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1. Introduction  

1.1 Corollary discharges (CDs): an overview 
 

Sensory systems have evolved to provide animals with a reliable representation of the outside 

world allowing high fitness levels in exploration and navigation tasks.  

An animal living completely stationary would only detect an input generated by the 

environment, an “exafference” stimulus (von Holst and Mittelstaedt, 1950). In contrast, an 

animal performing a motor behavior (e.g. locomotion, vocalization, breathing), would 

additionally experience an input that is a consequence of the motor activity, termed 

“reafference” (von Holst and Mittelstaedt, 1950). The concomitant detection of exafferent 

and reafferent stimuli can in principal produce ambiguity in assessing the cause of the 

sensation and result in an inefficient and disrupted perception of the outside world. Across 

the animal kingdom all species have evolved mechanisms to resolve ambiguity regarding the 

nature of the sensory inputs (Crapse and Sommer, 2008), in order to be able to perceive the 

world while moving. Interestingly, it seems that animals evolved a conceptually similar 

strategy for reducing the effect of reafferent stimulation. The intrinsic neuronal signal 

responsible for the motor behavior is also used to inform the sensory system about the 

impeding reafferent stimulation (efference copy signal, in von Holst and Mittelstaedt, 1950), 

reducing the ambiguity of perception and insuring a sensory-motor balance. The definition of 

“efference copy”, initially given by von Holst and Mittelstaedt, is related to an actual copy of 

the motor signal (the efference), which produces muscle contraction. Sperry (Sperry, 1950) 

introduced the term “corollary discharge” (CD) to describe a motor-related signal that 

influences sensory processing, independently of the origin. The concept of CD will be 

preferentially used in this thesis since it also includes the definition of efference copy. 

According to Crapse and Sommer (2008), CDs can be subdivided into higher and lower 

functional categories in relation to the complexity of the computational processes in which 

they are involved (e.g. learning or peripheral sensory gating). Lower-order CDs are 

responsible for reflex inhibition and filtering sensory signals. Reflex inhibition during 

swimming plays an important role in gating sensory inputs from skin receptors in Xenopus 

embryos (Sillar and Roberts, 1988) and in avoiding withdrawal responses in gastropods 

during feeding behavior which are otherwise present whenever the mechanoreceptors of the 

mouth are stimulated (Davis et al., 1973). In the latter example, CDs active during feeding 

decouple a motor response (withdrawal), which would be completely inefficient for the 
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feeding process. CDs have been shown to drive context dependent reflex control also in 

amniote vertebrates. For example, in monkeys the vestibulo-ocular reflex (VOR), responsible 

for gaze and posture stabilization during passive head motion, is suppressed during voluntary 

head movements (Roy and Cullen, 2004). In this case the CD contributes to the differential 

processing of passive and active head movements by the vestibular system.  

Sensory filtering strategies have evolved simultaneously with the motor systems responsible 

for body motion in space or for acoustic communication (Crapse and Sommer, 2008). In case 

of acoustic communication, in insects (Poulet and Hedwig, 2006), fishes (Chagnaud and 

Bass, 2013) and mammals (Hage and Jürgens, 2006), CDs in the vocal motor centers 

suppress signal processing in auditory regions during self-vocalization, and thus maintain 

receptiveness for non-self-generated auditory stimuli. 

Higher-order CDs are involved in more complex functions such as sensory analysis and 

stability, sensory-motor planning and learning, mostly present in amniote vertebrates (Crapse 

and Sommer, 2008). In monkeys CDs contribute to a stable perception of the visual world 

during saccadic eye movements (Schall, 2004) or to the planning of saccade sequences 

during visual exploration (Sommer and Wurtz, 2002). CDs of the vocal motor command play 

a crucial role in learning of songs in song birds (Brainard and Doupe, 2000; Margoliash, 

2002). In a particular phase of vocal learning, the auditory signals of the actual emitted song, 

the memory trace obtained by listening to adult song birds (the tutors) and the vocal CD are 

reiteratively combined in order to refine the vocal motor command (Margoliash, 1997; Reiner 

et al., 2005). By taking into account the majority of studies related to CDs, it emerges that 

lower order CDs tend to inform sensory systems about the timing of the self-induced 

stimulation, whereas higher level CDs simultaneously encode multiple parameters (e.g. space 

and time).  
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1.2 Reafferent stimulation and CDs in mechanosensory systems  
 

Amongst vertebrates, systems that are able to sense a physical displacement 

(mechanosensory systems) can be affected by reafferent stimulation during active movement 

in space of the body or of body parts. The mechanosensory hair cell systems like the 

vestibular and the lateral line system (in fishes and amphibians), are extremely sensitive to 

body motion or water waves, and are therefore affected by reafferent stimulation during 

locomotion. Other mechanosensory systems present on the body surface (e.g. touch 

receptors) are also potentially affected by self-induced stimulation and might necessitate 

mechanisms to resolve ambiguity regarding the nature of the sensory inputs.  

 

1.2.1 Vestibular system 
 

The vestibular system is responsible for detecting linear and angular body/head acceleration 

and for driving the appropriate counteracting motor commands to maintain stable posture and 

gaze during body movements (Angelaki and Cullen, 2008; Carriot et al., 2014). The 

vestibular nerve (VIII) of all vertebrates (reviewed in Straka and Dieringer, 2004) is 

composed of sensory afferent fibers with their somata in the ganglion of Scarpa in the 

peripheral nervous system (PNS). These fibers mediate motion information to the central 

nervous system (CNS), by making synaptic contacts with the different end-organ hair cells 

(Straka and Dieringer, 2004). The VIIIth nerve also comprises efferent fibers originating 

from a brainstem efferent nucleus. These fibers make peripheral synaptic contacts with hair 

cells and afferent fibers (Fritzsch, 1996). Due to this connection, the efferent neurons are 

potentially involved in regulating the peripheral sensory processing within the vestibular 

system and might be responsible for the suppression of self-induced stimulation. The 

activation of this nucleus might produce a wider dynamic range for the afferent signals 

encoding head/body motion (Highstein and Baker, 1985; Boyle et al., 1991). Electrical 

stimulation of the efferent nucleus in toadfish, in anesthetized monkeys and in chinchilla 

produced an increase in resting afferent discharge rate (Goldberg and Fernández, 1980; 

Highstein and Baker, 1985; Plotnik et al., 2002). In contrast, similar experiments in frogs and 

turtles revealed a combination of excitatory and inhibitory effects (Bernard et al., 1985; Rossi 

and Martini, 1991; Brichta and Goldberg, 2000). In toadfish the sensitivity of afferent fibers 

to passive head rotation was diminished during electrical stimulation of the efferent system. 



	
   5	
  

Some evidence of behavioral activation of efferent fibers come from studies in toadfish and 

frogs (Russell, 1971; Roberts and Russell, 1972; Highstein and Baker, 1985; Boyle et al., 

1991). In these animals putative efferent neurons were found to produce a burst of activity 

before the initiation of escape responses or during locomotor episodes. More recent studies 

however have shown that in awake monkeys, vestibular afferent fibers show the same 

sensitivities during passive and voluntary head motion (Cullen and Minor, 2002), indicating 

that the efferent nucleus is not active during this motor behavior or not able to produce an 

effect on peripheral sensory processing. Despite the potential mechanism of peripheral 

adaptation via efferent neurons, the sensory filtering during motor behaviors could also take 

place in the CNS, at the different levels of the sensory-motor processing. Vestibular neurons 

in monkeys receive direct projections from afferent fibers encoding passive and voluntary 

head motions (Cullen and Minor, 2002), compatible with the absence of a peripheral sensory 

gating. A subpopulation of these neurons, called vestibular only (VO) neurons, carry 

information about motion only during passive and not during voluntary head rotation (Boyle 

et al., 1996; McCrea et al., 1999; Roy and Cullen, 2001). These cancellation signals at the 

level of VO neurons were found only when the head of the monkey was left free to perform 

actual rotational movements. In a head-restrained condition, simple ‘trying to attain’ head 

rotations (measured by the presence of large saccadic eye movements) did not cause any 

change in the resting firing rate of the VO neurons (Roy and Cullen, 2004). It was concluded 

that an integration between efference copies of the signals going to the neck muscles and 

proprioceptive inputs coming from these muscles only during actual head rotation has to take 

place in order to generate the inhibition. Other evidence of CDs influencing the vestibular 

sensory processing come from studies in larval and adult amphibians. During undulatory 

axial-based swimming (larval stages) and limb-based swimming (adult stages), compensatory 

eye movements are produced via CD signals originating in spinal locomotor regions and are 

not related to vestibular inputs (Lambert et al., 2012; von Uckermann et al., 2013). 

