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ABSTRACT 

Background: Expression patterns of microRNAs in body fluids show potential to be used as 

noninvasive rapid and accurate biomarkers for various diseases.The study aimed to (i) identify 

patterns of microRNA signatures for diagnosis of tuberculosis (TB) and (ii) assess significance of 

a patient’s genetic background on signature composition and diagnostic performance.  

 

Patients and Methods: The study enrolled consented participants from Europe and Africa.  

Circulating miRNAs were measured and compared between patients belonging to the following 

categories; (i) active pulmonary tuberculosis (PTB), (ii) healthy individuals (H), (iii) active 

pulmonary TB co-infected with HIV (PTB/HIV), (iv) latent TB infection (LTBI) and (v) other 

pulmonary infection (OPI). As a first step, pooled sera of 10 participants from each category and 

region of enrolment were measured by TaqMan low-density arrays. Secondly, the identified 

significant miRNA signatures were applied to56 individual sera aiming to discriminate between 

H and PTB patients. Next, the identified miRNA signatures were analysed for their diagnostic 

performances using multivariate logistic analysis, and Relevance Vector Machine (RVM). The 

diagnostic performance of both models was evaluated by a leave-one-out-cross-validation 

(LOOCV). 

 

Results: Significant miRNA signatures that discriminated patient categories were selected from 

the pooled samples. After validation of these in 56 individual participants (36 from the 

European cohort and 20 from the African population); a signature of 15 miRNAs was observed 

to be significantly differently expressed between categories, and able to differentiate healthy 

individuals and from individuals with PTB with a diagnostic accuracy of 82% (CI 70.2-90.0) in the 

RVM and 77% (CI 64.2-85.9) in the logistic classification model. The analysis based on genetic 

background identified a signature of 10 miRNAs that was specific for the European cohort with 

a diagnostic accuracy of 83% (CI 68.1-92.1) in RVM, and 81% (65.0-90.3) in the logistic model.  

Whereas a signature of 12 miRNAs was specific to the African cohort and the diagnostic 

accuracy increased up to 95% (CI 76.4-99.1) and 100% (83.9-100.0) in RVM and logistic model, 

respectively. 

 
Conclusion: This proof-of-concept study showed that miRNA levels were significantly higher in 
patient with TB than in those without TB. miRNAs are a promising diagnostic candidate for TB, 
therefore further prospective evaluation of this diagnostic seems warranted. 
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1. Background and Introduction  
 

1.1 Introduction and Problem statement 
Tuberculosis (TB) is a major public health challenge globally. The World Health Organisation 
(WHO) estimates about 8.6 million new cases of TB each year worldwide. Although effective 
drugs are available and control strategies are in place for decades,  TB still kills an estimated 1.3 
million people every year (WHO 2013). Generally, the peak incidence rate of TB tuberculosis 
was recorded in 2004 worldwide and since then TB has been declining at a rate of less than 1% 
per year. 22 high burden countries contributed 80% of the world burden of Tuberculosis 
globally, and in 2009 five countries (India, China, South Africa, Nigeria, and Indonesia) rank first 
to fifth in terms of total numbers of incident cases. However, HIV co-infected tuberculosis cases 
account for 12% (1.1 million cases) in the world and most of these are from Sub-Saharan Africa 
and southeast Asia, as indicated in figure 1 (WHO 2010a). HIV led to a three to five fold increase 
in tuberculosis incidence in sub-Saharan Africa and the most affected countries are from  
southern and eastern part of the continent (Lawn and Churchyard 2009; WHO 2008). 
 
Despite the fact that one third of the world population is infected with TB, only 10–12% of 
infections progress to  active TB (Corbett et al. 2006). People with Immunosuppressed 
condition, HIV/AIDS are at great risk of progressing from infection to active TB(Corbett 
2003).The low income countries of Africa and South –East-Asia represent the highest number of 
the disease(WHO 2013). Weakness in the health systems cripples TB control strategies (Corbett 
et al. 2006), and  in some settings a high burden of HIV/AIDS  and other  increasingly significant  
epidemiological factors contributes to the tuberculosis epidemic (Dye and Williams 2010). 
Emergence of multidrug resistance-TB (MDR-TB) and extensively drug resistant –TB (XDR-TB) 
makes TB control strategies more difficult.  
 
For decades, sputum smear microscopy has been the main technique for detecting TB and 
monitoring treatment response in resource-constrained countries. However, microscopy is not 
a sensitive test, especially in people living with HIV and children and it doesn’t provide 
information on viability, drug susceptibility of the bacilli and cannot differentiate between 
Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria (WHO 2014). Culture 
is the gold standard tests and also used to detect resistance, as well as monitor response to 
treatment for drug-resistant TB (DR-TB) though the results take weeks to obtain (WHO 2014).  
 
In 2013, 3 million TB cases were not diagnosed or diagnosed but not reported (WHO 2014). 
Detection of TB clinically or without proper investigation for drug resistance can lead to 
ineffective treatment, fuel transmission of drug-resistant strains, additional suffering and costs 
for patients. Given the higher burden of undiagnosed drug resistance TB, accurate and rapid 
diagnosis of drug resistance TB is critical and has the potential to improve control strategies and 
patient management in two ways. First, it would increase the number of diagnosed and treated 
TB patients and interrupt transmission. Secondly, it would decrease morbidity due to earlier 
diagnosis and treatment (WHO 2014). 
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The existing diagnostic tool for active TB are less sensitive in people living with HIV/AIDS and it 
is clearly known that, failure or delay to detect TB in HIV co-infected individuals early is lethal. 
Once Acid Fast Bacilli (AFB) are detected in sputum, the diagnosis of PTB is sensitive and specific  
but this is not the case in people with HIV where microscopy is insensitive and results in false 
negative results (Parry 1993). For the smear negative, chest X-ray is not the best option because 
the radiographic appearance may be atypical due to other infections. This diagnostic 
uncertainty results in a large number of patients being treated for TB without definitive 
diagnosis  (Mendelson 2007). It is estimated that up to 20% of all TB patients  who are  on  
treatment in sub-Saharan Africa die within a year (Harries et al. 2001). Moreover two-thirds of 
these deaths may happen during the first 2 months of treatments, which indicates advanced 
state of the diseases at the time of diagnosis. Smear negative TB in HIV-co-infected individuals 
constitutes a slowly progressive disease entity with limited mortality, but these patients with 
often have poorer treatment outcomes and higher mortality rate as compared to their 
counterparts with TB smear-positive (Hargreaves et al. 2001).  
 
Latent TB infection (LTBI), which is non-infectious and does not produce symptoms of active 
disease, can progress to active TB disease (Dye et al. 1999). Progression can be prevented by 
INH preventive therapy  (WHO 2014) . Currently, there is no available diagnostic tool that can 
differentiate old from recent infection - the latter has a higher risk to progress to active TB. 
Tuberculin skin test (TST) which is more than 100 years old, is the most widely used tool. Even 
though interferon- gamma release assays (IGRAs) was  more accurate than TST, (Menzies, Pai, 
and Comstock 2007) as its  utility unfolded, the assumed superiority of IGRAs over TST 
particularly for high-TB-burden turned out to be untrue (Sharma, Mohanan, and Sharma 2012). 
 
Development of accurate, robust and rapid diagnostic tools to detect active TB at point-of-care 
level, diagnose latent TB infection, predict disease progression, and screen for multi- and 
extensively drug-resistant TB, HIV associated TB and paediatric TB are among the priority aims 
for the Global Plan  to stop TB 2011–2015 (WHO 2010b).  
 
It is known that circulating nucleic acids (CNAs), including micro ribonucleic acids (miRNAs), are 
present in serum, as well as in other body fluids, and that these may serve as potential 
biomarkers of physiologic and pathologic status (Kim and Nam 2006). The aim of this study was 
to identify a pattern of miRNAs to be used as biomarker for diagnosis of active and latent TB 
infection in immunocompetent and immunosuppression individuals. 
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Figure 1;Tuberculosis incidence rate in 2012 (WHO 2013) 
 

1.2 Literature review 

Clinical symptoms presented by mycobacterium tuberculosis infection are non-specific which 
makes accurate classification of cases (latent asymptomatic infection, active pulmonary and/or 
extra-pulmonary disease) difficult (Amanatidou et al. 2012; Bernardo et al. 2011; McNerney 
and Daley 2011; Zumla and Yew 2011). Without improved diagnostic tools and effective 
approaches for their implementation, TB transmission cannot be interrupted and controlled in 
areas where HIV infection is prevalent. The good news is, opportunities for the creation of 
improved diagnostic tests are there (Perkins and Cunningham 2007). Developing and exploiting 
such tests to support TB control strategies especially in the HIV-infected populations is urgently 
needed. These tests should be accurate, simple to use and have a short time to result. An ideal 
test would also have an impact on both HIV-infected and HIV-uninfected populations (Perkins 
and Cunningham 2007), and supplement the existing conventional methods, microscopy and 
culture. 

 

1.3 Diagnostics 
Low sensitivity in detecting tuberculosis cases remains as the major hindrance in the control 

effort against TB (Lawn and Zumla 2011). Resource limited countries have high burden of the 

disease, estimated to be over 90% of the worldwide burden; the diagnosis in these countries 

still depends heavily on sputum smear microscopy which is insensitive especially in HIV/TB co-

infection. In some cases chest radiology supplements the diagnosis (Lawn and Zumla 

2011).These techniques perform poorly, and in most health care facilities in remote areas are 
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often or not performed when the patients visit the facilities at the first time due to the 

unavailability of supplies or trained personnel. The greatest diagnostic challenge is in childhood 

tuberculos is due to low bacillary load resulting in smear-negative samples, and in extra-

pulmonary tuberculosis (EPTB) in adults. In this regards, there is an urgent need for rapid point-

of-care tests that can be used at all levels of the health care facilities up to the community level 

(Lawn and Zumla 2011). 

 

 

1.3.1 Review of currently available diagnostics 
TB is endemic and the diagnosis is based on microscopic examination of sputum smear 
detecting acid-fast bacilli (AFB); the smear is prepared directly from the patient specimens 
(mostly sputum) (Foulds and O'Brien 1998; Perkins 2000). Unfortunately, the technique has 
several limitations. The sensitivity of this test is low in patients with EPTB or less than 10,000 
bacilli per ml of sputum (Squire et al. 2005). Moreover, it requires two to three collections of 
sputum and laborious examination of many samples; consequently the delays of the whole 
process (ranging from 2 to 7 days) makes many people not return to the health facilities for 
their results (Squire et al. 2005).The delays or failure to diagnose the disease on time can be 
due to unskilled microscopist, improper functioning microscopes and inadequate reagents. 
Usually these challenges are commonly observed in the peripheral health facilities in 
developing world (Hawken et al. 2001; Martinez et al. 2005). 
 
As the HIV-epidemic has taken root in the TB endemic countries, the performance of 
microscopy-based TB diagnosis worsened, because suppression of cellular immunity in TB 
patients co-infected with HIV results in less cavities, hence more smear-negative TB, but also 
more extrapulmonary TB (EPTB) (Perkins and Cunningham 2007).Culture is a more sensitive 
technique for detecting TB, and is defined as the gold standard. Recently, liquid culture has 
been approved as the reference standard for the bacteriological confirmation of TB. Its 
disadvantages are several weeks to yield results through slow growth of mycobacteria and 
requirement for advanced technical infrastructure. This technique is mostly available in the 
central laboratories which limit its accessibilities to the remote health care facilities where most 
patients are located.  
 
Automated liquid media culture technique has been developed to supplement conventional 
solid media culture. ``These systems detect bacterial CO2 production or O2 consumption with 
radiometric, fluorescent, colorimetric, or pressure sensors that allow continuous monitoring, 
this obviate the need for mature colony formation, and roughly halve the time to detection, 
compared with Lowenstein-Jensen culture’’(Gil-Setas et al. 2004; Scarparo et al. 2002) 
Running cost of liquid media culture machine is high due to the need for special culture vials, 
large and expensive incubator/readers and the need for backup culture on solid media. Thus, 
liquid culture is at best placed in the central laboratory level together with the drug resistance 
testing. Despite the sensitivity of the liquid culture there also potential disadvantages due to 
high risk of contamination, which commonly happens when the laboratories are not 
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experienced in liquid culture for TB, and  lack of the possibility to examine colony morphology 
to discriminate between TB and non-TB mycobacteria (Perkins and Cunningham 2007). 
 
