number of both species can be adjusted by changing the loading time of
the 40K MOT from 0s to 4s while 23Na is always loaded for 4s. This (near-)degenerate
Bose-Fermi mixture of 23Na40K serves as the starting point for further experiments that
deal with inter-species Feshbach resonances, photoassociation spectroscopy of the excited
molecular level structure in the spin-orbit coupled d3Π/D1Π complex and RF association
of weakly bound Feshbach molecules. The next section presents implementation details
of the laser cooling subsystem.

2.5 Laser cooling

Laser cooling of alkali atoms relies on the existence of a strong and cycling dipole transi-
tion in the atomic energy spectrum, that can be used for continuous momentum transfer by
repeated absorption and consecutive spontaneous emission of resonant laser light [46]. A
cycling transition is realized if resonant absorption and spontaneous emission only happen
between the same two hyperfine states. For alkali atoms the natural choice is to couple the
stretched hyperfine state of the S1/2 groundstate manifold i.e. |F = I + 1/2, mF = F〉 to the
stretched hyperfine state of the P3/2 excited state of the D2-line, i.e. |F ′ = I+3/2, m′F = F ′〉
via σ+-polarized laser light. Since for alkali atoms the excited state hyperfine splitting
is on the order of a few times the natural linewidth Γ non-resonant excitation of non-
stretched hyperfine states can result in spontaneous decay to the lower hyperfine state of
the groundstate manifold i.e. |F = I − 1/2, mF 〉. An additional laser that is resonant with
the so called repump transition from |F = I−1/2, mF 〉 to |F ′ = I+1/2, m′F 〉 ensures that the
atom is always pumped back to the cycling transition. The momentum transfer from the
laser to the atom happens in direction of the laser beam and depends on the intensity of
the laser and the detuning with respect to the cycling transition. The effective scattering
force is given by:

Fsc(I ,∆) =
dp
d t
=
Γ

2
ħhk ·

I/Isat

1+ I/Isat + (2∆/Γ )2
, (2.6)

where I is the intensity of the laser measured in W/cm2, |ħhk| = ħhωl
c is the photon mo-

mentum and ∆ = ωl −ω0 the detuning of the laser frequency with respect to the cycling
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transition frequency. The saturation intensity Isat is related to the Rabi frequency Ω via:

Isat =
I
2
·
Γ 2

Ω2
(2.7)

In contrast to the momentum change that is caused by the absorption of photons from the
laser beam the momentum change due to spontaneous emission is uncorrelated. The atom
therefore undergoes a random walk in the plane perpendicular to the direction of the laser.
Laser cooling now relies on the fact that the detuning ∆ in equation 2.6 depends via the
Doppler shift on the momentum component of the atom in direction of the laser beam. For
thermal atoms that are trapped and cooled in our experiment the non-relativistic doppler
shift ∆D(vz) is given by

∆D(vz) =ω0 ·
vz

c
, (2.8)

where ω0 is the bare atomic transition frequency and vz = pz/m the velocity component
of the atom in direction of the laser beam. Adjusting the laser frequency such that it is
red detuned with respect to the bare atomic transition frequency ensures that atoms that
are counter-propagating with respect to the laser beam are shifted towards resonance by
the Doppler effect; co-propagating atoms are shifted out of resonance. Therefore the av-
erage velocity of a thermal atomic sample is reduced in direction of the laser beam. The
natural laser beam configuration for laser cooling then consists of six pairwise counter-
propagating laser beams that are orthogonal to each other and are red detuned with
respect to the D2-line cycling transition of an alkaline atom. This configuration is also
called an optical molasses [46], since the velocity dependent three dimensional scattering
force results in a friction-like behavior for atomic motion in the region where the laser
beams overlap. The optical molasses configuration can be combined with a weak mag-
netic quadrupole field that induces a position dependent Zeeman shift between the the
different mF components of the F = I +1/2 groundstate and the F = I +3/2 excited state.
Adjusting the laser polarization to σ+ with respect to the magnetic field direction for all
six cooling beams results in a position dependent restoring force. This extension of the
optical molasses is called a magneto optical trap (MOT) [46]. In a MOT the scattering
force Fsc is rendered position dependent and velocity dependent in such a way that alkali
atoms are simultaneously trapped and cooled by continuous absorption-emission cycles.

2.5.1 Laser system and Zeeman slower for 23Na

Fig. 2.4 shows the atomic fine and hyperfine structure of the states that form the D2-line in
23Na [47]. The cycling and the repump transitions are indicated. Since the hyperfine split-
ting between the F = 3 component and the adjacent F = 2 component in the 32P3/2 state is
58.3 ' 6Γ , the rate of unwanted non-resonant excitation is suppressed by more than two
orders of magnitude (see equation 2.6). Therefore the repump beam can be much weaker
than the cooling laser to ensure continuous absorption and re-emission of photons from
the cooling beams. The groundstate hyperfine splitting is 1771.6MHz. The repump laser
therefore has to be blue detuned with respect to the cooling laser by 1713.3MHz.

The laser cooling setup (see Fig. 2.3) for 23Na consists of a standard D2-line MOT [46]
operated in the main vacuum chamber and an effusive atom oven that is separated from
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Figure 2.4 – Atomic energy spectrum of the D2-line of 23Na modified from [47]. The cycling and repump
transition used for laser cooling and imaging of 23Na atoms are indicated. Due to the resolved excited state
hyperfine splitting the repump laser can be ' 100 times less intense than the cooling laser. The groundstate
hyperfine transition that is used for MW evaporation in the magnetic trap is indicated by the green line.

the main chamber by a dual stage differential pumping section. The number of atoms
that can be trapped and cool in a MOT is determined by a dynamical equilibrium between
the capture rate of the MOT and the sum of various decay rates. Therefore it is desirable
to make the capture rate of the MOT as large as possible. The capture rate of the MOT
is determined by the flux density of 23Na atoms at the MOT region that have a small
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enough velocity to be trapped. The capture velocity of the MOT depends on the detuning,
geometry and the intensity of the MOT lasers via equation 2.6 and for typical experimental
parameters is on the order of 30−50m/s. Since 23Na has to be heated to obtain a significant
fraction of atoms in the gas phase, loading the MOT directly from an effusive atom oven is
inefficient due to a thermal velocity distribution with almost no weight below the capture
velocity. The vapor pressure of 23Na in the liquid phase (T > 98◦C) is calculated by [47]

Pl iq(T ) = 133.32 · 10(10.86+ 5619.41
T −1.04 log10(T ))

N
m2

. (2.9)

The atomic density is then given by

n(T , Pl iq) =
Pl iq(T )

kbT
. (2.10)

At a temperature of 330◦C = 603.15K the vapor pressure of 23Na is ' 0.4mbar and the
density is ' 7.2 · 1014 1

cm3 . The kinematics of atomic and molecular beam experiments are
reviewed in [48, 49]. To calculate the atom flux and the axial velocity distribution in the
23Na beam one has to take into account that the skimmer functions as a transvers velocity
filter for the atomic beam. Only atoms that fulfill

vt <
vz · rs

ls
(2.11)

can exit the oven and contribute to the flux present at the MOT region. Here vt and vz

are the transvers and the axial velocity of the atom, ls is the distance between the oven
aperture and the skimmer and rs the radius of the skimmer aperture. Starting from the
Maxwell-Boltzmann distribution for vt and vz in cylindrical coordinates

f (vz , vt) = 2πvt

�

mNa

2πkbT

�3/2

exp

�

−
mNa

�

v2
t + v2

z

�

2kbT

�

(2.12)

the axial flux jNa of the collimated atom beam can be estimated by

jNa(T ) = πr2
o · n(T , Pl iq)

∫ ∞

0

∫

rs vz
ls

0

vz · f (vz , vt)dvt dvz . (2.13)

Here ro is the radius of the oven aperture. Taking the exact geometry of our experimental
setup, we estimate a total flux of sodium atoms at the MOT region of ' 2.4 ·1011 1

cm2s . The
axial velocity distribution in the collimated beam can be derived by normalizing the flux
density distribution with the total atom flux jNa(T ).

fbeam(vz) =
πr2

o · n(T , Pl iq)

jNa(T )

∫

rs vz
ls

0

vz · f (vz , vt)dvt (2.14)

This distribution is shown in Fig. 2.5. The fraction of atoms in the collimated beam that
can be captured by a MOT with capture velocity of 50m/s is only 16ppm. The flux of
atoms with vz < 50m/s is estimated to be ' 3.9 · 106 1

cm2s . In order to increase the fraction
of atoms with an axial velocity that is smaller than the capture velocity of the MOT we
constructed a spin-flip Zeeman slower [40]. The Zeeman slower consists of two magnetic
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Figure 2.5 – Axial velocity distribution of a collimated 23Na beam effusing from an atom oven at 330◦C as
calculated by equation 2.14. A working Zeeman slower increases the flux of slow atoms that can be trapped
by a MOT by 4 orders of magnitude (red arrows).

field coil assemblies that are built around the vacuum tube that connects the oven section
with the MOT chamber (see Fig. 2.3)

A circularly polarized laser beam is counter-propagating to the atomic beam. The laser
frequency is red detuned with respect to the 23Na cycling transition (see Fig.2.4). The
field coils generate a position dependent axial magnetic field B(z) along the atomic beam
direction. Since the cycling transition involves only stretched hyperfine states, the position
dependent Zeeman shift is linear for all values of the magnetic field:

∆Z(z) =
(g ′F m′F − gF mF ) · B(z)µB

ħh
=
δµ

ħh
· B(z). (2.15)

The total position and velocity dependent detuning of the slowing beam with respect to
the cycling transition is then given by the sum of the fixed laser detuning ∆L, the position
dependent Zeeman shift ∆Z(z) and the velocity dependent doppler shift ∆D(v):

∆tot(vz , z) =∆L +ω0 ·
vz

c
+
δµ

ħh
· B(z). (2.16)

Here gF is the Lande g-factor and µB the Bohr magneton. Note that the sign of the Zeeman
shift can be changed by changing the direction of the current in the magnetic field coils. An
ideal magnetic field configuration would give ∆tot(vz , z) = 0 along the complete trajectory
of an 23Na atom with initial axial velocity v0. The resulting constant negative acceleration
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is given by

ares = Fsc(I , 0)/mNa =
Γ

2
ħhωl

c ·mNa
·

I/Isat

1+ I/Isat
, (2.17)

For constant negative acceleration the position dependent velocity along the slowing re-
gion is given by

v(z) =
q

v2
0 − 2 · ares · z. (2.18)

By solving the resonance condition ∆tot(vz , z) = 0 for the magnetic field we arrive at an
expression for B(z):

Bz(z) = −
∆L ·ħh
δµ

−
ω0ħh
δµ

v0

c

√

√

√1−
2aresz

v2
0

(2.19)

A spin-flip Zeeman slower is realized for a large negative detuning ∆L. In this configura-
tion the magnetic field first decreases from its initial value Bz(0) to zero, changes direction
and then increases again to its final value given by the desired final velocity vend via

Bend = Bz

�

z =
v2

0 − v2
end

2ares

�

(2.20)

The advantage of the spin-flip configuration relies on the fact that the slower beam is
far enough red detuned with respect to the bare atomic transition to not interfere with
MOT operation. An ideal Zeeman slower increases the capture velocity of the MOT to the
capture velocity of the Zeeman slower given by

vZS = −
c
ω0
(∆L +

δµ

ħh
· B0). (2.21)

Note that in the last equation B0 and ∆L are both negative. A Zeeman slower is designed
on basis of three design parameters: the laser detuning ∆L which affects only the relative
length between the increasing and the decreasing field section, the capture velocity vZS

which is chosen such that a major fraction of the axial velocity distribution is captured by
the slower, and the laser intensity IL which is related to the total length of the Zeeman
slower. We designed our Zeeman slower according to the following parameters:

IL = 2 · Isat , ∆L = −2π · 640MHz, vZS = 950m/s (2.22)

The fraction of 23Na atoms with a velocity smaller than 950m/s now is 61% resulting in
an increase of MOT loading rate by ' 4·104. To build the Zeeman slower we approximated
the the magnetic field produced by given coil configuration by the field that is generated
by an array of current loops with an on axis field given by the Biot-Savart law. The field of
a single current loop at position (i, j) in the array is parametrized by:

Bz(z, i, j) =
µo · I

2(rT + (i − 0.5)dt)
1

�

1+
(z−( j−δ j−0.5)dz)2

(rT+(i−0.5)dy )2

�3/2
. (2.23)

Here µ0 is the magnetic permeability of free space, rT is the outer diameter of the vacuum
tube to which the Zeeman slower coil is attached, dz and dt are the outer dimensions of the
wire that is used for coil winding and δ j is the number of current loops in z-direction that
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precede the origin (z = 0) of the ideal magnetic field from equation 2.19. Typical arrays
of current loops are illustrated in Fig. 2.6 and Fig. 2.7. The design has to include a zero
field section between the decreasing and the increasing field section that allows for an
adiabatic change of the quantization axis as required for optical pumping from the σ+ to
the σ− cycling transition. Finding the correct winding pattern that best approximates the
ideal magnetic field is then a numerical optimization task that includes the geometry of the
vacuum system and the dimensions of the wire that is used for the magnetic field coils. Fig.
2.6 and Fig. 2.7 show the winding pattern that resulted from the numerical optimization
procedure. Due to a total dissipated electric power of ' 300W the decreasing field section
is made from hollow core conductor that is also used for water cooling. The whole coil
assembly is connected in series such that all current loops carry the same current. The
increasing section is wound on a vacuum tube with smaller outer diameter in order to
decrease the maximal electric current. Here we also use two separate coils that allow for a
better fine tuning of the final velocity of the slowed atomic beam. The simulated magnetic
field of the Zeeman slower is shown in Fig. 2.8. A numerical integration of the equation
of motion for an atom with initial velocity of 950m/s in presence of the cooling laser and
the simulated magnetic field is shown in Fig. 2.9.

wire dimensions
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CF 40 stain-less steel UHV tube (316LN)
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23Na oven 
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zero field 
spin-flip region 40
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Figure 2.6 – Coil winding pattern of the decreasing field section of the Zeeman slower. For this section a
hollow core wire was used to implement efficient water cooling of the coil assembly. The whole section is
connected in series and is operated at a current of 18.0A

Laser setup

This section briefly describes the laser system that is used for cooling, imaging and op-
tical pumping of 23Na atoms. Fig. 2.10 displays the current laser setup. Laser light at
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Figure 2.7 – Coil winding pattern of the increasing field section of the Zeeman slower. Two separate section
that are operated at 15.2A and 62.3A allow for fine-tuning of the final velocity of the slowed atoms.
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Figure 2.8 – Calculated magnetic field generated by the winding patterns shown in Fig. 2.6 and 2.7. The zero
field section at ' 0.75m is required for efficient optical pumping from the σ+ to the σ− cycling transition.

the required wavelength of 589nm is derived from second harmonic generation modules.
In order to have sufficient power for Zeeman slowing and laser cooling the main SHG
modules is seeded by a commercial 10W infrared laser system (External cavity diode laser
(ECDL) seed + Raman fiber amplifier). Although the SHG module is operated at 110% of
the maximal specified output power (i.e. P = 1.65W,Pmax = 1.5W) the laser system has
been in operation for more than 4 years without requiring any maintenance. A second
SHG unit is directly seeded by a 1178nm ECDL and delivers ' 3mW of output power for
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Figure 2.9 – Simulation of the velocity evolution for a single 23Na atom that enters the Zeeman slower with an
initial velocity of 950m/s. The red line indicates the target velocity (30m/s) of the Zeeman slower design.

imaging in the glass science cell.
Besides the auxiliary imaging laser, all other beams that are needed for cooling, optical

pumping and imaging along the symmetry axis of the magnetic trap need to be derived
from output of the main SHG unit. The main laser system is frequency stabilized to the
F = 2→ F ′ = 3 cycling transition via RF modulation spectroscopy. A proportional-integral
(PI) feedback loop adjusts the piezo voltage and the laser diode current of the ECDL ac-
cordingly. The frequency of the beam entering the spectroscopy setup (red shaded area in
Fig. 2.10) is shifted by +2 · 189MHz using an acousto-optical modulator (AOM) in double
pass (DP) configuration. The output frequency of the SHG is therefore red detuned with
respect to the cycling transition by 378MHz. Together with a single pass AOM that shifts
the frequency by additional −201MHz the detuning that is needed for the Zeeman slower
' −600MHz is achieved. 15% of the total output power is sent through a special AOM
with a frequency shift of +1713MHz to generate two beams that can be used for optical
pumping from the F = 1 to the F = 2 hyperfine groundstate. An additional DP-AOM com-
pensates for the initial red detuning of the laser and allows to tune the frequency of both
repump beams within ±20MHz. Note that both repump beams are not used for Zeeman
slowing or MOT operation, but only for hyperfine state pumping prior to magnetic trap
loading and low-field imaging of 23Na in the science cell. The major part of SHG output is
used for laser cooling in the 3D-MOT. A DP-AOM again compensates for the detuning in-
duced by the frequency shift of the spectroscopy setup. We do not use a separate repump
beam for MOT opertaion but instead use a resonantly driven electro-optical modulator
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Figure 2.10 – Laser system for cooling, optical pumping and imaging of 23Na atoms. A detailed description of
all components is given in the main text.

(EOM) to produce sidebands at ±1713MHz around the carrier frequency of the cooling
laser. The sideband to carrier ratio is set to ' 10%. The same technique is also used to
modulate sidebands onto the Zeeman slower beam. In order to keep the intensity in all
six MOT beams as stable as possible, we use a single mode (SM), and polarization main-
taining (PM) optical fiber to route the cooling light to the MOT setup. To compensates
for common mode intensity drifts induced by residual polarization changes in the optical
fiber, we use a power stabilization setup (blue shaded area) consisting of a photo diode
at the MOT setup, a custom built PI controller and an AOM in front of the optical fiber.
The imaging part of the 23Na laser system (green shaded area) uses the zero order of the
1713MHz AOM for direct imaging on the cycling transition at low magnetic field. In this
path a DP-AOM compensates the initial red detuning of the main laser and can be used
for fine tuning of the imaging frequency. A second auxiliary imaging laser system based
on an ECDL and a waveguide SHG module is used for imaging of in the science cell. This
laser is offset locked to the main laser using an optical phase locked loop (OPLL) [50].
The large tuning range of the OPLL enables us to image 23Na in a broad range of external
magnetic fields for which the Zeeman shift of the imaging transition lies well outside of
the tuning range of the low field imaging DP-AOM. Since AOM’s do not extinguish a laser
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Figure 2.11 – Level scheme of 39K and 40K relevant for laser cooling of 40K modified from [51]. Due to the low
isotope concentration of 40K, the D2-line of 39K is used for frequency stabilization of an ECD master laser. The
cooling, repump and imaging lasers for 40K are offset locked via OPLL’s. Note the inverted hyperfine structure
of 40K.

beam perfectly when they are switched off, we included custom-built laser beam shutters
in front of every fiber coupling to block the light completely when needed. All relevant
RF AOM and EOM drivers can be remote controlled (amplitude and frequency, on/off) by
the experiment control system. The same applies for the beam shutters and the voltage
controlled oscillator (VCO) that serves as frequency reference (i.e. local oscillators (LOC))
for the OPLL of the auxiliary imaging laser.
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2.5.2 Laser system and 2D-MOT for 40K

A beam of cold 40K is generated in a standard 2D-MOT atom source [41] without on-axis
cooling and pushing beams. The 2D-MOT vacuum chamber was loaded with 50mg of
purified potassium. In this particular sample, the fraction of 40K has been enriched to 3%
compared to the natural isotope abundance of only 1.17 · 10−4. The 2D-MOT assembly is
constantly kept at a slightly elevated temperature of ' 60◦C, whereas the 40K reservoir is
held at ' 100◦C to ensure that the 40K atoms are accumulated in the vicinity of the 2D-
MOT interaction region. A high power UV-LED can be used to increase 40K vapor pressure
during loading of the dual species 3D-MOT operated in the main vacuum chamber. The
low pressure region of the 3D-MOT is separated from the 2D-MOT chamber by a ' 1cm
differential pumping tube with ' 3mm diameter. It is imperative to overlap the 2D-MOT
cooling region with the center of the differential pumping tube to ensure efficient loading
of the 3D-MOT. The position of the 2D-MOT cooling region is monitored by fluorescence
imaging along the axis of the atomic beam and can be precisely adjusted by independently
changing the currents in all four 2D-MOT coils. The atomic level scheme relevant for lasers
cooling, optical pumping and imaging is shown in Fig.2.11

Due to the low isotope abundance of 40K saturated absorption spectroscopy for laser
frequency stabilization is performed on the D2-line of 39K. The laser system is therefore
constructed in a master-slave configuration, where a single ECDL is locked to the F =
1, F = 2 groundstate crossover resonance of 39K. The cooling, repumping and imaging
lasers are offset locked with respect to the master laser via digital OPLL’s. Fig. 2.12
displays the complete laser system. The local oscillators (LOC) are either VCO’s or direct
digital synthesizers (DDS).

The spectroscopy setup for frequency stabilization of the master laser is highlighted
by the red shaded area. The master laser is distributed to four identical master oscillator
power amplifier (MOPA) units based on a ECDL and a tapered amplifier (TA) chip and an
additional ECDL that is used for absorption imaging. Five beat signals between the master
and each slave laser generate the required RF signals that are compared to a tunable RF
frequency reference by a digital phase-frequency discriminator (PFD). The error signal
generated by the PFD is the fed back to the piezo and the laser diode current of each
MOPA unit via a lead-lag compensating loop filter. A novel electronic phase-lock circuit
has been developed for the 40K laser system. The RF reference can be either supplied by
a VCO that is adjusted by the experiment control system or by a direct digital synthesizer
circuit. For fast switching of the slave lasers a single pass AOM is included in each beam
path. Each pair of MOPA units is resonant with the F = 9/2→ F ′ = 11/2 cycling transition
and the F = 7/2− > F ′ = 9/2 repump transition. The pair that is used for the 2D-MOT
is operated with a cool to repump power ratio of 1/1, the 3D-MOT pair with a ratio of
10/1. The light for imaging and the 2D-MOT is directly routed to the vacuum setup via
SM/PM fibers. For the 3D-MOT, an additional AOM has been built into the beam path
after overlapping the repump with the cooling light in order to stabilize the total laser
intensity that is routed to the experiment. To this end a photo-diode signal is recorded at
the experiment and used for feedback onto the AOM driver via a custom built PI controller.
The intensity stabilization setup is highlighted by the blue shaded area. For each optical
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Figure 2.12 – Schematic of the 40K laser system. Details are described in the main text.

fiber a mechanical beam shutter has been included. All laser frequencies and AOM drivers
can be remotely set by the experiment control system. Since all laser frequencies and
intensities can be remote controlled by the experiment control unit we can in principle
change between both isotopes of potassium by just programming different values for the
relevant parameters of the laser cooling sequence.

2.5.3 Dual-species MOT

As initial cooling step we operate a standard dual-species D2-line 3D-MOT [46] that cap-
tures atoms injected to the stainless steel chamber by the 23Na Zeeman slower and the 40K
2D-MOT. Fluctuations and long term drift of MOT performance is suppressed by transmit-
ting the cooling light for each species in a single SM/PM optical fiber, using an intensity
stabilization setup (see Fig. 2.12 and 2.10) and by employing a retro-MOT configuration.
We overlap the cooling light for both species on a single dichroic mirror and distribute the
light to all three MOT axes free-space. The repump light is either supplied by sideband
generation with an resonant EOM (23Na) or by combining the output of two separate
MOPA units prior to the optical fiber (for details see Fig. 2.12 and 2.10 ). In this way
we ensure intensity balance in each pair of MOT beams. The long-term stability of the
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atom number for both species is < ±5%. After initial MOT loading we employ the C-MOT
technique to increase the density prior to loading a magnetic quadrupole trap. In order to
suppress light-assisted inelastic collisions [52] of 23Na and 40K it is necessary to operate
the dual species MOT with a slight mismatch of cloud position realized by not perfectly
overlapping the MOT cooling light. All MOT parameters have been optimized after the
MW evaporation in the plugged quadrupole trap down to ' 6µK had been established.
Since sympathetic cooling of fermionic 40K requires an atom number ratio in the mag-
netic trap of > 1000/1, the dual species MOT, C-MOT and magnetic trap loading was first
optimized for 23Na alone.

