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1. Zusammenfassung 

Alveolarmakrophagen (AM) besiedeln die Oberfläche des Alveolarepithels und 

übernehmen so die Abwehrfunktion der unteren Atemwege. Zudem spielen AM eine 

wichtige Rolle bei der Pathogenese vieler entzündlichen Lungenerkrankungen wie z.B. 

Asthma und COPD. Eine notwendige Voraussetzung für diese besonders spezialisierten 

geweberesidenten Makrophagen ist ihre Plastizität, die es ihnen erlaubt sich 

entsprechend der jeweiligen Umweltgegebenheiten anzupassen und ihre 

Aktivierungsform (auch Polarisierung genannt) zu verändern. So können auch AM wie 

für andere Makrophagen bekannt, klassisch aktiviert werden (M1 Form) und einen pro-

inflammatorischen Status einnehmen, oder alternativ (M2 Form) in einen anti-

inflammatorischen Phänotyp polarisiert werden.  

Das Immunoproteasom (IP) ist eine besondere Form des Proteasom. Es besitzt drei 

Interferon gamma (IFNγ) induzierbare katalytisch aktive Untereinheiten, nämlich die Low 

Molecular Mass Protein 2 (LMP2) und 7 (LMP7), sowie die Multicatalytic Endopeptidase 

Complex-Like 1 (MECL-1) Untereinheit, welche die katalytischen Untereinheiten 1, 2, 

und 5 des konstitutiven Proteasomes entsprechend ersetzen können. Abgesehen von 

seiner wichtigen Rolle bei der Antigenpräsentation, werden neuerdings für das IP neben 

Funktionen in der erworbenen Immunität auch Wirkungswege in der angeborenen 

Immunität beschrieben.  Am besten untersucht wurde unlängst jedoch seine Funktion in 

der T-Zell Biologie, insbesondere bei T-Zell Survival und Expansion sowie bei der 

Differenzierung  von Th17  Zellen. 
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In Anbetracht der erwähnten zentralen Bedeutung der Zellplastizität von 

Alveolarmakrophagen für die Abwehrfunktion und Homöostase der Lunge, und in 

Verbindung mit der Rolle des Immunoproteasom für zellbiologische und immunologische 

Pathways, wird im Kapitel 1 (Capter 1) die Untersuchung der Funktion des IP bei der AM 

Polarisation beschrieben.  Wir zeigen hier, dass primäre aus der Mauslunge isolierte 

-4 in M2-

Phänotypen polarisiert werden können. Beide AM Aktivierungsformen weisen dabei eine 

verstärkte Expression und Aktivität der IP Untereinheiten LMP2 und LMP7 auf. Die 

Verwendung von aus Knockout-Mäusen isolierten AMs zeigte weiter, dass die Induktion 

der M1-Marker in LMP2 und -7 defizienten (LMP2-/-; LMP7-/-) nicht verändert wurde. 

Die M2-Marker dagegen waren in LMP2-/- und LMP7-/- AM eindeutig erhöht. Demen 

sprechend konnten wir weiter darstellen, dass unter M2-Bedingungen, die für den IL-4 

signalweg bekannte Phosphorylierung der Mediatoren AKT und STAT6 verstärkt auftrat. 

Darüber hinaus zeigte sich auch der für die M2-Polarisierung wichtige 

Transkriptionsfaktor IRF-4 sowohl nach IL-4 als auch IL-13 Stimulation in seiner 

Expression in LMP7-/- Zellen stark erhöht. Schließlich konnten wir zeigen, dass die 

Protein aber nicht die mRNA Expression des für die IL-4 und -13 Signaltransduktion 

gemeinsamen Rezeptors IL-4R -/- und -7-/- Zellen verstärkt war. Die daraus 

abgeleitete Hypothese, dass ein Mangel an IP Aktivität in LMP2-/- und -7-/- AM zu einer 

verstärktem IL-4R Expression führt und damit zu einer gesteigerten Sensibilität für die 

IL-4/13 Stimulation, welche wiederum eine erhöhte M2-Marker Expression bewirkt, 

konnte durch die Verwendung des neuen LMP7-spezifischen Inhibitors ONX0914 

bestätigt werden. 
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Zusammenfassend zeigen unsere in Kapitel 1 dargelegten Untersuchungen, dass eine 

LMP2 oder -7 Hemmung die M2-Polarisierung von Alveolarmakrophagen durch 

Modulation der IL-4 Rezeptor Expression verstärkt. Da diese Wirkung für die LPS/IFN

Stimulation bedeutungslos ist wird die M1-Polarisierung durch die LMP-Aktivität nicht 

beeinflusst. Die gezielte pharmakologische Hemmung von Immunoproteasom-

Untereinheiten stellt somit eine neue therapeutische Möglichkeit dar die Immunität der 

Lunge gezielt zu beeinflussen. 

Das 2. Kapitel (Chapter 2) befasst sich mit Zell-Zell Kommunikation von Alveolarzellen, 

nämlich der Alveolarmakrophagen mit den Typ 2 Pneumozyten (Typ 2 

Alveolarepithelzellen; AEC-II). Ziel dieses Projektes war es zelluläre Faktoren zu 

identifizieren die von AMs in Abhängigkeit ihrer Aktivierung (Polarisation) freigesetzt 

werden und damit die AEC-II Funktion beeinflussen. Es wurden zu diesem Zweck 

Kontakt Co-Kulturen (Transwell Co-Kultur) der SV40 immortalisierten, murinen AM-

Zelllinie MH-S mit der aus Maus Lungenadenom abgeleiteten AEC-II Zelllinie LA-4 

durchgeführt. Zudem wurden AEC-II Kulturbedingungen mit AM-konditioniertem Medium 

benutzt um explizit die durch lösliche Faktoren meditierte Interaktion zu betrachten. Es 

zeigte sich, dass in Kontakt Co-Kulturen die M1 polarisierten MH-S Zellen die 

Expression von einigen immunrelevanten AEC-II Genen, insbesondere Il6, Tgfb1, Lcn2, 

Csf2, Ccl2 und Cx3cl1 in den LA-4 Zellen stark induzieren. Die Kultivierung von LA4 

Zellen in von M1 polarisierten MH-S Zellen konditioniertem Medium, beeinflusste 

dagegen nur die Expression von Il6, Lcn2, Ccl2 und Cx3cl1 jedoch nicht die von Tgfb1 

und Csf2. Die Verwendung von mit unbehandelten (M0) bzw. M2 polarisierten MH-S 

Zellen konditioniertem Medium wiederum stimulierte die LA-4 Zellen die Expression von 
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Cxc3cl1 zu verstärken. Die prototypischen proinflammatorischen Zytokine TNF- und IL-1 

werden hauptsächlich von aktivierten Makrophagen sezerniert, und sind dafür bekannt 

während der akuten Entzündungsreaktion das Alveolarepithel inflammatorisch zu 

stimulieren.  In unserem in vitro Modell zeigte sich, dass LA4 Zellen die Expression von 

Ccl2, Cx3cl1 und Csf2 stark durch TNF-, wohingegen die Expression von Lcn2 

hauptsächlich durch IL-1 Gabe reguliert wurde.  

Diese Ergebnisse deuten darauf hin, dass im Alveolarepithel die Stimulation der Tgfb1 

und Csf2 Expression evtl. den Kontakt mit M1 polarisierten AM benötigt, wo hingegen 

Il6, Ccl2 und Lcn2 Expression auch durch von M1 AM freigesetzten, löslichen Faktoren 

stimuliert wird. Für die Induktion von Csf2 und Ccl2 ist von AM sezerniertes TNF- ein 

guter Kandidat und für Lcn2 entsprechend IL-1. Interessanter Weise war die epitheliale 

Cx3cl1 Expression unabhängig von IL-1 und wurde sowohl für pro- als auch anti-

inflammatorische Versuchsbedingungen beobachtet. Letzteres passt gut zu der 

angenommen Funktion des membrangebundenen CX3CL1 Zytokins als AM 

Chemoattractant, welches die Chemotaxis der AMs zu Orten der Pathogen-

Phagozytose (M1 Kondition) bzw. zur Efferozytose apoptotischer Zellen (M2 Kondition) 

steuern soll.  
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2. Summary 

Alveolar macrophages (AM) play an important role during inflammatory lung diseases 

and provide the first line of defense of the lower airways. A major requirement for 

resident macrophages is their plasticity, which allows them to adapt according to the 

respective environment by modulating their state of activity, called polarization towards 

pro-inflammatory (classically activated, M1) or anti-inflammatory (alternatively activated, 

M2) phenotypes. The immunoproteasome is a specialized form of the proteasome which 

contains the three IFNγ-inducible catalytically active subunits: low molecular mass 

protein 2 (LMP2), multicatalytic endopeptidase complex-like 1 (MECL-1), and LMP7. 

They can replace their constitutive catalytic counterparts β1, β2, and β5, respectively. 

Apart from its major role in antigen presentation, immunoproteasomes have emerging 

functions in multiple innate and adaptive immune responses such as T cell survival and 

expansion, and Th17 differentiation. In view of the described key relevance of the 

plasticity of AMs for pulmonary host defense and homeostasis, combined with the 

impact of the immunoproteasome on cell-biological and immunological pathways, the 

study in chapter 1 was aimed to investigate the role of IP function in AM polarization. 

Here, we demonstrate that AMs can be polarized into M1 or M2 phenotypes after 

LPS/IFN-γ or IL-4 treatment, respectively. Both M1 and M2 AMs showed increased 

expression and activity of the IP subunits LMP2 and LMP7. The immunoproteasome 

kinetic study revealed increased expression and activity of LMP2, MECL-1, and LMP7 

during both M1 and M2 polarization of AMs. While the induction of M1 markers was not 

affected in LMP2 and -7-deficient AMs, the expression of M2 markers was clearly 

increased in LMP2 and -7-/- cells. Accordingly, we found that also phosphorylation of 
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AKT and STAT6, which are the most important signaling pathways involved in M2 

activation, were enhanced in LMP2 and -7-/- cells. In addition, our data showed that IRF-

4 expression, a crucial transcription factor driving M2 polarization, was upregulated in IL-

4/IL-13 treated AMs, and also further induced in LMP 7-/- cells. In further experiments, 

we figured out that the increased M2 markers and signaling is due to increased 

expression of IL-4Rα in LMP2 and -7-deficient AMs and confirmed our finding from 

knockout cells by using the LMP7 specific inhibitor ONX0914. Taken together, the study 

in chapter 1 demonstrated that LMP2 or LMP7 ablation enhances M2 polarization of 

AMs by modulating the IL-4 receptor expression, while it is dispensable for M1 

polarization. These results suggest that inhibition of individual immunoproteasome 

subunits might present a new avenue to modulate innate immunity in the lungs. 

The study of chapter 2 focused on the communication between polarized AM and 

epithelial cell. This study was aimed to identify the cellular factors derived from AMs 

which affect alveolar epithelial cells by using a trans-well co-culture and conditioned 

medium model. Here, we found that M1 polarized AMs enhanced the expression of 

several immune-related factors such as Il6, Tgfb1, Lcn2, Csf2, Ccl2 and Cx3cl1 in LA4 

cells, whereas conditioned medium from M1 AMs induced expression of Il6, Lcn2, Ccl2 

and Cx3cl1 in LA4 cells but not of Tgfb1 and Csf2. However, conditioned medium from 

M0 and M2 also markedly induced gene expression of Cx3cl1 in LA4 cells. The master 

pro-inflammatory cytokines TNF-α and IL-1β that are mainly secreted from macrophages 

have been well described to act on alveolar epithelial cells during acute inflammation. 

We found that mRNA expression of Ccl2, Cx3cl1 and Csf2 was strongly induced by 

TNF-α, whereas Lcn2 was strongly upregulated by IL-1β. These results indicated that 
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the induction of Tgfb1 and Csf2 expression in alveolar epithelial cells requires their 

contact with M1 polarized AM, whereas IL-6, CCL2 and LCN2 appeared already in 

alveolar epithelial cells and were further triggered by M1 AM released soluble factors. 

AM secreted TNF- seems to represent a plausible candidate inducing the expression 

of Csf2 and Ccl2, whereas the induction of Lcn2 is dependent on IL-1β. Interestingly, the 

epithelial expression of Cx3cl1 was independent of IL-1β, but its induction was observed 

in both pro- and anti-inflammatory experimental conditions. The latter finding matches 

well with the assumed function of this membrane-bound cytokine to attract AMs for 

pathogen clearance by phagocytosis (M1 condition) as well as efferocytosis of apoptotic 

cells (M2 condition). 

 



3. Chapter 1 - Introduction 

- 4 - 

 

3. Chapter 1: Immunoproteasome composition impacts alveolar macrophage 

polarization 

3.1. Introduction 

3.1.1. Macrophage Overview: Development, Location, and Functions 

Monocyte and macrophage development 

Macrophages represent a group of immune cells which are widely distributed throughout 

the body and all tissues. Monocytes, a subset of circulating white blood cells in 

vertebrates, constitute 2% to 10% of all leukocytes in the human body (1), and can 

further differentiate into macrophage under certain conditions. Monocytes are 

continuously generated from bone marrow hematopoietic stem cells via macrophage 

and dendritic cell precursors and common monocyte progenitor (2). It has been known 

for a considerable amount of time that the growth factor Csf-1 and also as recently 

reported the cytokine IL-34 are important for the development of this lineage (2, 3). 

Accordingly mice deficient in the Csf-1 growth factor exhibit lower amounts of blood 

monocytes (4). It has further been demonstrated that there are two subsets of 

monocytes which exist in the human blood. They are named CD14+CD16+ and 

CD14+CD16- monocytes and have differential responsibilities in the stimulation process 

(5). In mice, CSF1R+ monocytes are subdivided in distinct populations of 

LY6ChiCX3CR1midCCR2+ and LY6ClowCX3CR1hiCCR2− monocytes, which are thought to 

be equal to their human counterparts (6).  
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Fig 3.1: Scheme of monocyte and macrophage development. In the bone marrow, monocytes are 

continuously generated from hematopoietic stem cells (HSCs) via macrophage and dendritic cell (DC) 

precursor (MDP) and common monocyte progenitor (cMoP) intermediates. In the steady state, there are 

two functionally distinct monocytes called LY6C
hi
 and LY6C

low
 subsets circulating in blood vessel to 

form a developmental continuum (BOX 1). Macrophage-like LY6C
low

 cells patrol the endothelial surface 

and coordinate its repair by recruiting neutrophils. LY6C
hi 

monocytes are rapidly recruited to sites of 

inflammation and sites of tissue remodeling, where they extravagate and can give rise to monocyte-

derived DCs and monocyte-derived macrophages. Copied from (6). 

3.1.2. The overview of tissue macrophage location and origin  

Tissue-resident macrophage populations are found in the majority of tissues in the body 

including microglia in the brain, alveolar macrophages in the lung, and Langerhans cells 

in the skin and Kupffer cells in the liver (7). They are unique phenotypes according to 
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their distinct micro-niches that are extremely heterogeneous, which makes them exhibit 

tissue specific functions and adapt to the tissue environment in which they reside (7). 

Tissue-resident macrophages were firstly recognized as phagocytic cells for invading 

pathogens. They are considered to be the frontline of tissue defense (8). Intensive 

studies revealed that tissue macrophages play an essential role in immune response 

and inflammation, such as the clearance of microbes and necrotic and apoptotic cells, 

initiation of the innate immune response to infection and the resolution of inflammation 

(9). Studies on the role of the specific function of tissue macrophage in each 

inflammatory related disease according to its site will help us to understand their 

pathogenic contribution to disease. For instance, Kupffer cells (KC), also known as 

Browicz-Kupffer cells, reside within the lumen of the liver sinusoids (10),  which  enable 

them be easily exposed to toxic components arising in the blood such as bacterial 

endotoxins, ethanol and toxic substances from the gut (11, 12). Therefore, Kupffer cells 

have been reported to be involved in many liver diseases including acute liver injury, 

alcohol-related liver disease and liver infections (13).  Microglia, another type of resident 

macrophage reside in the brain and spinal cord, and thus is believed to play the crucial 

role in brain infectious disease, Alzheimer's disease, Parkinson's disease, multiple 

sclerosis and several psychiatric disorders (14, 15). 
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Fig 3.2: Scheme of localization of tissue macrophage.  Copied from (16) 

It has been well documented that bone marrow hematopoietic stem cells (HSCs) give 

rise to circulating monocytes, which can differentiate in tissues into macrophages. 

However, a recent study showed that the mouse embryo yolk sac is a sufficient source 

of specific tissue macrophage subtypes in the liver, skin and central nervous system 

(CNS) in the absence of HSCs (17). 
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Fig 3.3: Scheme of origin of tissue macrophages. At embryonic day 7.5 (E7.5)–E8.0, a process, called 

primitive hematopoiesis, is a transient early wave of myeloid cell development. At this period, in blood 

islands of the yolk sac, cells with stem cell potentials develop. Their progeny erythromyeloid progenitors 

(EMPs) further differentiate and populate several tissues, including the brain, where they become tissue 

macrophages that potentially have longevity and a high capacity for self-renewal. Taken from (18). 

Alveolar macrophages (AM) 

Pulmonary macrophages are considered to exist within at least two anatomically distinct 

compartments. The alveolar macrophage (or dust cell) predominantly set in the airspace 

of alveoli where they are in close contact with the respiratory epithelium. They act as the 

lung’s first defense line against inhaled pathogens and environmental pollutants (19). 

The plasticity of alveolar macrophages is required to adapt to a unique airway 

microenvironment (17), which finally causes alveolar macrophage to be an unusual 

phenotype in many respects compared with other lung resident macrophages (17). The 
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interstitial macrophage, on the other hand, resides in the lung parenchyma (20). 

Although these cells share many common features of alveolar macrophage, in mice, 

alveolar macrophages are easily distinguished from interstitial macrophages by their 

unusual phenotype (Table1) (17).  

Surface marker Interstitial macrophage Alveolar macrophage 

CD11b Intermediate expression Not expressed 

CD11c Not expressed High expression 

CD14 Intermediate expression Low expression 

CD200R Intermediate expression High expression 

DEC205 Expression unknown Intermediate expression 

F4/80 Low expression Low expression 

Mannose receptor Intermediate expression High expression 

MHC class II Intermediate expression Low expression 

SIGLEC-F Not expressed High expression 
         

Table 1: The specific phenotype of mouse macrophages from different sites. Adapted from (17). 

In addition, it has been found that alveolar macrophages have many properties of 

dendritic cells (DC) (21). For example, they have a better antigen-presenting capability 

than peritoneal lavage-derived macrophages (PLM) (21). The dendritic cell marker 

CD11c has also been found to be more highly expressed in the alveolar macrophage 

compared to other macrophages (22).  

It has been controversial for many years whether AMs are derived from their blood 

precursor monocytes. Newly published studies have indicated that AMs develop from 

fetal monocytes rather than  arise from circulating blood monocytes and adopt a stable 
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phenotype shortly after birth in response to instructive cytokines, and then self-maintain 

throughout life (18, 23, 24). However, the signals and molecular mechanisms that drive 

AMs and when such signals are provided are not yet fully understood. A recent study 

has shown that the CSF2 induced expression of the nuclear receptor PPAR-γ is 

essential for the differentiation of AMs from fetal monocytes. (24, 25). 

 

Fig 3.4: localization of alveolar macrophage in the alveolus. Alveolar macrophages are localized on the 

top of alveolar type I cell which is surrounded by the alveolar fluid. The main content of alveolar fluid is 

surfactant which are secreted by the alveolar type  II cells.  Adapted from (26). 

