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Abstract 

 

 

Most renewable energy sources suffer from intermittency and have to be coupled with 

sophisticated energy conversion and storage technologies. An elegant solution is offered by 

photoelectrochemical water splitting, where solar energy is directly converted into chemical 

energy by splitting water into oxygen and the energy carrier hydrogen. Photoelectrochemical 

water splitting requires two photoelectrodes which are immersed in an aqueous electrolyte. 

These photoelectrodes are semiconductors with valence and conduction bands straddling the 

redox potential of water. Upon illumination, electrons and holes are produced, separated and 

transferred to the electrolyte, leading to the evolution of oxygen at the photoanode and the 

evolution of hydrogen at the photocathode. The resulting hydrogen can be stored, 

transported and then either burnt in fuel cells to regain electrical energy or used for industrial 

applications like the Haber-Bosch process. The photoelectrodes are often nanostructured to 

increase the surface area, at which the reaction takes place. This strategy has been realized 

with several morphologies such as nanotubes, inverse opals, etc. and has often lead to 

performance increases of several hundred percent. 

Therefore, detailed knowledge of the morphology is important and can be obtained by 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM is a 

powerful technique that allows imaging samples with a resolution down to the sub-Ångstrom 

scale. In addition, TEM can be combined with spectroscopic methods such as electron energy-

loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX) to quantify the 

chemical composition. In this thesis, three different materials systems were studied by TEM: 

noble metal nanoparticles on TiO2 for hydrogen evolution with the sacrificial agent MeOH, 

Fe2O3/WO3 dual absorber photoanodes and photocathodes out of the novel material FeCrAl 

oxide. 

Titania is one of the most researched photoanode materials. However, it only absorbs UV light. 

Au and Au/Ag core-shell nanoparticles were deposited by the project partners Michael 

Karnahl and Sandra Peglow of the LIKAT and the INP Greifswald, respectively, on anatase thin 

films by photodeposition and radio frequency magnetron sputtering. These noble metal 

nanoparticles absorb visible light by surface plasmon resonance and also act as co-catalysts 

for electrons excited in the titania and injected into them. Cross-section were prepared for a 

detailed TEM investigation of the microstructure. The distribution of the nanoparticles varied 

greatly with the synthesis method, as photodeposited particles grew in and on top of the 

titania, whereas the plasma-deposited nanoparticles only grew on top. Different growth and 

coarsening mechanisms could be identified and correlated to the synthesis conditions by 

careful particle size distribution determination. In addition to defect-free nanoparticles, 

several defects such as five-fold twinning, grain boundaries and stacking faults were found. 



IV 

The TEM analysis was complemented by optical absorption and photocatalysis 

measurements, and the synthesis as well as the properties could be correlated to 

microstructural features. 

Due to its narrow band gap, hematite is a popular photoanode material. However, it also has 

several disadvantages, which were addressed by several studies. Tin-doping increased the 

transfer efficiency and therefore the photocurrent, with the tin being enriched at the surface 

of the hematite nanoparticles and hinting at a structure-function relationship. Deposition of a 

Co3O4 co-catalyst and the introduction of a conductive scaffold all further increased the 

photocurrent. Another performance-increasing approach, combining multiple 

photocatalytically active materials, was tested with Fe2O3/WO3 dual absorbers prepared by 

Ilina Kondofersky of the group of Prof. Thomas Bein. WO3 was systematically applied as a 

scaffold and/or as a surface treatment. The arrangement of the different materials and the 

interfaces between them was studied in detail by TEM. Both the host-guest approach and the 

surface treatment strongly increased the performance compared to the pure materials and 

several beneficial interactions could be identified. For example, WO3 strongly scatters visible 

light, resulting in increased absorption by Fe2O3 and higher current densities. We also 

determined a cathodic shift in the onset potential to 0.8 V and, compared to pure Fe2O3, 

increased transfer rates of up to 88 %, and can therefore conclude that the Fe2O3/WO3 dual 

absorbers are a very promising system. 

In spite of all the different performance-enhancing strategies developed so far, it is becoming 

apparent that all currently available materials, regardless of how heavily they are improved, 

will not reach sufficient performances. This has led to the search for novel materials and in 

this thesis, meso- and macroporous photocathodes with the overall stoichiometry 

Fe0.84Cr1.0Al0.16O3 were investigated in close cooperation with Ilina Kondofersky. Using TEM 

cross-sections, a phase separation into Fe- and Cr-rich phases was observed for both 

morphologies and could be correlated to the precursor stabilities. In comparison to the 

mesoporous layer, the macroporous photocathode had a significantly increased charge 

collection efficiency and therefore performance, proving the benefits of tuning the 

morphology. 

In all studies, performance-increasing strategies were successfully applied and we found the 

performance to depend heavily on the morphologies. By combining the results of all 

techniques, insight into the complex interplay between synthesis conditions, morphology and 

properties could be achieved and the gained knowledge is expected to benefit future work.
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1. Introduction 

 

 

The current energy mix, which relies heavily on fossil fuels, coal and nuclear power, is proving 

unsustainable due to environmental pollution, climate change, and eventual resource 

depletion.1–3 As a result, research into alternative, sustainable energy sources is thriving and 

the most promising approaches utilize wind power, solar power, geothermal power, 

hydropower or biomass/biogenic waste.1,3 All of these technologies are by design CO2 neutral 

during their operation and do not produce any toxic products. Photovoltaic cells, which 

harvest nearly limitless solar energy, are particularly promising.4,5 Compared to the other 

methods, they are cheap to produce, usable in remote locations, do not require any 

infrastructure, are non-polluting, silent and have low operating costs. Common and cheap 

commercial products reach conversion efficiencies of around 20 % and in combination with 

government programs supporting their installation, are becoming more and more common. 

However, the huge leaps in installed capacity seen in the last few years have led to grid 

stability and intermittency problems. On sunny days, the contribution of solar power to the 

energy mix surges, and other, conventional sources have to be shut down to prevent 

overloading the grid. However, all power plants except for those burning natural gas cannot 

be shut on and off as quickly as would be required, and as a result, the grid becomes unstable. 

On the other hand, most energy is used at night, when solar cells do not contribute to the 

energy mix but people are at home and turn on lights, run washing machines, cook and so on. 

A solution to both problems is the development and wide-spread installation of energy 

storage technologies.6–8 Multiple approaches are being developed, and all but capacitators 

rely on converting electricity into another form of power. Conversion into thermal power is 

an option, as is the conversion into mechanical power by flywheels, pumped storage 

hydroelectricity or compressed air storage, and into chemical power by power-to-gas 

technologies or the production of hydrogen. The last approach in particular is very promising, 

as hydrogen is not only used for industrial applications like the Haber-Bosch process or 

hydrocracking, but can also efficiently be converted into electrical energy by fuel cells. 2,9–12 

A few technologies aim to utilize solar power for the production of hydrogen from water. 

Among them are solar thermochemical,13 photovoltaic/electrolysis,14,15 and 

photoelectrochemical water splitting.16 The last of these approaches in particular is very 

elegant, as it directly converts solar into chemical energy by splitting water into hydrogen and 

oxygen at a semiconductor photoelectrode.15 The semiconductor is chosen so that valence 

and conduction band straddle the redox energy levels of hydrogen and oxygen and should 

fulfill several other factors such as good light absorption properties, good charge conductivity, 

fast surface kinetics, non-toxicity, and stability in aqueous solutions. Several promising 

candidates are being investigated with these requirements in mind, among them BiVO4, 

α-Fe2O3, WO3 and TiO2 as photoanode materials and p-Si, Cu2O and CuFeO2 as photocathode 
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materials.17 However, none of the materials achieves all these requirements. α-Fe2O3, for 

example, absorbs a large portion of the solar spectrum, but suffers from low light absorption 

coefficients and poor major carrier conductivity,18 whereas TiO2 offers excellent charge 

separation and transport, but has a large band gap and only absorbs a small fraction of the 

solar spectrum.19–22 Strategies to mitigate such problems have been in development for 

decades and have led to drastic performance increases.15,17 One very popular approach is to 

increase the surface area of the material, typically by structuring it on the nanoscale.23–25 This 

leads to beneficial effects such as shortened carrier collection pathways, reducing bulk 

recombination, and improved light distribution due to scattering, but can also have 

detrimental effects such as increased surface recombination or reduced space charge layer 

thickness.25 Often, the benefits outweigh the negative aspects and nanostructuring is a very 

promising performance-enhancing approach. 

 

1.1. Aim of the Thesis 

The performance of all photoelectrodes heavily depends on its structure and understanding a 

photoelectrode’s behavior requires investigating it in depth. One of the most powerful 

methods available is transmission electron microscopy (TEM), which allows imaging samples 

with a resolution on the Ångstrom-scale. It can also be coupled with spectroscopic methods 

such as electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy 

(EDX), two methods that can yield the local chemical composition. This comprehension often 

gives insight into how to further improve the nano- or macrostructure, and doing so requires 

relating it to the synthesis protocol. The goal of this thesis therefore is to, by combining a 

complete structural investigation with knowledge of the synthesis protocol and 

measurements of the properties, identify correlations between these three fields. 

Four photoelectrode systems were investigated. The first, stemming from a collaboration with 

the groups of Volker Brüser and Henrik Junge and described in Chapter 4, details a strategy 

aiming to improve light absorption in the established photoabsorber material titania. Titania 

only absorbs UV lights, and deposition of noble metal nanoparticles, which can absorb visible 

light via localized surface plasmon resonance and then inject electrons into the titania, can 

extends this range. In this chapter, several parameters such as the noble metal nanoparticle 

distribution, particle size distribution, noble metal loading, defect structures and 

crystallographic structures at interfaces were investigated, mostly by TEM, and connected 

with optical absorption and photocatalysis measurements. All other materials systems were 

investigated jointly with the groups of Thomas Bein and Dina Fattakhova-Rohlfing. Further 

strategies aiming to improve a material, in this case α-Fe2O3, are detailed in Chapter 5.26–28 

The transfer efficiency and therefore the performance could be significantly increased by 

doping with Sn, which accumulated at the surface of the hematite nanoparticles.26 The 

performance could be further enhanced by adding Co3O4 as a co-catalyst and by depositing it 

onto a conducting scaffold.27,28 A different approach is the combination of several 
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photoabsorber materials that have complementary properties. In Chapter 6, several 

Fe2O3/WO3 dual absorbers were synthesized and the effect of different WO3 morphologies, 

which was applied both as a macroporous scaffold and as a surface treatment, was analyzed. 

Regardless of all performance-enhancing strategies, the viability of all material systems 

investigated so far is insufficient and the development of new materials systems is becoming 

a priority. Successful nanostructuring of the novel photocathode material FeCrAl oxide is 

described in Chapter 7. In all cases, the structural investigation could be correlated to both 

synthesis conditions and the catalytic performance, resulting in a better understanding of the 

materials systems and opening the door for future improvement. 
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2. Photoelectrochemical Water Splitting 

 

 

One of the biggest advantages of photoelectrochemical water splitting over other sustainable 

methods for the generation of hydrogen is the easy separation of the products hydrogen and 

oxygen, as their evolutions take place at different photoelectrodes. Both photoanodes and 

photocathodes were investigated in this thesis and a brief introduction into the different 

water splitting processes and the materials investigated in this thesis follows. 

 

2.1. Photoelectrodes 

The photoelectrode, regardless of whether water is to be oxidized or reduced at it, has to be 

a semiconductor with valence and conduction band straddling the redox energy levels of 

hydrogen and oxygen.1–3 Three different processes take place at it: the absorption of light, the 

separation of the electron-hole pair in the space-charge layer and the charge transfer to the 

electrolyte at the semiconductor-liquid interface (Figure 2-1). 

 

Figure 2-1: Water splitting processes taking place at photoanode and photocathode. 

 

Light is absorbed if its energy is larger than the band gap of the semiconductor and an electron 

is excited into the conduction band, leaving a hole in the valence band. As smaller band gaps 

lead to the absorption of larger parts of the visible solar spectrum, the band gap of a material 

is a major selection criterion. An upper limit is imposed by the rapid intensity drop-off of the 

solar spectrum at ~ 400 nm, which corresponds to a band gap of 3.1 eV (ultraviolet regime). 
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Several approaches to calculate a material’s performance limits in dependence of the band 

gap have been published so far.4–6 These considerations assume that all photons of energies 

above the band gap are absorbed. However, light absorption of a specific sample also depends 

on the absorption coefficient. The light harvesting efficiency ηlh reflects this and is defined as 

the percentage of light absorbed by a sample in dependence of the wavelength.7 

Experimentally, it can be calculated from UV-vis spectra. 

The generated electron-hole pair has to be separated by a potential gradient, otherwise it 

recombines.8,9 This potential gradient is a direct consequence of the photoelectrode being 

immersed in an aqueous electrolyte and the resulting semiconductor-liquid junction. 

Electronic equilibrium between semiconductor and electrolyte is reached by current flow 

across the junction until the Fermi-level of the electrons in the solid is equal to the redox-

potential of the electrolyte. In the electrolyte, a double layer of a compact Helmholtz layer 

followed by a diffuse Gouy-Chapman layer, results.10,11 The behavior of the photoelectrode 

depends on whether it is made out of an n- or p-type semiconductor and either electrons or 

holes, respectively, accumulate at the surface.1 The resulting band bending at the so-called 

space-charge layer allows separating electrons and holes. The majority carriers travel through 

the circuit to the other electrode, and measuring this photocurrent provides one of the 

simplest performance-describing metrics. In addition, the so-called charge separation 

efficiency ηsep, which quantifies the efficiency of electron-hole separation in the bulk and in 

the space-charge region, can be used to describe this step.12,13 

The minority carriers, on the other hand, are injected from the electrode surface into the 

electrolyte. In the case of a photocathode made out of a p-type semiconductor, the minority 

carriers are electrons, the electrolyte is reduced and hydrogen is evolved (“hydrogen evolution 

reaction”).1 

 

4 H2O + 4 e- → 4 OH- + 2 H2 (basic solution) 

4 H+ + 4 e- → 2 H2 (acidic solution) 

 

The minority carriers in an n-type semiconductor are holes and oxidation of the electrolyte at 

the photoanode leads to the evolution of oxygen (“oxygen evolution reaction”). 1 

 

4 OH- + 4 h+ → 2 H2O + O2 (basic solution) 

H2O + 4 h+ → 4 H+ + O2 (acidic solution) 

 

As four holes are required to produce one O2 molecule, the recombination rate tends to be 

high and efficient water oxidation is much more difficult to achieve than efficient water 

reduction. As with the other two steps, an efficiency, the transfer efficiency ηtransfer, can be 

defined and experimentally determined from photocurrent transient measurements.13,14 
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The two reactions impose a lower limit on the band gap of the semiconductor. In addition to 

a redox potential of 1.23 eV, thermodynamic losses of ~ 0.4 eV and overpotentials of ~ 0.3 to 

0.4 eV have to be considered and a minimum band gap of 1.9 eV, corresponding to an 

absorption onset of ~ 650 nm, results.4–6 For unbiased operation, the conduction band should 

also lie higher than the potential of the H+/H2 redox couple and the valence band should lie 

lower than the potential of the OH-/O2 redox couple. 

There are several ways of quantifying the performance and so far, photocurrent 

measurements and the individual efficiencies ηlh, ηsep and ηtransfer have been discussed. The 

overall efficiency of a photoelectrode, called the incident photon-to-current efficiency (IPCE), 

can be determined by multiplying the three individual efficiencies ηlh, ηsep and ηtransfer.13 It can 

also be measured by comparing the photon influx to the photocurrent. In combination with 

ηlh and ηtransfer knowing the IPCE allows calculating ηsep, which cannot be directly measured. 

 

2.2. Photoelectrode Materials 

In addition to the band gap requirements discussed above, a material should also meet several 

other conditions. The light absorption coefficient should be high, minority and majority carrier 

conductivities should be high and surface kinetics fast. To be a potential contender for large-

scale applications, a material should also be cheap, non-toxic, and stable in aqueous solutions. 

Several promising materials have so far been identified and most studies focus on improving 

the properties of these select few materials, which include the photoanode materials BiVO4, 

α-Fe2O3, WO3 and TiO2 and the photocathode materials p-Si, Cu2O and CuFeO2.2 In this thesis, 

photoelectrodes out of TiO2, α-Fe2O3, WO3 and FeCrAl-oxide were analyzed and are 

introduced below. 

No material investigated so far fulfills all of the requirements and several approaches have 

been developed to enhance its suitability.1 Doping, for example, can decrease the band gap, 

leading to increased absorption. It can also enhance charge carrier mobility. The overpotential 

can be reduced by surface modification with co-catalysts such as Co3O4 or Co-Pi.15 Materials 

with a low light absorption coefficient benefit from the creation of thicker layers, although 

this approach is limited to the point at which bulk recombination dominates. Bulk 

recombination can, in turn be reduced by introducing a porous structure and increasing the 

surface area.16,17 

 

2.2.1. Titanium Dioxide 

In addition to several instable or metastable modifications, titanium dioxide mainly crystallizes 

in one of the three modifications rutile, anatase and brookite.18–20 Rutile is thermodynamically 

stable at room temperatures, whereas anatase and brookite are metastable and transform 

into rutile at temperatures above approximately 1090 °C and 930 °C, respectively.21 Both 

modifications can, however, be stabilized by nanostructuring. For example, the large role of 
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the surface energy leads to the anatase modification being preferred for very small 

nanoparticles.22 

The rutile structure can be derived from a slightly disordered hexagonal closed packing of 

oxygen in which half of the octahedral interstitials are filled with titanium (Figure 2-2a and 

b).20 The octahedrons share two vertices such that they form chains along one axis, with edge-

sharing leading to a three-dimensional structure. The resulting unit cell is body-centered 

tetragonal with the space group I42/mnm and the lattice parameters a=b=4.594 Å and 

c=2.958 Å 

The other two modifications, anatase and brookite (Figure 2-2c and d), can also be derived 

from a cubic-closed oxygen package with half of the octahedral interstitials being filled with 

titanium.19,20 Contrary to rutile, these TiO6-octahedrons are connected by three vertices in 

brookite and four in anatase. Anatase has a unit cell with the space group I41/amd and the 

lattice parameters a=b=3.784 Å and c=9.514 Å, brookite one with the space group Pbca and 

the lattice parameters a=9.1842 Å, b=5.447 Å and c= 5.145 Å. 

 

Figure 2-2: TiO2 crystallizes in three relevant modifications, rutile (a and b), anatase (c) and brookite 
(d). Ti is represented by grey spheres, O by red spheres. 
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Titania is an n-type semiconductor and can be used as a photocatalyst or, for 

photoelectrochemical water splitting, as a photoanode material.23,24 All three modifications 

discussed so far have fairly large band gaps, with 3.1 eV for rutile, 3.3 eV for anatase and 

1.9 eV for brookite.25,26 All but brookite therefore absorb in the UV region. However, most 

works focus on anatase and rutile. Due to the large band gaps, the maximum solar-to-oxygen 

efficiency is limited to 1.3 % for anatase and 2.2 % for rutile,6 and working around these 

intrinsic limits by extending the absorption spectrum is the most promising strategy. This can 

be achieved by two very different approaches. The first, doping, changes the electronic 

structure and therefore the band gap. 3d, 4s and 4p orbitals of Ti dominated the conduction 

band of TiO2, and its position can be changed by doping with cations.24 Anion doping, in 

contrast, typically changes the position of the valence band.24 Both approaches have been 

successful and several studies have investigated the influence of dopants on the band 

structure and the light absorption range.27–29 

While doping changes a materials’ intrinsic properties, the absorption spectrum can also be 

extended by depositing a photosensitizer that absorbs a different spectral range than TiO2 and 

can inject charge carriers into TiO2. This approach is very popular for dye-sensitized solar cells, 

where (metal)organic dyes are applied.30,31 Unfortunately, these dyes are often unstable 

under the harsh conditions present during water splitting,30 and a second group of 

photoesensitizers are noble metal nanoparticles. Light induces localized surface plasmons at 

the surface of these nanoparticles.32–35 As the wavelength of the absorbed light strongly 

depend on the size, shape, material and environment of the nanoparticle, the system can be 

tuned to absorb visible or even near-infrared light.32,33,35,36 

However, the large band gap is the material’s biggest drawback while charge separation and 

transport tend to be excellent.37,38 Another big advantage is that TiO2 has been heavily 

investigated for other fields such as dye-sensitized solar cells,30,31 electrodes,39 sensor 

applications,40 and biomedical applications,41 and that a lot of prior knowledge is readily 

available. This advantage also extends to the fabrication of nanostructures, and synthesis 

protocols for several morphologies such as nanowires, nanotubes, inverse opals, flat layers, 

porous fibers and porous spheres have already been published.42–44 

 

2.2.2. Iron(III) Oxide 

While iron can, under extreme conditions, have oxidation numbers between –II and +VI, it is 

most common with the oxidation numbers +II and +III and forms three different oxides: FeO 

with Fe2+, Fe3O4 with Fe2+ and Fe3+, and Fe2O3 with Fe3+.45 Of these, Fe2O3 can form four 

different modifications (α-/β-/γ-/ε-Fe2O3), of which only α-Fe2O3, also known as hematite, is 

stable at room temperature. Hematite crystallizes in the corundum structure with the space 

group R3̅c and has the lattice parameters a=b=5.035 Å and c=13.747 Å.46 Oxygen is hexagonal 

closed-packed and iron fills two thirds of the octahedral interstices so that two interstices are 

filled followed by a vacancy (Figure 2-3). 
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As an n-type semiconductor, hematite can evolve oxygen 

and fulfills several of the photoelectrode requirements 

listed above.47 It is cheap, non-toxic and corrosion 

resistant.47,48 Due to a band gap between 1.9 and 2.2 eV, it 

absorbs a large fraction of visible light and has a potential 

solar-to-oxygen efficiency of up to 16.8 %.6,47 However, light 

absorption in hematite is not very strong, necessitating thick 

layer in which bulk recombination becomes a major loss 

mechanism.13,47 Therefore, photoanodes are often 

nanostructured to have a very high surface.47 Further, the 

flat band potential is too low for water reduction and a bias 

has to be applied by, for example, a photocathode in 

tandem. Poor major carrier conductivity can be enhanced 

by doping or by host-guest approaches with a conducting 

scaffold.49–55 

 

2.2.3. Tungsten Trioxide 

In dependence of the temperature, WO3 crystallizes in five 

different modifications, with γ-WO3 being stable at room 

temperature.57 Its crystal structure can be derived from the 

ReO3–structure, in which ReO6-octahedra share corners to 

form a three-dimensional network.58 However, while ReO3 is 

cubic, γ-WO3 is distorted and a monoclinic structure with the 

space group P21/n and the lattice parameters a=7.30 Å, 

b=7.53 Å, c=7.68 Å and β=90.54° results (Figure 2-4).59 

WO3 has been evaluated for several applications, among 

them for electrochromic windows,60 as an electrode 

materials for solid oxide fuel cells,61 and as a gas sensor.62,63 

It is also well-suited as a photoanode material. WO3 is an n-

type semiconductor and, with an indirect band gap between 

2.5 and 2.8 eV, absorbs light until the blue region of the 

spectrum.48,60,64 This band gap limits the overall solar-to-

oxygen efficiency to 8 % and, like with titania, band gap engineering is a popular approach to 

increasing its maximum performance.6,65–68 However, it has excellent charge transport 

properties and fast surface kinetics.64 Several studies have focused on increasing the 

performance by controlling the morphology, and mesoporous structures, nanowires, thin 

films, nanorods and nanoplates have been investigated for photoelectrochemical water 

splitting.57,69 

 

Figure 2-3: Unit cell of hematite. Fe 
is represented by blue spheres, O 
by red spheres. 

