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Zusammenfassung

Der Schlüssel zur biologischen Funktion eines Proteins liegt in dessen Interaktion mit anderen

Molekülen. Da Proteine für die meisten Prozesse verantwortlich sind, die in der Zelle statt-

finden oder von ihr durchgeführt werden, wird die Untersuchung dieser Interaktionen dazu

beitragen, die komplexen Abläufe biologischen Lebens zu entschlüsseln. Um die Interaktionen

von Proteinen mit unterschiedlichen Biomolekülen sowohl identifizieren als auch genauer cha-

rakterisieren zu können, ist eine Vielzahl an interdisziplinären Verfahren entwickelt worden. In

diesem Zusammenhang sind verschiedene physikalische Methoden entstanden, die eine Bestim-

mung der Kräfte erlauben, welche die Interaktionen von Proteinen auf Einzelmolekülebene

kontrollieren. Das bekannteste Beispiel hierfür ist das Rasterkraftmikroskop (AFM). Betrach-

tet man die große Anzahl an Proteinen und somit potentieller Interaktionen, stellt der meist

geringe Durchsatz dieser Methoden einen Nachteil dar. Die Technik des Molecular Force Assay

(MFA) hingegen ermöglicht eine Parallelisierung von Einzelmolekülmessungen. Dieses Verfah-

ren bestimmt die mechanische Stabilität eines molekularen Komplexes durch den Vergleich

mit einem bekannten Referenzkomplex und wurde bereits zur Untersuchung von Fehlstellen in

DNA oder Protein-DNA Interaktionen angewandt. In der vorliegenden Arbeit wurde das Prin-

zip des MFA angepasst und weiterentwickelt, um die Untersuchung von Protein-Interaktionen

nicht nur mit DNA, sondern auch mit RNA sowie anderen Proteinen zu ermöglichen.

Die erste Studie dieser Arbeit demonstriert die grundsätzliche Fähigkeit des MFA, die Bin-

dung von RNA-Liganden sowie die selektive Hemmung der Aktivität des Proteins Dicer durch

diese Liganden effektiv zu testen. Das Nukleaseprotein Dicer ist ein Schlüsselelement der RNA

Interferenz. Durch das Schneiden von Vorgängermolekülen aus doppelsträngiger RNA akti-

viert Dicer kleine regulative RNAs. Die Identifikation von kleinen Molekülen, die als Liganden

für spezifische regulative RNAs den Aktivierungsprozess durch Dicer hemmen können, bietet

einen vielversprechenden Ansatz für zukünftige Therapien, da erhöhte Werte regulativer RNA

mit schweren Krankheiten in Verbindung gebracht werden. Um Protein-Protein-Interaktionen

mit der MFA Technik messen zu können, müssen kovalent gekoppelte Protein-DNA Chimäre

hergestellt werden. Im Rahmen dieser Arbeit wurde dafür das ybbR-tag/Sfp System als Me-

thode mit sehr hoher Effizienz sowie spezifisch lokalisierbarer Anbindung identifiziert. Diese

Chimäre sind auch für viele andere Anwendungen der Bio-Nanotechnologie nützlich, wie bei-

spielsweise für die kontrollierte Anordnung von Proteinen mit Hilfe der Single-Molecule Cut

& Paste Technik, die eine Genauigkeit im Angström-Bereich erreicht. Anhand des Model-
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systems der Bindung des Nanobodies Enhancer an verschiedene Varianten von GFP wird

die Charakterisierung von Protein-Protein-Interaktionen mit der MFA Technik demonstriert.

Die mechanische Stabilität des Proteinkomplexes wird hierbei mit einem bekannten DNA

Referenzkomplex verglichen, der als Kraftsensor dient. Die Unterschiede in der Stabilität der

verschiedenen Enhancer-GFP-Komplexe können Veränderungen in den Aminosäuren zuge-

schrieben werden, die gemäß der Kristallstruktur lokal wechselwirken. Im Allgemeinen ist

die Sensitivität der MFA Technik höher, je ähnlicher die mechanische Stabilität der beiden

Komplexe ist, die verglichen werden. Da die Proteinkomplexe in diesem Fall eine höhere Sta-

bilität als ein 40 Basenpaare langer DNA Duplex aufweisen, wird die mechanische Stabilität

der DNA sowohl intern durch Basenmodifikationen sowie durch die Bindung von externen

Liganden erhöht. Dies erlaubt es, die Sensitivität für dieses Modellsystem zu maximieren und

erweitert den dynamischen Bereich der Technik für zukünftige Untersuchungen von Protein-

Protein-Interaktionen enorm. Mithilfe der komplementären Techniken MFA und AFM kann

die interne Stabilisierung von DNA Komplexen durch Pyrimidinbasen, die mit einer Pro-

pynylgruppe modifiziert sind, näher untersucht werden. Die Studie zeigt, dass der Stabilisie-

rungseffekt durch die Propynylbasen sehr stark von der Zeit und Temperatur der Inkubation

des DNA-Doppelstrangs abhängig ist.

Zusammenfassend zeigt die vorliegende Arbeit, dass die MFA Technik nicht nur ein wertvol-

les Instrument für die Untersuchung von DNA-Mechanik ist, sondern auch die parallelisier-

te und kraftbasierte Charakterisierung von Proteininteraktionen mit verschiedenen Biomo-

lekülen ermöglicht.



Abstract

A protein’s biological function is reflected in the interactions it forms with other molecules.

Proteins can be regarded as the workhorses of the cell and are involved in most tasks performed

in and by the cell. Investigation of these interactions will thus contribute to decipher the

complex processes of biological life. Due to the variety of biomolecules with which proteins can

interact, a range of interdisciplinary methods have been developed to identify and characterize

these interactions. Different physical techniques have evolved that are able to determine

the forces that control protein interactions on a single-molecule level, the most prominent

example being the atomic force microscope (AFM). A common drawback of these techniques

is their low troughput contrasting with the excessive number of proteins and thus possible

interactions. A method that allows for the parallelization of single-molecule measurements is

the Molecular Force Assay (MFA). This technique determines the mechanical stability of a

molecular complex by comparing it to a known reference complex and has been applied e.g.

to the investigation of DNA mechanics and protein-DNA interaction. In the present thesis,

the principle of the MFA is adapted and developed further to enable targeting of protein

interactions with the other major classes of biomolecules besides DNA, namely RNA and

other proteins.

The ability of MFA to act as a screening assay for the binding of RNA ligands and the

selective inhibition of the activity of protein Dicer by these ligands is demonstrated in a

proof-of-principle study. The nuclease Dicer is a key element of the RNA interference pathway

as it matures small regulatory RNAs by cleaving their precursor molecules into pieces. The

identification of small molecule ligands for specific regulatory RNAs that are able to interfere

with Dicer cleavage can pave the way for future therapies, as elevated levels of such matured

functional RNAs have been related to severe diseases. In order to measure protein-protein

interactions with the MFA, covalently coupled protein-DNA chimeras have to be generated.

Here, the ybbR-tag/Sfp system has been identified to provide very high efficiency and variable

site-specificity. Those chimeras are useful for many other applications in bionanotechnology,

such as for the controlled arrangement of proteins at angstrom level by Single-Molecule Cut &

Paste. With the model system of the nanobody Enhancer binding to different variants of GFP,

the adaption of the MFA technique for the characterization of protein-protein interactions

is established. The mechanical stability of the protein complex is hereby compared to a
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known DNA reference duplex acting as the force sensor. The different stabilities of the

respective Enhancer-GFP complexes can be attributed to alterations in the amino acids that

form contacts according to data from crystal structures. In general, the sensitivity of the MFA

is dependent on the similarity of mechanical stability of the complexes that are compared. As

the protein complexes in this case have a higher stability than a 40 base pair DNA duplex, the

DNA’s mechanical stability is increased internally by base modifications as well as by binding

of external ligands. This allows to adjust the window of maximum sensitivity for this model

system and broadens the dynamic range of the assay tremendously for future investigations of

protein-protein interactions. A study with the complementary techniques of MFA and AFM

investigates the stabilization of DNA complexes harboring pyrimidines internally modified

with an additional propynyl group. The stabilization effect is found to depend strongly on

time and temperature of the incubation of the DNA duplex.

In summary, this thesis demonstrates that the MFA is not only a valuable tool for the inves-

tigation of DNA mechanics but also capable of quantifying protein interactions with different

biomolecules in a parallel and force-based manner.
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1 Introduction

The knowledge about the complex biological processes governing the animate world has grown

tremendously over the last decades. After milestones such as the discovery of the double-helix

structure of DNA in 1953 [1] or the central dogma of molecular biology [2, 3] stating the

direction of information flow in the cell - from DNA over RNA to functional proteins - the

interdisciplinary efforts of the human genome project even allowed to decipher the human gene

code in 2003. In the era of post-genomics, focus is shifting towards identifying the function

of the proteins that are synthesized according to the information in the genes. Proteins can

be regarded as the workhorses of the cell and are responsible for most processes conducted in

or by the cell. As a protein’s functionality is reflected in its interaction with other molecules,

much of its function can be predicted from the identification of its interacting partners and

the characterization of its location in the cell [4, 5], giving rise to the study of interactomes

and proteomes. Considering the excessive number of proteins and thus possible interactions

with nucleic acids or other proteins, the most promising approach to identify, understand and

possibly influence the processes governed by proteins is a combination of interdisciplinary

techniques. A large variety of approaches have been developed to target the interaction of

proteins with their different, specific ligands. Among many others, examples are chromatin

immunoprecipitation [6] for protein-DNA interaction, RNA pull-down assays [7] for protein-

RNA interaction or yeast-two-hybrid assays [8] for protein-protein interaction. A generic

difficulty in studying proteins in comparison to nucleic acids arises from the infeasibility of

easy amplification of proteins for analysis. Additionally, proteins are in general not able

to recover their native structure after denaturation. While some techniques focus on the

high-troughput identification of interactions, others address the properties of the interactions

in more detail. In recent years, physical approaches have been developed that allow for

the determination of the forces governing inter- and intramolecular interactions on a single-

molecule level. Besides optical tweezers [9], the atomic force microscope (AFM) [10] is hereby

the most widely used technique. The AFM allows to measure forces in the piconewton range

between a very sharp cantilever tip and a surface, and was originally developed to image

the topology of surfaces. In order to detect interaction forces in biological systems, the

molecule or interacting molecular complex in question can be clamped between surface and

tip. Retraction of the cantilever yields a force load on the molecule(s), which is detected via

cantilever deflection. From the resulting force-extension curve, different informations such



2 1. Introduction

as the most probable rupture force of an interaction between two molecules or the unfolding

of protein domains can be deduced. This principle has already been applied successfully

to study different protein-ligand interactions [11, 12, 13] as well as other biological questions

such as protein unfolding [14] or the elastic and mechanical behavior of double-stranded DNA

[15, 16]. Drawbacks the AFM technique shares with other single-molecule approaches are the

high effort needed to gather statistically sufficient data sets or the calibration uncertainties

that arise due to the difficulty of measuring different interactions in parallel.

In order to overcome the limitation of low throughput in force-based single-molecule exper-

iments, the Molecular Force Assay (MFA) has recently been developed [17]. Relying on the

principle of determining the stability of a molecular complex by comparing it to a known

reference complex, single-molecule measurements can be conducted in parallel. In detail, the

two complexes to be compared are attached in series to form a so-called Molecular Force

Probe (MFP) upon which an external force is applied. This force then directly correlates the

mechanical stability of both molecular bonds until, statistically, the weaker one ruptures. In

one single measurement, thousands of MFPs can be tested in parallel, thus allowing for a

statistically relevant conclusion. Additionally, the technique allows for multiplexing of both

sample and reference bond for further parallelization. The outcome of the experiment is an-

alyzed via a fluorophore attached to the linker between the two complexes, which stays with

the intact complex after force load. As the size of the force sensor in this approach is reduced

to a single molecular bond, the force resolution is increased significantly in comparison to the

techniques with macroscopic sensors such as the cantilever in an AFM measurement, where

the resolution is limited due to thermal fluctuations. Choosing the reference complex to be as

close as possible in mechanical stability to the sample complex optimizes the force resolution,

allowing the MFA to detect for example single base pair mismatches [17]. MFA has further

been applied e.g. to detect the binding of small molecule ligands to DNA [18] as well as for

the characterization of protein-DNA interaction [19].

The scientific scope of this thesis was to extend and adapt the principle of parallelized force-

based MFA measurements towards the characterization of protein-RNA interaction as well as

to develop a molecular set-up which enables the measurement of protein-protein interactions

with the MFA. These enhancements will allow the MFA to address a large variety of current

biological problems regarding the interactions of proteins with DNA, RNA and other proteins.

In the course of this thesis, proof-of-principle studies for different model systems were con-

ducted. Due to its straight-forward programming and easy handling, double-stranded DNA

was chosen as the reference complex for all different set-ups of the MFA, thus acting as the

force sensor.

Although the other nucleic acid, RNA, is chemically relatively similar to DNA, the small

differences render RNA prone to degradation. This corresponds to its different tasks in the
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cell but makes in vitro studies of RNA more challenging. RNA molecules conduct a variety

of different functions in a living cell. For example, messengerRNAs act as the carrier of infor-

mation stored on the DNA genes and transferRNAs are the adopter molecules between the

nucleic acid sequence and the amino acid sequence of the protein in the process of translation.

The RNA interference mechanism [20] is an endogenous means used by the cell to influence

gene expression at the stage of translation. Double-stranded RNA precursor molecules are

cleaved into small pieces of 19-22 base pairs by the protein Dicer [21]. Due to this maturation

process, one of the RNA strands can now guide a protein complex called RNA induced silenc-

ing complex (RISC) to specific messengerRNAs, which in most cases leads to suppression of

protein expression. The two main classes of small regulatory RNA that have been identified

are short interfering RNA (siRNA) and microRNA (miRNA). They differ in origin and func-

tion but share the processing by Dicer. Elevated levels of some miRNAs have been related

to severe diseases such as cancer [22]. For that reason, selective inhibition of Dicer activity

by the binding of small molecule ligands to specific miRNA precursors might be a promising

approach for new therapies. Section 4.1 and publication A.1 describe the proof-of-principle

set-up of a MFA-based screening assay for such small molecule ligands. With an RNA ap-

tamer for the aminoglycoside paromomycin integrated into the sample complex, a decrease

in Dicer processing upon ligand binding could be verified. Both the minimum amount of

ligand necessary for Dicer inhibition as well as the dissociation constant of the ligand to its

aptamer could be determined. Due to its parallel format the MFA can be applied to screen

for different ligands or miRNA sequences simultaneously.

In order to target protein-protein interactions with the MFA, it is essential to generate cova-

lently coupled protein-DNA chimeras, as they enable to link the protein complex in question

to the DNA duplex acting as the force sensor. The coupling is required to be covalent to

exclude the case of rupture of this link during the force loading process in MFA, which would

render the technique ineffective. Secondly, it needs to be site-specific, as the unbinding force

of a molecular complex depends on the pulling geometry and thus the specific position of the

attachment [23]. Also, a minimal modification of the protein is desired. As the general meth-

ods for covalent protein attachment vary widely in experimental cost, yield and applicability

for the coupling to DNA [24], no gold standard exists so far. For the experiments presented in

this thesis, the coupling of DNA to proteins via an eleven amino acid long protein tag, called

ybbR-tag [25], has been identified as a highly robust and efficient means for the generation

of such chimeras, as described in detail in section 4.2. On the protein side, the ybbR-tag

can be implemented on either the N- or C-terminus or at accessible unstructured regions and

thus provides the possibility for site-specific attachment. Mediated by the Phosphopanteth-

einyl Transferase Sfp [26, 27], the tag couples covalently to Coenzyme A, which can easily

be reacted to maleimide-modified DNA. Additionally to MFA experiments, the generation of

protein-DNA chimeras with the ybbR-tag has been employed successfully for the controlled
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arrangement of proteins at angstrom level with the Single-Molecule Cut & Paste technique,

as described in publication A.2. This technique allows to pick up, transfer and deposit single

molecules from a depot to a target area with an AFM cantilever. Thereby it relies on a force

hierarchy and the binding properties of DNA. Hence, the creation of such chimeras is not only

useful for the MFA technique, but offers various advantages as the DNA provides a unique

handle e.g. for identification and functionalization [24, 28].

The generation of protein-DNA chimeras enables the development of the MFA towards the

measurement of protein-protein interactions. The high biological relevance of the detection

and characterization of protein-protein interactions is reflected in the increasing interest in

the study of proteomes and interactomes [29]. The resulting knowledge of networks of pro-

tein interactions will help to better understand the different processes in the cell and the

functionality of the individual interaction partners. The MFA technique is able to contribute

by its capability to quantify mechanical strengths of protein-protein interactions. Hereby, it

relies on the high parallelization of single-molecule experiments and the ability to multiplex

both proteins of the complex to be investigated as well as the DNA force sensors. As a model

system, the interaction between different types of Green Fluorescence Protein (GFP) to two

variants of the nanobody Enhancer is chosen. Enhancer is a camelid-derived, single-domain

antibody [30] and the characterization of its binding properties with MFA is described in

section 4.3 and publication A.3. The GFP-nanobody complexes hereby display a higher me-

chanical stability than a 40 base pair DNA duplex. In order to maximize force resolution,

the mechanical stability of the DNA duplex is enhanced via internal base modification and

external binding of a ligand. As ligands, different sequence-specific pyrrole-imidazole hairpin

polyamides [31] were employed. For the internal stabilization, pyrimidines were modified with

a propynyl group at their C-5 position, which extends into the major groove and increases

base-stacking interactions [32].

The need for further quantification of the stabilized DNA force sensors gave the motivation for

the study presented in section 4.4 and manuscript B.1. Here, the complementarity of the AFM

an MFA techniques is utilized to investigate the impact of the above mentioned C-5 propynyl

bases on the mechanical stability of double-stranded DNA. Propynyl-modified DNA offers

the advantage of standard base-pairing and easy integration into the DNA during chemical

synthesis. The measurements reveal that the degree of stabilization is strongly dependent on

the incubation conditions. The duplexes pre-annealed with high temperature for the MFA

experiment display significant stabilization. In contrast, the complexes formed during an AFM

measurement at room temperature and with short incubation times result in the same most

probable rupture force as unmodified DNA duplexes. Due to its property of enhancing the

mechanical stability of double-stranded DNA when the corresponding annealing conditions

are applied, propynyl modifications broaden the dynamic range of the MFA. Additionally,

they can be useful for many other applications in nanotechnology where DNA is used as a
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building block.

The biological context of the different studies presented here is sketched in chapter 2, with

emphasis on the model systems investigated in the course of this work. In chapter 3, the

technique of the MFA is described in detail. Special focus lies on the status quo of the possi-

ble applications and molecular set-ups that have been realized so far. Chapter 4 summarizes

the results of the studies conducted for this thesis. The corresponding publications and a

manuscript accepted for publication can be found in the appendix. Finally, a short out-

look proposes further developments which could render the technique of the MFA even more

efficient for addressing biologically relevant questions.





2 Biological Context

As the physical interaction of a protein with other molecules determines its biological prop-

erties, the determination and quantification of those interactions is of utmost importance in

order to understand the fundamental processes in the cell. This chapter aims to illustrate

the biological context of the studies on protein interactions presented in this thesis. After

a short introduction into the forces that govern protein behavior, an overview over protein

interactions with the molecules of interest for this thesis is given. Special focus hereby lies on

the model systems investigated in the course of this thesis. Finally, the physical properties

that enable DNA to act as a force sensor in MFA experiments and methods that allow to

increase the force range are sketched.

2.1 Forces Determining Protein Function

Understanding and quantifying the intermolecular forces that control protein behavior is the

goal of many biophysical studies [33]. In general, the intermolecular forces between biological

molecules do not differ from those between other types of molecules. However, the high degree

of complexity of biomolecules and the fact that living systems are never at thermodynamic

equilibrium renders the investigation of those biological interactions much more difficult. A

detailed picture of intermolecular forces is given e.g. in [34]. In short, the forces determining

protein interaction involve specific short ranged “lock-and-key” interactions at the binding site

as well as nonspecific forces that operate outside the binding pocket. The nonspecific interac-

tions include electrostatic, van der Waals and steric forces. In aqueous solutions, as present

in biological systems, the electrostatic interaction between charged particles is mediated by a

double layer of ions in the solution between the surfaces of the charged molecules. Besides this

electrostatic double-layer force, the second important long-range contribution to protein inter-

action are the van der Waals forces, which display a longer range for macroscopic bodies than

for atoms and small molecules. Steric Pauli repulsion forces operate at short intermolecular

distances. Additionally, high spacial and chemical complementarity during molecular recog-

nition allows to form a set of weak, non-covalent but specific “lock-and-key” interactions. The

simultaneous formation of multiple hydrogen bonds, hydrophobic interactions and/or van der

Waals interactions can lead to a large binding free energy. Those interctions are short-ranged
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and determined by the local geometry [35, 33]. As a consequence, every protein interaction

will result from a superposition of all or some of these different forces [33, 36]. The biological

properties of proteins are determined by those physical interactions with other molecules. For

example, the interaction with a ligand can cause an allosteric change in the structure or dy-

namic of the protein, resulting in a switch to an active or inactive state [37]. Recently, it has

become more and more acknowledged that also external mechanical forces such as tension,

shearing or compression are able to tune the state of proteins [38, 37].

Different examples illustrate the manifold ways forces determine the function of proteins. A

prominent shear-sensing protein is the von Willebrand factor, a blood coagulation factor.

The hydrodynamic forces in shear flow of arteriolar bleeding induce a conformational change

that activates the protein by exposing an active site [39]. The autoproteolyzed domains

of Adhesion-GPCRs are hypothesized to unbind at a certain force threshold acting as a

protective mechanism upon exposure to mechanical stress [40]. Mechanical load can decrease

the stability of a molecular interaction, which is important e.g. in signaling processes such

as cell differentiation and immunological recognition. At the other extreme, so called “catch

bonds” are stabilized by exerted forces. Here, cell adhesion proteins like integrins [41] and

cadherins [42] are prominent examples. Other proteins like molecular motors are able to

generate forces and can in turn also be regulated by them in their activity [43].

The forces controlling protein behavior for enzymatic, regulatory, or motor function can

indirectly be derived from thermodynamic or kinetic measurements. More recently, the de-

velopment of techniques such as the single-molecule force spectroscopy with the atomic force

microscope (AFM) [10, 44] or optical tweezers [9] render the inter- and intramolecular forces

and underlying energy landscapes directly accessible [33, 13, 12]. One of the first protein-

protein interactions to be analyzed with the AFM was the well-known Biotin-Avidin complex

[11]. As stated by Seifert and Gräter [37], all external perturbation of the protein, not only

mechanical stretching but also the binding of a ligand, can be regarded as an external force

acting on the protein. Hence, single-molecule force spectroscopy methods are very general

tools to address questions such as allosteric mechanisms.

In addition, external forces exerted by force spectroscopy techniques can be employed to dif-

ferentiate specifically from non-specifically bound ligands due to the different forces needed to

separate them. Also, complete unfolding of a protein under external force provides informa-

tions on the different domains and thereby on the structure and functionality of the protein.

Furthermore, external forces can be used to measure the change in mechanical stability of a

molecular complex arising for example from the binding of a protein ligand to a DNA helix.

Rather than studying the forces of the interaction, the aim in this case is to use the external

force as a tool to test indirectly if an interaction takes place, and, if yes, to quantify it. The

Molecular Force Assay, the technique primarily used for the studies presented in this thesis,
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is capable both of the direct and indirect use of the external force, as will be explained in

more detail in chapter 3.

2.2 Protein Interactions

Proteins are synthesized according to the information stored in the genomic DNA. Initially,

a RNA copy of the DNA coding sequence is produced during the transcription process. The

information now given in the RNA copy is then translated into an amino acid polypeptide

chain, which gains its functionality as a protein by folding into a three-dimensional structure.

In both parts of this process of gene expression, a variety of proteins play again a crucial

functional and regulatory role. But as the workhorses of the cell, proteins are also needed for

most other processes such as signaling, transport or metabolism. In order to perform these

different tasks, proteins need to interact with molecules such as DNA, RNA or other proteins.

In order to understand the processes in the cell, and, one step further, influence them, it is

necessary to target those interactions between proteins and the different biomolecules.

This section wants to give a short overview over the purposes of the interactions that proteins

undergo with other DNA, RNA or protein molecules. In particular, the model systems studied

in the context of this thesis are introduced.

2.2.1 Protein-DNA Interactions

Proteins are synthesized in the gene expression process according to the information coded in

the DNA. But proteins also interact with DNA in manifold ways. A vast network of proteins

is responsible for processes altering the cell’s DNA such as replication, detection of damage,

repair or degradation. Depending on the task, a protein interacts alone or in complexes with

other proteins with the DNA. For instance in epigenetics, binding of histone proteins to DNA

influences gene expression depending on the modification of the histones, as it determines

the accessibility of different parts of the genomic DNA for transcription [45]. Protein-DNA

interactions also perform, control and regulate all other processes in the transcription, the

first part of gene expression. Examples are helicases opening the double helix and the RNA

polymerase adding the matching RNA nucleotides to the complementary DNA strand. One

of the most studied classes of DNA binding proteins are transcription factors, which are im-

portant means of the cell to regulate the gene expression. By binding to the DNA mostly

close to the promoter region of a gene, either alone or in complex with other proteins, tran-

scription factors are able to activate or repress the binding of the RNA polymerase and thus

regulate the expression level. Many transcription factors are able to interact with different

binding sequences with varying strength. All these regulatory interactions are responsible
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for a very fine-tuned level of protein expression which allows the cell to react flexibly and

rapidly upon demand [36]. In order to be able to bind to DNA, the proteins possess one or

more DNA binding domains. Generally, it can be distinguished between proteins that bind

DNA either with a general affinity or only to specific binding sequences as well as between

proteins binding to single- or double-stranded DNA. Depending on the binding domain, the

proteins mostly bind into the major groove of B-DNA as it exposes more functional groups.

Examples of common motifs in the binding domains are the helix-turn-helix, leucine zipper

or zinc finger domains (for details see e.g. [36]).

The interaction of proteins with DNA can be detected indirectly as it alters the mechanical

stability of the DNA under external load depending on the chosen protein. One example for

the study of protein-DNA interaction with the MFA in this indirect way can be found in [19].

Here, the stabilization effects of the DNA upon binding of the type II restriction endonuclease

Eco-RI and the transcription factor p53 are compared and quantified. In order to determine

the binding strength of a transcription factor directly, another set-up of the MFA is employed

in [46]. In this study, the binding of an artificial six zinc finger fusion protein to different DNA

binding motifs is investigated. Due to the abundant occurrence in eukaryotic transcription

factors, zinc finger proteins are very interesting model systems. Details on the zinc finger

study can be found in publication A.4 [47], but will not be discussed further in this thesis.

More information on the different set-ups of the MFA is given in section 3.3.

2.2.2 Protein-RNA Interactions

Far from being only the intermediate carrier of the information stored in DNA, functional

RNA molecules are more prevalent than previously imagined. Beside the messengerRNA

(mRNA), the copy of a gene encoded on the DNA, so-called non-coding RNAs are functional

units that are not translated into proteins. In translation, transferRNAs act as adaptor

molecules between the nucleic acid code of the mRNA and the amino acid sequence of the

protein. The ribosome, where the translation takes place, is a protein-RNA complex which

consists of more than 60% ribosomal RNA. Other examples are enzymes build from riboso-

mal RNA, called Ribozymes, or microRNAs (miRNAs) that play a role in gene expression

regulation. What the different coding and non-coding RNAs have in common is that their

function is almost always mediated through the interaction with proteins, making the study

of RNA binding proteins and thus protein-RNA interaction a rapidly expanding field [48].

RNA-binding proteins are for example key players in the regulation of gene expression as

they allow for the post-transcriptional control of mRNAs such as alternative splicing, RNA

editing, mRNA localization or the control of the recruitment of ribosomes for the translation.

The protein-RNA interaction is in general similar to the interaction with DNA, although the

discrepancy in the helix structure of RNA leads to differences in interaction motifs. As the



2.2 Protein Interactions 11

major groove of RNA is deeper and narrower than in DNA, it is relatively inaccessible and

prevents e.g. the binding of an alpha helix, which is very common in DNA binding motifs

[49]. So far, the “Double-stranded RNA-binding motif” and the “RNA-recognition motif” for

single stranded RNA have been discovered, and recently it has been shown that the common

DNA-binding zinc finger motif is also capable of recognizing RNA [50]. Due to the different

functions and tasks of RNA molecules in comparison to DNA, RNA is very susceptible to

degradation and displays shorter half-lives. This makes it experimentally more challenging to

study the interaction of proteins with RNA than with DNA and special care has to be taken

in the handling of the samples in in vitro experiments such as the MFA.

Model System: Nuclease Dicer Cleaves Double-Stranded RNA to Start the RNAi

Pathway

One example for a protein interacting with double stranded RNA that has increasingly been

attracting attention is the endoribonuclease Dicer, which plays a central role in the RNA in-

terference (RNAi) pathway. RNAi is a mechanism of gene regulation in the cell, during which

suppression of gene activity is triggered by double-stranded RNA in a homology-dependent

manner [51]. Dicer cleaves double stranded RNA (dsRNA) precursor molecules into pieces of

19-23 nucleotides. After unwinding, one of the single short RNA strands is incorporated in a

multi protein complex to form the RNA-induced silencing complex (RISC). RISC then em-

ploys the RNA template to identify target mRNA via Watson-Crick base-pairing and usually

inhibits translation. Two main classes of single-stranded RNA involved in metazoan RNA

interference have been identified. They differ in their origin and function but share process-

ing by Dicer: short-interfering RNA (siRNA) and microRNA (miRNA) (see figure 2.1). The

precursors of siRNA are long dsRNA, which are taken up into the cytoplasm from the envi-

ronment or originate from sources like the transposons and seem to act as defenders of genome

integrity in response to foreign or invasive nucleic acids [52]. In contrast, miRNAs are believed

to function as regulators of endogenous genes. They are transcribed and pre-processed in the

nucleus into incomplete base-paired stem-loop structures. Those so-called pre-microRNAs

are then processed in the cytoplasm by Dicer, which cuts off the loop structures in order

to activate the miRNAs. Whereas in most cases siRNA binds to fully complementary tar-

get mRNA, leading to the degradation of the mRNA, complete homology is not required for

miRNA. The degree of base-pairing governs the resulting downstream process. Mostly, incom-

plete hybridization due to base pair mismatches leads rather to translation inhibition than

degradation of the mRNA [53]. In humans, more than 400 different miRNAs are expressed

that are believed to be involved in the regulation of at least 30% of all genes [36].

The multidomain ribonuclease Dicer [54] is found in several variants, sometimes with different

tasks, in the cytoplasm of all eukaryotes studied to date. However, the L-shape of the protein
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Figure 2.1: The endonuclease Dicer (highlighted in yellow) plays a central role in the RNA inter-
ference pathway. It is responsible for the processing of double stranded RNA precursor
molecules from endo- and exogenous sources to pieces of 19-23 nucleotides. The matured
short-interfering RNA and microRNA are subsequently integrated into the RNA-induced
silencing complex (RISC) in order to guide it to target mRNA, mostly for the inhibition
of translation. Reproduced from [51].
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seems to be well-conserved. A PAZ domain in the head of Dicer is responsible for the recog-

nition of dsRNA. Connected to the PAZ domain by a ruler domain, two RNAse III domains

sit adjacent to each other and catalyze the hydrolysis of the dsRNA. A helicase forms the

base of the L-shape. The distinct length of the ruler domain enables the processing of the

dsRNA into pieces of equal length [55, 21]. Dicer cleaves RNA strands with different lengths

(but more than 30 nucleotides) with equal efficiency, but a 3’ 2-nucleotide long overhang, as

present in pre-miRNAs, increases Dicer’s efficiency compared to blunt ends [56].

Severe illnesses like cancer can result from malfunctions in the RNAi pathway. As shown in

section 4.1, the MFA technique is capable of measuring Dicer activity. This can be utilized

to test means of influencing its ability to activate specific RNA substrates in order to correct

for malfunctions.

2.2.3 Protein-Protein Interactions

The ability of proteins to interact with other proteins is essential for most reactions in a living

cell and thus one key element for its normal functioning. A protein’s function is reflected

in its interaction with others so that much of its tasks in the cell can be predicted from

the identification of its interaction partners. Hence, the characterization of protein-protein

interactions is crucial in order to gain a better understanding of many fundamental processes

in nature [5]. Proteins interact through their surfaces with a set of weak, non-covalent bonds

and hydrophobic interactions as described in section 2.1. Since each individual bond is weak,

effective binding occurs via many of them simultaneously when the contours of the binding

epitopes match very closely like a hand in a glove. This enables the interaction between

proteins to be very specific in location, affinity and kinetics [36, 57]. Similar to the interaction

with nucleic acids, typical protein domains involved in the recognition of other proteins have

been discovered, although in a larger variety due to the high complexity of the proteins’

molecular architecture [58]. Protein-protein interactions are usually classified and devided

into permanent and transient interactions [59]. They allow proteins to form either homo- or

heterocomplexes, assemble pair-wise or as complex molecular machines with a high number

of molecules. Regarding the central role of protein-protein interactions for the processes in

the cell, it is not surprising that aberrant interactions e.g. due to misfoldings of proteins have

been related to various diseases such as Alzheimer’s disease, Creutzfeld-Jacob, and cancer

[60, 61]. Determining the protein-protein interactions that occur in the cell and form the

so-called interactome is thus at the center of current research in order to understand, and, in

a second step, influence the processes that lead to diseases. The key problem herein lies in the

extensive number of interactions in any given organism. The size of the human interactome is

estimated to be in the order of 650, 000 interactions [62]. Presently, the processes that control

protein-protein interactions are mostly described in terms of pair-wise interactions. However,
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in vivo, the interactions are more often than not part of complex molecular networks that

are highly dynamic in time and space [5, 63]. The fact that, in contrast to DNA and RNA,

proteins can not be easily amplified for analyzation and the high complexity of the networks

render the investigation of protein-protein interactions challenging.

Different experimental techniques for the study of protein-protein interactions have been de-

veloped [64]. Prominent examples for high-throughput techniques tackling the high number

of interactions are yeast-two-hybrid assays [8], protein microarrays [65], or microfluidic-based

techniques [66]. Furthermore, other methods exist that are able to characterize the inter-

actions in greater detail such as X-ray crystallography [67], fluorescence resonance energy

transfer (FRET) [68], or surface plasmon resonance [69]. The studies in this thesis focus

on the interaction forces that control the interactions. To this end, the MFA technique was

adapted in order to be able to quantify protein-protein interaction strength in a parallel man-

ner, as shown in section 4.3. Generally, computational means are employed to predict possible

interactions and functions in addition to experimental techniques [57].

Model System: GFP-Nanobody Interaction

The model system for protein-protein interaction investigated in the course of this thesis is

the binding of three variants of Green Fluorescent Proteins (GFPs) [70] to the GFP-binding

nanobody Enhancer [30].