2.6 Magnetic Trap and evaporative cooling

After compression in the C-MOT the 23Na40K mixture is optically pumped to the stretched
low field seeking hyperfine states (i.e. |F = 2, mF = 2〉 for 23Na and |F = 9/2, mF = 9/2〉 for
40K) by a circular polarized laser beam. To this end, a ' 1G guiding field is applied along
the propagation direction of the optical pumping beam. Next, a magnetic quadrupole
trap is switched on as fast as possible to minimize heating by mismatch in magnetic trap
volume and the extension of the atomic cloud after C-MOT. To further optimize magnetic
trap loading we use three pairs of compensation coils in Helmholtz configuration to match
the position of the 23Na C-MOT with the center of the quadrupole trap. Due to the large
imbalance (' 103) in atom numbers magnetic trap loading is optimized for 23Na alone.
Due to heating during trap loading and the temperature increase caused by adiabatic
compression the temperature of the 23Na cloud is ' 1mK at the maximal magnetic field
gradient of 250G/cm.

Spin purification

Since optical pumping does not produce a completely spin polarized sample, also atoms
in non-stretched hyperfine states are trapped in the quadrupole trap. These have to be
removed from the trap in order to suppress inelastic spin-exchange collisions that produce
atoms in high field seeking states that are repelled from the magnetic trap. For a spin-
polarized mixture two-body s-wave collisions which dominate at temperatures below 1mK
can only be elastic due to conservation of angular momentum. For spin purification, we
adiabatically reduce the magnetic trap gradient to 8.25G/cm and wait for' 2s until gravity
has removes all atoms in a non-stretched low-field seeking state (see Fig. 2.15 below). The
trap gradient is again increased to 250G/cm and the 23Na40K mixture is cooled from' 1mK
to ' 6µK by forced MW evaporation on the F = 2→ F ′ = 1 hyperfine transition of 23Na.
The inter-species s-wave scattering length of ' −690a0 facilitates efficient sympathetic
cooling of fermionic 40K atoms.

Plugged quadrupole trap

With spin-exchange collisions suppressed, two additional loss mechanisms have to be com-
pensated for in order to reach a sufficiently large phase-space density to transfer the Bose-
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Fermi mixture into an optical dipole trap. The first one originates from diabatic transitions
to high-field seeking states that occur on trajectories that cross the center of the magnetic
trap. Here the rate of change of the instantaneous magnetic field experienced by an atom
moving along this trajectory can exceed the limit for adiabatic evolution set by the Lamor
frequency. A detailed study of Majorana losses is presented in [43]. We focus a high inten-
sity laser beam (λ = 532nm, P = 5W, w0 = 50µm) that is blue detuned with respect to the
D1 and the D2-line in 23Na and 40K to the center of the magnetic trap in order to prevent
the atoms from following trajectories that lead to diabatic spin-flips. This so called plug
laser is directed along the symmetry axis of the magnetic trap. For alignment of the plug
focus position we overlap the the plug beam with a counter-propagating imaging beam by
using a pair of dichroic mirrors. A remote controlled piezo driven steering mirror is used
for fine tuning of the plug position with respect to the trap center. Fig. 2.13 illustrates the
MW evaporation setup used in our experiment. This configuration allows us to directly

23Na40K

photonic 
crystal fiber

plug laser
beam

767nm&589nm
imaging light

Helmholtz
coils

CCD 

MW 
antenna

focussing optics
piezo mirror

beam dump

Experimental setup for MW evaporation 

pump
chamber

Zeeman
slower

Figure 2.13 – Schematic illustration of the experimental setup used for evaporative cooling of 23Na and 40K.
Both species are trapped in a plugged magnetic quadrupole trap generated by a pair of anti-Helmholtz coils.
The high energy fraction of 23Na is removed from the trap by MW radiation resonant with the Zeeman shifted
F = 2→ F ′ = 1 hyperfine transition. A plug laser is used to suppress Majorana losses. The plug position is
detected by dual species absorption imaging along the plug axis and can be fine adjusted with a piezo driven
steering mirror.

image the reduction of atomic cloud density that is caused by the repulsive dipole force
of the plug laser. Fig. 2.14 shows an absorption picture of 23Na that is taken at the end
of evaporation, when the single beam dipole trap is in progress to be loaded. The hole
in the center of the cloud is caused by the plug laser. The fact that the plug laser point
in direction of gravity allows us to change the field gradient in the trap from its maximal
value to almost zero without increasing the Majorana loss rate. In the plane perpendicular
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Figure 2.14 – Absorption image of 23Na after MW evaporation has been completed. A single beam optical
dipole trap is in progress of being loaded. Rotational symmetry is broken by pointing the plug slightly off center
with respect to the magnetic trap.

to the plug axis we use two pairs of compensation coils to fine-tune the relative position
of trap center and the plug beam.

Suppressing three-body loss

The final loss mechanism that has to be coped with is molecule formation caused by three-
body collisions [53]. Due to the fermionic nature of 40K, the collision cross-section for two-
body and three-body collisions involving at least two 40K atoms is strongly suppressed in
a spin-polarized gas at low temperatures [54]. The dominant three-body loss channels
during combined evaporation in the quadrupole trap are the following:

23Na+ 23Na+ 23Na→ 23Na2 +
23Na

23Na+ 23Na+ 40K→ 23Na2 +
40K

23Na+ 23Na+ 40K→ 23Na+ 23Na40K

(2.24)

the corresponding loss equations are given by [54]:

dNNa

d t
= −βNa

∫

dr n(r, t)3Na

dNNa

d t
= 2

dNK

d t
= −βNaK

∫

dr n(r, t)2Nan(r, t)K

(2.25)
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Here β is the three-body loss coefficient that depends non-trivially on the microscopic
behavior of the scattering process [54] and n(r, t)Na/K is the space and time dependent
atomic density in the quadrupole trap. For a thermal ensemble the spacial variation of the
density is given by:

n(r) = n0 exp
�

−
V (r)
kbT

�

(2.26)

where n0 is the atomic density in the trap center and V (r) the trapping potential given by:

V (r) = µNa/K ·
Æ

(x2 + y2 + 4z2)dBz , (2.27)

where µNa/K is the magnetic moment of the trapped atoms and dBz the magnetic field field
gradient along the symmetry axis of the trap. In contrast to evaporation of a Bose-Fermi
mixture in an optical dipole trap where the value of β can be adjusted by controlling
the scattering length via a Feshbach resonance (see section 2.8.1 below), the only way
to suppress three-body loss during evaporation in the magnetic trap is by controlling the
density by reducing the trapping potential. Since combined evaporative cooling of the
trapped atomic mixture relies on re-thermalization induced by 23Na+ 23Na and 23Na+ 40K
collisions that scale with n(r, t)2Na and n(r, t)Na · n(r, t)K the magnetic field gradient can be
dynamically reduced during an evaporation sequence in such a way that three-body loss is
effectively suppressed while at the same time runaway evaporation defined by 2.4 can be
sustained. The time course of the experimental parameters that are controlled during the
evaporation sequence (i.e. the MW radiation frequency and the magnetic field gradient)
is shown in Fig. 2.15

The exact shape of the magnetic field ramp was determined empirically by observing
the 40K atom number during the evaporation sequence and reducing the field gradient
whenever strong losses appear. After a working evaporation sequence to a temperature
of ' 10µK was established all relevant experimental parameters for the 3D-MOT, the C-
MOT, optical pumping, magnetic trap loading, spin purification and MW evaporation were
optimized until we were satisfied with the attainable atom number and temperature for
both species as well as with the experimental stability.
To summarize, the dual species MOT combined with subsequent evaporative cooling in
the plugged quadrupole trap produces a spin polarized thermal ensemble of ' 8 ·107 23Na
and ' 5 ·106 40K atoms at a temperature of ' 6µK. Shot to shot atom number fluctuations
and long term atom number drift is below 10% of the average value. The experimental
cycle time is ' 27s. In a next step the thermal 23Na40K sample is loaded to a single beam
optical dipole trap.

2.7 Optical dipole trap

Addressing magnetic field controlled Feshbach resonances in ulracold gases [55] requires
a precisely tuneable magnetic field. Since a magnetic quadrupole trap relies on a linearly
increasing magnetic field it cannot serve as a tool to study Feshbach resonances and use
them for molecule association. For this reason the 23Na40K mixture is transferred to a
far detuned optical dipole trap [56] after pre-cooling to ' 6µK by MW evaporation. In
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Figure 2.15 – Time course of the magnetic field gradient and the frequency of the MW radiation used for
evaporation. The red shaded area indicates the MOT phase and optical pumping, the green shaded area
magnetic trap loading and the spin-purification sequence. The blue shaded area highlights the evaporation
sequence in the plugged quadrupole trap. Three-body loss is suppressed by reducing the initial gradient of
250G/cm in eight discrete steps to 40G/cm. The final step to 0.1G is used for loading the 23Na40K mixture
into a single beam optical dipole trap.

a dipole trap the trapping potential is due to a spatially varying AC Stark shift caused
by a focused high intensity laser beam that is far red-detuned with respect to all optical
transitions of an alkali atom. For a single optical transition the trapping potential of a
optical dipole trap is given by [56]:

U(r, z,ω) =
3πc2

2ω3
0

�

Γ

ω0 −ω
+

Γ

ω0 +ω

�

· I(r, z) (2.28)

Here ω0 and Γ are the angular transition frequency and natural linewidth of the nearest
atomic transition, ω= 2πc

λ the angular frequency of the trapping laser and I(r) the spatial
intensity distribution of the trapping lasers configuration. The trap depth U0 of an optical
dipole trap is defined by U0 = U(r = 0, z = 0). The spatial intensity of a single beam dipole
trap is best expressed in cylindrical coordinates:

I(r, z) =
2P

πw(z)2
exp(−

2r2

w(z)2
), (2.29)

with

w(z) = w0

√

√

1+ (
λz
πw0

)2 (2.30)

Here P is the laser power in W, w0 the beam waist and λ the wavelength of the laser. In
our experiments we use optical dipole traps with two different wavelengths, 1064nm and
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1550nm. The closest optical transitions in 23Na and 40K are the D1 and the D2-lines at
589.76nm and 589.16nm for 23Na and 770.108nm and 766.70nm for 40K. For this situation
that differs from the ideal case of equation 2.7 the following formula approximates the
combined trapping potential arising from both transitions [56]:

U(r, z,ω) =
πc2

2ω3
0

�

2Γ
ωD2 −ω

+
Γ

ωD1 +ω

�

· I(r, z) (2.31)

For atomic or molecular samples with a temperature that is small compared to the trap
depth the trapping potential can be approximated by an ideal harmonic trap. Expressed
in cylinder coordinates the potential is:

Uh(r, z) = −U0 +
1
2

m(ω2
r r2 +ω2

z z2) (2.32)

With trap oscillation frequencies ωr and ωz given by:

ωr = 2

√

√

√

U0

mw2
0

ωz =

√

√

√

2U0

m(πw2
0/λ)2

(2.33)

The ratio ωr
ωz

is called the aspect ratio of the trap. For a single beam trap the aspect ratio
is typically ' 100− 150. The density of a trapped thermal gas of particles with mass m at
a temperature T is then given by:

n(r, z) = n0 exp
�

−
Uh(r, z)
2kbT

�

= n0 exp

�

−
mω2

r r2

2kbT

�

· exp

�

−
mω2

z z2

2kbT

�

(2.34)

The effective volume Ve f f of the trap is defined as [45]:

Ve f f =

∫

dr exp
�

−
Uh(r, z)
2kbT

�

=
�

2πkbT
m

�3/2

·
1
ω2

r
·

1
ωz

(2.35)

The central density n0 in the trap is related to the total number N of particles by:

n0 =
N

Ve f f
(2.36)

Finally the so called degeneracy parameter D is defined as

D = n0 ·Λth (2.37)

where the thermal de Broglie wavelength Λth is defined as

Λth =

√

√ 2πħh
mkbT

(2.38)

For D ≥ 1 particles in the center of the trap start to become indistinguishable and quantum
statistics will determine system behavior.
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Fig. 2.16 displays a schematic of the 1064nm dipole trap setup that is used for cap-
turing the 23Na40K mixture after combined MW evaporation in the magnetic trap.

This single beam dipole trap (λ = 1064nm,P = 7.5W,w0 = 40µm) is also used for
transporting the mixture from the stainless steel MOT chamber to the attached science
cell. For this purpose a movable retro-reflector has been installed into the beam path. The
movement is executed with an position encoded, air-bearing translation stage. To overlap
the focus of the dipole trap with the potential minimum of the quadrupole trap in order
to maximize loading efficiency we use a manual steering mirror and the programmable
translation stage. For optimizing transfer to the dipole trap we installed a second absorp-
tion imaging system along the axis of the dipole trap. Together with the already existing
imaging setup along the direction of the plug lasers we are able to focus the dipole trap
precisely to the potential minimum of the quadrupole trap (see Fig. 2.14). For further
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evaporative cooling in the science cell we also installed an additional 1550nm trapping
laser forming a crossed dipole trap [56] together with the transport trap. The parameters
of both traps are summarized in table 3.1. Note that trap frequencies scale as∝

p

I/Imax

Parameter transport trap crossed trap

Power (W) 7.5 (7.5,5)
Beam waist (µm) 40 (40,100)
Trap depth 23Na (µK) 78 78+ 6.7
Trap depth 40K (µK) 200 200+ 13.5
ωr for 23Na (Hz) 1340

p
13402 + 0.52

ωr for 40K (Hz) 1626
p

16262 + 0.62

ωz for 23Na (Hz) 8.0
p

8.02 + 1542

ωz for 40K (Hz) 9.7
p

9.72 + 1762

Table 2.1 – Experimental parameters for both dipole traps that are currently operated in our setup. Trap depth
and trapping frequencies are given for maximal available laser power. For the crossed trap the individual values
are made transparent.

and the trap depth scales as ∝ I/Imax . The exact loading sequence for the dipole trap is
shown in Fig. 2.17.

The final step of MW evaporation is performed at a magnetic field gradient of 40G/cm.
After the MW field is switched off we ramp down the gradient to 0.1G/cm in 30ms and
simultaneously ramp up the dipole trap power to 90%. Fig. 2.18 shows an absorption
image of taken a few ms after the dipole trap has been switched on. Almost 90% of the
23Na that have been cooled in the magnetic trap are not captured by the dipole trap.

After the dipole trap has reached full power it is imperative to transfer 23Na to its
absolute hyperfine groundstate in order to suppress inelastic hyperfine changing collisions.
For this purpose a B ' 1.35G guiding field is applied in direction of gravity and a MW
Landau-Zener sweep form F = 2, mF = 2 to F = 1, mF = 1 is performed during 5ms.

Transport to the science cell

We use the technique developed at MIT [57] to transport the 23Na 40K mixture from
the stainless steel MOT chamber to the attached science cell where all further experi-
mental steps take place (scattering channel preparation, addressing Feshbach resonances,
molecule association, molecular spectroscopy etc.). Compared to transport experiments
with 23Na alone the large inter-species background scattering length of abg = −690a0

In total there are three different mechanisms that contribute to atom loss during dipole
transport:

1. Acceleration loss: mainly affects 23Na due to weaker confinement. Ideally the accel-
eration of the translation stage should be small compared to the axial restoring force
of the dipole trap i.e. astage < Fz/mNa, where Fz = −∂zU(r, z). High laser intensities
allow for larger acceleration and shorter transport times.

2. Trap heating: mainly affects 23Na due to weaker confinement. Pointing noise and
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Figure 2.17 – Experimental sequence for loading the single beam dipole trap after MW evaporation in the
quadrupole trap. In order to minimize exothermic hyperfine changing collisions for 23Na a MW Landau Zener
sweep from F = 2,mF = 2 to the hyperfine groundstate F = 1,mF = 1 is executed as fast as possible
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intensity noise during the movement of the translation stage results in heating and
consecutive evaporation of 23Na.

3. Three body loss: mainly affects 40K due to stronger confinement and much larger
background scattering length (compare equation 2.25 and [54]).

For these reasons optimal transport is always a compromise between limiting acceleration
loss by slow transport and high laser intensities as well as limiting trap heating and three-
body loss by fast transport and working at low laser intensities. The fact that trap heating
depends on the noise power convoluted with the energy spectrum of the trap can lead to
resonant heating for certain values of the axial and radial trapping frequencies.

Empirically, we found that in our current setup (see Fig. 2.16) transfer efficiency
for the 23Na 40K mixture with an atom number ratio of ' 20/1 is maximized by making
transport as short as possible ' 750ms without having to much acceleration loss. The
current transport parameters are λ = 1064nm, P = 0.9 · 7.5W , w0 = 40µm, t = 750ms. The



46 Chapter 2. The experimental setup

2000

0

1000

Dipole trap loading absorption image

A
to

m
s 

p
er

 p
ix

el

Figure 2.18 – Absorption image of 23Na taken along the dipole trap a few ms after the dipole trap has been
ramped to full power. Due to the much smaller trapping volume, almost 90% of the 23Na atoms that have been
cooled in the magnetic trap are not trapped in the dipole trap.

movement of the translation stage is programmed to have an trapezoid velocity profile.
The transport efficiency is ' 65% for 23Na and ' 90% for 40K. We see that for transport,
three-body loss is not a limitation. By varying the maximal acceleration we also made
sure that we operate the transport in a configuration where acceleration loss is also not
a limiting factor. We conclude that the losses we observe are dominated by trap heating.
The temperature of the mixture after transport is ' 12µK. This is the same temperature as
after dipole trap loading. We effectively use evaporation of excess 23Na atoms as a cooling
mechanism to compensate for trap heating. The increase from 6µK to 12µK during dipole
trap loading is consistent with adiabatic heating at constant phase space density [45].

2.8 Attaining dual species degeneracy

To attain quantum degeneracy after transport to the science cell further evaporative cool-
ing in the dipole trap has to be performed. In our current setup it is not possible to observe
Bose-Einstein condensation of 23Na in presence of 40K, when evaporation is performed in
the single beam dipole trap. For this reason we installed a second optical dipole trap
(λ = 1550nm,P = 5W,w0 = 100µm) that forms a crossed dipole trap together with the
transport trap. In this way the density in the trap and therefore the thermalization rate

γth(r, z)∝ a2
NanNa(r, z)vav(T ) (2.39)
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can be increased by 3 orders of magnitude (compared equation 2.34 and table 3.1), mak-
ing evaporative cooling much more efficient. Here vav designates the average thermal
velocity in the gas and aNa ' 58a0 the background scattering length for 23Na in F = 1. For
an ideal Bose gas in a harmonic trap the condensation temperature TC is given by [45]:

TC =
ħh
kB

3
q

NNaωzω2
r (2.40)

We can determine the fraction of condensed 23Na atoms N0/NNa by fitting a parabolic
Thomas-Fermi profile [58]

nT F (x , y , z) =
µT F

g
−

1
2g

mNa(ω
2
r (x

2 + y2) +ω2
z z2) ·Θ(1− ((x2 + y2)/R2

r + z2/R2
z))
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ħh 3
Æ

ωzω2
r
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no −
µT F

g

�
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−z2
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(2.41)

to the observed line-density profile n(x , z) after time of flight. The combined fitting func-
tion is given by:

n f i t(x , z) =

∫

d y nTh(x , y , z) + nT F (x , y , z) (2.42)

Here the coupling constant g = 4πħhaNa
mNa

, Θ is the Heaviside function and

aho =

√

√

√

ħh
mNa

3
Æ

ωzω2
r

(2.43)

the averaged harmonic oscillator length. The Gaussian function accounts for non-
condensed atoms in the thermal wings of the cloud and can also be used to estimate the
temperature of the gas via

σ(t) =
q

σ2
0 + kB T/mNa · t2 (2.44)

Fig. 2.19 illustrates how a Bose-Einstein condensate of ' 5 · 105 23Na atoms forms in our
crossed dipole trap when the end point of evaporation is varied from 2.04µK to 0.86µK.

We take four absorption images after 7.5ms time of flight and fit the function of equa-
tion 2.42 to the observed density profiles. We then estimate the condensate fraction
N0/NNa by calculating the ratio of the integrals of n(x , z)T F and n(y , z)Th. Knowing the
condensate fraction the ratio T/TC can then be obtained using the following relation [45]:

T
TC
= 0.94 · 3

Æ

1− N0/NNa (2.45)

The values for T/TC are given in Fig. 2.19. Note that we only determine the ratios N0/NNa

and T/TC and do not measure absolute values for the temperature, total atom number and
condensate fraction. For the lowest evaporation endpoint we cannot detect the thermal
fraction. We therefore assume a condensate fraction of 95% and obtain T/TC = 0.37.
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Figure 2.19 – a) Absorption images of a Bose-Einstein condensate (N ' 105) for decreasing trap depth. b)
reconstruction of the density profile from a) obtained by a least square fit of equation 2.42. c) Residuals of the
least square fit. The ratio T/TC is obtained by numerical integration of the fitted line-densities for the Thomas-
Fermi profile and the Gaussian thermal wing. For the lowest trap depth the thermal wing is not detectable and
a condensate fraction of 95% is assumed.

For characterizing degenerate Bose-Fermi mixtures in our setup the following relations are
useful: The Fermi temperature of 40K in a harmonic trap is given by:

TF =
ħh
kB

3
q

6 · NKωzω2
r (2.46)

For our crossed dipole trap (see table 3.1), the ratio TF/TC is given by :

TF

TC
= 2.21 · 3

Æ

6 · NK/NNa (2.47)

For a typical atom number ratio of NK/NNa ' 0.1 the Fermi temperature of 40K and the
condensation temperature of 23Na are almost equal.

2.8.1 Feshbach optimized sympathetic cooling

Similar to the situation in the magnetic quadrupole trap (equation 2.25) inter-species
three-body losses have to be suppressed in order to ensure efficient sympathetic cooling
of 40K by 23Na. We use an inter-species Feshbach resonance to control the three-body loss
coefficient βNaK = β(aNaK). In this way 40K three-body loss can be minimized without
decreasing the density in the trap ensuring efficient evaporative cooling of 23Na. Note
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Experimental sequence for Feshbach optimized sympathetic cooling
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Figure 2.20 – Experimental sequence that was used to optimize sympathetic cooling of 40K. The mixture
is evaporated in |F = 1,mF = 1〉 ⊗ |F = 9/2,mF = 9/2〉 at 14.5G to a trap depth of ' 8µK . A
multi-level Landau-Zener RF sweep then transfers 40K to |F = 9/2,mF = −7/2〉 and the magnetic field is
adjusted to a value that lies in the vicinity of a Feshbach resonance. The mixture is then further evaporated
until Bose-Einstein condensation of 23Na appears.

that close to a Feshbach resonance βNaK scales as βNaK ∝ a4
NaK [54]. With this in mind

the evaporation sequence for sympathetic cooling of 40K was optimized by the following
procedure:

1. Evaporate the 40K 23Na mixture in the initially prepared collision channel
|F = 1, mF = 1〉 ⊗ |F = 9/2, mF = 9/2〉 at a guiding field of ' 14.5G until three-body
loss of 40K becomes significant.

2. Perform a multi-level Landau-Zener sweep at 14.5G to transfer the mixture to a
Feshbach resonant collision channel (e.g. |F = 1, mF = 1〉 ⊗ |F = 9/2, mF = −7/2〉).

3. Ramp the magnetic field to a value where the inter-species scattering length is small
enough to suppress three-body loss but still allows for thermalization between 23Na
and 40K.

Fig. 2.20 shows the experimental sequence that was used to optimize the sympathetic
cooling procedure.

The mixture is evaporated in the single beam dipole trap with only a weak crossed trap
present until the 1064nm laser is at 10% of the total power of 7.5W. Then the resonant
collision channel is prepared and the magnetic field is set to a value in the vicinity of
a Feshbach resonance. The mixture is further evaporated until 1.75% of total power.
We then measure both atom numbers after evaporation and observe when a 23Na BEC
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is prepared in presence of 40K. Fig. 2.21 shows a scan of the magnetic field at which
sympathetic cooling is performed.
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Feshbach optimized sympathetic cooling of 40K

Figure 2.21 – 40K atom number in |F = 9/2mF = −7/2〉 after combined evaporation in the crossed dipole
trap as function of the applied magnetic field. Two Feshbach resonances at ' 90G and ' 81.5G result in
strong loss of 40K in their vicinity. The arrow indicates the field that gives best results for sympathetic cooling.
Note the double peak structure of the 90G resonance feature, which is caused by a reduction in evaporation
efficiency due to the large three-body loss rate.

We observe strong loss of 40K caused by two Feshbach resonances at 81.5G and 90.2G.
Evaporation works best close to the magnetic field value that corresponds to zero scat-
tering length. The position and width of both Feshbach resonances can be determined
more precisely by first evaporating the mixture at the optimal field of B ' 85.5G and then
measuring 40K atom loss as a function of magnetic field. Fig. 2.22 shows the result of this
measurement for two different hold times in the dipole trap after the magnetic field has
been adjusted.