Figure 2-4: Unit cell of monoclinic 
WO3. W is represented by yellow, 
O by red spheres. 
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2.2.4. FeCrAl Oxide 

Fe2O3, Cr2O3 and Al2O3 all crystallize in the corundum structure (Figure 2-3).70 Steinwehr et al. 

were able to show that FeCrAl oxides form solid solutions in the same structure as the end 

members with a miscibility gap only at high Al-contents.70 The band gaps of several 

compositions were investigated by theoretical studies and found to lie lower than those of the 

end members, indicating potential as a photocathode material.71 However, only two 

publications have so far experimentally investigated the system for this purpose. A 

combinatorial study identified the highest hydrogen evolution rate at a stoichiometry of 

Fe0.84Cr1.0Al0.16O3.72 Even though photocurrents were extremely low, an open circuit 

photovoltage of 0.95 V and a band gap of 1.8 eV were promising. A follow-up study, also 

combinatorial in nature, was able to show improved photocurrents by depositing thicker films 

via reactive magnetron co-sputtering.73 The combination of small band gap, low photovoltage 

and demonstration of performance-enhancement by structuring warrants further studies, 

with a first attempt discussed in Chapter 6. 
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3. Transmission Electron Microscopy 

 

 

Since the 17th century, microscopy has allowed the analysis of features unresolvable by the 

naked eye and greatly furthered mankind’s understanding of the world around us. The 

maximum resolution of a microscope, as described by Abbe, is limited by the wavelength of 

the light source and conventional optical microscopes using visible light can only resolve 

features of approximately 300 nm.1 Following these consideration, Ernst Ruska in the 1930s 

developed ways of substituting visible light with an electron beam, whose wavelength 

depends on the acceleration voltage.2 With high acceleration voltages, the resolution can 

therefore be greatly enhanced to the Ångstrom or, if aberrations are corrected, even the sub-

Ångstrom scale. 1 His work led to the development of two different, co-existing methods, 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The first, 

SEM, often images the surface morphology of samples by scanning a converged electron beam 

over the sample and measuring the intensity of secondary or backscattered electrons. The 

second, TEM, requires an electron-transparent sample and, in analogy to classical optical 

microscopes, uses transmitted electrons to create an image. As the samples discussed in this 

thesis were mostly investigated by in-depth TEM studies, the method is introduced in more 

detail below. 

 

3.1. The Transmission Electron Microscope 

A simplified build of electron source, condenser lens system, sample, objective lens system, 

projector lens system and detector already allows understanding most modes a TEM is 

capable of. There are two different kinds of electron sources, thermionic emitters and field-

emission guns (FEG). Thermionic emitters are fine tungsten or LaB6 tips which are heated, 

causing them to emit electrons, and to which a bias voltage is applied to bundle the beam. 

Field-emission guns, on the other hand, work by applying a strong electric field and electrons 

tunnel out of a tungsten tip. Compared to thermionic emitters, they are brighter, have a longer 

life-time and a smaller energy spread. However, they require a better vacuum and therefore 

lead to higher costs. In most modern TEMs, a Schottky emitter is used, where electrons leave 

the tip via thermally assisted field emission. The condenser lens system controls the 

convergence of the electron beam at the sample and the intensity of the beam. It consists of 

at least two electromagnetic lenses and an aperture. The sample needs to be electron-

transparent, which imposes a maximum thickness dependent on the density. It also has to be 

stable in vacuum, imposing restrictions on, for example, biological samples, and not 

deteriorate under electron irradiation. The objective lens system is once again composed of 

electromagnetic lenses and an aperture. It is used to create a first image and a diffraction 

pattern in the backfocal plane. The intermediate lens allows choosing between imaging and 
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diffraction. The contrast in conventional bright field (BF) images can be enhanced by inserting 

an objective lens aperture which removes scattered electrons. The objective lens system and 

the different available modes are discussed in more detail in the following section. The 

projector lens system creates the final image or diffraction pattern, which is then detected by 

either a ZnS viewing screen, which fluoresces when hit by electrons, or a charge-coupled 

device (CCD) camera. 

 

Figure 3-1: An incident electron beam interacts with the sample by several different scattering 
processes, which leads to several secondary signals such as characteristic X-rays, secondary electrons, 
Auger electrons and so on. 

 

The primary electron beam interacts with the sample by several elastic and inelastic processes 

(Figure 3-1), leading to several imaging and spectroscopy methods.1,3,4 However, visible light, 

backscattered electrons, secondary electrons, Auger electrons and electron-hole pairs are 

only rarely measured in the TEM and will not be discussed in greater detail. Much more 

relevant in this context are unscattered electrons, elastically scattered electrons and 

inelastically scattered electrons, which are used for several imaging methods as well as 

electron energy-loss spectroscopy (EELS). Bremsstrahlung and characteristic X-rays are 

measured to obtain energy-dispersive X-ray spectroscopy (EDX) spectra. Which electrons are 

used to create an image strongly depends on whether the electron beam is parallel or 

converged as it reaches the sample. In analogy to optical microscopy, imaging with a parallel 

beam is called “conventional TEM”, whereas a converged beam scanned over a sample surface 

is called “scanning TEM”. Both modes are described in more detail in the next two sections. 

 

3.1.1. Conventional Transmission Electron Microscopy 

In spite of the many different scattering processes taking place, most CTEM methods can be 

understood using simple ray tracing diagrams (Figure 3-2).1,3 A parallel incident electron beam 

illuminates the sample and a part of it leaves the sample unscattered, while a part is scattered 
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at different scattering angles. For crystalline materials, the geometric aspect of the diffraction 

process can be described using the Bragg equation. The objective lens focuses all beams 

diffracted by parallel lattice planes, which leave the sample at the same angle, in the backfocal 

plane and creates an image in the first image plane. The intermediate lens follows and allows 

choosing either diffraction patterns or images. The magnification of the image or the camera 

length of the diffraction pattern can be chosen with the projector lens, which then creates an 

image or diffraction pattern on the detector. 

These two very basic operations, imaging and diffraction, can be modified by inserting 

different apertures. In the backfocal plane of the objective lens, the objective aperture allows 

choosing whether to create an image with the primary beam or one of the diffracted beams. 

If the primary beam is chosen, the so-called “bright field” image with a strong mass and/or 

diffraction contrast is formed. Choosing a diffracted beam allows imaging only those parts of 

a sample with a specific crystallographic orientation and, by acquiring several such so-called 

“dark field” (DF) images, enables crystallographic orientation mapping. In addition to inserting 

apertures into the backfocal plane of the objective lens, apertures can also be inserted in the 

first image plane and the so-called “selected-area electron diffraction” (SAED) allows acquiring 

diffraction patterns of well-defined regions of the sample (Figure 3-2). 

 

Figure 3-2: Ray tracing diagrams of the lens system in the TEM below the sample and assuming parallel 
illumination. By inserting apertures and/or changing the excitation of the intermediate lens, different 
imaging and diffraction modes can be realized. Please note that the so-called “off-axis” DF case is 
shown here. 
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For high resolution TEM (HRTEM), not only one but many diffracted beams are used to create 

an image and interference effects dominate.1 The primary electron beam is scattered by the 

sample, with the scattered beams having different phases and amplitudes depending on their 

path through the sample. All these beams then interfere and a complex pattern results. The 

incident electron beam can be approximated as a plane wave which is then modified by its 

interaction with the sample. If the sample is thin, the so-called “weak phase approximation” 

applies and the exit wave is proportional to the crystal potential. The propagation of the exit 

wave can be described by the so-called contrast transfer function (CTF), which incorporates 

several factors such as defocus and aberrations. The detector only measures the intensity, 

which is equal to the square modulus of the wave function, and the phase of the wave function 

is lost. This loss of information prevents the straight-forward analysis of HRTEM images and 

simulations are required for the reconstruction of atomic positions. However, periodicity and 

symmetry carry over and lattice spacings, angles and symmetry groups can be determined 

from HRTEM images of periodic structures or their fourier transforms (FT), which transforms 

an image into the frequency domain and allows the simple analysis of symmetric patterns. 

 

3.1.2. Scanning Transmission Electron Microscopy 

As an alternative to the parallel illumination used in CTEM and HRTEM, the beam can also be 

converged and scanned over the sample. By detecting the scattered electrons, an image can 

then be constructed. This mode is called “scanning TEM” (STEM).1,5,3 There are three different 

STEM detectors for different scattering angles, each corresponding to specific scattering 

processes. Electrons scattered inelastically or elastically at angles below 10 mrad are detected 

by the bright field detector (BF-STEM), coherent, elastically scattered electrons (Bragg 

scattering) are detected at angles between 10 and 50 mrad by an annular dark-field detector 

(ADF-STEM), and incoherent elastically scattered electrons (Rutherford scattering) at angles 

above 50 mrad by a high-angle annular dark-field detector (HAADF-STEM). The resolution of 

HAADF-STEM images is determined by the diameter of the incident beam and by the thickness 

of the sample. In many modern STEMs, a resolution of up to 1.2 Å can be obtained and probe-

correctors even allow for resolutions of up to 0.8 Å. Correctors therefore allow for resolutions 

comparable to HRTEM. In contrast to HRTEM, where interference pattern are measured, the 

signal in STEM images, if the image is tilted into a zone axis, corresponds to atomic columns. 

The interpretation of images is therefore much more straight-forward. 

Compared to BF-CTEM and BF-STEM images, where the non-scattered electrons are imaged, 

the contrast is reversed in ADF- and HAADF-STEM images and heavy elements and thick areas 

generate a high brightness. This effect is quite strong and HAADF-STEM images often show 

only mass contrast with a strong dependence on the atomic number Z with I ≈ Z2. 
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3.1.3. Spectroscopic Methods 

Two spectroscopic methods, EDX and EELS, are very commonly used in in combination with 

TEM. 

The mechanism by which characteristic X-rays measured in EDX spectroscopy are generated 

is shown in Figure 3-3.1,3 An electron hits a core electron and, provided the incident beam has 

sufficient energy, knocks it out, leaving a vacancy. Such a vacancy in one of the inner shells is 

energetically unfavorable and is quickly occupied by an electron from a higher shell. This 

transition moves that electron to a position with a lower potential energy and the energy 

difference can be released in the form of X-rays. The energy of this X-ray is characteristic for 

specific elements and can be detected using a semiconductor pin diode. X-rays are also 

emitted in the form of Bremsstrahlung, which is caused by electrons being slowed down by 

the Coulomb field of the atomic nucleus. Fortunately, the contribution of Bremsstrahlung to 

an acquired EDX spectrum can be removed by a background subtraction. The intensities of the 

element-specific peaks are then integrated and application of the Cliff-Lorimer equation, 

according to which the ratio of two signals is equal to the ratio of the contents of these 

elements multiplied by a factor k, yields the elemental composition. 

 

Figure 3-3: Process by which element-characteristic X-rays are generated. The primary electron beam 
hits the sample (a), knocking out an inner-shell electron (b). An electron from an outer shell fills this 
unoccupied state and the energy difference is released in the form of an X-ray (c). 

 

The electron beam loses energy via several inelastic processes such as plasmon excitation, 

intraband transitions and ionization. The energy losses are characteristic for different 

processes which can be identified by acquiring so-called EELS spectra (Figure 3-4).1,5,4 Below 

the sample and at very small scattering angles, a magnetic prism separates the electrons 

according to their energy. In combination with a lens system to focus and magnify the 

spectrum and a detector, bases on a CCD or a photodiode array, EEL spectra can be acquired. 

These spectra have three characteristic regions, corresponding to different dominating 

processes. Most electrons are elastically scattered and do not lose energy. They lead to a very 

intense peak centered at an energy loss of 0 eV. This zero-loss peak can be used to align the 

spectrometer and determine the energy resolution of measurements. The low-loss region 
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extends up to 50 eV. At these energy losses, plasmon excitations and band-band transitions 

dominate. This region is particularly useful when investigating semiconductors, as the distance 

of first transition from the zero-loss peak corresponds to the band gap. It further allows the 

analysis of plasmons, the identification of phases by fingerprinting using the plasmon position 

and shape, determination of the dielectric function and, when comparing it to the intensity of 

the zero-loss peak, of the thickness. After the low-loss region and at energy losses above 

50 eV, only ionization processes occur. The onset energies of the resulting edges are 

characteristic for the elements the sample is composed of. Their shape depends on the shell 

from which the electron is removed, and the coordination number and valence state of the 

element. By calculating the ratios of the integrals of different edges under consideration of 

inelastic cross-sections, the elemental composition can be calculated. EELS therefore allows a 

very comprehensive analysis of several factors such as the elemental composition, bonding 

characteristics and the band gap. 

 

Figure 3-4: Two experimental EELS spectra of Fe2O3. The zero-loss peak (ZLP) and the low-loss (LL) region 
have significantly higher intensities than the element-specific edges in the core-loss region. The O-K 
edge with an onset at 532 eV and the Fe-L2,3 signal with an onset at 708 eV are shown at approximately 
500 times higher intensities than ZLP and LL region. 

 

In comparison, both EDX and EELS have advantages and disadvantages. Measuring the signals 

of light elements is difficult to impossible with EDX, due to both a low fluorescence yield and 

the absorption of X-rays with energies below 1 kV by the detector. EELS, on the other hand, 

can be used to determine even low concentrations of elements down to Lithium. In contrast, 

the EELS edges of heavy elements are at very high energy losses and of very low intensities 

and measuring them is very time-intensive and can, due to insufficient signal-to-noise ratio, 

fail. Apart from EDX being better for heavy elements and EELS being better for light elements, 

the methods also differ in their ease of use. EDX measurements tend to be very fast and easy, 
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whereas EELS measurements require detailed and time-intensive alignment of the 

spectrometer prior to measurements. However, EELS spectra can provide significantly more 

information than EDX spectra, which only yield quantification results. 

Conveniently, both methods can be used regardless of whether the beam is parallel or 

converged. In CTEM, the elemental composition of large areas can be quantified and average 

values are gained. In STEM, the spatial resolution of both methods can be driven down to, for 

very thin samples, even atomically resolved measurements. By collecting several spectra, line 

profiles and maps can be generated, allowing unprecedented analysis of materials. 

 

3.2. Experimental Methods 

3.2.1. Sample Preparation 

All materials discussed in this thesis were deposited onto substrates composed of a roughly 

1 mm thick glass layer and an approximately 300 nm thick fluorine-doped tin oxide (FTO) layer. 

Consequently, all samples could be prepared similarly for TEM analysis. Two different 

methods were used. 

A straight-forward approach is to scratch material of the substrate using a razor blade, 

dispersing it in a drop of ethanol and depositing it on a copper grid coated with a holey carbon 

film. After drying, the sample can be used as is. Even though the geometry of the whole sample 

is not well-represented, sections up to several micrometers in size can be scratched off 

undamaged and thin enough for analysis. This quick and convenient preparation was often 

used to determine whether the synthesis had been successful, and for the analysis of particle 

sizes, HRTEM images and other features on a small length-scale. 

To supplement this preparation method, complex morphologies over large length scales were 

analyzed by preparing cross-sections using a modified version of the technique developed by 

Strecker et al.1,6 Compared to scratching material of the substrate, this method allows 

analyzing the morphology of a sample over large, electron transparent areas. Thin strips are 

cut out of the sample using a diamond wire saw (Well Precision Vertical Diamond Saw 3242, 

Figure 3-5a) and their surfaces glued together (Figure 3-5b), protecting them and doubling the 

area which can be investigated by TEM. Subsequently, this sandwich is embedded into a 

glue-filled metal tube with a diameter suitable for the TEM holder (Figure 3-5c). This stabilizes 

the otherwise fragile sandwich and allows easier handling. Slices with a thickness of 

approximately 220 μm are then cut with a diamond wire saw (Figure 3-5d) and mechanically 

thinned, first homogenously with a Gatan disc grinder 623 (Figure 3-5e) and then with a Gatan 

dimple grinder that only thins the middle of the slice (Figure 3-5f). Ar-Ion milling (Gatan 

Precision Ion Polishing System with both top and bottom ion guns at angles of 4°/4° as a last 

step thins the sample to the required electron transparency (Figure 3-5g). 



21 
 

 

Figure 3-5: Schematic showing how cross-sections were prepared. The figure is color-coded and glues 
are orange, the sample surface blue, the FTO substrate white, the metal tube dark grey and sample 
holders light grey. Cuts are marked with dashed lines. The samples were cut into slices (a), which were 
then glued into a sandwich (b). The sandwich was glued into a metal tube (c), which was then cut into 
slices (d). Those slices were homogenously thinned (e) and then a dimple was ground into the middle 
of the slice (f). As a final step, the slice was thinned to electron transparency with Ar-ion beams (g). 

 

3.2.2. Transmission Electron Microscopy Instrumentation 

All experiments were done on one of two different TEMs, a FEI Titan and its successor, a FEI 

Titan Themis. 

All measurements described in Chapter 4 were carried out on a FEI Titan(S)TEM 80-300. It was 

equipped with a field-emission gun (FEG) operated at 300 kV, an EDAX EDX detector, an Gatan 

Imaging Filter to acquire EELS spectra, a Fischione Instruments Model 3000 HAADF detector 

and a 2k x 2k Gatan UltraScan 1000 CCD camera. 

The measurements described in the chapters 5 and 6 were conducted on a probe-corrected, 

monochromated FEI Titan Themis 60-300 kV. The microscope is equipped with an X-FEG 

operated at 300 kV, a Ceta 4k x 4k complementary metal-oxide-semiconductor (CMOS) 

camera and four dedicated Fischione Instruments STEM detectors: a BF detector, two ADF 

detectors and a HAADF detector. EDX spectra were acquired by four Super-X Bruker silicon 

drift detectors (SDD), EELS spectra with a Gatan Enfinium EELS spectrometer. 
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4. Au and Au/Ag Nanoparticles on Titania Layers: 

Correlation of Deposition Method, Morphology and 

Photo(electro)-catalytic Properties 

 

 

This chapter is based on a manuscript by Alexander Müller, Sandra Peglow, Michael Karnahl, 

Angela Kruth, Volker Brüser, Henrik Junge and Christina Scheu, which is to be submitted. 

 

 

4.1. Introduction 

For decades, mankind has heavily relied on fossil fuels such as coal, oil and gas as well as 

nuclear power.1–3 In recent years, concerns over climate change from environmental 

pollution, resource depletion and nuclear safety have led to a global effort towards the 

development of more sustainable energies sources.1–5 Most promising renewable energy 

technologies make use of the almost unlimited energy of wind and sun, for example 

generating electricity with wind turbines and solar cells.2,6 However, the energy output from 

such sources strongly fluctuates and improved energy storage technologies are required. A 

promising solution is the sustainable energy carrier hydrogen, which can, for example, be 

burnt in fuel cells to yield electrical energy and pure water. Several solar-to-hydrogen 

approaches have been developed, among them solar thermochemical,7 

photovoltaic/electrolysis,8,6 and photoelectrochemical water splitting.9 Of these, only the last 

one directly converts solar into chemical energy by the photoelectrocatalytic splitting of water 

into hydrogen and oxygen. As well as being a highly sustainable method for the production of 

hydrogen as a green fuel, both products, hydrogen and oxygen, are relevant for other 

industries.1,4,5,10,11 Hydrogen is, for instance, required for the hydrocracking process and the 

production of ammonia via the Haber-Bosch process, while oxygen is required for the smelting 

of iron ore into steel or the synthesis of ethylene oxide.11 

The process of photoelectrochemical water splitting takes place at semiconducting catalysts, 

often metal oxides.10,12 Titania, particularly in its low-temperature phase anatase, was the first 

material found to have conduction and valence band positions suitable for photocatalytic 

water splitting.13,14 Other desirable properties are its high corrosion-resistance, abundance, 

low price and non-toxicity. Therefore, titania is still one of the most studied candidate material 

for photoelectrochemical water splitting.5,15,16 The drawback of using titania as a 

photocatalyst are the relatively large band gaps of 3.2 eV for the anatase modification and 

3.0 eV for the rutile phase, leading to absorption edges at 386 and 416 nm, respectively.16,17 

Accordingly, high efficiencies can only be reached within or near the UV region, which 

accounts for merely 5% of the total energy of the solar spectrum.18,19 This limits the maximum 
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efficiency to 1.3 % for anatase and 2.2 % for rutile.16 As the performance strongly depends on 

the band gap, it can be enhanced by either narrowing the band gap via doping and/or by 

depositing a second light-absorbing material that absorbs in the visible region and acts as a 

photosensitizer.18,20,21 Popular photosensitizers, at least in dye-sensitized solar cells, are 

(metal)organic dyes.22,23 They are, however, often unstable under the harsh conditions 

present during water splitting.22 

A second group of photosensitizers are nanoparticles consisting of noble metals such as Pt, 

Pd, Au or Ag. Light can induce a localized collective electron oscillation at the surface of these 

nanoparticles.19,20,24,25 The energy of this so-called localized surface plasmon resonance (LSPR) 

and therefore the wavelength of the absorbed light strongly depend on the size, shape, 

material and environment of the nanoparticle.19,20,25,26 By manipulating these parameters, the 

wavelength of the surface plasmon resonance (SPR) can be shifted to absorb visible or even 

near-infrared light.19,20,25–28 Plasmon-induced electrons can be transferred to titania which is 

a good electron-acceptor due to its high density-of-state conduction band,21 increasing the 

efficiency of the photoelectrochemical reaction. The large scattering cross section related to 

the plasmon oscillation in noble metal nanoparticles can enhance the optical pathway of the 

incident photons leading to increased light absorption.29 In addition to their function as 

photosensitizer, noble metal nanoparticles can act as co-catalysts by providing chemically 

active sites with low activation barriers for chemical reactions, prolonging charge carrier 

lifetime, and serve as a sink for electrons generated in the titania by UV light.30,31 

So far, most studies were carried out on suspended powders.31–33 However, unless sacrificial 

agents are used, O2 and H2 are produced in close proximity and the back-reaction is very 

likely.34 In contrast, if titania is deposited onto electrodes and either a bias voltage is applied 

or a sacrificial agent is added, the reactions can be spatially separated, suppressing the back 

reaction towards water. In this work, anatase thin films were prepared by magnetron 

sputtering and Au nanoparticles were deposited on them by two different methods, in situ 

photodeposition and radio frequency (RF) magnetron sputtering.32,35,36 As, bimetallic 

nanoparticles often show significantly increased catalytic activity compared to the respective 

monometallic nanoparticles, the latter method was also used for the preparation of Au/Ag 

nanoparticles.37,38 The two synthesis procedures produced vastly different particle 

distributions, particles size distributions and defect structures, all of which could be correlated 

to the synthesis procedures. We further measured light absorption spectra and the 

photocatalytic evolution of hydrogen using the sacrificial agent MeOH. The results could be 

correlated to the structural investigation. By providing an in-depth understanding of the 

interplay between synthesis conditions, structure and properties, we hope to contribute to 

future improvements of the system. 
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4.2. Materials and Methods 

4.2.1. Plasma-Deposition of Titania Films 

Titania films were deposited onto fluorine-doped tin oxide substrates (FTO, TCO 22-7, 

Solaronix, 25 x 25 mm) by a direct current (DC) reactive magnetron sputtering process as 

previously described by Kruth et al.35 The Ti target (Ti-133, Bekaert Advanced Coatings NV) 

was sputter-cleaned in an Ar atmosphere at 8 kW for 5 min. After stabilizing the process 

conditions in an O2/N2/Ar atmosphere (6 standard cm3/min (sccm) O2, 3 sccm N2, and 60 sccm 

Ar) at 3 Pa for 8 min, TiO2 was plasma-deposited at a magnetron power of about 5.3 kW and 

a magnetron voltage of 450 V. To transform the resulting amorphous TiO2 into anatase, the 

samples were annealed for 1 h at 400 °C with a heating rate of 10 °C/min in an oxygen 

atmosphere at a flow rate of 0.05 standard l/min (slm). 

 

4.2.2. Plasma-Deposition of Au and Au/Ag Nanoparticles 

Au and Au/Ag core-shell nanoparticles were deposited onto the titania films described above 

using a RF-magnetron sputtering process previously published by Peglow et al.36 A benefit of 

this method is the adjustability of composition and size distribution by alternating deposition 

and annealing steps. A 3 mm thick Au sputtering target (99.999 %, MaTeck) and a 3 mm thick 

Ag sputtering target (99.999 %, MaTeck) were placed at respective distances of 9.5 and 5.5 cm 

from the substrate. Small sputtering rates were achieved by shielding the magnetic field with 

a 1 mm thick iron disk (99.95 %, MaTeck) placed between the magnetron and the two targets. 

