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Nomenclature 
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designated as “1”. N- or C-terminal affinity tags are indicated corresponding to their position (e.g. 6His-

YpdB or YpdB-6His).  

Proteins containing amino acid substitutions are termed as follows: Based on the one-letter code the 

native amino acid is placed first, followed by its position, and the corresponding amino acid substitution 

(e.g. YpdB-D53E). 

Deletions are marked with “Δ”. 

Unless otherwise stated, nucleotide positions indicate the distance to the transcriptional start site (+1). 
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Abbreviations 
ATP  adenosine- 5’-triphosphate 

CA  catalytic and ATP binding domain 

cAMP  cyclic adenosine-5’-monophosphate 

c-di-GMP bis-(3’-5’)-cyclic dimeric guanosine monophosphate 

cGMP  cyclic guanosine 5’-monophosphate 

CM  cytoplasmic membrane 

CP  cytoplasm 

DHp  dimerization and histidine phosphotransfer domain 

DNA  deoxyribonucleic acid 

DNase  deoxyribonuclease 

EMSA  electrophoretic mobility shift assay 

GAF protein domain present in cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA proteins 

HAMP protein domain present in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis 
proteins, and some phosphatases 

HK  histidine kinase 

n-His tag  affinity tag composed of n histidine residues 

HPt  histidine containing phosphotransfer protein 

LB  lysogeny broth 

MFS  major facilitator superfamily of transporters 

RR  response regulator 

PAGE  polyacrylamide gel electrophoresis 

PAS  protein domain present in Per, Arnt, and Sim proteins 

PP  periplasm 

RNA  ribonucleic acid 

RNase  ribonuclease 

TM  transmembrane 

TCS  two-component system  

WT  wild type 

w/v, v/v  weight per volume, volume per volume 
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Summary 

Bacterial signal transduction systems continuously monitor internal and external parameters to 

enable an adaptive response to environmental changes. Two-component systems display the major 

group of bacterial signal transduction systems and consist of a sensor histidine kinase and cognate 

response regulator. Based on structural properties two-component systems can be classified into diverse 

protein families. Among these the widespread LytS/LytTR family of two-component systems regulates a 

variety of essential cellular processes in pathogenic Gram-positive bacteria, whereas only little is known 

about the corresponding systems in Gram-negatives. 

 The main focus of this thesis was to elucidate the function and interconnectivity of the two 

LytS/LytTR two-component systems YehU/YehT and YpdA/YpdB in the Gram-negative enterobacterium 

Escherichia coli. Based on bioinformatics, genetic and biochemical approaches this study provides new 

insights into signal perception, signal transduction and subsequent cellular adaptation for each system. 

Furthermore the coordinated regulatory interplay between both systems is described. 

 In chapter 2 the LytS/LytTR-like two-component system YehU/YehT was characterized. Based on 

transcriptome analysis, subsequent expression studies and gel retardation experiments yjiY was 

identified as the sole target gene of YehU/YehT. DNaseI footprints and nucleic acids substitution 

revealed YehT binding site, a direct repeat of ACC(G/A)CT(C/T)A separated by a 13 bp spacer within the 

yjiY promoter. Induction of yjiY, which encodes a putative inner membrane carbon starvation protein, 

was detected in media containing peptides and amino acids as carbon source. Furthermore, expression 

of yjiY was observed in the mid-exponential growth phase and was dependent on cAMP/CRP regulation. 

 The study of chapter 3 focused on the identification of YpdA/YpdB stimulus and target gene. 

Again using transcriptome analysis, subsequent expression studies and gel retardation experiments, yhjX 

was identified as sole target gene of YpdB. A direct repeat of GGCATTTCAT with 11 bp spacer within yhjX 

promoter determined the YpdB-binding site. Based on comprehensive yhjX expression analyses 

extracellular pyruvate was identified as potential stimulus. YhjX, a putative major facilitator superfamily 

transporter, was produced and shown to be membrane integrated. 

In chapter 4 the nutrient-sensing signaling network of YehU/YehT and YpdA/YpdB was described. 

Both systems were activated at the transition to stationary phase. Stimulus dependent and mutational 

expression analyses revealed a regulatory interplay between both systems. In vivo interaction studies 

indicate the formation a large signaling unit between YehU/YpdA and their corresponding target proteins 

YjiY/YhjX. In addition carbon storage regulator A (CsrA) was shown to be involved in posttranscriptional 

regulation of both yjiY and yhjX.  

In chapter 5 preliminary results of the putative accessory protein YehS in LytS/LytTR mediated 

gene expression of Escherichia coli are summarized. Deletion or overexpression of yehS revealed the 

same effect on target gene expression. Furthermore in vivo interaction studies identified interactions for 

YehS with both histidine kinases and response regulators. Together with initial structural studies a 

coupling function might be suggested. 
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 In chapter 6 binding of YpdB to its corresponding promoter DNA was investigated. Mimicking 

phosphorylation in a constitutively active YpdB derivative demonstrated its need for proper DNA-binding 

in surface plasmon resonance spectroscopy measurements. Subsequent substitutions within the YpdB-

binding site revealed two individual binding events in a cooperative fashion, which represents novel 

insights into LytTR mediated gene expression. 

 

Finally, network formation in bacterial signal transduction systems is discussed. Different 

functions of accessory proteins in signal integration, scaffolding, interconnection and allosteric 

regulation, are described and illustrate the importance of coordinated signal transduction to control a 

multitude of in- and output processes. 
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Zusammenfassung 

Bakterien beobachten eine Vielzahl interner und externer Parameter, um sich stets 

Veränderungen in ihrem Umfeld entsprechend anpassen zu können. Dabei stellen sogenannte Zwei-

Komponenten-Systeme die größte Gruppe bakterielle Signaltransduktionssysteme dar. Sie bestehen aus 

einer Sensor-Histidinkinase und einem Antwortregulator. Auf Grund ihrer strukturellen 

Gemeinsamkeiten werden diese unterschiedlichen Proteinfamilien zugeordnet. Zwei-Komponenten-

Systeme vom LytS/LytTR-Typ sind weit verbreitet und kontrollieren viele grundlegende Vorgänge in 

pathogenen Gram-positiven Organismen. Über die Regulation dieser Systeme in Gram-negativen 

Bakterien ist hingegen nur wenig bekannt. 

Das Hauptaugenmerk dieser Arbeit lag in der Aufklärung der Funktion der beiden LytS/LytTR-

artige Zwei-Komponenten-Systeme YehU/YehT und YpdA/YpdB in Escherichia coli. Basierend auf 

bioinformatischen, genetischen und biochemischen Methoden gewährt diese Arbeit neue Einblicke in die 

Zusammenhänge der Reizwahrnehmung, der Signaltransduktion und der daraus resultierenden 

Zellantwort beider System und beschreibt deren koordinierte Regulationsmechanismen. 

In Kapitel 2 wurde das LytS/LytTR-artige Zwei-Komponenten-System YehU/YehT beschrieben. 

Mit Hilfe einer globalen Transkriptomanalyse, Expressionsstudien und Gelretardationsexperimente 

wurde yjiY als direktes Zielgen von YehT identifiziert. DNase-Schutz-Experimente und Nukleinsäure-

Substitutionen im Promotor von yjiY ergaben eine YehT-Bindestelle mit der direkten Wiederholung der 

Sequenz ACC(G/A)CT(C/T)A getrennt durch ein 13 bp spacer-Motif. Die Expression des Gens yjiY, welches 

für ein putatives Transportprotein kodiert, konnte in Medien mit Aminosäuren und Peptiden als 

Kohlenstoffquelle beobachtet werden. Darüber hinaus wurde yjiY zum Ende der logarithmischen 

Wachstumsphase induziert und unterlag der Regulation durch cAMP/CRP. 

In Kapitel 3 wurden Reiz und Zielgen von YpdA/YpdB untersucht. Mit Hilfe einer globalen 

Transkriptomanalyse, Expressionsstudien und Gelretardationsexperimente wurde yhjX als direktes 

Zielgen von YpdB identifiziert. Dabei stellt eine direkte Wiederholung der Sequenz GGCATTTCAT, 

getrennt durch ein 11 bp spacer-Motif, die YpdB-Bindestelle im yhjX Promotor dar. Mit Hilfe von 

Expressionsanalysen wurde extrazelluläres Pyruvat als möglicher Reiz für YpdA/YpdB identifiziert. Für 

YhjX, ein Protein der Major-Facilitator-Superfamilie, konnte Membranintegration nachgewiesen werden. 

In Kapitel 4 wurde der Zusammenhang beider Systeme hinsichtlich des Vorkommens bestimmter 

Kohlenstoffquellen untersucht. Dabei wurde gezeigt, dass beide Systeme ihre Zielgene am Übergang in 

die stationäre Phase aktivieren. In Abhängigkeit des Reizes bzw. unter zu Hilfenahme von Gendeletionen 

wurde der Einfluss beider Systeme aufeinander untersucht. In vivo wurden Protein-Protein-

Wechselwirkungen zwischen YehU/YpdA und den zugehörigen Transportproteinen YjiY/YhjX beobachtet. 

Dies legt die Notwendigkeit der Bildung eines größeren Signaltransduktions-Komplexes nahe. Darüber 

hinaus wurde der Einfluss von CsrA, einem globalen Kohlenstoffregulator, auf die posttranskriptionelle 

Regulation von yjiY und yhjX gezeigt. 
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In Kapitel 5 wurden die vorläufigen Ergebnisse eines möglicherweise akzessorischen Proteins 

YehS in der LytTR-vermittelten Signaltransduktion von Escherichia coli zusammengefasst. Dabei zeigten 

Deletion und Überexpression von yehS den gleichen Effekt auf die Zielgenexpression beider Systeme. In 

in vivo Interaktionsstudien wurden Protein-Protein-Wechselwirkungen zwischen YehS und den beiden 

Histidinkinasen als auch Antwortregulatorproteinen festgestellt. Zusammen mit ersten strukturellen 

Analysen ist eine Kopplungsfunktion (coupling) von YehS denkbar. 

In Kapitel 6 wurde die Bindung des Antwortregulators YpdB an die zugehörige yhjX Promotor 

DNA untersucht. Mit Hilfe von Oberflächenplasmonresonanzspektroskopie wurde mit einem konstitutiv 

aktiven YpdB-Derivat die Notwendigkeit der Phosphorylierung für die DNA-Bindung gezeigt. Mit Hilfe 

verschiedener Nukleotidsubstitutionen in der YpdB DNA Bindestelle des yhjX Promotors konnte ein 

zweistufiger, kooperativer Bindemechanismus beobachtet werden, welcher neue Einblicke in die LytTR 

vermittelte Genexpression erlaubt. 

Die letzte Studie dieser Arbeit beschreibt bis dato bekannte Verknüpfungsmöglichkeiten in der 

Signaltransduktion. Dabei werden insbesondere akzessorische Proteine sowie deren Funktionen bei der 

Signalintegration, dem scaffolding (Gerüstfunktion), dem coupling (Kopplung) und der allosterischen 

Regulation diskutiert. Um auf eine Vielzahl von Signalen entsprechend reagieren zu können, wird dabei 

anhand einiger Bespiele unter anderem die Notwendigkeit der koordinierten Regulation beschrieben. 
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1 Introduction 

All living organisms are exposed to frequent fluctuations of environmental conditions within their natural 

habitats. Physical or chemical parameters, like temperature, oxygen content, pH, osmolarity or the 

availability of nutrients can change very fast and result in life threatening circumstances. Therefore 

unicellular organisms, in particular prokaryotes have evolved strategies to react and cope with different 

risks, like osmo- or pH-stress and carbon/nitrogen limitations. Besides environmental dangers it can also 

be beneficial to respond to other pro- or eukaryotic species. By synchronizing processes, like biofilm 

formation, bioluminescence or expression of host specific virulence factors bacteria can display 

multicellular behavior which plays an important role in co-evolutionary processes, like symbiosis or 

parasitism. 

Bacterial signal transduction can be divided into three independent events: after recognition of an intra- 

or extracellular stimulus (I – signal perception) the signal is transferred to an effector protein (II – signal 

transmission). Its resultant activation induces cellular adaptations (III – adaptive cellular response).  

In general three different mechanisms are known to achieve this function: σ-/anti-σ pairs, one-

component systems and two-component systems (TCSs). In the predominant one-component systems 

signal recognition and activation of the effector is brought out within one single protein. Two-

component systems in contrast display at least two functionally separated units: an often membrane-

anchored sensory protein and a soluble effector counterpart. 