Unfortunately the magnetic field is not set arbitrarily fast. For this reason the shape
of the loss features at 81.5G and 90.2G become asymmetric due to atom loss occurring
when the magnetic field is swept form the value used for evaporation to a value that lies
above (or below) the respective Feshbach resonance. From Fig. 2.22 we can determine the
position of both resonances and estimate their widths (the width of the lower resonance
is not accurate):

B1 = 81.5G, ∆B1 ' −1G B2 = 90.2G, ∆B2 = −2.5G (2.48)
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Figure 2.22 – Feshbach loss spectroscopy in the |F = 1,mF = 1〉 ⊗ |F = 9/2,mF = 9/2〉 collision
channel. The mixture is evaporated in the crossed dipole trap at a magnetic field of 85.5G to suppress three-
body loss. The field is then set to the value at which the loss is detected. 40K atom number is the detected
after a holding time of 100ms (500ms). The position of both Feshbach resonances can be clearly determined.
For the resonance at 90.2G also the width can be clearly identified as the distance between the minimum and
maximum of atom loss. For the resonance at 81.5G the identification of the width is less accurate.

Fig. 2.23 displays the inter-species scattering length aNaK as function of magnetic field
in the vicinity of both Feshbach resonances. The scattering length is calculated according
to [55]:

aNaK(B) = −690a0 · (1+
∆B1

B − B1
+
∆B2

B − B2
) (2.49)

With this technique at our disposal we can produce degenerate Bose-Fermi mixtures
with varying atom number ratio. To do so, we set the magnetic field to 85.5G and evap-
orate to a final trap depth of ' 0.9µK. For 23Na alone this evaporation sequence results
in a condensate fraction of > 95% (compare Fig. 2.19). We then vary the atom number
ratio of the mixture by changing the detuning of the 23Na 3D-MOT cooling laser within
±2MHz. Although the total number of 23Na is reduced by a factor of 2 − 3 compared to
evaporation without loading 40K we still produce almost pure Bose-Einstein condensates.
Fig. 2.24 shows a series of dual species absorption images obtained after a time of flight
of 7.5ms (8.25ms for 23Na).

The moderately negative inter-species scattering length leads to an increase of density
in the trap center for both species. This effect is still visible in the optical density of both
atom clouds after a long time of flight (see row c) in Fig. 2.24). Since the intra-species
scattering length of 23Na is positive this configuration is ideal for sympathetic cooling;
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Figure 2.23 – 40K 23Na inter-species scattering length in the |F = 1,mF = 1〉 ⊗ |F = 9/2,mF =

9/2〉 collision channel as function of magnetic field (see equation 2.49). The horizontal red line indicates the
background scattering length of ' −690a0. The black arrow indicates the field at which sympathetic cooling
works best.

Absorption images of degenerate 23Na40K Bose-Fermi mixtures  

a)
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c)

NK/NNa=0.60 NK/NNa=0.49 NK/NNa=0.34 NK/NNa=0.13
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Figure 2.24 – Dual wavelength absorption images of deeply degenerate Bose-Fermi mixtures of 23Na row a)
and 40K row b). Row c) shows a sum along the y-direction. The density distribution of the fermionic 40K clearly
is affected by attractive interaction with the 23Na BEC.
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we get high density in the overlap region whereas at the same time the mixture is stable
against phases separation and collapse [59]. At the same time we can precisely adjust the
three-body loss coefficient. When prepared in a quasi 1D geometry the 40K 23Na mixture
could well be used to investigate stable bright dual species solitons predicted to exist
in attractive Bose-Fermi mixtures [60] with repulsive Boson interaction. The increased
density overlap in the center of the trap could also be used for efficient association of
Feshbach molecules well below the critical temperature for Bose-Einstein condensation.

2.9 Summary

The presented experimental setup is capable of producing degenerate Bose-Fermi mixture
of 40K 23Na at temperature as low as 40% of the Fermi temperature. In this configura-
tion more than 95% of the 23Na occupy the groundstate of the trapping potential. It was
crucial to establish full control of the internal hyperfine state of both species in order to
suppress inelastic spin-exchange and three-body losses. Precise control of the external
magnetic field allows us to address inter-species Feshbach resonances and thereby adjust
the effective low-temperature interaction potential between the atoms. In it’s current con-
figuration our experimental setup is the well suited for further experiments on association
of weakly bound Feshbach molecules and high resolution molecular spectroscopy. More-
over the setup features in-vacuum field electrodes and a separate glass science with large
optical access to facilitate future experiments on dipolar interacting quantum mater.
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CHAPTER 3

Feshbach molecules

This chapter treats the theoretical background and the experimental implementation of
molecule association via magnetically tunable Feshbach resonances. Extensive review ar-
ticles exist on the physics of Feshbach resonances in general [55] and molecule association
in particular [61]. A Feshbach resonance appears in the low temperature multi-channel
collision process of two atoms with internal hyperfine structure, when a bound state in an
energetically not accessible (closed) collision channel is resonant (equal in energy) with
the scattering state of the colliding unbound particles. For collisions of cold neutral atoms
the closed channel and the scattering state are two different hyperfine state configurations
of the atoms. The resonant closed channel can be populated (free atoms are associated
to molecules) either by adiabatically transforming the scattering state into the bound
state using magnetic field sweeps (magneto-association) [62] or by applying a suitable
RF pulse that changes the hyperfine state configuration of the scattering channel to the
configuration of the near-threshold bound state (RF-association) [63]. The difference in
magnetic moment of the scattering state and the closed channel can be used to precisely
adjust the binding energy of the bound state with respect to the total energy (threshold)
of the colliding atoms.
Since the first observation of ultracold 85Rb 87Rb Feshbach molecules in 2006 [64], het-
eronuclear Feshbach molecules have been produced in Bose-Bose mixtures of 87Rb 133Cs
[65], 87Rb 41K [66] and 87Rb 23Na [67] as well as in Bose-Fermi mixtures of 87Rb 40K
[68], 23Na 6Li[69] and 23Na 40K [70]. For the subject of this thesis it is most relevant that
Feshbach molecules of chemically different atoms can serve as a starting point for the
production of polar groundstate molecules via STIRAP.

The following experimental requirements need to be fulfilled in order to successfully
associate Feshbach molecules:

• A near degenerate mixture of the constituent elements.

• Coherent control over the internal hyperfine state of the atoms for clean preparation
of collision channels that exhibit Feshbach resonances suitable for molecule associa-
tion.

• Precise and fast magnetic field control to address Feshbach resonances and change
the binding energy of the least-bound molecular state in the closed channel.
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• Internal state sensitive detection methods for implementation of internal state con-
trol and direct observation of Feshbach molecules.

In this chapter, I will discuss the specialized equipment and experimental techniques
that are required for collision channel preparation, magnetic field control, RF association
of Feshbach molecules and internal state sensitive detection by absorption imaging.

3.1 Theoretical background: Feshbach resonances and molecule

association

A complete theoretical description of Feshbach resonances can be found in the review
article [55] and the references therein. In this section the presentation of the subject
is limited to the mechanism that is responsible for the appearance of strong Feshbach
resonances in s-wave collision of ultracold atoms. I therefore neglect relativistic spin-
dependent inter-particle interactions [55] and do not consider partial waves with l > 0.
We consider the scattering process of two particles with reduced mass µ in presence of a
homogeneous external magnetic field B. The internal structure of both particles is given
by the groundstate hyperfine structure. The Hamiltonian of the total system is given by:

H = HR +Hint . (3.1)

Here HR is the Hamiltonian that governs the relative motion of the two atoms and Hint

describes their internal state. Hint comprises hyperfine interaction between the electron
spins and the nuclear spins of the atoms as well as the Zeeman interaction between the
atoms and the external magnetic field. The Hamiltonian of the relative motion is given
by:

HR =
−ħh2

2µ
d2

dR2
+ V (R) (3.2)

The molecular potential V (R) that governs the collision process can be expressed in terms
of projection operators on the spin-singlet (J = 0) and the spin-triplet (J = 1) subspace:

V (R) = V1(R)|1〉〈1|+ V0(R)|0〉〈0|. (3.3)

Here V0(R) is the singlet potential of the molecular groundstate i.e. X 1Σ and V0(R) is the
triplet potential i.e. a3Σ. The scattering problem is analyzed in the Breit-Rabi pair basis:

|α〉= |FmF 〉Na|F ′m′F 〉K , (3.4)

which diagonalizes Hint . Here F and mF just label the basis states and are only good
quantum numbers if B = 0. The product state |α〉 is called a collision channel. The collision
channel basis that spans the complete Hilbert space corresponding to H is then given by:

{|α〉|Ψα(R, E)〉}α, (3.5)

where Ψα(R, E)〉}α are (depending on the energy E) either scattering wave functions or
bound states of the scattering problem. Since in general, |α〉|Ψα(R, E)〉 is not an eigenstate
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of the electron spin, the interaction potential (equation 3.3) mixes different collision chan-
nels (with the same value of mF ) when the atoms approach each other. In this sense, a
general scattering process of cold atoms with internal hyperfine structure is a coupled chan-
nel problem. As a result, a spin-polarized 23Na 40K Bose-Fermi mixture that is not prepared
in a state with maximal angular momentum projection can experience spin-exchange col-
lisions. Since the interaction potential commutes with the total spin operator, for further
analysis we express |α〉|Ψα(R, E)〉 in the spin basis [71]

|JmJ mNamK〉= |JmJ INamNa IK mK〉, (3.6)

via
|α〉|Ψα(R, E)〉=

∑

(JmJ mNamK )

〈JmJ mNamK |α〉|JmJ mNamK〉φJ (R, E)/R. (3.7)

The sum includes only spin basis states that have the same value for the projection of the
total angular momentum as the collision channel |α〉 i.e. mα = mJ +mNa +mK . The scat-
tering wavefunction φJ (R, E) is the solution to the time-independent radial Schrödinger
equation:

�

ħh2

2µ
d2

dR2
+ VJ (R)

�

φJ (R, E) = EJφJ (R, E). (3.8)

Here E is the total energy of the collision process, R the internuclear distance and the index
J = 0,1 indicates either spin-singlet or spin-triplet. In this basis the relative Hamiltonian
HR is now diagonal and the mixing between the basis states is caused by non-diagonal
terms of the hyperfine interaction. The Hamiltonian for the internal structure is given by:

Hint = ANaINaJ+ AK IKJ+HZ (3.9)

The Zeeman Hamiltonian is diagonal in the spin-basis

Ez = µB(gJ mJ + g INamNa + g IK mK) · B (3.10)

with electronic and nuclear g-factors gJ , g INa, g IK . The hyperfine Hamiltonian

Hhf = ANaINaJ+ AK IKJ (3.11)

couples singlet and triplet spin-basis states. A complete diagonalization of the total Hamil-
tonian H = HR + Hint requires precise knowledge of the singlet and triplet groundstate
Born-Oppenheimer potentials and involves a numerical integration of a system of coupled
radial Schrödinger equations. The solutions of these coupled channel equations are all
bound and scattering states of the interacting atoms.
In order to understand the appearance of Feshbach scattering resonances in the context
of ultracold gases it is instructive to consider a simplification of the complete coupled
channels problem. Assume that the we can describe the scattering problem to a good ap-
proximation by just two scattering channels (see Fig. 1 of [55]). The system is prepared
in the entrance channel |α〉 with a total collision energy E that is close to zero and smaller
then all other energy scales in the problem. The spatial part of the entrance channel there-
fore is an unbound scattering wavefunction Ψα(R, E). The second channel correspond to
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a different hyperfine state configuration |c〉 that exhibits a different interaction potential
and has an internal energy that is larger then the total energy of the entrance channel. For
this reason the scattering continuum of this channel is energetically not accessible during
the collision process and channel |c〉 is called the closed channel of the problem. A Fesh-
bach scattering resonance can occur if one of the bound state solutions |C〉 = ΨC(R)|c〉 of
the closed channel (with eigenenergy Ec) is coupled to the entrance channel by a position
dependent perturbation operator W (R). For s-wave collisions this coupling is mediated by
the spin-dependent molecular potential V (R).
Without coupling to the closed channel the elastic scattering process in the entrance chan-
nel is solely characterized by a background phase shift ηbg(E). For a s-wave collision the
phase shift is related to the scattering wavefunction Ψα(R, E) at large internuclear distances
via

Ψα(R, E)/R→ c
sin(kR+η(E))

p
k

· exp(iη(E)) as R→∞ (3.12)

The coupling operator W (R) however mixes the open and the closed channels when the
total energy of the entrance channel E approaches the energy of the bound state EC in
the closed channel. A resonance is associated with a π phase change of the scattering
wavefunction in the entrance channel when the collision energy E is varied across a small
energy interval around EC . As we will see below, for observation and control of Feshbach
resonances in ultracold gases the kinetic energy of the collision remains fixed and the
energy difference E − EC is changed by an external magnetic field that affects the internal
energy of each channel. It is also important to note that Feshbach resonances in ultracold
gases appear always as threshold resonances i.e. at a point where the boundstate in the
closed channel asymptotically approaches the scattering continuum [72] of the entrance
channel. In this situation the scattering phase is modified by a resonant contribution[55]:

η0(E) = ηbg(E) +ηres(E), (3.13)

where ηres(E) is given by a Breit-Wigner function [73]:

ηres(E) = − tan−1

� 1
2Γ (E)

E − EC −δE(E)

�

(3.14)

The energy dependent resonance parameters width Γ (E) and shift δE(E) are determined
by the inter-channel coupling operator W (E) via:

Γ (E) = 2π|〈C |W (R)|α〉|2

δE(E) = P

∫ +∞

−∞

|〈C |W (R)|α〉|2

E − E′
dE′,

(3.15)

where P indicates a Cauchy principal value integration.
Since the scattering potential in the entrance channel is of van der Waals type
(i.e. V (R)∝ 1/R6), the s-wave scattering phases shift is given by the effective range expan-
sion [12]:

k cot[η0(E)] =
1
a
+

1
2

r0k2 + o(k3), (3.16)
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where the constants a and r0 have the dimension of length and are called scattering length
and effective range. For s-wave collisions at ultracold temperatures (i.e. in a situation
where k→ 0) it is a good approximation to only retain the first term of the expansion:

tan[η0(E)]' η0(E)→−ka. (3.17)

In particular we have for the background phase-shift:

tan[ηbg(E)]' ηbg(E)→−kabg . (3.18)

For collision that only involve a single open channel and are therefore purely elastic the
scattering length a is related to the energy dependent elastic scattering cross section σel(E)
via [55]

σel(E) =
π

k2
|1− exp(−i2ka)|2→ 4πa2, as k→ 0 (3.19)

By taking the limit of low collision energy k→ 0 of equations 3.13,3.14 and 3.18:

1
2
Γ (E)→ kabgΓ0, (3.20)

δE(E)→ δE0, (3.21)

tan[ηres(E)]→
−kabgΓ0

−EC −δE0
,

we finally arrive at a relation between the scattering length and the energy of the bound
state in the closed channel:

a(EC) = abg +
abgΓ0

−EC −δE0
. (3.22)

Note that the zero of energy or scattering threshold is always defined as the internal energy
(hyperfine + Zeeman) of the entrance channel and therefore E→ 0 as k→ 0. The energy
of the bound state relative to threshold can be changed by adjusting the external magnetic
field:

EC(B) = δµ(B − BC), (3.23)

where δµ is the difference in magnetic moment of open and closed channel and BC the
value of the magnetic field where EC = 0. In this way we finally obtain the well-known for-
mula for the s-wave scattering length as function of magnetic field for an isolated Feshbach
resonance:

a(B) = abg

�

1−
∆B

B − B0

�

(3.24)

The phenomenological width of a magnetic field controlled Feshbach resonance is given
by:

∆B =
Γ0
δµ

(3.25)

The position of the Feshbach resonance is shifted by the interaction between the closed
and the open channel:

B0 = BC +δB, (3.26)
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where the magnitude of this shift is given by:

δB = −
δE0

δµ
. (3.27)

Since the scattering length is directly related to the collision cross section, Feshbach res-
onances are generally detected in ultracold gases by observing a strong increases of the
three-body loss rate. This method is conventionally termed Feshbach loss spectroscopy.
Experimentally the resonance position is identified with the point of maximal three-body
loss rate and the width with the distance between the position and a magnetic field at
which the loss in minimal (see Fig. 2.22). Depending on the sign of abg and δµ the point
where the scattering length becomes zero is either below or above the resonance position.
For the 23Na40K mixture 21 Feshbach resonances have been identified and characterized
by loss spectroscopy [44]. Table 3.1 lists the collision channel, resonance position and
resonance width for the 11 s-wave resonances from [44]:

Collision channel Position B0 Width ∆B

|F = 1mF = 1〉Na|F = 9/2mF = −3/2〉K 116.9 0.5
|F = 1mF = 1〉Na|F = 9/2mF = −3/2〉K 129.5 4.6

|F = 1mF = 1〉Na|F = 9/2mF = −5/2〉K 175 20.0
|F = 1mF = 1〉Na|F = 9/2mF = −5/2〉K 96.5 0.5
|F = 1mF = 1〉Na|F = 9/2mF = −5/2〉K 106.9 1.8

|F = 1mF = 1〉Na|F = 9/2mF = −5/2〉K 138 30
|F = 1mF = 1〉Na|F = 9/2mF = −7/2〉K 81.6 0.2
|F = 1mF = 1〉Na|F = 9/2mF = −7/2〉K 89.8 1.1 (2.5)
|F = 1mF = 1〉Na|F = 9/2mF = −7/2〉K 108.6 6.6

|F = 1mF = 1〉Na|F = 9/2mF = −9/2〉K 78.3 1.1
|F = 1mF = 1〉Na|F = 9/2mF = −9/2〉K 88.2 4.3 (12)

Table 3.1 – Collision channels, resonance positions and resonance widths for all 11 s-wave Feshbach reso-
nances that have been identified in [44]. Values in brackets indicate the results of our measurements.

At a magnetic field that is close to the resonance position B0 the molecular bound state
is strongly affected by mixing with the scattering state. Close to threshold the binding
energy depends quadratically on the scattering length [55]:

Eb(B) =
ħh2

2Ma(B)2
, (3.28)

where M is the reduced mass of the colliding atom pair. Since the bound state crosses the
threshold to the scattering continuum at B = B0 and due to the fact that it is resonantly
dressed by the scattering state it is possible to transfer the initial scattering state to the
molecular boundstate by adiabatically changing the magnetic field from a value above
the resonance, where the bare bound state energy Ec > 0 to a value below the resonance
where Ec < 0. It is also possible to associate Feshbach molecules by RF association [63]
when the magnetic field is adjusted to a value that is slightly below resonance.
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3.2 RF association of 23Na40K Feshbach molecules

In our experiment we associate Feshbach molecules with a binding energy of Eb ' h83kHz
using the s-wave resonance at B0 ' 89.8G in the
|F = 1mF = 1〉Na|F = 9/2mF = −9/2〉K collision channel. This particular resonance has
been chosen deliberately. Starting from a Feshbach molecule in this hyperfine state con-
figuration it is possible to populate the absolute hyperfine groundstate of the 23Na40K
molecule and thereby to suppress spin-exchange collisions. This statement will become
clear when STIRAP is discussed below in section 4.6.1. Fig. 3.1 illustrates how weakly
bound molecules can be associated starting from a near degenerate Bose-Fermi mixture.
The 23Na40K mixture is prepared in the non-resonant
|F = 1, mF = 1〉Na|F = 9/2, mF = −7/2〉K channel at a magnetic field that is set slightly
below 85.5G a resonance in the neighboring |F = 1, mF = 1〉Na|F = 9/2, mF = −9/2〉K
channel.
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Figure 3.1 – Experimental scheme for RF association of 23Na40K Feshbach molecules. The 23Na40K mixture
is prepared in the non-resonant collision channel |F = 1,mF = 1〉Na|F = 9/2,mF = −7/2〉K at a
magnetic field that is set just below the Feshbach resonance in the the neighboring |F = 1,mF = 1〉Na|F =

9/2,mF = −9/2〉K channel. A RF pulse drives the transition from the non-resonant channel to the resonant
one. Depending on the frequency of the RF pulse either the hyperfine state of free 40K atoms is changed
or weakly bound molecules are associated (see Fig. 3.4). A second RF pulse transfers non-associated 40K
atoms to the |F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K channel in order to reduce the background signal
during absorption imaging of Feshbach molecules.

Close to resonance the binding energy Eb of the dressed molecular bound state ap-
proaches the scattering continuum quadratically according to equation 3.28. The molec-
ular bound state can now be directly populated by a suitable RF pulse that transfers 40K
atoms from the |F = 9/2, mF = −9/2〉K hyperfine state to the adjacent |F = 9/2, mF =
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−9/2〉K state. In this way the 23Na40K mixture is transferred to the Feshbach resonant
channel. If the frequency of the RF photon equals the difference in Zeeman energy i.e.
ωRF = δµ · B/ħh the mixture is transferred to the open channel. By increasing the RF fre-
quency to ωRF = δµ · B/ħh+ Eb the bound state in the closed channel is populated. In the
experiment we apply an additional RF cleaning pulse on the |F = 9/2, mF = −7/2〉 → |F =
9/2, mF = −5/2〉 transition in order to remove 40K atoms from the |F = 9/2mF = −7/2〉
state that have not been transferred to the |F = 9/2mF = −7/2〉 state. The purpose of
this cleaning pulse is to suppress non-resonant absorption when we directly detect Fesh-
bach molecules at the given magnetic field by absorption imaging on the |F = 9/2, mF =
−9/2〉 → |F ′11/2, mF = −11/2〉 cycling transition.
In order to estimate the RF coupling we can achieve in the experiment we measure the
Rabi frequency for the bare |F = 9/2, mF = −7/2〉 → |F = 9/2, mF = −9/2〉 transition.
For this measurement the 40K atoms are detected simultaneously in both hyperfine states
by internal state selective absorption imaging. Fig. 3.2 shows the result of two differ-
ent measurements of the Rabi frequency. We measure the normalized difference in atom
count

N =
N−9/2 −αN−7/2

N−9/2 +αN−7/2
(3.29)

as function of the RF pulse length and perform a least square fit to obtain the Rabi os-
cillation period. We also include an exponential decay and an additional fit parameter
α to account for the different absorption cross sections of both imaging transitions. The
number N−9/2 and N−7/2 are derived from the absorption images by assuming the maximal
absorption cross-section for a cycling transition [47].

σsc =
3λ2

2π
(3.30)

In panel a) the Rabi frequency is measured with 40K alone and in panel b) in presence
of 23Na. Since the measurement is performed close to a Feshbach resonance the interaction
between the two species results in an increased decoherence rate. In both cases the Rabi
frequency is determined to ΩRF ' 2π · 14kHz and α= 0.32.
For generating the RF signal we use custom build direct digital syntheziser (DDS) circuits
that also allow us to perform continuous frequency sweeps for Landau-Zener transfers
as well as to generate amplitude modulated RF pulses. The output of the DDS circuits
are combined by RF switches and are then amplified by a 25W power amplifier. Finally
a custom build RF coil antenna (' 10 windings, ' 4cm diameter) is placed as close as
possible to the glass science cell. We monitor the transmitted RF signals by an amplified
pick up antenna.
Precise and fast magnetic field control is established by a custom build current control
loop. Fig. 3.3 shows a schematic of the current magnetic field setup.