3.1.3. Macrophage functions 

The phagocyte is a type of leukocyte that protects the body by engulfing and ingesting 

harmful foreign particles, bacteria, and dead or dying cells (27, 28). Professional 

phagocytes include many types of leukocytes (such as neutrophils, monocytes, 

macrophages, mast cells, and dendritic cells). Macrophages are one type of phagocytes, 

which are responsible for recognition, engulfing and killing of pathogens and apoptotic 

cells (29). Another essential role of macrophages is alerting the immune system to the 
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presence of invaders and immune disorders. In addition, macrophages are able to repair 

the tissue injuries (30). 

3.1.3.1. Phagocytosis 

Monocytes and macrophages are recruited to the site of injury, inflammation and 

infection. When macrophages come into contact with a pathogen or apoptotic cell, 

macrophages use a mechanism called phagocytosis to engulf the pathogens into cells. 

Phagocytosis is a specific form of endocytosis involving the vesicular internalization of 

solids such as bacteria and environmental particles. Phagocytosis is derived from the 

Greek words 

 "phagein" meaning “to eat” and is the word used to describe the engulfing and 

destruction of pathogens. Phagocytosis was first discovered by Élie Metchnikoff in 1882 

(31, 32). Upon engulfment, a vesicle called a phagosome is formed around the microbe 

by the cell membrane which then fuses with a lysosome specialized vesicle that contains 

digestive enzymes to destroy the pathogens (33, 34). Some macrophages act as 

scavengers, removing dead or necrotic cells while others provide host immunity by 

engulfing microbes (35, 36). Most macrophages can live for several months and can kill 

hundreds of different bacteria before they die. In this process, macrophages provide a 

non-specific or innate immunity. The precise process of phagocytosis depends upon the 

particle being internalized, its size and whether it controls its own fate (37). In broad 

terms, the uptake process usually requires receptors which include Fc-receptors, CD44, 

MARCO and CD36 in order to collect around the particle (38-41), to archive signaling to 

promote membrane extension and polymerization of the underlying actin cytoskeleton, 
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and subsequent maturation of the internalized vacuole (the phagosome) to fuse with 

lysosomes and initiate particle degradation (42).  

 

Fig 3.5: A bacterium phagocytosed by a macrophage. Binding of phagocyte surface receptors 

causes the internalization of bacterium into phagosome. The phagosome ingested with bacterium is then 

fused with the lysosome, forming a phagolysosome and leading to degradation of bacterium. Taken from 

(http://en.wikipedia.org/wiki/Phagocyte) 

3.1.3.2. Bridging Innate and Adaptive Immunity 

The immune system is typically divided into two categories: innate and adaptive 

although these distinctions are not mutually exclusive (43). Innate immunity refers to the 

nonspecific defense mechanisms that occur immediately or within hours of the 

appearance of pathogens. The macrophage, being the first line of defense against many 

common pathogens, is thought to be the crucial player of the innate immune system 

(44). In order to recognize pathogens, pattern recognition receptors expressed on 

macrophages are able to distinguish between self and nonself, which then leads to the 

activation of an immune signaling pathway and production of immune mediators such as 
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the cytokines and antimicrobial peptides (45). On the one hand, cytokines can amplify 

the immune response locally by binding to their receptors, on the other hand they can 

recruit lymphocytes which are a sign of involvement of the adaptive immunity (46). This 

is how macrophages alert the immune system to microbial invasion. In addition, 

macrophages can process and present foreign antigens as well as dendritic cells to a 

corresponding T cell. The antigen being displayed is attached to an MHC class II 

molecule, which acts as a signal to activate T cells (47). Moreover, T cells also stimulate 

B cells to generate specific antibodies to each antigen. This "signature" antigen is also 

remembered by T cells and B cells, which allow them to target the antigen again in 

future (48). Therefore, the macrophage is one of the crucial white blood cells that are 

able to bridge innate and adaptive immunity. 

3.1.3.3. Macrophage activation and polarization  

The macrophage is a particularly dynamic cell during anti-pathogens immune 

responses, inflammation, resolution and tissue wound healing (49, 50). Under such 

conditions, macrophages of different origin, being monocytes or tissue macrophages 

can acquire distinct functional phenotypes depending on their surrounding 

microenvironment. Two well-studied polarized subsets have been established according 

to their functions and distinct gene expression profiles, which are the classically 

activated macrophages (M1 macrophages) and alternatively activated macrophage (M2 

macrophages)(51). M1/M2 paradigms are analogized with Th1 (T helper 1)/Th2 (T 

helper 2) type immunes responses. It is worth noting that inducible expression of iNOS 
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and arginine Arginase1 were well described as markers for respective characterization 

of M1 and M2 macrophages (51-54).  

The M1 polarized macrophage, whose prototypical activating stimuli are IFNγ and LPS, 

and alternatively activated macrophages (or M2) are further subdivided into in M2a 

(stimulation of IL-4 or IL-13), M2b (immune complexes in combination with IL-1beta or 

LPS) and M2c (IL-10, TGF-β or glucocorticoids). M1 macrophages show strong anti-

microbe properties with high production of pro-inflammatory cytokines (TNF-a, IL-1b, 

and IL-12) and antimicrobial effectors (nitric oxide and defensins), which are mainly 

presented during acute infection and inflammation (50). M2 polarized macrophages are 

believed to play a crucial role in tissue repair and resolution of inflammation due to their 

high phagocytic clearance of apoptotic neutrophils and the secretion of anti-inflammatory 

cytokines (e.g. IL-10)(51). M2a macrophages induced by IL-4 or IL-13 trigger a Th2 type 

like immune response, and are involved in anti-infectious responses to parasites e.g. 

against Helminth Parasites (55). In addition, new evidence indicates that M2 

macrophages have a pro-fibrotic role in fibrosis (56). M2b macrophages are considered 

immunity regulation and are induced by LPS, IL-1 and immune complexes. Besides IL-

10 they also produce IL-1, IL-6 and TNF-a. M2c macrophages are induced by IL-

10/TGF-β and also exhibit anti-inflammatory functions (57). It has also been shown that 

the M2c but not M2a macrophages induce regulatory T cells (Tregs) from CD4+CD25- T 

cells in vitro and are more effective than M2a macrophages in protecting against tissue 

injury (57). Moreover, thorough studies have evidenced that polarized macrophages 

control immune responses and  inflammation by a chemokine repertoire that recruits 

other immune cells; for instance, M1 macrophages express the chemokines CXCL1, 
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CXCL2, CXCL3, CXCL5, CXCL9, and CXCL10 and CCL2, CCL3, CCL4,CCL5, CCL11, 

and M2 macrophages increase expression of CCL2, CCL17, CCL22, and CCL24 (58, 

59) 

 

Fig 3.6: Scheme of M1 (classical) and M2 (alternative) macrophage polarization. Several cytokines 

and chemokines are involved in the classical and alternative activation of macrophages. Monocytes get 

differentiated into macrophages which in turn polarize to M1 type on exposure to LPS or IFNγ. Various 

signals define the different forms of alternative activation of macrophages. IL-4 or IL-13 induces M2a 

subtype; IL1β or LPS or immune complexes induces M2b macrophages; and IL10 or glucocorticoids 

results in M2c macrophages. Taken from (http://cdn.intechopen.com/pdfs-wm/46529.pdf).   
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3.1.4. Transcriptional networks of macrophage polarization 

A variety of studies have been carried out to understand the signaling pathways, 

transcription factors, and epigenetic regulation during macrophage polarization. By using 

the technique of mouse genetic deletion of genes in macrophages, a number of 

pathways were identified to be involved in molecular mechanisms of macrophage 

polarization. In the following sections, the key transcription factors are discussed for their 

roles in a polarized macrophage phenotype. 

 

Fig 3.7: Signaling pathways in M1 and M2 macrophage polarization. IFNγ, LPS and CSF2 or 

Fungi/helminths, CSF1 and IL-4/IL-13 respectively induce the M1 or M2 polarization. The main genes 

that are characteristic of either the M1 or the M2 polarized state are also shown. The main marker genes 

used for M1 characterization are Nos2, Il12b, Ciita and Il6, and Arg1, Chi3l3, Retnla and Mrc1 are used 

as M2 marker. The main transcription factors involved in M1 polarization are STAT1/STAT2, STAT5, 

IRF5, NF-κB, AP1 and IRF3, IRF4, and PPARγ, C/EBPβ, STAT6 and mTOR for M2. Taken from (60). 
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3.1.4.1. The NF-κB /STAT1 signaling axis 

Polarized (M1) macrophages show increased anti-microbial activity by enhanced 

expression of NOS2, increased MHC class II expression, and increased secretion of IL-

12 which promotes the Th1 immune response (61). IFNγ-mediated Janus kinase–signal 

transducer and activator of transcription (JAK–STAT) are supposed to regulate 

transcription of those genes (62), which are characterized by IFNγ receptor triggered 

JAK-mediated tyrosine phosphorylation and subsequent dimerization of STAT1 which 

binds to IFN gamma-activated sequences in the promoters of the M1 markers gene (60). 

LPS is often a co-stimulus of IFNγ for M1 polarization as it binds to the Toll like receptor 

TLR4 and leads to activation of nuclear factor kappaB (NF-κB) which induces 

expression of pro-inflammatory cytokines such as Tnf, Il1b, Il6 and Il12. The NF-κB p65 

and p50 heterodimer complexes with the inhibitory protein IκBα in the cytosol but is 

released after the phosphorylation of IκBα by IκB kinase (IKK) and translocated into the 

nucleus where it binds to the NFκB response element (TRE) (63). In addition, LPS 

induces the production of IFNβ which in turn binds to the IFNα/β receptor and triggers 

the formation of STAT1–STAT2 heterodimer to induce the M1 signature gene 

expression, such as Nos2, Tnf and Il12b. Therefore, it is clear that both NF-κB and 

STAT1 activity is crucial for M1 macrophage polarization (64). It has been shown that 

STAT1-deficient mice have severe malfunctions in immunity, which causes them to be 

hypersensitive to bacterial and viral pathogens infection (65). 
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3.1.4.2. The JAK–STAT6-SOCSs signaling pathway 

Cytokines IL-4 and IL-13 have been well established to induce M2a polarization of 

macrophages. They are supposed to bind to the interleukin 4 receptor alpha (IL-4Rα) 

and interleukin13 receptor alpha 1 (IL-13Rα1) and lead to phosphorylation of JAK1 and 

JAK3 to further trigger the phosphorylation of STAT6. Following homo-dimerization, 

STAT6 translocate into the cell nucleus where it recruits the IRF4 and initiates the 

transcription of M2 markers genes, including arginase 1 (Arg1), macrophage mannose 

receptor 1 (Mrc1; also known as Cd206), resistin-like-α (Retnla; also known as Fizz1) 

and chitinase 3-like 3 (Chi3l3; also known as Ym1). Additionally, STAT6 also induces 

expression of the transcription factor PPAR-γ, which acts in synergy with STAT6 to 

promote the expression of M2-specific genes and macrophage polarization (66, 67). It 

has been investigated that mice harboring the specific knockout of the Il4ra and STAT6 

are not able to polarize to M2 macrophages which leads to a disorder in TH2 cell-

mediated inflammation (66). Suppressors of cytokine signaling (SOCS) are important 

regulators of LPS and cytokine responses. They are the endogenous inhibitors of STAT 

proteins, which inhibit the JAK-STAT pathway by negative feedback of cytokine 

signaling. Corresponding studies have reported that SOCS1, -2, and -3 are induced in 

response to cytokine stimulation, and the corresponding SOCS proteins inhibit cytokine-

induced signaling pathways (68). SOCS family members modulate signaling by several 

molecular mechanisms, which include inactivation of the Janus kinases (JAKs), blocking 

the binding of the signal transducers of transcription (STATs) to receptors, and 

ubiquitination of signaling proteins and their subsequent targeting to the proteasome 

(68). Recent studies have suggested that SOCS2, and SOCS3 differentially contribute to 
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macrophage M1 and M2 polarization (69). It has been demonstrated that there is a bias 

toward M1-macrophage polarization in SOCS2-deficient mice, whereas SOCS3-deficient 

macrophages express surface markers associated with M2-macrophage polarization 

(69, 70). 

3.1.4.3. IFN Regulatory Factors (IRF-3, IRF-4 and IRF-5) 

Interferon regulatory factors are proteins which regulate transcription of interferons. In 

mammals, the IRF gene family consists of nine members: IRF-1, IRF-2, IRF-3, IRF-4, 

IRF-5, IRF-6, IRF-7, IRF-8, and IRF-9 (71). IRFs are also involved in many immune 

processes, including anti-bacterial and virus immunity, Th1-cell responses, dendritic cell 

development, and inflammation (72). IRFs are also found to play a crucial role in the 

regulation of macrophage polarization. It has been suggested that IRF-3 is associated 

with inflammatory microenvironments and contributes to the polarization toward a M1 

macrophage phenotype. Two adaptors, MyD88 and TRIF, mediate the signaling 

downstream of TLR4 (73, 74). The signaling through the TRIF adaptor pathway 

activates IRF-3 which leads to the secretion of type I interferons, such as IFN- and 

IFN-β (73, 75). Then, these type I interferons induce the activation of the transcription 

factor STAT1 and the transcription of M1 marker genes such as CXCL9 and CXCL10 by 

binding to the type I interferon receptor (IFNAR) (73, 76). Another recently described 

interferon regulatory factor in the regulation of M1 polarization is IRF-5. Previous studies 

have shown that IRF-5 is needed for the optimal expression of IL-12 and pro-

inflammatory cytokines in mice (77). CSF2-polarized M1 macrophages exhibited up-

regulated expression of IRF-5. M1 markers genes expression were increased by the 
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overexpression of IRF-5 and inhibited slightly by IRF-5 interfering RNA (siRNA). The 

capability of IRF-5 in regulating these M1 gene expressions is due to the direct 

recruitment of IRF-5 to gene promoters such as Il12b, but it represses transcription of 

Il10, probably also by binding to an ISRE in the gene promoter which has to be further 

investigated (78). 

IRF-4 is described as a lymphocyte-specific transcription factor of the IRF family, and is 

a negative regulator of Toll-like-receptor (TLR) signaling which is central to the activation 

of the innate and adaptive immune systems (79). However, recent studies have shown 

that IRF-4 was able to specifically regulate M2 macrophage polarization in response to 

IL-4 and parasites or the fungal cell-wall component chitin. The regulation of 

macrophage polarization by IRF-4 involves histone demethylase JMJD3 which could 

remove an inhibitory histone modification called H3K27me3. Cells devoid of JMJD3 are 

not able to polarize into the M2 phenotype while not having a role in regulation of M1 

macrophages (80).   

3.1.4.4. PI3K/AKT/mTOR pathway 

The PI3K/AKT/mTOR pathway is an intracellular signaling pathway which is important in 

apoptosis and hence cancer (81). Moreover, it has been recognized that this pathway 

also has broad roles in innate and adaptive immune cells, including neutrophils, 

monocytes, macrophages and dendritic cells as well as B and T lymphocytes (82). It has 

been shown that the PI3K/mTOR pathway is activated by a broad array of different 

stimuli via specific receptors, including the BCR, TCR, cytokine receptors (eg, interleukin 

2), insulin receptor, insulin-like growth factor I receptor, but also TLRs (82). LPS and IL-4 
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used to induce the M1 and M2 macrophages respectively have both been shown to 

induce phosphorylation of AKT and PI3K which further leads to activation of mTOR. 

Hence, in recent years, scientists have become increasingly interested in examining its 

role in regulation of macrophage polarization. AKT (also known as PKB) is a family of 

three serine/threonine protein kinases (AKT1, AKT2, and AKT3) that regulate many 

cellular functions. A study has unexpectedly shown that AKT2−/− macrophages are 

hypo-responsive to LPS stimulation, exhibiting the opposite phenotype to AKT1−/− 

macrophages (83). Moreover, AKT2−/− macrophages show an M2 phenotype attributed 

to reduced expression of miR-155 which targets C/EBPβ that is a key regulator of M2 

polarization (83). mTOR was first named as the mammalian target of rapamycin, that 

integrates both intracellular and extracellular signals, and serves as a central regulator 

of cell metabolism, growth, proliferation, survival and the immune response (84). Newly 

published studies have indicated an existence of an mTORC1-AKT regulatory loop in 

the IL-4 signaling pathway in which the receptor engagement of the IRS/PI3K/AKT 

pathway leads to mTORC1 activation that in turn attenuates AKT signaling. Genetic loss 

of either TSC1 or TSC2 leads to constitutive mTORC1 activation. It has been 

demonstrated that TSC1−/− macrophages have a marked defect in M2 polarization in 

response to IL-4, while the inflammatory response to LPS is enhanced (85).  

3.1.5. The role of alveolar macrophage polarization in chronic lung diseases 

The lung is a major site of continuous immune reactions as it encounters various foreign 

particles and antigens entering the respiratory system. Alveolar macrophages are 

among the most abundant immune cells in the respiratory tract, and they are a unique 
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type of mononuclear phagocytes that populate the surface of the lung in steady state. 

They form the first line of defense against pathogens invading the alveolar space. 

Although alveolar macrophages exhibit unique properties compared with other resident 

macrophages, they could also polarize into distinct phenotype of M1 and M2 

macrophage in vitro (86). When exposed to a specific microenvironment, macrophages 

acquire either M1- or M2-polarized phenotypes associated with inflammation and tissue 

remodeling, respectively. With the dramatic changes of the micro-environment during 

chronic inflammatory lung diseases, the alveolar macrophage accordingly polarizes into 

the characteristic M1 or M2 phenotype. A number of studies have shown that alveolar 

macrophage polarization has a crucial role in the pathogenesis of chronic lung 

inflammatory diseases including chronic obstructive pulmonary disease (COPD), asthma 

and idiopathic pulmonary fibrosis due to their contribution in the initiation, regulation and 

termination of inflammation.  

3.1.5.1. Chronic obstructive pulmonary disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is characterized by progressive lung 

function decline and an abnormal inflammatory response in the airways, and is mainly 

caused by cigarette smoke. The accumulation of immune cells including macrophages, 

neutrophils, CD8+ -lymphocytes and B-cells has been proven to be associated with the 

severity of COPD (87). Alveolar macrophages play a critical role in the pathophysiology 

of COPD and are a major target for an anti-inflammatory therapy in future. Alveolar 

macrophages from COPD patients have an increased baseline and stimulated secretion 

of inflammatory proteins, including certain cytokines, chemokines, reactive oxygen 
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species and elastolytic enzymes, which together could contribute to all of the 

pathophysiological features of COPD (88). With the intensive studies about macrophage 

polarization in both in vivo and in vitro, hence, the role of the distinct macrophage 

polarized phenotypes in COPD gained the attention of immunologists and 

pulmonologists. Based on studies with COPD patients, initially M1 polarization was 

expected to play a crucial role in COPD (89). It is well known that thousands of 

compounds presented in cigarette smoke, including the LPS as a natural contaminant of 

tobacco smoke can polarize macrophages into M1 in vitro, characterized by high 

expression of iNOS (90). Previous studies have already proven that iNOS is induced in 

the lungs of COPD patients (91). Moreover, many studies have shown that COPD 

patients showed higher concentrations of the pro-inflammatory M1 cytokines, IL-1β, IL-6, 

and TNF-α (92) which are partially released from alveolar macrophages. MMP9, a 

protease of the matrix metalloproteinase (MMP) family, is suggested to be involved in 

the breakdown of the extracellular matrix in COPD (93). M1 macrophages have also 

been found to secrete MMP9, which presumably facilitate macrophage migration during 

inflammation (94). All of these studies have indicated the essential role of polarized M1 

macrophages in COPD pathogenesis. However, a study by Lisette Kunz showed 

contradictory results. They showed that the percentage of macrophages with M2-type 

characteristics is significantly higher in the BAL from ex-smokers than in current 

smokers with COPD but this increased anti-inflammatory phenotype is not necessarily 

accompanied by a decrease in inflammatory parameters (89). Therefore, this study 

indicates the important role of M2 macrophage polarization in COPD. Alternatively 

activated M2 was induced by the Th2 –biased cytokines IL-4 and IL-13. It have been 
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demonstrated that IL-13 were induced in COPD patients and was thought to contribute 

to inflammation, emphysema, and mucus metaplasia (95). This also raises a possibility 

that IL-13 overexpression induces M2 polarization in COPD. MMP12, another type of 

matrix metalloproteinase, is well known for its role in COPD and emphysema progress 

(96). Previous studies showed that MMP12 could be induced in IL-4-stimulated M2 

macrophages (97). In summary, some evidence indicates the role of M2 activation in 

COPD, which may contribute to the development of COPD. So far, no studies have been 

conducted to exactly characterize the phenotype and role of M1 and M2 in COPD.  