1.1 Two-component systems 

Two-component signaling genes are found in all three domains of life (Schaller et al., 2011, Koretke et 

al., 2000) and furthermore represent the two largest paralogous gene families in bacteria (Galperin, 

2005). Since they are considerably less abundant in archaea and eukaryotes current state of research 

presumes multiple, independent lateral gene transfers of bacterial origin (Koretke et al., 2000). On 

average bacteria employ 25 TCSs to sense environmental factors (Barakat et al., 2011), nevertheless 

there is a broad frequency range from 0 TCSs in Mycoplasma genitalium, 11 in Helicobacter pylori, 70 in 

Bacillus subtilis, up to 164 in Streptomyces coelicolor and 251 in Myxococcus xanthus (Heermann & Jung, 

2010b). Census analyses of fully sequenced bacterial genomes suggest that the total number of two-

component signaling genes grows as a square of genomic size (Galperin, 2005). Furthermore the number 

of two-component genes seems to strongly correlate with ecological and environmental niches (Alm et 

al., 2006, Galperin et al., 2001). Bacteria that live primarily in constant environments, like obligate 

intracellular parasites e.g. Mycoplasma or Amoebophilus, harbor only few signaling pathways, whereas a 

multitude of TCSs is employed by organisms dealing frequent fluctuations in their habitats (Capra & 

Laub, 2012). In the genome of Escherichia coli 30 sensory proteins, so called histidine kinases, and 32 

effectors, so called response regulators are annotated. Many of these are part of intense studies, like the 

osmotic stress- and potassium sensing KdpD/KdpE systems (Heermann & Jung, 2010a) or the regulatory 

interplay of chemotaxis and aerotaxis around CheA/CheY (Thakor et al., 2011). Figure 1.1 summarizes all 

TCSs of E. coli with their corresponding stimuli (if known) and cellular adaptations. 
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Figure 1.1 Two-component systems of Escherichia coli K-12. All histidine kinases (membrane-anchored, 
cytoplasmic or hybrid) and there cognate response regulator are summarized. Known stimuli and the 
corresponding cellular responses are indicated. Unknown components are depicted with (?). The figure was 
provided by Ralf Heermann, adapted and modified. 

 

1.2 The paradigm of two-component signal transduction 

The fundamental framework of a typical TCS includes a sensor histidine kinase (HK) and a cognate 

response regulator (RR) (Fig 1.2). Upon stimulus perception the histidine kinase typically catalyzes an 

ATP-dependent autophosphorylation reaction on a conserved histidine residue (Gao & Stock, 2009), 

resulting in a high-energy phosphoramidate. This process requires homodimerization of two histidine 

kinase proteins, whereas autophosphorylation itself can occur in two directions, trans (intersubunit) or 

cis (intrasubunit) within the dimeric histidine kinase (Casino et al., 2014). In a second step this 

phosphoryl group of the HK is transferred to a conserved aspartate residue in a cognate RR protein 

(mixed acid anhydride). Usually phosphorylation of the RR results in a conformational change and causes 

an activation of the RR effector domain, which in turn modulates gene expression. This enables bacteria 

to coordinate their expression or physiology to changes of external or environmental conditions (Capra & 

Laub, 2012). Signal termination is mainly subject to two mechanisms: At first most HKs act bifunctional as 

phosphatases for their cognate response regulator in the absence of stimulating conditions (Kenney, 

2010). Additionally the rapid turnover of phosphoanhydride bonds (half-life: s-min) is thought to further 

prevent excessive activation (Heermann & Jung, 2010b). 
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Figure 1.2 Signal transduction and domain assembly in the two-component system prototype. Histidine kinases 
(HKs) function as sensory elements for a variety of extra- and intracellular signals. Stimulus perception results in 
autophosphorylation of a conserved histidine residue. Transfer of this phosphoryl group to a conserved aspartate 
residue in the receiver domain a response regulator (RR) induces a conformational change, which in turn triggers 
cellular adaptions. The figure was provided by Ralf Heermann, adapted and modified. 

 

The second most common variant of two-component signal transduction is the phosphorelay (Hoch, 

2000). In this pathway the histidine kinase generally harbors an additional C-terminal receiver domain. 

Fifteen percent of all classified histidine kinases belong to this group of so called hybrid histidine kinases 

(Barakat et al., 2011). Upon autophosphorylation an intramolecular phosphotransfer occurs, before the 

phosphoryl group is shuttled via a histidine phosphotransferase (often referred to as histidine-containing 

phosphotransfer protein (HPt)) to its terminal response regulator. The extension of the signal 

transduction cascade facilitates different signal inputs/outputs, precise fine tuning and multiple cross 

connections (Hoch & Varughese, 2001) and is part of many complex processes, such as Bacillus 

sporulation (Scaramozzino et al., 2009) or Vibrio quorum sensing based bioluminescence (Bassler et al., 

1997). 

1.3 Structural and functional properties of histidine kinases 

The centerpiece of all histidine kinases is the so called transmitter domain with two highly conserved 

subdomains: the dimerization and histidine phosphotransfer (DHp) domain (PFAM nomenclature: His 

Kinase A) including the highly conserved histidine phosphorylation site, and the catalytic and ATP-binding 

(CA) domain (PFAM nomenclature: HATPase_c), which harbors the catalytic activity of transferring the γ-

phosphoryl-group of ATP to the histidine residue (Fig. 1.2) (Gao & Stock, 2009). Based on unique 

sequence motifs DHp- and CA domain can be further divided into the H-Box with the conserved histidine 



18 
 

residue (in DHp domain), and the N-, G1-, F- and G2-box (in the CA domain) essential for ATP binding 

(Stewart, 2010). Usually the majority of histidine kinases contain at least one, often more additional 

domains. The input domain, also referred to as signal recognition domain, is characterized by a large 

diversity and can harbor up to 13 transmembrane (TM-) domains (Galperin, 2005). Signal recognition 

predominantly occurs within the periplasmic or extracellular portion of the protein and modulates 

activity of the transmitter domain. Mechanistic insights into structural changes upon HK activation were 

obtained from different cytoplasmic structures e.g. from E. coli EnvZ (Tanaka et al., 1998) or 

Streptococcus mutans VicK (Wang et al., 2013). Based on the mechanism of signal perception and 

domain architecture, histidine kinases are classified into three subgroups: periplasmic- and extracellular 

sensing histidine kinases (e.g. EnvZ or VirA), membrane sensing histidine kinases (e.g. LytS or LuxN) and 

cytoplasmic sensing histidine kinases (e.g. KdpD or ArcB) (Mascher et al., 2006). In addition, many 

histidine kinases contain further domains between the TM- and DHp- and CA domains. Most common 

members are PAS (from Per, Arnt and Sim proteins), HAMP (histidine kinases, adenylyl cyclases, methyl-

accepting chemotaxis proteins and phosphatases) and GAF (cGMP specific phosphodiesterases, adenylyl 

cyclases and FhlA proteins) domains (Galperin et al., 2001). While HAMP domains often participate in 

signal transduction from input- to transmitter domain (e.g. in Tsr or Tar) (Parkinson, 2010), PAS- and GAF 

domains (e.g. in CitA) mainly function as additional signaling interfaces via ligand binding (Henry & 

Crosson, 2011, Möglich et al., 2009, Unden et al., 2013, Krell et al., 2010). In general, sensor histidine 

kinases involved in asymmetric processes, like e.g. cell division, as it was observed for Caulobacter 

crescentus PleC (Viollier et al., 2002), tend to exhibit an uneven, mostly polar subcellular distribution 

within the cell membrane. Although histidine kinases controlling metabolic processes do not show 

obvious localization requirements, DcuS and CitA, both carboxylate sensors in E. coli, were also found to 

accumulate at the cell poles (Scheu et al., 2008, Kneuper et al., 2010). 

1.4 Structural and functional properties of response regulators 

The vast majority of response regulators are characterized by two functionally separated domains, an N-

terminal receiver domain and a C-terminal effector domain (Fig. 1.2). The most common receiver domain 

belongs to the structurally well conserved CheY-like type, which is characterized by a central five-

stranded parallel β-sheet deriving from alternating α-helices and β-strands (Bourret, 2010). Within this 

structure several residues are highly conserved including the aspartate of the phosphorylation site. In 

close proximity to this site two further aspartates are crucial to recruit divalent cations, mainly Mg2+ 

(Lukat et al., 1990), which is necessary to add or remove phosphoryl groups in the receiver domain. For 

some response regulators phosphorylation by small molecular weight molecules, like acetyl phosphate, 

has been described (Wolfe, 2010), nevertheless the physiological relevance remains elusive (Liu et al., 

2009). Upon phosphorylation conformational changes within the receiver domain mediate activation and 

subsequent dimerization of the response regulator (Stock et al., 2000). Many effector domain protein 

families, which include enzymatic functions like methylestases (CheB-like), di-guanylate cyclases (GGDEF) 

or c-di-GMP-phosphodiesterases (EAL, HY-GYP) have been identified so far (see below). Nevertheless 

transcriptional regulation via DNA-binding represents the most common output response within this 

diversity (Galperin, 2006). Based on structural properties DNA-binding effector domains can be classified 

in different categories. With thirty percent OmpR/PhoB-like response regulator (PFAM nomenclature: 

Trans_reg_c) display the largest family and are characterized by winged helix domains. Recent studies on 
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KpdE, a well characterized member of this family, revealed detailed insights into asymmetric 

heterodomain processes, which are necessary to stabilize the response regulator-DNA complex 

(Narayanan et al., 2014). The NarL/FixJ family is the second most abundant family of bacterial RRs. Its 

members possess a typical helix turn helix DNA-binding output domain (PFAM nomenclature: 

LuxR_c_like or GerE) with similarities to the transcriptional regulator LuxR (Galperin, 2010). Only three 

percent belong to the group of LytR/AgrA-like response regulator (PFAM nomenclature: LytTR). Recently 

the structure of the output domain of AgrA from Staphylococcus aureus was solved and revealed a novel 

mode of DNA-binding via three elongated β-sheets (Sidote et al., 2008). Besides DNA-binding some 

effector domains direct alter enzymatic activity or mediate protein-protein interactions (Galperin, 2010). 

The response regulator VieA controls biofilm formation in Vibrio cholera (Tischler & Camilli, 2004), while 

its receiver domain is associated with an EAL domain and controls its c-di-GMP-specific 

phosphodiesterase activity (Tamayo et al., 2005, Schmidt et al., 2005). In contrast, mediation of protein-

protein interactions upon receiver domain activation plays a key role in the chemotaxis machinery of 

Bacillus subtilis (Szurmant & Ordal, 2004). Here the presence of the N-terminal CheW-like domain in the 

response regulator CheV was shown to stabilize its phosphorylated state (Karatan et al., 2001). 

1.5 LytS/LytTR-like two-component systems 

With very few exceptions LytS/LytTR-like two-component systems can be found in many bacterial 

genomes and represent the second-most distributed family of bacterial signal transduction genes (Geer 

et al., 2002). The common element of all LytS-like histidine kinases is the signal recognition domain of 

the 5TM Lyt type (also referring to 5TMR-LYT or LytS-YhcK) (Anantharaman & Aravind, 2003). This 

domain with an average of 169 amino acids actually occurs in 88 different architectures and is 

predominantly found in sensor histidine kinases, but also appears in combination with GGDEF domains. 

Corresponding response regulators are characterized by an eponymous LytTR-like effector domain. This 

domain with an average of 96 amino acids can be further found in 25 different architectures, mainly in 

combination with a receiver domain (over 70 percent) or fused to four putative transmembrane domains 

(over 25 percent). LytS/LytTR-like two-component systems regulate several housekeeping or virulence 

genes in many bacterial pathogens (Table 1.1) (Galperin, 2008).  

TABLE 1.1: LytS/LytTR two-component systems  

TCS (HK/RR) Organism Regulated process Reference 

AgrC/AgrA Staphylococcus aureus Virulence, peptide quorum sensing (Koenig et al., 2004) 

FimS/AlgR Pseudomonas aeruginosa Alginate production, type IV pilus function, virulence (Lizewski et al., 2004) 

BlpH/BlpR Streptococcus pneumonia Bacteriocin production, peptide quorum sensing (de Saizieu et al., 2000) 

BrsM/BrsR Streptococcus mutans Bacteriocin and mutacin production, peptide quorum sensing (Xie et al., 2010) 

ComD/ComE Streptococcus pneumonia Competence, peptide quorum sensing (Ween et al., 1999) 

FasB/FasA Streptococcus pyrogenes Fibronectin-binding adhesin production, streptolysin S (Kreikemeyer et al., 2001) 

FsrC/FsrA Enterococcus faecalis Virulence, peptide quorum sensing (Del Papa & Perego, 2011) 

CabS/CabR 

PlnC/PlnD 
Lactobacillus planarum Bacteriocin production, peptide quorum sensing (Risøen et al., 2001) 

LytS/LytR Staphylococcus aureus Peptidoglycan turnover, autolysis (Brunskill & Bayles, 1996) 
VirS/VirR Clostridium perfringens Production of exotoxins, collagenase, hemagglutinin (Cheung & Rood, 2000) 

HdrM/HdrR Streptococcus mutans Bacteriocin and lantibiotic mutacin production (Okinaga et al., 2010) 

YehU/YehT Escherichia coli Carbon starvation control (Chapter 2) 

YpdA/YpdB Escherichia coli Carbon starvation control (Chapter 3) 
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The LytS/LytR system from S. aureus controls bacterial autolysis and is hence associated with 

programmed cell death and peptidoglycan turnover during biofilm formation (Sadykov & Bayles, 2012). 