The deposition was performed at a power of 50 W in a 5 Pa argon atmosphere (15 sccm gas 

flow). To anneal the films, the samples were placed in a quartz tube which was inserted into 

a tube furnace (Zirox GmbH) kept at 400 °C by a thermal controller (Eurotherm 2416) for 

30 min. The O2 atmosphere (0.05 slm) was regulated using a gas flow controller (MKS 

Instruments Multi Gas Controller 647B). Au nanoparticles were synthesized by depositing gold 

for 300 s, which correlates to a nominal layer thickness of 8 nm, annealing, depositing for 

another 300 s and annealing once more. To obtain Au/Ag core-shell nanoparticles, Au-

deposition for 188 s (5 nm nominal layer thickness) was followed by Ag-deposition for 36 s 

(3 nm nominal layer thickness) and another annealing step. 

 

4.2.3. In situ Photodeposition of Au Nanoparticles 

A second series of Au nanoparticles was prepared by in situ photodeposition onto titania films 

following a synthesis procedure described by Gärtner et al.32 The temperature of a double-

walled reaction vessel was adjusted to 25 °C by a thermostat and a titania film (25 x 25 mm) 

inserted into the reactor with a glass holder. Subsequently, the gold precursor (NaAuCl4 x 

2 H2O, 3.1 mg) was added. The whole system was evacuated and flushed with argon to remove 

any other gases. Then, 40 ml freshly distilled water and 40 ml methanol were added under 

argon counter flow, resulting in a final concentration of the gold precursor of about 
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0.1 mmol/l. Photodeposition of the gold nanoparticles was initiated with a Hg-lamp (7.2 W 

output, Lumatec Superlite 400) equipped with a 320-500 nm filter.32 A swift color change from 

light yellow to dark red occurred, with the formed hydrogen escaping by a bubbler. The 

reaction was stopped after 3 h and the sample was washed with deionized water and ethanol 

prior to drying in air. 

 

4.2.4. Structural and Morphological Characterization 

Phase identity and crystallite sizes were determined from grazing incident X-ray 

diffractograms (GIXRD). These were measured in a 2Θ-range of 20-80 ° on a Bruker D8 

Advance with a Cu-Kα source, an incident angle of 0.5 °, a step width of 0.02 ° and 5 s per step. 

Crystallite sizes were calculated from the (200) reflection of Au using a combination of Stokes-

Wilson and Variance model and fitting the correlated integral widths by a Pearson VII 

function.39 

Scanning electron microscopy (SEM) was performed on a Jeol JSM 7500F with a field emission 

gun, a semi-in-lens conical objective lens and a secondary electron in-lens detector. An 

acceleration voltage of 15 keV enabled a resolution of 1.0 nm. 

A comprehensive structural analysis was done using a FEI Titan 80-300 transmission electron 

microscope (TEM). Bright-field (BF) and high-resolution TEM (HRTEM) images were recorded 

on a Gatan UltraScan 1000 CCD, scanning TEM (STEM) images with a Fischione Model 3000 

high-angle annular dark-field (HAADF) detector and energy-dispersive X-ray (EDX) spectra with 

an EDAX system. Samples were prepared by either scratching material of the substrate and 

depositing it onto a TEM grid with a holey carbon film or by preparing a cross-section according 

to a procedure adapted from Strecker et al. so that the sample was prepared at room 

temperature.40 

 

4.2.5. Optical Characterization 

The optical properties of the different layers were investigated using a PerkinElmer Lambda 

UV-Vis 850 spectrophotometer with an integration sphere (L6020322 150 mm). Calibrated 

Spectralon Reflectance Standards (>99 % R, USRS-99-020, PerkinElmer Inc.) were attached to 

provide high reflectivity inside of the sphere. The UV/vis spectra were recorded from 250 nm 

to 850 nm in transmission mode. Calculation of the absorbance A was carried out under the 

assumption that no reflection occurs at the sample using the following equation: 

A = -log10(IT/I0), 

Where A is the absorbance in arbitrary units, IT is the measured transmission intensity in 

percent and I0 is the incident light intensity, which equals 100 %. 
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4.2.6. Photocatalytic Measurements 

Photocatalytic hydrogen evolution experiments were performed under argon atmosphere 

with freshly distilled solvents. The sample was introduced into a double-walled, 

thermostatically-controlled reaction vessel by a glass holder and aligned in parallel to the 

planar optical window. Subsequently, the photoreactor was connected to an automatic gas 

burette and repeatedly evacuated and filled with argon. Then, the solvent mixture (80 ml), 

composed of water and methanol in a ratio of 1/1 (v/v), was added, fully covering the layer. 

The temperature of the whole system was maintained at 25 °C by a thermostat. After stirring 

for at least 10 min at 300 rounds per minute to reach thermal equilibrium, the reaction was 

started by switching on a Hg-lamp (7.2 W output, Lumatec Superlite 400) equipped with a 320-

500 nm filter. The amount of evolved gases was continuously monitored by the automatic gas 

burette, while the gas composition was analyzed by gas chromatography. A more detailed 

description of the experimental setup has been published previously.32 

 

4.3. Results and Discussion 

4.3.1. Structural and Morphological Characterization 

Three samples total were characterized in depth. Au and Au/Ag core-shell nanoparticles were 

deposited onto an anatase layer using a radio frequency magnetron sputtering process in 

combination with subsequent thermal treatment. Au nanoparticles were further prepared by 

in situ photodeposition. GIXR diffractograms (Figure 4-1) proved the successful and phase-

pure synthesis of all samples. Annealing the deposited, amorphous titania in an oxygen 

atmosphere leads to formation of the anatase modification with an average crystallite size of 

25 nm. The Au and Au/Ag nanoparticles possess the fcc structure typical of the bulk phase.41 

The Au reflexes of photodeposited Au-TiO2 are much weaker than in the other two samples, 

indicating either lower loading or, as the intensity of GIXRD decreases with increasing 

penetration depth, that they are inside the titania layer. The average crystallite sizes were 

determined from GIXRD data as 4 nm, 7 nm and 7 nm of Au nanoparticles synthesized by in 

situ photodeposition and of Au and Au/Ag nanoparticles prepared by plasma-deposition were, 

respectively. Given that the nominal layer thicknesses of plasma-deposited Au/Ag-TiO2 is half 

of that of plasma-deposited Au-TiO2, both plasma-deposited nanoparticles having the same 

crystallite size is surprising and hints at a complex interplay of different processes. The 

crystallite size of the noble metal nanoparticles in photodeposited Au-TiO2 is much smaller, 

however, determination of the average particle size of this sample is error-prone due to the 

low intensity of the Au peaks. 
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Figure 4-1: GIXR diffractograms of the samples on which noble metal nanoparticles were deposited. A 
GIX diffractogram of the pure TiO2 film can be found in the literature.35,42 

 

Figure 4-2 shows overview images of the different samples. Top-view images were acquired 
by SEM (Figure 4-2a, b and c), cross-sections by HAADF-STEM (Figure 4-2d, e and f). 

 

Figure 4-2: Top-view SEM and cross-section STEM images of photodeposited Au-TiO2 (a and d), plasma-
deposited Au-TiO2 (b and e) and plasma-deposited Au/Ag-TiO2 films (c and f). 
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The titania layer is polycrystalline, approximately 300 nm thick and composed of individual 

pillars, each of them grown on a FTO pyramid. The fibrous titania pillars are in the anatase 

modification, with 3-5 nm thick pores elongated in the direction perpendicular to the 

TiO2/FTO interface. The porosity of the titania was quantified from HAADF-STEM images. The 

signal intensity I in such images scales with the mean atomic number Z raised by an exponent 

y. As FTO and the underlying SiO2 substrate it is deposited on are compact layers, y can be 

calculated. The mean atomic number of the titania layer is then given by: 

ITitania

IFTO
 = (

ZTitania

ZFTO
)

y

 → ZTitania = Z
FTO

· √
ITitania

IFTO

y
 

The porosity is equal to the ratio of the mean atomic numbers of the measured, porous and 

the theoretical, compact layer and was determined as ~ 10 %, indicating low porosity. 

The photodeposited Au nanoparticles are found both on top of and inside the TiO2. The latter 

indicates that some of the pores are open at the surface and can be filled with the precursor 

solution. Accordingly, wetting of these pores, both by the precursor solution during the 

photodeposition and by the electrolyte during the photoelectrochemical and hydrogen 

evolution experiments, can be assumed. In contrast, the RF-sputtered noble-metal 

nanoparticles (Au and Au/Ag) occur only on top of the titania layer. This is typical for vapor-

deposition processes in which the nanoparticles are formed in the gas phase. The particles in 

the cavities are significantly smaller than on top (Figure 4-2). Compared to plasma-deposited 

Au-TiO2, only half the nominal layer thickness was deposited during the synthesis of plasma-

deposited Ag/Au-TiO2. (Figure 4-2b and c). This reduction leads to a sparser distribution of 

nanoparticles of roughly the same size. The half-as-high loading was also confirmed by EDX 

measurements (Table 4-1). The noble metal content could be determined by calculating the 

mass of the TiO2 layer from the thickness and the density and comparing it with the ratio of 

noble metals to Ti. In contrast, the masses of deposited Au in photo-deposited Au-TiO2 and 

plasma-deposited Au-TiO2 are very similar. 

 

Table 4-1: Noble metal content of the three samples. 

 Au-content [μg/cm2] Ag-content [μg/cm2] 

photodeposited Au 17.5 ± 3.7 - 

plasma-deposited Au 19.6 ± 6.5 - 

plasma-deposited Ag/Au 7.8 ± 3.4 1.4 ± 0.8 

 

In Figure 4-3, size distributions of all three samples are shown. Photodeposited Au 

nanoparticles grew both inside and on top of the Titania layer, and two different size 

distributions were evaluated to reflect this. Photodeposited Au nanoparticles inside the titania 

layer, which account for 66 % of all Au nanoparticles, have a different size distribution than 

the nanoparticles found on top of the titania layer (Figure 4-3a) A log-normal distribution, 
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which has previously been successfully applied to the size distributions of Au nanoparticles 

synthesized by several, solution-based synthesis procedures,43 could be used to describe them 

both. The size distribution of Au nanoparticles inside the titania is shifted towards smaller 

diameters, indicating that the growth is slowed down or stopped within the pores of the 

titania layer. 

 

Figure 4-3: Size distributions of the noble metal nanoparticles in a) photodeposited Au-TiO2, b) plasma-

deposited Au-TiO2, c) plasma-deposited Ag/Au-TiO2. All size distributions were split into two 

sub-distributions each. Please note that the frequency values only apply to the size distribution of the 

whole sample, but not to the sub-distributions. 

 

To interpret the size distributions of plasma-deposited particles (Figure 4-3b and c), two 

underlying processes, deposition and annealing, have to be considered. Previous studies have 
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shown that nanoparticle growth in the gas phase leads to a log-normal size distribution, 

whereas the annealing step should, via a coarsening mechanism, lead to larger particles not 

described by the initial log-normal distribution.44,45 The coarsening step is expected to depend 

strongly on a low surface roughness to prevent particle pinning and facilitate particle diffusion. 

We used these assumptions to split each size distribution in two by considering large 

nanoparticles at the top of smooth TiO2 surfaces result from a coarsening mechanism. With 

this assumption, the non-coarsened particles, which account for 86 % in plasma-deposited Au-

TiO2 and 83 % in plasma-deposited Au/Ag-TiO2, can be fit very well with a log-normal 

distribution. Attempts to model the other particle fraction with a size distribution failed due 

to an insufficient signal-to-noise ratio. Compared to pure plasma-deposited Au nanoparticles, 

the maximum of the log-normal distribution of smaller, non-coarsened Au/Ag nanoparticles is 

shifted from 4 to 10 nm (Figure 4-3b and c). This size increase, in spite of the reduced nominal 

layer thickness, indicates that the formation of Au nanoparticles in the gas phase dominates 

in directing their size, and not the subsequent Ag deposition or the annealing step, and hints 

at the shift being a result of Ag being added to pre-existing Au nanoparticles. Of course, this 

argument only applies to non-coarsened, small nanoparticles. 

 

Figure 4-4: Representative images of different defect structures of the noble metal nanoparticles. In (a) 
and (b) HRTEM images of the photodeposited Au nanoparticles are shown: (a) is a five-fold twinned 
particle on top of the titania and (b) an agglomerate of defect-free nanoparticles inside the titania. (c), 
(d) and (e) show RF-sputtered nanoparticles: (c) is representative for small, defect free nanoparticles, 
(d) of those with stacking faults and (e) of those with grain boundaries. 
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The nanoparticles possess several different defects (Figure 4-4). The photodeposited Au 

nanoparticles can be inside and outside of the titania layer, with each fraction having its own 

predominant defect structure. Photodeposited nanoparticles on top of the titania are 

predominantly five-fold twinned, with few occurrences of other defect structures such as 

grain boundaries. Such a twinning is energetically favorable for small nanoparticles and 

therefore very common.46–50 In contrast, all particles observed inside the titania were 

monocrystalline. However, a definite correlation of nanoparticle size and defect structure 

could not be concluded. The existence of defects not inherent to the metal, such as an oxide 

shell, could be excluded from HRTEM images and EDX analysis. 

For the plasma-deposited nanoparticles, we observed single-crystallinity, five-fold twinning, 

stacking faults and grain boundaries (Figure 4-4). As with the photodeposited nanoparticles, 

we could not conclude a correlation of size and defect structure, with the exception being 

grain boundaries which were very common in big nanoparticles. We tentatively ascribed these 

to the coarsening process. These particles also often have little protrusions that fill nooks in 

the titania substrate. Once again, other defects such as an oxide shell can be excluded from 

HRTEM images and EDX STEM measurements. 

The interface between the titania substrate and the nanoparticles was investigated by HRTEM, 

but a well-defined orientation relationship between the particles and the substrate could not 

be observed. 

 

Figure 4-5: a) BF images of a representative Au/Ag nanoparticle, b) EDX map of the same particle, 
showing a clear accumulation of Ag at the surface, c) HRTEM image of the nanoparticle surface area. 

 

Bimetallic Au/Ag nanoparticles could potentially be alloyed or form core-shell 

nanoparticles.51,52 The melting temperatures of Ag and Au decrease with decreasing 

nanoparticle sizes, but are always high compared to the highest temperature reached during 

synthesis (400 °C).53,54 Alloying therefore seems unlikely. In accordance, EDX maps confirmed 

the formation of a uniform, 2-3 nm thick Ag shell around the Au core. Thanks to both metals 

crystallizing in the face-centered cubic structure and their lattice parameters differing by only 

0.2 %, we observe defect-free continuation of the crystal structure of Au by Ag (Figure 4-5).41 

Previous studies have shown inhomogeneous deposition of gold and silver, and the core-shell 

nanoparticles presumably result from nanoparticle attachment during the annealing 
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treatment.36,55,56 Interestingly, previous experiments by one of the co-authors, in which the 

Ag/Au deposition order was reversed, also yielded Au/Ag-core-shell nanoparticles.36 The 

deposition order can therefore not be the decisive factor when determining which metal 

becomes the core and which the shell. Unfortunately, growth mechanism studies so far mostly 

focus on wet-chemical synthesis methods and do not apply to our synthesis method.57,58 

Looking at the thermodynamics of the two possible core-shell configurations, four different 

enthalpy contributions must be considered: one each for bulk Au and bulk Ag, the interface 

between Ag and Au, and the surface of the shell material. Of these, only the contribution of 

the surface changes when exchanging core and shell material. As the surface energies of Au 

are approximately 40 % higher than those of Ag, we assume this to be a major driving force 

for the creation of Au/Ag core-shell nanoparticles over Ag/Au core-shell nanoparticles.59 

 

4.3.2. Optical Properties 

The influence of the noble metal nanoparticles on the light harvesting was investigated by UV-

Vis measurements (Figure 4-6). Pure anatase was measured as a reference and has an indirect 

band gap of 3.2 eV,16,17 which was previously confirmed for the titania layers used in this 

work.35 This results in strong absorption below wavelengths of 386 nm dropping off to a 

constant, low absorption in the visible range due to FTO and glass. 

 

Figure 4-6: UV-Vis spectra of all samples. 
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Plasma-deposition of Au nanoparticles leads to strong absorbance between 550 and 850 nm, 

which can be attributed to plasmon excitation (Figure 4-6). These nanoparticle show a high 

absorption intensity, probably because the resonance is undisturbed from inter-band 

transitions damping occurring close to the optical cut-off frequency of titania.60,61 For 

spherical, isolated gold nanoparticles in a vacuum, enhanced absorption due to a LSPR would 

occur at about 520 nm.60,62 The strong shift to higher wavelengths found in our measurements 

can have several reasons. First, it can be explained by the deviation from the ideal spherical 

shape. Irregular geometries mainly possessed by coarsened particles having grain boundaries 

and protrusions lead to asymmetric oscillations resulting in, for the example of ellipsoids, 

longitudinal and transversal plasmon modes, with the former shifting the resonance 

frequency towards higher wavelengths.29,60,61,63 Besides the strong influence of the particle 

shape, the dielectric properties of the surrounding media have a strong effect on the position 

of the absorption band, and shift it towards longer wavelengths compared to a vacuum.64 

Because of anatase’s high refractive index of 2.5 and the gold nanoparticles adapting to the 

titania morphology and sharing a large interface area with it, this effect has to be considered.65 

It is even more pronounced for non-spherical particles.60 The redshift could further be caused 

by near-field coupling of neighboring particles, which would be particularly pronounced for 

gap/particle diameter ratios smaller than 0.2, which is fulfilled by the coarsened gold particles 

on top of the titania surface. This plasmon coupling might lead to the formation of “hot spots” 

in the particle vicinities.19,63,64 Because the particles are randomly oriented, the measured 

absorption spectrum is an overlay of all excited plasmon modes. Hence, the peak broadening 

can be related to contributions of differently shaped nanoparticles. As the nanoparticles are 

significantly smaller than the irradiation wavelengths, radiation processes such as plasmon-

enhanced scattering can be neglected.64 

The UV-Vis spectrum of photodeposited Au-TiO2 differs considerably from that of plasma-

deposited Au-TiO2 in intensity, position and width of the absorption band (Figure 4-6). The 

comparatively low absorption amplitude could be due to overlap of the LSPR with the gold 

inter-band transitions from d- to sp-bands leading to dampening at energies greater than 

2.4 eV.21,60,61 The absorption band is located between 480 and 600 nm, indicating spherical 

nanoparticles like the five-fold twinned structures found on top of the titania and small aspect 

ratios for elongated particles.60 As more than half of the particles are found inside the pores, 

the effect of the dielectric constant of the surrounding titania matrix has to be considered. 

However, a potentially resulting red-shift of the absorption band cannot be discerned. 

In contrast to the two Au-TiO2 samples, plasma-deposited Au/Ag-TiO2 does not exhibit an 

explicit absorption band but shows nearly uniform absorption throughout the visible region 

with negligible shoulders at 400 - 450 nm and 480 - 540 nm (Figure 4-6). Since both metals 

show plasmonic behavior, the resonance frequency of Au/Ag core-shell nanoparticles is 

expected to lie between the 420 nm found for silver and the 520 nm found for gold.29 A 

combination of shape variation and resultant deviation in the Au/Ag-ratio might prevent single 

absorption band formation. Moreover, exceedingly large particle sizes could give rise to 

higher-order multipole excitation and an additional broadening caused by radiation damping 
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dominated in large particles.61 Due to sparse surface coverage, the nanoparticle can be 

regarded as isolated and near-field coupling can be neglected. 

 

4.3.3. Photocatalytic Properties 

Previous experiments conducted with the hole scavenger methanol and under UV illumination 

have confirmed a drastic increase in hydrogen production upon deposition of noble metal 

nanoparticles onto TiO2.32,66,67 This was confirmed in our experiments, with all samples having 

an increased hydrogen evolution rate (between 9 and 15 times) compared to pure TiO2 (Figure 

4-7, Table 4-2). To our knowledge, all experiments published so far under similar experimental 

conditions were conducted on powders. As these results are typically normalized to the mass 

of the photoabsorber, comparison with our experiments is difficult. 

 

Figure 4-7: Hydrogen evolution over time of the TiO2 samples with three different noble-metal 
nanoparticles in comparison with pure TiO2. The measurements were conducted using the sacrificial 
agent MeOH and under UV illumination. 
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Table 4-2: Photocatalytic hydrogen rates of the three noble-metal-TiO2 samples and of pure TiO2 
determined using the sacrificial agent MeOH and under UV illumination. 

 Hydrogen [μl/(h·cm2)] Hydrogen [μmol/(h·cm2] 

pure TiO2 22.1 0.9 

photodeposited Au-TiO2 345.0 13.9 

plasma-deposited Au-TiO2 250.6 10.1 

plasma-deposited Ag/Au-TiO2 205.3 8.3 

 

The measurements show strong initial hydrogen production, followed by a smaller, constant 

evolution rate. Such behavior is typical of reactions with gaseous products and is related to 

the bubble evolution process reaching equilibrium.68,69 The constant region is therefore more 

representative of the longtime operation desired for industrial applications and we 

disregarded the first hour of each measurement to determine the hydrogen evolution rates 

shown in Table 4-2. Photodeposited Au-TiO2 performs best, with plasma-deposited Au/Ag-

TiO2 second, plasma-deposited Au-TiO2 third and pure TiO2 last. It must be pointed out once 

more that these experiments were conducted under UV light and that the gold nanoparticles 

only act as co-catalysts. Under visible light illumination, the strong LSPR excitation in plasma-

deposited Au-TiO2 (Figure 4-6) could lead to a different order. 

Photodeposited Au-TiO2 and plasma-deposited Au-TiO2 have a similar Au-loading as well as 

similar particle sizes (Table 4-1, Figure 4-3). They mainly differ in the particle distribution, with 

the first of the two having Au nanoparticles embedded inside the TiO2 layer. This embedding 

could lead to a high interface area between gold and titania and to better charge transport, 

reduced recombination losses and an enhanced performance. Of the two samples with 

plasma-deposited nanoparticles, Au/Ag-TiO2 outperforms Au-TiO2 in spite of the reduced 

loading (Table 4-1). This is in accordance with previous publications, in which bimetallic 

nanoparticles outperforming monometallic ones was explained by electron transfer from the 

Ag shell to the Au core modifying the electronic structure and creating extremely active 

surface sites.37,38 

 

4.4. Conclusion 

In this study, structure, optical properties and photocatalytic performance of a total of four 

samples were determined and compared. A bare TiO2 film acted as the reference, onto which 

Au nanoparticles were photo or plasma-deposited. In addition, Au/Ag core-shell nanoparticles 

were plasma-deposited. Plasma-deposited nanoparticles only grew on top of the TiO2 layer, 

whereas photodeposited nanoparticles also infiltrated it. A wide variety of crystal defect 

structures was found for the nanoparticles in all samples. Only plasma-deposited Au-TiO2 

showed a significant LSPR effect, and band position, broadening and intensity of the LSPR 

bands of all samples could be explained by a combination of several effects. The water splitting 

performance was measured with the hole scavenger methanol under UV illumination, and 
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photodeposited Au-TiO2 was found to perform best. Of the plasma-deposited samples, Ag/Au-

TiO2 outperformed Au-TiO2 regardless of a lower noble metal content. By combining synthesis 

details, morphological investigation and properties, we hope to contribute to an enhanced 

understanding of the materials system and aid further synthesis approaches. 
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5. Improvement of Hematite Photoanodes by Sn-Doping 

 

 

This chapter is based on the following publication: 

“Tin Doping Speeds Up Hole Transfer During Light-Driven Water Oxidation at Hematite 

Photoanodes” by Halina K. Dunn, Johann M. Feckl, Alexander Müller, Dina Fattakhova-

Rohlfing, Samuel G. Morehead, Julian Roos, Laurence M. Peter, Christina Scheu, and Thomas 

Bein, which was published in Physical Chemistry Chemical Physics 16, 24610 (2014). 

 

 

5.1. Introduction 

The photoelectrochemical splitting of water into hydrogen and oxygen under solar irradiation 

holds the promise of providing a vital fuel for a future low-carbon energy economy. In order 

to reach competitive efficiencies for hydrogen production, tandem cell architectures will be 

required.1 Tandem photoelectrolysis cells can either use a wide bandgap semiconductor 

photoelectrode such as -Fe2O3 (hematite) connected in optical series to a low-cost solar cell 

that absorbs the longer wavelength component of the solar spectrum,2-5 or alternatively two 

semiconductor photoelectrodes can be used, one n-type and one p-type.6 Regardless of which 

of these designs ultimately proves to be the most effective, research into semiconductor 

materials able to perform one of the half-reactions in water splitting must be targeted to 

surmount the obstacles that currently limit the performance of light-driven water splitting 

systems. 

