
Complex Queries and Complex
Data: Challenges in Similarity

Search

Johannes Niedermayer

München 2015

Complex Queries and Complex
Data: Challenges in Similarity

Search

Johannes Niedermayer

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Johannes Niedermayer

aus München

München, den 21.07.2015

Erstgutachter: PD Dr. Peer Kröger

Zweitgutachter: Prof. Dr. Michael Gertz

Tag der mündlichen Prüfung: 30.10.2015

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

To my future wife.
To my parents.
To my brother.

Contents

List of Figures xii

List of Tables xv

Table of Notations xix

Summary xxii

I Preliminaries 1

1 Introduction 3

2 Similarity Search 5
2.1 Mathematical Definitions . 5
2.2 Query Types . 6
2.3 Pipeline . 8

2.3.1 Feature Extraction . 9
2.3.2 Indexing and Query Processing 11

2.4 Challenges . 16
2.4.1 Complex Data . 16
2.4.2 Complex Query Predicates 18
2.4.3 Large Volumes . 19

3 Thesis Overview and Contributions 21

4 Incorporated Publications and Coauthorship 23

II The RkNN Join 25

5 Introduction 27

x CONTENTS

6 Preliminaries 31
6.1 Problem Definition . 31
6.2 Related Work . 33
6.3 Classification of Existing RkNN Joins 34

7 Algorithms 37
7.1 The Mutual Pruning Algorithm 37

7.1.1 General Idea . 37
7.1.2 The Algorithm joinEntry 41
7.1.3 Refinement: The resolve-Routine 42

7.2 A Self Pruning Approach . 42
7.2.1 General Idea . 42
7.2.2 Implementing the Self-kNN-Join 45
7.2.3 Implementing the Varying-Range-Join 47

7.3 Extension to Metric Spaces 49
7.3.1 Adaptions of the Update List Approach 50
7.3.2 Adaptions of the kNN-Based Approach 51

8 Evaluation 53
8.1 Experiments on Synthetic Data 56
8.2 Real Data Experiments . 62
8.3 Comparing CPU-Cost and IO-Cost 63

9 Conclusion 65

III Nearest Neighbor Queries on Uncertain Spatio-
Temporal Data 67

10 Introduction 69

11 Preliminaries 75
11.1 Problem Definition . 75

11.1.1 Uncertain Trajectory Model 75
11.1.2 Nearest Neighbor Queries 78
11.1.3 Probabilistic Reverse Nearest Neighbor Queries 80

11.2 Related Work . 82

12 Nearest Neighbor Queries 85
12.1 Theoretical Analysis . 85

12.1.1 The P∃NN Query . 85
12.1.2 The P∀NN Query . 87

CONTENTS xi

12.1.3 The PCNN Query . 95

12.2 Sampling Possible Trajectories 97

12.2.1 Traditional Sampling 97

12.2.2 Efficient and Appropriate Sampling 98

12.3 Spatial Pruning . 108

12.4 Experimental Evaluation . 111

12.4.1 Evaluation: P∀NNQ and P∃NNQ 113

12.4.2 Continuous Queries . 119

13 Reverse Nearest Neighbor Queries 121

13.1 PRNN Query Processing . 121

13.1.1 Temporal and Spatial Filtering 122

13.1.2 Verification . 125

13.2 Experiments . 125

13.2.1 Evaluation: P∀RNNQ and P∃RNNQ 126

14 Conclusions 129

IV kNN Queries for Image Retrieval 131

15 Introduction 133

16 Preliminaries 139

16.1 Problem Definition . 140

16.2 Related Work . 142

16.2.1 Keypoint Reduction 142

16.2.2 kNN Indexing . 143

16.2.3 kNN-based Matching 144

16.2.4 Match Expansion . 144

17 Minimizing the Number of Matching Queries for Object Re-
trieval 147

17.1 Pipeline . 147

17.1.1 Theory . 147

17.1.2 Practical Considerations 151

17.2 Experiments . 154

17.2.1 Experimental Setup . 154

17.2.2 Experiments . 157

xii CONTENTS

18 Retrieval of Binary Features in Image Databases: A Study 163
18.1 Querying Binary Features with LSH 164
18.2 Experimental Evaluation . 167

18.2.1 Nearest Neighbor Queries 169
18.2.2 Range Queries and BoVW 172

19 Conclusions 175

V Conclusions 177

Acknowledgements 194

List of Figures

2.1 Query Processing Pipeline . 9

2.2 The R-Tree . 12

2.3 The Filter-Refinement approach 16

5.1 Application of RkNN join between two sets of products R and
S for product (set) recommendation. 28

6.1 Visualization of the Monochromatic RkNN Query and the
Monochromatic RkNN Join 32

7.1 Spatial Domination. 38

7.2 Comparison of MS(eS) and CMBR(eS) in an (a) average, (b)
worst, and (c) best case. 47

8.1 Performance (CPU time), synthetic dataset. Time is measured
in seconds. 55

8.2 Performance (page accesses), synthetic dataset. 57

8.3 Given a set S of size |S|, the left figure visualizes the size
of set Re for which TPL and the kNN-based joins have the
same computational performance on our test sets R and S
(note that this might vary with other datasets). The right
figure visualizes the results for varying cache size. Note the
logarithmic scale on the y-Axis. 60

8.4 Performance (CPU time in seconds, page accesses), real dataset
(HSV). 61

8.5 Performance (CPU time, page accesses), real dataset (post
office). 63

8.6 CPU and IO time in seconds when varying the cache size.
Left: SSD, right: HDD . 63

10.1 Uncertainty in a Spatio-Temporal Context. 70

xiv LIST OF FIGURES

11.1 Model Visualization (best viewed in color) 76
11.2 Example Setup for PNN Queries 80
11.3 Example Setup for PRNN Queries 82

12.1 An example instance of our mapping of the 3-SAT problem to
a set of Markov chains. 86

12.2 P∀NN: Violation of the Markov assumption 95
12.3 Traditional MC-Sampling. 97
12.4 An overview over our forward-backward-algorithm. 99
12.5 Spatio-Temporal Pruning Example. 110
12.6 Examples of the models used for synthetic and real data.

Black lines denote transition probabilities. Thicker lines de-
note higher probabilities, thinner lines lower probabilities. The
synthetic model consists of 10k states. 111

12.7 Varying the Number of States N 113
12.8 Varying the Branching Factor b 114
12.9 Varying the Number of Objects |D| 115
12.10Real Data: Varying the Number of Objects 115
12.11Efficiency of Sampling without Model Adaption. 116
12.12Effectiveness of Sampling, P∀NN and P∃NN 117
12.13Real Data: Effectiveness of the Model Adaption 118
12.14PCNN: Varying the Number of Objects 119
12.15PCNN: Varying τ . 120

13.1 Spatio-temporal filtering (only leaf nodes are shown) 122
13.2 Synthetic Data, Varying |D|. 126
13.3 Synthetic Data, Varying b. 127
13.4 Synthetic Data, Varying N = |S|. 128
13.5 Real Data, Varying |D|. 128

16.1 Object Recognition Pipeline 139

17.1 Generation of additional match hypotheses. 149
17.2 Performance for varying k (Hessian-affine SIFT). Straight lines

show the performance for 10 keypoints, dashed lines for 1000
keypoints. Equivalent approaches have equivalent colors. . . . 161

18.1 LSH-based indexing . 165
18.2 Parameter Settings and Distance Distribution. 168
18.3 Populatation of buckets (log-log-space). 169
18.4 Varying # Tables (left) and Database Size (right) 170
18.5 Varying # Probes, Recall (left) and Distance Calculations (right)171

LIST OF FIGURES xv

18.6 Varying # Bits . 172
18.7 Recall and False Hit Rate for Range Queries 173
18.8 Applying the Hashing Functions to a BoVW-based Ranking . 173

xvi LIST OF FIGURES

List of Tables

8.1 Values for the evaluated independent variables. Default values
are denoted in bold. 54

12.1 Parameters varied during our experimental evaluation (syn-
thetic data). Differing parameters for continuous experiments
are denoted by a superscript c. Default values are denoted in
bold. 112

17.1 Database Statistics . 155
17.2 Parameters for Match Expansion 156
17.3 SIFT, Oxford5k, k=100 . 157
17.4 SIFT, Paris6k, k=100 . 157
17.5 SIFT, Holidays, k=10 . 158
17.6 BinBoost, Oxford5k, k=100 158
17.7 SIFT, Oxford 105k, k=100 . 159
17.8 BinBoost, Oxford 105k, k=100 160

xviii LIST OF TABLES

Table of Notations

General Notations

Symbol Description

M A metric space
Rd The d-dimensional vector space
Bd The space of d-dimensional binary vectors
D A database of objects
q A query object
o ∈ D A database object
dist(x, y) A distance function, usually a metric
ε− range(q,D, ε) ε-range query
kNN(q,D, k) kNN query
RkNN(q,D, k) RkNN query
MINDIST (A,B) Minimum distance between objects A and B
MAXDIST (A,B) Maximum distance between object A and B
Dom(A,B,C) Spatial domination function of the objects A, B,

and C
H A family of hash functions
G A function family
Q A queue

Part II: The RkNN Join

Symbol Description

R A set of objects, if not denoted otherwise R ⊂ Rd.
Corresponds to the left (query) set of the join.

S A set of objects, usually S ⊂ Rd. Corresponds to
the right (database) set of the join.

r Element from R, r ∈ R
s Element from S, s ∈ S
R,S Index of set R and S, respectively

xx TABLE OF NOTATIONS

Part III: Nearest Neighbor Queries on Uncertain Spatio-Temporal
Data

Symbol Description

T A time domain T = {0, . . . , n}
T A time interval
t ∈ T A single point in time
S A spatial domain
si ∈ S A spatial location, i.e. a state
θi ∈ S A spatial observation
Θo The representation of object o, i.e. a set of

location-time tuples, w.l.o.g. ordered by the
timesteps ti
Θo = {〈to1, θo1〉, 〈to2, θo2〉, . . . , 〈to|Θo|, θ

o
|Θo|〉}

o(t) The realization of the random variable represent-
ing object o at time t

M o(t) The transition matrix of object o at time t
~so(t) The probability distribution over spatial locations

of object o at time t
τ Probability threshold
l A literal (∃ query)
c A clause (∃ query)
x A variable (∃ query)
F (t), R(t) Forward and backward model for sampling

TABLE OF NOTATIONS xxi

Part IV: kNN Queries for Image Retrieval

Symbol Description

Ij An image Ij ∈ D
pij ∈ Ij A keypoint, pij = (vij, x

i
j, y

i
j, s

i
j, r

i
j, σ

i
j, A

i
j)

vij Feature vector of feature i in image j

xij, y
i
j Interest point location of feature i in image j

sij Scale of feature i in image j

σij Response of feature i in image j

Aij Affine matrix of feature i in image j

m(x) An arbitrary matching function
Ψ ⊆ Ij A subset of image features
M A set of matches
n Bound on the number of matching queries
Q A set of query objects
δxy, δs, δdv , δα, δr, δdx,y Thresholds for match expansion

xxii Summary

Summary

With the widespread availability of wearable computers, equipped with sen-
sors such as GPS or cameras, and with the ubiquitous presence of micro-
blogging platforms, social media sites and digital marketplaces, data can be
collected and shared on a massive scale. A necessary building block for tak-
ing advantage from this vast amount of information are efficient and effective
similarity search algorithms that are able to find objects in a database which
are similar to a query object. Due to the general applicability of similarity
search over different data types and applications, the formalization of this
concept and the development of strategies for evaluating similarity queries
has evolved to an important field of research in the database community,
spatio-temporal database community, and others, such as information re-
trieval and computer vision. This thesis concentrates on a special instance of
similarity queries, namely k-Nearest Neighbor (kNN) Queries and their close
relative, Reverse k-Nearest Neighbor (RkNN) Queries.

As a first contribution we provide an in-depth analysis of the RkNN join.
While the problem of reverse nearest neighbor queries has received a vast
amount of research interest, the problem of performing such queries in a bulk
has not seen an in-depth analysis so far. We first formalize the RkNN join,
identifying its monochromatic and bichromatic versions and their self-join
variants. After pinpointing the monochromatic RkNN join as an important
and interesting instance, we develop solutions for this class, including a self-
pruning and a mutual pruning algorithm. We then evaluate these algorithms
extensively on a variety of synthetic and real datasets.

From this starting point of similarity queries on certain data we shift
our focus to uncertain data, addressing nearest neighbor queries in uncertain
spatio-temporal databases. Starting from the traditional definition of near-
est neighbor queries and a data model for uncertain spatio-temporal data,
we develop efficient query mechanisms that consider temporal dependencies
during query evaluation. We define intuitive query semantics, aiming not
only at returning the objects closest to the query but also their probabil-
ity of being a nearest neighbor. After theoretically evaluating these query

xxiv Summary

predicates we develop efficient querying algorithms for the proposed query
predicates. Given the findings of this research on nearest neighbor queries,
we extend these results to reverse nearest neighbor queries.

Finally we address the problem of querying large datasets containing set-
based objects, namely image databases, where images are represented by
(multi-)sets of vectors and additional metadata describing the position of
features in the image. We aim at reducing the number of kNN queries per-
formed during query processing and evaluate a modified pipeline that aims
at optimizing the query accuracy at a small number of kNN queries. Ad-
ditionally, as feature representations in object recognition are moving more
and more from the real-valued domain to the binary domain, we evaluate
efficient indexing techniques for binary feature vectors.

Zusammenfassung

Nicht nur durch die Verbreitung von tragbaren Computern, die mit einer
Vielzahl von Sensoren wie GPS oder Kameras ausgestattet sind, sondern
auch durch die breite Nutzung von Microblogging-Plattformen, Social-Media
Websites und digitale Marktplätze wie Amazon und Ebay wird durch die User
eine gigantische Menge an Daten veröffentlicht. Um aus diesen Daten einen
Mehrwert erzeugen zu können bedarf es effizienter und effektiver Algorith-
men zur Ähnlichkeitssuche, die zu einem gegebenen Anfrageobjekt ähnliche
Objekte in einer Datenbank identifiziert. Durch die Allgemeinheit dieses
Konzeptes der Ähnlichkeit über unterschiedliche Datentypen und Anwen-
dungen hinweg hat sich die Ähnlichkeitssuche zu einem wichtigen Forschungs-
feld, nicht nur im Datenbankumfeld oder im Bereich raum-zeitlicher Daten-
banken, sondern auch in anderen Forschungsgebieten wie dem Information
Retrieval oder dem Maschinellen Sehen entwickelt. In der vorliegenden Ar-
beit beschäftigen wir uns mit einem speziellen Anfrageprädikat im Bere-
ich der Ähnlichkeitsanfragen, mit k-nächste Nachbarn (kNN) Anfragen und
ihrem Verwandten, den Revers k-nächsten Nachbarn (RkNN) Anfragen.

In einem ersten Beitrag analysieren wir den RkNN Join. Obwohl das
Problem von reverse nächsten Nachbar Anfragen in den letzten Jahren eine
breite Aufmerksamkeit in der Forschungsgemeinschaft erfahren hat, wurde
das Problem eine Menge von RkNN Anfragen gleichzeitig auszuführen nicht
ausreichend analysiert. Aus diesem Grund formalisieren wir das Problem des
RkNN Joins mit seinen monochromatischen und bichromatischen Varianten.
Wir identifizieren den monochromatischen RkNN Join als einen wichtigen
und interessanten Fall und entwickeln entsprechende Anfragealgorithmen. In
einer detaillierten Evaluation vergleichen wir die ausgearbeiteten Verfahren
auf einer Vielzahl von synthetischen und realen Datensätzen.

Nach diesem Kapitel über Ähnlichkeitssuche auf sicheren Daten konzen-
trieren wir uns auf unsichere Daten, speziell im Bereich raum-zeitlicher Daten-
banken. Ausgehend von der traditionellen Definition von Nachbarschaftsan-
fragen und einem Datenmodell für unsichere raum-zeitliche Daten entwickeln
wir effiziente Anfrageverfahren, die zeitliche Abhängigkeiten bei der Anfrage-

xxvi Summary

bearbeitung beachten. Zu diesem Zweck definieren wir Anfrageprädikate die
nicht nur die Objekte zurückzugeben, die dem Anfrageobjekt am nächsten
sind, sondern auch die Wahrscheinlichkeit mit der sie ein nächster Nachbar
sind. Wir evaluieren die definierten Anfrageprädikate theoretisch und en-
twickeln effiziente Anfragestrategien, die eine Anfragebearbeitung zu vertret-
baren Laufzeiten gewährleisten. Ausgehend von den Ergebnissen für Nach-
barschaftsanfragen erweitern wir unsere Ergebnisse auf Reverse Nachbar-
schaftsanfragen.

Zuletzt behandeln wir das Problem der Anfragebearbeitung bei Mengen-
basierten Objekten, die zum Beispiel in Bilddatenbanken Verwendung finden:
Oft werden Bilder durch eine Menge von Merkmalsvektoren und zusätzliche
Metadaten (zum Beispiel die Position der Merkmale im Bild) dargestellt.
Wir evaluieren eine modifizierte Pipeline, die darauf abzielt, die Anfrage-
genauigkeit bei einer kleinen Anzahl an kNN-Anfragen zu maximieren. Da
reellwertige Merkmalsvektoren im Bereich der Objekterkennung immer öfter
durch Bitvektoren ersetzt werden, die sich durch einen geringeren Speicher-
platzbedarf und höhere Laufzeiteffizienz auszeichnen, evaluieren wir außer-
dem Indexierungsverfahren für Binärvektoren.

Part I

Preliminaries

Chapter 1

Introduction

With the widespread availability of wearable computers, not only smart-
phones, but also smart watches1 and Google Glass2, equipped with sensors
such as GPS, accelerometers, gyroscopes and cameras, data can be collected
on a massive scale and shared on the internet such as with Flickr, Instagram,
and YouTube for visual data3 or Endomondo4 for spatio-temporal data. In
addition to this ubiquitous presence of sensor devices in our everyday life,
micro-blogging platforms such as Twitter, social media sites including Face-
book and digital marketplaces such as Amazon allow users to publish news,
opinions and reviews without having in-depth technical knowledge.5 In the
future, the general spread of the internet of things will give rise to an even
bigger flood of data that have to be stored, queried and mined. While in
the year 2013 20 billion things were connected to the internet, this number
is estimated to reach 32 billion in 2020 [1].

A necessary building block for taking advantage from this vast amount of
information available on the web, for example for recommendation purposes
or data mining applications, is an efficient and effective search framework.
Many approaches of extracting useful information from large amounts of
data, in the area of data mining (e.g. clustering, outlier detection, and clas-
sification) but also in the context of search engines, take advantage from a
notion of similarity between different data instances. Similarity is a broad
concept of describing the relation between object instances. In the context of
spatial data, similarity can be based on the spatial proximity of objects, as-
sessing close objects as more similar than objects further away from another.

1http://www.apple.com/watch/
2http://www.google.com/glass/
3http://www.flickr.com, http://www.instagram.com, http://www.youtube.com
4http://www.endomondo.com
5http://www.twitter.com, http://www.facebook.com, http://www.amazon.com

4 1. Introduction

In the context of spatio-temporal data, similarity could be measured by com-
paring the spatial proximity of two trajectories over time. The similarity of
textual data can be assessed by comparing the words contained in different
document and clues for visual similarity can be derived from color, gradient
or texture patterns. Due to this widespread applicability of similarity, the
formalization of this concept and the development of strategies for evaluating
similarity queries has not only evolved to an important field of research in
the database community and spatio-temporal database community, but also
in a wide range of other communities, e.g. in the area of information retrieval
and computer vision.

Before diving deeper into the contents of this thesis, this first part provides
an overview of fundamental principles essential for its understanding. Chap-
ter 2 aims at defining the concept of similarity search, summarizes relevant
query predicates and provides an overview of general processing strategies
relevant in the context of this thesis, such as feature extraction and index-
ing techniques. It further provides an overview over application areas of
similarity queries and current challenges in this field of research. In Chap-
ter 3, an overview of the structure of this thesis is given, relating its scientific
contributions to the challenges mentioned in Chapter 2. Finally, Chapter 4
outlines the papers published in the context of this thesis and summarizes
the contributions of the author.

Chapter 2

Similarity Search

2.1 Mathematical Definitions

Despite its wide range of applications in query processing and data mining,
the idea of similarity can be boiled down to only a few mathematical concepts.
We measure the similarity of two objects with a metric [2]:

Definition 1 (Metric). Let M be a set. A function dist : M × M → R
mapping pairs of objects from M to a real value, is called a metric on M if,
for all x, y, z ∈M the following holds:

1. Non-negativity: dist(x, y) ≥ 0

2. Separation: dist(x, y) = 0 if and only if x = y

3. Symmetry: dist(x, y) = dist(y, x)

4. Triangle Inequality: dist(x, y) ≤ dist(x, z) + dist(z, y)

Given this concept of a metric, data is interpreted as a set of elements
from a metric space [2]:

Definition 2 (Metric Space). A metric space (M, dist) is a set M equipped
with a metric dist.

A distance is referred to as a superset of metrics [2], providing only the
properties non-negativity, symmetry and dist(x, x) = 0. We will however
use the general term distance function and distance synonymously, as we
will only consider metric spaces in this thesis.

6 2. Similarity Search

In computer science, a special and important instance of metric spaces
is (Rd, ||x− y||p), d ∈ N over the real-valued d-dimensional vector space Rd

and the function ||x− y||p, x, y ∈ Rd, p ∈ N derived from the lp-norm[2]

||x||p :=

(
d∑
i=1

|xi|p
) 1

p

Relevant materializations of such norms include the Manhattan norm ||x||1,

the max-norm ||x||∞ = lim
p→∞

p

√
d∑
i=1

|xi|p, and the Euclidean norm ||x||2, which

is an intuitive basis for calculating distances in our real world. The metrics
derived from these norms can be computed efficiently, and – especially in
the case of low-dimensional spaces – efficient indexing techniques can be
employed to speed up query evaluation. As a consequence, feature extraction
techniques are usually designed to generate real-valued features, as e.g. in
the area of image retrieval [3]. Another interesting metric space is the domain
of binary vectors Bd = {0, 1}d in combination with the Hamming distance
distH(x, y) = popcnt(x⊕y) (see Part IV) where⊕ denotes the XOR operation
and popcnt(x) returns the number of ones in a bit-string; it can be computed
even faster than the Euclidean distance. While there exist definitions for the
real vector space as well, in the special case of binary strings, the Hamming
distance coincides with the l1-distance [2].

2.2 Query Types

Given these mathematical means of calculating the similarity between ob-
jects, by exploiting the distance function dist, similarity queries can be de-
fined. The classic queries include ε-range and k-nearest neighbor (kNN)
queries, however there have also more complex query predicates been de-
fined, such as reverse k-nearest neighbor (RkNN) and skyline queries. Let
us first consider one of the simplest similarity queries, the ε-range query.

Definition 3 (ε-range query). Given a database D and a query object q , an
ε-range query returns all objects o ∈ D having a distance of at most ε to q:

ε− range(q,D, ε) = {o ∈ D|dist(o, q) ≤ ε}

An example of ε-range queries in a spatial context would be the query
“Give me all supermarkets within a radius of 500 meters around my current
position”. The German real estate intermediate ImmoScout1 allows users to

1https://www.immobilienscout24.de

2.2 Query Types 7

search for the apartments closest to a predefined location. In other scenarios
however, the limitations of this simple query type hinder its applicability, as
the range ε has to be known in advance. Otherwise, chances are high that
an ε-range query returns either an empty result set if the range is chosen too
small, or a very large result set if the range is chosen too large. Still, range
queries are an important building block of data mining applications such as
DBSCAN[4], which uses a simple heuristic to determine ε. This heuristic is
based on k-nearest neighbor (kNN) queries:

Definition 4 (k-nearest neighbor (kNN) query). Given a database D and a
query object q, a k-nearest neighbor query returns the k objects o ∈ D with
smallest distance dist(o, q) to q:

kNN(q,D, k) = {o ∈ D||{o′ ∈ D|dist(o′, q) < dist(o, q)}| < k}

In a spatial context, such a query (in this case k = 1) might be similar to
the following: “Where is the supermarket closest to my current position?”.
Google provides similar features with Google Maps2: By searching “Book-
store near University, Munich”, a list of bookstores closest to the university
is provided to the user. The concept of nearest neighbors is also a build-
ing block for data mining algorithms, e.g. classification (kNN classifiers [5]),
clustering (k-means [5]) or outlier detection (e.g. LOF [6]). In kNN classi-
fication, an object is labeled by predicting its class based on the k-nearest
neighbors of the query in training set. In k-means clustering, the assignment
of an object to its corresponding cluster is based on a 1NN query over the
set of cluster means. For LOF, the neighborship of a feature is evaluated to
compute an outlier score of the reference vector.

The fundamentals of kNN queries have been considered, for example, in
[7, 8, 9]; recent research focuses on solutions for specialized applications,
such as in the context of image databases [10, 11, 12] and uncertain data
[13, 14]. Another query predicate derived from the kNN query is the reverse
k-nearest neighbor (RkNN) query [15], which is especially of interest in the
area of data mining and spatial query processing. There exist two instances
of RkNN queries, the monochromatic and bichromatic version. While the
monochromatic version is more relevant in the context of this thesis (and we
will refer to the monochromatic case as RkNN query), we will introduce both
of them for the sake of completeness:

Definition 5 (Monochromatic reverse k-nearest neighbor (MRkNN) query).
Given a database D and a query object q, a reverse k-nearest neighbor query

2https://www.google.de/maps/

8 2. Similarity Search

returns the objects o ∈ D having q as one of their k-nearest neighbors:

RkNN(q,D, k) = {o ∈ D|q ∈ kNN(o,D \ {o} ∪ {q}, k)}

In the slightly different bichromatic RkNN query, two sets R (correspond-
ing to the query set) and S (corresponding to the database set S = D) are
given. The goal of the bichromatic RkNN query is then to compute for a
query point q ∈ R all points from S for which q is one of the k closest points
from R[16]:

Definition 6 (Bichromatic reverse k-nearest neighbor (BRkNN) query).
Given two sets R and S and a query object q ∈ R, a bichromatic reverse
k-nearest neighbor query returns the objects o ∈ S having q as one of their
k-nearest neighbors from R:

BRkNN(q, R, S, k) = {s ∈ S|q ∈ kNN(s, R, k)}

These two variants of th RkNN query, the monochromatic and the bichro-
matic case, vary in the data set on which the kNN query is posed. For a
monochromatic RkNN query, the kNN query is run onD (i.e. on the database
set), while for the bichromatic case it is run on R (i.e. the set of objects the
query is taken from).

The latter two query predicates, the kNN query and the RkNN query will
be the focus of this thesis. In addition to these common query types there
clearly exist other important query predicates in the context of similarity
queries, such as the skyline query [17] or spatial skyline query [18], which
will not be considered in this thesis and shall therefore be omitted.

2.3 Pipeline

As processing similarity queries can be boiled down to simple mathematical
concepts, the query processing pipeline is –despite some data-specific adap-
tions especially for complex data types– largely independent of the given
data. An overview over a standard query processing pipeline is provided in
Figure 2.1. During a first preprocessing step, feature extraction (see Sec-
tion 2.3.1), object properties relevant for assessing the similarity of objects
are extracted from each entry stored in the database. These features can be
simple real-valued feature vectors or more complex objects such as polygons
or sets of vectors. In a second preprocessing step, this feature representa-
tion is further processed in order to enable efficient query processing (see
Section 2.3.2). This can be achieved for example by indexing the features
or by computing approximations such as minimum bounding axis-parallel

2.3 Pipeline 9

Data Features
Extraction Indexing

Query Extraction Features Querying Result

Approximation DB

Figure 2.1: Query Processing Pipeline

rectangles (MBRs) for polygons or sets of vectors. The features and the
corresponding data structures are then stored in a database. During query
processing, a feature representation is extracted from the query object and
the precomputed data structures in the database are used to efficiently com-
pute the query result. If necessary, approximations of the query object are
created during query processing to enable fast comparisons with approxima-
tions stored in the database. The steps of this query processing pipeline will
be discussed in the following.

2.3.1 Feature Extraction

Feature extraction describes the process of extracting relevant information
from collected data (such as images, texts or trajectories), in order to make
further efficient automatic processing of the data possible. As the term ex-
traction states, this process is usually lossy and discards information not
relevant for query processing and mining. As a result, there is often a trade-
off between descriptiveness of the extracted features, and the efficiency of
the consecutive query processing. Closely entangled to selecting a given fea-
ture representation is the choice of a distance function where efficiency and
effectiveness have to be considered as well. As a result, the choice of a fea-
ture extraction technique in combination with the corresponding distance
measure defines the metric space (M, dist). If possible, the metric space
(Rd, ||x− y||p) is preferred to general metric data, as index structures and
distance calculations for vectorial data are often more efficient than for gen-
eral metric data, especially on low-dimensional data.

In the context of spatial and spatio-temporal query processing, similarity
search can often be boiled down to proximity search where the spatial dis-
tance between objects provides a measure of similarity. The most straight-

10 2. Similarity Search

forward solution would be to consider the position of static or moving objects
as features from R2 and an lp norm metric, resulting in (R2, ||x−y||p). While
this disregards the spherical nature of earth, it is still a valid choice when
distortions can be neglected due to the small spatial distribution of a dataset.
A better approximation of earth distances comes from spherical geometry,
where the underlying domain is G ⊂ R2, consisting of tuples (θ, φ) denoting
longitude and latitude with ∀(θ, φ) ∈ G : θ ∈ [−π, π], φ ∈ [−π

2
, π

2
], where

the great circle distance [2] can be used to measure similarity. Metric space
representations of spatial data in form of a graph are common as well. In
graphs, nodes can for example represent street crossings and edges between
nodes street segments; the weight of an edge might represent arbitrary qual-
ity criteria such as the spatial distance between nodes or their travel time.
Given this graph-based representation, the weighted path metric [2], i.e. the
length of the shortest path between two objects, can be used as a distance
measure. Note however that the metric property is not always fulfilled and
depends on the underlying graph.

While the mathematical representation of objects in the context of geospa-
tial data has an intuitive interpretation in the real world, feature represen-
tations for similarity search in general are often more abstract. Textual data
can be searched using the vector space model (see e.g. [19]). Given a dic-
tionary of words present in the database, a vector representation of a text
file consist of a (sparse) vector counting (and probably weighting) the oc-
currences of each word contained in the dictionary in the corresponding text
file. As a distance function, the cosine distance distC = 1 − <x,y>

||x||2∗||y||2 (with

< x, y > denoting the dot product) can be used [2], which is however not
a metric, as for a given vector x there exist many possible vectors αy with
equivalent cosine distance to x, but different distance to the origin. Tex-
tual similarity search is ubiquitous on the internet: a well-known publicly
available search engine for textual data is Lucene3; in October 2010 Twitter
announced that their real-time search was moved to Lucene as well [20].

A simple means of assessing the similarity of images could be achieved
by extracting a histogram of the color distribution of an image, resulting
for example in peaks for blueish and greenish colors for nature photography.
Another type of features for image data are histograms over gradient orienta-
tions within the image[21] or textural features such as Haralick features [22].
More complex representations are based on local features such as SIFT[3] and
the Bag of Visual Words (BoVW) [23] approach. A variety of search engines
on the web such as TinEye are devoted to similarity search on images. By
generating digital signatures from images stored on the web and searching

3http://lucene.apache.org/

2.3 Pipeline 11

for (partial) signatures in their databases, it allows finding scaled, edited or
cropped images [24].

The most straightforward way of comparing the similarity of time series
would be interpreting both time series as vectors and computing the Eu-
clidean distance between them, possibly handling different lengths of time
series in a suitable way. More sophisticated distance functions such as Dy-
namic Time Warping (DTW) which is however not a metric [25] and the
Levenstein metric [2] aim at comparing possibly unaligned or temporally
stretched time series.

2.3.2 Indexing and Query Processing

A trivial solution to solving the queries defined earlier is a linear scan. In
the context of ε-range queries, for each object o the distance to the query
has to be computed. Based on this distance, o can be accepted as a query
result, or it can be discarded, resulting in a complexity of O(|D|). The trivial
solution for kNN queries is to sort all objects in the database by their distance
to q and return the first k objects from this list, resulting in a complexity
of O(|D| log(|D|)) for the trivial solution. For the RkNN query, the trivial
solution of the kNN query can be extended; for each o ∈ D, a kNN query
could be processed on D \ {o} ∪ {q}, if q ∈ kNN(o,D \ {o} ∪ {q}, k), o
would be returned as a result. In this case, the runtime complexity would be
O(|D|2 log(|D|)). Unfortunately, algorithms with such a complexity can not
handle large datasets, such that a variety of techniques has been developed
in the past aiming at increasing the computational efficiency of evaluating
the query predicates mentioned earlier. Two of these, and most likely the
most important ones, are the use of index structures and the filter-refinement
paradigm [26].

2.3.2.1 Index Structures

To speed up query processing, index structures provide a re-ordering of the
data that allow to identify candidates satisfying a given query predicate with-
out scanning all entries of the database. As this thesis concentrates on vec-
torial data, multidimensional index structures are most important for this
work. Two important types of index structures used within the context of
this thesis are tree-structured indices (such as R-trees [27]) and hash-based
index structures (such as LSH [7]) which will be introduced in the following.

Tree-structured Indices Tree-structured indices divide the dataset re-
cursively in smaller (usually distinct) subsets of objects. In every level of the

12 2. Similarity Search

N0

N1 N2

N3

N0 e1 e2 e3

N4 N5 N6

N4
N5N6

N1 e4 e5 e6 N2 N3
qp1

p2
p3

Figure 2.2: The R-Tree

tree, each of these subsets is further split, resulting in a tree-like structure.
An index structure supports the efficient evaluation of a query predicate if
the predicate can be checked already in intermediate nodes of the tree. If,
based on an intermediate approximation, a query predicate cannot be ful-
filled for any data contained in the intermediate nodes’ subtree, independent
of the data’s actual value, the whole subtree can be pruned without further
investigation, pruning large parts of the search space.

An in the context of this thesis important instance of tree-structured in-
dices is the R-tree [27] (and its variants such as the R*-tree [28]), which will
be used in Part II and Part III of this thesis. R-trees are balanced trees
specifically designed for handling multidimensional vectorial data. While the
R-tree has been developed for indexing complex objects [27], it is also of-
ten considered useful for indexing simple vectors [28]. An exemplary R-tree
indexing two-dimensional points is shown in Figure 2.2 where the subtrees
rooted in node N2 and N3 have been cut off for the sake of simplicity. In
R-trees, sets of points in d-dimensional space are summarized by Minimally
Bounding axis-parallel Rectangles (MBRs). An MBR A is described by its
minimum and maximum coordinates Amin and Amax with ∀

i=1..d
Amini ≤ Amaxi .

The tree consists of a set of nodes corresponding to pages in secondary mem-
ory if the index is disk resident. A leaf node (nodes N4, N5, N6 in the figure)
consists of a set of tuples (o,MBR) with o denoting data objects [28], or
of a set of tuples (oref ,MBR) pointing to data objects [27, 28]. Intermedi-
ate nodes (N1, N2, N3) contain entries (∗N,MBR) pointing to leaf nodes,
with MBRs minimally bounding the points of the leaf node the MBR is ref-
erencing. In higher levels of the index, intermediate nodes contain entries
whose MBRs are minimally bounding the set of MBRs of the corresponding
child nodes, such as the root node N0 in Figure 2.2. R-trees are generated
(and updated) in a way that during a query whole subtrees can be pruned

2.3 Pipeline 13

at an early stage of tree traversal, reducing the computational complexity of
a query. For this reason, Guttman proposed to minimize the total area of
entries within a node during insertion and split [27]. Improved optimization
criteria have been proposed later for the R*-tree [28].

Given such an index based on spatial approximations, efficient similarity
search can be achieved using the concept of distance bounds, helping to decide
which pages have to be resolved during query evaluation. For example, an
ε-range query around a query point q does not have to consider MBRs where
any possible point p ∈ MBR is further away from the query than ε. This
distance bound is called the MINDIST [9]. It was initially defined for a
d-dimensional query point q and an MBR A for the Euclidean distance:

MINDIST (q, A) =

√√√√ d∑
i=1

|qi − ti|2 with ti =

Amini if qi < Amini

Amaxi if qi > Amaxi

qi else

It can be further extended to the case of two MBRs and general lp distances[29]:

MINDIST (A,B) = p

√√√√√ d∑
i=1

|Amini −Bmax

i |p if Amini > Bmax
i

|Bmin
i − Amaxi |p if Bmin

i > Amaxi

0 else

On the other hand, given a large ε, pages bounded by an MBR where any
point lies within the range ε of the query can be accepted completely without
further consideration; this concept is described by the MAXDIST , which
is however less often used as the pruning power of the MINDIST is much
higher than the probability of accepting a match based on the MAXDIST .
The MINDIST and MAXDIST can however be used in combination to
check for spatial domination, e.g. in the context of RkNN queries [29], see

Part II and Part III. Let Xmid
k =

Xmin
k +Xmax

k

2
, then [29]:

MAXDIST (A,B) = p

√√√√ d∑
i=1

{
|Amaxi −Bmin

i |p if Amidi ≥ Bmid
i

|Bmax
i − Amini |p if Bmid

i > Amidi

Many algorithms for query processing on vectors stored in R-trees are
based on these distance approximations. One of them is the Hjaltason-Samet
algorithm for kNN queries [8], which we will introduce briefly based on the
example R-tree in Figure 2.2. The Hjaltason-Samet algorithm is based on a
priority queueQ containing entries or data objects ordered by their MINDIST
to the query q, aiming at resolving pages first that have a higher probability

14 2. Similarity Search

of containing a kNN query result. First, the root entry r (an entry repre-
senting the root node N0) is inserted into the queue, Q = [r]. Then, the first
element (i.e. r) is taken from the queue, the corresponding node N0 is re-
solved and the entries it contains (e1, e2, e3, see Figure 2.2 right) are inserted
into the queue by increasing MINDIST to q, resulting in Q = [e1, e3, e2].
During the next step, as e1 is closest to the query, the node N1 correspond-
ing to this entry is resolved and its children added to the queue, resulting
in Q = [e5, e6, e3, e4, e2]. The next step, resolving e5, leads to the queue
Q = [p1, e6, p3, e3, e4, p2, e2]. Finally the first nearest neighbor, p1 can be
returned. This procedure has the advantage that k does not even have to
be known in advance, as the algorithm’s state (i.e. the priority queue) can
be stored and reused later to return the second nearest neighbor and so on.
Therefore, the algorithm is not only able to return kNN results, but also to
be used for nearest neighbor rankings.

Hash-based Indices A technique for speeding up query processing con-
ceptually different to the tree-based index structures discussed earlier is hash-
based indexing which will be a building block in Part IV of this thesis. While
there exist hash-based index structures for most likely any data type, as this
thesis concentrates on vectorial data, this paragraph will also concentrate on
hashing techniques on such data. In vector spaces the concept of Locality
Sensitive Hashing (LSH), initially proposed by Indyk and Motwani [7] and
improved By Gionis et al. in [30], has turned out to be a good solution over
the years. LSH generates hashes from the data such that, given a specific
distance function, points closer to an arbitrary reference point have a higher
probability of being assigned the same hash as the reference than points fur-
ther away. Feature vectors are inserted into a set of hash tables based on a
set of such locality-sensitive hash functions. During query processing, candi-
dates with hash values equivalent to the query are retrieved from the tables.
Concatenating the resulting candidates of all tables leads to the candidate
set. During refinement, the actual distance between the query and each can-
didate is computed and the query predicate is evaluated on this reduced set,
speeding up the evaluation. There exists a variety of hash functions for differ-
ent data types, including real-valued data under lp norms [31] and the binary
space Bd [7]. However, as there is no guarantee that two objects being close
to each other generate the same hash, results provided by LSH are usually
approximate. The quality of approximation can be increased by increasing
the number of hash tables or by probing not only the hash cell of the query
object, but also neighboring cells [32].

2.3 Pipeline 15

2.3.2.2 Filter-Refinement

Another technique for speeding up the evaluation of similarity queries, ba-
sically generalizing the index structures defined above, is filter-refinement
(sometimes also called multi-step) query processing [33]. Filter-refinement
is based on a cascade of filters with increasing complexity, where each filter
reduces the size of the candidate set, pruning true drops and possibly ac-
cepting true hits. In the beginning, all objects stored in the database are
considered as candidates. As the first filters have to evaluate a large number
of candidate objects, filters are ordered by increasing complexity; the first
filters are usually rather cheap, as especially the first filter can be sped up
using conventional indexing techniques [33]. Later in the filter cascade, when
the number of candidates has already been reduced by prior filter steps, filter
complexity increases in order to prune or accept more candidate objects. A
visualization of the filter-refinement pipeline is shown in Figure 2.3. First,
the whole database is filtered by an initial filter f1, identifying and remov-
ing objects from the candidate list that do definitely not satisfy the query
predicate, i.e. true drops (�1). On the other hand it is sometimes possible to
accept some objects as part of the result without further investigating them
by the remaining filters, leading to a set of true positives (�1); these true
positives are added to the result without further refinement. The remaining
database objects that were neither accepted nor discarded (?1) are fed into
the next filter. This process continues for all remaining filters. Finally, the
remaining candidates ?n have to be refined by testing the actual (expensive)
query predicate, however the number of objects in ?n is usually much smaller
than the number of objects stored in the database, significantly speeding up
query evaluation.

A variety of research on this pipeline has been published in the past,
including [34, 35, 36]. Furthermore this pipeline will be utilized in Part III of
this thesis: In the context of uncertain spatial and spatio-temporal databases,
the position of an object can be described by a set of points that describe
the possible positions (with non-zero probability) of an object at a given
point in time. Each of these points has a probability assigned, describing the
probability distribution of the object’s position. Evaluating a query predicate
on these probability distributions can be very expensive, however the filter-
refinement technique makes it possible to prune large parts of the search
space without even considering probabilities. Let us consider for example
the case of ε-range queries. A filter would disregard probability information
and simply bound the position of an object by an MBR. Pruning of true drops
could then be achieved by employing the MINDIST introduced earlier in
this section and an R-tree could be used to further speed up this first filter

16 2. Similarity Search

f1DB ?1 rfn?n-1

1
ref?n

n

1 n r
Figure 2.3: The Filter-Refinement approach

step. In a second filter step, the actual positions or tighter approximations
could be considered, however without involving probabilities, yet. During
refinement the result probabilities are computed.

2.4 Challenges

Over the last decades, a considerable amount of research has been pushed into
solving and speeding up similarity queries. However, due to the increasing
amount of data stored, due to the development of new hardware (such as
Google Glass4) and the widespread availability of sensing devices (such as
GPS), a variety of challenges remain – or emerge with new applications. In
this section we aim at pointing out some of these challenges; while there
definitely exist more than the ones addressed, we will only consider those
relevant in the context of this thesis.

2.4.1 Complex Data

The ubiquitous availability of sensor devices, the advancement in computa-
tional power, the digitalization of our everyday life, and the spread of the
internet of things has led to a proliferation of complex data, outpacing tradi-
tional (relational) data such as booking information. Sources of complexity
can be diverse, starting from the temporal variability of data over the un-
certainty of sensor devices and ranging to set-based data where objects are
described by a combination of more or less primitive sub-objects.

2.4.1.1 Multi-Instance data

While simple objects can often be described by a single feature vector, more
complex objects can consist of sets of those feature representations. One ex-

4https://www.google.com/glass/start/

2.4 Challenges 17

ample that we will address within this thesis is image data. In keypoint-based
object recognition [3], an image is described by a set of feature vectors. These
vectors that are generated around interesting regions in the image, so-called
interest points or keypoints. To find an image, not a single kNN query has to
be posed on the database, but rather a bulk of queries has to be processed,
sometimes over a thousand. Together with other inherent properties of image
features, e.g. their high-dimensional nature, this data becomes challenging
to query; current solutions involve the Bag of Visual Words pipeline [23] or
specialized approximate index structures [12] for nearest neighbor process-
ing. Generally other types of data such as check-ins of users in geosocial
networks or simple time series could be interpreted as multi-instance data as
well, however we will consider these primarily as, probably multidimensional,
temporal data.