 

1.2.2 Lateral line system 
 

The lateral line system is located along the head and trunk/tail regions of aquatic anamniotes 

(fishes and amphibians), serves to sense water waves and can be used for pray/predator 

recognition/localization and in navigational tasks (for a review see Bleckmann, 2008). The 

sensory processing of water waves produced by the external environment can thus be affected 
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by concomitant self-generated turbulences during locomotor activity (Montgomery et al., 

2009). The anterior and posterior lateral line nerves (ALLN and PLLN) innervating the hair 

cell neuromasts on the head and trunk/tail regions are also composed of afferent and efferent 

fibers (Russell, 1968), as described for the vestibular nerve. The majority of efferent neurons 

are shared between the lateral line and vestibular system (Hellmann and Fritzsch, 1996). 

Similarly to the vestibular system, sensory processing of external lateral line stimuli (water 

waves produced in the environment) can be affected by concomitant self-generated stimuli 

(water turbulences created during locomotor activity). Also in this system, efferent 

projections to hair cells represent a possible candidate to suppress reafferent stimulation 

already at the level of the sensory periphery. Even though, an increase in activity of putative 

efferents during swimming in dogfish was reported in a previous study (Roberts and Russell, 

1972), up to date, the physical origin of the neuronal inputs responsible for locomotion 

related activation of lateral line and vestibular efferents is unknown and the nature of this 

activation (sensory feed-back/feed-forward mechanisms) remains ambiguous. The possible 

relationship between the firing profile of efferent neurons and locomotion-related features 

(i.e. duration, amplitude and frequency) and the resulting effect on the sensory processing 

also remain unclear.  

  

1.2.3 Somatosensory processing (touch) 
 

The processing of touch sensation as described for other sensory modalities also occurs 

during active movements of the body (locomotion) and of the body´s appendages endowed 

with touch receptors (e.g. fingers, whiskers, tentacles). In 1962, Gibson already hypothesized 

that the difference between ‘touching and being touched’ could not only be given by the 

perception of movement (kinesthesis). He proposed that touch sensation has to be processed 

within two different channels, one ‘extero-specific’ and one ‘proprio-specific’(Gibson, 1962). 

Studies in primate somatosensory cortex have confirmed this hypothesis showing that CDs 

are responsible for attenuated responses to self-produced versus externally produced tactile 

stimulation (Chapman, 1994). Intrinsic motor signals are also involved in suppressing self-

induced tickling sensations/responses in humans (Blakemore et al., 1998). Rats use tactile 

information from their whiskers (vibrissae), which are actively moved to explore the 

environment (Kleinfeld et al., 2006). In the trigeminal nucleus, which supplies a part of the 

innervation for the whisker system, cells were found that specifically encode for only the 
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active deflection or for the pure touch of the whiskers (Szwed et al., 2003). Other studies in 

the barrel cortex of these animals showed that, neurons continued to encode amplitudes of 

active whisking also after the removal of proprioceptive inputs, indicating the presence of CD 

signals (e.g. Fee et al., 1997). 

Mobile, elongated appendages, which emerge from the head or brachial regions are also 

present across fishes, amphibians and reptiles containing a large variety of different sensors 

(reviewed in Fox, 1999). Depending on the type of receptors present on the surface of these 

structures, they can be used for touch perception, electroreception, water motion detection 

and gustation. The tentacles of Xenopus laevis larvae, present between developmental stages 

47 and 61 (Nieuwkoop and Faber, 1956), are an example for facial structures endowed with 

Merkel cell touch receptors (Ovalle, 1979; Ovalle et al., 1998). The presence of 

mechanoreceptors suggests a role in touch perception and recognition of surfaces (Maricich 

et al., 2009). At larval stages these animals are very active and live prevalently in a murky 

aquatic environment (Nieuwkoop and Faber, 1956), probably in the absence of adequate 

visual cues for orientation and navigation. Thus, tentacles might represent an evolutionary 

adaptation for this particular ecological niche. Interestingly these appendages are gradually 

lost before metamorphosis and are absent in adults. This loss might be related to the change 

in lifestyle of post-metamorphic frogs, which live at the clearer water surface and are mostly 

stationary. 

Xenopus tadpole tentacles and rodent whiskers might have the same functional role in touch 

perception. As already emphasized, rats use whisker movements to explore the environment 

while walking along surfaces. Xenopus tadpoles swim slowly with their tentacles touching 

the wall or floor of the tank where they are kept. This behavior potentially serves to collect 

surface information via tentacle tactile stimuli. While, rodents control their whisker 

movements actively by differential activation of multiple muscles (Berg and Kleinfeld, 

2003), tentacle motion in Xenopus larvae is controlled by a single muscle (producing 

retraction to a lateral position) and a spring-like antagonist (responsible for the passive return 

to the extended position). The motor (tentacle retraction) and sensory (touch sensation) 

innervation of the tentacles have been shown to originate from the mandibular and 

ophthalmic branches of the trigeminal nerve (Ovalle, 1979) .  

During undulatory swimming of Xenopus tadpoles, the large oscillations produced by the tail 

cause a concomitant motion of the head (Lambert et al., 2012). The concurrent strong passive 

displacement of the extended, relatively long (up to 1/3 of the animal´s length) tentacles 

during swimming might impair their tactile function by damaging and/or over- stimulating 
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these sensory appendages. A potential protection of the sensors and an increase in 

hydrodynamic efficiency could be achieved by a retraction of the tentacles, especially during 

strong locomotor activity. 

Starting from the anatomical knowledge that the tentacles of these animals are sensory and 

motor innervated by a subdivision of the trigeminal nerve (Ovalle, 1979), the goal was to 

reveal if this particular nerve subdivision receives locomotor-related CDs. Furthermore, this 

also included a study to investigate which kind of information about locomotion is 

transmitted to the trigeminal nucleus and its effect on tentacle motility. 
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1.3 Technical requirements for experimental approaches 
 

In-vitro preparations of Xenopus laevis have been already used in a variety of studies on 

developmental aspects of the vestibulo-ocolomotor system (Lambert et al., 2008, 2013; 

Branoner and Straka, 2014) or on the role of swimming related spinal CD for eye movements 

(Combes et al., 2008; Lambert et al., 2012). All these studies were conducted by means of 

electrophysiological recordings of motor nerves and spinal cord ventral roots. In the 

framework of my thesis, I modified this semi intact in-vitro preparation and developed an 

electrophysiological technique (described below) for stable recordings of intact 

vestibular/lateral line afferent/efferent fibers as well as the activity of identified central 

vestibular/lateral line neurons by means of calcium imaging and electrophysiological 

techniques (see below). These recordings are possible in the presence and absence of 

locomotor activity. I also established axolotl (Ambystoma mexicanum) larval/juvenile (Fig.1 

A, C) semi intact in-vitro preparations, which both are particularly suitable for imaging 

techniques. 