Chemical stability, abundance, visible light absorption and suitable valence band energy make 

hematite a promising n-type material for the light-driven oxygen evolution reaction (OER). 

However, its relatively weak absorbance at longer wavelengths (due to its indirect bandgap) 

and poor hole-mobility lead to an inherent trade-off between sufficient light absorption and 

carrier collection. Nano-structuring of the photoanode offers an elegant solution to this issue 

by decoupling the hole collection depth from the light absorption depth.7,8 Vapour-phase 

deposition techniques and spray pyrolysis have been used to produce high surface area 

hematite electrodes that generate up to 1.8 mA cm-2 at the reversible oxygen reduction 

potential (1.23 V vs. RHE) under AM 1.5 irradiation in a basic medium without application of a 

catalyst.9-11 Very recently, wormlike nanostructured hematite electrodes have achieved 

current densities exceeding 4.3 mA cm-2, corresponding to around one third of the theoretical 

limit set by the band gap of the oxide.12 

On a fundamental level, the performance of hematite photoanodes is primarily limited by the 

sluggish kinetics of the multistep (4-electron) oxygen evolution reaction (OER). This kinetic 

bottle-neck leads to a large build-up of photogenerated holes that are vulnerable to 
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recombination with electrons, lowering the efficiency of hole-transfer to the solution phase. 

Speeding up the interfacial hole transfer reactions by catalysis is therefore an attractive route 

to improve the overall efficiency of hematite photoanodes, with IrO2 and various cobalt 

species showing promise as OER catalysts.13-15 However, suppression of surface 

recombination is equally important, and in some cases at least, the adsorption of cobalt 

species evidently improves the performance of hematite by inhibiting recombination rather 

than by catalysing the charge transfer reaction.16,17  

Doping of hematite with additives such as Sn,18-22 Si,9,10,23-25 Ti,18,26-30 Pt,31,32 Cr,33 Mo,33 Zn34 

and I,35 has proven to be a successful strategy to enhance the performance of hematite for 

the light-driven OER. Several studies have attributed the effect of such dopants to changes in 

bulk hematite properties such as conductivity,11,18,19,21,23,25,26,36 or crystallinity.9 Few of these 

studies have considered what other possible beneficial roles dopant atoms may play in the 

processes that are involved in light-driven oxygen evolution. A more quantitative approach to 

interpreting the role of dopants is to analyse in detail the photoelectrochemical (PEC) 

behaviour of the photoanode under water oxidation conditions. For example, comparison of 

the wavelength dependence of the photocurrent response for illumination from the 

electrolyte and the substrate sides has been used to identify improvements in electron 

collection caused by doping.11,26,35 By contrast, a reduction of electron-hole recombination 

brought about by Pt-doping of hematite was deduced from the dependence of photocurrent 

on light intensity, which was changed from square root to linear by Pt-doping.31 In another 

quantitative study, investigation of the thickness-dependence of the photocurrent response 

of Ti-doped hematite grown by atomic layer deposition revealed that doping reduced losses 

arising from electron-hole recombination at the fluorine doped tin oxide (FTO) hematite 

interface (the so-called “dead layer effect”).37 Finally, Chemelewski et al. compared the 

photocurrent from Si-doped hematite in the presence and absence of a hole scavenger and 

concluded that the efficiency of interfacial hole transfer improved upon doping.24 However, 

none of these studies used dynamic methods to obtain values of the rate constants that are 

directly relevant to photoanode performance. In the present work, we show that analysis of 

the transient and periodic photocurrent responses can be used to distinguish between the 

effects of catalysis and inhibition of surface recombination in the case of Sn doped hematite 

electrodes. 

Several theoretical studies have predicted that foreign metal atoms located at the hematite 

surface should influence the intermediate steps of the OER. By applying ab initio density 

functional theory (DFT + U) calculations to fully hydroxylated hematite (0001) surfaces, Liao 

et al. predicted the overpotential for the OER on doped hematite by calculating the minimum 

applied potential resulting in all intermediate steps proceeding spontaneously. They found 

that replacing Fe sites with other transition metals altered the relative binding energies of the 

O, OH and OOH reactive species, which in turn affected the overpotential, which was 

predicted to decrease if Ni or Co were used.38 Similarly, Busch et al.39 considered the 

energetics of the reaction from adsorbed hydroxides to oxygen via a µ-peroxo bridge and 

found the reaction should proceed more favourably at certain bi-nuclear transition metal 
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sites, such as Fe-Co. These theoretical insights, along with the need to find effective catalysts 

for the OER on hematite, motivated us to take a deeper look at the role of surface properties 

in determining the performance of Sn-doped hematite electrodes for light-driven OER. 

In practice, one of the most widely encountered effects of doping of hematite layers is a 

modification of the nanostructure morphology, leading in many cases to a reduction in feature 

size and thus to an increase in surface area.9,11,19,21-23,27,30,33,40 Although this effect may be 

partly responsible for the reported performance improvement, it complicates the task of 

uncovering other possible roles played by the dopant atoms. In order to circumvent this 

problem, we have developed a simple solution-processed route to fabricate model systems in 

which up to 3.2 atomic % Sn can be incorporated into thin nanostructured hematite films with 

only minimal morphological change. The films are about 50 nm thick, and produce 0.06 

mA cm-2 at 1.23 V vs. RHE under AM 1.5 illumination. The extremely thin nature of these films 

leads to a low light harvesting efficiency, and consequently modest performance. However, 

they make good model systems because their internal quantum efficiency (IQE) under 

standard conditions is comparable to that of benchmark hematite prepared by atmospheric 

pressure chemical vapour phase deposition, APCVD,41 (see supporting information for details). 

In the present study, the transient photocurrent responses of the hematite electrodes to 

chopped illumination were analysed in order to assess the efficiency of interfacial hole-

transfer during light-driven OER. The results revealed that the incorporation of tin into the 

hematite films improves the efficiency of hole-transfer in the light-driven OER. In principle, 

such an improvement could either be explained by a higher rate constant for the transfer of 

holes across the interface or by suppression of surface electron-hole recombination. The rate 

constants for surface recombination and charge transfer were deconvoluted using intensity-

modulated photocurrent spectroscopy, IMPS, which showed that Sn-inclusion increases the 

rate constant for hole-transfer by more than an order of magnitude. The material composition 

was characterized by analytical transmission electron microscopy (TEM), which probes the 

degree of Sn-incorporation in the bulk of the hematite crystallites and provides insights into 

the spatial distribution of Sn. It emerged that Sn-atoms preferentially occupy sites located at 

the surface of the hematite nanoparticles, resulting in a core-shell structure. The results of the 

study therefore clearly link the surface-specific enrichment of Sn in the hematite nanocrystals 

with catalysis of the light-driven OER. 

 

5.2. Theory 

The external quantum efficiency, EQE(), of light-driven water oxidation taking place at bulk 

semiconductor electrolyte junctions depends on the product of the efficiencies of light 

harvesting, LH(), charge separation, ηsep(), and hole-transfer, ηtrans, to the electrolyte, the 

first two being functions of the light wavelength, . 

     LH sep transEQE      
  (1) 
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Equation (1) will also apply to nanostructured electrodes provided that the width of the space 

charge region, Wsc, is smaller than the feature size of the structure. As shown below, this is 

the case for the hematite electrodes studied here. In the absence of light scattering, the light 

harvesting efficiency can be calculated from the wavelength-dependent absorption 

coefficient, α(), and the film thickness, d. 

   
1

d

LH e
 

 


 
  (2) 

For a planar electrode geometry, the electron-hole separation efficiency sep() can be 

calculated using the Gärtner equation42 (see below) if the width of the space charge region, 

Wsc, and the hole diffusion length, Lp, are known. However, this calculation will not be correct 

if substantial recombination takes place in the space charge region (in which case sep is lower) 

or if the electrode is nanostructured (see supporting information). For this reason, we derive 

sep() from the external quantum efficiency using the light harvesting efficiency calculated 

from the absorption spectrum and the transfer efficiencies derived from photocurrent 

transient measurements or IMPS. 

Hematite photo-anodes respond to chopped illumination with a characteristic “spike and 

overshoot” photocurrent transient.43-45 This transient response is typical for systems with a 

large degree of surface electron-hole recombination.17,45 When the light is switched on, holes 

generated in the space charge region are swept rapidly towards the semiconductor electrolyte 

junction. Due to the slow kinetics of the 4-hole oxidation of water to molecular oxygen, the 

concentration of holes builds up considerably at the interface until the rate of arrival of holes 

is balanced in the steady state by the rates of charge transfer and recombination. Since surface 

recombination leads to a flux of electrons towards the surface, the resulting photocurrent 

transient is the sum of the hole and electron contributions. The instantaneous photocurrent 

measured when the illumination is switched on corresponds to a charging or displacement 

current due to the initial movement of photo-generated holes towards the surface. By 

contrast, the steady-state photocurrent corresponds to the flux of holes that are transferred 

successfully to the electrolyte without undergoing recombination with electrons at the 

surface. It follows that the ratio of the steady state photocurrent to the instantaneous 

photocurrent, jss/j(t=0), is a measure of the efficiency of hole-transfer from the electrode to the 

electrolyte. This situation has been modelled in terms of the surface concentration of holes 

using a simple phenomenological approach.46,47 Assuming that both hole transfer and 

recombination are pseudo-first order in the surface hole concentration, the transfer efficiency 

can also be expressed in terms of the phenomenological first order rate constants of hole 

transfer, ktrans, and recombination, krec. 

0

ss trans
trans

t trans rec

j k

j k k




 


  (3) 

An example of the type of predicted transient photocurrent response is shown in Figure 5-. 
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Figure 5-1. Normalized transient photocurrent response calculated for ktr = krec = 10 s-1. The decay time 
constant in this case is (krec + ktr)-1 = 50 ms and the hole transfer efficiency = ktr/(ktr + krec) = 0.5, so that 
the steady state current is half of the instantaneous current. 

 

In principle, the exponential decay of the current towards the steady state, which is 

characterized by the time constant (ktrans + krec)-1, can be analysed, and then ktrans and krec can 

be separated using equation (3). In practice, however, it is more convenient to determine the 

time constant using small amplitude frequency-resolved measurements such as IMPS17 or 

photoelectrochemical impedance spectroscopy (PEIS).48 The IMPS method involves small 

amplitude (< 10%) variable frequency sinusoidal modulations of the light intensity about a dc 

value. The resulting phase and amplitude of the photocurrent are recorded as a function of 

frequency, and the results are displayed in the complex plane.49,50 The imaginary component 

of the photocurrent reaches a maximum when the frequency, max, matches the characteristic 

relaxation constant of the system, i.e. the same time constant (ktrans + krec)-1 seen in the 

exponential decay of the transient photocurrent. 

max trans reck k     (4) 

The high and low frequency intercepts of the IMPS response in the complex plane correspond 

respectively to the instantaneous and steady state photocurrents seen in Figure 5-1, and their 

ratio is therefore given by equation (3). The main advantage of the IMPS technique is that it 

involves a small amplitude modulation, so that changes in band bending induced by 

illumination are minimized (the effect on the IMPS response of light-induced modulation of 

band bending has been considered elsewhere51). By contrast, large changes in band bending 

may occur with chopped illumination (this probably explains the lack of symmetry between 
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transient ‘on’ and ‘off’ responses in Figure 5-a). The IMPS response is also attenuated by the 

RC time constant determined by the product of the series resistance, Rseries, and the space 

charge capacitance, Csc. This attenuation gives rise to a high semicircle in the opposite 

quadrant with a maximum circular frequency equal to the product RseriesCsc, which allows 

estimation of the space charge capacitance, Csc, if the series resistance is known. An example 

of the IMPS response predicted for the same values of ktrans and krec as those used for the 

transient in Figure 5-1 is shown in Figure 5-2. 

 

Figure 5-2. IMPS response predicted for krec = ktrans = 10 s-1, Csc = 1 F cm-2, Rser = 20 . The response is 
normalized to the hole current, qJh, generated by collection of holes in the space charge region. The 
radial frequency corresponding to the maximum of the upper recombination semicircle is equal to ktrans 
+ krec, and the normalized low frequency intercept is equal to ktrans/(ktrans + krec), which corresponds to 
the ratio of the steady state current to the instantaneous current in Figure 5-1. 

As noted above, this interpretation of photocurrent transients and IMPS is valid for 

semiconductors with a well-defined depletion layer at the interface with the electrolyte. To 

be applicable to structured semiconductors, such as those studied here, WSC should be smaller 

than the average feature size. One method to determine the width of the depletion region is 

through the measurement of the electrode capacitance. The flat band potential, Vfb, and 

donor density, Nd, derived from the Mott Schottky relationship (equation (5)), are then used 

to calculate values of WSC as a function of applied potential (equation (6)), where r is the 

relative permittivity, 0 is the permittivity of free space, A is the electrode area, V is the applied 

potential, q is the elementary charge, kB is Boltzmann’s constant and T is the temperature. 
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Another method to estimate the width of the space charge layer in illuminated semiconductor 

electrolyte junctions under reverse bias involves using the Gärtner equation.42 This equation 

applies if holes are consumed so rapidly at the interface that there are no recombination 

losses (this is the case if a fast redox system is used to capture holes). For materials with very 

small hole-diffusion lengths, Lp, such as hematite, only carriers generated in the space charge 

layer contribute to the photocurrent, simplifying the Gärtner expression. 

 
 
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However, in the case of the light driven OER, some fraction of the holes reaching the surface 

is lost by surface recombination so that the EQE is lower than predicted by equation (7). If we 

take the non-unity transfer efficiency into account, the simplified Gärtner equation can be 

rearranged to give the width of the space charge region. 

 
1

ln 1sc

trans

EQE
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  

 
   

     (8) 

 

5.3. Materials and Methods 

5.3.1. Synthesis Route for the Incorporation of Sn into Mesoporous Hematite Electrodes 

Hematite precursor solutions were prepared according to the following procedure. 0.630 g 

(1.56 mmol) Fe(NO3)3
.9 H2O was dissolved in a solution of the block copolymer Pluronic P123 

(0.25 g) in 10 mL tert-butanol under sonication for 15 minutes. 2.5 mL water (Millipore) was 

then added, forming a dark red solution. The solution was stirred at room temperature 

overnight resulting in a light brown dispersion of iron oxide (Fe2O3). The synthesis is a 

development of the protocol described by Redel et al..52 However, these authors did not use 

any surfactant, and their synthesis led to formation of a two-phase mixture of hematite and 

maghemite, in the ratio of 65:35. By contrast, addition of the surfactant yields phase-pure 

hematite. 

For the preparation of the Sn-containing hematite, Sn(OAc)4 was added to the solution 

described above, see Table 1 in the supporting information for further details. The desired 

amounts of Sn(OAc)4 were first dispersed under vigorous stirring for 5 h followed by 15 min 

sonication in the above mixture of Pluronic P123 and tert-butanol. The remaining steps of the 
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synthesis then followed those described above for pure hematite. It is important to note that 

throughout the following text, the Sn:Fe-ratio refers to the atomic ratio of the two elements 

in the precursor solutions, unless stated otherwise. 

After cleaning the FTO glass (Pilkington TEC 15 Glass™, 2.5  1.5 cm) by sequential sonication 

for 15 min each in detergent (1 mL Extran in 50 mL Millipore water), water (Millipore) and 

ethanol, the substrates were dried and masked with Scotch Tape on the conducting side to 

retain a non-covered area of 1.5  1.5 cm. The backs of the substrates were completely 

masked to avoid contamination during the spin-coating procedure. 

Before spin-coating, the fresh solutions were filtered through a 220 nm syringe filter (Sartorius 

Minisart cellulose acetate membrane) to remove agglomerates, ensuring the preparation of 

homogeneously smooth films. The masked substrates were covered with 100 µL of solution 

and spun at 1000 rpm for 30 seconds. To remove the surfactant and crystallize the material, 

the samples were calcined in air in a laboratory oven (3 hour ramp to 600 °C, 30 min dwell 

time), resulting in films of about 50 nm thickness. To obtain thicker films, the films were dried 

for 5 minutes at 60 °C and the spin-coating step was repeated. Powders for X-ray diffraction 

(XRD) and TEM analysis were obtained by scraping material off the substrate with a razor 

blade. 

 

5.3.2. Thin Film Characterization 

XRD measurements were performed on a STOE powder diffractometer in transmission 

geometry (Cu-Kα1, λ = 1.5406 Å) equipped with a position-sensitive Mythen-1K detector. 

Scanning electron microscopy (SEM) was performed on a JEOL JSM-6500F scanning electron 

microscope equipped with a field emission gun. Material was scraped from the substrate, and 

deposited on a copper grid with a carbon film for TEM analysis. The analysis was carried out 

on a FEI Titan 80-300 (S)TEM with a Fischione Instruments (Model 3000) high angle annular 

dark field (HAADF) detector and an EDAX energy-dispersive X-ray spectroscopy (EDX) detector. 

All measurements were conducted at an acceleration voltage of 300 kV. 

The UV-visible transmission and reflection of the mesoporous thin films on FTO-coated glass 

substrates was measured with a Perkin Elmer Lambda 1050 UV/Visible/NIR 

spectrophotometer equipped with an integrating sphere. For transmission measurements, 

the sample was placed directly outside the integrating sphere with the film facing inwards, 

and for reflection measurements, the sample was placed directly after the integrating sphere 

with the glass substrate facing the incoming beam. The Naperian absorbance spectra of the 

hematite layers AbsH were calculated from the wavelength dependent transmission of the FTO 

substrate and hematite-coated substrate, TS and TS+H, respectively, and reflection of the 

substrate and hematite coated sample, RS and RS+H, according to the following formula, which 

is derived in reference53. 

javascript:popupOBO('CMO:0000156','c0jm04526h')
javascript:popupOBO('CMO:0000156','c0jm04526h')
javascript:popupOBO('CMO:0000950','c0jm04526h')


48 
 

2

ln

1

S H

S
H

S H S

S

T
T

Abs
R R

T





 
 
 

  
    (9) 

 

5.3.3. Photoelectrochemical Characterization 

Hematite photoelectrodes were masked with a PTFE-coated glass fiber adhesive tape leaving 

a circular area of 1 cm in diameter exposed to a 0.1 M NaOH aqueous electrolyte. 

Electrochemical measurements were carried out in a cubic glass cell using a µ-Autolab III 

potentiostat (Metrohm) equipped with an FRA 2 impedance analyser connected to a saturated 

Ag/AgCl reference electrode (Sigma Aldrich, 0.197 V vs. SHE) and a Pt mesh counter electrode. 

Electrode potentials versus the reversible hydrogen electrode, VRHE, were calculated from 

those measured at pH 13 versus the Ag/AgCl electrode, VAg/AgCl, according to 

/
0.197 0.059

RHE Ag AgClV V
pH

V

 
  

    (10) 

The light intensity was measured at the position of the electrode inside the cell using a 4 mm2 

photodiode, which had been calibrated against a certified Fraunhofer ISE silicon reference cell 

equipped with a KG5 filter. 

The current-voltage characteristics of the films were obtained by scanning from negative to 

positive potentials in the dark or under illumination with a 20 mV s-1 sweep rate. Illumination, 

provided either by a high-power light emitting diode (LED, Thorlabs, 455 nm) or by a solar 

simulator (AM1.5G. Solar Light Model 16S) at 100 mW cm-2, was incident through the FTO-

coated glass substrate. For external quantum efficiency (EQE) measurements, chopped 

monochromatic light (chopping frequency 2 Hz) was provided by a 150 W xenon lamp in 

combination with a monochromator and order-sorting filters. The cell was biased close to 1.2 

V vs. RHE under simulated solar irradiation to ensure realistic operating conditions. The 

current recorded by the Autolab potentiostat was output to a lock-in amplifier synchronized 

to the chopper frequency. 

Photocurrent transients were used to estimate the transfer efficiency of holes to the solution 

phase.17 The high power light emitting diode, LED, was switched on and off every 500 ms. The 

hematite electrodes were held at a given potential, and the transient current was sampled at 

0.1 ms intervals. This fast sampling allowed the instantaneous current to be determined. In 

cases where the current transient had not reached a steady state value after 500 ms, 

additional photocurrent transients were recorded with 5 s on/off times, sampled at 1 ms 

intervals. Electrochemical impedance spectroscopy (EIS) was carried out in the dark at applied 

potentials at which no significant dark current flows (between 0.75 and 1.5 V vs RHE), and the 

potential was modulated by 10 mV at frequencies ranging logarithmically from 100 kHz to 
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1 Hz. Intensity modulated photocurrent spectroscopy (IMPS) was carried out using a 

PGSTAT302N Autolab (Metrohm), equipped with an FRA32M frequency response analyser, 

connected to an LED driver kit which powered a 470 nm high-power LED. The light intensity 

was modulated by 10 % between 100 kHz and 0.1 Hz. 

 

5.4. Results and Discussion 

 

Figure 5-3. Top view and cross section SEM images of undoped hematite films (top). Top view SEM-
image of films prepared with 5 %, 10 %, 20 % and 30 % Sn-precursor in the hematite synthesis. Each 
item is labelled with the appropriate Sn-precursor percentage, all films are on an FTO coated glass 
substrate. 
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Figure 5-3 gives an overview of the impact of Sn-doping on the film morphology. The SEM top 

view images show a disordered mesoporous “worm-like” structure for films prepared with up 

to 20 % Sn-precursor, similar to that seen for various hematite films prepared by other 

solution-based synthetic routes.19,21,22,54,55 The morphology remains unchanged up to the 

addition of 10 % Sn-precursor to the hematite synthesis, with a mean particle size of 

approximately 35 x 80 nm. When 20 % Sn-precursor is added to the synthesis, the mean 

feature size decreases somewhat (to ca. 30 x 70 nm), and the addition of 30 % Sn-precursor 

leads to a more compact and less well defined morphology. The cross section SEM view 

indicates that the film is approximately made up of a monolayer of “worm-like” particles. The 

roughness factor of the films, of the order of 2.5 was estimated from this description of the 

morphology, see the supporting information. 

Figure 5-4 compares the steady state current-voltage characteristics of films prepared from 

precursors containing 0 % Sn, 5 % Sn, 10 % Sn, 20 % Sn and 30 % Sn. In the case of the pure 

hematite film, the photocurrent density is very low. For films prepared using precursor 

solutions with a Sn-content above 5 %, the photocurrent increases substantially, reaching a 

maximum for the 20 % Sn film. The drop in photocurrent observed for the 30 % Sn film is 

accompanied by a significant change in morphology, see Figure 5-. While the smaller feature 

size of the 20 % Sn sample may contribute to the higher photocurrent, this cannot be the 

dominant factor, because even at 5 % Sn-precursor, the rise in photocurrent is substantial, 

although the feature size does not change. The goal of this study was to determine the role 

played by Sn-doping in improving the PEC performance of hematite during water oxidation. 

Under standard operating conditions, these films have an IQE of the order of 3 %, in close 

agreement to the IQE of benchmark Si-doped hematite films prepared by APCVD,41 see the 

supporting information for the full analysis. We therefore conclude that these films are 

suitable model systems for this study. 

 

Figure 5-4. Current-voltage curves for single layers of mesoporous hematite prepared with 0 %, 5 %, 
10 %, 20 % and 30 % Sn-precursor added to the synthesis. Electrolyte: 0.1 M NaOH. Illumination was 
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through the substrate.  = 455 nm, incident photon flux = 1017 cm-2 s-1. In all cases, the dark current was 
negligible over the potential range (see Figure SI 5-1 for dark current voltage curves). 