3.1.5.2. Asthma 

Asthma is a complex lung disease, which is characterized by airway inflammation and 

airway hyperresponsiveness (AHR). It has been well documented that alveolar 

macrophages play a crucial role in the development and progression of asthma (98). 

Asthma is a chronic inflammatory disease with increased influx of inflammatory cells in 

the lungs along with a prominent Th2 cytokine signature (99). Among inflammatory cells, 

macrophages are the most abundant leukocytes found in the airspaces, which suggest 

that they have an important role in fighting against pathogens and airway remodeling 

and eosinophilic inflammation in asthma (100).  

Firstly, the pro-asthmatic role of M1 macrophages has been investigated in clinical and 

then in experimental asthma. On the one hand, it has been shown that asthmatic 

macrophage is insufficient to fight against with microbe infections in the respiratory tract 

(101), which indicate the dysfunction of M1 activation, on the other hand, asthmatic 

macrophage are able to release M1 related pro-inflammatory mediators such cytokines 
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and nitric oxide (102, 103). For instance, recent investigations revealed that the 

generation of ATP and uric acid upon airway exposure to allergens leads to the release 

of the IL-1β from alveolar macrophages through activation of an inflammasome complex 

which can cleave pro-IL-1β to mature IL-1β together with caspase-1. IL-1β production 

could further lead to the enhanced Th17 cell differentiation which contributes to the 

control of allergic asthma (104). Moreover, nitric oxide, as one of main products of M1 

polarized macrophage, is believed to amplify lung injury during asthma due to DNA 

damage, inflammation, and increase mucus production in a murine model of 

allergen(105, 106). Furthermore, it has been well documented that LPS is involved in the 

initiation of asthma, and both the level of LPS and IFN- used for M1 induction in vitro 

increased significantly in severe asthmatic patients (107, 108). Thus, alveolar 

macrophage polarization toward the M1 subset can promote the development of 

asthmatic disease. 

In the context of the Th2 like immune response in asthma, Th2 cytokines IL-4 and IL-13 

were found to be abundantly expressed in asthmatic lungs (109), and therefore it is not 

surprising that alveolar macrophage from asthma patients also expressed M2 markers. 

Such as elevated levels of chitinase family members have been found in the serum and 

lungs of patients with asthma (110). In addition, it has been shown that asthmatic 

macrophages exhibit higher levels of M2 markers, including mannose receptor and 

transglutaminase 2 (111, 112). In other studies, it has been found that sequence 

variations in the MRC1 gene correlated with asthma severity (113). M2 cells that 

secreted FIZZ1 (a resistin-like molecule-α) were found to be overexpressed in asthma. 

Jun Fei Wang has found that FIZZ1 plays a role in the early stages of airway remodeling 
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in asthma by increasing the expression of α smooth muscle actin (α-SMA) and type I 

collagen through the activation of the PI3K/AKT signaling pathway in asthma (114). 

Moreover, increased expression of Th2 chemokines CCL17 and CCL22 in asthma have 

been reported (115). Previous work has demonstrated that CCL17 and CCL22 are 

responsible for the recruitment of CCR4+T lymphocytes into asthmatic tissue which are a 

major source of TH2 cytokines IL-4 and IL-13 (116). Newly published research has 

indicated that there is an overexpression of CCL17 in alveolar macrophages of 

asthmatic patients, which correlated significantly with sputum eosinophilia (117). 

Therefore, this research again supports the important role of M2 phenotype in asthma 

pathogenesis. 

In summary, complex cytokine networks are involved in the pathophysiological progress 

of asthma because of the multifactorial nature of asthma, which also give rise to the 

reason of involvement of both M1 and M2 macrophages in asthma. Therefore, future 

work should help us to understand how the balance between M1 and M2 macrophages 

contribute to this complicated chronic lung inflammatory disease. 

3.1.5.3. Pulmonary fibrosis 

Pulmonary fibrosis is a lung disease that is resistant to treatment and carries a high 

mortality rate. It is characterized by the progressive and irreversible destruction of the 

lung architecture caused by scar formation that ultimately leads to lung malfunction, 

disruption of gas exchange, and death from respiratory failure (118). Idiopathic 

pulmonary fibrosis (IPF), a particularly severe form of pulmonary fibrosis with unknown 

cause, primarily occurs in older adults, and is associated with the histo-pathologic 
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pattern of usual interstitial pneumonia (UIP) (119). It has been suggested that alveolar 

macrophages are integrated into all stages of the fibrotic process, which may be due to 

its key role in fibroblast recruitment, proliferation, and activation (120). Additionally they 

are involved in the recruitment of inflammatory cells to sites of tissue injury by releasing 

chemokines and degrading ECM components by secreted specific matrix 

metalloproteinases (121). Furthermore, it is well known that pro-fibrotic mediators, 

including TGF-β1 and PDGF that induce the proliferation and activation of collagen-

secreting myofibroblasts (119), are released by alveolar macrophages. During 

pulmonary fibrosis the plasticity of alveolar macrophages is needed to allow them to be 

able to polarize in each distinct phenotype in response to the dynamic micro-

environment changes in airs pace. So far, there are no substantial studies about the role 

of M1 macrophages in pulmonary fibrosis. But according to previous research, it is well 

feasible that M1 alveolar macrophages contribute to fibrosis particularly in the initial 

phases of the disease. In the earliest stages of tissue damage, epithelial cells or 

endothelial cells may release inflammatory mediators that can promote the M1 

macrophage polarization. Once polarized toward M1, macrophages produce TNF-α, IL-

1β, and oxygen radicals. Many studies have indicated that these inflammatory cytokines 

and oxygen radicals are associated with development of fibrosis with their ability to 

amplify the inflammatory response and cause further tissue damage (94).  

Due to the importance of the Th2 inflammatory responses in the development of 

pulmonary fibrosis, there are many studies reporting on the role of M2 macrophage 

polarization in the fibrotic phase of lung fibrosis. It has been demonstrated that IL-13 and 

IL-13R are highly expressed in IPF patients correlating with disease severity (122). 
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Thus, it is not surprising that M2 macrophages were found to be increased in BALF of 

IPF patients (94, 123, 124). M2 macrophages secrete a number of inflammatory and 

pro-fibrotic mediators, among them Th2 chemokines such as CCL17, CCL18 and 

CCL22 that have been reported to be associated with fibrosis development by recruiting 

CCR4+ T cells (123). It has been demonstrated that serum CCL18 concentrations have 

a predictive value in IPF and may be a useful tool in the clinical management of patients 

with IPF (125). In a bleomycin induced mouse fibrosis model, one study showed that 

CCL17 is elevated in bleomycin treated mice compared with the control group, and that 

application of a CCL17 neutralizing antibody attenuated fibrosis and pulmonary 

inflammatory cell numbers (126). Other M2 markers have also been shown to be 

increased in IPF such as galectin-3. It has been reported that galectin-3 contributes to 

the transforming growth factor-β1-driven lung fibrosis and that TD139, an inhibitor of 

galectin-3, attenuated the late-stage progression of bleomycin caused lung fibrosis by 

inhibiting TGF-β–induced β-catenin activation in vitro and in vivo (127). However, there 

are also some contradictory findings suggesting that M2 macrophages could be anti-

fibrotic by suppression and resolution of fibrosis and uptake of ECM components. One 

study has shown that mice lacking arginase-1 in M2 macrophages have signs of 

unresolved inflammation and fibrosis (128). Uptake of these components is mediated by 

different mannose receptors which are known as M2 markers, and mannose receptor 

has shown to attenuate fibrosis in different models (129). 

To summarize, both M1 and M2 alveolar macrophages are important cells in the 

pathogenesis of fibrotic lung diseases. M1 macrophages are thought to be more 

important in the initial inflammatory phase while M2 macrophages contribute mainly to 
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the fibrotic phase. Therefore, understanding how these two phenotypes contribute to 

different phase of pulmonary fibrosis is very important in understanding the development 

of this disease. 

3.1.6. Protein degradation by the proteasome 

In 2004, the Nobel Prize in Chemistry was awarded to the scientists for their discovery of 

the ubiquitin-proteasome mediated protein degradation. The ubiquitin-proteasome 

system (UPS) is the primary means by which cellular proteins are degraded and is a 

highly regulated system for the elimination of misfolded or damaged proteins as well as 

proteins whose activity is acutely regulated by signaling pathways (130). Therefore, this 

system has been reported to play a central role in almost all the cellular processes 

including cell proliferation, transcriptional regulation, apoptosis, immunity, and 

development (131). The core structure of this system is the 26S proteasome, a dynamic 

multi-subunit proteolytic complex within the cell, which functions as the key enzyme for 

non-lysosomal protein degradation (132).  

Ubiquitin (Ub) is a small protein (76-residue) that is evolutionarily highly conserved in all 

eukaryotes (130). The initial signal for the degradation of the targeted protein is the 

selective binding of ubiquitin to the target proteins. The conjugation of Ub to a target 

protein is a three step process that begins with a high energy thioester linkage with an 

Ub-activating enzyme, also called an E1. Afterwards, this E1 “activated” Ub is then 

delivered to the active-site cysteine of an Ub-conjugating enzyme (E2). In step three, the 

addition of ubiquitin to the protein substrate is catalyzed by one of many Ub-protein 

ligase (E3) s - a diverse group of proteins (133). The high specificity and selectivity of 



3. Chapter 1 - Introduction 

- 30 - 

 

the UPS system lies in the diversity of E3s different ubiquitin-protein ligase that can 

recognize a specific substrate (133). 

 

Fig 3.8: The schematic diagram showing ubiquitylation of substrate protein and its subsequent 

degradation by the 26S proteasome complex. An ubiquitin activating enzyme (E1) first forms a 

thioester bond with ubiquitin and then binds to an ubiquitin conjugating enzyme (E2). Subsequently, in the 

presence of an ubiquitin ligase enzyme (E3), the carboxy-terminus of ubiquitin forms an isopeptide bond 

with a K residue on target protein. The 26S proteasome recognizes, unfolds and degrades the 

polyubiquitylated-target protein into small peptides. Ub, ubiquitin. Taken from (134). 

3.1.6.1. Structure of the proteasome  

The proteasome is a self-compartmentalized protease. It carries out proteolytic activities 

deep within its interior, which means that it requires the appropriate features to gain 

access to the central proteolytic chamber. Once the delivery of the target protein to the 
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proteasome after complicated ubiquitin modification mediated by the chaperones and 

shuttling factors has taken place, most of proteasome actions are regulated by the 

regulatory subunit which  feed substrates to the inner protease sites (135). 

The 26S proteasome complex is a non-lysosomal proteolytic machine that consists of a 

20S core particle (CP) and a 19S regulatory particle (RP), the latter of which can be 

further subdivided into lid and base sub-complexes. The 20S CP confers the proteolytic 

activities of the proteasome, whereas the 19S RP shows an ATP-dependence and 

specificity for ubiquitin protein conjugates (132). The 20S CP resembles a cylinder 

composed of four rings (two α and two β rings). Both of each α and β rings are 

composed of seven different α components (α1–α7) or β components (β1–β7) to form a 

β ring. In the β ring, three of the seven β-components were proven to be catalytically 

active, and are named by their substrate specificities: chymotrypsin-like (β5), trypsin-like 

(β2), and caspase-like (β1) (134). The chymotrypsin-like activity cleaves proteins leaving 

hydrophobic residues, while the trypsin and caspase-like activities cleave, leaving basic 

and acidic residues, respectively (134). With the help of the 19S RP, the target proteins 

are delivered into the catalytic chamber of the 20S CP. It has been proven that the 19S 

is the proteasome regulatory particle (RP) responsible for recognition and processing of 

ubiquitinated substrates. Established as a highly dynamic proteasome activator, the RP 

has a large number of both permanent and transient components with specialized 

functional roles that are critical for proteasome function (136).  

The 26S proteasome, also named constitutive proteasome, is found in most cells. In 

contrast to the constitutive form of proteasome, there is an inducible proteasome called 
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immunoproteasome (IP) which is tissue-specific and abundant in immune-related cells. 

The IP differs from its common counterpart. In the context of immune response, the IP is 

induced by the stimulation of cytokines such as IFN-γ and TNF-α, and then the β1, β2 

and β5 components of the constitutive proteasome are replaced by low molecular mass 

protein 2 (β1i/LMP2), multicatalytic endopeptidase complex-like-1 (β2i/MECL-1), and 

β5i/LMP7. In addition, the IP also has an 11S regulatory structure or PA28 instead of the 

19S RP of the 26S proteasome. Such replacement allows the IP to generate improved 

antigenic peptides for major histocompatibility complex (MHC) class I-mediated immune 

responses (137, 138). 

 

Fig 3.9: The structure of the constitutive proteasome and immunproteasome. Tumor necrosis factor 

(TNF-) and interferon (IFNγ) induce formation of immunoproteasome subunits LMP7, LMP2 and 

MECL-1 subunits which replace the constitutive catalytic subunits β5, β1 and β2, respectively. Taken 

from (139). 
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3.1.6.2. Function of constitutive proteasome and Immunoproteasome  

3.1.6.2.1. Proteasome function in MHC class I antigen processing 

The ubiquitin–proteasome system is central in protein quality control and degradation in 

the mammal cells, which allow them to be involved in many of cellular processes 

including the cell signaling transduction, cell division, cell death, differentiation and 

migration(140, 141). However, the functions of proteasome in immune cell are still 

largely unclear. It has been well described that the proteasome plays a crucial role in 

MHC I antigen processing. Antigen recognition by cytotoxic T lymphocytes (CTLs) 

occurs through the interaction of their T cells receptors (TCRs) with peptide–MHC class I 

complexes. Both, intercellular and extracellular proteins are sources of antigenic 

peptides which are generated though the proteasome degradation (142). The 

proteasome is the protease that determines the carboxy-terminal anchor residues of 

MHC class I binding peptides and produces peptides of 8–9 amino acids that can bind 

directly to the peptide binding cleft of MHC class I molecules. In addition, amino 

terminally extended precursor peptides are also produced by proteasome, and are then 

processed further by aminopeptidases in the cytoplasm (143). It is generally assumed 

that the immunoproteasome improves quality and quantity of generated class-I ligands 

(144). It has been demonstrated that immunoproteasomes intensively increase the 

abundance and diversity of class-I ligands (145). Due to the recent study of the crystal 

structures of the constitutive proteasome and immunoproteasome, it was able to provide 

us an explanation for enhanced antigen processing by immunoproteasomes. It has been 

found that the β1i substrate binding channel is lined with hydrophobic amino acids, 

which finally leads to the enhancement of degradation of peptides into small nonpolar 
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residues (146). The β5i have the peptide bond hydrolysis ability which is favored by an 

increased hydrophilicity of the active site and additional hydrogen bonds shaping the 

oxyanion hole (146).  

3.1.6.2.2. Modulation of immune signaling pathways 

In recent years, it became apparent that both constitutive proteasome and 

immunoproteasomes not only function to process MHC-I ligands, but also possess 

additional immunological functions. It has been reported that LMP2/β1i-deficient bone 

marrow-derived dendritic cells infected with an influenza virus produced less IFN-α, IL-

1β, IL-6 and TNF-α as compared to wild-type counterparts, indicating the crucial role of 

immunoproteasome in innate immune responses. The reduced ability to produce 

cytokines in LMP2/β1i-deficient cells has been associated with compromised NF-kB 

signaling (147). It has been shown that the constitutive ubiquitin-proteasome system is 

involved in NF-κB pathway activation through at least three steps: degradation of the 

NF-κB inhibitor IκB, processing of NF-κB precursors and activation of the IκB kinase 

(IKK) through a degradation-independent mechanism (148). However, contradictory 

findings have been reported on the role of the immunoproteasome for the degradation of 

IκBα and the activation of the canonical NF-κB pathway. Evidence in both knockout mice 

samples and humans with immunoproteasome mutations implicate a contradictory role 

of the immunoproteasome in modulating NF-κB signaling. One study reported that, 

immunoproteasome-deficient mice showed a defect in proteolytic processing of NF-κB 

precursors (p100/p105) and decreased degradation of IκBα (149, 150). Contrary to this 

research, another group using chemical genetic approaches showed that the catalytic 



3. Chapter 1 - Introduction 

- 35 - 

 

activity of the immunoproteasome subunits β1i and β5i is not required for canonical NF-

kB activation (151). This difference may be due to the different cell line models, which 

were used in their laboratories. Therefore, more solid studies need to be performed to 

find out how immunoproteasomes may modulate the NF-κB pathway.  

3.1.6.2.3. The role of immunoproteasomes in immune cell 

T cell differentiation 

CD4 T cells play the critical roles in regulating adaptive immunity to a variety of 

infectious diseases. They are also involved in autoimmunity and chronic inflammatory 

diseases including arthritis, inflammatory bowel disease (IBD), asthma, and IPF. Naive 

CD4+T cells can differentiate into different cells lineages such as Th1, Th2, and Th17 

and regulatory T cells depending on the cytokines in the microenvironment (152). 

Several studies have demonstrated that immunoproteasomes shape the T cell repertoire 

and are responsible for the survival and expansion of T cells after virus infection (153, 

154). Apart from that, it has been reported that immunoproteasome subunit LMP7 

deficiency and inhibition suppresses Th1 and Th17 but enhances regulatory T cell 

differentiation. This study may be able to explain the therapeutic effect of LMP7 inhibitor 

ONX 0914 in experimental diabetes, arthritis, and colitis mice models (155). 

Regulation of macrophage activation 

It has been previously demonstrated that the proteasome serves as a central regulator 

of inflammation and monocyte and macrophage function (156). One of the monocyte 

and macrophage functions is the response to inflammatory stimuli such as LPS and 
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releases a large amount of the proinflammatory cytokines TNF-, IL-1β and IL-6. It has 

been demonstrated that inhibition of proteasome activity by the proteasome inhibitor 

MG132 modulates proinflammatory cytokines production and expression of their 

receptors in the macrophage cell line U937 cells which involved the inhibition of NF-κB 

and AP-1 activation (157). It has also been that reported pretreatment of RAW 264.7 

macrophage-like cells with the proteasome inhibitor lactacystin resulted in a dose 

dependent inhibition of LPS-induced TNF-α. Further studies proved that lactacystin 

blocked the LPS-induced ERK phosphorylation but failed to inhibit IRAK-1 kinase activity 

(158). However, so far, there are only few studies about the role of immunoprotesome in 

macrophage function. One study by Julia Reis suggested that constitutive proteasome 

subunits are replaced by immunoproteasome subunits after LPS treatment of RAW264.7 

cells. Macrophages derived from mice with LMPs knockout exhibited dysregulated 

cytokine production in response to LPS in vitro (159). Specifically, NO production and IL-

1β and IL-6 secretion from LMP deficient macrophages were markedly reduced 

compared to the Wt counterpart, whereas TNFα levels were unexpectedly unchanged in 

LMP-/- macrophages. Further studies indicated that the LPS-induced MyD88 pathway 

was normal, while the TRIF/TRAM and IRF-3 pathways were defective in LMP-/- 

macrophages (160). These studies reveal a novel active function of the 

immunoproteasome subunits, which suggest the complexes of immunoproteasome in 

the regulation of immune cells.  