Regardless of these challenge, there is advancement in the development of rapid diagnostic 
test based on molecular methods. In 2010, WHO endorsed the use of Xpert® MTB/RIF (Cepheid, 
Sunnyvale, CA, USA), a rapid molecular tests which can be used to simultaneously test TB and 
rifampicin resistance. The test has a much better sensitivity than smear microscopy and similar 
to solid culture (Steingart et al. 2013). Nevertheless, this test cannot be used at the peripheral 
health care centre but at more central levels of health systems (WHO 2013) 
 
 
1.3.2 The need for more accurate and rapid diagnostics 
Reduction of TB transmission depends on how quick active tuberculosis cases are being picked 
up and managed. Surprisingly, the detection rate remains at unacceptable low levels despite 
massive efforts put in place for tuberculosis control program. For example; it has been 
observed that only 60% of the estimated total tuberculosis caseload is detected in the WHO 
Africa Region, whereas the 40% remain undetected and continue to transmit M. tuberculosis 
(WHO 2011). Figure 2 illustrates that in some tuberculosis and tuberculosis/HIV-endemic 
countries, less than 4 of 10 cases are detected, with the huge number of HIV co-infected cases 
remaining undiagnosed.  
 

 
 
Figure 2; Estimated detection rate of global tuberculosis case (McNerney et al. 2012) 
 
Generally, the limitations of current diagnostic methods for detecting tuberculosis or latent M. 
tuberculosis infection, especially in HIV-infected patients are still a roadblock to TB control in 
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resource-limited settings. Furthermore, the estimated 450,000 new MDR-TB patients each year 
are only detected after prolonged diagnostic delay in most cases (WHO 2013). Failure to 
diagnose drug resistance in time results in unsuitable treatment, poor prognosis and sometime 
end up in the premature death of the individual patient. It also worsens the situation by failure 
to interrupt circulation of resistant strains (Cuevas et al. 2012; Zumla et al. 2012).  
 
In industrialized regions, radiography and other advanced imaging techniques, culture methods, 
and nucleic acid amplification tests (NAATs) are tests used to complement light and light-
emitting diode (LED) microscopy for the diagnosis of active tuberculosis (Lawn and Zumla 
2011). Combination of the tests during the detection of TB seems to lead to higher sensitivity 
which is further enhanced by the better sample collection technique like; induced sputum, or 
invasive techniques such as bronchoscopy  lavage and tissue biopsies (WHO 2010c). 
Unfortunately, many of these improved technologies are not within reach of many of the 
world’s tuberculosis cases (WHO 2010c). It is estimated that the availability of accurate widely 
used rapid diagnostic test for tuberculosis which will lead to initiation of correct treatment 
could prevent 625 000 tuberculosis deaths annually (Keeler et al. 2006). 
 

1.3.4 Characteristics of an ideal diagnostic test 

The capacity of the test to differentiate between tuberculosis disease and latent M. tuberculosis 
infection is critical. 
The ideal tuberculosis test would be a point of care (POC) test capable of providing; 

1. On-the-spot accurate diagnosis of tuberculosis infection, especially in problematic 
patient groups, e.g.   HIV co-infected TB patients, patients with EPTB, and children.  

2. It should be capable of detecting resistance to the first-line tuberculosis drugs to avoid 
treatment failure and prevent additional drug resistance (Weyer, Carai, and Nunn 2011).  

3. The test should be able to detect the disease independent of sputum, rather in other 
sample (s) that is easier and less invasive during collection. 
 

In addition, an ideal test should also be useful in screening all HIV-infected persons for latent M. 
tuberculosis infection simply because HIV patients with latent M. tuberculosis infection are at 
high risk of progression to active tuberculosis in the absence of preventive therapy (WHO 
2010b).  
 
There are number of tuberculosis diagnostics tests that are in different development phases or 
evaluation field trials. Endorsement and implementation of these tests will greatly depend on 
credible data on test performance, acceptance into national tuberculosis programs; 
affordability for both the patient and health system. The quality and durability of the diagnostic 
devices, as well as the access to appropriate treatment following diagnosis will also be 
considered. Research and development of POC tests for tuberculosis has received increasing 
attention in recent years. ʽʽHowever, there is still  lack of  focused, strategic approach and 
insufficient integration between areas of biological discovery, test development and the 
establishment of well-characterized specimen repositories for initial test evaluation’’ (Marais et 
al. 2010; McNerney and Daley 2011). 
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1.3.5 Diagnosis of latent TB disease 

Latent TB disease (LTB) is the infection caused by Mycobacterium tuberculosis (M. tuberculosis), 
the organism that causes TB, without any clinical symptoms of active disease. It is estimated 
that, one third of the world’s population is infected with M. tuberculosis which is in the 
dormant state or (latent form) and most of those infected will never progress to the active form 
of tuberculosis (Dye et al. 1999),with an estimated lifetime risk of progression to active disease 
of about 10% (Corbett et al. 2003). Whereas, HIV positive persons who are infected with M. 
tuberculosis have a 5-8% annual risk and a  lifetime risk of developing active tuberculosis that is 
three times higher compared to the immune-competent individuals (Selwyn et al. 1989) and 
this risk increases as immune deficiency worsens (Williams and Dye 2003).Impairing of the cell-
mediated immunity in the HIV infected individuals, is the most strong known risk factor for the 
reactivation of latent M. tuberculosis infection (McShane 2005). 
 
The ability to diagnose and use of INH preventive therapy in LTBI especially in people living with 
HIV depends on availability of accurate diagnostic tool to detect LTBI. The use of tuberculin skin 
test (TST) has been evaluated in a number of studies. Test positivity was associated with 
increased risk of active tuberculosis (Comstock, Livesay, and Woolpert 1974; Fine et al. 1999; 
Horsburgh, Jr. 2004; Menzies 1999). However, the sensitivity and specificity of TST especially in 
HIV infected individuals has shown some limitations (Menzies et al. 2007). Newer T cell 
interferon gamma release assays (IGRAs) appear to be more sensitive in detecting LTB following 
a recent tuberculosis exposure as compared to the TST (Lalvani and Millington 2007; Menzies et 
al. 2007; Pai et al. 2008). Though, data generated from different studies produced contradictory 
result  on the predictive value of IGRAs for the risk of progression of LTBI into active TB, and just 
like other tests, sensitivity in HIV infected individuals remains low (Santin, Munoz, and Rigau 
2012). 
 

1.3.6 Diagnosing TB in HIV Co-infected Patients 

Due to increased risk, screening for TB in all patients with HIV/AIDS has been endorsed by WHO 
and indicated in the guidelines although the diagnosis of TB in HIV/AIDS patients has proven to 
be difficult (WHO 2008). 
 
First, M. tuberculosis is not the only pathogens that can cause lung infections in HIV infected 
individuals; rather there is a range of other microorganisms which can cause infections in the 
lung. Secondly, smear microscopy, the widely used technique in diagnosing pulmonary TB, has a 
lower sensitivity and more so in HIV infected individuals, since HIV/AIDS patients have a lower 
concentration of M. tuberculosis bacilli in their sputum. This is due to the poor formation of 
cavity in the lungs, or patient may not be able to produce sputum of good quality. Lastly, chest 
X-ray (CXR) results more often show normal findings, because TB produces less typical findings 
in HIV positive (Aderaye et al. 2007; Hawken et al. 1999; Zar et al. 2005). Difficulties in diagnosis 
of TB disease in HIV patients has resulted into more than half of TB cases  being diagnosed late 
resulting in poor prognosis (Mendelson 2007). Limited access and low sensitivity of the 
diagnostic test cause substantial delay in diagnosis and patients in many resources-poor setting 
with a high TB burden do not receive a diagnosis for 3–6 months (Liam and Tang 1997; Madebo 
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and Lindtjorn 1999). This delay significantly contributes to disease transmission and severity of 
disease when it is finally discovered which usually end in poor prognosis of the infected patient. 
Although, smear-negative TB has conventionally been observed as a slower progressive disease 
with low mortality rate in HIV infected  but patients with smear-negative disease many a times 
have poorer treatment outcomes and higher mortality rate than  their counterparts with 
smear-positive TB (Friend et al. 2005; Hargreaves et al. 2001).  
 

1.3.7 Diagnostic tests for active tuberculosis in children 

In TB endemic countries, childhood tuberculosis accounts for 15%–20% of all cases (WHO 
2011). The true burden of global childhood TB is not clearly known. In 2012, there were 
anestimated 530,000 cases and 74,000 deaths due to childhood TB (WHO 2013).  The major 
challenges in childhood TB diagnosis are: (i) sputum recovery in young children is difficult and , 
it usually has low concentration of bacillary (Newton et al. 2008) and (ii) non-specificity of 
clinical symptoms associated with childhood TB, further makes clinical diagnosis to be very 
unreliable (Marais et al. 2005). Clinical scoring systems to aid diagnosis have not been validated 
and the diagnostic accuracy varies (Hatherill et al. 2010; Hesseling et al. 2012). Overtreatment 
of childhood TB is common and misdiagnosis contribute to the poor treatment outcome 
(Cuevas et al. 2012; Drobac et al. 2012). Furthermore, HIV infected children have an increased 
risk of severe and disseminating form of TB (Marais et al. 2005). To date there is no gold 
standard for childhood diagnosis and the existing diagnostic methods showed low sensitivity 
and specificity (Marais et al. 2006).Therefore, alternative, methods that will reliably detect  
active TB from TB negative are needed to improve clinical management.   

1.4 BIOMARKERS. 

1.4.1 Identifying accurate and novel biomarkers 

A biomarker can be used to classify the normal physiological process against pathological 
changes in human or animals. Biomarkers act as an indicator for biological process, progression 
of pathogenesis and its response to the therapeutic intervention (Lawn and Zumla 2011; 
McNerney and Daley 2011; O'Grady et al. 2011; Wallis et al. 2010; Walzl et al. 2011). 
Monitoring a biomarker may provide useful information about the host- or pathogen in relation 
to the current health status, the pathogenic process and the risk of the patient to develop the 
disease in the future. TB- specific biomarkers could be used to categorize patients at a single 
time points into the following categories: active tuberculosis, latent M. tuberculosis infection, 
or no disease (McNerney and Daley 2011; Wallis et al. 2010). A biomarker as a single molecule 
in clinical practice is unlikely to perform better than using pattern of markers together (Walzl et 
al. 2011) .Biomarkers could in the future be used to detect LTBI, predict the risk of progression 
from LTBI to TB disease, monitor eradication programmes, and serve as a surrogate marker for 
cure in clinical trials following TB chemotherapy as illustrated in Figure 3. 
 
Progress in developing and validation of TB specific biomarkers is moving at very slow pace. 
Further, one of the great challenge which need to be addressed during the development 
process is to ensure that the biomarker discovered is translated into a suitable point-of-care 
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test (Lawn and Zumla 2011; McNerney and Daley 2011; O'Grady et al. 2011; Wallis et al. 2010; 
Walzl et al. 2011). There are a number of ongoing studies which are trying to compare different 
gene expression profiles in patients infected with TB, LTBI as well as healthy individuals with no 
pre-exposure to M. tuberculosis, using multiplexed assays. These studies are measuring several 
targets with proteomics, transcriptomics, and metabolomics (Wallis et al. 2010; Walzl et al. 
2011). 

 
 

 
 
Figure 3;The dynamics of host-pathogen interaction adapted from (Doherty, Wallis, and 
Zumla 2009).This scheme indicates the different categories that are used to determine disease 
status. A double-ended arrow indicates the possible risk of the two conditions that are believed 
to be able to revert; while single-ended arrows indicate what is believed to be an irreversible 
condition in disease status. Circled numbers indicate some of the crucial questions about 
changes in status. 
 
 
Even though there is no breakthrough in developing new accurate, biomarkers which are 
specific to tuberculosis but we cannot turn the blind eye on the significant progress which has 
been achieved to date. Additional to diagnostic role, biomarkers have potential role in clinical 
care. For example, during TB drug trials, biomarkers might facilitate identification of early 
responders for whom shortened therapy might be appropriate (Balasubramanian et al. 1990; 
Hong Kong Chest Service/British Medical Research Council 1991). Also, a biomarker could 
detect risk of relapse which might then allow resources to be focused on those patients with 
high risk for poor treatment outcome. Similarly, biomarkers can indicate the risk of reactivation 
of latent tuberculosis infection in specific individuals, which might facilitate the targeted 
application of isoniazid preventive therapy in tuberculosis endemic regions (Gandhi et al. 2006). 
Occurrence of drug toxicity and protective immunity after vaccination can be detected by 
biomarkers as well; more advantages of biomarkers are detailed in Table 1. 
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1.4.2 Properties of the ideal biomarker 

Stable molecules which are abundantly present in the body fluids and easily recovered would 
make ideal biomarkers. It has been reported that circulating nucleic acids (CNAs) including 
miRNAs, found in the body fluids such as plasma, serum, urine, saliva and sputum (Park et al. 
2009; Xie et al. 2010), could present a useful diagnostic biomarkers which is rapid, sensitive,  
accurate and stable for detection of different diseases (Kopreski, Benko, and Gocke 2001; Lo et 
al. 2007; Salani et al. 2007; Swarup and Rajeswari 2007; Wang et al. 2009).  
 