 

In order to elucidate the role of Sn-incorporation in our system, photocurrent transients were 

recorded, as illustrated in Figure 5-a. In order to ensure that the theoretical treatment 

outlined above is applicable, the condition that the depletion layer should be narrower than 

the nanostructure feature size was tested; see supporting information for the full 

experimental details. Calculation of the width of the space charge region requires knowledge 

of the relative permittivity, r, of hematite. Values of the relative permittivity of hematite in 

the literature vary enormously. For example Glasscock et al.56 measured values of r between 

31 and 57, whereas Lunt et al.57 have recently calculated values between 7.6 and 26.4 for 

different crystal orientations and a mean value of around 25 using DFT. At 1.2 V vs. RHE, values 

of WSC obtained from the Mott-Schottky analysis for the 20 % sample in the dark ranged from 

10 to 25 nm for values of relative permittivity of 25 and 57, respectively. By contrast, analysis 

of the EQE data using equation (8) indicated much smaller values of the space charge layer in 

the range of a few nm (see supporting information for details). This reduction of band bending 

(and hence a lower value of Wsc) under illumination could arise from the build-up of a positive 

surface charge associated with free or trapped holes, which results in more potential being 

dropped across the Helmholtz layer rather than across the depletion layer. It follows that - 

under illumination at least - the condition of a well-defined depletion layer with Wsc smaller 

than the feature size ( 30 nm) should be satisfied. This reduction in Wsc under illumination 

highlights why small amplitude perturbation methods such as IMPS are preferable to large 

amplitude ones such as photocurrent transients. 

The photocurrent transients shown in Figure 5-5a clearly indicate that almost all holes 

reaching the surface of the 0 % Sn sample recombine, leading to a negligible steady state 

photocurrent. Upon addition of only 5 % Sn-precursor to the hematite synthesis, both the 

instantaneous and steady state current densities increase significantly. Since j(t=0) corresponds 

to the flux of holes swept to the surface upon illumination, an increase in its value may indicate 

that the “bulk” properties of the material improve, perhaps due to a reduction in space charge 

recombination losses. Interestingly, j(t=0) decreases with further addition of Sn. This is most 

pronounced for the 30 % Sn doped sample, which has a significantly less well-defined 

morphology compared to the rest of the series, see Figure 5-4. The slight decrease in j(t=0) for 

the 20 % sample can also be correlated to a similarly small decrease in feature size, although 

it is not clear at present whether these observations are directly related. 

Most remarkably, the transfer efficiencies, obtained from the ratio jss/j(t=0) according to 

equation (3), increase steadily with increasing Sn content, see Figure 5-5b. The increased 

transfer efficiency brought about by the incorporation of tin into the hematite can be 

explained in terms of the competition between interfacial transfer of holes taking part in the 

OER, and electron-hole recombination at the surface, see equation (3). On the one hand, the 

transfer efficiency can be improved by increasing the rate of hole transfer across the interface, 
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the kinetics of which are known to be very slow at hematite photoanodes.58 On the other 

hand, given the slow transfer kinetics mentioned above, surface electron-hole recombination 

is very detrimental to the transfer efficiency, so that suppression of surface recombination 

significantly enhances performance.16,17 The objective of the present study was to distinguish 

clearly between these two possibilities. 

 

Figure 5-5. a) Photocurrent transients of hematite films prepared with 0 %, 5 %, 10 %, 20 % and 30 % 
Sn precursor in the synthesis. Measured at 1.164 V vs. RHE under 455 nm illumination, incident photon 
flux 1017 cm-2s-1. b) Transfer efficiency calculated from the photocurrent transients according to 
equation (3). 
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Although the analysis of photocurrent transients suffices to demonstrate the beneficial effect 

of adding tin, the quantitative results may not be accurate since illumination is likely to change 

the band bending as a consequence of the build–up of holes at the surface (note the 

asymmetry between the “on” and “off” transients). For this reason, we used IMPS to extract 

the time constants for hole-transfer and surface electron-hole recombination as described in 

the theory section. In the following discussion, we focus on the comparison of the pure 

hematite and 20 % Sn doped sample, since this gave the highest photocurrent. Typical IMPS 

spectra obtained for samples doped with 0 % and 20 % Sn are shown in Figure 5-66. Both 

doped and undoped samples give very similar high-frequency semi-circles in the lower 

quadrant, which correspond to the RC attenuation of the IMPS response with the time 

constant RseriesCsc. Since the series resistance is of the order of 25 Ω for both samples, this 

indicates that the space charge capacitance, and hence the width of the space charge layer, is 

not changed by the incorporation of Sn. Provided the time constant of the recombination 

semicircle is at least two orders of magnitude slower than the RC time constant, RC 

attenuation does not interfere with the kinetic analysis. 

By contrast, the low-frequency semicircles in the upper quadrant, which correspond to the 

competition between charge transfer and recombination, are quite different. Whereas the 

undoped sample gives a semicircle that returns almost to the origin at low frequencies, the 

semicircle for the Sn-doped sample is much smaller with a low frequency intercept that is 

much larger. The ratios of the high and low frequency intercepts of the recombination 

semicircles give values of the transfer efficiency, see Figure 5-7a. These values are in excellent 

agreement with the results obtained from the analysis of the corresponding photocurrent 

transients, see Figure 5-b. The potential dependence of ktrans and krec obtained from the 

analysis of the IMPS responses is illustrated in Figure 5-7b & c. The krec values are very similar 

for both samples, except at the most negative potentials, where the 20 % Sn sample exhibits 

slightly faster recombination. Strikingly, Sn-inclusion increases ktrans by more than an order of 

magnitude across almost the whole potential range, indicating that Sn catalyses the light-

driven OER (note the logarithmic scale in Figure 5-7c). 
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Figure 5-6. IMPS spectra of samples prepared with 0 % and 20 % Sn-precursor in the synthesis, recorded 

at 1.164 V vs. RHE.  = 470 nm, incident photon flux 1017 cm-2s-1. Note the large difference in the low 
frequency semicircles, which reflect the competition between charge transfer and recombination. 
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Figure 5-7. Parameters extracted from IMPS of photoanodes prepared with 0 % and 20 % Sn-precursor 
in the synthesis, illuminated by a 470 nm LED, intensity 1017 cm-2s-1. a) Transfer efficiency, b) rate 
constant for electron-hole recombination, c) rate constant for hole transfer. 

 

Having established that the improved performance of hematite photoanodes prepared with 

an additional Sn-precursor in the synthesis is due to the catalysis of the OER reaction, we 

investigated the location of the Sn in the structure. Powder XRD and electron diffraction in 
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TEM mode (Figures SI 5-2 and SI 5-3 in the supporting information) indicate that the overall 

structure of the material remains that of hematite, without the formation of secondary phases 

(SnO2, for example). Furthermore the Mott-Schottky analysis does not point towards a 

significant change in the electron donor density, indicating that Sn is not acting as an electrical 

dopant (see Figure SI 5-4 in the supporting information). The presence of Sn in the hematite 

layers was confirmed by EDX in TEM mode. 25 individual EDX spectra were acquired on 20 % 

Sn doped samples, for which both the position of the electron beam and its diameter were 

chosen at random, leading to EDX-measurements of areas of several micrometers as well as 

of individual particles. All measurements yielded similar Sn contents, indicating a 

homogeneous distribution on the micron scale. A mean Sn-concentration of 

3.2 ± 1.5 atomic-% was calculated using the Cliff-Lorimer equation. 

Since these measurements did not probe the distribution of Sn within the individual hematite 

particles, scanning transmission electron microscopy (STEM) was employed in combination 

with EDX to probe the Sn-content with a step size of approximately 2 nm. To this end, an 

electron beam with a diameter of less than 1 nm and, consequently low intensity, was used. 

Line scans across the width of a particle can reveal inhomogeneities between surface and bulk 

compositions, as illustrated in the inset of Figure 5-88b. Six particles were probed along lines 

approximately perpendicular to the surface, such as the one depicted in Figure 5-88a. Due to 

an insufficient signal-to-noise-ratio, background subtraction could not be performed, and 

therefore the local atomic ratio could not be quantified. However, the ratio of the intensity of 

the signals attributable to Sn and that obtained from both Sn and Fe (including the 

background), revealed a substantial Sn-enrichment at all measured surfaces. The Sn-content 

strongly decays towards the middle of the particle, where very little signal attributable to Sn 

was detected. The enrichment of Sn at the surface is also visible in the HAADF-STEM images 

as a white brim. Since the signal in HAADF-STEM images is approximately proportional to the 

square of the atomic number, the bright rim is attributed to a higher average atomic number, 

which is consistent with the inclusion of Sn in the surface atomic columns. Thus, we conclude 

from our EDX line scan and HAADF STEM results that the introduction of a Sn-precursor into 

the hematite synthesis leads to a core-shell structure with incorporated Sn-atoms 

preferentially located near the surface. Due to the small overall content of Sn, an investigation 

of the mode of tin incorporation into the hematite structure proved difficult. However, in 

HRTEM images such as those shown in Figure 5-8c, 5-8d, the lattice planes of both an undoped 

and a doped sample extend to the particle edge, and there is no evidence for newly formed 

separate phases such as SnO2 or SnO at the surface. We therefore conclude that the Sn 

incorporates into the hematite structure without substantial structural changes.  
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Figure 5-8: a) a HAADF-STEM image of the 20 % Sn particles probed with EDX and b) relative atomic 
content of Sn to total metal atomic content as a function of position along the line-scan marked in a). 
The sketch inset in b) illustrates how the STEM beam probes the bulk and surface properties of the 
particles. Furthermore, HRTEM images of c) undoped, and d) Sn-doped, hematite are shown. In c), the 
(202) lattice planes are shown, in d) the (012) lattice planes. 

 

This structure-function relationship between an enrichment of Sn at the surface of hematite, 

and catalysis of the OER is in good agreement with theoretical predictions that mixed metal 

sites at the hematite surface (i.e. surface doping) could play a role in balancing the 

intermediate energetic barriers involved in the OER.38,39 Although these studies considered 

many common hematite dopants such as Si and Ti, Sn was not included. Given the 

phenomenological nature of the rate constants obtained here, it is plausible that Sn atoms on 

the hematite surface affect the OER intermediates, which would, in turn lead to an increased 

ktrans. Zandi et al.37 observed an increased transfer efficiency in Ti-doped hematite prepared 

by ALD, although exclusively coating the hematite surface with TiO2 had no beneficial effect 

on undoped hematite, which we suggest may also be due to the existence of neighbouring Ti 

and Fe sites. Similarly, Chemelewski et al. noted an increased transfer efficiency of hematite 

photoanodes upon Si doping.24 Although these studies identified an enhanced transfer 

efficiency by comparing the photoanode performance in the presence and absence of a hole 

scavenger, determining whether this enhancement was due to a catalytic effect or a 

passivation of surface recombination was not possible. To the best of our knowledge, the 

present study provides the first demonstration that doping hematite photoanodes can 

catalyse the OER. A parallel can be drawn between our findings and recent work by Riha et 

al.,15 who showed by analysis of PEIS spectra that a sub-monolayer Co-coating also catalyses 

the OER on hematite photoanodes. Interestingly, the authors note that the existence of 

neighbouring Fe and Co sites may be crucial to this catalytic activity. We suggest that this may 

be another example of the behavior predicted by Busch and Carter.38,39 While many Co species 

are well-known dark OER catalysts, Sn showed unexpected catalytic activity towards the OER 

on hematite photoanodes. We are therefore encouraged to believe that the search for 

catalysts for photoelectrodes can be extended beyond successful dark catalysts, as the 

mechanisms involved may be very different. 
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5.5. Conclusion 

We have synthesized thin Sn-enriched hematite layers as model systems to investigate the 

role of Sn doping under light-driven water oxidation conditions. Although the performance of 

this material was low due to its modest light harvesting efficiency, the internal quantum 

efficiency is similar to those reported for benchmark hematite photoanodes prepared by 

AACVD and ultrasonic spray pyrolysis, making it a useful model system. Transient 

photocurrent responses to chopped illumination revealed that the efficiency of hole-transfer 

to the solution phase during the OER increased significantly due to the Sn doping. A study by 

IMPS revealed a tenfold increase in the rate of hole-transfer, i.e. catalysis of the OER. This is 

remarkable, as very few studies of surface treatments have found convincing evidence of 

catalysis, with many observing passivation of surface recombination. To the best of our 

knowledge, we report the first example of a dopant catalysing the OER on hematite. STEM-

EDX line scans revealed a Sn-enrichment at the surface of the nanoparticles, indicating a 

structure-function relationship between the surface nature of the Sn doping, and the 

improved catalytic properties at the surface. While we do not claim that all dopants affect 

hematite in this way, we believe that catalysis due to surface doping may be a widespread 

effect, and suggest more routine application of techniques such as IMPS to distinguish 

between changes in the rates of hole transfer and surface recombination brought about by 

inclusion of dopant atoms. We also hope that these results will motivate the search for 

catalysts beyond traditional dark OER catalysts. 

 

5.6. Subsequent Work: Ultrasmall Co3O4 Nanoparticles as Co-Catalysts 

This segment is based on the following publication: 

“Ultrasmall Co3O4 Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous 

Hematite” by Johann M. Feckl, Halina K. Dunn, Peter M. Zehetmaier, Alexander Müller, 

Stephanie R. Pendlebury, Patrick Zeller, Ksenia Fominykh, Ilina Kondofersky, Markus Döblinger, 

James R. Durrant, Christina Scheu, Laurence M. Peter, Dina Fattakhova-Rohlfing, and Thomas 

Bein, which was published in Advanced Materials Interfaces, DOI: 10.1002/admi.201500358 

(2015). 

 

Hematite suffers from slow surface kinetics, which can be improved by depositing co-catalysts. 

In this study, Co3O4 nanoparticles were synthesized and applied as co-catalysts to the 

mesoporous, Sn-doped hematite films discussed above.59 Compared to prior work, Co3O4 was 

prepared prior to application, allowing homogenous deposition as shown by TEM. The 

nanoparticles were 3 to 7 nm in diameter, non-agglomerated and perfectly dispersible in 

ethanol. Deposition led to a photocurrent increase of up to several hundred % throughout the 

current-voltage curve. However, the performance dropped significantly if the Co3O4 loading 

was increased beyond a certain level, which was attributed to blocking of the Fe2O3 surface 
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(Figure 5-9). Transient absorption spectroscopy showed the enhanced performance to be due 

to suppression of surface electron-hole recombination on the scale of milliseconds to seconds. 

 

 

Figure 5-9: The normalized photocurrent at 1.164 V versus RHE (pH 13) under 455 nm illumination, of 
Co3O4-treated 150 nm thick Sn-doped hematite films as a function of Co3O4 nanoparticle loading on the 
active area of the electrodes is shown in (b). The normalized current is displayed as a ratio of 
photocurrent of Co3O4 nanoparticle–treated electrodes to that of an untreated electrode of the same 
thickness. (a) and (b) show TEM images to illustrate the different surface coverages. The figure is taken 

from 59. 

 

5.7. Subsequent Work: Introduction of a Current-Collecting Scaffold 

This segment is based on the following publication: 

“Electron Collection in Host−Guest Nanostructured Hematite Photoanodes for Water Splitting: 

The Influence of Scaffold Doping Density” by Ilina Kondofersky, Halina K. Dunn, Alexander 

Müller, Benjamin Mandlmeier, Johann M. Feckl, Dina Fattakhova-Rohlfing, Christina Scheu, 

Laurence M. Peter, and Thomas Bein, which was published in ACS Applied Materials and 

Interfaces 7, 4623 (2015). 

 

The poor electron collection of hematite has led to the emergence of host-guest architectures, 

in which hematite nanoparticles are deposited onto a transparent electron collector.60 In this 

study, the Sn-doped Fe2O3 nanoparticles described above were applied to a macroporous 

antimony-doped tin oxide (ATO) scaffold.61 TEM cross-sections were prepared as described in 

Chapter 3. The homogenous distribution and complete infiltration of the scaffold by the 

hematite nanoparticles was shown with EDX maps of TEM cross-sections (Figure 5-10). An 

average pore size of 300 nm could be determined, and the nanoparticle shapes and sizes were 

similar in meso- and macroporous samples. The impact of the morphology and the material 

combination was investigated by comparing its performance to that of an undoped SnO2 host 

and to that of unscaffolded, mesoporous Sn-doped Fe2O3. Analysis of the IPCE spectra for 

substrate and electrolyte side illumination reveals that the electron diffusion length in the 

host−guest electrodes based on an undoped SnO2 scaffold is increased substantially relative 

to the nanostructured hematite electrode without a supporting scaffold. Nevertheless, 
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electron collection is still incomplete for electrolyte illumination. By contrast, an electron 

collection efficiency of 100 % is achieved with the ATO scaffold, showing that the conductivity 

of the scaffold is crucial for the device performance. 

 

 

Figure 5-10: SEM cross section images of (a) the ATO + Sn:Fe2O3 host−guest morphology and (b) the 
mesoporous Sn:Fe2O3 absorber layer. In (c) and (d), EDX maps of a cross-section of the host−guest 
morphology, which were acquired in STEM, are shown. (c) shows good infiltration of the absorber in 
the scaffold down to the bottom, although some pores remain unfilled, and (d) shows one pore with 

several hematite nanoparticles. The figure is taken from 4. 
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5.8. Supporting Information 

 

Figure SI 5-1: Dark cyclic voltammograms recorded on single layer films of pure hematite, and of 
hematite prepared with 20 % Sn-precursor in the synthesis. 

 

 

Figure SI 5-2: Powder XRD data of hematite layers prepared with 0 % and 20 % Sn-precursor in the 
synthesis. Below the ICDD card 01-085-0987 of hematite (red) and the ICDD card 01-075-9493 of SnO2 
(black). The right hand panel shows the peak shift attributed to lattice distortion upon inclusion of Sn-
atoms. 
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The powder XRD spectra in Figure SI 5-1Figure SI  exclusively show the -Fe2O3 hematite phase, 

with a peak shift of approximately 0.1° to smaller angles upon Sn-inclusion (20 % sample), 

indicating a lattice distortion brought about by inclusion of impurity atoms.1 This shift 

corresponds to an increase of the lattice parameter, a, from 5.036 to 5.043 Å. Additionally, 

the inversion of intensities of the two reflections in the range of 33 to 36° 2 is observed, 

similar to a Sn-doped hematite described by Berry et al.1 The mean crystallite size, as 

calculated from the broadening of the (104) reflection according to the Scherrer equation, 

drops from 50 to 30 nm upon inclusion of Sn. This is in good agreement with the reduction in 

particle size upon Sn-inclusion observed in SEM and TEM. Hence, our XRD, SEM and TEM 

investigations agree on a reduction in feature size upon Sn-incorporation. Although this 

observation fits the general trend, we note that this change in feature size is less extreme than 

in other reports, such as the reduction in hematite nanowire length from 600 to 100 nm upon 

Sn-doping reported by Ling et al.2 

 

 

Figure SI 5-3: Electron diffraction patterns obtained in TEM of a) 20 % and b) 0 % Sn samples. 

 

Diffraction patterns of several hundred particles confirmed the hematite structure, to which 

all reflections could be assigned. 

EIS data were fitted to the Randles’ equivalent circuit shown in the inset of Figure SI 5-4, with 

parallel resistances, Rp, of the order of 10 kΩ cm-2 corresponding to the small dark current. 

The capacitances determined in this way are shown as Mott-Schottky plots in Figure SI 5-4. As 

these electrodes are not perfectly compact and uniform layers, the data are not linear over 

the entire range. However, at low applied anodic biases, a linear fit can be made, yielding 

flatband potentials, VFB, of ca. 0.7 and 0.4 V vs RHE for 0 % and 20 % samples, respectively. 

Another indicator of VFB is the onset potential of anodic transient photoactivity.5 The 

photocurrent-voltage curves under chopped illumination, shown in Figure SI 5-5, reveal that 
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VFB is of the order of 0.6 and 0.3 V vs RHE for the 0 % and 20 % photoanodes, respectively, in 

good agreement with the values determined from the Mott-Schottky analysis. 

 

Figure SI 5-4: Mott-Schottky plots obtained from hematite photoanodes prepared with 0 % and 20 % 
Sn-precursor in the synthesis. 
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Figure SI 5-5: Current density under chopped illumination of hematite photoanodes prepared with 20 % 
(a) and 0 % (b) Sn-precursor in the synthesis. Monochromatic light (455 nm) chopped at 1 Hz, intensity 
ca. 1017 cm-2s-1, scan rate: 40 mVs-1. The insets show the onset of transient photocurrent activity close 
to the flat band potential. 

 

In order to calculate the doping density and the width of the space charge layer according to 

equation 6 (in the main text) the value of the dielectric constant, εr, is required. There is a 

wide range of εr values reported in the literature.6,7 We have calculated WSC from equation 6 

with εr equal to 258 and 577 to illustrate the sensitivity of WSC to this parameter, see Figure SI 

5-6. For the higher value of the dielectric constant, the plots show that the assumption that 

the width of the space charge regions should be smaller than the particle radius, R will no 

longer be met for 30 nm particles, and the capacitance should saturate at high applied bias.  

However no experimental evidence for saturation of the capacitance was seen in the Mott 

Schottky plots, and we therefore believe that the dielectric constant is small enough that the 



65 
 

condition Wsc < R is satisfied. This conclusion is supported by recent theoretical calculations 

that predict r values close to 25.8 

 

Figure SI 5-6: Calculated width of the space charge region for hematite photoanodes prepared with 0 % 
and 20 % Sn-precursor in the synthesis. VFB was estimated from Mott-Schottky analysis and the 
transient anodic onset of photocurrent. For the pure hematite sample, donor densities of 3.2 1019 cm-3, 
and of 1.3 1019 cm-3 were used in combination with dielectric constants of 25 and 57, respectively. For 

the Sn-enriched hematite sample, donor densities of 1.5 1019 cm-3, and of 6.6  1018 cm-3 were used in 
combination with dielectric constants of 25 and 57, respectively. 

 

5.9. Acknowledgments 

The work was supported by the German Research Foundation, DFG (SPP 1613), Nanosystems 

Initiative Munich (NIM) and LMUexcellent funded by the DFG, the Bavarian research network 

‘Solar Technologies Go Hybrid’, the Center for NanoScience (CeNS) and LMUmentoring. Ilina 

Kondofersky is gratefully acknowledged for insightful discussions. We also thank Steffen 

Schmidt and Florian Auras for SEM measurements. 

 

5.10. References 

(1) Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Nature 1985, 316, 495. 

(2) Brillet, J.; Cornuz, M.; Le, F. F.; Yum, J.-H.; Gratzel, M.; Sivula, K. J. Mater. Res. 2010, 25, 

17. 

(3) Neumann, B.; Bogdanoff, P.; Tributsch, H. J. Phys. Chem. C 2009, 113, 20980. 



66 
 

(4) Brillet, J.; Yum, J. H.; Cornuz, M.; Hisatomi, T.; Solarska, R.; Augustynski, J.; Graetzel, 

M.; Sivula, K. Nature Photonics 2012, 6, 823. 

(5) Khaselev, O.; Turner, J. A. Science 1998, 280, 425. 

(6) Nozik, A. J. Appl. Phys. Lett. 1976, 29, 150. 

(7) Sivula, K.; Le, F. F.; Gratzel, M. ChemSusChem 2011, 4, 432. 

(8) Katz, M. J.; Riha, S. C.; Jeong, N. C.; Martinson, A. B. F.; Farha, O. K.; Hupp, J. T. 

Coordination Chemistry Reviews 2012, 256, 2521. 

(9) Cesar, I.; Kay, A.; Martinez, J. A. G.; Gratzel, M. Journal of the American Chemical 

Society 2006, 128, 4582. 

(10) Kay, A.; Cesar, I.; Graetzel, M. Journal of the American Chemical Society 2006, 128, 

15714. 

(11) Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Graetzel, M. Journal of Physical Chemistry C 2009, 

113, 772. 

(12) Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J.-W.; Kubota, J.; Domen, K.; Lee, J. S. Sci. Rep. 

2013, 3. 

(13) Tilley, S. D.; Cornuz, M.; Sivula, K.; Graetzel, M. Angew. Chem., Int. Ed. 2010, 49, 6405. 

(14) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Journal of the 

American Chemical Society 2012, 134, 16693. 

(15) Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; 

Martinson, A. B. F. Acs Nano 2013, 7, 2396. 

(16) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Graetzel, M.; Klug, D. R.; Durrant, J. R. 

Journal of the American Chemical Society 2011, 133, 14868. 

(17) Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. Faraday Discussions 2011. 

(18) Hahn, N. T.; Mullins, C. B. Chemistry of Materials 2010, 22, 6474. 