GFPs are well-known fluorescent proteins of about 27 kDa that are commonly used e.g. to

label cells across organisms or are coexpressed to act as reporter for gene expression. Wild

type GFP (wtGFP) and its derivates investigated here, super folder GFP (sfGFP) [71] and

enhanced GFP (eGFP) [72], share the same general molecular architecture. An outer barrel

structure consisting of beta sheets encases the chromophore in its center. The standard

wtGFP is characterized by its dual-peak excitation at 395 and 477 nm which both result in

an emission at about 507 nm. By mutagenesis, many variants have been created to ensure for

example higher brightness, such as with eGFP, better folding properties, such as with sfGFP,

or the emission at other wavelengths [36].

Nanobodies are single-domain antibodies that are derived from camelids. Their advantage

in comparison to conventional antibodies lies in their reduced size and enhanced stability

while still featuring similar antigen-binding characteristics. The nanobody “Enhancer” (PDB

3K1K, ≈ 13.5 kDa) has been generated and selected for its effect on fluorescence emission of

wtGFP [30]. Upon binding of Enhancer, the fluorescence of wtGFP is increased by a factor

of four. This is attributed to rearrangements in the chromophore environment induced by the

binding of Enhancer. The wtGFPs binding epitope for Enhancer lies on the outer beta barrel

structure, as determined in the crystal structure (see figure 2.2) [30]. This outer structure is
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Figure 2.2: (a) Crystal structure of the Enhancer (light blue ribbon model)- wild type GFP (green
ribbon model) complex displaying the binding epitope on the GFP beta barrel surface.
(b) The chromophore environment of GFP located in the center of the beta barrel is
altered upon complexation with Enhancer yielding the change in fluorescence intensity.
Reproduced from [30].

conserved for the other mutants investigated here, enabling Enhancer to bind those, too. Due

to the nanobodies’ excellent binding specificities to GFP and their being stable and functional

in living cells, they have been employed for numerous applications. For example, they have

been used to monitor protein expression and sub-cellular localization as well as translocation

events in vivo [30], been employed for high affinity capture of GFP fusion proteins to allow

for targeted manipulation of cellular structures [73] or enabled GFP to act as scaffold for the

manipulation of gene expression [74].

For the proof-of-principle study presented in this thesis in section 4.3, this model system offers

the advantages of being well characterized. Additionally, the GFP can act as an intrinsic

fluorescence label for the control of the correct assembly of the MFA.
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2.3 DNA as a Force Sensor

The recent technical developments that allow to synthesize DNA strands upon demand in

a fast and cheap manner have rendered DNA the perfect candidate for the use as building

block in nanotechnology. The DNA’s unparalleled properties such as its sequence-specific

self-assembly, robustness and simplicity enable to create and build two and three dimensional

structures at the nanoscale. Examples are the prominent scaffolded DNA origami [75, 76, 77],

small “DNA bricks” which can be assembled to larger structures in a LEGO-like fashion [78]

or other molecular devices [79]. In vivo, DNA is mostly present double-stranded, with two

antiparallel DNA strands forming the famous double helix proposed by Watson and Crick

[1]. In the most common and stable conformation, the Watson-Crick base pairing, guanine is

bound to cytosine via three and adenine to thymine via two hydrogen bonds, as shown in the

schematic depiction in figure 2.3 (A).

Several factors contribute to the thermal stability of a DNA duplex. Primarily, the helix is

stabilized through base-stacking of adjacent bases. Although the hydrogen bonds of the base-

pairing also contribute to the overall stability of the helix, their contribution is very small in

comparison to the base-stacking. Additionally, the sequence is important for the stability as

duplexes with a higher percentage of G-C base pairs melt at higher temperatures. However,

the higher stability of guanine-cytosine rich sequences is also mostly due to the dipole-dipole

interactions in base-stacking [81]. A DNA duplex is weakened by possible non-Watson-Crick

base pairings [82] and bulges. In general, the Coulomb repulsion between the negatively

charged phosphate backbones as well as entropic effects act destabilizingly on the DNA. The

entropy is reduced upon duplex formation as a DNA duplex has a much longer persistence

length than a single strand, and thus less degrees of freedom. In addition, the hydration shell

of the double helix is higher than that of two single strands, yielding a destabilizing entropic

effect of the solvent. For the experiments conducted for this thesis, DNA duplexes have been

applied to act as force sensors. Two ways to unbind a DNA helix under force have been

utilized (see figure 2.3 (B)). The DNA strands were always attached at their terminals. In

the so-called zipper mode, the DNA is opened from one end, so that one base pair at a time

is ruptured in a quasi-equilibrium process. In this mode, the forces needed to melt the DNA

duplex are not dependent on the force loading rate but differ for A-T-sequences (≈ 10 pN)

and G-C-sequences (≈ 20 pN) [15]. Sequences with mixed content of all bases rupture at

medium forces. In contrast, in shear geometry the force is applied parallel to the helix axis

to two opposing ends of the DNA, loading all base pairs simultaneously. Thus, the rupture

force here depends on the length of the complex, the force loading rate [83] and if the strands

were attached at their 5’ or 3’ termini [84]. Already at duplex lengths of 40 base pairs a

rupture force of about 65 pN is reached. Higher average forces can not be achieved with

short oligonucleotides, as DNA reaches a force plateau at about 65 pN when sheared due to
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Figure 2.3: (A) Schematic depiction of the chemical structure of DNA with Watson-Crick base-pairing.
Adapted from [80]. (B) From its termini, DNA can be melted in two geometries. While
in the zipper geometry the force is applied on one end of the helix and one base pair at a
time is opened, in shear geometry the force is loaded parallel to the axis of the helix and
thus on all base pairs simultaneously.

the so-called BS-transition [16].

The difference in rupture force depending on the geometry permits to establish force hierarchy

systems. Relying on this principle, the so-called “Single-Molecule Cut & Paste” technique

allows to position individual DNA or protein molecules at nanometer precision [85, 86]. In

MFA experiments, both modes of unbinding can be employed and the geometry can be chosen

depending on the system to be investigated. In general, the DNA acting as the force sensor

in a MFA experiment is mostly designed to be as close as possible in mechanical stability to

the complex in question, as this enhances the sensitivity of the assay (see chapter 3).

In order to address some biological systems experimentally, e.g. as described in section 4.3,

an even higher unbinding force than the 65 pN of the BS-transition is needed. Enhancement

of the DNA duplex stability is in general possible intrinsically by nucleobase modification

or by binding of an external ligand. A prominent example for a base modification altering

thermal and mechanical stability of a DNA duplex is the methylation of the 5’ position in

cytosines [87, 88], which plays an important role in epigenetics. The modification of the same

C-5 position on pyrimidines with a propynyl group [32, 89, 90] (see figure 2.4 (A)) yields an

even higher increase in melting temperature than methylation. The apolar propynyl group
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is planar with respect to the heterocycle and extends into the major groove. The duplex is

thus expected to be stabilized due to enhanced base-stacking. Graham et al. [91] determined

the thermodynamic parameters for a 12 base pair DNA duplex containing five propynyl bases

compared to an unmodified duplex: the significant decrease in enthalpy is attributed to

the electronic interactions in the base-stacking and counteracts the entropy decrease likely

resulting from more ordered water molecules normally found in the major groove. This results

in a decrease in free energy ∆G and thus a stabilized complex [91]. Section 4.4 describes the

investigation of the increase in mechanical stability of a DNA duplex due to the integration

of propynyl bases with the MFA and AFM technique.

Furthermore, the binding of ligands such as small molecules or proteins can alter the me-

chanical stability of DNA under force load. An example where an external ligand was used

to stabilize the DNA helix is given in section 4.3, where different pyrrole-imidazole hairpin

polyamides [31] (see figure 2.4 (B)), binding sequence-specifically into the minor groove of

DNA, were utilized to achieve DNA force sensors of different strengths.
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Figure 2.4: In general, the mechanical stability of a DNA duplex can be enhanced either by modifi-
cation of the DNA itself or binding of an external ligand. (A) An example for internal
modification leading to an increase in stability is the replacement of pyrimidines with their
corresponding propynyl bases, which harbor the apolar, planar propynyl group at the C-5
position of the base. (B) Externally, DNA stability can for example be variably enhanced
upon binding of different site-specific pyrrole-imidazole hairpin polyamides. Polyamide
structure adapted from [18].





3 The Molecular Force Assay (MFA)

This chapter introduces the principle of the Molecular Force Assay which allows for the

parallelization of force-based single-molecule measurements. The experimental procedure and

analysis of the current standard set-up are explained. A detailed overview over the different

applications of the MFA enabling it to address various biological problems is given. Finally,

the technique of the MFA is set in context to the standard force-spectroscopy technique of

the atomic force microscope (AFM).

3.1 Principle of the Molecular Force Assay

The basic principle of the Molecular Force Assay is to determine the mechanical stability of

a molecular complex by comparing it to a known reference complex. To this end, a so-called

Molecular Force Probe (MFP) is formed by attaching both molecular bonds in series. The ap-

plication of an external force upon the MFP directly compares the mechanical stability of the

two interactions until, statistically, the weaker one unbinds. The intact molecular bond can

be determined via a fluorophore dye attached to the linker between the two complexes. The

main advantage of the MFA technique is its ability to test thousands of MFPs simultaneously,

yielding high statistics in one single experiment. As every molecular bond in question is tested

against its own reference, MFA enables to parallelize force-based single-molecule experiments.

In general, the comparative approach renders the technique very sensitive. Analogous to an

old-fashioned scale balance, the MFA has its highest sensitivity if the binding strengths of

the bond in question and the reference bond are very similar. This has already been shown

when the principle of the MFA was first applied to two DNA duplexes, where single base pair

mismatches could be detected [17].

In detail, the actual force assay is realized by clamping the MFPs between two surfaces,

which can be separated at a constant velocity building up a force acting on both complexes.

Figure 3.1 displays the molecular set-up for the example of two DNA duplexes. The MFP

is build up from three DNA oligonucleotide strands forming the sample and the reference

complex. The lowermost strand is coupled covalently to the lower surface, a glass slide, while

the uppermost strand harbors a biotin modification enabling its coupling to the upper surface,
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a soft elasomer PDMS (polydimethylsiloxane) stamp functionalized with streptavidin. A Cy5

fluorophore attached to the poly-thymine linker between the two duplexes stays with the

intact bond after force load. By taking fluorescence images of the spots of MFPs on the glass

slide before and after force load, the difference of Cy5 signal can be detected and used to

determine the outcome of the experiment. A second fluorophore, a Cy3 dye coupled to the

uppermost strand forming a FRET pair with the Cy5, is necessary to subtract MFPs from

the analysis that did not couple to the stamp. Those MFPs have not been under force load

and thus yield a false positive signal of remaining Cy5 dyes on the glass slide.

3.2 Experimental Procedure and Analysis

In the current standard set-up of the MFA technique, the upper surface consists of a PDMS

stamp of 1 cm x 1 cm harboring 16 pillars of 1.1 mm in height and a diameter of 1 mm. The

PDMS stamp is adhered upside down to a glass block mounted on a closed-loop piezoelectric

actuator and a DC motorized translation stage. The pillars of the stamp are microstructured

to allow for liquid drainage during the contact and separation process. On the lower surface,

the glass slide, a matching 4 x 4 array of MFP spots is assembled (see figure 3.2, center).

The standard spot size is about 1.2 mm in diameter. As the density of MFPs on the slide is

very high (around 104 per µm2), it is possible to reduce the spot size to about 25 µm2 for

high-troughput applications [19]. But already the standard set-up allows for multiplexing of

the reference and/or the sample bond as well as the incubation of every MFP spot with a

different ligand concentration.

The contact device is mounted on an inverted epi-fluorescence microscope with an xy DC

motorized high-accuracy translation stage. This enables to measure both Cy5 and FRET

intensities for each MFP spot on the glass slide at the same position before and after force

load. The stamp is adjusted to be planar to the glass slide and then lowered gradually

onto it with the piezo using reflection interference contrast microscopy to control the process

[92]. After a 10 min incubation step, which allows the biotins of the MFPs to couple to

the streptavidins on the stamp, the piezo retracts the stamp with constant velocity. For all

experiments conducted for this thesis vpiezo = 1 µm/s, yielding a force loading rate in the

range of 105 pN/s [84]. Detailed information about the technical set-up can be found in

Severin et al. [93].

After the separation process, for those MFPs where the lower complex unbound, the fluores-

cent Cy5 dye on the linker is transferred to the stamp, yielding a decrease in fluorescence

intensity on the glass slide, as shown in figure 3.2. To determine the ratio of still intact lower

complexes in comparison to all molecular complexes under force load, the sets of fluorescence
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Figure 3.1: In the molecular set-up of the Molecular Force Assay, a sample complex in question is
attached in series with a known reference complex to form a so-called Molecular Force
Probe (MFP). The MFP is covalently coupled to a lower glass surface, as shown on the
left for the example of two DNA duplexes. The fluorescence signal of the Cy5 dye coupled
to the linker between the two complexes and a FRET signal obtained via the Cy3 dye
attached to the uppermost DNA strand give the initial amount of MFPs. The MFPs are
then clamped between two surfaces. Coupling to the upper surface, a soft PDMS stamp,
is facilitated via a biotin on the uppermost strand which binds to the streptavidin on the
elastomer. The retraction of the upper surface then leads to a force load on the MFPs
which directly compares the mechanical stability of both complexes, until, statistically,
the weaker one ruptures. The outcome of the experiment is given by the resulting position
of the Cy5 dye on the linker, as its a fluorescence signal only remains on the glass surface
if the lower complex is still intact. For the MFPs that did not couple to the upper surface,
the Cy5 is also still attached to the lower surface yielding a false positive signal. Those
MFPs can be subtracted in the analysis by determining the FRET intensity, as a FRET
signal only remains if both complexes are still intact.
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Figure 3.2: The contact device of the current standard set-up is mounted on an inverted epifluorescence
microscope. The functionalized PDMS stamp features 16 pillars matching the 4x4 array
of MFPs spotted on the lower glass surface. A micro-pattern on the stamp allows for
drainage of liquid during the contact and separation process. The resulting fluorescence
signal on the glass slide is reduced in comparison to the initially measured intensity, as
part of the fluorescence signal is transferred to the stamp. Adapted from [94].

intensity images of every MFP spot on the glass slide before and after contact are processed

according to the following equations.

The ratio of residual “RED” signal of the Cy5 dye on the linker to the initial Start intensity

gives the ratio of still intact lower bonds in comparison to the initial amount of MFPs

RatioRED =
REDFinal

REDStart
. (3.1)

As can be seen in in figure 3.1, MFPs that did not couple to the stamp and thus have not

been under force load give a false positive signal as the Cy5 dye stays attached to the surface.

The analysis can be corrected for those MFPs by subtracting the ratio of FRET images before

and after contact, as a FRET signal only remains if both complexes are still fully assembled

RatioFRET =
FRETFinal

FRETStart
. (3.2)

Normalization to the Coupling Efficiency CE = 1 − RatioFRET yields the Normalized Fluo-

rescence NF

NF =
RatioRED − RatioFRET

CE
, (3.3)
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which denotes the ratio of intact lower bonds to all tested molecular complexes and is given

by a number between 0 and 1. Thus, a NF of 0.5 means that both sample and reference

complex have the same binding strength, while a NF closer to 0 results from a stronger upper

bond and vice versa for a NF closer to 1.

As the interaction between the biotin of the MFP and the streptavidin on the PDMS stamp

is not covalent, it is possible that this interaction ruptures under force load instead of the

sample or reference bond. However, this outcome is not very likely regarding the high rupture

force of the biotin-streptavidin complex which lies beyond 100 pN [95, 13] and thus well above

many other molecular interactions such as especially the rupture force of short DNA duplexes

[16]. Nevertheless, this case is accounted for in the analysis, since it is indistinguishable from

the case of a MFP that did not coupled to the stamp. In order to ensure that all MFPs are

assembled correctly during the preparation, a 2:1 ratio of the uppermost to the middle strand

of the MFP are pre-incubated before use, as it is not possible to identify the false positive

signal resulting from molecular constructs missing the uppermost strand and therefore harbor

only a Cy5 dye already before force load.

The analysis for the experiments presented in this thesis is conducted automatically using

a custom made Labview software which divides the original fluorescence images after back-

ground correction pixel-by-pixel according to equation 3.3 and corrects for bleaching. The NF

is then determined by fitting of an Gaussian to the resulting histogram of counts. Advantages

of this pixel-by-pixel method are that it cancels out inhomogeneities due to the Gaussian

illumination profile or coupling density as well as surface defects.

3.3 Different MFA Applications for Protein Interactions

The basic principle of the MFA is applicable to a range of different molecular interactions

which allows to address a wide variety of biological problems.

For force spectroscopy experiments in general, the bottleneck is the necessity to anchor the

molecules specifically and as strong as possible to enable the build-up of a force load on the

molecules in question. DNA and RNA oligonucleotides can easily be modified with chemical

groups allowing for attachment. In the standard MFA set-up, a terminal amino-modification is

employed for covalent attachment of MFPs consisting of nucleic acids to an aldehyde function-

alized glass slide. Here, the site-specific attachment of the molecules is of utmost importance,

as the force needed to unbind a molecular interaction is dependent on the pulling geometry.

A typical example can be seen in figure 3.3. Whereas the DNA in the MFP in (A) is im-

plemented in the shear mode, meaning that the force is applied parallel to the long axis and

thus to all base pairs simultaneously, in the zipper conformation displayed in (B) the force
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Figure 3.3: An overview of the different applications of the MFA is displayed, with the possible inter-
actions and ligands highlighted in red. DNA and/or RNA can be implemented in shear (A)
or zipper (B) mode. A variety of nucleobase modifications (A, upper part) and interacting
ligands (A, lower part) can be characterized with the MFA. Proteins interacting with DNA
or RNA can be measured if acting as nuclease (B, upper part), ligand (B, lower part) or
directly as implemented in (C). The MFA even allows for the study of protein-protein
interaction in a parallelized way, as shown in (D).

only acts on one base pair at a time. This leads to higher rupture forces in the shear mode,

depending on the number of base pairs (see also section 2.3).

The application modes of the MFA can be divided into two subgroups. First, the MFA can de-

termine modifications in the sample complex exploiting the fact that the modifications change

the mechanical stability of the sample complex under force load. Examples for modifications

that have been detected with this indirect detection method are nucleobase modifications

such as single base pair mismatches [17] (destabilizing the complex), DNA bases modified

with an additional propynyl group [32] (stabilizing the complex, see also manuscript B.1) or

the methylation of DNA bases [88] (stabilizing or destabilizing dependent on the number of

modifications), as shown in figure 3.3 (A), upper part. Also, the binding of small molecule lig-

ands such as aminoglycosides [94] or polyamides [18] can be determined (figure 3.3 (A), lower

part). The measurement of a concentration series with the ligand enables the determination

of the dissociation constant KD. Proteins are very complex molecules and more demanding

to handle, but protein interactions can also be addressed by the MFA. DNA binding proteins
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such as Eco RI [93] can be detected analogous to small molecule ligands (figure 3.3 (B), lower

part). If the sample bond consists of an DNA or RNA duplex implemented in zipper mode,

MFA can measure the activity of nucleases such as Dicer [94], as the complex is destabilized

(figure 3.3 (B), upper part). The main advantage of those indirect measurements is that the

analytes such as ligand or protein do not require any labeling or modification. The necessary

labeling of the DNA or RNA with fluorophores occurs only well-removed from the binding

sites of ligands. Note that in figure 3.3 (A) and (B) both upper and lower complex are

displayed with modifications for simplicity; however, for most applications the reference com-

plex is hold constant to compare the measurements against unmodified and modified sample

complex. A proof-of-principle study established the integration of the standard DNA-MFA

into a microfluidic device, which increases the throughput tremendously [96]. The second

mode of applications has to be employed if not the modification of the sample bond but the

mechanical stability of the sample bond itself is in question. As shown in figure 3.3 (C), it is

thereby possible to probe protein-DNA interaction directly and not through its stabilization

effect on the DNA. For this purpose, the MFP is not build up bottom up from the glass slide,

but only the protein is attached to the lower surface and two DNA duplexes in series are

directly attached to the upper PDMS surface. An example is the quantification of zinc finger

protein interaction with different DNA sequences (given in publication A.4 [46]). The set-up

as shown in (C) can also be modified to determine the strength of receptor-ligand interactions

on living cells [97]. This second mode also allows to measure the interaction between different

proteins. Figure 3.3 (D) shows the integration of a protein pair into the MFA. The protein-

protein interaction can be characterized by comparing it against different known references

or be compared to other protein complexes by measuring against the same reference. This

application of the MFA was first implemented for this thesis and the example of nanobodies

binding different GFPs will be explained in detail in section 4.3 and publication A.3 [98].

The key challenge hereby is the covalent site-specific attachment of the proteins, especially

to the DNA, and will be discussed in section 4.2. For all implementation modes of the MFA,

care has to be taken to avoid surface effects by a sensible choice of spacers between surfaces

and the molecular constructs. In general, it has to be noted that rupture forces can depend

on the force loading rate [83], which lies in the range of 105 pN/s for the MFA experiments

conducted for this thesis (see section 3.2).

3.4 Comparison to the Atomic Force Microscope (AFM)

This section serves the purpose to compare the technique of the Molecular Force Assay to

the complementary force spectroscopy technique of the atomic force microscope [10]. AFM

is one of the most common techniques to measure forces in biological systems besides optical

tweezers. In this thesis, it is employed in the study described in section 4.4 together with
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MFA to gain a better insight in the behavior of propynyl-modified DNA.

In general, AFM relies on the principle of measuring forces by detecting the deflection they

induce acting on a cantilever. The cantilever can be regarded as an elastic spring and its

bending is monitored by a laser beam reflected from the top surface of the cantilever into an

array of photodiodes. In order to detect the unbinding forces of a DNA duplex as described

here, the complex to be investigated is clamped via polymer linkers between a glass slide

and the sharp tip of the cantilever (see figure 3.4 (A), left). Separation of the cantilever

from the surface builds up a force, which stretches the polymer linker and the DNA complex,

yielding a deflection of the cantilever until the DNA finally ruptures. Statistically relevant

data sets are obtained by repeating the circle of bringing the cantilever in contact with the

surface in order to let the complex form and retracting of the cantilever in order to unbind

the complex again. The conversion from photodiode voltages of the deflected laser beam

into force values can be performed after cantilever spring constant calibration by the thermal

method using the equipartition theorem [99]. Thus, force-extension curves (figure 3.4 (A),

right) are obtained as the outcome of the AFM experiment. In order to investigate the loading

rate dependence of the rupture force, the measurements are performed at different retraction

speeds of the cantilever. The rupture forces for each distinct retraction velocity can be plotted

in histograms and fitted with the Bell-Evans model [95] to obtain the most probable rupture

force. The Bell-Evans model can now be applied to the resulting force versus loading rate

dependency yielding the natural dissociation rate at zero force koff and the potential width ∆x

of the investigated DNA complex. A general overview on the set-up, experimental procedure

and analysis of AFM force measurements can e.g. be found in [100], more detailed information

on the measurement of DNA unbinding forces is given in [16] or the supplement of manuscript

B.1.

Comparing the AFM to the MFA technique shows that the two approaches address different

aspects of the same problem. Thus, they offer different advantages and complement each

other.

First, the different approaches lead to different outputs of the experiment. The comparative

principle of the MFA yields information about the mechanical strength of the molecular

interaction in question relative to the chosen reference. The result is read out for all MFPs

simultaneously after bond rupture via the position of the fluorophores after force load (figure

3.4 (B)). For the determination of absolute values, the unbinding force of the reference complex

has to be known. In contrast, the AFM is able to monitor the stretching and rupture process

directly for every single interaction. Thereby, the rupture force and loading rate can be

determined for every force curve. Conducting measurements on the same sample complex

with different retraction velocities of the cantilever yield different loading rates. As described

above, fitting of a polymer model to the resulting force-loading rate plot allows then to
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determine the natural dissociation rate koff as well as the potential width ∆x characterizing

the interaction.

Regarding the sensitivity, the MFA approach offers two advantages. First, the comparative

technique does not depend on a calibration. Thus, a high force resolution can be obtained as

no calibration uncertainties arise. Second, increased force resolution in the MFA results from

the small size of its force sensor which consists only of a molecular complex. Due to thermal

fluctuations, the force resolution is indirectly proportional to the size of the force sensor [101].

For the AFM, efforts have been made to reduce the size of the cantilevers, but this is only

feasible to a certain degree.

Further, the way of obtaining sufficient data for relevant statistics differs tremendously. Both

AFM and MFA can be regarded as single-molecule techniques as every complex to be inves-

tigated is tested against its own force sensor. However, the MFA features bulk read-out and

a very high degree of parallelization and thus high statistics in one single contact process. In

contrast, the high amount of contact and retraction processes needed to gain similar statistics

with AFM render this technique more laborious in both experiment and analysis.

Finally, the differing sample preparations of AFM and MFA allow to address different incuba-

tion conditions of the complex in question. An AFM experiment depends on its capacity to

measure the same interaction repeatedly, so that after every contact and separation process

the initial state has to be reached again. This implies that the interaction to be investigated

has to be the interaction formed upon contact, which is possible for many biological inter-

actions displaying high on-rates. The time for the contact to be made can be increased by

increasing the time of the contact process to a certain degree. A disadvantage here is that

a long contact time can also lead to a higher number of unspecific interactions, which also

result in force-extension curves but have to be separated in the analysis from the specific in-

teractions. The AFM is thus not suitable to investigate interactions which do not rebind after

initial separation. This holds not true for the MFA, where the complex to be investigated is

build up bottom-up on the glass slide prior to completing the contact between both surfaces.

Hence, due to the single contact and rupture process, the MFA can provide long incubation

times of the sample complex. Additionally, it can give high statistics on interactions that do

not rebind as in the MFA process the complex is loaded under force only once.

In summary, measuring a complex with both techniques helps to obtain a more detailed

picture of the investigated interaction as they provide complementary informations.
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Figure 3.4: A schematic comparison between the experimental set-ups for force measurements with
the atomic force microscope (A) and the Molecular Force Assay (B) is displayed. In
both cases the sample complex to be investigated (blue) is initially clamped between two
surfaces. For the AFM, the force load is applied by retraction of the cantilever (brown),
an elastic spring, which acts as the force sensor. In the case of the MFA, the force load
is created by the retraction of the stamp, which is connected to the sample complex via
the second molecular complex (brown) acting as the force sensor. AFM experiments yield
force-extension curves as read-out. A schematic example for a single rupture curve for a
DNA complex is displayed ((A), right). In contrast, the result of an MFA experiment is
read out via the position of the fluorophores after the separation process ((B), right).
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4 Results and Discussion

After the description of the biological context and the techniques that are employed, this chap-

ter presents the results of the work conducted in the course of this thesis. The results include

the studies that demonstrate that both protein-RNA as well as protein-protein interactions

can be characterized by MFA. Additional results refer to the prerequisites for the investigation

of protein-protein interaction with the MFA, which are the generation of site-specific protein-

DNA chimeras and the mechanical stabilization of DNA duplexes with propynyl bases for the

use as force sensors. Additional information, especially on the chemical preparation of the ex-

periments conducted in the different studies, can be found in the appendix in the publications

A.1, A.2 and A.3, in manuscript B.1 as well as in their corresponding supplements.

4.1 Sequence-Specific Inhibition of Dicer Measured with a

Force-Based Microarray for RNA Ligands

As described in section 2.2.2, the nuclease Dicer plays a pivotal role in the RNA interference

(RNAi) pathway, which is an endogenous means to regulate protein translation in cells at the

post-transcriptional level. Dicer starts the RNAi pathway by cleaving double-stranded RNA

into pieces of 19-22 base pairs. Precursor molecules are thus matured into functional small

RNAs that are able to influence translation by binding to specific mRNAs. One class of small

RNAs are microRNAs (miRNAs) that are involved in the regulation of up to 30% [36] of all

genes and, consequently, miRNA dysregulation has been linked to many severe diseases. Due

to its central role, direct inhibition of Dicer is not desirable, but blocking the maturation of

specific precursor molecules by binding of a small molecule ligand is a promising approach for

medical therapeutics. A parallel screening system for ligand binding that is additionally able

to determine Dicer inhibition is thus highly desirable. In a proof-of-principle experiment, it

was shown that the Molecular Force Assay is well suited for this task as it allows for RNA

ligand characterization as well as measurement of Dicer activity. The results of this study are

published in publication A.1 [94].

The molecular set-up of the different steps of the experiment is displayed in figure 4.1. The

complex in question is given by a RNA duplex, the reference complex by a DNA helix, ensuring
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that Dicer can not affect it. Both are implemented in zipper geometry, to allow for Dicer

cleavage on the RNA complex and a similar binding strength of both bonds. For the proof-

of-principle, a well defined aptamer sequence for the binding of the ligand paromomycin,

a 615 dalton aminoglycoside, is implemented into the RNA complex (figure 4.1 A). The

measurements are performed in two configurations, with the RNA duplex implemented as the

upper (“RNA up”) or lower complex (“RNA down”) of the MFP in order to exclude possible

measurement artifacts.

As displayed in figure 4.1 (B) for the “RNA up” configuration, processing of the RNA by

Dicer should result in a clear destabilization of the RNA complex and thus higher NF, as

Dicer cleaves around 20 of the initially 35 base pairs of the RNA duplex. Vice versa, for

the “RNA down” configuration the processing by Dicer should yield an decrease in NF. This

detection of Dicer activity is clearly given in figure 4.2 (A), where the decrease of the NF value

depends on the incubation time of Dicer. As the concentration of the RNA complexes is much

higher than that of Dicer, it can be assumed to be constant. Consequently, the reaction rate

is only limited by Dicer concentration yielding a linear decrease of the NF with incubation

time of Dicer.

The binding of the ligand can be detected with the MFA as displayed in figure 4.1 (C). Ligand

binding to the RNA should increase the stability of the duplex, yielding a decrease of the

NF value for the “RNA up” configuration. Further characterization of the ligand and the

determination of the dissociation constant KD is achieved by the incubation of every spot of

MFPs with a different concentration of the ligand paromomycin and fitting of the resulting

data with an Hill equation (see figure 4.2 (B)). The resulting KD of 2.55±2.18 µM measured

with the RNA complex as the upper bond is in agreement with literature values [102, 103].

The MFA is thus able to detect both Dicer activity and ligand binding to RNA. The com-

bination of both, as displayed in figure 4.1 (D), should thus provide information about the

inhibition of Dicer activity upon ligand binding. Figure 4.2 (C) gives the result of the full

experiment for the example of RNA implemented as the upper complex. Incubation of 2.5 µl

Dicer solution in 1 ml buffer for 1 hour prior to the force assay yields an increase in NF, mean-

ing a destabilization of the RNA complex, in comparison to the initial start value obtained

with neither Dicer nor ligand. The addition of 1 mM paromomycin ligand to another sample

results in a stabilization effect and thus a decrease of the NF value. Finally, the incubation of

first paromomycin and then Dicer for 1 hour yields a NF value close to the ligand only case.

This can be attributed to strong but not complete inhibition of Dicer by the ligand bound

to the RNA complex. For the RNA down configuration, the same but respectively reverted

results are obtained (see publication A.1). Additionally, a minimum concentration of 2.82

µM paromomycin for partial blocking of Dicer could be determined, which agrees with the

measured dissociation constant of 2.55 ± 2.18 µM .
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Figure 4.1: For the detection of Dicer inhibition upon binding of a small molecule ligand, first the
initial value of the molecular set-up with neither Dicer nor ligand present has to be de-
termined (A). Incubation of the molecular complexes with Dicer leads to a destabilization
of the RNA duplex and thus, in the case of RNA constituting the upper complex, to
an increase in the Normalized Fluorescence (B). Binding of a ligand stabilizes the RNA
duplex and can be detected by a decrease in Normalized Fluorescence for the “RNA up”
configuration (C). To detect a possible inhibition of Dicer cleavage, the complexes are first
incubated with the ligand and then with Dicer. Blocking of Dicer yields a Normalized
Fluorescence close to the ligand only case. Adapted from publication A.1 [94].
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Figure 4.2: Dicer activity is measured in an excess of the RNA substrate. As the processing rate
is thus only limited by Dicer concentration (2.5 µl Dicer solution in 1 ml buffer), it is
linear with incubation time. Since processing by Dicer destabilizes the RNA complex by
cutting of about 20 of the 35 base pairs, this is clearly visible in the linear decrease of
the Normalized Fluorescence for the case of the RNA duplex implemented as the lower
complex (A). Titration of the ligand paromomycin leads to a gradual stabilization of the
RNA complex, leading to a decrease in the Normalized Fluorescence value for the “RNA
up” configuration (B). Fitting of an Hill equation isotherm allows for the determination
of the dissociation constant of the ligand. (C) For the detection of Dicer inhibition upon
ligand binding, four independent measurements are conducted. Incubation with Dicer
yields a higher NF compared to the initial start value, as the upper RNA complex is
destabilized by Dicer. In contrast, ligand binding leads to decreased NF value. Blocking
of Dicer upon ligand binding should result in an NF value close to the ligand only case,
which is confirmed in the last data point. Adapted from publication A.1 [94].
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In conclusion, the proof-of-principle experiment shows that the cleaving of double-stranded

RNA by Dicer can be selectively inhibited by the binding of a small molecule ligand. The tech-

nique of the MFA can be employed to reliably detect this blocking of Dicer and be additionally

used for the screening of potential RNA ligands. The current standard set-up allows for the

parallel screening of 16 different RNA sequences, ligands or ligand concentrations. Further

parallelization and miniaturization e.g. by implementation of the assay into a microfluidic

chip, as described in the outlook of this thesis, would render the MFA high throughput and

allow for a more efficient screening for potential therapeutic drugs.

4.2 Preparation of Protein-DNA Chimeras Employing the

ybbR-Tag

In order to understand and exploit the diverse functional and structural properties of pro-

teins, they need to be studied in various contexts. Especially in bioanalytical chemistry,

molecular diagnostics or nanobiotechnology, e.g. for the DNA origami technology, efficient

chemical attachment strategies are highly needed. The generation of protein-DNA chimeras

offer various advantages as DNA conjugated to a protein of interest provides a unique handle

e.g. for identification and functionalization [24, 28]. They are also essential in order to char-

acterize protein-protein interactions with the Molecular Force Assay as described in the next

section 4.3. Additionally, protein-DNA chimeras allow for the controlled arrangement of pro-

teins at angstrom level precision with Single-Molecule Cut & Paste (SMC&P), as described

in publication A.2 [104]. With SMC&P, it is possible to pick up individual molecules from a

depot area with an AFM cantilever and to deposit them one by one at defined positions in

the target area. It thereby relies on a force hierarchy and the selective binding properties of

DNA (as described in section 2.3). Originally developed for DNA only, the efficient coupling

of proteins to DNA renders SMC&P with proteins just as robust and effective.