Though some studies were carried out to evaluate the function of proteasome in macro-

phages, the role of proteasome, particularly of the immunoprotesome, in alveolar macro-

phage biology is largely unknown.
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3.2. Project aims 

Accumulating evidence indicates a crucial role of immunoprotesome for macrophage 

activation. In view of the contribution of impaired polarization of alveolar macrophages in 

acute and chronic lung diseases, the aim of this study was to characterize the function of 

the immunoprotesome on the regulation of alveolar macrophage polarization. 

The following objectives were pursued: 

 Using different sources of alveolar macrophages, primary and cell lines to establish 

an LPS/IFNγ or IL-4 induced M1 or M2 polarization model in vitro. 

 Investigating whether the proteasome and immunoproteasome subunit expressions 

were induced at both protein and mRNA levels during M1 or M2 polarization. 

 Monitoring the kinetics of the expression and activity of the immunoproteasome 

expression and activity during macrophage polarization. 

 Determining whether the immunoproteasome subunits LMP2 and -7 are functionally 

relevant for macrophage polarization. 

 Identifying polarization associated changes of intracellular signaling related to the 

LMP2 and -7 deficiencies using appropriate knock out mice. 

 Investigating whether an immunoproteasome subunit LMP7 specific inhibitor has a 

similar effect as a LMP7 knock out. 
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3.3. Chapter 1 - Results 

3.3.1. Characterization of the polarization pattern of different alveolar macrophage 

types 

A wide variety of sources of macrophages has been used for macrophage polarization 

studies (161). Although there are several reports about the polarization of alveolar 

macrophages under different diseases conditions, here we are describing the 

polarization of alveolar macrophages into respective M1 and M2 phenotypes at the in 

vitro level for the first time. To gain insight whether the polarization depends on the 

alveolar macrophage (AMs) background, we first characterized the plasticity of primary 

AMs isolated from BALB/c and C57BL/6 mice, as well as the SV40 immortalized 

BALB/c-derived AM cell line MH-S. To trigger polarization, cells were treated either with 

LPS and IFNγ to induce M1-like phenotypes or with IL-4 for induction of M2 polarization.  

To determine if polarized alveolar macrophages show different cell morphology, bright 

field microscopy was used to examine the cell morphology after 24 h of polarization. Cell 

morphology of AMs was clearly altered depending on the stimulus as exemplarily shown 

for C57BL/6 AMs (Figure 3.10): In comparison to untreated and non-polarized cells 

(M0), the shape of M1-polarized macrophages was globular, while M2-polarized 

macrophages exhibited a flattened and adherent morphology. 
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Figure 3.10 Representative morphology of 24 h polarized M1 and M2 alveolar macrophage. Primary 

alveolar macrophages from C57BL/6 mice were polarized into M1 or M2 for 24 h by stimulation with 

LPS/IFNγ or IL-4, respectively. Non-polarized cells (M0) served as controls. Cell morphology was 

examined by bright field microscopy with 20-fold magnification. Results are representative for at three 

independent experiments. 

To better understand the global gene expression patterns in polarized AMs, we used 

Illumina microarrays to identify up-regulated genes in M1 and M2 cells. We found that 

162 genes were induced in M1 condition (see heat map in Figure 3.11). 
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Figure 3.11 Heat map analysis of global gene expression in M1 polarized alveolar macrophages. 

Visualization of gene expression changes in 24 h polarized primary AMs from C57BL/6 mice as a heat 

map. Up-regulated genes in M1 are shown in red. The genes with P<0.05 were displayed. Results are from 

three individual C57BL/6 wt mice.  
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As we expected, a number of M1 markers as described in the literature were 

upregulated in our microarray analysis, among them Tnf, Il1b, and Il12b. However, 

Nos2, as one of most frequently used M1 marker, was not shown to be induced in M1 

cells, which might be due to a technical reason. We also selected these markers to 

characterize the polarization profile of the different AMs. Comprehensive gene 

expression analysis by qPCR for activation of specific genes confirmed markedly 

increased expression of these M1 marker genes in M1 polarized cells compared to 

untreated (M0) and M2 polarized cells (Fig. 3.12).  
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Figure 3.12 Alveolar macrophages show characteristics of M1 polarization by marker 

genes profiling. M1 marker gene expression analysis of MH-S cells or primary alveolar macrophages 

from BALB/c or C57BL/6 mice polarized for 24 h: Nos2, Tnf, Il1b, Il12b, relative to Actb (β-actin) 

expression. Results are representative for three independent experiments, bd, below detection. 
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To investigate the genes associated with M2 AMs polarization, microarray analysis 

identified 35 genes to be induced at M2 condition, which are displayed in the heat map 

below (Figure 3.13). Among these genes, Arg1, Retnla and Ccl17 have been well 

described as M2 markers genes. They were selected for the characterization of M2 

polarization of AMs from different sources. 

 

Figure 3.13 Heat map analysis of global genes expression in M2 polarized alveolar macrophages. 

Visualization of gene expression for 24 h polarized primary AMs from C57BL/6 mice as a heat map. Up-

regulated genes in M2 are shown as pink. The genes with P<0.05 were displayed. Results are from three 

individual C57BL/6 wt mice. 

IL-4 treatment induced uniform expression of M2 marker genes in primary AMs while 

marker gene expression was less consistent in IL-4 treated MH-S cells: Expression of 

Arg1 and Mrc1were stimulated in a M2 specific manner in all three types of AM, while 
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Ccl17 and Retnla (Fizz-1) were only found elevated in primary AMs, but not in MH-S 

cells (Fig. 3.14). 
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Figure 3.14 Alveolar macrophages show characteristics of M2 polarization by maker 

genes profiling. M2 marker gene expression analysis of MH-S cells or primary alveolar macrophages 

from BALB/c or C57BL/6 mice polarized for 24 h: Arg1 (Arginase1), Ccl17, Retnla (Fizz-1), Mrc1 

(mannose receptor 1), relative to Actb expression. Results are representative for at three independent 

experiments bd, below detection. 

To further confirm the alveolar macrophage polarization at the protein level, we selected 

the most well-known marker gene iNOS for M1 and Arginase1 for M2 to perform western 

blot analysis. Polarization of alveolar macrophages was confirmed at the protein level for 

primary AMs after 24 h of cytokine stimulation with elevated iNOS (NOS2) expressions 

in M1 and Arg1 in M2 polarized cells, respectively (Fig. 3.15). 
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Figure 3.15 M1 (iNOS) and M2 (Arginase1) protein analysis shows characteristic M1/M2 alveolar 

macrophage polarization. M1 (iNOS) and M2 (Arginase1) markers were evaluated on protein level in 

primary alveolar macrophages from C57BL/6 mice polarized for 24 h. Results are representative for three 

independent experiments. 

3.3.2. Proteasome and Immunoproteasome expression and activity during alveolar 

macrophage polarization. 

To investigate regulation of proteasome related genes in polarized AMs, we screened 

the expression pattern of 60 genes as shown in the heat map (Figure 3.16). We found 

that a number of constitutive proteasome and immunoproteasome subunits were 

induced in M1 polarized macrophages but generally not in M2-polaized AMs. 
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Figure 3.16 Heat map analysis of proteasome related genes expression in polarized alveolar 

macrophages. Visualization of gene expression for 24 h polarized primary AMs from C57BL/6 mice as a 

heat map. Up-regulated genes in M1 and M2 are shown as red. The genes with P<0.05 were displayed. 

Results are from three individual C57BL/6 wt mice.  
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To validate the regulation of the expression of constitutive proteasome subunits and 

proteasome regulators during AM polarization, gene expression of the PSMA3, 

PSMD11, PSME1/2/3 and PSMB5/6/7 subunits was profiled by qPCR. Interestingly, the 

mRNA levels of all the proteasome subunits were uniformly induced after 24 h at M1 Fig. 

3.17). 
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Figure 3.17: mRNA expression of proteasome subunits is induced in both M1 and M2 polarized 

alveolar macrophages. Proteasome subunit gene expression in MH-S cells or primary alveolar 

macrophages from BALB/c or C57BL/6 mice polarized for 24 h: PSMA3, PSMD11, PSME1/2/3 and 

PSMB5/6/7 expression displayed relative to Actb. Results are representative for three independent 

experiments. Note, that we used a linear scale to depict the minor changes in gene expression levels. 

It has been well described that IFNγ can induce expression of immunoproteasome 

subunits in a variety of cell types through the STAT1 pathway (162), which causes the 

replacement of constitutive proteasome by immunoproteasomes. As we used IFNγ plus 

LPS to induce the M1 macrophage phenotype, we firstly speculated that the expression 

of the immunoproteasome subunits LMP2, MECL-1, and LMP7 is induced in M1 

macrophages. According to our expectation, our microarray data revealed that 

immunoproteasome subunits LMP2, MECL-1, and LMP7 were induced in M1 AMs. The 

gene expression of these immunoproteasome subunits was further analyzed by qPCR in 

both M1 and M2. While mRNA levels of all three immunoproteasome subunits (Psmb8, 
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9, 10 for LMP7, LMP2, and MECL-1, respectively) were uniformly induced after 24 h, 

under conditions of M1 polarization, no reproducible changes were observed for M2 

polarization conditions (Fig. 3.18). 
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Figure 3.18: mRNA expression of immunoproteasome subunits LMP2 and LMP7 is induced in M1 

but not in M2 polarized alveolar macrophages. Immunoproteasome subunit gene expression in MH-S 

cells or primary AMs from BALB/c or C57BL/6 mice polarized for 24 h: Psmb9 (LMP2), Psmb10 

(MECL-1), and Psmb8 (LMP7) expression displayed relative to Actb. Results are representative for three 

independent experiments. 

Western blot analysis for the standard 20S proteasome α1-7 and the two 

immunoproteasome subunits LMP2 and LMP7 revealed moderate basal expression of 

immunoproteasome subunits which was strongly upregulated in M1-polarized AMs 

compared to unstimulated controls. Remarkably, however, protein expression of both, 

LMP2 and in particular LMP7, were elevated in M2 cells (Fig. 3.19) indicating 

posttranscriptional regulation of immunoproteasome expression upon M2 polarization of 

AMs. The protein level of α1-7 was also induced in both M1 and M2 cells.  
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Figure 3.19: Protein expression of constitutive proteasome and immunoproteasome subunits LMP2 

and LMP7 were induced in both M1 and M2 polarized alveolar macrophages. Immunoproteasome 

subunit LMP2 and LMP7 protein expression in primary alveolar macrophages from C57BL/6 mice 

polarized for 24 h. Densitometric analysis was done from three independent experiments. 

Specific activities of the immunoproteasome subunits can be analyzed using specific 

activity based probes which have been developed recently (163, 164). To further 

corroborate the existence of catalytically active immunoproteasomes in polarized AMs 

we assessed the activity of immunoproteasome and standard proteasome subunits 

using a set of fluorescently labeled activity-based probes (ABPs) with distinct binding 

specificities to the different active sites after 24 h of cytokine stimulation (Fig. 3.20). 

These ABPs covalently bind to the active-site threonine of the catalytic subunits and can 

be used to label active proteasome complexes in native lysates. Labeled lysates are 

then separated by SDS-PAGE to attribute activities to single subunits. . Both, immuno- 

and constitutive proteasome (β1, β2 and β5) activities were significantly elevated in M1 

polarized alveolar macrophages compared to the control M0 state but only β1 was 

considerably elevated also in M2-polarized AMs.  
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Figure 3.20: Activity of constitutive proteasome and immunoproteasome subunits LMP2 and LMP7 

were induced in both M1 and M2 polarized alveolar macrophages.  Proteasome activity, in polarized 

alveolar macrophages from C57BL/6 mice detected after 48 h stimulation by activity-based probes (ABP) 

MV151 (labeling all catalytically active β-subunits), LW124 (β1 and LMP2) or MVB127 (β5 and LMP7). 

Densitometric analysis displays the combined data from three experiments. Picture provided courtesy of 

Oliver Vosyka. 

3.3.3. Time course of immunoproteasome subunit expression during alveolar 

macrophage polarization. 

The majority of studies focused on only one single time point of macrophage 

polarization, which cannot provide full information about the dynamic changes of genes 

during the whole range of polarization. To study the kinetics of the increased expression 

of LMP2, MECL-1, and LMP7 during IFNγ-driven AM polarization, primary macrophages 

were treated with LPS or IFNγ or IL-4 for 6, 24, 48, and 72 h, respectively. Firstly, we 

investigated the expression of respective M1 marker Tnf or M2 maker Ccl17. At M1 

polarizing conditions, gene expression analysis revealed maximal levels of the M1 

marker Tnf after 6 h of LPS or IFNγ treatment which returned to baseline after 72 h (Fig. 

3.21). At the same time, expression levels of LMP2, MECL-1, and LMP7 were increased 

after 6 h and remained elevated for 72 h. In M2 polarized AMs, expression of the M2 

marker Ccl17 increased dramatically up to 72 h. For immunoproteasome subunits, 
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however, we only observed a moderate increase of MECL-1 but no change in gene 

expression levels of LMP2 and LMP7. 
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Figure 3.21: Gene expression analysis of immunoproteasome subunits during primary alveolar 

macrophage polarization. Alveolar macrophages from C57BL/6 mice were treated with IFNγ or IL-4 for 

6, 24, 48 and 72 h and mRNA was analyzed to detect expression of Tnf, Ccl17, Psmb8 (encoding LMP7), 

Psmb9 (LMP2) and Psmb10 (MECL-1). Results are displayed as fold change over control relative to Actb 

expression and are representative for three independent experiments. 

Following the mRNA profile, we investigated protein expression of constitutive 

proteasomes and immunoproteasomes in primary macrophages and MH-S. Cells were 

treated with LPS or IFNγ and IL-4 or IL-13 for 6, 24, 48, and 72 h, respectively. In 

contrast to the mRNA results, protein levels of constitutive proteasome and 

immunoproteasome subunits increased further from 24 to 72 h in  both M1 and M2 

polarizing conditions in primary AMs (Fig. 3.22 A) and in the MH-S cell line (Fig. 3.22 B).  
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Figure 3.22: (A, B) Proteins level analysis of constitutive proteasome and immunoproteasome 

subunits during primary alveolar macrophage polarization. Alveolar macrophages from C57BL/6 

mice and MH-S cell line were treated with M1 condition LPS or IFNγ and IL-4 or IL-13 for 6, 24, 48, and 

72 h, respectively, which were analyzed to detect protein expression of constitutive proteasome a1-7 and 

immunoproteasome subunits LMP2 and LMP7 during polarization of primary alveolar macrophages from 

C57BL/6 mice. Results are representative for two independent experiments; the control (c) is the 

unstimulated 24 h control. 

In accordance with our expression data, immuno- and standard proteasome activities 

increased as well after 48 and 72 h in both M1 and M2 polarized AMs (Fig.3.23). These 

results clearly show IL-4-induced formation of active immunoproteasomes during M2 

polarization of alveolar macrophages. In contrast to IFNγ-mediated transcriptional 

induction of immunoproteasomes, this may involve the posttranscriptional mechanisms 

of protein stabilization. Our kinetic data also indicate that elevated immunoproteasome 
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expression and activity are not the driving force for M1 and M2 marker gene expression 

but rather a consequence of the distinct polarization states.  
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Figure 3.23: Proteasome activity analysis during primary alveolar macrophage polarization. 

Proteasome activity in polarized alveolar macrophages from C57BL/6 mice detected by ABPs MV151 

(labeling all catalytically active β-subunits), LW124 (β1 and LMP2) or MVB127 (β5 and LMP7). Data are 

representative for three independent experiments; the control (c) is the unstimulated 24 h control. Picture 

provided courtesy of Oliver Vosyka. 

3.3.4. Deficiency of LMP2 and LMP7 immunoproteasome subunits does not affect 

M1 but enhance M2 alveolar macrophage polarization  

To investigate, whether immunoproteasome activity and expression in AMs is of any 

functional relevance for macrophage polarization, we polarized primary AMs from LMP2-

/- and LMP7-/- mice towards M1 or M2 phenotypes, respectively. As a first step, we 

performed the Water soluble Tetrazolium (WST) salt cell viability assay to exclude any 

unspecific effect after LMPs knock out and polarization. After 24 h of M1 and M2 

polarization, both the AMs from wt and LMPs-/- showed no treatment or genotype 

depending effect on cell viability (Fig. 3.24).   



3. Chapter1 - Results 

- 53 - 

 

WST

M0 M1 M2

0

50

100

150

200
Wt

LMP2
-/-

LMP7
-/-

C
e
ll

 v
ia

b
il

it
y
 (

%
)

 

Figure 3.24: WST cell viability assay. WST assay of primary alveolar macrophages from C57BL/6 Wt, 

LMP2
-/-

 or LMP7
-/- 

mice polarized towards M1 phenotype (LPS and IFNγ for 24 h). Unpolarized cells 

(M0) were set to 100 %. Data are combined from measurements of 3 individual mice. 

At M1 polarizing conditions, mRNA expression of M1 markers (Nos2, Tnf, Il1b and Il12b) 

was clearly increased in AMs of wt and LMP2-/-, and LMP7-/- mice (Fig. 3.25). 

Nevertheless, there was no M1 consistent alteration in marker expression, although the 

extent of mRNA induction was different between genotypes: e.g. LMP7-/- AMs exhibited 

a reduced induction of Nos2 and Tnf; LMP2-/- AMs had increased levels of Nos2 and 

Il12b but a decreased level of Tnf compared to wt mice, while there was no difference in 

Il1b expression. 
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Figure 3.25: Deficiency of LMP2 and LMP7 immunoproteasome subunits does not affect M1 

alveolar macrophage polarization (A, B) M1 marker gene expression analysis of primary alveolar 

macrophages from C57BL/6 wt, LMP2-/- or LMP7-/- mice polarized towards M1 phenotype (LPS and 

IFNγ for 24 h): expression of Nos2 (iNos), Tnf, Il1b, Il12b is shown relative to Actb. Results are 

representative for three independent experiments. 

Interestingly, our heat map array analysis revealed that 21 and 43 M2 signature genes 

expression were significantly enhanced in LMP2-/- and in LMP7-/- M2 cell respectively, 
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compared to wt cells (Fig. 3.26). Among these genes, the major M2 marker Arg1, and 

Retnla as well as the Th2 cytokine Ccl17 were increased in immunoproteasome 

deficient alveolar macrophages. 

A B

 

Figure 3.26: Heat map analysis of M2 related genes expression altered in immunoproteasome 

deficient alveolar macrophages. (A) The left map includes 21 genes which expression levels were 

significantly enhanced in LMP2-/- M2 cell, compared to wt counterpart. (B) The right map includes 43 

genes whose expression levels were significantly enhanced in LMP7-/- M2 cell, compared to wt controls. 

Pink in the heat maps indicates up-regulation. The genes with P<0.05 were displayed. Results were 

normalized to wt-M0, and were from three individual C57BL/6 wt or LMP2-/- or LMP7-/- mice.  
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Further qPCR experiments confirmed the results from our microarray analysis, as gene 

expression of the major M2 markers Arg1, Retnla and Ccl17 was slightly increased in 

LMP2-/- and clearly upregulated in LMP7-/-AMs, compared to wt cells (Fig. 3.27). 