Water-cooled Helmholtz coils are placed around the glass science cell. The electrical
current is controlled by two different actuators based on metal oxide semiconductor field
effect transistors (MOSFETs). The major part of the total current is controlled by 4 iden-
tical high power MOSFET’s (Semikron SKM111AR) that are mounted on a water cooled
copper base plate. The gate-source voltage is supplied by a custom build PI controller. The
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Measurement of the 40K mF=-7/2 to mF=-9/2  Rabi frequency
N

or
m

al
iz

ed
 a

to
m

 c
ou

nt

a)

Pulse duration (µs)
0 100 200 300

0.0

1.0

-1.0

-0.5

0.5

N
or

m
al

iz
ed

 a
to

m
 c

ou
nt

b)

Pulse duration (µs)

0.0

1.0

-1.0

-0.5

0.5

0 100 200 300

   data

     fit
Ω=2π•14.3kHz Ω=2π•14.2kHz

Figure 3.2 – Measurement of the peak Rabi frequency for the bare |F = 9/2mF = −7/2〉 → |F =

9/2mF = −9/2〉 transition for 40K alone a) and in in presence of 23Na b). In presence of 23Na the decoher-
ence rate is significantly increased.

current is measured directly after the MOSFETS via a high precision current transducer
(LEM IT 700-SB Ultrastab). The bandwidth ' 1kHz of this control loop is limited by the
large gate capacitance of the high power MOSFETs. For this reason we upgraded the cur-
rent control setup by a fast bypass that can control a maximal current of 15A. For this
bypass we use a different type of MOSFET with significantly smaller gate capacitance (In-
ternational Rectifiers IRL-88721). To charge and discharge the gate as fast as possible we
drive the bypass MOSFET by a specialized current feedback amplifier (Linear technologies
LT1210). With these modifications we increase the loop bandwidth by one order of mag-
nitude. In its current configuration we can execute magnetic field changes of ' ±10G with
a 1/e settling time of < 2ms. For fast switch off of the magnetic field we use a high power
insulated gate bi-polar transistor (IGBT) (Semikron SKM800GA176D) and connect a 30µF
high voltage capacitor in parallel with the Feshbach coils. When the IGBT is switched to
non-conducting, the Feshbach coils and the capacitor form a LC-circuit.A high power fast
recovery diode (FRD) (ABB 5SDF 12F3005) ensure that the oscillation in the LC-circuit is
stopped after one quarter of a period. This configuration ensures that the magnetic field
generated by the Feshbach coils decays with a 1/e time constant of τ < 150us after switch
off. This decay time is currently limited by eddy currents. The high voltage capacitor is
discharged on a much longer timescale using a shunt resistor.
The experimental sequence that is used for RF association of Feshbach molecules is the
following: The mixture is evaporated in collision channel |F = 1, mF = 1〉Na|F = 9/2, mF =
−7/2〉K at a magnetic field of 85.5G (see section 2.8.1 for details). At a trap depth of' 1µK
evaporation is stopped and the mixture is irradiated by an amplitude modulated Black-
man RF pulse. In order to record a molecule association spectrum the frequency of the
RF pulse is varied in an interval of ±125kHz around the the bare |F = 9/2, mF = −7/2〉 →
|F = 9/2, mF = −9/2〉 transition. The pulse area is adjusted to ' 10 · π for the atomic
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Figure 3.3 – Magnetic field control setup based on 4 high power MOSFETs and a fast bypass MOSFET. Two
separate control loops are used to stabilize the total current that runs through the coils by feedback to the
gate-source Voltage of the MOSFETs. A high voltage capacitor ensures in combination with two fast recovery
diodes that the current can be swithced off in less then 150µs . More details are given in the main text.

transition. Directly after the spectroscopy/association pulse a second RF π-pulse is used
to transfer all 40K atoms that have not been transferred to mF = −9/2 from mF = −7/2
to mF = −5/2. Atoms or weakly bound molecules in the mF = −9/2 state are detected by
direct absorption imaging at 85.5G. The Zeeman splitting between the mF = −9/2 and the
mF = −5/2 state allows us to selectively only image atoms or molecules in the target state.
We image the atoms and Feshbach molecules with σ− polarized light along the direction
of the magnetic field.

In this way we can address the |F = 9/2mF = −9/2〉 → |F ′11/2mF = −11/2〉 cycling
transition for best signal to noise and most reliable atom/molecule number estimation.
In order to not overestimate the molecule number we assume unity Clebsch-Gordon co-
efficient and carefully determine the magnification of our imaging system by shifting the
atomic cloud using the position encoded translation stage.

Fig. 3.4 shows a typical RF association spectrum at a magnetic field of 85.5G. We
observe a power broadened atomic peak at a RF frequency of 22.801MHz. A second
peak that is offset by the binding energy of the Feshbach molecule at this magnetic field
Eb(85.5G) = h · 83kHz is clearly visible. Assuming an equal absorption cross section for
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RF association spectrum at 85.5G
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Figure 3.4 – RF association spectrum of 23Na40K Feshbach molecules at a magnetic field of B = 85.5G.
The binding energy of the molecule is given by the distance between the atomic resonance at 22.8108MHz
and the molecular resonance at ' +83kHz. The grey shaded area indicates highlights the effect of the
inter-species interaction in the target collision channel.

absorption imaging of Feshbach molecules and the bare 40K atoms we get a lower bound
of ' 104 on the molecule number. Fig. 3.4 deliberately displays non-averaged mea-
surements that were recorded in individual experimental runs in order to illustrate the
exceptional shot to shot stability and almost background free detection we can achieve
with our experimental sequence. The asymmetry of the atomic peak highlighted by the
grey shaded-area in Fig. 3.4 is caused by the strong dressing of the 40K atoms in presence
of the near-degenerate 23Na cloud. The binding energy as function of magnetic field can
also be measured by RF loss spectroscopy. Fig. 3.5 shows the result of these measurements
together with a least square fit of equation 3.28. In this way we determine the position
B0 ' 88G and width δB ' 12G of the underlying Feshbach resonance. As a final measure-
ment in Fig. 3.6 we determine the temperature of the Feshbach molecules via a time of
flight (TOF) measurement and compare the expansion dynamics to the one of 40K atoms.
The temperature of the cloud is obtained by fitting a Gaussian function to the density
distribution at varying time of flight (TOF) and in second step by a least square fit of the
measured cloud widths to the TOF formula

σ(tTOF ) =

√

√

σ2
0 +

kbT
m

t2
TOF (3.31)

Here m is either the mass of the atoms or the Feshbach molecule, T the temperature, σ0

the initial cloud size in the dipole trap and tTOF the time after release from the trap.
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3.2.1 Improved Feshbach association starting from a deeply degenerate

Bose-Fermi mixture

While writing this report we succeeded in using the Feshbach optimized evaporation tech-
nique from section 2.8.1 to reduce the temperature of the Feshbach molecules by a factor
of 2.7 to 330nK while keeping the total number of molecules constant. Moreover, the life-
time of the Feshbach molecules increased by almost one order of magnitude to 13.5ms.
Fig. 3.7 shows a time of flight measurement for 23Na40K Feshbach molecules. A least
square fit of equation 3.31 yields an initial cloud size of 10µm and assuming a thermal
cloud a temperature of T = 330nK. Fig. 3.8 shows a lifetime measurement of Feshbach
molecules. A least square fit of a single exponential decay curve yields a 1/e lifetime
of τ = 13.5ms. Fig. 3.9 shows how the total number of associated Feshbach molecules
depends on the pulse length of the RF pulse. Finally Fig. 3.10 gain shows an Feshbach
molecule association spectrum measured with a pulse area of ΩRF · τRF ' 10, where τRF

is the pulse duration of the Blackman pulse. By comparing the spectrum of Fig. 3.10 to
the spectrum of Fig. 3.4 we observe that the molecule association peak is significantly
narrowed at lower temperatures. This observation is in good agreement with results ob-
tained by time-dependent perturbation theory [63] where the shape of the molecular peak
reflects the energy distribution of the trapped Bose-Fermi mixture. In addition, also the
bare atomic resonance appears to be more narrow at lower temperatures. In contrast the
long tail on the low energy side of the atomic resonance (grey shaded area) did not change
while going to lower temperatures. As already mentioned in the introduction of this
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Figure 3.7 – Time of Flight measurement of 23Na40K Feshbach molecules after RF association. A least square
fit of equation 3.31 yields a temperature of T = 330nK and an initial cloud size of σ0 = 10µm.
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RF association spectrum at 85.5G and 330nK
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Figure 3.10 – RF association spectrum of 23Na40K Feshbach molecules at a magnetic field of B = 85.5G
and a temperature of T = 330nK. The binding energy of the molecule is given by the distance between the
atomic resonance at 22.8108MHz and the molecular resonance at ' +81kHz. The more narrow molecular
resonance compared to Fig. 3.4 reflects the decrease in temperature. The grey shaded area again highlights
the effect of the inter-species interaction in the target collision channel. The drop in signal around −50kHz is
an artifact caused by wrong programming of the MW evaporation driver.

report the favorable mass ratio between the light bosonic species and the heavy fermionic
one, combined with stronger confinement of 40K in the 1064nm dipole trap results in a
good density overlap between both species even in the degenerate regime, where Fermi
pressure results in a reduction of phase-space overlap. The slightly negative inter-species
interaction in the collision channel that is used for evaporation increases density overlap
even further [59]. As a result we do not have to perform Feshbach association above the
the critical temperature for Bose-Einstein condensation of 23Na and chances are good to
create heteronuclear fermionic groundstate molecules at unprecedented phase-space den-
sity.
In future experiments we will try whether molecule association via magnetic field sweeps
can improve the low association efficiency of only ' 10%.

3.3 Summary and discussion

Starting from near-degenerate Bose-Fermi mixture of 23Na40K we produce ' 104 Feshbach
molecule via RF association. Molecule association is performed at a magnetic filed that
is ' 2.5G below a 12G broad s-wave Feshbach resonance in the |F = 1mF = 1〉Na|F =
9/2mF = −9/2〉K collision channel at 88G. The temperature of those weakly bound
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molecules is < 350nK and they live long enough to perform high resolution molecular
spectroscopy and groundstate transfer via STIRAP. The hyperfine state configuration of
the Feshbach molecules with total projection of angular momentum mF = −7/2 allows
to couple them directly to the absolute hyperfine groundstate of the 23Na40K molecule.
Rovibronic groundstate molecules should be therefore not susceptible to spin-exchange
collisions [19]. Due to the favorable mass imbalance between the bosonic species and the
fermionic one the density overlap between the two clouds is not significantly decreased as
the mixture becomes more degenerate. Moreover the the attractive effective interaction
between the two clouds at 85.5G increases density overlap even further and facilitates
efficient sympathetic cooling prior to molecule association. In this respect the 23Na40K
mixture offers a significant advantage over the 40K87Rb mixture for which Feshbach asso-
ciation works optimal just above the critical temperature for Bose-Einstein condensation
of 87Rb [74].



CHAPTER 4

Molecular spectroscopy

Coherent population transfer of Feshbach molecules (see section 3.2) to the rovibronic
groundstate |X 1Σν = 0J = 0〉 relies on the identification of a suitable molecular level
that serves as intermediate state in the STIRAP process. This level has to offer a large
transition dipole moment (TDM) to both the Feshbach state and the |X 1Σ,ν = 0, J = 0〉
state. For this purpose, significant singlet-triplet mixing is required in order to facilitate
a two-photon coupling between Feshbach molecules and the |X 1Σ,ν = 0, J = 0〉 state. In
diatomic alkali molecules singlet-triplet mixing is primarily mediated by spin-orbit inter-
action of near degenerate vibrational levels of different spin-character (multiplicity). In
order to find a two-photon transition that can be used for efficient groundstate transfer
one first relies on ab initio calculations of the molecular level structure or preexisting
measurements to identify a pair of excited electronic states with overlapping vibrational
substructure. Suitable candidate states are then selected on basis of favorable Frank-
Condon factors [75] and by searching for accidental resonances between two vibrational
levels of different spin character. In a second step high resolution molecular spectroscopy
is performed in order to determine the exact transition frequencies as well as the fine and
hyperfine structure of the candidate state. The present chapter introduces the level struc-
ture of the 23Na40K molecule relevant for our choice of intermediate state. I then present
results obtained by photoassociation (PA) spectroscopy of ultracold 23Na and 40K atoms as
well as high resolution molecular spectroscopy on ultracold 23Na40K Feshbach molecules.
These measurements are used to identify a candidate state for STIRAP that belongs to the
spin-orbit coupled d3Π/D1Π complex (see Fig. 4.1). A molecular perturbation model is
introduced that is used to assign quantum numbers to all observed resonances and extract
the model parameters from our data. We then perform coherent two-photon spectroscopy
that allows us to measure the binding energy of the |X 1Σ,ν= 0, J = 0〉 state. Finally I will
discuss the adequacy of the identified intermediate state for coherent population transfer.

4.1 Overview

We only consider vibrational levels belonging to the lowest eight electronic states of the
23Na40K molecule as potential intermediate states for STIRAP, since suitable laser sources
in the UV range of the electromagnetic spectrum are not available. These states correlate
at large internuclear distance to the atomic 32S + 42P and 32P + 42S asymptotes. The
relevant potential curves are shown in Fig. 4.1.
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Figure 4.1 – Potential energy curves of the electronic ground state and the lower electronic excited states.
Raman lasers (pump: ∼ 652nm, Stokes: ∼ 487nm ) with frequencies ωP/S and Rabi frequencies ΩP/S

couple a pair of vibrational states in the spin-orbit coupled d3Π/D1Π complex to weakly bound a3Σ Feshbach
molecules and the rovibronic groundstate in X 1Σ . Excited state molecular spectroscopy is performed on the
pump transition.

Candidate levels are located in a range of binding energies where the vibrational struc-
ture of two electronic states with different spin character overlap. The possible combina-
tions are therefore b/A, c/B, d/C and d/D. Due to a high degree of similarity of the
potential curves the d/D manifold seems to be the most promising choice for finding ac-
cidental resonances between spin-singlet and spin-triplet vibrational levels. This manifold
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has been studied intensively in molecular beam experiments [76] and indeed significant
spin-orbit induced singlet-triplet mixing was identified [77, 78]. A more detailed calcula-
tion [79] that also takes into account the Frank-Condon factors for the involved transitions
allows us to aim for a specific pair of vibrational states that simultaneously optimizes the
transition dipole moment for both transitions. The result of this calculation is shown in
Fig. 4.2.
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Figure 4.2 – Modulus squared transition dipole moments [79] from the Feshbach molecule state and the
|X 1Σν = 0J = 0〉 state to the vibrational levels of the spin-orbit coupled d3Π/D1Π complex are given in in
atomic units. Accidental resonances between d3Π and D1Π vibrational states lead to large values of the TDM
for both transitions to a given level. The candidate level with a binding energy of ∼ 1350cm−1 is highlighted.
Binding energies are measured with respect to the atomic 32P + 42S asymptote.
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4.2 Background: Molecular structure of 23Na40K

The quantitative interpretation of high resolution molecular spectroscopy requires a de-
tailed model of the electronic, vibrational, rotational, fine and hyperfine structure of the
molecule under study. This section reviews relevant aspects of the theory of diatomic
molecules including the Born-Oppenheimer approximation, perturbation mechanisms and
the theory of molecular fine and hyperfine structure. I will then present a molecular per-
turbation model of the d3Π/D1Π complex that is used to explain the observed resonances.
The treatment of the next section is primarily based on [80, 75].
A diatomic molecule is a stable bound state of two atoms. The molecular bond is caused
by Coulomb forces between the electrons and the nuclei. The exact non-relativistic Hamil-
tonian H can be approximated by a sum of three operators [80]:

H= HN
kin(R,θ ,φ) +Hel

kin(r1, ...rn) + VC(r1, ..., rn, R). (4.1)

Here HN
kin is the kinetic energy operator of the nuclear motion, Hel

kin the kinetic energy of
the electrons and VC the coulomb interaction between all particles. ri are the coordinates
of the electrons with respect to a molecule-fixed coordinate system, R is the internuclear
distance and φ,θ specify the orientation of this rotating coordinate system with respect to
the laboratory frame of reference.
Analogous to the treatment of the hydrogen atom the kinetic energy of the nuclei HN

kin can
be written as:

HN
kin = HN

kin(R) +
N2

2µR2
(4.2)

with reduced nuclear mass

µ=
mAmB

mA+mB
, (4.3)

radial kinetic energy operator

HN
kin(R) =

−ħh2

2µ

�

∂ 2
R +

2
R
∂R

�

(4.4)

and the angular momentum operator of rotation

N2 = −ħh2
�

1
sin(θ )

∂θ sin(θ )∂θ +
1

sin(θ )2
∂ 2
φ

�

. (4.5)

The kinetic energy of the electrons is given by:

Hel
kin =

−ħh2

2me

n
∑

i=1

∇2
i (4.6)

In addition to the Coulomb forces between the nuclei and the electrons also magnetic
interactions between the different angular momenta within a molecule have to be in-
cluded in order to explain spectroscopic measurements. These relativistic corrections are
phenomenologically accounted for by an operator Hspin.
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4.2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation (BOA) tries to find an approximate solution to
the eigenvalue problem of the total Hamiltonian Htot = H+Hspin by assuming that the
motion of the electrons is adiabatic with respect to the nuclear motion. This is justified by
considering that the large mass ratio of me

µ � 1 results in a separation of time scales for
nuclear and electronic motion; the electrons adjust their positions quasi-instantaneously
to a change in nuclear position. The exact solution to the Schrödinger equation

Htotψ
tot
α = Eαψ

tot
α , (4.7)

where α is a composite index that includes labels for the electronic orbital, molecular
vibration, spin, molecular rotation, etc. is approximated in the BOA by a product of two
wavefunctions:

ψBO
i,ν = φ

el
i (r1, ..., rn, R) · ξν,i(R,θ ,φ), (4.8)

where φel
i (r1, ..., rn, R) is the electronic wavefunction and ξν,i(R,θ ,φ) the vibration-

rotation wavefunction. The index i labels different electron configurations, and ν the
vibrational quantum number. The approximate solution ψBO

i,ν is called a Born-Oppenheimer
(BO) product function and precisely corresponds to the situation where Hspin is neglected
and the electronic motion is adiabatic in the nuclear coordinates. In particular the BOA
entails that:

〈φel
i |H

N
kin|φ

el
i 〉= 〈φ

el
i |φ

el
i 〉H

N
kin (4.9)

The internuclear distance R is not considered as a dynamical variable for the electronic
motion, but appears as a slowly time-dependent (adiabatic) parameter in the electronic
Hamiltonian.
The electronic wavefunction φel

i is a solution to the electronic Schrödinger equation for
fixed internuclear distance R:

Helφel
i (r1, ..., rn, R) = Eel

i (R)φ
el
i (r1, ..., rn, R), (4.10)

where Hel is given by
Hel = Hel

kin + VC(r1, ..., rn, R) (4.11)

For every electron configuration φel
i an effective Hamiltonian for the nuclear motion can

be derived by averaging H= HN
kin +Hel

kin + VC over the electron coordinates:

HN(R,θ ,φ) = 〈φel
i |H

N
kin +Hel

kin + V |φel
i 〉r = HN

kin + Eel
i (R), (4.12)

with
Eel

i = 〈φ
el
i |+Hel

kin + V |φel
i 〉r (4.13)

Note that this corresponds to taking only the diagonal elements of H into account. The
result is an approximate Schrödinger equation for the nuclear motion:

[HN
kin(R,θ ,φ) + Eel

i (R)]ξν,i(R,θ ,φ) = Eν,iξν,i(R,θ ,φ). (4.14)
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Separating the motion into angular and radial part,

ξν,i(R,θ ,φ) =ℜν,i(R)ξN(θ ,φ) (4.15)

and knowing the spectrum

N2ξN(θ ,φ) = ħh2N(N + 1)ξN(θ ,φ) (4.16)

of the angular part of the nuclear kinetic energy, finally gives the radial equation for
molecular vibration:

[HN
kin(R) +

ħh2

2µR2
N(N + 1) + Eel

i (R)]ℜν,i,N(R) = Ei,νℜν,i,N(R,θ ,φ). (4.17)

In terms of the total angular momentum J = N+Ω, where Ω is the projection of the total
electronic angular momentum onto the internuclear axis, the radial equation becomes:

[HN
kin(R) +

ħh2

2µR2
[J(J + 1)−Ω2] + Eel

i (R)]ℜν,i,J(R) = Ei,νℜν,i,J(R,θ ,φ). (4.18)

The effective potential energy Eel
i (R) for the nuclear motion is called Born-Oppenheimer

potential (BOP). Given a BOP the radial Schröedinger equation can then be solved nu-
merically to obtain vibrational wavefunctions and the corresponding eigenenergies. The
BOA approximates the total energy of the molecule by a sum of three independent con-
tributions originating from the electronic energy Eel , the vibrational energy G(ν) and the
rotational energy F(J):

Etot ' Eel + G(ν) + F(J). (4.19)

It is of course never possible to express the total energy Etot exactly as in equation 4.19.
Deviations from the BOA are either caused by off-diagonal matrix elements of H or by di-
agonal and off-diagonal matrix elements of Hspin. In principle, however the exact solution
ψtot
α that completely diagonalizes Htot can be expressed as an infinite expansion of BO

product functions:
ψtot
α =

∑

i,ν

ci,νψ
BO
i,ν . (4.20)

The complete set of basis functions ψBO
i,ν is called the BO representation.

4.2.2 Basis functions and perturbations

The starting point for treating deviations from the Born-Oppenheimer approximation and
for incorporating magnetic interactions is a Born-Oppenheimer representation, i.e. a com-
plete set of basis vectors:

{|ψBO
α 〉}= {|iνSΛΣΩJ MJ 〉} (4.21)

Here i indicates the principal quantum number of the electronic orbital, ν the vibrational
quantum number and S the total electronic spin. The remaining labels are the signed
eigenvalues of the following operators:
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• Λ, the projection of the orbital angular momentum onto the internuclear axis

• Σ, the projection of the spin angular momentum onto the internuclear axis

• Ω= Λ+Σ, projection of the total electronic angular momentum onto the internuclear
axis

• J= Ω+N, the total angular momentum, where N designates the angular momentum
of rotation of the nuclei

• Jz, the z-component of the total angular momentum in the laboratory frame
(i.e. Jz|iνSΛΣΩJ MJ 〉= MJ |iνSΛΣΩJ MJ 〉)

A structural model for a situation that significantly deviates from the BOA (as it will
be the case for the spin-orbit coupled d3Π/D1Π complex) is constructed according to the
following procedure:

1. By using the Born-Oppenheimer approximation (BOA) and taking into account sym-
metry properties of the system find a complete set of basis functions {ψBO

α }.

2. Partition the full Hamiltonian into two parts Htot = H0+Hpert, where H0 is diagonal in
the chosen BO basis

�

ψBO
α

	

. The partitioning should be done such that off-diagonal
matrix elements of Hpert are much smaller than the diagonal elements of Hpert.

3. Derive a matrix representation of the total microscopic Hamiltonian Htot in the cho-
sen basis set {ψBO

α }.

4. Approximate the real eigenstates of Htot by a perturbation series in Hpert or diago-
nalize exactly if possible.

The partitioning of Htot into H0+Hpert determines which of the labels (i,ν, S,Λ,Σ,Ω, J , MJ)
are good quantum numbers (i.e. eigenvalues of commuting observables) with respect to
H0. The most commonly used partitions of Htot are called Hund’s cases a)- d) (see [75]).
For the the spin-orbit coupled d3Π/D1Π complex and low values of J , the appropriate
choice of basis functions is Hund’s case a) [80, 77]:

H0 = HN
kin +Hel

kin + VC(r1, ..., rn, R) + BνJ
2

{|ψBO
α 〉} = {|iνSΛΣJ MJ 〉} (4.22)

Here Bν is the rotational constant for a given vibrational state with vibrational quantum
number ν:

Bν =
ħh2

2〈µR2〉ν
. (4.23)

In molecular spectroscopy one observes transitions between eigenstates of the parity
operator P̂ν which commutes with the Hamiltonian of the molecule. These eigenstates can
be formed by a superposition of BO basis states. The total parity is a product operator of
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rotational and electronic parity. I use the phase-convention of [80] where the eigenstates
are labeled by either e (even electronic parity) or f (odd electronic parity):

|2S+1Λ
e/ f
Ω νJmJ 〉=

1
p

2
(|SΛΣΩνJmJ 〉 ± |S −Λ−Σ−ΩνJmJ 〉) (4.24)

For these eigenstates the action of the parity operator is given by:

P̂ν|2S+1Λ
e/ f
Ω νJmJ 〉= ±1J−S|2S+1Λ

e/ f
Ω νJmJ 〉. (4.25)

For example, the closed channel of the Feshbach molecule has Λ = 0,S = 1,J = 1. There-
fore the parity of the Feshbach molecule is positive and only excited molecular levels with
negative parity can by accessed in a dipole transition when performing spectroscopy.

We are now in the position to construct a restricted basis set that can be used to analyze
the candidate levels for STIRAP belonging to the spin-orbit coupled d3Π/D1Π complex.

4.2.3 Fine structure model for the d3Π/D1Π complex

The Hund’s case a) basis states (see equation 4.24) that are used to analyze the d3Π/D1Π

complex are given by:

|3Πe/ f
0 νJmJ 〉=

1
p

2
(|11− 10νJmJ 〉 ± |1− 110νJmJ 〉),

|3Πe/ f
1 νJmJ 〉=

1
p

2
(|1101νJmJ 〉 ± |1− 10− 1νJmJ 〉),

|3Πe/ f
2 νJmJ 〉=

1
p

2
(|1112νJmJ 〉 ± |1− 1− 1− 2νJmJ 〉),

|1Πe/ f
1 ν′JmJ 〉=

1
p

2
(|0101ν′JmJ 〉 ± |0− 10− 1ν′JmJ 〉).