In principle, several possibilities exist for the general attachment of proteins [24], but they vary

widely in experimental cost, yield and applicability for the coupling to DNA. For the mea-

surements conducted within the scope of this thesis, as for single-molecule force spectroscopy

experiments in general, both site-specific as well as covalent attachment of the molecules is

required. Site-specificity is important as the unbinding force of a complex depends on the

pulling geometry and thus on the position of the attachment [23]. The covalent attachment

ensures that an unbinding process can be clearly attributed to the complex in question and

that the protein attachment does not dissociate over time [105]. Additionally, a minimal

modification of the protein of interest is desired. Since the different methods for protein-

DNA coupling display certain drawbacks, no gold standard exists hitherto [104]. Wild-type

proteins without any modification can be attached by methods such as the targeting of lysine
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residues on the protein surface, but the need for site-specificity excludes this possibility. Such

general techniques harbor the drawback of mostly not being able to control the stoichiometry

of the coupling [24]. The problem of site-specificity can be solved by genetical modification

of the proteins of interest, which allows e.g. for the implementation of a single free Cysteine

residue or fusion protein tags, such as the suicide enzyme SNAP-tag (hAGT) [28]. In the

case of the SNAP-tag the size of 20 kDa leads to a rather large modification of the protein of

interest. In contrast, the additional size of an incorporated Cysteine residue is negligible, and

its binding to thiol- or maleimide functionalized DNA is straight forward. On the downside, it

can lead to changes in the patterns of disulfide bonds required for proper protein folding. As

the Cysteine residues have to be accessible for attachment, the proteins of interest can form

unwanted dimers via disulfide bonds that have to be broken prior to attachment. For every

protein of interest full integrity and functionality under these conditions has to be ensured

[105]. The required maleimide group on the DNA offers the advantage of only binding to the

thiol group of the Cysteine, while a SH-group on the DNA can also lead to cross linking of the

DNA oligonucleotides and thus to a lower yield. However, care has to be taken if a maleimide

group is employed due to its time-limited activity in aqueous environments. Other newly pre-

sented techniques include light induced DNA-protein conjugation [106] or, for metal-binding

proteins, DNA-template directed protein conjugation [107].

For the experiments presented in this thesis we thus chose to employ the 11 amino acid long

ybbR-tag [25]. Mediated by the Phosphopantetheinyl Transferase Sfp [27], it couples cova-

lently to Coenzyme A (CoA), which in turn can easily be reacted to maleimide-modified DNA.

Upon request, the full DNA-CoA construct is available for purchase from certain companies.

In addition to the negligible size, the ybbR technique offers a very high yield, as a coupling

efficiency of over 90% can be reached [104]. The ybbR-tag sequence DSLEFIASKLA can be

implemented on either the N- or C-terminus or at accessible unstructured regions and is thus

very well suited for site-specific attachment. So far, the ybbR-tag is widely used for protein

labeling with e.g. biotin and fluorescent dyes and has also successfully been employed for

the immobilization of proteins on a surface for force spectroscopy experiments [46, 108]. A

standard protocol for the ybbR-coupling can be found in [26].

A sample SDS-PAGE gel displaying the efficiency of the ybbR-tag can be found in figure 4.3.

Two different proteins, transcription factor Bicoid from Drosophila melanogaster [109] labeled

with superfolder GFP and a superfolder GFP with a GNC4 peptide handle (as employed

in publication A.2 [104]), both harboring a ybbR-tag at the N-terminus, are coupled to a

50 nucleotide DNA strand with a CoA attached on its 5’ and a Cy5 fluorophore on its 3’

end. Since GFP is still fluorescent in a SDS-PAGE Gel, the colocalization of the protein

and the DNA band in the respective lanes 4/5 and 9/10 is clearly visible in the overlay of

the fluorescence scans (figure 4.3 (A), purple bands). The efficiency of the coupling can be

tuned upon demand. Depending on the desired outcome, a higher concentration of DNA
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Figure 4.3: The sample SDS-PAGE gel demonstrates the efficiency of the protein-DNA coupling via
the ybbR-tag. (B) and (C) display fluorescence scans of the sample gel at the correspond-
ing wavelengths for the Cy5 label on the DNA (red bands) and the GFP (blue bands),
respectively. Both in lanes 4/5 as well as 9/10 a second band due to the protein-DNA-
coupling appears. The colocalization (purple bands) of these bands is clearly visible in the
overlay (A). In (D), a coomassie stain image of the same gel is given. Depending on the
desired outcome, a higher concentration of DNA than proteins (5 µM to 3.5 µM) leads
to a larger fraction of conjugated proteins (lane 4/5). Vice versa, a higher concentration
of proteins than DNA (15 µM to 5 µM) results in the conjugation of most DNA strands.
The different incubation times of 1 or 2 h display no significant difference in coupling
yield. A standard protocol for the ybbR-coupling of proteins is given in [26]. Protocols
for protein-DNA coupling via the ybbR-tag can be found in the publications A.2 and A.3.
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than proteins can be chosen to ensure a large fraction of proteins conjugated (see lane 4/5).

Vice versa, a higher concentration of proteins leads to an almost full saturation of DNAs with

protein (see lane 9/10). Standard protocols [26] suggest an incubation time of 30 min, and

the sample gel displays no significant difference between the duration of the incubation of 1 h

and 2 h. In general, the suitable incubation time can vary for each protein and the progress

of conjugation should therefore be followed by analyzation in gels. The coupling reaction

takes place at standard buffer conditions, so the protein of interest can also be coupled to

double-stranded DNA where one of the DNA strands harbors the CoA. This is highly needed

for molecular set-up of the MFA for protein-protein interaction, which will be described in

the next section. In summary, ybbR-mediated protein-DNA coupling worked highly robust

and efficient for several experiments conducted in our lab. More details on the conjugation

process as well as the force spectroscopy experiments that can be conducted with the resulting

chimeras can be found in the publications A.2 for Protein-SMC&P and A.3 for Protein-MFA.

4.3 Parallel Force Assay for Protein-Protein Interactions

The need to investigate the intermolecular binding forces that control protein-protein inter-

actions is becoming more and more acknowledged. The development of single-molecule force

spectroscopy techniques such as the AFM or optical tweezers have enabled direct quantifi-

cation of these forces and energy landscapes in biomolecules and biomolecular interactions

[33, 13]. However, they suffer from common drawbacks. In order to gain statistically sufficient

data sets, high efforts are needed and calibration uncertainties arise from the infeasibility of

measuring different interactions in parallel.

As part of this thesis, the characterization of protein-protein interactions with the Molecular

Force Assay was demonstrated, meeting the need for parallelization of direct force-based

measurements of those interactions. In order to be able to characterize pair-wise protein-

protein interactions, the proteins have to be integrated site-specifically and covalently in the

molecular set-up of the MFA. As depicted in figure 4.4, one of the proteins is attached to

the lower glass slide and the other to one strand of the DNA duplex acting as the reference

bond. The proof-of-principle study conducted here aims to test the interaction between three

different variants of Green Fluorescent Proteins (GFPs) with the GFP-binding nanobody

“Enhancer” as described in section 2.2.3. In order to enable the detection of small differences

in binding strengths, the window of high sensitivity of the assay was determined by testing the

protein complex against references with different binding strength. Comparison with a second

nanobody, a modified variant of Enhancer, highlighted the dependence of the sensitivity on

the chosen reference. The results of the study are published in publication A.3 [98].

Nanobodies are small single-domain antibodies derived from camelids. Enhancer is a nanobody
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Figure 4.4: In order to enable direct measurement of protein-protein interactions with the MFA, the
protein pair is integrated as the lower complex into the molecular setup. It is important to
note that both proteins are attached covalently. They are coupled to the lower glass slide
and to one of the DNA strands forming the reference duplex, respectively. Two fluorophore
dyes forming a FRET pair and a biotin are coupled to the reference DNA, allowing for
the readout as well as attachment to the upper PDMS surface as in the standard set-up
of the MFA described in chapter 3.

variant that has been generated and selected for its ability to bind wild type GFP (wtGFP),

thereby influencing its fluorescence intensity. Upon binding to Enhancer, perturbations in

the chromophore environment of wtGFP lead to a fourfold fluorescence enhancement [30].

This effect can be exploited for numerous applications (see section 2.2.3). Since the bind-

ing epitopes of the nanobodies lie on the outer beta barrel of wtGFP, binding occurs also

to other GFP variants such as enhanced GFP (eGFP) and super folder GFP (sfGFP) for

which the general structure is conserved. GFP’s ability to act as an intrinsic control for

the correct molecular assembly of the assay and the availability of structural data for the

Enhancer-wtGFP interaction made the nanobody-GFP system well suited for this proof-of-

principle study. For the characterization by means of the MFA, the nanobodies were attached

covalently via a C-terminal Cysteine to the glass slide. The GFP variants, all harboring a

N-terminal ybbR-tag, were coupled to the Coenzyme A-modified DNA. The covalent protein-

DNA coupling is discussed in detail in section 4.2. The FRET pair of Cyanine dyes and the

biotin on the DNA reference duplex as depicted in figure 4.4 allow for measurement, readout

and analysis processes as described for the DNA-only MFA in chapter 3.

Analogous to an old-fashioned scale balance, the MFA has its highest sensitivity to determine

small differences in binding strength if well balanced, which in this case means that the

binding strength of the protein complex and the DNA reference are similar and lead to a

NF value around 0.5. However, initial experiments indicated the Enhancer-GFP interaction

to be stronger than a 40 base pair DNA complex in shear conformation with an NF of over
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0.9. Due to the force plateau of the BS-transition of DNA at about 65 pN (see section 2.3),

higher average forces can not be reached with short oligonucleotides. For higher sensitivity,

stabilization of the DNA reference is highly needed. In order to demonstrate the flexibility and

robustness as well as to determine the window of high sensitivity of the assay, two different

means to enhance the stability of the DNA reference are employed.

As described in section 2.3, several possibilities exist to obtain increased mechanical stabil-

ity of DNA duplexes. Intrinsic stabilization of the reference duplex can be achieved by the

modification of pyrimidines with a propynyl group at their C-5 position. The hydrophobic

group extends into the major groove and is expected to stabilize the duplex due to increased

base-stacking. In the experiments presented here, 13 cytidines and 9 thymines are replaced

by their respective propynyl bases in the biotinylated strand (see supplemental figure S2 of

publication A.3). Further information on the stability enhancement through propynyl bases

can be found in the next section 4.4. Additionally, it is possible to increase the stability

extrinsically by the addition of a DNA binding ligand. Here, three different pyrrole-imidazole

sequence-specific hairpin polyamides with different binding affinities for the same DNA se-

quence are employed. Polyamides P1 (KD = 105 pM), P2 (KD = 44 pM) and P3 (KD = 1442

pM) characterized with the MFA by Ho et al. [18] have been used in a concentration of 1

µM , about 1000 times the saturation concentration, to ensure an excess of available ligand.

In figure 4.5 A, the different references used to identify the window of high sensitivity of

this application of the MFA are depicted: 40 base pair long double-stranded DNA with and

without propynyl modification as well as 20 base pair DNA complexes extrinsically stabilized

by the binding of the respective polyamide. Representative data for the different references

tested against a Enhancer-sfGFP complex are given in figure 4.5 B. In order to highlight the

change in sensitivity depending on the reference stability, the binding of a second nanobody,

a modified Enhancer, to sfGFP is investigated as well. The outcome of the experiment,

namely the relative higher NF values and thus stronger binding for the modified Enhancer in

comparison to Enhancer, stays the same for all references employed. This has to be expected

as the reference does not influence the protein complex. The absolute NF values, however,

change depending on the chosen reference.

The stronger binding of the modified Enhancer can be attributed to its more positive charge

(pI ≈ 9.89) in comparison to the original Enhancer (pI ≈ 7.85), affecting the binding to the

slightly negatively charged sfGFP (pI ≈ 6.4) at the given buffer condition (pH 7.4). The

differences between the data points for Enhancer and modified Enhancer become significantly

larger the closer the mechanical stability of the reference is to the stability of the protein pair.

This corresponds to the increased sensitivity the closer the NF values are to 0.5. While the

incorporation of the propynyl bases results in a decrease in NF of about 10% in comparison to

the unmodified DNA, the effect of the polyamides is stronger and depends on the respective
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Figure 4.5: (A) The three different types of references employed are unmodified DNA (left, 40 base
pairs), DNA intrinsically stabilized by the integration of propynyl bases (center, 40 base
pairs) as well as the external stabilization of the DNA duplex upon binding of sequence-
specific polyamide ligands (right, 20 base pairs). (B) Representative data of Enhancer and
Modified Enhancer binding to sfGFP are given for all different types of references. While
the relative order of Modified Enhancer yielding higher NF values than Enhancer is the
same for all references, the absolute values are clearly dependent on the chosen reference.
The increasing difference between the NF values for Enhancer and Modified Enhancer for
absolute values closer to 0.5 display the higher sensitivity in this range. Reproduced from
publication A.3 [98].
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dissociation constant. As expected, the stabilization effect is higher the lower the KD of

the polyamide. While P3 already has a higher effect on the NF as the internal propynyl

modification, the addition of P1 tunes the NF value closest to neutral. P2 reduces the NF

even more, which will enable to characterize even stronger protein pairs than the nanobody-

GFP complexes at high sensitivity.

In order to determine the difference in binding strength between the three GFP variants,

namely eGFP, wtGFP and sfGFP, to Enhancer, the 20 base pair complex stabilized with

polyamide P1 is employed as a reference, as it tuned the NF closest to neutral (figure 4.5

B). The result of a representative example measurement is given in figure 4.6 A. While the

NF values for eGFP (0.255 ± 0.023) and wtGFP (0.253 ± 0.018) binding to Enhancer are

the same within experimental error, both lie distinctively lower than the NF for the sfGFP-

Enhancer complex (0.353 ± 0.018). All data points are derived from one single experiment,

thus ensuring exactly the same conditions for all complexes and minimizing measurement

error. The final NF values are obtained as averages from several spots of identical molecular

complexes. However, sample histograms of single protein spots of all three GFPs as depicted in

figure 4.6 B display the extensive number of protein-protein interactions tested simultaneously

in each single spot.

The higher NF value for the sfGFP-Enhancer interaction corresponds to a higher ratio of

intact protein bonds after force load and thus a stronger interaction than for the other GFP-

Enhancer complexes. This could result from the mutation of several amino acids for which

contacts have been determined for wtGFP by Kirchhofer et al. [30], as displayed in the crystal

structure given in figure 2.2. Nine amino acids of wtGFP are determined to form 13 direct

contacts as well as three amino acids to be responsible for hydrophobic interactions. The

alignment of the sequences of all three GFPs (see supplemental figure S3 of publication A.3)

shows that all interacting amino acids are conserved for eGFP, which is in good agreement

with the observed similar binding strength. However, the difference in binding to sfGFP

could result from the mutation of two amino acids forming the direct and all three amino

acids forming the hydrophobic interactions.

In summary, the technique of the MFA could successfully be adapted and developed further

to allow for the characterization of protein-protein interactions. With the employment of

stabilized DNA references, the dynamical range of the assay could be broadened significantly.

It now reaches from the lower boundary of DNA implemented in zipper mode, over DNA in

shear mode in different lengths to intrinsically and extrinsically stabilized DNA. The upper

boundary could even be extended further with stronger ligands such as the DNA binding

proteins EcoRI and p53 [19]. Since the binding strength for a random protein pair is not known

a priori, the variability of references is extremely important in order to enable characterization

at high sensitivity. Hence, the Protein-MFA is applicable for many different protein pairs of
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Figure 4.6: (A) A schematic depiction of the molecular set-up with the ribbon model structure of
wtGFP (green) - Enhancer (magenta) complex is given. The binding of eGFP, wtGFP
as well as sfGFP to Enhancer is directly compared in one example measurement with the
Protein-MFA. While the binding strength of eGFP and wtGFP do not differ within exper-
imental error, binding of Enhancer to sfGFP is distinctively stronger. (B) The extensive
number of parallelized single-molecule experiments is illustrated by sample histograms
of single spots containing one type of protein-protein complex each. Reproduced from
publication A.3 [98].

varying bond strength.

More details on the chemical preparation of Protein-MFA and the proof-of-principal study

on nanobody-GFP interaction can be found in publication A.3 and its respective supplement

[98].

4.4 C-5 Propynyl Modifications Enhance the Mechanical Stability

of DNA

The need for short DNA duplexes with higher mechanical stability than can be obtained with

unmodified DNA becomes apparent from the study described in the previous section but can

also be useful for other applications in nanotechnology and -medicine. Prominent examples

where DNA is used as a programmable building block are scaffolded DNA origami which

allow to create two and three dimensional defined structures at the nanoscale [75, 76, 77].

Methods to enhance the thermal stability of such DNA structures already exist. An example is

photo-cross-linking which improves heat tolerance of origami structures by about 30◦C [110].

However, the thermal and mechanical stability are not directly correlated. The reaction to

mechanical stress largely depends on the orientation in which an external force is applied, as
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outlined for a double-stranded DNA oligonucleotide in section 2.3.

As described in the previous section 4.3, the implementation of propynyl-modified pyrimidines

is able to enhance the mechanical strength of DNA duplexes. Here, the complementary

techniques of MFA and AFM are employed to characterize the mechanical properties of DNA

duplexes harboring propynyl bases in detail. The chemical composition of these bases can be

found in figure 2.4 A and section 2.3. In short, the apolar, planar propynyl group is attached

to the C-5 position of pyrimidines, extends into the major groove of the DNA helix and is

assumed to enhance base-stacking interactions.

For this study, three different 40 base pair long oligonucleotides are investigated in shear mode,

harboring no base modification (0P), eight propynyl-desoxycytidines (8P) and 13 propynyl-

desoxycytidines as well as 9 propynyl-desoxyuridines (22P), respectively. The modifications

are distributed over the same sequence to enable binding to the same complementary, un-

modified DNA strand (the sequences can be found in figure 1 of manuscript B.1). The basic

principle of measuring rupture forces of DNA duplexes with AFM in comparison with the

relative quantification in MFA is depicted in figure 3.4. For the measurements with the AFM,

the two DNA strands forming a complex are attached covalently via PEG spacers to the

cantilever and the lower surface, respectively [16]. The DNA duplex to be investigated is

formed when the cantilever is lowered onto the glass slide, retraction of the force-calibrated

cantilever stretches both duplex and PEG linker until the DNA duplex finally ruptures. AFM

experiments were performed to determine if the integration of propynyl bases leads to higher

average rupture forces than for unmodified DNA. All measurements were conducted with the

same cantilever harboring the complementary strand to minimize calibration uncertainties.

The DNA strands 0P, 8P and 22P were attached covalently to the surface in three distinct

populations. Representative histograms for data obtained with a retraction velocity of 1000

nm/s are given in figure 4.7. They are fitted with the Bell-Evans-Model (see [95] or the sup-

plement of manuscript B.1). The most probable rupture forces for the three different possible

complexes were determined as 65.1±4.5 pN (0P; N= 705 curves), 65.5±4.4 pN (8P; N= 579)

and 64.7 ± 4.5 pN (22P; N= 1079), respectively. Hence, the rupture forces are indistinguish-

able within error. This holds also true for the other retraction velocities that were tested (the

corresponding data can be found in the supplement of manuscript B.1). Pair-wise two-sample

Kolmogorov-Smirnov tests were performed to test the hypothesis whether the rupture force

distributions were significantly different. As a result, the rupture force distributions for 8P

and 22P were found to differ significantly from the 0P distribution with a p-value below 0.05

for all retraction velocities besides 500 nm/s. In detail, the p-values of the 22P distributions

are considerably smaller than those of the 8P distributions, when compared against the 0P

distributions. This is reflected in the width of the rupture force distributions as they increase

with the number of propynyl modifications.
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Figure 4.7: Representative histograms of the most probable rupture force for the three investigated
DNA duplexes with varying amount of propynyl bases are displayed (retraction velocity of
the cantilever: 1000 nm/s). The most probable rupture forces Fmax are not distinguishable
within error and lie in the vicinity of the BS-transition (≈ 65pN). They were obtained by
fitting the histograms within the Bell-Evans formalism.
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For the MFA measurement of the same DNA complexes, the Normalized Fluorescence values

are determined according to equation 3.3 and the measurement was performed as described

in chapter 3. As the DNA duplex in question is implemented as the upper complex, a de-

crease in NF is equivalent to an increase in stability of this duplex. In contrast to the AFM

measurements, where the duplex to be investigated forms when the cantilever is brought into

contact with the glass surface, the molecular complexes for the MFA measurements are com-

pletely assembled on the glass slide in advance. This allows different modes of pre-incubation

of the complex in question. Each of the duplexes with 0P, 8P and 22P oligonucleotides are

thus tested after pre-incubation at room temperature (RT) over night or by heating to 95◦C

and cooling slowly over four hours to 5◦C. As displayed in figure 4.8, the corresponding

results for the NF values and standard deviation errors are NFRT(0P) = (0.341 ± 0.007),

NFRT(8P) = (0.327 ± 0.014), and NFRT(22P) = (0.316 ± 0.013) for incubation at RT as well

as NF95(0P) = (0.344± 0.011), NF95(8P) = (0.306± 0.012) and NF95(22P) = (0.262± 0.017)

for annealing with high temperature. The complexes formed at RT (right bars) display only a

slight stabilization with increasing number of propynyl bases, whereas for the annealed com-

plexes (left bars) this stabilization effect is significant. As expected, the mode of incubation

does not influence the stability of the unmodified DNA duplex.

Hence, the probability of strand separation in comparison to the unmodified 0P DNA is

reduced about NF(8P)−NF(0P)
NF(0P) = −11% for the 8P and −24% for the 22P duplex. When char-

acterizing the mechanical stability of methylated DNA, another internal base modification,

with both AFM and MFA, Severin et al. [88] obtained the same results for stabilizing and

destabilizing effects with both techniques. Thus, the differing results of the AFM from the

MFA measurements in the case of propynyl-modified DNA can be attributed to different

conformations of the DNA resulting from the very different incubation conditions. Both the

temperature and time span differ tremendously in AFM and MFA experiments. In AFM, the

duplex forms at RT during the contact time of the cantilever to the surface. This time has to

be below 0.1 s, as otherwise the probability to obtain single DNA binding events is reduced

extremely. Under the chosen conditions, the AFM measurements yield distinct populations

of rupture force for all three samples. The oligonucleotide sequences were chosen to allow

for one binding mode only. However, the width of the force distributions increases slightly

with the number of base modifications resulting from an elevated number of rupture events at

lower and higher rupture force. This higher variance of the modified DNA distribution might

be attributed to short lived perturbations in duplex formation due to the propynyl bases. In

comparison, the samples incubated at RT in the MFA experiments also display only a very

small stabilization effect. This leads to the assumption that even though the DNA duplex

forms during the AFM measurement, it does not aquire a conformation in which the propynyl

group can stabilize the DNA significantly. This indicates a complex energy landscape and

a high potential barrier that needs to be overcome in order to form the stabilized complex.
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Figure 4.8: The molecular complexes in series for the MFA are fully assembled on the glass slide
prior to the actual force load. This allows for pre-incubation of the DNA duplex in
question under different conditions. (A) In general, the more stable the upper complex
is when compared to the same reference, the less fluorescence signal remains on the glass
slide after force load, leading to a smaller Normalized Fluorescence value. (B) The NF
values for all three DNA variants are given. Hereby, two different incubation conditions
for each duplex are tested. The DNA complexes are pre-annealed either over night at
room temperature (RT) or by heating up to 95◦C and cooling slowly over four hours to
5◦C. The mode of incubation does not influence the stability of the unmodified DNA
complex (0P). In contrast, for 8P and 22P a stabilization trend dependent on the number
of modifications is discernible, although statistically significant only for the DNA annealed
with high temperature.
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The fact that the stabilized complex forms upon annealing with high temperature might be

due to an increase in kinetic degrees of freedom under these conditions. The assumption that

the increased mechanical stability of annealed propynyl DNA is due to enhanced stacking

interactions is supported by the comparison with double-stranded DNA harboring a higher

number of G-C than A-T base pairs. G-C rich sequences are thermally more stable due to

base-stacking interactions [81] but also rupture at a higher external force in shear mode [15].

To summarize, the implementation of propynyl bases has a significant stabilization effect on

the mechanical stability of a DNA duplex if the DNA is pre-annealed with high temperature.

DNA duplexes with propynyl bases offer the advantage of Watson-Crick base recognition and

easy integration during chemical DNA synthesis. Additionally, no other treatments such as

irradiation with light are necessary. In general, DNA origami structures are also assembled

by annealing with high temperature. However, it has been demonstrated that the folding to

the desired structure occurs at a narrow temperature range only [111]. Consequently, the

assembly of the origami structures can be achieved at a constant temperature specific for the

respective structure. In this context it might be possible to adjust the annealing process for

propynyl-modified DNA for samples where heating to 95◦C is not feasible.

Notably, the combination of the complementary techniques AFM and MFA was necessary to

determine the dependence of the stabilization on the incubation as each technique on its own

might have led to false assumptions. More details on the study presented in this section can

be found in the corresponding manuscript B.1, which has been accepted for publication.
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5 Outlook

In this thesis, it has been demonstrated that the Molecular Force Assay allows to measure

protein-RNA as well as protein-protein interactions in a highly parallel and force-based man-

ner. In order to achieve this aim, functional protein-DNA chimeras have been created and

the impact of propynyl bases on the mechanical stability of short DNA complexes was inves-

tigated in detail. The MFA thus displays a great potential to answer important biological

questions regarding the interactions, and with those the functionality, of proteins. This con-

cluding chapter wants to point out promising next steps for future investigations building on

the work presented here.

The MFA technique already features intrinsically a very high degree of parallelization as

about 104 identical molecular constructs are tested per µm2. In the current standard set-up

as employed for the experiments conducted for this thesis, 16 spots of 1 mm in diameter can

be functionalized individually. Thus, it is possible to vary the sample complex, the reference

complex, the ligands or even the ligand concentration. In order to be able to screen for

potential therapeutical drugs binding to specific miRNAs as described in section 4.1, a even

higher degree of parallelization of different molecular complexes is needed, especially since

not only the binding of a potential drug to its target miRNA has to be detected but it is

also necessary to test for possible cross-reactions with other miRNAs. The same need for

higher parallelization arises in the investigation of protein-protein interactions described in

section 4.3, regarding the extensive number of those interactions in the pathways of the cell.

Additionally, a method to facilitate the generation and handling of proteins would improve

the usability of the MFA technique considerably.

Thus, the applications of the MFA presented here would profit tremendously from further

miniaturization, parallelization and ease of handling of the experimental set-up. As has

already been shown [93], reduction of the spot size to 25 µm2 is sufficient to obtain valid

results. This miniaturization has been combined by Otten et al. [96] with the integration

of the whole MFA set-up into a microfluidic chip (see figure 5.1 (A)). The principle of this

double-layered MITOMI chip [112, 113] allows to realize the contact and separation process of

the MFA via pneumatic pressure with a button valve in the upper layer (see figure 5.1 (B)) and

its current 640 chambers enable the needed high throughput testing. Hence, the combination
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of the microfluidic chip with the experimental precautions needed for the handling of RNA

would allow to screen efficiently for miRNA binding molecules inhibiting Dicer activity.

Also the study of protein-protein interactions could be simplified and parallelized for the

simultaneous measurement of a huge number of protein pairs by the use of such a microfluidic

chip. As shown only recently [108], the double-chamber architecture of the MITOMI chip

(as displayed in figure 5.1 (B)), allows for the in vitro expression of a protein in the left

chamber and later covalent attachment at a defined spot under the button valve in the right

chamber. So far, those proteins have been investigated subsequently with the AFM after

removal of the chip. However, the generation of this array of different, covalently attached

proteins can now be combined with the MFA technique for protein-protein interactions. With

the microfluidic chip, the first step of attachment of the lower protein to the glass slide can

be parallelized and facilitated tremendously due to the in vitro expression. The molecular

set-up can be completed by flushing the protein-DNA chimeras (section 4.2) with the DNA

references through the chip. The MFA measurement can then be conducted by contacting

the functionalized surface with a suitable PDMS stamp after removal of the chip. If the

surface chemistry can be adjusted accordingly, it might even be possible to conduct the whole

MFA process in the chip, yielding a highly economic and powerful method for the force-based

investigation of protein-protein interactions.

In order to be able to quantify those interactions with high sensitivity, a toolbox of different

references with varying mechanical strengths would be of great interest. In this thesis, short

DNA duplexes were used as references. The needed variation in stability was achieved by

binding of external ligands as well as internally by base modifications. Studied more closely

in section 4.4, the internal stabilization through modifications of pyrimidines with a propynyl

group was tuned by the number of implemented propynyl bases. This existing toolbox could

therefore be expanded by further variation of the number of propynyl modifications, the

employment of alternative base modifications, or the use of other DNA binding molecules

additionally to the tested pyrrole-imidazole hairpin polyamides. A different but still straight

forward concept would be to replace the DNA reference complex by a second protein pair

acting as the reference. Here, nanobody-GFP complexes as quantified in section 4.3 would

be ideally suited, as many proteins to be investigated already harbor a GFP-tag.

In conclusion, the technique of the Molecular Force Assay has now been developed to a level

where it can quantify protein interactions with DNA, RNA as well as other proteins. Due to

further parallelization efforts, this valuable bioanalytical tool will be able to handle increasing

numbers of different interactions in the future.
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Figure 5.1: The microfluidic MITOMI chip as displayed in (A) provides 640 double chambers. Due
to its double-layer architecture, the chambers can be separated via pneumatic pressure
in the upper layer with different valves (B). The back chamber can be used for in vitro
protein expression when the chip is placed onto a glass slide with a respectively spotted
DNA array. A button valve over the front chamber allows for the contact and separation
process of the MFA or for site-specific functionalization for covalent protein attachment.
Reproduced and adapted from [114].
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ABSTRACT

Malfunction of protein translation causes many
severe diseases, and suitable correction strategies
may become the basis of effective therapies. One
major regulatory element of protein translation is
the nuclease Dicer that cuts double-stranded RNA
independently of the sequence into pieces of 19–22
base pairs starting the RNA interference pathway
and activating miRNAs. Inhibiting Dicer is not desir-
able owing to its multifunctional influence on the
cell’s gene regulation. Blocking specific RNA se-
quences by small-molecule binding, however, is a
promising approach to affect the cell’s condition in
a controlled manner. A label-free assay for the
screening of site-specific interference of small mol-
ecules with Dicer activity is thus needed. We used
the Molecular Force Assay (MFA), recently de-
veloped in our lab, to measure the activity of Dicer.
As a model system, we used an RNA sequence that
forms an aptamer-binding site for paromomycin, a
615-dalton aminoglycoside. We show that Dicer
activity is modulated as a function of concentration
and incubation time: the addition of paromomycin
leads to a decrease of Dicer activity according to
the amount of ligand. The measured dissociation
constant of paromomycin to its aptamer was
found to agree well with literature values. The
parallel format of the MFA allows a large-scale
search and analysis for ligands for any RNA
sequence.

INTRODUCTION

The enzyme Dicer has increasingly been attracting atten-
tion owing to its crucial role in the RNA interference
(RNAi) pathway. RNAi is an endogenous means used
by cells to regulate protein translation at the
post-transcriptional level (1). Single-stranded RNA se-
quences of 18–25 nucleotides bind to specific mRNAs

and hinder protein translation. Although various classes
of small regulatory RNA have been identified, two main
categories of single-stranded RNA (ssRNA) involved in
metazoan RNA interference can be distinguished that
differ in their origin and function but share processing
by Dicer: short-interfering RNA (siRNA) and
microRNA (miRNA). siRNA precursors are long fully
complementary dsRNA that are typically introduced
directly into the cytoplasm or taken up from the environ-
ment, though recent findings suggest that siRNA may also
originate from endogenous sources like transposons (2).
Hence, the main task of the siRNA-processing machinery
seems to be the defense of genome integrity in response to
foreign or invasive nucleic acids (3). miRNAs are
transcribed and pre-processed in the nucleus into incom-
plete base-paired stem-loop structures, known as
pre-microRNAs. They are then transferred to the cyto-
plasm, where Dicer matures the pre-miRNA by cleaving
the stem loop structure. The mature miRNA strand binds
to the mRNA and usually inhibits translation in combin-
ation with a protein complex known as RNA-induced
silencing complex (RISC) (4), although gene up-regulation
by the RISC complex has also been reported (5,6). In
contrast to siRNA, which requires total complementarity
to its target sequence, miRNAs and their target mRNA do
not need to base-pair perfectly so that a certain miRNA
can bind and regulate a variety of mRNA sequences.
Several miRNAs may also play a role in the regulation
of a single mRNA transcript. Thus, miRNA seems to
fine-tune protein expression. The amount of the various
miRNA strands differs according to cell age, cell type and
health status (7). So miR-1 appears to be tissue specific
and was only found in heart tissue and somites of mice
embryos (8). Evidence is accumulating that miRNAs are
critical for many cellular processes such as developmental
timing, cell proliferation or stem cell division (9).
Consequently, many disease states occur or are sustained
by miRNA dysregulation (10). miR-21, for example, was
up-regulated in all tumour samples analysed by (11).
Therefore, targeting the RNAi pathway at the step of
Dicer cleavage is a promising approach for new therapies
against illnesses like cancer or metabolic diseases.
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A relatively small protein of <250 kDA, Dicer has been
found in the cytoplasm of all eukaryotes studied to date
(12), sometimes in several variants with different tasks.
For instance in Drosophila, Dicer-1 cuts pre-miRNA
while Dicer-2 generates siRNA from long dsRNA precur-
sors (13). The L-shape of the protein seems to be
well-conserved for all variants. Recognition of dsRNA
by a PAZ domain occurs in the head of Dicer, which is
separated from the two RNAse III domains by a ruler
domain (Figure 2A). The base of the L is formed by a
helicase, whose function is not totally understood (12).
Dicer cleaves long and short (>30 nt) dsRNA strands
with equal efficiency, whereas duplexes of �21 nt are not
processed in vitro. A 30 2-nucleotide-long overhang, a
characteristic of pre-microRNA molecules, increases
Dicer’s efficiency compared with blunt ends (14).
To interfere with RNAi, knocking out Dicer is not ad-

visable owing to Dicer’s crucial role for several cellular
processes. On the other hand, a small molecule that
binds to the pre-miRNA in question with high specificity
and hinders Dicer from maturing the miRNA in question
is a great drug candidate. The difficulty, herein, lies in
finding potential ligands that bind a certain RNA
sequence with high selectivity and also interfere with
Dicer cleavage. Krützfeldt et al. (15) demonstrated that
single-stranded cholesterol-conjugated 20-O-methyl
oligoribonucleotides, complementary to a certain
miRNA and termed antagomirs, could specifically
reduce the level of that miRNA in vivo. Elmen et al. (16)
could reversibly decrease the level of plasma cholesterol by
silencing miRNA-122 with a modified antagomir in
non-human primates, thus exemplifying the possible
therapeutic value of antagomirs. In both studies, already
mature miRNAs are silenced, which might impair the
potency of these molecules, as mature miRNA are
included in the protein complex RISC and are probably
less accessible than pre-miRNA. Cellular uptake of oligo-
nucleotides is another difficulty so that Krützfeldt et al.
needed high doses to see an effect. Thus, targeting
pre-miRNA structures with small molecules has several
advantages, but the research of small-molecule RNA
binding has encountered several problems [for a review
see (17)]. Especially an easy high-throughput technique
to screen for and characterize RNA binders could speed
up the progress of finding suitable molecules.
Our technique of the Molecular Force Assay (MFA)

provides a fast and reliable tool to screen for different
RNA binders, to characterize them and to quantify their
ability to prevent Dicer from cutting. The MFA is a highly
parallel technique, described in detail in (18) and (19), to
measure unbinding forces comparatively so that small
changes in the structural stability of molecular complexes
can be detected. Two molecular bonds, a sample and a
reference bond, are linked in series between two
surfaces. One surface is retracted and a force gradually
builds up in the molecular complexes until one of the
bonds breaks. A fluorophor attached to the linking
sequence between the two molecular complexes stays
with the intact bond (Figure 1A) so that a simple fluores-
cent measurement by means of a commercially available
epi-fluorescent microscope may detect the outcome. Thus,

the mechanical stability of two molecular interactions can
be probed and compared with each other. In contrast to
other force-probe techniques like atomic force microscopy
(AFM) or optical traps that measure the unbinding force
by a spring-like macroscopic object like a cantilever, the
MFA reduces the force detector to the microscopic scale
of another molecule, a known reference DNA duplex, so
that small differences in structural stability like the
binding of a ligand may be resolved. The setup of the
MFA is designed such that a large number of molecular
complexes are tested simultaneously in one experiment on
one chip, and the outcome of this experiment gives statis-
tically significant information on the nature of the molecu-
lar interaction in question. Furthermore, as the MFA
measures the interaction force between the molecules, un-
specific binding events or complex backgrounds like serum
do not alter the experimental outcome. Thus, the MFA
allows us to detect and characterize the binding of a small
molecule to a number of different oligonucleotides or of
many small molecules to a certain RNA or DNA sequence
in a format, where the analytes are not altered, e.g. by
labelling. So far, the MFA has been applied to detect
single-nucleotide polymorphism (20), study differences in
antibody/antigen interactions (21), investigate the chiral
selectivity of small peptides (22), characterize the binding
properties of an aptamer to its ligand in a molecularly
crowded ambient (23) and to analyse protein–DNA inter-
action (19).