Arg1

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2 *

wt LMP7-/-

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Ccl17

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2

10 -1

wt LMP7-/-

***

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Retnla

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2

10 -1

wt LMP7-/-

***

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Mrc1

M0 M1 M2 M0 M1 M2
10 -3

10 -2

10 -1 n.s.

wt LMP7-/-

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Arg1

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2
***

wt LMP2-/-

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Ccl17

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2

10 -1

wt LMP2-/-

**

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Retnla

M0 M1 M2 M0 M1 M2
10 -5

10 -4

10 -3

10 -2

10 -1

wt LMP2-/-

***

re
l.

 m
R

N
A

 t
o

  
A

c
tb

Mrc1

M0 M1 M2 M0 M1 M2
10 -3

10 -2

10 -1

n.s.

wt LMP2-/-

re
l.

 m
R

N
A

 t
o

  
A

c
tb

A B

 

Figure 3.27: Deficiency of LMP2 and LMP7 immunoproteasome subunits affects M2 alveolar 

macrophage polarization. (A, B) M2 marker gene expression analysis of primary alveolar macrophages 

from C57BL/6 wt, LMP2-/- or LMP7-/- mice polarized towards M2 phenotype (IL-4 for 24 h): expression 

of Arg1 (Arginase1), Ccl17, Retnla (Fizz-1), Mrc1 (mannose receptor 1) relative to Actb expression. 

Results are representative for three independent experiments. 
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Because CCL17 is thought to play a crucial role as an M2 effector cytokine for Th2-

related lung diseases, we validated the Ccl17 expression data by analyzing CCL17 

protein release in supernatants from polarized AMs using a specific ELISA. As shown in 

Figure (Fig. 3.28), CCL17 release was induced in IL-4 treated M2 polarized wt cells. It is 

important to note that secretion of CCL17 was significantly enhanced in M2 polarized 

AMs from LMP2-/- and LMP7-/- mice compared to wt cells. Taken in combination, our 

results clearly indicate that expression and activity of distinct immunoproteasome 

subunits is of functional relevance for the plasticity of alveolar macrophages with 

subsequent release of effector cytokines. 
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Figure 3.28: Deficiency of LMP2 and LMP7 immunoproteasome subunits enhances the release of 

Th2 chemokine CCL17 from M2 alveolar macrophage polarization. CCL17 secretion measured in 

supernatants of polarized primary alveolar macrophages from C57BL/6 wt, LMP2-/- or LMP7-/- mice 

(M1: LPS and IFNγ; M2 IL-4 for 24 h). Results show the mean ± SEM for 4 replicates and are 

representative for 2 independent experiments. bd, below detection. 

It has been well described that the effects of IL-13 on immune cells are similar to those 

of the closely related cytokine IL-4 due to their sequence similarity and similar structure 

(165). In addition, both of them can induce the phosphorylation of STAT6 as they share 
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a common receptor IL-4Ra (166). Therefore, it seems reasonable to investigate the role 

of immunoproteasome in IL-13 induced M2 alveolar macrophage polarization, as shown 

in Figure (Fig. 3.29) 
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Figure 3.29: Deficiency of the LMP7 immunoproteasome subunit enhances IL-13 induced M2 

alveolar macrophage polarization. M2 marker gene expression analysis of primary alveolar 

macrophages from C57BL/6 wt, LMP2-/- or LMP7-/- mice polarized towards M2 phenotype (IL-13 for 24 

h): expression of Arg1 (Arginase1), Ccl17, Retnla (Fizz-1), Mrc1 (mannose receptor 1) relative to Actb 

expression. Results are from three individual C57BL/6 wt or LMP7-/- mice. 

3.3.5. No alteration of M1 transcription factors in LMPs deficient macrophages 

To study the molecular mechanism of dysregulated AM polarization, we further analyzed 

transcription factors that are involved in the transcriptional activation of M1 or M2 

macrophage polarization, such as NF-κB subunits NF-κB 1 (p105/p50) and Rela (p65), 
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as well as Irf-4 and -5 (60). We found no genotype-dependent changes for RNA 

expression of the NF-κB genes Rela and NF-κB 1, or Irf-5 in wt, LMP2-/- or LMP7-/- AMs 

(Fig.3.30).  
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Figure 3.30: Deficiency of LMP2 and LMP7 has no impact on NF-κB 1, Rela and Irf-5 expression in 

M2 alveolar macrophages. NF-κB 1, Rela and Irf-5 gene expression relative to Actb in primary alveolar 

macrophages from C57BL/6 wt, LMP2
-/-

 or LMP7
-/-

 mice, polarized towards M1 (LPS and IFNγ) or M2 

(IL-4) phenotype for 24 h. Results are from three independent experiments. 

Irf-4 has been described as a key regulator of M2 macrophage polarization in bone 

marrow-derived macrophages (53), but not yet for alveolar macrophages. We thus 

confirmed its M2-specific mRNA induction in different primary AMs from C57BL/6 or 

BALB/c mice and in the MH-S cell line (Fig. 3.31 A). On the protein level IRF-4 

transiently increased with highest levels after 48 and 72 h of IL-4 stimulation in primary 

C57BL/6 AMs (Fig. 3.31 B) and MH-S cells. 
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Figure 3.31 Irf-4 expression in primary alveolar macrophages is induced in M2 polarized alveolar 

macrophages (A) Irf4 gene expression relative to Actb in MH-S cells or primary alveolar macrophages 

from BALB/c or C57BL/6 mice polarized for 24 h. (B) Time course of IRF-4 protein expression in 

primary alveolar macrophages from C57BL/6 mice treated with LPS, IFNγ or IL-4 for up to 72 h. Results 

are from two independent experiments. 

We next determined whether IRF-4 protein was induced by IL-13 which also induces M2 

alveolar macrophage polarization.  We found that IL-13 showed a similar pattern in 

induction of IRF-4 during polarization: IRF-4 also transiently increased to highest levels 

after 48 and 72 h of IL-13 stimulation in primary C57BL/6 AMs (Fig. 3.32). In addition, 

we observed that phosphorylation of STAT6 was induced during polarization.  
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Figure 3.32 Irf-4 expression in primary alveolar macrophages is induced in IL-13 polarized alveolar 

macrophages. Time course of LMP2, LMP/, and IRF-4 protein expression and phosphorylation of 

STAT6 in primary alveolar macrophages from C57BL/6 mice treated with IL-13 for up to 72 h. Results 

are from two independent experiments. 

As shown in above data, the kinetics of IRF-4 upregulation was similar in both IL-4 and 

IL-13 treatment. Therefore, we further investigated the kinetics of Irf4 expression in 

LMP7 deficient AMs. As shown in (Fig. 3.33), Irf4 was rapidly induced within 6 h and 

stayed elevated till day 3 after IL-4 treatment in wt AMs, but was markedly amplified in 

LMP7 deficient AMs. 
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Figure 3.33: Deficiency of the LMP7 immunoproteasome subunit enhances Irf4 expression during 

M2 alveolar macrophages polarization. Irf4 gene expression in primary alveolar macrophages from 

C57BL/6 wt, LMP2-/- or LMP7-/- mice treated with IL-4 for up to 72 h to polarize them towards the M2 

phenotype. Results are combined data from three experiments. 
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As shown above, Irf4 gene expression was enhanced in LMP7-/- AMs, thus it is 

necessary to confirm this finding on the protein level. As shown in Figure 3.34, IRF-4 

protein was also induced within 3 h in wt AMs after IL-4 treatment. n Both, LMP2-/- and 

LMP7-/- AMs, showed comparatively higher IRF-4 levels, in particular at later time points 

after IL-4 treatment. 
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Figure 3.34: Deficiency of LMP2 or LMP7 immunoproteasome subunits enhances IRF-4 protein 

expression during M2 alveolar macrophages polarization. Time course of IRF-4 protein expression 

within 180 min after IL-4 treatment in primary alveolar macrophages from C57BL/6 wt, LMP2-/-, or 

LMP7-/- mice. Results are representative for two independent experiments. 

3.3.6. Deficiency of LMP2 and LMP7 immunoproteasome subunits alters signaling 

towards alveolar macrophage M2 polarization 

Elevated IRF-4 levels in LMP2 and LMP7 -/- AMS are indicative of altered M2 

polarization upon immunoproteasome deficiency. We thus investigated whether LMP2-/- 

and LMP7-/- alveolar macrophages have altered signaling properties in response to IL-4 

treatment by assaying the phosphorylation status of STAT6. Independent of the 

macrophage genotype, we observed distinct activation of STAT6 in M2-polarized AMs. 

To gain insight into early IL-4 signaling, a more immediate time window of 0 - 180 min 

was chosen to monitor STAT6 and also AKT activation. While STAT6 was steadily 

phosphorylated in wt cells from 15 min to 180 min peaking at 60 minutes after IL-4 

stimulation (Fig. 3.35), STAT6 phosphorylation occurred with a similar time kinetic but at 
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higher levels in LMP2-/- alveolar macrophages (Fig. 3.35). AKT phosphorylation was 

steadily increased in wt cells from 15 min to 180 min but with no obvious change in 

LMP2-/- cells (Fig. 3.35). In contrast, activation of both STAT6 and AKT was enhanced 

in LMP7-/- AMs compared to wild type cells, particularly at later time points (Fig. 3.35). 

This signaling data further corroborates that LMP2-/- and LMP7-/- AMs have intrinsic 

similarity that govern a signaling response to IL-4-mediated signaling towards M2 

macrophage polarization. 
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Figure 3.35: Deficiency of LMP2 and LMP7 affects M2 signaling. Time course of STAT6 (pTyr
641

) 

and AKT (pSer
473

) pathway activation within 180 min after IL-4 treatment in primary alveolar 

macrophages from C57BL/6 wt, LMP2
-/-

 or LMP7
-/-

 mice. Results are representative for two independent 

experiments. 

3.3.7. LMP2 and LMP7 immunoproteasome deficiency affects IL-4Ra protein 

expression. 

Since the phosphorylation status of STAT6 and AKT was altered in LMP2 and LMP7 

deficient AMs, this indicated an alteration upstream of these IL-4 signaling mediators. As 

it is well known that the immunoproteasome presents as important machinery regulating 

the protein turnover in the cells, we decided to test the possibility that the IL-4Ra might 
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be degraded by immunoproteasome subunits. To test whether IL4Ra is differentially 

expressed in wt and immunoproteasome deficient AMs, western blotting was performed 

to detect the IL-4Ra protein level in wt, LMP2-/- or LMP7-/- AMs. As shown in Figure 

(Fig. 3.36), the overall IL-4Ra protein level was present at a higher level in LMP2-/- and 

LMP7-/- AMs compared with wt cells. 
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Figure 3.36 Deficiency of LMP2 and LMP7 immunoproteasome increases IL-4Ra protein 

expression. IL-4Ra protein expressions within 0-180 min after IL-4 treatment in primary alveolar 

macrophages from C57BL/6 wt, LMP2-/- or LMP7-/- mice were detected by western blotting. Results are 

representative for two independent experiments.  

To determine if the increased IL-4Ra protein expression in LMP2-/- or LMP7-/- cells is 

dependent on mRNA level changes, we further investigated the IL-4Ra mRNA 

expression in polarized AMs from wt, LMP2-/- or LMP7-/- mice. As shown in (Figure 3.37), 

there are no significant differences for the IL-4Ra mRNA expression in the AMs from wt, 

LMP2-/- or LMP7-/- mice, which indicate that the accumulative IL-4Ra protein in LMP2-/- or 

LMP7-/- AMs is due to post-transcriptional effects such as deficient protein degradation 

due to immunoproteasome deficiency. 
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Fig. 3.37: No change in Il4ra expression level between polarized alveolar macrophages from wt, 

LMP2-/- and LMP7-/- mice. Il4ra expression analysis of primary alveolar macrophages from C57BL/6 

wt, LMP2-/- and LMP7-/- mice polarized for 24 h with IL-4, relative to Actb expression. Results are 

combined data from three experiments. 

3.3.8. The Iimunoproteasome subunit LMP7 specific inhibitor ONX 0914 enhances 

M2 alveolar macrophage polarization 

Since we have demonstrated the critical role of immunoproteasome in M2 AMs 

polarization by using LMP2 and LMP7 knock out mice, it will be particularly meaningful 

to test whether a similar effect will be achieved by using an immunoproteasome specific 

inhibitor. Onyx pharmaceuticals developed ONX 0914 to be an inhibitor of the 

immunoproteasome subunit LMP7, with minimal cross-reactivity for the constitutive 

proteasome. One recent study has reported that the LMP7-specific inhibitor ONX 0914 

is able to prevent collagen antibody–induced arthritis progression (167). Another newly 

published study has proven that inhibition of the LMP7 subunit prevented lupus disease 

progression by targeting two critical pathways of its disease pathogenesis, i.e. initiation 

of type I IFN activation and autoantibody production by plasma cells (168). We thus 

investigated the possibility of altering the M2 macrophage polarization via inhibition of 

immunoproteasome subunit LMP7 with the specific inhibitor ONX 0914. 
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Firstly, in order to exclude any unspecific toxic side effects of ONX 0914 on M2 

polarization, WST cell viability assay were performed to identify the appropriate dose 

and time point of giving ONX 0914 to AMs. As shown in (Figure 3.38), we investigated 

cell viability at 6 and 24 h time points with a dosage range from 0.1-50 µM, and found 

that ONX 0914 did not cause the cell death from dose range 0.1 to 1 µM at the 6 h time 

point, whereas more than 25% cells died at a dose range of 5 to 50 µM. However, we 

observed that ONX0914 causes a significant dose dependent cell death at the 24 h 

point starting with a dose of 0.2 µM. 
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Figure 3.38: WST cell viability assay of ONX 0914 on cell line MH-S The alveolar macrophage cell 

line MH-S was treated with ONX 0914 at a dose range from 0.1-50 µM respectively at 6 or 24 h time 

points. The 10% cell proliferation reagent WST-1 was added to the cell to measure the cell viability. 

Results are mean + SEM from 4-7 individual experiments. 

To investigate if the ONX 0914 can enhance the M2 signaling pathway and its upstream 

receptor IL-4Rα protein expressions, MH-S cells were pretreated without or with 0.2 or 1 

µM ONX 0914 for 2-4 h, and IL-4 was added for 0 min to 180 min, ONX 0914 blocked 

the degradation of IL-4Rα from 30 to 180 min, resulting in enhanced phosphorylation of 

STAT6 (Fig. 3.40). 
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Figure 3.40: M2 alveolar macrophage polarization signaling is enhanced by LMP7 inhibition. MH-S 

cells were pretreated with or without 0.2 and 1 µM ONX 0914 for 2-4 h, and then treated together with IL-

4 from 0 min to 180 min. IL-4Rα protein level and time course of STAT6 (pTyr641) and pathway 

activation within 180 min after IL-4 treatment in MH-S cells were analyzed by western blotting. Results 

are representative for three independent experiments. 

To further determine if the LMP7 inhibition alters M2 macrophage polarization Arg1, 

Mrc1 and Irf4 mRNA expressions were analyzed in primary alveolar macrophages and 

MH-S cells that had been pretreated with 0.2 or 1 µM ONX 0914 for 2 h and then treated 

with IL-4 for 6 h. We chose this treatment scheme to prevent cytotoxic side-effects of 

ONX-0914. As shown in (Fig. 3.41), the Arg1 gene expression was significantly 

enhanced by ONX 0914 in MH-S cells at both 0.2 and 1 µM ONX 0914 treatment doses 

compared to untreated cells, whereas it was only significantly enhanced in primary AMs 

at a dose of 1 µM ONX 0914. Expression of Mrc1 and Irf4, were significantly enhanced 

by ONX 0914 at both 0.2 and 1 µM ONX 0914 treatment in both MH-S and primary AMs. 
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Figure 3.41: M2 maker gene expression was enhanced by LMP7 inhibition. M2 marker gene exp-

ression (Arg1, Mrc1 and Irf4) in MH-S cells or primary alveolar macrophages (pAM) from C57BL/6 

mice: Cells were pretreated with DMSO or ONX-0914 (0.2 or 1 µM) for 2 h, afterwards IL-4 was added 

for another 4 h. Untreated cells and cells treated only with IL-4 served as controls. Results are the mean + 

SEM of three individual experiments (MH-S) or 3-6 individual mice (pAM).
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3.4. Discussion 

The conversion of human monocyte-derived macrophages by the Th2 cytokine IL-4 into 

a special activation state of inhibited respiratory burst and increased MHC II expression 

was first recognized by Abramson and Gallin in 1990 (169). Siamon Gordon’s lab 

subsequently proposed the concept of an alternative IL-4/IL-13-activated macrophage 

phenotype (now also known as M2), characterized by the up-regulated macrophage 

mannose receptor (MRC1) expression coupled with enhanced MHC II and reduced pro-

inflammatory cytokine levels (170). Since then, numerous studies have investigated 

polarization of mainly bone marrow- and monocyte-derived macrophages. The finding 

that tissue macrophages are of different origin and self-renew throughout life (23, 171, 

172), however, has stimulated research on the polarization capability of tissue resident 

AMs (17).  

3.4.1. Polarization capability of alveolar macrophages 

Here we profiled global gens expression in polarized M1 and M2 alveolar macrophages 

using Illumina microarray system, and demonstrated that the expression of 162 genes 

were significantly induced in M1 AMs and 35 genes were induced in M2 AMs. Within 

these genes, the expression of well described M1 marker genes (Tnf, Il1b, and Il12b) 

and M2 marker genes (Arg1, Relnla and Ccl17) were also shown to be respectively 

induced in M1 or M2 AMs, which was further validated by qPCR analysis. While, no 

induction of Nos2 in M1 and Mcr1 in M2 AMs was detected in microarray analysis, the 

increased expression of these two important markers were confirmed by qPCR for 

mouse primary AMs of two different mouse strains and the MH-S cell line. Therefore, our 
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results demonstrate that alveolar macrophages can be polarized in vitro to classically, 

pro-inflammatory activated M1, or alternatively activated M2 macrophages. In addition, 

we showed that murine alveolar macrophages (AM) of different sources can be 

polarized in vitro to M1 or M2 macrophages. The M1 polarization profile of AMs from the 

MH-S cell line (BALB/c derived) matched well with that of primary cells derived from 

BALB/c and C57BL/6 mice. Obvious differences, however, were observed for some of 

the investigated M2-like gene expression markers. For example, CCL17 is a small 

cytokine belonging to the CC chemokine family that is also known as thymus and 

activation regulated chemokine (TARC). A number of studies have identified CCL17 as a 

marker for M2 or tolerance macrophages which are related processes orchestrated by a 

p50 nuclear factor κB, which suggest the crucial role of M2 in chemoattractant of Th2 

and promotion of Th2 type of immune responses (173). Our unexpected results showed 

that CCL17 was not induced by IL-4 in the MHS cell line, which indicated some 

difference of macrophage biology between cell line and primary macrophages. Thus 

people should consider this factor when using a cell line alveolar macrophage in their 

study model. 

Polarization of AMs has been described for various chronic inflammatory conditions of 

the lungs, for example during infection (86, 174) and allergic asthma (175), upon 

inhalation of sterile irritants such as toxic chemicals (86), or insoluble particles (176), 

and also in response to tumor growth (177). Pulmonary IFNγ and IL-4 production 

coincided with altered polarization of alveolar macrophages and are associated with 

inflammation, resolution, and tissue remodeling (86). They are thus considered to be 

relevant stimuli for AM polarization ex vivo. Impaired polarization of tissue macrophages 
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may be the cause or consequence for development of chronic diseases (66). Cigarette 

smoke-dependent reprogramming of AMs has been considered to contribute to the 

pathogenesis of COPD, as AM transcriptomes of COPD smokers showed a partially M2-

shifted profile compared to healthy smokers and non-smokers (178). Also, idiopathic 

pulmonary fibrosis (IPF), a fatal fibrotic disease of the lung, has been associated with 

alternative AM activation (179) and M2-related production of CCL17 and CCL22 was 

proposed as a new marker for IPF(180). Hence, several signals characteristically 

expressed by M2 macrophages are known for their pro-fibrotic activity and suggest that 

these cells act as master regulators of fibrosis (120). Accordingly, restoring the M1/M2 

balance by serum amyloid P has been effective in reducing fibrosis and remodeling 

caused by bleomycin application in mice (181). Targeted overexpression of TGF-β1 in 

the lungs of mice which is used as a model system for IPF, also demonstrated the 

significance of the M1/M2 balance with severe pulmonary inflammation followed by 

subsequent accumulation of alternatively activated BAL macrophages, while clodronate 

mediated AM depletion ameliorated the TGF-β1 driven fibrotic phenotype (182). 