In Pseudomonas aeruginosa, an opportunistic human pathogen, the LytS/LytTR-like two-component 

system FimS/AlgR regulates biosynthesis of alginate, an extracellular polysaccharide (Lizewski et al., 

2004). The two-component system ComD/ComE regulates natural competence in Streptococcus 

pneumoniae. Recently phosphorylation dependent dimerization of ComE was elucidated (Boudes et al., 

2014). One of the best characterized LytS/LytTR-like two-component systems is the AgrC/AgrA system S. 

aureus. The response regulator AgrA up-regulates genes encoding secreted virulence factors and down-

regulates cell wall associated genes (Sidote et al., 2008). The group of Ann Stock succeeded solving the 

structural properties of the C-terminal effector domain of AgrA by x-ray crystallography in the presence 

of its target promoter DNA (Sidote et al., 2008). Two equally aligned AgrA proteins occupy their 

corresponding 9 bp recognition motifs, which are separated by a 12 bp spacer (Koenig et al., 2004). This 

interaction is mediated by three elongated β sheets (in almost parallel orientation) and revealed a 

hitherto unknown mode of DNA binding. Due to high diversity of LytTR-like effector domains an 

originally described LytTR DNA-binding consensus sequence (Nikolskaya & Galperin, 2002) might be 

much more variable as previously proposed (Del Papa & Perego, 2011). In addition, the Audette lab 

obtained first structural evidence for the receiver domain of LytR, a second LytTR-like response regulator 

in S. aureus (Shala et al., 2013). As mentioned before receiver domains are conserved among different 

families of response regulators. Nevertheless, significant variability is an indispensable feature to limit 

cross talk and define specificity among two-component systems (Barbieri et al., 2010, Podgornaia et al., 

2013). 

1.5.1 The YehU/YehT two-component system of Escherichia coli 

As described for many histidine kinase/response regulator-pairs (Williams & Whitworth, 2010), the genes 

encoding YehU/YehT are organized within a single operon (Fig. 1.3 A). This arrangement allows 

coordinated expression of both genes and is found to provide robustness within the signaling pathway 

(Løvdok et al., 2009). The yehUT genes overlap for 4 bp and are located at 47.638 centisomes in E. coli 

MG1655 genome.  

The LytS-like histidine kinase YehU consists of 561 amino acids (62.1 kDa) (Fig. 1.3 B). The signal 

recognition domain of YehU includes an N-terminal 5TM Lyt domain (PFAM nomenclature: 5TMR-LYT) 

and a GAF domain. Bioinformatic analyses for YehU predict six transmembrane helices with two outer 

and three inner loops [Data based on PSIPRED, TMHMM and OCTOPUS (Jones, 2007, Krogh et al., 2001, 

Viklund & Elofsson, 2008)]. In general 5TM Lyt domains are characterized by an N/DxR motif between 

helix 1 and helix 2 and a multitude of small hydrophobic residues like glycine or proline, which might be 

involved in ligand binding or signal transmission (Anantharaman & Aravind, 2003). The additional GAF 

domain in cytoplasmic part of YehU is predicted by SMART, UniProt, and NCBI BlastP (Letunic et al., 

2006, Consortium, 2010, Johnson et al., 2008). Although there are slide variations of the domain 

boundaries within the different programs, a GAF core motif can be defined from amino acid 218 to 

amino acid 365. GAF domains are present in a variety of different protein families and share structural 

similarities with the PAS domain family (Ho et al., 2000). GAF domains are capable of binding small 

molecules (e.g. ions, cyclic nucleotides) and might affect signal transduction (Cann, 2007). Nevertheless 
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the question on their precise function in signaling compounds remains elusive (Möglich et al., 2009). The 

GAF domain in YehU is followed by a DHp domain and CA domain. 

 
 
Figure 1.3 The YehU/YehT two-component system of Escherichia coli. A) The region between 47.48 and 47.77 
centisomes (bp 2202618 to 2217503) depicts the chromosome around the yehUT locus of E. coli MG1655. Based on 
the database EcoCyc (http://www.ecocyc.org (Keseler et al., 2009)) genes (boxes) and transcription start sites 
(arrows) are marked. The shown bar represents 500 bp. B) Predicted domain organization of YehU/YehT. The input 
domain of YehU is characterized by a membrane integrated 5TM Lyt domain and a GAF domain in the periplasm. 
The G1 box in the catalytically active transmitter domain is incomplete (hence G1*), binding of ATP as phosphor-
donor for activation remains elusive (ATP?). YehT consists of a CheY-like receiver domain and LytTR-like DNA 
binding domain. Phosphorlyation sites are indicated (H, histidine 382 in YehU and D, aspartate 54 in YehT). CM, 
cytoplasmic membrane. The figure was provided by Luitpold Fried, adapted and modified. 

 

The LytTR-like response regulator YehT consists of 239 amino acids (27.4 kDa) (Jain et al., 2009) with an 

N-terminal CheY-like receiver domain and a C-terminal DNA-binding domain of the LytTR type (Fig. 1.3 B) 

(Finn et al., 2010). Based on sequence analysis among CheY-like receiver domains (UniProt and NCBI 

BlastP) aspartate 54 is considered to be the phosphorylation site in YehT. Based on comparative 

secondary structure predictions and homology modeling to known LytTR-like effector domains [putative 

methyl-accepting/DNA response regulator from Bacillus cereus (RCS PBD ID: 3D6W) and AgrA from S. 

aureus (Sidote et al., 2008) (RCS PDB ID: 3BS1)] 99 percent of the YehT effector domain could be 

assigned (with a confidence of >90 percent), which suggests a similar elongated β-fold (Kelley & 

Sternberg, 2009). 

In E. coli the physiological role of the YehU/YehT two-component system or its specific function is still 

unknown. Characterization of homologous two-component systems in Gram-positive organisms, e.g. S. 

aureus LytS/LytR (Sadykov & Bayles, 2012), revealed several candidate target genes, however none of 

these (if existent) were regulated in E. coli (Kraxenberger, 2011). Furthermore various comprehensive 

studies on YehU/YehT failed to identify either the target genes or the stimulus (Oshima et al., 2002, 

Hirakawa et al., 2003). Phenotypic analyses, testing over 2,000 different growth conditions (Zhou et al., 

2003, Lorenz, 2011), as well as studies focusing on cell motility, biofilm formation, cell surface 

hydrophobicity, curli formation or cell morphology could not identify any significant differences between 
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E. coli MG1655 and an isogenic yehUT mutant (Behr, 2009). In vitro characterization of all two-

component systems revealed no viable evidence for YehU/YehT phosphorylation (Yamamoto et al., 

2005). 

1.5.2 The YpdA/YpdB two-component system of Escherichia coli 

The second LytS/LytTR-like two-component system in E. coli MG1655 comprises the LytS-like histidine 
kinase YpdA and the LytTR-like response regulator YpdB. The genes ypdA and ypdB form together with 
ypdC the ypdABC operon (53.56 centisomes) (Keseler et al., 2009). 
 

 
 
Figure 1.4 The YpdA/YpdB two-component system of Escherichia coli. A) The region between 53.73 and 54.01 
centisomes (bp 2493000 to 2506400) depicts the chromosome around the ypdABC locus of E. coli MG1655. Based 
on the database EcoCyc (http://www.ecocyc.org (Keseler et al., 2009)) genes (boxes) and transcription start sites 
(arrows) are marked. The shown bar represents 500 bp. B) Predicted domain organization of YpdA and YpdB. The 
input domain of YpdA is characterized by a membrane integrated 5TM Lyt domain (Anantharaman & Aravind, 2003) 
and a GAF domain in the periplasm. The G2 box in the catalytically active transmitter domain is incomplete (hence 
G2*), binding of ATP as phosphor-donor for activation remains elusive (ATP?). YpdB consists of a CheY-like receiver 
domain and LytTR-like DNA binding domain. Phosphorylation sites are indicated (H, histidine 371 in YpdA and D, 
aspartate 53 in YpdB). CM, cytoplasmic membrane. The figure was provided by Luitpold Fried, adapted and 
modified. 

 

The LytS-like histidine kinase YpdA consists of 565 amino acids (62.7 kDa). Its signal recognition domain 

includes an N-terminal 5TM Lyt domain with at least six transmembrane helices [Data based on PSIPRED, 

TMHMM and OCTOPUS (Jones, 2007, Krogh et al., 2001, Viklund & Elofsson, 2008)] and a GAF domain. 

As described for YehU the 5TM Lyt domain also displays the highly conserved N/DxR motif between helix 

1 and helix 2 as well as a multitude of small hydrophobic residues like glycine or proline, which might be 

involved in ligand binding or signal transmission (Anantharaman & Aravind, 2003). The additional GAF 

domain might be capable of binding small molecules (e.g. ions, cyclic nucleotides) and hence affect signal 

transduction (Cann, 2007). Within the DHp domain of YpdA bioinformatics predict histidine 371 to be 

crucial for phosphorylation upon stimulus perception and activation of its adjacent CA domain (Letunic 

et al., 2006, Consortium, 2010, Johnson et al., 2008, Finn et al., 2010).  
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The LytTR-like response regulator YpdB consists of 244 amino acids (28.7 kDa) with an N-terminal CheY-

like receiver domain and a C-terminal DNA-binding domain of the LytTR type. Based on sequence 

analysis among CheY-like receiver domains aspartate 53 is considered to be the phosphorylation site of 

YpdB. Results from comparative secondary structure predictions and homology modeling of YpdB (as 

described for YehT in 1.5.1) also suggest an elongated β fold within the DNA-binding domain (Kelley & 

Sternberg, 2009). 

It is worth mentioning, that YpdA/YpdB and YehU/YehT share a high degree of similarity in E. coli: the 

histidine kinases have a sequence identity of 29 percent (sequence similarity of 53 percent), the 

response regulators of 32 percent (sequence similarity of 53 percent). Due to their high degree of 

sequence similarity correct phylogenetic assignment is challenging, but in contrast to YehU/YehT, the 

YpdA/YpdB two-component system seems to be less abundant, as it is missing in e.g. Salmonella species 

or Yersinia species (Franceschini et al., 2013). Furthermore the transcriptional unit of the ypdAB operon 

is extended by an additional gene ypdC, which encodes a thus far undescribed AraC-like regulatory 

protein. 

The physiological role and the specific function of the YpdA/YpdB two-component system are still 

unknown. Various comprehensive studies could not identify either the target genes or the stimulus of 

YpdA/YpdB (Oshima et al., 2002, Hirakawa et al., 2003). Phenotypic analyses, testing over 2,000 different 

growth conditions (Zhou et al., 2003, Lorenz, 2011), as well as studies focusing on a variety of growth-

independent phenotypes could not identify any significant differences between E. coli MG1655 and an 

isogenic ypdAB mutant. Functional in vitro characterization of YpdA/YpdB remained elusive (Yamamoto 

et al., 2005). An adaptive evolutionary response towards accelerated growth on glucose has been 

reported to introduce a non-synonymous mutation in YpdA (S200A) (Aguilar et al., 2012). 