Here, a 35bp RNA duplex functions as a substrate for
Dicer and is tested against a 22bp or 27bp DNA double
strand that does not interact with Dicer. The two molecular
complexes are linked in a zipper configuration so that a
force stretching the bonds unzips the two duplexes
(Figure 1A). The construct is covalently attached to the
glass slide at the bottom and via a biotin–streptavidin–
biotin complex to the upper poly(dimethylsiloxane)
(PDMS) stamp surface (Figure 1A). The cyanine dye Cy5
between the RNA and DNA duplex stays with the intact
bond after the rupture process, while a second fluorophor
Cy3, conjugated to the 30 end of the uppermost strand,
constitutes a Fluorescence Resonance Energy Transfer
(FRET) pair with the Cy5 and quantifies the constructs
that have not properly coupled to the upper surface and,
thus, have not been under force load. If Dicer cuts off
about 20bp of the RNA duplex, this bond is weakened
and breaks with higher probability. Thus, Dicer activity
can be detected and is quantified for different amounts of
Dicer and incubation times. As a proof of principle, the
RNA double strand incorporates an RNA aptamer
specific for the aminoglycoside paromomycin, which we
will characterize by measuring the dissociation constant.
It is to be expected that the interaction of paromomycin
with its aptamer will hinder Dicer from binding to the
RNA duplex and, thus, from cutting.

MATERIALS AND METHODS

DNA/RNA constructs

The molecular complexes consist of three strands that are
successively hybridized in our laboratory and are shown in
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Figure 1C. The lowermost is modified with an amino
group in order to covalenty attach the oligonucleotides
to a surface. Avoiding surface effects, 5 HEGL
(hexaethyleneglycol) molecules act as an additional
spacer between the amino group and the oligonucleotides.
Furthermore, poly-T separate the double-stranded
sequences from the surfaces and each other. The
cyanine dyes Cy5 and Cy3 are attached by a
N-hydroxysuccinimide ester to the middle and uppermost

strand, respectively, at a distance of six nucleobases in the
hybridized complex to act as a FRET pair. The medium
strand is inverted in the middle by inverse amidites since
the force to melt a DNA or RNA double strand depends
on the direction of the helix to which the force is applied.
The RNA complex features a two nucleotide overhang at
the 30 end in order to maximize Dicer processing (14).
Proving the validity of our results, we carried out all
experiments in parallel with both possible geometries.

Figure 1. Schematics of the Molecular Force Assay. (A) The molecular complex is built up by covalently attaching the lowest strand to a glass slide
and, subsequently, binding the pre-hybridized upper duplex to the lowest strand. The fluorophor Cy5 is conjugated to a poly-T sequence connecting
the two duplexes. The upper strand is labelled with Cy3 so that a FRET signal provides a measure for a correctly hybridized molecular construct.
The ‘RNA up’ geometry is defined with the DNA complex attached to the glass slide and the RNA duplex constituting the upper part. A biotin–
streptavidin–biotin bond links the molecular complex to the upper surface, a soft PDMS stamp. Upon retracting the PDMS stamp, a force builds up
in the molecular constructs and unzips the duplexes until the weaker of the two bonds in series ruptures. Note that in this format Cy5 serves as
marker for those molecular complexes which remain intact. (B) In the setup, the contact device is mounted on an inverted microscope. The PDMS
stamp features a micropattern that facilitates leveling and drainage of liquid during the contact and separation process. The oligonucleotide con-
structs are spotted in a 4� 4 pattern, and fluorescence intensities are measured before and after the contact and separation process. After separation
the fluorescence intensities of the molecules remaining on the glass and the PDMS surface add up to the total fluorescence intensity measured at the
beginning. (C) Nucleic acid sequences of the molecular constructs in both configurations.
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If the RNA target duplex is attached to the glass slide and
the DNA complex constitutes the upper part, we call this
configuration ‘RNA down’. The other geometry with the
RNA complex the upper part and the DNA duplex bound
to the glass slide we named ‘RNA up’ (Figure 1C). We
bought all oligonucleotides with the modifications from
IBA GmbH, Germany.

Slide preparation

All aqueous solutions necessary for the chemical proced-
ures described here were treated with 0.1% Diethyl
pyrocarbonate (DEPC) over night and were autoclaved
afterwards in order to avoid RNAse contamination. We
pipetted 1 ml of the lowermost strand in a concentration of
25 mM in 5� SSC buffer (saline sodium citrate;
Sigma-Aldrich GmbH, Germany) on an aldehydesilane-
coated glass slide (Nexterion Slide AL, Pequlab,
Germany) in a 4� 4 pattern and incubated it over night
in a humid atmosphere. The slide was rinsed thoroughly
with ddH2O and incubated in a 1% aqueous solution of
NaBH4 (VWR Scientific GmbH, Germany) for 90min in
order to reduce the Schiff bases and render the linkage of
the oligonucleotide to the slide covalent. Unreacted
groups were blocked in 1� SSC containing 4% bovine
serum albumin (Sigma-Aldrich GmbH; Germany),
minimizing unspecific binding. We placed a custom-made
16-well silicone isolator (Grace-Biolabs; USA) on top of
the immobilized lowermost oligomer and transferred to
each well 3 ml of 0.2 mM of the upper complex in 5�
SSC, which had been heated and cooled down over
several hours in a thermocycler beforehand to avoid un-
desired secondary structures. After an hour hybridization,
the molecular complexes as diplayed in Figure 1A were
completed. Unbound strands were removed by several
washing steps with different salt concentrations (2�
SSC, 0.2� SSC, 1� SSC). Care was taken that the
samples were kept in an aqueous environment at all times.

Incubation of ligands

For all measurements detecting Dicer activity, the glass
slide with the molecular bonds was fastened to a
custom-made PMMA well with a silicone lip seal.
According to the desired incubation time and quantity,
the recombinant human Dicer protein in a concentration
of 1U/ml (Life technologies, UK) was directly pipetted
into the PMMA well prior to the contact process. We
applied amounts between 0.5 and 5 ml Dicer solution.
For measurements with paromomycin and Dicer, the ap-
propriate amount of paromomycin (paromomycin
sulphate salt, Sigma, Germany) was directly mixed with
the solution of 1� SSC of the last washing step and, thus,
added before Dicer. The paromomycin titration experi-
ments were executed on one glass slide within the
spotted 4� 4 pattern of oligonucleotides. The
custom-made 16-well silicone isolator (Grace-Biolabs;
USA) allows the incubation of every spot with a different
solution by means of a self-made microfluidic system
driven by two 16-channel peristaltic pumps (Ismatec
GmBH; Germany). Hence, a whole titration curve can
be recorded within a single experiment.

Stamp preparation

Micro- and macrostructured PDMS stamps were
fabricated by casting 1:10 crosslinker/base (Sylgard,
Dow Corning, MI, USA) into a custom-made Pyrex/
silicon wafer (HSG-IMIT, Germany) according to
standard procedures (24). The resulting PDMS stamps
feature pillars of 1mm diameter and height with a
spacing of 3mm in a square pattern on a 3-mm-thick
basis and are cut in pieces of 4� 4 pillars. The flat
surface of the pillars is microstructured with 100� 100 mm
pads separated by 41 mm wide and 5 mm deep rectangular
trenches enabling the drainage of liquid during the contact
and separation process (Figure 1B). For the surface
functionalization, the cleaned stamp surface was first
activated in 12.5% HCl overnight and derivatized with
(3-glycidoxypropyl)-trimethoxysilane (ABCR, Germany)
in order to generate epoxide groups. 1:1
methoxy-PEG-NH2 (MW 2000 Dalton) and
Biotin-PEG-NH2 (MW 3400 Dalton) (Rapp-Polymere,
Germany) were melted at 80�C, and �1 ml was transferred
to each pillar followed by overnight incubation at 80�C in
an Argon atmosphere. The excess polymers were thor-
oughly removed by rinsing with ddH2O. Shortly before
the experiment, the stamps were incubated in 0.4% BSA
in 1� SSC containing 1 mg/ml Streptavidin (Thermo Fisher
Scientific, Germany) for 30min, washed with 0.05%
Tween 20 (VWR Scientific GmbH, Germany) in 0.2�
SSC and gently dried with N2 gas.

Contact process and fluorescence read-out

The functionalized stamp adheres upside-down to the
glass block glued to a closed-loop piezoelectric actuator
(PZ 400, Piezo Systems Jena, Germany) and a DC
motorized translation stage (Physik Instrumente GmbH,
Germany), as shown in Figure 1B. The slide with the
oligonucleotide constructs is fixed beneath the stamp on
a stainless steel stage with permanent magnets so that
every stamp pillar meets a 1–2 mm diameter spot of
oligonuclotides on the glass slide. The whole contact
device is mounted on an inverted microscope (Axio
Observer Z1, Carl Zeiss MicroImaging GmbH,
Germany) with an xy-DC motorized high-accuracy trans-
lation stage (Physik Instrumente GmbH, Germany).
Contact is made by means of the piezo, and care is
taken that each individual pillar is not compressed more
than 3 mm. The planar adjustment of stamp and slide as
well as the contact process are controlled by reflection
interference contrast microscopy (25). To let the biotin
of the oligonucleotides bind to the streptavidin coating
of the PDMS stamp, the contact between stamp and
slide is maintained for 10min. The piezo retracts the
stamp with a velocity of 1 mm/s in all experiments, and a
force builds up in the double strands until the weaker one
breaks with higher probability. Quantifying the number of
intact bonds in relation to total molecular constructs,
fluorescence images of the Cy5 intensity are taken before
and after the contact process. As it cannot be assumed
that all oligonucleotides have bound to the stamp, their
contribution has to be substracted. Therefore, a fluores-
cence picture of the FRET intensity between the Cy3 of
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the upper strand and the Cy5 label of the middle strand,
being a measure of the integrity of the upper molecular
complex, is taken before and after the contact process as
well. Three outcomes are possible: First, the lower bond
broke so that no fluorescence, neither Cy5 nor FRET
signal, can be detected. Second, the upper bond broke
so that the Cy5 intensity can be measured but no FRET
signal. Third, the molecular construct did not bind to the
stamp, which means that the Cy5 and FRET intensity are
unchanged except for bleaching. The quotient of the image
taken after the contact process to the image taken before,
FCy5 ¼ IFinalCy5 =I

Start
Cy5 and FFRET ¼ IFinalFRET=I

Start
FRET, cancels out

inhomogeneities due to the Gaussian illumination profile
and surface defects, rendering the MFA rather robust. The
normalized fluorescence is given by NF ¼

FCy5�FFRET

1�FFRET
. A

detailed description can be found in (26). The normalized
fluorescence is thus the fraction of intact lower bonds of
the total number of molecules under load.

RESULTS AND DISCUSSION

Characterization of Dicer activity

Initially, we developed a platform for analysing the
protein Dicer. The schematic outline and RNA sequences
are shown in Figure 1. We built a molecular complex
comprising a 35 bp double-stranded RNA duplex cova-
lently bound to a glass slide at one end, and covalently
attached to a 27 bp reference DNA duplex at the other
end. Dicer could be titrated in solution to the completed
molecular constructs, and the surfaces were separated
after incubation times varying between 60 and 300min.
Figure 2B depicts the results of such a measurement
upon addition of 1 ml of Dicer to every sample except
the first, which acts as a reference value. The normalized
fluorescence at time t=0 provided a value of
NF=0.79±0.01. An initial value at time t=0 of
NF=0.5, corresponding to two complexes nearly identi-
cal in their structural stability, would be desirable to
resolve small differences in stability induced through
binding of a ligand or mismatch. However, our system
was designed to quantify enzymatic RNAse activity.
Because Dicer cuts off around 20 bp, we designed our
sytem such that the RNA complex before Dicer cleavage
was stronger than the DNA, while the RNA complex after
Dicer cleavage was weaker than the reference DNA
duplex. As in our system the RNA construct is 8 bp
longer than the DNA complex, in the absence of Dicer,
the weaker DNA reference bond ruptures with higher
probability. In the ‘RNA down’ configuration, the RNA
complex is attached directly to the glass slide; therefore,
the likelihood for the Cy5 label to be found at the lower
surface is higher than at the upper surface, and the
normalized fluorescence lies around NF=0.8. If Dicer
cleaves off about 20 bp of the RNA double strand, the
lower molecular complex is weakened and the normalized
fluorescence decreases (Figure 2B). Dicer processes
the RNA duplex in multiple enzymatic turnovers.
Consequently the normalized fluorescence declined
further with increasing incubation time (Figure 2B). Our
experimental design provides Dicer with an excess of

substrate, dsRNA, so that the substrate concentration
can be assumed constant and the reaction rate of Dicer
is solely limited by the amount of Dicer present. Thus, a
linear relation of the normalized fluorescence to Dicer
processing time was expected and verified by our measure-
ment. The slope of the fit was used as a measure of the rate
of Dicer processing, allowing us to quantify Dicer activity.

Proof of Principle of the microarray test format for RNA
ligands

Next, we analysed the binding properties of the
aminoglycoside of the neomycin family, paromomycin,
to its RNA aptamer by means of the MFA. The structure
of this aptamer and its ligand-binding behaviour are
well-known and described in detail in (28) and (29). The
aptamer sequence was incorporated into our RNA duplex
11 nucleotides from the 30 end, and was located within the
portion of the RNA duplex cleaved by Dicer. We
hypothesized that this position could disrupt Dicer inter-
action with the RNA duplex. Every second spot in the 16-
spot pattern of oligonucleotide constructs bound to the
glass slide were incubated for at least 1 h with a different
concentration of paromomycin in 1� SSC, ranging from 0
to 1995 mM, so that a single experiment resulted in a full
titration curve with two values for every concentration
paromomycin. The experiment was carried out several
times for both the ‘RNA up’and ‘RNA down’ configur-
ations. From the resulting values for the normalized fluor-
escence, the mean and standard error of the mean were
calculated so that every data point represents between two
and four experiments. The data were fitted by a hill
equation isotherm that accounts for specific and non-
specific binding by means of the software package
GraphPad Prism 5 (GraphPad Software, San Diego,
CA, USA). The result for the ‘RNA up’ configuration is
shown in Figure 2D, which yielded a dissociation constant
of 2.55±2.18 mM and negligible unspecific binding.
Literature reports values of 0.2–1 mM depending on the
technique (29,30), in agreement with our results. The
measurements in the ‘RNA down’ geometry resulted in
dissociation constants of about 100±70 mM (data not
shown), which deviated by a factor 50 from our other
measurements with the inverted geometry. Non-specific
binding of the ligand to the surfaces or molecular
complexes would be indentical in both configurations, so
we attributed the increase in dissociation constant for the
‘RNA down’ configuration to the proximity of the RNA
construct to the glass slide. Notwithstanding the passiv-
ation of the glass slide, the RNA duplex in the ‘RNA
down’ configuration presumably stretches across the
surface, which might reduce the accessibility of the RNA
aptamer binding pocket for the ligand paromomycin, re-
sulting in an apparent increase in the dissociation
constant. Consequently, the ‘RNA down’ configuration
with the ligand-binding part integrated in the lower
complex does not seem suited for the characterization of
a RNA-binding ligand. In contrast, providing the
ligand-binding sequence with a spacer and locating away
from the surface by implementing it in the upper RNA
duplex yielded reliable values for the dissociation constant
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in agreement with literature values. Although the dissoci-
ation constants measured by other more laborious and
time-consuming techniques might be more accurate, our
assay provides sufficiant accuracy in a parallel screening
format for dissociation constants, ranging from the
picomolar (26) (chiral polyamides binding to DNA) to
the high micromolar scale (23) (DNA-aptamer specific
for ATP). Moreover, the current format with 16 spots
can be varied to titrate two ligands in parallel (eight
spots per ligand) or change the binding sequence in half
the spots in order to gain a deeper insight into the
ligand-binding sequence interaction in a one-shot
experiment.

Hinderance of Dicer processing by ligand binding

In the next step, we prepared four different slides with our
oligonulceotide constructs in the ‘RNA down’ configur-
ation as well as in the ‘RNA up’ configuration. The
initial value for NF was determined in pure buffer
(Figure 3A). To the second sample, we added 2.5 ml of
the Dicer solution and separated the surfaces after
60min, while we incubated the third sample with 1mM
paromomycin at least 1 h before the measurement
(Figure 3B and C). The buffer of the fourth sample con-
tained 1mM paromomycin, and 2.5 ml Dicer solution was
added 60min before separation of the surfaces
(Figure 3D). The first sample acted as reference and
gave NF=0.34±0.01 (standard deviation) in the ‘RNA
up’ configuration. The addition of Dicer weakened the

upper RNA double strand by cutting off around 20
basepairs so that the flurophor was found more often on
the lower side. Therefore, the NF increased to 0.40±0.02,
as displayed in Figure 3E. Upon binding of paromomycin,
the RNA duplex was stabilized and the NF decreased to
0.27±0.01 in the third case. If paromomycin hinders
Dicer from cutting the RNA duplex, we expect that the
fourth measurement yields NF close to the ligand-only
case, but at least below the NF=0.40 obtained for meas-
urement with only Dicer in the solution. As shown in
Figure 3E, we measured an NF of 0.30±0.01, which is
close to the result of only paromomycin. From these data,
we concluded that Dicer was definitely hindered by
binding of paromomycin, but not completely blocked.
The ‘RNA down’ configuration yielded the same
outcome (Figure 3F).

Correction of fluorescence data

During the measurments with the ‘RNA down’ configur-
ation, we found that the quantum yield of the fluorophors,
especially of the Cy5, varied slightly owing to the changing
local environment. In particular, the fluorescence intensity
of Cy5 increased if the upper strand ruptured leaving
behind the single-stranded overhang. This leads to the
phenomenon that the normalized fluorescence value can
adopt values above one in the ‘RNA down’ configuration
(see raw data in the Supplementary Data). Levitus and
co-workers reported a change of fluorescence intensity
upon interaction of Cy3 with single and double-stranded

Figure 2. Characterization of molecules in question. (A) Schematics of Dicer and its sub-domains. (B) The activity of Dicer is measured in an excess
of substrate so that the processing rate is constant. Accordingly, the normalized fluorescence decreases linearly with incubation time. The data were
measured in the ‘RNA down’ configuration. (C) Schematic picture of paromomycin (red) binding to its RNA aptamer. The two strands of the RNA
duplex are displayed in blue and green, while the bases interacting with the ligand are coloured in yellow [PDB: 1J7T by (27)]. (D) Titration of the
ligand paromomycin to the complexes in the ‘RNA up’ geometry increasingly stabilizes the upper RNA duplex so that the normalized fluorescence
decreases. The fluorescence data were fitted by a Hill equation isotherm.
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DNA. They attributed this change to the blocking of
non-radiative decay pathways of the excited state
fluorophor by steric hindrance (31). In (32), a similar
behaviour for Cy5 is described. Although the Cy5 label
is, in our case, always conjugated to the middle single
strand and six basepairs away from both duplexes, an
interaction between the fluorophor and the oligonucleo-
tide duplex seems a plausible explanation for the observed
increase in fluorescence intensity. Because the Cy3 is only
measured as part of a duplex, any effect due to inter-
actions with the oligonucleotides cancels out in the ratio.
To correct the Cy5 fluorescence intensities, we measured
the intensity of its emisson spectrum in bulk solution in
both cases, the single middle strand and the complete
upper duplex, by fluorescence spectroscopy and calculated
a quenching factor F (see Supplementary Data).

Determining the experimental error for F, we calculated
the maximum range of possible factors and re-analysed
our data measured by the MFA. Although all measured
data points are shifted to smaller NF values, the outcome
of the experiments and the corresponding conclusions
remain unchanged (see Supplementary Figure S1). For
further analysis, we therefore chose a medium value for
the quenching factor of F=1.19 for the ‘RNA down’
geometry, and F=1.06 for the ‘RNA up’ geometry and
corrected all measured data accordingly.

Minimum amount of ligand necessary for Dicer inhibition

We investigated what concentration of paromomycin is
nessecary to hinder Dicer from cleaving. We incubated
samples in the ‘RNA down’ configuration with

Figure 3. Dicer inhibition. (A) Separating the molecular constructs in the absence of Dicer or ligand provides an initial value in the ‘RNA up’
geometry for the NF of 0.34±0.01. (B) Upon addition of Dicer, the protein cleaves off around 20 bp of the RNA duplexes and weakens the upper
part so that the balance of the fluorophor distribution is shifted towards the lower side and the NF increases to 0.40±0.02. (C) Binding of the ligand
to its aptamer strengthens the RNA complex and the fluorophor distribution after rupture of the molecular complexes is shifted towards the upper
surface, decreasing the NF to 0.27±0.01. (D) Upon addition of Dicer and ligand, binding of the ligand to the RNA duplex blocks Dicer and
strengthens the upper complex so that the NF yields 0.30±0.01, which is close to the value we measured with ligand only. (E) Display of the data
measured in the experiment just described. (F) Inverting the geometry yields the same result in reverse. From an initial value of 0.78±0.02, the NF
decreases to 0.72±0.01 through the destabilization by Dicer. Ligand binding strengthens the lower RNA duplex and shifts the NF to higher values
of 0.96±0.01. If Dicer is hindered from cutting by ligand binding, the NF with 0.90±0.01 stays close to the value measured with ligand only.
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paromomycin, with the concentration ranging from 0.66
to 224 mM, and added 2.5 ml Dicer solution 1 h before the
separation. The result is displayed in Figure 4. The lowest
concentration of 0.66mM paromomycin did not affect
Dicer processing, but already a concentration of 2.82 mM
partially inhibited Dicer, whereas 52 mM paromomycin
hindered most of Dicer processing.The dissociation
constant, which we had determined in the previous
section to be 2.55±2.18mM, agrees nicely with the
finding here, that a paromomycin concentration in this
range leads to a partial inhibition of the cleavage
process. It points directly towards a close relationship
between the dissociation constant of a ligand and its po-
tential to hinder Dicer processing. For ligands that bind
thighter to their RNA sequence, we expect a blocking of
Dicer at lower concentrations of the ligand.

CONCLUSION

In a proof of principle, we demonstrated that the function
of the protein Dicer can be selectively blocked by a ligand
that sequence specifically binds to the RNA. Our MFA
reliably detected processing of the RNA duplex as well as
the binding of a small ligand to RNA, which resulted in an
inhibition of Dicer. In contrast to other techniques (33),
the MFA requires neither labelling of the target sequence,
nor the ligand or protein. It only needs flurophors
well-separated from the area of interest so that the inter-
action of the molecules in question is not disrupted and
can be analysed undisturbed. The localization of our mo-
lecular constructs between two surfaces is both an advan-
tage and a drawback at the same time. Because we
measure interaction forces rather than the mere presence
of a ligand, our assay can easily test different ligand–oligo-
nucleotide interactions in parallel without interfering
background signals from the bulk or the need for stringent
washing procedures. But possible surface effects e.g.
non-specific adhesion between ligand or oligonucleotides

and surface have to be carefully excluded. Furthermore,
our assay allows us to analyse the interaction of Dicer
with our RNA construct and the interaction of the
ligand to its binding sequence separately without
changing the molecular complexes. This ensures that
Dicer cleavage is blocked by hindering the protein to
bind to its substrate not by any interaction between
Dicer and the ligand. In addition, we illustrated the cap-
ability of our assay to characterize RNA-binding mol-
ecules in a one-shot experiment, enabling examination of
the binding behaviour of a large number of molecules with
moderate effort. The current setup allows to test 16 dif-
ferent systems in parallel, either one substance against 16
different DNA or RNA sequences or one oligonucleotide
construct against 16 different ligands or concentrations of
one ligand or a combination of both. To expand the multi-
plexing capabilities of our setup towards high throughput,
the amount of reacting agent has to be reduced to a
minimum and the number of RNA sequences have to be
increased. Microfluidic devices can drastically diminish
the reaction volume, and DNA/RNA spotting techniques
allowed us to test eight different systems within
100� 100 mm2 (19,34). With further standardization and
development, our technique of the MFA has the potential
to become the first force-based high throughput technique.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Method and Supplementary Figure 1.
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SUPPLEMENTARY DATA 

 

 

Characterization of fluorophores 

In order to quantify the interaction of the fluorophors with the oligonucleotides to which they are 

conjugated, the fluorescence intensities of the middle strand and and the upper duplex are measured 

by means of a Fluorometer (Fluorolog3, Horiba Jobin Yvon). The oligonucleotides are diluted in 

1xSSC to 0.5 µM and the duplex in a mixture of 1:1 is heated and cooled down over several hours. 

The excitation wavelength and emission spectra are set according to the parameters of the MFA 

setup. The resulting intensity curve is integrated and a quenching factor F is calculated by dividing the 

integrated intensity of the single strand by the integrated intensity of the duplex. Multiplying 

€ 

ICy5
Start  by 

this factor gives the corrected normalized fluorescence.  

Several repetitions yielded slightly different factors. Determining a maximum range of possible factors 

we could prove that the outcome of the experiment is not changed by correcting the NF with the 

different quenching factors. This is also visible in the Figure S1. Therefore, a medium factor was 

calculated and used for all analyses. 
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Figure S1: Proximity effects on the fluorescence intensities of Cy5.   

The Cy5 with the oligonucleotide bases requires a correction of the measured fluorescence intensity in 

order to calculate the actual NF. A quenching factor is determined by measuring the fluorescence 

intensity of Cy5 conjugated to the single, middle strand as well as to the complete upper duplex by 

means of a fluorometer. Re-analyzing the data with a maximum range of factors does not change the 

outcome of the experiment. Dicer destabilizes the RNA duplex, while binding of paromomycin 

strengthens it. Blocking of Dicer leads to NF values close to ones of paromomycin binding. This holds 

true for both geometries, the RNA complex attached to the glass slide with the DNA duplex 

constituting the upper part (A) as well as for the inverse (B). 
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T
o study protein networks at the single
molecule level, precise targeting and
localization of its constituents are in-

dispensable prerequisites. To this end, we
developed the Single-Molecule Cut & Paste
(SMC&P) technique,1,2 which combines the
angstrom level precision of the scanning
probe microscope with the selectivity of
bio�molecular interactions for the assem-
bly of molecules in arbitrary arrangements.
It allows individual molecules to be picked
up from a depot area and assembled one by
one at a chosen position in a “construction
site” in the target area (Scheme 1).
SMC&P is based on noncovalent, but

thermally stable, bonds for storage (depot),
handling (AFM cantilever), and deposition
(target). These bonds are chosen such that
the force required to release the storage
interaction is lower than the force required
to overcome the handle attachment, which
again is lower than the deposition bond (Fs <
Fh < Fd). For one-by-one assembly, the func-
tionalized AFM cantilever tip is allowed to
bind a transfer molecule in the depot area
via the specific handle. Upon retraction the
storage bond ruptures, the transfer mole-
cule remains attached to the cantilever and
is then transferred to the construction site.

There, the AFM tip is lowered and the
transfer molecule forms a deposition bond
and is thus placed at a chosen position in
the construction site. Upon retraction of the
tip, the handle bond ruptures, while the
transfer molecule remains at its position,
and the AFM tip is free again to pick up a
new transfer molecule from the depot area.
Remarkably, the system is now in the same
state as prior to the first pick-up so that
the SMC&P-process may be repeated with
the same tip in a cyclic manner. The rupture
forces in this hierarchical system, which
allow this cut and paste process to be run
over thousands of cycles, may either be
programmed by the selection of the bind-
ing partners or predetermined by the force
loading rates.3�6 Note that for each of these
bond-rupture processes a force versus dis-
tance curve is recorded to verify that indeed
individualmoleculeswere handled or, in the
case of high density tip functionalization, to
provide an estimate of the number of trans-
ferred molecules per cycle.
During recent years, this method was

improved and taken from the initial DNA-
based stage via the functional assembly of
RNA aptamers7 to the much more complex
protein level.8,9 The first approach in protein
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ABSTRACT In synthetic biology, “understanding by building” requires

exquisite control of the molecular constituents and their spatial organization.

Site-specific coupling of DNA to proteins allows arrangement of different protein

functionalities with emergent properties by self-assembly on origami-like DNA

scaffolds or by direct assembly via Single-Molecule Cut & Paste (SMC&P). Here, we

employed the ybbR-tag/Sfp system to covalently attach Coenzyme A-modified DNA

to GFP and, as a proof of principle, arranged the chimera in different patterns by SMC&P. Fluorescence recordings of individual molecules proved that the

proteins remained folded and fully functional throughout the assembly process. The high coupling efficiency and specificity as well as the negligible size

(11 amino acids) of the ybbR-tag represent a mild, yet versatile, general and robust way of adding a freely programmable and highly selective attachment

site to virtually any protein of interest.

KEYWORDS: protein�DNA chimera . single-molecule cut & paste . AFM . spatial arrangement . patterning .
single-molecule fluorescence
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SMC&P relied on the use of Zincfinger fusion proteins.9

The Zincfinger moiety and its specifically bound DNA
transfer strand acted as a shuttle for other proteins of
interest, combining the advantages and reproducibil-
ity of DNA-only SMC&P with the ability to selectively
collect and deposit single proteins without loss of
functionality. The need for an even more versatile
protein transport system arises from the size of the
Zincfinger, which imposes a rather big alteration to the
protein of interest; its poor solubility, especially in
combination with more complex protein candidates;
and the noncovalent nature of its DNA interaction.
Minimal modification of the proteins of interest, as

well as covalent attachment to the DNA carrier, is
greatly desirable. Moreover, there is a general need
for robust strategies to selectively couple DNA to pro-
teins. Such chimeras are extremely useful in immunobio-
logical applications10,11 as well as nanobiotechnology,12

e.g., for the DNA origami technology.13 Since the
various options to couple DNA-oligonucleotides to
proteins harbor certain drawbacks, no gold standard
exists hitherto.
Click-chemistry,14 e.g., while being very specific and

selective itself, requires less selective modification of
amino acid side chains15 or the incorporation of non-
natural amino acids into proteins.16,17 The latter is
often laborious in terms of expression system and
yield.18 Furthermore, reaction conditions can be rather
harsh for proteins or relatively inefficient.19 Coupling
strategies involving bifunctional cross-linkers are less
specific. Attachment can be achieved via either pri-
mary amino groups in proteins or thiol groups, which
often requires incorporation of a single accessible

cysteine and mutation of others. Thus, full integrity
and functionality of the modified proteins is not guar-
anteed or even unlikely. Furthermore, suicide enzymes,
e.g., HaloTag or SNAP-tag (hAGT), could be employed
as fusion protein tags for site-specific immobilization
reactions.20�22 However, their respective sizes of 33
and 20 kDa diminish their attractiveness for single-
protein manipulation.
We thus chose to employ the 11 amino acid ybbR-tag

that, assisted by the Phosphopantetheinyl Transferase
Sfp,23 allows for the site-selective attachment of Co-
enzyme A (CoA)-modified DNA to proteins of inter-
est24 (Scheme 1). Coenzyme A is easily reacted to
commercially available Maleimide-modified oligonu-
cleotides via its intrinsic thiol group, and the already-
coupled construct is available upon request for purchase
from several companies. The ybbR-tag technology is
widely used for labeling proteins with, e.g., biotin or
fluorescent dyes and works efficiently on either N- or
C-terminus or accessible unstructured regions of pro-
teins.25 The ybbR-tag/Sfp system can be further em-
ployed in the immobilization of proteins on Coenzyme
A-functionalized solid carriers or surfaces.26�28

RESULTS AND DISCUSSION

We expressed GFP with an N-terminal ybbR-tag and
a C-terminal short GCN4-tag and reacted the construct
with Coenzyme A-modified transfer-DNA with high
yield (Supporting Information Figure S1). The purified
chimera was then successfully incorporated in SMC&P
experiments. Transport processes were extremely effi-
cient, and the GFP remained intact and fluorescent
throughout the SMC&Pprocedure (Figures 1a,b, and 2).
The number of transported molecules can be easily
tuned by using either different cantilever sizes and/or
varying functionalization densities at the cantilever tip
(Figures 1 and 2). Glass surface functionalization is kept
as dense as possible to allow for a homogeneous
distribution of transfer-DNA:protein complex binding
sites in the depot and target area. The number of
deposited protein molecules is thus solely dependent
on the number of GCN4-binding antibody anchors on
the cantilever tip.
To achieve the highest precision possible and to

prove that individualmolecules can be transported, we
performed SMC&P of the GFP-DNA chimera employing
BioLever Mini (BLM) cantilevers. Such cantilevers har-
bor extremely sharp and small, but still functionaliz-
able, tips (10 nm nominal tip radius of curvature;
sharpened from the initial pyramidal shape by an
oxidation process) and hence, offer the highest accu-
racy in molecule deposition. Grid patterns of 8 � 8
distinct transfer sites (10.5� 10.5 μm in size, 1.5 μm in
eachdirectionbetweeneachgridpoint)were assembled
(Figure 1 and Supporting Information Figure S2). The
transport process was followed directly by recording
force distance curves with the AFM during SMC&P

Scheme 1. SMC&Pwith a chimeric GFP�DNAmoiety. (a) To
ensure a hierarchical force distribution, DNA duplex inter-
action is utilized in depot and target region, with the DNA in
zipper (Frupture∼ 20 pN)3 and shear conformation (Frupture∼
65 pN),4 respectively. The intermediate force for the trans-
port handle was achieved using an anti-GCN4-peptide
single-chain antibody fragment (Frupture ∼ 50 pN).5 (b)
Principle of repeatable transfer cycling in protein SMC&P
experiments.
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cycling (Figure 1 and Supporting Information Figure S3).
The pattern was subsequently imaged by TIRF mi-
croscopy (Figure 1a and Supporting Information
Figure S2a). The number of deposited GFP molecules
arises from the fluorescence signal over time at a

distinct grid point (Figure 1b). We could thus show
that indeed single molecules were transferred. Nota-
bly, SMC&P utilizing such sharp-tipped cantilevers can
also result in force curves devoid of any rupture event
and thus no GFP deposition (Figure 1c). In some cases,
even though single rupture events were observed, no
fluorescence signal could be detected at the corre-
sponding grid position (Figure 1d). A likely cause is the
limited photostability of GFP. A fraction of the GFP
molecules can be expected to already undergo pho-
tobleaching during the purification and SMC&P pre-
paration process. Thus, nonfluorescent GFP molecules
would be occasionally transported as well. Further-
more, the rupture events underlying the SMC&P pro-
cedure only have a certain probability to lie in the
expected force range. In rare cases, the observed
rupture event for the deposition process could
therefore theoretically originate from a rupture of the
shear DNA deposition bond (a most probable rupture
force ∼65 pN would be expected for the utilized
40 bp duplex at the observed loading rates around
300 pN/s)4 instead of the desired antibody fragment/
GCN4-peptide dissociation (Frupture ∼ 50 pN at the
observed loading rates around 300 pN/s).5 This would
result in the GFP-DNA chimera remaining on the canti-
lever and could hence also account for the absence of a
fluorescence signal in the respective grid position.
In a typical SMC&P experiment where a 64-point

distinct deposition pattern was assembled, an average
of 0.89 molecules per cycle were picked up from the

Figure 1. Individual GFP molecules can be transported with AFM cantilevers. (a) Representative 3 � 4 deposition point grid
section obtained by SMC&P of GFPmolecules employing a BLM cantilever (standard deviation of the fluorescence signal over
100 s, ImageJ)with 7observableGFP signals out of 12 transfer cycles. (b) Rupture forces around50pN (at loading rates around
300 pN/s) correspond to single deposition events in the target area and correlate with a single bleaching step in the
fluorescence signal over time at the distinct deposition point (2� 2 pixel area). (c) Target force curves showing no force built-
up correspond to cycles where nomolecule could be deposited, which is also evident from the lack of a fluorescence signal at
the respective grid position. (d) Due to its limited photostability, a fraction of the GFP molecules is expected to already be
bleached throughout the purification and SMC&P preparation process. Yet, the dualmode of transport observation;directly
following force�distance curves while performing SMC&P and subsequent fluorescence imaging;allows the detection of
single GFP deposition events, even in the absence of a fluorescence signal.