(19) Bohn, C. D.; Agrawal, A. K.; Walter, E. C.; Vaudin, M. D.; Herzing, A. A.; Haney, P. M.; 

Talin, A. A.; Szalai, V. A. Journal of Physical Chemistry C 2012, 116, 15290. 

(20) Frydrych, J.; Machala, L.; Tucek, J.; Siskova, K.; Filip, J.; Pechousek, J.; Safarova, K.; 

Vondracek, M.; Seo, J. H.; Schneeweiss, O.; Graetzel, M.; Sivula, K.; Zboril, R. Journal of 

Materials Chemistry 2012, 22, 23232. 

(21) Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119. 

(22) Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; 

Graetzel, M. Journal of the American Chemical Society 2010, 132, 7436. 

(23) Saremi-Yarahmadi, S.; Wijayantha, K. G. U.; Tahir, A. A.; Vaidhyanathan, B. Journal of 

Physical Chemistry C 2009, 113, 4768. 

(24) Chemelewski, W. D.; Hahn, N. T.; Mullins, C. B. Journal of Physical Chemistry C 2012, 

116, 5256. 

(25) Lukowski, M. A.; Jin, S. Journal of Physical Chemistry C 2011, 115, 12388. 

(26) Franking, R.; Li, L. S.; Lukowski, M. A.; Meng, F.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Energy 

& Environmental Science 2013, 6, 500. 

(27) Zhang, P.; Kleiman-Shwarsctein, A.; Hu, Y.-S.; Lefton, J.; Sharma, S.; Forman, A. J.; 

McFarland, E. Energy & Environmental Science 2011, 4, 1020. 



67 
 

(28) Wang, G.; Ling, Y.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; 

Li, Y. Nano Letters 2011, 11, 3503. 

(29) Lian, X.; Yang, X.; Liu, S.; Xu, Y.; Jiang, C.; Chen, J.; Wang, R. Applied Surface Science 

2012, 258, 2307. 

(30) Deng, J.; Zhong, J.; Pu, A.; Zhang, D.; Li, M.; Sun, X.; Lee, S.-T. Journal of Applied Physics 

2012, 112. 

(31) Hu, Y.-S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J.-N.; McFarland, E. 

W. Chemistry of Materials 2008, 20, 3803. 

(32) Mao, A.; Park, N.-G.; Han, G. Y.; Park, J. H. Nanotechnology 2011, 22. 

(33) Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. 

Journal of Physical Chemistry C 2008, 112, 15900. 

(34) Kumari, S.; Tripathi, C.; Singh, A. P.; Chauhan, D.; Shrivastav, R.; Dass, S.; Satsangi, V. R. 

Current Science 2006, 91, 1062. 

(35) Khan, S. U. M.; Zhou, Z. Y. Journal of Electroanalytical Chemistry 1993, 357, 407. 

(36) Liao, P.; Toroker, M. C.; Carter, E. A. Nano Letters 2011, 11, 1775. 

(37) Zandi, O., Klahr, B.M., Hamann, T.W. Energy & Environmental Science 2013, 6. 

(38) Liao, P.; Keith, J. A.; Carter, E. A. Journal of the American Chemical Society 2012, 134, 

13296. 

(39) Busch, M.; Ahlberg, E.; Panas, I. Physical Chemistry Chemical Physics 2011, 13, 15062. 

(40) Tang, H.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M.; Turner, J.; Yan, Y. Journal 

of Applied Physics 2011, 110. 

(41) Dotan, H.; Sivula, K.; Gratzel, M.; Rothschild, A.; Warren, S. C. Energy Environ. Sci. 2011, 

4, 958. 

(42) Gärtner, W. W. Physical Review 1959, 116, 84. 

(43) Dareedwards, M. P.; Goodenough, J. B.; Hamnett, A.; Trevellick, P. R. Journal of the 

Chemical Society-Faraday Transactions I 1983, 79, 2027. 

(44) Cummings, C. Y.; Marken, F.; Peter, L. M.; Tahir, A. A.; Wijayantha, K. G. U. Chemical 

Communications 2012, 48, 2027. 

(45) Peter, L. M. Journal of Solid State Electrochemistry 2013, 17, 315. 

(46) Ponomarev, E. A.; Peter, L. M. Journal of Electroanalytical Chemistry 1995, 396, 219. 

(47) Peter, L. M.; Ponomarev, E. A.; Fermin, D. J. Journal of Electroanalytical Chemistry 1997, 

427, 79. 

(48) Wijayantha, K. G. U.; Saremi-Yarahmadi, S.; Peter, L. M. Physical Chemistry Chemical 

Physics 2011, 13, 5264. 

(49) Peter, L. M.; Vanmaekelbergh, D. In Adv. Electrochem. Sci. Eng.; Alkire, R. C. K., D.M., 

Ed. Weinheim, 1999; Vol. 6, p 77. 

(50) Peter, L. M. T., H. In Nanostructured And Photoelectrochemical Systems For Solar 

Photon Conversion; Archer, M. D. N., A.J, Ed.; Imperial College Press: London, 2008; 

Vol. 3, p 675. 

(51) Fermin, D. J.; Ponomarev, E. A.; Peter, L. M. J. Electroanal. Chem. 1999, 473, 192. 

(52) Redel, E.; Mirtchev, P.; Huai, C.; Petrov, S.; Ozin, G. A. Acs Nano 2011, 5, 2861. 

(53) Klahr, B. M.; Martinson, A. B. F.; Hamann, T. W. Langmuir 2011, 27, 461. 



68 
 

(54) Morrish, R.; Rahman, M.; MacElroy, J. M. D.; Wolden, C. A. Chemsuschem 2011, 4, 474. 

(55) Hamd, W.; Cobo, S.; Fize, J.; Baldinozzi, G.; Schwartz, W.; Reymermier, M.; Pereira, A.; 

Fontecave, M.; Artero, V.; Laberty-Robert, C.; Sanchez, C. Physical Chemistry Chemical 

Physics 2012, 14, 13224. 

(56) Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Bendavid, A.; Martin, P. J. Thin Solid Films 

2008, 516, 1716. 

(57) Lunt, R.; Jackson, A.; Walsh, A. Chemical Physics Letters 2013, 586, 67. 

(58) Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; 

Graetzel, M.; Klug, D. R.; Durrant, J. R. Proceedings of the National Academy of Sciences 

of the United States of America 2012, 109, 15640. 

(59) Feckl, J. M.; Dunn, H. K.; Zehetmaier, P. M.; Müller, A.; Pendlebury, S. R.; Zeller, P.; 

Fominykh, K.; Kondofersky, I.; Döblinger, M.; Durrant, J. R.; Scheu, C.; Peter, L.; 

Fattakhova-Rohlfing, D.; Bein, T. Adv. Mater. Interfaces 2015, DOI: 

10.1002/admi.201500358. 

(60) Sivula, K.; Formal, F. Le; Grätzel, M. Chem. Mater. 2009, 21 (13), 2862. 

(61) Kondofersky, I.; Dunn, H. K.; Müller, A.; Mandlmeier, B.; Feckl, J. M.; Fattakhova-

Rohlfing, D.; Scheu, C.; Peter, L. M.; Bein, T. ACS Appl. Mater. Interfaces 2015, 7, 4623. 

 



69 
 

6. Dual Absorber Fe2O3/WO3 Host-Guest Architectures for 

Improved Charge Generation and Transfer in 

Photoelectrochemical Water Splitting 

 

 

This chapter is based on a manuscript by Alexander Müller, Ilina Kondofersky, Alena Folger, 

Dina Fattakhova-Rohlfing, Thomas Bein and Christina Scheu, which is to be submitted. 

 

 

6.1. Introduction 

Driven by climate change, rapid population growth and dwindling resources, research into 

alternative, sustainable energies is thriving. Solar cells and wind turbines, which harness the 

power of the sun, already play a major role in the energy mix of some countries, with their 

market share expected to increase. However, storage of the generated electricity is a 

challenge. One of many possible solutions is photoelectrochemical water splitting, which uses 

sun light as an energy source to generate oxygen and hydrogen from water. While suitable 

photoelectrode materials have been studied since 19721, research has intensified in the last 

few years and several photocathode and photoanode materials (such as TiO2, Si or Cu2O and 

Fe2O3, WO3 or BiVO4, respectively) have been investigated.2–4 Efficient photoanodes, in 

particular, are difficult to realize. Producing one oxygen molecule requires four holes, making 

recombination likely and requiring significant optimization of factors such as composition, 

electronic structure and morphology. All efforts notwithstanding, it is becoming more and 

more obvious that limitations intrinsic to many single absorber materials investigated so far, 

such as large band gaps, slow surface kinetics or fast bulk electron-hole recombination, are 

difficult to overcome. One approach towards solving this problem is the combination of 

different photoabsorber materials. Such a combination can increase the efficiency in several 

ways such as by optical absorption enhancement, enhanced charge separation, faster surface 

kinetics, or the modification of the electronic structure of the interface between both 

materials.5 For photoanodes, a dual absorber approach has, for one reason or another, been 

successful for several systems such as WO3/TiO2
6, WO3/BiVO4

7, TiO2/Fe2O3
8 and Fe2O3/WO3

5. 

The Fe2O3/WO3 system is a good model and a promising photoanode for many reasons. The 

individual materials are abundant and therefore cheap, non-toxic and corrosion-resistant.9,10 

Consequently, both materials have been intensively studied, and the influence of different 

morphologies, dopants, surface modifications etc. for both systems is well-investigated.9,11 

WO3 has a band gap of 2.5-2.8 eV and absorbs mostly in the blue and UV spectral range.10,12,13 

Because of good charge transport properties and fast surface kinetics, it has proven itself a 
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suitable candidate for water photoelectrolysis.13 However, the large band gap limits the 

overall theoretical solar-to-hydrogen efficiency to 8 %.14 Fe2O3, on the other hand, has a band 

gap between 1.9 and 2.2 eV and also absorbs a large fraction of visible light, driving the 

potential solar-to-hydrogen efficiency up to 16.8 %.9,14 Unfortunately, the expected efficiency 

is greatly reduced by several loss mechanisms such as high bulk and surface recombination 

rates and slow kinetics for the oxygen evolution reaction. Combining Fe2O3 and WO3 can 

improve the performance of the individual materials in several ways. Compared to bare WO3, 

a larger spectral range is absorbed. The band alignment of Fe2O3 and WO3 allows for the 

injection of electrons from Fe2O3 into WO3, with the latter being a better electron conductor.15 

Sivula et al. found the deposition of Fe2O3 onto WO3 scaffolds to drastically improve electron 

charge collection.16 Furthermore, the rate of the oxygen evolution reaction of Fe2O3 was 

shown to be significantly improved by surface treatment of Fe2O3 by a WO3 layer.5,17 

In addition to the strategies discussed above, nanostructuring is commonly employed to 

improve photoelectrodes.18,19 Several morphologies have so far been synthesized in the 

Fe2O3/WO3 system, including flat and porous films,20–24 host-guest architectures,16 and 

nanowires.5,25 Here, we systematically employed WO3 both as a scaffold and as a surface 

treatment, allowing correlation between morphology and performance. Mesoporous 

Sn-doped Fe2O3 photoabsorber layers were prepared by a sol-gel approach and deposited 

onto a continuous, macroporous WO3 scaffold.26 The performance was increased even further 

by depositing a WO3 surface layer and increasing the Fe2O3/WO3 interfacial area, thus reaching 

photocurrents of up to 0.7 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode (RHE). The 

viability of this host-guest approach was confirmed by comparing the macroporous 

photoanodes to mesoporous reference samples.16,25,27–31 As WO3 only absorbs a small fraction 

of blue light, whereas hematite strongly absorbs in this region, measuring photocurrent 

transients under UV and under blue light illumination allowed for a more nuanced discussion 

of the impact of the morphology on the photoelectrochemical performance and gave further 

insights into a complex interplay of several effects. 

 

6.2. Materials and Methods 

6.2.1. Synthesis and Deposition of Polymethylmethacrylate (PMMA) Spheres 

Polymethylmethacrylate (PMMA) spheres were synthesized according to a well-established 

procedure.27,32,33 In brief, sodium dodecylsulfate (5 mg, 0.02 mmol) was added to 

deoxygenated water (98 ml) under nitrogen purging at 40 °C. Further, methylmethacrylate 

(MMA) (35.6 g, 0.35 mol) was added to the solution which was subsequently heated to 70 °C 

for 1 hour under reflux and vigorous stirring. Potassium peroxydisulfate (56 mg, 0.2 mmol) 

was dissolved in water (2 mL) and added as a polymerization initiator. The polymerization 

reaction was stopped after 45 min by cooling the suspension to room temperature under 

continuous stirring. The resulting 300 nm PMMA spheres were washed twice with water by 

centrifugation (19,000 rpm, 20 min) and dispersed in water. 



71 
 

PMMA spheres were deposited on fluorine-doped tin oxide (FTO) substrates (TEC 15 Glass, 

Dyesol) by placing the substrates vertically in an aqueous PMMA solution. The solution along 

with the substrates was placed in an 80 °C oven until the water had evaporated, resulting in 

opaline PMMA films on FTO. 

 

6.2.2. Preparation of WO3 Films 

The precursor solution for WO3 was prepared by adding 0.8 g of (NH4)6H2W12O40 · xH2O to 

3 mL of deionized water (Millipore Q). To create flat layers, this solution was dip-coated onto 

the FTO substrate under ambient conditions at a rate of 38 mm/min. The samples were 

subsequently calcined at 500 °C with a ramp of 3 °C/min and a dwell time of 5 h. By applying 

the same procedure to PMMA or hematite films, macroporous inverse opal scaffolds and 

overlayers, respectively, could be prepared. 

 

6.2.3. Synthesis and Deposition of Tin-Doped Hematite 

A procedure developed by Dunn et al.26 was applied for the synthesis of tin-doped hematite. 

0.25 g Pluronic® P123 were dissolved in 10 mL tert-butanol under vigorous stirring. 0.1106 g 

(0.3 mmol) Sn(CH3COO)4 were added to the solution and stirred for 5 h. Next, Fe(NO3)3 · 9H2O 

(0.505 g, 1.25 mmol) was added at room temperature and sonicated for 15 min. 2.5 mL water 

were then added and the solution was left to stir for 17 h under ambient conditions. Prior to 

spin coating, the resulting suspension was filtered through a filter with a pore diameter of 

200 nm. The electrodes were prepared by depositing the filtered solution (100 µL) onto FTO 

or the macroporous scaffold, respectively, by spin coating at 1000 rpm for 30 s. The films were 

then calcined at 600 °C with a ramp of 3 °C/min and a dwell time of 30 min. 

 

6.2.4. Crystallographic and Morphological Characterization 

Powder X-ray diffraction (XRD) patterns were acquired on a STOE powder diffractometer (Cu-

Kα1, λ = 1.5406 Å) equipped with a position-sensitive Mythen-1K detector in transmission 

geometry. 

Scanning electron microscopy (SEM) measurements were performed on a Zeiss Auriga 

scanning electron microscope with a field emission gun operated at 4 kV and equipped with 

an EDAX solid state energy-dispersive X-ray (EDX) spectroscopy detector. 

Morphology, crystallography and elemental distribution were investigated using a probe-

corrected FEI Titan Themis transmission electron microscope (TEM) with an extreme field 

emission gun operating at 300 kV. Scanning TEM (STEM) images were acquired with an 

annular dark-field (ADF) detector and the distribution of Fe2O3 and WO3 was mapped by 
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collecting EDX spectra in STEM with four Super-X Bruker solid state detectors. Samples in 

cross-sectional geometry were prepared following a procedure developed by Strecker et al.34 

 

6.2.5. Optical Characterization 

UV-Vis spectra were measured under illumination through the substrate on a Perkin Elmer 

Lambda 1050 UV/Visible/NIR spectrophotometer with an integrating sphere. The absorbance 

of the films was calculated by measuring both transmittance and reflectance and correcting 

for the absorbance of the FTO substrate using an expression derived by Klahr et al.35 

 

6.2.6. Photoelectrochemical Characterization 

Current-voltage (CV) and incident photon-to-current efficiency (IPCE) curves were measured 

with a μ-Autolab III potentiostat with a FRA2 impedance analyzer. All but an area of 0.2 cm2 

was masked with a Teflon-coated glass fiber adhesive tape. The sample was placed into a 

quartz cell filled with an aqueous 0.1 M NaOH electrolyte and connected, with an Ag/AgCl 

reference electrode and a Pt mesh counter electrode, to the potentiostat. To obtain CV curves, 

the films were illuminated through the substrate by an AM 1.5 solar simulator (Solar Light 

Model 16S) at 100 mW cm-² by scanning from negative to positive potentials in the dark or 

under illumination at a sweep rate of 20 mV/s. 

IPCE measurements were performed under monochromatic light chopped with a frequency 

of 1 Hz. Samples were illuminated through the substrate by a 150 W Xenon lamp equipped 

with a monochromator and order-sorting filters. All IPCE values were measured at a sample 

bias of 1.23 V vs. RHE under simulated solar irradiation. The light intensity at the electrode 

was determined using a certified, KG5-filtered Fraunhofer ISE silicon reference cell. 

Photocurrent transient data were acquired with a 365 nm or a 455 nm light-emitting diode 

and a chopping frequency of 2 Hz at an applied potential of 1.23 V vs. RHE. Transfer 

efficiencies were calculated as the ratio of the steady-state and the initial photocurrent 

density. As transfer efficiencies measured with 365 nm light did not deviate by more than 

± 2 % from those measured with 455 nm light and are effectively independent of the 

illumination wavelength, the transfer efficiencies averaged over both wavelengths will be 

discussed. 
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6.3. Results and Discussion 

Two series of samples were prepared via sol-gel synthesis procedures (Figure 6-1). 

 

Figure 6-1: Schematic showing the synthesis procedures for all samples. 

 

The first series of flat layers served as references to the host-guest electrodes and allowed 

analyzing performance-enhancing factors on simpler model systems. The model systems 

comprised three samples, including a compact WO3 and a mesoporous Fe2O3:Sn layer coated 

onto FTO as well as a dual absorber photoelectrode prepared by depositing a WO3 overlayer 

onto a Fe2O3:Sn film. These samples are labeled “WO3”, “Fe2O3” and “Fe2O3/WO3”, 

respectively. The second series demonstrated the performance-enhancing benefits of the 

host-guest architecture. A macroporous WO3 scaffold was infiltrated by Fe2O3:Sn and coated 

with an additional WO3 overlayer. In the remainder of the text, these samples are labeled 

“mWO3”, “mWO3/Fe2O3”, and “mWO3/Fe2O3/WO3”, respectively. It should be noted that WO3 

can potentially fulfill several functions. At wavelengths below the optical absorption limit, 

WO3 acts as a photoabsorber. Furthermore, due to favorable band alignment, it can act as a 

majority charge carrier collector of electrons generated in Fe2O3.16 Finally, WO3 can act as a 

surface treatment to Fe2O3 photoanodes, suppressing electron-hole recombination on the 

surface.5 Therefore, the samples in this study were prepared so that these possible 

performance-enhancing effects could be studied. 

XRD patterns confirmed the successful synthesis of phase-pure Fe2O3:Sn in the hematite 

structure and monoclinic WO3 (Figure SI 6-1).36,37 Contaminant phases could not be detected 

by XRD, SEM or TEM. In accordance with previous work by Dunn et al., cross-sectional analysis 

of mesoporous Fe2O3 layers showed ~ 50 nm thick mesoporous films composed of individual 

nanoparticles with an average size of ~ 40  nm x 80 nm (Figure 6-2b and c).26 WO3, in contrast, 

forms ~ 100 nm thick, cracked layers composed of large, compact platelets sized between a 

few hundred nanometers to a few micrometers (Figure SI 6-2). The Fe2O3/WO3 dual absorber 
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retains these morphologies, with WO3 both infiltrating the Fe2O3 layer and forming a ~ 50 nm 

thick layer on top (Figure 6-2a, c and d). By forming a compact top layer, WO3 decreases the 

exposed Fe2O3 surface area. 

 

 

Figure 6-2: Morphological characterization. a) Top-view SEM image of the Fe2O3/WO3 thin films. Fe2O3 
is visible through cracks in the WO3 layer. ADF-STEM images and EDX maps of Fe2O3/WO3 are shown in 
b) and c). d) Cross-section SEM image of mWO3/Fe2O3/WO3. ADF-STEM images and EDX maps of 
mWO3/Fe2O3/WO3 are shown in e) and f) Compared to the pure WO3 scaffold shown in g), deposited 
Fe2O3 nanoparticles are clearly seen in h). In i) a SEM image of mWO3/Fe2O3/WO3 is shown. By 
depositing a WO3 overlayer, the whole structure is coated. 

 

In contrast, the macroporous samples have an open, porous morphology (Figure 6-2d). The 

macroporous WO3 scaffold forms a ~ 2.5 μm thick layer with ~ 150 nm wide pores (Figure 

6-2g). Even though the scaffold is distorted compared to a perfect inverse opal structure, it is 

continuous and reaches the back contact. This is expected to be beneficial for charge 

transport. Hematite nanoparticles fully infiltrate the scaffold and are homogenously 

distributed throughout the whole film (Figure 6-2e and f). An additional thin layer of Fe2O3 

nanoparticles forms on the FTO substrate (Figure 6-2f). In contrast to the flat layers, a WO3 

overlayer fully infiltrates the scaffold and thinly coats WO3 scaffold and Fe2O3 nanoparticles 

alike without top layer formation (Figure 6-2i). 

The crystal structures of the materials were investigated by TEM. Monocrystallinity of the 

hematite nanoparticles has been shown by Dunn et al.26 Both the WO3 scaffold and the WO3 

overlayer are highly crystalline, with mWO3 having domains of several hundred nanometers 

in size (Figure 6-3a and b). In both Fe2O3/WO3 and mWO3/Fe2O3, an abrupt interface between 

Fe2O3 and WO3 without a specific orientation relationship or amorphous phases was found 

(Figure 6-3c). 
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Figure 6-3: Investigation of the crystal structures of a) the WO3 overlayer in Fe2O3/WO3 and b) the WO3 
scaffold. c) Interface between Fe2O3 and WO3. 

 

Light absorption of all samples was assessed with UV-Vis measurements (Figure 6-4). To 

correlate them with photoelectrochemical measurements, they were measured under 

substrate illumination. 

 

Figure 6-4: UV-Vis, reflectance and transmittance spectra of mesoporous (a, b and c) and macroporous 
(d, e and f) samples. 

 

As expected based on the band gap, bare WO3 only absorbs light up to a wavelength of 

~ 425 nm. In comparison, Fe2O3 absorbs light up to a wavelength of ~ 560 nm, consistent with 

a band gap of 2.2 eV, and thereby a much larger percentage of the solar spectrum. Of the flat 

layers, Fe2O3 absorbs more light than WO3 throughout the whole spectral range. In both flat 

and macroporous samples, more light is absorbed upon deposition of a mesoporous Fe2O3:Sn 

layer or a WO3 overlayer. Notable is the strong scattering contribution of both compact and 

macroporous WO3, which is reduced for all dual absorbers (Figure 6-4c and f). As the UV-Vis 
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spectra were acquired under substrate illumination, light must be backscattered by WO3 and 

absorbed by the Fe2O3 layer. WO3 thereby acts as a reflective layer and leads to significantly 

increased absorbance in the visible range. 