2.4.1.2 Temporal Data

Traditional time series data has received a vast amount of research interest
(see e.g. [37] for a tutorial on this topic) over decades due to its ubiquitous
presence in our everyday lives, be it stock market price, the development of
temperature over time or medical time series such as ECG. The universal
availability of appropriate sensing devices such as GPS, and the users inter-
est in publicly sharing this data, has pushed temporal data into the geospa-
tial research community, encouraging the development of new techniques for
managing and querying spatio-temporal data, including new index structures
and query predicates [38, 39, 40, 41]. As we will see in Part III of this the-
sis, the introduction of temporal aspects on spatial data can make the query
processing significantly more difficult, especially if uncertainty is involved.

2.4.1.3 Uncertain Data

A large fraction of today’s data is user-generated and publicly shared us-
ing Facebook, Flickr, Instagram, YouTube, Endomondo or other service
providers. As user-generated data is usually incomplete and sometimes in-
correct, data scientists more and more face the challenge of handling incom-
plete, incorrect and generally uncertain data. Furthermore, physical actors
and sensors are error-prone, introducing uncertainty into applications not
directly involving users into the data generation process. A good example
for uncertain data comes from the spatio-temporal domain where data is col-
lected by RFID or GPS sensors. RFID sensors are placed at fixed positions
and aim at identifying persons or objects entering the sensors range. When
an object leaves a sensor’s range and does not directly enter the range of an-

18 2. Similarity Search

other sensor, its position is unknown and has to be derived from its previous,
and possibly future positions (if the query is historic rather than predictive).
GPS receivers can only detect their position up to a certain accuracy which
depends on their surrounding environment; the accuracy in an urban environ-
ment close to high buildings is lower than in an open field. If the trajectory
of an object is determined based on check-ins such as in geo-social networks,
the position in the time interval between two check-ins is inherently unknown
and has to be derived from the available check-in data. As a consequence of
this pervasive presence of uncertainty, uncertain data processing has gained
a significant amount of research interest. See for example [42] for a recent
overview on uncertainty in spatial and spatio-temporal data.

2.4.2 Complex Query Predicates

While most fundamental query predicates such as range queries and kNN
queries have been proposed decades ago, due to the increasing digitalization
of our world and the resulting demand for solving sophisticated problems
computationally, the formalization of new query predicates has not found an
end in the new millennium. Examples of such new query predicates include
the RkNN query [15] or the Skyline query [17]. In addition to these new
query predicates for traditional vectorial data, the fusion of domains (such
as spatial and temporal aspects as well as uncertainty) makes the formaliza-
tion of new query predicates necessary in order to cover the new semantics
of the query. New query predicates usually adapt the existing ones, e.g. ε-
range or kNN queries, to a new data type, such as time-parameterized queries
[38] in the context of spatio-temporal data. This adaption of existing pred-
icates becomes relevant especially in the context of uncertain data. While
queries on such data could simply consider the expected value of an object,
this would disrespect most of the value of uncertainty: Given a probability
distribution over object properties, it is possible to provide measures of con-
fidence with the query result, making the interpretation of the result easier
for users. To enable such augmented results, the semantics of a query on un-
certain data has to be defined. An example of such a work in the context of
spatio-temporal data is [41]. In this work the authors proposed a new query
predicate extending window queries – a generalization of ε-range queries –
on uncertain spatio-temporal data, allowing to compute the probability of an
object being part of the query result. The definition of new query predicates
clearly enforces the development of specialized query processing techniques,
efficient index structures, and query optimization strategies. For example,
uncertain window queries can be supported by a specialized index structure
called the UST-tree [40].

2.4 Challenges 19

2.4.3 Large Volumes

Similar to the past, companies still experience a high growth in the amount
of data stored, and there is no end in sight. In the year 2014, Facebook stored
300PB of Hive Data in their data warehouse, increasing by a daily rate of
600TB and multiplying by a factor of three within a year [43]. YouTube
reports a hundred hours of newly uploaded videos every minute [44]. EMC2

estimated the size of the digital universe to about 4.4 zettabytes in 2014,
increasing to 44 zettabytes in 2020 [1]. As a result, handling large volumes of
data remains a challenging task, despite the advances in computational power
and storage technology. While this problem also holds for large datasets
of well-researched types such as text, it becomes even more challenging in
the context of more complex data, e.g. temporal and/or uncertain data
where query complexity is already high on relatively small datasets. One
approach for reducing the memory footprint of large volumes is for example
compression [43]. Speeding up the query evaluation of complex queries can
be achieved by sophisticated approximation and indexing techniques such as
in e.g. [40] for uncertain spatio-temporal queries. The efficiency of mining on
and summarizing such data sets can be improved by employing techniques
such as MapReduce [45].

20 2. Similarity Search

Chapter 3

Thesis Overview and
Contributions

In this thesis, we will focus on the challenges identified in the previous chapter
in a variety of scenarios. Part II addresses an in-depth analysis of the RkNN
join, a complex query predicate building upon RkNN queries. Part III aims
at efficiently processing similarity queries on uncertain spatio-temporal data,
namely addressing the challenges of uncertainty and temporal variability on
large data volumes. Finally the focus of Part IV will be the processing of
set-based similarity queries.

In Part II we provide an in-depth analysis of the RkNN join. While
the problem of reverse nearest neighbor queries has received a vast amount
of research interest over the last 15 years, the problem of performing such
queries in a bulk has not seen an in-depth analysis so far, despite its possible
applications. To find efficient solutions for RkNN join processing, we first
formalize the RkNN join, identifying its monochromatic and bichromatic
versions and their self-join variants. The bichromatic RkNN join can be
transformed to a standard kNN join, leading to an intuitive solution for
bichromatic join processing by falling back to well-researched solutions for
kNN join processing. However, such a transformation is not possible for the
monochromatic case. As a consequence, we develop solutions for this variant
of the RkNN join, based on different strategies to identify objects that do not
qualify as a result. We then evaluate these solutions in depth on a variety of
synthetic and real datasets.

Part III of this thesis aims at extending nearest neighbor queries to un-
certain spatio-temporal data. Starting from the traditional definition of kNN
queries and a Markov-chain based approach for modeling uncertain trajec-
tories, the goal of this part is to develop efficient querying mechanisms for
nearest neighbor queries on uncertain trajectories. In contrast to previous

22 3. Thesis Overview and Contributions

research on similarity search on uncertain spatio-temporal data we aim at
considering temporal dependencies during query evaluation, as in Markov
chains the position of an object at a given time instance affects the future
position of the object. To achieve this goal, we first extend nearest neighbor
queries to Markov-based object representations in an intuitive way, aiming
not only at returning the objects closest to the query but also their probabil-
ity of being a nearest neighbor. Then, we theoretically evaluate the runtime
of these query predicates. Based on these results we develop efficient querying
algorithms for the proposed query predicates based on efficient and effective
sampling techniques and an index-based filter-refinement approach. Given
the findings of this research on nearest neighbor queries, we extend these
results to reverse nearest neighbor queries, providing efficient and effective
solutions for their evaluation. Our experimental analysis evaluates the pro-
posed approaches on synthetic data and on a real dataset of taxi trajectories
in the city of Beijing.

Finally, in Part III of this thesis, we address the problem of querying
large datasets containing set-based objects, namely image databases. In
keypoint based object recognition, images are represented by (multi-)sets of
vectors, usually describing intensity patches around keypoints in the image,
and additional metadata such as the position and scale of these keypoints. As
a first contribution, we aim at reducing the number of keypoints considered
during query evaluation, as such a reduction can considerably reduce retrieval
times. However, such a reduction also reduces the quality of the query result,
as the number of keypoints queried reduces both recall and mean average
precision (MAP) of the query. To mitigate these problems, we evaluate a
modified pipeline involving the expansion of keypoint matches on the image
level for increasing MAP and the excessive use of kNN queries, where k can be
used to further boost retrieval performance by optimizing recall. On a variety
of well-known benchmark datasets we show that such a pipeline can achieve
competitive results compared to approaches considering the complete set of
keypoints during matching. As a second contribution, as local image features
are more and more shifting from the real-valued domain to the binary domain
due to the excellent storage and matching efficiency of such approaches, we
evaluate efficient indexing techniques for binary feature vectors based on the
Locality Sensitive Hashing scheme.

To summarize, the further structure of this thesis is as follows. The
following Part II addresses our research on the RkNN join. In Part III
we address the challenge of kNN and RkNN queries on uncertain spatio-
temporal data. The last practical part of this thesis, Part IV, addresses
similarity queries on set-based objects. Part V concludes this thesis.

Chapter 4

Incorporated Publications and
Coauthorship

Publications that have been incorporated into this thesis, especially from
Part II and Part III have been previously published as a result of a coop-
eration between researchers from the Database Systems Group of the LMU
Munich (Part II), sometimes together with external scientists (Part III). This
section aims at providing an outline of the contributions of the author of this
thesis to these papers. The chapters in this thesis corresponding to these pa-
pers consist of these papers’ texts, with some modifications and extensions
applied by the author of this thesis. The papers’ texts have been written in
a cooperation between all authors of the papers including the author of this
thesis.

RkNN Join Processing. Part II of this thesis addresses the RkNN join
which has been researched in [46, 47, 48] as a cooperation between Tobias
Emrich, Hans-Peter Kriegel, Peer Kröger, Johannes Niedermayer, Matthias
Renz and Andreas Züfle1. The theoretic definition of RkNN join variants,
classification of existing RkNN join approaches, and the extension of the
proposed algorithms to metric space has been developed by the author of this
thesis completely. The self-pruning approach has been developed, refined,
implemented and evaluated by the author of this thesis based on valuable
discussions with the coauthors of these papers. The mutual pruning approach
was completed and experimentally evaluated by the author of this thesis after
some preliminary work of the coauthors.

Nearest Neighbor Queries in Uncertain Databases. The next
part of this thesis, Part III, addresses uncertain nearest neighbor and reverse
nearest neighbor queries on moving object trajectories.

1Authors of these papers are listed in alphabetical order

24 4. Incorporated Publications and Coauthorship

The work on uncertain nearest neighbor queries has been previously pub-
lished in [13], results of this research have also been included in [49, 50].
The publication resulted from a cooperation with two external researchers,
Nikos Mamoulis and Lei Chen in addition to Andreas Züfle, Tobias Emrich,
Matthias Renz and Hans-Peter Kriegel. The theoretical analysis of the ∃NN
query, including its proof, has been developed by the author of this thesis
with some valuable input of Tobias Emrich. The theoretical evaluation of
the ∀NN query has been developed by the author of this thesis together
with Andreas Züfle: the author of this thesis provided the proof that the
∀NN query cannot be solved efficiently by model adaption and significantly
reworked the remaining proofs from the section in the context of this the-
sis. The sampling approach has been developed by the author of this thesis
based on valuable discussions with the coauthors; its theoretical evaluation
has been drafted by Andreas Züfle and has been refined and completed to-
gether with the author of this thesis. The corresponding proof has seen a
variety of improvements for the inclusion in this thesis, aiming at making
it more complete and easier to understand. The author of this thesis also
realized the relation of the sampling approach to the Baum-Welch algorithm,
resulting in a new section addressing this issue. The implementation (which
has been achieved by extending an existing framework) and evaluation of
the proposed techniques has been conducted by the author of this thesis,
building upon valuable discussions from the coauthors of this paper.

Our research on uncertain RkNN queries on moving object trajectories
has been published in [51]2, including mostly the coauthors from the prede-
cessor paper on uncertain kNN queries. The algorithms for RNN queries on
uncertain spatio-temporal data have been developed by the author of this
thesis together with Tobias Emrich, and implemented and evaluated by the
author of this thesis.

Some graphics included in the corresponding chapter have been taken
from our publication [52]3; the server-side SVG visualization code where
these figures are derived from has been implemented by the author of this
thesis as well.

Nearest Neighbor Queries in Image Databases. Part IV, including
the corresponding publications [53, 54] coauthored by Peer Kröger, has been
developed, implemented and evaluated by the author of this thesis who is
grateful to Tobias Emrich, Markus Mauder and Peer Kröger for their valuable
discussions that helped improving this research.

2Authors of this paper are listed in alphabetical order
3Authors of this paper are listed in alphabetical order

Part II

The RkNN Join

Chapter 5

Introduction

The increasing digitalization of our world in both industrial and personal
environments demands efficient and effective techniques for querying and
mining the collected data. As a consequence, researchers in industry and
academics are constantly experiencing the limitations of existing query pred-
icates. Therefore, while standard queries such as ε-range queries or kNN
queries have been proposed decades ago, the formalization of new query
predicates has not found an end until now. While sometimes such new query
predicates appear out of nowhere as a solution for new research questions
emerging from new technologies and new data sources, they often develop
gradually as a result of constant research that finally results in a formal-
ization of a given problem. The following part aims at formalizing such a
new query predicate, which has been spooking around for quite some time,
however without any in-depth formalization and evaluation: the RkNN Join.

Since the proposal of Reverse k-Nearest Neighbor (RkNN) queries in the
beginning of the new millennium[15] considerable research effort has been put
into the development of efficient RkNN query strategies, where the Reverse
k-Nearest Neighbors of a query object r have to be retrieved from a set of
database features S. However, the problem of solving complex RkNN queries
where the query consists of a set R of query objects, i. e. a bulk or group
query or simply a join, has not seen a thorough formalization and evaluation
so far.

The problem of RkNN joins can for example arise in the strategic deci-
sion making process of companies that supply products to clients which are
typically shops (cf. Figure 5.1). Consider a supplier (e.g. supplying video
stores) that has a set of products R (e.g. videos each described by a given
set of features like genre, length, etc.). Each client (e.g. video store) also has
a portfolio S (e.g. a set of videos) which typically include different groups of
products (videos) satisfying different preferences and, thus, different groups

28 5. Introduction

Legend

‐ products of client (set S)

‐ new products of supplier (set R)ur
e
2

‐ new products of supplier (set R)

‐ bad fit

‐ perfect fit
Fe
at
u

‐ fit to extend portfolio

Feature 1

Figure 5.1: Application of RkNN join between two sets of products R and S
for product (set) recommendation.

of customers. In order to judge which products should be offered by the sup-
plier to a given client, the supplier needs information about which objects
in R fit to the characteristics of the client’s portfolio S and/or would be a
good supplement to extend this portfolio. From the supplier’s point of view
it is particularly important to know about the data characteristics. Thus
the following process can be employed in order to recommend updates for
clients: First, for each product s in S the kNNs are computed. Second, for
each product r in R, it is examined whether or not r is amongst the kNN
of which product s. In other words, for each r, an RkNN query in S is
launched. If r has a lot of RkNNs in S, this indicates that r fits well to a
corresponding group within the data distribution of s (although this usually
needs additional inspection). If r has no RkNNs in S, r obviously does not
fit well.

Analogously, RkNN joins can also be employed for solving inverse queries
[55] where the task is to find for a given set of query objects the set of database
objects, having all (/most) query objects in their kNN set. Furthermore, the
RkNN join operation plays a role in updating patterns derived by a variety
of data mining algorithms that rely on kNN information after changes to
the database, e.g. shared-neighbor clustering [56, 57] and kNN-based outlier
detection [58, 59].

For evaluating single RkNN queries, two groups of algorithms have evolved
over time. Self pruning approaches (e.g. [15, 60, 61]) have to perform costly
precomputations in order to materialize kNN-spheres for all database objects.
These kNN-spheres are used for pruning candidates during query execution.
In contrast, mutual pruning approaches (e.g. [62, 63, 64]) do not perform any
precomputations. This results in more flexibility in terms of updates and the
choice of k because materialized results need not to be updated each time
the database changes. Furthermore, in contrast to self pruning approaches,
mutual pruning approaches do not require the parameter k to be known prior

29

to index generation. However, mutual pruning introduces costly refinement
of candidates, resulting in higher overall cost.

In Part II of this thesis, we discuss how self and mutual pruning ap-
proaches adapt to RkNN joins and we compare their performance to existing
solutions for single-point RkNN queries in a join setting. We show that
the overhead of performing a traditional RkNN-query for each point in the
query set R separately cannot be justified, even if R is small. Additionally,
we find that with increasing the size of R self pruning approaches that com-
pute kNN spheres on the fly become more useful than approaches based on
mutual pruning. The key contributions of this part are as follows:

• We provide a formal classification of variants of the RkNN join.

• We integrate a variety of existing RkNN join algorithms into our clas-
sification.

• We propose self- and mutual-pruning algorithms for solving RkNN joins
that do not rely on index structures specialized on RkNN queries or
RkNN join operations and are therefore independent of the surrounding
database environment.

• Both of these algorithms are extended to metric spaces in order to allow
processing a larger variety of data sets.

• A systematic experimental evaluation compares the performance of the
proposed join algorithms to classic algorithms for single RkNN queries
and provides recommendations on which solutions fit best for specific
scenarios.

This research on RkNN join processing has been previously published in
[46, 47, 48]; for an overview over the contributions of the author of this thesis
to this work we refer to Chapter 4.

In addition to this short introduction, Part II of this thesis is divided
into four chapters. The next chapter 6 dives into the preliminaries of RkNN
join processing: In Section 6.1 we provide a formal problem definition while
Section 6.2 summarizes related work on RkNN query processing. A clas-
sification of existing RkNN joins is provided in Section 6.3. In Chapter 7
we propose the mutual pruning algorithm (Section 7.1) and the self-pruning
approach (Section 7.2) for RkNN join processing. We then extend our work
to general metric spaces (Section 7.3) in a short excursus. Finally, in Chap-
ter 8, we provide an extensive performance comparison of the proposed self-
and mutual-pruning approaches. The final chapter 9 concludes Part II of the
thesis.

30 5. Introduction

Chapter 6

Preliminaries

6.1 Problem Definition

Recall from the introduction (Definition 4) that, given a finite multidimen-
sional data set S ⊂ Rd (si ∈ Rd) and a query point r ∈ Rd, a k-nearest
neighbor (kNN) query returns the k points from S closest to r. In contrast,
a monochromatic RkNN query (Definition 5) returns all points si ∈ S that
would have r as one of its nearest neighbors. In Figure 6.1a an R2NN query
is shown. Arrows denote a subset of the 2NN relationships between points
from S; for a given point, arrows point in the direction of the nearest neigh-
bors. Since r1 is closer to s2 than its 2NN s1, the result set of an R2NN query
with query point r1 is {s2}. s3 is not a result of the query since its 2NN s1

is closer than r1. Note that the RkNN query is not symmetric to the kNN
query, i.e. the kNN result kNN(r1,S) 6= RkNN(r1, S), because the 2NNs of
r1 are s2 and s3. Therefore the result of an RkNN(r1,S) query cannot be
directly inferred from the result of a kNN query kNN(r1,S).

In this part, we address the problem of RkNN joins. Given two sets R
and S, the goal of a monochromatic RkNN join is to compute, for each point
r ∈ R its monochromatic RkNNs in S.

Definition 7 (Monochromatic RkNN join). Given finite sets S ⊂ Rd and

R ⊂ Rd, the monochromatic RkNN join R
MRkNN

1 S returns a set of pairs
containing for each r ∈ R its RkNN from S:

R
MRkNN

1 S = {(r, s)|r ∈ R ∧ s ∈ S ∧ s ∈ RkNN(r, S, k)}

An example for k = 1 can be found in Figure 6.1b. The result for
both objects from R in this example is R1NN(r1) = R1NN(r2) = {s2}, i.e.

32 6. Preliminaries

s1

s3

s2

r1

(a) Monochromatic R2NN Query

r2

s1

s2

r1

s3

(b) Monochromatic R1NN Join

Figure 6.1: Visualization of the Monochromatic RkNN Query and the Mono-
chromatic RkNN Join

R
MRkNN

1 S = {(r1, s2), (r2, s2)}. Note that the elements r1 and r2 from R do
not influence each other, i.e., r1 cannot be a result object of r2 and vice versa.
This follows directly from the definition of the MRkNN join. A variant of the

RkNN join is the bichromatic join R
BRkNN

1 S where for all r ∈ R a bichromatic
RkNN query is performed:

Definition 8 (Bichromatic RkNN join). Given two finite sets S ⊂ Rd and

R ⊂ Rd, the bichromatic RkNN join R
BRkNN

1 S returns a set of pairs contain-
ing for each r ∈ R its BRkNN from S:

R
BRkNN

1 S = {(r, s)|r ∈ R ∧ s ∈ S ∧ s ∈ BRkNN(r, R, S, k)}

A BRkNN join can be expressed with a kNN join. Based on the definition
of the BRkNN query, the BRkNN join can be converted:

R
BRkNN

1 S = {(r, s)|r ∈ R ∧ s ∈ S ∧ r ∈ kNN(s, R, k)}

The kNN join can be defined as:

S
kNN

1 R = {(s, r)|s ∈ S ∧ r ∈ R ∧ r ∈ kNN(s, R, k)}

⇔ R
BRkNN

1 S = S
kNN

1 R

Hence, a BRkNN join can be performed by reusing the techniques from
kNN research, such as [65, 66]. Furthermore, this problem has already been
addressed in [67] and [68]. In Section 6.3 we will closely examine these
publications.

Last but not least let us analyze the special case where R = S. The
monochromatic RkNN-self-join can be defined as follows:

6.2 Related Work 33

Definition 9 (Monochromatic RkNN Self Join). Given a finite set S ⊂ Rd,

the monochromatic RkNN self join is defined as S
MRkNN

1 S.

Performing a monochromatic RkNN-self-join is trivial, since it is possible
to perform a self-kNN-join on S:

S
MRkNN

1 S = {(r, s)|r ∈ S ∧ s ∈ S ∧ r ∈ (k + 1)NN(s, S ∪ {r}, k + 1)}

= {(r, s)|r ∈ S ∧ s ∈ S ∧ r ∈ kNN(s, S, k)}
The resulting pairs (r, s) of the kNN-join just have to be inverted to produce
the result of the RkNN join. Notice that with a self RkNN join, a query
point always returns itself as one of its RkNNs.

In summary, we observe that the monochromatic RkNN join where R 6= S
cannot be matched to existing well-addressed problems. Therefore, we will
address the processing of this problem in the following.

6.2 Related Work

The problem of efficiently supporting RkNN queries has been studied exten-
sively in the past years. Existing approaches for Euclidean RkNN search can
be classified as self pruning approaches or mutual pruning approaches. Since
these approaches are the foundations of RkNN join processing, we review
them in the following.

Self pruning approaches like the RNN-Tree [15] and the RdNN-Tree [60]
are usually designed on top of a hierarchically organized tree-like index struc-
ture. They try to conservatively or exactly estimate the kNN distance of each
index entry e. If this estimate is smaller than the distance of e to the query
q, then e can be pruned. Thereby, self pruning approaches do not usually
consider other entries (database points or index nodes) in order to estimate
the kNN distance of an entry e, but simply precompute kNN distances of
database points and propagate these distances to higher level index nodes.
The major limitation of these approaches is that the precomputation and up-
date (in case of database changes) of kNN distances is time consuming, the
storage of these distances wastes memory and, thus, these methods are usu-
ally limited to one specific or a few values of k. Approaches like [61, 69] try
to overcome these limitations by using approximations of kNN distances but
this in turn yields an additional refinement overhead during query processing
– or only approximate results.

Mutual pruning approaches such as [62, 63, 64, 70] use other points to
prune a given index entry e. The most well-known approach called TPL is

34 6. Preliminaries

presented in [64]. It uses any hierarchical tree-based index structure such as
an R-Tree to compute a nearest neighbor ranking of the query point q. The
key idea is to iteratively construct Voronoi hyper-planes around q w.r.t. to the
points from the ranking. Points and index entries that are beyond k Voronoi
hyper-planes w.r.t. q can be pruned and do not have to be considered for
Voronoi construction anymore. Such RkNN query approaches can generally
be applied to a join setting, however without additional adaptions they scale
linear in the query set R. We will show this behavior in the experimental
section of this paper exemplarily with the TPL algorithm.

A combination of self- and mutual pruning is presented in [71]. It obtains
conservative and progressive distance approximations between a query point
and arbitrarily approximated regions of a metric index structure. A further
specialization of this approach to Euclidean data is proposed in [72] exploiting
geometric properties to achieve a higher pruning power.

Beside solutions for Euclidean data, there exist solutions for general met-
ric spaces (e.g. [61, 69]). Typically, metric approaches are less efficient than
the approaches tailored for Euclidean data because they cannot make use of
the Euclidean geometry.

Furthermore, there exist approximate solutions for the RkNN query prob-
lem that aim at reducing the query execution time at the cost of accuracy
(e.g. [63, 73]).

In the following section, we will concentrate on related work on RkNN
join processing and analyze these approaches more deeply.

6.3 Classification of Existing RkNN Joins

There exist a few other publications mentioning the problem of RkNN joins,
however without providing an in-depth formalization of the problem includ-
ing its variants. For the sake of completeness, we hereby theoretically evalu-
ate the existing publications and convert their definitions of the RkNN join
problem to our classification.

Bichromatic RkNN Joins as a by-product of incremental kNN Queries
The authors of [67] aim at computing high-dimensional kNN joins, provid-
ing incremental updates to the user. As a by-product however, the authors
provide means of performing RkNN joins on the database. They define the

RkNN join as follows: R
[67]

1 S =

{(q, RkNN(q))|q ∈ S∧RkNN(q) ⊂ R∧{∀p ∈ RkNN(q) : p ∈ R∧q ∈ kNN(p)}}

6.3 Classification of Existing RkNN Joins 35

We first split the result set RkNN(q) into the elements RkNN(q)i of the
corresponding set. This allows to simplify the above formula:

R
[67]

1 S = {(q, RkNN(q)i)|q ∈ S ∧RkNN(q)i ∈ R ∧ q ∈ kNN(RkNN(q)i)}}

Substituting q = s, RkNN(q)i = r leads to:

R
[67]

1 S = {(s, r)|s ∈ S ∧ r ∈ R ∧ s ∈ kNN(r)}

As the query result s relates to the set S, we can bring kNN(r) to our
notation kNN(r, S, k), leading to

R
[67]

1 S = {(s, r)|s ∈ S ∧ r ∈ R ∧ s ∈ kNN(r, S, k)}

which relates to our definition of the bichromatic RkNN join by simply swap-
ping the sets R and S:

R
[67]

1 S = {(r, s)|r ∈ R ∧ s ∈ S ∧ r ∈ kNN(s, R, k)} = R
BRkNN

1 S

The RkNN Join from Venkateswaran Another definition of the RkNN
join has been provided in [68]. The author defines the RkNN join as

R
[68]

1 S = {U |U ⊆ S ∧ ∀u ∈ U : ∃v ∈ R : dist(v, u) ≤ dist(v, t)∀t ∈ S}

By splitting the set U into single objects, we get

R
[68]

1 S = {u|u ∈ S ∧ ∃v ∈ R : dist(v, u) ≤ dist(v, t)∀t ∈ S}

We also add v to the resulting values and remove the ∃-quantifier (it is already
implicitly contained in the definition of the join set), getting tuples

R
[68]

1 S = {(u, v)|u ∈ S ∧ v ∈ R ∧ ∀t ∈ S : dist(v, u) ≤ dist(v, t)}

Substitution (u = s, v = r) yields:

R
[68]

1 S = {(s, r)|s ∈ S ∧ r ∈ R ∧ ∀t ∈ S : dist(r, s) ≤ dist(r, t)}

The last factor is simply a nearest neighbor query, yielding

R
[68]

1 S = {(s, r)|s ∈ S ∧ r ∈ R ∧ s ∈ kNN(r, S, 1)}

Therefore, a generalization of this definition to kNN (which has already been
done in [68]) and swapping the semantic of R and S yields our definition of
the bichromatic RkNN join:

R
[68]

1 S = {(r, s)|r ∈ R ∧ s ∈ S ∧ r ∈ kNN(s, R)} = R
BRkNN

1 S

36 6. Preliminaries

High-Dimensional Monochromatic RkNN Join The authors of the
paper [74] have proposed an algorithm for monochromatic RkNN join pro-
cessing if a specialized index structure such as an RdkNN tree is given; in
contrast, our approaches do not need such specialized index structures, as
kNN distance computations are included in the query evaluation step. How-
ever still, such an algorithm can be useful if the set S is relatively stable. The
algorithm performs a parallel tree traversal; pruning of irrelevant subtrees is
possible by employing the kNN distance stored in nodes of the tree. As the
paper is written in Chinese language, we were not able to deeply analyze this
paper and therefore will not further consider it in our research.

Bichromatic RkNN queries Although bichromatic RkNN queries are by
definition not an RkNN join, we would like to investigate a simple solution
to solve this problem due to its algorithmic structure which is similar to
our self-pruning approach proposed in Section 7.2. The solution has been
proposed in [15]. To solve a bichromatic RkNN query BRkNN(r, R, S), it is
possible to materialize the kNN-spheres of every point s ∈ S over all points
r ∈ R, i.e. compute the nearest neighbors of points s in set R. As a second
step, we would have to report the points s that have r as one of their nearest
neighbors by checking if r is contained in the kNN sphere of s. Although the
algorithmic structure of this approach is similar to our self-pruning approach,
the semantic is different. First, for the bichromatic RkNN query, the kNN
join is performed between the sets S and R. For our RkNN join, the kNN
join is a self-join. Second, to compute the actual result, the bichromatic
RkNN query employs a simple point inclusion test of r over the computed
kNN spheres. In contrast, we have to perform a varying range join, see
Section 7.2.

Chapter 7

Algorithms

7.1 The Mutual Pruning Algorithm

Mutual pruning approaches such as TPL [64] are state-of-the-art solutions
for single RkNN queries. In this paper we aim at analyzing whether this
assumption still holds for an RkNN join setting. Therefore, in this section, we
propose an algorithm for processing RkNN joins based on a strategy similar to
TPL; we call this solution the mutual pruning approach or the UL approach,
as it is based on Update Lists. We assume that both sets R and S are indexed
by an aggregated hierarchical tree-like access structure such as the aR∗-tree
[75]. An aR∗-Tree is equivalent to an R∗-Tree but stores an additional integer
value (often called weight) within each entry, corresponding to the number
of objects contained in the subtree. The indexes are denoted by R and S,
respectively.

7.1.1 General Idea

The proposed algorithm is based on a solution for Ranking-RkNN queries, ini-
tially suggested in [76]. Unlike TPL, which can only use leaf entries (points)
to prune other leaf entries and intermediate entries (MBRs), the technique
of [76] further permits to use intermediate entries for pruning, thus, allow-
ing to prune entries while traversing the tree, without having to wait for
k leaf entries to be refined first. The algorithm of [76] uses the MAXDIST-
MINDIST-approach as a simple method for mutual pruning using rectangles.
This approach exploits that, for three rectangles R, A, B, it holds that A
must be closer to R than B, if MAXDIST (A,R) < MINDIST (B,R). The

38 7. Algorithms

(a) Case 1 (b) Case 2 (c) Case 3

Figure 7.1: Spatial Domination.

algorithm that we use in this work, will augment the algorithm of [76] by re-
placing the MAXDIST-MINDIST-approach by the spatial pruning approach
proposed in [29] which has been shown to be more selective. In the following,
the base algorithm of [76], enhanced by [29] will be extended to process joins.

The mutual pruning approach introduced in this section is based on an
idea which is often used for efficient spatial join processing: Both indexes
R and S are traversed in parallel, result candidates for points r ∈ R of the
outer set are collected and for each point r ∈ R irrelevant subtrees of the
inner index S are pruned; we will evaluate if this approach is also useful for
RkNN joins during performance analysis. Thus, at some point of traversing
both trees, we will need to identify pairs of entries (eR ∈ R, eS ∈ S) for
which we can already decide, that for any pair of points (r ∈ eR, s ∈ eS) it
must/must not hold that s is a RkNN of r. To make this decision without
accessing the exact positions of children of eR and eS, we will use the concept
of spatial domination ([29]): If an entry eR is (spatially) dominated by at
least k entries in S with respect to eS, then no point in eS can possibly have
any point of eR as one of its k-nearest neighbors. Due to the spatial extent of
MBRs, this decision is not always definite. We have to distinct several cases,
as illustrated in Figure 7.1. The subfigures visualize two pages eR and eS0 ,
and one of the additional pages eS1 , eS2 , eS3 . The striped areas in the picture
denote the set of points on which a closer decision can definitely be made.
This means, no matter which points from the rectangle eR and eS0 are chosen,
the point in the striped area is always closer to the point from eR (eS0) than
it is to the point from eS0 (eR). Therefore, in the first case (a), eS0 is definitely
closer to eS1 than eR is to eS1 . In the second case (b), eR is definitely closer
to eS2 than eS0 is to eS2 . In the third case (c), in all of the four subcases, no
decision can be made.

More formally, in the first case, we can decide that an entry is pruned
by another entry. For example, in Figure 7.1a, entry eR is dominated by

7.1 The Mutual Pruning Algorithm 39

entry eS0 with respect to entry eS1 , since for all possible triples of points
(s0 ∈ eS0 , s1 ∈ eS1 , r ∈ eR) it holds that s0 must be closer to s1 than r is
to s1. This domination relation can be used to prune eS1 : If the number of
objects contained in eS0 is at least k, then we can safely conclude that at least
k objects must be closer to any point in eS1 than eS1 is to eR, and, thus, eS1
and all its child entries can be pruned. To efficiently decide if an entry eS0
dominates an entry eR with respect to an entry eS1 (all entries can be points
or rectangles), we utilize the decision criterion Dom(eS0 , e

R, eS1) proposed in
[29] which prevents us from doing a costly materialization of the pruning
regions like the striped areas in Figure 7.1. Materialization here means the
exact computation of the polygonal areas that allow pruning a page.

In the second case, we can decide that neither an entry, nor its children
can possibly be pruned by another entry. In Figure 7.1b, consider entry eS2 .
It holds that for any triple of points (s0 ∈ eS0 , s2 ∈ eS2 , r ∈ eR), that r is closer
to s2 than s0 is to s2. Although, in this case, we cannot prune eS2 , we can
safely avoid further domination tests of children of the tested entries, as eS0
and its children will never prune eS2 . We can efficiently perform this test by
evaluating the aforementioned criterion Dom(eR, eS0 , e

S
2).

Finally, in the third case, both predicates, i.e. Dom(eS0 , e
R, eS3) and

Dom(eR, eS0 , e
S
3), do not hold for any entry eS3 in Figure 7.1c. In this case,

some points in eS3 may be closer to some points eS0 than some points in eR are
to the points from eS3 , while other points may not. Thus, we have to refine
at least some of the entries eS0 , eS3 or eR. The reason for the inability to make
a decision here, is that the pruning region between two rectangles is not a
single line, but a whole region (called tube here, cf. Figure 7.1). For objects
that fall into the tube, no decision can be made.

At any time of the execution of the algorithm only one entry eR of the
outer set is considered. For eR, we minimize the number of domination checks
that have to be performed. Therefore, we keep track of pairs of entries in S,
for which case three holds, because only in this case, refinement of entries may
allow to prune further result pairs. This is achieved by managing, for each
entry eS ∈ S, two lists eS.update1 ⊂ S and eS.update2 ⊂ S: List eS.update1
contains the set of entries with respect to which eS may dominate eR but
does not dominate eR for sure. Essentially, any entry in eS.update1 may be
pruned if eS is refined. List eS.update2 contains the set of entries, which
may dominate eR with respect to eS, but which do not dominate eR for sure.
Thus, eS.update2 contains the set of entries, whose children may potentially
cause eS to be pruned.

40 7. Algorithms

Algorithm 1 joinEntry(Entry eR, Queue QS)

1: for all eSi ∈ QS do
2: {Update domination count (lower bound) of all eSi }
3: for all eSj ∈ eSi .update2 do
4: if Dom(eSj , eR, eSi) then
5: {definite decision possible, eSj prunes eSi }
6: eSi .dominationCount += eSj .weight
7: else if Dom(eR, eSj , e

S
i) then

8: {eSi can definitely not be pruned by eSj }
9: eSi .update2.remove(eSj)

10: eSj .update1.remove(eSi)
11: end if
12: end for
13: if eSi .dominationCount ≥ k then
14: {no point in eSi can be an RkNN of a point in eR}
15: delete(QS, eSi))
16: end if
17: end for
18: {in the following, resolve S}
19: Queue QS

c = ∅
20: while (eSi = QS.poll()) 6= NULL do
21: Go to line 20 if eSi .dominationCount ≥ k {eSi does not contain result

candidates}
22: if Vol(eSi) > Vol(eR) then
23: {go one level down in the subtree of eSi and add child pages to QS}
24: QS.add(resolve(eSi , e

R))
25: else if isLeaf(eSi) ∧ isLeaf(eR) then
26: {if no further refinement is possible, results still have to be verified}

27: if eR ∈ kNN(eSi) then
28: reportResult(< eR, eSi >)
29: end if
30: else
31: {put pages eSi into QS

c if they could neither be pruned nor reported
as result}

32: QS
c .add(eSi)

33: end if
34: end while
35: {in the following, resolve eR}
36: if ¬isLeaf(eR) then
37: {finally, refine eRi by recursively calling joinEntry with QS

c }
38: for all eRi ∈ eR.children do
39: joinEntry(eRi , clone(QS

c))
40: end for
41: end if

7.1 The Mutual Pruning Algorithm 41

7.1.2 The Algorithm joinEntry

In order to implement these ideas, we use the recursive function shown in
Algorithm 1, joinEntry(Entry eR, QueueQS) . It receives an entry eR ∈ R
that represents the currently processed entry from the index of the outer
set R, which can be a point, a leaf node containing several points, or an
intermediate node. QS represents a set of entries from S sorted decreasingly
in the number |eS.update1| of objects that an entry eS ∈ S is able to prune.
The reason is that resolving nodes with a large update1 list potentially allows
pruning many other nodes.

In each call of joinEntry(), a lower bound of the number of objects dom-
inating eR with respect to eSi is updated for each entry eSi ∈ QS. This lower
bound is denoted as domination count. Clearly, if for any entry eSi , it holds
that the domination count≥ k, then the pair< eR, eSi > can be safely pruned.
Note that using the notion of domination count, the list eSi .update1 can be
interpreted as the list of entries eSj , for which the domination count of eSj may
be increased by refinement of eSi . The list eSi .update2 can be interpreted as
the list of entries whose refinement may increase the domination count of eSi .
In Line 4 of Algorithm 1, the domination count of eSi is updated by calling
Dom(eSj , eR, e

S
i) for each entry eSj in the list eSi .update2. If Dom(eSj , eR, e

S
i)

holds, then the domination count of eSi is increased by the number of objects
in eSj . The number of leaf entries is stored in each intermediate entry of the
index. Otherwise, i.e., if eSj does not dominate eR w.r.t. eSi , we check if it
is still possible that any point in eSj dominates points in eR with respect to
any point in eSi . If that is not the case, then eSj is removed from the list
of eSi .update2, and eSi is removed from the list of entries eSj .update1 (Lines
9-10). If these checks have increased the domination count of eSi to k or
more, we can safely prune eSi in Line 15 and remove all its references from
the update1 lists of other entries; this is achieved by the delete function.

Now that we have updated domination count values of all eSi ∈ QS, we
start our refinement round in Line 20. Here, we have to decide which entry to
refine. We can refine the outer entry eR, or we can refine some, or all entries
in the queue of inner entries QS. A heuristic that has shown good results
in practice, is to try to keep, at each stage of the algorithm, both inner and
outer entries at about the same volume. Using this heuristics, we first refine
all inner entries eSi ∈ QS which have a larger volume than the outer entry eR

in line 24. The corresponding algorithm is introduced in the next section.

After refining entries eSi , we next check in Line 25 if both inner entry eSi
and outer entry eR currently considered are both point entries. If that is the
case, clearly, neither entry can be further refined, and we perform a kNN
query using eSi as query object to decide whether eR is a kNN of eSi , and, if

42 7. Algorithms

so, return the pair < eR, eSi > as a result. Finally, all entries eSi which could
neither be pruned nor returned as a result, are stored in a new queue QS

C .
This queue is then used to refine the outer entry eR: For each child of eR,
the algorithm joinEntry is called recursively, using QS

C as inner queue.

7.1.3 Refinement: The resolve-Routine

Our algorithm for refinement of an inner entry eS is shown in Algorithm 2
and works as follows: We first consider the set of entries eS.update1 of other
inner entries eSj whose domination count may be increased by children eSi of
eS. For each of these entries, we first remove eS from its list eSj .update2, since
eS will be replaced by its children later on. Although eS does not dominate
eR w.r.t. eSj , the children of eS may do. Thus, for each child eSi of eS, we now
test if eSi dominates eR w.r.t. eSj in Line 6 of Algorithm 2. If this is the case,
then the domination count of eSj is incremented according to the number of
objects in eSi .1 Otherwise, we check if it is possible for eSi to dominate eR

w.r.t. eSj , and, if that is the case, then eSj is added to the list eSi .update1
of entries which eSi may affect, and eSi is added to the list eSj .update2 of
entries which may affect eSj . Now that we have checked which objects the
children eSi of eS may affect, we next check which other entries may affect
a child eSi . Thus, we check the list eS.update2 of entries which may affect
the domination count of eS. For each such entry eSj and for each child eSi ,
we check if eSj dominates eR w.r.t. eSi . If that is the case, the domination
count of eSi is adjusted accordingly. Otherwise, if eSj can possibly dominate
eR w.r.t. eSi , then we add eSj to the list of entries eSi .update2, and we add
eSi to the list eSj .update1. Finally, all child entries of eS are returned, except
those child entries, for which their corresponding domination count already
reaches k.

7.2 A Self Pruning Approach

7.2.1 General Idea

We also developed a self pruning approach that does not rely on materialized
information as existing self pruning techniques but computes kNN distances
on the fly (therefore it will also be referred to as the kNN approach); the
idea is based on the research results from [15]. For single RkNN queries,

1The check, whether the new domination count of eSj exceeds k will be performed in
Line 21 of Algorithm 1

7.2 A Self Pruning Approach 43

Algorithm 2 resolve(Entry eS, Entry eR)

1: LIST l
2: {(1) check which objects the children eSi of eS may affect}
3: for all eSj ∈ eS.update1 do
4: eSj .update2.remove(eS) {remove, children of eS are now relevant instead

of eS}
5: for all eSi ∈ eS.children do
6: if Dom(eSi , e

R, eSj) then
7: {definite decision possible, eSi prunes eSj }
8: eSj .dominationCount += eSi .weight
9: else if ¬ Dom(eR, eSi , e

S
j) then

10: {no definite decision possible, eSi might prune eSj }
11: eSj .update2.add(eSi)
12: eSi .update1.add(eSj)
13: end if
14: end for
15: end for
16: {(2) check which other entries may affect a child eSi }
17: for all eSi ∈ eS.children do
18: for all eSj ∈ eS.update2 do
19: if Dom(eSj , e

R, eSi) then
20: {definite decision possible, eSj prunes eSi }
21: eSi .dominationCount += eSj .weight
22: else if ¬ Dom(eR, eSj , e

S
i) then

23: {no definite decision possible, eSj might prune eSi }
24: eSi .update2.add(eSj)
25: eSj .update1.add(eSi)
26: end if
27: end for
28: if eSi .dominationCount < k then
29: {only return relevant entries that can not be pruned, yet}
30: l.add(eSi)
31: end if
32: end for
33: return l

44 7. Algorithms

Algorithm 3 RkNNselfPruning(R, S)

T = ∅
{Perform self-join on S}

3: X = {(s, d(s))|s ∈ S ∧ d(s) = maxx∈kNN(s,S,k+1))dist(x, s)}
{Perform varying-range join on R}
for all (s, d(s)) ∈ X do

6: for all r ∈ R do
if dist(s, r) < d(s) then
T = T ∪ {(r, s)}

9: end if
end for

end for
12: return T

such a self pruning approach obviously suffers from this overhead. However,
intuitively, these on the fly computations may amortize for a large number
of queries, i.e., a large outer set R (and we will see in the experiments that
the break even point is surprisingly small). Thus, the idea of the following
solution provides a dedicated algorithm to perform an RkNN join using the
techniques of self pruning. In the following, we still assume that R and S are
aR∗-tree representations of R and S, respectively. Let us first decompose the
definition of the RkNN join into smaller pieces (see Algorithm 3). The RkNN
query returns all pairs of points (r ∈ R, s ∈ S) such that r is located in the
kNN-spheres of s. Therefore, as a first step we simply compute the kNN-
spheres of all points in S. This can be done by performing a self-(k+1)NN-
join on S (see Line 3).2 Then, for each of the resulting kNN-spheres, the set
of points in R that is enclosed by this sphere has to be returned (see Line 5).
This can be done by performing an ε-range query for each kNN-sphere on
the set R. Note that the later query does not correspond to an ε-range-
join, since the kNN-spheres of each s ∈ S will usually have different radii.
Rather, a “varying-range-join” needs to be applied. This introduces some
interesting possibilities of optimization when pruning subtrees in R. We will
address this problem in Section 7.2.3. To summarize, an RkNN join can
be performed by combining a self-(k+1)NN-join on S with a varying-range-
join, a generalization of the ε-range-join. In the following, we will refine the
algorithm sketch described in Algorithm 3. For this purpose, we now describe
algorithms for computing the kNN-join and the varying-range-join.