Figure 2. High transport efficiency protein SMC&P. (a) After
exposure of the 552-point deposition snowflake pattern for
60 s (0.1 s exposure time at ∼10 W/cm2), it still appears
homogeneous and clearly discernible. The pattern template
and the average fluorescence over the first (bright) and last
(faint) 20 frames of the TIRFM acquisition (600 frames at
0.1 s exposure time) are depicted. (b) Judging from extre-
mely high rupture forces, several (>20) GFPmolecules were
transported in each cycle.
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depot area, judging from the according force spectros-
copy data. More relevantly, an average of 0.84 mol-
ecules were deposited per cycle, based on rupture
force evaluation. A fluorescence-based assessment of
the number of transported and actually deposited
moleculesgives rise to anaverage valueof0.5molecules
per cycle (Supporting Information Figure S2). For
comparison, in former DNA-only SMC&P experiments,
employing AFM probes with broader tips, around 0.5
molecules per cycle were transported.29 Further, in ear-
lier Zincfinger-basedprotein-SMC&P approaches,where
larger numbers of molecules should be transferred
with densely functionalized broad-tipped cantilevers,
efficiencies ranged around 2 molecules per cycle.9

Conditions are optimized in a way that mostly
individual molecules are transported. Rarely, the trans-
port of two molecules per cycle is observed, whereas
SMC&P cycles devoid of a deposition event are much
more likely to occur. A transport efficiency of less than
one molecule per cycle is acceptable for the benefit of
being able to frequently transport truly individual
protein constructs. Under the given conditions, one
SMC&P cycle takes less than 3 s. This is mainly affected
by the chosen pulling speeds that are optimized with
respect to apparent loading rates and thus probable
rupture forces. These parameters require careful ad-
justment to ensure functional and structural integrity of
the transported protein as well as balancing the hier-
archical rupture force “triangle” the SMC&P principle
builds-up on. Binding kinetics of the interacting mol-
ecules are not expected to be limiting under the experi-
mental conditions (see Supporting Information, p S7).
To further demonstrate the robustness of the

SMC&P setup, we additionally utilized a pyramidal
shaped MLCT cantilever probe with a nominal tip
curvature radius of approximately 20 nm to assemble
the pattern of a snowflake in 552 transfer cycles

(Figure 2). GFP fluorescence of the pattern was extre-
mely strong, and after laser exposure at 10 W/cm2

for 60 s, the homogeneous pattern was still clearly
discernible (Figure 2). Considering GFP's limited photo-
stability, this indicates high transport efficiency. Judg-
ing from AFM rupture force curves of this experiment,
more than 20 molecules were transported per cycle.

CONCLUSIONS

In conclusion, we have largely improved protein-
based SMC&P in terms of versatility, precision, effi-
ciency and robustness. The adaptability of the system
will in the future allow tackling of any protein of
interest in single-molecule studies or in complex pro-
tein networks, spatially arranged by means of SMC&P.
Moreover, protein SMC&P can be utilized to for exam-
ple place individual enzymes in the center of bow-tie
nanoantenna structures30 or Zero-Mode Waveguides
(ZMW), as has been demonstrated for DNA.31 In favor
of this, the applicability of cantilever tips with a high
aspect ratio is especially crucial for protein SMC&P as
the cantilevers with larger pyramidal shaped tips ex-
ceed the dimensions of the nanometer-sized holes of
ZMWs. The precision and spatial control achieved with
protein SMC&P will thereby significantly improve en-
zymatic studies in the presence of high concentrations
of fluorescent substrates that are unmet by other
single-molecule fluorescence methods.32

Importantly, the protein�DNA coupling strategy
employing Coenzyme A-modified DNA and the ybbR-
tag/Sfp system proved to be high-yielding, straightfor-
ward (also with other protein constructs, data not
shown), and relatively inexpensive in terms of material
costs and time. It thus promises to be a useful tool in
providing protein�DNA chimeras, which should also
be advantageous for other fields of nanobiotechnology
and protein engineering.

EXPERIMENTAL SECTION
SMC&P experiments were carried out on a combined AFM/

TIRFM setup, as described previously1 and detailed information
can be found in the Supporting Information. In short, GFP
harboring an N-terminal Hexa-His-tag, followed by an 11 amino
acid ybbR-tag25 and a C-terminal GCN4-tag5 was expressed in
Escherichia coli BL21 DE3 CodonPlus and purified according
to standard protocols. The construct was then reacted with
Coenzyme A-modified transfer-DNA (biomers.net GmbH, Ulm,
Germany) in the presence of Sfp. The progress of the coupling
reaction was assessed by SDS-PAGE and subsequent fluores-
cence scanning as well as Coomassie staining of gels. The
GFP�DNA chimera was then purified by anion exchange
chromatography. The construct was bound to the DNA-depot
area on a functionalized glass surface via a custom-built micro-
fluidic system. SMC&P was achieved by means of anti-GCN4
antibody functionalized cantilever tips, delivering GFP�DNA
molecules from the depot area to the construction site in the
target area. BLM cantilevers were used to transport individual
GFP�DNA chimeras. MLCT cantilevers were utilized for com-
parison and high transport efficiencies. Molecule pick-up and

depositionwas followed directly byAFM force�distance curves,
and the assembled pattern was imaged by TIRF microscopy
subsequent to the writing process. Simultaneous detection of
AFM curves and fluorescence is also possible; however, it was
not feasible for GFP due to its relatively low photostability.
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in the main text. 

76 A. Publications



S2	  
	  

AFM Measurements 

A custom built AFM head and an Asylum Research MFP3D controller (Asylum 

Research, Santa Barbara, USA), which provides ACD and DAC channels as well as a 

DSP board for setting up feedback loops, were used. Software for the automated control 

of the AFM head and xy-piezos during the SMC&P experiments was programmed in Igor 

Pro (Wave Metrics, Lake Oswego, USA). MLCT-AUHW cantilevers (Bruker, Camarillo, 

USA; 20 nm nominal tip radius, pyramidal shaped probe) and BioLever Mini (BL-

AC40TS, here “BLM”) cantilevers (Olympus, Japan; 10 nm nominal tip radius, 

sharpened probe) were chemically modified (see Preparation of Cantilevers) and 

calibrated in solution using the equipartition theorem.2,3 Pulling velocities were set to 2 

µm/s in the depot and 0.2 µm/s in the target area. The positioning feedback accuracy is 

±3 nm. However, long-term deviations may arise due to thermal drift. Typical times for 

one Cut & Paste cycle amount to approximately 3 s in these experiments. 

 

TIRF Microscopy 

The fluorescence microscope of the hybrid instrument excites the sample through the 

objective in total internal reflection mode. A 100x/1.49 oil immersion objective (CFI 

Apochromat TIRF, Nikon, Japan) was employed. Blue excitation for monitoring GFP 

fluorescence was achieved with a fiber-coupled 473 nm diode laser (iBEAM smart, 

Toptica Photonics, Gräfelfing, Germany) at an estimated excitation intensity of 

approximately 10 W/cm2. The corresponding filter set consists of z 470/10 (Chroma, 

Bellows Falls, VT, USA), ND10A (for grid experiments, Thorlabs GmbH, Dachau, 

Germany), z 470 RDC, HQ 525/50, HQ485lp (all of Chroma, Bellows Falls, VT, USA) 
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and HC 750/SP (AHF, Tübingen, Germany) filters. Images were recorded with a back-

illuminated EMCCD camera (DU-860D, Andor, Belfast, Ireland) in frame transfer mode 

with 1 MHz readout rate at a frame rate of 10 Hz. The camera was water cooled and 

operated at -75 °C.  

 

Preparation of the C11L34 Single Chain Antibody Fragment 

The C11L34 single chain antibody fragment was prepared as described previously.4 The 

scFv construct harbored a C-terminal Hexa-His-tag followed by a Cys to allow for site-

specific immobilization and was obtained by periplasmic expression in E. coli SB536. 

C11L34 was purified by Ni2+ and immobilized antigen affinity chromatography 

according to standard protocols. The concentration was adjusted to ~1.4 mg/ml in a 

storage buffer containing 50 mM sodium phosphate, pH 7.2, 50 mM NaCl and 10 mM 

EDTA.  

 

Preparation of the ybbR-GFP-GCN4 Construct 

A superfolderGFP5 construct was designed to harbor an N-terminal ybbR-tag 

(DSLEFIASKLA)6, 7 and a C-terminal GCN4-tag (YHLENEVARLKKL).8 The sfGFP 

gene was PCR amplified from a synthetic template (Lifetechnologies, Paisley, UK) with 

primers containing the respective tag coding sequences. The construct was cloned into a 

modified pGEX6P2 vector (GE Healthcare, Little Chalfont, UK) that, in addition to the 

GST-tag, harbors a Hexa-His-Tag and a TEV-Protease cleavage site, by means of NdeI 

and XhoI restriction sites. 
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The resulting fusion protein (ybbR-sfGFP-GCN4) harbored a GST- as well as a Hexa-

His-tag and was expressed in E.coli BL21 DE3 CodonPlus cells (Agilent Technologies, 

Inc., Santa Clara, CA, USA). For this, one liter of SB medium was inoculated with 10 ml 

of an overnight culture and grown at 37°C. When an OD600 of 0.7 had been reached, over 

night expression at 18°C was induced by adding 0.25mM IPTG.  

Cells were lysed in 50mM Tris HCl pH 7.5, 150 mM NaCl, 2mM DTT, 5% Glycerol, by 

a French pressure cell press. The ybbR-sfGFP-GCN4 construct was obtained in the 

soluble fraction and purified by Glutathione affinity chromatography on a GSTrap 

column (GE Healthcare, Little Chalfont, UK). After over night incubation with 

PreScission protease the GST-tag was removed and the protein further purified by Ni-

IMAC over a HisTrap HP column (GE Healthcare, Little Chalfont, UK). The purified 

protein was concentrated and the buffer exchanged (50mM Tris HCl pH7.5, 150mM 

NaCl, 2mM DTT, 5% Glycerol) by ultrafiltration in 10 kDa MWCO Amicon centrifuge 

filter devices (EMD Millipore Corporation, Billerica, MA, USA). Protein was stored at -

80°C at a final concentration of 6.5 µM. 

 

Sfp-mediated Coupling of Coenzyme A-modified DNA to ybbR-GFP-GCN4 

3’-Coenzyme A-modified transfer DNA was synthesized by biomers.net GmbH (Ulm, 

Germany). Lyophilized DNA was dissolved in Sfp-buffer (120 mM TrisHCl pH7.5, 10 

mM MgCl2, 150 mM NaCl, 2% Glycerol, 2 mM DTT) to a concentration of 100 mM. 

The coupling reaction was slightly altered from Yin et al.6 by mixing 10 nmol CoA-DNA 

with 7.2 nmol ybbR-GFP-GCN4 and 0.75 nmol Sfp in a total volume of 1.5 ml in Sfp-

buffer. The mix was incubated at room temperature and the progress of the reaction was 
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followed by analyzing aliquots in SDS-PAGE. Best coupling efficiency (ca. 90%) was 

achieved after concentrating the entire reaction mix 10fold by ultrafiltration and over 

night incubation at room temperature. To remove remaining free DNA, the GFP-DNA 

construct was further purified by anion exchange chromatography (Suppl. Fig. S1a) on a 

HiTrap Q HP column (GE Healthcare, Little Chalfont, UK). Fractions were analyzed by 

SDS-PAGE (Suppl. Fig. S1b) and UV/Vis spectrometry at 260, 280 and 488 nm. 

Aliquots of 3.8 µM DNA/GFP-GCN4 conjugate were stored at -80°C.  
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Supplementary Figure S1. Purification of the covalent GFP-DNA complex. (a) Chromatogram 

of the anion exchange chromatography and (b) SDS-PAGE gel imaged by fluorescence scan 

(excitation 488 nm, emission 535 nm), after Ethidium Bromide staining and UV detection and 

after Coomassie Staining. Samples loaded were: “DL” – DNA-ladder 1kb ruler (ThermoFisher 

Scientific, Waltham, MA, USA), “GFP” – ybbR-sfGFP-GCN4 , “DNA-GFP” – DNA-CoA-

ybbR-sfGFP-GCN4, “PL” – Protein ladder PAGERuler Prestained  (ThermoFisher Scientific, 

Waltham, MA, USA). 
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Preparation of Cantilevers 

Cantilevers (MLCT obtained from Asylum Research, Santa Barbara, CA and BioLever 

Mini obtained from Olympus, Japan) were oxidized in a UV-ozone cleaner (UVOH 150 

LAB, FHR Anlagenbau GmbH, Ottendorf-Okrilla, Germany) and silanized by soaking 

for 2 min in (3-Aminopropyl)dimethylethoxysilane (ABCR, Karlsruhe, Germany; 50% 

v/v in Ethanol) . Subsequently, they were washed in toluene, 2-propanol and ddH2O and 

dried at 80 °C for 30 min. After incubating the cantilevers in sodium borate buffer (pH 

8.5), a heterobifunctional PEG crosslinker9 with N-hydroxy succinimide and maleimide 

groups (MW 5000, Rapp Polymere, Tübingen, Germany) was applied for 1 h at 25 mM 

in sodium borate buffer. Afterwards, the C11L34 antibody fragments were bound to the 

cantilevers at 8 °C for 2-4 h. Finally the cantilevers were washed and stored in PBS. 

 

Preparation of Glass Surfaces 

Glass cover slips were sonicated in 50% (v/v) 2-propanol in ddH20 for 15 min and 

oxidized in a solution of 50% (v/v) hydrogen peroxide (30%) and sulfuric acid for 30 

min. They were then washed in ddH2O, dried in a nitrogen stream and then silanized by 

soaking for 1 h in (3-Aminopropyl)dimethylethoxysilane (ABCR, Karlsruhe, Germany, 

1.8 % v/v in Ethanol). Subsequently, they were washed twice in 2-propanol and ddH2O 

and dried at 80 °C for 40 min. After incubation in sodium borate buffer (pH 8.5), a 

heterobifunctional PEG crosslinker with N-hydroxy succinimide and maleimide groups 

(MW 5000, Rapp Polymere, Tübingen, Germany) was applied for 1 h at 50 mM in 

sodium borate buffer. Depot and Target DNA was reduced with TCEP and then purified 

by ethanol precipitation. DNA pellets were dissolved in phosphate buffer (pH 7.2, 50 mM 
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NaCl, 10 mM EDTA). A microfluidic system was fixed on the PEGylated cover glass, 

and the depot and target DNA oligonucleotides were pumped through the two respective 

channels and incubated for 1 h. Subsequently both channels were flushed with 1mg/ml 

BSA and then PBS. The GFP-DNA chimera was pumped into the depot channel and 

incubated for 60 min. The channel was then rinsed again with PBS and the microfluidic 

system was removed. 

 

SMC&P Experiment 

Grid patterns were written in 64 cycles with 1.5 µm space between each deposition point. 

The denser snowflake pattern was written in 552 transfer cycles. The pulling speed in the 

depot was set to 2 µm/s and in the target to 0.2 µm/s. This corresponds to approximate 

surface contact times10 (dependent on approach/retraction velocity, indentation force and 

substrate stiffness) of 8 ms and 80 ms, respectively, and should allow for ligand binding 

(compare kon(DNA)>104 M-1s-1 and kon(AB)~106 M-1s-1).10-13 Considering a single 

antibody molecule being bound to the cantilever tip and estimating its localization in a 

half sphere with r= 30 nm (length of PEG linker), the local concentration of antibody 

would be in the mM range. This is several orders of magnitude higher than the Kd for the 

antibody-peptide interaction (pM to nM range - Berger et al.;  FEBS, 1999). Taking 

further into account that bond formation is not diffusion-limited for the SMC&P 

experiment, successful attachment is very likely even at the given, short contact times. In 

addition, it is crucial for the respective interactions to be thermally stable over a long time 

span. Especially the DNA storage bonds in the depot site as well as in the construction 
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site are required to not passively dissociate. Judging from the extremely low expected 

off-rates (koff(DNA)>10-10 s-1, koff(AB)~10-4 s-1)4, 14 this prerequisite should be fulfilled.  

One SMC&P cycle is completed in less than 3 s, this is mainly dependent on the pulling 

speed, which is optimized with respect to loading rates and thus rupture forces. This 

warrants that the zipper-DNA storage bond is more likely to rupture during the pickup 

process than the newly formed antibody – GCN4-peptide bond, whereas the shear-DNA 

bond formed in the deposition process is more likely to withstand the final retraction. 

The functionalization density of the cantilever, depot and target region was adjusted to 

allow for high effectiveness in SMC&P. Transfer efficiencies were determined from 

rupture events and forces (Fig. 2, 3, Suppl. Fig. S3) as well as fluorescence intensity 

traces (Fig. 2) of transported GFP molecules over time.  

Rupture forces and loading rates were evaluated from AFM force distance curves that 

were recorded for each pick-up and deposition process (moving average smoothing over 

5 data points was employed for improved visualization in Fig. 2, but not evaluation) 

utilizing a quantum mechanically corrected WLC model15 (force spectroscopy data was 

evaluated in Igor Pro).  

Fluorescence bleaching of deposited molecules in a 2x2 pixel area (180 nm/pixel), 

corresponding to the 4 brightest pixels in the expected deposition vicinity, was followed 

for 200 s at 0.1 s exposure time. Smoothing, by moving average over five data points, for 

improved bleaching step perceptibility and analysis were performed in ImageJ. Where 

applicable, i.e. with the number of transported GFP molecules being in an, in our hands, 

resolvable range in the time course experiments (for BLM grids), exact numbers of 
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deposited GFP molecules could be deduced from bleaching steps in the fluorescence 

traces (Fig. 2, Suppl. Fig. S2 – traces not shown).  

For MLCT cantilevers the transfer efficiency ranged around 20 (as found for the 

snowflake pattern; deduced from rupture forces Fig. 3) molecules per cycle. For the 

sharp-tipped BLM cantilevers functionalization conditions were limiting, so that mainly 

single molecules were transported and not all SMC&P cycles resulted in a deposition 

(Fig. 2, Suppl. Fig. S2) 
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Supplementary Figure S2. Representative 8x8 deposition point grid pattern of a GFP SMC&P 

experiment employing a BLM cantilever. (a) The TIRFM image represents the standard deviation 

of the fluorescence within the recorded series as evaluated with ImageJ (exemplary BLM 8x8 

grid: first 774 frames at 0.1 s exposure time). (b) The number of deposited GFP molecules in each 

grid position was determined from fluorescence signals over time in 2x2 pixel areas, 

representative of the 4 brightest pixels in the approximated deposition vicinity. (c) Superposition 

of the TIRFM image and the color-coded deposition count panel (blue - 0, red – 1, pale red - 2 

GFP molecules). 
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Supplementary Figure S3. Representative example curves of GFP SMC&P experiments 

employing BLM cantilevers. Curves that represent no rupture, i.e. no pick-up or deposition events 

are depicted in tints of blue. Single-event curves are shown in tints of red. (a) Single-event depot 

rupture forces range around 20 pN (corresponding with the unzipping of the DNA storage 

bond)16, (b) whereas single-event target rupture forces range around 50 pN, which resembles the 
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rupture of a single anti-GNC4 antibody/GCN4-peptide interaction at the observed loading rates of 

~300 pN/s.4 

 

Oligomer Sequences 

thiolated depot oligomer 

5' SH - TTT TTT CAT GCA AGT AGC TAT TCG AAC TAT AGC TTA AGG ACG TCA A 

thiolated target oligomer 

5' CAT GCA AGT AGC TAT TCG AAC TAT AGC TTA AGG ACG TCA ATT TTT T– SH 

CoA-modified transfer oligomer for protein coupling 

5' TTG ACG TCC TTA AGC TAT AGT TCG AAT AGC TAC TT G CAT GTT TTT TTT TTT TTT- 

CoA 3’ 
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Abstract

Quantitative proteome research is greatly promoted by high-resolution parallel

format assays. A characterization of protein complexes based on binding forces

offers an unparalleled dynamic range and allows for the effective discrimination of

non-specific interactions. Here we present a DNA-based Molecular Force Assay to

quantify protein-protein interactions, namely the bond between different variants of

GFP and GFP-binding nanobodies. We present different strategies to adjust the

maximum sensitivity window of the assay by influencing the binding strength of the

DNA reference duplexes. The binding of the nanobody Enhancer to the different

GFP constructs is compared at high sensitivity of the assay. Whereas the binding

strength to wild type and enhanced GFP are equal within experimental error,

stronger binding to superfolder GFP is observed. This difference in binding strength

is attributed to alterations in the amino acids that form contacts according to the

crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we

outline the potential for large-scale parallelization of the assay.

Introduction

Protein-protein interactions are essential to most reactions in the cell and thus

their characterization crucial for a better understanding of many fundamental

processes in nature [1]. A key problem herein lies in the extensive number of

interactions in any given proteome [2]. Several high-throughput methods have

been developed to meet this challenge, such as yeast-two-hybrid assays [3],

protein microarrays [4], or microfluidic-based techniques [5]. These are valuable

tools for the identification of interacting proteins [1, 6]. In addition, several low-
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throughput methods exist that are able to characterize such interactions in greater

detail. Prominent examples, providing different information on the structure or

the kinetics of an interaction, are X-ray crystallography [7], fluorescence

resonance energy transfer (FRET) [8], or surface plasmon resonance [9]. Another

parameter becoming more and more acknowledged is the intermolecular binding

force that controls the interaction. Mechanical stability of a biomolecular

interaction does not necessarily compare to its thermal stability and vice versa.

However, mechanical load can for example decrease thermal stability and ‘‘off-

time’’ of a bond, which plays a pivotal role in receptor-ligand interactions and

thus signaling processes in e.g. cell differentiation and immunological recognition.

At the other extreme, bonds may be stabilized by exerted forces. These so called

‘‘catch bonds’’ are found across various species and in different biological

contexts. In those cases interactions that would otherwise be of transient and low

affinity nature are stabilized by the shear force the binding partners experience.

Prominent examples are adhesion proteins like integrins [10] and cadherins [11]

in humans or FimH [12] in bacteria, which tune their binding properties in

response to mechanical stress [13]. Another example for potential biological

importance of binding forces is in autoproteolyzed domains of Adhesion-GPCRs,

where the two parts of the protein are hypothesized to unbind at a certain force

threshold. This could serve as a protective mechanism upon exposure to

mechanical stress [14]. As the impact of forces in those contexts is challenging to

study it can be assumed that other examples will follow.

In order to address questions regarding forces in biomolecules or biomolecular

interactions, single-molecule force spectroscopy techniques have been developed,

based on e.g. the atomic force microscope (AFM) [15, 16] or optical tweezers [17]

enabling direct quantification of the forces and energy landscapes underlying

protein-protein interactions [18–20]. Common drawbacks of those single-

molecule techniques are the high effort needed to gather statistically sufficient

data sets or the infeasibility to measure different interactions in parallel, giving rise

to calibration uncertainties [21]. Thus, a method able to parallelize force

measurements of protein-protein interactions is highly desirable.

As low throughput is a general limitation of force-based single-molecule

experiments, our lab has recently developed the Molecular Force Assay (MFA) to

overcome this bottleneck. Relying on the principle of comparing the bond in

question with a known reference bond, single-molecule measurements can be

conducted in parallel. In detail, the two complexes to be compared are attached in

series to form a so-called Molecular Force Probe (MFP) upon which a force is

applied. The force directly correlates the mechanical stability of both bonds until,

statistically, the weaker bond ruptures. In one single experiment thousands of

MFPs can be tested simultaneously. Additionally, the sample and reference bond

can be multiplexed. This very sensitive method has already been applied

successfully to DNA, e.g. to resolve single base-pair mismatches [22]. It was

further utilized to characterize the binding of ligands like polyamides [23] or

proteins [24] to DNA as well as to RNA [25]. In order to enhance the throughput,

the capacity of the MFA technique for parallelization, by means of a microfluidic
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chip [26], as well as for miniaturization [27] has been demonstrated. In a first

approach to determine protein interactions, a force-based sandwich immunoassay

relying on the basic principle of two bonds in series was constructed [28]. Here,

we introduce parallelized force measurements of protein-protein interactions

utilizing site-specific and covalent integration of a protein pair into the MFA. Our

proof-of-principle study aims to test the binding of three variants of Green

Fluorescent Proteins (GFPs) [29] to the GFP-binding nanobody ‘‘Enhancer’’ [30].

To be able to detect the differences in binding strength, first the window of high

sensitivity of the assay is determined by testing against references with different

binding strengths. In order to highlight the dependence of the sensitivity on the

chosen reference, a modified variant of Enhancer, displaying a different binding

strength to GFP, is employed and compared to Enhancer.

Nanobodies are camelid-derived single-domain antibodies. Enhancer has been

generated and selected for its modulation of the conformation and the spectral

properties of wild type GFP (wtGFP), where its binding leads to a fourfold

fluorescence enhancement [30]. The binding epitopes of the nanobodies lie on the

outer beta barrel structure, which is conserved for the other GFP variants

investigated here, namely superfolder GFP (sfGFP) [31] and enhanced GFP

(eGFP) [32]. As GFP binding nanobodies are stable and functional in living cells,

they have been used for numerous applications. Examples are the detection of

translocation events in vivo [30], the high affinity capture of GFP fusion proteins

[33], or enabling GFP to act as scaffold for the manipulation of gene expression

[34]. All rely on the nanobodies’ excellent binding specificities. In addition to

being well characterized, this system offers the advantage of GFP acting as an

intrinsic fluorescence label to control for the correct assembly of the Protein-

MFA.

Results and Discussion

General Functionality of the Protein Molecular Force Assay

Based on the principle of the standard DNA-MFA [24], the Molecular Force

Probes of the Protein-MFA consist of two molecular bonds in series, which are

attached between two surfaces. The bond to be probed is the protein complex,

where both proteins are attached covalently, one to the glass slide, which acts as

the lower surface and the other to one strand of a DNA duplex which acts as the

reference bond. A Cy5 dye is attached to the DNA strand coupled to the protein.

The complementary DNA strand is labeled with a Cy3 dye, forming a FRET pair

with the Cy5, as well as with a Biotin, which enables the coupling to the upper

surface, a soft PDMS stamp functionalized with Streptavidin (Fig. 1A). The

PDMS stamp has a size of 1 cm 61 cm and features 16 pillars of 1mm in height

and 1.1mm in diameter. A matching 464 array of MFPs is assembled on a glass

slide, where each spot can be functionalized independently, enabling the

measurement of 16 different protein pairs and/or the variation of the reference

DNA (Fig. 1A). For the preparation of the measurement, first the lower proteins
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are attached to the glass slide via a PEG linker, then the pre-incubated complex of

upper protein and DNA reference is added. Multiple washing steps after each

incubation step minimize unspecific binding. Fluorescence ‘‘Start’’ images of the

Cy5 (red excitation) and FRET signals are recorded for each spot on the glass slide

with an inverted epi-fluorescence microscope. After the stamp is lowered

gradually onto the glass slide using reflection interference contrast microscopy

Fig. 1. Basic Principle of the Protein Molecular Force Assay. (A) Molecular Force Probes (MFPs) consist
of two bonds in series, a protein complex to be studied and a DNA duplex acting as a reference. Both proteins
are attached covalently at their N- or C-terminus, one to the glass slide and the other one to a strand of the
DNA duplex. Cy5 and Cy3, coupled to one of the DNA strands each, form a FRET pair. Linkage to the upper
surface, a PDMS stamp functionalized with Streptavidin, is facilitated via a Biotin on the DNA. In the
macroscopic view, the PDMS stamp with 16 pillars as well as the glass slide with a matching 464 array of
spots of MFPs is displayed. Every spot may be functionalized with a different set of MFPs, allowing for the
measurement of 16 different protein pairs and/or the variation of the reference. (B) Preparation: After the
stepwise assembly of the MFPs on the glass slide, fluorescence ‘‘Start’’ images of the Cy5 signal (with red
excitation) as well as the FRETof the MFPs are recorded. Assembly of the assay is completed by lowering the
stamp, which enables the Biotins of the MFPs to bind to the Streptavidins on the elastomer. Force Assay:
Upon retraction of the stamp with constant speed, a force is gradually built up in the MFPs, acting equally on
all molecular components in series. As a result, either the DNA reference duplex or the protein-protein
interaction unbinds, resulting in the transfer of either Cy3 alone or Cy3 together with Cy5 to the surface of the
stamp. Readout: Another set of fluorescence ‘‘Final’’ images of the glass surface provides the ratio of broken
protein to reference bonds. The ratio of the Cy5 signals on the glass slide provides the surface density of
remaining, intact protein complexes in comparison to the initial number of protein pairs. The residual FRET
signal accounts for complexes that were not loaded under force and are still fully assembled. The ratio of the
FRET signal thus allows for the correction of the analysis.

doi:10.1371/journal.pone.0115049.g001
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[35], an incubation step of 10 min allows for the coupling of the Biotins to the

Streptavidin on the stamp. A piezo actuator enables retraction of the stamp with

constant speed, gradually building up a force acting on both complexes of the

MFPs until, statistically, the weaker one unbinds. Here, the retraction speed of

1 mm/s yields a force loading rate in the range of 105 pN/s [27, 36]. After the

retraction of the stamp, another set of ‘‘Final’’ fluorescence images is taken as the

ratio of remaining dyes determines the outcome of the experiment.

The Normalized Fluorescence (NF) gives the number of broken upper DNA

bonds normalized to the total number of Molecular Force Probes that have been

under load. To determine the NF, the ‘‘RED‘‘ and ‘‘FRET’’ signals recorded of

every single spot before and after the actual force assay are processed after

background correction. In the analysis, the ratio of RED Final to RED Start gives

the density of still intact protein bonds in comparison to the initial amount of

protein bonds.

Ratio RED~RED Final=RED Start:

The ratio of FRET values needs to be determined as well, as a remaining FRET

signal after the force assay gives the number of MFPs that have not been under

load and are thus still fully assembled (see Fig. 1B). For those MFPs, the Cy5 dye

giving the RED signal is still attached to the surface yielding a false positive signal.

By determining the FRET ratio (Ratio_FRET 5 FRET_Final/FRET_Start), those

MFPs can be subtracted.

Normalization to the Coupling Efficiency CE 51– Ratio_FRET yields the

Normalized Fluorescence:

NF~ Ratio REDRatio FRETð Þ=CE: (Equation 1)

Thus, a NF of 0.5 in this context means that the protein and the DNA complex

have the same binding strength, a NF closer to 1 indicates that the protein

complex is stronger than its DNA reference and vice versa for a NF closer to 0. For

the analysis, the assumption is made that all MFPs are correctly assembled in the

beginning, meaning that every protein-DNA complex has the second DNA strand

attached to it. This is achieved by pre-incubating the DNA in a stoichiometry of

1:2 before coupling to the protein. If only the lower protein is present with

nothing bound to it, it does not give a fluorescent signal and can thus be

neglected. The RED and FRET signals cannot be compared directly by division, as

the fluorescence efficiency of a Cy5 dye is different to that of a Cy3-Cy5 FRET

pair. As demonstrated before by Severin et al. [24], the pixel-by-pixel method

offers the advantage of canceling out inhomogeneities due to the Gaussian

illumination profile or coupling density as well as surface defects. Importantly, in

the actual force assay all MFPs are tested simultaneously in the moment of the

retraction of the stamp while the read-out can take place subsequently without
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time constraints [27]. Another very substantial advantage is that the force assay is

not disturbed by complex ambients [37] since only fluorescence from the lower

surface is measured.

Supporting information on chemical protocols and the measurement process

can be found in Materials and Methods in S1 Supplement and S1 Fig.