(4.26)

The generic Hamiltonian for a diatomic molecule can be written as [80]:

H = He +Hν +HR +HS , (4.27)

where He is the electronic, Hν the vibrational and HR the rotational part. HS designates
the spin part of the Hamiltonian that includes the spin-spin HSS, the spin-orbit HSO and
the spin-rotation HSR operator.

The diagonal matrix elements of H in the Hund’s case a) basis (labels for parity and
mJ omitted) are given by [81]

〈3Π0νJ |H|3Π0νJ〉= Eν − Aν + Bν [J(J + 1) + 1] +
2
3
λν,

〈3Π1νJ |H|3Π1νJ〉= Eν + Bν [J(J + 1) + 1]−
4
3
λν,

〈3Π2νJ |H|3Π2νJ〉= Eν + Aν + Bν [J(J + 1)− 3] +
2
3
λν,

〈1Π1ν
′J |H|1Π1ν

′J〉= Eν′ + Bν′ [J(J + 1) + 1] .

(4.28)
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Here Eν are the unperturbed energies of the vibrational levels, Bν the corresponding ro-
tational constants, Aν the diagonal part of the spin-orbit interaction and λν the coupling
constants of the spin-spin interaction.

Non-diagonal elements of HR are due to the S- and L-uncoupling operators HSL and
HJ L. The selection rules for these perturbation operators are given by [80]:

HJ L : ∆Λ= ±1=∆Ω, ∆S = 0 (4.29)

and

HJ L : ∆Σ= ±1=∆Ω, ∆S = 0,∆Λ= 0 (4.30)

Therefore non-zero elements occur for the d3Π levels and HSJ only:

〈3Π0νJ |HSJ |3Π1νJ〉= −Bν
p

2 [J(J + 1)]1/2 ,

〈3Π1νJ |HSJ |3Π2νJ〉= −Bν
p

2 [J(J + 1)− 2]1/2 .

(4.31)

The spin part of H has non-diagonal matrix elements due to spin-orbit interaction HSO

and the spin-rotation operator HSR:

(4.32)

〈3Π0νJ |HSR|3Π1νJ〉=
γν
2
[J(J + 1)]1/2 ,

〈3Π1νJ |HSR|3Π2νJ〉=
γν
2
[J(J + 1)− 2]1/2 ,

〈3Π1νJ |HSO|1Π1ν
′J〉= ξνν′ .

(4.33)

Note that since H commutes with J the matrix representation of H is block-diagonal
and can be diagonalized for each value of J independently. The analysis is further sim-
plified by considering that at ultracold temperatures it is only possible to observe single
photon transitions to states with J = 0, 1,2. I construct this block diagonal matrix from
the diagonal and off-diagonal matrix elements given above. To analyze the observed pho-
toassociation spectra that are presented in the next section, I numerically diagonalize H
for J = 0, 1,2 and then determine all coupling parameters of H via a least-square fit of the
obtained eigenenergies to the observed resonance positions (see section 4.3.3 below).
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Figure 4.3 – Schematic of the experimental configuration for PA spectroscopy. The near degenerate 23Na40K
mixture is levitated against gravity in a single beam dipole trap (λ = 1064nm, P = 7W,w0 = 45µm). PA
is performed using a ring dye laser (λ ∼ 652nm,P = 100mW ,w0 = 50µm). Prior to PA spectroscopy
the mixture is transported from the stainless steel MOT chamber to the attached glass science cell and spin
polarized to |1, 1〉23Na⊗|9/2,−9/2〉40K. PA induced atom loss is detected via simultaneous absorption imaging
for both species.

4.3 Photoassociation spectroscopy

Deeply bound electronically excited molecules are associated starting from a near-
degenerate 23Na40K mixture using a Coherent 899 ring dye laser operated with DCM dye.
100mW of the dye laser output are focused to a waist of 50µm and superimposed with the
dipole trap. The laser frequency is stabilized to a low finess cavity and can be tuned within
several tens of THz. The laser frequency is monitored by a wavemeter (High Finess WS7,
resolution 10MHz, accuracy 300MHz). For coarse spectroscopy the mixture is illuminated
for 10s while the dye laser frequency is swept across several GHz. PA induced atom loss
is detected by simultaneous absorption imaging of both species (see Fig. 4.3). Detected
resonances were verified with 10MHz frequency resolution. Fig. 4.3 shows a schematic
of the experimental configuration. The 23Na40K mixture is levitated against gravity in a
single beam dipole trap (λ = 1064nm, P = 7W,w0 = 45µm). Prior to PA spectroscopy the
mixture is transported from the stainless steel MOT chamber to the attached glass science
cell, evaporatively cooled to ∼ 1µK and spin polarized to |1,1〉23Na ⊗ |9/2,−9/2〉40K.
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4.3.1 Spin Character and wave function of the initial state

To analyze the spin character of the initial state, we use the spin basis |J , mJ , mNa, mK)〉
from section 3.1, where J = SNa + SK is the total electronic spin (J = 1 is the triplet state,
and J = 0 is the singlet), mJ is the projection of the total electronic spin on the quantization
axis, and mNa(mK) is the nuclear spin projection of Na (K). PA spectroscopy is performed
on unbound atoms in the collision channel |1,1〉23Na⊗ |9/2,−9/2〉40K at a magnetic field of
85.5 G. This state can be expressed in the spin basis as:

|1, 1〉23Na ⊗ |9/2,−9/2〉40K = 0.32|0,0, 1/2,−4〉 − 0.89|1,−1,3/2,−4〉+ 0.32|1,0, 1/2,−4〉

This is simply obtained by a Clebsch-Gordon transformation of the coupled hyperfine basis
states into the spin basis. PA spectroscopy is performed in a collision channel and at a
magnetic field where no scattering resonances occur and coupling to closed channels can
be neglected.

4.3.2 Vibrational structure of the d3Π/D1Π complex

In order to become familiar with molecular spectroscopy we have measured the reso-
nance position of the seven most deeply bound |3ΠΩ=2J = 2〉 vibrational levels via PA
spectroscopy starting from an ultracold 23Na40K mixture prepared in the collision channel
|1,1〉Na ⊗ |9/2,9/2〉K40

(see Fig. 4.4). We compare the measured transition frequencies to
predictions based on mass scaled potentials from [82, 79]. Measurements and predictions
agree within ±20GHz. Note that due to spin-orbit coupling between the d3Π and the D1Π

state we can directly observe the ν = 6 level of the D1Π state already in PA spectroscopy.
When spin-orbit coupling is absent, the Frank-Condon factor between the singlet compo-
nent of the multi-channel wave function of the initial state and a deeply bound vibrational
level in the D1Π state is almost vanishing. The reason for that is, that the singlet compo-
nent of scattering wavefunction of the initial state oscillates very rapidly in the range of
internuclear distances for which the D1Π vibrational states extend. The overlap integral
therefore averages almost to zero. The same behavior is encountered when transitions
between a Feshbach molecule and the D1Π manifold are considered. Even for a large
spin-singlet admixture in the Feshbach state - as it is realized for broad Feshbach reso-
nances [70] - does not allow for an efficient coupling to a general D1Π level, since the
least bound state of the groundstate singlet potential behaves almost identical to the sin-
glet scattering wave function at the relevant internuclear distances. A detailed analysis of
this phenomenon is given in [83].
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Figure 4.4 – Photoassociation resonances for the seven lowest most deeply bound |3ΠΩ=2J = 2〉 vibrational
levels. Predictions based on mass scaled potentials from [82, 79] are indicated by the blue dashed lines. They
agree within ±20GHz. For the ν = 5 candidate level the near resonant ν′ = 6 |1ΠΩ=1J = 1〉 level can be
also observed.

4.3.3 Molecular fine structure of the d3Π/D1Π complex

For further analysis we observe all fine structure components for the ν = 2 level in PA
spectroscopy (see Fig. 4.5). Since spin-orbit coupling to the D1Π state can be neglected for
this level [77] due to non-overlapping vibrational level structure, it serves as a benchmark
for the fine structure model of section 4.2.3 For this purpose I numerically diagonalize
the molecular perturbation Hamiltonian given by equation 4.28-4.33 and perform a least-
square fit of the obtained eigenenergies to the observed resonance positions. For the ν= 2
level I restrict the Hilbert space on which the diagonalization algorithm operates to the
accessible fine structure components of the d3Π state:

|3Π f
0ν= 2J = 0〉, |3Πe

0ν= 2J = 1〉, |3Π f
0ν= 2J = 2〉

|3Πe
1ν= 2J = 1〉, |3Π f

1ν= 2J = 2〉

|3Π f
2ν= 2J = 2〉. (4.34)

The model and the measurements agree within ±300MHz. The deviation is largest for
the three Ω = 0 components. For the Ω = 1,2 components model and data agree within
±50MHz. The model parameters that resulted from the least-square fitting routine are
given in table 4.1. These values are in good agreement with the results reported in [77,
78].

Due to most favorable predictions for the TDM’s [79] to both the Feshbach molecular
state and the |X 1Σν = 0J = 0〉 state (see Fig. 4.2) we chose the Ω = 1, J = 1 component
of the |3Πν = 5〉 level as candidate state for STIRAP. We therefore determine all fine
structure components for this level and fit the molecular perturbation model of section
1.2.4 (equation 4.28 - 4.33) including off-diagonal spin-orbit coupling. The necessary
singlet-triplet mixing is mediated by the near resonant |1ΠΩ=1ν = 6J = 1〉 level. The
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Figure 4.5 – Fine structure components of the d3Πν = 2 vibrational level. The fine structure model of section
4.2.3 (equation 4.28 - 4.33) excluding off-diagonal spin-orbit coupling is used to fit the observed resonances.
Fit and data agree within ±300MHz. The predicted transition frequencies are indicated by the blue dashed
lines.

Parameter Value (GHz)

E2 453802.937

B2 1.862

A2 1.862

λ2 −0.009

γ2 −3.557

Table 4.1 – Molecular perturbation model parameters (bare vibrational energies and coupling constants) ob-
tained from a least square fit of equation 4.28 - 4.33 to the observed resonance positions (see Fig. 4.5) for
the d3Π, ν = 2 fine structure multiplet. Spin-orbit coupling to the D1Π state was not considered. The model
reproduces the observed resonances within 300MHz.

measured fine structure is shown in Fig.4.6. I again numerically diagonalize the molecular
perturbation Hamiltonian given by equation 4.28-4.33 and perform a least-square fit of
the obtained eigenenergies to the observed resonance positions. For the ν = 5 level the
restricted Hilbert space is spanned by:

|3Π f
0ν= 5J = 0〉, |3Πe

0ν= 5J = 1〉, |3Π f
0ν= 5J = 2〉,

|3Πe
1ν= 5J = 1〉, |3Π f

1ν= 5J = 2〉,

|3Π f
2ν= 5J = 2〉,

|1Πe
1ν= 5J = 1〉, |1Πe

1ν= 5J = 2〉. (4.35)

The predictions of the fine structure model and the measurements agree within ±300MHz.
The deviation is again largest for the three Ω = 0 components of the d3Π state. For the
Ω = 1, 2 components model and data agree within ±50MHz. The model parameters that
resulted from the least-square fitting routine are given in table 4.2. Again these values are
in good agreement with the results of [77, 78]. Since we identified the desired spin-orbit
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Figure 4.6 – Fine structure components of the 3dΠν = 2 vibrational level. The fine structure model of section
4.2.3(equation 4.28 - 4.33) including off-diagonal spin-orbit coupling is used to fit the observed resonances. Fit
and data agree within±300MHz. The predicted transition frequencies are indicated by the blue dashed lines.

coupled intermediate state and verified that sufficient singlet-triplet mixing is present,
we did not try to improve our model further but proceeded with finding a two photon
transition to the rovibronic groundstate.

Parameter Value (GHz)

E5 459337.520

B5 1.895

E6 459641.838

B6 1.920

A5 241.784

ξ5,6 49.270

λ5 −0.182

γ5 −2.778

Table 4.2 – Molecular perturbation model parameters (bare vibrational energies and coupling constants) ob-
tained from a least square fit of equation 4.28 - 4.33 to the observed resonance positions (see Fig. 4.5) for the
d3Π, ν = 5 fine structure multiplet. The model reproduces the observed resonances within 300MHz.

4.4 High resolution molecular spectroscopy

High resolution molecular spectroscopy of the candidate level was performed with a nar-
row linewidth diode laser system frequency stabilized to a dual wavelength high finesse
(' 200000 for 652nm and ' 37000 for 487nm) ULE cavity (Advanced thin films, Sta-
ble Lasers) via the Pound-Drever-Hall technique [84]. Frequency tuning over > 1GHz is
achieved by using a phase-locked master-slave configuration. A schematic of the complete
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Figure 4.7 – Schematic of the experimental configuration for high resolution spectroscopy of 23Na40K Fesh-
bach molecules. Feshbach molecules with a binding energy of 83kHz are RF associated in a crossed dipole
trap in the glass science cell at a magnetic field of 85.5G. Spectroscopy is performed with a narrow linewidth
diode laser system. 10mW of the diode laser output is focused to a waist of 50µm and superimposed with one
of the beams forming the dipole trap. The cross in the center of the molecule sample indicates the direction
of the dipole trap laser and of the diode laser used for spectroscopy. Loss of molecules that is induced by the
spectroscopy laser is detected via direct absorption imaging of Feshbach molecules.

Raman laser setup is shown in Fig. 4.8 and details can be found in [85]. Starting from
a sample of ' 1.0 · 104 23Na40K Feshbach molecules with a binding energy of ∼ 83kHz
we observe hyperfine and Zeeman substructure for the Ω = 1, J = 1 and the Ω = 2, J = 2
components of the |d3ΠΩ=1ν = 5〉 level at a magnetic field of 85.5G. Fig. 4.7 shows a
schematic of the experimental configuration. Weakly bound Feshbach molecules are asso-
ciated in a crossed dipole trap from a near-degenerate and spin polarized mixture of 23Na
and 40K atoms via RF association (for details see section 3.2). For spectroscopy, 10mW of
the diode laser output is focused to a waist of 50µm and superimposed with the dipole
trap. Illumination times varied between 1 − 100µs. To ensure optimal overlap between
dipole trap and the spectroscopy laser we modulate the power of the spectroscopy laser at
twice the trap frequency (∼ 180Hz) and maximize parametric trap heating of a pure 23Na
BEC.
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Figure 4.8 – Schematic of the narrow linewidth laser system that is used for high resolution and coherent
molecular spectroscopy. For both wavelength a master ECDL is PDH-locked to the high finess cavity. The
phase-locked master-slave configuration ensures continuous frequency tunability over more than the free spec-
tral range of the cavity.

4.4.1 Wave function and spin-character of the initial state

The interpretation and quantitative analysis of the observed molecular excitation spectra
require a detailed knowledge of the initial state that we use for spectroscopy. As reported
in section 3.2 we use Feshbach molecules with a binding energy of ' 83kHz that are RF
associated close to a Feshbach resonance in the |1, 1〉Na ⊗ |9/2,−9/2〉K40

channel. In order
to analyze the spin-character and hyperfine state composition of the Feshbach molecule,
we use the asymptotic bound state model (ABM) [71]. The Feshbach molecule state is a
superposition of the scattering state of the entrance channel and the resonant boundstate of
the closed channel. The channels are coupled via the spin-dependent molecular interaction
potential and the hyperfine interaction (for details see section 3.1. The Feshbach molecule
state can be written as [55]):

|FB〉=
Æ

Z(B)φC(R)|close > +
Æ

1− Z(B)φbg(R)|open> (4.36)

Here Z(B) and 1−Z(B) indicate the closed and open channel fraction, which depend on the
distance in magnetic field with respect to the Feshbach resonance located at B0 = 88G.
The closed channel bound state wavefunction φC(R) in general has to be obtained by
a coupled channels calculation [13]. For weakly bound Feshbach molecules , where the
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binding energy is given by

Eb(B) = −
ħh2

ma(B)
, (4.37)

the long range part of the closed channel wavefunction can be approximated by a halo-
state that does not depend on the details of interaction potential but solely on the s-wave
scattering length a(B). The halo-wavefunction is given by [13]:

φh(R) =
e−R/a

p

2πa(B0 − B)R
(4.38)

For molecular spectroscopy however, it is the short range part of the bound state wave
function that determines the Frank-Condon factor with the bound state in the D1Π/d3Π

complex which is not altered by the coupling to the entrance channel. We determine the
close/open channel fraction of the Feshbach molecule following the definition from [55].
Based on the ABM model, we then find that at 85.5G and 80kHz binding energy, the open
channel fraction is 98.4% (amplitude square) and the close channel fraction is 1.6%. Due
to admixture of the least bound state of the closed channel, the Frank-Condon factor [75]
between the Feshbach molecule and the target level in the D1Π/d3Π complex is signifi-
cantly enhanced compared to the situation of PA spectroscopy of free atoms. By increasing
the distance in magnetic field to the Feshbach resonance not only the binding energy can
be therefore increased but also the Frank-Condon factor.
The main purpose of the ABM model however is to identify the closed channel hyperfine
state composition (the open channel is given in section 4.3.1). Expressed in the spin ba-
sis the Feshbach molecule is a superposition of the basis states listed in table 4.3. This

J mJ µNa µK closed channel (amplitude) open channel (amplitude)

0 0 -3/2 -2 0.017 0.0
0 0 -1/2 -3 -0.036 0.0
0 0 1/2 -4 -0.045 0.0

1 -1 -3/2 -1 0.129 0.319
1 -1 -1/2 -2 -0.377 0.0
1 -1 1/2 -3 0.077 0.0
1 -1 3/2 -4 0.148 -0.893

1 0 -3/2 -2 0.151 0.0
1 0 -1/2 -3 0.323 0.0
1 0 1/2 -4 0.457 0.319

1 1 -3/2 -3 -0.632 0.0
1 1 -1/2 -4 -0.273 0.0

Table 4.3 – Spin components of the Feshbach molecular state at 85.5G calculated with the asymptotic bound
state model of [71]

hyperfine state composition of the Feshbach molecules has to be considered when high
resolution molecular spectra are analyzed in detail. By just considering the spin compo-
sition of the Feshbach molecule one could argue (as it is done in [70]) that due to the
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significant singlet admixture it could be possible to establish a direct two-photon coupling
to the rovibronic groundstate via a spin-singlet intermediate state without the need to rely
on spin-orbit coupling. However, this reasoning does not take into account, that the wave
function of the singlet components only offers a very weak Frank-Condon overlap to the
intermediate state manifold. A detailed coupled channels analysis of this problem can be
found in [83].

4.4.2 Hyperfine and Zeeman substructure of the candidate level

Starting from Feshbach molecules prepared at a magnetic field of 85.5G, we perform high
resolution spectroscopy of the Ω = 1, J = 1 fine structure component of the already iden-
tified |d3Πν = 5〉 candidate level. Fig. 4.9 shows a high resolution spectrum. The polar-
ization of the excitation laser is chosen such, that all possible (σ+,σ−,Π) transitions are
simultaneously addressed. We observe a Zeeman triplet of energy levels with magnetic
quantum numbers mJ = −1,0,+1. The Zeeman splitting between the three mJ compo-
nents amounts to ∼ 70MHz.
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Figure 4.9 – Excitation spectrum of Feshbach molecules to the J = 1,Ω = 1 intermediate level. Polarization
of the excitation laser was adjusted to an angle of 45◦ with respect to the magnetic field direction. A Zeeman
triplet mJ = −1, 0, 1 is clearly observable. The molecular hyperfine structure is not resolved. The additional
features indicated by the black arrows could be caused by the molecular spin-orbit interaction (compare Fig.
5. of [86]) or weak hyperfine interaction. Note that a running average with a bin-size of 12 has been applied to
the raw data.

This result is in good agreement with the Zeeman Hamiltonian for pure Hund’s case
a) molecules [87]:
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EZ =
mJ (Σ+Ω)Ω

J(J + 1)
µB · B. (4.39)

The additional features indicated by the black arrows could be caused by the molecular
spin-orbit interaction (compare Fig. 5. of [86]). Since the molecular hyperfine structure is
not resolved for the Ω = 1, J = 1 fine structure component, I assume that each mJ compo-
nent of the Zeeman triplet can consist of several molecular hyperfine states. Starting from
Feshbach molecules with total projection of angular momentum mF = −7/2 along the di-
rection of the magnetic field only hyperfine components with mF = −5/2,−7/2,−9/2 can
be accessed in a single photon transition. To understand which states those are, I work in
the spin basis |JmJ mNamK〉 and consider which of these basis states can be accessed for
each mJ component of the Zeeman triplet starting from a Feshbach molecule with hyper-
fine state composition given in table 4.3. The tables 4.4,4.5 and 4.6 summarize the result.

mF = −9/2 mF = −7/2 mF = −5/2

mNa = 0.5, mK = −4 mNa = 1.5, mK = −4 mNa = 1.5, mK = −3
mNa = −0.5, mK = −3 mNa = 0.5, mK = −3 mNa = 0.5, mK = −2
mNa = −1.5, mK = −2 mNa = −0.5, mK = −2 mNa = −0.5, mK = −1

mNa = −1.5, mK = −1 mNa = −1.5, mK = 0

Table 4.4 – Hyperfine states contributing to the mJ = −1 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet
expressed in the nuclear spin decoupled basis.

mF = −9/2 mF = −7/2 mF = −5/2

mNa = −0.5, mK = −4 mNa = 0.5, mK = −4 mNa = 1.5, mK = −4
mNa = −1.5, mK = −3 mNa = −0.5, mK = −3 mNa = 0.5, mK = −3

mNa = −1.5, mK = −2 mNa = −0.5, mK = −2
mNa = −1.5, mK = −1

Table 4.5 – Hyperfine states contributing to the mJ = 0 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet
expressed in the nuclear spin decoupled basis.

mF = −9/2 mF = −7/2 mF = −5/2

mNa = −1.5, mK = −4 mNa = −0.5, mK = −4 mNa = 0.5, mK = −4
mNa = −1.5, mK = −3 mNa = −0.5, mK = −3

mNa = −1.5, mK = −2

Table 4.6 – Hyperfine states contributing to the mJ = 1 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet
expressed in the nuclear spin decoupled basis.
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Next I estimate the relative line strength for a transition from the Feshbach molecule
(with hyperfine state composition given by table 4.3) to a given hyperfine component of
the |d3ΠΩ=1ν= 5〉 Zeeman triplet given by table 4.4,4.5,4.6. The relative line strength can
be obtained from the matrix elements of the dipole operator expressed in the spin basis:

〈JmJ | ⊗ 〈mK mNa|e · rq|m′K m′Na〉 ⊗ |J
′m′J 〉= 〈JmJ |e · rq|J ′m′J 〉 · 〈mK mNa|m′K m′Na〉=

〈J ||e · r||J ′〉 · 〈JmJ |J ′1qm′J 〉 · 〈mK mNa|m′K m′Na〉, (4.40)

where I use the Wigner-Eckart theorem [88] to reduce the dipole operator. Here
〈J ||e · r||J ′〉 indicates the reduced matrix element and 〈JmJ |J ′1qm′J 〉 the corresponding
Clebsch-Gordon factor with q indexing the polarization of the excitation laser via
q = −1→ σ−, q = 0→ π, q = 1→ σ+. Due the much larger Frank-Condon factor only the
closed channel fraction of the Feshbach molecule has to be considered. The relative line
strength for a transition from the Feshbach molecule to a hyperfine component
|J = 1mJ INamNa IK mK〉 is then given by multiplying the closed channel amplitude for given
values of mNa and mK (see table 4.3) by the corresponding Clebsch-Gordon factor 〈J =
1mJ |J ′ = 11qm′J 〉 for a single photon transition. Since 〈J = 1mJ |J ′ = 11qm′J 〉 is either 0 or
1, the relative line strengths are given by the squared modulus of the values given in table
4.3. The results are listed in tables 4.7, 4.8 and 4.9.

mF mNa mK line strength

−5/2 −1.5 0 0.000

−5/2 −0.5 −1 0.000

−5/2 0.5 −2 0.000

−5/2 1.5 −3 0.000

−7/2 −1.5 −1 0.017

−7/2 −0.5 −2 0.142

−7/2 0.5 −3 0.006

−7/2 1.5 −4 0.022

−9/2 −1.5 −2 0.023

−9/2 −0.5 −3 0.104

−9/2 0.5 −4 0.209

Table 4.7 – Relative line strengths for the mJ = −1 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet, given
in multiples of the reduced matrix element 〈J ||e · r ||J ′〉2