1.4.3 miRNA - origin, processing and target selection 

ʽʽmiRNAs are small non coding RNAs molecules regulating multiple biological processes by 
interfering with mRNA translation” (Hammond 2006). miRNAs are the largest gene defined as 
single-stranded RNAs  ~22 nt in length (ranging 19–25 nt) generated from endogenous 
transcripts that can form local hairpin structures in silico (Ambroset al, 2003). ʽʽPrimary miRNA 
(pri-miRNA) originate in the nucleus as a single transcript of about 1000 nucleotides long is 
processed by the RNase III enzyme Drosha’’(Lee et al. 2003). ʽʽThe RNA binds protein DGCR8 
into pre-cursor hairpin structures ~ 70-100nt long termed (pre-miRNA)”(Lee et al. 2003). . 
Transport to the cytoplasm is via Exportin 5 where the pre-miRNA is further processed by Dicer 
into a miRNA duplex consisting of the mature miRNA (Kim 2005). Transformation of mature 
miRNA into a miRNA-induced silencing complex (miRISC) is facilitated by Argonate protein, but 
importin 8 is involved in the transport to the target mRNA (Figure 4) (Weinmann et al. 2009). 
Single miRNA can exist in introns and exons of the host genes, while certain groups of miRNAs 

Table 1; Predictive roles for Tuberculosis biomarkers, adapted from (Wallis et al. 2013). 
 
 

Prediction of tuberculosis cure 
• Emergence of drug resistance 
• Recurrence due to relapse 
• Drug toxicity 
 
Prediction of tuberculosis reactivation 
• Progression from primary infection to disease 
• Reactivation of latent infection 
• Eradication of latent infection 
 
Prediction of protective immunity 
• Vaccine efficacy 
• Adjunctive immunotherapy efficacy 
• Recurrence due to reinfection 
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are present in clusters in the genome, for example the miR-17-92 family. Each miRNA has an 
existing  2-8 nucleotide known as “seed region” thought to be critical for target selection (Liu 
2008). Mature miRNAs use this seed region to bind selectively to miRNA recognition elements 
(MRE) within the 3’ untranslated region (3’UTR) of target mRNAs. Different target genes may 
contain several MREs and therefore be regulated by numerous miRNAs.  
Discovery of miRNA resulted into several theories related to the process involved in its 
regulation and expression. O’Connell et al describe three stages regaled to the function of 
miRNAs namely “(i) transcription, (ii) processing and (iii) subcellular localisation”  
(O'Connell et al. 2010). ʽʽStage (i) includes induction of miRNA expression by transcription 
factors in response to inflammatory stimuli and cellular stresses, stage (ii) impaired processing 
may be due to dicer inhibition (Wiesen and Tomasi 2009) or post-transcriptional modifications 
(Suzuki et al. 2009) and finally stage (iii) is where miRNA can localise to stress granules and p-
bodies; a process which is poorly understood at this time.  
 

 
 
 
Figure 4; Representation of miRNA induction and biogenesis reproduced from (Oglesby, 
McElvaney, and Greene 2010). 
 

1.4.4 Mechanism of miRNA action 

Hundreds of targeted genes can be post-transcriptionally regulated with miRNAs, this process 
controls wide range of biological functions  for instance cellular proliferation, differentiation, 
and apoptosis (Calin and Croce 2006). Mechanism of actions for miRNAs involves  degradation 
of mRNA targets and translational inhibition with little or no influence on mRNA levels 
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(Brodersen and Voinnet 2009). For miRNAs to act on mRNAs, complementarity between the 
two is required (miRNAs and 3’ untranslated region (UTR) of beset mRNAs). There are two 
mechanisms of miRNA action that are involved: (A) when miRNA is near-perfectly 
complementary with target mRNA, deadenylation and subsequent degradation of the target 
mRNA occurs (major mechanism of miRNA action); (B) when miRNA is only partially 
complementary to its target mRNA, translational inhibition occurs. miRNAs incorporated in the 
RISC (RNA-induced silencing complex) often recognize their targets — nucleotides 2–7 of 
miRNA (known as the 'seed region’(Brodersen and Voinnet 2009). ˋˋBesides the 
complementarity between miRNA and mRNA, several other factors may influence the miRNA 
action such as impaired processing, methylation, gene polymorphisms, gene amplification, 
deletion of Dicer, translocations and others’’ (Nana-Sinkam et al. 2009). 
 

1.4.5 miRNA in pulmonary physiology and pathology 

It has been documented that, miRNAs expression profile of mammalian lungs are very specific 
and highly conserved (Williams et al. 2007a; Williams et al. 2007b).  Research on miRNA roles in 
pathophysiological conditions in lung compartment is limited and is mainly based on animal 
models.  Differential miRNA expression has been observed in number of processes such as 1) 
lung development and homeostasis, 2) inflammation and viral infections and 3) deregulation 
which may contribute to several pulmonary diseases. miRNAs are also  involved in the ongoing 
posttranscriptional regulation in the lung compartment (Tomankova, Petrek, and Kriegova 
2010).  
 
The understanding of miRNA expression patterns as potential biomarkers for diagnosis, 
prognosis, personalized therapy, and disease management is just starting to develop. Some 
miRNAs were stated to be related with some clinical outcome, such as chronic lymphocytic 
leukemia (Calin et al. 2005) adenocarcinoma of the lung (Takamizawa et al. 2004; Yanaihara et 
al. 2006), breast cancers  (Iorio et al. 2005)  and pancreas cancers (Bloomston et al. 2007; Roldo 
et al. 2006). Studies revealed that serum miRNAs correlate better to specific disease status as 
compared to those detected in the blood cells (Chen et al. 2008; Mitchell et al. 2008). miRNA 
expression levels seem to be stable and reproducible in the serum;  which makes them 
potential markers for disease diagnosis (Agranoff et al. 2006; Jacobsen et al. 2007; Lesho et al. 
2011; Maertzdorf et al. 2011; Mistry et al. 2007).    
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Table 2; Overview of the candidate biomarkers which emerged from studies on different 
genes, proteins or miRNA expression profiles. 
 

Analysis Candidate Biomarkers Reference 

Transcriptome RIN3, LY6G6D, TEX264, MP68, 
SOCS3, KIAA2013, ASNA1, 
ATP5G1, NOLA3 

(Mistry et al. 2007) 

FcγRIB (Maertzdorf et al. 2011) 

127-probeset expression 
signature gave 100% accuracy 
in discriminating Healthy, PTB, 
LTBI and BCG vaccinated 
subjects 

(Lesho et al. 2011) 

 Lactoferrin, CD64, RAB33A  (Jacobsen et al. 2007) 

Transcriptome (cell 
specific) 

Neutrophil-driven transcript 
signature of IFNγand type IIFN 
signalling 

(Berry et al. 2010) 

Proteome SAA, transthyretin,neopterin, 
CRP 

(Agranoff et al. 2006) 

Metabolome  Metabolomics patterns 
discriminate different 
mycobacterial species 

(Olivier and Loots 2012) 

Cellular miRNAs 28 miRNAs (among which miR-
144*) up-regulated and 2 
miRNAs downregulated in PTB 

(Liu et al. 2011) 

17 miRNAs differentially 
expressed between Healthy, 
PTB and LTBI 

(Wang et al. 2011a) 

miR-155, miR-155*  (Wu et al. 2012a) 

Circulating miRNAs 33 miRNAs up-regulated in 
serum from PTB Patients 

(Fu et al. 2011) 

Sputum miRNAs 95 miRNAs differentially 
expressed between PTB and 
healthy controls 

(Yi et al. 2012) 

miR-29a (Fu et al. 2011) 

 
Yurong Fu et al. demonstrated that changes in miRNA expression can discriminate between 
active TB and healthy individuals. For example, circulating miR-29a could act as a biomarker for 
diagnosis of active pulmonary tuberculosis infection as it was reported by Ful et al (Fu et al. 
2011). Wu and colleagues reported that miR-155 and miR-155* exhibited potential 
characteristic expression following cell stimulation with TB-specific antigen, suggesting that 
miRNAs can be suitable diagnostic markers (Wu et al. 2012b). Also, alterations in expression 
levels of miRNA could reflect and predict disease progression. For instance, some miRNAs may 
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control gene expression pathways that are important for the pathogenesis of TB and also 
involve in the transition process from latent TB disease to active TB (Wang et al. 2011a). 
Changes in miRNA expression levels might not only be detected in TB but also sarcoidosis 
(SARC), a granulomatous disease (Maertzdorf et al. 2012). The available published data 
suggested that miRNA could serve as a potential diagnostic marker for active TB disease. 
 
Many non-specific markers of inflammation as single molecule have mediocre predictive value 
in clinical use, although a combination of the biomarkers highlighted in the table 2 above 
presents some potential markers that can help to determine or predict clinical cure, or risk of 
relapse or reactivation (Wallis et al. 2013). This study aimed at identifying patterns of miRNA  
signatures that can be used as a diagnostic biomarker for TB disease; which also suggest being 
more potent than a single marker. 
 
We therefore started a study to investigate possible patterns of serum miRNA signatures 
associated with different TB statuses (PTB, EPTB, LTBI), non-pulmonary TB diseases (OPI) and 
multi-ethnic healthy controls, with the potential to differentiate between them. The results 
obtained from this study aimed to provide new knowledge which narrows the gap toward the 
development of POC test for TB. The focus was also on biomarkers that can discriminate the 
group of latent TB infected individuals, who usually act as reservoir of infection. 

1.5 Purpose of the study 

This study attempted to identify and describe specific patterns of miRNAs in serum, with the 
following aims: 
 

I) Identification of a specific pattern of miRNAs in serum, which can be used as 
biomarker for active and latent TB in immunocompetent individuals. 

II) Identification of a specific pattern of miRNAs in serum to be used as biomarker in 
with active and latent TB in immunodeficient patients: HIV  

III) Identify similarities /differences of miRNAs expression based on differing genetic 
backgrounds in a European and African cohort. 

1.6 Identification of the microRNAs 

Accurate determination of miRNA expression level in a specific cell type or tissue is an essential 
parameter in describing the biological, pathological and clinical roles of miRNAs in healthy and 
diseased individuals. 
Challenges in creating miRNA expression profile are: 

i) mature miRNA are short (_22 nucleotides long); 
ii) miRNAs are heterogeneous in their GC content, which results in a relatively large range 

of melting temperatures (Tm) of nucleic acid duplexes for the population of miRNAs; 
iii) mature miRNAs lack a common sequence that would facilitate their selective 

purification Example., poly(A) 
iv) the target sequence is present in the primary transcript (pri-miRNA) and the precursor 

(pre-miRNA), in addition to the mature miRNA (Benes and Castoldi 2010); 
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v) miRNAs within the same family may differ by a single nucleotide (e.g., Let-7 
family)(Benes and Castoldi 2010) . 

 
Accurate high-throughput profiling of miRNAs is a major challenge for the field. Several 
methodological approaches to profile mature miRNAs are available at present such as 
microarrays and bead-based flow cytometry, in a single experiment, but such approaches 
generally require significant amounts of input RNA (>1 mg) and preclude the use of very small 
specimen (Castoldi et al. 2006; Liu et al. 2004; Lu et al. 2005; Nelson et al. 2004; Sioud and 
Rosok 2004; Thomson et al. 2004). In this study, total RNA was extracted from serum and an 
amount of RNAs as small as 2µI were used as template for reverse -transcription amplification.   
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2. METHODOLOGY 

2.1 MATERIAL AND METHODS 

Materials and methods used to evaluate miRNAs expression as a biomarker for diagnosis of TB 

have considerable influence on the results obtained. In this chapter, we present the method, 

and procedure, from enrolment, sample collection, and Processing. The results and their 

interpretations will be presented in the next chapter. 

2.1.1 Acknowledgement  

The results from the African population are the original work for this PhD. To increase the 
accuracy of the miRNAs as markers for diagnosis, and be able to evaluate the influence of 
genetic background, additional results from a European cohort were added by colleagues in 
Italy (Paolo Miotto and Ilaria C. Valente) and included in the final analysis as presented in this 
document. The statistical analysis described under section 2.3.1 to 2.3.4 was performed by 
(Paolo Miotto, Giovanni Sotgiu, Alessandro Ambrosi and Roberta Bosu), biostatisticians in 
Milan, Italy.  
 