In these Xenopus and axolotl preparations all the sensory-motor systems or a subset of them 

can be kept functional (Fig. 1 A, C). After disconnection of the forebrain, the head and the 

associated neuronal structures can be completely fixed. The entire or parts of the midbrain, 

hindbrain and spinal cord with the associated nerves can be exposed (Fig. 1 B, C) with the 

possibility to keep the sensory periphery intact and functional (note the accessibility of the 

VIIIth and of the other cranial nerves in Fig. 1 A together with the intact otic capsule). For 

both species parts or the entire osteomuscular elements of the trunk and tail can be 

maintained functional and free to perform spontaneous or induced (mechanically, electrically, 

pharmacologically) swimming/walking movements, as it is exemplified for the Xenopus 

preparation in Fig. 1 B. These reduced preparations, kept in Ringer solution (see Materials 

and Methods in the enclosed manuscripts), maintain their functionality for an average period 

of 2 days (Xenopus) and 7 days (axolotl). This long survival time, together with the 

accessibility and visibility of all nerves and brain regions makes it possible to conduct 

anatomical and physiological studies of identified neuronal subpopulations. In Fig. 2 some 

examples of retrogradely labeled projections and neuronal types in the hindbrain of axolotl 

(Fig. 2 A, D) and Xenopus (Fig. 2 B, C) are shown. The site of application and combinations 

of different color fluorescent tracers for both species are depicted in the inset in Fig. 2 B.  
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Figure 1 
Semi-intact in-vitro preparations. Whole-head-spinal cord preparations of larval axolotl (A) and 
Xenopus (B) and of a juvenile axolotl (C) used for anatomical, behavioral and physiological studies. 
The intact head sensory structures and the exposed brainstem-spinal cord regions are shown together 
with the accessible cranial nerves and spinal ventral roots (A, B, C). In C, the caudal part of the tail 
was left intact to perform swimming movements. Abbreviations: mb, midbrain; cer, cerebellum; hb, 
hindbrain; vr, ventral roots; sp, spinal cord; tent, tentacle; otc, otic capsule; ALLN, anterior lateral line 
nerve; VN, vestibular nerve; PLLN, posterior lateral line nerve. 
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1.3.1 Anatomical localization of hindbrain neurons 
 

The embryonic hindbrain of all vertebrates develops as a series of functionally and 

genetically distinct segments, called rhombomeres (r, Fig. 2 B) (for a review see Gilland and 

Baker, 2005). This evolutionary retained segmental organization allows the comparison of 

clusters or of individual neurons located in specific rhombomeric domains across species. 

Interestingly, this embryonic rostro-caudal bauplan can still be found during larval stages of 

some aquatic vertebrates (Straka et al., 2001; Gilland and Baker, 2005) and appears to be true 

also for larval Xenopus (Fig. 2 B). Due to the absence of a direct visualization of the 

segmental pattern in the axolotl hindbrain, the embryonic rhombomeric scaffolds at younger 

and at older larval stages were inferred by the sequential arrangement of reticulo-spinal 

neurons along the rostro-caudal axis of the hindbrain (red neurons circumscribed by dashed-

withe-lines in Fig. 2 A). In many vertebrate species, these clusters of reticular neurons were 

shown to have a specific morphology, axonal projection pattern and rhombomeric origin 

during embryogenesis and retain their localization throughout development (Metcalfe et al., 

1986; Hanneman et al., 1988; Lee and Eaton, 1991; Lee et al., 1993; Straka et al., 2001, 

2006; Gilland and Baker, 2005; Gilland et al., 2014). Due to the well known properties of 

these neurons, the inferred rhombomeric scaffold was used to compare the segmental 

localization of subpopulations of vestibular neurons in axolotl and Xenopus. In Fig. 2 A, B 

(green cells circumscribed by dashed-blue-lines) vestibular neurons projecting to the same 

midbrain regions (see figure legend for details) were found to be located in the same 

homologous segments in axolotl (Fig. 2 A) and Xenopus (Fig. 2 B). 
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Figure 2 
Rhombomeric arrangement of hindbrain motor nuclei. Confocal microscope reconstructions of 
hindbrain neuronal subpopulations in axolotl (A, C) and in Xenopus (B, D) after application of two 
different fluorescent tracers (green and red). The different combinations and sites of tracer application 
for both species and all preparations are depicted in the inset in B. A and B show homologous 
segmental allocation of ipsilateral and contralateral vestibulo-ocolomotor neurons (i2-3, c5-6; green 
cells circumscribed by the blue dashed lines) visualized by unilateral green tracer application to the 
oculomotor nucleus (see letters and colors in the insert in B). The rhombomeric domains were directly 
visible in Xenopus (1-7 and sequential dashed white lines in B) and inferred in axolotl from the rostro-
caudally arranged clusters of reticulo-spinal neurons (1-7 and red cells circumscribed by the dashed 
lines in A). C, D. Labeling of efferent neurons/afferent vestibular projections (green in C, red in D) 
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and of reticulo- and vestibulo-spinal projections (red in C, green in D). Mth, Mauthner neurons in A 
and Mauthner neuron axons in C. The yellow arrows in B show the orientation of the hindbrain and 
apply to all the images.  
 

1.3.2 Recording of nerve activity  

Different electrophysiological techniques have been used across vertebrates to record the 

discharge of the entire nerve, of nerve portions or of single axons. The activity of the 

majority of the axons (units) composing a nerve or of isolated dissected nerve bundles can be 

acquired by placing the nerve tissue over electrodes and by electrically isolating this area 

with fatty compounds like mineral oils or Vaseline (Russell and Roberts, 1972; Combes et 

al., 2004). With this technique, the peripheral parts of the nerve can be both kept attached as 

well as transected before the innervation to the target structures (e.g. muscle, sensory organs, 

glands). After the transection two parts of the nerve are theoretically available for the 

recordings; one cut end is still attached to the periphery, whereas the other end (the central 

stump) is connected to the CNS. In case of a motor nerve, the activity recorded from the 

central stump corresponds to the discharge of the motor neurons located in the CNS (see Fig. 

3), which would lead to a muscle contraction. The discharge acquired from the other side of 

the cut nerve, the part attached to the muscle, would be related to some still functional 

sensory fibers (e.g. proprioceptive from the periphery). If one considers a sensory nerve 

containing only afferent fibers, the only possible recorded activity would be the one coming 

from the peripheral stump. On the other hand, in mixed sensory/motor nerves containing 

efferent and afferent fibers, as described for the vestibular and lateral line system, the activity 

of the efferent fibers could be recorded from the central stump. The recording methods 

described above can be used in relatively large animals or at older developmental stages, 

where the nerves have acquired a sufficient size. Recordings from smaller nerve stumps (50-

100 µm) have been made with glass suction electrodes (Combes et al., 2008; Lambert et al., 

2008; Branoner and Straka, 2014) where the cut nerve end is sucked into a glass pipette with 

an adequate diameter to ensure a tight seal (see Fig. 3 B). This technique can be applied only 

to nerves that have been isolated from the peripheral targets (e.g. muscles). Alternatively, 

intracellular (Rossi et al., 1980) and extracellular electrodes (Cullen and Minor, 2002; 

Sadeghi et al., 2009) have been used for recordings of single or multiple afferent discharges 

in nerves with intact or disrupted peripheral and central projections. Even tough these 

approaches have been used for vestibular afferent recordings during rotations of the head or 

of an isolated otic capsule (Rossi et al., 1980; Cullen and Minor, 2002), they are only suitable 
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for larger axons and for nerves that remain relatively immobile with respect to surrounding 

structures and tissues. Some other disadvantages of the common extracellular recording 

techniques are that in most of the cases the signal is composed of the activity of many units, 

the signal to noise ratio is relatively poor and in some cases only the average of sequentially 

recorded traces can be analyzed.  

The necessity to investigate the effect of vestibulo/lateral line locomotor related efferent 

activation on the discharge of afferent fibers of larval amphibians during natural stimulation 

(head movement, hydrodynamic stimulation) required a specific technique, which had to 

include all of the following aspects: 1) Efferent and afferent fibers and their connections to 

hair cells have to be intact; central or peripheral cut end recordings would not have revealed 

afferent adaptation given by efferent activity. 2) The recording method has to be suitable for 

relatively small and fragile nerves/afferent fibers present at larval stages (approximate 

diameter 1 µm); the axonal diameter would have been too small for intracellular recordings. 