One of the key challenges in the integration of functional proteins in the MFA

was their covalent attachment, especially to the DNA. In principle, different

possibilities exist for the coupling of proteins, although differing widely in yield,

experimental effort and cost as well as the applicability for attachment to DNA

[38, 39]. For the experiments conducted here, as for single-molecule force

spectroscopy measurements in general, the site-specific attachment is of utmost

importance, as the force needed to unbind a complex depends on the pulling

geometry and thus on the position of the attachment [40]. Additionally, to

prevent possible mis-assembly, it is reasonable to choose two different strategies

for the attachment of the two proteins. In the study presented here, we employed

the ybbR-tag [41] on the GFPs’ N-termini to covalently attach 59 Coenzyme A-

modified DNA. The coupling is mediated by the Phosphopantetheinyl Transferase

Sfp [42, 43] and offers the advantages of very high yield (up to 90%) [44] and a

negligible size (11 amino acids) of the protein modification. Further, it has been

successfully employed e.g. in single-molecule force spectroscopy experiments for

the coupling of different proteins in varying experiments to DNA [44, 45] and

surfaces [21, 46].

The nanobodies are attached to the glass slide by coupling of the free C-

terminal Cysteine to the maleimide group of a heterobifunctional PEG linker [47].

As no extra components are needed, this is a good choice, provided that the

protein does not harbor any other accessible or interfering Cysteine residues.

While not needed for the readout of the actual experiment, the use of GFP in

this proof-of-principle system offers the advantage of an additional intrinsic

control. We observed colocalization of GFP-fluorescence with the fluorescence of

the Cy3 and Cy5 dyes, which confirms the specific interaction and correct

assembly of the Protein MFPs. The surface density of the Protein MFPs estimated

from the Cy5 signal is, similar to previous MFA experiments, about 104 MFPs per

mm2 [23, 27]. The results for the NF values are reproducible over numerous

experiments conducted independently (see S1 Table). However, the most valid

conclusions on very small differences can be drawn from data received by a single

experiment since it offers exactly the same environment and treatment such as

pressure of the stamp and loading rate.

Adjusting the Sensitivity of the Protein-MFA with Different

References

As with an old-fashioned scale, the MFA has its highest sensitivity to discriminate

very small differences if it is well balanced, which in our case means that the

binding strengths of both complexes are very similar, so that the NF lies close to

0.5. For pure DNA-MFA experiments the strength of the reference could easily be
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tuned by varying length, composition and conformation of the DNA duplex,

reaching from 15pN for DNA in zipper mode (by opening the DNA like a zipper

from the same end) [48] to about 65pN by implementing a 40 base-pair (bp)

duplex in shear mode (where the DNA is sheared by applying the force at

opposing 59 termini). Higher average forces cannot be reached with short

oligonucleotides as DNA reaches a force plateau at about 65pN when sheared due

to the so-called BS-transition [49, 50]. Forces in between can be achieved by

varying the number of base pairs in shear mode [51]. For a random protein-

protein complex, no information is given about the interaction strength a priori.

In the study presented here, the tested protein complexes between nanobodies

and GFPs were stronger than a 40bp duplex in shear confirmation, resulting in

very high NF-values (see S1 Table). To determine small differences in binding

strength, higher sensitivity at NF-values closer to 0.5 is highly desirable, which can

be obtained by increasing the strength of the reference. To demonstrate the

flexibility and robustness of the Protein-MFA, two different methods to enhance

the mechanical stability of the DNA reference are presented here.

The stability of the DNA duplex can be altered intrinsically by nucleobase

modification, methylation of the 59 position in cytosines [52, 53] being a

prominent example. Studied primarily in duplex formation with RNA for

antisense gene inhibition [54], the modification of the 59 position of pyrimidines

with a propynyl group [55] results in an even higher increase in melting

temperature than achieved by 59 methylation [55-57]. The propynyl group is

planar with respect to the heterocycle and extends into the major groove. It is thus

expected to stabilize the duplex due to increased base-stacking and a smaller

unfavorable entropy change [55, 57, 58]. In the experiments presented here, a

40bp DNA duplex is employed as a reference, where in the biotinylated strand 13

cytidines and 9 thymines are replaced by their corresponding propynyl bases. In

comparison to this intrinsic stabilization, the stability can also be altered

extrinsically by the addition of a DNA binding ligand. As has been shown in

previous studies with the MFA [23, 59], sequence-specific binding of pyrrole-

imidazole hairpin polyamides [60, 61] to the minor groove of the DNA helix

enhances the stability of the duplex depending on the modification and

concentration of the polyamide. For the experiment presented here, three hairpin

polyamides with different affinities for the same DNA sequence have been

employed. Polyamides P1 (KD 5105pM), (R)-P2 (here P2; KD 544pM) and (R)-

P3 (here P3; KD 51442pM) described in Ho et al. [23] have been used in a

concentration of 1 mM, approximately 1000 times higher than the saturation

concentration, to ensure an excess of available ligand (see S2 Fig. for the DNA

sequences as well as the chemical structures of the propynyl bases and the

polyamides). P2 displays higher affinity than the sequence-specific binding P1, as

it was modified with an amine substituent to introduce chiral selectivity. P3’s

lower affinity, despite also being chiral, results from a single base-pair mismatch

[23].

Fig. 2A depicts the three different reference types used to identify the window

of high sensitivity of the assay: unmodified 40 bp double-stranded DNA,
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intrinsically stabilized DNA using propynyl bases, and extrinsically stabilized DNA

through the binding of sequence-specific polyamide ligands. Representative data

Fig. 2. Utilization of Modified Reference DNA Duplexes to Adjust the Sensitivity Window in a
Multiplexed Protein-MFA. (A) Three different reference types are compared: unmodified DNA (left),
intrinsically stabilized DNA (center), where a part of the pyrimidine bases is replaced by corresponding
propynyl bases, as well as extrinsically stabilized DNA (right), where the addition of a specific polyamide
ligand [23] enhances the binding strength. (B) Representative sample measurements of Enhancer and
Modified Enhancer binding to sfGFP for all types of references are displayed. The NF shows a clear
dependence on the reference strength. The NF is higher for the Modified Enhancer than Enhancer in all
cases. Additionally, the difference in NF between Modified Enhancer and Enhancer increases the closer the
NFs are to 0.5, displaying the higher sensitivity in this range.

doi:10.1371/journal.pone.0115049.g002
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for the different references testing Enhancer and Modified Enhancer against sfGFP

are depicted in Fig. 2B with standard deviation. The original values can be found

in S2 Table. Small differences in the size of the error bars can be attributed to

measurement error. For all three types of reference, the outcome of the

experiment – namely the relative higher NF values for the Modified Enhancer in

comparison to Enhancer – stays the same, but the absolute NF values change

depending on the reference. This was to be expected since the reference does not

influence the nanobody-GFP complex itself so that the relative ranking of the

stability of the complexes stays preserved. Whereas the incorporation of propynyl

bases into a 40 bp DNA duplex reduces the NF values about 10%, employing a

20 bp DNA reference with added polyamide ligand leads to larger drops in NF

depending on the polyamide. Notably, the closer the mean of the NF values for

one reference is to 0.5, the larger the difference between the data points for

Enhancer and Modified Enhancer becomes. This is consistent with the higher

sensitivity of a well-balanced MFP.

The stronger binding of the Modified Enhancer can be attributed to its more

positive charge (pI <9.89) when compared to the original Enhancer (pI <7.85),

as sfGFP is slightly negatively charged (pI <6.4) under the given buffer conditions

(pH 7.4). This ranking holds also true for the other GFP variants wtGFP (pI

56.17) and eGFP (pI 56.04), as can be seen in S1 Table. The incorporation of

propynyl bases into the 40 bp DNA duplex obviously tunes the molecular balance

closer to neutral, but with NF values of approximately 0.8 the result is still not

entirely satisfying. Not much is known at present about the molecular

mechanisms of the stabilization of the DNA duplex by the propynyl bases. The

apolar methyl group is assumed to be buried in the core of the DNA double strand

and by means of this contributes to the hybridization energy via hydrophobic

interaction. Since the increase in stability of the reference depends on number and

position of included propynyl bases [62], they represent a versatile tool for fine-

tuning the reference bond. Whether this modification of the local interactions

results in a change of the potential width or only deepens the potential well is not

known yet and will be in the focus of future AFM-based single-molecule force

spectroscopy studies.

In comparison to the intrinsic stabilization by propynyl bases, the addition of a

polyamide has a much stronger impact on the NF, depending on the chosen

polyamide. As expected, the lower the KD, the higher the stabilization of the DNA

reference and thus the lower the NF. While P3 already has a bigger effect on the

NF than the incorporation of propynyl-bases, P1 tunes the MFA closest to neutral.

In fact the addition of the polyamide P2 tunes the balance towards the other side

resulting in an NF between 0.2 and 0.4. This enables to probe even stronger

protein bonds than that of nanobody-GFP complexes. The polyamides used for

the given study are known to bind into the minor groove of the DNA, thereby

enhancing its mechanical stability, as has been found also for other DNA binding

molecules [63, 64]. As shown in Ho et al. [23], such polyamides can be designed to

modulate the stability of a DNA helix in a wide range. Following this principle,
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other DNA binding molecules might be candidates to change the DNA reference

stability extrinsically as well.

Summarizing, DNA offers the possibility to introduce a very broad range of

references with different mechanical and thermal stability, ranging from low

forces of about 15 pN with DNA in zipper mode over shear mode DNA in various

lengths to enhanced stability via intrinsic or extrinsic modification of the DNA.

The dynamic range of the mechanical stability of DNA-based references can be

extended even further towards higher stabilities by the use of DNA binding

proteins such as EcoRI and p53 [27]. Protein-MFA is thus applicable for many

different protein pairs of varying bond strength.

Investigation of the Enhancer-GFP System with Protein-MFA

Fig. 3A depicts the result of one representative example measurement, where the

binding between the nanobody Enhancer and the three different variants of GFP,

namely enhanced GFP, wild type GFP, and superfolder GFP are compared. As

shown in the ribbon model structure for wild type GFP [30], all GFP constructs

are attached at their N-termini to the DNA reference while Enhancer is coupled to

the glass slide via its C-terminus. For this measurement, the 20 bp DNA stabilized

with polyamide P1 was used as a reference. P1 was chosen as its use could tune the

NF in the measurement shown in Fig. 2B closest to neutral. All data points are

derived from one contact process with a single stamp ensuring exactly the same

conditions and thus minimizing measurement error. As the reference DNA is the

same for all protein pairs, comparing the resulting NF values provides

information about the differences in the binding strengths of the protein-protein

interactions. Displaying the bulk readout of the extensive number of parallelized

single-molecule measurements, sample histograms of protein spots with MFPs of

all three GFPs are shown in Fig. 3B. In order to evaluate the outcome of the MFA

experiment, the Normalized Fluorescence NF is calculated by dividing the

fluorescence images according to equation 1. The most-likely NF is then

determined by Gaussian fitting of the resulting count histogram.

While the NF values for the Enhancer-eGFP (0.255¡0.023) and Enhancer-

wtGFP (0.253¡0.018) interaction are the same within experimental error, they

both lie distinctively lower than the value for the Enhancer-sfGFP (0.353¡0.018)

construct. This corresponds to a higher ratio of resulting intact Enhancer-sfGFP

complexes than Enhancer-eGFP or wtGFP complexes after force application,

implying that for this specific pulling geometry the Enhancer-sfGFP interaction is

stronger.

From the crystal structure of wtGFP binding Enhancer (PDB 3K1K),

Kirchhofer et al. [30] determined 9 amino acids that form 13 direct contacts and 3

amino acids forming hydrophobic interactions. The alignment of the amino acid

sequences of all three GFP variants (see S3 Fig.) shows that all interacting amino

acids of wtGFP are conserved for eGFP, which is in good agreement with the

similar binding strength observed in Fig. 3A. The difference in binding strength of

sfGFP to Enhancer could result from the mutation of two of the amino acids

Parallel Force Assay for Protein-Protein Interactions

PLOS ONE | DOI:10.1371/journal.pone.0115049 December 29, 2014 10 / 16

100 A. Publications



which form direct contacts to Enhancer and all three amino acids responsible for

the hydrophobic interaction. Notably, in force spectroscopy experiments the

pulling geometry may have a significant impact on the unbinding force [40].

Conclusion

With the proof-of-principle system of nanobodies binding to GFPs, we

successfully demonstrated the implementation of the Molecular Force Assay in

parallelized measurements of protein-protein interactions. The reference strength

of the DNA duplex can be adjusted as required both intrinsically through

modification of the bases or extrinsically by binding of a ligand to ensure high

sensitivity of the assay for the investigated interaction. In addition, the assay has a

multiplexing capacity for different protein pairs and provides the high sensitivity

and versatility of a fluorescence readout. With a moderate experimental effort,

high statistics can be achieved in a single experiment with easy and very fast

analysis. The parallel format of the assay also offers the advantage of testing the

proteins only once, allowing the measurement of proteins that lose their original

conformation upon application of force. With the current set-up, protein

interactions that dissociate in the time span of the experiment can not be

investigated. A solution would be an alternative set-up of the MFA such as

presented in [65], where the upper part of the MFP is attached to the stamp. Also,

at the moment only a limited number of protein-pairs can be tested

simultaneously and to obtain absolute values the binding strength of the reference

has to be known. Additional miniaturization and parallelization will further

Fig. 3. Analysis of Different GFP Variants for Enhancer Interaction Strength with Protein-MFA. (A) Schematic depiction of the MFP for the
measurement of the interaction between GFP and Enhancer with the ribbon model structure of wtGFP (green) with Enhancer (magenta) (crystal structure
from [30], PDB file 3K1K). One example measurement depicts the differences in binding strength of Enhancer tested against enhanced, wild type, and
superfolder GFP with the same reference DNA (20 bp DNA stabilized with polyamide P1). While the binding to eGFP and wtGFP lie within the same range,
binding of Enhancer to sfGFP is distinctively stronger. All data points are determined in one single measurement process, derived as the mean of several
protein spots and displayed with standard deviation error bars. (B) Sample histograms of MFP spots of Enhancer measured against all three GFP variants
illustrate the extensive number of parallelized single-molecule experiments. The Normalized Fluorescence (NF) is determined by dividing the raw
fluorescence images before and after transfer pixel-by-pixel (according to Equation 1), and fitting of a Gaussian to the resulting histogram of all pixel counts.

doi:10.1371/journal.pone.0115049.g003
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emphasize the main advantage of the Protein-MFA, namely the high sensitivity

due to the comparative approach of the assay. It has already been shown [27], that

the results for DNA-MFA do not change when the diameter of the MFP spot is

reduced from 1 mm in our current standard set-up to approximately 20 mm. In

Otten et al. [26] the MFA system was integrated into a microfluidic chip, enabling

the measurement of 640 spots of MFPs simultaneously. The next goal will be to

combine the parallelization and miniaturization with the expression and direct

covalent attachment of the lower protein in a microfluidic chip, as demonstrated

recently [21], to turn the Protein-MFA into a high-throughput method. Such a

set-up would allow the additional measurement of standardized protein pairs with

known rupture force in the same stamping process, which could provide a very

robust way to gain even more accurate information about the absolute values of

the rupture forces. Creating a ‘‘toolbox’’ of references will render the Protein-

MFA applicable to measure an extensive number of protein pairs and a fast way to

determine and compare binding strengths.

Supporting Information

S1 Fig. Coupling of CoA-DNA to ybbR-tagged GFP. SDS-PAGE gel displaying

the coupling between CoenzymeA-modified DNA to the ybbR-sfGFP construct in

both fluorescence scans and Coomassie staining. In this sample gel, both GFP and

CoA-DNA were mixed in equal concentrations (5 mM) as in the standard protocol

[42].

doi:10.1371/journal.pone.0115049.s001 (PDF)

S2 Fig. DNA References. The reference DNA duplexes are displayed. The strand

containing the CoenzymeA and Cy5 modification stays the same for all three types

of reference, whereas the complementary strand modified with Cy3 and Biotin

varies in length and constitution of bases. Chemical structures of the propynyl

bases replacing their corresponding cytidine and thymidine bases are shown

(structures provided by biomers.net GmbH, Germany). The polyamide ligands

P1, (R)-P2 and (R)-P3 from [23] bind to the highlighted six base pair long

binding sequence in the DNA reference duplex.

doi:10.1371/journal.pone.0115049.s002 (PDF)

S3 Fig. Sequence Alignment of the GFP Variants. The sequence alignment of all

three variants of GFP displays the differences in the amino acid sequences and

highlights the positions of the direct contacts (pink) and hydrophobic interactions

(pale pink) to the nanobody Enhancer obtained for wtGFP by [30]. For eGFP,

none of the interacting amino acids are mutated, but for sfGFP two of the contacts

sites for Enhancer are different. In addition, all three amino acids forming the

hydrophobic interaction are mutated. Sequence Alignment of GFPs was

performed using Clustal W2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).

doi:10.1371/journal.pone.0115049.s003 (PDF)

S1 Supplement. Materials and Methods.
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doi:10.1371/journal.pone.0115049.s004 (PDF)

S1 Table. Reproducibility of Data. NF values are best comparable when obtained

in a single stamping process, but nonetheless the absolute NF values are

reproducible over independent exeriments. Here, mean NF values averaged over

several measurements are displayed with their corresponding standard deviation.

In measurements against an unmodified 40 bp duplex the nanobody-GFP

interaction is much stronger in comparison resulting in very high NF values

around 0.9.

doi:10.1371/journal.pone.0115049.s005 (DOCX)

S2 Table. Original NF Data for the Figs. 2 and 3. The orignal Normalized

Fluorescence (NF) data with the corresponding standard deviation (SD) are given.

For the data of Fig. 2, the difference between the respective NF values for

Modified Enhancer and Enhancer is displayed, which increases the closer the NF

values are to 0.5. The maximal deviation is calculated as the addition of the

absolute values of the corresponding standard deviations.

doi:10.1371/journal.pone.0115049.s006 (DOCX)
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 S1 

Supplement S1. Materials and Methods. 

Preparation of Proteins 

Preparation of Nanobodies Enhancer and Modified Enhancer 

Both nanobody constructs were cloned into a pHEN6 vector and harbor a pelB leader sequence for 

periplasmic export and a C-terminal Hexa-His-Tag for purification, followed by a terminal Cysteine for 

covalent, site directed coupling of the protein. For expression, a 5l E. coli JM109 culture was induced 

with 0.5mM isopropyl β-D-1-thiogalactopyranoside and incubated for 5 hours at 30°C. Cells were 

lysed by sonification in buffer containing 1xPBS pH 8.0, 0.5M NaCl, 20mM imidazole, 1mM PMSF and 

10 g/l lysozyme. After centrifugation, the nanobody constructs in the soluble fraction were purified by 

immobilized metal affinity chromatography (IMAC) on prepacked 1ml HisTrap HP columns with an 

Äkta Explorer HPLC system (GE Healthcare, Freiburg, Germany) according to manufacturer’s 

instructions. The elution fractions were analyzed by SDS-PAGE. Purified nanobody fractions were 

pooled and dialysed overnight into 1xPBS, flash-frozen and stored at -80°C at concentrations of 21µM 

(Modified Enhancer) and 35µM (Enhancer). 

 

Nanobody Sequences 

 

• Construct of Enhancer (PDB 3K1K) as in [1] with an additional C-terminal Cysteine: 

QVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYEDSV

KGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQGTQVTVSSHHHHHHC 

 

• The construct of Modified Enhancer harbors an additional N-terminal, very positively charged, 

12 amino acid long tag and a C-terminal Cysteine: 

GRKKRRQRRRGSQVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGM

SSAGDRSSYEDSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQGTQVTVSSHH

HHHHC 
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Preparation of GFPs 

All GFP constructs were designed to harbor an N-terminal Hexa-His-Tag for purification, followed by 

the ybbR-tag (DSLEFIASKLA) [2,3] and the respective GFP type (wtGFP, eGFP and sfGFP; for the 

sequences see the alignment in Figure S3). All fusion proteins were cloned into pET28a vectors (EMD 

Group, Merck KGaA, Darmstadt, Germany) and were expressed in E.coli BL21 DE3 CodonPlus cells 

(Agilent Technologies, Inc., Santa Clara, CA, USA). For this, 0.5l of SB medium was inoculated with 

5ml of an over night culture and grown at 37°C until an OD600 of around 0.7 had been reached. Then, 

over night expression at 18°C was induced by the addition of 0.25mM IPTG. Cells were lysed by 

sonification in 50mM Tris pH 7.5, 100mM NaCl, 5% Glycerin, 15mM Imidazole and 10mM β-

Mercaptoethanol. After centrifugation the ybbR-GFP constructs in the soluble fraction were purified by 

immobilized metal affinity chromatography (IMAC) on prepacked 1ml HisTrap HP columns with an 

Äkta Explorer HPLC system (GE Healthcare, Freiburg, Germany) according to manufacturer’s 

instructions. The elution fractions were analyzed by SDS-PAGE and pooled accordingly. The pooled 

protein samples were then dialyzed into storage buffer (30mM Tris pH 7,5, 100mM NaCl, 5% Glycerin, 

2mM DTT) over night, and stored at -80°C at final concentrations of 50µM for sfGFP, 550µM for eGFP 

and 200µM for wtGFP. 

Protein-DNA coupling 

In general, the Phosphopantetheinyl Transferase (Sfp)-mediated coupling of CoenzymeA modified 

DNA to ybbR-tagged proteins offers a very high yield. A standard protocol for the coupling reaction 

can be found in [2]. The fraction of reacted GFP or DNA can be tuned by adjusting the respective 

concentrations. In the experiments conducted here, a high fraction of reacted GFP was desired, so 

that most GFPs binding to the nanobodies carry a DNA reference and thus form a fully functional 

Molecular Force Probe. In a slightly altered coupling reaction, first the DNA duplex was hybridized by 

mixing the CoA strand in a ratio of 1:2 with the biotinylated strand (to again ensure that the CoA 

strands form a duplex). This pre-incubated mix containing 10µM CoA-DNA was then combined with 

5µM of the corresponding GFP sample and 6,65µM Sfp in a final 10µl Ansatz in Sfp buffer (150mM 

NaCl, 1mM DTT, 10mM MgCl and 50mM Tris) and used after incubation at room temperature for at 

least 1 hour.  

The DNA oligonucleotides were purchased, including all modifications, from biomers.net GmbH, 

Germany. 
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Chemical Procedures 

Assembly of Protein-MFPs 

Microscopy glass slides were aminosilanized in our lab (for a detailed protocol, see eg. [4]) and 

deprotonated in sodium borate buffer (50mM H3BO3, 50mM Na2B4O7•10 H2O pH=8.5) for 45 minutes. 

For functionalization, 50mM NHS-PEG-Maleimide crosslinker (MW 5000; Rapp-Polymere, Germany) 

in sodium borate buffer was incubated for 1 hour. After careful drying of the slide with N2 gas, a 

custom-made silicone isolator with 16-wells in a 4x4 array (Grace-Biolabs, USA) was placed on the 

glass slide. To obtain free Cysteines at the C- termini of the nanobodies, possible intermolecular 

disulfide bonds were reduced with TCEP  

beads (Immobilized TCEP Disulfide Reducing Gel, Thermo Fisher Scientific inc., Rockford, IL, USA) 

for 30 min. After removal of the beads, samples were spun down in a table top centrifuge for 15 min to 

remove agglomerates. The supernatant with the respective nanobody was pipetted in the wells of the 

isolator and incubated for 1 hour. The wells were then rinsed thoroughly with 1xPBS and the 

respective GFP-DNA constructs (for preparation see: Protein-DNA coupling) were spotted into the 

wells for incubation of 1 hour. To remove unbound free DNA and Protein-DNA constructs, the slide 

was rinsed in washing steps with 2x, 0.2x and finally 1xPBS, which acts as buffer for the 

measurement. Care was taken to ensure aqueous buffer environment for the samples at all time 

during the preparation process. In measurements with polyamide, 1µM of ligand was added to the 

measurement buffer and left to incubate for 2 hours before measurement. In general, all samples were 

measured within 3 hours after sample preparation.  

Note, that the temporal and spatial delimitation of the probe assembly would also allow for surface 

immobilization via a ybbR-tag, if thiol-chemistry were unfavorable. In this case, a purification of the 

DNA-protein complexes is necessary to remove the Sfp. 

 

 

Stamp preparation 

Fabrication and functionalization of the PDMS (polydimethylsiloxane) stamp has been described in 

detail elsewhere (e.g. in [5,6]). In brief, 1:10 of crosslinker/base (Sylgard, Dow Corning, MI, USA) was 

cast in a custom-made micro- and macrostructured Pyrex/silicon wafer (HSG-IMIT, Germany) 

according to standard procedures. They were then cut into an arrangement of 4x4 pillars, so that the 

final stamps feature 16 pillars of 1mm in height and 1.1mm in diameter on a 3mm thick basis. The top 
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of the pillars is microstuctured with pads of 100µm x 100xµm separated by trenches (41 µm in width, 5 

µm in depth) to ensure liquid drainage during the contact and separation process.  

For the functionalization, the stamps were activated in 12.5% hydrochloric acid over night and 

derivatized with (3- glycidoxypropyl)-trimethoxysilane (ABCR, Karlsruhe, Germany) for the generation 

of epoxide groups. A 1:1 mix of NH2-PEG-Biotin (MW 3400) and NH2-PEG-CH3 (MW 2000)  (Rapp-

Polymere, Germany) was melted at 80°C, about 1µl was spotted to each pillar and incubated over 

night at 80°C under argon. The excess polymers were thoroughly removed by rinsing with ddH20. For 

final functionalization, the stamps were incubated for 60 min with 1xPBS containing 0.4% (w/v) BSA 

and 1 mg/ml Streptavidin (Thermo Fisher Scientific, Bonn, Germany), rinsed with 0.05% Tween 20 

(VWR Scientific GmbH, Germany) in 0.2xPBS and gently dried with N2 gas. 

 

Measurement and Analysis 

As the measurement process and the pixel-by-pixel analysis are identical to that of the original DNA-

MFA, additional information to the explanations in the main text can be found in the corresponding 

publication of Severin et.al. [7].  
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Figure S1. Coupling of CoA-DNA to ybbR-tagged GFP. 

SDS-PAGE gel displaying the coupling between CoenzymeA-modified DNA to the ybbR-sfGFP 

construct in both fluorescence scans and Coomassie staining. In this sample gel, both GFP and CoA-

DNA were mixed in equal concentrations (5µM) as in the standard protocol [1]. 
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Figure S2. DNA References. 

The reference DNA duplexes are displayed. The strand containing the CoenzymeA and Cy5 

modification stays the same for all three types of reference, whereas the complementary strand 

modified with Cy3 and Biotin varies in length and constitution of bases. Chemical structures of the 

propynyl bases replacing their corresponding cytidine and thymidine bases are shown (structures 

provided by biomers.net GmbH, Germany). The polyamide ligands P1, (R)-P2 and (R)-P3 from [1] 

bind to the highlighted six base pair long binding sequence in the DNA reference duplex.  

References 

1. Ho D, Dose C, Albrecht CH, Severin P, Falter K, et al. (2009) Quantitative detection of small 
molecule/DNA complexes employing a force-based and label-free DNA-microarray. Biophys J. 
pp. 4661-4671. 

 

112 A. Publications



 

 

 

Figure S3. Sequence Alignment of the GFP Variants. 

The sequence alignment of all three variants of GFP displays the differences in the amino acid 

sequences and highlights the positions of the direct contacts (pink) and hydrophobic interactions (pale 

pink) to the nanobody Enhancer obtained for wtGFP by [1]. For eGFP, none of the interacting amino 

acids are mutated, but for sfGFP two of the contacts sites for Enhancer are different. In addition, all 

three amino acids forming the hydrophobic interaction are mutated. Sequence Alignment of GFPs was 

performed using Clustal W2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 
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Table S1. Reproducibility of Data. 
 
NF values are best comparable when obtained in a single stamping process, but nonetheless the 

absolute NF values are reproducible over independent exeriments. Here, mean NF values averaged 

over several measurements are displayed with their corresponding standard deviation. 

In measurements against an unmodified 40bp duplex the nanobody-GFP interaction is much stronger 

in comparison resulting in very high NF values around 0.9. 

 

 

 

 

Enhancer – sfGFP 40 bp 0.928 0.023 9
Modified Enhancer – sfGFP 40 bp 0.944 0.027 9

Enhancer - eGFP 40 bp 0.892 0.04 8
Modified Enhancer - eGFP 40 bp 0.905 0.05 8

Enhancer – sfGFP 40 bp + propynyl 0.854 0.025 2
Modified Enhancer – sfGFP 40 bp + propynyl 0.886 0.08 2

Enhancer - eGFP 40 bp + propynyl 0.863 0.001 2
Modified Enhancer - eGFP 40 bp + propynyl 0.881 0.031 2

Enhancer - wtGFP 40 bp + propynyl 0.892 0.012 2
Modified Enhancer - wtGFP 40 bp + propynyl 0.911 0.012 2

Enhancer – sfGFP 20 bp + polyamide P3 0.636 0.007 2
Modified Enhancer – sfGFP 20 bp + polyamide P3 0.732 0.032 2

Enhancer – eGFP 20 bp + polyamide P1 0.253 0.051 6
Enhancer – wtGFP 20 bp + polyamide P1 0.263 0.047 6
Enhancer – sfGFP 20 bp + polyamide P1 0.359 0.059 8

Modified Enhancer – sfGFP 20 bp + polyamide P1 0.602 0.004 2
Enhancer – sfGFP 20 bp + polyamide P2 0.217 0.008 3

Modified Enhancer – sfGFP 20 bp + polyamide P2 0.266 0.079 3

Number of 
MeasurementsProtein Pair

Standard deviation 
of the means

Averaged NF-
ValuesReference DNA
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Table S2. Original NF Data for the Figures 2 and 3. 

The orignal Normalized Fluorescence (NF) data with the corresponding standard deviation (SD) are 

given. For the data of Figure 2, the difference between the respective NF values for Modified 

Enhancer and Enhancer is displayed, which increases the closer the NF values are to 0.5. The 

maximal deviation is calculated as the addition of the absolute values of the corresponding standard 

deviations. 

 

 

 

 

Data$for$Figure$2

GFP$variant Reference
NF$(Modified$
Enhancer)

SD$(Modified$
Enhancer) NF$(Enhancer) SD$(Enhancer)

Difference$of$
the$NFs

Maximal$
Deviation

sf 40bp'DNA'unmodified 0.976 0.02 0.929 0.004 0.047 0.024
sf 40bp'propynyl:DNA 0.892 0.011 0.836 0.007 0.056 0.018
sf 20bp'DNA'+'polyamide'P3 0.709 0.009 0.641 0.016 0.068 0.025
sf 20bp'DNA'+'polyamide'P1 0.604 0.005 0.37 0.016 0.234 0.021
sf 20bp'DNA'+'polyamide'P2 0.354 0.057 0.212 0.022 0.142 0.079

Data$for$Figure$3

GFP$variant Reference NF$(Enhancer) SD$(Enhancer)
e 20bp'DNA'+'polyamide'P1 0.255 0.023
wt 20bp'DNA'+'polyamide'P1 0.253 0.018
sf 20bp'DNA'+'polyamide'P1 0.353 0.018
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Abstract

Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory
mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either
very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many
high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay.
In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force
measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The
interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-
of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We
could show the specificity of our approach and quantify the strength of the protein-DNA interaction.
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Introduction

The sequence-specific interaction of certain proteins with the

genomic DNA is prerequisite for the complex task of transcrip-

tional regulation. Those transcription factors bind alone or in

clusters to the DNA and can thus activate or impede transcription.

Many of the transcription factors can bind to several, different

DNA sequence motifs with varying strength [1]. Recent studies

suggest that not only strong interactions between transcription

factors and the DNA influence gene expression, but that weak

interactions significantly contribute to transcriptional regulation

and are evolutionary conserved [2]. Quantitative models support

the importance of weak interactions and show that correct

recapitulation of transcriptional processes is only possible by

including low-affinity transcription factor binding sites in their

calculations [3]. Hence, in order to get a comprehensive picture of

transcriptional regulation, it is essential to quantify the interaction

of a broad range of transcription factors with all possible DNA

sequences.

Recent developments in high-throughput techniques, for

example the in vivo method chromatin immunoprecipitation

combined with microarray analysis (ChIP-chip) [4,5] or sequenc-

ing (ChIP-seq) [6] or in vitro techniques like protein binding

microarrays (PBM) [7–10] have greatly increased our knowledge

about various transcription factor binding sites. However, in most

instances these techniques lack the ability to accurately quantify

the protein-DNA interaction or require complicated algorithms

and approximations to do so. Various methods exist to charac-

terize the protein-DNA interactions by measuring thermodynamic

and kinetic constants, for example electrophoretic mobility shift

assay (EMSA) or surface plasmon resonance. Yet their common

drawback is the low throughput that makes it nearly impossible to

analyze a transcription factor against a whole genome. Two

techniques have made huge advances in bridging the gap between

measuring thermodynamic constants and high throughput,

namely mechanically induced trapping of molecular interactions

(MITOMI) [11] and high-throughput sequencing - fluorescent

ligand interaction profiling (HiTS-FLIP) [12]. Both can determine

dissociation constants of several transcription factors against

thousands of DNA sequences (MITOMI) or of one protein against

millions of DNA motifs (HiTS-FLIP), but require some approx-

imations in order to calculate dissociation constants in a high-

throughput format (MITOMI) or need a washing step that

interferes with the analysis of transient interactions (HiTS-FLIP).

Importantly, due to the high concentration of DNA in a

bacterial cell or eukaryotic nucleus, the dynamic equilibrium

between unbound and bound activated transcription factors is

shifted towards DNA-protein complexes. Hence, affinity described

by the dissociation constant might not be the best measure to

characterize the protein-DNA interaction inside a nucleus. The

specificity defined as the ability of a transcription factor to

discriminate between a regulatory sequence and the vast majority

of non-regulating DNA might be a more suitable quantity. But

quantification of the specificity in that sense means to determine

the complete list of dissociation constants for all possible DNA

sequences or a constant calculated from those dissociation

constants [13]. Therefore, a method that determines the specificity

in a single measurement is highly desirable considering the

number of transcription factors and possible genomic sequences.

Since the force required to break a bond increases with decreasing

potential width, a more localized interaction between protein and
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DNA as it is expected for a sequence specific interaction will result

in a higher unbinding force. Thus, a possibility for describing the

specificity arises out of the binding strength between a protein and

a DNA motif that is accessible in force-based measurements.

Single-molecule force spectroscopy experiments allow the charac-

terization of a protein-DNA bond in great detail [14–18] but are

very time consuming and therefore not the appropriate tool to

analyze the binding properties of a transcription factor against a

whole genome.

The Molecular Force Assay (MFA) developed in our lab [19,20]

parallelizes single-molecule force experiments. It relies on the

principle of comparing the interaction in question with a well-

defined reference bond. We here describe a new application of the

MFA to quantify binding strengths of several DNA-protein

complexes directly and in parallel. This should contribute to a

more conclusive and complete understanding of transcriptional

regulation. In an adaptation of the original setup, we demonstrate

in a proof-of principle experiment that we are able to determine

the binding strength of a zinc finger protein against several DNA

sequences in a single measurement.