 

1.6 Scope of this thesis 

LytS/LytTR-like two-component systems are well characterized in many Gram-positive bacteria. As 

mentioned before they have been intensively studied as they regulate a variety of virulence factors (e.g. 

toxin production) or virulence associated mechanisms (e.g. biofilm formation). In contrast only little is 

known about LytS/LytTR-like two-component systems in Gram-negative bacteria. The major aim of this 

study is to uncover the signal transduction mechanisms (signal perception and signal integration) of the 

LytS/LytTR-like YehU/YehT and YpdA/YpdB two-component systems in Escherichia coli in order to 

investigate their function and interconnectivity. 
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Abstract 

Two-component systems (TCSs) consisting of a membrane-anchored histidine kinase (HK) and a response 

regulator (RR) are major players in signal transduction in prokaryotes. Whereas most TCSs in Escherichia 

coli are well characterized, almost nothing is known about the LytS-like HK YehU and the corresponding 

LytTR-like RR YehT. To identify YehT-regulated genes, we compared the transcriptomes of E. coli cells 

overproducing either YehT or the RR KdpE (control). The expression levels of 32 genes varied by more 

than 8-fold between the two strains. A comprehensive evaluation of these genes identified yjiY as a 

target of YehT. Electrophoretic mobility shift assays with purified YehT confirmed that YehT interacts 

directly with the yjiY promoter. Specifically, YehT binds to two direct repeats of the motif 

ACC[G/A]CT[C/T]A separated by a 13-bp spacer in the yjiY promoter. The target gene yjiY encodes an 

inner membrane protein belonging to the CstA superfamily of transporters. In E. coli cells growing in 

media containing peptides or amino acids as carbon source, yjiY is strongly induced at the onset of the 

stationary growth phase. Moreover, expression was found to be dependent on cAMP/CRP. It is 

suggested that YehU/YehT participates in the stationary phase control network.  
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Abstract 

Escherichia coli contains 30 two-component systems (TCSs), each consisting of a histidine kinase and a 

response regulator. Whereas most TCSs are well characterized in this model organism, little is known 

about the YpdA/YpdB system. To identify YpdB-regulated genes, we compared the transcriptomes of E. 

coli cells overproducing either YpdB or a control protein. Expression levels of 15 genes differed by more 

than 1.9-fold between the two strains. A comprehensive evaluation of these genes identified yhjX as the 

sole target of YpdB. Electrophoretic mobility shift assays with purified YpdB confirmed its interaction 

with the yhjX promoter. Specifically, YpdB binds to two direct repeats of the motif GGCATTTCAT 

separated by an 11-bp spacer in the yhjX promoter. yhjX encodes a cytoplasmic membrane protein of 

unknown function that belongs to the major facilitator superfamily of transporters. Finally, we 

characterized the pattern of yhjX expression and identified extracellular pyruvate as a stimulus for the 

YpdA/YpdB system. It is suggested that YpdA/YpdB contributes to nutrient scavenging before entry into 

stationary phase. 
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Abstract 

When carbon sources become limiting for growth, bacteria must choose which of the remaining 

nutrients should be used first. We have identified a nutrient-sensing signaling network in Escherichia coli 

that is activated at the transition to stationary phase. The network is composed of the two histidine 

kinase/response regulator systems YehU/YehT and YpdA/YpdB and their target proteins, YjiY and YhjX 

(both of which are membrane-integrated transporters). The peptide/amino acid-responsive YehU/YehT 

system was found to have a negative effect on expression of the target gene, yhjX, of the pyruvate-

responsive YpdA/YpdB system, while the YpdA/YpdB system stimulated expression of yjiY, the target of 

the YehU/YehT system. These effects were confirmed in mutants lacking any of the genes for the three 

primary components of either system. Furthermore, an in vivo interaction assay based on bacterial 

adenylate cyclase detected heteromeric interactions between the membrane-bound components of the 

two systems, specifically, between the two histidine kinases and the two transporters, which is 

compatible with the formation of a larger signaling unit. Finally, the carbon storage regulator A (CsrA) 

was shown to be involved in posttranscriptional regulation of both yjiY and yhjX. 
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5 Characterization of the accessory protein YehS in LytS/LytTR 

mediated signal transduction of Escherichia coli 

5.1 Introduction 
Recently more and more proteins have been identified, which enrich the classical image of two-

component signal transduction by integration of additional functions into the main signal-response 

mechanism. These so called accessory proteins were considered exceptions, but the increasing number 

of reports on three- (or more) component systems indicates that such systems are more frequent than 

initially anticipated (Krell et al., 2010). Accessory proteins can be found in all bacterial compartments and 

possess a broad range of functional properties, like signal integration or scaffolding, and interfere at 

various signal transduction sites (Jung et al., 2012). The major proportion of these proteins acts on 

histidine kinases influencing signal perception and transduction (Buelow & Raivio, 2010). Hence the co-

sensing function of transport proteins, which has intensively studied for e.g. the lysine permease LysP 

and the pH-sensor CadC in E. coli (Tetsch et al., 2008, Rauschmeier et al., 2014), is a common mechanism 

to integrate information on metabolite fluxes into transcriptional regulation. Scaffolding proteins often 

coordinate the physical assembly of signaling compounds. The universal stress protein UspC e.g. acts as 

scaffold for the KdpD/KdpE signaling cascade in E. coli. Under conditions of high osmolarity (salt stress) 

an interaction of UspC with the histidine kinase KdpD promotes the expression of the kdpFABC operon 

encoding a high-affinity K+ uptake system (Heermann et al., 2009). Connector proteins in general 

mediate and/or coordinate the output response of two individual signaling cascades. In Salmonella 

enterica e.g. the TCSs PhoP/PhoQ (responding to low extracellular Mg2+ concentrations (Shin et al., 

2006)) and PmrA/PmrB (responding to Fe3+) are coordinated via the connector protein PmrD to mediate 

resistence against polypeptide antibiotics (Kox et al., 2000). 

We identified with yehS in the genomic neighborhood of the yehUT operon (Fig. 5.1 A) a gene encoding 

for a potential accessory protein. YehS consists of 156 amino acids (approximately 18.0 kDa) and harbors 

a duplication (from amino acids 3 to 78 and amino acids 86 to 153) of an uncharacterized domain (Pfam 

nomenclature: DUF 1456) (Fig. 5.1 B). Although this protein lacks any evidence so far, its architectural 

domain assembly (Finn et al., 2010) seems to be of functional importance. Its distribution is 

predominantly limited to γ-proteobacteria where it is always associated with (LytS/LytTR-) signaling 

genes. On the other site it is not essential as homologs are missing in e.g. Photorhapdus luminescens or 

Vibrio harveyi (Franceschini et al., 2013). 
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Fig. 5.1 The accessory protein YehS. A) The region around the genomic locus of yehS in E. coli MG1655 is shown 
between centisomes 47.6 and 47.7 (bp 2208750 and 22014000). Based on the scientific database EcoCyc 
(http://www.ecocyc.org, (Keseler et al., 2009)) genes (boxes) and transcription start sites (arrows) are marked. The 
shown bar represents 500 bp. B) Predicted domain organization of YehS suggests a duplication of a hitherto 
unknown domain called DUF1456. Several structural prediction analyses (PSIPRED, JPRED3, PROFsec) indicate four 
α-helical elements in both subdomains. 
 

Primary structure analysis revealed a theoretical isoelectric point of 9.2. Secondary structure predictions 

with PSIPRED, JPRED3 or PROFsec suggest four α-helical elements in each domain (McGuffin et al., 2000, 

Cole et al., 2008). Our investigations focused on the function of YehS in the LytS/LytTR mediated signal 

transduction network of E. coli to gain further insights into its complex regulatory interplay. 

 

5.2 Material and Methods 

Strains, plasmids and oligonucleotides. E. coli strains and their genotypes are listed in Table 5.1. 

Mutants were constructed by using the E. coli Quick-and-Easy Gene Deletion Kit (Gene Bridges) and the 

Bac Modification Kit (Gene Bridges) as reported (Heermann et al., 2008). Both kits rely on the Red®/ET® 

recombination technique. Plasmids and oligonucleotide are listed in Table 5.1. DNA fragments for 

plasmid construction were amplified by PCR from genomic DNA. 

Molecular biological techniques. Plasmid DNA and genomic DNA were isolated using the HiYield Plasmid 

Mini-Kit (Suedlaborbedarf) and the DNeasy Blood and Tissue Kit (Qiagen), respectively. DNA fragments 
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were purified from agarose gels using the HiYield PCR Clean-up & Gel Extraction Kit (Suedlaborbedarf). 

Q5 DNA polymerase (New England Biolabs) was used according to the supplier’s instructions. Restriction 

enzymes and other DNA-modifying enzymes were also purchased from New England Biolabs and used 

according to the manufacturer’s directions. 

In vivo protein-protein interaction studies using BACTH. Protein-protein interactions were assayed with 

the bacterial adenylate cyclase-based two-hybrid system (BACTH) essentially as described previously 

(Karimova, 2005, Behr et al., 2014). E. coli BTH101 was transformed with different pUT18, pUT18C and 

pKT25, pKNT25 derivatives (Table 5.1) to test for interactions. Cells were grown under aeration overnight 

in LB medium supplemented with 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 30°C and 

harvested for determination of β-galactosidase activities, which are expressed in Miller units (Miller, 

1992). 

In vivo expression studies. In vivo expression of yhjX and yjiY was quantified by means of luciferase-

based reporter gene assays, using E. coli MG1655 cells that had been transformed with the plasmids 

pBBR yjiY-lux or pBBR yhjX-lux, respectively (Table 5.1). 

Cells of an overnight culture grown in M9 minimal medium with 0.4% (w/v) glucose as C-source were 

inoculated into M9 minimal medium [supplemented with 20 mM pyruvate (for pBBR yhjX-lux) or 0.4% 

casamino acids (for pBBR yjiY-lux)] to give a starting OD600 of 0.05. Cells were then incubated under 

aerobic growth conditions at 37°C, and OD600 and luminescence were measured continuously. Optical 

density was determined in a microplate reader (Tecan Sunrise) at 600 nm. Luminescence levels were 

determined in a luminescence reader (Centro LB960, Berthold Technology) for 0.1 s, and are reported as 

relative light units [counts s-1] (RLU). 

Overproduction and Purification of 6His-YehS. E. coli BL21(DE3) was transformed with pBAD24-his yehS. 

After inoculation in LB medium (OD600=0.05) cells were grown aerobically at 37°C to an OD600 of 0.5 

before overproduction of 6His-YehS was induced by the addition of 0.4% (w/v) L-arabinose. Cells were 

harvested after 3 hours of induction. Purification of 6His-YehS was performed as described before 

(Kraxenberger et al., 2012) using 50 mM Tris/HCl pH 7.5, 5% (v/v) glycerol with 2 mM dithiothreitol as 

standard purification buffer. Protein concentration was determined by the method of Lowry (Lowry et 

al., 1951) or photometric (PeqLab, Nano-Drop ND-1000) using predictions for YehS extinction coefficient 

(Abs 0.1% (=1 g/l) = 0.555) from ProtParam (http://www.expasy.ch/tools/protparam.html). Production, 

fractionation and purification was follow by SDS-PAGE (Laemmli, 1970) and Western Blot with primary 

anti-His antibody (Qiagen). 
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Analytical size-exclusion chromatography (SEC) and Right Angle Light Scattering (RALS). After 

purification 6His-YehS was analyzed via SEC/RALS using a Superdex S200 increase 5/150GL column on an 

ÄKTAmicro system. The run was performed with a flow rate of 0.5 ml/min in sample buffer (50 mM 

Tris/HCl pH 7.5, 5% (v/v) glycerol, 2 mM dithiothreitol) and A280 was monitored. A BioRad gel filtration 

standard was used as a reference. Consecutive right angle light scattering (RALS) was performed on a 

Viscotek RI detector. All experiments were performed in cooperation with Dr. Gregor Witte from the AG 

Hopfner group in the Gene Center and Department of Biochemistry of the Ludwig-Maximilians-

University, München. 
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TABLE 5.1. Bacterial strains and plasmids used in this study 

Name Relevant genotype or description Reference 

E. coli strains   

MG1655 F- λ- ilvG rfb50 rph-1 (Blattner et al., 1997)  

ΔyehS MG1655 rpsL150 yehS∷rpsL-neo; Kanr Strs This work 

BL21(DE3) F– ompT hsdSB(r–
B, m–

B) gal dcm (DE3)  (Studier & Moffatt, 1986) 

BTH101 F– cyaA-99 araD139 galE15 galK16 rpsL1 hsdR2 µrA1 µrB1 (Karimova et al., 1998) 

DH5α F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 

Δ(lacZYA-argF)U169, hsdR17(rK
- mK

+), λ– 

(Meselson & Yuan, 1968) 

 

Plasmids   

pBBR yjiY-lux PyjiY-212/+88 cloned in the BamHI and EcoRI sites of pBBR1-MCS5-TT-

RBS-lux; Gmr 

(Kraxenberger et al., 2012) 

pBBR yhjX-lux PyhjX-264/+36 cloned in the BamHI and EcoRI sites of pBBR1-MCS5-TT-

RBS-lux; Gmr 

(Fried et al., 2013) 

pBAD24 Arabinose-inducible PBAD promoter, pBR322 ori; Ampr (Guzman et al., 1995) 

pBAD24-his yehS yehS cloned in the NdeI and XbaI sites of pBAD24; Ampr (Kraxenberger, 2011) 

pUT18 Expression vector, Ampr (Karimova, 2005) 

pUT18C Expression vector, Ampr (Karimova, 2005) 

pKT25 Expression vector, Kanr (Karimova, 2005) 

pKNT25 Expression vector, Kanr (Karimova, 2005) 

pUT18C-zip Control plasmid, N-terminal CyaA-T18-yeast leucine-zipper fusion, Ampr (Karimova, 2005) 

pKT25-zip Control plasmid, N-terminal CyaA-T25-yeast leucine-zipper fusion, Kanr (Karimova, 2005) 

pUT18-yehU and pUT18-ypdA yehU, ypdA cloned in XbaI and BamHI sites of pUT18 resulting in N-

terminal CyaA-T18-protein fusions 

This work 

pUT18C-yehT and pUT18C-ypdB yehT, ypdB cloned in XbaI and BamHI sites of pUT18C resulting in C-

terminal CyaA-T18-protein fusions 

This work 

pKT25-yehS yehS cloned in XbaI and BamHI sites of pKT25 resulting in C-terminal 

CyaA-T25-protein fusions 

This work 

 

Oligonucleotide 5’- sequence - 3’ 

YehT+A XbaI sense CCTCTAGAAATGATTAAAGTCTTAATTGTC 

YehT+CC BamHI antisense AAGGATCCCCCAGGCCAATCGCCTCTTTTAA 

YpdB+A XbaI sense GGTCTAGAAGTGAAAGTCATCATTGTTGAA 

YpdB+CC BamHI antisense TCGGATCCCCAAGATGCATTAACTGGCGAAA 

YpdA+A XbaI sense CCTCTAGAAGTGCACGAAATATTCAACATG 

YpdA BamHI antisense TTGGATCCTCAAAGCAATAACGTAGCCTG 

YehU+A XbaI sense GGTCTAGAAATGTACGATTTTAATCTGGTG 

YehU BamHI as neu AAGGATCCTCATGCCTCGTCCCTCCA 

YehS+A XbaI sense TTTCTAGAAATGCTAAGTAACGATATTCTG 

YehS+CC BamHI antisense TTGGATCCCCGCCTTTTTTCACATGCTG 
UPyehS-228 sense TTCTCAATGGCCTGATTTATGAAAAACGCGGCAAGGATGAGTCTGCTCCGTAATACGACTCACTATAGGGCTC 

DOWNyehS-229 antisense AATTTTTTCAGCACGATGTTGTTATTAATGCGACGTTCCGGCTCCAGTGCAATTAACCCTCACTAAAGGGCGC 
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5.3 Results 

In order to get further insights into the complex LytS/LytTR mediated signal transduction network of E. 

coli we analyzed several neighboring genes of yehUT and ypdABC respectively. We identified with yehS 

(adjacent to the yehUT operon) a protein of unknown function. YehS consists of 156 amino acids 

(predicted molecular weight of 18.0 kDa) and displays a duplication of the domain DUF1456. Cell 

fractionation experiments confirmed that 6His-YehS is a soluble protein localized in the cytoplasm. 