2Each point will have itself in its kNN set, thus we need a k + 1NN-join to find the
kNNs of each point in S.

7.2 A Self Pruning Approach 45

7.2.2 Implementing the Self-kNN-Join

A variety of researchers addressed the problem of efficiently computing the
result of a kNN-join. In our implementation we decided to evaluate two
different approaches. One of them is a sequential second-order nested-loop
join, that does not directly facilitate the structure of the underlying index,
however it exploits the spatial proximity of points in leaf nodes of the tree.
The other one is a hierarchical join that fully utilizes the index to reduce
the number of unnecessary comparisons. Both of them shall be introduced
in this section. In Chapter 8 we will also investigate which of the suggested
algorithms fits best for specific data sets. For the sake of clarity, we assume
to have two virtual copies Sl and Sr of S in the following. An entry from Sl
is denoted by eSl and an entry from Sr as eSr .

7.2.2.1 Sequential Self-kNN-Join

For the sequential self-kNN-join we implemented a cache-aware nested-block
loop join that takes the specific properties of the self-join, and the spatial
proximity of values in the leaf nodes of a tree-structured index into account.
It is based on the implementation in the ELKI-framework [77]. The algorithm
basically takes a leaf from the index S, performs a self-join within the same
leaf first in order to initialize its maximum kNNDist (MaxKNNDisttemp)
as its pruning distance. The pruning distance is used to prune whole leaf
pages later on without processing the points contained in them. Then it
sequentially accesses all leaf nodes of the index and joins them with the
currently processed node. This version is not only easy to implement, it
also enables to return partial results at each time where a page eSl has been
processed such that memory can be freed after directly performing a varying-
range-join on the partial result.

For each leaf node eSl from Sl, the algorithm proceeds as follows. First, in
order to initialize the MaxKNNDisttemp(e

S
l) of eSl , a sequential self-kNN-

join of eSl is performed. The kNN-join basically collects for each point in
p ∈ eSl the k points from eSr that are closest to p. Note that the actual
kNN’s are not relevant, just the distances of current kNN-candidates have to
be tracked and hence the memory consumption can be reduced significantly
compared to traditional kNN join processing. In a second step, each leaf
eSr 6= eSl of Sr is traversed in arbitrary, but deterministic, order. The page eSr
can be pruned if MINDIST (eSr , e

S
l) > MaxKNNDisttemp(e

S
l). If the page

cannot be pruned, each point from eSl is joined with each point from eSr . After
joining the contained points, the pruning distance MaxKNNDisttemp(e

S
l) is

updated when necessary. After finishing the join of eSl , the kNN-distances

46 7. Algorithms

of points in this page can be returned as a partial result. The join of the
following leaf node eSl′ of Sl is again joined with itself first, however the join
of remaining nodes is performed in opposite order. The intention of this
proceeding is that some nodes from the last traversal are still stored in the
page cache such that they do not have to be reloaded, reducing the number
of page accesses.

7.2.2.2 Hierarchical Self-kNN-Join

The hierarchical kNN-Join is based on the best-first kNN search algorithm
from [66], however with some minor adaptions to fit the special properties
of our setting, a self-kNN-join. Actually, this join is only semi-hierarchical
since it does not join two trees but rather joins each leaf from one tree
with another tree, yielding an average complexity of O(|S| log(|S|)) for a self
join in contrast to O(|S|2) for the sequential self-join described in the section
before. In contrast to a fully hierarchical approach this algorithm enables the
possibility to return partial results each time a page eSl has been processed;
we will exploit this property when processing the varying-range-join.

For each leaf node eSl taken from Sl, the tree Sr is traversed starting
with the root node in best-first order according to the MINDIST of the
current group and the currently processed subtree. For this purpose, the
root entry of Sr is inserted into a priority queue. The priority queue is
ordered by increasing MINDIST to eSl . MINDIST between two overlap-
ping entries is always zero, however a bigger overlap is usually better than
a smaller one since this can reduce the MaxKNNDisttemp of the currently
processed page more effectively. Therefore eSr that overlap eSl more than other
pages are preferred. The algorithm pops the first entry eSr from the priority
queue and checks if MINDIST (eSr , e

S
l) ≤MaxKNNDisttemp. Entries with

MINDIST (eSr , e
S
l) > MaxKNNDisttemp are pruned as in the sequential

approach. If an entry cannot be pruned, the corresponding node has to be
accessed. If the node is an intermediate node, all its children that cannot
be pruned are inserted into the priority queue, i.e., the page is resolved. If
the node is a leaf node, the page is joined. Joining is similar to the proceed-
ing of the sequential join, however it employs some additional improvements
from [66]: points ri ∈ eSr with MINDIST (eSl , ri) > MaxKNNDisttemp(e

S
l)

and all points li ∈ eSl with NNDist(li) < MINDIST (li, e
S
r) can be pruned

during an initial scan of the processed pages. This preprocessing reduces the
quadratic cost of comparing all entries from one node with all entries from
the other node. After finishing the join MaxKNNDisttemp is updated when
necessary.

7.2 A Self Pruning Approach 47

Figure 7.2: Comparison of MS(eS) and CMBR(eS) in an (a) average, (b)
worst, and (c) best case.

7.2.3 Implementing the Varying-Range-Join

A trivial solution for performing a varying-range-join would be to sequentially
search the set R for each s ∈ S to find {r ∈ R|dist(r, s) < kNNDist(s)}.
This operation returns the subset of R that would contain s as one of its
RkNN-results. As a first improvement, the tree structure of R can be ex-
ploited to reduce the asymptotic complexity to an (on average) logarith-
mic one by performing a depth-first traversal: Only nodes eR of R that
intersect the kNN-sphere of s need to be considered, i.e., subtrees with
MINDIST (eR, s) > kNNDist(s) can be pruned. For reducing the num-
ber of disc accesses, e.g. if a slow HDD is used instead of a fast SSD, it
would be a good idea to traverse R less often with a larger subset of S.
Since both self-kNN-join algorithms join pages eS of objects, partial results
show spatial proximity. This spatial proximity can be used to prune subtrees
from R that cannot contain result candidates for any point in eS, greatly
speeding up the range query. This technique can even be extended. The
straightforward approach for computing an RkNN join-result would be to
materialize all kNN-spheres first and then perform a range query for each of
the spheres on R. However, in order to keep the memory consumption for
storing kNN-spheres low, a readily kNN-joined page can be directly range-
joined with R such that the corresponding kNN-spheres of the page do not
have to be stored further.

This varying-range-join is implemented in form of a depth-first index
traversal. It receives a set eS containing points from S in combination with
their kNN-distances and R. The algorithm first checks each child of the
root node of R whether or not it has to be accessed, i.e., if this page could
contain a varying-range-join result of any point in eS. If the child has to be
accessed, it proceeds in a depth-first order, accessing its children and testing
them recursively. The pseudo code is depicted in Algorithm 4. Checking
if any child from eR might have a point from eS as an RkNN is evaluated
in the function PossibleCandidate(eS, eR1). Checking can be achieved in two

48 7. Algorithms

Algorithm 4 VaryingRangeJoin(Entry eR, Set eS)

if eR points to a LeafNode then
for all r ∈ eR do

for all s ∈ eS do
if dist(r, s) ≤ kNNDist(s) then

report (r, s) as a result tuple
end if

end for
end for

else
for all eR1 ∈ eR do

if PossibleCandidate(eS,eR1) then
VaryingRangeJoin(eR1 ,eS)

end if
end for

end if

ways, by employing the Minkowski sum, or by laying an MBR around all
kNN-spheres contained in eS:

• Use the Minkowski sum MS(eS), following the idea of [60]: Check
whether the MBR of eR has a distance of less than max

s∈eS
kNNDist(s)

to the MBR of the points in eS. This can be evaluated by check-
ing whether MINDIST (MBR(eR1),MBR(eS)) is less than or equal
to max

s∈eS
kNNDist(s)

• Build a bounding box around all kNN-spheres, following [15]: Let
CMBR(eS) = MBR(∪

s∈eS
kNNSphere(s)). eR1 has to be evaluated

if CMBR(eS) ∩MBR(eR1) 6= ∅. The MBR CMBR(eS) can be calcu-
lated as (0 ≤ i ≤ d):

CMBR(eS).mini = min
pj∈eS
{pj[i]− kNNDist(pj)}

CMBR(eS).maxi = max
pj∈eS
{pj[i] + kNNDist(pj)}

While the first check is quite simple to perform and for traditional range-joins
even very restrictive, the second approach can be better when the diameter
of kNN-spheres differs. An example for both bounding boxes is shown in
Figure 7.2 (a). However, note that none of the checks is the best solution for

7.3 Extension to Metric Spaces 49

all scenarios. There exist special cases where the Minkowski sum fits the con-
tained spheres tighter than CMBR(eS). For example if |eS| = 1, the volume
covered by a Minkowski sum is smaller than CMBR(eS) (see also Figure
7.2 (b)). More general, the worst case for CMBR(eS) happens if at each
face of MBR(eS) there is a point p with kNNDist(p) = max

s∈eS
kNNDist(s).

In this case there is MS(eS) ⊂ CMBR(eS) and hence the Minkowski sum
shows higher pruning power. The best case (Figure 7.2 (c)) happens if for
each point p ∈ eS there is kNNSphere(p) \MBR(eS) = ∅, i.e., points with
large kNN-spheres are close to the center of MBR(eS). In this scenario,
CMBR(eS) performs better than the Minkowski sum approach.

7.3 Extension to Metric Spaces

In this short excursus we sketch how to extend the theoretical results from the
previous sections to general metric spaces. For a definition of metric spaces,
we refer to Definition 1 in Part I. As a vector space that we addressed in the
remainder of this work offers some additional properties to general metric
spaces, pruning in a vector space is usually more efficient and not directly
applicable to general metric spaces. Exemplarily, the TPL algorithm uses
the perpendicular bisector between two points in space for pruning that only
exists under the l2 norm. Therefore, in the following we will generalize the
results from previous sections and discuss how RkNN joins can be performed
in general metric spaces.

In the following we again assume that the data sets R and S are indexed
by some index structure, however in this section a metric index structure such
as the M-tree [78]. An M-tree is a balanced tree that can be dynamically
updated. Inner nodes contain entries e storing an anchor object (or routing
object) e.a, a covering radius e.r and a pointer e.c to the corresponding node
that contains the children entries. All children of e and their descendants
have a distance of at most e.r to e.a. Furthermore, a routing entry contains a
field e.p denoting the distance to the parent routing object P (e).a. Although
e.p could be computed during query processing, it is stored in the entries as
distance calculations in metric spaces can be costly. The data objects of an
M-tree are referenced via data entries in the leaf nodes; these entries store
the actual object value, an object id and a field e.p which is defined in the
same way as for the inner entries.

As a consequence of the information stored in the index structure, pruning
irrelevant subtrees of an M-tree can be achieved by considering an entry’s
diameter and the stored anchor object. For this purpose we can employ the
(general) MINDIST (e1, e2) between two entries in the tree that assumes

50 7. Algorithms

two data elements to be as close to each other as possible; these distance
bounds follow directly from [78]:

MINDIST (e1, e2) = max(dist(e1.a, e2.a)− e1.r − e2.r, 0)

Similarly, we can define the MAXDIST (e1, e2) that assumes two data ele-
ments to be as far away of each other as possible by:

MAXDIST (e1, e2) = dist(e1.a, e2.a) + e1.r + e2.r

In the case where e1 (e2) becomes a data object, the corresponding radius
e1.r (e2.r) becomes zero.

Unfortunately these distance approximations make it necessary that the
distance between two entries is computed. Assuming that the distance be-
tween the parents of a node are already known (and therefore cached), the
number of distance calculations can often be reduced [78] (the case where
the distance between P (e1) and e2 is already known or vice-versa can be
constructed equivalently):

MINDIST ′(e1, e2) = max(d(P (e1).a, P (e2).a)− e1.p− e2.p− e1.r− e2.r, 0)

In this case, the distance between the parents is known such that for this
MINDIST , distance computations can be avoided, however at the cost of
accuracy and space. For a rough estimate of the MAXDIST , MAXDIST ′

can be derived equivalently.

7.3.1 Adaptions of the Update List Approach

The algorithm based on update lists (Section 7.1) employs the spatial prun-
ing from [29] that has been specifically designed for vector spaces under lp
norms and therefore cannot be used for general metric spaces. Therefore, the
decision criterion has to be replaced by the weaker MAXDIST -MINDIST -
criterion [29]:

Dom(A,B,R) := MAXDIST (A,R) < MINDIST (B,R)

The domination criterion can be easily extended by evaluating based on
MINDIST ′ andMAXDIST ′ first. TheMAXDIST -MINDIST approach
can also be used with vectorial data [76], for example in R-trees, however,
it shows a lower pruning power than the improved domination criterion we
used [29]. Furthermore, if vectorial data is stored in index structures with
spherical representations, special spatial pruning criteria on spheres can be
employed, such as [49].

7.3 Extension to Metric Spaces 51

The heuristic for deciding whether to resolve pages from R or from S must
also be adapted, as general metric spaces do not have any notion of volume.
Therefore, instead of employing the volume, the diameter e.d could be used
to come to a resolvement decision: In order to decide about the refinement
of a node, we would have to check whether V ol(e1) > V ol(e2). Note that
this would be equivalent to a decision based on the volume of intermediate
entries if an M-tree would be used to index vectorial data.

7.3.2 Adaptions of the kNN-Based Approach

The kNN-join based approaches can be adapted in a similar fashion. Let
us first consider the first phase of the algorithm, the kNN join. Both kNN
variants used throughout the paper can be used in the general metric case
without major modifications; just the MINDIST and MAXDIST func-
tions have to be modified. MAXDIST ′ and MINDIST ′ could be used as
well. For the second phase, the varying-range join, we have to find the sur-
rounding sphere of the kNN spheres of a data page eS. The diameter of the
surrounding sphere can be simply computed as

MS(eS) = eS.d+max
s∈eS
{kNNDist(sS)}

This solution conforms to the Minkowski sum approach from Section 7.2. In
order to realize the CMBR approach, we would have to find a new center
point for the surrounding sphere, which is prohibitively expensive. The query
processing for the varying range join can also be extended by the cached
versions of distance estimates.

52 7. Algorithms

Chapter 8

Evaluation

We evaluate the mutual pruning approach (referred to as UL due to its use
of update lists), and the self pruning variants (kNN∗) in comparison to the
single RkNN query processor TPL in an RkNN join setting within the Java-
based KDD-framework ELKI [77]. As performance indicators we chose the
CPU time and the number of page accesses. Note that we did not evaluate
existing self-pruning techniques such as [60] since these are only applicable
if the value of k is fixed over all performed RkNN queries.

It should be noted that, for estimating the CPU time of a particular
algorithm, we measured the thread time of the corresponding Java thread
and performed dry runs before executing the actual simulations in order to
keep the impact of garbage collection and Just-In-Time compilation on the
results low. A test run was aborted if it lasted at least 20 times longer than
executing a self pruning based RkNN join with the same set of variables.
For measuring the number of page accesses, we assumed that a given number
of pages fit into a dedicated cache. If a page has to be accessed but is not
contained in the page cache, it has to be reloaded. If the cache is already
full and a new page has to be loaded, an old page is kicked out in LRU
manner. The page cache only manages data pages from secondary storage,
remaining data structures have to be stored in main memory. In order to
avoid everything being stored in memory, we employed a restrictive approach,
assuming that only node- and entry-IDs can be stored in main memory.
Therefore, each time information about an entry, e.g. an MBR or a data
point, has to be accessed, the corresponding data page has to be reloaded
into the cache. We chose this restrictive strategy because all algorithms
employ different methods of processing data. While a sequential kNN-join
processes only two data pages at once, mutual pruning based approaches like
TPL and UL process the whole tree at a time by facilitating lists of entries,
e.g. the TPL entry heap. These data structures are principally unbounded,

54 8. Evaluation

such that storing whole entries in memory could lead to a situation where
the whole tree can be accessed without reloading any page from disk. This
would bound the number of page accesses to the tree size, which is unrealistic
in large database environments. We set the cache size to fit about 5% of all
nodes in the default setting.

We chose the underlying synthetic data sets from R and S to be normally
distributed with equivalent mean and a standard deviation of 0.15. We set the
default size of R to |R| = 0.01|S|, since the performance of TPL degenerates
with increasing |R|. For each of the analyzed algorithms we used exactly the
same data set given a specific set of input variables in order to reduce skewed
results. As an index structure for querying we employed an aggregated R*-
tree (aR*-Tree [75]). During performance analysis, we analyzed the impact
of k, the number of data points in R and S, the dimensionality d, the overlap
o between the data sets R and S, the page size p and the cache size c on the
performance of the evaluated algorithms keeping all but one variable at a
fixed default value while varying a single independent variable. Input values
for each of the analyzed independent variables can be found in Table 8.1.
Furthermore, we investigated empirically for which sizes of the sets R and S
TPL and kNN∗-algorithms show equivalent performance. This experiment
is of great practical relevance since it gives hints on which specific algorithm
to use in a specific setting.

Table 8.1: Values for the evaluated independent variables. Default values are
denoted in bold.

Variable Values Unit

k 5, 10, 100, 500, 1000 points
d 2, 4, 6, 8, 10 dimensions
|R| 10, 100, 1000, 10000, 20000, 40000 points
|S| 10, 1000, 10000, 20000, 40000, 80000 points
o 0.0, 0.2, 0.4 |µS − µR|
p 512, 1024, 2048, 4096, 8192 bytes
c 4096, 16364, 32768, 65536, 131072 bytes

TPL was implemented as suggested in [64], however we did not incorpo-
rate the clipping step since this technique increased the computational cost
of the algorithm in preliminary experiments and had only a marginal effect
on the page accesses (especially when d > 2). Instead we implemented the
decision criterion from [29].

Concerning the nomenclature of the algorithms we use the following no-
tation. UL is the mutual pruning based algorithm. The additional subscript

55

kNNHGM

kNNHGC

kNNHS

kNNSGM

kNNSGC

kNNSS

TPL

ULS

ULG

ULP

0
5

10
15
20
25
30

0 200 400 600 800 1000

T
im

e

k

0.1

1

10

100

2 4 6 8 10

T
im

e

d

0

2

4

6

8

10

0 10000 20000 30000 40000

T
im

e

|R|

0
20
40
60
80

100
120
140

0 20000 40000 60000 80000

T
im

e

|S|

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

T
im

e

o

0

10

20

30

40

50

0 2048 4096 6144 8192

T
im

e

p

Figure 8.1: Performance (CPU time), synthetic dataset. Time is measured
in seconds.

S (Single) means that every single point of R was queried on its own. With
ULG (Group), a whole set of points, a leaf page, was queried at once. ULP

(Parallel) traversed both indexes for R and S in parallel. For the kNN algo-
rithms we employ a similar nomenclature kNNABC:

• A ∈ {H,S} denotes whether a hierarchical or sequential nearest neigh-
bor join is used (compare Section 7.2).

• B ∈ {S,G}: S denotes whether the whole kNN join is processed first

56 8. Evaluation

and then each resulting kNN sphere is used to perform a single range
query onR. G (group) denotes that after the kNNs of a single page from
S is computed, the corresponding page is used to perform a varying-
range-query on the tree of R. The second method can be employed to
keep the number of intermediate results low and avoid swapping these
intermediate results to disk. Furthermore both methods vary in the
algorithm used for the range-join, i.e., whether each point is queried
separately or groups of points are queried together.

• C ∈ {C,M} indicates how the MBR is computed when performing
a group range-join (C: CMBR, M : Minkowski sum, compare Section
7.2).

Note that, in order to avoid clutter, if a group of algorithms (i.e. the
different UL variants, the different hierarchical kNN variants or the different
sequential kNN variants) had similar performance, we replaced them by a
representative solution from this group. The complete plots can be found in
[46, 47].

8.1 Experiments on Synthetic Data

Varying k. In a first series of experiments, we varied the parameter k. While
the execution time of the self pruning based kNN∗ increases moderately with
k, the remaining mutual pruning approaches become already unusable with
low values for k (cf. Figure 8.1, top left). The runtime of TPL increases
considerably fast. The reason for this is that not only the number of result
candidates but also the number of objects which are necessary in order to
confirm (or prune) these candidates increase super-linear in k. For the UL
approaches, the runtime behaviour is similar. The main problem with this
family of algorithms is their use of update lists. Each time a page is resolved,
the corresponding update lists have to be partially recomputed. This leads
to an increase of cost with larger k since on the one hand side, more pages
have to be resolved, and on the other hand the length of the update lists of
an entry increases and therefore more distance calculations are necessary.

The runtime behaviour of all kNN-based algorithms increases more mod-
erate with increasing k. The performance of the hierarchical join is more
stable w.r.t. different values of k, on the one hand side because the hierar-
chical version of the join can prune whole subtrees on the index level, and on
the other hand because the hierarchical join employs further optimizations
when joining leaf pages. Furthermore, note that the effect of performing a
single/group varying-range join and using different MBRs is quite small. The

8.1 Experiments on Synthetic Data 57

kNNHGM

kNNHGC

kNNHS

kNNSGM

kNNSGC

kNNSS

TPL

ULS

ULG

ULP

1

2

3

4

5

0 200 400 600 800 1000

P
ag

e
A

cc
es

se
s

(x
 1

05)

k

0.01
0.1

1
10

100

2 3 4 5 6 7 8

P
ag

e
A

cc
es

se
s

(x
 1

05)

d

1
2
3
4
5
6
7

10000 20000 30000 40000

P
ag

e
A

cc
es

se
s

(x
 1

05)

|R|

2

4

6

8

10

0 25000 50000 75000

P
ag

e
A

cc
es

se
s

(x
 1

06)

|S|

4

8

12

0 0.1 0.2 0.3 0.4

P
ag

e
A

cc
es

se
s

(x
 1

05)

o

0.5
1

1.5
2

2.5
3

0 2048 4096 6144 8192

P
ag

e
A

cc
es

se
s

(x
 1

06)

p

Figure 8.2: Performance (page accesses), synthetic dataset.

more sophisticated approach kNNHGC is indeed the best one, however the
difference in execution time compared to the simpler solutions kNNHGM and
kNNHS is quite low because in this setting |R| is too small.

Concerning the number of page accesses, the picture is quite similar (cf.
Figure 8.2, top left). TPL and UL show a worse performance than the
kNN-based solutions. However, interestingly the curves of the sequential
and hierarchical kNN-join intersect if k becomes rather large, making the
sequential join a better choice. This shows that with large values of k the

58 8. Evaluation

pruning of whole subtrees of the index-based approach fails such that the
overhead for traversing the index nodes of the tree cannot be justified any
more.

Varying the Dimensionality (d). Taking a look at the performance
of the different algorithms with varying dimensionality offers other interest-
ing results. Note that the scale of these graphs is logarithmic (cf. Figure
8.1 and 8.2, top right). The UL approaches scale worse than the other ap-
proaches, because the pruning power of index-level pruning decreases with
increasing dimensionality. However, with a dimensionality of 2 and 3, the UL
approaches perform better than TPL concerning the execution time of the
algorithms. Beginning with a dimensionality of 4, the UL approaches scale
worse than TPL because the pruning power of index-level pruning decreases
with increasing dimensionality. With increasing d, the number of entries in
an update list increases super-linearly. Therefore, much more entries have to
be checked each time an intermediate node is resolved, leading to a significant
drop in performance. Note that ULG and ULP perform very similar to ULS,
which is an interesting observation, since for kNN joins parallel tree traversals
usually show a higher gain in performance than in an RkNN setting. TPL and
the hierarchical join variants scale similarly, however, in this specific setting,
the TPL based join performs by over a magnitude worse than the hierarchi-
cal join. Comparing sequential and hierarchical join, the performance of the
index used by the hierarchical join degenerates with higher dimensionality,
such that the sequential join is able to outperform all remaining approaches
if the number of dimensions becomes higher than 6. This behaviour is most
likely well explained by the “curse of dimensionality” and the degradation of
spatial index structures in high dimensions.

The results in terms of the number of disk accesses look very similar,
therefore they shall not be further investigated. However note that the UL
approaches show much better performance in terms of the number of disk
accesses if the dimensionality is low. Therefore, we recommend to use UL
for spatial applications (i.e. 2D data).

Varying the Size of R (|R|). Varying |R| shows a negative effect on the
mutual pruning approaches TPL and UL (cf Figure 8.1 center left). Espe-
cially TPL and ULS scale linearly with |R|, as increasing |R| simply increases
the number of RkNN queries. Although the execution time of the join-based
algorithms grows with |R| as well, this increase is moderate. Note that with a
larger |R| the difference between the different range-join algorithms becomes
more obvious. If |R| is very large, the CMBR method become by about 30%
better than the more simple Minkowsky MBRs. Furthermore, the epsilon-
range-join where each kNN-sphere is queried on its own is outperformed by
its group-based counterparts. Recall that we set the default size of R to

8.1 Experiments on Synthetic Data 59

|R| = 100. In this case even linearly scanning R for a kNN-sphere from S
would not lead to a significant loss in performance. However, if |R| becomes
larger, the logarithmic performance of a hierarchical join becomes visible,
and pruning subtrees earlier can further speed up the query such that the
choice of an MBR falls clearly on the CMBRs.

Taking a look at the number of disk accesses (illustrated in Figure 8.2
center left) shows that performing an epsilon-range query for each kNN-
sphere from S is not a good idea if R becomes large. In this scenario, many
of the pages from R have to be reloaded during each of the |S| queries,
putting high load on the secondary storage. However, if neighboured values
are queried in groups as done in the HGM and HGC algorithms, the cache
can be used more efficiently even though these approaches mutually load R
and S into the cache.

Varying the Size of S (|S|). Next we analyzed the effect of different
values for |S| regarding the CPU time (cf Figure 8.1 center right). Again,
the hierarchical join variants perform best, followed directly by the sequential
join. On the other hand, the UL variants perform worst. However, the UL
variant that queries a single point from R during each iteration performs best
since this enables highest pruning power. Most importantly the shape of the
TPL algorithm looks totally different. It increases faster than the curve of
the kNN-join variants first, but then intersects them for higher values of |S|,
indicating the different asymptotic complexity of the different algorithms.
Not taking into account the epsilon-range join, the asymptotic complexity
of the sequential join is O(|S|2) while the complexity of the hierarchical
join is on average O(|S| log(|S|)) which is in accordance to the empirical
results. To the best of our knowledge the theoretical runtime complexity of
the TPL algorithm has not been analyzed so far, however the structure of
the algorithm suggests a logarithmic average complexity for a single query
point.

Thinking further, the point of intersection between TPL and the kNN-join
variants is determined by the size of R since a new value in R introduces a new
TPL-query – which is expensive – but only a single more point as a possible
range-query result for the kNN algorithms – which is cheap. Specifically
given a fixed set |S|, there exists a set Re for which TPL and the hierarchical
join algorithms show similar performance. In a practical setting the size of
|Re| for a given set |S| is of great value, since this knowledge can be used to
decide whether to use TPL or a kNN join for performing the query. Therefore
we ran an additional experiment showing the size of Re for a given size of |S|
where both algorithms have an equal runtime. The results can be found in
Figure 8.3a. Due to the quadratic complexity of the sequential join, the size
of Re increases (slightly) super-linear with the size of S. In contrast the size

60 8. Evaluation

(a) Equilibrium

0.01

0.1

1

10

100

0 65536 131072

P
ag

e
A

cc
es

se
s

(x
 1

05)

c

kNNHGM

kNNSGM

TPL

ULS

ULG

ULP

(b) Varying the cache size.

Figure 8.3: Given a set S of size |S|, the left figure visualizes the size of set
Re for which TPL and the kNN-based joins have the same computational
performance on our test sets R and S (note that this might vary with other
datasets). The right figure visualizes the results for varying cache size. Note
the logarithmic scale on the y-Axis.

of Re increases (slightly) sub-linear for the hierarchical kNN-join, suggesting
this algorithm for large databases. Given a database with 1 million points,
for the hierarchical join there is Re ≈ 0.0007|S| and for the sequential join
Re ≈ 0.003|S|. Thus as a rule of thumb it is strongly recommendable to use
a self pruning based approach if |R| > 0.01 · |S|.

Varying the Overlap Between R and S (o). Until now we assumed
that the normally distributed sets of values R and S overlap completely, i.e.
both sets have the same mean. This assumption is quite intuitive for example
if we assume that R and S are drawn from the same distribution. In this
experiment however, we aim at analyzing what happens if R and S are taken
from different distributions. We do so by varying the mean of R and S, i.e.
by decreasing the overlap of the two sets (o = mean(R)−mean(S)). First of
all, the runtime performance of the join-based algorithms stays pretty much
constant (cf Figure 8.1 bottom left). Although this might seem counter-
intuitive in the beginning, recall that the kNN-join is only performed on the
set S. Therefore the distance between R and S does not affect this cost of
the RkNN join. Furthermore, the set R is small in our setting, hence the
cost for the varying-range-join can be neglected. However only this varying-
range-join is affected by a different overlap between R and S. All remaining
variants can take severe profit from lower overlap between the sets R and S.
All of them employ pruning to avoid descending into subtrees that do not
have to be taken into account to answer the query. If the overlap decreases,
subtrees can be pruned earlier (because the MINDIST between a subtree

8.1 Experiments on Synthetic Data 61

kNNHGM
kNNHGC

kNNHS
kNNSGM
kNNSGC

kNNSS
TPL
ULS
ULG
ULP

0.1

1

10

100

1000

0 5000 15000 25000 30000

T
im

e

|R| (|S|=29729-|R|)

0.001

0.01

0.1

1

10

100

0 5000 15000 25000 30000

P
ag

e
A

cc
es

se
s(

x
10

5)

|R| (|S|=29729-|R|)

Figure 8.4: Performance (CPU time in seconds, page accesses), real dataset
(HSV).

and the query point increases), reducing the CPU-time and number of page
accesses (cf Figure 8.2 bottom left). Furthermore note that the approaches
ULP and ULG consistently perform worse than ULS over all values of o,
showing that the overhead for a parallel tree traversal outweighs the power
of early pruning in our setting.

Varying the Cache Size (c). For analyzing the cache size (see Fig-
ure 8.3b) we only provide an insight into the impact on the number of page
accesses since the cache does not affect the CPU time. Both kNN-join vari-
ants are barely affected by the size of the cache, the gain of all of these
approaches is usually less than 30%. In contrast, the mutual pruning based
algorithms behave by over an order of magnitude (TPL) and two orders of
magnitude (UL) better for larger cache sizes. The results show that in a
scenario where the accessible memory is large (about 10% of the index), the
UL algorithms can be a useful choice. Although they show a higher compu-
tational complexity, this disadvantage is compensated by the low number of
disc accesses performed by this group of algorithms. If the cache size is rela-
tively small, e.g. due to a multi-user environment, the kNN-based algorithms
are the matter of choice.

Note that in order to evaluate the performance of the approaches for
larger datasets, we conducted the same experiment again, however with 106

points in the database, a page size of 8192, and for cache sizes in range
[215, 218]. Although the overall number of page access clearly increases with
larger datasets, the relative performance of the different groups of algorithms
and their behaviour did not change significantly compared to Figure 8.3b.

Varying the Page Size (p). The effect of an increasing page size is
twofold. While the UL and hierarchical kNN-join approaches take mainly
profit from a larger page size, the graph of the TPL and sequential kNN
algorithms show a more or less increasing trend regarding the CPU cost (see
Figure 8.1 bottom right). For the sequential join, if the page size grows too

62 8. Evaluation

big, many pages have to be visited since they fall into the kNN-circles of a
query point. Concerning the number of disk accesses (see Figure 8.2 bottom
right), the kNN-join variants take profit from larger page sizes. If the page
size is small, the number of points processed during one iteration of the join
is small as well, since one iteration computes the kNN for one leaf from S.
Therefore many iterations are necessary for computing the whole join result,
and each of these iterations involves reloading pages into the cache.

8.2 Real Data Experiments

HSV Dataset. Now let us take a look at experiments driven with real
data. As an input, we employed 3D HSV color feature vectors extracted
from the CalTech data set1. We split the input data set containing 29639
feature vectors into two sets R and S such that |R| + |S| = 29639, varying
the size of R. The results can be found in Figure 8.4. Notice the two
different behaviours of the self- and mutual pruning techniques. Concerning
the CPU time, the self pruning approaches show better performance if R
is large and S is small. The reason for this behaviour is that a self-join is
always a quite expensive operation. For the hierarchical kNN self-join the
complexity in the best case is about O(|S| log(|S|)) while for the sequential
join the complexity is O(|S|2). Combined with the varying-range-join we
have an overall average complexity of O(|S| log(|S|)+|S| log(|R|)) or O(|S|2+
|S| log(|R|)). Now if |S| is large (and |R| can be neglected), this leads to a
complexity of O(|S| log(|S|)) and O(|S|2), respectively. On the other hand,
if |S| can be neglected, we have a complexity of O(log(|R|)) in both cases.
This also explains why the hierarchical and sequential techniques show the
same performance if |S| becomes small. For TPL, the behaviour is different:
its complexity in |S| is sub-linear but for each r ∈ R a separate query has to
be performed, such that its complexity increases linear with |R|. Therefore
the performance of TPL is better for small R (and large S), but worse for
large R (and small S). For the UL approaches the results can be explained
equivalently. Further note that the the ULS approach in this scenario shows
a significantly lower number of page accesses than ULG and ULP

Post Office Dataset. As a second real dataset we employed a set of
123,593 post offices in the north-eastern united states.2 The set is clus-
tered in the metropolitan areas, containing further noise in the rural areas.
We included this dataset as it evaluates the applicability of the proposed

1http://www.vision.caltech.edu/Image Datasets/Caltech256/
2www.rtreeportal.org/

8.3 Comparing CPU-Cost and IO-Cost 63

kNNHGM
kNNHGC

kNNHS
kNNSGM
kNNSGC

kNNSS
TPL
ULS
ULG
ULP

0.01

0.1

1

10

100

1000

0 25000 50000 75000 100000

T
im

e

|R| (|S|=123593-|R|)

0.001

0.01

0.1

1

10

100

0 25000 50000 75000 100000

P
ag

e
A

cc
es

se
s(

x
10

5)

|R| (|S|=123593-|R|)

Figure 8.5: Performance (CPU time, page accesses), real dataset (post office).

Figure 8.6: CPU and IO time in seconds when varying the cache size. Left:
SSD, right: HDD

approaches for geospatial applications. Although the overall behaviour of all
algorithms on this two-dimensional dataset is similar to the behaviour on
the mentioned three-dimensional data (see Figure 8.5), the UL algorithms
perform better in this special case concerning the number of page accesses.
The observation that the UL approaches can outperform other algorithms on
low-dimensional data has already been made when analyzing the synthetic
data.

8.3 Comparing CPU-Cost and IO-Cost

Last but not least let us shortly analyze whether the techniques are IO- or
CPU-bound. For this purpose, we reuse the results from the experiment
where we varied the cache size. From the number of IO operations we com-
puted the resulting IO time for both a solid state drive and a hard disk drive.
We assumed an SSD with page access time of 0.1ms, for a HDD we assumed
a combined seek time and latency of 13ms. These values have been taken
from [79]. The graph in Figure 8.6 shows the amount of IO time and CPU
time for sample approaches of the self- and mutual pruning approaches for

64 8. Evaluation

both solid state (SSD) and hard disk (HDD) drives. Note that in most of
the evaluated scenarios all of the algorithms are IO-bound, i.e. the IO-time
is larger than the CPU time needed for evaluating a join. However there
are small differences: in the case of an SSD the UL approaches (which have
been optimized to greatly reduce the number of page accesses) become CPU-
bound if the cache size becomes very large. In the case of a hard disk, all
approaches are IO-bound even for very large cache sizes.

Chapter 9

Conclusion

In this work, we addressed the problem of running multiple RkNN-queries at
a time, i.e. a RkNN join. For this purpose, we formally classified variants of
the RkNN join, including monochromatic and bichromatic scenarios as well
as self joins. Furthermore, we proposed algorithms for RkNN join queries
based on the well-known self and mutual pruning paradigms for single RkNN
queries. We have shown that, in several scenarios, classic algorithms for per-
forming single RkNN queries do not yield the expected performance, and
that our newly proposed algorithms usually lead to better results. In addi-
tion, according to our experiments, RkNN join algorithms based on the self
pruning paradigm show better results than algorithms following the mutual
pruning paradigm. Our experiments further indicate that not all scenarios
ask for using RkNN join algorithms. To summarize the contribution of our
experiments, we suggest different scenarios for RkNN query processing:

• If the database is relatively static and many RkNN queries are run
expecting low latency, preprocessing as used in [15, 60] is a useful choice
since self pruning is usually more selective than mutual pruning. This
avoids computing the kNN-spheres each time a query is performed as
done with our join algorithms.

• If the database is dynamic and RkNN queries are performed in a bulk,
our proposed join algorithms, especially the self pruning variant clearly
performs best. The technique is also preferable if an RkNN join of
intermediate query results has to be computed. Furthermore, our
self-pruning algorithm could be easily adapted to performing RkNN
joins when each of the objects in R has another value of k. For low-
dimensional data, such as 2D geo-spatial data, our mutual pruning
RkNN join algorithm is the matter of choice.

66 9. Conclusion

• If the database is highly dynamic and single RkNN-queries have to be
performed immediately, single RkNN queries based on mutual pruning
like TPL [64] are the method of choice. This is also the case where the
database is static but the self join of the whole set S cannot be justified
by a low number of RkNN queries.

Part III

Nearest Neighbor Queries on
Uncertain Spatio-Temporal

Data

Chapter 10

Introduction

In the following part of this thesis we shift our focus from similarity queries
on certain data to an uncertain setting, aiming at providing efficient solu-
tions for similarity search on uncertain spatio-temporal data. The challenges
in this context are manifold, necessitating the development of suitable query
algorithms and index structures. First, we have to address the combina-
tion of both spatial and temporal data dimensions. This problem is further
complicated by a second challenge, the uncertainty of data, which becomes
even more difficult in the context of temporal data. The combination of
this spatio-temporal and uncertain nature of data imposes a third research
challenge, namely defining query predicates, models and algorithms that cap-
ture the temporal dependencies of data during query processing, providing
accurate results to the user under uncertainty.

To illuminate the problem of temporal dependencies in the context of un-
certain spatio-temporal data, consider Figure 10.1 that shows a state space
of one-dimensional locations (y-axis) over time (x-axis). If we have infor-
mation on the spatial position of an object at a given point in time, this
knowledge also affects preceding and succeeding timesteps, at least in our
physical world. The object in Figure 10.1 is either in state A or B at time
1 (denoted by black circles, Figure 10.1a), but it is unknown where exactly
the object is. At time 2, we assume the position of the object to be un-
known, and at time 3, we assume that the object is in state C or D. Given
additional knowledge on the underlying state space (dashed lines), namely
which states can be reached from another state at a given timestep, we can
see that the object’s position depends on the assumption on its previous lo-
cation (Figure 10.1b): While it is generally possible that the object is either
in state C or D, given that we know that it was in state A previously, it
cannot be located in state D. Such restrictions on the motion patterns of
objects are inherent to spatio-temporal problems, for example, but not solely,

70 10. Introduction

Space

TimeABC
D

1 2 3
(a) Observations and
Transition Probabilites.

Space

TimeABC
D

1 2 3
(b) Merging Knowledge
from State and Transi-
tions.

Figure 10.1: Uncertainty in a Spatio-Temporal Context.

due to physical constraints: Real-world objects can only travel with limited
speed and therefore the spatial position of an object at consecutive points in
time is highly correlated. Therefore we are facing not only the problem that
the probability distribution of an object in the past affects the probability
distribution of an object in the future and vice versa, but also that the prob-
ability distribution in the future is conditioned to the objects’ state in the
past. This even holds for very simple uncertainty models such as the Markov
model. Therefore, during query processing we cannot simply consider each
timestep separately, as this would neglect such temporal dependencies.

The necessity of considering uncertainty during query evaluation origi-
nates from the physical limitations of the sensing devices or limitations of
the data collection process. Specifically, it is usually not possible to contin-
uously capture the position of an object for each point of time. In an indoor
tracking environment where the movement of a person is captured using static
RFID sensors, the position of the people in-between two successive tracking
events is not available ([80]). The same holds for geosocial network (GSN)
applications, where users have recently been enabled to publicly share trajec-
tories, such as bike routes1, tourist routes2 and GPS trajectories3. In many
applications, the frequency of data collection is decreased to save resources
such as battery power and wireless network traffic. Examples of trajectories
with a relatively low frequency can be found on Bikely. Furthermore, tradi-
tional check-in data of GSN users often shows a frequency high enough to
allow inference of a user’s position in between discrete check-ins. Incomplete
(location, time) data is also collected in mobile object tracking applications.
For example, in the T-Drive dataset ([81]) which consists of GPS-logs of

1http://www.bikely.com/
2http://www.everytrail.com/
3http://www.gpsxchange.com, http://www.gpsshare.com/

71

taxis in Beijing, the time between two successive GPS measurements ranges
from two seconds up to several minutes. In the GeoLife dataset ([82]), GPS
observations of mobile users are logged frequently, usually every 1-5 seconds
per point, while some observations still have a lower sampling rate. All these
datasets create a common challenge of interpolating the position of a user
in-between discrete observations. In-between these observations the exact
values are not explicitly stored in the database and are thus uncertain from
the database perspective.

The efficient management of spatio-temporal data is of great interest in
a plethora of application domains: from structural and environmental mon-
itoring and weather forecasting, through disaster/rescue management and
remediation, to Geographic Information Systems (GIS) and traffic control
and information systems.

In this work, we consider a database D of uncertain moving object tra-
jectories, where for each trajectory there is a set of observations for only
some of the history timestamps. Thus, the entire trajectory of an object is
described by a time-dependent random variable, i.e., a stochastic process.
Based on this definition of uncertain trajectories, we address the problems of
probabilistic nearest neighbor (PNN) queries and probabilistic reverse near-
est neighbor (PRNN) queries. Research results from this section have been
previously published in [13, 51, 52], and have also been included in [49, 50].
For an overview over the contributions of the author of this thesis to this
work we refer to Chapter 4.

Probabilistic Nearest Neighbor Queries Given a reference state or
trajectory q and a time interval T , we define probabilistic nearest neighbor
(PNN) query semantics, which are extensions of nearest neighbor queries
in trajectory databases [83, 84, 85, 86]. Specifically, a P∃NNQ (P∀NNQ)
query retrieves all objects in D, which have sufficiently high probability to
be the NN of q at one time (at the entire set of times) in T ; a probabilistic
continuous NN (PCNNQ) query finds for each object o ∈ D the time subsets
Ti of T , wherein o has high enough probability to be the NN of q at the entire
set of times in Ti. Note that to the best of our knowledge this is the first
approach that tackles the PNN query problem correctly in consideration of
Possible Worlds Semantics (PWS).