3) The recorded signal should include, with a high signal to noise ratio, the activity of one or 

a few afferent fibers. 4) The recordings have to remain stable during the natural stimulation 

of both sensory systems: lateral line nerves during hydrodynamic stimulation and of the 

vestibular nerve branches during head rotation.  

To achieve this, the tips of sharp glass pipettes, normally used for intracellular recordings, 

were broken at a diameter of approximate 2 µm. The broken tips were observed under a 

microscope and only pipettes with sharp transversal apical apertures were used. Alternatively, 

patch-pipettes, around the same diameter, with a polished tip, were used (preferentially for 

lateral line nerve recordings). Prior to the experiments, the surface of the different nerve 

branches, close to their brain entrances, were completely cleaned from the surrounding tissue. 

After reaching the surface of the nerve with a preferential perpendicular approach, negative 

pressure was applied to and maintained in the glass electrode. This procedure resulted in a 

very tight connection between the electrode and the nerve patch. The activity of single or 

very few afferent fibers (due to the small tip size of the pipette) could be recorded with a high 

signal to noise ratio (due to the tight connection between the polished tip of the pipette and 

the completely clean nerve); the connection and the recording revealed to be remarkably 

stable also during rotational stimuli (rotation of the preparation on a turn table) or during 

movement of the liquid surrounding the nerve (hydrodynamic stimulation of the lateral line 

system). In some rare cases, the activity of an afferent fiber (red arrow in Fig. 3) could be 
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recorded en passant together with locomotor related activity of a closely located efferent 

fiber (blue arrows in Fig. 3). The newly established method is thus perfectly suitable for 

stable single/multiple discharge recordings of relatively small axons.  

 

Figure 3 
Peripheral sensory processing during locomotor activity. A, in this Xenopus preparation the 
posterior lateral line nerve (PLLN) is kept attached to the sensory periphery (LL neuromasts), which 
is stimulated via constant ringer flow. B, the red trace shows a single afferent unit (red arrows) of the 
PLLN active before, during (gray box) and after a fictive swimming episode. B, the smaller efferent 
unit (green arrows) is only active during fictive swimming, showing rhythmicity out of phase (dashed 
green lines) with the contralateral ventral root discharge (c-vr). The afferent encoding of water motion 
(Ringer flow) is reduced during the entire fictive swimming episode. ALLN, anterior lateral line 
nerve; AVN, anterior vestibular nerve; PVN, posterior vestibular nerve. 
 

1.3.3 Fictive locomotion  
 

After dissection of the trunk/limb muscles and isolation of the respective nerves, the neuronal 

correlate of swimming/walking can be recorded as left-right alternating bursts in the isolated 

spinal ventral roots (Fig. 4 A-C); this neuronal activity has been identified with the term 

‘fictive locomotion‘ (e.g. Combes et al., 2004).  This firing pattern is driven by a network of 

spinal premotor neurons (spinal central pattern generator, sCPG) and is responsible for 

rhythmic locomotion in animals (Combes et al., 2004; von Uckermann et al., 2013). As 

shown in Fig. 4 C, the motor activity was recorded from the cut ends of ventral roots by 

means of suction electrodes perfectly matched to the diameter of the roots. In these 

preparations locomotor activity can occur spontaneously or can be mechanically, electrically 

and pharmacologically induced. 

The absence of motion-related sensory feedback during fictive locomotion (vestibular, lateral 

line, proprioceptive and visual inputs) due to the immobile experimental conditions or due to 
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the selective ablation of the sensory periphery makes it possible to unequivocally identify 

locomotor related CDs. 

It is also possible to passively (externally) stimulate the different sensory systems in the 

presence and absence of fictive locomotion in order to study the effect of CDs on the 

different sensory processing relay stations. The immobility of the preparation during fictive 

locomotion represents also a big advantage for physiological techniques that require stability 

of the neuronal tissue and for imaging of body parts: Ca2+ imaging, photo-activation, 

electrophysiological recordings, electrical stimulation, video recordings of eye and 

appendage movements (e.g., Xenopus tentacle motion relative to the body). 

 

Figure 4  
Fictive locomotion. Neuronal activity responsible for locomotor behaviors can be recorded in axolotl 
(A) and Xenopus (B) in-vitro preparations at different rostro-caudal levels of the spinal cord. C, 
suction electrodes adjusted to the size of the specific ventral root (vr, upper pannel). Red traces show 
the rhythmically alternating bilateral activity recorded from ipsi- and contralateral ventral roots (see 
B) during an episode of fictive swimming in Xenopus larvae. Blue trace, rhythmic motor activity 
recorded from a forelimb ventral root, (vr3 in A) during an episode of fictive walking in axolotl. 
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1.3.4 Recordings of peripheral and central activity  
 

Figure 5 A-D shows examples of the advantages of the developed in-vitro preparations. 

Galvanic vestibular stimulation (GVS) can be applied selectively to the different vestibular 

end organs due to their clear visibility and accessibility (Fig. 5 A). This selective activation 

can be used to mimic angular and linear acceleration that would result from actual head 

motion in the different planes. The responses to GVS can be recorded as afferent fiber 

activity in the different branches of the intact vestibular nerve (anterior and posterior 

vestibular nerve, AVN and PVN in Fig. 4 B) by means of stable en passant electrodes 

(technique described in the previous paragraph). The simulation of head motion achieved 

with this technique represents a big advantage also for recordings of central neuronal activity. 

As described above, in these preparations, neuronal subgroups can be selectively back-filled 

and identified by tracer application to their peripheral/central projections (Fig. 2). 

Furthermore, these neurons can be allocated along the segments of the rhombomeric scaffold 

(Fig. 5 C). For physiological tract-tracing studies Ca2+-sensitive dyes can be used, and the 

responses to GVS of certain end organs at different current frequencies and amplitudes can 

be inferred from imaging calcium transients (color coded traces in Fig. 5 D) at the level of the 

single neuron. The calcium traces in Fig. 5 D are the responses of a single central vestibular 

neuron in r2-3 (circumscribed by the blue-dashed line in Fig. 5 C), backfilled from its 

projection to the oculomotor nucleus.  

The combination of all these applied and developed experimental approaches allows to 

compare the central and peripheral connectivity (site of tracer application, responses to 

activation of a specific end organ) and the characterized physiological responses (frequencies 

and amplitudes of GVS) with the genetic identity of single neurons (according to the specific 

rhombomeric localization). 
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Figure 5 
Physiological, anatomical and genetic characterization of vestibular circuitries. A, an example of 
axolotl preparation in which galvanic vestibular stimulation (GVS) can be used to exclusively activate 
clearly visible vestibular end organs (e.g. see the horizontal canal highlighted by the dashed yellow 
line; hor-c). B, the selective responses to GVS (black trace) of a single (multiple) afferent fiber(s) (red 
trace), with intact peripheral and central projections, can be recorded via suction electrodes (en 
passant recordings), from different vestibular nerve branches (AVN, anterior vestibular nerve; PVN, 
posterior vestibular nerve). C, D, calcium imaging of single central vestibular neurons within a 
specific rhombomeric domain (i2-3 circumscribed by the blue dashed line in C). These neurons reveal 
differential responses during increasing frequency (color coded traces in upper panel in D) or current 
amplitude (lower panel in D) of sinusoidal GVS applied to the ipsi-lateral anterior canal and to the 
contra-lateral posterior canal  (ACi and PCc, schematic in C).   



	
   19	
  

Electrophysiological recordings of identified central neurons were also achieved in these 
preparations. Fig. 6 shows an example of extracellular recordings from efferent neurons 
during locomotor activity in an axolotl preparation. The efferent nucleus (cells circumscribed 
by the green dashed line in Fig. 6 B) was visualized after fluorescent tracer application to the 
vestibular nerve. This allowed accurate positioning of the tip of the recording electrode (filled 
with a fluorescent dye) to the vicinity of the cell cluster. The recorded activity of the 
backfilled neurons can be seen in Fig. 6 C, D during episodes of fictive locomotion 
monitored via the ventral roots recordings.  