Purification (Fig. 5.2 A) and consecutive size exclusion chromatography (Fig. 5.2 B) was performed to 

determine further properties of 6His-YehS. In cooperation with Dr. Gregor Witte from the Hopfner group 

(Gene Center, Ludwig-Maximilians-University, München) SEC/RALS analyses for 6His-YehS displayed a 

monomeric state and an estimated molecular weight of 17.0 kDa. In addition purified 6His-YehS 

contained unexpectedly high amounts of nucleic acids (A260/A280= 0.82). 

 

 

Fig. 5.2 Purification and size-exclusion chromatography for 6His-YehS. A) The purification of 6His-YehS is shown. 
Individual steps were monitored on SDS-PAGE and visualized via Coomassie staining. The arrow marks 6His-YehS. 
(L) Bacterial Lysate, (FT) Flow-through, (W) Wash, (E) Eluate. B) A280 absorption profile on size-exclusion 
chromatography Superdex 200 increase 5/150GL column. Retention peak at 2.15 ml marks 6His-YehS. 
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To validate the influence of YehS on LytS/LytTR mediated target gene expression transcriptional 

luciferase reporter fusions were tested under inducing conditions. Deletion of yehS as well as plasmid 

based overexpression led to the same observations: a decrease in both (YehU/YehT mediated) yjiY- and 

(YpdA/YpdB mediated) yhjX expression (Fig. 5.3 A, B). Since prior studies on yehS expression showed no 

significant alterations within different bacterial growth phases (Fried, 2012), this observation raised the 

possibility of direct physical contacts between YehS and the LytS/LytTR signaling compounds. To uncover 

possible interactions between the proteins of interest, we screened all combinations using the bacterial 

adenylate cyclase two-hybrid system. The yeast leucine zipper-fusion constructs zip-T18 and T25-zip 

(Karimova, 2005) were used as positive controls (3,000 Miller units, data not shown). For YehS we found 

an interaction with both histidine kinases (YehU, YpdA) as well as an interaction with both response 

regulators (YehT-D54E, YpdB) (Fig. 5.3 C). Further studies suggested that the GAF-domain within the 

histidine kinases might display the interactive interface (Fig. 5.3 C). An interaction between two YehS 

molecules could not be observed (Fig. 5.3 C), whereas an intramolecular assembly between both 

DUF1456 domains displayed positive results (Fig. 5.3 D). Based on amino acid substitutions and 

truncations an initial characterization of YehS suggested a functional interconnectivity between its 

structural properties (Fig. 5.3 D) and the observed effect on Lyts/LytTR target gene expression (Dörner, 

2013). 

5.4 Discussion 

The role of YehS in LytS/LytTR mediated signal transduction is still unclear. Based on our current 

observations a coupling function is favored. In this scenario YehS is necessary to mediate the histidine 

kinase – response regulator interplay to facilitate signal transduction. This idea is supported by the fact 

that YehS binds both histidine kinases and response regulators. The coupling protein CheW in E. coli 

chemotaxis  consists of 167 amino acids (18.1 kDA and provides a physical coupling of CheA to the MCPs 

allowing regulated phosphotransfer to the CheY and CheB proteins (Li & Hazelbauer, 2011, Underbakke 

et al., 2011). Interestingly deletion and overexpression of cheW also displayed the same chemotactic 

behavior (Sanders et al., 1989) possibly by disrupting the normal formation of receptor complexes 

(Cardozo et al., 2010). Likewise YehS might act as a coupling protein for LytS/LytTR mediated signal 

transduction. In addition it might be conceivable that binding of a small intracellular signaling molecule, 

like ppGpp or c-di-GMP (Camilli & Bassler, 2006), could provide further regulatory input and hence link 

LytS/LytTR mediated signal transduction to metabolic or energetic processes. 
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Fig. 5.3 Influence of YehS on LytS/LytTR mediated signal transduction in E. coli. Cells were cultivated in M9 
minimal medium with inducing conditions for either yjiY (0.4 % casamino acids) or yhjX (20 mM pyruvate). Optical 

density (OD600) and luminescence were continuously monitored. Bars indicate the influence of yehS 
deletion or overexpression on maximal A) yjiY or B) yhjX expression respectively. C) Based on bacterial 
two-hybrid analyses several interactions of YehS with the HKs and RRs of both LytS/LytTR TCSs were 
identified. The activity of cells expressing the T25 and T18 fragments on their own was defined as the 
threshold activity for interaction and is indicated by the dotted line. D) Intramolecular interactions for 
YehS DUF domain 1 and 2 as well as corresponding truncations in YehS-DUF2 were analyzed in vivo.  
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Highlights 

- Based on a calibration-free concentration analysis (CFCA) real-time association- and dissociation 
events provide superior experimental evidence for DNA-binding and affinities 

- Thereby the LytTR-like RR YpdB-D53E displayed a hitherto unknown allosteric two-step DNA 
binding mechanism, which might be necessary to generate a dynamic pulse expression control 
for substantial cellular mechanisms. 

 

Abstract 

Bacterial two-component systems (TCSs) link environmental changes to cellular adaptation mechanisms. 

Thereby sensor histidine kinases (HKs) undergo autophosphorylation upon stimulus perception. The 

transfer of the phosphoryl group to the corresponding response regulator (RR) mediates cellular 

adaptations predominantly via alterations in gene expression. The protein family of LytS/LytTR-like TCSs 

is very wide-spread and is involved the regulation of various bacterial pathogenicity mechanisms. In this 

study we focused on the DNA-binding mechanism of the LytTR-like RR YpdB of Escherichia coli. We 

determined binding kinetics for YpdB and the phosphorylated mimetic YpdB-D53E via surface plasmon 

resonance spectroscopy measurements. Based on nucleotide substitutions we were able to uncover the 

mechanistic nature of a hitherto unknown allosteric two-step binding event. Upon the combination of RR 
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phosphorylation, DNA-binding and rapid promoter clearance, we propose an enhanced transcriptional 

control, which might be necessary to create a pulsed expression mechanism. 

 

Introduction 

Two-component signal transduction systems (TCSs) represent the predominant bacterial mechanism to 

sense and respond to environmental conditions. TCSs comprise an often membrane-integrated sensor 

histidine kinase (HK), which perceives a stimulus and a cytoplasmic response regulator (RR) with DNA-

binding affinity 1. While signal perception entails activation and auto-phosphorylation of the HK, a 

subsequent phosphotransfer reaction to its cognate RR induces cellular adaptations. 

Based on their structural properties TCSs are classified into different families. The LytS/LytTR-like family 

of TCSs is wide-spread among human and plant pathogenic bacteria and regulates a variety of virulence- 

and virulence-associated factors, like toxin production in Staphylococcus aureus 
2, natural competence of 

Streptococcus pneumonia 
3
 or the biosynthesis of extracellular polysaccharides in Pseudomonas 

aeruginosa 4; 5. All RR of the LytTR-family share an uncommon DNA-binding domain. A conserved 10 

stranded β fold mediates DNA binding via three elongated β sheets, while highly variable residues within 

the connecting loop regions determine binding specificity 6. Hence LytTR RRs share no common 

consensus binding sequence. In contrast to that, almost all LytTR RR display a similar DNA-binding 

pattern of direct or inverse repeats (between 9 and 11 nucleotides in length) separated by 11 to 13 

spacer nucleotides 7; 8; 9. Furthermore, several studies indicate an influence of surrounding DNA structure 

on RR binding 10; 11; 12; 13. In Escherichia coli the LytS/LytTR-like TCS YpdA/YpdB has been described 

recently 13. The HK YpdA responds to extracellular pyruvate and activates its cognate RR YpdB, which in 

turn induces yhjX expression. The gene yhjX is the only direct target gene of YpdB and encodes a putative 

transport protein of the major facilitator superfamily. The YpdA/YpdB TCS is part of a complex nutrient-

sensing network 14 and is supposed to contribute to nutrient scavenging before cells enter stationary 

phase 13. The RR YpdB is characterized by an N-terminal receiver domain, with a highly conserved 

aspartate at position 53, and a C-terminal LytTR effector domain with DNA-binding affinity. Conversion of 

aspartate 53 to glutamate (YpdB-D53E) was shown to result in a constitutively activated protein with a 

phosphorylation independent phenotype of constant yhjX expression 13. The LytTR-like RR YpdB binds to 

a direct repeat (M1 and M2) of a 10 bp motif (GGCATTTCAT) with an 11 bp spacer region. 

In this study we focused on the molecular mechanisms behind LytTR-mediated gene expression. Based 

on surface plasmon resonance spectroscopy measurements we closely analyzed binding of YpdB and the 

phosphorylated mimetic YpdB-D53E to its binding site in yhjX promoter DNA. Thereby substitutions of 

motifs M1 or M2 within this binding site revealed different affinities for RR-binding and suggest a 

hitherto novel concept of allosteric interaction. 

 

Materials and Methods 

 

Molecular biological techniques and protein purification. 

E. coli strain BL21(DE3) 15 was transformed with pBAD24-ypdB or pBAD24-ypdB-D53E respectively 13. 

Overproduction of 6His-tagged proteins and subsequent purification via Ni-NTA-affinity chromatography 

was performed as described before 12 and 95% pure as judged by SDS-PAGE 16. To address structural 

properties, a size exclusion chromatography was performed on a calibrated Superdex 200 Increase GL 
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HR10/300 column (GE Healthcare) in the presence of 50 mM Tris/HCl pH 7.6, 10% (v/v) glycerol, 150 mM 

NaCl, 2 mM DTT. 

5’-biotinylated oligonulceotides and their complementary non-biotinylated strands (flanked by four 

guanine-cytosine nucleotide bonds) (Table 6.1) were ordered by Sigma Aldrich and independently 

annealed by heating equimolar samples (95°C for 5 minutes) and subsequent cooling down at room 

temperature. Resultant biotinylated DNA double stands contained motif substitutions with purine to 

pyrimidine conversions (and vice versa). 

 
Table 6.1: Oligonucleotides annealed for SPR binding experiments on SA sensor chip 

Name 5’ – sequence -3’ 

[BTN] yhjX YpdB 
bs sense [BTN]GGGGCGCGTCATTCATTCCTGAACTAAGGCATTTCATTCCGTTCTGATGGCATTTCATGCCGGGGG 

yhjX YpdB bs 
antisense 

CCCCCGGCATGAAATGCCATCAGAACGGAATGAAATGCCTTAGTTCAGGAATGAATGACGCGCCCC 

[BTN] yhjX YpdB 
M1 bs sense [BTN]GGGGCGCGTCATTCATTCCTGAACTAAttacgggacgTCCGTTCTGATGGCATTTCATGCCGGGGG 

yhjX YpdB M1 
bs antisense CCCCCGGCATGAAATGCCATCAGAACGGAcgtcccgtaaTTAGTTCAGGAATGAATGACGCGCCCC 

[BTN] yhjX YpdB 
M2 bs sense [BTN]GGGGCGCGTCATTCATTCCTGAACTAAGGCATTTCATTCCGTTCTGATttacgggacgGCCGGGGG 

yhjX YpdB M2 
bs antisense CCCCCGGCcgtcccgtaaATCAGAACGGAATGAAATGCCTTAGTTCAGGAATGAATGACGCGCCCC 

[BTN] yjiY YehT 
bs sense [BTN]GGGGCCTTTGCCGCTCAACCGCAAAACTGACCGCTTACATCCCTAAAATAACCACTCAGTTAGGGG 

yjiY YehT bs 
antisense 

CCCCTAACTGAGTGGTTATTTTAGGGATGTAAGCGGTCAGTTTTGCGGTTGAGCGGCAAAGGCCCC 

 

Surface Plasmon Resonance (SPR-) Sprectroscopy 

SPR assays were performed in a Biacore T200 using carboxymethyl dextran sensor chips pre-coated with 

streptavidin (SA Sensor Chip Series S). All experiments were carried out at a constant temperature of 

25°C and using HBS-EP buffer (10 mM HEPES pH 7.4; 150 mM NaCl; 3 mM EDTA; 0.005 % (v/v) detergent 

P20) as running buffer. Before immobilizing the DNA fragments, the chips were equilibrated by three 

injections using 1 M NaCl/50 mM NaOH at a flow rate of 10 µl/min. Then, 10 nM of the respective 

double-stranded biotinylated DNA fragment was injected using a contact time of 420 sec and a flow rate 

of 10 µl/min. As a final wash step, 1 M NaCl/50 mM NaOH/50% (v/v) isopropanol was injected. 