Since the hyperfine structure of the Ω = 1, J = 1 fine structure component is clearly
not resolved it makes no difference whether we calculate transition matrix elements in
the nuclear spin coupled (i.e 〈FmF 〉) basis or the spin basis 〈mJ mK mNa〉. The non-resolved
hyperfine structure however makes the identification of a suitable two-photon pathway
to the |X 1Σν = 0J = 0〉 state more involved, since we have to take into account multiple
near-degenerate transitions that are addressed simultaneously by the excitation laser.
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mF mNa mK line strength

−5/2 −1.5 −1 0.017

−5/2 −0.5 −2 0.142

−5/2 0.5 −3 0.006

−5/2 1.5 −4 0.022

−7/2 −1.5 −2 0

−7/2 −0.5 −3 0

−7/2 0.5 −4 0

−9/2 −1.5 −3 0.399

−9/2 −0.5 −4 0.074

Table 4.8 – Relative line strengths for the mJ = 0 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet, given in
multiples of the reduced matrix element 〈J ||e · r ||J ′〉2

mF mNa mK line strength

−5/2 −1.5 −2 0.023

−5/2 −0.5 −3 0.104

−5/2 0.5 −4 0.209

−7/2 −1.5 −3 0.399

−7/2 −0.5 −4 0.074

−9/2 −1.5 −4 0.0

Table 4.9 – Relative line strengths for the mJ = 1 component of the |d3ΠΩ=1ν = 5〉 Zeeman triplet, given in
multiples of the reduced matrix element 〈J ||e · r ||J ′〉2

4.4.3 Origin of the non-resolved hyperfine structure of the Ω = 1, J = 1
component

In order to understand why the excited state hyperfine structure is not resolved for the
d3Π/D1Π complex consider the following:
First, note that the the spin-singlet D1Π state only exhibits nuclear-nuclear hyperfine cou-
pling, which is below the kHz level even for the |X 1Σν = 0J = 0〉 state [21]. Therefore
the hyperfine structure of the spin-orbit coupled d3/D1Π complex will be completely dom-
inated by the d3Π state.
The Hamiltonian governing the hyperfine structure of the d3Π state is given by [89]:

HHF = dNaINa · k′ + dK IK · k′, (4.41)

where
d = aΛ+ (b+ c)Σ (4.42)

and k′ is a unit vector pointing in the direction of the internuclear axis. The hyperfine
coupling constants a, b and c correspond to various magnetic dipole interactions averaged

over the electron orbital [89]. Only in b there is a term that includes the operator
δ(r)
r2
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giving rise to Fermi contact interaction. HHF is diagonal in the coupled basis |IK INaJ FmF 〉
and matrix elements are given by:

EHF = Ω
F(F + 1− J(J + 1)− I(I + 1))

2J(J + 1)
(4.43)

From equations (4.41) and (4.43) one directly sees that only levels with Σ = 1,Ω = 2
will exhibit Fermi contact interaction. Due to the nuclear shielding effect [90, 91] the
molecule hyperfine structure of NaK can only be resolved for electronic states that exhibit
Fermi contact interaction [81, 92, 93]. As expected from this reasoning the Ω = 2, J =
2 component of the ν = 5 fine structure multiplet shows complex hyperfine structure
(see Fig. 4.10). In general, it is strongly desired to identify a hyperfine state resolved
molecular level as intermediate state for STIRAP [94, 95, 96, 97]. Unfortunately, the
Ω= 2 component is not suited for this purpose since first, parity selection excludes a two-
photon transition to the |X 1Σν = 0J = 0〉 state. Second, even parity allowed transitions
to excited rotational levels (J = 2n + 1) of the groundstate manifold will be strongly

suppressed by a factor ∝ B2
5

A2
5
. This can be understood on the basis of equations 4.28 -

4.33. In contrast to the singlet admixture for the J = 1 component which is due to spin-
orbit interaction with coupling constant ξ5,6 the singlet admixture to the J = 2 component
is a second order effect that is mediated by the S-uncoupling operator with a coupling
constant proportional to B5. The resulting Rabi frequency for the Stokes transition would
be orders of magnitude (2 − 3) smaller than the natural linewidth Γ of the intermediate
state - effectively excluding STIRAP success (see section 4.5.1 and 4.5.3 below). For these
reasons the hyperfine structure of the Ω = 2 component was not investigated further and
quantum numbers have not been assigned.
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Figure 4.10 – High resolution spectrum of the |d3ΠΩ=2ν = 5J = 2〉 state. The molecular hyperfine structure
is clearly resolved due to presence of Fermi contact interaction.
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4.5 Groundstate spectroscopy

Having identified a suitable singlet-triplet mixing intermediate state in the d3Π/D1Π com-
plex, the next step is to measure the transition frequency and determine the coupling
strength from this level to the |X 1Σν= 0J = 0〉 state. Due to the short lifetime (< 15ns) of
the intermediate state conventional pump-probe spectroscopy is not feasible. Instead we
employ coherent Raman spectroscopy (see section 4.5.1 below).In order to be able to ob-
serve coherent excitation phenomena both spectroscopy lasers need to be simultaneously
locked to the same high finess ULE cavity via the PDH technique. Continuous frequency
tuning over > 1GHz was implemented by a phase-locked master-slave configuration (see
Fig. 4.8). For spectroscopy we focus ∼ 10mW of each laser to a waist of 50µm and overlap
it with Feshbach molecules prepared in a crossed optical dipole trap (see Fig. 4.7).

4.5.1 Coherent population trapping, STIRAP and EIT

Before we present and discuss our results on coherent two-photon spectroscopy, we briefly
review the phenomena that can be observed in a coherently coupled three level lambda
system. This section is primarily based on the review articles [98, 99, 100, 14].

|d3Pn=5J=1〉

Pump Laser 
Stokes Laser Γ

|X1Σn=0J=0〉

|FB〉
DP

DS

wP,WPwP,WP

Molecular lamda system

Figure 4.11 – Schematic for the molecular lambda system formed by the Feshbach molecule, the d3Π/D1Π

intermediate level and the |X 1Σν = 0J = 0〉 state. States are coherently coupled by a pair of Raman lasers
with frequencies ωP/S , Rabi frequencies ΩP/S and single photon detunings with respect to the molecular
transition frequencies ∆P/S . The lasers are said to be in Raman resonance for ∆P = ∆S = ∆.

Consider the molecular three level system shown in Fig. 4.11. The initially populated
Feshbach molecular level is coupled via the pump laser to the intermediate level in the
d3Π/D1Π complex with single photon Rabi frequency 2π ·ΩP and single photon detuning
2π ·∆P = 2π(ω1 −ωP) with respect to the molecular transition frequency 2π ·ω1. The
intermediate level will predominantly decay to lower lying rovibronic states of the 23Na40K
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molecule that are not coupled by the Raman lasers. The effect of these various decay
channels is parametrized by a single effective decay rate 2π · Γ . Finally the intermediate
level is coupled by the so called Stokes laser to the rovibronic groundstate |X 1Σν= 0J = 0〉
with Rabi frequency 2π ·ΩS and detuning 2π ·∆S = 2π(ω2 −ωS). Both lasers are said to
be in Raman resonance when ∆S = ∆P = ∆ . In the rotating wave approximation [98]
(which is justified for near resonant pump and Stokes lasers) the non-hermitian evolution
matrix is given by:

W (t) =
1
2





2∆P ΩP(t) 0
ΩP(t) −iΓ ΩS(t)

0 ΩS(t) 2∆S



 , (4.44)

where we made a potential time dependence of the Rabi frequencies (as required for
STIRAP) explicit. The detunings as well as the decay rate are assumed to be constant. The
time evolution of the amplitudes Ci(t) of the three level state vector

|Φ〉= e−iE2 t/ħh �C1(t)e
−iωP/ħh|1〉+ C2(t)|2〉+ C3(t)e

−iωS/ħh|3〉
�

(4.45)

is then given by the following equation of motion:

d
d t

C(t) = −iW (t) ·C(t), With C(t) =





C1(t)
C2(t)
C3(t)



 . (4.46)

In single photon resonance i.e. ∆S = 0 = ∆P the eigenvalues of the evolution matrix are
computed as:

λ0 = 0

λ1/2 =
1
4

�

−iΓ ±
q

−Γ 2 + 4Ω2
2 + 4Ω2

P

�

.

(4.47)

The zero eigenvalue λ0 of W (t) signals the existence of a non-evolving and non-decaying
eigenmode of the three-level lambda system. To make this statement more concrete we
perform the following basis transformation:





C1

C2

C3



→





C+
C2

C−



= T





C1

C2

C3



=





1
Ω
(ΩP C1 +ΩSC3)

C2
1
Ω
(ΩSC1 −ΩP C3)



 , (4.48)

and

W →W ′ = TW T−1, (4.49)

where we omitted the labels for time dependence. The transformation matrix is:

T =





ΩP

Ω
0 ΩS

Ω

0 1 0
ΩS

Ω
0 −ΩP

Ω



 , (4.50)
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with the RMS two-photon Rabi frequency given as Ω =
q

Ω2
P +Ω

2
2. On Raman resonance

(∆P =∆S =∆) the evolution of the coupled system can now be expressed as:

d
d t

C+(t) = −i∆C+(t)−
iΩ
2

C2(t)

d
d t

C2(t) = −
iΩ
2

C+(t)−
iΓ
2

C2(t)

d
d t

C−(t) = −i∆C−(t)

These equations show that the decaying state |2〉 is only coupled to the superposition state
|+〉, while the other superposition state |−〉 evolves freely without being subjected to loss.
Since the system does not absorb and scatter any photons from both Raman lasers once
it is prepared in or has evolved into state |−〉, this state is called a dark state. Due to the
existence of a dark state in a coupled three level system several closely related physical
phenomena can be observed:

Coherent population trapping

Consider the lambda system of Fig. 4.11 with parameters a) : ∆S = 0 = ∆P , Γ = ΩP = ΩS

and b) :∆S = 0=∆P , Γ = 5 ·ΩP = 5 ·ΩS. Numerical integration of 4.46 gives the temporal
evolution for the state populations of the lambda system (see Fig. 4.12). We observe that
even for significant decay of the intermediate state half of the population becomes trapped
in the dark state.

Coherent population trapping
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Figure 4.12 – Population evolution for a coherently coupled three level lambda system obtained by numerical
integration of equation 4.46. Parameters are given by a) : ∆S = 0 = ∆P ,Γ = ΩP = ΩS , b) : ∆S = 0 =

∆P ,Γ = 5 ·ΩP = 5 ·ΩS .

Electromagnetically induced transparency

In the situation when ΩS � ΩP (called strong coupling regime), the Stokes laser can be
used to render an ensemble of particles with the internal level structure of Fig. 4.11
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completely transparent for the pump laser beam. In the strong coupling regime and on
Stokes resonance (∆S = 0) the absorption spectrum for the pump laser is given by the
following equation[99]

N(t,∆P) = N0 · exp

�

−t ·Ω2
P

4Γ∆2
P + Γe f f (Ω2

S + Γe f f · Γ )

(Ω2
S + Γ · Γe f f − 4∆2

P)2 + 4∆2
P(Γ + Γe f f )2

�

, (4.51)

here N designates the number of Feshbach molecules. In contrast to the treatment of
coherent population trapping - an additional effective loss rate Γe f f has been introduced
that phenomenologically accounts for decoherence between the Feshbach state and the
|X 1Σν = 0J = 0〉 state. In a real experiment potential sources of decoherence include
relative linewidth fluctuations of the Raman lasers, external magnetic or electric field
fluctuations, external field gradients, etc. Even when both Raman lasers are in single
photon resonance (∆P =∆S = 0) the dark state (EIT peak) does decay due to decoherence.

N(t) = N0 · exp

�

−t
Ω2

PΓe f f

Ω2
S + Γe f f Γ

�

(4.52)

The associated decay constant is given by:

τEI T =
Ω2

S + Γe f f · Γ

Ω2
P · Γe f f

(4.53)

By measuring the Rabi frequencies ΩS, ΩP and the EIT decay with both Raman lasers on
resonance one is therefore able to determine Γe f f experimentally. Fig. 4.13 a) shows a
typical EIT spectrum for a pump irradiation time of t = Ω2

P/Γ and t = 5 ·Ω2
P/Γ . Fig. 4.13

b) illustrates the effect of different values for Γe f f on EIT decay.
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Note that in a real experiment the Stokes pulse is is switched on (off) ∼ 1000 · 1/Γ
earlier (later) then the pump pulse. Since ΩS ∼ Γ � ΩP the system then adiabatically
evolves from a state with all population in the Feshbach state into the dark state [99].

STIRAP - Stimulated Raman Adiabatic passage

The coherent dark superposition state can be used for adiabatic population transfer from
the Feshbach state into the |X 1Σν= 0J = 0〉 state. By controlling the ratio of the pump and
Stokes laser Rabi frequencies r(t) = ΩS(t)

ΩP (t)
the RWA Hamiltonian becomes time dependent.

According to the adiabatic theorem of quantum mechanics [101] the molecular three level
system will remain in an instantaneous eigenstate of the time dependent Hamiltonian,
given the change in r(t) happens slowly compared to the rate of unitary evolution. Recall
that the eigenstates of the coupled three level system can be expressed as:

|Φ+〉=
ΩP(t)

Ω(t)
|1〉+

ΩS(t)

Ω(t)
|3〉

|Φ2〉= |2〉

|Φ−〉=
ΩS(t)

Ω(t)
|1〉 −

ΩP(t)

Ω(t)
|3〉, (4.54)

The corresponding eigenvalues are given by:

λ+ =
1
2

q

Ω2
P +Ω

2
S

λ2 = −
1
2

q

Ω2
P +Ω

2
S

λ− = 0 (4.55)

Decay-free population transfer can now be achieved by ensuring that the system adiabyti-
cally follows the zero eigenvalue eigenstate |Φ−〉. The adiabaticity criterium for STIRAP is
given by [14]:

|〈
d
d t
Φ−|Φ+/2〉|<< |λ+/2 −λ−|, ∀ t ∈ [0,τ] (4.56)

For population transfer of Feshbach molecules one has to ensure spatial overlap between
both Raman lasers and the trapped molecular sample and then uses amplitude modulated
laser pulses that partially overlap in time. A convenient choice for the STIRAP pulse
sequence is based on a Cos2 pulse:

f (t,τ) = Cos2(π/2 ·
t
τ
)

ΩP(t) = Ω0 · f (t −τ,τ), for t ∈ [0,τ]

ΩS(t) = Ω0 · f (t,τ), for t ∈ [0,τ] (4.57)

Fig. 4.14 a) shows this pulse sequence. For this pulse sequence the adiabaticity criterium
(equation 4.56) becomes Ω0 ·τ� 1. Note that the Cos2 pulse gives d

d tΩP/S(t)|t=0/τ = 0 as
required by the adiabatic theorem. Numerical integration of equation 4.46 illustrates the
effect of the STIRAP pulse sequence of equation 4.57 on the populations of an exemplary
molecular three level system (see Fig. 4.14 b).
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Figure 4.14 – a) Cos2 shaped pulse sequence for STIRAP. b) Temporal evolution of the populations in the
molecular three level system of Fig. 4.11 obtained by numerical integration of equation 4.46. Parameters are
given by: Ω0 = Γ ,∆P = ∆S = 0,τ = 200 · 1/Ω0.

We observe that for an ideal three level system (no decoherence due to external fields,
laser linewidth fluctuations etc.) STIRAP results in efficient population transfer > 80%
from the Feshbach state to the rovibronic groundstate even in presence of strong inter-
mediate state decay Γ ∼ Ω0 if the adiabaticity criterium is fulfilled. To investigate the
importance of adibaticity further, Fig. 4.15 shows how STIRAP efficiency depends on the
total pulse duration.

Fig. 4.16 shows how STIRAP efficiency depends on the detuning of the Stokes pulse
for two different values of Ω0/Γ .

For the pulse sequence of equation 4.57 it is also possible to derive an analytic result for
the functional dependence of STIRAP efficiency on pulse duration τ and Stokes detuning
∆S [102]:

P(τ,∆S) = exp

�

−
Γπ2

Ω2
0τ
−
∆2

SΓτ

2Ω2
0

�

(4.58)

Including the detrimental effects of uncorrelated broadband laser frequency noise origi-
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.

nating from spontaneous emission of the gain medium results in the following expression
for STIRAP efficiency on resonance (∆P =∆S = 0) [102]:

P(τ, D) = Ex p(−
Γπ2

Ω2
0τ
−

Dτ
2
), (4.59)

where D is the linewidth of the frequency difference of the Raman lasers. Details on the
physical origin of laser noise are discussed in [102] and [103]. Fig. 4.17 illustrates how
the STIRAP efficiency depends on total pulse duration for realistic values of D and Ω0.

In general STIRAP will be efficient for groundstate transfer of Feshbach molecules, if
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the following inequality is fulfilled:

D <<
1
τ
<<

Ω2
0

π2Γ
. (4.60)

Therefore one should look for a STIRAP scheme (intermediate state, laser system) that:

• Minimizes Γ by reducing the number of potential decay channels.

• Maximizes Ω0 by choosing a strong transition and high power lasers.

• Minimizes D by working with narrow linewidth lasers. In particular one should
avoid, if it is possible, to work with short cavity semiconductor lasers due to a inferior
noise performance [104, 105, 106, 107].

Unfortunately we only considered to look for a strong transition and did not take into
account the other criteria when we decided for an intermediate state in the d3Π/D1Π

complex and a low output power semiconductor based Raman laser system.

4.5.2 Results of EIT spectroscopy

For measuring the transition frequency from the d3Π/D1Π intermediate state to the
|X 1Σν = 0J = 0〉 state we make use of the coherent population trapping phenomenon
discussed in section 4.5.1. The general idea is to prepare a molecular three level system
as shown in Fig. 4.11 in the strong coupling regime and eventually detect an EIT signal
when both Raman lasers are in resonance. Fortunately we could build on measurements
of the binding energy of the |X 1Σν = 0J = 0〉 state in 23Na39K that were performed at
a molecular beam experiment [108]. The mass scaled result for the binding energy of
the rovibronic groundstate of 23Na40K is: 5212.05cm−1. The starting point for dark state
spectroscopy is calculated by adding the measured transition frequency from the Feshbach
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molecule to the mJ = 0 component of the J = 1,Ω = 1 Zeeman triplet and subtracting the
hyperfine and Zeeman energy of the Feshbach molecule:

fstar t = fRV GS − fpump − fH f /Zeeman =

= 5212.05cm−1 · c+ 459.34160THz− 1.86GHz= (4.61)

= 615.59306THz. (4.62)

The experimental sequence for the detection of coherent population trapping is the
following:

1. A sample of 23Na40K Feshbach molecules is prepared in the crossed dipole trap.

2. The sample is simultaneously illuminated with two square pulses from both Raman
lasers that are locked to the ULE cavity.

3. The pump pulse is adjusted to one-photon resonance with the mJ = 0 component of
the J = 1,Ω= 1 Zeeman triplet.

4. The polarization for the pump pulse is 1p
2
(σ−+σ+), for the Stokes pulse it is Π, such

that the angular momentum of the molecule is changed by ħh.

5. The frequency of the Stokes pulse is varied in steps of 5% of the expected Rabi fre-
quency ΩS ∼ 2π · 10MHz for the |X 1Σν= 0J = 0〉 → |D3ΠΩ=1ν= 5J = 1〉 transition.

6. The Stokes pulse predates the pump pulse by 20µs. The pulse length (∼ 30µs) is
chosen such that away from two-photon resonance Feshbach molecule number drops
to 20% above the detection noise level due to resonant excitation by the 652nm laser.
The exact timing for both spectroscopy pulses can be seen in Fig. 4.18.

7. Remaining Feshbach molecules are detected via direct absorption imaging on the
cycling transition of 40K at 85.5G.

This experimental sequence was repeated until a reduction of resonant Feshbach
molecule loss due to coherent population trapping [98, 99, 100] could be detected.
Fig.4.19 shows the final scan of the Stokes laser frequency that exhibited the dark-
resonance feature. Fig. 4.20 shows the reciprocal experiment where the frequency of
the Stokes laser is kept in one-photon resonance and the frequency of the pump laser is
scanned across the mJ = 0 absorption feature. Absorption of the pump laser is blocked
when both lasers are in Raman resonance and a typical EIT (electromagnetically induced
transparency) spectrum can be observed (compare Fig. 4.13). With these measurements
we determine the binding energy of the |X 1Σν = 0J = 0〉 state by measuring the fre-
quency of both Raman lasers using a commercial wavemeter (Toptica, WS7) with 10MHz
resolution and an accuracy of 300MHz. Our result, 156.25319THz agrees well with the
more precise measurement of [21] where the laser frequencies have been measured with
reference to an iodine spectroscopy and a self-referenced frequency comb.
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4.5.3 Characterization of the d3Π/D1Π - STIRAP scheme

The observation of EIT enabled us to investigate the suitability of the chosen STIRAP
scheme for groundstate transfer.

Determination of STIRAP parameters from EIT spectroscopy

In order to estimate the feasibility of the chosen STIRAP scheme, we determine the ex-

perimental accessible parameters ΩP , ΩS,
Ω2

P
Γ and Γe f f by the following procedure:

1. Measure the on resonant excitation rate of Feshbach molecules for the mJ = 0 com-
ponent of the Ω= 1, J = 1 Zeeman triplet and determine τres =

Γ
Ω2

P
by fitting a single

exponential decay.

2. Measure the decay rate of Feshbach molecules in a strong coupling (i.e. ΩS >> ΩP)
EIT configuration when both Raman lasers fulfill the single photon resonance con-
dition ∆P = ∆S = 0. Fitting a single exponential decay determines the 1/e lifetime
τEI T of the dark state .

3. Substitute Γ =
Ω2

P
τres

and τEI T in equation 4.51 for the EIT lineshape. A two parameter
fit of equation 4.51 for a given irradiation time t = t ir r then yields estimates for ΩP

and ΩS

Fig. 4.21 shows the measurement that is used to determine τres =
Γ
Ω2

P
and τEI T '

Ω2
S

Ω2
P ·Γe f f

.

Both quantities are obtained via a least square fit of a single exponential decay.
Fig. 4.22 shows a two-parameter (ΩP and ΩS) least square fit of equation 4.51 to an

EIT spectrum measured with an irradition time of t ir r = 30µs. The results of the complete
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in order to estimates the values of ΩP and ΩS .

fitting procedure are listed in table 4.10.

We obtain reasonable and self-consistent values for ΩP , ΩS and Γ . The phenomeno-
logical decoherence rate Γe f f however is much larger than one would expect for external
sources of decoherence in a standard laboratory environment. Since STIRAP and EIT both
depend on the coherent nature of the darkstate, this large phenomenological decoherence
rate could pose a significant limitation on STIRAP efficiency. Moreover, it does not allow
us to measure the hyperfine structure of the groundstate in EIT spectroscopy. Note that
EIT lifetime cannot be used to draw quantitative conclusions on STIRAP performance. All
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Parameter Value

τres 11µs
τEI T 264µs
ΩP 2π · 369MHz
ΩS 2π · 10.2MHz
Γ 2π · 9.4MHz
Γe f f 2π · 461kHz

Table 4.10 – Experimental parameters of the chosen molecular STIRAP scheme determined by EIT spec-
troscopy. The large value of Γeff signals a fundamental problem either with the laser system or the molecular
level structure.

attempts to perform STIRAP with the current Raman laser setup have been futile.
As a first step in diagnostics we could identify the phase noise pedestal of the 652nm
Raman laser system as the dominating cause for EIT decay. To quantify this observation
we measured the EIT lifetime τEI T as function of the noise power fraction outside of the
center region of the phase locked beat signal. We then change the noise power fraction by
adjusting the feedback gain of the analog control electronics and observe (as in Fig. 4.21)
how EIT lifetime is affected.
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Figure 4.23 – Power spectra of the beat signal between the master and the slave laser of the pump laser
system (see Fig. 4.8). For each power spectrum the corrsponding EIT lifetime τEI T is indicated. The blue
lines indicate the central region of the power spectrum that is excluded for calculation the noise power fraction.
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significantly increases for noise power fraction below 0.5%. Unfortunately conventional diode lasers do not
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The result of this measurement is shown in Fig. 4.23 and summarized in Fig. 4.24.
With this measurement we have a clear indication that EIT lifetime is currently limited
by the phase noise performance of the pump laser system. Since typical semiconductor
lasers always exhibit a significant phase noise pedestal, we need to replace the pump laser
system by a different technology if we want to further investigate whether STIRAP via the
d3Π/D1Π complex is possible. During writing this report we managed to directly lock a
Coherent 899 Dye laser to the high finess cavity via the PDH technique that replaces the
652nm pump laser system. Although we have seen some first indication that this indeed
decreased the effective decoherence rate for EIT as compared to the previous diode laser
system, we do not have a final result.
Since the current laser system excludes me from doing further experimental diagnostics I
numerically simulate the STIRAP process for the currently chosen intermediate level to get
more insight into the effects of the non-resolved hyperfine structure of the intermediate
level.