PNN queries find several applications in analyzing historical trajectory
data. For example, consider a geosocial network where users can publish their
current spatial position at any time by so-called check-ins. For a historical
event, users might want to find their nearest friends during this event, e.g.
to share pictures and experiences. As another application example, consider

72 10. Introduction

GPS-tracked taxi cars as given in the T-Drive dataset [81] where PNN queries
can be used for analysis tasks like the assessment of taxi-client assignment
procedures.

The main contributions of our work in the context of probabilistic nearest
neighbor queries on uncertain spatio-temporal data are as follows:

• The proposal of P∃NNQ, P∀NNQ and PCNNQ predicates aiming at
providing query results for uncertain spatio-temporal nearest neighbor
queries in accordance to PWS.

• A thorough theoretical complexity analysis for variants of probabilis-
tic NN query problems. Specifically we show that the proposed query
semantics are computationally difficult to solve and therefore approx-
imate solutions are mandatory to apply these technique in real-world
settings.

• A sampling-based approximate solution for all of the proposed PNN
problems based on Bayesian inference.

• A thorough experimental evaluation of the proposed concepts on real
and synthetic data.

Probabilistic Reverse Nearest Neighbor Queries Additionally we
address the problem of performing Probabilistic Reverse Nearest Neighbor
(PRNN) queries on uncertain spatio-temporal data by extending our research
results from PNN queries. Given a query q, a reverse nearest neighbor query
returns the objects in the database having q as one of its nearest neighbors.
Xu et al. [87] were the first researchers to address RNN queries on uncertain
spatio-temporal data under the Markov model and showed how to answer an
“interval reverse nearest neighbor query” [87]. However, as we will see later,
the solution presented in [87] does not consider possible worlds semantics.
In this work we fill this research gap by proposing algorithms to answer re-
verse nearest neighbour queries according to PWS. The contributions of this
work on probabilistic reverse nearest neighbor queries can be summarized as
follows:

• We introduce two query definitions for the reverse nearest neighbor
problem on uncertain trajectory data, the P∃RNNQ and P∀RNNQ
queries which are consistent with our previously defined P∃NNQ and
P∀NNQ queries.

• We demonstrate solutions to answer the queries we defined efficiently
and, most importantly, according to possible worlds semantics.

73

• We provide an extensive experimental evaluation of the proposed meth-
ods both on synthetic and real world datasets.

Structure of this Part Part III of this thesis is structured as follows.
First, in Chapter 11, we address the preliminaries of PNN and PRNN queries,
including a formal problem definition (Section 11.1) and an overview of re-
lated work (Section 11.2). The following Chapter 12 dives deeper into prob-
abilistic nearest neighbor queries. A complexity analysis, approximate solu-
tions and pruning techniques of the proposed query semantics are provided
in Sections 12.1-12.3. An extensive experimental evaluation of the proposed
techniques is presented in Section 12.4. Chapter 13 concentrates on reverse
nearest neighbor queries. Section 13.1 introduces algorithms for the queries
proposed in the problem definition. An extensive experimental evaluation
follows in Section 13.2. Chapter 14 concludes this part.

74 10. Introduction

Chapter 11

Preliminaries

11.1 Problem Definition

A spatio-temporal database D stores triples (oi, time, location), where oi
is a unique object identifier, time ∈ T is a point in time and location ∈
S is a position in space. Semantically, each such triple corresponds to an
observation that object oi has been seen at some location at some time. In
D, an object oi can be described by a function oi(t) : T→ S that maps each
point in time to a location in space; this function is called trajectory.

In this work, we assume a discrete time domain T = {0, . . . , n}. Thus,
a trajectory becomes a sequence, i.e., a function on a discrete and ordinal
scaled domain. Furthermore, we assume a discrete state space of possible
locations (states): S = {s1, ..., s|S|} ⊂ Rd, i.e., we use a finite alphabet of
possible locations in a d-dimensional space. The way of discretizing space is
application-dependent: for example, in traffic applications we may use road
crossings, in indoor tracking applications we may use the positions of RFID
trackers and rooms, and for free-space movement we may use a simple grid
or a random distribution of states for discretization. Figure 11.1a visualizes
such a randomly distributed state space with si ∈ S shown as blue dots.

11.1.1 Uncertain Trajectory Model

Let D be a database containing the trajectories of |D| uncertain moving
objects {o1, ..., o|D|}. For each object o in D we store a set of observations
Θo = {〈to1, θo1〉, 〈to2, θo2〉, . . . , 〈to|Θo|, θ

o
|Θo|〉} where toi ∈ T denotes the time and

θoi ∈ S the location of observation Θo
i . W.l.o.g. let to1 < to2 < . . . < to|Θo|. Note

that the location of an observation is assumed to be certain, while the location
of an object between two observations is uncertain. A certain trajectory of
a database object o is shown in Figure 11.1b where the (unknown) ground

76 11. Preliminaries

truth is visualized as green dots (the time dimension is not shown for the
sake of simplicity), and observations θi are visualized as white circles with
black boundary.

(a) State Space (b) Ground Truth (c) A-priori Transi-
tions

(d) State Probabilities (e) Transition Proba-
bilities

Figure 11.1: Model Visualization (best viewed in color)

According to [41], we can interpret the location of an uncertain moving
object o at time t as a realization of a random variable o(t). Given a time
interval [ts, te], the sequence of uncertain locations of an object is a family of

11.1 Problem Definition 77

correlated random variables, i.e., a stochastic process.
This definition allows us to assess the probability of a possible trajectory,

i.e., the realization of the corresponding stochastic process. In this work we
follow the approaches from [41, 40, 87] and employ the first-order Markov
chain model as a specific instance of a stochastic process. The state space
of the model is the spatial domain S. State transitions are defined over
the time domain T. In addition, the Markov chain model is based on the
assumption that the position o(t + 1) of an uncertain object o at time t + 1
only depends on the position o(t) of o at time t. Clearly, the assumption is
overly restrictive, as for example vehicles on a road network will never follow
a first-order Markov chain. Such vehicles generally follow a best path (e.g.
the shortest path or the path having the most beautiful landscape, etc.).
Nevertheless, such a simplified model can, as we will see in our experimental
evaluation, accurately model the set of possible trajectories that a vehicle
may have taken between two discrete observations. Theoretically, this high
accuracy can be explained by combining both observation information and
the Markov model into a new model.

The probability M o
ij(t) := P (o(t + 1) = sj|o(t) = si) is the transition

probability of a given object o from state si to state sj at a given time t.
Transition probabilities are stored in a matrix M o(t), called transition ma-
trix of object o at time t. In general, every object o might have a different
transition matrix, and the transition matrix of an object might vary over
time. We can imagine the transition probabilities of an uncertain object as
a (directed) graph, with weights on an edge between si and sj denoting the
probability of an object o transitioning from state si to state sj at a given
point in time, given it was previously in state si. Figure 11.1c visualizes
the transition probabilities of our example, with the thickness of an edge
denoting the probability of a state change.

Further, let ~so(t) = (s1, . . . , s|S|)
T be the distribution vector of a given

single object o at time t, where ~soi (t) = P (o(t) = si), i.e. each element of the
vector describes o’s probability of visiting the state si at time t. Without
any further knowledge (from observations) the distribution vector ~so(t + 1)
can be inferred from ~so(t) by applying the following formula: ~so(t + 1) =
M o(t)T · ~so(t).

The traditional Markov model [41] uses forward probabilities only. In Sec-
tion 12.2, we use a Bayesian inference approach, to condition this a-priori
Markov chain to an adapted a-posteriori Markov chain which also considers
all observations of an object. Figure 11.1d visualizes the state probabilities
~st of our running example considering both observations in the past and in
the future, and aggregating over all points in time t (always drawing the
maximum probability for a given state). In this visualization, larger dots

78 11. Preliminaries

represent higher probabilities for an object being located in a given state.
It is clearly visible that the states on the closest path between consecutive
observation have highest probability after integrating observations into the
a priori Markov model, while states further away from this closest path have
lower probabilities of being accessed. An additional aggregation of the tran-
sition probabilities of the same object, given all observations of the object,
is shown in Figure 11.1e. This a-posteriori model, visualized by its state and
transition probabilities, combines the information from the objects observa-
tions (Figure 11.1b) and the global a priori transition matrix (Figure 11.1c).

11.1.2 Nearest Neighbor Queries

In Chapter 12 of this work we consider three types of time-parameterized
nearest neighbor queries that take as input a certain reference state or tra-
jectory q and a set of timesteps T . All of the proposed query predicates,
i.e. P∀NNQ, P∃NNQ and PCNNQ, are inspired by corresponding nearest
neighbor semantics on certain trajectories, as defined in [83, 88, 86]. The
query definitions also follow the definition of probabilistic window queries
from [41]. Note that q can be both a state or a trajectory, since a query state
is simply a trivial query trajectory.

Definition 10 (P∃NN Query). A probabilistic ∃ nearest neighbor query re-
trieves all objects o ∈ D which have a sufficiently high probability to be the
nearest neighbor of q for at least one point of time t ∈ T , formally:

P∃NNQ(q,D, T, τ) = {o ∈ D : P∃NN(o, q,D, T) ≥ τ}

where

P∃NN(o, q,D, T) = P (∃t ∈ T : ∀o′ ∈ D\o : dist(q(t), o(t)) ≤ dist(q(t), o′(t)))

and dist : Rd×Rd → R a distance function, typically the Euclidean distance.

This definition is an extension of the spatio-temporal query proposed
in [83] to the case of uncertainty. Given the application for mining taxi
trajectories from the introduction, a P∃NNQ(q,D, T, τ) query returns all
taxis having a probability of at least τ of having been the closest cab to a
given query for at least one query timestep.

In addition to the P∃NNQ, we consider NN queries with the ∀ quantifier,
which have also been proposed in [83] for crisp trajectory data.

Definition 11 (P∀NN Query). A probabilistic ∀ nearest neighbor query re-
trieves all objects o ∈ D which have a sufficiently high probability (P∀NN)
to be the nearest neighbor of q for the entire set of timestamps T , formally:

P∀NNQ(q,D, T, τ) = {o ∈ D : P∀NN(o, q,D, T) ≥ τ}

11.1 Problem Definition 79

where

P∀NN(o, q,D, T) = P (∀t ∈ T : ∀o′ ∈ D\o : dist(q(t), o(t)) ≤ dist(q(t), o′(t)))

and dist : Rd×Rd → R a distance function, typically the Euclidean distance.

In the running taxi-tracking application P∀NNQ(q,D, T, τ) returns all
taxis having a probability of at least τ of having been the closest cab to the
query for all query timesteps. The main difference between Definition 10 and
Definition 11 is that a P∃NNQ(q,D, T, τ) requires a candidate object to be
the nearest neighbor of q for at least one point of time in T to qualify as a
result, while P∀NNQ(o, q,D, T) requires a candidate object to remain the
nearest neighbor for the whole duration of T .

In addition to these semantics for probabilistic nearest neighbor queries
we now introduce a continuous query type which intuitively extends the
spatio-temporal continuous nearest neighbor query [88, 86] to apply on un-
certain trajectories.

Definition 12 (PCNN Query). A probabilistic continuous nearest neighbor
query retrieves all objects o ∈ D together with the set of timestep sets {Ti}
where in each Ti the object has a sufficiently high probability to be always the
nearest neighbor of q(t), formally:

PCNNQ(q,D, T, τ) = {(o, Ti) : o ∈ D,Ti ⊆ T, P∀NN(o, q,D, Ti) ≥ τ}.

Analogously to the CNN query definition [88, 86], in order to reduce redun-
dant answers it makes sense to redefine the PCNN Query where we focus on
results that maximize |Ti|, formally:

PCNNQ(q,D, T, τ) =

{(o, Ti) : o ∈ D,Ti ⊆ T, P∀NN(o, q,D, Ti) ≥ τ

∧∀Tj ⊃ Ti : P∀NN(o, q,D, Tj) < τ}

Note that according to this definition, result sets Ti ⊆ T do not have to
be connected.

Example 1. To illustrate the three query types, consider the scenario shown
in Figure 11.2a consisting of a query trajectory and two uncertain database
objects D = {o1, o2} in a discretized space and time domain. For simplicity,
whenever an object has two alternatives for choosing a possible state transi-
tion, each transition is assumed to have a probability of 0.5. These probabili-
ties define the Markov chains of o1 and o2. Thus o1 has three possible trajecto-
ries and o2 has two possible trajectories, the probabilities of which are shown

80 11. Preliminaries

dist(si,q)

Time (t)
s1

1 2 3

s2
s3
s4

q

o2o1

(a) Uncertain Trajectories.

object trajectory P(tr)

o1 — tr1,1 = s2, s1, s1 0.5
o1 — tr1,2 = s2, s3, s1 0.25
o1 — tr1,3 = s2, s3, s3 0.25
o2 · · · tr2,1 = s3, s2, s2 0.5
o2 · · · tr2,2 = s3, s4, s4 0.5

(b) Possible Worlds.

Figure 11.2: Example Setup for PNN Queries

in Figure 11.2b. Using possible worlds semantics, any PNN query can naively
be computed by considering all six possible combinations (tr1,i, tr2,j), i ∈
{1, 2, 3}, j ∈ {1, 2}, called possible worlds, of possible trajectories of objects o1

and o2. The total probability of all possible worlds where o2 is closer to q than
o1 at any time, by definition, equals the probability P∃NN(o2, q,D, {1, 2, 3}).
For this example these possible worlds are (tr1,2, tr2,1) and (tr1,3, tr2,1). As-
suming object independence, P (tr1,i, tr2,j) of a possible world is given by
the product P (tr1,i) · P (tr2,j) yielding P∃NN(o2, q,D, {1, 2, 3}) = P (tr1,2)
·P (tr2,1)+ P (tr1,3) ·P (tr2,1) = 0.25 · 0.5 + 0.25 · 0.5 = 0.25. Accordingly the
probability P∀NN(o1, q,D, {1, 2, 3}) = 0.75 can be computed by the sum of
the probabilities P (tr1,1, tr2,1), P (tr1,1, tr2,2), P (tr1,2, tr2,2) and P (tr1,3, tr2,2)
of worlds where o1 is always closer to q than o2. A PCNNQ(q,D, {1, 2, 3}, 0.1)
will return the object o1 together with the interval {1,2,3} and o2 together with
the interval {2,3}, as in these intervals, the respective objects have a proba-
bility of at least 0.1 to be closest to q.

In this example, exact probabilities have been computed by explicit con-
sideration of all possible worlds. However, since the number of possible tra-
jectories grows exponentially large in the number of time transitions, and the
total number of possible worlds is furthermore exponential in the number of
objects, the challenge of this work is to find a more efficient approach to
approximate the same nearest neighbor probabilities without enumeration of
all possible worlds.

11.1.3 Probabilistic Reverse Nearest Neighbor Queries

In the following we also define two types of probabilistic reverse nearest neigh-
bor queries. These definitions conceptually follow the ones of probabilistic
nearest neighbor queries defined previously. Again we assume that the RNN
query takes as input a set of timestamps T and either a single state or a

11.1 Problem Definition 81

(certain) query trajectory q.

Definition 13 (P∃RNN Query). A probabilistic ∃ reverse nearest neigh-
bor query retrieves all objects o ∈ D having a sufficiently high probability
(P∃RNN) to be the reverse nearest neighbor of q for at least one point of
time t ∈ T , formally:

P∃RNNQ(q,D, T, τ) = {o ∈ D : P∃RNN(o, q,D, T) ≥ τ}

where

P∃RNN(o, q,D, T) = P (∃t ∈ T : ∀o′ ∈ D\o : dist(o(t), q(t)) ≤ dist(o(t), o′(t)))

and dist : Rd×Rd → R a distance function, typically the Euclidean distance.

This query returns all objects from the database having a probability
greater τ to have q as their probabilistic ∃ nearest neighbor. In addition to
this ∃ query, we consider RNN queries with the ∀ quantifier:

Definition 14 (P∀RNN Query). A probabilistic ∀ reverse nearest neigh-
bor query retrieves all objects o ∈ D having a sufficiently high probability
(P∀RNN) to be the reverse nearest neighbor of q for the entire set of times-
tamps T , formally:

P∀RNNQ(q,D, T, τ) = {o ∈ D : P∀RNN(o, q,D, T) ≥ τ}

where

P∀RNN(o, q,D, T) = P (∀t ∈ T : ∀o′ ∈ D \ o : d(o(t), q(t)) ≤ d(o(t), o′(t)))

and dist : Rd×Rd → R a distance function, typically the Euclidean distance.

The above definition returns all objects from the database which have a
probability greater τ to have q as their probabilistic ∀ nearest neighbor.

Example 2. To illustrate the differences between the proposed RkNN query
predicates consider the example in Figure 11.3. Here the query consists of
a static query point and the two objects o1 and o2 each have 2 possible tra-
jectories. o1 (solid line) follows the lower trajectory (tr1,1) with a probability
of 0.4 and the upper trajectory (tr1,2) with a probability of 0.6. o2 (dotted
line) follows trajectory tr2,1 with a probability of 0.2 and trajectory tr2,2 with
a probability of 0.8. For query object q and the query interval T = [2, 3], we
can compute the probability for each object to be probabilistic reverse nearest
neighbor of q. Specifically for o1 the probability P∃RNN(o1, q,D, T) = 0.4
since whenever o1 follows tr1,1 then at least at t = 3, o1 is RNN of q. The
probability for P∀RNN(o1, q,D, T) in contrast is 0.32 since it has to hold

82 11. Preliminaries

dist(si,q)

Time (t)
s1

1 2 3

s2
s3
s4

q

s5
s6
s7

o2

o1

(a) Uncertain Trajectories.

object trajectory P(tr)

o1 — tr1,1 = s4, s2, s1 0.4
o1 — tr1,2 = s4, s7, s7 0.6
o2 · · · tr2,1 = s3, s3, s5 0.2
o2 · · · tr2,2 = s3, s5, s3 0.8

(b) Possible Worlds.

Figure 11.3: Example Setup for PRNN Queries

that o1 follows tr1,1 (this event has a probability of 0.4) and o2 has to fol-
low tr2,2 (this event has a probability of 0.8). Since both events are mutually
independent we can just multiply the probabilities to obtain the final result
probability. Regarding object o2 we can find no possible world (combination
of possible trajectories of the two objects) where o2 is always (T = [2, 3])
RNN, thus P∀RNN(o2, q,D, T) = 0. However P∃RNN(o2, q,D, T) = 0.6
since whenever o1 follows tr1,2 then o2 is RNN either at t = 2 or at t = 3.

An important observation is that it is not possible to compute these
probabilities by just considering the snapshot RNN probabilities for each
query time stamp individually. For example the probability for o2 to be
RNN at time t = 2 is 0.12 (the possible world where objects follow tr1,2 and
tr2,1) and the probability at t = 3 is 0.48 (the possible world where objects
follow tr1,2 and tr2,2). However these events are not mutually independent
and thus we cannot just multiply the probabilities to obtain the probability
that object o2 is RNN at both points of time (note that the true probability
of this event is P∀RNN(o2, q,D, T) = 0).

11.2 Related Work

Within the last decade, a considerable amount of research effort has been put
into query processing in trajectory databases (e.g. [86, 89, 90, 91, 84]). In
these works, the trajectories have been assumed to be certain, by employing
linear [86] or more complex [89] types of interpolation to supplement sparse
observational data. However, employing linear interpolation between con-
secutive observations might create impossible patterns of movement, such as

11.2 Related Work 83

cars travelling through lakes or similar impossible-to-cross terrain. Further-
more, treating the data as uncertain and answering probabilistic queries over
them offers better insights1.

Uncertain Trajectory Modeling. In the past, several models of un-
certainty paired with appropriate query evaluation techniques have been pro-
posed for moving object trajectories (e.g. [92, 93, 14, 41]). Many of these
techniques aim at providing conservative bounds for the positions of uncer-
tain objects. This can be achieved by employing geometric objects such as
cylinders [93, 14] or beads [94] as trajectory approximations. While such
approaches allow to answer queries such as “is it possible for object o to in-
tersect a query window q”, they are not able to assign probabilities to these
events conforming to possible worlds semantics.

Other approaches use independent probability density functions (pdf) at
each point of time to model the uncertain positions of an object [95, 14, 92].
However, as shown in [41], this may produce wrong results (not in accordance
with possible world semantics) for queries referring to a time interval because
they ignore the temporal dependence between consecutive object positions in
time. To capture such dependencies, recent approaches model the uncertain
movement of objects based on stochastic processes. In particular, in [96, 41,
80, 87], trajectories are modeled based on Markov chains. This approach
permits correct consideration of possible world semantics in the trajectory
domain.

Nearest Neighbor Queries. In the context of certain trajectory data-
bases there is not a common definition of nearest neighbor queries, but rather
a set of different interpretations. In [83], given a query trajectory (or spatial
point) q and a time interval T , a NN query returns either the trajectory from
the database which is closest to q during T or for each t ∈ T the trajectory
which is closest to q. The latter problem has also been addressed in [84].
Similarly, in [97], all trajectories which are nearest neighbors to q for at least
one point of time t are computed.

Other approaches consider continuous nearest neighbor (CNN) semantics,
definition of this query varies between publications [85, 88, 86]. CNN have
also been addressed for objects with uncertain velocity and direction in [98];
the solutions proposed only find possible results, but not result probabilities.
Solutions for road network data were also proposed for the case where the
velocities of objects are unknown [99]. Furthermore, [14, 100] extended the
problem of continuous kNN queries (on historical search) to an uncertain
setting, serving as important preliminary work, however, based on a model
which is not capable to return answers according to possible world semantics.

1http://infoblog.stanford.edu/2008/07/why-uncertainty-in-data-is-great-posted.html

84 11. Preliminaries

Reverse Nearest Neighbour Queries. For an overview over gen-
eral research on (certain) reverse nearest neighbor queries we refer to Section
6.2 in Part II. Recently, probabilistic reverse nearest neighbor queries have
gained significant attention [101, 102, 103]. The solution proposed by Chen et
al. [101] aims at processing PRNN queries on uncertain objects represented
by continuous probability density functions (PDFs). In contrast, Cheema et
al. [102] provided solutions for the discrete case. Regarding reverse nearest
neighbor processing using the Markov model, to the best of our knowledge,
there exists only one work so far which addresses interval reverse nearest
neighbor queries [87]. The approach basically computes for each point of
time in the query interval separately the probability for each object o ∈ D
to be the RNN to the query object. Then for each object o, the number of
times where o has the highest probability to be RNN is counted. The object
with the highest count is returned. Upon investigation, this approach has
certain drawbacks. First, the proposed algorithm is not in accordance with
possible worlds semantics, since successive points of time are considered in-
dependently. Second, the paper does not show how to incorporate additional
observations (besides the first appearance of an object). In our research
we aim filling this research gap and solving the two said issues by propos-
ing algorithms following possible world semantics that allow incorporating
observations.

Chapter 12

Nearest Neighbor Queries

12.1 Theoretical Analysis

This section theoretically studies the runtime complexity of the P∃NNQ,
P∀NNQ and PCNNQ queries.

12.1.1 The P∃NN Query

In a P∃NNQ query, for any candidate object o ∈ D, Definition 10 requires
the probability P∃NN(o, q,D, T). However, the following lemma shows that
this probability is hard to compute.

Lemma 1. The computation of P∃NN(o, q,D, T) is NP-hard.

Proof. P∃NN(o, q,D, T) is equal to 1−P (¬∃t ∈ T,∀o′ ∈ D\o : d(q(t), o(t)) ≤
d(q(t), o′(t))). We will show that deciding if there exists a possible world for
which the expression:

¬∃t ∈ T,∀o′ ∈ D \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)) (12.1)

is satisfied is an NP-hard problem. (Note that this is a much easier problem
than computing the actual probability.) Specifically, we will reduce the well-
known NP-hard k-SAT problem to the problem of deciding on the existence
of a possible world for which Expression 12.1 holds.

For this purpose, we provide a mapping to convert a Boolean formula in
conjunctive normal form to a Markov chain modeling the decision problem
of Expression 12.1 in polynomial time. Thus, if the decision problem could
be computed in PTIME, then k-SAT could also be solved in PTIME, which
would only be possible if P=NP. A k-SAT expression E is based on a set of
Boolean variables X = {x1, x2, . . . , xn}. The literal li of a variable xi is either

86 12. Nearest Neighbor Queries

dist(si,q)

Time (t)
s1

1 2 3
s2
s3
s4

q
o x1 x2

x4x3
Figure 12.1: An example instance of our mapping of the 3-SAT problem to
a set of Markov chains.

xi or ¬xi and a clause c =
∨
xi∈C

li is a disjunction of literals where C ⊆ X and

|C| < k. Then E is defined as a conjunction of clauses: E = c1∧c2∧ . . .∧cm.

For our mapping, we will consider a simplified version of the P∃NN prob-
lem, specifically (1) q is a certain point, (2) o is a certain point and (3) the
state space S of possible locations only includes 4 states. As illustrated in
Figure 12.1, compared to o, states s1 and s2 are closer to q and states s3 and
s4 are further from q.1 Therefore, if an uncertain object is at states s1 or s2

then o is not the nearest neighbor of q.

In our mapping, each variable xi ∈ X is equivalent to one uncertain object
o′i ∈ D \ o. Furthermore each disjunctive clause cj is interpreted as an event
happening at time t = j, i.e., the event c1 happens at time t = 1, c2 happens
at time t = 2 etc. Each clause cj can be seen as a disjunctive event that at
least one object o′i at time t = j is closer to q than o (in this case, cj is true).
Therefore, the conjunction of all these events, i.e. expression E =

∧
1≤j≤m

cj,

becomes true if the set of variables is chosen in a way that at each point in
time, compared to o, at least one object is closer to q; this directly represents
Expression 12.1.

Let lji be the literal of variable xi in clause cj. Based on the above
discussion, we are able to construct for each object o′i two possible trajectories
(worlds). The first one, based on the assumption that xi is true, transitions
between states s2 (if lji = true) and s4 (if lji = false). The second one, based
on the assumption that xi is set to false, transitions between states s1 (if lji
= true) and s3 (if lji = false). Since these two trajectories can never be in the
same state it is straightforward to construct a time-inhomogeneous Markov

1The states of o and q are omitted for the sake of simplicity.

12.1 Theoretical Analysis 87

chain M o(t) for each object o′i and each timestamp j. This construction is,
however, not complete: in k-SAT, not every variable xi (corresponding to
o′i) is contained in each term cj which does not correspond to our setting,
since an uncertain object has to be somewhere at each point in time. The
interpretation of an absent variable in a given clause is simply that object
o′i is definitely not closer to q than o at time t (independent of its value xi),
we therefore can easily integrate this case by making sure that object o′i is
definitely further away from q than o, i.e. by moving o′i into the states s3 or
s4 depending on the initial value of xi.

After the Markov chains for each uncertain object o′i in D have been
determined, we would just have to traverse them and compute the probability
P∃NN(o, q,D, T). If this probability is < 1, there would exist a solution to
the corresponding k-SAT formula. However it is not possible to achieve this
efficiently in the general case as long as P 6= NP . Therefore computing
P∃NN in subexponential time is impossible.

Example: Consider a set of Boolean variables X = {x1, . . . , x4} and the
following formula:

E = (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2)

Therefore, we have

c1 = (¬x1 ∨ x2 ∨ x3), c2 = (x2 ∨ ¬x3 ∨ x4) and c3 = (x1 ∨ ¬x2)

By employing the mapping discussed above, we get the four inhomogeneous
Markov chains illustrated in Figure 12.1. For instance, under the condition
that x1 is set to true, the value of the literal ¬x1 is false at t = 1 (in clause
c1) such that o′1 starts in the state s4. On the other hand, if x1 is set to
false, then o′1 starts in the state s1.

In the second clause c2, since x1 6∈ C2, the position of o′1 must not affect
the result. Therefore, for both cases x1 = false and x1 = true, o′1 must be
behind o. In the last clause c3, if x1 = true the object moves to state s2. On
the other hand, if x1 = false, the object moves to state s3.

12.1.2 The P∀NN Query

In the following section we address the complexity of the P∀NN query. In
this context we provide several insights. First, we show that computing the
probability that an object is closer to the query than another uncertain object
can be computed efficiently in sub-exponential time. To analyze the general
case of more than two objects, we concentrate on a specific class of algorithms

88 12. Nearest Neighbor Queries

that aims at integrating dominance observations into the Markov model of a
given object. By integrating these dominance observations, the set of possible
worlds of the object is reduced to those that have not yet been pruned by
another object. We show that the adaption of transition matrices of the
considered object cannot ba achieved without losing the Markov property,
resulting in exponential runtimes, as the joint Markov chain of a set of objects
has a size exponential in the number of objects considered. The following
proof is an extension of the proof from our paper [13] (and the accompanying
technical report) and has been derived from these publications independently
of [50]. Before diving deeper into the topic, let us first recap three very basic
general lemmas that allow working with conditional probabilities; the first
simple lemma extends the Bayes Theorem:

Lemma 2 (Conditional Bayes (CB)).

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)

Proof. We have

P (A ∧B ∧ C) = P (C)P (B|C)P (A|B,C)

and
P (A ∧B ∧ C) = P (C)P (A|C)P (B|A,C)

hence
P (C)P (A|C)P (B|A,C) = P (C)P (B|C)P (A|B,C)

division by P (C) and P (B|C) yields the proof of Lemma 2 (note that both
of these probabilities have to be greater than zero).

The second lemma extends the law of conditional probability:

Lemma 3 (Conditioned Conditional Probability (CCP)).

P (A|B,C) ∗ P (B|C) = P (A ∧B|C)

Proof. From the left hand side of the equation we get

P (A|B,C) ∗ P (B|C)
CP
=

P (A ∧B ∧ C)

P (B ∧ C)
∗ P (B ∧ C)

P (C)
=
P (A ∧B ∧ C)

P (C)

From the right hand side we get

P (A ∧B|C)
CP
=

P (A ∧B ∧ C)

P (C)

It follows that the above statement holds (note that P (C) and P (B ∧C)
must be greater than zero).

12.1 Theoretical Analysis 89

Lemma 4 (Conditional Total Probability (CTP)).

P (A|B) =
∑
j

P (A|B,Cj)P (Cj|B)

Proof.

P (A|B) =
P (A ∧B)

P (B)
=

∑
j

P (A ∧B|Cj)P (Cj)

P (B)
=

∑
j

P (A ∧B ∧ Cj)

P (B)

CP
=

∑
j

P (A|B,Cj)P (B ∧ Cj)

P (B)
=

∑
j

P (A|B,Cj)P (Cj|B)P (B)

P (B)

=
∑
j

P (A|B,Cj)P (Cj|B)

(P (B) and P (B ∧ Cj) must be greater than zero)

12.1.2.1 Dominance: Two-Object Case

Let o ≺Tq oa denote the random predicate that is true iff object o is closer to
q than object oa ∈ D during the query time T = [tstart, tend], i.e. ∀t ∈ T :
dist(o(t), q(t)) ≤ dist(oa(t), q(t)). If o ≺Tq oa holds, we say that o dominates
oa with respect to q during T . If the parameters q and T are clear from
the context, we simply say that o dominates oa. This section addresses
the calculation of the single object probability P∀NN(o, q, {oa}, T). This
probability can be rewritten as P (o ≺Tq oa|A,Ω). For our proof, the following
information is given:

1. The transition probabilities of o conditioned to an arbitrary condition
Ω, i.e.

P (o(t) = sj|o(t− 1) = si,Ω)

2. The transition probabilities of oa conditioned to an arbitrary condition
A, i.e.

P (oa(t) = sj|oa(t− 1) = si,A)

3. the initial distribution of o (oa) given the condition Ω (A), i.e.

P (o(t0) = si|Ω) and P (oa(t0) = si|A)

90 12. Nearest Neighbor Queries

4. The condition Ω is independent to oa and the condition A is indepen-
dent to o. A,Ω can be an arbitrary condition, e.g. observations of an
object.

5. Both objects fulfill the Markov property.

6. Both objects are independent of each other.

Lemma 5. Given Ξ = Ω,A the probability P (o ≺Tq oa|Ξ) that o dominates
oa can be computed in PTIME.

Proof. We will show this inductively. Recall that we aim at computing

P∀NN(o, q, {oa}, T) = P (∀t∈T : dist(o(t), q(t)) ≤ dist(oa(t), q(t)))
Def.
= P (o ≺Tq

oa).
Induction Basis. Let |T | = 1, i.e. we want to compute P (o ≺Tq oa|Ξ)

only for time t0. Then we have

P (o ≺Tq oa|Ξ) = P (d(o(t), q(t)) ≤ d(oa(t), q(t))|Ξ)

CTP.
=

∑
si,sj ,sq

P (o ≺Tq oa|o(t0) = si, oa(t0) = sj, q(t0) = sq,Ξ)

∗P (o(t0) = si ∧ oa(t0) = sj ∧ q(t0) = sq|Ξ)

There is only a single state possible for q(t0) since q is a certain trajectory.
Because the query is certain, we now only consider the case where q(t0) = sq,
the remaining probabilities are zero.∑

si,sj

P (o ≺Tq oa|o(t0) = si, oa(t0) = sj, q(t0) = sq,Ξ)

∗P (o(t0) = si ∧ oa(t0) = sj ∧ true|Ξ)

=
∑
si,sj

P (o ≺Tq oa|o(t0) = si, oa(t0) = sj, q(t0) = sq,Ξ)

∗P (o(t0) = si ∧ oa(t0) = sj|Ξ)

The second factor can be split up by employing the independence assump-
tions of o and oa:

P (A ∧B|C,D)
Ind.A,B

= P (A|C,D) ∗ P (B|C,D)
Ind.A,D/B,C

= P (A|C) ∗ P (B|D)

By employing the independence of both objects we get

=
∑
si,sj

P (o ≺Tq oa|o(t0) = si, oa(t0) = sj,Ω,A)P (o(t0) = si|Ω)P (oa(t0) = sj|A)

12.1 Theoretical Analysis 91

Further, the dominance property is certain if the state of both objects
and the query is given (it is independent from A and Ω). We thus get∑

si,sj

P (o ≺Tq oa|o(t0) = si, oa(t0) = sj, q(t0) = sq)

∗P (o(t0) = si|Ω)P (oa(t0) = sj|A)

Now the first expression is always 1 or 0 given the current state of o and oa.
We can store this simply in a mask matrix C(t) with Cij(t) set to one if o
is closer to q than oa at time t. The above expression can be rewritten as
~so(t0)·~soa(t0)T •C(t0), with • denoting the element-wise multiplication of two
matrices of equal size. As a result, the runtime complexity of this induction
base is O(|S|2). Furthermore note that the above is, due to Lemma 3, also
equivalent to ∑

si,sj

P (o ≺Tq oa ∧ o(t0) = si ∧ oa(t0) = sj|Ξ)

Inductive Step. Let P (o ≺[t0,tn]
q oa∧o(tn) = si∧oa(tn) = sj|Ξ) be given

(induction basis). We now aim at computing P (o ≺[t0,tn+1]
q oa ∧ o(tn+1) =

si ∧ oa(tn+1) = sj|Ξ). As the position of q is already given by the dominance
predicate, we can add it redundantly (its probability is always 1 as q is a
certain trajectory):

= P (o ≺[t0,tn+1]
q oa ∧ o(tn+1) = si ∧ oa(tn+1) = sj ∧ q(tn+1) = sq1|Ξ)

CCP
=

P (o ≺{tn+1}
q oa|o(tn+1) = si, oa(tn+1) = sj, q(tn+1) = sq1, o ≺[t0,tn]

q oa,Ξ)

∗P (o ≺[t0,tn]
q oa ∧ o(tn+1) = si ∧ oa(tn+1) = sj ∧ q(tn+1) = sq1|Ξ)

Note that the first probability is only defined in the case where the second
is greater than zero; this is however not a limitation as during the execu-
tion of the algorithm we will have to compute the second probability first
nonetheless. In the case where the first probability is undefined (and the
second probability is zero), the whole probability is actually zero which can
be directly seen from the left-hand side of the equation. If the first factor
is defined, it equals the probabilities Cij(tn+1); it is independent of domi-
nance in previous timesteps and Ξ if the positions of all objects are fixed. To
compute the second factor, we first drop the trivial predicate q(tn+1) = sq1
(which is always true) and then apply the law of total probability:

Cij(tn+1) ∗
∑

sk,sl,b∈B

(P (o ≺[t0,tn]
q oa ∧ o(tn+1) = si ∧ oa(tn+1) = sj| . . .

92 12. Nearest Neighbor Queries

. . . |o(tn) = sk, oa(tn) = sl,Ξ, (o ≺[t0,tn]
q oa) = b)

∗P (o ≺[t0,tn]
q oa = b ∧ o(t) = sk ∧ oa(t) = sl|Ξ)

If b = false we have a contradiction in the first factor of the sum and thus
the resulting probability is 0, therefore we have, since there are only two
Boolean values:

Cij(tn+1)

∗
∑
sk,sl

P (o(tn+1) = si ∧ oa(tn+1) = sj|o(tn) = sk, oa(tn) = sl, o ≺[t0,tn]
q oa,Ξ)

∗P (o ≺[t0,tn]
q oa ∧ o(t) = sk ∧ oa(t) = sl|Ξ))

For the first factor (the joint transition probability) without additional

conditions o ≺[t0,tn]
q oa, the Markov property holds. This follows directly from

the independence of the two objects o and oa. As a result, we can discard the
past, i.e. o ≺[t0,tn−1]

q oa. We further can discard o ≺[tn,tn]
q oa, because given

the exact state of o and oa, this condition does not provide any additional
information. Hence we get

Cij(tn+1) ∗
∑
sk,sl

P (o(tn+1) = si ∧ oa(tn+1) = sj|o(tn) = sk, oa(tn) = sl,Ξ)

∗P (o ≺[t0,tn]
q oa ∧ o(t) = sk ∧ oa(t) = sl|Ξ))

Applying the property of independence between o and oa, we get:

Cij(tn+1) ∗
∑
sk,sl

P (o(tn+1) = si|o(tn) = sk,Ω)P (oa(tn+1) = sj|oa(tn) = sl,A)

∗P (o ≺[t0,tn]
q oa ∧ o(t) = sk ∧ oa(t) = sl|Ξ))

To summarize, this corresponds to the probability P (o ≺[t0,tn+1]
q oa ∧

o(tn+1) = si ∧ oa(tn+1) = sj|Ξ).
By employing the law of total probability once again, we can compute

P (o ≺[t0,tn+1]
q oa|Ξ) from these probabilities, summing over all possible states

si and sj
Clearly, the complexity of this lemma is polynomial. For each point in

time (t), for each state of oa and o, we have to compute the above probability.
Computing a single probability has quadratic |S|2 complexity. Computing
all |S|2 probabilities has therefore complexity |S|4. Therefore we get the
complexity O(t ∗ |S|4) for the two-object case.

12.1 Theoretical Analysis 93

12.1.2.2 Dominance: Many-Object Case

Given that the dominance probabilities can be computed in polynomial time
in the case of two uncertain objects and a (certain) query, the question is
now if such dominance probabilities can also be computed in the case of
non-trivial databases containing more than two objects. In our investiga-
tion we concentrate on a class of algorithms that aims at integrating the
dominance of a competing object into the model of the considered object:
possible worlds where an object is further away from the query than another
object are pruned from the model, adapting the object’s transition matrix to
dominance observations. These dominance observations are similar to spatio-
temporal observations: Spatio-temporal observations prune possible worlds
of an object that are not in accordance to an observation at a given point
in time, and can be integrated into a model efficiently – we will address this
case in the next chapter. However, dominance observations arise from the in-
teraction of multiple uncertain objects, making the problem computationally
difficult. To demonstrate the basic idea of such algorithms integrating obser-
vations into a model, let us first show that given that we could integrate such
observations into a model, we could compute nearest neighbor probabilities
efficiently; this proof is straightforward:

Lemma 6. Given that a model (Mposterior
i,j (t)) = P (o(t + 1) = si|o(t) =

sj, o ≺Tq oa,Ω,A) can be computed in PTIME, the probability P∀NN(o, q,D, T)
can be computed in PTIME.

Proof. First let us note that, following the law of conditional probability, we
have

P∀NN(o, q,D, T) = P (∀oi∈D : o ≺Tq oi) = P (
∧
oi∈D

o ≺Tq oi)

=
∏

1≤a≤D

P (o ≺Tq oa|
∧
j<a

o ≺Tq oj)

Given that, the theorem can be shown inductively.
Induction Base. Given an object o1, we have to compute P (o ≺Tq

o1|A,Ω) which can be computed directly by employing Lemma 5. To allow
the inductive step, we further compute P (o(t) = si|o(t− 1) = sj,A,Ω, o ≺Tq
o1), which is given in the theorem. For the inductive step, we set Ω1 :=
A,Ω, o ≺Tq o1 and note that Ω1 is independent of the remaining objects, that
have not yet been included into probability calculation.

Inductive Step. In the inductive step we assume P (o(t) = si|o(t− 1) =
sj,Ω,

∧
i≤n(o ≺Tq oi∧Ai)) = P (o(t) = si|o(t−1) = sj,Ωn) as given. The goal

is to compute P (o ≺Tq on+1|An,Ωn). This probability can be easily computed
by employing Lemma 5.

94 12. Nearest Neighbor Queries

12.1.2.3 Violation of the Markov Property.

Lemma 7. Let o and oa be uncertain spatio-temporal objects. Models result-
ing from adapting the Markov model of o to dominance observations violate
the Markov property.

Proof. The idea of the model adaption is to define a joint stochastic process
with transition probabilities

P (ω(t) = σi|ω(t− 1) = σj,A,Ω)

= P (o(t) = si ∧ oa(t) = sj|o(t− 1) = sk, oa(t− 1) = sl,A,Ω)

and an initial state

P (ω(t0) = σi,A,Ω) = P (o(t0) = si ∧ oa(t0) = sj|A,Ω)

The goal is to incorporate dominance observations into this joint stochas-
tic process and then reduce this joint process to a stochastic process only
modelling the movement of o. If we would not reduce the process after in-
corporating observations, we would be exponential in |D|, resulting in an
exponential algorithm. If a solution for model adaption would be correct,
the adapted model of o would have to fulfill the Markov property, i.e.

P (o(t) = si|o(t− 1) = sk, o ≺Tq oa,A,Ω)

= P (o(t) = si|o(t− 1) = sk, . . . , o(t− n) = sxt−n , o ≺Tq oa,A,Ω)

Figure 12.2 illustrates the inequality of these two cases. The example shows
two uncertain objects o (blue) and oa (red), their transition probabilities and
the set of possible worlds. In the transparent and strike-through worlds, o
does not dominate oa because o is in a higher state than oa. Therefore, we
have P (o ≺Tq oa) = 0.5. We aim at calculating the dominance for the whole
time interval T = [t− 3, t]

Now we compute both

P (o(t) = 0|o(t− 1) = 0, o ≺Tq oa) =
P (o(t) = 0 ∧ o(t− 1) = 0 ∧ o ≺Tq oa)

P (o(t− 1) = 0 ∧ o ≺Tq oa))

and
P (o(t) = 0|o(t− 1) = 0, . . . , o(t− 3) = 0, o ≺Tq oa)

=
P (o(t) = 0 ∧ o(t− 1) = 0 ∧ . . . ∧ o(t− 3) = 0 ∧ o ≺Tq oa)
P (o(t− 1) = 0 ∧ o(t− 2) = 0 ∧ o(t− 3) = 0 ∧ o ≺Tq oa))

12.1 Theoretical Analysis 95

1.0

1.0

1.0 0.5

0.5
1.0

1.0

1.01.0

1.0

1.0

0

1
1.0 1.0 0.5

1.0

1.0
1.0

1.0 1.0 0.5

1.0
1.0

1.0

1.0

1.0

0.5

1.0

1.0

1.0
1.0

1.0
0.5

1.0

1.0

1.0

1.0

1.0 0.5

1.0

1.0
1.0 1.0

1.0 0.51.0

1.0

1.0

1.0 1.0

0.5

1.0

1.0

1.0 1.0 1.0
0.51.0

1.0

1.0

0 .5 0 . 5

0.25

0.25

0.25

0.25

0 . 1 2 5 0 . 1 2 5

0 . 1 2 5 0 . 1 2 5

0 . 1 2 5 0 . 1 2 5

0 . 1 2 5 0 . 1 2 5

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

A B

a

b

c

d

Figure 12.2: P∀NN: Violation of the Markov assumption

The probabilities in the fractions can be easily computed by summing the
probabilities of possible worlds for which the conditions hold. We get:

P (o(t) = 0 ∧ o(t− 1) = 0 ∧ o ≺Tq oa) = 0.375 (Aa, Ac, Ba)

P (o(t− 1) = 0 ∧ o ≺Tq oa) = 0.5 (Aa, Ac, Ba, Bd)

resulting in P (o(t) = 0|o(t−1) = 0, o ≺Tq oa) = 0.75. When considering more
states in the past, we get the following probabilities:

P (o(t) = 0 ∧ o(t− 1) = 0 ∧ . . . ∧ o(t− 3) = 0 ∧ o ≺ oa) = 0.25 (Aa, Ba)

P (o(t−1) = 0∧P (o(t−2) = 0∧o∧o(t−3) = 0 ≺ oa) = 0.375 (Aa, Ba, Bd)

Thus we get a probability of 0.66. This shows that the Markov assumption
does not hold any more if we incorporate dominance observations into the
model of o.