All samples were photoelectrochemically characterized by CV measurements under AM 1.5 

illumination and IPCE measurements (Figure 6-5). Among the flat layers, Fe2O3 has a higher 

current density than WO3, which can be explained by increased light harvesting in the visible 

region. In accordance with the drop in light absorbance seen in the UV-Vis spectra, the IPCE 

spectrum of bare WO3 drops to 0 % at ~ 425 nm, whereas the IPCE spectrum of Fe2O3 drops 

to 0 % at a much longer wavelength of ~ 560 nm. Depositing a WO3 layer onto Fe2O3, thus 

creating a dual absorber, increases the current density threefold compared to Fe2O3 and 17-

fold compared to WO3, with currents of 0.23 mA/cm2 at 1.23 V vs. RHE and a maximum IPCE 

of up to 13 % at 340 nm. This dual absorber not only outperforms the single components, but 

also the sum of current densities obtained from the individual absorber layers, suggesting that 

the increased performance cannot be explained solely by increased light absorption. Another 

important feature of the dual absorber photoanodes is a cathodic shift of the onset potential 

by nearly 200 mV. Such a shift is usually attributed to the reduction of loss pathways due to 

either charge transfer catalysis or suppression of surface recombination.38–40 

 

Figure 6-5: CV and IPCE measurements of flat (a and b) and macroporous layers (c and d) measured 

under AM 1.5 illumination. 
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The macroporous films show trends similar to the flat layer model systems (Figure 6-5). The 

performance of the macroporous WO3 scaffolds is strongly increased compared to WO3 flat 

layers. As shown by UV/Vis measurements, the deposition of Fe2O3 leads to increased light 

absorption in the visible range and a shift of the IPCE curve, increasing the current density up 

to 0.24 mA/cm2 at 1.23 V vs. RHE. A substantial performance increase to 0.7 mA/cm2 at 1.23 V 

vs. RHE with a maximum IPCE of 17 % at 350 nm is achieved by depositing an additional WO3 

layer. As for Fe2O3/WO3, CV measurements of mWO3/Fe2O3/WO3 show a steep current onset 

at 0.8 V vs. RHE. mWO3/Fe2O3, which is also composed of both materials, does not show such 

a steep onset. The strong performance increase compared to flat layers could be explained by 

the increase in porosity and therefore surface area, or by the WO3 scaffold acting as a current 

collector as described in the literature.16,27 Of note is the strong performance increase when 

applying WO3 as a surface layer compared to having it as a scaffold. Interface-related effects 

such as suppressed recombination due to the WO3 surface layer could therefore play a major 

role. Another possible explanation is the role of WO3 as a scattering layer, thereby increasing 

the light harvesting efficiency of Fe2O3. 

The photocurrents discussed so far were measured under AM 1.5 illumination. However, given 

the band structures of Fe2O3 and WO3 and based on our UV/Vis measurements, different 

processes are expected to take place under illumination with UV and with visible light (Figure 

SI 6-3).15 Under UV illumination, electrons generated in Fe2O3 can be injected into WO3 and 

holes generated in WO3 can be injected into Fe2O3 (Figure 6-6a). Light of a longer wavelength, 

however, only generates electron-hole pairs in Fe2O3, of which the electrons can, according to 

the band diagram, be injected into WO3 (Figure SI 6-3). To gain further insight into the 

behavior of the dual absorber system, photocurrent transients were measured under chopped 

illumination with UV (365 nm) and blue (455 nm) light. Due to increased light absorption by 

both Fe2O3 and WO3 in the UV region, steady-state photocurrents acquired under UV 

illumination are consistently higher than those measured with blue light (Figure 6-6b). WO3 is 

a highly efficient photocatalyst, leading to higher photocurrents than Fe2O3 under UV 

illumination.13 Blue light, however, is not absorbed by WO3 (Figure 6-4) and higher 

photocurrents are reached with Fe2O3.  
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Figure 6-6: Photocurrent transients of flat layers under (a) UV (365 nm) and (b) blue (455 nm) 
illumination at an applied potential of 1.23 V vs. RHE. Photocurrent transients of the macroporous 
layers under 365 nm and 455 nm illumination are shown in (c) and (d), respectively. e) Steady-state 
photocurrent densities under illumination with 365 nm and 455 nm light at a potential of 1.23 V vs. 
RHE. f) Transfer efficiencies under illumination with 365 nm and 455 nm light extracted from 
photocurrent transients measured at 1.23 V ca. RHE. 
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Photocurrent transients reflect all processes influencing charge transfer and transport in the 

electrode (Figure 6-6).26,41 Upon illumination, movement of photo-generated holes to the 

surface leads to a charging or displacement current. If holes accumulate, either due to slow 

surface kinetics or due to slow electron transport to the back contact, they recombine with 

electrons, and the initial photocurrent decays to a lower steady-state photocurrent. For Fe2O3, 

this leads to a characteristic “spike and overshoot” photocurrent, whereas fast surface kinetics 

and good electron conductivity of pure WO3 lead to a rectangular transient form suggestive 

of complete charge carrier extraction.41 By depositing Fe2O3 on a WO3 scaffold, the difference 

between initial and steady-state photocurrent decreases compared to Fe2O3 and deposition 

of an additional WO3 layer further brings the shape of the photocurrent transient even closer 

to a rectangle. As is to be expected from the fast surface kinetics and good charge transport 

properties the material is known for, both WO3 and mWO3 have transfer efficiencies of 

100 %.13 In comparison, pure Sn-doped Fe2O3 has a transfer efficiency of 41 %, confirming 

previous work by Dunn et al.26 The transfer efficiency can be improved to 75 % by depositing 

the Sn-doped Fe2O3 layer onto a WO3 scaffold. In line with discussion in the literature, the 

WO3 scaffold could act as a charge collector and thereby increase the electron diffusion 

length.16,27 In comparison, surface treatment by the deposition of an additional WO3 layer has 

a greater effect on the transfer efficiency than the introduction of a WO3 scaffold and 

increases the transfer efficiency to 85 and 88 % for flat Fe2O3/WO3 and macroporous 

mWO3/Fe2O3/WO3, respectively. The improved performance could stem from an enhanced 

rate of Faradaic reactions on the interface due to the surface treatment with WO3. However, 

additional studies are needed to elucidate the mechanism behind this effect. 

For both illumination wavelengths, photocurrent densities reached by the dual absorbers, 

regardless of whether WO3 was applied as a surface layer or as a scaffold, are very similar. This 

is in contrast to measurements under the full AM 1.5 solar spectrum, where a much larger 

difference in photocurrent densities was observed for the different morphologies. This could 

potentially be explained by the complex interplay of several factors, such as faster surface 

kinetics, improved current collection and enhanced light absorption, in which WO3 influences 

Fe2O3. However, future studies will be necessary to fully understand this effect. 

 

6.4. Conclusion 

To analyze the effects of WO3 on Fe2O3 in photoelectrochemical water splitting, dual 

absorbers were prepared with WO3 as a scaffold and/or as a surface layer. Both approaches 

significantly increased the performance, validating both the host-guest approach and the 

surface layer concept. By combining them, current densities of 0.7 mA/cm2 at 1.23 V vs. RHE 

under AM 1.5 illumination with an IPCE of 17 % at 350 nm were reached. The performance 

increases were investigated by CV, IPCE, photocurrent transient and UV-Vis measurements 

and we could identify several beneficial effects responsible for improved charge carrier 

generation and transport. Importantly, WO3 strongly reflects visible light, which is then 

absorbed by Fe2O3, resulting in higher photocurrents. The dual absorber therefore exhibits 
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significantly increased light absorption. Compared to Fe2O3, a cathodic shift of the onset 

potential from 1.0 to 0.8 V and an increase in transfer efficiencies, reaching up to 88 %, were 

measured. We conclude that the investigated device architecture is a promising approach for 

the design of Fe2O3/WO3 dual absorber photoanodes by combining different beneficial effects 

to generate substantially improved devices. 
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6.6. Supporting Information 

Figure SI 6-1: XRD diffractograms of a) Fe2O3 and b) WO3. The reflections were assigned using 

references 34 and 35. 
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Figure SI 6-2: Top-view image of a WO3 layer, showing the differently sized platelets. 

 

 

Figure SI 6-3: a) Simplified band structure of WO3 and Fe2O3 showing the processes taking place under 

UV (365 nm) and under blue (455 nm) light according to reference 15. 
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7. Nanostructured Ternary FeCrAl Oxide Photocathodes for 

Water Photoelectrolysis 

 

 

This chapter is based on a manuscript by Ilina Kondofersky, Alexander Müller, Halina K. Dunn, 

Alesja Ivanova, Goran Štefaníc, Martin Ehrensperger, Christina Scheu, Bruce A. Parkinson, Dina 

Fattakhova-Rohlfing and Thomas Bein, which is under review. 

 

 

7.1. Introduction 

Solar energy is becoming increasingly important as an abundant and renewable energy source 

and the photoelectrolysis of water using illuminated semiconductor electrodes is considered an 

important technology for the generation of hydrogen in a sustainable and efficient way.1 The 

most critical issue for the development of photoelectrolysis cells is the development of suitable 

photoabsorber materials that combine stability and efficient solar light harvesting with fast 

kinetics of the interfacial water splitting reactions.2 To date, numerous material systems have 

been investigated. Among those more intensively studied as photoanode materials are BiVO4
3, 

-Fe2O3
4, WO3

5 and TiO2
6 and, as photocathode materials, p-Si7, Cu2O8 or CuFeO2

9. However, in 

spite of significant efforts, the progress towards efficient solar water splitting systems has been 

slow. The efficiency of all known photoabsorbers is limited by factors such as poor light 

harvesting, losses caused by inefficient electron-hole pair separation, bulk and interfacial 

recombination or high overpotentials for the overall water splitting reaction and instability of the 

photoelectrodes. Consequently, discovering and optimizing novel photoabsorber materials is 

important for the development of competitive photoelectrochemical cells. This is a very 

demanding task due to the practically unlimited number of potential material classes and 

elemental combinations. An extremely powerful approach is offered by high-throughput 

theoretical10-11 and experimental12-18 screening methods. However, the identification of 

promising materials with specific stochiometrics is only the first step and, aided by 

characterization and increasing understanding of material properties, synthesis strategies have 

to be refined to obtain electrodes with optimized compositions and morphologies. 

Recently, the Solar Hydrogen Activity research Kit (SHArK) project, a distributed science research 

project19 identified a p-type ternary oxide semiconductor containing the earth-abundant and 

inexpensive elements Fe, Cr and Al. Combinatorial optimization identified the highest 

photoelectrolysis activity for the hydrogen evolution reaction at a stoichiometry near 

Fe0.84Cr1.0Al0.16O3. The discovered material features a band gap of 1.8 eV. While the incident 
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photon-to-charge-carrier efficiency (IPCE) of around 1 x 10-4 % at 500 nm is very low, a promising 

photovoltage of around 0.95 V was reached. Sliozberg et al.20 obtained higher photocurrents of 

10 μA cm-2 at 0.5 V vs. RHE under AM 1.5 with an IPCE of 0.3 % at 350 nm by depositing thicker 

films using reactive magnetron co-sputtering, demonstrating that the performance of this 

material can be improved by employing different fabrication routes. 

Inspired by the potential of this recently discovered material, we focused on the development of 

large-scale photocathode morphologies based on ternary FeCrAl oxides. We report a sol-gel 

synthesis method that yielded mesoporous thin films with photocurrents of 0.25 mA cm-2 at 

1.23 V vs RHE. The performance can be improved further by introducing a template and 

synthesizing a periodic, porous inverse-opal structure. After optimization, a photocurrent of 

0.68 mA cm-2 under AM 1.5 illumination with an IPCE of 28 % at 400 nm was reached. We also 

describe extensive structural and electrochemical studies aimed at understanding the correlation 

between synthesis conditions, structure and photoelectrochemical behavior of the novel 

material. 

 

7.2. Materials and Methods 

7.2.1. Synthesis 

Mesoporous FeCrAl oxide layers were prepared by dissolving the precursor salts Fe(NO3)3*9H2O, 

Cr(NO3)*9H2O and Al(NO3)3*9H2O in ethanol, resulting in 0.5 M solutions. The precursor 

solutions were mixed in a ratio of 0.42 : 0.5 : 0.08, respectively, to achieve the targeted 

composition. This solution was spin coated (800 rpm for 30 s) onto fluorine-doped tin oxide glass, 

FTO (TEC 15 Glass, Dyesol), resulting in films that were calcined at 525 °C for 1.5 h (2 °C/min heat 

ramp). 

Macroporous films were synthesized by pre-depositing polymethylmethacrylate (PMMA) 

spheres as a template. PMMA spheres with a diameter of 300 nm were prepared according to a 

procedure previously described by us21-22. In brief, the particles were synthesized by adding 

methylmethacrylate (MMA) (35.6 g, 0.35 mol) and sodium dodecylsulfate (SDS) (5 mg, 

0.02 mmol) to deoxygenated water (98 mL) under nitrogen purging at 40 °C. The resulting 

emulsion was heated to 70 °C for 1 hour under reflux and vigorous stirring. The polymerization 

was initiated by adding potassium peroxydisulfate (56 mg, 0.2 mmol) dissolved in water (2 mL) 

and stopped after 2.5 hours by cooling the suspension to room temperature under atmospheric 

conditions. The resulting PMMA spheres were washed with water by centrifugation (19000 rpm, 

20 min) and redispersed in water. 

The FTO substrates were placed vertically in an aqueous PMMA solution (11 wt.-%) and the 

solution was dried over night at 70 °C. These templated films were infiltrated with the FeCrAl 

precursor solution via spin coating and calcined at 525 °C for 1.5 h (2 °C/min heat ramp). 
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7.2.2. Crystallographic and Morphological Characterization 

X-ray diffraction analysis (XRD) was carried out on a STOE powder diffractometer (Cu-Kα1, l = 

1.5406 Å) equipped with a position-sensitive Mythen-1K detector in transmission geometry. X-

ray photoelectron spectroscopy (XPS) measurements of the particles on an FTO substrate were 

performed using a VSW TA10 X ray source, providing monochromatic Mg-Kα radiation, and a 

VSW HA100 hemispherical analyzer. The samples were cleaned by Ar+ sputtering (VSW AS10 ion 

source) for 8 min at 1 keV. Scanning electron microscopy (SEM) measurements were performed 

on a JEOL JSM-6500F with a field emission gun run at 5 kV and equipped with an Oxford energy-

dispersive X-ray (EDX) detector. A probe-corrected FEI Titan Themis with an X-FEG operated at 

300 kV was used for transmission electron microscopic (TEM) investigations. Bright field (BF) and 

high-resolution TEM (HRTEM) images as well as diffraction patterns were acquired with a Ceta 

16M camera, scanning, TEM (STEM) images with a annular dark field (ADF) detector, and energy-

dispersive X-ray (EDX) spectra and maps with four Super-X Bruker SDD detectors. Samples were 

prepared either by scraping material of the substrate with a razor blade and depositing it on a 

holey carbon grid or in a cross-sectional geometry as described by Strecker et al.23 

Film homogeneity and thickness were measured using a Vecco (Dektak 156) profilometer with a 

640x489-pixel camera and a diamond tip (radius 12.5 μm). 

 

7.2.3. Optical Characterization 

UV-Vis measurements were performed on a Perkin Elmer Lambda 1050 UV/Visible/NIR 

spectrophotometer with an integrating sphere. The absorbance of each sample was calculated 

from experimental reflectance and transmittance measurements and fully corrected for 

reflectance and absorbance of the FTO substrate using an equation derived by Klahr et al.24 

AbsF=ln(
TS+F TS⁄

1-
RS+F-RS

TS
2

) 

TS/TS+F and RS/RS+F correspond to the wavelength-dependent transmissions and reflections of the 

plain (TS and RS) and the coated substrate (TS+F and RS+F), respectively. 

 

7.2.4. Photoelectrochemical Characterization 

Photoelectrochemical measurements were carried out using a μ-Autolab III potentiostat 

equipped with a FRA2 impedance analyzer. The samples were masked with a Teflon-coated glass 

fiber adhesive tape, leaving an area of 0.2 cm2 exposed. The sample was placed in a quartz cell 

filled with an aqueous 0.1 M HClO4 electrolyte and connected in a 3 electrode mode, together 



87 
 

with an Ag/AgCl reference electrode and a Pt mesh counter electrode, to the potentiostat. The 

films were illuminated through the substrate side using an AM1.5 solar simulator (Solar Light 

Model 16S) at 100 mW cm-². Current-voltage (I-V) curves were obtained by scanning from 

positive to negative potentials in the dark or under illumination at a 20 mV/s sweep rate. 

Incident photon-to-current efficiency (IPCE) measurements were performed under low-

frequency chopped monochromatic light (1 Hz). A 150 W Xenon lamp equipped with a 

monochromator and order-sorting filters was used as a light source. The sample bias was set to 

0.75 V vs. RHE under simulated solar irradiation. The light intensity reaching the electrode was 

measured using a certified Fraunhofer ISE silicon reference cell equipped with a KG5 filter. 

To estimate the electron transfer efficiency, transient current measurements were performed by 

illuminating the electrode with a 455 nm light emitting diode. The light was switched on and off 

every 500 ms and the current was measured at potentials ranging from 1.0 – 0.5 V vs. RHE. 

 

7.3. Results and Discussion 

 

Figure 7-1: Scheme by which mesoporous and macroporous films were synthesized. 

 

FeCrAl oxide photocathodes were synthesized via a sol-gel route (Figure 7-1). Precursor solutions 

were prepared by dissolving the nitrate salts of Fe3+, Cr3+ and Al3+ in ethanol in a ratio of 

0.43:0.5:0.08. This stoichiometry was  discovered via a combinatorial optimization approach and 

reported to yield the highest IPCE values.19 The electrodes obtained by spin-coating a freshly 

prepared precursor solution onto FTO and calcining in air at 525 °C are mesoporous and crack-



88 
 

free (Figure 7-2a). The film thickness can be varied from 90 to 700 nm by adjusting spin coating 

speed and time, with the light absorbance scaling linearly with the film thickness (SI Figure 7-4). 

X-ray diffraction patterns of the mesoporous films can be indexed by a single phase with the 

corundum structure and the space group R-3c. Secondary phases with other crystal structure 

were not found. The lattice parameters were obtained by a Le Bail25 refinement (SI Figure 7-6) as 

a = 4.9832(1) Å and c = 13.6143(3) Å. This is in excellent agreement (deviation < 1%) with the 

lattice parameters obtained by Rowley et al.19 

Although XRD analysis of the powder material points to the formation of a single phase, cross 

section TEM analysis of the films surprisingly reveals a phase separation. The different phases 

found in TEM could not be resolved by XRD, indicating that both phases form in the corundum 

structure and have very similar lattice parameters. This was also confirmed by HRTEM and FFT 

measurements. Near the FTO substrate, a Cr-rich phase with an average Fe:Cr:Al ratio of 

(20±4:75±5:5±1) at-% forms columnar grains with a size of up to 250 nm in the corundum 

structure. Above this region, a mesoporous network of Fe-rich nanoparticles with an average 

composition of Fe:Cr:Al = (59±7:18±4:23±6) at-% is formed. These, also can be separated into 

large ellipsoid nanoparticles with a diameter of (5.6±0.8) nm decorated with small spherical 

nanoparticles with a diameter of (1.5±0.2) nm (SI Figure 7-9). The chemical composition of these 

particles is slightly different, as the small particles are Al-enriched (Fe:Cr:Al ratio of 

(71±4:9±4:21±6) at-% whereas the large particles have a Fe:Cr:Al ratio of (76±6:11±2:13±4) at-

%). 

 

Figure 7-2: TEM images of the mesoporous FeCrAl oxide film. a) shows a cross section overview image, b) 
an image of the nanoparticles in the Fe-rich region. In c) and d), a HRTEM image and the corresponding 
FFT of the Cr-rich phase are shown. The image shows the (001) plane. 

 

X-ray photoelectron spectroscopy was used to detect signals of iron, chromium and aluminum of 

the upper, Fe-rich layer of a 500 nm thick, mesoporous FeCrAl oxide film (Figure 7-3). Peak 

positions and shapes indicate an oxidation state of +3 for all metal ions. Assignment of the 
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chemical species was done according to Moulder et al.26 Quantification yielded a Fe:Cr:Al ratio 

of 55:17:28, which is in good agreement with the EDX results. The valence state of Fe was 

estimated as +3 by comparing the energy positions of the 2p 3/2 peaks to those of the pure 

oxides27 (Figure 7-3). In a similar fashion, the energy position of the Cr 2p 3/2 peak is 

characteristic for the oxidation state +3.27-28 The broadening of the peak can be explained either 

by a shake-up peak or by trace elements of Cr in a higher oxidation state27. As Cr4+ and Cr5+ 

compounds are unstable29, Cr6+ would be most likely, even though the energy shift is not as big 

as with reference Cr6+-containing compounds. Further, no distinct Cr6+-containing compounds 

were found by XRD or TEM, making a shake-up peak and therefore Cr in the oxidation state +3 

most likely. Despite the poor energy resolution and the small signal-to-noise ratio, the position 

of the Al 2p peak supports an Al3+-containing oxide.30 The valence state +3 can therefore be 

verified for Fe, Cr and Al in the upper region of the film. 

 

Figure 7-3: X-ray photoelectron spectra of the Fe 2p3/2, Cr 2p3/2 and Al 2p edges of the Fe-rich phase in the 
mesoporous film. 

 

The separation into different phases, all in the corundum structure, is in contrast to previous 

experimental work, as Steinwehr et al. showed that FeCrAl oxides form solid solutions with a 

miscibility gap only at high Al-contents31. The formation of large, compact Cr-rich nanoparticles 

at the FTO indicates that a heterogeneous nucleation takes place before other phases form. In 

accordance, the precursor Cr(NO3)3*9H2O is less stable than the other two and dissociates at 

100 °C32, whereas Fe(NO3)3*9H2O33 and Al(NO3)3*9H2O34 are stable up to 250 °C. While these 

temperatures neglect the influence of the solvent, the trend should stay the same, explaining the 

phase separation. As an alternative, we attempted aging the precursor solution, which lead to 

the spontaneous formation of small nanoparticles with a homogenous elemental distribution 
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(see SI). Films synthesized by depositing these nanoparticles unto FTO, however, lead to films 

with very low photocurrents (SI Figure 7-2). 

The photoelectrochemical characteristics of mesoporous FeCrAl oxide films of different 

thicknesses were determined in 0.1 M perchloric acid under AM 1.5 substrate illumination. As 

expected, the optical absorbance increases linearly with the film thickness (SI Figure 7-4). The 

photocurrent densities follow a similar trend, increasing linearly with the thickness up to 

0.25 mA cm-2 under AM 1.5 (Figure 7-4a) and an IPCE of 4.9 % at 350 nm (Figure 7-4b) for a 

500 nm thick film. Increasing the film thickness further leads to a saturation of the photocurrent, 

This limiting behavior is not observed for thin films of around 40 nm, where the current density 

remains constant independent of the illumination direction (SI Figure 7-7). The generated charge 

carriers can be collected equally well regardless of the sample being illuminated through the 

substrate or the electrolyte side since most of the light is transmitted resulting in only a small 

gradient of carrier concentration across the film and a short path to be collected at the 

electrode/electrolyte interface. Thicker films have carriers created more deeply in the structure 

and rely on charge carrier transport issues over long distances across the loosely connected, 

individual particles. 

 

Figure 7-4: a) Cyclic voltammetry curves for mesoporous FeCrAl oxide electrodes in dependence of the film 
thickness. The samples were illuminated through the substrate with AM 1.5. b) IPCE spectrum determined 
for a 500 nm thick mesoporous film on FTO. The drop in photocurrent at 350 nm is attributed to light 
absorption by the FTO substrate. 

 

To enhance the performance, we optimized the electrode morphology by nanostructuring the 

material. Nanostructuring is a proven strategy for increasing the photogenerated carrier 

collection efficiency by decoupling the light absorption depth from the charge collection depth35-

37. Periodic, macroporous morphologies are particularly attractive as they provide both a 

continuous scaffold for the transport of photogenerated charges to the current collector and a 

large surface for the heterogeneous charge transfer. Furthermore, the large pore size is beneficial 
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for the infiltration of electrolyte throughout the whole film thickness, for the diffusion of 

products away from the semiconductor-electrolyte interface and for lowering the current density 

and thereby the overpotentials for electrode reactions. A so-called colloidal crystal templating 

approach was used to obtain macroporous FeCrAl oxide electrodes using periodic arrays of 

PMMA beads as a template38. The PMMA layers were assembled on FTO substrates, (SI Figure 7-

5) and impregnated with a freshly prepared sol-gel precursor solution via spin-coating. 

Calcination leads to the crystallization of the precursors and to the combustion of the PMMA 

template, resulting in crystalline FeCrAl oxide films with a porous, highly periodic inverse opal 

structure (Figure 7-5) with the FeCrAl oxide forming a continuous semiconductor scaffold. The 

electrodes obtained in this way have a homogeneous thickness of approximately 3 µm, good 

coverage, and a good adhesion to the substrate. 

 

 

Figure 7-5: a) Cross-sectional SEM image of a macroporous film. b) Cross-sectional TEM image of a 
macroporous film showing the Cr-rich phase near the substrate. c) BF TEM image of a single pore. d) 
HRTEM image of a part of the network. 