Altogether, accumulating evidence suggests that excessive M2 activation of AMs 

contributes to the development of chronic lung disease.  

3.4.2. Expression and activity of immunoproteasomes in polarized alveolar 

macrophages 

It has been well described that IFNγ induces the expression of the immunoproteasome 

subunit in a variety of cell types in a STAT1 dependent manner. As we used LPS plus 

IFNγ to polarize alveolar macrophages into M1 in vitro, we firstly analyzed the 

expression of the immunoproteasome subunits in microarray data, and then investigated 
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the expression of the immunoproteasome subunit in polarized macrophages. Our results 

showed that in murine AMs, formation of active immunoproteasomes is not only induced 

by Th1 related stimuli such as IFNγ/LPS but also by Th2 cytokines, such as IL-4. In M1 

polarization, LMP2 and -7 but also MECL-1 gene expression was concertedly 

upregulated by LPS/IFNγ. Expression of immunoproteasome subunits steadily increased 

during M1 polarization up to 72 h, reaching a plateau 24 h after IFNγ treatment, a time 

point where the Tnf expression had already markedly declined thereby indicating 

different pathways of transcriptional regulation. Induction of immunoproteasomes during 

M1 polarization was confirmed at the protein level for LMP2 and -7 with a marked 

increase after 24 h, further increasing up to day 3. Importantly, expressional changes of 

immunoproteasomes were translated into enhanced formation of active 

immunoproteasomes after 24 h as assessed by a specific set of activity-based probes. 

Previous studies have suggested that immunoproteasome formation can be induced by 

LPS stimulation in RAW 264.7 ascites tumor macrophages, with this interaction being 

critical for NO production but not for the TNF-α expression(160). Although, there is no 

study to describe the transcriptional mechanism for LPS induced immunoproteasome 

expression, we assumed that LPS induced immunoproteasome expression is dependent 

on NF-kB which is the most crucial transcriptional factor downstream of LPS In addition, 

we found the NF-kB binding site in the gene promotor area of LMP2 and LMP7 using a 

public promotor searching software (data not sown). Another indirect mechanism 

involves IFNβ, which has been shown to induce immunoproteasome expression and is 

known to be induced by LPS in macrophages (183). Therefore, it is not surprising to see 

induction of immunoproteasomes by both LPS and IFNγ.  
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Upon M2 polarization, mRNA expression of the immunoproteasome subunits LMP2 and 

-7 was not altered in IL-4-stimulated AMs while MECL-1 expression was slightly 

induced, Both LMP2 and -7 protein expression, however, were significantly elevated by 

IL-4 after 24 h and remained increased for 3 days. Even more important, 

immunoproteasome activity was clearly stimulated during M2 polarization after 48 h of 

IL-4 treatment. Similar to M1 polarization, expression and activity of standard 

proteasomes were also increased. The functional relevance of this regulation, however, 

remains to be determined. Furthermore, we observed that constitutive proteasomes 

were also induced in both M1 and M2 conditions. This is a novel finding and may 

indicate an important role for regulation of constitutive proteasome activity in 

macrophage biology that is worth investigating further. 

So far only little information is available on the role of the immunoproteasome in 

macrophage biology. For the more prominent class of professional antigen-presenting 

cells, i.e. dendritic cells (DC), it has been shown that IFNγ-stimulated DCs upregulate 

the immunoproteasome, whereas IL-4 matured DCs co-express both standard (β1, β2, 

and β5) and immunoproteasome subunits (184). Similar as suggested for DCs, 

enhanced immunoproteasome expressions in M1 and M2 polarized alveolar 

macrophages might also play a role in increased microbicide activity of IFNγ/Th1, or 

improved antigen-presentation at IL-4/Th2 conditions, respectively. Of note, the 

observed posttranscriptional regulation of LMP2 and LMP7 by IL-4 identifies a novel 

regulatory mechanism for immunoproteasome regulation beyond its well-established 

transcriptional activation by IFNγ and TNF-α (185). The kinetics of immunoproteasome 

activation upon M1 or M2 polarization of AM suggest, that up-regulation of proteasome 
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and immunoproteasome activity is a consequence of the altered activation state of 

macrophages, as also suggested for DC differentiation. 

3.4.3. Immunoproteasome function alters macrophage polarization 

Our data reveal a novel role for the immunoproteasome in the innate immune cell 

function, namely macrophage polarization, and thus adds another immune-modulatory 

function to the enigmatic immunoproteasomes beyond their role in adaptive immune 

responses.  

We showed that the absence of specific immunoproteasome subunits, namely LMP2 or 

LMP7, modulates the ability of AMs to polarize towards the M2 phenotype. Such 

disturbance of AM plasticity most likely has important consequences for homeostasis 

and responses to environmental stimuli of the pulmonary tissue. M1 polarization of AMs 

was less affected by LMP2 or LMP7 depletion, and overall marker genes of classical 

activation (Nos2, Tnf, Il1b and Il12b) were largely regulated independently of the 

genotype upon IFNγ/LPS stimulation. This finding is supported by a consistent M1 

profile of well-known pro-inflammatory transcription factors of classical macrophage 

activation which was not altered by immunoproteasome subunit depletion. We conclude 

that LMP2 and -7 are not required for NF-κB1 (p50/p65) signaling during M1 

polarization. The role of immunoproteasomes for canonical NF-κB1 signaling has been 

controversially discussed but can be ruled out for M1 alveolar macrophage 

differentiation (151, 159, 186, 187).  

Remarkably, M2 polarization of AMs was disturbed by immunoproteasome deficiency. 

Our heat map analysis showed that the expression of 21 and 43 M2 signature genes 
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were respectively enhanced, in LMP2-/- or LMP7-/- cells, compared to wt cells. Among 

these genes, 4 well described M2 marker genes (Arg1, Retnla, Ccl17 and Mcr1) were 

selected for the further qPCR validation for their expression, which confirmed the 

enhancement of M2 marker gene expression and thus M2 polarization in LMP2-/- and 

LMP7-/- AMs. Most notably, the IL-4 dependent Th2 chemokine CCL17 was released in 

high amounts from LMP7 and LMP2 deficient AMs. Our findings that LMP2 and -7 

similarly affect M2 polarization were further corroborated by analysis of early signaling 

kinetics upon IL-4 stimulation. In particular, expression of the M2 specific transcription 

factor Irf4 - a key transcription factor that controls M2 macrophage polarization (80) was 

disproportionately higher in M2 polarized LMP2-/- and LMP7-/- cells and its expression 

exceeded wt levels particularly in the first 48 h after IL-4 induction. Similar results were 

obtained for STAT6 and AKT activation, all hallmarks of IL-4 mediated signaling towards 

M2 polarization (83, 188): Both STAT6 and AKT phosphorylation were enhanced in 

LMP2-/- and LMP7-/- cells, respectively. In addition, we are the first to find that IRF4 

expression was induced in M2 but suppressed in M1 AMs, which fits well the literature. 

Previous studies have proven that IRF4 is the downstream target of STAT6 activation, 

and in addition, there is a protein-protein interaction between IRF4 and STAT6. Hence, 

we believe that the IRF4 service is a positive loop to cooperate with STAT6 to derive M2 

markers gene expression. 

These findings clearly reveal that immunoproteasome-deficient AMs have increased 

responsiveness towards IL-4 mediated signaling. Of note, as neither basal nor M1- or 

M2-dependent expression levels of the interleukin 4 receptor alpha (IL-4 ra) genes were 

affected by the LMP genotype, these differences are most probably not due to an altered 
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mRNA expression of the IL-4 receptor but rather due to the altered protein turnover of 

IL-4 receptor. We were thus tempted to speculate that LMP2 and LMP7 affect specific 

substrate degradation in alveolar macrophages, thereby contributing to altered M2 

activation. The proteasome is the cellular machinery which is responsible for cellular 

protein degradation. They are not only responsible for degradation of damaged and 

misfolded proteins during cellular stress, but also for proteins involved in the signaling 

pathway. Thus, the proteasome plays a crucial role in activation of the signaling 

pathways, such as IB is degraded by the proteasome and leads to the activation of 

the NF-κB pathway (189). Khalid W. Kalim has reported that in the differentiation of 

Th17 cells, immunoproteasome inhibition blocked phosphorylation of STAT3, whereas in 

Tregs SMAD phosphorylation was enhanced. Additionally, LMP7 inhibition led to 

reduced STAT1 phosphorylation and Th1 differentiation (155). Although a number of 

studies have indicated that immunoproteasomes are involved in many immune signaling 

pathways, none of these studies identified specific substrates for immunoproteasome-

dependent protein degradation, thus the underlying molecular mechanisms of the effect 

on the above mentioned pathways are largely unclear. We are the first to report that IL-

4Ra is a possible substrate for LMP7-dependent degradation as the deficiency and 

inhibition of LMP7 caused the accumulation of the IL-4Ra protein contributing to the 

observed enhancement of downstream STAT6 and AKT activation. As IL-4Ra is also 

shared by lL-13 to trigger STAT6 dependent M2 polarization, it is not surprising to 

observe enhanced M2 marker gene expression in LMP7 deficient AMs after IL-13 

stimulation. To make sure the increased IL-4Ra protein in LMP7 and LMP2 deficient 

AMs is not due to the adaption effect of the knock out mice strains, we applied the 
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specific LMP7 inhibitor ONX 0914 to the AMs, and found that STAT6 phosphorylation 

was enhanced in ONX 0914 treated AMs, which further lead to the up-regulation of M2 

markers Arg1 and Mrc1. In addition, in order to exclude any unspecific effects of ONX 

0914 on M2 polarization, an ABP-based pulldown assay was performed to confirm the 

specificity of the given dose of ONX 0914 to AMs, and this experiment were done by our 

collaborators (Ilona Keller and Oliver Vosyka) from lab of Silke Meiners of 

Comprehensive Pneumology Center (CPC) of Helmholtz München. Their experiments 

suggested about 50% inhibition of LMP7 with 200 nM and close to 80% inhibition with 1 

µM ONX0914, while β5 was only partially inhibited by about 30% with high doses of 

ONX 0914 (Shanze Chen, Ilona Keller and Oliver Vosyka; Submitted results to Journal 

of Immunology). Thus our inhibitor experiments confirmed that IL-4Ra is regulated by 

the catalytic activity of the immunoproteasome subunit LMP7. Therefore it is worthwhile 

figuring out more substrates of immunoproteasome by using a profiling technique such 

as protein microarray and mass spectrometry, which could help to better understand the 

role of immunoproteasome in disease conditions. For example, it has been well 

described that the Th2 cytokines IL-4  and IL-13 play a crucial role in initiation and 

development of a chronic allergic inflammatory disease asthma by interacting with 

related receptor complexes (190). We have also demonstrated that LMP7 deficiency 

enhances the IL-4 receptor signaling pathway, therefore, theoretically we should able to 

observe aggravated asthma in LMP7 deficient mice. However, Anton Volkov, et al. have 

reported that LMP7 deficiency leads to a reduced Th2 response in the OVA induced 

acute asthma model (191). In this study, the authors were not able to offer an 

explanation for the observed effect due to the complexity of the disease. It is well 
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possible that this effect may be due to the suppression of Th1 and Th17 differentiation 

after LMP7 deficiency. The underlying mechanism for these responses remains to be 

determined, but is certainly related to alter IL-4 receptor signaling in the LMP7 knockout 

cells. In spite of an opposite effect of LMP7 deficiency in the asthma model, it is possible 

to apply our findings to other chronic inflammatory lung disease models. We have 

recently collected data (unpublished), which showed that immunoproteasome subunits 

LMP2 and LMP7 protein levels are induced in whole lung tissue samples from IPF 

patients and BAL fluid the CCL17 protein level is higher in LMP7 deficient mice 

compared with wt mice in a bleomycin induced lung fibrosis model, which may indicate 

the critical role of immunoproteasome in IPF pathogenesis (Shanze Chen and Ilona 

keller, unpublished results). In addition to IPF, our findings may also be applicable to 

COPD as it has been suggested that IL-4/IL-13 signaling contributes to the pathogenesis 

of COPD. IL-4 and IL-13 are known for their capacity to promote mucus production from 

bronchial epithelial cells (192). A transgenic mouse model has revealed that over-

expression of IL-13 in the mouse lung causes emphysema (193). M2 macrophages play 

a crucial role in resolution of inflammation via phagocytosing apoptotic neutrophils (194). 

IL-4 and IL-4Ra were shown to be essential for the resolution of sterile inflammation 

(195) due to enhanced M2 polarization in LMPs deficient macrophages, thereby we 

might observe an enhanced resolution of inflammation in LMPs deficient mice. 

In conclusion, our study demonstrates that LMP2 and LMP7 ablation enhances M2 

polarization of alveolar macrophages, while not impacting M1 polarization. These results 

indicate a crucial role of immunoproteasome in alveolar macrophages biology and 
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suggest the novel potential therapeutic intervention of innate immunity in the lungs by 

inhibition of individual immunoproteasome subunits. 
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4. Chapter 2 : Polarized alveolar macrophage-epithelial cell communication 

4.1. Introduction 

4.1.1. Pulmonary alveolus 

An alveolus is a form of a hollow cavity located in the lung parenchyma, representing the 

terminal end of the respiratory tree and the site of gas exchange with the blood. (196).  

 

Fig 4.1: Scheme of pulmonary alveolus. Copied from http://medicalterms.info/anatomy/Alveoli/ 

There are three major cell types in the alveolar wall (pneumocytes): type I alveolar 

epithelial cells (AEC I), type II alveolar epithelial cells (AEC II) and alveolar 

macrophages (AM). AEC I are squamous, large and thin cells which occupy 90 to 95% 

of the alveolar surface (197). These cells are so thin that they can facilitate the gas 

exchange between the alveoli and the blood (197). AEC I are able to fight against 

microbes and thus initiate the immune responses (198). Currently it is still not clear how 

AEC I are regenerated in the normal lung, but  evidence indicates that AEC I are 

transdifferentiated from AEC II during the alveolar epithelial wound repair(199). AEC II 

are cuboidal cells that constitute around 15% of total lung cells and cover about 7% of 

the total alveolar surface (200). They are responsible for the secretion of surfactant 

http://medicalterms.info/anatomy/Alveoli/
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which reduces the alveolar surface tension to increase the gas exchange. In addition to 

the secretion of surfactant, AEC II can also sense the invasion of pathogens and 

produce antimicrobial products such as complement, lysozyme, and antibacterial 

peptide. In addition they can amplify the inflammatory response by secretion of cytokine 

and chemokines (197). As we have introduced in chapter 1, AM is a type of tissue 

macrophage found in the pulmonary alveolus, which has close contact with its 

neighbours AEC I and AEC II. They are one of the key cell types for initiating 

inflammatory and immune responses in the lung.  

4.1.2. Macrophage-epithelial communication 

Cell-to-cell communication is the sharing of information between cells, which serves as 

the basis for functional coordination between cells in multicellular organisms and plays a 

crucial role in cell growth, cell differentiation and tissue homeostasis (201-204). 

Communication between immune and epithelial cells has been suggested to be crucial 

for the fight against the invasion of pathogens to the epithelium (205). In the alveolus, 

one of the critical functions of AEC is to keep the integrity of the epithelial barrier during 

infection and injury. Therefore, the crosstalk between AEC with its neighbor AM is 

required to initiate an appropriate response to invaders, which involves not only the 

killing of microbes but also regulation of tissue repair and resolution of inflammation 

(206).  

There are two ways of communication: contact and non-contact cell-to-cell 

communication. One of the direct contact communications is the gap junction. Close 

adherence of alveolar macrophages to alveolar epithelial cells facilitates sharing of the 
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information through the gap junctions such as connexins (201). Using real-time alveolar 

imaging in situ, Kristin Westphalen et al. showed that the gap junctions called connexin 

43 (Cx43) mediated intercommunication between AMs and alveolar epithelial cells (207). 

These were immunosuppressive signals to reduce endotoxin-induced lung inflammation, 

which involved Ca2+-dependent activation of AKT (207). In contrast to the direct contact 

communication, the non-contact communication has been well investigated involving the 

secreted mediators such as cytokines and chemokines. One example is that microbial 

infections induce M1 polarization of AM and further lead to high production of pro-

inflammatory cytokines IL-1ß, TNF-a, IL-6 and IL-12 from macrophages. As early 

response cytokines, TNF- and IL-1ß further induce the release of chemokines from 

epithelial cells, such as chemokine (C-X-C motif) ligand 1/5 (CXCL1/5) in order to attract 

neutrophils and chemokine (C-C motif) ligand 2 (CCL2) to attract monocytes (208-210). 

Apart from inducing the production of chemoattractant, AM derived TNF-alpha release 

can induce CSF2 (GM-CSF, Granulocyte-macrophage colony-stimulating factor) 

expression in AEC, which in turn initiates AEC proliferation and contributes to alveolar 

barrier integrity (206). In addition, it has been suggested that communication of AM with 

AEC plays a key role in hypoxia-induced lung inflammation affecting the IL-8 release 

(211). Additionally, it has been proven that the macrophage pro-inflammatory cytokine 

IL-1ß augments in vitro alveolar epithelial repair by inducing TGF- and EGF production 

in epithelial cells (212). Hence defective communication in response to damage 

represents a pathophysiological mechanism, which contributes to the development of 

infectious diseases, chronic inflammatory diseases, and cancer.  
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Fig 4.2: The communication of alveolar macrophage with alveolar epithelial cell during pathogen 

infection in the alveolus. As the first line of defense, AM is the first cell type in the alveolus to react to 

the pathogen invasion, afterwards, AM secrete TNF-a and IL-1β, which stimulate the production of  

chemokines from AEC such as CXCL1/5 and CCL2, following that, these chemokines recruit neutrophils 

and monocytes. Adapted from “Fig. 1 of Lidija Cakarova’s thesis: Macrophage-Epithelial Crosstalk 

during Alveolar Epithelial Repair following Pathogen-induced Pulmonary Inflammation”. 

A group of cytokines and chemokines have been reported to be expressed by activated 

epithelial cell.  

IL-6: Interleukin 6 is an interleukin that acts as an inflammatory cytokine via binding to 

IL-6R and activation of STAT3 (213). IL-6 is released by epithelial and macrophages to 

amplify the immune response during inflammation, thereby playing a role in many 

inflammatory diseases (214). 

GM-CSF: Granulocyte-macrophage colony-stimulating factor, also referred to as colony 

stimulating factor 2 (CSF2). It is a monomeric glycoprotein that functions as a white 
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blood cell growth factor, and is secreted by macrophages, T cells, endothelial cells and 

epithelial cells (215). GM-CSF plays the curial role in macrophage biology. Upon 

stimulation of GM-CSF, newly recruited monocytes at the site of inflammation can 

mature into macrophages (216). Bone marrow derived macrophages (BMDM) 

differentiated with GM-CSF display characteristic M1polarization phenotype (217). 

TGF-β: The transforming growth factor beta is a polypeptide cytokine that acts on 

TGFB1R to activate SMADs (218). It is a secreted multifunctional protein that can 

control cell growth, cell proliferation, cell differentiation and apoptosis (219). In addition, 

TGF-β induces trans-differentiation of epithelial cells into mesenchymal cells, a process 

called EMT (220). It has been suggested that TGF-β plays a role in inflammatory lung 

diseases, including lung fibrosis, asthma, COPD (221-223). 