12.1.3 The PCNN Query

The traditional CNN query [88, 86], retrieves the nearest neighbor of every
point on a given query trajectory in a time interval T . This basic definition
usually returns m << |T | time intervals together having the same nearest
neighbor. The main issue when considering uncertain trajectories and ex-
tending the query definition is the possibly large number of results due to
highly overlapping and alternating result intervals. In particular, considering

96 12. Nearest Neighbor Queries

Definition 12, a PCNN result may have an exponential number of elements
when τ becomes small. This is because in the worst case each Ti ⊆ T can be
associated with an object o for which the probability P∀NN(o, q,D, Ti) ≥ τ ,
i.e., 2|T | different Ti’s occur in the result set.

To alleviate (but not solve) this issue, in the following we propose a
technique based on Apriori pattern mining to return the subsets of T that
have a probability greater than τ . This algorithm requires to compute a
P∀NN probability in each validation step; we assume that this is achieved
by employing the sampling approach proposed in Section 12.2. Since each
subset of T may have a probability greater than τ (especially when τ is chosen
too small), a worst-case of O(2|T |) validations may have to be performed.

Algorithm. Algorithm 5 shows how to compute, for a query trajectory
q, a time interval T , a probability threshold τ , and an uncertain trajectory
o ∈ D all Ti ⊆ T for which o is the nearest neighbor to q at all timestamps
in Ti with probability of at least τ , and the corresponding probabilities.

Algorithm 5 PCτNN(q, o, D, T, τ)

1: L1 = {({t}, P)|t ∈ T ∧ P = P∀NN(o, q,D \ {o}, {t}) ∧ P ≥ τ}
2: for κ = 2;Lκ−1 6= ∅;κ+ + do
3: Xκ = {Tκ ⊆ T ||Tκ| = κ ∧ ∀T ′κ−1 ⊂ Tκ∃(T ′κ−1, P) ∈ Lκ−1}
4: Lκ = {(Tκ, P)|Tκ ∈ Xκ ∧ P = P∀NN(o, q,D \ {o}, Tκ) ≥ τ}
5: end for
6: return

⋃
κ Lκ

We take advantage of the anti-monotonicity property that for a Ti to
qualify as a result of the PCNNQ query, all proper subsets of Ti must also
satisfy this query. In other words if o is the P∀NN of q in Ti with probability
at least τ , then for all Tj ⊂ Ti o must be the P∀NN of q in Tj with probability
at least τ . Exploiting this property, we adapt the Apriori pattern-mining
approach from [104] to solve the problem as follows. We start by computing
the probabilities of all single points of time to be query results (line 1).
Then, we iteratively consider the set Xκ of all timestamp sets with κ points
of time by extending timestamp sets Tκ−1 with an additional point of time
t ∈ T \Tκ−1, such that all T ′κ−1 ⊂ Tκ have qualified at the previous iteration,
i.e., we have P∀NN(o, q,D \ {o}, T ′κ−1)) ≥ τ (line 3).

The P∀NN probability is monotonically decreasing with the number of
points in time considered, i.e. if Tκ ⊂ Tκ+1 there is P∀NN(o, q,D\{o}, Tκ) ≥
P∀NN(o, q,D \ {o}, Tκ+1). Therefore we do not have to further consider the
set of points of time Tκ that do not qualify for the next iterations during the
iterative construction of sets of time points. Based on the sets of timesteps
Tκ constructed in each iteration we compute P∀NN(o, q,D \ {o}, Tκ) to

12.2 Sampling Possible Trajectories 97

Figure 12.3: Traditional MC-Sampling.

build the set of results of length κ (line 4) that are finally collected and
reported as result in line 6. The basic algorithm can be sped up by employ-
ing the property that given P∀NN(o, q,D \ {o}, T1) = 1 the probability of
P∀NN(o, q,D \ {o}, T1 ∪ T2) = P∀NN(o, q,D \ {o}, T2).

Based on Algorithm 5 it is possible to define a straightforward algo-
rithm for processing PCNNQ queries (by considering each object o′ from
the database). Again this approach can be improved by the use of an appro-
priate index-structure (cf. Section 12.3).

12.2 Sampling Possible Trajectories

Based on the discussion in the previous sections, it is clear that answering
probabilistic queries over uncertain trajectory databases has high run-time
cost. Therefore, like previous work [105], we now study sampling-based ap-
proximate solutions to improve query efficiency.

12.2.1 Traditional Sampling

To sample possible trajectories of an object, a traditional Monte-Carlo ap-
proach would start by taking the first observation of the object, and then
perform forward transitions using the a-priori transition matrix. This ap-
proach however, cannot directly account for additional observations for latter
timestamps. Figure 12.3 illustrates a total of 1000 samples drawn in a one-
dimensional space. Starting at the first observation time t = 0, transitions
are performed using the a-priori Markov chain. At the second observation at
time t = 20, the great majority of trajectories becomes inconsistent. Such

98 12. Nearest Neighbor Queries

impossible trajectories have to be dropped. At time t = 40, even more tra-
jectories become invalid; After this observation, only one out of a thousand
samples remains possible and useful.

Clearly, the number of trajectory generations required to obtain a single
valid trajectory sample increases exponentially in the number of observations
of an object, making this traditional Monte-Carlo approach inappropriate in
obtaining a sufficient number of valid samples within acceptable time.

12.2.2 Efficient and Appropriate Sampling

To tackle the disadvantages of traditional sampling, we now introduce an op-
timized approach af drawing samples. On these samples, traditional nearest
neighbor algorithms for (certain) trajectories ([83, 84, 97, 85, 88, 86]) can be
used to estimate nearest neighbor probabilities.

In a nutshell, our approach starts with the initial observation θo1 at time
to1, and performs transitions for object o using the a-priori Markov chain of o
until the final observation θo|Θo| at time t|Θo| is reached. During this Forward -
run phase, Bayesian inference is used to construct a time-reversed Markov
model Ro(t) of o at time t given observations in the past, i.e., a model that
describes the probability

Ro
ij(t) := P (o(t− 1) = sj|o(t) = si, {θoi |toi < t})

of coming from a state sj at time t− 1, given being at state si at time t and
the observations in the past. Then, in a second Backward -run phase, our
approach traverses time backwards, from time t|Θo| to t1, by employing the
time-reversed Markov model Ro(t) constructed in the forward phase. Again,
Bayesian inference is used to construct a new Markov model F o(t−1) that is
further adapted to incorporate knowledge about observations in the future.
This new Markov model contains the transition probabilities

F o
ij(t− 1) := P (o(t) = sj|o(t− 1) = si,Θ

o). (12.2)

for each point of time t, given all observations, i.e., in the past, the present
and the future.

As an illustration, Figure 12.4(left) shows the initial model given by the
a-priori Markov chain, using the first observation only. In this case, a large
set of (time, location) pairs can be reached with a probability greater than
zero.

The adapted model after the forward phase (given by the a-priori Markov
chain and all observations), depicted in Figure 12.4(center), significantly re-
duces the space of reachable (time, location) pairs and adapts respective

12.2 Sampling Possible Trajectories 99

Figure 12.4: An overview over our forward-backward-algorithm.

probabilities. The main goal of the forward-phase is to construct the nec-
essary data structures for efficient implementation of the backward-phase,
i.e., Ro(t). Figure 12.4(right) shows the resulting model after the backward
phase. In the following section, both phases are elaborated in detail.

Note that the Baum-Welch algorithm for hidden Markov models (HMMs)
is similar to the proposed algorithm. This algorithm aims at estimating time-
invariant transition matrices and emission probabilities of a hidden Markov
model. In contrast, we assume this underlying model to be given, however we
aim at adapting it by computing time-variant transition matrices. Despite
these differences, the above algorithm could also be proven by showing that
our model is a special case of a HMM and deducting the algorithm from
the Baum-Welch algorithm [106]. We will address the similarities to [106]
later in this section. Related to our algorithm is also the Forward-Backward-
Algorithm for HMMs that aims at computing the state distribution of a HMM
for each point in time. In contrast, we aim at computing transition matrices
for each point in time, given a set of observations.

Again, the following proof is an extension of the proof from [13] (and the
accompanying technical report) and has been derived from these publications
independently of [50].

12.2.2.1 Forward Phase

Let pasto(t) := {θoi |toi < t} denote the set of observations temporally pre-
ceding t. During the forward phase we aim at computing the backward
probabilities Rij(t):

Rij(t) = P (o(t− 1) = sj|o(t) = si, past(t))

Precondition 1. All observations θoi of an object are in accordance to the
transition model: it is possible to reach a descending observation from a
preceding one given the a-priori transition model of o.

For computing the backward probabilities, we distinguish three cases:
Case 1: o(t) = si contradicts past(t). In all cases where o(t) = si is not

100 12. Nearest Neighbor Queries

in conformance to past(t), transition probabilities are undefined, as we have
a contradiction in the condition of the probabilities Rij(t).
Case 2: o(t − 1) = sj contradicts past(t). If sj is not reachable given
past(t), we have Rij(t) = 0.
Case 3: Neither o(t) = si nor o(t − 1) = sj contradict past(t). In this
case, in order to compute the backward probabilities, we apply Conditional
Bayes:

Rij(t) = P (o(t− 1) = sj|o(t) = si, past(t))

CB
=

P (o(t) = si|o(t− 1) = sj, past(t))P (o(t− 1) = sj|past(t))
P (o(t) = si|past(t))

(12.3)

As neither o(t) = si nor o(t − 1) = sj contradict the past (these cases
are addressed in Case 1 and Case 2), the expression is always defined. Given
that, these three factors can be computed as follows:

• P (o(t − 1) = sj|past(t)) can be computed as follows. Given that we
have an observation at time t−1, the probability is 1. Given that there
is no observation at time t − 1, we can compute this probability by
traversing the Markov chain starting from the last observation before
t (exploiting the Markov property) with the basic Markov transition
rule. The probability of reaching state sj at time t − 1 is then the
wanted probability.

• For the probability P (o(t) = si|past(t)) the same as for the upper
probability holds, however, in contrast to the upper probability, the
observation at time t is not considered.

• P (o(t) = si|o(t − 1) = sj, past(t)) are the transition probabilities
P (o(t) = si|o(t − 1) = sj). past(t − 1) can be removed due to the
Markov property. If there is an observation present(t− 1), this obser-
vation must be state sj, as otherwise we would have a contradiction
(which then would contradict the assumption of Case 3). As in this
case the condition is redundant, present(t−1) can be removed as well.

Markov Property. We still have to show that Rij(t) follows the Markov
assumption, given that a state sequence can be generated by the initial model:

Rij(t) = P (o(t− 1) = sj|o(t) = si, past(t))

?
= P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n) = sxt+n , past(t))

Precondition 2. States in the condition, i.e. o(t) = si, . . . , o(t+ n) = sxt+n

are in accordance to the initial transition model and past(t).

12.2 Sampling Possible Trajectories 101

Case 1: o(t − 1) = sj does not contradict the previous states or
past(t). In this first case, the resulting probabilities are non-zero.

P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n) = sxt+n , past(t))

CB
= P (o(t+ n) = sxt+n|o(t− 1), . . . , o(t+ n− 1) = sxt+n−1 , past(t))∗
P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

P (o(t+ n) = sxt+n|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

Following Precondition 2, the denominator of this expression will be greater
than zero; according to the precondition of Case 1, the first factor of the
numerator is defined as well. By employing the Markov assumption of the
initial model, the first factor of the numerator and the denominator can be
rewritten.

P (o(t+ n) = sxt+n|o(t+ n− 1) = sxt+n−1)∗
P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

P (o(t+ n) = sxt+n|o(t+ n− 1) = sxt+n−1)

After cancelling, we get

P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

which equals the input formula reduced by one timestep. Applying this trick
iteratively, yields P (o(t− 1) = sj|o(t) = si, past(t)).
Case 2: o(t− 1) = sj contradicts a previous state or past(t). We
prove the Markov assumption in this case by contradiction.

As a first instance, assume P (o(t − 1) = sj|o(t) = si, past(t)) 6= 0 (the
contradiction follows from a state at t+ k, k > 0). Further recall that if this
probability is 6= 0, then there exists also a possible trajectory resembling this
probability for the initial model and the adapted one2. In this first case,
we can generate P (o(t − 1) = sj|o(t) = si, . . . , o(t + n) = sxt+n , past(t)) by
reversely applying the proof from Case 1. Let us assume we are at iteration n
of the proof and P (o(t−1) = sj|o(t) = si, . . . , o(t+n−1) = sxt+n−1 , past(t)) =
P (o(t − 1) = sj|o(t) = si, past(t)) 6= 0 and therefore Pt = P (o(t − 1) =
sj ∧ o(t) = si ∧ . . . ∧ o(t + n − 1) = sxt+n−1 , past(t))) 6= 0. We expand the
probability by P (o(t+n) = sxt+n|o(t+n−1) = sxt+n−1) in both the numerator
and the denominator; according to Precondition 2, these probabilities are
non-zero. By applying the Markov assumption in forward direction we get

P (o(t+ n) = sxt+n|o(t− 1) = sj, . . . , o(t+ n− 1) = sxt+n−1 , past(t))∗

2P (o(t− 1) = sj |o(t) = si, past(t)) 6= 0⇒ P (o(t−1)=sj∧o(t)=si∧past(t))
P (o(t)=si∧past(t)) 6= 0

⇒ P (o(t− 1) = sj ∧ o(t) = si ∧ past(t)) 6= 0⇒ P (o(t− 1) = sj ∧ o(t) = si) 6= 0

102 12. Nearest Neighbor Queries

P (o(t− 1) = sj|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

P (o(t+ n) = sxt+n|o(t) = si, . . . , o(t+ n− 1) = sxt+n−1 , past(t))

The denominator of this expression is greater than zero (and also defined)
due to Precondition 2. The second term of the numerator is non-zero as
well; we know this from the last iteration. Concerning the first term in
the numerator, the condition is defined, we know this from Pt. Given that
o(t + n) = sxt+n contradicts the condition (and therefore o(t − 1) = sj),
the first probability in the numerator would have to be zero, which however
contradicts the Markov assumption of the initial model. Furthermore note
that the resulting probability is exactly equivalent to the one from the last
iteration due to the application of the Markov property. To conclude the
inductive step, we have to show that given that this derived probability is
non-zero, the corresponding trajectory of the initial model has a non-zero
probability as well (as in this case the first numerator probability in the next
iteration would again allow application of the Markov assumption); this can
be shown equivalently to footnote 2.

This leads to a contradiction, as it shows that o(t− 1) = sj is in accor-
dance to all other states in the condition.

In the second case, we assume P (o(t − 1) = sj|o(t) = si, past(t)) = 0.
We assume that the Markov property does not hold and therefore P (o(t −
1) = sj|o(t) = si, . . . , o(t + n) = sxt+n , past(t)) 6= 0. This is, however,
mathematically impossible3.

This concludes the forward phase of the algorithm.

12.2.2.2 Backward Phase

We are now considering the backward phase. In the following, let te denote
the time of the last observation of the currently considered object. For this
phase we show how to compute the forward transition probabilities Fij(t) =
P (o(t) = sj|o(t− 1) = si, past(te + 1))) that condition the movement of the
stochastic process to observations at all relevant timesteps.
Case 1: o(t − 1) = si contradicts past(te + 1). In the case where o(t −
1) = si is not in accordance to either past or future observations, Fij is
undefined. It can however be easily avoided by starting at an observation in
the future (ensuring conformance to future observations), and transitioning
backward using the reverse transition matrices computed during the forward
phase (ensuring conformance to past observations, as these have already been
integrated into the model).

3P (A|B) = 0 ⇒ P (A ∧ B) = 0 and P (A|B,C) 6= 0 ⇒ P (A ∧ B ∧ C) 6= 0. Given that
P (A ∧B ∧ C) 6= 0 it is impossible that P (A ∧B) = 0

12.2 Sampling Possible Trajectories 103

Case 2: o(t) = sj contradicts past(te + 1). If sj is not in conformance to
past(te + 1), its probability becomes zero, as in this case the event o(t) = sj
is impossible to happen given past(te + 1); this follows directly from Fij(t).
Case 3: Neither o(t − 1) = si nor o(t) = sj contradict past(te + 1). In
the third case we can compute Fij by applying conditional Bayes:

Fij(t) = P (o(t) = sj|o(t− 1) = si, past(te + 1)))

CB
=

P (o(t− 1) = si|o(t) = sj, past(te + 1))P (o(t) = sj|past(te + 1))

P (o(t− 1) = si|past(te + 1))

Similar to the forward phase we have to compute these three factors to com-
pute Fij(t):

• P (o(t− 1) = si|o(t) = sj, past(te + 1))
Rev.Markov

= P (o(t− 1) = si|o(t) =
sj, past(t + 1)). past(t + 1) can be reduced to past(t) by considering
that in this third case we assume that o(t) = sj does not contradict
past(t+1), and in this case both of these conditions become equivalent.
The resulting probability P (o(t − 1) = si|o(t) = sj, past(t)) equals
exactly the backward transition probability Rji(t) from the forward
phase

• P (o(t) = sj|past(te + 1)) can be computed inductively. P (o(te) =
si|past(te + 1)) is given as a result of the forward phase, and is one
if si corresponds to the last observation and zero otherwise. Now let
P (o(t) = sj|past(te + 1)) be given. We are looking for P (o(t − 1) =
si|past(te + 1)) =∑

sj

P (o(t− 1) = si|o(t) = sj, past(te + 1))P (o(t) = sj|past(te + 1))

where the first factor is again the element from the transition matrix
Rji(t). The second factor is known given the induction basis. Note
that, as we build a sum over all sj, some of the transition probabilities
are undefined from the forward phase; this happens when o(t) = sj
contradicts past(te + 1). By applying CCP to the product in this for-
mula, we get P (o(t− 1) = si ∧ o(t) = sj|past(te + 1)). This probability
is clearly zero, as in such a case P (o(t) = sj|past(te+1)) is zero as well.

• P (o(t) = sj|past(te + 1)) can be computed equivalently.

After the backward phase, we have Fij(t) = P (o(t) = sj|o(t − 1) =
si, past(te + 1))) which directly corresponds to the transition probabilities of
the process given all observations past(te + 1).

104 12. Nearest Neighbor Queries

Markov Property. Again, we have to show that for Fij(t) the Markov
assumption holds:

P (o(t) = sj|o(t− 1) = si, past(te + 1))

= P (o(t) = sj|o(t− 1) = si, . . . , o(t− n) = sxt−n , past(te + 1))

Precondition 3. States in the condition, i.e. o(t − 1) = si, . . . , o(t − n) =
sxt−n are in accordance to the initial transition model and past(te + 1).

For this part of the proof let future(t) denote the set of observations
temporally descending time t.
Case 1: o(t) = sj does not contradict the previous states or past(te + 1).
In this case the transition probability is non-zero. Applying conditional Bayes
yields

P (o(t) = sj|o(t− 1) = si, . . . , o(t− n) = sxt−n , past(te + 1))

CB
= P (o(t− n) = sxt−n|o(t− n+ 1) = sxt−n+1 , . . . , o(t) = sj, past(te + 1))∗

P (o(t) = sj|o(t− n+ 1) = sxt−n+1 , . . . , o(t− 1) = si, past(te + 1))

P (o(t− n) = sxt−n|o(t− n+ 1) = sxt−n+1 , . . . , o(t− 1) = si, past(te + 1))

We can split up past(te + 1) as follows: past(t − n + 1) is contained in the
Markov chain Rij(t−n+1). future(t−n+1) can be discarded by employing
the reverse Markov property that holds for Rij. For present(t − n + 1)
we employ Precondition 3. Given this assumption, this predicate does not
provide any additional information, and thus can be discarded. Therefore
and according to the reverse Markov property the left part of the numerator
equals the denominator. As a result, after cancelling, we get

P (o(t) = sj|o(t− n+ 1) = sxt−n+1 , . . . , o(t− 1) = si, past(te + 1))

which is our input probability with the last timestep removed. Iterative
application of conditional Bayes, yields the Markov property for Fij.
Case 2: o(t) = sj contradicts a previous state or past(te + 1). For this
case we prove the Markov assumption by contradiction.

As a first instance, assume P (o(t) = sj|o(t − 1) = si, past(te + 1)) 6= 0
(the contradiction follows at time t − k, k > 1, and the corresponding tra-
jectory of the reverse and initial model have non-zero probability as well,
see footnote 2). In this case, we can generate P (o(t) = sj|o(t − 1) =
si, . . . , o(t − n) = sxt−n , past(te + 1)) by reversely applying the proof from
Case 1. Let us assume we are in iteration n of the proof and P (o(t) =
sj|o(t − 1) = si, . . . , o(t − n + 1) = sxt−n+1 , past(te + 1)) 6= 0 (all states

12.2 Sampling Possible Trajectories 105

are still in conformance and the corresponding trajectory of the reverse
and initial model have non-zero probability). We expand the probability
by P (o(t − n) = sxt−n|o(t − n + 1) = sxt−n+1 , past(t − n + 1)) in both the
numerator and the denominator; according to Precondition 3, both of these
probabilities are non-zero. By applying the Markov assumption in backward
direction we get

P (o(t− n) = sxt−n|o(t) = sj, . . . , o(t− n+ 1) = sxt−n+1 , past(te + 1))∗

P (o(t) = sj|o(t− 1) = si, . . . , o(t− n+ 1) = sxt−n+1 , past(te + 1))

P (o(t− n) = sxt−n|o(t− 1) = si, . . . , o(t− n+ 1) = sxt−n+1 , past(te + 1))

The denominator of this expression is greater than zero due to Precondi-
tion 3. The second term of the numerator is non-zero as well; we know this
from the last iteration. Concerning the first term in the numerator, recall
that the condition is non-contradictory, we know this from the second factor
in the numerator. As we also know that the second probability resembles
a valid trajectory according to the initial model fulfilling Precondition 2,
the application of the Markov assumption in backward direction for the first
factor is valid. Given that o(t − n) = sxt−n contradicts the condition (and
therefore o(t) = sj), the first probability in the numerator would have to be
zero, which however contradicts the reverse Markov assumption. Further-
more note that the resulting probability is exactly equivalent to the one from
the last iteration due to the application of the Markov assumption. This
leads to a contradiction, as it shows that o(t) = sj is in accordance to all
previous states including o(t− n) = sxt−n .

By employing footnote2 we can finally show the new probability extended
by a point of time resembles again a valid trajectory according to the initial
model, concluding the proof.

In the second case, we assume P (o(t) = sj|o(t−1) = si, past(te+1)) = 0.
We assume that the Markov property does not hold and therefore P (o(t) =
sj|o(t − 1) = si, . . . , o(t − n) = sxt−n , past(te + 1)) 6= 0, which is however
impossible given the assumption.

12.2.2.3 Sampling Process

Algorithm 6 summarizes the construction of the transition model for a
given object o. In the forward phase, the new distribution vector ~so(t) of o
at time t and backward probability matrix Ro(t) at time t can be efficiently
derived from the temporary matrix X ′(t), computed in Line 4. The equation
is equivalent to a simple transition at time t, except that the state vector
is converted to a diagonal matrix first. This trick allows to obtain a matrix

106 12. Nearest Neighbor Queries

Algorithm 6 AdaptTransitionMatrices(o)

1: {Forward-Phase}
2: ~so(to1) = θo1
3: for t = to1 + 1; t ≤ to|Θo|; t++ do

4: X ′(t) = Mo(t− 1)T · diag(~so(t− 1))

5: ∀i ∈ {1 . . . |S|} : ~so(t)i =
|S|∑
j=1

X ′ij(t)

6: ∀i, j ∈ {1 . . . |S|} : Ro(t)ij =
X′ij(t)

~so(t)i
7: if t ∈ Θo then
8: ~so(t) = θot {Incorporate observation}
9: end if

10: end for
11: {Backward-Phase}
12: for t = to|Θo| − 1; t ≥ to1; t-- do

13: X ′(t) = Ro(t+ 1)T · diag(~so(t+ 1))

14: ∀i ∈ {1 . . . |S|} : ~so(t)i =
|S|∑
j=1

X ′ij(t)

15: ∀i, j ∈ {1 . . . |S|} : F o(t)ij =
X′ij(t)

~so(t)i
16: end for
17: return F o

describing the joint distribution of the position of o at time t − 1 and t.
Formally, each entry X ′(t)i,j corresponds to the probability P (o(t − 1) =
sj∧o(t) = si|pasto(t)) which is equivalent to the numerator of Equation 12.3.
To obtain the denominator of Eq. 12.3 we first compute the row-wise sum of
X ′(t) in Line 5. The resulting vector directly corresponds to ~so(t), since for
any matrix A and vector x it holds that A · x = rowsum(A · diag(x)). By
employing this rowsum operation, only one matrix multiplication is required
for computing Ro(t) and ~so(t).

Next, the elements of the temporary matrix X ′(t) and the elements of
~so(t) are normalized in Equation 12.3, as shown in Line 6 of the algorithm.
Here, some probabilities might be undefined if the normalizer becomes zero
(see Case 2 of our proof for the forward phase); we can simply set these to
zero as this will avoid special cases during the backward phase.

Finally, possible observations at time t are integrated in Line 8. In Lines
12 to 15, the same procedure is followed in time-reversed direction, using the
backward transition matrix Ro(t) to compute the a-posteriori matrix F o(t).

The overall complexity of this algorithm is O(|T |·|S|2). The initial matrix
multiplication requires |S|2 multiplications. While the complexity of a matrix

12.2 Sampling Possible Trajectories 107

multiplication is in O(|S|3), the multiplication of a matrix with a diagonal
matrix, i.e., MT · s can be rewritten as MT

i · sii, which is actually a multipli-
cation of a vector with a scalar, resulting in an overall complexity of O(|S|2).
Re-diagonalization needs |S|2 additions as well, such as re-normalizing the
transition matrix, yielding 3 · |T | · |S|2 for the forward phase. The backward
phase has the same complexity as the forward phase, leading to an overall
complexity of O(|T | · |S|2).

Once the transition matrices F o(t) for each point of time t have been
computed, the actual sampling process is simple: For each object o, each
sampling iteration starts at the initial position θo1 at time to1. Then, ran-
dom transitions are performed, using F o(t) until the final observation of o
is reached. Doing this for each object o ∈ D, yields a (certain) trajectory
database, on which exact NN-queries can be answered using previous work.
Since the event that an object o is a ∀NN (∃NN) of q is a binomial distributed
random variable, we can use methods from statistics, such as the Hoeffding’s
inequality ([107]) to give a bound of the estimation error, for a given number
of samples.

12.2.2.4 Relationship to Hidden Markov Models

The research from [41, 40, 13, 87] concentrates on simple Markov Models
enhanced by certain observations. In this section we draw a connection
between the model from these papers and another, more general class of
stochastic processes, namely the Hidden Markov Model. Based on these Hid-
den Markov Models we can approach the sampling algorithm from a different
point of view, drawing connections to existing algorithms such as the Baum-
Welch-Algorithm or the Forward-Backward algorithm. Both of these have
been developed for the case of Hidden Markov Models. According to [108], a
Hidden Markov Model is a combined stochastic process. The hidden process
cannot be observed directly but is rather distorted by a second process:

Definition 15 (Hidden Markov Model [108]). Given a time-invariant tran-
sition matrix Mij, a time-invariant emission matrix Bij, and an initial state
distribution π, a hidden Markov model is a stochastic process λ = (M,B, π).

To train the model parameters of a Hidden Markov model (M , B, and
π) based on a (long enough) sequence of observations θ1, ..., θn, the Baum-
Welch algorithm [108] can be employed that estimates these parameters based
on the expectation-maximization technique iteratively and approximately.
To keep the complexity of estimating model parameters low, M and B are
usually assumed to be time-homogeneous. In our scenario assumptions are
slightly different: M is not necessarily time-invariant, but Bij is trivial, i.e.

108 12. Nearest Neighbor Queries

bii = 1 and bij = 0, i 6= j. We also assume the a-priori transition matrices
that model the general movement patterns of objects to be given. We simply
want to adapt the model to the known movement of a specific object. These
different conditions allow us to estimate the transition matrix M accurately
as shown previously.

Despite these differences, the algorithm from the last section can be seen
as a modification of the Baum-Welch algorithm[108]. The Baum-Welch algo-
rithm receives a list of observations θ1, ..., θn, an initial estimate of the tran-
sition matrix M , an estimate of the initial distribution π and an estimate of
the emission probabilities B. During the first iteration the parameters B, M ,
and π can be arbitrary. Based on the observation sequence, the parameters
of the transition matrix, emission probabilities and initial distribution are
refined iteratively. During each iteration, the error of the posterior estimates
B′, M ′, and π′ decreases. In our scenario B and π are given and fixed, we
therefore concentrate on the computation of M ′. The iteration formula of
the adapted matrix in the Baum-Welch algorithm is as follows:

m′ij =

n∑
t=1

P (o(t) = si, o(t+ 1) = sj|Θ, λ)

n∑
t=1

P (o(t) = si|Θ, λ)

As the algorithm works with time-homogeneous transition matrices, each
observation can be assumed to be taken at any time. Therefore, the Baum-
Welch algorithm can take the average over all transition probabilities at all
points in time; it has been shown that each iteration of the formula decreases
the error of the parameter estimates. As we assume time-inhomogeneous
transition matrices, averaging is impossible. However, the numerator of this
formula without building the sum is semantically equivalent to the numerator
of our algorithm during the backward phase; the same holds for the denomi-
nator. Therefore our algorithm can be seen as a relative of the Baum-Welch
algorithm in the context of a Markov models, given certain observations and
time-inhomogeneous transition matrices with B and π fixed.

12.3 Spatial Pruning

Pruning objects in probabilistic NN search can be achieved by employing ap-
propriate index structures available for querying uncertain spatio-temporal
data. In this work, we use the UST-tree [40]. In this section, we briefly
summarize the index and show how it can be employed to efficiently prune
irrelevant database objects, identify result candidates, and find influence ob-
jects that might affect the ∀NN probability of a candidate object.

12.3 Spatial Pruning 109

The UST-Tree. Given an uncertain spatio-temporal object o, the main
idea of the UST-tree is to conservatively approximate the set of possible (lo-
cation, time) pairs that o could have possibly visited, given its observations
Θo. In a first approximation step, these (location, time) pairs, as well as the
possible (location, time) pairs defined by θoi and θoi+1 are minimally bounded
by rectangles. Such a rectangle, for observations θoi and θoi+1 is defined by
the time interval [toi , t

o
i+1], as well as the minimal and maximal longitude

and latitude values of all reachable states. The second approximation step
bounds the (location, time) pairs at a given point in time by a parameterized
spatio-temporal diamond, providing better pruning power than the rectan-
gles, however at a higher computational complexity.

Example 3. Consider Figure 12.5, where four objects objects A, B, C and
D are given by three observations at time 0, 5 and 10. For each object, the
set of possible states in the corresponding time intervals [0, 5] and [5, 10] is
approximated by two minimum bounding rectangles. For illustration, the set
of possible states at each point of time is also depicted by dashed rectangles;
these dashed rectangles represent the spatio-temporal diamond.

The UST-tree indexes the resulting rectangles and diamonds using an
R∗-tree ([28]). We now discuss how such an index structure can be used for
the evaluation of P∀NNQ and P∃NNQ queries.

Pruning candidates of P∀NNQ queries. For a P∀NNQ query, an
object must have a non-zero probability of being the closest object to q, for
all timestamps in the query interval. As a consequence, to find candidate
objects for the P∀NNQ query, we have to consider for all objects o ∈ D
whether for each t ∈ q.T there does not exist an object o′ ∈ D such that
MINDIST (o(t), q(t)) > MAXDIST (o′(t), q(t)). Here, MINDIST (o(t), q(t))
(MAXDIST (o(t), q(t))) denotes the minimum (maximum) distance between
the possible states of o(t) and q(t). Thus, the set of candidates C∀(q) of a
P∀NNQ is defined as

C∀(q) =

{o ∈ D|∀t ∈ q.T : MINDIST (o(t), q(t)) ≤ mino′∈DMAXDIST (o′(t), q(t))}

Applying spatial pruning on the leaf level of the UST-tree, we have to apply
the MINDIST and MAXDIST distance computations on the minimum
bounding rectangles on the leaf level in consideration of the time intervals as-
sociated with these leaf entries. In our example, given the query point q with
q.T = [2, 8], only object A is a candidate, since MINDIST (q(t), A(t)) ≤
MAXDIST (q(t), o(t)) for all o ∈ D in the time intervals [0,5] and [5,10],
both together covering q.T . Objects B, C and D can be safely pruned.

110 12. Nearest Neighbor Queries

Figure 12.5: Spatio-Temporal Pruning Example.

It is important to note that pruned objects, i.e., objects not contained
in C∀(q) may still affect the ∀NN probability of other objects and even
may prune other objects. For example, though object B is not a candi-
date, it affects the ∀NN probability of all other objects and contributes
to prune possible worlds of object A, because MAXDIST (q(t), A(t)) >
MINDIST (q(t), B(t)) ∀t ∈ [5, 10]. All objects having at at least one times-
tamp t ∈ q.T a non-zero probability being the NN of q may influence the ∀NN
probability of other objects. Since we need these objects for the verification
step, we have to maintain them in an additional list I∀(q):

I∀(q) =

{o ∈ D|∃t ∈ T : MINDIST (o(t), q(t)) ≤ mino′∈DMAXDIST (o′(t), q(t))}

To perform spatial pruning at the non-leaf level of the UST-tree, we can
analogously apply MINDIST and MAXDIST on the MBRs of the non-
leaf level.

Pruning for the P∃NNQ query. Pruning for the P∃NNQ query is very
similar to that for the P∀NNQ query. However, we have to consider that an
object being the nearest neighbor for a single point in time is already a

12.4 Experimental Evaluation 111

(a) State Space (Synthetic Data) (b) State Space (Real Data)

Figure 12.6: Examples of the models used for synthetic and real data. Black
lines denote transition probabilities. Thicker lines denote higher probabili-
ties, thinner lines lower probabilities. The synthetic model consists of 10k
states.

valid query result. Therefore, no distinction is made between candidates and
influence objects. Every pruner can be a valid result of the P∃NNQ query,
such that each object with a MINDIST smaller than the pruning distance
has to be refined. The remaining procedure of the P∃NNQ-algorithm is
equivalent to P∀NNQ-pruning.

12.4 Experimental Evaluation

Setup Our experimental evaluation focuses on the efficiency and effective-
ness of sampling-based P∀NNQ, P∃NNQ and PCNNQ queries. We con-
ducted a set of experiments to verify both the effectiveness and efficiency
of the proposed solutions, using a desktop computer having an Intel i7-870
CPU at 2.93 GHz and 8GB of RAM. All algorithms were implemented in
C++.

Artificial Data. Artificial data for our experiments was created in three
steps: state space generation, transition matrix construction and object cre-
ation. First, the data generator constructs a two-dimensional Euclidean state
space, consisting of N states. Each of these states is drawn uniformly from
the [0, 1]2 square. In order to construct a transition matrix, we derive a
graph by introducing edges between any point p and its neighbors having a

112 12. Nearest Neighbor Queries

Table 12.1: Parameters varied during our experimental evaluation (synthetic
data). Differing parameters for continuous experiments are denoted by a
superscript c. Default values are denoted in bold.

Variable Values Unit

|D| 1k, 10k, 20k objects
N = |S| 10k, 100k, 500k states

τ 0,0.1c, 0.5c, 0.9c probability
b 6, 8, 10 edges per node

distance less than r =
√

b
N∗π with b denoting the average branching factor

of the underlying network. This parameter ensures that the degree of a node
does not depend on the number of states in the network. Each edge in the
resulting network represents a non-zero entry in the transition matrix. The
transition probability of this entry is indirectly proportional to the distance
between the two vertices. An example of such a model can be found in 12.6a.

To create observations of an object o, we sample a sequence of states
and compute the shortest paths between them, modeling the motion of o
during its whole lifetime (which we set to 100 steps by default). To add
uncertainty to the resulting path, every lth node, l = i ∗ v, v ∈ [0, 1], of
this trajectory is used as an observed state. i denotes the time between
consecutive observations and v denotes a lag parameter describing the extra
time that o requires due to deviation from the shortest path; the smaller v,
the more lag is introduced to o’s motion. With, for example, v = 0.8, the
object moves only with 80% of its maximum speed. The resulting uncertain
trajectories were distributed over the database time horizon (default: 1000
timestamps) and indexed by a UST-tree [40]. As a pruning step for query
evaluation, we employed the UST-tree’s MBR filtering approach described
in Section 12.3. Our experiments concentrate on evaluating nearest neighbor
queries given a certain query state. These states were uniformly drawn from
the underlying state space.

Real Data. We also generated a data set from a set of GPS trajectories
of taxis in the city of Beijing [109] using map matching; the code for map
matching was provided by one of our students in the context of a diploma
thesis. First, trajectories from the dataset below a given GPS-frequency
were filtered out since these trajectories are not fine-granular enough to pro-
vide useful information during the training step. The remaining trajectories
were interpolated to obtain measurements with a frequency of 1Hz. These
trajectories were then map matched to a reduced Beijing-graph obtained
from OpenStreetMap (OSM). Due to the sparsity of data, we assume that

12.4 Experimental Evaluation 113

0
10
20
30
40
50
60
70
80

 10k 100k 500k

C
P

U
 T

im
e

(s
)

N

TS FA EX

0

10

20

30

40

50

60

10k 100k 500k

|C
(q

)|
an

d
|I(

q)
|

N

|C(q)| |I(q)|

Figure 12.7: Varying the Number of States N

a-priori, all objects utilize the same Markov model M . The time domain is
discretized to one tic every 10 seconds. From the map matched trajectories,
the transition matrix was extracted by aggregating the turning probabili-
ties at crossroads. OSM-nodes with no hits in the underlying training data
were filtered out. The state space was then formed by the remaining nodes
of the OSM graph, all in all 68902 states. The resulting model is visual-
ized in Figure 12.6b. Certain trajectories of cars were taken directly from
the map matched trajectories, but in order to ensure comparability to the
artificial data have been capped at a length of 100 tics and distributed in
the database horizon. The certain trajectories were then made uncertain by
taking every l-th GPS measurement as an observation; the discarded GPS
measurements serve as ground truth for effectiveness experiments. For the
real data experiment varying the number of objects, we set l = 8.

12.4.1 Evaluation: P∀NNQ and P∃NNQ

For performance analysis, the sampling approach (Section 12.2) is divided
into two phases. In the first phase the trajectory sampler (TS) is initialized
(the adapted transition matrices are computed according to Algorithm 6).
This phase can be performed once and used for all queries. In the second
phase, the actual sampling of 10k trajectories (per object) for the approx-
imate P∀NNQ (FA) and P∃NNQ (EX) queries is performed. An overview
over the evaluated parameters can be found in Table 12.1. These parameters
lead to a total of 110k observations (11 per object) and 100k diamonds for
the UST-index.

Varying N . In the first experiment (Figure 12.7) we investigate the
effect of an increasing state space size N , while keeping a constant average
branching factor of network nodes. This effect corresponds to expanding the
underlying state space, e.g., from a single country to a whole continent. In

114 12. Nearest Neighbor Queries

0
10
20
30
40
50
60
70

 6 8 10

C
P

U
 T

im
e

(s
)

b

TS FA EX

0
2
4
6
8

10
12

6 8 10

|C
(q

)|
an

d
|I(

q)
|

b

|C(q)| |I(q)|

Figure 12.8: Varying the Branching Factor b

Figure 12.7 (left) we can see that increasing N leads to a sub-linear increase in
the run-time of the sampling approaches. This effect can be mostly explained
by two aspects. First, the size of the a-priori model increases linearly with
N , since the number of non-zero elements of the sparse matrix M increases
linearly with N . This leads to an increase of the time complexity of matrix
operations, and therefore makes adapting transition matrices more costly.
At the same time, the number of candidates |C(t)| and influence objects
|I(t)| (see Section 12.3) decreases significantly as seen in Figure 12.7 (right)
because the degree of intersection between objects decreases with a higher
number of states, making pruning more effective, and therefore reducing the
actual cost for sampling.

The runtime difference among sampling the P∀NNQ and P∃NNQ query
diminishes with increasing N because the size of the result set of the P∀NNQ
increases with N while P∃NNQ produces less results with increasing N .
The P∃NNQ runtime is also higher than the P∀NNQ runtime because for
the P∃NNQ query not only candidate objects are possible results, but also
influence objects.

Varying b. Figure 12.8 evaluates the branching factor b, i.e., the
average degree of each network node. As expected, Figure 12.8 (left) shows
that an increasing branching factor yields a higher run-time of all approaches
due to a higher number of non-zero values in vectors and matrices, making
computations more costly. Furthermore, in our setting, a larger branching
factor also increases the number of influence objects, as shown in Figure 12.8
(right).

Varying |D|. The number of objects (Figure 12.9) leads to a decreasing
performance as well. The more objects stored in a database with the same
underlying motion model, the more candidates and influence objects are
found during the filter step. This leads to an increasing number of probability

12.4 Experimental Evaluation 115

0
10
20
30
40
50
60
70
80

 1k 10k 20k

C
P

U
 T

im
e

(s
)

|D|

TS FA EX

0

5

10

15

20

1k 10k 20k

|C
(q

)|
an

d
|I(

q)
|

|D|

|C(q)| |I(q)|

Figure 12.9: Varying the Number of Objects |D|

0
20
40
60
80

100
120
140

 1k 10k 20k

C
P

U
 T

im
e

(s
)

|D|

TS
FA

EX

0

10

20

30

40

50

1k 10k 20k

|C
(q

)|
an

d
|I(

q)
|

|D|

|C(q)| |I(q)|

Figure 12.10: Real Data: Varying the Number of Objects

calculations during refinement, and hence a higher query cost.

Real Dataset. We conducted additional experiments to evaluate P∀NNQ
and P∃NNQ queries on the taxi dataset (Figure 12.10). The underlying state
space consisting of 68902 states is a bit smaller than the default synthetic
dataset. Based on this dataset, we ran an experiment varying the num-
ber of objects between 1000 and 20000. The smaller size of the state space
leads to a higher objects density, leading to a larger number of candidates
and influence objects than the corresponding experiment on the artificial
dataset. Additionally, the non-uniform distribution of taxis in the city is
more dense close to the city center, making queries in this area more costly
due to the higher number of candidates and pruners. Further note that in
the real dataset, the motion patterns of objects are more diverse than on the
synthetic data. There are taxis standing still, and taxis moving quite fast.
Standing taxis have a larger area of uncertainty between observations, such
that these objects reduce the performance of query evaluation.