Zinc finger motifs are one of the most abundant DNA binding

domains in eukaryotic transcription factors [21]. The protein in

our experiment Zif268/NRE is an artificial fusion protein of two

zinc fingers of the Cys2-His2 class [22]. Zif268 is a transcription

factor in mouse and a popular model system due to the existence

of structural data of the protein-DNA complex [21,23]. NRE is an

Figure 1. Description of the Molecular Force Assay (MFA). (A) The geometries of the PDMS stamp and the 4x4 pattern of protein spots on the
glass slide are displayed. The zinc finger protein is covalently bound to an amino-coated glass slide functionalized with Coenzyme A via a ybbR-tag. A
superfolderGFP acts as an additional spacer and helps to adjust the glass slide beneath the pads of the stamp. Different combinations of reference
sequences and DNA binding motifs are attached to each pillar. (B) The PDMS stamp is carefully brought into contact with the glass slide and the DNA
sample bonds are allowed to bind to the protein. Subsequently, the PDMS stamp is retracted with constant velocity so that a force builds up in the
DNA-protein complexes and the reference bonds until the weaker construct ruptures. (C) After the force probe, the fluorescence signal on the glass
slide is a measure for the number of intact protein-DNA bonds.
doi:10.1371/journal.pone.0089626.g001
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engineered variant of Zif268 that binds specifically and with high

affinity to a nuclear receptor element [24]. Our force-based design

allows us to characterize the interaction of this six zinc finger

protein with three DNA binding motifs, a high affinity sequence, a

low affinity sequence and a no binding sequence, by a single value

that can be directly correlated to the binding strength. Addition-

ally, we show that we could gain further information about

differences in the binding strength by varying the reference bond

between a 20 base pair (bp) DNA sequence and a 40 bp DNA

sequence. This demonstrates the possibility to convert the

measured binding strength into intuitive units of DNA base pairs

binding strength. Hence, this new variant of the MFA can quantify

DNA-protein interaction and describe the binding strength in a

simple picture by correlating it to the average binding strength of a

certain number of DNA base pairs.

Results and Discussion

The standard Molecular Force Assay (MFA) consists of two

molecular bonds in series, a reference and a sample bond, clamped

between two surfaces. The two surfaces are separated with a

constant velocity so that a force builds up in the two molecular

bonds until the weaker one ruptures. A fluorophore conjugated to

the linker sequence between the two molecular complexes

indicates the intact molecular bond. Hence, the ratio of the

fluorescence intensity before and after the force loading of the

molecular constructs is a measure of the strength of the sample

bond in comparison to the reference bond. An alternative view of

this assay is that the force greatly enhances the off rate of the bond

under investigation and reduces the otherwise extremely long

spontaneous dissociation times towards seconds [25]. As every

molecular complex is tested against its own reference bond, the

measurement is a single-molecule experiment that can be

conducted in parallel with several thousand constructs. If

oligonucleotide sequences are used for sample and reference

complex, different binding sequences for ligands can be introduced

in the sample bond so that a strengthening of the sample bond can

be detected upon binding. Thus, the dissociation constant for

ligands like polyamides [26] or proteins [27] was determined and

an ATP-aptamer [28] as well as the interaction of the protein

Dicer with double-stranded RNA [29] was characterized. Addi-

tionally, the reference bond can be varied in length and thus in the

binding strength the sample bond is compared to. Hence, it was

possible in former studies to quantify the increase of the sample

bond strength upon ligand binding to the stability of 9.5 base pairs

for a polyamide and to 27.7 base pairs for the protein EcoRI [30].

In a subsequent experiment integrated in a microfluidic setup, the

binding of EcoRI to two sample bonds with different affinity was

tested against four different reference bonds in a single measure-

ment and the stabilization of the sample bonds was quantified in

units of DNA base pairs. [31].

In the configuration of the MFA used in all former studies, the

ligand-DNA interaction is not directly probed, but the ligand

stabilizes the molecular bond and is thus detected. We here

describe our new variant of the MFA that can probe the protein-

DNA interaction directly and compare it to a reference bond. For

this purpose, the fusion protein construct consisting of an N-

terminal ybbR-tag [32] followed by a superfolderGFP [33] variant

and the six zinc finger construct ZIF268/NRE [22] (details can be

found in Supplement S1) is covalently attached via the ybbR-tag to

a glass slide coated with Coenzyme A in a 4x4 pattern [34]. The

two double-stranded DNA complexes in series are covalently

attached to the 16 pillars of a soft PDMS surface with the upper

one as reference bond and the lower one as sample bond (see

Figure 1A). The DNA sequences in shear geometry are separated

by a linker sequence to which a Cy5 fluorophore is conjugated.

Due to the macrostructure of the PDMS stamp (see Figure 1A) a

maximum of 16 combinations of different reference sequences as

well as sample sequences can be tested within one experiment

(Figure 1A). The PDMS surface is carefully brought into contact

with the glass slide so that the sample sequence is able to bind to

the protein on the glass slide (Figure 1B). This process is controlled

via reflection interference contrast microscopy [35]. The GFP

Figure 2. Transfer of Cy5-labeled DNA to the glass slide. After the contact and separation process, the fluorescence intensity of Cy5 on the
glass slide is determined. Histograms of selected areas (without prior background subtraction) show a very modest signal slightly above the
background signal (1000–2000 counts) for the DNA harboring the no binding sequences for the protein in question. DNA with a high affinity
sequence did bind the protein in question and a transfer signal is clearly visible. The images are optimized in contrast to make the transfer of the no
binding sequence as well as the difference in fluorescence signal between the no binding sequence and high affinity motif visible. A first assessment
of the binding strength is possible by varying the reference bond. The weaker reference of 20 bp shows a higher fluorescence intensity of 17000
counts compared to the stronger reference of 40 bp with 13000 counts.
doi:10.1371/journal.pone.0089626.g002
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signal is used to place the protein spots below the stamp pillars

functionalized with the different DNA sequences. After 10

minutes, the PDMS surface is retracted with constant velocity by

a Piezo actuator. Thereby, a force is applied to the protein-sample

complex as well as to the reference bond until the weaker one

ruptures (Figure 1C). The fluorescence Cy5 signal on the glass

slide is measured by an inverted epi-fluorescence microscope and

indicates the number of intact protein-DNA complexes. Thus, the

protein-DNA interaction is directly probed and compared to a

well-characterized DNA double strand. In order to approximate

the environment in a eukaryotic nucleus we designed our

experiments as a competition assay and pre-incubated the zinc

finger protein with low-molecular weight DNA from salmon

sperm before the contact process. Details on the surface

funtionalization, molecular constructs, contact and separation

process as well as the fluorescence read-out are described in

Supplement S1.

In a first test of our assay, we determined the binding of the zinc

finger protein to a no binding sequence and a high affinity binding

motif. The bond strength was compared to two reference

sequences, a 20 bp double-stranded DNA and a 40 bp double-

stranded DNA, both in shear geometry, by measuring the Cy5

fluorescence intensity of the transferred DNA after the contact and

separation process. Figure 2 displays the results for all possible

combinations of sample and reference bond. For the no binding

sequence, only very little signal is measured. It hardly exceeds the

background value of about 1000–2000 counts of pixel intensity so

that false positives of unspecific interactions between the zinc

finger protein with no binding sequences can be excluded in our

assay. The high affinity sequence on the other hand clearly bound

to the protein and the upper reference bond ruptured in most

cases so that Cy5 labeled DNA was transferred to the glass slide.

Additionally, a difference between the two reference bonds is

evident. The weaker reference of 20 bp ruptured more often,

yielding 17000 counts of transferred DNA on the slide. The

stronger reference exceeds the binding strength of the protein-high

affinity sequence interaction in more cases than the weaker

reference, yielding distinctly less fluorescence signal of 13000

counts. These results of our first test confirm the specificity and

feasibility of our approach for quantifying DNA-protein binding

strength by means of the MFA and varying reference bonds.

In order to calculate a single, comparable number for the

binding strength, environmental differences like the binding

density of protein and oligonucleotide constructs on the surfaces

have to be taken into account. In order to correct for differences in

protein density on the glass slide, 0.5 mM of a Cy5 labeled 40 bp

DNA duplex carrying a high affinity binding site for the protein in

question is added subsequent to the force probe experiment to

saturate all functional proteins bound to the surface. Calibration

measurements confirmed a complete saturation after 30 min

incubation time. After removing unbound fluorophores by a

washing step, the fluorescence on the glass slide is determined

again. It is a measure for the maximum number of functional

proteins on the slide. Since the binding density of the DNA

complexes on the PDMS always exceeds the number of functional

proteins on the glass slide, further corrections are not necessary.

The ratio of fluorescence signal on the glass slide directly after the

rupture event Ftransfer to the maximal number of functional

proteins Fintact protein is defined as the Normalized Fluorescence,

NF. The NF is calculated by dividing the pictures after

background subtraction pixel-by-pixel (see Figure 3A), which

cancels out inhomogeneities and renders this method robust.

Histograms of the NF picture are generated and fitted by a

Gaussian to yield the NF mean and standard deviation (Figure 3B).

Figure 3. Quantification of the binding strength. (A) In order to
quantify the binding strength, the flurorescence signal representing the
DNA transfer has to be normalized to the number of available protein
binding sites. For this purpose, a Cy5-labeled 40 bp DNA duplex harboring
a high affinity binding motif is added subsequently to the force
measurement in order to saturate all functional proteins. Following a
washing protocol to remove all unbound DNA strands, the fluorescence
intensity is measured a second time. After background subtraction, the
fluorescence intensity of transferred DNA is divided by the signal
corresponding to all functional proteins, yielding the Normalized
Fluorescence NF. (B) Histograms of every pad on the PDMS stamp sum
up the huge number of single-molecule experiments and are fitted by a
Gaussian distribution in order to calculate an average NF and the standard
deviation. Here, the histogram of the NF displayed in A is shown in detail.
(C) One example measurement is displayed as a proof-of-principle. Details
to the statistics are described in Supplement S1. The NF for the no binding
sequences is too little to render fitting procedures possible. So we
approximate the NF to be zero. Differences between low and high affinity
binding motifs are very pronounced. A variation of the reference bond
between 20 and 40 bp shear shows that the NF of the low affinity
sequence against a 20 bp shear is about the same a the NF of the high
affinity sequence against a 40 bp shear. This can be descriptively
interpreted such that the difference in binding strength of the zinc finger
protein with a low affinity sequence compared to a high affinity sequence
corresponds to the stability of 20 bp DNA duplex.
doi:10.1371/journal.pone.0089626.g003
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Thus, every mean value of the NF is the result of several million

tested molecular constructs (more details about the statistics can be

found in Supplement S1). This number can be interpreted as the

binding strength of the protein-DNA interaction in comparison to

a certain reference bond. A variation of the reference bond will

result in a different NF and refines the information of the DNA-

protein interaction. We tested our zinc finger protein against three

DNA double strands incorporating either a high affinity sequence,

a low affinity sequence or a no binding sequence against two

reference bonds, a 20 bp and a 40 bp DNA double strand and

analyzed the data in the way just described (the exact sequences

are shown in Figure S1). The result of one example experiment is

depicted in Figure 3C. Due to the low DNA transfer for the no

binding sequence, a calculation of the NF was not possible, so we

set these values to zero. Differences are clearly visible for the NF

values for the low and high affinity sequences as well as for the

variations of the reference bond. As expected, we measured the

highest value of 0.6560.07 for the high affinity sequence against

the 20 bp reference bond compared to 0.3960.15 for the low

affinity sequence against the same reference bond. The stronger

reference bond lowers the values to 0.3260.01 and 0.2060.02 for

high and low affinity DNA motifs, respectively. For both DNA

binding motifs, the mean NF is reduced by half if the number of

reference base pairs is doubled: 0.65 (20 bp) to 0.32 (40 bp) for the

high affinity motif and 0.39 (20 bp) to 0.20 (40 bp). Hence, a linear

relationship between the number of reference base pair and the

mean NF can be assumed in this range of reference bond length.

This result does not mean that the strength of the protein-DNA

bond is altered by different reference bonds. The comparison of

the protein-DNA bond with different reference bonds yields

different NF values that draw a more detailed picture of the

protein-DNA interaction and enables to adjust the setup to the

biological problem. A linear relationship between the NF and

number of base pairs in the reference duplex makes it possible to

adjust the reference duplexes until the NF yields a value of 0.5 so

that the reference duplex of a certain number of base pairs has the

same stability as the protein-DNA bond. Thus, the protein-DNA

bond strength can be directly quantified with the stability of a

certain number of base pairs. In our proof-of principle experiment,

we compare the stability of a protein-DNA interaction with

varying affinities to the stability of two DNA duplexes of different

lengths. Interestingly, the NF values for the low affinity sequence

against the 20 bp reference bond, 0.39, and for the high affinity

sequence against the 40 bp reference bond, 0.32, are equal within

errors (see Figure 3C). This allows the interpretation of a

difference in binding strength of the zinc finger protein with these

two DNA motifs that corresponds to the average binding strength

of a 20 bp DNA double strand. Thus, we demonstrated that the

specificity of DNA-protein interactions can be quantified via the

binding strength in a force-based assay in a single measurement.

Further, we can characterize the binding strength in a simple

picture by correlating it to the average binding strength of a

certain number of DNA base pairs.

Conclusion

We described a new variant of the MFA that allows to directly

detect the binding strength of protein-DNA interactions. This

force-based format can test several DNA sequences against a

protein in parallel with good statistics and can characterize the

binding strength descriptively by correlating it to the average

binding strength of a certain number of DNA base pairs. As a

proof-of-principle, we could quantify the interactions of a zinc

finger protein with three DNA sequences and compare them

against two reference bonds. The resolution of the assay depends

on the biological problem and the strength of the reference duplex.

It was already demonstrated that the MFA can detect a single

nucleotide polymorphism in a 20 base pair DNA duplex [19].

Shorter reference duplexes or a reference duplex in zipper

geometry can discriminate between very small differences in the

strength of the protein-DNA complexes invoked for example by a

single base pair variation in the DNA target sequence. Further

experiments will identify the capabilities and limitations of the

assay for different DNA-protein complexes. For a complete

characterization of a protein’s binding specificity and affinity, it

is necessary to probe the interactions with DNA sequences

representative of a whole genome. This is, in principle, feasible

with our force-based design. We have already shown that much

smaller geometries for the DNA spots are sufficient to calculate the

NF [27] and the fabrication of DNA microarrays is a standard

procedure. Furthermore, our lab succeeded in integrating the

MFA in a microfluidic chip [31]. The utilized surface chemistry

also allows for the measurement of several proteins in a single

experiment. Thus, our force-based assay can quantify protein-

DNA interactions in a parallel format. It has the potential, with

further developments in miniaturization and parallelization, to

improve our understanding of transcriptional regulation.

Supporting Information
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(TIF)
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 2 

Materials and Methods 3 

 4 

Oligonucleotide constructs 5 

The molecular complexes consist of three strands that are successively hybridized in shear geometry 6 

prior to usage. The uppermost strand which is covalently bound to the PDMS stamp is modified with 7 

an amino-group. Spacer18, a hexaethylene glycol chain of 18 atoms length, acts as an additional 8 

spacer between the amino-group and the oligonucleotides in order to avoid surface effects. 9 

Furthermore, poly-T stretches link the double-stranded sequences to the surfaces and each other. The 10 

cyanine dye Cy5 is attached by an N-Hydroxysuccinimide ester to the middle strand between the two 11 

duplexes.The reference bond is varied in length between 20 and 40 basepairs in order to test the 12 

protein-DNA bond against different strengths. The sample bond varies in its sequence in order to 13 

analyze the binding behavior of the protein against a high affinity DNA, 5’-14 

caacaggtaacaagggttcaggcgtgggcgttcgcgaagg-3', a low affinity DNA, 5'-15 

caacaggtaacaagtggtcaggcgaggtcgttcgcgaagg-3', and a no binding sequence, 5'-16 

caacagtaacagagtgcaagccgtgagcttgccgcgaagg-3'. The complete DNA constructs are 17 

dispalyed in Figure S1. All oligonulceotide constructs, including modified ones, were obtained from 18 

biomers.net GmbH, Germany.  19 

 20 

Protein construct 21 

A fusion protein construct consisting of an N-terminal ybbR-tag [1] (DSLEFIASKLA) followed by a 22 

superfolderGFP variant [2] and the six zinc finger protein construct Zif268/NRE (with an RQKDGERP 23 

linker sequence between the Zif268 and NRE moieties) [3] was cloned into pGEX6P2 between BamHI 24 

and XhoI sites similar to [4] . All construct fragments were amplified from synthetic templates (Mr.Gene 25 

or Geneart, Lifetechnologies, UK). The resulting fusion protein (ybbR-sfGFP-Zif268/NRE) harbored a 26 

GST-tag and was expressed in E.coli BL21 DE3 Codon Plus cells (Agilent Technologies, USA). One 27 

liter of SB medium was inoculated with 10ml of an overnight culture and grown at 37°C. When an 28 

OD600 of 0.7 had been reached, over night expression at 18°C was induced by adding 0.25mM IPTG. 29 

Cells were lyzed in 50mM TRIS-HCl (pH 7.5, 300 mM NaCl, 2mM DTT, 5% Glycerol, 10µM ZnCl2) by 30 

a French pressure cell press. The ybbR-GFP-zinc finger construct was obtained in the soluble fraction 31 
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and purified by Glutathione affinity chromatography on GSTrap columns (GE Healthcare, Germany) 1 

according to standard procedures. After over night treatment with PreScission protease the GST-tag 2 

was removed and the protein further purified by Heparin cation exchange chromatography (HiTrap 3 

Heparin, GE Healthcare, Germany). Following preparative size exclusion chromatography on a HiLoad 4 

16/60 Superdex 75 column (GE Healthcare, Germany) in 50mM TRIS-HCl (pH7.5, 150mM NaCl, 2mM 5 

DTT, 10µM ZnCl2, 5% Glycerol) the protein construct was concentrated to 10µM by ultrafiltration in 6 

Amicon Ultra centrifugal filter units (Merck Millipore, USA) and stored at -80°C until further usage. 7 

 8 

Stamp preparation 9 

Micro-and macrostructured poly(dimethylsiloxane) (PDMS) stamps were fabricated by casting 1:10 10 

crosslinker/base (Sylgard, Dow Corning, MI, USA) into a custom-made Pyrex/silicon wafer (HSG-IMIT, 11 

Germany) according to standard procedures [5]. The resulting PDMS stamps feature pillars of 1mm 12 

diameter and height with a spacing of 3mm in a square pattern on a 3mm thick basis and are cut in 13 

pieces of 4x4 pillars. The flat surface of the pillars is microstructured with 100µm x 100µm pads 14 

separated by 41µm wide and 5µm deep rectangular trenches enabling the drainage of liquid during the 15 

contact and separation process (Figure 1A). For the surface functionalization, the cleaned stamp 16 

surface was first activated in 12.5% HCl overnight and derivatized with (3-glycidoxypropyl)-17 

trimethoxysilane (ABCR, Germany) in order to generate epoxide groups. After 30 minutes at 80°C in 18 

an Argon atmosphere, the functionalized stamp was allowed to cool down to room temperature. The 19 

amino-modified DNA strand, dissolved in water, was diluted 1:10 in a sodium borate-buffer (50mM 20 

H3BO3, 50mM Na2B4O7•10 H2O pH=9.0; Carl Roth GmbH & Co. KG, Germany) to a concentration of 21 

10µM and 1.5µl was transferred to every pillar on the stamp. Overnight incubation of the stamp under 22 

humid conditions allowed the amino-groups to react with the epoxide-groups. Oligonucleotides that did 23 

not bind to the stamp were washed off the next day in an aqueous solution of 0.01% SDS (sodium 24 

dodecyl sulphate; Sigma-Aldrich GmbH, Germany). The other two DNA strands were pre-incubated in 25 

5x SSC buffer (saline sodium citrate; 750mM sodium chloride, 75mM trisodium citrate; Sigma-Aldrich 26 

GmbH, Germany) in a concentration of 0.2µM. 1.5µl was transferred to every pillar of the stamp. After 27 

a minimum of 60 minutes incubation time the functionalized stamp was washed with 0.05% Tween 20 28 

(VWR Scientific GmbH, Germany) in 1x SSC and gently dried with N2 gas. 29 

 30 

Slide preparation  31 
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Conventional glass slides for microscopy were aminosilanized in our lab: After thorough cleaning by  1 

sonication in 50% (v/v) 2-propanol in ddH20 for 15 min and oxidation in a solution of 50% (v/v) 2 

hydrogen peroxide (30%) and sulfuric acid for 30 min, they were washed with ddH2O and dried in a 3 

nitrogen stream. For the silanization, the glass slides were soaked for 1 h in a solution of 90% (v/v) 4 

ethanol, 8% ddH2O and 2% 3-aminopropyldimethylepoxysilane (ABCR, Germany). Subsequently they 5 

were washed twice in 2-propanol and ddH2O and dried at 80 °C for 40 min. They can be stored for 6 

several weeks in an Argon atmosphere at room temperature.  7 

For further functionalisation, the amino-silanized glass slide was first deprotonated in a sodium borate 8 

buffer (50mM H3BO3, 50mM Na2B4O7•10 H2O pH=8.5; Carl Roth GmbH & Co. KG, Germany)  for 30 9 

minutes, then a heterobifunctional PEG crosslinker with N-hydroxy succinimide and maleimide groups 10 

(MW 5000, Rapp Polymere, Germany) was applied for 1 h at 30mM. The slide was thoroughly washed 11 

with ddH20 and gently dried with N2, before it was incubated another hour with Coenzyme A (Merck 12 

Millipore, USA) dissolved in coupling buffer (50mM NaHPO4, 50mM NaCl, 10mM EDTA at pH=7.2). 13 

Again the slide was washed with ddH2O and gently dried with N2. At this stage, the slide can be stored 14 

up to several days.  15 

The Zif268/NRE protein aliquot at a concentration of 10µM is spun down in a table top centrifuge to 16 

remove agglomerates and the supernatant was diluted in a 50mM TRIS-HCl buffer (pH=7.5, 150mM 17 

NaCl, 10mM MgCl2, 10µM ZnCl2, 2mM DTT) to a final concentration of 2.5µM. Furthermore, low 18 

molecular weight DNA from salmon sperm (Sigma-Aldrich GmbH, Germany) was added in a 19 

concentration of 1g/ml. After a short incubation time of 15 minutes, 1,5 µl of 20 

Phosphopantetheinyltransferase Sfp was added to the sample and 2µl droplets of the mix were 21 

transferred to the functionalized glass slide in a 4x4 pattern. Sfp reacted the Coenzyme A on the glass 22 

slide to the ybbR-tag of the protein in humid atmosphere at room temperature during three hours 23 

incubation time. A PMMA mask with a well for the 4x4 pattern of spotted protein sample was fixed to 24 

the glass slide with a silicone lip seal. The mask prevented samples from drying out during following 25 

washing procedures and the MFA experiment. All protein that did not bind to the surface was washed 26 

off by 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM NaCl, 10µM ZnCl2), 25ml 100mM TRIS-HCl 27 

buffer (pH=7.5, 300mM NaCl, 10µM ZnCl2) and again 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM 28 

NaCl, 10µM ZnCl2). The last buffer was also used for the MFA experiments. After the washing 29 

procedure, the samples were measured within 3 hours. 30 

 31 
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Contact process and fluorescence read-out 1 

The functionalized stamp adhered upside-down to the glass block glued to a closed-loop piezoelectric 2 

actuator (PZ 400, Piezo Systems Jena, Germany) and a DC motorized translation stage (Physik 3 

Instrumente GmbH, Germany). The slide with the oligonucleotide constructs was fixed beneath the 4 

stamp on a stainless steel stage with permanent magnets. The fluorescence signal of the 5 

superfolderGFP fused between the ybbR-Tag and the zinc finger protein was used to place every 6 

protein spot beneath the right stamp pillar. The whole contact device is mounted on an inverted 7 

microscope (Axio Observer Z1, Carl Zeiss MicroImaging GmbH, Germany) with an xy-DC motorized 8 

high-accuracy translation stage (Physik Instrumente GmbH, Germany). Contact was made by means 9 

of the piezo and care was taken that each individual pillar is not compressed more than 3µm. The 10 

planar adjustment of stamp and slide as well as the contact process were controlled by reflection 11 

interference contrast microscopy [6]. In order to let the protein bind to the DNA sample sequence on 12 

the PDMS stamp, the contact between stamp and slide was maintained for 10 minutes. The piezo 13 

retracted the stamp with a velocity of 1µm/s in all experiments. A force buildt up in the molecular 14 

complexes until the weaker bond, either the protein-DNA complex or the reference bond, broke with 15 

higher probability. A Cy5 fluorophore conjugated to the linker sequence between the two DNA double 16 

strands indicated the intact bond. Hence, the Cy5 fluorescence intensity Ftransfer on the glass slide was 17 

measured with a CCD camera (ANDOR iXon, Andor, Northern Ireland) after the contact and 18 

separation process. In order to normalize the signal of the intact protein-DNA complexes to the protein 19 

density on the glass slide, the sample was subsequently incubated with a 40 bp double-stranded DNA 20 

sequence containing the high affinity binding site and labeled with a Cy5 fluorophore in a 21 

concentration of 0.5µM for 30 minutes. Unbound dsDNA was removed by the following washing 22 

procedure: 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM NaCl, 10µM ZnCl2), 25ml 100mM TRIS-HCl 23 

buffer (pH=7.5, 300mM NaCl, 10µM ZnCl2) and again 25ml 50mM TRIS-HCl buffer (pH=7.5, 150mM 24 

NaCl, 10µM ZnCl2). The Cy5 fluorescence intensity was measured again and gives the number of 25 

possible protein binding sites. Since the binding density of the DNA complexes on the PDMS always 26 

exceeds the number of functional proteins on the glass slide, further corrections are not necessary. 27 

The ratio of fluorescence signal on the glass slide directly after the rupture event Ftransfer to the maximal 28 

number of functional proteins Fintact protein is defined as the Normalized Fluorescence, NF. The NF is 29 

calculated by dividing the pictures after background subtraction pixel-by-pixel by a custom-built 30 
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software written in Labview. Histograms of the NF picture are generated and fitted by a Gaussian to 1 

yield the NF mean and standard deviation.  2 

 3 

Statistics 4 

In every experiment, every pillar of the PDMS stamp can be functionalized with a different combination 5 

of reference and sample complex. In our proof-of-principle measurements we usually bind the same 6 

combination of sample and reference bond to at least two pillars for better statistics. The contact area 7 

of a pillar is (100x100 µm2 x 25)= 25x104 µm2. From the fluorescence signal of the functional protein 8 

we can estimate a lower bound for the density of functional protein on the glass slide of 103 per µm2. 9 

Thus, every pillar tests around 25x107 molecular complexes and the NF is the mean of 25x107 tested 10 

molecular complexes. In order to demonstrate the validity of our approach to quantify the specificity of 11 

the protein-DNA interaction in a single measurement with good statistics, we show the result of one 12 

example measurement. Every data point is the average of two mean NF values. All NF values in this 13 

measurement are very close except the one for the low affinity binding motif against the 20bp 14 

reference. Other experiments yielded results in good agreement with the displayed experiment.  15 

 16 

 17 
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 1 

 2 

Figure S1 3 

DNA sequences. The molecular constructs with all modifications are displayed. The reference bond 4 

comprises the same sequence for all six constructs, but differs in the length of the middle strand. The 5 

ZIF268/NRE high affinity sequence is shown in red. The mutations for the low affinity sequence and 6 

the no binding sequence are colored green.  7 

 8 

 9 
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DNA 
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Abstract: Increased thermal or mechanical stability of DNA 
duplexes is desired for many applications in nanotechnology or –
medicine where DNA is used as a programmable building block. 
Modifications of pyrimidine bases are known to enhance thermal 
stability and have the advantage of standard base-pairing and easy 
integration during chemical DNA synthesis. Through single-molecule 
force spectroscopy experiments with Atomic Force Microscopy and 
the Molecular Force Assay we investigated the effect of pyrimidines 
harboring C-5 propynyl modifications on the mechanical stability of 
double-stranded DNA. Utilizing these complementary techniques, we 
show that propynyl bases significantly increase the mechanical 
stability if the DNA is annealed at high temperature. In contrast, 
modified DNA complexes formed at room temperature and short 
incubation times display the same stability as non-modified DNA 
duplexes. 
 

In recent years, DNA has emerged as a prominent nanoscale 
building block. It exhibits unparalleled properties such as the 
ability to self-assemble depending on its sequence, which can 
be designed as required. Thus, two and three dimensional 
defined structures such as scaffolded DNA origami [1] can be 
created at the nanoscale. Another example are small “DNA 
bricks” [2], which can be assembled to larger structures in a 
LEGO-like fashion. However, materials that are prepared using 
DNA harbor the drawback of only limited thermal stability. In 
general, DNA structures cannot be employed at elevated 
temperatures in solution as they disassemble at high 
temperatures. In order to overcome this disadvantage, the heat 
tolerance of DNA structures can e.g. be improved by about 30°C 
by photo-cross-linking [3]. For other applications, the limiting 
factor is the mechanical stability of DNA structures. It is not 
directly correlated to the structures’ thermal stability, as it largely 
depends on the orientation in which an external force is applied. 
A standard example is given by a short DNA duplex. Here, a 
higher rupture force is observed if the duplex is melted by 
applying a force load in shear geometry at opposing 5’ termini 
than if the DNA is opened like a zipper from 5’ and 3’ termini of 
the same end [4]. In the latter case, one base pair at a time is 
loaded under force while in the first case all base pairs are 
stretched simultaneously. For the shearing of short DNA 
duplexes, the average rupture force is thus dependent on the 

number of base pairs (bp) [5]. At rupture forces of about 65 pN a 
force plateau is reached. This so-called BS-transition can be 
attributed to an overstretching of the DNA and is already 
observed for DNA duplexes as short as 30 bp [6]. Internal 
modifications of bases are capable of altering both thermal and 
mechanical stability of a DNA duplex. A prominent example is 
the methylation of the 5’ position of cytosine [7]. Depending on 
the amount and position of modified bases in a DNA duplex the 
melting temperature [8] and the probability of strand dissociation 
under force are altered, as methylation can both stabilize and 
destabilize DNA duplexes [9]. Another alternative is e.g. the use 
of salicylic aldehyde nucleosides, which confers strong 
mechanical stabilization upon copper complexation [10].  
In order to reach higher mechanical stability, integration of bases 
modified with a propynyl group at the 5’ position of pyrimidines 
[11] is promising, as the apolar planar group extends into the 
major groove and enhances base-stacking. Graham et al. [12] 
determined the thermodynamic parameters for a 12 bp DNA 
duplex containing five propynyl bases compared to an 
unmodified duplex with UV-melting studies: the significant 
decrease in enthalpy is attributed to the electronic interactions in 
base-stacking and counteracts the entropy decrease likely 
resulting from more ordered water molecules normally found in 
the major groove. This results in a decrease in free energy ΔG 
and thus a stabilized complex [12]. Compared to other base 
modifications such as methylation, the incorporated propynyl 
bases lead to an even higher increase in melting temperature 
per base [13], number and position of the propynyl bases playing 
an important role [14]. Higher mechanical stabilities would be 
useful to render DNA nanostructures more stable in the 
presence of external forces, e.g. for techniques such as the 
Molecular Force Assay (MFA), where the mechanical stability of 
a molecular complex is determined by comparing it to a known 
DNA reference complex. An increase in mechanical stability of 
the DNA duplex broadens the dynamic range of the assay and 
enables e.g. the characterization of protein-protein interactions 
[15].  
In the study presented here, the MFA technique is employed 
together with atomic force microscope (AFM) based force 
spectroscopy to characterize the difference in mechanical 
stability of short DNA duplexes with varying numbers of 
integrated propynyl bases. Thee different 40 base pair long 
oligonucleotides are investigated in shear mode, harboring no 
modification (0P), eight propynyl bases (8P) and 22 propynyl 
bases (22P), respectively (see scheme 1). The sequence is 
identical for all three strands, enabling binding to the same 
complementary DNA strand. A stabilization of the DNA complex 
to average rupture forces higher than the 65 pN that can be 
reached with unmodified DNA is desired. Therefore, the length 
of 40 bp is chosen for the duplexes. Two complementary force 
spectroscopy techniques are employed to characterize the DNA 
duplexes. The basic principle of the measurement with the 
atomic force microscope (AFM) [6, 16] is displayed in scheme 2a. 
The two strands are attached covalently via PEG spacers to the 
lower surface and the cantilever, respectively. Upon lowering the 
cantilever onto the glass slide, the DNA duplex to be 
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Scheme 1. Propynyl Bases and DNA Sequences. In order to obtain propynyl 
bases, the 5’ position of the pyrimidines cytidine or thymidine is modified with 
an additional propynyl group, which extends into the major groove of the DNA 
helix. A stabilization of the DNA duplex harboring propynyl bases is thus 
expected to result from enhanced base-stacking. DNA oligonucleotides with 
the same sequence but a different amount of propynyl bases, namely none 
(0P, blue), 8 (8P, orange) and 22 (22P, purple) are investigated. 
 
 
investigated is formed. Retraction of the force-calibrated 
cantilever stretches the PEG linker and the DNA duplex until it 
finally ruptures, as depicted in the resulting example force-
distance curve (scheme 2a). The force resolution is limited due 
to thermal fluctuations by the size of the cantilever, which acts 
as the force sensor. In the technique of the Molecular Force 
Assay (MFA) [17], the size of the force sensor is minimized to a 
second DNA duplex. As shown in scheme 2b, this reference 
duplex is coupled in series with the duplex to be investigated 
and clamped between two surfaces. Retraction of the upper 
surface compares the mechanical stability of both complexes 
directly until, statistically, the weaker one ruptures. The outcome 
of the experiment is given by the position of the fluorophore dye 
on the linker after force load, as it stays with the stronger duplex. 
A second dye on the uppermost DNA strand forming a FRET 
pair with the dye on the linker allows for correction of constructs 
that did not couple to the upper surface and have thus not been 
under force load. The main advantage of the MFA technique lies 
in the parallelization of force-spectroscopy experiments. About 
104 complexes per µm2 are tested simultaneously [18]. An 
important difference between the two techniques is the 
incubation time and condition of the duplex to be investigated. 
While for the AFM experiment the incubation time of the duplex 
depends on the contact time of the cantilever with the surface, 
the duplex in the MFA experiment is pre-incubated over night 
and can also be annealed with a temperature ramp starting from 
denaturing temperatures.  
In order to determine if integration of propynyl bases leads to 
average rupture forces higher than for unmodified DNA, AFM 
experiments were performed. To exclude calibration 
uncertainties, all measurements were conducted with the same 
cantilever harboring the complementary strand, while the 
strands 0P, 8P and 22P were covalently attached to the surface 
in three distinct populations. Representative histograms for data 
obtained with a retraction velocity of 1000 nm/s are displayed in 
figure 1. The histograms are fitted with the Bell-Evans-Model 
(see supporting information) and the most probable rupture 
forces were found to be 65.1 ± 4.5 pN (0P; N= 705 curves), 65.5 

± 4.4 pN (8P; N= 579) and 64.7 ± 4.5 pN (22P; N= 1079), 
respectively. Thus, the most probable rupture forces of 0P, 8P 
and 22P cannot be distinguished within the error bars. The same 
conclusion holds true for the other tested retraction velocities of 
the cantilever (the corresponding data can be found in the 
supporting information). However, although the most probable 
rupture forces were indistinguishable within error, we performed 
pair-wise two-sample Kolmogorov–Smirnov tests, in order to test 
the hypothesis whether the rupture force distributions are 
significantly different.  For all retraction velocities besides 500 
nm/s, the rupture force distributions for 8P and 22P were 
significantly different from the 0P distribution with a p-value 
below 0.05. Hereby, the p-values of the 22P distributions are 
considerably smaller than that those of the 8P distributions, 
when compared against the 0P distributions. This can also be 
seen in the width of the rupture force distribution, which 
increases with the number of propynyl modifications.  
The Bell-Evans fits to the rupture force distributions confirm the 
validity of the model for this data and allow for the determination 
of the distance to the transition state in the binding energy 
landscape. We found for the three modified duplexes 0P, 8P and 
22P a Δx of 0.582 ± 0.024 nm, 0.514 ± 0.019 nm, and 0.416 ± 
0.010 nm respectively. 