2.1.2. Study population and enrolment procedure 

The study was conducted in according to the principles of the “Declaration of Helsinki” ,and 

followed Quality Assurance/Quality Control as indicated in protocol, study SOPs and according 

to the laws and regulations of the respective country; to ensure   protection of the study 

participant and data quality. This study was nested in two studies; namely TB NEW (European 

cohort) and TB CHILD (African cohort), funded by ECSFP and EDTCP respectively. Inclusion and 

exclusion criteria of the study population are detailed below; 

 
TB suspects: 
Inclusion criteria 

i. Signed written informed consent or witnessed oral consent in case of illiteracy before  
start of any study procedure 

ii. Ages 18 years and above 

iii. Persistent cough for ≥ 2 weeks and at least one of the following condition; 

Haemoptysis, Chest pain, fever, night sweats, malaise, unexplained weight loss within 
the last 3 months, loss of appetite and contact with TB case. 

Exclusion criteria 
i. Tb treatment in the past year 

ii. Severely ill TB suspect  

Healthy individuals (Controls): 
Inclusion criteria 

i. Signed written informed consent or witnessed oral consent in case of illiteracy before  
start of any study procedure 
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ii. Ages 18 years and above 

iii. Healthy individuals without any symptoms of active TB or any other  diseases 

Exclusion criteria 
i. HIV infected individuals 

ii. History of TB  

iii. Sick with any other diseases.   

Consented adult participants were enrolled from 4 sites: PTB, PTB/HIV and H were enrolled 

within the TB CHILD study at Ifakara Health Institute - Bagamoyo Research and Training Centre 

(BRTC), Pwani, Tanzania; the NIMR-Mbeya Medical Research Center (MMRC), Mbeya, Tanzania; 

Nsambya Hospital, Kampala, Uganda.  Where  at Infectious Diseases Departments and Internal 

Medicine Departments of Ospedale San Raffaele Fondazione- Centro San Raffaele , Milan, Italy, 

subjects of the categories; PTB, LTBI, H and a small population of patients with EPTB and OPI 

were enrolled within the TB NEW study. Sample collection from all sites was performed from 

September 2009 to July, 2012.  

 

2.1.3  Study Procedures 

TB suspect seeking medical help in the hospital close to the research site and meeting study 
criteria were enrolled.  Recruitment of the patients was carried out in close collaboration with 
public hospital under National TB and Leprosy Programme (NTLP). After diagnosis, patients 
were transferred to the hospital for treatment. All results of established standard diagnostics 
tests were made available to assist treatment decisions. However, the results of the 
experimental diagnostic test did not influence clinical decisions.  
 
All subjects included in the study underwent the following procedures: 

 Symptomatic individuals.  

 Asymptomatic participants were recruited and tested for latent TB infection using 
tuberculin skin test and/or IGRA (QuantFERON TB Gold) the potential study participants 
were excluded if they had a prior history of TB.  In the few situations where TST and IGRA 
results were not available, personal and family history was collected to exclude people with 
potential risk of infection. 

 Additional information related to the health status of all participants was collected using a 

questionnaire, which captured smoking, current medical problems (diabetes, transplant, 

silicosis, sarcoidosis, cancer), current therapies with particular focus on 

immunosuppressive, antiretroviral and anti-TB treatment (See questionnaire in Appendix 1). 

 Peripheral venous blood was drawn from study participants, prior to the initiation of any 

anti-TB treatment for testing and storage.  
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 All patients were tested for HIV, as diagnosed by the rapid diagnostics tests; Alere 

Determine TM  -HIV-1/2 ( Alere Medical CO., Ltd, Japan) and Uni-Gold TM HIV (Trinity Biotech 

Plc Bray, Ireland).  

2.1.4 Selection of serum samples for analysis 

Patients were classified into the following diagnostic categories based on clinical presentation, 

questionnaire (see Appendix 1 for details), chest radiography( X-ray),  sputum smear 

microscopy for acid-fast bacilli, culture, Xpert MTB/RIF (GeneXpert System, Cepheid) assay 

(Boehme et al. 2010) as summarised in Table3. From these, serum samples for analysis were 

selected as detailed in flow diagram 1. 
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Table 3; Categorisation of patients 
 

Patients category  Confirmatory diagnostic tests 

Pulmonary active TB (PTB) Smear microscopy positive for acid fast bacilli, 
solid media culture positive (Bactec™ MGIT, 
Becton Dickinson, Sparks, USA), GeneXpert  
MTB/RIF positive and HIV test negative  

Pulmonary active TB co-infected with HIV 
(PTB/HIV) 

Confirmation of PTB as above, co –infected 

with HIV (PTB/HIV). HIV infection confirmed by 

rapid diagnostic test.  

Latent TB infection ( LTBI) IGRA, or TST (T- SPOT.TB, Oxford Immunuotec, 
Oxfordshire, UK.) tested positive with no sign 
or symptoms of the active disease  

Extra-pulmonary TB patients (EPTB) Positive liquid media culture from 
extrapulmonary specimen with localize 
diseases, HIV negative  
 

Healthy individuals (H) No disease symptoms, IGRA, or TST tested 
negative 

Other pulmonary infectious (OPI) Clinical presentation, with or without 
microbiological confirmation, IGRA and/or TST 
negative 
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Flow Diagram 1; Enrolment and criteria for sample selection 

TB NEW 
(n=311) 

 
 
 

TB CHILD 
(n=186) 

 
 
 

Health 
(n= 56) 

 

LTBI 
(n= 109) 

PTB 
(n= 90) 

 

EPTB 
(n= 32) 

OPI 
(n= 24) 

Health 
(n= 49) 

 

PTB/HI
V(n= 
73) 

PTB 
(n= 64) 

 

Pools (n=6 ) 

 H (2) 

 PTB (2) 

 LTBI (2) 

Individuals  (n= 36) 

 H (18) 

 PTB ( 18) 

 
 
 
 
(n=  ) 
Discontinued 
intervention (give 
reasons) (n=  ) 

Pools (n= 11) 

 H (4) 

 PTB (3) 

 PTB/HIV 

(4) 

Individuals  (n= 20) 

 H (10) 

 PTB ( 10) 

 
 
 
(n=  ) 
Discontinued 
intervention (give 
reasons) (n=  ) 

 Excluded from H (n = 7) 

 Diabetes (1) 

 TST positive (6) 

Excluded from PTB or PTB/HIV (41) 
• History of  smoking (14) 

• Anti-rheumatoid  treatment  

(1) 

• Other  drugs  use (6) 

• TB  Relapse (1) 

• Culture 

negative/Unconfirmed TB 

cases (2) 

• HIV & cancer (1) 

• HIV on ARV (11) 

• Incomplete information  (5) 

Excluded from H (n = 18) 

 History of smoking 
(10) 

 Incomplete 
information  (7) 

 Cancer (1) 

Excluded from LTBI (n= 55) 

 Incomplete 
information  (23) 

 History of  smoking 
(31 

 Cancer  (1) 

Excluded from PTB or PTB/HIV (48) 

 History of  smoking (16) 

 Incomplete information  (22) 

 Diabetes (3) 

 HIV positive (7) 

Excluded from OPI (n= 9) 

 Incomplete 
information  (5) 

 Smokers (3) 

 Diabetes (1) 

Excluded from EPTB (n =11) 

 Smokers (3) 

 Incomplete 
information (5) 

 Cancer (1) 

 Diabetes (1) 

 HIV positive (1) 
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2.2 Serum preparation. 

5 mL of blood were collected using BD Vacutainer (BD Falcon, BD Biosciences) for serum 

recovery. Serum samples were prepared according to an internal standard protocol for total 

RNA recovery. Blood samples were allowed to stand for 2 hours before serum was recovered.   

After coagulation, the blood was centrifuged (Centrifuge 5810R, Eppendorf, Germany) at 1200 g 

for 7 minutes. The serum was transferred in a 15 mL Falcon tube and centrifuged (Centrifuge 

5417R, Eppendorf, Germany) again at 1300 g for 10 min to remove any residual cells or debris 

from serum. Recovered serum was cryo-preserved at -80 °C until use. The samples were 

analysed in the centralized laboratory, Fondazione Centro San Raffaele, Milan, Italy where the 

serum from the recruitment sites was shipped under dry ice according to IATA. During total 

RNA extraction, serum samples  were thawed on ice, and hemolysis was determined through 

spectrometry analysis of free hemoglobin as previously described (Kirschner et al. 2011).A 

sample was considered haemolysed when hemoglobin concentration was >10 mg/dL. 

 

2.2.1. Total RNA extraction 

Total RNA from serum pools or individuals was isolated using the mirVana miRNA Isolation Kit 

(Ambion, Austin, TX).The mirVana™ miRNA Isolation Kit was designed for purification of RNA 

suitable for studies of both siRNA and miRNA in natural populations. The detail procedure for 

total RNA extraction has been descripted in mirVana™ miRNA Isolation protocol (Ambion, 

2008). Briefy,the kit employs an organic extraction followed by immobilization of RNA on glass-

fiber filters to purify either total RNA, or RNA enriched for small species, from cells or tissue 

samples (Ambion, 2008). 

The mirVana™ miRNA isolation procedure combines the advantages of organic extraction and 

solid-phase extraction, while avoiding the disadvantages of both. ˋˋHigh yields of ultra-pure, 

high quality, small RNA molecules can be prepared in about 30 min’’ (Ambion, 2008). The serum 

samples were extracted in two aliquots with an equal volume. RNA was eluted with 70μL of the 

Ambion Elution Buffer solution, and approximately 60μL was recovered from each column. 

Total RNA quality and purity (protein or DNA contamination) were determined by measuring 

the absorbance at 260 nm with the NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, ThemoScientific). RNA concentrations ranged from 6.0 to 80ng/μL. Total RNA 

extracts were stored at -80 °C until use. 

 

2.2.2 Composition of pooled and individuals samples  

To minimize individual variation, serum samples from 10 subjects within the same category 
were pooled together and analysed for miRNAs expression. 11 pools (H (4), PTB (3) and PTB/HIV 
(4)) from TB CHILD study and 8 pools (H (2), PTB (2), EPTB (1), LTBI (2) and OPI (1)) from TB 
NEW. A serum aliquot from each selected sample, thawed on ice, and 500 µL of serum from 
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each selected sample were thoroughly mixed in order to get a homogeneous pooled serum. 
Before RNA extraction, one ml of pooled serum was aliquot in two tubes and later miRNAs 
analysed were performed in duplicated sample. Pooled analysis was done for the categories; 
PTB, LTBI and healthy individuals, from TB NEW and PTB, PTB/HIV and healthy individuals from 
TB CHILD patients. 
The results from pooled sera were then validated by repeating analysis from individuals’ sera, 

from 18 PTB and 18 H subjects from TB NEW, and 10 PTB and 10 H subjects from TB CHILD. 1 

mL of serum from each individual selected was thawed on ice and farther analysed for miRNA 

expression levels as described above. 

2.2.3 Retro-transciption for pooled and individuals samples  

Retro-transcription was performed with TaqMan® microRNA reverse transcription components 
(Life Technologies), according to the manufacturer’s instructions. Two independent mastermix 
were prepared: one containing Megaplex™ RT primers for array A and one for array B. Each 
reaction was prepared in duplicated and negative controls inclusive.  Reverse transcription PCR 
reaction was carried out in a thermal cycler (Applied Biosystems 2720). Seven µL of the reaction 
mixtures were subjected to thermal cycling for 40 cycles of 2 min at 16°C, 1 min at 42°C, 1 sec 
at 50°C and 5 min at 85°C, and then held at 4°C. 

 

2.2.4 Pre- Amplification for pooled and individuals samples 

In order to increase the sensitivity of the TLDA, a pre-amplification step was performed after 

the RT procedure using the TaqMan PreAmp Master Mix and the Megaplex PreAmp Primer 

Pools A + B. All reactions were carried out according to the protocols recommended by the 

manufacturer. Briefly; 25µL reaction mixture consisted of 4.5 µL of undiluted cDNA combined 

with 12.5 µL of TaqMan PreAmp Master Mix, 2.5 µL of Megaplex PreAmp Primers and 7.5 µL of 

nuclease-free water. The pre-amplification step was performed using a ABI 2720 or Bio-Rad 

iCycler by heating to95°C for 10 min, 55°C for 2 min, 72°C at 2 min followed by 12 cycles of 95°C 

for 15 sec, 60°C for 4 min and 99.9°C for 10s and  then held at 4°C. The product, pre-amplified 

cDNA was diluted by adding 75 µL of TE buffer (0,1x, pH 8.0) and stored at -20°C.The Pre-Amp 

protocol is designed to maintain the relative quantities of each miRNAs as unchanged as in their 

original sample, and this step does not affect the results during the analysis of qPCR data. 