Sampling Efficiency. In the next experiment we evaluate the over-
head of the traditional sampling approach (using the a-priori Markov model

116 12. Nearest Neighbor Queries

Figure 12.11: Efficiency of Sampling without Model Adaption.

only) compared to the approach presented in Section 12.2 which uses the
a-posteriori model again based on the artificial dataset. The first, tradi-
tional approach (TS1, number of samples has been estimated) discards any
trajectory not visiting all observations. As discussed in Section 12.2.1, the
expected number of attempts required to draw one sample that hits all obser-
vations increases exponentially in the number of observations. This increase
is shown in Figure 12.11, where the expected number of samples is depicted
with respect to the number of observations. This approach can be improved,
by segment-wise sampling between observations (TS2). Once the first obser-
vation is hit, the corresponding trajectory is memorized, and further samples
from the current observation are drawn until the next observation is hit. The
number of trajectories required to be drawn in order to obtain one possible
trajectory, i.e., the trajectory hits all observations, is linear to the number
of observations when using this approach. We note in Figure 12.11, that in
either approach at least 100k samples are required even in the case of having
only two observations. In contrast using the approach presented in Sec-
tion 12.2, the number of trajectories that need to be sampled, in order to
obtain a trajectory that hits all observations, is always one.

Sampling Precision and Effectiveness. Next, we evaluate the pre-
cision of our approximate P∀NNQ and P∃NNQ query and an aspect of a
competitor approach [87]. The latter approach has been tailored for re-
verse NN queries, but can easily be adapted to NN query processing. Es-
sentially, this approach performs a snapshot query P∀NNQ(q,D, {t}, τ) for
each t ∈ T . P∀NN(o, q,D, T) is estimated by

∏
t∈T P∀NN(o, q,D, {t}).

P∃NN(o, q,D, T) can be approximated by 1−
∏

t∈T (1−P∃NN(o, q,D, {t})).
The scatter plot in Figure 12.12 (left) illustrates a set of P∀NN probabilities
on synthetic data (v = 0.2, |T | = 5). For each experiment, we estimate
probabilities by our sampling approach (SA) (Section 12.2) with (104) sam-

12.4 Experimental Evaluation 117

0

0.2

0.4

0.6

0.8

1

0 0.5 1

E
st

im
at

ed
 P

ro
b.

Reference Prob.

REF
SA
SS

(a) P∀NN

0

0.2

0.4

0.6

0.8

1

0 0.5 1

E
st

im
at

ed
 P

ro
b.

Reference Prob.

REF
SA
SS

(b) P∃NN

Figure 12.12: Effectiveness of Sampling, P∀NN and P∃NN

ples and by the adapted approach of [87] (SS). We approximated the exact
approach (REF) by drawing a very high (106) number of samples.

We model each case as a (x,y) point, where x models the reference (REF)
and y the estimated probability (SA or SS). For (REF) the results always lie
on the diagonal identity function depicted by a straight line. Probabilities
of SA are very close to the diagonal, showing that our sampling solution
tightly approximates the results of the exact P∀NNQ query. Concerning
the snapshot approach, a strong bias towards underestimating probabilities
can be observed for the P∀NNQ query. The snapshot-based P∃NNQ-query
overestimates the results. This bias is a result of treating points of time
mutually independent. In reality, the position at time t must be in vicinity
of the position at time t−1, due to maximum speed constraints. This positive
correlation in space directly leads to a nearest neighbor correlation: If o is
close to q at time t− 1, then o is likely close to q at time t. And clearly, if o
is more likely to be close to q at time t, then o is more likely to be the NN
of q at time t. This correlation is ignored by snapshot approaches. It can be
seen that the systematic error of such snapshot approaches is quite high.

The number of samples required to obtain an accurate approximation of
the probability of a binomial distributed random event such as the event that
o is the NN of q for each time t ∈ T has been studied extensively in statistics
[107]. Thus the required number of samples is not explicitly evaluated here.

Effectiveness of the Forward-Backward Model. We tested the ef-
fectiveness of the forward-backward model adaption in comparison to other
approaches on the real dataset with a time interval between observations of
100 seconds. Figure 12.13 shows the mean error of these approaches, com-
puted during each point of time, evaluated over a time interval of 30 tics (5
minutes). The mean error has been computed in leave-one-out manner, i.e.

118 12. Nearest Neighbor Queries

Figure 12.13: Real Data: Effectiveness of the Model Adaption

trajectories for computing the error have not been used to train the model
in order to avoid overfitting. The figure visualizes the error of the a-priori
model (NO) considering only the first observation, the model adapted by the
forward phase only (F) and the forward-backward-adapted a-priori-model
(FB) from this paper. We further implemented two additional approaches.
The uniform approach (U), a competitor corresponding to [93, 94], discards
all probability information of FB and, due to a lack of better knowledge,
assumes all reachable states at a given time to have a uniform probability.
The difference to the cylinders and beads approximation models presented
in [93, 94] is that these models use conservative approximations that may
include some (time, state) pairs actually having a zero probability for an
object to be located at. Thus, our U approach is at least as good as the
cylinders and beads approximation models in terms of effectiveness, regard-
less of the approximation type used. The approach FBU is equivalent to
FB, however turning probabilities in the transition matrix are equally dis-
tributed instead of learning the exact transition probabilities from the under-
lying map data. First note that the approach not incorporating any observa-
tions (NO), yields significant errors compared to the remaining approaches.
Clearly, observations can reduce errors and uncertainty during query evalu-
ation. The forward-only approach (F) reduces this error, however the error
is still high especially directly before an observation. This problem is solved
by the forward-backward approach investigated in Section 12.2 (FB). Note
that even if the Markov chain is assumed to be uniformly distributed (FBU),
the results are still good, but worse than with the actual learned probabili-
ties (FB). This is good news, as it shows that even a non-optimally learned
Markov chain can lead to useful results, however with a slightly higher error.
This good performance comes from the fact that with a uniform transition
distribution the diamond-shaped space of possible time-state pairs still has

12.4 Experimental Evaluation 119

0
20
40
60
80

100
120
140
160

 1k 10k 20k

C
P

U
 T

im
e

(s
)

|D|

TS
NNA

0
200
400
600
800

1000
1200
1400

1k 10k 20k

T
im

es
ta

m
p

S
et

s

|D|

#Timestamp Sets

Figure 12.14: PCNN: Varying the Number of Objects

high probabilities in the center of the diamond, since trajectories near the
center of the bead will have a higher likelihood than trajectories close to the
beads boundary. This stands in contrast to the uniform approach (U) that
models all states at the diamonds border to have the same probabilities as the
states in the diamonds center; explaining why U performs worse than FBU.
To conclude, combining observations with a sufficiently accurate transition
matrix can produce the most accurate results.

12.4.2 Continuous Queries

In our experimental evaluation on continuous queries we compare the runtime
and the size of the (unprocessed) result set for various database sizes and
values of the threshold τ (default τ = 0.5) using artificial data. After query
evaluation, this result set can be further condensed, e.g. by removing all
smaller sets of timestamps that are already implicitly contained in a larger
set of timestamps.

Increasing the number of objects stored in the database leads to an in-
crease in the time needed to compute the a-posteriori Markov model (TS)
for each object (cf. Figure 12.14 (left)). This result is equivalent to the result
for P∀NNQ queries, since a-posteriori models have to be computed for either
query semantics. However, the time required to obtain a sufficient number
of samples (SA) is much higher, since probabilities have to be estimated for
a number of sets of time intervals, rather than for the single interval T . This
increase in run-time is alleviated by the effect that the number of candidate
time intervals obtained in the candidate time interval generation step of our
Apriori-like algorithm decreases (Figure 12.14 (right)). This effect follows
from the fact that more objects lead to more pruners, leading to smaller
probabilities of time intervals, leading to fewer candidate time intervals.

The results of varying τ can be found in Figure 12.15. Clearly an in-

120 12. Nearest Neighbor Queries

0

50

100

150

200

0.1 0.5 0.9

C
P

U
 T

im
e

(s
)

τ

TS
SA

0
100
200
300
400
500
600
700
800

0.1 0.5 0.9

T
im

es
ta

m
p

S
et

s

τ

#Timestamp Sets

Figure 12.15: PCNN: Varying τ

creasing probability threshold decreases the average size of the result (Figure
12.15 (right)). Consequently, the computational complexity of the query de-
creases as fewer candidates are generated. Figure 12.15 (left) shows that the
run-time of the sampling approach becomes very large for low values of τ ,
since samples have to be generated for each relevant candidate set. Similar
to the Apriori-algorithm, the number of such candidates grows exponentially
with T , if τ is small.

Chapter 13

Reverse Nearest Neighbor
Queries

In the last chapter we addressed efficient probabilistic nearest neighbor query
processing on spatio-temporal data. In this chapter we extend our results
to reverse nearest neighbor queries, building upon the previously introduced
sampling approach.

13.1 PRNN Query Processing

To process the two PRNN query types defined in Section 11.1, we proceed
in a similar way as in the case of nearest neighbor queries. First, we perform
a temporal and spatial filtering to quickly find candidates in the database
and exclude as many objects as possible from further processing. In the
second step we perform a verification of the remaining candidates to obtain
the final result. Although different solutions to this problem are possible,
we decided to describe an algorithm that splits the query involving several
timesteps into a series of queries involving only a single point in time during
the pruning phase. The interesting point in this algorithm is that it shows
that spatial pruning does not introduce errors when disregarding temporal
correlations. However, disregarding temporal correlation during the proba-
bility computation phase does introduce errors, as we have seen in Section
12.4.

122 13. Reverse Nearest Neighbor Queries

Space

Time q
(a) Uncertain trajectories in 1D
space

q(t)

(b) space (2D) at one point of time t

Figure 13.1: Spatio-temporal filtering (only leaf nodes are shown)

13.1.1 Temporal and Spatial Filtering

In the following we assume that the uncertain trajectory database D is in-
dexed by an appropriate data structure, like the UST tree [40].1 For the UST
tree, the set of possible (location,time)-tuples between two observations of
the same object is conservatively approximated by a minimum bounding
rectangle (MBR) (cf Figure 13.1a). All these rectangles are then used as an
input of an R*-Tree.

The pseudo code of the spatio-temporal filter is illustrated in Algorithm 7.
The main idea is to (i) perform a candidates search for each timestamp t in the
query interval T (cf. Figure 13.1a) separately and (ii) for each candidate find
the set of objects which are needed for the verification step (influence objects
Scndifl). For each t we consider the R-Tree Dt which results from intersecting
the time-slice t with the R-Tree D (cf Figure 13.1b). This can be achieved
efficiently during query processing by simply ignoring pages of the index that
do not intersect with the value of t in the temporal domain. For each time t
a reverse nearest neighbor candidate search [103] is performed.

Therefore, a priority queue Q is initialized, which organizes its entries by
their minimum distance to the query object q. Q initially only contains the
root node of Dt. Additionally we initialize two empty sets. Scnd contains all
RNN candidates which are found during query processing and Sprn contains
objects (leaf entries) or entries which have been verified not to contain can-

1Note that the techniques for pruning objects do not rely on this index and thus can
also be applied in scenarios where there is no index present.

13.1 PRNN Query Processing 123

Algorithm 7 Spatio-Temporal Filter for the P∀RNN query

Require: q,T , D
1: ∀t ∈ T : Stcnd = ∅
2: ∀t ∈ T : Scnd,tifl = ∅
3: for each t ∈ T do
4: initialize priority queue Q ordered by minimum distance to q
5: insert root entry of Dt into Q
6: Sprn = ∅
7: while Q is not empty do
8: retrieve first entry e from Q
9: if ∃e2 ∈ Q ∪ Sprn ∪ Stcnd : Dom(e2, q, e) then

10: Sprn = Sprn ∪ {e}
11: else if e is directory entry then
12: for each child ch in e do
13: insert ch in Q
14: end for
15: else if e is leaf entry then
16: Stcnd = Stcnd ∪ {e}
17: end if
18: end while
19: for each cnd ∈ Stcnd do
20: if ∃le : Dom(le, q, e) then
21: discard candidate and continue;
22: end if
23: Scnd,tifl = {le : ¬Dom(le, q, e) ∧ ¬Dom(q, le, e)}
24: end for
25: end for
26: Sref =

⋂
t∈T

Stcnd

27: for each cnd ∈ Sref do

28: Scndifl =
⋃
t∈T

Scnd,tifl

29: end for
30: return ∀cnd ∈ Sref : (cnd, Scndifl)

didates. Then, as long as there are entries in Q, a best-first traversal of Dt
is performed. For each entry e which is de-heaped from Q, the algorithm
checks whether e can be pruned (i.e., it cannot contain potential candidates)
by another object or entry e2 which has already been seen during processing.
This is the case if e2 dominates q w.r.t. e, i.e. e2 is definitely closer to e than

124 13. Reverse Nearest Neighbor Queries

q which implies that e cannot be RNN of q. To verify spatial domination
Dom we adapt the technique proposed in [29], which we have already used
in Section 7.1 of this thesis.

Algorithm 8 Verification for the P∀RNN query

Require: q,T , cnd, Scndifl , num samples
1: num satisfied = 0
2: for 0 ≤ i ≤ num samples do
3: num satisfied = num satisfied + 1
4: cnds = sampleTrajectory(cnd)
5: for all o ∈ Scndifl do
6: os = sampleTrajectory(o)
7: if ∃t ∈ T : dist(cnds(t), os(t)) < dist(cnds(t), q(t)) then
8: num satisfied = num satisfied - 1
9: break

10: end if
11: end for
12: end for
13: return num satisfied/num samples

An entry which is pruned by this technique is moved to the Sprn set. If
an entry cannot be pruned it is either moved to the candidate set if it is a
leaf entry or put into the heap Q for further processing.

After the index traversal, for each candidate it can be checked if the
candidate is pruned by another object. If the other object it is definitely
closer to the candidate than the query, the candidate object can be discarded
(see line 21). To find the set of objects that could possibly prune a candidate,
we can again use the domination relation (see line 23). An object (leaf entry
le) is necessary for the verification step if it might be closer to the candidate
than the query, which is reflected by the statement in this line. A more
detailed description of this step can be found in [103].

After performing this process for each timestamp t we have to merge the
results for each point of time to obtain the final result. In the case of a
P∀RNN we intersect the candidate sets for each point in time. The only
difference for the P∃RNN query is that we have to unify the results in this
step.

The influencing objects of each candidate have to be unified for each time
t ∈ T to obtain the final set of influencing objects. The algorithm ultimately
returns a list of candidate objects together with their sets of influencing
objects.

13.2 Experiments 125

13.1.2 Verification

The objective of the verification step is to compute, for each candidate c,
the probability P∃RNN(c, q,D, T) (P∀RNN(c, q,D, T)) and compare this
probability with the probability threshold τ . An interesting observation is,
that we were able to prune objects based on the consideration of each point
t ∈ T separately, however as shown in Section 11.1.3 it is not possible to
obtain the final probability value by just considering the single time prob-
abilities. Thus our approach relies on sampling of possible trajectories for
each candidate and the corresponding influence objects by falling back on the
sampling approach from Section 12.2. On each sample (which then consists
of a set of certain trajectories) we then are able to efficiently evaluate the
query predicate. Repeating this step often enough we are able to approx-
imate the true probability of P∃RNN(c, q,D, T) (P∀RNN(c, q,D, T)) by
the percentage of samples where the query predicate was satisfied. The algo-
rithm for the verification of the P∀RNN query is given in Algorithm 8. Note,
that it is possible to early terminate sampling of influence objects, when we
find a time t where the candidate is not closer to q than to the object trajec-
tory just sampled. For the P∃RNN query we can also implement this early
termination whenever we can verify the above for each point of time.

13.2 Experiments

Our experimental evaluation of probabilistic RkNN queries reuses the ex-
perimental setup from the previous chapter. Again, we focus on testing the
efficiency of our algorithm for P∀RNNQ and P∃RNNQ, by measuring (i) the
number of candidates and influence objects remaining after pruning irrele-
vant objects based on their spatio-temporal MBRs, and (ii) the runtime of
the refinement procedure, i.e. sampling. We split the sampling procedure
into adapting the transition matrices (building the trajectory sampler) of
the objects and the actual sampling process, as the adaption of transition
matrices can be done as a preprocessing step, storing the adapted transition
matrices of each object in the database. For our experiments we determined
candidates based on MBR filtering, i.e. the MBR over all states that can
be reached by an object between two consecutive observations. For our ex-
periments we concentrate on the case of the query q being given as a query
state.

126 13. Reverse Nearest Neighbor Queries

0

200

400

600

800

1000

 1k 10k 20k

C
P

U
 T

im
e

(s
)

|D|

TS
FA

EX

0

50

100

150

200

250

300

1k 10k 20k

In
vo

lv
ed

 O
bj

ec
ts

|D|

|CA(q)|
|IA(q)|
|CE(q)|
|IE(q)|

Figure 13.2: Synthetic Data, Varying |D|.

13.2.1 Evaluation: P∀RNNQ and P∃RNNQ

The default setting for our performance analysis is as follows: We set the
number of states to N = |S| = 100k, the database size (number of objects) to
|D| = 10k, the average branching factor (synthetic data) to b = 8, probability
threshold τ = 0. The length of the query interval was set to |T | = 10. To
compute a result probability, 10k possible worlds were sampled from the
candidate objects.

In each experiment, the left plot shows a stacked histogram, visualizing
the cost for building the trajectory sampler (TS) and the actual cost for
sampling (EX for the P∃RNN query, FA for the P∀RNN query). The
right plot first visualizes the number of candidates (Cx(q)) for the P∃RNN
(x = E) and P∀RNN (x = A) query, i.e. the number of objects for which
the nearest neighbor has to be computed. Second it visualizes the number
of pruners or influence objects (Ix(q)), i.e. the number of objects that can
prune candidates. Clearly the number of candidates and pruners is different
for P∀RNN and P∃RNN queries: for the P∃RNN query objects not totally
overlapping the query interval can be candidates, increasing the number of
candidates. For the P∀RNN query, candidates can be definitely pruned if
at least at one point of time another object prunes the candidate object.

Varying |D|. Let us first analyze the impact of the database size
(see Figure 13.2), i.e. the number of uncertain objects on the runtime of a
probabilistic reverse nearest neighbor query. First of all note that the num-
ber of candidates and influence objects increases if the database gets large.
This is the case because with more objects, the density of objects increases
and therefore more objects become possible results of the RNN query. Also,
clearly, the number of influence objects increases due to the higher degree
of intersection of MBRs. Second the probability computation of candidate
objects during refinement is mostly determined by the computation of the

13.2 Experiments 127

0

100

200

300

400

500

 6 8 10

C
P

U
 T

im
e

(s
)

b

TS FA EX

0

50

100

150

6 8 10

|C
(q

)|
an

d
|I(

q)
|

b

|CA(q)|
|IA(q)|

|CE(q)|
|IE(q)|

Figure 13.3: Synthetic Data, Varying b.

adapted transition matrices, i.e. building the trajectory sampler. This is
actually good news, as this step can also be performed offline and the result-
ing transition matrices can be stored on disk. Last note that evaluating the
P∃RNN query during the actual sampling process (EX and FA for P∃RNN
and P∀RNN respectively) is also more expensive than the P∀RNN query,
as more samples have to be drawn for each candidate object: possible worlds
of P∀RNN -candidates can be pruned if a single object at a single point in
time prunes the candidate. For the P∃RNN query, all points in time have to
be pruned which is much less probable. Additionally, more candidates than
for the P∀RNN have to be evaluated, also increasing the complexity of the
P∃RNN query.

Varying b. The effect of varying the branching factor b (see Figure 13.3)
is similar but not as severe as varying the number of objects. Increasing the
branching factor increases the number of states that can be reached during
a single transition. In our setting, this also increases the uncertainty area of
an uncertain object, making pruning less effective, and therefore increasing
the number of objects that have to be considered during refinement. As a
result, the computational complexity of the refinement phase increases with
increasing branching factor.

Varying N = |S|. Increasing the number of states in the network (see
Figure 13.4) while keeping the branching factor b constant shows an opposite
effect on the number of candidates: as the number of states increases, objects
become more sparsely distributed such that pruning becomes more effective.
Note that for small networks especially the sampling process of the P∃RNN
query becomes very expensive. This effect diminishes with increasing size of
the network. Although less objects are involved, building the adapted tran-
sition matrices becomes more expensive, as for example matrix operations
become more expensive with larger state spaces.

128 13. Reverse Nearest Neighbor Queries

0

100

200

300

400

500

600

 10k 100k 500k

C
P

U
 T

im
e

(s
)

N

TS FA EX

0
100
200
300
400
500
600
700

10k 100k 500k

|C
(q

)|
an

d
|I(

q)
|

N

|CA(q)|
|IA(q)|
|CE(q)|
|IE(q)|

Figure 13.4: Synthetic Data, Varying N = |S|.

0
200
400
600
800

1000
1200
1400
1600
1800

 1k 10k 20k

C
P

U
 T

im
e

(s
)

|D|

TS
FA

EX

0

200

400

600

800

1000

1k 10k 20k

|C
(q

)|
an

d
|I(

q)
|

|D|

|CA(q)|
|IA(q)|
|CE(q)|
|IE(q)|

Figure 13.5: Real Data, Varying |D|.

Real Dataset. Last but not least we show results of the P∀RNN
and P∃RNN queries on the real dataset (see Figure 13.5). We decided
to vary the number of objects as the number of states and the branching
factor is inherently given by the underlying model. The results are similar
to the synthetic data, however more than twice as many objects have to
be considered during refinement. We explain this exemplarily by the non-
uniform distribution of taxis in the network. A part of this performance
difference can also be explained by the slightly smaller network consisting of
about 70k states instead of 100k states in the default setting.

Chapter 14

Conclusions

In Part III of this thesis, we addressed the problem of answering nearest
neighbor and reverse nearest neighbor queries in uncertain spatio-temporal
databases.

In the context of probabilistic nearest neighbor queries, we proposed
three different query semantics: P∀NNQ queries, P∃NNQ queries and PCNN
queries. We have first analyzed the complexity of these queries, showing that
computing all of them has a high runtime complexity. These results provide
general insights into the complexity of NN search over uncertain data in
spatio-temporal databases since the Markov chain model is one of the sim-
plest models that consider temporal dependencies. More complex models are
expected to be at least as hard. To mitigate the problems of computational
complexity, we used a sampling-based approach based on Bayesian inference.
For the PCNNQ query we proposed to reduce the cardinality of the result
set by means of an Apriori pattern mining approach. To cope with large
trajectory databases, we introduced a pruning strategy to speed-up PNN
queries exploiting the UST tree, an index for uncertain trajectory data. The
experimental evaluation shows that our adapted a-posteriori model allows to
effectively and efficiently answer probabilistic NN queries despite the strong
a-priori Markov assumption.

Our second contribution in this part addressed probabilistic reverse near-
est neighbor queries on uncertain spatio-temporal data. We defined two
queries, the P∃RNNQ and the P∀RNNQ query and proposed pruning tech-
niques to exclude irrelevant objects from costly probability computations.
We then used the previously developed sampling technique to compute the
actual P∃RNNQ and P∀RNNQ probabilities for the remaining candidate ob-
jects. During an extensive performance analysis on both synthetic and real
data we empirically evaluated our theoretic results.

130 14. Conclusions

Part IV

kNN Queries for Image
Retrieval

Chapter 15

Introduction

In the fourth part of this thesis we address applications of nearest neighbor
queries in the area of computer vision, especially in the context of keypoint-
based object recognition. In this field of research, images are described by a
set of interest points, each of them represented by its spatial location, angle,
characteristic scale and a feature vector describing the spatial neighborhood
of the keypoint in the image. This rich description of images introduces a
variety of challenges: Feature vectors are high-dimensional, making indexing
difficult to achieve. At the same time, each image is described by a set of
features, up to a few thousands, making an unoptimized linear scan over da-
tabases containing these features impossible even on relatively small datasets
containing only a few thousand of images. Additionally, the set-based na-
ture of such an object representation, describing a single image by a set of
feature vectors, requires specialized querying techniques that do not only ex-
ploit information on feature vectors, but also geometric constraints on their
corresponding keypoints’ positions.

From a historical point of view, while the development of the SIFT-
Descriptor [3] made effective object retrieval on a large scale feasible, its
initial use of nearest neighbor queries lead to slow runtimes even on rela-
tively small data sets. In 2003, the invention of the Bag of Visual Words
(BoVW) technique [23] aimed at solving this issue by roughly approximating
the matching step (which was by then relying on nearest neighbor queries)
using quantization, initiating a whole new area of research. However soon the
limitations of this rough approximation became obvious, enforcing the devel-
opment of more accurate techniques for assigning query vectors to database
features. Whilst initial approaches aiming at increasing the accuracy of the
matching step such as soft assignment [110] were relatively close to the BoVW
approach, the focus in recent years turned back more and more to approxi-
mate kNN queries [10, 111, 112, 11] due to their possible gain in matching

134 15. Introduction

accuracy [113]: kNN queries provide an accurate ranking of the matching
candidates and a measure of proximity between feature vectors and query
vectors. This additional information can be exploited for weighting the scores
of image matches, increasing retrieval accuracy considerably [113].

Current research on kNN processing in the image retrieval community fo-
cuses on maximizing accuracy, on minimizing the memory footprint of index
structure and feature vectors, and on minimizing processing time. This goal is
approached from different directions. In the area of real-valued features, such
as SIFT [3], new indexing techniques have received a vast amount of interest
even in the most prestigious computer vision conferences [10, 111, 112, 12].
Another important trend, aiming at memory reduction and at speeding up
kNN queries, is the use of binary features: In the last years, a new kind
of feature vector, not real-valued but rather binary-valued (e.g. [114, 115])
has emerged. In contrast to real-valued feature vectors, binary features are
less redundant, often faster to compute and incur less storage overhead at
the cost of a lower recognition rate. Binary features are, to the best of
our knowledge, seldom queried with BoVW-based approaches [116, 117], but
rather by more traditional approximate kNN techniques such as LSH-based
approaches [7, 114, 11], but also based on quantization [118, 119].

In the last main part of this thesis, we build upon this current research
on keypoint-based object recognition, aiming at increasing the usability of
these new approaches in medium-scale to large-scale scenarios, addressing
the following research issues:

Efficient Object Recognition on Set-based Image Representations.
While advances in feature indexing resulted in a remarkable leap in perfor-
mance concerning efficient and effective kNN query processing, with the vast
amount of features that have to be matched during recognition (up to a few
thousand), even very fast kNN indexing techniques that can provide approx-
imate query results in under ten milliseconds (e.g. [10]) on large datasets
containing millions of features would yield recognition runtimes of many sec-
onds.

We argue that the use of kNN queries for object recognition in large-scale
systems cannot be achieved by developing efficient indexing techniques alone.
The problem of efficiency has to be approached from different research di-
rections as well, such as the number of kNN queries posed on the system,
as reducing the number of kNN queries linearly decreases the runtime of the
matching step. In Chapter 17 we aim at addressing this problem. We evalu-
ate an alternative recognition pipeline that ranks features extracted from the
query image by assessing their matchability. Then, the most promising fea-

135

tures in this ranking are matched against the database using traditional kNN
queries. However, despite gaining efficiency, the enforced reduction of kNN
queries causes a reduction of feature matches, decreasing the quality of the
query result. While recall can be increased by increasing k, to increase Mean
Average Precision (MAP) we expand matches on the image level: Given a
single seed feature match in a candidate image, this match is expanded by
comparing its spatially neighboring keypoints. The idea of this additional
step is to push load from the matching step (with complexity mostly deter-
mined by the underlying index structure) to an additional step that only has
to consider the features stored in a single image pair. The resulting enriched
set of matches can then be processed equivalently to techniques based on
BoVW, e.g. by using query expansion [120] or geometric verification [121].

This work stands in contrast to research in the area of BoVW-based
retrieval: Research involving the BoVW pipeline often assumes that the
matching step is relatively cheap, especially if approximate cluster assign-
ment techniques such as hierarchical k-means [122] or approximate k-means
[121] are used. Therefore such research often focused on increasing Mean
Average Precision (MAP) at a large number of query features. In contrast,
Chapter 17 aims at maximizing MAP for a small number of processed fea-
tures. This different optimization criterion is especially of interest as tech-
niques that do not lead to significant gains in performance at a high number
of features (where convergence to the maximum possible MAP has already
been achieved by other techniques) can lead to a remarkably higher MAP
when only a low number of features is queried. To summarize, the contribu-
tion of Chapter 17 is to provide a simple and extensible pipeline for medium
to large-scale object retrieval based on kNN queries with all of the following
properties:

• Reduction of the number of keypoints queried by a general keypoint
ranking scheme in order to reduce matching times. The pipeline is not
bound to a specific keypoint selection technique as long as keypoints
can be ranked by their estimated quality.

• Acceleration of the pipeline by state-of-the art index structures such as
(Locally Optimized) Product quantization [12] or Multi-Index-Hashing
[11].

• Geometric Match Expansion to relieve the index structure and to in-
crease query MAP.

• The use of many nearest neighbors (k > 2) to increase the number of
seed hypotheses and therefore query recall.

136 15. Introduction

• Consideration of distances between features during score generation to
allow accurate scoring of image features by their similarity.

We further provide a thorough evaluation of this pipeline on a variety of
well-known datasets, including Oxford5k, Oxford105k, Paris 6k, and INRIA
Holidays, provide insights into advantages and disadvantages of the approach,
and show that such match expansion techniques can lead to performance im-
provements. We also evaluate the effect of k in relation to the number of
keypoints queried on the systems performance, and the pipeline’s behaviour
on different feature descriptors including real-valued (SIFT) and binary (Bin-
Boost) features.

Indexing Binary Features for Object Recognition. As a second con-
tribution we aim at shedding more light on the feature matching step in the
context of binary features. During our evaluation in Chapter 17 we employ
highly optimized exact indexing to find matching candidates of binary fea-
tures. While these techniques are indeed astonishingly fast, they are still too
slow for large scale applications requiring low response times. To address this
issue, Chapter 18 provides an evaluation of approximate indexing techniques
for binary features in image retrieval. Equivalently to the idea of Pauleve et
al. [123] in the case of real-valued features, we reduce the matching step for
binary features to the idea of LSH. Given this interpretation of the problem,
all of the currently used approaches only differ in the computation of the
hashes, which allows high comparability. During our experiments, we eval-
uate these hash functions under different conditions in the context of kNN
queries and range queries, and investigate under which conditions each of
these approaches performs best. We see the necessity of this research for the
following reasons. First, query processing in binary space should consider its
specific properties, such as its thick boundaries [118]. In practice, however,
a variety of techniques known from real-valued features is applied to binary
features, such as quantization, although only few experimental results, such
as [118, 119], of these techniques in binary space are available; we will build
upon and extend these results in Chapter 18.

Structure of this Part. This part of the thesis is structured as follows.
First, in Chapter 16, we recap keypoint-based object recognition, provide a
formal problem definition and an overview over related work. In Chapter 17
we address the problem of reducing the number of keypoints in set-based
feature representations, considering a modified object recognition pipeline
(Section 17.1) and providing an evaluation of this pipeline (Section 17.2) on
different feature types and datasets. Chapter 18 is split into a review of

137

currently available techniques (Section 18.1) for querying binary features in
image databases, and an in-depth analysis of the described techniques, com-
plementing the results from [118, 119] (Section 18.2). Chapter 19 concludes
this part.

This research on image retrieval has been previously published in [53, 54];
for an overview over the contributions of the author of this thesis to this work
we refer to Chapter 4.

138 15. Introduction

Chapter 16

Preliminaries

Many state-of-the-art solutions in the area of object recognition follow a com-
mon pipeline using the filter-refinement paradigm, see Figure 16.1. First,
given an input image, keypoints are extracted at different image scales that
aim at identifying interesting regions of the image. Then, for each of these
keypoints, a high-dimensional feature vector is computed that describes the
keypoint’s surroundings in a scale-, rotation-, and translation-invariant way.
Available keypoint descriptors include for example SIFT [3], BinBoost [124],
and ORB [114]. For efficient query processing, these features have to be
indexed together with meta-information such as the image ID where the fea-
ture was detected, and the corresponding keypoint’s position, rotation, and
scale. Indexing is often achieved with the Bag of Visual Words (BoVW)
paradigm [23] which has been derived from text retrieval: With this ap-
proach, feature vectors are quantized using, for example, k-means. Each
mean represents a single visual word and describes a set of visually similar
features, as each database feature is mapped to its closest k-means centroid.
During query processing, every query feature is assigned to the closest clus-
ter center; database features falling into the same cluster center as the query
vote for a given candidate image, filtering irrelevant results and allowing to
rank candidates according to the number of features voting for them; usu-
ally additional weighting of correspondences is employed to increase te query
precision. Finally, during a refinement step, geometric consistency between
the matched features is checked, and a re-ranking based on the refinement

Image
Extract−−−−→ Feature V ectors

Filter−−−→ Candidates Images
Refine−−−−→ Result

Figure 16.1: Object Recognition Pipeline

140 16. Preliminaries

result is performed.
The roughness of binary decisions involved in the initial BoVW approach,

either assigning or not assigning a query feature to a match candidate, has
proven to be a major restriction, as for example the distance between tenta-
tively corresponding features is not considered during matching. As a result
this procedure has been softened more and more, for example with the ap-
pearance of soft assignment [110]. Recent approaches such as [10, 111, 112,
11] returned to approximate nearest neighbor queries, as including the close-
ness between a database feature and a query feature into the ranking can
improve query performance. In the following we will formally summarize
the previous informal description of keypoint-based object recognition and
provide a formal problem definition.

16.1 Problem Definition

Let D = {I0, ..., I|D|} denote a database of images Ij. Images are represented
by a list of interest points and their corresponding feature vectors, i.e. Ij =

{p0
j , ..., p

|Ij |
j } with pij = (vij, x

i
j, y

i
j, s

i
j, r

i
j, σ

i
j) for affine-variant interest point

descriptors and pij = (vij, x
i
j, y

i
j, s

i
j, r

i
j, σ

i
j, A

i
j) for affine-invariant descriptors,

with vij a (real-valued or binary) feature vector, (xij, y
i
j) the coordinate of the

interest point in the image, sij its scale, rij its rotation, σij its response, and
for affine-invariant descriptors Aij the parameters of the ellipse describing its
affine shape, see [125].

Given a query image Iq containing an object o, we would like to retrieve
all images In ∈ D containing object o. This is usually achieved by a combi-
nation of feature matching and scoring [126]. During feature matching, we
retrieve tuples of similar feature vectors m(piq) = {(piq, pj0x0), . . . , (p

i
q, p

jr
xr)},

{Ix0 , ..., Ixr} ⊆ D denoting that feature i of the query is visually simi-
lar to the features {pj0x0 , ..., p

jr
xr}. This matching problem can for example

be solved using the BoVW approach. In recent years however, as men-
tioned previously, there has been a shift away from BoVW towards more
accurate, however less efficient kNN queries [10, 111, 112, 11], leading to

m(piq) = {(piq, pix)|pix ∈ kNN(piq, D, k)}. Now let M = ∪|Ψ|i=0m(piq), with

Ψ = {p0
q, . . . , p

|Ψ|
q } ⊆ Iq a subset of the query features. The score of database

image Ix ∈ D is computed as
∑

{(piq ,p
j
y)∈M |x=y}

score(piq, p
j
y). The most trivial

solution would be to increase the score of image Ix by one for each tentative
match, resulting in

∑
{(piq ,p

j
y)∈M |x=y}

1. More sophisticated scoring approaches

for kNN-based image retrieval can be found e.g. in [113].

16.1 Problem Definition 141

Accurate kNN queries are, even after astonishing research efforts in the
last years, still relatively expensive. For example, running a 100NN-query on
100 million binary features using Multi-Index Hashing (an index for binary
features, see [127]) would take about 100ms, summing up to 100 seconds in
a scenario where 1000 features are queried to retrieve a single image1. SIFT
features are generally queried approximately, runtimes vary significantly with
recall and are often between 8ms/query and 53 ms/query for a billion SIFT
features at a recall below 0.5 [10].Generally, achieving good recall over 0.5
for 1NN queries with such techniques is very expensive.2 Based on these
observations we argue that in addition to indexing efficiency, other possibil-
ities must be considered to reduce the complexity of the feature matching
phase. Generally, to achieve this complexity reduction, different approaches
are reasonable:

• Reduce the dimensionality of feature vectors. One well-known ap-
proach would be to apply PCA to SIFT features and drop the di-
mensions with least variance. Another more desirable option would be
to directly extract lower-dimensional features.

• Reduce the cost of distance functions, for example by binarization [128,
129, 130, 131, 132] or by extracting binary features [124, 114] and using
the Hamming distance.

• Reduce the cost for querying. A variety of (exact) indexing techniques
have been proposed, e.g. Multi-index-hashing [11] for binary features.

• Reduce the accuracy of a matching query. This has been widely used
in the past, e.g. BoVW [23] can be seen as an extreme case.

• Reduce the number of kNN queries, e.g. [133, 134, 135, 136].

In Chapter 17 of this thesis we focus on the last approach: Let a database
of images, represented by sets of features describing the neighborhood around
interest points, be given. Let n denote the upper bound on the number of
matching queries, constraining the number of kNN queries. The goal of
this research is to develop a retrieval algorithm that returns a list of images
ranked by their visual similarity to the query. We aim at modifying the
image recognition pipeline such that a given performance measure (in our
case MAP) is maximized for a given n.

1Note that the number of features extracted from an image is sometimes even larger,
see the dataset statistics in our experimental evaluation

2We are not aware of recall evaluations of these techniques for k 6= 1 although it was
shown in [113] that a larger k can notably boost recognition performance.

142 16. Preliminaries

The problem setting for reducing the number of keypoints is similar to
BoVW-based approaches, however in such a context it is usually assumed
that n = |Iq|. In our work we address the opposite case where n << |Iq|.

As an additional contribution, in Chapter 18 we provide an evaluation of
indexing techniques for binary features, which is important when integrating
binary features in the recognition pipeline above.

16.2 Related Work

This section, addressing related research, follows the organization of the im-
age processing pipeline used in Section 17.1.

16.2.1 Keypoint Reduction

In order to reduce the number of extracted features that have to be matched,
[133] aimed at predicting the matchability of features by interpreting the
problem as a classification task. The authors have shown that this solution,
based on a random forest of decision trees, leads to better matching re-
sults than if the same number of high-response features would be considered.
Keypoint reduction can also be achieved by employing the Adaptive Non-
Maxima suppression (ANMS) from Brown et al. [136]. Their approach aims
at finding interest points that are sufficiently distributed across the whole
image and is computationally relatively inexpensive. Hajebi and Zhang [134]
proposed to keep track of the distribution of scores during query processing
and stop the investigation of further features as soon as the score difference
between the best-scored image and the average score becomes large enough.
Other approaches to rank features are based on visual attention, e.g. [135].
In contrast to us, the authors query all features of higher scale levels to
build a coarse-grained (32x32) top-down attention map and combine it with
a bottom-up saliency map. Then, in an iterative fashion, the features in
the most promising cells of these attention maps are queried. The authors
perform some kind of geometric verification, but no match expansion. The
approaches from Sattler et al. [137, 138], based on BoVW, consider features
in ascending order of the length of inverted lists of the corresponding vi-
sual words. While we aim at reducing the number of query features with
feature ranking, there exist also approaches aiming at reducing the number
of database features [139, 140, 141]. Decreasing both database and query
features can be a useful choice in the context of our pipeline, but is beyond
the scope of this work.

16.2 Related Work 143

16.2.2 kNN Indexing

Real-Valued Features. Exact kNN query processing on high-dimensional
features often cannot significantly decrease runtimes compared to a linear
scan due to the curse of dimensionality. Therefore indexing research in
the image community concentrates on approximate nearest neighbor search.
BoVW-based techniques [23, 122, 142, 121] can also be seen as a simple
means of indexing. Some well-known approximate indexing techniques used
in image retrieval are forests of randomized kD-trees[143, 144] and the k-
means-tree [122, 144]. These techniques however suffer either from high
storage complexity if the database descriptors are needed for refinement, or
low-quality distance approximations in the case of BoVW-based techniques.
Recent research in kNN indexing aims at providing low runtime and storage
complexity while providing accurate distance approximations at the same
time. One group of these techniques is based on the Product Quantization
approach from Jégou et al. [12], a quantization-based approximate index-
ing technique distantly related to the BoVW paradigm. Recent extensions
of this approach include [112, 111, 10]. A recent survey on approximate
nearest neighbor queries in general has been provided in [145]. Another sur-
vey addressing high-dimensional indexing especially in the context of image
retrieval has been published as well [146].

Binary Features. Another group of techniques aiming at efficient query
processing is built on the idea of generating distance-preserving binary codes
from real-valued features, sometimes referred to as binarization. Binariza-
tion can be seen as some sort of compression on real-valued image fea-
tures. Binary codes do not only increase storage efficiency but also al-
low efficient query processing (usually) by using the Hamming distance,
leading to fast distance computations. The generation of binary signa-
tures corresponds to the problem of finding a function f : Rd1 → Bd2 where
∀x1, x2 ∈ D : distl2(x1, x2) ∝ distH(f(x1), f(x2))) with distl2(x1, x2) denot-
ing the Euclidean distance between feature vectors and distH(f(x1), f(x2))
corresponding to the Hamming distance between the transformed points.
Recently developed binarization techniques include the approach from [128],
Random Maximum Margin Hashing [129], Scalar Quantization [130], Spher-
ical Hashing [131] and k-means hashing [132]. In contrast to binarization
techniques, binary keypoint descriptors such as BinBoost and ORB [124, 114]
can avoid the indirection of extracting real-valued (e.g. SIFT) features first
and then binarizing them. The resulting binary codes can be queried by ei-
ther retrieving features with equivalent codes from the database if the codes
are relatively short (resulting in only a few look-up operations), by employ-

144 16. Preliminaries

ing approximate LSH-based hashing [7] or using exact indexing [11, 127] and
are relatively fast due to them employing the Hamming distance instead of
the Euclidean distance. Additionally, Muja and Lowe [119] and Trzcinski et
al. [118] proposed the use of a forest of random clustering trees for nearest
neighbor search on binary features.

16.2.3 kNN-based Matching

kNN-based matching techniques have a long history in the context of Image
retrieval. One of the most famous techniques using such approaches is Lowe’s
SIFT recognition pipeline [3]. Lowe retrieved, for each query feature, the
two nearest neighbors from the database and accepted a feature as match
if its distance ratio between 1NN and 2NN was above a given threshold.
Jégou et al. [113] evaluated kNN-based matching based on local features,
especially SIFT. They proposed a voting scheme optimized for kNN-based
retrieval that aims at improving upon other voting schemes, such as binary
and rank-based ones. A binary voting scheme would increase the score of a
candidate image by 1 if a kNN-match between a query feature and a database
feature is found. Rank-based schemes give higher scores to keypoints that
have a low rank to the query feature. Their adaptive criterion basically
scores matches relative to the distance of the k-th match. Furthermore, the
authors analyzed normalization methods for the resulting votes in order to
reduce the negative effect of favouring images with many features over those
with only a few. Finally the authors investigated the impact of approximate
nearest neighbor search on the quality of the results. They did however not
consider reducing the number of query features. Qin et al. [147] proposed a
normalization scheme for SIFT-features that locally reweighs their Euclidean
distance, optimizing the separability of matching and non-matching features.
Based on this normalization, the authors developed a new similarity function
and scoring scheme based on thresholding rather than kNN query processing.