 
Figure 6 
Electrophysiological recordings of identified central neurons during fictive locomotion in 
axolotl. Overview (A) and a higher magnification (B) illustrating the whole-head spinal cord in-vitro 
preparation, after tracer application to the vestibular nerve. The visibility of the back-filled 
contralateral vestibular efferent nucleus (green dashed line area, ceff, in B) was used to place the 
extracellular recording electrode in the close vicinity of the nucleus. C, D, green traces show the 
efferent discharges during locomotor episodes (blue traces, hind limb ventral root recordings). The 
gray box in D highlights the matching duration of locomotor and efferent neuronal activity. 
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1.3.5 Imaging techniques and advantages of the in-vitro preparations  
 

Brain functions can be considered as emerging properties arising from the combined 

computational properties of single neurons and neuronal networks. The traditional 

electrophysiological approaches allow the study of either the combined simultaneous activity 

of many indistinguishable neuronal elements (extracellular, multi-units recordings) or the 

activity of few single neurons at a time. At the same time, the use of electrical currents to 

activate/inhibit brain regions is only suitable on a relative large spatial scale, not adequate to 

activate and thus understand the functional role of single neuronal components/networks. On 

the other hand, the more recently developed imaging techniques (Ca2+, voltage imaging) 

potentially allow to acquire the simultaneous individual activity of many neurons over large 

brain areas. These innovative techniques makes it also possible to selectively activate/inhibit 

single neurons/networks, by means of optical uncaging of caged neurotransmitters (e.g. 

glutamate, GABA) or by light-induced opening of genetically encoded ion channels, (for a 

review see Häusser, 2014). 

As already emphasized, in order to understand complex brain functions, which emerge from 

extended neuronal network dynamics, it is necessary to acquire temporally accurate 

activation profiles of many neurons at the same time. Thus, the ideal imaging setup would 

include the possibility to maintain high acquisition rates over large fields of view (FOVs), in 

order to acquire maximum information from spatially extended neuronal components. At the 

same time it would be very useful to independently control multiple FOVs to simultaneously 

activate/inhibit and record from spatially segregated or overlapping neuronal regions. In 

order to accomplish adjustable FOVs with spectrally and physically independent excitation 

pathways it would be necessary to quickly switch between imaging channels with different 

excitation wavelengths. Furthermore, a broad spectrum of different excitation wavelengths 

would allow to use the variety of existing Ca2+/voltage sensors and caged compounds. All 

imaging systems currently available lack the combination of these prerequisites. 

Epifluorescence imaging setups, equipped with fluorescence lamps necessitate multiple 

mechanical filters, which have to be exchanged to obtain different excitation wavelengths 

resulting in a slow multi-color acquisition. Multi-photon imaging systems, due to the 

scanning processes, lack acquisition speed at large FOV (Grewe et al., 2010). Furthermore 

the installation of several laser lines for multi-channel scanning is still very expensive 

(Piston, 1999). In all the available microscopes, independently adjustable and spatially 

separated FOVs are also not present.  
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Based on the described requirements and on the framework of the already existing two-

photon Intravital2P microscope (TILL Photonics, FEI, Munich, Germany), a novel 

epifluorescence microscope equipped with 8 high-power light emitting diodes (LEDs) with 

seven different excitation wavelengths and two independently adjustable FOVs was 

developed. This setup provides the possibility to perform optical activation and imaging of 

neuronal activity via the two spatially independent FOVs with a wide range in size, from 800 

x 680 µm to 40 x 40 µm. The presence of two multi-LED combiners also makes it possible to 

independently control the illumination timing and wavelength of the LED emitted on the two 

FOVs. Imaging setups that use illumination sources like fluorescent lamps have a broad 

spectrum of excitation wavelengths but necessitate time-consuming processes for switching 

filters for multi-color acquisition. The implementation of different wavelength LEDs, which 

can be controlled with high temporal accuracy, allow fast multi-color acquisition.  

The axolotl in-vitro preparation was used to test the technical properties and suitability of this 

novel microscope for optochemical manipulations and imaging on identified vestibular 

networks. The accessibility of the different vestibular nuclei/axonal projections, sensory 

nerves and vestibular end organs together with the ideal optical properties of the axolotl brain 

tissue, made it possible to selectively back-fill and physiologically stimulate, specific 

subtypes of central vestibular neurons. Electrical (galvanic) stimulation of the intact inner ear 

sensory organs, which mimics natural head rotation, was applied together with calcium 

imaging on back-filled central vestibular neurons, glutamate and GABA uncaging at different 

sites of the intact vestibular network. The combination of all these techniques made it 

possible to understand previously unknown features of these sensory-motor computations and 

confirmed neuronal properties found in other vertebrates.  

The sensory activation of central vestibular neurons can be modulated via different 

GABAergic inhibitory pathways (i.e. local feed-forward circuits, brainstem commissural 

pathways and cerebellar Purkinje cells) with the functional consequence of controlling the 

bilateral sensitivity for angular head acceleration and the gain of the vestibular ocular reflex 

(Shimazu and Precht, 1966; Magherini et al., 1975; Minor and Goldberg, 1991; Straka and 

Dieringer, 2000; Malinvaud et al., 2010). Bath or systemic application of GABA antagonists 

has been traditionally used to estimate the importance of the different inhibitory circuits. In 

contrast, the present study demonstrated the potent effect of local GABA release in shunting 

sensory inputs to central vestibular neurons. 

Due to the possibility to limit the uncaging of excitatory and inhibitory neurotransmitters 

(glutamate and GABA) to different distances (up to 40 µm) from central vestibular neuron 
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somata, this part of the thesis revealed the prevalent somatic localization of both 

neurotransmitter receptors; as it was already proposed for adult frogs (Dieringer and Precht, 

1979; Straka et al., 2005). 
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2. Manuscripts enclosed  
 

• Analysis of signal processing in vestibular circuits with novel a light-emitting diodes-

based fluorescence microscope. 

• In this manuscript the technical novelties of the developed microscope were combined 

with the accessibility of the axolotl in-vitro preparation to understand basic computational 

principles of the vestibular system. 

• Locomotor corollary activation of trigeminal motor neurons: coupling of discrete 

motor behaviors. 

• In this study a locomotor CD is described. This intrinsic signal drives the retraction of the 

touch appendages (i.e. tentacles) of Xenopus larvae, potentially reducing the 

hydrodynamic drag and preventing overstimulation of the touch organs during swimming. 

• Spinal corollary discharge modulates motion detection during vertebrate 

locomotion. 

• In this enclosed manuscript a mixture of electrophysiological, anatomical, ablation and 

imaging techniques were applied to the Xenopus in-vitro preparation to identify and show 

the functional relevance of a locomotor CD acting on the vestibular and lateral line 

system. 
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Analysis of signal processing in vestibular circuits with a novel light-

emitting diodes-based fluorescence microscope 
Stephan Direnberger, Roberto Banchi, Sonja Brosel Christian Seebacher, Stefan 

Laimgruber, Rainer Uhl, Felix Felmy, Hans Straka, Lars Kunz 

Eur J Neurosci 41:1332–1344 

S.D. and R.B. contributed equally to this work 

 

Contributions of R.B 

 

• Establishment of the novel axolotl semi-intact in-vitro preparation. 

• Morphological characterization and allocation of brainstem vestibular circuitries.  

• Multicolor back-filling of brainstem sub-neuronal populations to demonstrate the 

advantages of the novel fluorescent microscope (i.e. multicolor imaging of spatially 

independently adjustable field of views, Fig. 2).  

• Back filling techniques and preparations for calcium imaging experiments. 

• Differential calcium responses in identified central vestibular neurons located at different 

distances from the glutamate uncaging site (Fig. 4). 