 

2.2.5 Quantitative Real-time PCR reaction (qRT-PCR) for pooled and individuals samples 

MiRNA profiling assays were performed using the TLDA v2.0 (Applied Biosystems, Life 

Technologies™, Foster City, USA) as per manufacturer instructions. Briefly, the TLDA is a 384-

well microfluidic card containing dried TaqMan® primers and probes. ˋˋArray A focuses on more 

highly characterized miRNAs while array B contains many of the more recently discovered 

miRNAs. The use of two panels (array A and array B) enables quantitation of gene expression 
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levels of up to 672 different miRNAs. This is accomplished by loading the cDNA product onto 

the array for PCR amplification and real-time analysis’’ (Applied Biosystems, Life Technologies™, 

Foster City, USA). ˋˋMegaPlex Pools are designed to detect and quantitate up to 380 microRNAs 

(miRNAs) per pool in human species because of o a set of stem-looped reverse transcription 

primers (MegaPlex RT Primers) that enable the simultaneous synthesis of cDNA and a set of 

miRNA-specific forward and reverse primers (MegaPlexPreAmp Primers) intended for use with 

very small quantities of starting material’’ (Applied Biosystems, Life Technologies™, Foster City, 

USA). ˋˋThe primers enable the unbiased pre-amplification of the miRNA cDNA target by PCR 

prior to loading the TaqMan® MicroRNA Array’’ (Applied Biosystems, Life Technologies™, Foster 

City, USA). ˋˋThe TaqMan® Low Density Array Human MicroRNA Panel is faster, sensitive for 

miRNA profiling as compared to microarrays’’ (Applied Biosystems, Life Technologies™, Foster 

City, USA).  By the use of Megaplex RT primer pools method, specific mature miRNAs are 

selected , quantified and easily covers range of targets (Mestdagh et al. 2008). Each serum 

sample was analysed in an A and B card in duplicate detection of a total of 672 miRNAs in each 

card which consist also of endogenous negative controls. 

 

QRT-PCR was performed using 384-well TLDAs cards according to the manufacturer instruction. 
In brief, nine µL of the diluted Pre-Amp product mixture was combined with 450 µL of TaqMan 
Universal PCR master mix without uracil-N-glycosylase (Life Technologies), and 441 µL of 
nuclease-free water. Aliquots of 100 μL were pipetted into each fill port of a 384-well TLDA. The 
cards were centrifuged twice (12,000 rpm, 1 min, Multifuge3S-R, Heraeus, Germany) and 
sealed. The reaction was run on a 7900 HT Fast Real- Time PCR System or on a ViiA™ 7 Real-
Time PCR System according to manufacturer’s instructions (Life Technologies). Cycling 
conditions were as follows: 40 cycles 500C for 2 min, 95 0C for 10 min, 95 0C for 15 sec and 60 0C 
for 1 min. 
 
For each pool, two arrays were performed: from array A 381 miRNAs and 291 miRNAs from 
array B were analysed. The number of miRNAs analysed on each card is less than the actual 
number of wells (384) because some miRNAs are analysed in duplicate: in array A card there 
are four wells of endogenous control MammU6, while on array B card:  there are four wells for 
each of the small RNAs: MammU6, RNU24, RNU43, RNU44, RNU48 and RNU6B; - rows 11, 13 
and 14 of the array are duplicated in lines 12, 15 and 16 respectively. Moreover, RNU48 and 
RNU44 are also present in array A card. For pooled samples, analysis was performed in 
duplicate in each array (A and B) and for each individual serum samples analysis was performed 
in single arrays (panels A + B). 
 

2.3 Statistical analysis 

2.3.1 Data analysis and normalization. 

It is important to mention that, the statistical analysis described under section 2.3.1 to 2.3.4 
was performed by the biostatistician, in Milan Italy. 
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 Data generated from this study was analysed by qRT-PCR. In comparison with other 
quantitative techniques, qRT- qPCR has become a powerful technique with higher sensitivity, 
specificity, and ability to detect signals even in the low concentration of the targets (Chen et al. 
2005; Mestdagh et al. 2008). Due to the complexity of the data set, the accuracy of the results 
generated from qPCR, which is a high-throughput technique, will depend on appropriate data 
normalization methods (Dheda et al. 2005; Meyer, Pfaffl, and Ulbrich 2010). Data produced 
from qPCR experiments is influenced by several variables due to sample processing, 
stabilization, total RNA extraction and target quantification. The differences may indicate 
variations between sample or bulk transcriptional activity. Before data analysis begins, 
variations and differences caused during the experiment need to be removed by a 
normalization process, in order to get the true biological changes (Meyer et al. 2010; Steinhoff 
and Vingron 2006). On the other hand, an incorrect normalization method may produce 
misleading results, which may affect the subsequent analysis outcome (Bas et al. 2004; Dheda 
et al. 2005; Pradervand et al. 2009; Risso et al. 2009; Tricarico et al. 2002).Therefore, selection 
of appropriate normalization method is a critical step in the analysis of qPCR data as illustrated 
in figure 5. 
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QPCR data were collected with SDS v2.4.1, ViiA™ 7 v1.1, and RQ Manager v1.2.2 software 
(Applied Biosystems, Life Technologies™, Foster City, USA), (baseline criteria are: automatic; 
threshold: 0.20; maximum allowable Ct : 35.0). Data analysis was done by using R and 
Bioconductor environment (R Development Core Team, 2011, Vienna, Austria). Prior to the 
analysis, raw Ct values were normalized by quantile normalization, as described elsewhere 
(Bolstad et al. 2003; Deo, Carlsson, and Lindlof 2011). In brief, this widely used approach is 
based on the hypothesis that only few miRNA are differentially expressed. The advantage of 
using this method is that after normalization, data become homogenous with similar 
distribution and the correlation coefficient between observations increases as compared to the 
raw data. 
 

2.3.2 Analysis of pooled samples 

Analysis on the pools were done by comparing mean Ct values of miRNAs of each category with 
another category by fitting a constrained regression model with MM robust estimators as 
described by Salibian-Barrera et al. (Salibian-Barrera M 2008).The use of the robust estimator 
method has a great advantage in the presence of outliers. The Empirical Distribution Function 
of residuals was calculated and miRNAs  residuals; outside the Inter quartile range were filtered 
and defined as significantly differently expressed miRNAs.ʽʽ(Residuals are the difference 

Figure 5; Overview of normalization methods commonly used during analysis of qPCR data, and results 
obtained in this study 

The use of an endogenous control was 
clearly not optimal, since the correlation  
and the distribution plots  
showed a deterioration of the normalized 
data compared to raw data, although  
the sd values decreased. 

Deterioration in the spread of the data  
and an introduction of more variation  
among samples within the same group. 
Although the array mean  
normalization produced the lowest CV  
and sd values, the distribution of the 
normalized values are less homogenous. 

The data became more homogenous  
after normalization compared to raw  
data and more homogenous than  
when normalizing  
 
 
 
with the array mean. Additionally, the CV and 
sdvalues decreased and the r values increased 
compared to raw data. 
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between the observed value of the variable and the value suggested by the regression model)’’. 
Data was visualized in circular format which was created using Circos software (Michael Smith 
Genome Sciences Center, Vancouver, Canada) (Krzywinski et al. 2009). ʽʽCircos is a visualization 
tools which enable the identification and analysis of similarities and differences arising from 
comparisons of genome produced by sequence alignments, hybridization arrays, genome 
mapping, and genotyping studies’’ (Krzywinski et al. 2009). ʽʽCircos uses a circular ideogram 
layout to facilitate the display of relationships between pairs by the use of ribbons, which 
encode the position, size, and orientation of related genomic elements’’(Krzywinski et al. 2009). 
 

2.3.3 Analysis of individual sera 

About 80% of miRNAs with Ct values less than 35, and detected in at least one of the patient 
categories were selected for farther comparison. The Two ways ANOVA statistical package was 
performed in the selected miRNAs from different patient categories and study cohorts. P values 
were calculated based on non-parametrical by means of permutations (Good P.I 2005). False 
Discovery Rate (FDR) as described by  Benjamini was used;  whereby miRNAs showing both (i) 
an adjusted p-value (p-adj) <0.05 on individuals and (ii)  identified to be significant by pooled 
samples analysis were considered for miRNA signature classification (Benjamini Y 2001). 
 

2.3.4 Performances of the signature 

Capability of a single miRNA to identify health status was determined using Receiver Operating 
Characteristic (ROC) curve as described by Zou et al (Zou, Hall, and Shapiro 1997). Area under 
the curve (AUC) and the p values were calculated when the general performance of miRNAs 
signature in differentiating cases was evaluated.  Akaike Information Criteria (AIC) and 
Relevance Vector Machine (RVM) model as multivariate logistic model were used to evaluate 
and associate the diagnostic performances of the miRNA signatures (Braun AC 2012). Unlike the 
support Vector Machine, RVM follows a Bayesian approach giving a posteriori probability of the 
class. Hence, the results from the two models become more comparable. ROC curve and 
associated AUC were calculated based on the logistic model. 
 
A leave-one-out-cross-validation (LOOCV) approach was adopted for validating the 
performance of RVM and AIC logistic regression predictive models as indicated in figure 6. 
Results from the two models were presented in terms of sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy. 
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LOOCV model a validation technique is used for assessing how the results of a statistical analysis 
will generalize to an independent data set. It is mainly used to estimate how accurately a 
predictive model would perform in practice. 
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2 

Sample n - 1 

… 
  

Sample n 
 

ESTIMATION 

 

VALIDATION 

 

Evaluation of performances 

 

Average of several repetitions of the process 

Figure 6; An overview of A leave-one-out-cross-validation (LOOCV) model. 
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3. RESULTS 

3.1. Study patients 

All subjects were enrolled from September 2009 to September 2012. Enrolment was done in 

Uganda, Tanzania and Italy. Participants are summarised with their baseline characteristics in 

Figure 10, with their geographic origin classified by World Health Organization (WHO) regions. 

The population enrolled in Africa (TB CHILD) comprised of 137 pulmonary tuberculosis patients 
of whom 64 patients were HIV negative, and classified into the PTB cohort, 73 were HIV positive 
(PTB/HIV) and 49 healthy individuals (H).  
 
A total of 311 patients were enrolled from Italy (TB NEW) with 90 PTB patients, 56H and 109 
LTBI participants. In addition, small population of 32 patients with EPTB and 24 OPI were also 
enrolled from Italy. Patients enrolled from Italy were all HIV negative. Detailed description of 
the study populations are indicated in flow diagram 1 (page 27) and figure 7. Patients with 
PTB/HIV had median CD4+ cell count of 198.4 cells/mL (interquantile range: 277.1) as compared 
with 707.7 cells/mL (interquantile range: 813.3) of participants with PTB without HIV infection. 
Age differences between H and PTB patients were not statistically significant (p= 0.29). 
 
  

 
 
Figure 7; Demographic information of the two studies with the mean and range ages of the 
study participants. The distribution of populations participated in the two studies with their 
countries of origin as stipulated in WHO region categorization. 
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Table 4; Detail Information of constitutions of participants as allocated in each pool and 
individual analysis in the two study population enrolled from different geographical location. 
 
  

 
 
 

3.2 Selected samples for qRT-PCR. 

Serum samples from each category were selected for analysis using the information collected in 

the questionnaires during the enrolment. The selection criteria varied depending on category as 

indicated in flow diagram 1. Basically we aimed for homogeneous categories in this proof-of-

concept study, to better differentiate between targeted categories. Six pools from the TB NEW, 

and 11 pools from the TB CHILD were analysed. In the second step, we also validated the 

  
Population 

  
Sample type 

  
Category 

  
male/female 

ratio 
  

Country of origin 

  
mean 
age 

  
SD 

TB NEW 
  

Pooled 
samples 

H1 5/5 10 Europe, 0 non-Europe 19.7 0.6 

H2 5/5 9 Europe, 1 non-Europe 22.7 4.7 

LTBI1 5/5 6 Europe, 4 non-Europe 45.5 16.8 

LTBI2 5/5 4 Europe, 6 non-Europe 38.5 9.9 

PTB1 5/5 5 Europe, 5 non-Europe 33.1 12.7 

PTB2 5/5 7 Europe, 3 non-Europe 36.4 11.6 

EPTB 3/5 3 Europe, 5 non-Europe 49.9 24.1 

OPI 6/4 8 Europe, 2 non-Europe 67.0 8.7 

Individual 
samples 

H 9/9 18 Europe, 0 non-Europe 21.8 5.8 

PTB 9/9 
18 Europe,  8 non-
Europe 

38.5 15.4 

TB CHILD  

Pooled 
samples 

H1 5/5 10 Africa 23.4 4.12 

H2 5/5 10 Africa 21.4 4.48 

H3 5/5 10 Africa 22.7 3.68 

H4 5/5 10 Africa 20.2 2.66 

PTB2 5/5 10 Africa 35.1 11 

PTB3 5/5 10 Africa 24.2 10.6 

PTB4 5/5 10 Africa 38.1 10.3 

PTB/HIV1 5/5 10 Africa 38 9.89 

PTB/HIV2 5/5 10 Africa 20.9 16.3 

PTB/HIV3 5/5 10 Africa 35.3 6.63 

PTB/HIV4 5/5 10 Africa 37.1 11.2 

Individual 
samples 

H 5/5 10 Africa 23.7 4.1 

PTB 7/3 10 Africa 29.8 16.3 
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signatures of miRNA from the pooled samples using individual serum by analysing 36 and 20 

sera of participants from TB NEW, and the TB CHILD population, respectively (details are 

reported in Table 4). 