4.6 Numerical model for groundstate transfer vie the d3Π/D1Π

complex

The RWA (rotating wave approximation) treatment of a coherently coupled, dissipative
three-level lambda system can be found in [98]. The main result is, that regardless of the
exact values of ΩS, ΩP and Γ for zero detuning ∆S = 0 and in Raman resonance ∆P =∆S a
dark-state always exist, that can be used for dissipation free coherent population transfer
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via STIRAP.
This situation changes for multiple quasi-degenerate intermediate states and non degen-
erate final states. The problem of multiple intermediate states for STIRAP was analyzed
in detail in a series of publications by the Bergmann group [94, 95, 96, 97]. Their main
result can be summarized as follows: For a dissipation free multilevel lambda system
successful STIRAP is not guaranteed but relies on fine-tuning of the experimental para-
meters. Decay of the intermediate states will always be detrimental and when sponta-
neous emission becomes significant can ruin STIRAP efficiency. Note also that, all groups
that were successful in preparing ground state molecules via STIRAP were using hyper-
fine state resolved three-level systems. Due to the non-resolved hyperfine structure it
is impossible to single out a true three-level system for our choice of intermediate state
and the question whether STIRAP could work efficiently is far from trivial to answer. In
the final two sections of this report I therefore apply the RWA approach of Shore and
Bergmann [98] to the near-degenerate multi-level lambda system that is formed by the
Feshbach molecule, the rovibronic groundstate and the non-resolved hyperfine manifold
of the |d3ΠΩ=1ν= 5J = 1〉 level.

4.6.1 Hyperfine structure of the rovibronic groundstate

To identify a suitable STIRAP pathway to the |X 1Σν= 0J = 0〉 state not only the hyperfine
structure/state composition of the Feshbach molecule and the d3Π/D1Π intermediate state
has to be considered (see table 4.3 and section 4.4.2) but also the hyperfine structure of
the target |X 1Σν = 0J = 0〉 state itself. Since the |X 1Σν = 0J = 0〉 state is the electronic
groundstate Λ = 0, is of pure spin-singlet character Σ = 0 and is non-rotating (J = 0),
the hyperfine structure is just given by the interaction between the electric and magnetic
moments of the nuclei alone. The dominant contribution is due to the scalar spin-spin
interaction [109]:

HSc = c4 · IK · INa (4.63)

Note that this interaction is not caused by direct magnetic dipole forces between the nuclei
but is mediated by the electron distribution of the X 1Σ state [109]. Since we produce the
initial state for STIRAP (i.e. the Feshbach molecule) by RF association at a magnetic field
of 85.5G, we also have to take into account the Zeeman interaction between the external
field and the magnetic moments |µK/Na| = g IK/Na · mK/Na · µB of both nuclei. The total
Hamiltonian that governs the groundstate hyperfine structure is the given by:

HHF = c4 · IK · INa +µB(g IK IK + g INaINa) ·B (4.64)

Here µB = h · 1.3996 · MHz/G is the Bohr magneton, g IK/Na are the nuclear g-factors
for each species [51, 47] and I the nuclear spin operators. Since at a magnetic field of
85.5G the scalar spin-spin coupling constant c4 ' −466Hz [21] is smaller than 1% of
the Zeeman interaction, we can treat HSc as a perturbation (Paschen-Back regime). The
energy eigenvalues EHF of HHF are then approximately given by

EHF = µB(g INamNa + g IK mK)B + c4mK mNa. (4.65)
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STIRAP starting from Feshbach molecules with projection mF = −7/2 along the magnetic
field direction of the total angular momentum F= J+INa+IK can only populate groundstate
hyperfine components with mF = mK +mNa = −11/2,−9/2,−7/2,−3/2 - in a two photon
transition the angular momentum of the molecule can only change by 2h at most. Fig.
4.25 lists the energy eigenvalues for all groundstate hyperfine components. The red dots
indicate the components that are accessible by STIRAP. We find that the expected energy
splitting between two adjacent hyperfine components with the same value of mF is on the
order of ∼ 100kHz.
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Figure 4.25 – Hyperfine structure of the rovibronic groundstate at 85.5G obtained by equation 4.65. The red
dots indicate hyperfine components that can be accessed by STIRAP starting from Feshbach molecules with
mF = −7/2 (dashed black line).The light red dots indicate hyperfine components that are not present in the
Feshbach molecule and therefore can only be accessed via mixing of hyperfine states in the excited state. The
expected energy splitting between two adjacent hyperfine components with the same value of mF is on the
order of ∼ 100kHz. The hyperfine component with total lowest energy is indicated by the back arrow. The
value for the scalar nuclear spin-spin interaction parameter c4 was taken from [21].

The absolute groundstate |X 1Σν = 0J = 0〉 ⊗ |mK = −4mNa = 3/2〉 (the state of low-
est electronic, vibrational, rotational and hyperfine energy) of the 23Na40K molecule at a
magnetic field of 85.5G is indicated by the black arrow. Since spin changing two-body col-
lisions are suppressed for this hyperfine component at ultra-cold temperatures [19], it is
the desired target state for groundstate transfer. Using the results of the asymptotic bound
state model and the analysis of the intermediate hyperfine structure (see table 4.7 - 4.9)
we are now in the position to identify two different two-photon pathways to the desired
target state.
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Two photon pathways to the hyperfine groundstate of the |X 1Σν= 0J = 0〉 state

Since the excited state hyperfine structure is not resolved for the d3Π/D1Π complex, the
projection of the total angular momentum excluding nuclear spin mJ stays a good quan-
tum number for describing possible two-photon transitions to the rovibronic groundstate.
The Feshbach molecule is expressed as a superposition of spin basis states |JmJ mK mNa〉
i.e.

|FB〉=
∑

α

α|JmJ mK mNa〉 (4.66)

with ABM coefficients α and quantum numbers J , mJ , mK and mNa given in table 4.3. The
accessible hyperfine components of the intermediate state are as well expressed in the spin
basis:

|JmJ mK mNa〉 with J = 1, mJ = −1, 0,1, mK = −4, ..., 4 and mNa = −1.5, ..., 1.5 (4.67)

The final state of STIRAP i.e. a single hyperfine component of the |X 1Σν= 0J = 0〉 state is
also expressed in the nuclear spin decoupled basis as |J = 0mJ = 0mK mNa〉. Since STIRAP
involves two electric dipole transitions of the form

〈J ′m′J m′K m′Na|d̂ · EP/S(t)|JmJ mK mNa〉= 〈J ′m′J |d̂ · EP/S(t)|JmJ 〉 · 〈m′K m′Na|mK mNa〉, (4.68)

the projections of the nuclear spins are conserved in a two-photon transition. In the last
equation d̂ is the electric dipole operator and EP/S the electric field vector of the pump
or Stokes Raman laser. Since the Feshbach molecule is a superposition of ABM basis
states, multiple hyperfine components of the |X 1Σν = 0J = 0〉 state are simultaneously
addressed in STIRAP for a given combination of Raman laser polarizations. Table 4.11 list
all possible combinations of Raman laser polarizations that allow to couple the rovibronic
groundstate (with J = 0, mJ = 0) to the Feshbach molecule via a given mJ component of
the J = 1,Ω= 1 Zeeman triplet. Transitions that allow to access the hyperfine groundstate
|J = 0mJ = 0mK = −4mNa = −3/2〉 are highlighted in bold face.

|FB〉 |J = 1,Ω= 1〉 Pump Stokes

mJ = 0 mJ = −1 σ− σ+

mJ = −1 mJ = −1 Π σ+
mJ = 1 mJ = 0 σ− Π

mJ = 0 mJ = 0 Π Π

mJ = −1 mJ = 0 σ+ Π

mJ = 1 mJ = 1 Π σ−

mJ = 0 mJ = 1 σ+ σ−

Table 4.11 – Possible combinations of Raman laser polarization and mJ component of the J = 1,Ω = 1

Zeeman triplet that exhibit a non-vanishing two-photon coupling from the Feshbach molecule to the rovibronic
groundstate |X 1Σν = 0J = 0mJ = 0〉. Transitions that allow to access the hyperfine groundstate |J =

0mJ = 0mK = −4mNa = −3/2〉 are highlighted in bold face.
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Fig. 4.26 and 4.27 illustrate the only two STIRAP configurations that allow to ac-
cess the |J = 0mJ = 0mK = −4mNa = −3/2〉 hyperfine groundstate. Both are near-
resonant multilevel STIRAP schemes. The pump laser couples four different ABM basis
states with amplitudes αi to the either the mJ = −1 or the mJ = 0 Zeeman component
of the |d3ΠΩ=1ν = 5J = 1〉 intermediate level. The relevant Zeeman component (mJ = 0
or mJ = −1) of the intermediate level is then coupled via the Stokes laser to the hyper-
fine manifold (see Fig. 4.25) of the rovibronic groundstate. For both combinations we
therefore get four near degenerate STIRAP paths to four different groundstate hyperfine
components that are offset in frequency by the groundstate hyperfine splitting.

mNa=3/2, mK=-4: a2 =0.022   
mNa=1/2, mK=-3: a2 =0.006   
mNa=-1/2, mK=-2: a2 =0.142   
mNa=-3/2, mK=-1: a2 =0.017 

mJ=-1,mF=-7/2

mJ=-1,mF=-7/2

mJ=0,mF=-5/2

P

s+

STIRAP path to hyperfine groundstate via mJ=-1

DEHF < G

Figure 4.26 – Possible STIRAP pathway to the hyperfine groundstate of |X 1Σν = 0J = 0〉 using the
mJ = −1 component of the Ω = 1, J = 1 Zeeman triplet. Four different hyperfine components contribute.
The transition to the desired |mK = −4mNa = 3/2〉 component is highlighted in light red. The values for
the relative transition strength α2 are obtained from the amplitudes of the ABM basis states of the Feshbach
molecule at a magnetic field of 85.5G (see table 4.7).

With these considerations in mind it is now possible to setup a realistic RWA Hamil-
tonian (see section 4.5.1 above) that can be used to simulate the effect of multiple near-
degenerate two-photon transitions on STIRAP success. To ensure that the simulation is
as realistic as possible and does give an upper bound on STIRAP efficiency, the following
assumptions are made:

1. The initial state for STIRAP is the Feshbach molecule at 85.5G. It can be expressed
as a superposition of ABM basis states with amplitudes αi given in table 4.3.

2. The Fechbach molecule is assumed to have an infinite lifetime.

3. The natural linewidth of the intermediate state is given by Γ ' 2π · 10MHz

4. The hyperfine splitting δP for the different components in the the |d3ΠΩ=1ν = 5J =
1〉 intermediate level is assumed to be δP ' 0.1 · Γ .
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mNa=3/2, mK=-4: a2 =0.022   
mNa=1/2, mK=-3: a2 =0.006   
mNa=-1/2, mK=-2: a2 =0.142   
mNa=-3/2, mK=-1: a2 =0.017 

mJ=0,mF=-5/2

mJ=-1,mF=-7/2

mJ=0,mF=-5/2

P

STIRAP path to hyperfine groundstate via mJ=0

s+

DEHF < G

Figure 4.27 – Possible STIRAP pathway to the hyperfine groundstate of |X 1Σν = 0J = 0〉 using the
mJ = 0 component of the Ω = 1, J = 1 Zeeman triplet. Four different hyperfine components contribute.
The transition to the desired |mK = −4mNa = 3/2〉 component is highlighted in light red. The values for
the relative transition strength α2 are obtained from the amplitudes of the ABM basis states of the Feshbach
molecule at a magnetic field of 85.5G (see table 4.8).

5. The hyperfine splitting δS between the groundstate components (see Fig. 4.25) is
calculated with equation 4.65.

6. Peak Rabi frequencies are assumed to be ΩP = ΩS = 0.1 · Γ . For the different pump
transitions to the various hyperfine components ΩP is multiplied by the relative line
strength of the transition si =

|αi |
∑

j |α j |
.

7. Raman laser polarizations are assumed to be perfect.

8. Laser frequency noise and phase noise is not included as well as external sources of
decoherence.

The RWA hamiltonian is then given by the 9x9 matrix of equation 4.69:































2∆ s1ΩP(t) s2ΩP(t) s3ΩP(t) s4ΩP(t) 0 0 0 0
s1ΩP(t) −iΓ − 6δP 0 0 0 ΩS(t) 0 0 0
s2ΩP(t) 0 −iΓ − 4δP 0 0 0 ΩS(t) 0 0
s3ΩP(t) 0 0 −iΓ − 2δP 0 0 0 ΩS(t) 0
s4ΩP(t) 0 0 0 −iΓ 0 0 0 ΩS(t)

0 ΩS(t) 0 0 0 2∆− 2δS3 0 0 0
0 0 ΩS(t) 0 0 0 2∆− 2δS2 0 0
0 0 0 ΩS(t) 0 0 0 2∆− 2δS1 0
0 0 0 0 ΩS(t) 0 0 0 2∆































(4.69)
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In order to investigate STIRAP efficiency in a situation that is fundamentally different
from the usual three level case, we solve the RWA evolution equation 4.46 for the matrix
4.69 and try to find parameter were STIRAP transfers population to the desired target
state. Since the the values for Γ , si, δP and δSi are fixed and since decreasing the peak
Rabi frequency does not enhance STIRAP performance the only parameter that seems
sensible to vary is the one-photon detuning ∆. As a starting point we investigate STI-
RAP in one photon resonance ∆ = 0 using the pulse sequence of equation 4.57 and a
STIRAP pulse area of Ω0 · τ = 200 that should allow for efficient adiabatic transfer in the
corresponding three level scheme (see Fig. 4.15) with otherwise equal parameters. Note
that the exact order of energy levels for the excited state can not be determined without
knowing the hyperfine coupling constants of the excited state. The temporal evolution of
the Feshbach molecule and the population in the |mK = −4mNa = 3/2〉 component of the
rovibronic groundstate is shown in Fig. 4.28. Fig. 4.29 shows how the situation changes
when Raman lasers are resonant not with the |mK = −4mNa = 3/2〉 component but with
the component of strongest weight i.e. |mK = −2mNa = −1/2〉. For both configurations
STIRAP efficiency is below 25%.
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Figure 4.28 – Temporal evolution of the populations for the Feshbach molecule and the target hyperfine com-
ponent (|mK = −4mNa = 3/2〉) in the rovibronic groundstate during resonant (∆ = Γ ) STIRAP obtained by
numerical integration of the RWA evolution equation 4.46 using the Hamiltonian of equation 4.69.

I then tested whether a detuned (∆ = 2Γ ) configuration as proposed in [94, 96]
improves STIRAP efficiency. Fig. 4.30 and 4.31 show the result. For both final states
STIRAP efficiency increases compared to the resonant configuration. However only the
|mK = −2mNa = −1/2〉 hyperfine component can be populated with an efficiency of
' 65%. Note that for detection of groundstate molecules the STIRAP process has to
be reversed to allow for direct absorption imaging of Feshbach molecules. Detection
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Figure 4.29 – Temporal evolution of the populations for the Feshbach molecule and the hyperfine component
with largest spectroscopic weight (|mK = −2mNa = −1/2〉) in the rovibronic groundstate during resonant
(∆ = Γ ) STIRAP obtained by numerical integration of the RWA evolution equation 4.46 using the Hamiltonian
of equation 4.69.

efficiency therefore would be decreased to 42%. Moreover the required pulse duration for
STIRAP has to be increased by a factor of ≥ 7.5 in order to fulfill the adiabaticity criterium.
The increased STIRAP pulse duration increases the susceptibility to external sources of
decoherence (e.g. ambient magnetic field noise) which are completely neglected in the
present analysis.

The main results from the numerical simulation of the multilevel d3Π/D1Π STIRAP
scheme can be summarized as follows:

1. A dark state i.e. a state with no amplitude of the decaying intermediate levels does
not exist.

2. Therefore STIRAP could only work efficiently in a detuned configuration, where the
single photon detuning in Raman resonance is larger than the natural linewidth of
the excited state (i.e. ∆> Γ ).

3. Even in the detuned configuration it is only possible to transfer significant population
(> 50%) to the hyperfine component with strongest spectroscopic weight.

4. A STIRAP efficiency above 60% requires a pulse duration that is > 200µs - a time
scale that is 10− 50 times longer then all successful groundstate transfers for ultra-
cold alkali-alkali molecule [21, 18, 20, 19, 15].

5. The effects of imperfect polarization, external decoherence and laser phases noise,
that obviously (compare Fig. 4.24) has a significant influence on the coherence
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Figure 4.30 – Temporal evolution of the populations for the Feshbach molecule and the target hyperfine com-
ponent (|mK = −4mNa = 3/2〉) in the rovibronic groundstate during resonant (∆ = 2 ·Γ ) STIRAP obtained
by numerical integration of the RWA evolution equation 4.46 using the Hamiltonian of equation 4.69.
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Figure 4.31 – Temporal evolution of the populations for the Feshbach molecule and the hyperfine component
with largest spectroscopic weight (|mK = −2mNa = −1/2〉) in the rovibronic groundstate during detuned
(∆ = 2 · Γ ) STIRAP obtained by numerical integration of the RWA evolution equation 4.46 using the Hamilto-
nian of equation 4.69.

properties of the darkstate are neglected in the presented model.

For these reasons I am highly skeptical whether efficient groundstate transfer of 23Na40K
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molecules can be established via an intermediate level the d3Π/D1Π complex.

4.6.2 Conclusions

Due to the non-resolved hyperfine structure in the d3Π/D1Π complex it will be not pos-
sible to single out a true three-level system for STIRAP. Therefore the effects of multiple
non-resolved intermediate levels have to be considered. Even for a dissipation-free mul-
tilevel lambda system successful STIRAP is not guaranteed but relies on fine tuning of
the experimental parameters [94, 95, 96, 97]. Decay of the intermediate states will be
always detrimental for STIRAP success. For our choice of intermediate state the decay
rate of the intermediate states Γ > 2π · 10MHz is ten times larger than the Rabi frequency
Ω0 =

q

Ω2
S +Ω

2
P . So even neglecting all possible technical problems (see Fig. 4.24) ground-

state transfer via the current intermediate state could well be impossible and will certainly
not be optimal.
With regard to our ambitious primary objective - the observation of strongly correlated
many-body effects in a dipolar quantum gas of molecules - STIRAP efficiency should be
as high as possible in order to conserve phase-space density and to allow for efficient
molecule detection. We should be therefore prepared to change the STIRAP scheme to an
intermediate state manifold that exhibits Fermi contact interaction and allows for hyper-
fine state resolved STIRAP. The scheme characterized in [86] and successfully used in [21]
would be the natural choice. For the laser system, we should aim for technologies with
intrinsically narrow linewidth and enough output power that allow for Rabi frequencies
that are at least ≥ 0.3 · Γ (compare the parameters given in [21]).
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CHAPTER 5

Summary and outlook

During the course of this PhD project a novel experimental setup was constructed that
should allow to study dipolar interacting quantum many-body systems of ultracold
23Na40K molecules. Among all possible fermionic alkali-alkali combinations that are
chemically stable in a two-body reaction the 23Na40K molecule offers the largest intrinsic
dipole moment. In the current configuration this experiment creates deeply degener-
ate Bose-Fermi mixtures of the constituent atoms. Full hyperfine state control for both
elements and precise magnetic field control allow us to address various inter-species Fesh-
bach resonances. In the vicinity of a particular Feshbach resonance weakly bound 23Na40K
halo dimers are created by radio frequency association. These molecules serve as a poten-
tial starting point for the adiabatic preparation of rovibronic groundstate molecules via
the STIRAP technique. The implementation of STIRAP requires to identify a suitable elec-
tronically excited molecular level, that facilitates significant two-photon Raman coupling
between the halo dimer and the rovibronic groundstate. To this end we have performed
high resolution molecular spectroscopy and have identified a near-resonant pair of vibra-
tional levels in d3Π/D1Π electronic state complex. Molecular spin-orbit coupling results
in the required mixing of spin singlet and spin triplet levels. By using a narrow linewidth
Raman laser system we have measured the binding energy of the rovibronic groundstate
in coherent dark-state spectroscopy. In addition EIT experiments in the molecular three-
level system formed by the halo dimer, the d3Π/D1Π intermediate state and the rovibronic
groundstate allow us to estimate the Rabi frequencies of both transitions. We observe a
very large effective dark state decoherence rate that indicates a fundamental shortcoming
of the current STIRAP scheme and prevents us from achieving ground state transfer. We
have identified the phase noise performance of the short cavity semiconductor lasers that
are used in the Raman laser system as the current limiting parameter. Therefore we
will try to replace the semiconductor lasers with intrinsically narrow laser sources (dye
lasers, titanium saphire lasers) in future experiments. Unfortunately the absence of Fermi
contact interaction for the intermediate level results in a non-resolved molecular hyper-
fine structure resulting in a dissipative multi-level STIRAP scheme. In this configuration
STIRAP will only result in efficient groundstate transfer for a single photon detuning that
is larger than the natural linewidth Γ of the intermediate state. With the current Rabi
frequencies limited to well below 10% of Γ STIRAP will fail in the detuned configuration
even in absence of phase noise and all other sources of decoherence.
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5.1 Outlook

Recently 23Na40K groundstate molecules have been prepared at MIT by using a differ-
ent STIRAP scheme (resolved hyperfine structure, no semiconductor lasers) relying on a
spin-orbit coupled level pair in the c3Σ/B1Π complex. The natural solution would be to
also use this STIRAP scheme for groundstate transfer. However, changing the current STI-
RAP scheme constitutes a major investment in terms of preparation time and technical
equipment. We therefore intend to investigate whether the current STIRAP scheme could
indeed work efficiently in a detuned configuration. To this end we decided not to target
the absolute hyperfine groundstate but instead aim for the hyperfine state that has the
largest weight in the Feshbach molecule. In addition we have replaced the semiconductor
lasers of one part of the Raman laser system by a dye laser, which features much less phase
noise and increases the Rabi frequency for STIRAP to ' 0.1Γ . A numerical integration of
the optical master equations for this STIRAP scheme results in > 80% STIRAP efficiency
for a detuning of ' 3Γ and a STIRAP pulse duration of ' 250µs. This promising prediction
will be tested in near future experiments.



Bibliography

[1] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge
University Press, 2001 (cit. on pp. 1, 22).

[2] A.J. Leggett. Quantum Liquids - Bose Condensation and Cooper Pairing in Condensed-
Matter Systems. 2006 (cit. on pp. 1, 10, 11).

[3] Wilhelm Zwerger. The BCS-BEC Crossover and the Unitary Fermi Gas. 2012 (cit. on
p. 1).

[4] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Haensch, and Im-
manuel Bloch. “Quantum phase transition from a superfluid to a Mott insulator in
a gas of ultracold atoms”. In: Nature 415 (2002), pp. 39–40 (cit. on p. 1).

[5] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. “Many-body physics with
ultracold gases”. In: Rev. Mod. Phys. 80 (3 2008), pp. 885–964 (cit. on pp. 1, 2).

[6] Jean Dalibard, Fabrice Gerbier, Gediminas Juzelinas, and Patrik Oehberg. “Artifi-
cial gauge potentials for neutral atoms”. In: Rev. Mod. Phys. 83 (4 2011), pp. 1523–
1543 (cit. on p. 1).

[7] Jean Dalibard. “Introduction to the physics of artificial gauge fields”. In: arXiv:1504.05520
(2015) (cit. on p. 1).

[8] Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, Simon Foelling, and Markus
Greiner. “A quantum gas microscope for detecting single atoms in a Hubbard-
regime optical lattice”. In: Nature 462 (2009), pp. 74–77 (cit. on p. 1).

[9] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel
Bloch, and Stefan Kuhr. “Single-atom-resolved fluorescence imaging of an atomic
Mott insulator”. In: Nature 467 (2010), pp. 68–72 (cit. on p. 1).

[10] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen. “Doping a Mott insulator:
Physics of high-temperature superconductivity”. In: Rev. Mod. Phys. 78 (1 2006),
pp. 17–85 (cit. on pp. 2, 14).

[11] L.D. Carr, D. DeMille, Krems R. V., and J. Ye. “Cold and ultracold molecules: sci-
ence, technology and applications”. In: New Journal of Physics (11 2009) (cit. on
p. 2).

[12] Lev Davidovich Landau and Evgenii Mikhailovich Lifshits. Quantum Mechanics
(non-relativistic Theory). 1958 (cit. on pp. 2, 58).