Approximately 100-200 RU of each respective DNA fragment were captured onto each flow cell. The 

interaction kinetics of YpdB and YpdB-D53E with the respective DNA fragment were all performed in 

HBS-EP buffer at 25°C at a flow rate of 30 µl/min. The proteins were diluted in HBS-EP buffer and passed 

over all flow cells in different concentrations (1 nM-50 nM) using a contact time of 180 sec followed by a 

300 sec dissociation time before the next cycle started. After each cycle the surface was regenerated by 

injection of 2.5 M NaCl for 30 sec at 60 µl/min flow rate followed by a second regeneration step by 

injection of 0.5% (w/v) SDS for 30 sec at 60 µl/min. All experiments were performed at 25°C. 

Sensorgrams were recorded using the Biacore T200 Control software 1.0 and analyzed with the Biacore 

T200 Evaluation software 1.0. The surface of flow cell 1 was coated with yjiY-DNA (no binding of YpdB) 

and used to obtain blank sensorgrams for subtraction of bulk refractive index background. The 
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referenced sensorgrams were normalized to a baseline of 0. Peaks in the sensorgrams at the beginning 

and the end of the injection emerged from the runtime difference between the flow cells of each chip. 

Calibration-free concentration analysis (CFCA) was performed using a 5 µM sample solution of YpdB-

D53E (calculated from classical determination of protein concentration), which was stepwise diluted 1:2, 

1:5, 1:10, and 1:20. Each protein dilution was two-times injected, one at 5 µl/min as well as 100 µl/min 

flow rate. On the active flow cell PyhjX-M1-DNA was used for YpdB-D53E-binding, and PyhjX-DNA on the 

reference cell. CFCA basically relies on mass transport, which is a diffusion phenomenon that describes 

the movement of molecules between the solution and the surface. The CFCA therefore relies on the 

measurement of the observed binding rate during sample injection under partially or complete mass 

transport limited conditions. Overall, the initial binding rate (dR/dt) is measured at two different flow 

rates dependent on the diffusion constant of the protein. The diffusion coefficent of YpdB-D53E was 

calculated using the Biacore diffusion constant calculator and converter webtool 

(https://www.biacore.com/lifesciences/Application_Support/online_support/Diffusion_Coefficient_Calc

ulator/index.html), whereas a globular shape of the protein was assumed. The diffusion coefficent of 

YpdB-D53E was determined as D=9.94x10-11 m2/s. The initial rates of those dilutions that differed in a 

factor of at least 1.5 were considered for the calculation of the „active“ concentration, which was 

determined as 5x10-8M (1% of the total protein concentration) for YpdB-D53E. The „active“ protein 

concentration was further used for calculation of the binding kinetic constants. 

 

Interaction Map
®
 (IM) analysis  

IM calculations were performed on the Ridgeview Diagnostic Server (Ridgeview Diagnostics, Uppsala, 

Sweden). For this purpose, the SPR sensorgrams were exported from the Biacore T200 Evaluation 

Software 1.0 as *.txt files and imported into the TraceDrawer Software 1.5 (Ridgeview Instruments, 

Uppsala, Sweden). IM files were created using the IM tool within the software, generating files that were 

sent via e-mail to the server (im@ridgeviewdiagnostics.com) where the IM calculations were performed 
17. The result files were then evaluated for spots in the TraceDrawer 1.5 software, and the IM spots were 

quantified. 
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Results and Discussion 

To determine binding kinetics for YpdB and YpdB-D53E to their corresponding binding motifs within yhjX 

promoter-DNA, we performed surface plasmon resonance (SPR-) spectroscopy measurements. For that 

purpose, 6His-YpdB and 6His-YpdB-D53E, respectively, were overproduced and purified via Ni-NTA-

affinity chromatography. Size exclusion chromatography showed that both full-length RR proteins are 

exclusively monomeric in solution and hence suitable for SPR measurements (data not shown). 

As first step, 5’-biotinylated double strand DNA (displaying the complete YpdB binding site) was 

immobilized on a SA Sensor Chip. A calibration-free concentration analysis (CFCA) (see Materials and 

Methods for detail) was used for determination of the “active” protein concentration in YpdB-D53E, i.e. 

protein that binds the DNA fragment (Supplemental material), and this amount was used for calculation 

of “active” YpdB protein also. For the determination of binding-kinetics, increasing concentrations (10-50 

nM) of YpdB or YpdB-D53E were passed over the chip surface using a contact time of 180 sec 

(association), followed by a 300 sec dissociation phase. It could be observed that binding of YpdB to the 

yhjX promoter-DNA (PyhjX) was approximately 5-times lower compared to YpdB-D53E, revealing that the 

latter one is a perfect variant mimicking the active state of the RR (Figs. 6.1 A and B).  

 

Figure 6.1: Binding of YpdB and YpdB-D53E to the promoter region of yhjX (PyhjX). (A and B) SPR analyses. The 
Biotin-labeled DNA fragment comprising PyhjX was captured onto a SA sensor chip, and solutions of 1 nM (violet 
line), 2.5 nM (blue line), 5 nM (dark blue and green line (internal reference)), 10 nM (yellow line), 20 nM (orange 
line) and 50 nM (red line), respectively, of each of purified YpdB (A) or YpdB-D53E (B) was passed over the chip. (C) 
IM analyses of YpdB-D53E-PyhjX interaction. The green and the blue spots represent both the YpdB-D53E interaction 
with the DNA, indicating that two binding sites with different affinities exists in the yhjX-promoter region (D) 
Calculated sensorgrams for YpdB-D53E interactions with the PyhjX. The calculated KD values as well as the ON/OFF-
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rates for each interaction are indicated below the respective sensorgram. 
In addition to this, none of the sensorgrams for YpdB-D53E followed the calculated kinetic assumptions 

of a 1:2 binding event. This indicates that the interaction of YpdB-D53E to its corresponding binding sites 

in yhjX promoter does not reflect a monovalent binding mechanism and raised the possibility of multiple 

binding events. To calculate reliable binding constants and kinetic parameters, a computational 

approach was chosen to analyze the sensorgrams. The measured curves can be approximated to the sum 

of individual binding curves, each representing a monovalent interaction 18 with a unique combination of 

association rate ka (ON-rate) and dissociation rate kd (OFF-rate) (and consequently a real equilibrium 

dissociation constant KD = kd/ka). 

Therefore, we calculated a so called interaction map (IM) for YpdB-D53E sensorgrams to determine and 

quantify the individual binding events represented by the curves. The algorithm splits the experimental 

SPR data set to several theoretical monovalent binding curves and spots the binding curves that, 

summed up, best fit the experimental data. By plotting the association rate ka and the dissociation rate 

kd within a two-dimensional distribution, it is possible to display heterogeneous binding data as a map 

where each peak corresponds to one component that contributes to the cumulative binding curve 17. In 

case that these interaction events have almost similar on- and off-rates, no separate but fused peaks will 

appear. 

Based on the SPR sensorgrams of YpdB-D53E, interaction map analyses identified two clearly separated 

peak values (Fig. 6.1 C). The first peak (blue) with a peak weight of 33.5% displays an ON-rate of 4.2 x 105 

M-1 s-1 and an OFF-rate of 5.0 x 10-4 s-1 resulting in a KD value of 1.2 nM (Figs. 6.1 C and D, upper panel). 

The second peak (green) with a peak weight of 51.6% displays a 10-times higher ON-rate. The OFF-rate 

for this interaction was determined to be 9.9 x 10-2 s-1 (50-fold higher in comparison to first peak (blue)), 

which hence replays an interaction with a calculated KD value of 21 nM (Figs. 6.1 C and D, lower panel). 

Based on the ‘active’ protein fraction from the CFCA the average KD value was determined to be 13.2 

nM, which is more than 10-times higher compared to our results from gel retardation experiments 13. 

Besides the real-time determination of association- and dissociation events, this CFCA analysis displays 

another superior advantage of SPR measurements for DNA binding experiments. 

In the following experiments we focused on the assignment of these two interaction events. YpdB-D53E 

binds to a well-characterized direct repeat of the nucleotide motif GGCATTTCAT in PyhjX, hereinafter 

referred to as motifs M1 and M2 (Fig. 6.2 A). Therefore we annealed two biotinylated DNA fragments 

comprising nucleotide substitutions (purine to pyrimidine conversions (and vice versa)) for either the 

first (PyhjX_M1) or the second binding motif (PyhjX_M2). 

Binding of YpdB-D53E was completely abolished when motif M1 was substituted (Fig. 6.2 B). However, 

when motif M2 was substituted YpdB-D53E was still able to bind the DNA fragment (Fig. 6.2 C). In 

contrast to binding of YpdB-D53E to PyhjX, the sensorgrams for PyhjX_M2 display a single interaction event 

(Fig. 6.2 C). Calculations to generate the corresponding interaction maps confirmed this observation 

(blue peak – weight of 68.2 %). The additional small peak depicted in green with a peak weight of 3.5% 

did not reflect a defined binding event and was supposed to correspond to bulk effects. The ON- (3.4 x 

104 M-1 s-1) and OFF-rate (7.8 x 10-4 s-1) displayed a KD value of 23 nM and reflected the binding properties 

of the first binding curve observed for YpdB-D53E PyhjX interaction (blue, Fig. 6.1 D). Nevertheless it is 

worth mentioning, that ON-rate of YpdB-D53E was 10-times lower when motif M2 was replaced (in 

comparison to PyhjX), whereas the OFF-rate remained indistinguishable. 
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Figure 6.2: Binding of YpdB-D53E to the PyhjX_M1 and PyhjX_M2. (A) Schematic presentation of the full length yhjX-
promoter region. Motifs M1 (blue) and M2 (green) are colored, underlined sequences represent ribosome binding 
sites. The asterisk marks the translational start site, whereas the yhjX gene is written in italics. (B and C) SPR 
analyses. The biotin-labeled DNA fragments comprising the respective substitutions in motif M1 (PyhjX_M1) (B) or M2 
(PyhjX_M2) of the yhjX promoter region (C) were captured onto a SA sensor chip, and solutions of 1 nM (violet line), 
2.5 nM (blue line), 5 nM (dark blue and green line (internal reference)), 10 nM (yellow line), 20 nM (orange line) 
and 50 nM (red line), of purified YpdB-D53E was passed over the chip. (D) IM analyses of YpdB-D53E-PyhjX_M2 
interaction. The blue spot represents the YpdB-D53E interaction with the PyhjX_M2, indicating that only one DNA-
binding site for YpdB-D53E exists. The green spot with peak weight of <5% represents no binding event (see text). 
(E) Calculated sensorgrams for YpdB-D53E interactions with the PyhjX_M2. The calculated KD value as well as the 
ON/OFF-rate is indicated below the sensorgram. 

 

Furthermore the calculated interaction peak became more blurred. This indicates a broader deviation for 

ka and kd values, suggesting a decreased interaction stability. Hence the efficient binding of a second RR 

molecule to motif M2 also seems to influence motif M1 binding stability. 

Taken together we could show that both YpdB variants are monomeric in solution. Nevertheless 

activation of YpdB, mimicked by an aspartate-to-glutamate substitution on position 53, is necessary to 

specifically bind yhjX promoter DNA in a concentration dependent manner. Dimerization of activated RR 

molecules is a common mechanism in many bacterial signal transduction pathways 1. Thereby a highly-

conserved aspartate residue in the receiver domain of the RR gets phosphorylated and mediates 

conformational changes, which in turn result in activation. Linkage between activation and dimerization 

has been described for several RRs from different protein families, as recently for VraR from 
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Staphlococcus aureus 19 or PhoB from E. coli 
20. Furthermore structural studies on isolated receiver 

domain variants from LytTR-like RR ComE from Streptococcus pneumoniae demonstrated activation 

dependent monomer-to-dimer transition 21. 