3.3 Normalization of qPCR results 

qPCR data was normalized by quantile normalization method.  The normalized data from 
pooled sera, individual sera as well as from the endogenous controls (comprising the four 
miRNAs ath-miR159a, MammU6, RNU44, and RNU48) detected by both array A and array B, are 
reported in Table 5. Statistical analysis was performed to compare and determine miRNA 
signatures that can be used to differentiate between healthy individuals and other TB related 
conditions; the comparison was also done between other TB related conditions. Moreover, 
results from participant from TB NEW and TB CHILD were analysed separately and the detected 
miRNAs in groups were compared in their expression levels and presence. 
 

 

Table 5; The mean and standard deviation of Ct values of endogenous control miRNAs 
included in the two array cards (A and B). The table presents the Ct values detected in the two 
study population separately and from both populations after quantile normalization. 

 

 microRNA 
Array A Array B 

 
Pools Individuals Pools Individuals 

TB NEW 

ath-
miR159a 

35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

MammU6 
26.09 ± 

2.18 
24.92 ± 

2.81 
24.47 ± 

3.97 
23.99 ± 

3.43 

RNU44 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

RNU48 
33.74 ± 

1.52 
33.63 ± 

1.77 
33.24 ± 

1.93 
33.41 ± 

1.63 

TB CHILD  

ath-
miR159a 

35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

MammU6 
24.76 ± 

1.05 
27.25 ± 

1.66 
24.93 ± 

1.45 
27.24 ± 

2.54 

RNU44 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

RNU48 
31.34 ± 

1.45 
33.54 ± 

1.70 
31.66 ± 

1.02 
33.89 ± 

1.33 

Both 
populations  

ath-
miR159a 

35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

MammU6 
25.32 ± 

1.73 
25.73 ± 

2.70 
24.74 ± 

2.76 
25.15 ± 

3.49 

RNU44 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 35.0 ± 0.0 

RNU48 
32.35 ± 

1.89 
33.60 ± 

1.73 
32.32 ± 

1.65 
33.58 ± 

1.53 
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3.5 Serum miRNA profiles in Pooled samples.  

In this study a total of 672 different miRNAs were analysed by qRT-PCR- Taqman Low density 

arrays from pooled sera. Results from healthy individuals were used as controls. Raw data for 

qRT-PCR Ct values obtained from pooled and individual samples for all 672 miRNAs analysed 

after quantile normalization, are too large for this thesis and can be reviewed in the online 

supplement (Table S3) in the already published results from this work (Miotto et al. 2013). 

Normalized qRT-PCR data from pooled samples showed that 277 miRNAs were undetectable in 

the categories H, PTB, LTBI, and PTB/HIV from both groups TB NEW and TB CHILD.  

The mean Ct value for each miRNA was calculated and one-to-one comparison of miRNAs 

between different patient categories was carried out, with significant miRNA residuals being 

those outside the interquartile range after comparing two categories. Residuals of significant 

miRNAs from the pooled samples are shown in Table 6, with the raw data available in the 

supplement (table S4) in our already published results (Miotto et al. 2013).   

 

3.6 Difference in expression from the two geographic distributions. 

We assessed potential differences in miRNA expression between European and African 

populations, with results summarized in Table 6. The residuals of the significant signature of 

miRNAs expressed are shown in already published results, supplement Table S5 (Miotto et al. 

2013). The distribution of the residuals between categories showed little variation; 168 miRNAs 

were observed to be significantly differently expressed between the H and 105 between the 

PTB patients from the two study populations.   

 

In the initial analysis of pooled samples, miRNAs observed from patients with extra pulmonary 

TB (EPTB) and other respiratory tract infections (OPI) collected from the European cohort were 

also observed in other categories. The 1st and 3rd quantile tails of miRNA residuals shows the 

distribution obtained by comparing the two different categories, summarized in Figure 8. The 

two quantiles considered, contain signature of miRNAs that are considered to be significantly 

different between the two compared categories. Based on the distribution of the residuals, 

from qualitative analysis a signature consisting of about 120 to 172 miRNAs could differentiate 

between categories that were considered in the two studies. For instance, signature consisting 

of 134 miRNAs observed to be significant differentiates between LTBI and PTB, 150 discriminate 

H and PTB (TB NEW), whereas 134 miRNAs could discriminate between PTB and PTB/HIV.  
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Figure 8; miRNA signatures significantly differentiating between categories in the pooled 
samples. 
Two study population; African (TBCHILD) and European (TB NEW) and disease categories are 
reported on the circular visualization made by circos. Numbers of miRNAs residuals significantly 
different between categories are given in the coloured ribbons linking the two categories. The 
miRNAs were used to compared different categories and filtered  in those defined categories :  H 
vs PTB, H vs LTBI, H vs EPTB, H vs PTB/HIV, OPI vs PTB, OPI vs LTBI, OPI vs EPTB; Active TB: H vs 
PTB, H vs EPTB, H vs PTB/HIV, OPI vs PTB, OPI vs EPTB, LTBI vs PTB, LTBI vs EPTB; Symptoms: H 
vs PTB, H vs OPI, H vs PTB/HIV, H vs EPTB, LTBI vs PTB, LTBI vs EPTB, LTBI vs OPI; Pulmonary 
disease (any): H vs PTB, H vs OPI, H vs PTB/HIV, LTBI vs PTB, LTBI vs OPI, EPTB vs PTB, EPTB vs 
OPI. 
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Signatures of miRNAs observed to be of clinically significant from pooled samples were filtered. 

From this, we identified potential miRNAs which could be specific for Latent TB disease, active 

TB, pulmonary disease and any other disease statuses as shown in Figure 9. 

 

 

 
Figure 9; Signature of miRNAs able to differentiate between different clinical categories from 
the analysed pooled samples. Clinical status and miRNAs are presented on the circumferences 
whereas the coloured ribbon links one disease category to specific miRNAs. 
 

 

3.7 Serum miRNA profiles in individual samples. 

To verify the pattern of identified relevant miRNA from the pooled samples, we performed a 

validation study using individual samples from H and PTB cases. Serum miRNA profiles from 18 
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H and 18 PTB from European group as well as 10 Hand 10 PTB from the African group were 

analysed using qRT-PCR. 

 

672 miRNAs were analysed and out of those, 126 miRNAs with Ct ˂ 35 were detected in 80% of 

the subjects in at least one of the analysed categories whereas, 71 miRNAs with P<0.05 were 

detected. We observed significant differences in miRNA expression between the two 

geographical locations, European cohort and African population (35 miRNAs; 49.3%), between 

H and PTB (29 miRNAs, 40.8%) and differences between the two populations and the clinical 

status (7 miRNAs ,9.9%).  Additionally, 20 miRNAs were significantly different between H and 

PTB in both populations (let-7e, miR-10b, miR-127-5p, miR-146a, miR-148a, miR-16, miR-185, 

miR-192, miR-193a-5p, miR-25, miR-365, miR-451, miR-518d-3p, miR-532-5p, miR-590-5p, miR-

660, miR-885-5p, miR-223*, miR-30a, miR-30e) when false recovery rate FDR, p-adj) was 

calculated.  

 

3.8 Comparison of miRNAS from Pooled samples against individual samples.  

Validation analysis aimed at identifying expressed miRNAs with significant differences between 

H and PTB categories. From a signature consisting of 20 miRNAs with significant p-adj in 

individuals’ samples (table 7), 16 (80%) had already been identified as significant miRNAs in the 

pooled samples. Out of those; nine miRNAs had significantly differentiated H and PTB in both 

study populations in the pooled samples; whereby four had been specific to the TB CHILD 

populations and three had been specific to the TB NEW population. However, four miRNAs with 

a significant p-adj in individuals’ samples had not been identified previously as significant in the 

pooled samples.  

 
Further, the directions of the variation (increase or decrease) of the 16 miRNAs, which were 

found to be significant for differentiating H and PTB in the pooled analysis and also observed to 

be significant (p-adj< 0.05) in individual analysis (let-7e, miR-146a, miR-148a, miR-16, miR-192, 

miR-193a-5p, miR-25, miR-365, miR-451, miR-532-5p, miR-590-5p, miR-660, miR-885-5p, miR-

223*, miR-30a) were compared. There was inconsistence of miRNAs observed between 

individual and pooled samples as indicated in Table 6. 11 miRNAs identified were similar in the 

expression directions in the pooled and individual samples between the two study populations. 

Moreover, three miRNAs varied in their expression level in African and European populations 

and one showed discordant in both populations. Five and three miRNAs found to be associated 

with only the African and European populations, respectively. However, a total of 15 miRNAs 

were identified as a significant signature for discriminating between H and PTB (let-7e, miR-

146a, miR-148a, miR-16, miR-192, miR-193a-5p, miR-25, miR-365, miR-451, miR-532-5p, miR-

590-5p, miR-660, miR-885-5p, miR-223*, miR-30e). This pattern of signature of miRNAs was 

identified from the combined analysis of pools and individuals samples. 



 

 

43 

 

 
 
 
 
 

 

 

 



 

 

44 

 

Table 6; miRNA signature expression differences between PTB and H and between the two study populations. The table reports 
data from individual and pooled specimens. 

 African  European  Combined   
miRNAs p-adj<0.05 Individuals Pools  Individuals Pools  Individuals Pools  Relevance in pooled specimens To be considered for 

hsa-let-7e-4395517          African &Europeans and other race Africans & Europeans  

hsa-miR-146a-4373132   x       African only Africans only 

hsa-miR-148a-4373130          African &Europeans and other race Africans & Europeans  

hsa-miR-16-4373121          Europeans and other race only Europeans only 

hsa-miR-192-4373108          African &Europeans and other race Africans & Europeans 
hsa-miR-193a-5p-
4395392  

       African &Europeans and other race Africans & Europeans 

hsa-miR-25-4373071          Europeans and other race only Europeans only 

hsa-miR-365-4373194      x    Europeans and other race only Europeans only 

hsa-miR-451-4373360          African &Europeans and other race Africans & Europeans  
hsa-miR-532-5p-
4380928  

x       African only Africans only 
hsa-miR-590-5p-
4395176  

       African &Europeans and other race Africans & Europeans  

hsa-miR-660-4380925          African only Africans only 
hsa-miR-885-5p-
4395407  

       African &Europeans and other race Africans &Europeans  

hsa-miR-223*-4395209          African only Africans only 

hsa-miR-30a-4373061   x   x   x African &Europeans and other race - 

hsa-miR-30e-4395334   x      x African &Europeans and other race African only 

     
 Discrepancies between the two cohorts are marked by “x” and highlighted in grey
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Table 7; Signature of miRNAs from individual samples showing different expression levels in 
healthy (H) and pulmonary active tuberculosis (PTB) subjects from the two study populations.  
 