• Application of Galvanic Vestibular Stimulation (GVS) and related characterization of the 

physiological responses specificity in identified central vestibular neurons by means of 

calcium imaging techniques (Fig. 5).  

• Writing and revising, together with all other authors. 
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NEUROSYSTEMS

Analysis of signal processing in vestibular circuits with a
novel light-emitting diodes-based fluorescence microscope

Stephan Direnberger,1,* Roberto Banchi,1,2,* Sonja Brosel,1 Christian Seebacher,3 Stefan Laimgruber,3 Rainer Uhl,3

Felix Felmy,1,3,† Hans Straka1,† and Lars Kunz1,†
1Department Biology II, Division of Neurobiology, Ludwig-Maximilians University Munich, Grosshaderner Str. 2, Planegg-
Martinsried 82152, Germany
2Graduate School of Systemic Neurosciences, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
3Department Biology I, BioImaging Center, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany

Keywords: Ambystoma mexicanum, axolotl, calcium imaging, galvanic stimulation, photo-uncaging, semicircular canal

Abstract

Optical visualization of neural network activity is limited by imaging system-dependent technical tradeoffs. To overcome these
constraints, we have developed a powerful low-cost and flexible imaging system with high spectral variability and unique spatio-
temporal precision for simultaneous optical recording and manipulation of neural activity of large cell groups. The system com-
prises eight high-power light-emitting diodes, a camera with a large metal-oxide-semiconductor sensor and a high numerical aper-
ture water-dipping objective. It allows fast and precise control of excitation and simultaneous low noise imaging at high resolution.
Adjustable apertures generated two independent areas of variable size and position for simultaneous optical activation and image
capture. The experimental applicability of this system was explored in semi-isolated preparations of larval axolotl (Ambystoma
mexicanum) with intact inner ear organs and central nervous circuits. Cyclic galvanic stimulation of semicircular canals together
with glutamate- and c-aminobutyric acid (GABA)-uncaging caused a corresponding modulation of Ca2+ transients in central vestib-
ular neurons. These experiments revealed specific cellular properties as well as synaptic interactions between excitatory and
inhibitory inputs, responsible for spatio-temporal-specific sensory signal processing. Location-specific GABA-uncaging revealed a
potent inhibitory shunt of vestibular nerve afferent input in the predominating population of tonic vestibular neurons, indicating a
considerable impact of local and commissural inhibitory circuits on the processing of head/body motion-related signals. The dis-
covery of these previously unknown properties of vestibular computations demonstrates the merits of our novel microscope
system for experimental applications in the field of neurobiology.

Introduction

Signal processing in the CNS depends on the computational
capacity of individual neurons as well as the emerging properties
of the specific neuronal circuitry. Classical electrode recordings
allow simultaneous capturing of the discharge of only one or a
few neurons (Sullivan et al., 2005), and thus have a limited
applicability for analysing the simultaneous activity of multiple
network components. Optical imaging techniques using Ca2+ sen-
sors or voltage-sensitive dyes provide a solution for the visualiza-
tion of neuronal activity of larger networks (Regehr et al., 1989;
Yuste & Katz, 1991; Fetcho & O’Malley, 1995; Stosiek et al.,
2003; Cossart et al., 2005; Direnberger et al., 2012; Grienberger
& Konnerth, 2012). The ideal microscope setup for improved

optical circuit analysis would therefore combine image acquisition
with high temporal acuity and speed with a spatially and
temporally tightly controlled light source for a great spectral exci-
tation/absorption range. This is necessary to attain a high flexibil-
ity for the use of different fluorescent dyes and indicators, and
for combining and synchronizing various imaging approaches. On
the other hand, resolving network activity requires simultaneous,
but independent light activation of multiple interconnected neuro-
nal sites. In addition, maximum information would be available
by employing large fields of view (FOVs) with high spatial
resolution.
Current imaging systems can be configured to fulfill any of the

aforementioned requirements, but not at the same time. Wide-field
epifluorescence microscopes equipped with xenon or mercury arc
lamps cover a broad spectral range, but filter-sliders or -wheels for
switching between illumination wavelengths impair fast multi-color
applications. Single-/multi-photon laser-scanning microscopes, on
the other hand, lack acquisition speed at high spatial resolution
(Grewe et al., 2010), and the upgrade to multi-color systems
requires the installation of several expensive laser lines (Piston,
1999; Combes et al., 2008). Finally, all current imaging systems
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lack the possibility to employ multiple, spatially separable and
independently adjustable FOVs.
In the current study, we have implemented and experimentally

tested a novel imaging system with multiple light-emitting diodes
(LEDs), and with variable areas for fast optical excitation and image
capture. The technical capacity and experimental applicability was
evaluated in semi-isolated in vitro preparations of larval axolotl
(Ambystoma mexicanum) with morpho-physiologically preserved
inner ear sensory organs, and interconnected and optically accessible
neural circuits that allowed simultaneous imaging of neuronal activ-
ity in multiple network elements. The optical access to all levels of
a functionally intact vertebrate brain with the novel LED-based
microscope facilitated optochemical manipulations and imaging of
neuronal processing in identified vestibular networks (Straka &
Dieringer, 2004), thereby revealing previously unknown aspects of
sensory-motor computations.

Materials and methods

Animals

Experiments were performed on semi-isolated in vitro preparations
of axolotl (Ambystoma mexicanum) larvae (developmental stages
48–54; Nye et al., 2003), and complied with the Principles of Ani-
mal Care (Publication 86-23, revised 1985 by the National Institute
of Health) and the German law for animal protection (Tierschutzge-
setz). Permission for the in vitro experiments was granted by the
Regierung von Oberbayern (55.2-1-54-2531.3-18-10; 55.2-1-54-
2532.3-59-12). All animals were obtained from the in-house breed-
ing facility at the Biocenter Martinsried of the Ludwig-Maximilians
University Munich. The experiment using the brain of a Mongolian
gerbil (Meriones unguiculatus) was carried out in accordance with
institutional guidelines, with State (Bavarian) and German Federal
laws, and with the European Communities Council Directive of 24
November 1986 (86/609/EEC). The Regierung von Oberbayern
approved this experiment (55.2-1-54-2531-105-10).

Preparations

Axolotl were deeply anesthetized in 0.05% 3-aminobenzoic acid
ethyl ester (MS-222; Sigma-Aldrich, Germany) dissolved in ice-cold
frog Ringer’s solution with a low Ca2+ concentration (in mM: NaCl,
75; NaHCO3, 25; CaCl2, 1; KCl, 2; MgCl2, 2; glucose, 11; pH 7.4)
and decapitated at the level of the rostral spinal cord as described in
detail for Xenopus laevis tadpoles (Ramlochansingh et al., 2014).
This procedure preserved the dorsal part of the skull, including inner
ear organs along with the brain and the first spinal segments. The
skin covering the head was removed, the mostly cartilaginous tissue
of the dorsal skull was opened, the forebrain disconnected and the
optical nerves transected at the entrance into the brain to eliminate
visual inputs. For the subsequent opto- and electrophysiological
recordings, isolated preparations were rinsed in fresh Ringer’s solu-
tion, firmly secured with insect pins to the Sylgard floor of a Petri
dish, which was mounted onto the stage of the microscope. Prepara-
tions were continuously superfused at a rate of 1.3–2.1 mL/min with
an oxygenated Ringer’s solution (see above) that now contained an
elevated Ca2+ concentration of 2 mM CaCl2. During the experiments,
the temperature of the bath solution was electronically controlled and
maintained at 17.0 ! 0.2 °C. Preparations were used for experimen-
tation up to 4 days after their isolation without any noticeable func-
tional deterioration, and were stored overnight at 10–12 °C in
oxygenated Ringer’s solution (carbogen: 95% O2, 5% CO2; pH 7.5)

as previously described for comparable semi-isolated preparations of
larval and adult Xenopus laevis frogs (Straka & Simmers, 2012).