Our results suggest that the activation of the LytTR RR YpdB is in particularly important for initial DNA 

binding. This idea is favored by the observation of an allosteric two step binding event: while binding of 

YpdB-D53E to yhjX promoter DNA is completely prevent upon substitution of motif M1, an interaction 

can still be observed when motif M2 is substituted. This indicates that initial binding of a first RR 

molecule occurs on motif M1 (Fig. 6.3). 

 

 

 

Figure 6.3: Schematic model of the cooperative binding mechanism of YpdB-D53E to the yhjX promoter region. 

Initial binding of YpdB to yhjX promoter DNA occurs on motif M1. As a consequence a second YpdB molecule 
occupies motif M2 and enables RNA polymerase recruitment. The binding properties of YpdB to motif M2 promote 

rapid motif clearance, which could be necessary to generate a dynamic pulse expression control. 
 

Reduction of the ON-rate (for motif M1 binding) when motif M2 is missing indicates simultaneous 

stabilization effects of a second RR molecule, which in turn depends on motif M2 availability. 

Nevertheless occupation of motif M1 is crucial for further DNA-binding of the second RR molecule. The 

reason for this might be the induction of major conformational changes on DNA structure. Interestingly 

DNA analyses predicted an average curvature for motif M1 between 4 and 6 degree, whereas motif M2 

curvature ranged from 8 and 11 degree 22. This already indicates major structural differences. 

Furthermore binding of the second RR molecule could be stabilized by intermolecular interactions as it 

has been shown lately for KdpE 23. Nevertheless in earlier studies we could show, that both motifs are 

essential for gene expression in vivo 13. Hence also binding of the second RR molecule contributes to 

further adaptions to induce gene expression. Structural studies on the LytTR-binding domain of AgrA 

from S. aureus revealed strong DNA bending upon binding of two RR molecules 6, which is thought to be 

essential for the recruitment of RNA-Polymerase. Furthermore binding of YpdB-D53E to motif M2 could 

also provide the required protein interface for RNA-Polymerase recruitment. 

Interestingly the binding properties of YpdB-D53E to motif M2 indicate a high turnover of this 

interaction. This rapid promoter clearance could function as a mechanism to prevent excessive gene 

expression and might enable a dynamic pulse expression control in more switch-like behavior 24. 

Structural similarities within the promoter regions of LytTR-regulated genes support this idea, in 

particular since these genes are often participants of tightly regulated processes, like toxin production or 

pathogenicity. 
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Abstract  

Two-component systems, composed of a histidine kinase (HK) and a response regulator (RR), are the 

major signal transduction devices in bacteria. Originally it was thought that these two components 

function as linear, phosphorylation-driven stimulus-response system. Here, we will review how accessory 

proteins are employed by HKs and RRs to mediate signal integration, scaffolding, interconnection and 

allosteric regulation, and how these two components are embedded in regulatory networks. 

 

Full-text article: 

http://www.ncbi.nlm.nih.gov/pubmed/22172627 

http://www.sciencedirect.com/science/article/pii/S1369527411002086 
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8 Concluding discussion 

8.1 The two-component system network of YehU/YehT and 

YpdA/YpdB at the onset of stationary phase – From overflow 

metabolism to carbon starvation 
The LytS/LytTR two-component systems come into play when Escherichia coli cells pass exponential 

growth and face certain nutrient limitations. While YehU responds to the availability of peptides/amino 

acids (Chapter 2), YpdA perceives extracellular pyruvate concentrations above 250 µM (Chapter 3). 

Stimulus perception of YehU and YpdA, respectively, leads to signal transduction to their cognate 

response regulator proteins YehT and YpdB. In general signal transduction is achieved upon different 

protein phosphorylation steps. Whether this is also true for LytS/LytTR mediated signal transduction in 

Escherichia coli still remains elusive. Being activated YehT and YpdB, respectively, undergo 

conformational changes and bind to their corresponding target gene promoter regions (YehT to PyjiY and 

YpdB to PyhjX). This results in the expression of yjiY and yhjX, respectively. yjiY expression is furthermore 

controlled via cAMP/CRP. Known as catabolite repression the availability of more favorable carbon 

sources, like glucose, prevents yjiY expression. Low glucose concentrations in contrast activate the 

adenylate cyclase resulting in higher cyclic AMP levels. The formation of the cAMP/CRP complex 

mediates cellular reprogramming from anabolism to catabolism to bridge the perceived energy deficit 

(Green et al., 2014). Hence cAMP/CRP facilitates yjiY expression upon stimulus perception, which was 

confirmed by the identification of a CRP consensus sequence in yjiY promoter DNA and a significantly 

reduced yjiY expression in a cyaA or crp deletion mutant (Chapter 2). Suprisingly expression of yjiY and 

yhjX is additionally coordinated. Induction of yjiY and subsequent production of the corresponding 

carbon starvation transport protein negatively influences yhjX expression. Vice versa expression of yhjX 

and subsequent production of the corresponding MFS-transport protein promotes yjiY expression 

(Chapter 4). It might be assumed, that the formation of a larger signaling unit mediates LytTR output 

through the interplay of both histidine kinases and both transport proteins (Figure 8.1). Such an interplay 

between sensory- and transport elements, so called trigger-transporter has already been described 

(Tetsch & Jung, 2009). Well characterized examples include the bacitracin resistance module BceS/BceAB 

of Bacillus subtilis (Dintner et al., 2011) or the co-sensory system CadC/LysP in E. coli (Rauschmeier et al., 

2014), which provide an advantageous link of metabolic fluxes to transcriptional regulation (Västermark 

& Saier Jr, 2014). The domain architecture of YehU or YpdA, with at least five transmembrane helices but 

no obvious periplasmic ligand-binding domain, supports the idea of co-sensory functions for YjiY and 

YhjX (Chapter 4). 
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Figure 8.1 The YehU/YehT and YpdA/YpdB two-component systems as part of a large carbon sensing network. 
Based on current state of research this model summarizes the interplay between the two histidine kinase/response 
regulator systems YehU/YehT and YpdA/YpdB and their corresponding target proteins YjiY and YhjX. The influence 
of the PT (phosphotransferase) system as well as the effects of BarA/UvrY and the csr/RNase E/L4 regulation on yjiY 
and yhjX mRNA levels are depicted. Arrows indicate stimulating (↑) and repressing (┴) effects. Dotted lines are 
solely based on in vivo evidence. Membrane proteins are integrated in the cytoplasmic membrane (CM). sRNAs, 
small RNAs; cAMP, cyclic AMP. For further detail see text. 
 

When E. coli is grown in an amino acid-rich milieu, like LB medium both two-component systems 

YehU/YehT and YpdA/YpdB get activated at the transition from exponential to stationary growth phase. 

The exponential growth phase in nutrient rich environments is characterized by a term called overflow 

metabolism or the bacterial Crabtree effect. In this process consumption of a preferred carbon source is 

accompanied by secretion of several by-products to avoid bottlenecks (Paczia et al., 2012). In particular 

pyruvate (Chapter 2) and acetate (Paczia et al., 2012) accumulate in the culture media and reach 

concentrations up to µM range. If the remaining carbon source is depleted, bacterial growth decelerates 

and excreted by-products (pyruvate and acetate) get retrieved in a process called scavenging (Peterson 

et al., 2005). At that time expression of yjiY and yhjX is induced to mediate selectivity among the 

remaining nutrients. The interconnected response of YehU/YehT and YpdA/YpdB thereby links the 
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availability of amino acids and peptides to the abundance of the central metabolite pyruvate. Pyruvate is 

involved in several cellular processes, such as glycolysis, gluconeogenesis, fatty acids synthesis, amino 

acid synthesis and fermentation (Wolfe, 2005). As key molecule between respiration and fermentation 

and as a precursor for several macromolecules, its cellular concentration is tightly regulated (Vemuri et 

al., 2006). Besides secretion (see above) pyruvate can also be specifically transported into the cell via at 

least two different import systems (Kreth et al., 2013). Additionally the uptake of peptides or amino 

acids provides E. coli metabolism with further amounts of pyruvate from alanine, glycine or cysteine 

degradation. From this point of view (availability of peptides and amino acids) an additional uptake of 

pyruvate would offer E. coli no further benefit and, therefore yhjX expression is reduced. In contrast, the 

abundance of pyruvate, which strongly induces yhjX expression, might lead to precursor depletion or 

metabolic bottle necks, e.g. in the tricarboxylic acid cycle. In this situation parallel activation of yjiY, 

encoding a putative peptide transport protein, would be advantageous and could avoid this problem 

simply by refilling the precursor pool (Figure 8.2).  

 

Figure. 8.2 Simplified scheme of the tricarboxylic acid cycle. Amino acids (depicted in the three-letter-code) from 
peptide degradation (can) act as precursors for different steps in the TCA cycle. In order to avoid energetically less 
favorable reactions (e.g. 1.1.1.40, the malate dehydrogenase, which converts pyruvate under the consumption of 
NADPH and CO2 to generate malate) E. coli responds to the availability of pyruvate with an additional induction of 
yjiY, coding for putative peptide transporter. Given numbers represent KEGG PATHWAY annotations (EC numbers) 
for the corresponding enzymes (http://www.genome.jp/kegg/pathway.html). 
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Hence an optimal cellular carbon supply might be maintained in preparation for stationary phase and 

global reprogramming by sigma factor rpoS (Hengge-Aronis, 2002). The σS (RpoS) subunit of RNA-

Polymerase is the master regulator of general stress response and regulates approximately 500 genes 

(nearly 10% of the genes in the E. coli genome) (Weber et al., 2005) under several stress conditions 

(Lange & Hengge-Aronis, 1991). Furthermore microarray analyses indicated several metabolic adaptions 

in an rpoS mutant (Rahman et al., 2006). These global consequences of switching between two entirely 

different life styles (exponential growth under carbon source excess versus dormant survival under 

nutrient limitations) need to be carefully controlled. The stimulation of YehU/YehT and YpdA/YpdB and 

the subsequent expression of yjiY and yhjX might counteract nutrient limitations at the interface to 

stationary growth phase and prepare cellular metabolism for upcoming adaptations. The regulatory role 

of another LytS/LytTR like two-component system at the transition from exponential to stationary 

growth phase was recently described. Based on quorum sensing the AgrC/AgrA two-component system 

from Staphylococcus aureus monitors the extracellular concentration of an autoinducing peptide (AIP) to 

regulate virulence gene expression (Novick & Geisinger, 2008). Nevertheless this signal transduction 

cascade can be overridden by the global transcriptional regulator CodY (Roux et al., 2014). CodY directly 

senses intracellular concentrations of isoleucine and GTP levels (Pohl et al., 2009) and hence seems to 

link cell density dependent virulence expression to individual nutrient availability. 

This in turn directs the interest to the physiological role of YehU/YehT and YpdA/YpdB in Escherichia coli. 

The preferred natural habitat of enteric bacteria like E. coli, Shigella flexneri and Salmonella typhimurium 

can be found in the intestine of warm-blooded animals (Bearson et al., 1997), e.g. the gastric juice. It is 

characterized by the abundance of nutrients like amino acids, such as alanine, proline or serine, and 

other carbon sources, e.g. pyruvate (Nagata et al., 2003, Nagata et al., 2007). Under these conditions 

both potential stimuli for YehU/YehT and YpdA/YpdB are present. Taking into account that yjiY and yhjX 

expression is furthermore tightly controlled and only occurs in a very distinct time slot this leads to 

speculations of a potential role in propagation or host colonization. In fact yjiY is expressed in vivo in 

avian pathogenic E. coli during the infection process in chicken liver and spleen (Tuntufye et al., 2012). 

Both organs possess high amounts of peptides and amino acids (Brosnan, 2000, Mebius & Kraal, 2005). 

Another hypothesis deals with the idea of a unique adaption mechanism to colonize different host 

environments. In the human intestine uropathogenic E. coli (UPEC) is able to establish a commensal 

association in a microenvironment, which is characterized by an abundance of nutrients and a variety of 

bacterial competitors. In contrast UPEC transition to the urinary tract leads to a drastic reduction in the 
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availability of nutrients and bacterial competition and furthermore requires a great flexibility of carbon 

and energy metabolism (Alteri & Mobley, 2012). 