miRNA 
TB NEW against  TB CHILD  (p-

val)  H vs PTB (p-val) 

has-miR-155-4395459 0,01375 0,40055 
hsa-miR-126-4395339 0,02580 0,76655 
hsa-miR-129-5p-4373171 0,02600 0,84640 
hsa-miR-139-3p-4395424 0,00975 0,91465 
hsa-miR-142-5p-4395359 0,00025 0,33310 

hsa-miR-145-4395389 <0,00001 0,88630 
hsa-miR-146b-5p-4373178 0,02525 0,10360 
hsa-miR-148b-4373129 0,00170 0,84365 
hsa-miR-150-4373127 0,01065 0,37600 
hsa-miR-152-4395170 <0,00001 0,43940 
hsa-miR-17-4395419 0,00630 0,50405 
hsa-miR-184-4373113 0,00510 0,32595 
hsa-miR-195-4373105 <0,00001 0,16715 
hsa-miR-19a-4373099 0,04110 0,34870 
hsa-miR-20b-4373263 0,00315 0,52460 
hsa-miR-220c-4395322 0,00100 0,29480 

hsa-miR-29c-4395171 0,02855 0,29935 
hsa-miR-302c-4378072 <0,00001 0,55550 
hsa-miR-324-3p-4395272 0,00805 0,75735 
hsa-miR-331-3p-4373046 0,00455 0,43190 
hsa-miR-374b-4381045 0,00745 0,36145 
hsa-miR-423-5p-4395451 0,04475 0,15395 
hsa-miR-485-3p-4378095 <0,00001 0,54070 
hsa-miR-574-3p-4395460 0,04470 0,05040 
hsa-miR-597-4380960 0,00025 0,98915 
hsa-miR-628-5p-4395544 0,01450 0,32615 
hsa-miR-744-4395435 0,00100 0,40245 

hsa-miR-872-4395375 <0,00001 0,06135 
hsa-miR-9-4373285 0,04985 0,21925 
MammU6-4395470 0,00140 0,51640 
hsa-miR-135a*-4395343 0,00020 0,22165 
hsa-miR-509-3p-4395347 0,01160 0,19885 
hsa-miR-645-4381000 0,00005 0,27560 
hsa-miR-801-4395183 <0,00001 0,87435 
hsa-miR-923-4395264 0,00080 0,06465 
MammU6-4395470 0,00045 0,58190 
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hsa-let-7e-4395517 0,80890 0,00395 * 

hsa-miR-10b-4395329 0,79615 0,0072 * 
hsa-miR-127-5p-4395340 0,96665 0,00495 * 
hsa-miR-130a-4373145 0,09690 0,02485 
hsa-miR-146a-4373132 0,14045 0,0047 * 
hsa-miR-148a-4373130 0,91780 <0,00001 * 
hsa-miR-16-4373121 0,17145 0,00045 * 
hsa-miR-185-4395382 0,47350 0,00685 * 
hsa-miR-19b-4373098 0,42240 0,01720 
hsa-miR-24-4373072 0,29355 0,04625 
hsa-miR-25-4373071 0,18345 0,00065 * 
hsa-miR-27a-4373287 0,19845 0,01235 

hsa-miR-27b-4373068 0,12255 0,03670 
hsa-miR-342-3p-4395371 0,77485 0,01620 
hsa-miR-365-4373194 0,48025 0,00345 * 
hsa-miR-374a-4373028 0,17845 0,03010 
hsa-miR-376c-4395233 0,32505 0,04740 
hsa-miR-451-4373360 0,50895 0,0082 * 
hsa-miR-532-5p-4380928 0,09210 0,00155 * 
hsa-miR-590-5p-4395176 0,46820 0,0039 * 
hsa-miR-660-4380925 0,48025 0,00095 * 
hsa-miR-885-5p-4395407 0,86025 0,003 * 
hsa-miR-144*-4395259 0,63015 0,02595 

hsa-miR-223*-4395209 0,79420 0,00025 * 
hsa-miR-30a-4373061 0,14410 0,00065 * 
hsa-miR-30a*-4373062 0,54630 0,03605 
hsa-miR-30d-4373059 0,43060 0,00715 
hsa-miR-30e-4395334 0,50865 0,0012 * 
hsa-miR-106a-4395280 0,03535 0,01145 
hsa-miR-125a-5p-4395309 0,00380 0,03295 
hsa-miR-192-4373108 0,04850 0,001 * 

hsa-miR-193a-5p-4395392 0,01675 0,00485 * 
hsa-miR-212-4373087 <0,00001 0,02215 
hsa-miR-483-5p-4395449 0,00120 0,03800 

hsa-miR-518d-3p-4373248 0,03350 0,00155 * 

Key: * miRNAs showing a p-adj <0.05. The 20 miRNA with significant p-adj are in bold and 

italic font. 
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3.9 Diagnostic performances of the serum miRNA signature identified. 

Diagnostic performances of the miRNAs signature identified were assessed and determined by 

two models: RVM model, and AIC logistic regression analysis. The diagnostic performances of 

the two models were validated by the use of a LOOCV approach.  

The 15 miRNAs signature identified to significantly differentiate H and PTB in the two study 

populations were used to classify the 56 individuals’ subjects had diagnostic accuracy of 82% by 

RVM and 77% by logistic regression. Diagnostic accuracy of each population was determined in 

the miRNA signatures that were observed to be significantly specific to the African or European 

population. Thus, the diagnostic accuracy of the African –specific 12 miRNAs signature was 95% 

by RVM, and 100% by logistic regression, respectively. The diagnostic accuracy for European 

cohort specific 10 miRNAs signature was 83% by RVM and 81% by logistic regression. More 

parameters for diagnostic accuracy by two statistical models are miRNA signatures presented in 

Table 8 and Table 8. Moreover the areas under the curves (AUCs) for the regression logistic 

analyses are reported in Figure 10, Figure 11 and Figure 12. 

 

 

 

 
Figure 10;Area under the curve (AUC) of 0.9579 for 15 miRNA signature for both populations  
was calculated by Akaike information criterion (AIC) logistic regression.The AIC model 

Both populations 
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identified the best miRNA that were able to discriminate healthy individuals and active PTB from 
both African and European populations. 
 
 
 
 

 

 
Figure 11;Area under the curve (AUC) of 0.9136 for 10 miRNA signatures observed to be 
significant and specific for TB NEW cohort was calculated by Akaike information criterion 
(AIC) logistic regression. 
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Figure 12; Area under the curve (AUC) of 1 for 12 miRNA signatures observed to be significant 
in diagnostic performance and specific for African cohort was identified by Akaike 
information criterion (AIC) logistic regression. 
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Table 8; Diagnostic performances of the serum miRNA signatures for discrimination between healthy and active PTB from the two 
study population obtained through Relevance Vector Machine (RVM) after validation with the leave-one-out cross validation 
(LOOCV). 
 
Serum miRNA signature (No. of miRNAs) Both population (15) Italians and other race (10) African(12) 
n of individuals (H/PTB) 56 (28/28) 36 (18/18) 20 (10/10) 
Sensitivity % (95% CI) 85.71 (68.51-94.30) 77.78 (54.78-91.00) 100.00 (72.25-100.00) 
Specificity % (95% CI) 78.57 (60.46-89.79) 88.89 (67.20-96.90) 90.00 (59.58-98.21) 

PPV % (95% CI) 80.00 (62.69-90.50) 87.50 (63.98-96.50) 90.91 (62.26-98.38) 
NPV % (95% CI) 84.62 (66.47-93.85) 80.00 (58.40-91.93) 100.00 (70.08-100.00) 
Diagnostic accuracy % (95% CI) 82.14 (70.16-90.00) 83.33 (68.11-92.13) 95.00 (76.39-99.11) 
Likelihood ratio of a positive test % (95% 
CI) 4 (2.846-5.621) 7 (2.524-19.41) 10 (1.409-70.99) 
Likelihood ratio of a negative test % 
(95% CI) 0.1818 (0.1087-0.3041) 0.25 (0.1508-0.4144) 0 

 

Table 9; Diagnostic performances of the serum miRNA signatures for discrimination between healthy and active PTB from the two 
study population obtained through logistic regression model (AIC) after corrected with the leave-one-out cross validation 
(LOOCV). 
 
Serum miRNA signature (No. of miRNAs) Both population (15) Italians and other race(10) African(12) 
n of individuals (H/PTB) 56 (28/28) 36 (18/18) 20 (10/10) 
Sensitivity % (95% CI) 71.43 (52.94-84.75) 72.22 (49.13-87.50) 100.00 (72.25-100.00) 
Specificity % (95% CI) 82.14 (64.41-92.12) 88.89 (67.20-96.90) 100.00 (72.25-100.00) 
PPV % (95% CI) 80.00 (60.87-91.14) 86.67 (62.12-96.26) 100.00 (72.25-100.00) 

NPV % (95% CI) 74.19 (56.75-86.30) 76.19 (54.91-89.37) 100.00 (72.25-100.00) 
Diagnostic accuracy % (95% CI) 76.79 (64.23-85.90) 80.56 (64.97-90.25) 100.00 (83.89-100.00) 
Likelihood ratio of a positive test % (95% 
CI) 4 (2.599-6.156) 6.5 (2.302-18.35) undefined 
Likelihood ratio of a negative test % (95% 
CI) 0.3478 (0.2672-0.4527) 0.3125 (0.2079-0.4696) 0 
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4. Discussion and Conclusion 

4.1 Discussion 

Our results show promising data on circulating miRNAs as diagnostic parameters for different 

disease states. We demonstrate that diagnostic performance for discrimination of active TB 

from healthy person in this proof-of-concept study is high. In this chapter, we will discuss the 

significantly expressed miRNAs detected, illustrate their relevance and compare to existing 

literature. The study is the first one to characterize miRNA signatures for TB disease 

classification  from different geographic origins (Ajit 2012), and include a cohort of TB patients  

co-infected with HIV.  

 

In this study, the focus was on the panels of miRNAs composed of multiple targets, rather than 

a single marker. To ascertain if serum miRNA signature can discriminate different categories of 

diseases, a strict stratification screening approach was used to minimize the number of possible 

confounding factors. The results from the pooled samples identified different serum miRNAs 

profiles. The observed distribution of miRNAs residuals could discriminate healthy (H) and 

pulmonary TB (PTB), latent TB infection (LTBI) and PTB, as well as PTB and PTB/HIV. The 

signatures identified were observed to a large extent in both populations of healthy and PTB 

subjects from African origin and European cohort. 

 

Previously, the impact of geographic origin or genetic background on miRNA expression was 

not examined. The differences we observed could be due to number of reasons including: 

(i) Differences in genetic background  

(ii) Different environmental stimuli like concomitant infections  

(iii) Co-morbidity /co-infection conditions: although concomitant disease was excluded as 

far as possible using a questionnaire, some of the conditions or diseases could have 

been missed. 

 

Understanding the mechanism of transition from latent TB disease to active TB still remains 

challenging and incomplete. Multiple host factors are involved in this complex process (Barry, III 

et al. 2009). The described miRNA signatures in this study can discriminate active and latent TB, 

which may be related to the disease process and give insight into pathophysiology once the 

understanding is more complete.  

 

Comparing our results to literature, there are however no similarities in the discriminatory 

miRNA signatures. This could be explained by differences in the technique and source of 

samples: in the mentioned study, not all microarray results could be confirmed by RT-PCR 

(Wang et al. 2011a). Since microarray analysis and real-time PCR are two methods with 
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different sensitivities and specificities, miRNAs expressed at low levels could not always be 

detected by both methods (Thai et al. 2007) hence comparisons of the results might not give 

the true picture of the biomarkers involved.  

 

Although these miRNAs have been identified in this and other studies (Rajaram et al. 2011; 

Rasmussen et al. 2010; Sharbati et al. 2011; Wang et al. 2011b; Yi et al. 2012), further validation 

is required to answer the question as to whether these gene expression pattern are specific for 

TB or shared, at least in part, with diseases of similar pathophysiology but distinct etiology, and 

for analyzing their power to distinguish between LTBI and PTB when used as a diagnostic assay. 

Discrimination between PTB and other infections is crucial, since patients presenting for 

diagnosis will mostly be symptomatic due to a respiratory or other diseases, especially persons 

living with HIV/AIDS are at increased risk for infections. We analyzed miRNAs that can 

discriminate active TB co-infected with HIV against healthy individuals or active TB without HIV. 

Patterns of miRNAs were identified in pooled samples that could differentiate these conditions 

in HIV positive patients. Further validation in individual serum samples would have been 

necessary to assert the clinical value of our findings, but due to limitations in time and capacity 

these were not performed in this study. After comparing pooled samples, individual sample 

comparison showed that the levels of numerous miRNAs from both populations were 

significantly different. Our results support the hypothesis that the genetic background plays a 

role in influencing specific miRNA profiles.  

 

There are similarities and differences observed between our results and previous reported 

studies, as summarized in table 10, however the one to one comparison was not possible due 

to the differences in analytical platforms and normalization process. For example, miRNAs 

belonging to the families let-7, miR-30, and miR-146 were found to be discriminatory of healthy 

and PTB in these two studies (Fu et al. 2011; Qi et al. 2012). The expression levels of miRNAs: 

miR-590-5p, miR-185, miR-660, let-7e, miR-25, miR-146a, and miR-885-5p found to be 

significantly different between healthy and PTB patients in the study reported by Qi and 

colleagues (Qi et al. 2012). However, the previous studies did not consider the genetic 

background of the subjects enrolled: the inclusion of two groups with different genetic 

background allowed us to better define serum miRNA signatures. 
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Table 10; Similarities and differences of miRNAs signature identified in this study and the 
miRNAs reported in the previous studies 

miRNAs from this study 
(Fu et al. 