CX3CL1: Chemokine (C-X3-C motif) ligand 1, also known as fractalkine, is constitutively 

expressed by alveolar epithelial cells (224). There is a soluble form of CX3CL1 which 

can potently attract dendritic cells (DC) and monocytes via its receptor CX3CR1, while 

the cell-bound form is responsible for adhesion of leukocytes to activated epithelial cells 

(225, 226). It has been shown that the CX3CL1/CX3CR1 axis is associated with 

inflammatory lung diseases and involved in the recruitment ofCX3CR1+ macrophages in 

the lungs contributing to the development of COPD (226). 

CCL2: chemokine (C-C motif) ligand 2 (CCL2), also called monocyte chemotactic 

protein 1 (MCP1), is the CC family chemokine which attracts monocytes to the sites of 

inflammation via its receptor CCR2 (227). CCL2 is expressed by a variety of cell types 

such as macrophages, epithelial cells and endothelial cells (228). CCL2 is thought to be 
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involved in the pathogenesis of several inflammatory diseases characterized by 

monocyte infiltration (228). The increased concentration of CCL2 in bronchoalveolar 

lavage (BAL) from COPD patients contributes to the recruitment of monocytes that can 

differentiate into macrophages (229). 

LCN2: Lipocalin-2 also known as neutrophil gelatinase-associated lipocalin (NGAL), was 

initially found to be expressed by neutrophils, and is also reported to be induced in 

numerous epithelial cell types in a TLR dependent manner (230). LCN2 can fight against 

the bacterial infection by sequestering iron-containing siderophores (231). In addition, 

LCN2 was shown to promote neutrophil recruitment and trigger G-CSF and CXCL1 in 

alveolar macrophages (232). LCN2 induced macrophage IL-10 formation, skewing 

STAT3 dependent macrophage polarization (233). 
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4.2. Project aims 

The communications between alveolar macrophages and epithelial cells has been 

suggested to play an important role in maintaining the functional integrity of the lung. As 

we have shown in chapter 1, alveolar macrophages can polarize into M1 and M2 

phenotypes upon respective treatment of LPS/IFNγ or IL-4. Epithelial cells, a crucial part 

of the innate lung immunity, establish the local environment of AMs, can release 

chemokines such as CXCL1/5 and CCL2 under inflammatory conditions, and are 

responsible for the recruitment of monocytes and neutrophils in inflamed lung tissue. 

However, the extent of polarized alveolar macrophage-epithelial cell communication 

remains unclear. Therefore, using a trans-well co-culture and conditioned medium model 

depicted in Figure 4.3, we aimed to identify the cellular immune factors derived from 

alveolar macrophages to interact with alveolar epithelial cells. 

 

 

 

 

 

 

                          Fig 4.3: Scheme of trans-well co-culture and conditioned medium model.  
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4.3. Results 

4.3.1. Profiling of polarization markers for the alveolar macrophage cell line MH-S 

As we have shown in the chapter 1, the alveolar macrophages cell line MH-S can be 

polarized into respective M1 and M2 phenotypes upon treatment with either LPS and 

IFNγ or IL-4. Apart from the markers investigated in chapter 1, we found that the mRNA 

level of Cxcl1, Cxcl2, Cxcl9, Il6 and Lipocalin-2 (Lcn2) were also induced in M1 cells, 

while Pparg, Cd36, Cxcr2, Irf4 and Galectin3 (Lgals3) were induced in M2 cells (Fig 4.4).  
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Fig 4.4: Alveolar macrophages cell line MH-S shows characteristics of M1 and M2 polarization by 

maker genes profiling. (A, B) M1 and M2 marker gene expression analysis of MH-S cells polarized for 

24 h: Nos2, Tnf, Il1b, Il12b, Cxcl1, Cxcl2, Cxcl9, Il6 and Lcn2 relative to Actb (β-actin) expression for 

M1, and Arg1, Ccl17, Retnla, Mrc1, Pparg, Cd36, Cxcr2, Irf4 and Galectin3 relative to Actb expression 

for M2. Results are from three independent experiments. 

4.3.2. Polarized M1 AMs activate the LA4 in a transwell co-culture system. 
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To determine if the polarized M1 or M2 alveolar macrophages can communicate with 

alveolar epithelial cells, we introduced a trans-well system to co-culture MH-S with the 

murine alveolar epithelial cell line LA4 separated by a membrane. LA4 were seeded on 

the lower side and MH-S cells on upper side of the trans-well. After 24 h co-culture with 

polarized or non-polarized MHS cell, LA4 cell was prepared for the qPCR profiling. As 

shown in Figure 4.5, we found that the mRNA level of Il6, Lcn2, Csf2, Ccl2 and Cx3cl1 

were induced by LPS/IFNγ not by IL-4 in LA4, while LPS/IFNγ derived expression of 

these cytokines were further enhanced by a co-cultured M1 macrophage. The mRNA 

expression of Tgfb1 was not impacted by either LPS/IFNγ or IL-4 treatment, however, its 

expression was induced in M1 co-cultured LA4 cell.  
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Figure 4.5: Polarized M1 AMs amplify gene expression from alveolar epithelial cell LA4. 

Gene expression analysis of LA4 co-cultured with polarized or non-polarized MHS cell for 24h: Cx3cl, 

Il6, Lcn2, Csf2, Tgfb1 and Ccl2 relative to Actb (β-actin) expression and Results are mean for three 

replicates. 

4.3.3. Conditioned medium from polarized AMs activate LA4 cells. 

As we wanted to identify secreted mediators and exclude the direct contact effect, we 

further investigated if the conditioned medium from polarized MH-S cell could alter 

mRNA expression of cytokines in LA4 cells. For that, the conditioned medium was 

collected from 24 h M0, M1 and M2 cells, and then added to the LA4 for 24 h. As shown 

in Figure 4.6, we found that the mRNA expression of Il6, Lcn2, Ccl2, and Cx3cl1 was 
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significantly induced by an M1 conditioned medium in LA4; in addition, the mRNA level 

of Cx3cl1 was also induced by an M0 and M2 conditioned medium, however, the 

expression of Csf2 and Tgfb1 were not impacted by any of the conditioned medium. 
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Figure 4.6: Conditioned medium from polarized alveolar macrophage amplifies the expression of 

several genes in alveolar epithelial cells. Gene expression analysis of LA4 cells treated with conditioned 

medium from M0, M1 and M2 cells for 24h: Cx3cl, Il6, Lcn2, Csf2, Tgfb1 and Ccl2 relative to Actb (β-

actin) expression and Results are from three independent experiments. 
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4.3.4. The cytokines TNF-α, IL-1β, IFNγ and IL-17 activate LA4 cells. 

To further determine which cytokines drive gene expression in alveolar epithelial cells in 

a similar manner as observed before in both trans-well co-culture and conditioned 

model, we applied the cytokines TNF-α, IL-1β, IFNγ and IL-17 at concentration of 20 

ng/ml to LA4 cells for 24 h. As shown in Figure 4.5, we found that TNF-α strongly 

induced mRNA level of Ccl2, Cx3cl1 and Csf2 compared with other cytokines, whereas 

IL-1β preferentially induced the expression of Lcn2. 
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Figure 4.7: Macrophage derived pro-inflammatory cytokines TNF-α and IL-1β activate LA4 

cell. Gene expression analysis of LA4 treated with 20ng/ml of TNF-α, IL-1β, IFNγ and IL-17 for 24h: 

Cx3cl, Il6, Lcn2, Csf2, Tgfb1 and Ccl2 relative to Actb (β-actin) expression and Results are mean for two 

replicates. n.d , no detection. 
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4.4. Discussion 

There are many studies using transwell co-cultures and conditions on medium models to 

investigate cytokine mediated communication between epithelial cells and 

macrophages. Using a transwell co-culture model, Jun-Li Ding`s Lab found that M2-

polarized tumor-associated macrophages could promote epithelial–mesenchymal 

transition (EMT) in pancreatic cancer cells via TLR4/IL-10 signaling pathway (234). Olga 

D. Chuquimia, et al. found that the conditioned medium from LPS stimulated AEC 

modulates the activity of alveolar macrophages to control bacterial growth (197). Tiana 

V Curry-McCoy, et al. has suggested that communication between AECs and 

macrophages is involved in the alcohol-induced disruption of the epithelial barrier 

function via TGFβ1 (235). Therefore, epithelial-macrophage communication plays an 

important role in pathogenesis of cancer and inflammatory diseases.  

Here, initially using a trans-well co-culture model, we found that M1 polarized alveolar 

macrophages could enhance the expression of Il6, Tgfb1, Lcn2, Csf2, Ccl2 and Cx3cl1 

in LA4 cells. Furthermore, we proved that conditioned medium from M1 AMs could 

induce the expression of Il6, Lcn2, Ccl2 and Cx3cl1 in LA4 cells but not of Tgfb1 and 

Csf2. However, beyond our expectation, an M0 and M2 conditioned medium can also 

markedly induce the gene expression of Cx3cl1 in LA4 cells. TNF-α and IL-1β as master 

pro-inflammatory cytokines, which are supposed to be mainly derived from 

macrophages have been well described to act on alveolar epithelial cells during the 

acute inflammation. Hence, we used recombinant cytokines to stimulate LA4 cells to test 

whether these factors could be the mediators to induce the gene expression in LA4. We 
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found that the mRNA expression of Ccl2, Cx3cl1 and Csf2 were strongly induced by 

TNF-α, whereas Lcn2 was strongly induced by IL-1β. 

Csf2, a monomeric glycoprotein, is secreted by macrophages, T cells, endothelial cells 

and fibroblasts, and is also expressed by alveolar epithelial cells at lower level (236). 

However, it has been reported that Csf2 expression could be induced in alveolar 

epithelial cells by alveolar macrophage derived TNF-α, and that this stimulation further 

leads to AEC proliferation and repair (206). In addition, expression of Csf2 in AECs is 

important for pulmonary surfactant homeostasis, and deficiency leads to impaired 

alveolar macrophage differentiation and alveolar proteinosis (237, 238). Similarly, we 

found that the Csf2 expression was enhanced in M1 co-cultured LA4 cells, further 

experiments confirmed the induction of Csf2 by TNF-α. However, we observed that IL-

1β can induce the Csf2 expression in LA4 cells to the same extent as well as TNF-α, 

which does not completely align to Lidija Cakarova’s findings. They suggested that it is 

TNF-α from LPS-activated alveolar macrophages that stimulate AECs to express Csf2 

(206). LPS-activated alveolar macrophages have a higher release of IL-1β, but the 

contribution of IL-1β in inducing Csf2 was not investigated. Actually, we are the first to 

show the induction of Csf2 in alveolar epithelial cells by IL-1β.  Robert Newton et al. 

have shown that the IL-1β induced Csf2 expression in A549 cell was repressed by 

glucocorticoids (239).  

IL-6 is usually thought to be a pro-inflammatory cytokine involved in the regulation of the 

immune response and inflammation (240). IL-6 can be produced by numerous cell types 

such as macrophages, endothelial cells and epithelial cells (240). It has been reported 
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long ago that macrophage derived TNF-α and IL-1β can induce the gene expression of 

Il6 (241). Hence, we believe that the increased gene expression of Il6 in LA4 cells as 

shown in Figure 4.5 can be induced by TNF-α or IL-1β. 

Both Ccl2 and Cx3cl1 are chemokines that recruit monocytes to the site of injury and 

inflammation by acting on the respective receptors CCR2 and CX3CR1. It is not 

surprising to observe that M1 cells could induce the Ccl2 up-regulation in LA4 cells. It 

has been demonstrated that silica-induced Ccl2 expressions in alveolar epithelial cells is 

mediated by TNF-α (242). Cx3cl1 is also defined as fractalkine, and was reported to be 

induced by TNF-α and IL-1β in alveolar epithelial cells and fibroblast (243, 244). We also 

observed that M1 cells were able to induce its expression in LA4 cells; however, M0 and 

M2 conditioned media also induced Cx3cl1 in LA4, but that cannot be explained by our 

observation of  no induction of Cx3cl1 in LA4 cell co-culture with the M2 cell.  

TGF-β is a secreted protein which is involved in many cellular processes, including cell 

migration, invasion, EMT, tissue remodeling and immune responses. We observed that 

M1 co-cultured LA4 cells showed an increased TGF-β expression that cannot be 

induced by an M1 conditioned medium. It has been reported that TNF-α promotes TGF-

β expression in lung fibroblasts via AP-1 activation, therefore we believed that the 

increased TGF-β expression in co-culture models may also be induced by TNF-α. In 

terms of the well described role of TGF-β in EMT, as well as M2 cells, it is also possible 

for M1 cells to induce EMT of alveolar epithelial cell through the TGF-β signaling 

pathway. 
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Lipocalin 2 (LCN2), is an antibacterial peptide expressed by macrophage, neutrophils 

and epithelial cells following the microbe induced TLRs activation (245). LCN2 is 

involved in antimicrobial defense by sequestering iron (231). LCN2 is also recognized as 

a biomarker of kidney injury (246). It has been reported that Lcn2 expression can be 

induced by IL-1β in the human alveolar epithelial cell line A549 (247). Similarly, we also 

observed that M1 cells and IL-1β can significantly induce the Lcn2 expression in LA4. 

Interestingly, recent studies indicated an important role of Lcn2 in macrophage 

activation. It has been reported that Lcn2 deficient macrophages showed an enhanced 

M1 polarization via the NF-κB-STAT3 signaling pathway. As we unexpectedly showed 

that IL-1β remarkably induced Lcn2 in LA4 cells, we speculated that the IL-1β activated 

LA4 cell might on their part be able to inhibit M1 polarization by secreted LCN2. 

However to test this hypothesis further co-culture experiments would be required. 

In conclusion, using a trans-well and conditioned medium model as well as several 

individually selected cytokines, we found that M1 polarized alveolar macrophages could 

potentially promote the activation of alveolar epithelial cells through secreted TNF-α and 

IL-1β, which was characterized by the gene expression of Il6, Tgfb1, Lcn2, Csf2, Ccl2 

and Cx3cl1 in LA4 cells. Our findings essentially confirmed the former work from other 

laboratories. 
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5. Materials and methods 

5.1. Materials 

5.1.1. Mice 

All mice were kept and bred at institute of Lung Biology and Disease (iLBD), Helmholtz 

Zentrum München, Neuherberg, according to the national and institutional guidelines. 

Wild type (WT) and LMP2 -/- and LMP7 Knockout mouse are all on a C57BL/6J genetic 

background. The generation of LMP2-/- (Psmb9tm1Stl) or LMP7-/- (Psmb8tm1Hjf) 

mice  have been described in the part of materials & methods in the paper respectively 

from Susumu Tonegawa (248) and  H von Boehmer (249). Mice were age (8-16 weeks) 

and gender matched was sacrificed for BAL cell preparation.  

5.1.2. Commercial available kit 

Kit Name Company 

Absolute qPCR SYBR® Green ROX Mix  Applied Biosystems  

Superscript™ II Reverse Transcriptase kit  Invitrogen 

GoTaq® Polymerase Green Master Mix Promega 

Douset ELISA kit (CCL17) R&D Systems 

Bio-Rad Protein Assay kit Bio-Rad 

RNeasy Mini Kit Qiagen 

High Pure RNA Isolation Kit Roche 

E.Z.N.A.® Viral RNA Kit Omega 

Giemsa and May Grünwald solutions kit Sigma-Aldrich 

Quick-RNA™ MicroPrep kit ZYMO 

RNaseOUT TM Recombinant Ribonuclease Inhibitor Invitrogen 
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dNTP Mix (10mM each) Fermentas 

Activity-based probe assay  Overkleeft Hermen 
S (ABP MV151, ABP LW124 and MVB127) 

ECL-Reagent  GE Health  

 

5.1.3. Equipment 

Equipment Name Company 

NanoDrop® ND-1000 spectrophotometer 
Thermo Scientific, Wilmington, 
USA 

Centrifuge: Eppendorf 5415D 
Eppendorf, Hamburg, 
Germany 

Centrifuge: Sigma 3K18 
Sigma, Osterode am Harz, 
Germany 

ABI PRISM® 7500 detection system 
Applied Biosystems, Foster 
city, CA, USA 

Shandon cytospin3 cytocentrifuge Shandon, PA 

4ml, 15 ml and 50 ml Tubes  
BD Falcon, Heidelberg, 
Germany 

 0.2ml, 0.5ml, 1.5 ml and 2ml Tubes 
Eppendorf, Hamburg, 
Germany 

Vortexer 
Scientific Industries, Karlsruhe, 
Germany 

PCR- thermal cycler : PTC-225 
MJ Research, Hamburg, 
Biozym, Germany 

Pipetman (2μl, 10μl, 20μl, 200μl, 1ml) 
Gilson, Limburg-Offheim, 
Germany 

ABsolute TM QPCR Seal (AB1170) 
Thermo Scientific, Wilmington, 
USA 

96 Wells qPCR plate 
Thermo Scientific, Wilmington, 
USA 

Western Blot system  Bio-Rad , USA 
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5.1.4. Chemicals 

Dulbecco's Modified Eagle Medium (DMEM), Dulbecco's Phosphate buffered saline 

(DPBS), Fetal Bovine Serum (FBS), Fetal Calf Serum (FCS), RPMI Media 1640 and 

antibiotics were purchased from BioChrome (Berlin, Germany) and Invitrogen 

(Karlsruhe, Germany).  

All chemicals were purchased from Invitrogen (Karlsruhe, Germany), Sigma-Aldrich 

(Deisenhofen, Roche (Mannheim, Germany), Germany), Bio-rad (Munich, Germany), 

Fluka (Deisenhofen, Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, 

Germany) unless otherwise specified. 

5.1.5. Buffers and solutions 

Name Concentration Compounts 

Wash buffer (PBS-T) 1X PBS 

0.05% Tween-20 

PBS buffer (10X) 137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

2 mM KH2PO4 

TBE buffer (10X) 890 mM Tris Base 

890 mM Boric Acid 

20 mM EDTA (pH 8.0) 

RPMI-1640 medium 1X RPMI-1640 medium 

10% Fetal bovine serum 

1% penicillin/streptomycin 

2 mM glutamine 

50 µM  
ß-mercaptoethanol (for 
macrophage culture) 

Dulbecco's Modified 
Eagle Medium (DMEM) 

1X 
Dulbecco's Modified Eagle 
Medium  

10% Fetal bovine serum 
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1% penicillin/streptomycin 

2 mM glutamine 

50 µM 
ß-mercaptoethanol (for 
macrophage culture) 

RIPA buffer (1X) 20 mM Tris-HCl (pH 7.5) 

150 mM NaCl 

1 mM Na2EDTA 

1 mM EGTA 

1% NP-40 

1% sodium deoxycholate 

2.5 mM sodium pyrophosphate 

1 mM ß-glycerophosphate 

1 mM Na3VO4 

1 μg/ml leupeptin 

loading buffer (2X) 100mM  Tris pH 6,8 

4% SDS 

0,2% Bromphenol blue 

20% Glycero 

Electrophoresis 
(5x)(running) buffer 

15,1 g Tris 

94 g Glycine 

50 ml 10% SDS 

Transfer buffer(1X)              3,02g  Tris  

14,4g  H20 

200ml   Methanol 

10% PAGE (4 gels) 
Resolving 

15,9 ml  H2O  

13,3 ml  30% Acrylamid 

10,0 ml 1.5M Tris pH 8,8 

400 µl 10% SDS 

   400 µl 10% APS 

16 µl TEMED 

10%  PAGE (4 gels) 
Stacking 

13,6 ml H2O  

  3,4 ml 30% Acrylamid 

  2,5 ml 1M Tris pH 6,8 

   200 µl 10% SDS 

200 µl 10% APS 

20 µl TEMED 

Block buffer (ELISA)  1g BSA 
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100ml 1X PBS 

Stop solution (ELISA) 0.18 M H2SO4 

     

5.1.6. Recombinant proteins and antibodies 

 

Name Company 

Anti-p50, p65, Arginase1, IRF4 santa cruz biotechnology 

Anti-LMP2, LMP7, a1-7, IL-4Ra Abcam 

Anti-STAT6, p-STAT6, AKT, p-AKT Cell Signaling 

Anti-iNOS BD Transduction Laboratories 

HRP-conjugated anti-β-actin  Sigma-Aldrich 

Recombinant murine IFN-gamma Immuno tool 

Recombinant murine IL-4, IL-13 Immuno tool 

Lipopolysaccharides (LPS) from E.coli Sigma-Aldrich 

 

5.2. Methods 

5.2.1. Isolation of primary resident alveolar macrophages (AMs) 

Animals were treated humanely and with regard for alleviation of suffering; all animal 

procedures were conducted with approval of the local ethics committee and the 

Bavarian Animal Research Authority of Germany. Mice were anesthetized by 

intraperitoneal injection of a mixture of xylazine (4.1 mg/kg body weight) and ketamine 
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(188.3 mg/kg body weight) and killed by exsanguination (250). Therefore blood was 

drawn from the retroorbital plexus by a capillary. 