 

8.2 Post-transcriptional mechanisms embed LytS/LytTR signal 

transduction into a complex cellular network of carbon utilization 
In addition to the internal LytS/LytTR mediated carbon source hierarchy, several post-transcriptional 

mechanisms have been described how yjiY and yhjX mRNAs are regulated. This includes Csr (carbon 

storage regulator) one best studied global regulatory system. Within different organisms Csr has been 

shown to contribute to global regulatory processes like carbon control, the production of extracellular 

matrix compounds, cell motility, biofilm formation, quorum sensing and/or pathogenesis (Romeo et al., 

2012). In Escherichia coli Csr potentially regulates the expression of several hundred genes (Edwards et 

al., 2011) and is composed of five major components: CsrA is a homodimeric RNA-binding protein that 

regulates gene expression by affecting ribosome binding and/or mRNA stability (Babitzke & Romeo, 

2007). Two non-coding small RNAs CsrB and CsrC (Liu et al., 1997, Weilbacher et al., 2003) antagonize 

CsrA function by sequestration. The BarA/UvrY two-component system in turn activates expression of 

csrB and csrC, while CsrD participates in RNase E mediated degradation of the small RNAs (Suzuki et al., 

2006). It is worth mentioning, that previous studies already showed CsrA dependent synthesis of the 

putative peptide transporter CstA (Dubey et al., 2003). CstA shows a high amino acid sequence identity 

to YjiY. We observed that overexpression of csrA reduced yjiY expression, whereas the deletion of csrA 

resulted in constitutive yjiY expression (Chapter 4). Interestingly the effect of CsrA on yhjX expression 

appeared to be vice versa. Such a pleiotrophic regulation of CsrA was described e. g. for the central 

carbohydrate metabolism in E. coli (Sabnis et al., 1995) and could provide a fine-tuned mechanism to 

integrate the intracellular metabolic state into nutrient selectivity. Nevertheless additional experiments 

will be necessary to proof binding of CsrA to the corresponding mRNAs of yjiY and/or yhjX to exclude 

indirect effects, e. g. due to changes in the copy number of only one transporter (Chapter 4). 

Regulation of CsrA is subject to the small RNAs csrB and csrC, which are in turn under the transcriptional 

control of another two-component system BarA/UvrY (Figure 8.1). In E. coli BarA/UvrY is crucial for an 

efficient switch between glycolytic and gluconeogenic carbon sources (Pernestig et al., 2003) and 

displays a pH-dependent activation (Mondragón et al., 2006). BarA is physiologically stimulated by 

several short-chain aliphatic carboxylic fatty acids, such as acetate (Chavez et al., 2010), which might 

suggest another functional interconnectivity. Utilization of pyruvate and acetate is closely linked (Tomar 
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et al., 2003) and both substrates highly accumulate upon overflow metabolism. Hence the BarA/UvrY 

two-component system might function to integrate the availability of fatty acids as another carbon 

source into LytS/LytTR mediated nutrient selectivity. 

Besides the Csr system Hfq, a RNA-binding protein with chaperone activity (Moll et al., 2003), seems to 

play an additional role for LytTR-mediated gene expression. An hfq deletion mutant exhibits a reduced 

cell division phenotype (Takada et al., 1999) and furthermore led to reduced expression of yjiY and yhjX, 

respectively. Whether these observations are based on the absence of direct hfq dependent processes, 

like mRNA folding or effects on the stability of small RNAs, or simply originate from the reduced growth 

rate will be further investigated. Furthermore degradation of yjiY and yhjX mRNAs depends on the 

interplay of RNase E (Rne) and the ribosomal protein L4 (RplD). RNase E is a single-strand-specific 

endonuclease, which cleaves A/U rich sequences (Babitzke & Kushner, 1991) in a number of cellular 

mRNAs. The L4 protein is part of the 50S subunit of the ribosome and capable of transcriptional and 

post-transcriptional regulation (Freedman et al., 1987). Singh et al. showed that binding of L4 to the 

catalytic domain of RNase E inhibits target specific cleavage. As a result increasing levels of yjiY and yhjX 

mRNAs were observed (Singh et al., 2009). 

In our model different aspects of nutrient selectivity are summarized (Figure 8.1). When E. coli grows on 

a preferred carbon source, like glucose or mannose, the PEP:sugar phosphotransferase system (PTS) 

inhibits the adenylate cyclase (CyaA) activity, which results in low intracellular cyclic AMP (cAMP) levels. 

The depletion of favorable carbon sources is accompanied by the raise of intracellular cAMP levels, 

which positively influences yjiY expression. In order to maintain an optimal cellular carbon supply, prior 

dispensable nutrients get associated. Thereby YehU/YehT and YpdA/YpdB coordinate the cellular 

response to peptides/amino acids and pyruvate by the formation of signaling unit together with YjiY and 

YhjX. In addition the BarA/UvrY TCS might integrate the availability of fatty acids (here: acetate) into the 

LytS/LytTR mediated response by triggering CsrA-dependent posttranscriptional regulation of yjiY and 

yhjX mRNAs. We suggest that this highly balanced regulatory network might be necessary to coordinate 

nutrient scavenging in order to readjust bacterial metabolism, e. g. in preparation for stationary phase or 

in order to explore new microenvironments. 
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8.3 The LytTR regulator YpdB and its molecular mechanism of DNA-

binding 
Recent studies have shown, that a variety of LytTR response regulators participate in virulence or 

virulence-associated mechanisms of many pathogenic bacteria (Table 8.1). Due to the structural 

properties of the LytTR DNA-binding domain an initially described consensus sequence seems to allow a 

greater variability than initially estimated (Del Papa & Perego, 2011). In contrast to that, the structural 

elements of the corresponding promoter DNA fragments are rather conserved. Nearly all LytTR 

regulators bind their DNA motifs in two direct repeats composed of 9 to 10 bps separated by 12 to 13 

spacer bps (Table 8.1).  

TABLE 8.1: Properties of LytTR response regulators  

Regulator Binding sequence (5’-3’) Spacer length (bps) Regulated gene(s) Reference 

AgrA (T/A)(A/C)(C/A)GTTN(A/G)(T/G) 12-13 agr locus, RNAIII (Koenig et al., 2004) 

AlgR CCGT(G/T)(C/G)(G/T)TC -* fimU-pilVWXY1Y, hcnA, algD (Lizewski et al., 2004) 

BlpR ATT(C/T)ANGANNT 10 blp operon (de Saizieu et al., 2000) 

BrsR ACCGTTTAG 12 smu.150, smu.423, smu.1906 (Xie et al., 2010) 

ComE (A/T)CA(T/G)TT(C/G)(A/G)G 12 comCDE, comAB (Ween et al., 1999) 

FsrA (T/A)(T/C)A(A/G)GGA(A/G) 13 fsrBDC, gelE-sprE (Del Papa & Perego, 2011) 

PlnC, PlnD TACGTTAAT 12 pln operon (Risøen et al., 2001) 

VirR CCCAGTT(A/C)T(T/G)CAC 8 pfoA, ccp, virU, virT, vrr (Cheung & Rood, 2000) 

YehT ACC(G/A)CT(C/T)A 13 yjiY (Chapter 2) 

YpdB GGCATTTCAT 11 yhjX (Chapter 3) 

* three binding sites 

Interestingly nucleotides adjacent to the identified binding motifs seemed to influence promoter activity 

and hence gene expression (Chapter 2) (Chapter 3) (Del Papa & Perego, 2011). This led to the suggestion 

that the DNA-response regulator interaction and associated structural rearrangements on the DNA level 

might play a role in LytTR mediated gene expression as it already has been show e.g. for cAMP/CRP 

regulation (Hardwidge et al., 2002).  

Surface plasmon resonance spectroscopy measurements with the phosphorylated mimetic YpdB-D53E 

indicated the importance of LytTR RR phosphorylation for initial DNA binding (Chapter 6). 

Phosphorylation of response regulators is a common mechanism in many bacterial signal transduction 

systems (Jung et al., 2012). It is often associated with conformational changes within the RR, which 

facilitate dimerization and subsequently induce gene expression. In accordance to that, recent structural 

studies on isolated receiver domain variants from the LytTR like RR ComE from Streptococcus 

pneumoniae demonstrated phosphorylation dependent monomer-to-dimer transition (Boudes et al., 

2014). 
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Besides the importance of phosphorylation further results from our SPR measurements suggest a novel 

allosteric two step binding mechanism. While binding of YpdB-D53E to yhjX promoter DNA is completely 

prevented upon substitution of motif M1, an interaction can still be observed when motif M2 is 

substituted (Chapter 6, Figures 6.2 and 6.3). This indicates that initial binding of a first RR molecule 

occurs on motif M1, before motif M2 can be occupied by a second RR molecule. Nevertheless earlier 

studies demonstrated that both motifs are essential for gene expression in vivo (Chapter 3). From our 

results we suggest, that the induction of conformational changes on DNA structure might facilitate 

binding to motif M2. Interestingly DNA analyses predicted an average curvature for motif M1 between 4 

and 6 degree, whereas motif M2 curvature ranged from 8 and 11 degree (Vlahoviček et al., 2003), which 

already indicates major structural differences between both motifs. In addition intermolecular 

interactions between both YpdB-D53E molecules might facilitate binding to motif M2, as it has been 

observed for KpdE recently (Narayanan et al., 2014).  

Finally target gene expression might be induced upon binding of the second YpdB-D53E molecule on 

motif M2, possibly by providing the required protein interface for RNA polymerase recruitment (Ptashne 

& Gann, 1997). For the LytTR domain of AgrA from S. aureus it was shown, that binding of two RR 

molecules induced strong DNA bending (Sidote et al., 2008), which could be an alternative mechanism to 

promote RNA polymerase binding. Interestingly the binding properties of YpdB-D53E to motif M2 

revealed a high dissociation rate. This rapid promoter clearance could function as a mechanism to 

prevent excessive gene expression and might enable a dynamic pulse expression control in a more 

switch-like manner (Geisel & Gerland, 2011). This idea is supported by the fact that many LytTR 

regulated genes participate in tightly regulated processes, e. g. toxin production or pathogenicity. 
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8.4 Outlook 

LytS/LytTR mediated signal transduction stills keeps a lot of secrets. The most fascinating questions deal 

with the following topics: What is the physiological role of these systems in the natural habitat of 

Escherichia coli? Is there any relationship to pathogenicity e.g. regarding host colonization in 

uropathogenic E. coli? Which compounds/stimuli are involved in signal perception? What are the ligands 

bound by the histidine kinases YehU and YpdA, and which stimuli are triggered via the transport proteins 

YjiY and YhjX? Which structural arrangements occur upon ligand binding and how do they affect the 

regulatory dynamics within the network? Which residues mediate contact sites for protein-protein or 

protein-DNA interaction? What are the structural properties of the accessory protein YehS and how is it 

functionally integrated into signal transduction? 

In order to address these questions different approaches might be convenient. Based on well-established 

infection models different pathogenic organisms could be employed to identify effects of LytS/LytTR 

mediated gene expression on virulence or host pathogenicity. Deletion of corresponding signaling 

pathways could show how the carbon control network is integrated in bacterial virulence, as it was 

previously done for K+ homeostasis via KpdD/KdpE (Freeman et al., 2013). Furthermore bioinformatics 

could provide new insights into the physiology of LytS/LytTR signal transduction systems. The 

distribution of homologous systems (none, only one or both LytS/LytTR systems) in other enterobacteria 

and the correlation to their natural habitats/sites of infection (e.g. stomach, large intestine, small 

intestine) might lead to new findings. So it is conceivable that pyruvate and a certain composition of 

amino acids and peptides could also function as bacterial biomarker e.g. for colonization. To fully 

understand the molecular mechanisms of LytS/LytTR mediated signal transduction, it is furthermore 

necessary to unravel all compounds and signals. Purification of inducing supernatants followed by liquid 

chromatography and mass spectrometric analyses could help to identify the missing stimulus for YehU. 

Taking into account that the stimulus might be integrated via the transport proteins YjiY and YhjX makes 

this even more challenging. Combined expression studies in mutant strains lacking e.g. ypdA, ypdB, yhjX 

and yjiY as well as binding experiments (e.g. using isothermal titrations calorimetry or flow dialysis) with 

purified YehU and its potential ligand will be necessary to obtain proof (Gerharz et al., 2003). 

Consistently the transport properties of YjiY and YhjX regarding their substrate specificity, their mode of 

transport (importer or exporter) and their energization have to be investigated (Jung et al., 1998). Initial 

characterization of additional intracellular signals could be done by testing the influence of different 

mutant strains or media compositions on metabolic flux analyses (Holms, 1996, Valgepea et al., 2010). 

Closely linked to this topic is next fascinating field of research: Which residues determine specificities 
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within the complex signaling unit? Which structural dynamics can be observed upon signal perception 

and how is signaling robustness ensured? To investigate residue specificities in vivo expression analyses 

as well as in vivo protein-protein interactions could be combined and verified with in vitro techniques 

like gel retardation experiments or co-immunoprecipitation (Gardner et al., 2014). Hence substitutions of 

single amino acids, insertions or deletions of favorable regions could be constructed. To solve the 

structural dynamics of complex formation in vivo real time imaging of fluorescent hybrid protein fusions 

or fluorescence resonance energy transfer spectroscopy (Sommer, 2012) could be applied. The structural 

arrangement of individual complexes or temporal formations could also get visualized by cyro-electron 

tomography (Briegel et al., 2012). Moreover solved protein structures will of course increase the 

knowledge e.g. regarding signal transduction, protein-protein interactions or ligand binding. This 

approach might also be very promising for the accessory protein YehS. Structural properties (e.g. binding 

of a certain co-factor) could lead to further insights into its accessory function and help to complete the 

picture of LytS/LytTR mediated signal transduction in E. coli. 
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