16.2.4 Match Expansion

As our technique aims at reducing the number of kNN queries during the
matching step, the generation of a sufficient number of match hypothe-
ses has to be achieved in a different fashion. We do so by applying a
flood-filling approach using kNN matches as seed points. Match expan-
sion has received quite some attention in the computer vision community
[148, 149, 150, 23, 151, 152, 153, 139], and will most likely become more rele-
vant again with the use of kNN-based matching techniques. One of the first
techniques in this area of research has been proposed by Schmid and Mohr

16.2 Related Work 145

[148]. They used the spatial neighbors of match candidates to increase the
distinctiveness of features. A feature pair is only considered as a match if
its feature-space distance is small enough and there exists a given fraction of
features in the spatial neighborhood of these features whose feature-distance
is small enough as well. They also considered the consistency of gradient
angles between these features to reject false-positive matches, however they
did not consider the combination of their approach with feature reduction.
Sivic and Zisserman adapted the technique for Video Google [23]. We how-
ever do not address the problem of BoVW-based retrieval. Furthermore we
do reject matches based on this technique but rather increase the score of a
given image by considering neighboring features. Our work is also inspired
by [150], where the authors used a region-growing approach for establishing
correspondences in the context of multi-view matching. After establishing
a set of initial matches in a traditional index-supported manner, an affine
transformation is estimated that guides search of additional matches in a
local neighborhood of the seed match. The authors, however, did not use
this technique for reducing the number of queries in the matching step, but
rather to increase the result quality. Ferrari et al. [151] developed another
related technique in order to achieve high invariance to perspective distor-
tion and non-rigid transformation; it further allowed to perform an accurate
segmentation of objects during recognition. Their approach builds a dense
grid of features over the image; in contrast we use the initially provided key-
points and descriptors that are stored in the database nonetheless, reducing
computational overhead. A recent work related to this approach includes
[153]. Guo and Cao [152] proposed to use Delaunay triangulation to improve
geometric verification. Wu et al. [154] proposed to enrich visual words by
their surrounding visual words, generating scores not only by the weight of
a visual word, but also the neighboring features; the authors however did
not consider keypoint reduction. Geometric min-Hashing [155], based on the
BoVW-paradigm, considers neighboring features as well, however in the con-
text of hashing: First, a reference feature is selected based on its min-hash
c1. Then from its spatial neighbors with similar scale, a description of the
central feature’s surroundings is generated based on min-hash, resulting in
min-hashes s1, . . . , sn. The tuple of min-hashes (c1, s1, . . . , sn) is then used
to query similar hashes in the database, compared to BoVW with the ad-
vantage that not only a single feature is considered when retrieving similar
documents, but also its surroundings. The approach aims at increasing pre-
cision at the cost of recall, by dropping features that do not share a similar
neighborhood. However, if we reduce the number of matching queries, one of
the main concerns is recall, such that our approach aims at increasing MAP
without negatively affecting recall. The authors of [137] combined keypoint

146 16. Preliminaries

reduction and concepts similar to our match expansion, however in the con-
text of 2D-to-3D matching and pose estimation, employing Lowe’s SIFT ratio
test without kNN-based scoring.

To summarize, while there exists a variety of techniques on feature reduc-
tion, match expansion, kNN query processing and distance-based scoring, to
the best of our knowledge there does not exist a technique combining these
techniques in the way proposed in the introduction.

Chapter 17

Minimizing the Number of
Matching Queries for Object
Retrieval

17.1 Pipeline

The general retrieval pipeline from this work follows the one used in the past
for BoVW-based image retrieval, but in order to incorporate kNN queries and
reduce the number of query features we applied some changes. In this section,
we first provide a theoretic overview over the pipeline. Then, as implementing
the pipeline in such a naive way would lead to unacceptable overhead in terms
of memory and computational resources, we provide practical considerations
about its implementation in a real-world setup.

17.1.1 Theory

We split our pipeline into the stages of feature detection and extraction,
feature ranking, feature matching, match expansion, scoring, and re-ranking.
The pipeline was designed with extensibility in mind such that each stage,
e.g. keypoint reduction and match expansion, can be easily exchanged by
different techniques.

1) Feature Extraction. During feature extraction, given the query image,
we extract the set Iq of keypoints and descriptors. Possible features include
floating point features such as SIFT [3] or binary features such as BinBoost
and ORB [124, 114]. The cardinality of Iq depends on the used feature
extractors and can range up to several thousand features.

148 17. Minimizing the Number of Matching Queries

2) Feature Ranking. The next stage, feature ranking, is based on the idea
that some features in an image contain more information than others. For
example, vegetation usually provides less information about a specific object
contained in the image than the features of the object itself. We aim at
ordering the extracted features by a given quality measure, as we would like
to query the most promising features first, i.e. the features with the highest
chance of providing good match hypotheses. There exist several techniques
for feature ranking, and we will fall back to these instead of developing a
new approach. The only criterion such a technique needs to fulfill in order to
be integrated into the recognition pipeline is that it returns a quality score
for each query feature. A simple baseline is a random ranking. Features
can also be ranked by their response or size. More sophisticated techniques
include Adaptive Non-Maximal Suppression [136] and the use of decision
trees involving additional training [133], which has however neither been
adapted to binary features nor to kNN-based matching, yet. The result
of this feature ranking step is a feature list, ordered such that the most
promising features appear first.

3) Feature Matching. The next step, feature matching, aims at finding
match hypotheses for the highest ranked features found during the last step.
For each of the first n features in the ranking, a kNN query is posed on the
database. The selection of the parameter k of the kNN query is important
for maximizing the quality of the query result [113]. On the one hand side,
a large k decreases the quality of the query result, as this introduces a high
number of erroneous correspondences which have to be filtered out during
a verification step later in the pipeline. On the other hand, a small k also
reduces the retrieval quality as many high-quality hypotheses are left uncon-
sidered. Basically, k can be seen as a way to tweak recall at a given number
of query features, as the number of images returned by the query is at most
n ∗ k. As a result, especially if a very small number of kNN queries is used
for correspondence generation, it is possible that an even larger k increases
effectiveness, as it allows for finding more initial correspondences (however
of lower quality). We refer to Section 17.2 for an experimental analysis of
this problem. The feature matching stage provides a list of tentative matches
(tuples) (piq, p

j
x).

4) Match expansion. The match expansion phase is tightly interleaved
with the match generation phase. In our scenario where we want to pose
a very small number of kNN queries on the system, we face the problem
that even if we find some correspondences between the query and a database

17.1 Pipeline 149

a) b) c) d)

Figure 17.1: Generation of additional match hypotheses.

image, their number will be relatively low, increasing the probability that a
good match is outranked by an image containing common random matches
only. To resolve this problem, we shift the load of correspondence generation
from the matching stage –that employs kNN queries– to an intermediate stage
that avoids such queries. Match expansion aims at reducing the runtimes of
generating additional matches, which usually depend on the underlying index
structure, to runtimes depending on the features stored in a single image pair.
When employing exhaustive search with product quantization for indexing,
match expansion therefore avoids additional linear scans over the feature
database; as non-exhaustive variants of product quantization only consider a
fraction of features in the database, the gain of match expansion in this case
depends on the desired recall of the index structure.

It is however important to realize that, while such a match expansion
can find additional hypotheses for candidate images, i.e. increase MAP, it
cannot retrieve any new candidates, i.e. increase recall. This stage therefore
aims at compensating for the loss in MAP due to querying less features.

Match expansion exploits the keypoint information of the seed matches
that provide scale, rotation, and possibly affine information. These proper-
ties can be used to identify spatially close keypoints, adapting the ideas of
[150, 151, 155, 154]; we will use a modified version of [148] for expanding
matches. Given that a match hypothesis is correct, not only the correspond-
ing feature pair should match, but also its spatial neighborhood, as an object
is usually not only described by a single but rather by multiple keypoints.
The similarity of a match’s neighborhood is evaluated using the procedure
visualized in Figure 17.1. The figure shows an initial seed match, i.e. a kNN
of a query feature, and keypoints surrounding the seed match. The scale of

150 17. Minimizing the Number of Matching Queries

each keypoint is represented by the keypoint’s size, and the gradient direction
is represented by a line anchored in the keypoint’s center. The top row of
this figure visualizes the features of the query image, while the bottom row
visualizes the image features of a tentative match.

Starting point is an initial correspondence pair (piq, p
j
D) established by

kNN-search in feature space, see Figure 17.1 a). In a first step, features in
a given spatial range are retrieved in the image Iq for piq and in Image ID
for pjD, see Figure 17.1 b); the spatial range is visualized by a dotted circle.
Given the constant δxy, the spatial range is given by siqδxy for the query fea-

ture and sjDδxy for the matching database feature, achieving scale invariance.
Spatially close keypoints with a significantly different scale (determined by
the scale ratio threshold δs) than their reference feature are discarded (see
the small features in the figure) similar to [155], resulting in two sets of fea-
tures Pq and PD. These remaining features are rotation-normalized using
the reference keypoint’s gradient orientation information riq and riD, rotating
the set of keypoints and their corresponding gradient orientations, see Fig-
ure 17.1 c). Then the two lists of keypoints are traversed in parallel. If the
rotation-normalized angle α to the reference feature, the rotation-normalized
gradient angle r, and the feature-space distance of two features dv are within a
predefined threshold (δα, δr, and δdv respectively) and the ratio of their scale-
normalized spatial distance is within given bounds δdxy , the corresponding
features are accepted as a matching pair (see Figure 17.1 d)). The remain-
ing features are discarded. Note that, while the complexity of this step is
|Pq| ∗ |PD| in the worst case, it can be reduced by an efficient sweep-line
implementation that sorts features by their angle α and traverses both lists
in parallel.

This technique of finding neighboring keypoints assumes that two images
are only distorted by similarity transforms. To mitigate the effects of non-
similarity or even (small) non-rigid distortions, a recursive procedure (in our
case with a maximum recursion depth of 2) can be chosen that performs the
same procedure on each of the resulting pairs. Moreover, by choosing the
Mahalanobis distance using the affinity matrices of the seed pair (Aiq and AiD
respectively) instead of Euclidean distances for finding spatially neighboring
keypoints, the process can be extended to affine-invariant features. This
technique returns features within an elliptical region around the seed points,
reducing performance loss from affine distortions.

Result of the expansion phase is an extended list of match hypotheses.

5) Scoring. Scoring is again tightly interleaved with match generation. In
this phase, based on the expanded list of matches, a score is computed for

17.1 Pipeline 151

every database image. In the simplest case, each hypothesis pair votes with
a score of one for a given database image. This however, has shown to have
a relatively low performance [113], as for example images containing many
features would have higher scores than images containing only a few features.
For this purpose, more sophisticated scoring techniques have been developed.
We will adapt some of the techniques from [113], weighting scores based on
the distance of the candidate feature to the query feature and the number
of features in the image. For each matched feature from image Ix its score

is increased by

√
dkNN−dref√
|Iq |
√
|Ix|

with dkNN the kNN distance of the seed feature,

and dref the distance between the seed feature and its tentative match in the
candidate image, i.e. features generated during match expansion are assigned
the same score as their seed match. This score is similar to the scores from
[113], however we have added additional square root weighting which further
increased effectiveness of these scores. For scoring we implemented a simple
burst removal [156] scheme after match expansion that allows only for one
correspondence per query feature.

6) Re-Ranking. After building match hypotheses and scoring, the ranked
list can be processed equivalently to BoVW-based approaches. Further steps
can include geometric verification or query expansion techniques [120]. As
these techniques are complementary to the remaining pipeline we will not
further consider them in this chapter.

17.1.2 Practical Considerations

To enable efficient query processing using the pipeline summarized previously,
three conditions must be fulfilled. First, it must be possible to efficiently re-
trieve the kNN features of a query feature and their corresponding keypoints
from the database. Second, to enable match expansion, it must be possible
to compute, given two keypoints, the distance of their corresponding feature
vectors. Third, also concerning match expansion, it must be possible to pose
a range query on all keypoints from a given image, retrieving spatially close
keypoints. In the most basic case, the image database used for query process-
ing can be seen of a list of tuples (p0

0, . . . , p
|I0|
0 , . . . , p0

i , . . . , p
|Ii|
i , . . .) containing

feature and keypoint information. The features in the list are ordered by
their corresponding image to allow efficient match expansion. However, in
order to enable usability of this approach in a practical setup, special care has
to be taken concerning computational and memory efficiency and the thor-
ough selection of parameters; we will address solutions for these challenges in
the following section. Computational efficiency can be achieved using index-

152 17. Minimizing the Number of Matching Queries

ing techniques such as Product Quantization or Multi-Index Hashing, while
the memory footprint of the image database can be reduced by compressing
the feature vectors used during match expansion. Finally, the selection of
parameters can be achieved using appropriate optimization techniques.

17.1.2.1 Indexing

In order to improve the performance of the pipeline in real-world applications,
fast (approximate) indexing techniques optimized for high-dimensional data
[10, 111, 112, 11, 12] can be employed. In this research we focused on (Locally
Optimized) Product Quantization for real-valued features and Multi-Index
Hashing for binary features; we will summarize these techniques in the fol-
lowing paragraphs for the sake of completeness.

Product Quantization. Approximate nearest neighbor search based on
Product Quantization, initially proposed by Jégou et al. [12] and further
optimized e.g. in [10, 111, 112], is an elegant solution for indexing high-
dimensional real-valued features. During a training phase, features in the
database are clustered using k-means and the database features are assigned
to their closest cluster mean, partitioning the set of vectors into distinct
cells, similar to Locality-Sensitive Hashing [7]. Then, for each feature vector,
the residual to its corresponding cluster mean is computed and the result-
ing residuals are product quantized. Product quantization is achieved by
splitting a vector into a small number of subvectors (e.g. 8) and quantizing
each of these subvectors separately using a relatively small codebook of e.g.
256 centroids. Instead of storing the residuals themselves, only the cluster
id of the closest residual is stored in the index for each subvector, resulting
in a reduction in memory complexity. With product quantization using 8
subvectors of 256 cluster centers, a SIFT vector could be compressed from
128 bytes to 8 bytes, resulting in a compression of nearly 95%. The index
itself consists mostly of a list of outer clusters and for each of these clusters
an inverted list storing, for each feature assigned to this cluster mean, its list
of quantized subvectors.

During query evaluation, the query is first assigned to the closest outer
cluster mean (or possibly the closest c means in the case of multi-assignment).
Then the inverted lists of these means are scanned, and a distance approx-
imation is computed for each of the database vectors stored in this list: As
vectors are represented as a list of their closest subvector-centroids, a dis-
tance approximation can be generated by summing the squared distances of
the corresponding centroids which can be sped up with the use of look-up ta-
bles. The resulting distance approximations are then used to rank the feature

17.1 Pipeline 153

vectors. In the past, a variety of improvements of this approach have been
proposed, for example the Inverted Multi-Index [112], Optimized Product
Quantization [111], and Locally Optimized Product Quantization (LOPQ)
[10]. For our experiments we will use the most recent of these approaches,
namely LOPQ.

Multi-Index-Hashing. While Product Quantization has been developed
to support efficient query processing on real-valued and high-dimensional fea-
ture vectors such as SIFT, Multi-Index Hashing (MIH) [11] has been specif-
ically designed for binary features, such as ORB or BinBoost[124, 114]. It
is based on the idea of Locality-Sensitive Hashing [7], however in contrast
to this approach it aims at exact query processing. The idea behind MIH
is, similar to Product Quantization, to split a binary vector into a set of
subvectors. Each of these subvectors is indexed in a dedicated hash table
with the subvectors’ binary value directly representing the id of its hash cell:
A single cell of the index contains all database vectors that contain a given
subvector.

During query processing, the query is split into subvectors as well. These
subvectors provide the hash cells that have to be looked up in order to find
vectors with similar values. Bit-flipping the query subvectors and retrieving
the corresponding hash cells allows retrieving features with similar, but not
equivalent subvectors. To allow exact kNN processing, Norouzi et al. devel-
oped a retrieval strategy that enumerates all relevant bit-flip operations to
retrieve an exact query result. In our experimental evaluation, we will use
this index structure in combination with BinBoost[124] features to evaluate
the pipeline from Section 17.1.1 on binary features.

17.1.2.2 Match Expansion

Concerning the expansion of initial matches we face two challenges. First,
we have to find the best parameters for the expansion step. Second, memory
consumption has to be minimized in order to store features in main memory
and hence speed up query processing.

Parameter Selection. Unfortunately it is a tedious task to determine
the thresholds of the flood-filling procedure for match expansion, namely
δdv , δα, δr, and δdxy , by hand. This problem can be solved by utilizing
Nelder-Mead Simplex-Downhill optimization: After selecting the distance
multiplier δxy and the maximum scale change ratio δs by considering runtime
constraints, the remaining thresholds are automatically determined by the
Simplex-Downhill approach. Optimization of these parameters should be

154 17. Minimizing the Number of Matching Queries

conducted on a training dataset different from the test set in order to avoid
overfitting.

Vector Compression. For compressing real-valued feature vectors, we
consider Product Quantization as well. In contrast to Product Quantization
based indexing based on LOPQ, however, we do not product quantize residual
vectors, but rather the vectors themselves, as otherwise vectors belonging to
different cells in the outer quantizer could not be compared efficiently. For
compression, we split each feature vector in a set of m = 8 subquantizers
and for each of these subquantizers build a codebook of s = 256 centroids.
The distance between feature vectors can then easily be approximated as the
sum of squared distances between the closest subquantizer centroids followed
by a square root operation. As distances between cluster centroids can be
stored in a lookup table of size m ∗ s ∗ s, distance computations reduce to m
table look-ups and a single square root operation.

17.2 Experiments

17.2.1 Experimental Setup

Datasets. We evaluated the modified recognition pipeline on four datasets.
The Oxford5k (O5k) building dataset [121] consists of 5063 images of common
tourist landmarks in Oxford. The authors of the benchmark also provide
a set of 55 queries including rectangular query regions and ground truth
files listing, for each query, the images that contain at least parts of the
query. Ground truth files are split into three categories: good, ok and junk.
Good and ok files are considered for computing the Mean Average Precision
(MAP) of the query. Junk images are neither scored as true hit nor as
false hit and simply discarded for computing the MAP. We also included
Oxford105k (O105k) in our evaluation which consists of the Oxford5k dataset
in combination with about 100k distractor images [121] that do not contain
images related to the query. The Paris6k (P6k) dataset [110], conceptually
similar to the Oxford dataset, consists of 6412 images of common landmarks
in Paris, and has the same structure as the Oxford dataset. As a third
dataset we used the INRIA Holidays (Hol) dataset [126] which consists of
1491 images including 500 queries and their corresponding ground truth. In
contrast to the Oxford and Paris dataset, Holidays contains more natural
scenes and a lower number of result images for each query. Images of the
Holidays dataset were scaled down to a maximum side length of 1024 before
feature extraction.

Feature Extraction and Indexing. We used two different feature ex-

17.2 Experiments 155

Table 17.1: Database Statistics

Dataset Extractor Features �
O5k BinBoost 10,640,081 2101.5

O105k BinBoost 195,068,373 1855.4
O5k SIFT (Hess.-Aff.) 13,516,675 2669.7

O105k SIFT (Hess.-Aff.) 253,761,866 2413.7
P6k SIFT (Hess.-Aff.) 16,073,531 2506.8
Hol SIFT (Hess.-Aff.) 4,596,567 3082.9

traction techniques: a rotation-variant version of SIFT using affine invariant
keypoints1 made available by the authors of [125] and, as an instance of state-
of-the-art binary descriptors, the BinBoost descriptor which is also publicly
available [124]. We decided to include binary features in our evaluation as
we see them as another mean of decreasing query complexity, however we
will concentrate on SIFT features in our evaluation.

Concerning Hessian-affine SIFT, scale was separated from the affinity
matrices according to [125], however for expanding matches we used the
square root of this scale which roughly corresponds to the radius of the
image patch used for SIFT extraction. The parameters of the feature extrac-
tion stage have been left at the default parameters. SIFT features are 128-
dimensional real-valued vectors. These vectors were square-root weighted
similar to RootSift[157], however without l1 normalization. The weighted
features were then indexed using LOPQ in combination with a multi-index
[10]. We use a vocabulary of size V = 2 ∗ 1024 for the inverted lists, and 8
subquantizers for vector quantization, each subquantizer with a vocabulary
of size of 256 clusters. The corresponding source code has been kindly pro-
vided by the authors2. To compress the feature vectors for the expansion
phase, we again used 8 subquantizers consisting of 256 clusters, reducing
storage overhead of feature vectors to 6.25% of their uncompressed memory
footprint. Codebooks for the Oxford and Holidays datasets were trained on
Paris6k, and for Paris6k code books where trained on Oxford5k. During
query processing, we applied a simple means of burst removal [156], scoring
each query feature once even if it had more than one match.

BinBoost descriptors, i.e. 256-dimensional binary vectors, can be queried
rather efficiently using exact indexing techniques optimized for binary feature
vectors, e.g. [11]. We have used a publicly available implementation of their
index during our experimental evaluation. We applied burst removal when
querying these features as well.

1https://github.com/perdoch/hesaff/
2http://image.ntua.gr/iva/research/lopq/

156 17. Minimizing the Number of Matching Queries

Table 17.2: Parameters for Match Expansion

Extractor Train δxy δs δdv δα δr δdxy
SIFT P6k 6 0.8 26.2 24.3 – 0.49
SIFT O5k 6 0.8 26.9 18.9 – 0.56

BinBoost P6k 4 0.8 73 21.1 26.0 0.46

An overview of the extracted features can be found in Table 17.1. Note
that the number of query features was different to the number of database
features on Oxford5k, Oxford105k and Paris6k due to the bounding boxes
provided by the dataset authors, and for several queries the number of query
features was less than 1000. The average number of features available over all
queries was 1371.4 (BinBoost, σ = 612.3) and 1452.8 (SIFT Hessian-Affine,
σ = 950.2) for queries on Oxford.

The code was written in C++ using OpenCV. Runtime experiments were
conducted on an off-the-shelf Linux Machine with i7-3770@3.40GHz CPU
and 32GB of main memory without parallelization. During our experimental
evaluation we concentrate on analyzing the effectiveness of the approaches
in terms of Mean Average Precision (MAP); we also provide numbers on
the performance of the evaluated approaches concerning the runtime of the
scoring, querying and ranking stages.

Parameters. The parameters for query processing were set as follows.
First, range multiplier δxy, maximum scale change δs, k, and n were set
by hand with computational efficiency in mind, as a lower number of fea-
tures considered during expansion reduces the cost of this step. Given these
manually set parameters, the remaining parameters of the expansion phase,
i.e. feature distance threshold δdv , angular threshold δα, gradient angle
threshold δr and spatial distance ratio δdxy were set to the outcome of a
Nelder-Mead Downhill-Simplex optimization maximizing MAP; initialization
was performed with reasonable seed values. Minimization was done on the
Paris6k dataset (with LOPQ and quantization code books trained on Paris6k
as well) for the Oxford5k, Oxford105k and Holidays datasets. For the Paris6k
dataset, we optimized these parameters on the Oxford5k dataset. The pa-
rameters were selected for each of the descriptor types (SIFT and BinBoost)
using ANMS ranking at k = 100, number of keypoints n = 10, recursively de-
scending into every expanded match. The resulting parameters were reused
for the remaining ranking approaches, different k, n and the non-recursive
approach. An overview over the selected parameters is shown in Table 17.2.

We varied each of the optimized parameters by ±10% separately on Ox-
ford 5k (ANMS ranking with match expansion) to get insights into their

17.2 Experiments 157

Table 17.3: SIFT, Oxford5k, k=100

↓ Appr. → n 50 100 500 1000

RND .616 .698 .810 .827
RESP .557 .640 .787 .822
ANMS .676 .727 .825 .836

RND+ME .679 .749 .829 .838
ANMS+ME .741 .780 .843 .844

RND+MER .686 .752 .826 .832
ANMS+MER .752 .786 .837 .838

Table 17.4: SIFT, Paris6k, k=100

↓ Appr. → n 50 100 500 1000

RND .566 .652 .770 .786
RESP .519 .594 .743 .775
ANMS .578 .668 .783 .794

RND+ME .629 .699 .781 .789
ANMS+ME .648 .723 .793 .796

effect on MAP. The maximum deviation resulted from decreasing the feature
distance threshold, which lead to a decrease in MAP of −0.012, indicating
that while there is an impact of the optimized parameters on the performance
of match expansion, there is still a range of relatively “good” parameters.

17.2.2 Experiments

We evaluated the algorithm’s performance by varying k and n as these pa-
rameters affect the number of initial seed points that are expanded later.
As a baseline for our experiments we implemented a scoring scheme based
on [113] that considers the distances between features and the number of
features in the image for score computation.

Keypoint Ranking. In our first experiment (see Table 17.3 and Ta-
ble 17.6) we wanted to evaluate the performance difference in MAP when
querying a low number of features (i.e. 50, 100, 500 and 1000 keypoints)
with different keypoint ranking techniques, providing a baseline for further
experiments. The simplest ranking (RND) takes random features from the
extracted keypoints; we averaged this approach over 5 runs to get accurate
results. Furthermore we evaluated a ranking based on keypoint responses
(RESP), and a more sophisticated approach called Adaptive Non-Maximal

158 17. Minimizing the Number of Matching Queries

Table 17.5: SIFT, Holidays, k=10

↓ Appr. → n 50 100 500 1000

RND .600 .662 .765 .792
RESP .571 .630 .735 .770
ANMS .642 .696 .779 .803

RND+ME .646 .702 .764 .770
ANMS+ME .699 .734 .780 .781

Table 17.6: BinBoost, Oxford5k, k=100

↓ Appr. → n 50 100 500 1000

RND .390 .462 .586 .616
RESP .389 .461 .600 .625
ANMS .461 .508 .614 .620

RND+ME .469 .529 .625 .638
ANMS+ME .542 .588 .648 .644

RND+MER .481 .539 .626 .634
ANMS+MER .551 .591 .648 .640

Suppression [136] (ANMS) that aims at distributing keypoints relatively uni-
formly over the image. As expected, considering only few keypoints signifi-
cantly reduces the MAP of all approaches. The MAP of the response-based
ranking is worse or similar to the random baseline: for SIFT, the response de-
creases performance compared to the random approach, while for BinBoost
(that is based on SURF Keypoints) results are sometimes slightly better
than the random baseline. The ANMS ranking increases the MAP for all ap-
proaches. Note that the gain resulting from using ANMS is rather astonishing
for the Oxford5k dataset; we can easily gain 0.03 (n=100) to 0.06 (n=50)
points in MAP without significant computational overhead if the number of
features queried is relatively low. Similar observations hold for Holidays (Ta-
ble 17.5) but considering Paris6k (Table 17.4), the gain resulting from using
ANMS instead of a random ranking is lower. Our results with BinBoost
(Table 17.6) on Oxford5k indicate that ANMS without match expansion can
increase performance by over 0.07 points in MAP (n=50), however its per-
formance is generally lower than SIFT, even if SIFT vectors are quantized
as in our case; the memory overhead (8 bytes) for quantized SIFT vectors is
actually lower than for BinBoost (32 bytes) features.

Match expansion. Our second experiment aims at evaluating the gain
in MAP that can be achieved for a low number of kNN queries when addi-

17.2 Experiments 159

Table 17.7: SIFT, Oxford 105k, k=100

↓ Appr. → n 50 100 500 1000

ANMS .489 .554 .710 .748
ANMS+ME .584 .630 .753 .775

tional hypotheses are generated by match expansion (ME) and the same ap-
proach in its recursive version (MER). Affine-invariant SIFT (ANMS+ME,
n=50) achieves about 90% of the random baseline (RND, n=1000) at 50
keypoints on Oxford5k, where the baseline only achieves 75%. At the same
time the results at 1000 keypoints are similar for all approaches, showing
that match expansion does not considerably affect MAP if a high number
of keypoints is queried. This substantiates our statement made in the in-
troduction: if a small number of features is queried, techniques that do not
achieve significant performance gain for a high number of features can achieve
considerable gain in performance. Results are similar for Holidays (88% for
ANMS+ME@n = 50 vs. 76% for the random Baseline) while for Paris6k
the gain of match expansion is lower (82% vs 72% for the random base-
line). Further note that MAP for ANMS+ME decreases slower with decreas-
ing n than without expansion (-0.003 (ANMS+ME) vs. -0.011 (ANMS) for
n : 1000→ 500 on Paris6k). Results for Oxford105k are shown in Table 17.7.

Using BinBoost (Table 17.6 and Table 17.8) the results are similar. The
combination of ANMS ranking and match expansion at 100 keypoints per-
forms similar to the random baseline at 500 keypoints, which is especially
interesting as the exact indexing techniques used for BinBoost already lead
to a relatively high runtime.

While there is some gain for recursively descending (MER) into matches,
this additional step does not significantly improve the performance with
both SIFT and BinBoost, while being computationally much more expen-
sive. Therefore we will concentrate on ME in the following. ANMS+ME on
Oxford using SIFT accepted about 16500 matches per query image (n = 100,
k = 100), in contrast to the approximately 8800 tentative correspondences
(less than n ∗ k due to burst removal) that have been generated using kNN
matching alone (ANMS).

Note that we also evaluated the effect of a re-ranking stage, weak ge-
ometric consistency (WGC) [126] with 32 angular and 16 scale bins, on
match expansion using BinBoost. Both pipelines, with and without match
expansion were positively affected by WGC, gaining about 0.04 (ANMS and
ANMS+ME) points in MAP at n = 1000, indicating that WGC is comple-
mentary to match expansion. We further observed that WGC did not have a
large effect with a low number of features (0.013 with ANMS and 0.006 with
ANMS+ME at n = 100) involved both with and without match expansion.

160 17. Minimizing the Number of Matching Queries

Table 17.8: BinBoost, Oxford 105k, k=100

↓ Appr. → n 50 100 500 1000

ANMS .369 .412 .527 .558
ANMS+ME .445 .477 .576 .590

Value of k. Not only the number of queried keypoints can be used to
increase the number of seed hypotheses and therefore the matching quality,
but also k. While increasing k comes at a lower query cost, it also produces
hypotheses of lower quality. However, as it is well known for example in the
context of kNN classification, reasonable values for k can increase the query
performance. In this experiment we evaluate the effect of k if the number
of features to be queried is fixed to a given number. For a large number
of keypoints, a very high value of k adds a lot of false positives such that
the MAP decreases [113]. On the other hand, if k is too small, only a small
amount of correct hypotheses is found [113]. We reproduced this result with
the ANMS ranker at 1000 keypoints (see Figure 17.2), as here the MAP at
k = 100 is highest compared to k = 10 or k = 1000.

What happens when we decrease the number of keypoints? As shown in
Figure 17.2, if a large number of keypoints is queried (n = 1000), then for
all of the evaluated approaches a value of k = 100 performed better than
k = 1000. So match expansion does not greatly affect the optimal value of k
in this case. However, if only very few keypoints are used for query processing
(e.g. n = 10), a large k performed better with match expansion. Without
this additional step, performance decreased for large k (however at a larger
k than at a higher number of keypoints queried), most likely because the
additional noise introduced could not be out-weighted by the higher number
of correct matches. This leads us to the following results: The best way to
increase query performance, which is well known, is to increase the number
of keypoints queried. In order to increase query performance however, it is
possible to decrease the number of keypoints queried. In this case, some
of the performance loss resulting from a lower number of keypoints can be
compensated by a large k in combination with match expansion (and, at a
lower degree, even without expanding matches).

Runtime. The cost of the evaluated keypoint ranking approaches is
negligible for the random and response based ones, as these just have to sort
the query features, and about 7ms (SIFT) and 5ms (BinBoost) for the ANMS
ranker. For Hessian-affine SIFT on Oxford5k, scoring times (including ME)
were about 6ms for processing all k results of a single kNN query (k = 100,
n = 100), and therefore slightly lower than the runtimes of running a single

17.2 Experiments 161

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10 100 1000

M
A

P

k

ANMS KP10
ANMS+ME KP10

ANMS KP1000
ANMS+ME KP1000

Figure 17.2: Performance for varying k (Hessian-affine SIFT). Straight lines
show the performance for 10 keypoints, dashed lines for 1000 keypoints.
Equivalent approaches have equivalent colors.

kNN query which took about 7ms, at the possible gain of adding additional
matches and a rough geometric check. The feature quantization needed for
match expansion took about 45ms for all features in a query image. For
BinBoost features (including ME), the match expansion and scoring took
less than 4ms for processing a single kNN result. Runtimes increase with
k, as more correspondences have to be expanded. The overall runtime for
Hessian-Affine SIFT at 100 keypoints (ANMS+ME) was about 1.34s (k =
100, n = 100), while for binary features it was higher (15s), as for this we
used an exact, though state-of-the-art, indexing technique.

Setting runtimes in relation to MAP, it is possible to beat an RND ranker
considering 100 keypoints with ANMS+ME considering 50 keypoints at a
slightly lower runtime 0.69s vs 0.75s and a higher MAP (see Table 17.3,
0.741 vs. 0.698). For the holidays dataset runtimes of the random approach
(RND) were about 0.9s (k = 10, n = 100) and for ANMS+ME it was only
approximately 0.6s (k = 10, n = 50) at a higher MAP. The most time-
consuming operation during match expansion is the search of spatially close
features. Therefore we think that the runtimes of match expansion can be
reduced significantly by optimizing this matching step, e.g. by ordering fea-
tures in a kd-tree which can be realized without additional space overhead.
This would also help on the Paris6k dataset where runtimes of the random
approach (RND) were about 0.8s (k = 100, n = 100) and for ANMS+ME
approximately 0.7s (k = 100, n = 50) at similar MAP. Runtimes have been
measured using only a single core. As each keypoint is queried separately and
match expansion is also achieved on a per-keypoint basis, query processing
can be easily extended to a multi-core setting.

For Oxford105k the runtime for match expansion was similar to Oxford5k:

162 17. Minimizing the Number of Matching Queries

A single kNN query took slightly less than 8ms and expansion took about
7ms.

Comparison to the State of the Art. While the primary goal of this
research is not to increase the effectiveness of object recognition but rather
to reduce the number of features queried, let us still compare the results from
this paper to the state of the art in order to get insights into its performance.
We will compare to [147], as the authors were using the same Hessian-Affine
SIFT features as we do and a similar recognition pipeline involving Product
Quantization. On the Oxford5k dataset the authors of [147] achieved 0.78
points in MAP using 8 subquantizers for indexing features using Product
Quantization, i.e. a setting close to our scenario. This corresponds to the
performance we could achieve when querying 100 keypoints. However, using
the pipeline from this chapter requires a larger memory footprint; if we con-
sider techniques with a memory footprint closer to ours, [147] was able to
achieve 0.83 points in MAP by approximating features more accurately us-
ing 32 bytes per feature. On Paris6k, using 8 subquantizers, [147] achieved a
MAP of 0.74, which is slightly better than the performance of ANMS+ME at
100 keypoints (at a higher memory footprint, performance of [147] was 0.76).
Concerning Oxford105k, a larger number of features (about 300) is needed
to achieve performance comparable to the state of the art (0.728 [147]). Fi-
nally note that the performance of our baseline is lower for Holidays than the
state of the art performance of 0.80 (0.84 respectively) from [147]; this might
be due to a different quantization training set or related to their similarity
measure, which is however complementary to our approach and can be easily
integrated into our pipeline.

Chapter 18

Retrieval of Binary Features in
Image Databases: A Study

As we have already seen in Section 16.2, binary signatures are either derived
by binarization of real-valued features or extracted directly from the image.
They are usually queried using the Hamming Distance. Depending on the
matching task and required accuracy, it is possible to use exact matching
approaches (e.g. [11] and [158]), approximate solutions based on LSH [7],
or approximate solutions based on quantization [119, 118]. During the last
chapter we have queried binary features using exact approaches, more pre-
cisely Multi-Index Hashing [11], to maximize query accuracy. Unfortunately,
given a large database, search times can increase up to tenths of a second.
Given that a single image can contain hundreds of features, the matching
times become several seconds, too slow for real-world applications. In the
following chapter we will provide an overview over approximate query tech-
niques and an evaluation of such approaches.

Many, if not all, of the approaches for querying binary features can be
reduced to the idea of LSH. Such a mapping of indexing techniques to LSH
has already been conducted in the case of real-valued features [123]; we will
follow this path in this chapter, as it allows to compare different techniques
in a general framework, increasing comparability. Additionally according to
[118] the binary space is different to the real-valued space in its behaviour,
making a specialized evaluation necessary.

LSH [7] and its derivatives have been successfully used for object recogni-
tion [114] based on binary features. The approach is furthermore often used
as a baseline for other techniques [119, 118]. Note that, given that the ex-
tracted binary signatures are very short (e.g. 24 bits), they could be used as
hash keys without processing, and queried directly without employing LSH.
However currently, binary vectors have a length of several hundred bits (e.g.

164 18. Retrieval of Binary Features in Image Databases

ORB: 256 bits [114], FREAK: 512 bits [115]), and therefore an intermediate
LSH-based hashing step has to be employed.

18.1 Querying Binary Features with LSH

Locality sensitive hashing has been initially proposed by Indyk and Mot-
wani [7], proposing dedicated hash functions for Hamming space and the-
oretical approximation guarantees. LSH is based on a family of functions
H = {h : S → U} that map values from a space S (in our case the binary
vector space Bd) to binary strings from space U . To be useful for similar-
ity search, h(p) must be (r1, r2, p1, p2)-sensitive, i.e. points closer to a given
reference point have a higher probability of being assigned the same hash
as points further away. From this family H, a family G = {g : S → Uk}
with gj(p) = (h1(p), . . . , hk(p)), hi ∈ H is constructed, i.e. G corresponds
to a concatenation of different hash functions of the same family. For index
generation, t of these functions gj(p) are generated and for each of them a
hash table is constructed from the features stored in the database. Based on
the resulting hash tables, query processing for kNN and range queries can be
achieved as shown in Figure 18.1. Given a query vector q, the hashes gj(q)
are computed, then the corresponding entries from table j, are retrieved.
Concatenating the resulting candidates of all tables leads to the candidate
set. During refinement, the actual distance between the query and each can-
didate is computed and the query predicate is evaluated on this reduced set,
speeding up the evaluation.

Initially, the following functions hi (projecting a binary vector onto atomic
random dimensions) and gj (projecting on a random lower-dimensional space),
were proposed for search in Hamming Space [7]:

H = {h : hi(b) = bi}

G = {g : g(p) = (hi1 , . . . , hin), {i1, . . . , in} ⊂ {1, . . . , d}}

For example, a function h2(b) would project a 3D binary vector to its
second dimension, e.g. h2((1, 0, 1)) = 0. A function g(p) then concatenates
different functions h, producing a subvector of the initial one. For a function
g(b) = (h1(b), h2(b)) mapping to the first two dimensions, we would get a
vector g((1, 0, 1)) = (1, 0).

To be effective, LSH has to query a relatively high number t of different
hash tables with different hash functions, incurring high storage overhead,
as each of the tables has to store references to all of the indexed features,
resulting in a memory consumption linear in t. To solve this issue, [32]

18.1 Querying Binary Features with LSH 165

Feature
Hash1 Hashn

CandidatesResult

Hash-Table 1 Hash-Table 2

Figure 18.1: LSH-based indexing

proposed to use Multi-Probe LSH that visits different hash cells close to the
query point in a single hash table, similar to the soft assignment policy in
computer vision [110]. This procedure significantly reduces storage overhead
and has been successfully used for querying binary features in the computer
vision community [114]. Trzcinski et al. [118] proposed optimized hash
functions for LSH-based search in Hamming space, aiming at improving the
efficiency of this class of approaches.

Despite the success of LSH-based methods for querying binary features
in Hamming space, techniques based on quantization (and therefore vari-
ants of k-means) have been investigated recently. The approaches are either
plugged into the BoVW model [116, 117], or used for nearest neighbor search
[119, 118]. Recall that quantization-based techniques first perform a k-means
clustering of the features contained in the database. In a second step, each
database vector is assigned to its closest cluster center. During query pro-
cessing, the query vector is assigned to its closest cluster center, all database
vectors assigned to the same cluster are returned.

For k-means the probability of two features assigned to the same cluster
center being spatially close is high, while the probability of two features
assigned to different cluster centers being spatially close is relatively low.
Therefore, according to [123], quantization-based approaches can be seen as
special LSH hash functions: the hash corresponds to the ID of the closest
cluster center, i.e. features assigned to the same cluster center have the same
hash. This results in the following mathematical definition:

H = {h : hi(b) = argmin
c∈centersi

distH(v(c), b))}

G = {g : g(p) = hi(p)}

166 18. Retrieval of Binary Features in Image Databases

Here, centersi denotes the cluster IDs of clustering i and v(c) the vec-
tor corresponding to ID c, i.e. the c-th cluster mean. The hash function
family G in this case is trivial, as each hashing function of G consist only
of a single function hi. On the other hand hi(p) becomes more complex as
it consists of more than one bit. For standard k-means clustering, due to
the assignment step, the hash computation is exponential in the hash length,
therefore approximate solutions have been developed [122, 142, 121, 12, 159]
in the real-valued domain. For quantizing binary vectors, solutions based
on k-medoids, k-medians or k-means can be employed. Using k-means di-
rectly does not optimize according to l1 distance, but rather according to
the squared Euclidean distance, making this solution theoretically inappli-
cable to Hamming space. Most often, even if unknowingly, the k-medians
[160] algorithm has been used which optimizes cluster centers according to
the l1 norm, directly corresponding to the Hamming distance on binary fea-
ture vectors. k-medians can be optimized for binary features, as the median
computation degenerates to a majority voting in this case [161].

As BoVW is based on quantization, it can be abstracted to LSH as well
[123], however without the costly refinement step that calculates exact dis-
tances on the candidate features retrieved from the hash table. Querying bi-
nary features in BoVW-based systems has most likely been initially proposed
by Galvez-Lopez and Tardos [116, 117]. To achieve acceptable runtime per-
formance, the authors employed the idea of hierarchical k-means (HkM)[122].
Hierarchical k-means (HkM) performs k-means clustering with a relatively
low k′. It then assigns each point in the database to the corresponding clus-
ter. For each of these sets of feature vectors, it then recursively clusters the
set until a given height l is reached, resulting in a tree-like structure with k′l

leaf nodes. Due to the resulting tree structure, the computational complexity
of assigning feature vectors to cluster centers decreases to O(k′l), however
the storage complexity of the approach remains in O(k′l) and some accu-
racy is lost. Utilizing the idea of HkM, Muja and Lowe [119] and Trzcinski
et al. [118] simultaneously proposed to use a forest of random clustering
trees on binary feature vectors. Mapping this to LSH, the leaves of a tree
provide the hash functions, and each tree provides the hash function for a
different hash table. Each of the trees is similar to a HkM tree, however
cluster centers are not assigned by k-medians, but rather by randomly se-
lecting cluster centers from the data: if multiple hash tables (i.e. trees) are
employed, the corresponding hash functions should be independent. If a clus-
tering would be performed, in the best case this clustering would represent
a global optimum, generating exactly the same non-independent clustering
for each function from G. However, as the iterative k-medians based clus-
tering approaches only find local minima instead of global ones, k-medians

18.2 Experimental Evaluation 167

clustering could be employed with different initial seeding, as it has been
done in the case of real valued vectors [123]. We will evaluate both ran-
domized and optimized clusterings in Section 18.2. In [119], better retrieval
performance than LSH-based approaches is achieved with multi-probing. In
contrast, [118] achieved slightly worse results than LSH, however without
multi-probing. Hierarchical k-medians clustering has also been employed by
[161], however with optimized cluster centers.

Other quantization techniques that have been employed for real-valued
image features could also be used for binary features, such as residual vector
quantization [159], and product quantization [12]. In the context of residual
vector quantization that involves subtraction operations, the subtraction op-
eration would have to be replaced by an XOR operation to make the residuals
remain in binary space.

18.2 Experimental Evaluation

For our experiments we extracted ORB [114] features from the ALOI dataset1

using OpenCV. We aimed at extracting binary features instead of binarizing
real-valued ones as this can lead to performance advantages in real-world
applications. Other binary features than ORB could be chosen as well; the
decision depends on the application. While in Chapter 17 we concentrated
on highly accurate binary features, in this section we chose ORB, as these
features can be extracted extremely fast in only a few milliseconds. From
the originally ∼30 million features we used a random sample of size 107 as
database content. Distances in the dataset follow a normal distribution with
a maximum frequency at a distance of 124 and covering nearly all possible
distances, see Figure 18.2b. The different quantizations (k-medians, HkM
and random HkM (RHkM)) were computed from a subset of about 7 million
of the 30 million features containing, for each of the 1000 objects, 18 of the 72
images per object. We only considered the images varying in camera angle,
but not the images varying e.g. in light color, as these are assumed to produce
very similar features. Tailoring quantization to a specific database is reason-
able as it makes quantization techniques more powerful. Our experiments
are building upon [119, 118], who have initially proposed to use hierarchical
k-means in Hamming space. We aim at reproducing and extending their ex-
perimental results by investigating the impact of system-inherent parameters
on the performance of the different hashing techniques, namely the number
of probes, the number of tables, the number of bits and the database size. As
both of these publications did not plug the different solutions into the LSH

1http://aloi.science.uva.nl

168 18. Retrieval of Binary Features in Image Databases

Parameter Value

#probes 1, 20, 100, 1000, 10000
#tables 1, 2, 4, 8

#bits (LSH) 8, 10, 12, 14, 16, 20
k (k-medians) 28, 210, 212, 214, 216

h (HkM) 4
k′ (HkM) 22, 23, 24, 25, 26

(a) Experimental setup.
Values in bold font de-
note default values.