Primary alveolar macrophages (AMs) were isolated from the lungs of mice by 

bronchoalveolar lavage (BAL) with 8 washes of 1 ml PBS at room temperature. Cells 

were pelleted for 5 min at 1500 rpm and washed twice in complete RPMI-1640 medium. 

1 x 105 - 5 x 105 cells were seeded in 12- or 24-well plates and were allowed to adhere 

for 1-3 hours. Non-adherent cells were removed by washing two times with PBS 

5.2.2. Alveolar macrophage cell line  

Murine alveolar macrophage cell line (MH-S, derived from BALB/c) was purchased from 

American Type Culture Collection. Cells were grown in complete RPMI-1640 medium 

supplemented with 10 % fetal bovine serum (Biochrom) and 0.05 mM β-

mercaptoethanol and 100 U/ml Penicillin and 100 µg/ml Streptomycin (Gibco) at 37 °C 

and 5 % CO2. When MH-S cells reach confluence, they were washed once in 10 ml 

PBS, and then 5 ml pre-warmed Trypsin-EDTA was added to cover the cell layer. Cells 

were incubated at 37°C for 5 min, and then wait until the complete detachment from the 

flask. Fresh culture medium was added to stop the reaction of Trypsin-EDTA. After 

resuspension in culture medium, MH-S cells were collected in falcon tubes and 

centrifuged (1200 rpm, 5 min, RT). Cells were subsequently diluted at 1:3 ratios into new 

flasks or used in experiments. MH-S cells were splitted every 3 to 4 days. MH-S cells 

were plated on 6-, 12- or 24-well plates with a density of 3 x 105 - 6 x 105 cells/cm2 the 

day before treatment.  
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5.2.3. Polarization of alveolar macrophages into M1 or M2 phenotype 

Primary alveolar macrophages and MH-S cells were polarized towards the M1 

phenotype with LPS (1 μg/ml, Sigma) and/or IFNγ (20 ng/ml, Immunotool) or towards 

the M2 phenotype with IL-4 (20 ng/ml, Immunotool) treatment for up to 72 h. Unpolarized 

cells (M0) served as controls. Cell culture supernatants were collected for measurement 

of CCL17. Adherent AMs were washed twice with PBS and harvested for total RNA 

isolation or protein extraction. 

5.2.4. Trans-well co-culture of alveolar epithelial cell and alveolar macrophage 

For LA4/MH-S co-culture, we used a trans-well co-culture system from (Becton 

Dickinson Lab ware and Corning Incorporated). LA4 were plated seeded on the lower 

side of trans-well at a density of 5.0 x105/well. MH-S cells were seeded on upper side of 

trans-well at a density of 5.0 x105/well. Cells were grown in complete F-12 culture 

medium supplemented with 15 % fetal bovine serum (Biochrom) and 0.05 mM 

nonessential amino acids (NEAA) (Biochrom) and 100 U/ml Penicillin and 100 µg/ml 

Streptomycin (Gibco) at 37 °C and 5 % CO2. After 24h treatment of LPS (1 μg/ml, 

Sigma) and IFNγ(20 ng/ml) or with IL-4(20 ng/ml), RNA from LA4 cells were isolated for 

qPCR profiling. 

5.2.5. Condition medium experiment 

When MH-S cells reach confluence, cells were grown in F-12 culture medium, after the 

stimulation with LPS (1 μg/ml, Sigma) and/or IFNγ (20 ng/ml, Immunotool) toward M1or 

towards the M2 phenotype with IL-4 (20 ng/ml) for 6 h, the culture medium were 

aspirated, and then fresh medium were added again to the cell for another 24h. 
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Followed that, the supernatants from M0, M1and M2 cells were collected as conditioned 

medium, and it was added to the LA4 cell for 24 h. 

5.2.6. Enzyme-Linked Immunosorbent Assay (ELISA) 

Cell culture supernatant of AMs was collected after treatment with LPS/IFNγ and IL-4 for 

M1 and M2 polarization and stored at -80 °C until analysis. CCL17 concentration was 

measured using a specific ELISA (Duoset Detection Kit; R&D Systems) according to the 

manufacturer’s instruction. Concentrations were calculated with a standard curve 

(detection limit 31 pg/ml). 

5.2.7. Transcriptome analysis 

The samples were collected and prepared for RNA isolation by myself. Expressions 

profiling using the Illumina platform were done by Martin Irmler from the core unit from 

the Institute of Experimental Genetics at the Helmholtz Zentrum München. Heatmaps 

were generated with the help of Yuan De Tian from the Institute of Virology at the 

Helmholtz Zentrum München. 

RNA isolation: Total RNA was isolated employing the RNeasy Mini (Qiagen) including 

RNase-Free DNase for digestion of remaining genomic DNA. The Agilent 2100 Bio-

analyzer was used to assess RNA quality and only high quality RNA (RIN>7) was used 

for microarray analysis. 

Expression profiling: Total RNA (about 10 ng) was amplified using the Ovation PicoSL 

WTA System V2 in combination with the Encore Biotin IL Module (Nugen). 1000 ng of 

amplified cDNA was hybridized to Mouse Ref-8 v2.0 Expression Bead Chips (Illumina, 
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San Diego, CA, USA). Staining and scanning were done according to the Illumina 

expression protocol. Data was processed using the GenomeStudioV2011.1 software 

(gene expression module version 1.9.0) in combination with the MouseRef-

8_V2_0_R3_11278551_A.bgx annotation file. The background subtraction option was 

used and an offset to remove remaining negative expression values was introduced. 

CARMAweb was used for quantile normalization (251). 

Statistical transcriptome analysis: Statistical analyses were performed by utilizing the 

statistical programming environment R (R Development Core Team). Genewise testing 

for differential expression was done employing the limma t-test (p<0.05). Heatmaps and 

GO enrichment analysis were done with R/Biocondcutor (www.bioconductor.org). 

5.2.8. Water soluble Tetrazolium salt (WST) cell viability assay 

MHS-cells and primary AMs isolated from Wt and LMPs-/- were seeded to 96 well 

palates at 30,000 per well. After 24h M1 and M2 polarization and serial dose of 

ONX0914 treatment for 6 and 24 h, 10% Roche WST reagent was added to the plate, 

and then wait for 15 min in a CO2-incubator at 37°C, followed that, the results were read 

by spectrophotometer at 490nm.    

5.2.9. RNA extraction and quantitative RT-PCR analysis 

Total RNA was extracted from AMs using Quick-RNA™ MicroPrep kit (ZYMO, Freiburg, 

Germany). 50-1000 ng total RNA was used for cDNA synthesis by Superscript™ II 

Reverse Transcriptase kit with the protocol described previously. To determine the 

expression of target genes relative to the actin housekeeper Actb, the ABsolute™ QPCR 
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SYBR® Green ROX Mix (Thermo Scientific, Wilmington, USA) was used on an ABI 

PRISM® 7000 detection system (Applied Biosystems, Foster city, CA, USA). Primer 

sequences are given in Supplementary Table I. Reaction mixture contained 1 μl cDNA 

(10 ng), 1 μl (5 μM) of each primer, 12.5 μl ROX mix and ddH2O up to a total volume of 

25 μl. Following initial enzyme activation (one cycle at 50°C for 2min and 95 °C for 15 

min), 40 cycles amplification (95 °C for 15 s, 60 °C for 1 min) were carried out, and then 

run a dissociation curve to detect nonspecific amplification. Relative expression of target 

genes and housekeeping gene Actb was calculated according to the 2-ΔCt method (49). 

We chose to show absolute values of a representative single experiment. Results of 

three independent replicates are provided in Table. 

Table 2: Primer sequences and amplicon characteristics of genes of interest (GOI)  

Target 
gene 

Acc. No. Forward primer (5’- 3’) Reverse primer (5’- 3’) 

Actb NM_007393 TCCATCATGAAGTGTGACGT GAGCAATGATCTTGATCTTCAT 

Arg1 NM_007482 GGAACCCAGAGAGAGCATGA TTTTTCCAGCAGACCAGCTT 

Ccl17 NM_011332 TTGTGTTCGCCTGTAGTGCATA CAGGAAGTTGGTGAGCTGGTAA 

Il6 NM_031168 GCC AGA GTC CTT CAG AGA G AGA CTC TCT CCC TTC TGA GC 

Il1b NM_008361 CAACCAACAAGTGATATTCTCCATG GATCCACACTCTCCAGCTGCA 

Il12b NM_008352 GGAAGCACGGCAGCAGAATA AACTTGAGGGAGAAGTAGGAAGG 

Irf4 NM_013674 AAAGGCAAGTTCCGAGAAGGG CTCGACCAATTCCTCAAAGTCA 

Irf5 NM_012057 GCCACCTCAGCCGTACAAG CTCCCAGAACGTAATCATCAGG 

Mrc1 NM_008625 CATGAGGCTTCTCCTGCTTCT TTGCCGTCTGAACTGAGATGG 

Nfkb1 NM_008689.2 AGGAAGAAAATGGCGGAGTT GCATAAGCTTCTGGCGTTTC 

Nos2 NM_010927 CCTGTGAGACCTTTGATG CCTATATTGCTGTGGCTC 

Rela NM_009045 CTTGGCAACAGCACAGACC GAGAAGTCCATGTCCGCAAT 

Retnla NM_020509 CGAGTAAGCACAGGCAGT CCAGCTAACTATCCCTCCAC 

Tnf NM_013693 CACCACGCTCTTCTGTCT GGCTACAGGCTTGTCACTC 



5. Materials and methods 

- 106 - 

 

Il4ra NM_001008700 TCTGCATCCCGTTGTTTTGC GCACCTGTGCATCCTGAATG 

Psmd11 NM_178616 GAATGGGCCAAATCAGAGAA TGTACTTCCACCAAAAGGGC 

Psme1 NM_011189 AGG CTT CCA CAC GCA GAT CT ACC AGC TGC CGA TAG TCA CC 

Psme2 NM_001029855 CCA GAT CCT CCA CCC AAG GA CCG GGA GGT AGC CAC ACT TA 

Psme3 NM_011192 
TAGCCACGATGGACTGGATG CACAAACACCTTGGTTCCTTGAA 

Psma3 NM_011184.4 TGAAGAAGGCTCCAATAAACGTCT AACGAGCATCTGCCAGCAA 

Psmb5 NM_011186.1 TGCTCGCTAACATGGTGTATCAGTA GGCCTCTCTTATCCCAGCCA 

Psmb6 NM_008946.4 AGACGCTGTCACTTACCAACTTGG AAGAGACTGGCGGCTGTGTG 

Psmb7 NM_011187.1 TGCCTTATGTCACCATGGGTTC TTCCTCCTCCATATCTGGCCTAA 

Psmb8 NM_010724 TGCTTATGCTACCCACAGAGACAA TTCACTTTCACCCAACCGTC 

Psmb9 NM_013585 GTACCGTGAGGACTTGTTAGCGC GGCTGTCGAATTAGCATCCCT 

Psmb10 NM_013640 GAAGACCGGTTCCAGCCAA CACTCAGGATCCCTGCTGTGAT 

Csf-2 NM_009969 GCC ATC AAA GAA GCC CTG GCG GGTCTGCAC ACA TGTTAAA 

Lcn2 NM_008491 GAA GAA CCA AGG AGC TGT TCA ATG CAT TGG TCG GTG 

Tgfb NM_001013025 TGA CGT CAC TGG AGT TGT ACG GGT TCA TGT CAT GGA TGG TGC 

Ccl2 NM_011331 CTT CTG GGC CTG CTG TTC A CCA GCC TAC TCA TTG GGA TCA 

Cx3cl1 NM_009142 GCGACAAGATGACCTCAC CCAGGTGTCACATTGTCC 

Cxcl1 NM_203320 CCG  AAG TCA TAG CCA CAC GTG CCA TCA GAG CAG TCT 

Cxcl5 NM_002994 CCC TAC GGT GGA AGT CAT CTT CAC TGG GGT CAG AGT 

Cxcl2 NM_002089 TCCAGAGCTTGAGTGTGACG TCCAGGTCAGTTAGCCTTGC 

Cxcl9 NM_008599 GGAGTTCGAGGAACCCTA GGGATTTGTAGTGGATCG 

Pparg NM_001127330 GTA GAA GCC GTG CAA GAG GAG GAA CTC CCT GGT CAT 

Cxcr2 NM_009909 AGCAAACACCTCTACTACCCTCTA GGGCTGCATCAATTCAAATACCA 

Cd36 NM_001159555 TGGAGATTACTTTTTCAGTGCAGAA TCCAGCCAATGCCTTTGC 

Galectin3 NM_001145953 GAG CTA CAC ATC CCT AGC C CTC AGG AGG ATC TGA GAC TG 

 

5.2.10. Cell lysis and Western blotting 

For protein isolation, AMs were washed twice with ice cold PBS and lysed with RIPA 

buffer (50 mM Tris•HCl, pH 7.5, 150 mM NaCl, 1 % Nonidet P-40, 0.5 % sodium 

deoxycholate, and 0.1 % SDS). Samples were centrifuged to remove cell debris and 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_011192
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protein concentrations were determined using standard Bradford assays. 10 μg of 

protein lysates were separated on 10 % SDS-PAGE and blotted onto polyvinylidene 

difluoride (PVDF) membranes (162-0177, Bio-Rad,). The following antibodies were 

used: LMP2 (ab3328, Abcam), LMP7 (ab3329, Abcam), α1-7 (ab2267, Abcam); IL-4 Rα 

(ab157162, Abcam);  AKT (4685, Cell Signaling), p-AKT (4060, pSer473, Cell 

Signaling), STAT6 (9362, Cell Signaling), p-STAT6 (9361, pTyr641, Cell Signaling); 

IRF4 (M17, Santa Cruz); Arginase1 (H-52, Santa Cruz); iNOS (610331, BD 

Transduction Laboratories); HRP-conjugated anti-β-actin (Sigma); HRP-conjugated anti-

rabbit (Abcam) and anti-goat antibodies (Santa Cruz). 

5.2.11. Activity-based probe labeling of proteasomes  

The samples were collected and prepared for protein isolation by myself. Proteasome 

activity analysis using activity-based probe were done by our collaborator (Oliver 

Vosyka) from lab of Silke Meiners of Comprehensive Pneumology Center (CPC) at the 

Helmholtz Zentrum München.  

Activity of the constitutive and immunoproteasome subunits was monitored by using a 

set of activity-based probes (ABP) (252). The pan-reactive proteasome ABP MV151 

(163) was used for quantification of β-subunit activities. β1/LMP2 activities were 

quantified with the ABP LW124 while quantification of β5/LMP7 subunits was performed 

using the MVB127 ABP(164). 

To obtain native lysates, cells were frozen in liquid nitrogen and thawed in a 37 °C water 

bath for five times in ddH2O supplemented with protease inhibitors. After removal of 

cellular debris, these hypoosmotic lysates were diluted to a total protein concentration of 
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0.5 µg/µl with reaction buffer (50 mM HEPES pH 7.4, 100 mM KCl, 10 mM MgCl2). 30 µl 

of sample was incubated with 0.5 µM MV151, 0.25 µM LW124 or 1 µM MVB127 for 1 h 

at 37 °C respectively and subsequently quenched by the addition of 6x Laemmli Buffer 

(50 % v/v glycerol, 300 mM Tris·HCl, pH 6.8, 6 % w/v SDS, 325 mM DTT, 0.1 % w/v 

bromophenol blue) to a final 1x concentration. 

Samples were separated on a 15 % Tris-glycine SDS polyacrylamide gel and 

proteasome activity was visualized using a fluorescent scanner (Typhoon TRIO+; 

Amersham biosciences). Images were taken at 450 PMT (voltage of photo-multiplier 

tube) and 50 µm pixel resolution with fluorescence Cy3/TAMRA for ABPs MV151 and 

MVB127. The Cy2 florescent channel was used for LW124 and analyzed by using 

ImageJ software (http://imagej.nih.gov/ij/). 

5.2.12. Statistical analysis 

All values are showed as the mean ± SEM of at least five animals or 3 individual 

samples in vitro. We used analysis of variance (ANOVA), as calculated by GraphPad 

Prism 5, to establish the statistical significance of differences between the experimental 

groups. Individual inter-group comparisons were analyzed using the two-tailed unpaired 

t test with Welch's correction. Differences were considered significant at *, p < 0.05; **, 

p<0.01 and ***, p<0.001. 
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7. Abbreviations 

°C Degrees Celsius 

µl Microliter 

Ab Antibody 

Actb Actin, beta 

ALI acute lung injury 

AMs Aveloar macrophages 

BAL Bronchoalveolar lavage 

cDNA Complementary DNA 

COPD chronic obstructive pulmonary disease  

Ct Threshold cycle 

DMEM Dulbecco's Modified Eagle Medium  

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

EDTA Ethyldiaminetetraacetate 

ELISA Enzyme-linked immunosorbent assay 

g Gram 

HRP horseradish peroxidase 

KO, -/- Knock out 

L Liter 

LPS Lipopolysaccharides 

M1 macrophages classic activated macrophages 

M2 macrophages alternative activated macrophages 

M-CSF Macrophage colony-stimulating factor 

ml Milliliter 

mm Millimeter 

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells 

OD optical density  

PBS Phosphate buffer saline 

PBST phosphate buffered saline with Tween 20 

PCR Polymerase chain reaction 

qPCR quantitative real-time polymerase chain reaction  

RIPA radioimmunoprecipitation assay buffer 

RNA Ribose nucleic acid 

RT-PCR Reverse transcription PCR 
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SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM standard error of the mean 

SPF Specific pathogen-free  

STAT signal transducer and activator of transcription 

TLR Toll-like receptor 

WT Wild type 

HDL high-density lipoprotein 

IRF interferon-regulatory factor 

LMP low molecular mass protein 

MECL1 multicatalytic endopeptidase complex-like 1 

ABP activity-based probe 

Tnf Tumor necrosis factors 

iNOS inducible nitric oxide synthase 

DC dendritic cells  

Il1b Interleukin-1 beta 

Il12b interleukin 12 beta 

IPF Idiopathic pulmonary fibrosis  

IL-4Ra interleukin-4 receptor alpha chain 

Arg1 arginase 1 

Retnla Resistin-like molecule alpha 

Ccl17 Chemokine (C-C motif) ligand 17 

Arg1 arginase 1 

Mrc1 mannose receptor 1 

WT Wild type 

Lcn2 Lipocalin-2 

Tgfb Transforming growth factor beta 

Cxcl5 C-X-C motif chemokine 5 

Il6 interleukin 6 

Ccl2 chemokine (C-C motif) ligand 2 

Csf-2 colony stimulating factor 2 
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