Identification of vestibular projection neurons

In part of the experiments, particular functional subgroups of central
vestibular projection neurons were identified prior to the physiologi-
cal recordings by retrograde labeling from their axonal target sites
with dextran-conjugated fluorescent tracers. The tracing procedure
was performed immediately after the isolation of the preparation as
described for tadpoles of ranid frogs (Straka et al., 2001) and Xeno-
pus laevis (Lambert et al., 2013). Crystals of Alexa Fluor! 488 or
594 dextran (MW 10 000; Life Technologies GmbH, Darmstadt,
Germany) were melted onto the tip of an injection needle and
inserted for 5 s into the rostral spinal cord or the vestibular nuclei
on one side after temporary removal of the Ringer’s solution from
the Petri dish, in which the preparation was mechanically secured.
After rinsing in fresh Ringer’s solution, preparations were stored at
12 °C overnight in oxygenated Ringer’s solution for retrograde
transport of the tracer and complete backfilling of the cell bodies,
thereby identifying hindbrain segment-specific populations of vestib-
ulo-spinal and brainstem commissural vestibular neurons.

Electrical stimulation of vestibular end-organs

The sensory epithelium of the horizontal semicircular canal within
the otic capsule of the semi-isolated preparation was electrically
stimulated with a pair of Teflon!-coated silver wires (0.03″ coated;
AG 25-T; Science Products, Hofheim, Germany). For specific epi-
thelial stimulation, one of the two electrodes was placed outside the
macroscopically visible ampulla of the horizontal semicircular canal,
while the second electrode was located at a distance of ~2 mm from
the preparation in the bath chamber. The stimuli consisted of sinu-
soidally modulated currents at a frequency of 0.2 Hz and amplitudes
of ! 25–100 lA, and were produced by a linear stimulus waveform
generator (STG4002; Multi Channel Systems, Reutlingen, Ger-
many). This electrical stimulus modulates the spontaneous discharge
in vestibular nerve afferent fibers and causes a corresponding modu-
lation of the activity in the postsynaptic central vestibular neurons
(Kaufmann et al., 2013). The modulated activity in the latter neu-
rons was optically recorded in the current study as Ca2+ transients
following extracellular bolus or bulk loading of central vestibular
neurons with synthetic Ca2+ dyes (see below).

Microscope specification and image acquisition control

The novel microscope for fluorescence imaging was based on a plat-
form as shown in Fig. 1A1. Its conceptual innovation depended on
eight high-power LEDs with seven different excitation wavelengths
(Table 1; irradiance: 20–80 mW/mm2), which were housed in two
multi-LED combiners (Fig. 1A2). Within each LED combiner, the
beam lines of individual LEDs were combined using suitable
dichroic mirrors (Fig. 1A2), each producing its own FOV. The opti-
cal path can be seen in Fig. 1C, and more information can be found
in the corresponding Zemax file (ray_trace.zmx) as Supporting
Information. Exposure time and switching frequency of all LEDs
were individually triggered by TTL pulses. The light intensity of
each LED was independently and gradually adjustable from 10% to
100% via analog command signals. Both digital and analog com-
mands were controlled by PATCHMASTER software, and produced by
an EPC10 amplifier that was also used for the electrophysiological
recordings. Beam-homogenizers, installed downstream of each LED
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combiner, homogenized the LED light before merging the output of
the two light sources with a 50 : 50 beam-splitter (Fig. 1A2). The
resulting excitation beam line was projected onto a 20 9/1.0 W
Plan-Apochromat water-dipping objective with the tube lens 425308
(Fig. 1A3; Carl Zeiss Microscopy, G€ottingen, Germany). A filter-sli-
der, holding six slots for fluorescence filter-sets (triple-band filter-set
used in this study: excitation: 390/482/587; dichroic: 395/495/610;
emission: 425/527/685; AHF Analysentechnik AG, T€ubingen,
Germany), directed the emitted light onto a camera with metal-
oxide-semiconductor sensor pco.edge 5.5 (PCO AG, Kehlheim,
Germany). This arrangement allowed the production of rectangular
FOVs at individual positions and with adjustable extensions (from
40 9 40 lm to 800 9 680 lm) through rectangular-shaped
apertures, inserted immediately after the beam-homogenizer at the
outlet of each LED combiner (Fig. 1A3). The maximal size
corresponds almost to the size of the entire visual field of
832 9 702 lm (2560 9 2160 pixels). The optical ray tracing is
depicted in Fig. 1A4, and the corresponding Zemax file is provided
as Supporting Information (ray_trace.zmx). Filter-slider and objec-
tive z-motion were controlled by a custom-made program using LAB-

VIEW 8.0 (National Instruments, Austin, TX, USA). For bright-field
visualization of the relatively thick preparation in the current study,
an oblique far-red LED illumination with a 850-nm LED, mounted
on the microscope stage at an incidence angle of 20–30°, was used to
facilitate identification of cellular elements (Sz}ucs et al., 2009;
Fig. 1B).

Determination of optical resolution

Fluoro-Max Green Aqueous Fluorescent Particles with a diameter of
51 nm (G50; Thermo Fisher Scientific, Braunschweig, Germany)
were imaged as non-biological samples to obtain the point spread
function and resolution of the system. A microsphere suspension
was embedded in Norland optical adhesive (NOA) 63 (Norland

Products, Cranbury, NJ, USA) and the adhesive UV-cured. Micro-
sphere fluorescence was imaged using excitation at 470 nm. Images
were taken for various z-positions at 1-lm intervals.
For evaluating the resolution in the mammalian brain, hippocam-

pal slices of the Mongolian gerbil (Meriones unguiculatus) were
imaged. Therefore, an animal was anesthetized using isoflurane, fol-
lowed by 2 mg/kg body weight pentobarbital (Narcoren!; Merial
GmbH, Halbergmoos, Germany; intraperitoneal). After reaching
deep anesthesia as marked by complete loss of flexor reflexes at all
limbs, the animal was perfused with Ringer’s solution supplemented
with 0.1% heparin (Meditech Vertriebs GmbH, Parchim, Germany)
at a flow rate of 4 mL/min for 10 min followed by 4% paraformal-
dehyde solution for 20 min (Trattner et al., 2013). Brains were then
post-fixed for 2 h in 4% paraformaldehyde at room temperature.
Using a Leica VT1200S vibratome (Leica Mikrosysteme Vertrieb
GmbH, Wetzlar, Germany), 50-lm sections of the cortical area of
the cerebrum containing the hippocampus were collected. The slices
were stained with an antibody against the Ca2+-binding protein parv-
albumin (1 : 1000, PV25; Swant, Marly, Switzerland; Felmy & Sch-
neggenburger, 2004; Ammer et al., 2012), and a donkey anti-mouse
IgG (H+L) secondary antibody linked to Alexa Fluor! 488 (1 : 300,
A21202; Life Technologies) was used for visualization. The slices
were mounted with Vectashield (Vector Laboratories, Burlingame,
CA, USA) and neurons imaged with excitation at 470 nm with max-
imum intensity.
Neurons in the axolotl whole-mount preparation were retrogradely

labeled with Alexa Fluor! 488 dextran (10 000 MW; D-22910; Life
Technologies). Following incubation in oxygenated Ringer’s solu-
tion at 14 °C for 24–48 h, preparations were fixed in 4% parafor-
maldehyde [in 0.1 M phosphate-buffered saline (PBS), pH 7.4] at
10 °C for 5–6 h and rinsed in cold 0.1 M PBS (pH 7.4). The brain-
stem was removed, cleaned of surrounding tissue, and mounted on
slides using Vectashield (Vector Laboratories). Images were
acquired with the 470-nm LED at an intensity of 1.5 V.
The intensity distribution of the fluorescence signal was analysed

across the structures of interest using IMAGEJ (imagej.nih.gov/ij/).
Intensity data were fitted with a Gaussian distribution (Origin!;
OriginLab Corporation, Northampton, MA, USA) and the full width
at half maximum (FWHM) was obtained. For fluorescent micro-
spheres, the point spread function was determined.