 

The average pore diameter of (277±10) nm (Figure 7-5c) corresponds to a shrinkage by ca. 

9 %  during the calcination process to which we attribute the few defects shown in Figure 7-5a. 

Like in the mesoporous film, a phase segregation into a Cr-rich phase near the interface with an 

average composition of Fe:Cr:Al = (9±3:90±3:1±1) at-% and a macroporous, Fe-rich phase with an 

average composition of Fe:Cr:Al = (64±1:25±4:11±5) at-% is observed. The Cr-rich phase forms 

round nanoparticles with a diameter between 60 and 340 nm. The average composition of the 

Fe-rich phase was the same over the thickness of the film and no compositional gradients through 

the film thickness were detected. HRTEM images show the scaffold to be polycrystalline with 

small grains in the order of 2 to 4 nm. This leads to improved charge transport properties 

compared to the nanostructured films, where the individual nanoparticles are only partly 

connected and charge transport is more difficult. 

The photoelectrochemical performance of the macroporous FeCrAl films is shown in Figure 7-6 

and reveals a dramatic photocurrent increase over the mesoporous films. Compared to a 500 nm 

thick, mesoporous film, the current density is increased by over 60 % reaching a value of 
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0.68 mA cm-2 at 0.5 V vs. RHE. The IPCE of the macroporous film is also increased significantly 

throughout the whole wavelength range of 300 to 600 nm, reaching a maximum of 28 % at 

400 nm (Figure 7-6b). 

 

Figure 7-6: a) Linear sweep voltammograms of the macroporous FeCrAl films with AM 1.5 illumination 
through the substrate. Dashed curves are dark current sweeps. For comparison, the voltammogram of a 
500 nm thick, mesoporous film is also shown. b) IPCE spectra determined for the same inverse opal FeCrAl 
film on FTO. 

 

The IPCE maximum for macroporous films is redshifted to 400 nm, compared to the mesoporous 

film, which has a maximum at 350 nm. This shift is attributed to the inverse opal structure acting 

as a photonic crystal40-41, with transmission measurements (Figure SI 7-9) confirming a stop band 

centered at 380 nm. An additional shoulder at 350 nm is at the same position as the maximum 

measured for mesoporous films and can be attributed to the material itself. The drop at 350 nm 

is attributed to absorption of light by the FTO substrate. 

The transfer efficiency of charges to the electrolyte ηtrans can be assessed from transient current 

measurements. By illuminating the electrode with chopped light at different chopping 

frequencies and potentials, photocurrent transients can be measured. From them, the 

instantaneous current IInst and the steady-state current Iss can be measured with the ratio of IInst 

and Iss being a measure of the electron transfer efficiency ηtrans. 

As can be seen in Figure 7-7a, the shape of the transients is characteristic for the individual 

morphologies. The mesoporous sample is characterized by a spiky instantaneous current that 

decays to a constant steady-state current (Figure 7-7a). The transient current of the macroporous 

sample, on the other hand, shows an instantaneous current closer to the steady-state current, 

indicating a photocurrent response closer to the ideal square shape that is not limited by 

recombination. This observation is confirmed by determining the transfer efficiencies of both 

morphologies at different potentials. A 500 nm thick, mesoporous film shows a transfer efficiency 
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of 12.5 % at 0.756 V vs. RHE. At this potential, at which the current density is 0.13 mA cm-2, the 

transfer efficiency reaches a maximum. Under these conditions, the macroporous film has a 

transfer efficiency of 48.5 %, almost three times as high, indicating superior charge transport 

properties across the film and explaining the increased transfer efficiency in the macroporous 

films. The improved electron transfer efficiency has a major contribution to the increased 

photocurrent shown in Figure 7-6. The increased transfer efficiency indicates that recombination 

reactions in either the bulk and/or on the surface are decreased. As the macroporous film has a 

higher surface area the surface recombination velocity should be higher and the increased 

transfer efficiency can be attributed to decreased bulk recombination due to the short carrier 

diffusion length. The short carrier diffusion length requires most photogenerated carriers to be 

produced in a region where there is a space charge field to separate them. In a more two 

dimensional geometry, with the rather low absorption coefficients especially in the red region of 

the spectrum, most carriers are generated in the bulk of the grains and recombine before they 

can diffuse to a space charge region. In the macroporous films, the carriers are very likely to be 

created in or near a region with a space charge field formed by the electrolyte/semiconductor 

interface. Therefore there is a higher probability that they will be collected as photocurrent 

especially in the spectral regions with low absorption coefficients. 

 

Figure 7-7: a) Photocurrent transients of a mesoporous and a macroporous FeCrAl oxide film. b) Collection 
efficiency ηtrans determined for mesoporous and inverse opal macroporous FeCrAl oxide films by transient 
photocurrent response measurements. The samples were illuminated with a 455 nm diode through the 
substrate side. 

 

Photoelectrochemical characterization of the electrodes revealed that the macroporous 

structure was not only beneficial for the device architecture, regarding the solid to electrolyte 

junction, but also proved beneficial for the charge transport across the metal oxide film. 

Macroporous structures show a nearly threefold increase of current density compared to the 

mesoporous FeCrAl oxide film, reaching values of up to 0.68 mA cm-2 at 0.5 V vs. RHE under AM 

1.5 without any additional catalysts. Compared to devices reported so far in literature, we 
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demonstrate a 68-fold current density increase20 as a result of introducing macropores. The main 

contribution to this electrochemical performance was achieved by the increased electron 

transfer efficiency to the electrolyte and therefore reduced recombination. 

 

7.4. Conclusion 

We presented the synthesis and characterization of semiconducting FeCrAl oxide photocathodes 

with different porous morphologies and investigated them for solar-driven hydrogen evolution. 

Mesoporous FeCrAl oxide films were synthesized using a novel sol-gel synthesis to generate large 

area crack-free films that were characterized and had their thickness optimized to reach a current 

density of 0.25 mA cm-2 under AM 1.5 at 0.5 V vs. RHE with an IPCE of 4.9 %. EDX measurements 

performed in the TEM showed that a phase separation occurs, with a Cr oxide rich phase adjacent 

to the substrate and a Fe rich oxide phase on the top. Template synthesis of an inverse opal 

macroporous Fe0.84Cr1.0Al0.16O3 electrode drastically increased the photocurrent to 0.68 mA cm-2 

under AM 1.5 at 0.5 V vs. RHE and an IPCE of 28 % at 400 nm without the use of hydrogen 

evolution catalysts. The collection of minority carriers at the semiconductor/electrolyte interface 

increased nearly 4 times compared to the optimized mesoporous electrode and are the highest 

reported so far for this novel material, showing that it is a promising candidate for 

photoelectrochemical water splitting. Further studies on different morphologies and 

architectures could additionally improve the device performance. This work shows the potential 

of nanostructured multinary mixed metal oxides as electrode materials for photoelectrochemical 

water splitting.  
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7.6. Supporting Information 

Aging of the FeCrAl oxide precursor solution by stirring under ambient conditions from 0 to 7 

days leads to the  spontaneous formation of nanoparticles. The resulting nanoparticles are 

around 1.5-2 nm in size after 3 days (SI Figure 7-1a) and reach 5 nm after 7 days (SI Figure 7-1b). 

TEM analysis revealed that the formed nanoparticles were already crystalline in solution without 

additional thermal treatment. Inductively coupled plasma atomic emission spectroscopy (ICP-

AAS) analysis on the washed powder (SI Table 7-1) revealed a composition of Fe:Cr:Al = 

0.36:0.59:0.05, which is very close to the targeted composition of Fe:Cr:Al = 0.43:0.5:0.08. TEM-

EDX analysis of several dozen individual nanoparticles shows a similar composition with a 

homogeneous distribution of the individual elements in each nanocrystal without any phase 

separation or surface enrichment. The spontaneous formation of a crystalline phase with the 

targeted composition provides important evidence that the metal oxide composition harnessed 

in a high-throughput experiment indeed corresponds to a new thermodynamically stable solid 

solution and not a mixture of individual oxides. 

 

Figure SI 7-1: TEM images of uncalcined FeCrAl nanoparticles formed in the precursor solution after a) 3 
days and b) 7 days. 
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Table SI 7-1: Element composition of FeCrAl oxide nanoparticles formed in the precursor solution. ICP-AAS 
and TEM-EDX analysis were performed on the particles to compare the element content. 

Element Targeted concentration ICP-AAS (mol-%) TEM-EDX (atomic-%) 

Fe 0.84 0.72 89 

Cr 1.00 1.17 99 

Al 0.16 0.11 11 

 

Although aging of the precursor solutions described above leads to a direct formation of targeted 

crystalline nanoparticles, the films prepared from these solutions show very low photocurrent of 

1 nA cm-2 at 0.55 V vs. RHE (SI Figure 7-2). The SEM images (SI Figure 7-3) indicate that the films 

obtained after calcination of aged solutions deposited on FTO substrates are composed of large 

platelets with an average size of 400 nm and 40 nm thickness. The platelets are randomly 

oriented on the substrate exposing a large fraction of the FTO substrate. The poor coverage of 

the conducting substrate and poor electrical contact between the single platelets could account 

for the low electrode performance. 

 

Figure SI 7-2: Cyclic voltammetry curves for a calcined FeCrAl oxide film on FTO synthesized from preformed 
crystalline nanoparticles in the precursor solution. The photoelectrochemical measurements were 
performed under substrate illumination and AM 1.5 in 0.1 M perchloric acid as electrolyte. 
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Figure SI 7-3: SEM images of FeCrAl oxide films obtained from a precursor solution aged for 4 days. The 
precursor solution was deposited on FTO substrate via spin-coating and calcined at 525 °C. 

 

 

Figure SI 7-4: a) Absorbance spectra of mesoporous FeCrAl oxide layers coated on FTO with increasing film 
thickness. b) Linear absorbance increase of FeCrAl oxide layers at 455 nm with film thickness. 
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Figure SI 7-5: SEM image of highly ordered PMMA spheres on FTO. 

 

 

Figure SI 7-6: a) Powder-XRD pattern of mesoporous FeCrAl oxide. The individual metal oxides Cr2O3 (ICDD 
card number 38-1479), Fe2O3 (ICDD card number 33-664) and Al2O3 (ICDD card number 46-1212) are shown 
for comparison. b) Results of the whole-powder-pattern profile refinement (Le Bail method). The observed 

intensity data is plotted in the upper field as ♦, the calculated pattern is shown as a red line in the same 
field, and the difference between the observed and calculated patterns is shown as a blue line in the lower 
field. 
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Figure SI 7-7: Cyclic voltammetry curves for a) 40 nm and b) 80 nm mesoporous FeCrAl oxide films on FTO 
under electrolyte and substrate illumination. The photoelectrochemical measurements were performed 
under AM 1.5 in 0.1 M perchloric acid. 

 

 

Figure SI 7-8: Transmission measurements on mesoporous and macroporous electrodes. 
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Figure SI 7-9: TEM particle size distribution of and the two different kinds of Fe-rich nanoparticles in a 
mesoporous FeCrAl oxide film. 
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8. Conclusion and Outlook 

 

 

The aim of this thesis was the structural characterization of photoelectrodes for water 

splitting. Such photoelectrodes are made out of semiconductors with desirable properties, 

such as a small band gap, valence and conduction band straddling the redox potentials of 

water, good light absorption and efficient charge transport. As no material investigated so far 

fulfills all requirements, several strategies to improve the performance have been developed. 

A very promising one is to structure the material on the nanoscale and thereby increase the 

surface area, at which the reaction happens. The structure therefore is a very important factor 

which can be analyzed in detail by SEM and TEM. Together with measurements of the 

properties, three different materials systems were investigated in this way: noble metal 

nanoparticles on TiO2, Fe2O3/WO3 dual absorbers and the novel material FeCrAl oxide. 

TiO2 in its anatase modification is a popular photoanode and photocatalyst material. However, 

it has a large band gap of 3.2 eV, which limits light absorption to the UV region of the solar 

spectrum. By depositing an additional photosensitizer, in this study noble metal nanoparticles, 

the performance can be vastly increased. Noble metal nanoparticles absorb light by localized 

surface plasmon resonance, and the position and width of the absorption band is influenced 

by the particle size distribution, particle size and the dielectric constant of the environment. 

They can therefore be tailored to absorb visible light. In addition, they also act as co-catalysts. 

Size, crystal structure and distribution of the nanoparticles have a big effect on the efficiencies 

of both processes and were therefore investigated in detail to understand the properties. In 

Chapter 4, experiments in which an anatase layer was plasma-deposited onto a FTO substrate 

are described. This pure anatase layer also served as a reference sample. Au nanoparticles 

were then deposited onto the anatase layers by two different methods, photo- and plasma 

deposition. The second method was also used to deposit Au/Ag nanoparticles. The structures 

of all four samples were characterized mostly using TEM cross-sections, the optical properties 

by UV-Vis spectroscopy and the photocatalytic performance by measuring the amount of 

evolved hydrogen under UV light and using the sacrificial donor MeOH. Photodeposited 

nanoparticles grow both on top and inside the porous anatase layer, and the measured 

particle size distribution could be described by two log-normal distributions, one for particles 

inside and one for particles on top of the anatase. In contrast, plasma-deposited nanoparticles 

were only found on top of the anatase. Except for a few larger nanoparticles, which were 

ascribed to a coarsening process, the size distribution could be described by a single log-

normal function. In addition to defect-free nanoparticles, all samples had nanoparticles with 

several defects like stacking faults, grain boundaries or five-fold twinning. The Au/Ag 

nanoparticles formed a core-shell structure, with Au as the core and Ag as the shell materials. 

The surface energies of the two metals were identified as the driving force for this particular 
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arrangement being favorable. Only plasma-deposited Au-TiO2 showed a significant LSPR 

effect, with photodeposited Au-TiO2 having a minor LSPR band and plasma-deposited Au/Ag-

TiO2 having none. The position, width, and intensity of the bands could in all cases be 

explained by the distribution and sizes distribution of the nanoparticles. The water splitting 

performance of photodeposited Au-TiO2 was the highest, which could be correlated to the 

close contact with the TiO2 substrate. In spite of photodeposited and plasma-desposited Au-

TiO2 having similar noble metal contents and that of Au/Ag-TiO2 being only half as high, Ag/Au-

TiO2 outperformed Au-TiO2. Previous investigations explained this by an electron transfer 

from the Ag shell to the Au core and the subsequent creation of highly active surface sites. 

Combining the results of all characterization methods resulted in an enhanced understanding 

of the complex interplay between synthesis, structure and properties. 

Due to its narrow band gap, hematite is a promising contender for photoelectrochemical 

water splitting. However, it has several disadvantages and one performance-enhancing 

approach, doping, was investigated in detail in Chapter 5. Mesoporous hematite films were 

deposited by a sol-gel approach, which could be modified for the production of Sn-doped films 

by adding a Sn-precursor. Investigation by IMPS showed the rate constant for hole transfer to 

be increased by more than an order of magnitude compared to undoped films, leading to a 

significant performance increase. The dopant was incorporated into the hematite structure 

without phase separation or the formation of tin oxide clusters and could mostly be found at 

the surface of the hematite nanoparticles. This hints at a structure-function relationship 

between the surface enrichment by Sn and the increased hole transfer. Two additional 

performance-enhancing approaches are also described in brief in Chapter 5. The 

recombination of electrons and holes at the surface could be suppressed by deposition of pre-

formed Co3O4 nanoparticles, whereas electron conductivity could be increased by introducing 

a conducting ATO scaffold. 

The gained insights then fueled work on a dual absorber approach and in Chapter 6, two series 

of Fe2O3/WO3 dual absorbers were designed in a way that the effect of the morphology of 

WO3 on the performance could be investigated. The first series consisted of a compact WO3 

layer, a mesoporous, tin-doped Fe2O3 layer and a mesoporous, tin-doped Fe2O3 layer that was 

infiltrated with WO3. This series allowed analyzing the effect of depositing WO3 as a surface 

treatment. WO3 can fulfill several roles, among them that of a charge collector of electrons 

generated in Fe2O3, and was in the second series introduced as a macroporous current 

collector. In all samples, WO3 formed large crystalline domains and good charge transport 

properties can be expected. An abrupt interface between Fe2O3 and WO3 without orientation 

relationships or amorphous phases was found for all samples. UV-Vis measurements showed 

WO3 to strongly scatter at wavelengths above ~ 350 nm, and this contribution to be reduced 

by Fe2O3. WO3 can therefore act as a reflective layer. WO3 further increased the transfer 

efficiencies compared to pure Fe2O3 and led to the reduction of the onset potential from 1.0 

to 0.8 V, presumably due to the reduction of loss pathways. The combination of all these 
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beneficial effects led to the dual absorbers producing photocurrents several times higher than 

those of the individual materials. 

In Chapter 7, the sol-gel synthesis and investigation of a novel material, FeCrAl oxide, which 

was previously identified by a combinatorial approach and published, is described. The 

synthesis yielded mesoporous layers, with a phase separation into large, Cr-rich nanoparticles 

at the substrate and a network of small, Fe-rich nanoparticles and ultrasmall, Al-rich 

nanoparticles on top. Introducing an opaline PMMA template led to a macroporous inverse 

opal structure, for which a phase separation into a Cr-rich phase near the substrate and a Fe-

rich phase on top was observed. The phase separation of both samples could be explained by 

the stability of the precursors, with Cr(NO3)3 decomposing at lower temperatures than the 

other two. The macroporous structure had a fourfold increase of the minority collection 

efficiency, which could be correlated to the formation of a continuous scaffold compared to 

individual nanoparticles in the mesoporous sample. Further, the low surface roughness of the 

macroporous structure led to enhanced light absorption by making it act as a photonic crystal. 

Accordingly, the macroporous structure showed higher photocurrents than the mesoporous 

structure and signifies a promising first step into the optimization of the material. 

In all three studies, correlating synthesis conditions, structural investigations and properties 

allowed for a better understanding of the materials systems and validated the research 

approach. All studies presented in this thesis are exemplary of promising future research 

directions: in Chapter 4, a material was modified to improve the performance, in Chapter 5 

two photoabsorbers were combined and in Chapter 6 a completely new material was 

investigated. A combination of all approaches, by identifying promising materials, combining 

and then modifying them, is certain to negate several of the problems plaguing currently 

investigated materials systems and yield photoelectrodes with high performances. In addition, 

there are also several ways in which the electron microscopic investigation can be enhanced. 

For example, the analysis of the electronic structures of novel materials by EELS or the three-

dimensional acquisition of nanostructures by tomography should allow for significantly 

deeper insights and exciting opportunities.
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and absolutely essential knowledge of all things relating to “Bachelorette”, “Bauer sucht Frau” 

and other series in that vein. I honestly don’t know who will make me feel this puzzled 

anymore and fear that only metal will make me shake my head from now on. 
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When we moved to Düsseldorf, the group was received with open arms by the group of 

Gerhard Dehm and I was lucky to find good friends in it. Basti, I knew you were a kindred spirit 

when you told me that you sleeved even playing cards from board games and I will miss 

spontaneous Netrunner sessions as much as your devotion to shenanigans. Vera, you are the 

person keeping him in check and someone to, every now and then, have a serious 

conversation with. I will miss your frank and honest words which you somehow manage to 

deliver all while being a fun person. Steffen… Steffen, there’s no way I can sum you up without 

dedicating a whole thesis to theories of you. You are sometimes a conundrum, but always 

someone I deeply respect. I hope that I will find someone else to annoy with Blender and 

random coding questions. And one day, we should really work out the thing with the particle 

sizes. Christoph, you welcomed me with open arms and, unbeknownst to you, I’ve learned a 

lot about Mathematica from code you’ve written and shared with me. And, of course, you 

were always willing to discuss every FIB question I could come up with. I wish you the best of 

luck in the times to come, and that you make the right decisions. A person that did not greet 

me with open arms when I came, but did so the moment he arrived, is Nico. I have no idea 

how you keep smiling, regardless of what life throws at you, and greatly admire your 

optimism. I look forward to seeing you soon in Berkeley! 

There are people I thank because I enjoyed interacting with them on a personal level, people 

I thank because I enjoyed working with them and people who offered both. Markus and 

Steffen, you definitely belong in the third category. I learned all about the practical aspects of 

TEM from you. And you both supported me far beyond what I could expect from you, even 

offering me your phone numbers in case something went wrong while measuring evenings or 

on the weekend (luckily, it never did). Steffen, you were the most pleasant neighbor anyone 

could ever hope for and I will miss you coming into the office and having a chat. How those 

manage to turn into conversations of hours, all while we both have to get work done, is 

beyond me. 

Water splitting is a vast field and I would have been overwhelmed in the beginning had it not 

been for Halina. You patiently answered all my questions and we spent more than one 

conference (or Ph.D. defense) having a drink together and talking about everything from the 

inane (“So… British people are incredibly polite, right? So, how do they, you know, meet 

someone?”) to the sophistimacated (“So that’s essentially a really simple differential equation, 

we just need good parameters for…”). If I continue with people who’ve helped me from the 

beginning, I need to mention Ilina, who synthesized both the first cross-section I prepared 

during my Ph.D. and the last. Ilina, you’ve been here for most of my Ph.D. and it has been an 

absolute joy and privilege to work with you. And not just working, but truly everything, down 

to sitting next to you at yet another conference and sharing a piece of chocolate, has been 

wonderful. In contrast to these two, I’ve only known Alex for roughly a year. A late arrival, but 

a great one. Alex, I wish I could have spent more time with you, both working and not, and 

raised many more glasses to the late Sir Terry. The last people I need to thank from the group 

of Thomas Bein are Hans, Ksenia and Yujing – I learnt a lot from all of you and am glad that I 

got to work with you. 
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The kick-off meeting of my project took me to a scenic castle in Pommersfelden, and there I 

met Michael. And since this conference, I’ve had the pleasure of working with him on what 

were some of the most beautiful samples I ever inserted into the TEM. I thank him for his 

patience when the sample preparation turned out challenging and took a lot longer than 

expected, and for being able to work with and learn from someone with his experience. 

However, he was not the only one I met in this collaboration and I also need to thank Sandra. 

As you are a physicist by training and therefore always offer a different point of view, I truly 

enjoyed our scientific conversations. And apart from the science? You are one of the kindest, 

gentlest people I have met and I’m glad that we are still jointly working on other topics. Within 

this collaboration, I also need to thank Angela Kruth, Volker Brüser and Henrik Junge, who fall 

into the category of people whom I wish I could have known better. 

I’ve collaborated with three different groups, and gained a lot from each of these experiences. 

However, the collaboration with Craig Carter has been the one that has had the greatest 

impact on my life and which has broadened my horizon in truly unexpected ways. When I first 

met you in Istanbul, you asked me how I would enter the US illegally and stay undetected for 

a month. Since then, I’ve enjoyed every single interaction I’ve had with you, and the week 

spent in your castle in France must have been one of the most relaxing I’ve ever had. Nothing 

quite like sitting in the sun-lit living room and having a panaché while trying to fix code. 

Through Craig, I’ve also had the pleasure of working with Rachel Zucker –no words are 

necessary here – and Jennie Zheng. Who knew that Germany would win 7-1 against Brazil, all 

while we were just trying to have dinner at the Laotian place? The exhilarating atmosphere of 

this moment captured perfectly how much I enjoyed spending time with all of you. 

I have now used a lot of words thanking all the people I’ve worked with. But the Ph.D. time is 

a stressful time (People have told me that you have to be a bit of a sadist to do that to 

yourself…) and I would be negligent if I did not express gratitude towards all my friends who 

gave me emotional support. They are too numerous to list (who am I kidding? I’m not a very 

social person and they are not that many. However, I do not want to forget and thereby insult 

anyone) and in many cases have already been listed above. And if I mention my friends, I also 

need to thank my family for supporting me for many, many years. I would not be where I am 

without you. 

In the acknowledgment section of my Master’s thesis, I wrote that I’d be back and delivered 

on that promise (given my traveling, several dozen times over). In that time, I’ve met some 

truly great people, shared many memorable experiences and gained new friends. I wish I could 

make the same promise this time and it saddens me that I can’t. But I am sure that the 

experiences I’ve made will not be forgotten, the lessons you’ve taught me worth it, and the 

friends I’ve gained not lost. Thank you all for everything.

 