 
Scheme 2. Experimental Set-ups of AFM and MFA. The DNA duplexes are 
investigated with two complementary single-molecule force spectroscopy 
techniques. To this end, all three DNA strands are hybridized to the same, 
unmodified complementary strand and integrated into the experimental set-
ups of the Atomic Force Microscope (AFM) (a) as well as the Molecular Force 
Assay (MFA) (b). In the well-established AFM force spectroscopy, the two 
DNA strands of the duplex are covalently attached to a lower glass surface 
and a cantilever, respectively. The duplex to be investigated (blue) forms when 
the cantilever is lowered onto the glass surface. Retraction of the force-
calibrated cantilever yields a force-distance curve as the outcome of the 
experiment. The cantilever of the AFM experiment can be regarded as an 
elastic spring and acts as the force sensor. In contrast, in an MFA experiment, 
the force sensor is given by a second DNA duplex (grey), which is coupled in 
series with the duplex to be investigated (blue). Those DNA constructs are 
built up on a glass slide and then clamped between two surfaces via a Biotin-
Streptavidin interaction (b). Retraction of the upper surface builds up a force 
acting on both molecular complexes until, statistically, the weaker one ruptures. 
The outcome of the experiment is read out via a fluorophore (red circle) 
attached to the linker between the two duplexes, which only gives a signal if 
the lower reference complex is still intact after rupture. A second fluorophore 
coupled to the upper strand (green circle) is necessary for the correction of the 
analysis if the molecular complexes did not couple to both surfaces and thus 
have not been under force load.  
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Figure 1. Investigation of DNA Duplexes containing Propynyl Bases with the 
Atomic Force Microscope. Representative histograms of the most probable 
rupture force for a retraction velocity of the cantilever of 1000 nm/s are shown 
for all three DNA complexes with a varying amount of propynyl bases. The 
most probable rupture forces Fmax are all within error in the vicinity of the BS-
transition (65pN). They were determined by fitting the histograms within the 
Bell-Evans formalism. 
 
 
Figure 2 displays the characterization of the same sequences 
with the MFA. In order to make the data directly comparable, all 
duplexes in question are tested against identical reference DNA. 
The Normalized Fluorescence NF gives the ratio of still intact 
reference duplexes after force load in comparison to the initial 
amount of assembled molecular constructs after correction for 
background and complexes that have not been under force load. 
Thus, a decreased value of the NF results from a strengthened 
duplex in question. With the MFA, the duplexes with 0P, 8P and 
22P oligonucleotides were tested in two variants: for one sample 
the duplexes were pre-incubated at room temperature (RT) over 
night, for the other they were annealed by heating to 95°C and 
cooling to 5°C over four hours. We determined the following 
results for the NF mean values and error bars: NFRT(0P) = 
(0.341±0.007), NFRT(8P) = (0.327±0.014), and NFRT(22P) = 
(0.316±0.013) for the incubation at RT as well as NF95(0P) = 
(0.344±0.011), NF95(8P) = (0.306±0.012), NF95(22P) = 
(0.262±0.017) for the annealed complexes. The respective 
results for the two samples are depicted in figure 2. For the 
duplexes incubated at RT (right bars), a slight stabilization 
depending on the number of modifications is discernible, 
although within standard deviation error bars. In contrast, for the 
duplexes annealed at high temperature (left bars), the 
stabilization effect is significant.  
The MFA determines the relative stability of a DNA duplex in 
question by comparing it to a DNA reference duplex during 
strand separation. In comparison to the duplex with the 
unmodified DNA, 0P, the probability of strand separation in the 
annealed 8P sample is altered about (NF(8P) – NF(0P))/NF(0P) 
= - 11% and about - 24% for the annealed 22P duplex. The 
parallel measurement of the three samples with the MFA 
ensures identical measurement conditions and renders the 
obtained differences in rupture probability highly reliable. In the 
AFM measurements as well, care was taken to minimize 
measurement variations. In the characterization of the 

  
Figure 2. Investigation of DNA Duplexes containing Propynyl Bases with the 
Molecular Force Assay. In contrast to the AFM experiment, the DNA duplexes 
are not formed when the two surfaces are brought into contact, but instead the 
whole molecular construct consisting of both duplexes in series is build up in 
advance onto the lower glass slide. Hereby, the upper complex can be pre-
incubated before attaching it to the surface. The more stable an upper 
complex is when compared to the same reference duplex, the less 
fluorescence signal remains on the lower glass slide after force load, as the 
fluorophore remains with the stronger duplex. This means that the Normalized 
Fluorescence (NF) value of the surface becomes smaller the higher the 
mechanical stability of the upper complex is. The NF values of all three DNA 
duplexes are displayed, with the upper complex pre-incubated by either 
heating up to 95°C and cooling it down very slowly (4 hours) to 5°C (left bars) 
or over night at room temperature (right bars) (all given with standard deviation 
error bars). Whereas the mode of pre-incubation does not influence the 
stability of the unmodified DNA strand 0P, for 8P and 22P the stabilization 
trend depending on the number of propynyl bases is the same but statistically 
significant only for the slowly annealed DNA. 
 
 
mechanical stability of methylated DNA conducted by Severin 
et. al. [9] with both AFM and MFA, the experiments led to the 
same results for stabilizing and destabilizing effects. We thus 
attribute the differing results of the AFM from the MFA 
measurements in this case of propynyl-modified DNA to 
different conformations of the DNA resulting from the very 
different incubation conditions, particularly the temperature and 
time span. In the AFM experiments, the duplex forms at RT 
during the contact time of the cantilever to the surface, which is 
below 0.1 s. Longer contact times enabling longer incubation 
times for the duplex are not feasible, as this reduces the 
probability to obtain single DNA binding events tremendously. 
The AFM measurements yield distinct populations of rupture 
force for all three samples, and sequence compatibility allows 
for one binding mode only. The slight broadening of the force 
distribution width with increasing number of base modifications 
leads to an elevated number of events both with lower and 
higher rupture force. The higher variance of the modified DNA 
distribution might be attributed to short lived perturbations in 
duplex formation caused by the propynyl modifications. 
However, this effect is very small. This leads to the assumption 
that even though the DNA duplex forms during the 
measurement the short contact time is not sufficient to acquire 
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a conformation in which the propynyl group can stabilize the 
DNA significantly. In support of this assumption the results for 
the MFA measurement with samples incubated at RT also only 
show a very slight, not significant, stabilization effect. This 
indicates a complex energy landscape and a high potential 
barrier that needs to be overcome in order to form the 
stabilized complex. The fact that the stabilized complex is 
formed upon annealing at high temperature might be due to an 
increase in kinetic degrees of freedom under these conditions. 
Double-stranded DNA harboring more G-C base pairs is 
thermally more stable due to base-stacking interactions [19] and 
it unbinds at a higher external force along the long axis of the 
DNA [4]. It is thus a valid assumption that enhanced mechanical 
stability of annealed propynyl DNA is due to its increase in 
base-stacking interactions. 
In summary, we have demonstrated that the modification of 
pyrimidines with a propynyl group at their 5’ position can have 
a significant stabilization effect on DNA duplex strand 
separation and thus on its mechanical stability. However, to 
obtain the conformation of higher stability, the DNA has to be 
pre-annealed at high temperature. Provided that heating of the 
sample is possible, propynyl-modified pyrimidines can be 
employed to enhance the mechanical as well as thermal 
stability of double-stranded DNA. For DNA origami structures 
that in general are also prepared by annealing, it has been 
shown that folding to the desired structure occurs at a narrow 
temperature range and can consequently also be achieved at 
constant temperatures specific for the structure [20]. In this 
context it might be possible to adjust the annealing process for 
propynyl-modified DNA for temperature sensitive samples. The 
propynyl modification offers the advantage of standard 
sequence recognition, easy availability and the lack of 
additional treatments such as irradiation with light. Notably, the 
characterization of the propynyl-modified DNA with the AFM 
alone would not have given the whole picture, as it is not 
possible to measure a statistically sufficient dataset with pre-
annealed DNA. The additional measurement with the MFA 
technique provided crucial complementary information on the 
properties of the modified DNA. 

Experimental Section 

Atomic Force Microscope 
AFM-based force spectroscopy has been applied for analyzing the 
unbinding forces of the described DNA oligonucleotides comparable to 
[6]. The DNA strands with different propynyl modification levels were 
covalently coupled via PEG spacers to the probed sample surface, 
whereas the complementary DNA oligonucleotides were attached in the 
same manner to a BL-AC40TS-C2 cantilever (Olympus, Tokyo, Japan). 
For probing the DNA, the functionalized cantilever is brought into contact 
with the surface and withdrawn at different retraction velocities, ranging 
from 200 to 10000 nm/s. A low molecular surface density prevents the 
formation of multiple bonds between surface and cantilever tip. All 
measurements of the shown dataset were conducted with the same 
cantilever on one surface to ensure high comparability for different 
retraction velocities and DNA modification levels. In order to obtain single 
DNA binding events, the experiments feature no additional contact time 
of the cantilever on the surface before retraction. Force curves 
representing multiple bonding, nonspecific adhesion of molecules to the 
cantilever tip, or lack of interaction, were filtered out using an automated 
pattern-recognition algorithm. Only single worm-like chain force 
responses with a persistence length in the range of 0.1 to 0.5 nm and a 
contour length matching that of the DNA strands were extracted for 
further analysis. Rupture forces for each distinct retraction speed were 
plotted in histograms and fitted with the Bell-Evans model [21] to 
determine the most probable rupture force analogous to the analysis 
described in [6]. To obtain measurements over a broad range of different 
loading rates, several experiments were carried out for five different 
retraction velocities. Additionally, the standard Bell-Evans model was 
applied to the force versus loading rate dependency yielding the natural 
dissociation rate at zero force and the potential width Δx of the 
investigated DNA duplex (the corresponding force-loading rate plots can 
be found in the supplement). Sample preparation and more detailed 

information on the measurement of rupture forces of DNA duplexes can 
be found e.g. in [6] and in the supporting information. 
 
Molecular Force Assay 
The MFA experiments have been performed as described previously e.g. 
in [17b]. For the measurements with the MFA, three oligonucleotide 
strands are assembled as displayed in scheme 2b to form two DNA 
helices, a reference duplex and a duplex to be investigated. The 
lowermost strand is attached covalently to the lower surface, a glass 
slide, and binds to the lower part of a longer strand harboring a Cy5 
fluorophore dye at the linker between the two duplexes. The uppermost 
DNA strand, forming the second duplex with the longer middle strand, 
carries both a Biotin and a Cy3 dye, forming a FRET pair with the Cy5. 
The upper surface consists of a soft PDMS stamp coated with 
streptavidin. After initial measurement of the fluorophore intensities, the 
stamp is lowered onto the glass slide. The Biotin allows for the coupling 
of the uppermost strand to the stamp, so that the two DNA duplexes are 
clamped between both surfaces. Upon retraction of the stamp, a force 
builds up in the complexes and the mechanical stabilities of the duplexes 
are compared until, statistically, the weaker one ruptures. A second 
measurement of the remaining fluorescence intensities on the glass slide 
allows for the quantitative analysis of the experiment. The Cy5 dye 
attached to the linker stays with the stronger duplex. Thus, the higher the 
ratio of remaining intensity on the surface is to the initial intensity, the 
stronger the lower complex is in comparison to the upper duplex. If a 
molecular complex does not couple to the stamp, the DNA duplexes are 
not under force load and the Cy5 dye remains on the glass slide, yielding 
a false positive signal. This can be corrected by subtraction of the ratio of 
the FRET signal, which only remains if the complexes have not been 
under force load and the uppermost strand is still on the glass slide. The 
outcome of the experiment is thus given by the “Normalized 
Fluorescence” which denotes the ratio of still intact lower complexes in 
comparison to the initial amount of complexes that have been under load. 
In the current standard set-up, 16 different combinations of reference and 
sample complex can be tested in parallel, each of them statistically 
significant as about 104 molecular complexes per µm2 are tested 
simultaneously. The derivation of the equation for the Normalized 
Fluorescence and more details of the preparation, measurement and 
analysis process can be found in the supplementary information. 
In the measurements conducted here, the oligonucleotides including the 
modifications were integrated as the uppermost strand, so that the upper 
duplex is the complex in question. The lower complex consists of a 40bp 
long DNA duplex. It has a different sequence to prevent for cross-
hybridization of the three strands. The sequences are given in the 
supporting information. 
 
 

Acknowledgements 

The autors want to thank Prof. Jan Lipfert for helpful discussions 
and Dr. Christopher Deck of biomers.net (Ulm, Germany) for 
excellent technical advice and the custom-synthesis of propynyl-
modified DNA. Funding by the Deutsche Forschungs- 
gemeinschaft SFB 1032-A01 as well as a European Research 
Council Advanced Grant (Cellufuel Grant 294438) is gratefully 
acknowledged. The funders had no role in study design; 
collection, analysis and interpretation of data; in the writing of 
the report or the decision to submit the article for publication. 
 

Keywords: biophysics • DNA mechanical stability • force 
spectroscopy • propynyl bases • single-molecule studies 

[1] a) P. Rothemund, Nature 2006, 440, 297-302; b) E. Winfree, F. Liu, 
L. Wenzler, N. Seeman, Nature 1998, 394, 539-544; c) S. Douglas, 
H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 
459, 414-418; d) R. Schreiber, J. Do, E. Roller, T. Zhang, V. 
Schüller, P. Nickels, J. Feldmann, T. Liedl, Nat Nanotechnol 2014, 
9, 74-78. 

[2] Y. Ke, L. L. Ong, W. M. Shih, P. Yin, Science 2012, 338, 1177-
11783. 

[3] A. Rajendran, M. Endo, Y. Katsuda, K. Hidaka, H. Sugiyama, 
Journal of the American Chemical Society 2011, 133, 14488-
14491. 

136 B. Accepted Manuscript



COMMUNICATION          

 
 
 
 

5 

[4] M. Rief, H. Clausen-Schaumann, H. E. Gaub, Nat Struct Biol 1999, 
6, 346-349. 

[5] T. Strunz, K. Oroszlan, R. Schäfer, H. Güntherodt, Proc. Natl. 
Acad. Sci. USA 1999, 96, 11277-11282. 

[6] J. Morfill, F. Kühner, K. Blank, R. A. Lugmaier, J. Sedlmair, H. E. 
Gaub, Biophys J 2007, 93, 2400-2409. 

[7] A. Bird, Cell 1992, 70, 5-8. 
[8] A. Lefebvre, O. Mauffret, S. Antri, M. Monnot, E. Lescot, F. S, Eur. 

J. Biochem 1995, 229, 445-454. 
[9] P. Severin, X. Zou, H. Gaub, K. Schulten, Nucleic Acids Research 

2011, 39, 8740-8751. 
[10] B. M. Gaub, C. Kaul, J. L. Zimmermann, T. Carell, H. E. Gaub, 

Nanotechnology 2009, 20, 434002-434009. 
[11] a) B. Froehler, S. Wadwani, T. Terhorst, S. Gerrard, Tetrahedron 

letters 1992, 33, 5307-5310; b) F. Seela, S. Budow, H. Eickmeier, 
H. Reuter, Acta Cryst. 2007, C63, o54-o57; c) S. Budow, H. 
Eickmeier, H. Reuter, F. Seela, Acta Cryst. 2009, C65, o645-o648. 

[12] D. Graham, J. Parkinson, T. Brown, J. Chem. Soc., Perkin Trans. 1 
1998, 1131-1138. 

[13] M. Terrazas, E. Kool, Nucleic acids research 2009, 37, 346-353. 
[14] T. Barnes, D. Turner, Journal of the American Chemical Society 

2001, 123, 4107-4118. 
[15] D. Aschenbrenner, D. Pippig, K. Klamecka, K. Limmer, H. 

Leonhardt, H. E. Gaub, PLoS ONE 2014, e115049. 
[16] G. Binnig, C. Quate, C. Gerber, Physical Review Letters 1986, 56, 

930-933. 
[17] a) C. Albrecht, K. Blank, M. Lalic-Mülthaler, S. Hirler, T. Mai, I. 

Gilbert, S. Schiffmann, T. Bayer, H. Clausen-Schaumann, H. E. 
Gaub, Science 2003, 301, 367-370; b) P. M. D. Severin, D. Ho, H. 
E. Gaub, Lab Chip 2011, 11, 856-862. 

[18] a) D. Ho, C. Dose, C. H. Albrecht, P. Severin, K. Falter, P. B. 
Dervan, H. E. Gaub, Biophys J 2009, 96, 4661-4671; b) P. M. D. 
Severin, H. E. Gaub, Small 2012, 8, 3269–3273. 

[19] P. Yakovchuk, E. Protozanova, M. D. Frank-Kamenetskii, Nucleic 
Acids Res 2006, 34, 564-574. 

[20] J. Sobczak, T. Martin, T. Gerling, H. Dietz, Science 2012, 338, 
1458-1461. 

[21] E. Evans, K. Ritchie, Biophys J 1997, 72, 1541-1555. 
 
 

B.1 Manuscript 1: C-5 Propynyl Modifications Enhance the Mechanical
Stability of DNA 137



 1 

Supporting Information 

1. Supplementary Materials and Methods 
 

DNA Oligonucleotides 
Propynyl bases can be obtained from pyrimidines, which are modified with an additional propynyl 
group at the 5’ position of the base (see scheme 1). In desoxycytidines, this is achieved by replacing 
the H- group with the propynyl group. Desoxythymidines are replaced by desoxyuridines modified with 
the propynyl group, as uracil does not already harbor a methyl group at its 5’ position as thymidine. 
Experiments were performed with three degrees of propynyl bases: one strand contained no base 
modification (0P), one eight propynyl-desoxycytidines (8P) and the last 13 propynyl-desoxycytidines 
as well as nine propynyl-desoxyuridines yielding 22 propynyl bases (22P). The modifications are 
distributed over the same sequence of 40 bases. The unchanged base-recognition for propynyl-
modified bases yields binding of all examined oligonucleotides to the same complementary strand. All 
measurements in this study are performed at room temperature and physiological salt concentrations 
in 1xPBS buffer. 

 

MFA Preparation 
The lower surface with the two DNA duplexes in series was prepared as described previously e.g. [1] 
except for small modifications. The DNA oligomers were purchased including all modifications from 
biomers.net GmbH (Ulm, Germany) and IBA GmbH (Göttingen, Germany). 
The lowermost oligonucleotide strand was coupled covalently via its NH2-group at the 5’ end to the 
aldehyde-functionalized glass slide (Schott GmbH, Jena, Germany). Five hexaethyleneglycol (HEGL) 
linkers acted as additional spacers. In the middle strand, a Cy5 fluorophore is attached to the poly-t-
linker connecting the sequences for the two complexes. The direction of the middle strand is inverted 
in the linker, ensuring that both complexes are probed from the 5’ ends. The three different uppermost 
strands harbor varying amounts of propynyl modification. Additionally, each strand carries a Cy3 
fluorophore forming the FRET pair with the Cy5 dye in the middle strand as well as a biotin on the 5’ 
end for coupling to the upper surface. 
 
Lower Strand 
NH2 - 5xHEGL - 5'- (t)10 – ctg atg agt cga caa cgt atg cac tac gct cgc tta cta g 
Middle Strand 
3' - gac gac tgg tgg tgc tga cta tct aag tgg cta act tga g - (t)7 - 5' - (Cy5) - 5' - (t)7 - cta gta agc gag cgt 
agt gca tac gtt gtc gac tca tca g -3' 
Upper Strands 
(0P) Biotin - 5' - (t)10 - ctg ctg acc acc acg act gat aga ttc acc gat tga act c - 3' - (Cy3)   
(8P) Biotin - 5' - (t)10 - ctg ctg acc acc acg act gat aga ttc acc gat tga act c - 3' - (Cy3) 
(22P) Biotin - 5' - (t)10 - ctg ctg acc acc acg act gat aga ttc acc gat tga act c - 3' - (Cy3) 
 
The lower strand was spotted in 1 µl droplets of 25 µM in 5xPBS (Roche Life Science, Indiana, USA) 
in a 4x4 pattern on the functionalized glass slide and incubated in a saturated NaCl ddH2O 
atmosphere overnight. The resulting Schiff Bases were reduced with 1% aqueous NaBH4 (VWR 
Scientific GmbH, Darmstadt, Germany) for 90 minutes to render the attachment covalent. After a 
washing step with ddH2O the slide was incubated in 1xPBS with 4% BSA (bovine serum albumin; 
Sigma-Aldrich GmbH, Munich, Germany) to reduce unspecific binding. A custom-made silicone 
isolator with 16 wells (Grace-Biolabs, OR, USA) was positioned on top of the spotted pattern of the 
lower DNA strand. A pre-incubated mix of middle and respective upper strand was spotted in the wells 
and incubated for 1h. The ratio of middle to upper strand was 1:2 (100nM:200nM) in 5xPBS to ensure 
a saturation of middle strands with bound upper strands. The mix was either incubated over night at 
room temperature (RT) or annealed by heating to 95°C and cooling slowly over 4 hours to 5°C. In 
order to remove free unbound DNA, the slide was rinsed carefully in washing steps with 2x, 0.2x and 
1xPBS after removal of the isolator. 
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The upper surface, a soft PDMS (polydimethylsiloxane) stamp with 16 pillars matching the pattern of 
DNA constructs on the glass slide, is custom-made and functionalized in our lab as described in detail 
e.g. in [1]. The pillars are 1 mm in height and 1.1 mm in diameter on a 3mm thick basis and harbor a 
microstructure on the top. The pads of 100 µm x 100 µm are separated by trenches of 41 µm in width 
and 5 µm in depth to ensure liquid drainage during the contact and separation process to the lower 
glass slide. For the experiment, the stamps are functionalized with a 1:1 mix of NH2-PEG-biotin (MW 
3400) and NH2-PEG-CH3 (MW 2000; Rapp Polymere, Tübingen, Germany) and subsequently with 
1mg/ml streptavidin (Thermo Fisher Scientific, Bonn, Germany) in 1xPBS containing 0.4% (w/v) BSA. 
Prior to the measurement, they were rinsed with 0.05% Tween 20 (VWR Scientific GmbH, Germany) 
in 0.2xPBS and gently dried with N2 gas. 

 

MFA Contact Process, Readout and Analysis 
A detailed description of the measurement and analysis process of the MFA can e.g. be found in [1]. 
In short, a custom-build contact device is mounted on an inverted epi-fluorescence microscope, 
permitting fluorescence readout of the glass slide. A piezoelectric actuator enables the contact and 
separation process between slide and PDMS stamp which is controlled using reflection interference 
contrast microscopy [2]. The initially separated surfaces are left in contact for 10 minutes to allow for 
the coupling of the molecular complexes on the slide to the stamp via the Biotins on the uppermost 
DNA strand. Retraction of the stamp occurs at constant velocity of 1 µm/s. Before and after the 
contact of the stamp to the lower glass slide, the fluorescence intensity of the Cy5 (“REDStart” and 
“REDFinal”) and the FRET signal (“FRETStart” and “FRETFinal”) are recorded for each spot of molecular 
complexes on the slide. 
In the analysis, the ratio of REDFinal to REDStart gives the amount of intact lower bonds after stamp 
retraction in comparison to the initial amount of complexes: RatioRED = REDFinal / REDStart. In order to 
correct for the complexes that have not been under load, the ratio of FRET signal is being subtracted, 
as a FRET signal only remains if the complexes are still fully assembled: RatioFRET = FRETFinal / FRETStart. 
Normalization to the Coupling Efficiency CE = 1- RatioFRET of complexes to the stamp yields the 
Normalized Fluorescence: 
NF = (RatioRED - RatioFRET) / CE. 
Hence, the NF gives the ratio between broken upper complexes in question and total amount of 
complexes that have been under force load. This means that the closer the NF to 0, the more stable 
the complex in question in comparison to the reference DNA duplex and vice versa for a NF closer to 
1. Ideally, if the mechanical strength of both complexes is identical, the NF would be 0.5. The 
deviation from 0.5 in the case of the unmodified duplex against the reference of identical length and 
GC content can be attributed to the different positions of the GC pairs stabilizing the sequence more 
than AT pairs. The difference in the sequence is necessary to prevent for cross-hybridization. 
Additionally, the symmetry break due to the different surfaces to which the oligonucleotides are 
attached can play a role. The minor imbalance does not affect the result, as all samples are tested 
against the same reference and the effect thus cancels out. 
The analysis is performed automatically using a customized LabView software which divides the 
original fluorescence images after background correction pixel-by-pixel according to the equation for 
NF and corrects for bleaching effects. The NF is then determined by fitting a Gaussian to the resulting 
histogram of counts. 

 

AFM Sample Preparation 
Samples for the measurement with the atomic force microscope were prepared with small changes as 
described previously [3]. In short, the oligonucelotides were immobilized on the amino-modified 
cantilever and glass surface (3-aminopropyldimethylethoxysilane; ABCR GmbH, Karlsruhe, Germany) 
at their 5’-termini via heterobifunctional NHS-PEG-Maleimide spacers (MW 5000; Rapp Polymere, 
Tübingen, Germany). The PEG was dissolved in a concentration of 25 mM in borate buffer at pH 8.5 
and incubated for 1h. Possible disulfide bonds between oligonucleotides were reduced by TCEP 
incubation (Thermo Fisher Scientific, Bonn, Germany) and subsequent ethanol precipitation. The 
reduced DNA strands were incubated in concentrations of 5µM (surface) and 15 µM (cantilever) for 1h 
before a final washing step and storage in 1xPBS until use. For a parallel characterization of the 
individual unbinding forces in a single experiment, three distinct populations of the investigated DNA 
strands with propynyl modifications were incubated on one glass surface. 
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For all measurements, BL- AC40TS-C2 cantilevers (Olympus, Tokyo, Japan) were employed. The 
DNA oligomers were purchased including all modifications from biomers.net GmbH: 
 
Cantilever Strand 
SH - 5' - (t)10 - tag gta gtg gag ttc aat cgg tga atc tat cag tcg tgg tgg tca gca g - 3' - (Cy5) 
Surface Strands 
(0P) SH - 5' - (t)10 - ctg ctg a(Cy3)cc acc acg act gat aga ttc acc gat tga act c -  3' 
(8P) SH - 5' - (t)10 - ctg ctg a(Cy3)cc acc acg act gat aga ttc acc gat tga act c -  3' 
(22P) SH - 5' - (t)10 - ctg ctg a(Cy3)cc acc acg act gat aga ttc acc gat tga act c -  3' 

AFM Measurement and Analysis 
Single-molecule AFM experiments were carried out on a custom built atomic force microscope, 
controlled by an MFP-3D controller from Asylum Research (Santa Barbara, CA, USA), which provides 
ACD and DAC channels as well as a DSP board for setting up feedback loops. The protocol for data 
recording was executed by a custom written Igor Pro (Wave Metrics, Lake Oswego, USA) software 
and cantilever actuation in the z direction was performed by a LISA piezo-actuator (Physik 
Instrumente, Karlsruhe, Germany) driven by the AFM controller. During surface approach, an 
indentation force of typically around 180 pN was used. The conversion from photodiode voltages into 
force values was performed after cantilever spring constant calibration by the thermal method using 
the equipartition theorem [2]. A typical spring constant in the range of 100 pN/nm and a resonance 
frequency of 25 kHz were obtained. After each force-extension trace the probed surface was moved 
by an actuated x-y stage for 100 nm to expose the DNA anchor on the cantilever to a new binding 
partner.  
The obtained data sets for each pulling speed typically showed a yield of about 10% to 25% specific 
interactions of a total of 68800 curves recorded. Curves were sorted to contain exclusively single peak 
events with a worm-like chain behavior. The loading rate for each peak was determined as a linear fit 
to the in force over time in the last 4 nm before a rupture event. 
Importantly, to allow for direct comparability and exclude calibration effects, the data given here have 
been obtained with one single cantilever. However, further experiments have reproducibly shown that 
the most probable rupture force cannot be distinguished for different DNA modifications in AFM 
experiments.  

Sample AFM force-distance curve 
 
Force-distance curves of single-binding events display a behavior that allows to preselect them using 
the WLC model as a criterion. However, no information is deduced from this fit. The short persistence 
length of 0.1-0.5 nm is a general feature of DNA measurements with AFM and consistent with 
previous studies. It is dominated by the very short persistence length of the PEG linkers used to attach 
the oligonucleotides to cantilever and surface, as they are the longest components of the system, 
which are stretched. 
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2. Supplementary Data 
Force - Loading Rate Plots of AFM Measurements 
The force-loading rate plots assembled below were fitted with an elliptical two-dimensional Gaussian 
to determine their respective population means and standard deviation for each retraction speed. As 
can be seen comparing the force-loading rate plots for 0P, 8P and 22P, the most probable rupture 
force for each retraction velocity are indistinguishable within error. Additionally, the rupture forces for 
the different retraction velocities for each variant display no significant loading rate dependence.  
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[101] Viani, M., Schäffer, T., Chand, A., and Rief, M. (1999). Small cantilevers for force

spectroscopy of single molecules. Journal of Applied Physics, 86(4), 2258–2262.

[102] Recht, M., Fourmy, D., and Blanchard, S. (1996). RNA sequence determinants for

aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol, 262,

421–436.

[103] Anderson, P.C. and Mecozzi, S. (2007). Minimum sequence requirements for the binding

of paromomycin to the rRNA decoding site A. Biopolymers, 86(2), 95–111.

[104] Pippig, D.A., Baumann, F., Strackharn, M., Aschenbrenner, D., and Gaub, H.E. (2014).

Protein-DNA Chimeras for Nano Assembly. ACS Nano, 8(7), 6551–6555.

[105] Schaeffer, P. and Dixon, N. (2009). Synthesis and applications of covalent protein-DNA

conjugates. Australian journal of chemistry, 62(10), 1328–1332.

[106] Bauer, D., Rogge, A., Stolzer, L., Barner-Kowollik, C., and Fruk, L. (2013). Light

induced DNA–protein conjugation. Chem. Commun., 49, 8626–8628.

[107] Rosen, C., Kodal, A., Nielsen, J., Schaffert, D., Scavenius, C., et al. (2014). Template-

directed covalent conjugation of DNA to native antibodies, transferrin and other metal-

binding proteins. Nature Chemistry, 6(9), 804–9.

[108] Otten, M., Ott, W., Jobst, M., Milles, L., Verdorfer, T., et al. (2014). From genes to

protein mechanics on a chip. Nature Methods, 11(11), 1127–1130.

[109] Baird-Titus, J.M., Clark-Baldwin, K., Dave, V., Caperelli, C.A., Ma, J., et al. (2006).

The solution structure of the native K50 Bicoid homeodomain bound to the consensus

TAATCC DNA-binding site. Journal of molecular biology, 356(5), 1137–51.



Bibliography 153

[110] Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. (2011). Photo-

cross-linking-assisted thermal stability of DNA origami structures and its application for

higher-temperature self-assembly. Journal of the American Chemical Society, 133(37),

14488–91.

[111] Sobczak, J., Martin, T., Gerling, T., and Dietz, H. (2012). Rapid folding of DNA into

nanoscale shapes at constant temperature. Science, 338(6113), 1458–61.

[112] Maerkl, S.J. and Quake, S.R. (2007). A systems approach to measuring the binding

energy landscapes of transcription factors. Science, 315(5809), 233–7.

[113] Maerkl, S.J. (2011). Next generation microfluidic platforms for high-throughput protein

biochemistry. Current Opinion in Biotechnology, 22(1), 59–65.

[114] Otten, M. (2014). Microfluidic & microrheological studies of protein interactions at

the single–molecule & single–cell level. Ph.D. thesis, Ludwig-Maximilians-Universität

München.



154 Bibliography



List of Figures

2.1 The Central Role of Dicer in the RNAi Pathway . . . . . . . . . . . . . . . . 12

2.2 Crystal Structure of Nanobody Enhancer Interacting with Wild Type GFP . 15

2.3 Schematic Depiction of DNA and Orientations of Force Load . . . . . . . . . 17

2.4 Examples for Intrinsic and External Stabilization of a DNA Force Sensor . . 19

3.1 Basic Principle of the Molecular Force Assay . . . . . . . . . . . . . . . . . . 23

3.2 Experimental Set-up of the Molecular Force Assay . . . . . . . . . . . . . . . 24

3.3 Overview over Different Applications of the Molecular Force Assay . . . . . . 26

3.4 Comparison of the Atomic Force Microscope to the Molecular Force Assay . . 30

4.1 Molecular Force Assay Set-Up for the Detection of Dicer Inhibition . . . . . . 35

4.2 Results for the Detection of Dicer Inhibition . . . . . . . . . . . . . . . . . . . 36

4.3 Protein-DNA Coupling via the ybbR-Tag . . . . . . . . . . . . . . . . . . . . 39

4.4 Molecular Set-Up for the Measurement of Protein-Protein Interactions with

the MFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Adjustment of the Sensitivity Window Using Modified DNA References for

Protein-MFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Characterization of Enhancer Interaction with Different GFP Variants . . . . 45

4.7 Investigation of Propynyl-Modified DNA Duplexes with AFM . . . . . . . . . 47

4.8 Investigation of Propynyl-Modified DNA Duplexes with MFA . . . . . . . . . 49

5.1 Microfludic MITOMI Chip for Protein Expression and Attachment . . . . . . 55



156



Lebenslauf

Daniela Solveig Raphaela Aschenbrenner



158 B. Lebenslauf



Danksagung
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