[13] Thorsten Koehler, Krzysztof Goral, and Paul S. Julienne. “Production of cold
molecules via magnetically tunable Feshbach resonances”. In: Rev. Mod. Phys. 78
(4 2006), pp. 1311–1361 (cit. on pp. 2, 86, 87).



120 BIBLIOGRAPHY

[14] K. Bergmann, H. Theuer, and B. W. Shore. “Coherent population transfer among
quantum states of atoms and molecules”. In: Rev. Mod. Phys. 70 (3 1998),
pp. 1003–1025 (cit. on pp. 2, 93, 97).

[15] Johann G. Danzl, Elmar Haller, Mattias Gustavsson, Manfred J. Mark, Russell Hart,
Nadia Bouloufa, Olivier Dulieu, Helmut Ritsch, and Hanns-Christoph Naegerl.
“Quantum Gas of Deeply Bound Ground State Molecules”. In: Science 321.5892
(2008), pp. 1062–1066. eprint: http://www.sciencemag.org/content/321/
5892/1062.full.pdf (cit. on pp. 2, 113).

[16] Simon Stellmer, Benjamin Pasquiou, Rudolf Grimm, and Florian Schreck. “Cre-
ation of Ultracold Sr2 Molecules in the Electronic Ground State”. In: Phys. Rev.
Lett. 109 (11 2012), p. 115302 (cit. on p. 2).

[17] G. Reinaudi, C. B. Osborn, M. McDonald, S. Kotochigova, and T. Zelevinsky. “Op-
tical Production of Stable Ultracold 88Sr2 Molecules”. In: Phys. Rev. Lett. 109 (11
2012), p. 115303 (cit. on p. 2).

[18] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. “A High Phase-Space-Density
Gas of Polar Molecules”. In: Science 322.5899 (2008), pp. 231–235. eprint: http:
//www.sciencemag.org/content/322/5899/231.full.pdf (cit. on pp. 2, 18,
113).

[19] Tetsu Takekoshi, Lukas Reichsoellner, Andreas Schindewolf, Jeremy M. Hutson,
C. Ruth Le Sueur, Olivier Dulieu, Francesca Ferlaino, Rudolf Grimm, and Hanns-
Christoph Naegerl. “Ultracold Dense Samples of Dipolar RbCs Molecules in the
Rovibrational and Hyperfine Ground State”. In: Phys. Rev. Lett. 113 (20 2014),
p. 205301 (cit. on pp. 2, 3, 70, 108, 113).

[20] Peter K. Molony, Philip D. Gregory, Zhonghua Ji, Bo Lu, Michael P. Koeppinger,
C. Ruth Le Sueur, Caroline L. Blackley, Jeremy M. Hutson, and Simon L. Cornish.
“Creation of Ultracold 87Rb133Cs Molecules in the Rovibrational Ground State”. In:
Phys. Rev. Lett. 113 (25 2014), p. 255301 (cit. on pp. 2, 113).

[21] Jee Woo Park, Sebastian A. Will, and Martin W. Zwierlein. “Ultracold Dipolar Gas
of Fermionic 23Na40K Molecules in Their Absolute Ground State”. In: Phys. Rev.
Lett. 114 (20 2015), p. 205302 (cit. on pp. 2, 3, 91, 101, 107, 108, 113, 115).

[22] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P. Covey, Kaden R. A. Hazzard, Ana
Maria Rey, Deborah S. Jin, and Jun Ye. “Observation of dipolar spin-exchange in-
teractions with lattice-confined polar molecules”. In: Nature 501 (2013), pp. 521–
525 (cit. on pp. 2, 14, 15).

[23] Alexey V. Gorshkov, Salvatore R. Manmana, Gang Chen, Jun Ye, Eugene Dem-
ler, Mikhail D. Lukin, and Ana Maria Rey. “Tunable Superfluidity and Quantum
Magnetism with Ultracold Polar Molecules”. In: Phys. Rev. Lett. 107 (11 2011),
p. 115301 (cit. on pp. 2, 14, 15, 18).

http://www.sciencemag.org/content/321/5892/1062.full.pdf
http://www.sciencemag.org/content/321/5892/1062.full.pdf
http://www.sciencemag.org/content/322/5899/231.full.pdf
http://www.sciencemag.org/content/322/5899/231.full.pdf


BIBLIOGRAPHY 121

[24] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener,
P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye. “Quantum-State Controlled Chem-
ical Reactions of Ultracold Potassium-Rubidium Molecules”. In: Science 327.5967
(2010), pp. 853–857. eprint: http://www.sciencemag.org/content/327/
5967/853.full.pdf (cit. on p. 3).

[25] Piotr S. Zuchowski and Jeremy M. Hutson. “Reactions of ultracold alkali-metal
dimers”. In: Phys. Rev. A 81 (6 2010), p. 060703 (cit. on p. 3).

[26] M.A. Baranov, M. Dalmonte, Pupillo M., and Zoller P. “Condensed Matter Theory
of Dipolar Quantum Gases”. In: Chemical Reviews 112 (9 2012) (cit. on pp. 4, 6,
9–11, 13, 14).

[27] R. Feynman. Lectures on physics 2, Electromagnetism. Boston: Addison-Wesley,
1964 (cit. on p. 4).

[28] E.M. Lifshitz and L.P. Pitaevskii. Statistical Physics Part 2: Theory of the Condensed
State. London: Butterworth Heinemann, 1980 (cit. on pp. 9, 10).

[29] G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale. “Bragg Spectroscopy of a Strongly
Interacting Fermi Gas”. In: Phys. Rev. Lett. 101 (25 2008), p. 250403 (cit. on
pp. 10, 11).

[30] Zhen-Kai Lu, S. I. Matveenko, and G. V. Shlyapnikov. “Zero sound in a two-
dimensional dipolar Fermi gas”. In: Phys. Rev. A 88 (3 2013), p. 033625 (cit. on
p. 10).

[31] A. Micheli, G. Pupillo, H. P. Büchler, and P. Zoller. “Cold polar molecules in two-
dimensional traps: Tailoring interactions with external fields for novel quantum
phases”. In: Phys. Rev. A 76 (4 2007), p. 043604 (cit. on pp. 12–14).

[32] Andrea Micheli, Zbigniew Idziaszek, Guido Pupillo, Mikhail A. Baranov, Pe-
ter Zoller, and Paul S. Julienne. “Universal Rates for Reactive Ultracold Polar
Molecules in Reduced Dimensions”. In: Phys. Rev. Lett. 105 (7 2010), p. 073202
(cit. on pp. 12, 13).

[33] Bloch Immanuel. Ecole de Physique des Houches: Many-Body Physics with Ultracold
Gases. Oxford University Press, 2010 (cit. on p. 12).

[34] N. Matveeva and S. Giorgini. “Liquid and Crystal Phases of Dipolar Fermions in
Two Dimensions”. In: Phys. Rev. Lett. 109 (20 2012), p. 200401 (cit. on pp. 13,
14).

[35] A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and
A. M. Rey. “Tunable Superfluidity and Quantum Magnetism with Ultracold Polar
Molecules”. In: Phys. Rev. Lett. 107 (11 2011) (cit. on pp. 14, 15).

[36] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. “Cold Bosonic
Atoms in Optical Lattices”. In: Phys. Rev. Lett. 81 (15 1998), pp. 3108–3111 (cit.
on p. 14).

[37] N.W. Ashcroft and D. Mermin. Solid State Physics. Brooks Cole, 1976 (cit. on
p. 14).

http://www.sciencemag.org/content/327/5967/853.full.pdf
http://www.sciencemag.org/content/327/5967/853.full.pdf


122 BIBLIOGRAPHY

[38] Takeshi Fukuhara, Peter Schauss, Manuel Endres, Sebastian Hild, Marc. Cheneau,
Immanuel Bloch, and Christian Gross. “Microscopic observation of magnon bound
states and their dynamics”. In: Nature 502 (2013), pp. 76–79 (cit. on p. 15).

[39] H. P. Buechler, E. Demler, M. Lukin, A. Micheli, N. Prokofiev, G. Pupillo, and
P. Zoller. “Strongly Correlated 2D Quantum Phases with Cold Polar Molecules:
Controlling the Shape of the Interaction Potential”. In: Phys. Rev. Lett. 98 (6 2007)
(cit. on p. 18).

[40] William D. Phillips and Harold Metcalf. “Laser Deceleration of an Atomic Beam”.
In: Phys. Rev. Lett. 48 (9 1982), pp. 596–599 (cit. on pp. 21, 27).

[41] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven. “Two-
dimensional magneto-optical trap as a source of slow atoms”. In: Phys. Rev. A 58
(5 1998), pp. 3891–3895 (cit. on pp. 21, 35).

[42] “Transient compression of a MOT and high intensity fluorescent imaging of opti-
cally thick clouds of atoms”. In: Optics Communications 180 (2000) (cit. on p. 21).

[43] D. M. Brink and C. V. Sukumar. “Majorana spin-flip transitions in a magnetic trap”.
In: Phys. Rev. A 74 (3 2006), p. 035401 (cit. on pp. 22, 38).

[44] Jee Woo Park, Cheng-Hsun Wu, Ibon Santiago, Tobias G. Tiecke, Sebastian Will,
Peyman Ahmadi, and Martin W. Zwierlein. “Quantum degenerate Bose-Fermi mix-
ture of chemically different atomic species with widely tunable interactions”. In:
Phys. Rev. A 85 (5 2012), p. 051602 (cit. on pp. 22, 24, 60).

[45] J.T.M Walraven. Elements of Quantum Gases: Thermodynamic and Collisional Prop-
erties of Trapped Atomic Gases. 2010 (cit. on pp. 23, 42, 46, 47).

[46] Harold J. Metcalf and Peter van der Straten. Laser Cooling and Trapping. 1999
(cit. on pp. 24, 25, 36).

[47] Daniel A. Steck. “Sodium D Line Data”. In: http://steck.us/alkalidata (2010) (cit.
on pp. 25–27, 62, 107).

[48] Norman Ramsey. Molecular beams). 1956 (cit. on p. 27).

[49] Kenneth J. Guenther. “Design and implementation of a Zeeman slower for 87Rb”.
Diploma thesis. Ecole Normale Superieur, Paris, 2004 (cit. on p. 27).

[50] M. Prevedelli, T. Freegarde, and T.W. Hänsch. “Phase locking of grating tuned
diode lasers”. In: Appl. Phys. B 60 (1995) (cit. on p. 33).

[51] T.G. Tiecke. “Properties of Potassium”. In: (2010) (cit. on pp. 34, 107).

[52] M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell. “Reduction of light-
assisted collisional loss rate from a low-pressure vapor-cell trap”. In: Phys. Rev. A
50 (5 1994), R3597–R3600 (cit. on p. 37).

[53] A. J. Moerdijk, H. M. J. M. Boesten, and B. J. Verhaar. “Decay of trapped ultracold
alkali atoms by recombination”. In: Phys. Rev. A 53 (2 1996), pp. 916–920 (cit. on
p. 39).



BIBLIOGRAPHY 123

[54] Ruth S. Bloom, Ming-Guang Hu, Tyler D. Cumby, and Deborah S. Jin. “Tests of
Universal Three-Body Physics in an Ultracold Bose-Fermi Mixture”. In: Phys. Rev.
Lett. 111 (10 2013), p. 105301 (cit. on pp. 39, 40, 45, 49).

[55] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. “Feshbach reso-
nances in ultracold gases”. In: Rev. Mod. Phys. 82 (2 2010), pp. 1225–1286 (cit. on
pp. 40, 51, 55–60, 86, 87).

[56] Rudolf Grimm, Matthias Weidemueller, and Yurii B Ovchinnikov. “Optical dipole
traps for neutral atoms”. In: arXiv:physics/9902072 (1999) (cit. on pp. 40–42,
44).

[57] T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E.
Pritchard, and W. Ketterle. “Transport of Bose-Einstein Condensates with Optical
Tweezers”. In: Phys. Rev. Lett. 88 (2 2001), p. 020401 (cit. on p. 44).

[58] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. “Theory
of Bose-Einstein condensation in trapped gases”. In: Rev. Mod. Phys. 71 (3 1999),
pp. 463–512 (cit. on p. 47).

[59] Robert Roth. “Structure and stability of trapped atomic boson-fermion mixtures”.
In: Phys. Rev. A 66 (1 2002), p. 013614 (cit. on pp. 53, 69).

[60] Tomasz Karpiuk, Mirosław Brewczyk, and Kazimierz Rzą żewski. “Bright solitons
in Bose-Fermi mixtures”. In: Phys. Rev. A 73 (5 2006), p. 053602 (cit. on p. 53).

[61] Thorsten Köhler, Krzysztof Góral, and Paul S. Julienne. “Production of cold
molecules via magnetically tunable Feshbach resonances”. In: Rev. Mod. Phys. 78
(4 2006), pp. 1311–1361 (cit. on p. 55).

[62] F. H. Mies, E. Tiesinga, and P. S. Julienne. “Manipulation of Feshbach resonances
in ultracold atomic collisions using time-dependent magnetic fields”. In: Phys. Rev.
A 61 (2 2000), p. 022721 (cit. on p. 55).

[63] C. Klempt, T. Henninger, O. Topic, M. Scherer, L. Kattner, E. Tiemann, W. Ertmer,
and J. J. Arlt. “Radio-frequency association of heteronuclear Feshbach molecules”.
In: Phys. Rev. A 78 (6 2008), p. 061602 (cit. on pp. 55, 60, 67).

[64] S. B. Papp and C. E. Wieman. “Observation of Heteronuclear Feshbach Molecules
from a 85Rb˘87Rb Gas”. In: Phys. Rev. Lett. 97 (18 2006), p. 180404 (cit. on p. 55).

[65] Michael P. Koeppinger, Daniel J. McCarron, Daniel L. Jenkin, Peter K. Molony,
Hung-Wen Cho, Simon L. Cornish, C. Ruth Le Sueur, Caroline L. Blackley, and
Jeremy M. Hutson. “Production of optically trapped 87RbCs Feshbach molecules”.
In: Phys. Rev. A 89 (3 2014), p. 033604 (cit. on p. 55).

[66] C. Weber, G. Barontini, J. Catani, G. Thalhammer, M. Inguscio, and F. Minardi.
“Association of ultracold double-species bosonic molecules”. In: Phys. Rev. A 78 (6
2008), p. 061601 (cit. on p. 55).

[67] Fudong Wang, Xiaodong He, Xiaoke Li, Bing Zhu, Jun Chen, and Dajun Wang.
“Formation of ultracold NaRb Feshbach molecules”. In: New Journal of Physics
17.3 (2015), p. 035003 (cit. on p. 55).



124 BIBLIOGRAPHY

[68] C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs.
“Ultracold Heteronuclear Molecules in a 3D Optical Lattice”. In: Phys. Rev. Lett. 97
(12 2006), p. 120402 (cit. on p. 55).

[69] Myoung-Sun Heo, Tout T. Wang, Caleb A. Christensen, Timur M. Rvachov, Dy-
lan A. Cotta, Jae-Hoon Choi, Ye-Ryoung Lee, and Wolfgang Ketterle. “Formation
of ultracold fermionic NaLi Feshbach molecules”. In: Phys. Rev. A 86 (2 2012),
p. 021602 (cit. on p. 55).

[70] Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, and Martin W.
Zwierlein. “Ultracold Fermionic Feshbach Molecules of 23Na40K”. In: Phys. Rev.
Lett. 109 (8 2012), p. 085301 (cit. on pp. 55, 81, 87).

[71] T. G. Tiecke, M. R. Goosen, J. T. M. Walraven, and S. J. J. M. F. Kokkelmans.
“Asymptotic-bound-state model for Feshbach resonances”. In: Phys. Rev. A 82 (4
2010), p. 042712 (cit. on pp. 57, 86, 87).

[72] Paul S. Julienne and Bo Gao. “Simple Theoretical Models for Resonant Cold Atom
Interactions”. In: AIP Conference Proceedings 869.1 (2006) (cit. on p. 58).

[73] G. Breit and E. Wigner. “Capture of Slow Neutrons”. In: Phys. Rev. 49 (7 1936),
pp. 519–531 (cit. on p. 58).

[74] Tyler D. Cumby, Ruth A. Shewmon, Ming-Guang Hu, John D. Perreault, and Deb-
orah S. Jin. “Feshbach-molecule formation in a Bose-Fermi mixture”. In: Phys. Rev.
A 87 (1 2013), p. 012703 (cit. on p. 70).

[75] Gerhard Herzberg. Molecular Spectra and Molecular Structure. Volume 1 - Spectra
of Diatomic Molecules. 1950 (cit. on pp. 71, 74, 77, 87).

[76] Walter J. Stevens, Daniel D. Konowalow, and Lyn B. Ratcliff. “Electronic structure
and spectra of the lowest five 1Σ+ and 3Σ+ states, and the three 1Π,3Π,1∆,and 3∆

states of NaK”. In: The Journal of Chemical Physics 80.3 (1984), pp. 1215–1224
(cit. on p. 73).

[77] P. Kowalczyk. “Perturbation facilitated observation of the d3Π state in NaK”. In:
Journal of Molecular Spectroscopy 136.1 (1989), pp. 1 –11 (cit. on pp. 73, 77, 82,
83).

[78] E. A. Pazyuk, A. V. Stolyarov, A. Zaitsevskii, R. Ferber, P. Kowalczyk, and C. Te-
ichteil. “Spin-orbit coupling in the d3Π/D1Π complex of 23Na39K”. In: Molecular
Physics 96.6 (1999), pp. 955–961 (cit. on pp. 73, 82, 83).

[79] Nadia Bouloufa, Romain Vexieu, and Olivier Dulieu. Private communication (cit.
on pp. 73, 81, 82).

[80] Helen Lefebvre-Brion and Robert W. Field. Perturbations in the Spectra of Diatomic
Molecules. 1986 (cit. on pp. 74, 77–79).

[81] Kiyoshi Ishikawa, Takahiro Kumauchi, Masaaki Baba, and Hajime Katô. “Hyperfine
structure of the NaK c3Σ+ state and the effects of perturbation”. In: The Journal
of Chemical Physics 96.9 (1992), pp. 6423–6432 (cit. on pp. 78, 92).



BIBLIOGRAPHY 125

[82] Anastasia Drozdova. “Study of spin-orbit coupled electronic states of Rb2, NaCs
and NaK molecules. Laser spectroscopy and accurate coupled-channel depertur-
bation analysis”. PhD thesis. University of Lyon, 2013 (cit. on pp. 81, 82).

[83] T. A. Schulze, I. I. Temelkov, M. W. Gempel, T. Hartmann, H. Knöckel, S. Os-
pelkaus, and E. Tiemann. “Multichannel modeling and two-photon coherent trans-
fer paths in NaK”. In: Phys. Rev. A 88 (2 2013), p. 023401 (cit. on pp. 81, 88).

[84] Eric D. Black. “An introduction to Pound-Drever-Hall laser frequency stabiliza-
tion”. In: American Journal of Physics 69.1 (2001), pp. 79–87 (cit. on p. 84).

[85] Diana Amaro. “A Raman Laser System for Groundstate transfer of NaK”. Master
thesis. Universidade de Coimbra, 2013 (cit. on p. 85).

[86] Jee Woo Park, Sebastian A. Will, and Martin Zwierlein. Two-Photon Pathway to
Ultracold Ground State Molecules of 23Na40K. 2015. url: arXiv:1505.01835 (cit.
on pp. 88, 89, 115).

[87] F. H. Crawford. “Zeeman Effect in Diatomic Molecular Spectra”. In: Rev. Mod. Phys.
6 (2 1934) (cit. on p. 88).

[88] D. M. Brink and G. R. Satchler. Angular Momentum. 1962 (cit. on p. 90).

[89] R. A. Frosch and H. M. Foley. “Magnetic Hyperfine Structure in Diatomic
Molecules”. In: Phys. Rev. 88 (6 1952) (cit. on p. 91).

[90] J. C. Slater. “Atomic Shielding Constants”. In: Phys. Rev. 36 (1 1930), pp. 57–64
(cit. on p. 92).

[91] H. Geisen, D. Neuschaefer, and Ch. Ottinger. “Hyperfine structure of N2 from LIF
measurements on a beam of metastable N2 molecules”. English. In: Zeitschrift fuer
Physik D Atoms, Molecules and Clusters 4.3 (1987), pp. 263–290 (cit. on p. 92).

[92] Kiyoshi Ishikawa. “Hyperfine structure of the NaK a3Σ+ state: Interaction of an
electron spin with the sodium and potassium nuclear spins”. In: The Journal of
Chemical Physics 98.3 (1993), pp. 1916–1924 (cit. on p. 92).

[93] P. Burns, A. D. Wilkins, A. P. Hickman, and J. Huennekens. “The NaK 1(b)ΠΩ=0

state hyperfine structure”. In: The Journal of Chemical Physics 122.7 (2005) (cit.
on p. 92).

[94] B. W. Shore, J. Martin, M. P. Fewell, and K. Bergmann. “Coherent population
transfer in multilevel systems with magnetic sublevels. I. Numerical studies”. In:
Phys. Rev. A 52 (1 1995), pp. 566–582 (cit. on pp. 92, 107, 112, 115).

[95] J. Martin, B. W. Shore, and K. Bergmann. “Coherent population transfer in multi-
level systems with magnetic sublevels. II. Algebraic analysis”. In: Phys. Rev. A 52
(1 1995), pp. 583–593 (cit. on pp. 92, 107, 115).

[96] J. Martin, B. W. Shore, and K. Bergmann. “Coherent population transfer in multi-
level systems with magnetic sublevels. III. Experimental results”. In: Phys. Rev. A
54 (2 1996), pp. 1556–1569 (cit. on pp. 92, 107, 112, 115).

arXiv:1505.01835


126 BIBLIOGRAPHY

[97] N. V. Vitanov and S. Stenholm. “Adiabatic population transfer via multiple inter-
mediate states”. In: Phys. Rev. A 60 (5 1999), pp. 3820–3832 (cit. on pp. 92, 107,
115).

[98] Bruce W. Shore. The Theory Of Coherent Atomic Exciatation. 1990 (cit. on pp. 93,
94, 101, 102, 106, 107).

[99] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. “Electromag-
netically induced transparency: Optics in coherent media”. In: Rev. Mod. Phys. 77
(2 2005), pp. 633–673 (cit. on pp. 93, 96, 97, 101, 102).

[100] E. Arimondo. “Electromagnetically induced transparency: Optics in coherent me-
dia”. In: Prog. Opt. 35 (259 1996) (cit. on pp. 93, 101, 102).

[101] M. Born and V. Fock. “Beweis des Adiabatensatzes”. German. In: Zeitschrift fÃ1
4r

Physik 51.3-4 (1928), pp. 165–180 (cit. on p. 97).

[102] L. P. Yatsenko, V. I. Romanenko, B. W. Shore, and K. Bergmann. “Stimulated Ra-
man adiabatic passage with partially coherent laser fields”. In: Phys. Rev. A 65 (4
2002), p. 043409 (cit. on pp. 98–100).

[103] L. P. Yatsenko, B. W. Shore, and K. Bergmann. “Detrimental consequences of small
rapid laser fluctuations on stimulated Raman adiabatic passage”. In: Phys. Rev. A
89 (1 2014), p. 013831 (cit. on p. 99).

[104] T. Heil, I. Fischer, and W. Elsäßer. “Influence of amplitude-phase coupling on the
dynamics of semiconductor lasers subject to optical feedback”. In: Phys. Rev. A 60
(1 1999), pp. 634–641 (cit. on p. 100).

[105] C.H. Henry. “Theory of the linewidth of semiconductor lasers”. In: Quantum Elec-
tronics, IEEE Journal of 18.2 (1982), pp. 259–264 (cit. on p. 100).

[106] J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch. “Subhertz
linewidth diode lasers by stabilization to vibrationally and thermally compen-
sated ultralow-expansion glass Fabry-Pérot cavities”. In: Phys. Rev. A 77 (5 2008),
p. 053809 (cit. on p. 100).

[107] N. Kolachevsky, J. Alnis, S. D. Bergeson, and T. W. Hänsch. “Compact solid-state
laser source for 1S-2S spectroscopy in atomic hydrogen”. In: Phys. Rev. A 73 (2
2006), p. 021801 (cit. on p. 100).

[108] A. Gerdes, M. Hobein, H. Knoeckel, and E. Tiemann. “Ground state potentials
of the NaK molecule”. English. In: The European Physical Journal D 49.1 (2008),
pp. 67–73 (cit. on p. 100).

[109] J. Aldegunde, Ben A. Rivington, Piotr S. Żuchowski, and Jeremy M. Hutson. “Hy-
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