0 64 128 192 256

F
re

qu
en

cy

Distance

(b) Distance Distribu-
tion (ORB, 10k Feature
Vectors)

Figure 18.2: Parameter Settings and Distance Distribution.

scheme, we aim at making the different solutions comparable, e.g. in the
number of bits of the underlying hash function, aiming at providing insights
extending those from [119, 118]. In our experiments, we fix each of the free
parameters to a given value and vary a single parameter to provide a wide
image of the algorithms’ performance. The default parameters are provided
in Table 18.2a. As the parameter k is overloaded (for k-means and for the
number of neighbors), we denote the number of neighbors retrieved in a kNN
query as |NN | during our evaluation.

To make the approaches comparable from an LSH-based point of view,
all of the evaluated approaches are configured to generate hashes of the same
length (16 bits by default). Equivalent to [123], who performed similar ex-
periments for real-valued features, we set the number of hash tables to a
single one in our default setting. Although this is not realistic, it gives in-
sight into the performance of the actual hash function. As it does not provide
insights into the independence of different hash functions which becomes rel-
evant when using more than one hash table (the default with LSH), we will
evaluate this behaviour in Figure 18.4. The number of neighbors |NN | was
set arbitrarily to |NN | = 10, our results on experiments for |NN | = 2 and
|NN | = 100 show a similar behaviour. We will however mention variations
in the results for different values of |NN | in the corresponding sections. In
our experiments we concentrate on analyzing the Recall for each set of pa-
rameters, for both range- and kNN queries; a short excursus also considers
the BoVW paradigm. Where necessary we also consider different perfor-
mance measures such as the number of distance calculations; we favoured
this measure over runtime as it provides a platform- and implementation-
independent measure of the computational complexity of a given approach.
However note that other costs, such as restructuring the priority queue of

18.2 Experimental Evaluation 169

k-medians HkM RHkM LSH

1

10

100

1000

10000

100000

1 10 100 1k 10k

B
uc

ke
t P

op
ul

at
io

n

Bucket Rank (216Buckets)

1

10

100

1000

10000

100000

1 10 100 1k 10k 100k

B
uc

ke
t P

op
ul

at
io

n

Bucket Rank (220Buckets)

Figure 18.3: Populatation of buckets (log-log-space).

the quantization-based approaches, is not considered.
The optimized clusterings have been generated with a k-medoids ap-

proach. First, a random sample of 50% of the training features was selected
and clustered with 5 iterations. Then, given the resulting centroids as initial
cluster centers, the whole training set was clustered, stopping after an addi-
tional 10 iterations. The experimental evaluation has been conducted in the
JAVA-coded framework ELKI[162] which has been specifically designed for
the performance evaluation of data mining and query processing algorithms,
providing variants of the k-means algorithm, including k-medians.

18.2.1 Nearest Neighbor Queries

Distribution of Hash-Code Frequencies. Following [123], let us first
evaluate the population of hash buckets; Figure 18.3 visualizes the distri-
bution for hashes of length 16 and 20 (for 20 bits, k-medians has not been
evaluated due to its high complexity). If the population is equi-distributed,
this leads to a good selectivity, as regardless of the location of a query in
binary space, the number of candidates in the corresponding bucket is simi-
lar. The more uneven the distribution of features over different hashes, the
more irrelevant features have to be refined if a highly populated bucket is
found, leading to high runtimes; if a poorly populated bucket is accessed,
the recall of the query becomes unnecessarily low. Similar to the case of
real-valued features [123], the original LSH functions lead to an unbalanced
distribution of hashes. On the other hand, both RHkM and HkM perform
better. However, there is a significant difference between the random and
the optimized version; RHkM performs very close to the original LSH, while
the distribution of HkM is much more uniform, quite close to k-medians
that performs best. The skewed distribution of the HkM-based approaches

170 18. Retrieval of Binary Features in Image Databases

k-medians HkM RHkM LSH

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

M
ea

n
R

ec
al

l

#Tables (|NN|=10)

0
0.1
0.2
0.3
0.4
0.5
0.6

.01 .1 1 10 100

M
ea

n
R

ec
al

l

Database Size (x105, |NN|=10)

Figure 18.4: Varying # Tables (left) and Database Size (right)

is traded for a better computational performance: k-medians can only be
seen as a theoretic solution, as it implies scanning all cluster centers during
each query. The number of cluster centers scanned increases exponentially in
the number of hash bits. Although these distance calculations are very fast
in binary space, they can still incur a large overhead for higher bit lengths.

Number of Tables. In the following experiment we aim at investi-
gating the effect of the number of tables on the different approaches (see
Figure 18.4 left) in order to find out how well several hash tables comple-
ment each other. For this experiment, we kept the number of probes constant
and split them between an increasing number of tables. For traditional hash
functions, probes are split equally between tables. For quantization-based
approaches, the cluster centers of all tables are ranked together, resulting
in a not necessarily uniform split between tables. The experimental setup
aims at showing if the performance gain is actually contributed to the higher
number of tables rather than the increasing number of probes.

An increasing number of tables makes mainly sense for the traditional
LSH functions, and less strongly for the randomized HkM approach. The per-
formance gain of optimized quantization-based approaches diminishes with
increasing number of tables, as the different quantizations are not indepen-
dent. This observation is different to the real-valued case, where Pauleve
et al. [123] stated that initializing k-means with different seeds can pro-
vide enough randomness to build independent hash tables. Note that, if the
number of tables becomes sufficiently large, even the random HkM-based
approach loses against the LSH-based hash functions. For |NN | = 10, the
equilibrium was at eight tables; for |NN | = 2 it became lower (two tables),
and for |NN | = 100 it became larger. Therefore, if memory is important,
quantization-based approaches can be a useful solution. If recall is an issue
and memory is not, LSH-based functions are the matter of choice.

18.2 Experimental Evaluation 171

k-medians HkM RHkM LSH

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

M
ea

n
R

ec
al

l

#Probes (|NN|=10)

1

10

100

1000

1 10 100 1000 10000

D
is

t.
C

al
cs

 (
x1

03)

#Probes (|NN|=10)

Figure 18.5: Varying # Probes, Recall (left) and Distance Calculations
(right)

Database Size. As the number of objects indexed in a database affects
the nearest neighbor distance of objects, varying the database size can also
affect the performance of hash functions: If the number of bits in a LSH func-
tion is too high, the NN range of queries is severely restricted, such that in
small databases the NNs will be found only with small probability. However
if the database size increases, the NN-range of an object shrinks. Therefore,
recall is positively affected by an increasing database size, the largest in-
crease can be observed for the k-medians based quantization approaches (see
Figure 18.4 right). As a result, given a large database size and a specified
number of bits, it can make sense to use methods based on quantization.

Number of Probes. Besides varying the number of hash tables (which
trades space for recall), recall can also be traded for computational com-
plexity by increasing the number of probes, see Figure 18.5 (left). Our
experiments indicate that for small |NN | and with an increasing number
of probes, the HkM, RHkM and LSH-based approaches become very simi-
lar, leading to no significant performance gain of quantization. For larger
|NN |, LSH catches up only for larger number of probes. The k-medians
based baseline shows a better performance than the rest, reaching recall
rates of greater than 0.9 already at a hundred probes. By comparing the
number of distance calculations (see Figure 18.5 (right)) we aim at providing
implementation-independent insights into the computational efficiency of the
different approaches. The experiment shows that HkM can significantly bet-
ter reduce the number of distance calculations than LSH and k-medians, as
this approach leads to a much more uniform distribution of values in different
buckets than LSH (cp. Figure 18.3), and does not have the linear complexity
of computing the closest cluster center as k-medians. This, however, does
not hold as strictly for RHkM, indicating a similar runtime for RHkM and

172 18. Retrieval of Binary Features in Image Databases

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20

M
ea

n
R

ec
al

l
#Bits (|NN|=10)

k-medians
HkM

RHkM
LSH

Figure 18.6: Varying # Bits

LSH. For additional runtime experiments, we refer to the original publica-
tions [119, 118].

Hash length. In the following experiment, Figure 18.6, we aim at in-
vestigating the impact of a varying hash length on the recall of the differ-
ent approaches. For the sake of easy configurability it is important that
all approaches behave similarly, i.e. the choice of the best algorithm does
not depend on the number of bits used, which is the case in our setting.
We would like to mention that with increasing |NN | the difference between
quantization-based approaches and LSH becomes larger: LSH loses recall
relatively to the other approaches, indicating that it can make sense for large
|NN | (e.g. |NN | = 100) to use quantization. As in image recognition it is
likely that |NN | is chosen relatively large to generate more candidate matches
and to be more robust to noise, HkM can achieve a better performance than
the LSH hashing functions.

18.2.2 Range Queries and BoVW

Although this work concentrates on nearest neighbor queries, for the sake of
completeness we also want to shed some light on range queries. Besides mean
recall we evaluate the mean false positive rate. In Figure 18.7 we plot the
recall given a specific radius and equivalently the false positive rate. Note
that for small ranges results become more noisy as an object being a result of
a range query with a small range is quite improbable (see Figure 18.2b). In
our setting, the mean recall of the different approaches behaves very similar.
Only k-medians manages to achieve a significantly higher recall, by increasing
the probability of wanted hash collisions.

Although the false hit rate varies significantly for the different approaches,
it does not have a large effect on range queries, as unwanted results are filtered

18.2 Experimental Evaluation 173

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

M
ea

n
R

ec
al

l

Range

HkM
RHkM

LSH
k-medians

1e-4

2e-4

3e-4

0 20 40 60 80 100 120

F
al

se
 H

it
 R

at
e

Range

HkM
RHkM

LSH
k-medians

Figure 18.7: Recall and False Hit Rate for Range Queries

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000

R
ec

al
l

Rank (5oRotation)

HkM
RHkM

LSH
k-medians

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

R
ec

al
l

Rank (10oRotation)

HkM
RHkM

LSH
k-medians

Figure 18.8: Applying the Hashing Functions to a BoVW-based Ranking

out during refinement. However, it provides useful insights into their perfor-
mance when plugged into the BoVW framework: Considering that recall is
similar for both HkM and LSH, would it make sense to use LSH functions
for binary vectors in the BoVW-paradigm, directly treating keypoints falling
into the same buckets as matches? Not necessarily, as not only recall mat-
ters, but also the false positive rate (see Figure 18.7 right). As the difference
between BoVW and LSH is mainly that BoVW skips the pruning step, it
is of major importance to avoid false positives: false positives put noise on
the word vector by producing inaccurate word assignments. In Figure 18.8
we plugged the different hash functions into the BoVW pipeline (without
geometric verification). We used the dataset from training the quantiza-
tion approaches as database. As it contains all images in 20 degree angular
steps, we queried with images having an angular distance of 5 and 10 degrees
(Figure 18.8 left and right, respectively), visualizing the recall (of images,
not features) with increasing rank. The different approaches have similar
recall curves in Figure 18.7, but LSH performs significantly worse than the
remaining approaches.

174 18. Retrieval of Binary Features in Image Databases

Chapter 19

Conclusions

This part of the thesis addressed nearest neighbor queries in image databa-
ses. As a first step, we evaluated an alternative pipeline for decreasing the
runtimes of object recognition when kNN queries are used for the generation
of tentative correspondences instead of Bags of Visual Words. While the re-
duction of query features can have negative effects on query performance, es-
pecially if the unmodified standard recognition pipeline is used, some simple
modifications in the pipeline aiming at feature ranking and match expansion
can already produce good results at only a fraction of kNN queries. Improve-
ments in the match expansion stage should aim at increasing efficiency and
effectiveness. Due to the simple structure of the pipeline used in this chapter,
these improvements can be easily integrated.

As a second contribution we analyzed query processing on binary features.
In this research we come to the following conclusions: given that a nearest
neighbor search in Hamming space has to be performed, both quantization-
based approaches and LSH provide good results, but LSH can not be beaten
for larger number of tables. For a low number of tables, HkM and RHkM
are the matter of choice. For BoVW-based image retrieval, similarly to the
real-valued domain, the quantization-based approaches are the matter of
choice: As the probability of false hits of quantization-based approaches is
significantly lower, the necessity of refinement of these solutions decreases,
making them applicable to the BoVW paradigm.

176 19. Conclusions

Part V

Conclusions

179

In this thesis, we have addressed a variety of challenges from the wide
research field of similarity search, concentrating on nearest neighbor queries.
We addressed the development of efficient algorithms for complex query pred-
icates, effective and efficient query processing for uncertain spatio-temporal
data, and query processing on set-based objects in image databases.

RkNN Join Processing. In Part II of this work we addressed a com-
plex query predicate derived from reverse nearest neighbor queries, namely
the RkNN join, which has not been analyzed in depth until now. As a
first step we first formalized the RkNN join, identifying its monochromatic
and bichromatic versions and their self-join variants. While the bichromatic
RkNN join can be transformed to a standard kNN join, such a transforma-
tion is not possible for the monochromatic case. To fill the research gap of an
in-depth analysis of monochromatic RkNN joins, we developed solutions for
this variant of the RkNN join, including a self-pruning and a mutual prun-
ing algorithm. Our experimental evaluation indicates that, in a variety of
scenarios, classic algorithms for performing single RkNN queries do not yield
the required performance, and that our newly proposed algorithms often lead
to better results. Our experiments however also indicated that in some sce-
narios, e. g. where the database is relatively static, other solutions based
on traditional RkNN queries can achieve good performance. In the future
we will explore further pruning strategies such as a combination of mutual
pruning and self pruning in order to increase the number of pruned subtrees,
decreasing the execution time of RkNN join algorithms and the number of
page accesses. We would further like to extend our join algorithms to RkNN
monitoring.

Similarity Queries on Uncertain Spatio-Temporal Data. The sec-
ond challenge we tackled in Part III of this thesis addressed the development
of efficient and effective techniques for query processing on uncertain spatio-
temporal data. Starting from the traditional definition of kNN queries and a
Markov-chain based approach for modeling uncertain trajectories, we devel-
oped efficient querying mechanisms for nearest neighbor queries on uncertain
trajectories, considering temporal dependencies during query evaluation. To
achieve this goal, we developed suitable query predicates that do not only
return the objects closest to the query but also their probability of being a
nearest neighbor, namely the P∃NNQ, P∀NNQ and the continuous PCNNQ
query. In a theoretical evaluation we addressed the complexity of these query
predicates; our sampling approach and an index-based filter-refinement ap-
proach aimed at increasing the practical efficiency of evaluating these query

180

predicates. We then extended these findings to reverse nearest neighbor
queries, introducing the P∃RNNQ and the P∀RNNQ query predicates. Dur-
ing our experimental evaluation we have shown the efficiency and effective-
ness of these approaches.

One drawback of the proposed techniques however is that they rely highly
on the spatial correlation of uncertain objects between consecutive points in
time. If to many states can be reached between tics, the efficiency of the
proposed techniques will suffer, not only because the underlying state and
transition matrices will become less sparse, but also because the selectivity of
the proposed pruning techniques declines. Therefore, while the approaches
work well for for a single mode of transport such as taxis, the introduction
of an additional mode of transport such as airplanes will decrease the per-
formance of these approaches. We aim at addressing this issue in the future.

kNN Queries in Image Databases. The third main part of this the-
sis, Part IV, addressed the problem of querying large datasets containing
set-based objects, namely image databases. As we have seen, query pro-
cessing in this area of research is drifting more and more towards accurate
matching approaches based on nearest neighbor queries due to the invention
of efficient and effective indexing techniques such as product quantization.
These are however still relatively expensive from a computational point of
view if hundreds or even thousands of keypoints are queried. In this context
we evaluated a modified recognition pipeline optimized for kNN queries that
combines a reduction of the number of matching queries to increase query
efficiency with an additional match expansion step for increasing query ef-
fectiveness. As research on feature extraction is currently more and more
shifting from the real-valued domain to the binary domain, we then eval-
uated efficient approximate indexing techniques for binary feature vectors
based on the LSH scheme. Our experimental evaluation aimed at identify-
ing advantages and disadvantages of the different approaches and providing
suggestions for their use in real-world scenarios.

Bibliography

[1] I. EMC2. (2014) The digital universe of opportunities. [On-
line]. Available: http://www.emc.com/collateral/analyst-reports/
idc-digital-universe-2014.pdf

[2] M. Deza and E. Deza, Dictionary of Distances. Elsevier Science, 2006.

[3] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
Proc. KDD, 1996, pp. 226–231.

[5] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison-Wesley, 2006.

[6] M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. SIGMOD, 2000, pp. 93–104.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proc. STOC, 1998, pp. 604–
613.

[8] G. R. Hjaltason and H. Samet, “Ranking in spatial databases,” in Proc.
SSD, 1995, pp. 83–95.

[9] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor
queries,” in Proc. SIGMOD, 1995, pp. 71–79.

[10] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization
for approximate nearest neighbor search,” in Proc. CVPR, 2014.

[11] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in hamming space
with multi-index hashing,” in Proc. CVPR, 2012, pp. 3108–3115.

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf

182 BIBLIOGRAPHY

[12] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE PAMI, vol. 33, no. 1, pp. 117–128, 2011.

[13] J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis, L. Chen,
and H.-P. Kriegel, “Probabilistic nearest neighbor queries on uncertain
moving object trajectories,” PVLDB, vol. 7, no. 3, pp. 205–216, 2013.

[14] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and I. F. Cruz,
“Continuous probabilistic nearest-neighbor queries for uncertain tra-
jectories,” in Proc. EDBT, 2009, pp. 874–885.

[15] F. Korn and S. Muthukrishnan, “Influenced sets based on reverse near-
est neighbor queries,” in Proc. SIGMOD, 2000, pp. 201–212.

[16] W. Wu, F. Yang, C.-Y. Chan, and K. Tan, “FINCH: Evaluating reverse
k-nearest-neighbor queries on location data,” in Proc. VLDB, 2008, pp.
1056–1067.

[17] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proc. ICDE, 2001, pp. 421–430.

[18] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in Proc.
VLDB, 2006, pp. 751–762.

[19] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for au-
tomatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[20] M. Busch. (2010) Twitter’s new search architecture. [Online]. Available:
https://blog.twitter.com/2010/twitters-new-search-architecture

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. CVPR, vol. 1, 2005, pp. 886–893.

[22] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE SMC, vol. 3, no. 6, pp. 610–621, 1973.

[23] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Proc. ICCV, 2003, pp. 1470–1477.

[24] Idée Inc. (2015) How does tineye work? does it use image names?
[Online]. Available: https://www.tineye.com/faq#how

[25] M. Müller, Information retrieval for music and motion. Springer,
2007, vol. 2.

https://blog.twitter.com/2010/twitters-new-search-architecture
https://www.tineye.com/faq#how

BIBLIOGRAPHY 183

[26] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures. San Francisco: Morgan Kaufmann, 2006.

[27] A. Guttman, “R-Trees: A dynamic index structure for spatial search-
ing,” in Proc. SIGMOD, 1984, pp. 47–57.

[28] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
Tree: An efficient and robust access method for points and rectangles,”
in Proc. SIGMOD, 1990, pp. 322–331.

[29] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Boosting
spatial pruning: On optimal pruning of mbrs,” in Proc. SIGMOD, 2010,
pp. 39–50.

[30] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high di-
mensions via hashing,” in VLDB, vol. 99, 1999, pp. 518–529.

[31] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proc.
SOCG. ACM, 2004, pp. 253–262.

[32] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
lsh: Efficient indexing for high-dimensional similarity search,” in Proc.
VLDB, 2007, pp. 950–961.

[33] P. Kröger and M. Renz, “Multi-step query processing,” in
Encyclopedia of Database Systems, L. LIU and M. ÖZSU,
Eds. Springer US, 2009, pp. 1858–1862. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-39940-9 227

[34] H.-P. Kriegel, P. Kröger, P. Kunath, and M. Renz, “Generalizing the
optimality of multi-step k-nearest neighbor query processing,” in Proc.
SSTD, 2007, pp. 75–92.

[35] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor
search,” in Proc. SIGMOD, 1998, pp. 154–165.

[36] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas,
“Fast nearest neighbor search in medical image databases,” in Proc.
VLDB, 1996, pp. 215–226.

[37] D. Gunopulos and G. Das, “Time series similarity measures (tutorial
pm-2),” in Tutorial notes of the sixth ACM SIGKDD. ACM, 2000,
pp. 243–307.

http://dx.doi.org/10.1007/978-0-387-39940-9_227

184 BIBLIOGRAPHY

[38] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-
temporal databases,” in Proc. SIGMOD, 2002, pp. 334–345.

[39] S. Šaltenis, S. Jensen, S. Leutenegger, and M. Lopez, “Indexing the
positions of continuously moving objects.” in Proc. SIGMOD, 2000,
pp. 331–342.

[40] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle, “Index-
ing uncertain spatio-temporal data,” in Proc. CIKM, 2012, pp. 395–
404.

[41] ——, “Querying uncertain spatio-temporal data,” in Proc. ICDE, 2012,
pp. 354–365.

[42] R. Cheng, T. Emrich, H. Kriegel, N. Mamoulis, M. Renz, G. Trajcevski,
and A. Züfle, “Managing uncertainty in spatial and spatio-temporal
data,” in Proc. ICDE, 2014, pp. 1302–1305.

[43] P. Vagata and K. Wilfong. (2014) Scaling the facebook data warehouse
to 300 pb. [Online]. Available: https://code.facebook.com/posts/
229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

[44] YouTube LLC. (2015) Statistics. [Online]. Available: https:
//www.youtube.com/yt/press/statistics.html

[45] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[46] T. Emrich, H.-P. Kriegel, P. Kröger, J. Niedermayer, M. Renz, and
A. Züfle, “A mutual-pruning approach for rknn join processing,” in
Proc. BTW, 2013, pp. 21–35.

[47] T. Emrich, H.-P. Kriegel, P. Kröger, J. Niedermayer, M. Renz, and
A. Züfle, “Reverse-k-nearest-neighbor join processing,” in Proc. SSTD,
2013, pp. 277–294.

[48] ——, “On reverse-k-nearest-neighbor joins,” GeoInformatica, pp. 1–32,
2014.

[49] T. Emrich, “Coping with distance and location dependencies in spatial,
temporal and uncertain data,” Ph.D. dissertation, Ludwig-Maximilians
University Munich, 2013.

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html

BIBLIOGRAPHY 185

[50] A. Züfle, “Similarity search and mining in uncertain spatial and spatio-
temporal databases,” Ph.D. dissertation, Ludwig-Maximilians Univer-
sity Munich, 2013.

[51] T. Emrich, H.-P. Kriegel, N. Mamoulis, J. Niedermayer, M. Renz,
and A. Züfle, “Reverse-nearest neighbor queries on uncertain moving
object trajectories,” in Proc. DASFAA, 2014, pp. 92–107. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-05813-9 7

[52] T. Emrich, M. Franzke, H. Kriegel, J. Niedermayer, M. Renz, and
A. Züfle, “An extendable framework for managing uncertain spatio-
temporal data,” in Proc. SIGMOD, 2014, pp. 1087–1090.

[53] J. Niedermayer and P. Kröger, “Retrieval of binary features in image
databases: A study,” in Proc. SISAP, 2014, pp. 151–163.

[54] ——, “Minimizing the number of keypoint matching queries for object
retrieval,” in Proc. BMVC, 2015 (to appear).

[55] T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz,
S. Zhang, and A. Züfle, “Inverse queries for multidimensional spaces,”
in Proc. SSTD, 2011, pp. 330–347.

[56] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure
based on shared near neighbors,” IEEE TC, vol. C-22, no. 11, pp.
1025–1034, 1973.

[57] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” in Proc. SIG-
MOD, 1999, pp. 49–60.

[58] V. Hautamäki, I. Kärkkäinen, and P. Fränti, “Outlier detection using
k-nearest neighbor graph,” in Proc. ICPR, 2004, pp. 430–433.

[59] W. Jin, A. K. H. Tung, J. Han, and W. Wang, “Ranking outliers
using symmetric neighborhood relationship,” in Proc. PAKDD, 2006,
pp. 577–593.

[60] C. Yang and K.-I. Lin, “An index structure for efficient reverse nearest
neighbor queries,” in Proc. ICDE, 2001, pp. 485–492.

[61] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz,
“Efficient reverse k-nearest neighbor search in arbitrary metric spaces,”
in Proc. SIGMOD, 2006, pp. 515–526.

http://dx.doi.org/10.1007/978-3-319-05813-9_7

186 BIBLIOGRAPHY

[62] I. Stanoi, D. Agrawal, and A. E. Abbadi, “Reverse nearest neighbor
queries for dynamic databases,” in Proc. DMKD, 2000, pp. 44–53.

[63] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun, “High dimensional
reverse nearest neighbor queries,” in Proc. CIKM, 2003, pp. 91–98.

[64] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN search in arbitrary
dimensionality,” in Proc. VLDB, 2004, pp. 744–755.

[65] C. Böhm and F. Krebs, “The k-nearest neighbor join: Turbo charging
the KDD process,” KAIS, vol. 6, no. 6, pp. 728–749, 2004.

[66] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao, “All-nearest-
neighbors queries in spatial databases,” in Proc. SSDBM, 2004, pp.
297–306.

[67] C. Yu, R. Zhang, Y. Huang, and H. Xiong, “High-dimensional knn
joins with incremental updates,” Geoinformatica, vol. 14, no. 1, pp.
55–82, 2010.

[68] J. G. Venkateswaran, “Indexing techniques for metric databases with
costly searches,” Ph.D. dissertation, University of Florida, Gainesville,
FL, USA, 2007, aAI3300799.

[69] Y. Tao, M. L. Yiu, and N. Mamoulis, “Reverse nearest neighbor search
in metric spaces,” IEEE TKDE, vol. 18, no. 9, pp. 1239–1252, 2006.

[70] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone:
Efficiently processing reverse k nearest neighbors queries,” in ICDE,
2011, pp. 577–588.

[71] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Reverse
k-nearest neighbor search in dynamic and general metric databases,”
in Proc. EDBT, 2009, pp. 886–897.

[72] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and A. Katzdobler, “Re-
verse k-nearest neighbor search based on aggregate point access meth-
ods,” in Proc. SSDBM, 2009, pp. 444–460.

[73] C. Xia, W. Hsu, and M. L. Lee, “ERkNN: efficient reverse k-nearest
neighbors retrieval with local kNN-distance estimation,” in Proc.
CIKM, 2005, pp. 533–540.

BIBLIOGRAPHY 187

[74] Y. Liu and Z.-X. Hao, “High-dimensional main-memory reverse k near-
est neighbor query and join,” Jisuanji Gongcheng/ Computer Engineer-
ing, vol. 37, no. 24, 2011.

[75] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient olap operations
in spatial data warehouses,” in Proc. SSTD, 2001, pp. 443–459.

[76] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and A. Katzdobler, “In-
cremental reverse nearest neighbor ranking,” in Proc. ICDE, 2009, pp.
1560–1567.

[77] E. Achtert, A. Hettab, H.-P. Kriegel, E. Schubert, and A. Zimek, “Spa-
tial outlier detection: Data, algorithms, visualizations,” in Proc. SSTD,
2011, pp. 512–516.

[78] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: an efficient access
method for similarity search in metric spaces,” in Proc. VLDB, 1997,
pp. 426–435.

[79] T. Emrich, F. Graf, H.-P. Kriegel, M. Schubert, and M. Thoma, “On
the impact of flash ssds on spatial indexing,” in Proc. DaMoN, 2010,
pp. 3–8.

[80] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu, “Event queries on
correlated probabilistic streams,” in Proc. SIGMOD, 2008, pp. 715–
728.

[81] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, and Y. Huang, “T-drive:
Driving directions based on taxi trajectories,” in Proc. ACM GIS, 2010,
pp. 99–108.

[82] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma., “Understanding mo-
bility based on gps data.” in Proc. Ubicomp, 2008, pp. 312–312.

[83] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms
for nearest neighbor search on moving object trajectories,” Geoinfor-
matica, vol. 11, no. 2, pp. 159–193, 2007.

[84] R. H. Güting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search
on moving object trajectories,” VLDB J., vol. 19, no. 5, pp. 687–714,
2010.

[85] G. S. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in Proc. VLDB,
2003, pp. 512–523.

188 BIBLIOGRAPHY

[86] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor
search,” in Proc. VLDB, 2002, pp. 287–298.

[87] C. Xu, Y. Gu, L. Chen, J. Qiao, and G. Yu, “Interval reverse nearest
neighbor queries on uncertain data with markov correlations,” in Proc.
ICDE, 2013, pp. 170–181.

[88] A. Prasad Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Modeling
and querying moving objects,” in Proc. ICDE, 1997, pp. 422–432.

[89] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and in-
dexing of moving objects with unknown motion patterns,” in Proc.
SIGMOD, 2004, pp. 611–622.

[90] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor
queries over moving objects,” in Proc. ICDE, 2005, pp. 631–642.

[91] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,”
in Proc. ICDE, 2005, pp. 643–654.

[92] H. Mokhtar and J. Su, “Universal trajectory queries for moving object
databases,” in Proc. MDM, 2004, pp. 133–144.

[93] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain, “Man-
aging uncertainty in moving objects databases,” ACM TODS, vol. 29,
no. 3, pp. 463–507, 2004.

[94] G. Trajcevski, A. N. Choudhary, O. Wolfson, L. Ye, and G. Li, “Un-
certain range queries for necklaces,” in Proc. MDM, 2010, pp. 199–208.

[95] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Querying imprecise
data in moving object environments,” IEEE TKDE, vol. 16, no. 9, pp.
1112–1127, 2004.

[96] S. Qiao, C. Tang, H. Jin, T. Long, S. Dai, Y. Ku, and M. Chau,
“Putmode: prediction of uncertain trajectories in moving objects da-
tabases,” Appl. Intell., vol. 33, no. 3, pp. 370–386, 2010.

[97] G. Kollios, D. Gunopulos, and V. Tsotras, “Nearest neighbor queries
in a mobile environment,” in Spatio-Temporal Database Management.
Springer, 1999, pp. 119–134.

BIBLIOGRAPHY 189

[98] Y.-K. Huang, S.-J. Liao, and C. Lee, “Efficient continuous k-nearest
neighbor query processing over moving objects with uncertain speed
and direction,” in Proc. SSDBM, 2008, pp. 549–557.

[99] G. Li, Y. Li, L. Shu, and P. Fan, “Cknn query processing over moving
objects with uncertain speeds in road networks,” in APWeb, 2011, pp.
65–76.

[100] G. Trajcevski, R. Tamassia, I. F. Cruz, P. Scheuermann, D. Hartglass,
and C. Zamierowski, “Ranking continuous nearest neighbors for uncer-
tain trajectories,” VLDB J., vol. 20, no. 5, pp. 767–791, 2011.

[101] X. Lian and L. Chen, “Efficient processing of probabilistic reverse near-
est neighbor queries over uncertain data,” VLDB J., vol. 18, no. 3, pp.
787–808, 2009.

[102] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilis-
tic reverse nearest neighbor queries on uncertain data,” IEEE TKDE,
vol. 22, no. 4, pp. 550–564, 2010.

[103] T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, S. Zankl, and
A. Züfle, “Efficient probabilistic reverse nearest neighbor query pro-
cessing on uncertain data,” in Proc. VLDB, 2011, pp. 669–680.

[104] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. VLDB, 1994, pp. 487–499.

[105] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas, “Mcdb: a monte carlo approach to managing uncertain data,”
in Proc. SIGMOD, 2008, pp. 687–700.

[106] L. R. Welch, “Hidden markov models and the baum-welch algorithm,”
IEEE Information Theory Society Newsletter, vol. 53, no. 4, pp. 1,10–
13, 2003.

[107] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, pp. 13–30,
1963.

[108] L. Rabiner and B.-H. Juang, “An introduction to hidden markov mod-
els,” IEEE ASSP, vol. 3, no. 1, pp. 4–16, 1986.

[109] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” in Proc. KDD, 2011, pp. 316–324.

190 BIBLIOGRAPHY

[110] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale image
databases,” in Proc. CVPR, 2008, pp. 1–8.

[111] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization
for approximate nearest neighbor search,” in Proc. CVPR, 2013, pp.
2946–2953.

[112] A. Babenko and V. S. Lempitsky, “The inverted multi-index,” in Proc.
CVPR, 2012, pp. 3069–3076.

[113] H. Jégou, M. Douze, and C. Schmid, “Exploiting descriptor distances
for precise image search,” INRIA, Tech. Rep. 7656, 2011.

[114] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in Proc. ICCV, 2011, pp. 2564–2571.

[115] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina key-
point,” in Proc. CVPR, 2012, pp. 510–517.

[116] D. Gálvez-López and J. D. Tardós, “Real-time loop detection with bags
of binary words,” in Proc. IROS, 2011, pp. 51–58.

[117] ——, “Bags of binary words for fast place recognition in image se-
quences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–
1197, 2012.

[118] T. Trzcinski, V. Lepetit, and P. Fua, “Thick boundaries in binary space
and their influence on nearest-neighbor search,” Pattern Recognition
Letters, vol. 33, no. 16, pp. 2173–2180, 2012.

[119] M. Muja and D. G. Lowe, “Fast matching of binary features,” in Proc.
CRV, 2012, pp. 404–410.

[120] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total
recall: Automatic query expansion with a generative feature model for
object retrieval,” in Proc. ICCV, 2007, pp. 1–8.

[121] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.
CVPR, 2007, pp. 1–8.

[122] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. CVPR, 2006, pp. 2161–2168.

BIBLIOGRAPHY 191

[123] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms,” Pattern
Recognition Letters, vol. 31, no. 11, pp. 1348–1358, 2010.

[124] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Boosting binary
keypoint descriptors,” in Proc. CVPR, 2013, pp. 2874–2881.

[125] M. Perd’och, O. Chum, and J. Matas, “Efficient representation of local
geometry for large scale object retrieval,” in Proc. CVPR, 2009, pp.
9–16.

[126] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. ECCV.
Springer, 2008, pp. 304–317.

[127] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in hamming
space with multi-index hashing,” CoRR, vol. abs/1307.2982v3, 2014.

[128] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proc. CVPR, 2008, pp. 1–8.

[129] A. Joly and O. Buisson, “Random maximum margin hashing,” in Proc.
CVPR, 2011, pp. 873–880.

[130] W. Zhou, Y. Lu, H. Li, and Q. Tian, “Scalar quantization for large
scale image search,” in Proc. ACM MM, 2012, pp. 169–178.

[131] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing,” in Proc. CVPR, 2012, pp. 2957–2964.

[132] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc.
CVPR, 2013, pp. 2938–2945.

[133] W. Hartmann, M. Havlena, and K. Schindler, “Predicting matchabil-
ity,” in Proc. CVPR, 2014.

[134] K. Hajebi and H. Zhang, “Stopping rules for bag-of-words image search
and its application in appearance-based localization,” arXiv preprint
arXiv:1312.7414, 2013.

[135] S. Lee, K. Kim, J.-Y. Kim, M. Kim, and H.-J. Yoo, “Familiarity based
unified visual attention model for fast and robust object recognition,”
Pattern Recognition, vol. 43, no. 3, pp. 1116–1128, 2010.

192 BIBLIOGRAPHY

[136] M. Brown, R. Szeliski, and S. Winder, “Multi-image matching using
multi-scale oriented patches,” in Proc. CVPR, vol. 1, 2005, pp. 510–
517.

[137] T. Sattler, B. Leibe, and L. Kobbelt, “Improving image-based localiza-
tion by active correspondence search,” 2012, pp. 752–765.

[138] ——, “Fast image-based localization using direct 2d-to-3d matching,”
in Proc. ICCV, 2011, pp. 667–674.

[139] G. Tolias, Y. Kalantidis, Y. Avrithis, and S. Kollias, “Towards large-
scale geometry indexing by feature selection,” Computer Vision and
Image Understanding, vol. 120, pp. 31–45, 2014.

[140] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using
prioritized feature matching,” in Proc. ECCV, 2010, pp. 791–804.

[141] P. Turcot and D. G. Lowe, “Better matching with fewer features: The
selection of useful features in large database recognition problems,” in
Computer Vision Workshops, 2009, 2009, pp. 2109–2116.

[142] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recogni-
tion,” in Proc. CVPR, 2007, pp. 1–7.

[143] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image de-
scriptor matching,” in Proc. CVPR, 2008, pp. 1–8.

[144] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” in VISAPP (1), 2009, pp. 331–
340.

[145] M. Patella and P. Ciaccia, “Approximate similarity search: A multi-
faceted problem,” J. Discrete Algorithms, vol. 7, no. 1, pp. 36–48, 2009.

[146] L.-f. Ai, J.-q. Yu, Y.-f. He, and T. Guan, “High-dimensional indexing
technologies for large scale content-based image retrieval: a review,”
Journal of Zhejiang University SCIENCE C, vol. 14, no. 7, pp. 505–
520, 2013.

[147] D. Qin, C. Wengert, and L. J. V. Gool, “Query adaptive similarity for
large scale object retrieval,” in Proc. CVPR, 2013, pp. 1610–1617.

[148] C. Schmid and R. Mohr, “Combining greyvalue invariants with local
constraints for object recognition,” in Proc. CVPR, 1996, pp. 872–877.

193

[149] I.-K. Jung and S. Lacroix, “A robust interest points matching algo-
rithm,” in Proc. ICCV, vol. 2, 2001, pp. 538–543.

[150] F. Schaffalitzky and A. Zisserman, “Multi-view matching for unordered
image sets, or “how do i organize my holiday snaps?”,” in Proc. ECCV.
Springer, 2002, pp. 414–431.

[151] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Simultaneous object
recognition and segmentation by image exploration,” in Proc. ECCV.
Springer, 2004, pp. 40–54.

[152] X. Guo and X. Cao, “Good match exploration using triangle con-
straint,” Pattern Recognition Letters, vol. 33, no. 7, pp. 872–881, 2012.

[153] C. Cui and K. N. Ngan, “Global propagation of affine invariant features
for robust matching,” IEEE TIP, vol. 22, no. 7, pp. 2876–2888, 2013.

[154] Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features for large scale
partial-duplicate web image search,” in Proc. CVPR, 2009, pp. 25–32.

[155] O. Chum, M. Perdoch, and J. Matas, “Geometric min-hashing: Finding
a (thick) needle in a haystack,” in Proc. CVPR, 2009, pp. 17–24.

[156] H. Jégou, M. Douze, and C. Schmid, “On the burstiness of visual ele-
ments,” in Proc. CVPR, 2009, pp. 1169–1176.

[157] R. Arandjelovic and A. Zisserman, “Three things everyone should know
to improve object retrieval,” in Proc. CVPR, 2012, pp. 2911–2918.

[158] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu, “Hmsearch: an efficient
hamming distance query processing algorithm,” in Proc. SSDBM, 2013,
pp. 1–12.

[159] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor
search by residual vector quantization,” Sensors, vol. 10, no. 12, pp.
11 259–11 273, 2010.

[160] P. S. Bradley, O. L. Mangasarian, and W. N. Street, “Clustering via
concave minimization,” in NIPS, 1996, pp. 368–374.

[161] Q. Luo, S. Zhang, T. Huang, W. Gao, and Q. Tian, “Scalable mobile
search with binary phrase,” in Proc. ICIMCS, 2013, pp. 66–70.

[162] E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek, “Interactive data
mining with 3d-parallel-coordinate-trees,” in Proc. SIGMOD, 2013, pp.
1009–1012.

194

Acknowledgements

This work would not have been possible without the scientific and personal
support of my colleagues, friends and family. I would like to use this oppor-
tunity to express my unlimited gratitude to all of you who have been there
for me during the last years.

First and foremost I would like to thank my thesis supervisor, PD Peer
Kröger, for his great support during my whole time as a research assistant. I
would especially like to thank him for giving me the opportunity and freedom
to work on the topics I always wanted to work on, and for providing me the
funding to do so – including one of the best industry projects that I could
ever imagine. Peer Kröger also deserves my gratitude for his scientific input
on the publications we worked on.

Second I am indebted to Prof. Michael Gertz who agreed to serve as a
second reviewer of my thesis, which is always tied to a huge amount of work.

As a leader of the Database Systems Group I was working in, Prof. Hans-
Peter Kriegel deserves special thanks for providing the positive and team-
oriented working atmosphere that made the work in his group so enjoyable.

My sincere thanks also go to my colleagues who always supported me
in my scientific research, be it as coauthors of the papers we published, or
simply as partners for scientific discussions, providing valuable inputs for this
thesis. During my work at this group I learned to appreciate the good working
atmosphere of our group that helped me considerably during the completion
of my thesis. I would especially like to thank Tobias Emrich, Matthias Renz
and Andreas Züfle who coauthored a variety of papers included in this thesis,
always having interesting ideas for new research projects. I would also like
to thank Erich Schubert for his support with the Elki framework, Markus
Mauder and PD Matthias Schubert for the valuable discussions and all of
my colleagues for providing such a great working environment.

Many thanks also go to Susanne Grienberger who was always helping me
to cope with the bureaucratic matters of university life, and to Franz Krojer
who always provided us with a system infrastructure greatly supporting our
work. I would especially like to thank him for always having an eye on the

196

hardware market, making it possible to test new hardware.
Finally I would like to thank my parents, my brother and my future wife

Bianca for supporting me during the whole time of my doctoral research
studies, in good times and in bad, and helping me not to give up when
suffering a setback. Without their help this thesis would not have been
possible. The same holds for my friends who have always supported me in
my undertaking.

	List of Figures
	List of Tables
	Table of Notations
	Summary
	I Preliminaries
	Introduction
	Similarity Search
	Mathematical Definitions
	Query Types
	Pipeline
	Feature Extraction
	Indexing and Query Processing

	Challenges
	Complex Data
	Complex Query Predicates
	Large Volumes

	Thesis Overview and Contributions
	Incorporated Publications and Coauthorship

	II The RkNN Join
	Introduction
	Preliminaries
	Problem Definition
	Related Work
	Classification of Existing RkNN Joins

	Algorithms
	The Mutual Pruning Algorithm
	General Idea
	The Algorithm joinEntry
	Refinement: The resolve-Routine

	A Self Pruning Approach
	General Idea
	Implementing the Self-kNN-Join
	Implementing the Varying-Range-Join

	Extension to Metric Spaces
	Adaptions of the Update List Approach
	Adaptions of the kNN-Based Approach

	Evaluation
	Experiments on Synthetic Data
	Real Data Experiments
	Comparing CPU-Cost and IO-Cost

	Conclusion

	III Nearest Neighbor Queries on Uncertain Spatio-Temporal Data
	Introduction
	Preliminaries
	Problem Definition
	Uncertain Trajectory Model
	Nearest Neighbor Queries
	Probabilistic Reverse Nearest Neighbor Queries

	Related Work

	Nearest Neighbor Queries
	Theoretical Analysis
	The PNN Query
	The PNN Query
	The PCNN Query

	Sampling Possible Trajectories
	Traditional Sampling
	Efficient and Appropriate Sampling

	Spatial Pruning
	Experimental Evaluation
	Evaluation: PNNQ and PNNQ
	Continuous Queries

	Reverse Nearest Neighbor Queries
	PRNN Query Processing
	Temporal and Spatial Filtering
	Verification

	Experiments
	Evaluation: PRNNQ and PRNNQ

	Conclusions

	IV kNN Queries for Image Retrieval
	Introduction
	Preliminaries
	Problem Definition
	Related Work
	Keypoint Reduction
	kNN Indexing
	kNN-based Matching
	Match Expansion

	Minimizing the Number of Matching Queries for Object Retrieval
	Pipeline
	Theory
	Practical Considerations

	Experiments
	Experimental Setup
	Experiments

	Retrieval of Binary Features in Image Databases: A Study
	Querying Binary Features with LSH
	Experimental Evaluation
	Nearest Neighbor Queries
	Range Queries and BoVW

	Conclusions

	V Conclusions
	Acknowledgements