2011) (Qi et al. 2012) 

hsa-let-7e-4395517 let-7 family let-7e, let-7 family 

hsa-miR-146a-4373132 miR-146a miR-146a 

hsa-miR-148a-4373130 - - 

hsa-miR-16-4373121 - - 

hsa-miR-192-4373108 - - 

hsa-miR-193a-5p-4395392 - miR-193 family 

hsa-miR-25-4373071 - miR-25 

hsa-miR-365-4373194 
miR-365 
family - 

hsa-miR-451-4373360 - - 

hsa-miR-532-5p-4380928 - miR-532 family 

hsa-miR-590-5p-4395176 - miR-590-5p 

hsa-miR-660-4380925 - miR-660 

hsa-miR-885-5p-4395407 - miR-885-5p 

hsa-miR-223*-4395209 - miR-223 family 

hsa-miR-30e-4395334 miR-30 family miR-30 family 
 

 

Additionally, our study had more samples from different nationalities, where we used similar 
methodology: thus increase the likelihood of detecting many miRNAs that are expressed during 
active PTB which have not been reported elsewhere.  
 
Despite the difference in methodologies, a signature of miRNA increase chances of detecting 
the diseases as compared to the use of a single miRNA. Using the 15 miRNA signature observed 
to be significant from pooled and individuals samples; diagnostic accuracy was between 77% 
and 82% by LOOCV approach and RVM respectively, whereas AUC was 0.90. In fact, diagnostic 
accuracy increased when classification of population based miRNAs signature was used; 81-83% 
for Italians and other races and 95-100% for African population. As mentioned earlier, serum 
miRNA signature showed less efficiency in classifying subjects belonging to the European 
population, which probably had a more diverse genetic background than the Ugandans and 
Tanzanians in the African population. 
 
Moreover, miRNA expression can be altered in pathophysiological processes and could reflect 
and predict disease progression (Kim and Nam 2006). Additionally, the functions of most 
differentially expressed miRNAs are still largely unknown. The significant change in expression 
levels of these miRNAs detected in these two populations study, examples; the let-7 families 
suggests their involvement in regulating anti-TB immune response (Yi et al. 2012) or play an 
important role during pathogenesis of active TB and during infection.  
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4.2 Limitation and challenges 

Inconsistent results from different studies, present a challenge when moving ahead in 
identifying miRNAs that will accurately identify PTB or risk of progression from LTBI to active 
PTB. It should be noted that differences in miRNA profiling methodologies, analytic approaches, 
sample-sizes, population types, methods of tissue archival, RNA extraction and others, are likely 
to affect findings in such studies.  
 
Stringent selection criteria of the serum samples to be analysed, makes the generalization of 
the findings from this study limited. For examples, signature of miRNAs observed to be 
significantly expressed in PTB patient who are non-smokers might be different in similar case of 
PTB patient who smoke. However, for the proof of concept procedure, a homogenous 
population was critical. Further investigation of the significant signature of miRNAs detected in 
this study, should therefore consider comparing different pulmonary diseases to verify the 
diagnostic performance of these miRNAs. For future validation, methodologies should be kept 
homogenous with two studies, which will of course be challenging at a later stage when a 
technological platform suitable for point-of-care diagnostics will be introduced. 
 

Patterns of biomarkers may be used for identifying groups of diseases, whereas others allow for 

differential diagnosis of distinct types of diseases, for example infectious or non-infectious 

diseases (Maertzdorf et al. 2012). Currently, biomarker-based differential diagnosis requires 

simultaneous measurement of more than one analyse which is not cost-effective for point of 

care diagnosis of active PTB.  Focusing on differential biomarkers only might be the best 

solution at the moment but rather taking into account the shared ones, consequently an 

algorithm can be designed for screening patients with pulmonary symptoms (Maertzdorf et al. 

2012).  

 

Our findings have added to the knowledge on changes in miRNA expression profiles during PTB 

disease, and indicate potential for improving diagnosis, prognosis and surrogate marker for 

treatment. The understanding of miRNA pathophysiology in TB is still very limited. Several 

studies reported related phenotype in active TB patients which suggest that changes of these 

miRNA expression levels in active PTB may lead to the changes in immune cell profile and the 

alterations of the host immune response during TB disease (Wang et al. 2011a). For example, a 

previous study that used whole genome transcriptional profiling observed changes in 

expression levels of different cell types, such as macrophages and NK cells in samples from 

active and latent TB patients (Maertzdorf et al. 2011).Studies have also reported an increase in 

the proportion of CD14+,CD16+ inflammatory monocytes and a decrease in the proportion of 

CD4+ T cells, CD8+ T cells, and B cells in blood cells of patients with active TB (Berry et al. 2010). 

However, it is still not clear yet, whether this alteration of cellular composition and gene 

expression in active TB patients is regulated by miRNAs (Wang et al. 2011a). 
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Although these bio-signatures have been identified by several independent groups and possess 

the potential to discriminate latent M. tuberculosis infection and healthy individuals from active 

TB patients, the question still remains to be answered if these expressed gene signatures are 

specific for TB or shared, at least in part, with diseases of similar pathology but distinct 

aetiology (Maertzdorf et al. 2012). Currently, based on these finding and others from previously 

reported studies it is still difficult to synthesize the results to reach a conclusive opinion on the 

pattern of miRNAs to be used as biomarkers for PTB diagnosis. Despite advancement in 

molecular characterization of M. Tuberculosis (Smith 2003), yet very little is known about the 

molecular basis of bacteria-host interaction and molecular cellular mechanism during  

pathogenesis process and the of drug resistance. The ability of the M. tuberculosis to persist 

and multiply within alveolar macrophages after phagocytised forming the tubercle is the key to 

the pathogenic virulence (Houben, Nguyen, and Pieters 2006). During this era of biomarker 

development for TB diagnosis, understanding of host-pathogen interactions is crucial. 

 

The immune system following alteration of miRNAs expression due to the diseases like 

sarcoidosis (SARC) which has significant similarities in immune activation with active PTB could 

have as well have a similar pathophysiological changes (Prince, Kheradmand, and Corry 2003). 

Despite the fact that, SARC is a non-communicable disease of unknown etiology; clinical 

symptoms and histological presentation of a patients with pulmonary SARC are very similar to 

PTB including granulomatous structures in the lung (Marchiori et al. 2011; Prince et al. 2003). 

For future studies, it will be interesting to compare miRNA signatures between SARC and TB 

patients. The complexity of interaction between genes and miRNAs, involved in disease 

phenotypes needs to be clarified in more depth to gain deeper understanding the pathologic 

mechanisms of causal or development of the disease (Schadt 2009). ‘‘Maertzdorf and colleague 

described a first attempt to gain a detailed insight into similarities and differences between the 

TB and SARC and reported miRNA expressions with a highly similar pattern in both diseases. 

Such pattern in patho-physiologically similar diseases as described suggests a potential future 

use in differential diagnosis of different lung diseases ’’ (Maertzdorf et al. 2012). However, 

more research has to be done to define the unique biomarkers for a specific disease.  

 

4.3 Conclusions and recommendation 

For the past decades, tuberculosis continues to be a major risk to the global population. It is  a 

mysterious communicable infectious disease regardless the major advancement on research on 

control programmes. ‘‘Of the various research efforts in diverse directions for the control of 

tuberculosis, recently identified involvement of miRNA in mycobacterial infection has also 

nourished the hopes for better understanding of pathogenesis, and for developing a new class 

of sensitive and accurate diagnostic and prognostic biomarkers and possible new therapeutics 

for tuberculosis’’ (Singh et al. 2013). 
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‘‘Although a number of miRNAs have been identified as biomarkers to differentiate active TB 

and latent TB from healthy individuals´´(Fu et al. 2011; Wang et al. 2011a), ʽʽit is not clear 

whether such biomarkers are specific for TB or shared by other diseases´´(Singh et al. 2013). 

ʽʽTherefore, along with developing reliable miRNA - based biomarkers, future work is needed 

also to discover biomarkers for the prediction of relapse, resistance and treatment response on 

account to provide better treatment as well as to facilitate the testing of new drugs’’ (Singh et 

al. 2013). Currently, this area is in its infancy stage and need more attention and more works 

towards understanding the complex regulation of miRNA in tuberculosis, and for developing 

signatures to be used for the effective control and management of tuberculosis. The accurate 

and rapid diagnosis as well as ability to monitor the treatment response is very crucial for 

effective control and management of tuberculosis.  

 

Our findings show both common and different disease-related miRNA expressed levels in active 

TB and active TB/HIV, LTBI and H individuals. Pulmonary TB pathogenesis is a complex process 

and could involve interplay between genes, miRNAs, and immunological system. miRNAs that 

are significantly expressed in active TB are patterns of both miRNAs involved in non-specific 

inflammatory processes and specific disease manifestations.  But again, miRNAs that are 

expressed following the lung damages; lung cancer, active TB and other inflammations due to 

bacteria or virus infection suggest a potential future use in differential diagnostic tool of 

different lung diseases. The validation process will consider the striking unique patterns and 

similarity in expression profile of miRNAs in active TB against LTBI, H individuals and PTB with 

co-morbidity like PTB/HIV for better understanding the underlying mechanisms of pathology. 

This consideration could greatly benefit the definition of true biomarkers for active TB and 

other co-infection and or related pathogens with similar pathogenesis as results development 

of new array based diagnostic tools, which discriminate not only active TB disease status from 

healthy individuals but also between different diseases of similar pathology.  

 

In a process of attempting to validate and link miRNAs to PTB pathogenesis or any certain 

biological processes, first; unique and common miRNAs based on their expression levels can be 

clustered. Clustered miRNAs with correlating expression patterns can reveal functional relations 

to biological processes to the underlying disease pathology. Secondly, standardizations of the 

miRNAs identification process; thus, type of sample to be used, collection, storage, 

amplification method and analysis will be crucial in the process. Normalization and selection of 

stable endogenous control is equally important. Lastly, although these miRNAs have been 

identified and reported by several independent groups to possess the potential signature to 

discriminate active TB, to answer the question as whether these expression miRNA signatures 

are specific for TB or shared, comparative analysis of serum miRNAs in patients with active 
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pulmonary, Latent TB, PTB/HIV and other most common lung diseases and TB that are on 

treatment has to be considered. Such design methodology could provide a more promising 

approach to identify a unique miRNAs to be used as biomarker diagnoses pulmonary disease, 

including active TB. 

 

More research needs to be done to address some of the following challenges: 

i. Standardizing the methodology in type of the samples to be used to isolate total RNAs, the 

use of high throughput and sensitive technique for analysis of miRNAs, stable endogenous 

controls to be used, improvements in data are analysis and presentation. The reported 

results have to repeated and reproducible. 

ii. ‘’As intracellular bacteria, M. Tuberculosis depends on the tolerance of host immune 

system for its survival and replication, which makes it susceptible to the host gene-

regulatory mechanisms. Silencing via host miRNA might be a mechanism human 

macrophage employs to defend against intracellular pathogens such as M. 

tuberculosis’’(Guo et al. 2010). Previous reported targets observed to be regulated by 

miRNAs need further re-assessed; for examples immune cells (dendritic cell, macrophages, 

interferon-γ, few to mention) (Banchereau and Steinman 1998; Wallet, Sen, and Tisch 

2005),genes or cell related to M. tuberculosis growth, virulence or drug resistance. A 

pattern of genes and miRNAs with correlating expression levels, which could indicate a 

possible functional relationship and reveal particular biological processes involved in 

pulmonary diseases can be created. The selection has to focus on the miRNAs with 

significance, stable and reproducible in the biological processes.  

iii. Determine the main source of miRNAs involved; if originating from the host or pathogens 

and determine which ones play the main role. But again, should be able to differentiate 

miRNAs that are specific to TB disease and those changes in expression levels following 

inflammation of the lung: for example; inflammation due to pneumonia, asthma, or 

chronic pulmonary obstructive diseases. There are also pathogens or conditions that have 

similar pathways of pathogenesis with TB like sarcodosis causing chronic inflammatory 

disease. Described commonalities as well as unique signatures in miRNAs expression 

profiles of one or more distinct inflammatory pulmonary diseases not only have 

considerable implications for the design of TB biomarkers as a diagnostic tool but they also 

provide insights into biological processes underlying chronic inflammatory disease entities 

of different etiology. 

iv. The results have to be validated in the large population of different geographic origins in 

blinded methodology, choosing the correct cut off point is also a challenge in results 

presentation. What changes in expression levels of these biomarkers are significant and 

accurate correlated with the present diseases or etiology?. To ensure similarities of the 

results, the cut off point for low or high expression needs to be determined.  
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Ideally, these expected results require simultaneous measurement of different miRNAs and 

target genes or immune cells, to result in meaningful conclusion which will be able to tell 

accurately biomarkers which are specific to diseases, conditions and should in all population 

regardless of their genetic differences. We conclude that miRNAs biomarker profiles not only 

contain disease-specific signatures but also provide insight into biological processes shared by 

different diseases or transition of LTBI to active TB. This promising approaches of using miRNAs 

as biomarkers for diagnosis might also be useful to predict treatment outcome of TB patients 

and early detection of resistance TB strains which can guide proper management of the 

patients.   
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