Loading of vestibular neurons with synthetic Ca2+ dyes

Ca2+ transients in central vestibular neurons were measured follow-
ing labeling of the cells with membrane-permeable acetoxymethyl
ester dyes (AM-dyes; Tsien, 1981). To facilitate dye penetration,
preparations were incubated with 1–2 lL of a 0.025% trypsin solu-
tion at 37 °C for 3–5 min. Subsequently, the hindbrain was rinsed
twice with 2–3 mL Ringer’s solution to remove any residual
enzyme. After repeating this procedure, the ventricular surface above
the hindbrain recording area was cleaned from remaining debris by
gently blowing Ringer’s solution along the IVth ventricle. For bulk
loading of the target neurons, Oregon Green BAPTA-1AM (OGB-
1AM; Life Technologies GmbH) was freshly dissolved in dimethyl-
sulfoxide (DMSO) to yield a concentration of 10 lM. After adding
Ringer’s solution with 2% Pluronic 127 (Sigma Aldrich, St Louis,
MO, USA) to the OGB-1AM solution to facilitate cellular dye
uptake, a final concentration of 25 nM OGB-1AM was obtained.
Immediately prior to the recording experiments, isolated preparations
were incubated in OGB-1AM solution for 30–45 min at 17 °C fol-
lowed by a 30-min washout with Ringer’s solution. Targeted bolus
injections of OGB-1AM into the vestibular nuclei at the level of the

Table 1. Characteristics of LEDs

Combiner LED type
Denomination/
nm

Maximum/
nm

FWHM/
nm

1 Nichia
NCSU033A

370 369.5 18.9

Osa Opto Light
OCU-440 UE400

405 398.2 23.5

Osram LB
W5AM-GYHY-
25-Z

470 463.5 30.5

Osram LY
W5AM-HYJZ-
36-Z

590 592.2 22.0

2 Osram LB
W5AM-GYHY-
25-Z

470 462.9 27.2

Osram LV
W5AM-JYKY-
25-Z

505 500.5 28.7

Osram LT
CP7P-JYKZ-26

530 533.9 35.1

Osram LR
W5AM-HZJZ-
1-Z

630 631.5 23.7

Properties were measured at a current of 500 mA (potential current range:
100–950 mA). LEDs by Nichia, Tokushima, Japan; Osa Opto Light GmbH,
Berlin, Germany; Osram Opto Semiconductors, Munich, Germany. FWHM,
full width at half maximum; LED, light-emitting diode.
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entrance of the VIIIth nerve into the brainstem were made according
to a previously described protocol (Brustein et al., 2003). In brief,
stock solutions of 10 lM OGB-1AM in DMSO containing 20%
Pluronic 127 were diluted 1 : 10 with Ringer’s solution, filtered
through a syringe (0.2 lm pore size, Nalgene Syringe filter; Thermo
Scientific, Waltham, MA, USA) and pressure-injected through a
borosilicate glass pipette into the target area. Following injections,
preparations were maintained for 30–45 min at 17 °C in a con-
stantly Ringer’s-superfused bath chamber. For Ca2+ imaging with
Calcium Green, neurons were retrogradely labeled 24–48 h prior to
the experiment by inserting crystals of Calcium GreenTM-1 dextran
(melted to the tip of an injection needle) at several rostrocaudal
positions of the contralateral vestibular nucleus (Straka et al., 2001).

Ca2+ imaging of neuronal activity

Ca2+ transients in central vestibular neurons were optically recorded
using OGB-1AM. Camera image acquisition and LED excitation
were controlled by external TTL trigger pulses, and synchronized

using PATCHMASTER software (see above). All experiments were con-
ducted at a 5-Hz image capture frame rate, and a camera acquisition
and light exposure time of 50 ms. Data processing and quantitative
analyses of Ca2+ responses were performed by custom-made macros
using IMAGEJ and respective available plug-ins (Schneider et al.,
2012). Graphical illustrations were made with IGOR PRO 6.32A
(WaveMetrics, Lake Oswego, OR, USA).

Glutamate (Glu)-/c-aminobutyric acid (GABA)-uncaging
experiments

MNI (4-methoxy-7-nitroindolinyl)-caged Glu (Tocris Bioscience,
Bristol, UK) or CNB (carboxy-2-nitrobenzyl ester)-caged GABA
(Life Technologies GmbH) were bath-applied at a final concentra-
tion of 250 and 500 lM, respectively, 20 min prior to the experi-
ments. UV light uncaging was performed using a 370-nm LED with
maximum light intensity (irradiance: 80 mW/mm2) at various pulse
lengths and switching cycles. MNI-caged Glu was activated by
short, single pulses with a duration of 10–100 ms. CNB-caged

A1 B

A2

A3

A4

Fig. 1. Operating principle of the novel microscope. (A) Schematic frontal and lateral view of the microscope (A1); dotted rectangles refer to schematic views
of the optical components from top (*, A2) and side (**, A3). Blue and orange beam lines in (A2) illustrate the excitation paths of the two LED combiners
(LED wavelengths in nm are indicated). The green line in (A3) indicates the emission path. AP, aperture; L, lens; M, mirror; TL, tube lens. (A4) Optical path of
the microscope. The corresponding Zemax file is provided as Supporting Information. (B) Illustration of the oblique bright-field illumination with an IR-LED
(top) and corresponding bright-field image of a hindbrain region in the semi-isolated preparation of larval axolotl (bottom, scale bar: 30 lm).
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GABA was activated either by single long pulses (1–3 s) or by
trains of short single pulses (10–100 ms) at 5 Hz for 15 s. To limit
UV-induced transmitter activation to specific sites and spatial
extensions, the FOV, i.e. the area of activation, was defined by a
manual adjustment of the aperture. Uncaging trials were repeated
after 1 min of recovery, allowing residual transmitter to diffuse out
of the zone of activation.

Whole-cell patch-clamp recordings

Retrogradely labeled vestibular projection neurons as well as unla-
beled neurons in close proximity to the latter were approached
with patch electrodes fabricated from borosilicate glass pipettes
(3–6 MΩ) and filled with internal recording solution (in mM): K-
gluconate, 145; KCl, 5; HEPES, 15; Mg-ATP, 2; K-ATP, 2; Na2-
GTP, 0.3; Na2-phosphocreatine, 7.5; and K-EGTA, 5 (pH 7.2).
Current-clamp recordings were carried out with an EPC10/2
amplifier (HEKA Elektronik, Lambrecht, Germany). Data were fil-
tered at 3 kHz and digitized at 20 kHz, and stored on computer
for off-line analysis. Neuronal firing patterns were characterized
by intracellular injections of short (5 ms) or long (600 ms) cur-
rent steps at increasing intensity using the PATCHMASTER software
(HEKA Elektronik).

Statistics

All results were expressed as means ! standard deviation (SD)
unless stated otherwise. Statistical differences in response parameters
were calculated using the Mann–Whitney U-test (unpaired parame-
ters; GRAPHPAD PRISM version 6.00) or the Wilcoxon signed-rank
non-parametric test (paired parameters; IGOR PRO 6.32A).

Results

Optical resolution of the novel microscope

The resolution of the microscope was evaluated utilizing fluorescent
microspheres (Fig. 2A), as well as two different biological prepara-
tions, mammalian hippocampus slices (Fig. 2B) and whole-mounts
of axolotl brain (data not shown). Images of fluorescent micro-
spheres were taken for different z-positions (1 lm intervals;
Fig. 2A). The point spread function in the three spatial directions
was fitted with a Gaussian distribution (Fig. 2A1 and A2). Alto-
gether, 58 microspheres were analysed, and FWHM =
1.2 ! 0.2 lm was obtained in the xy-plane and FWHM =
7.0 ! 1.0 lm in the z-direction. Values for FWHM exhibited no
dependence on position in the FOV (data not shown).
In order to determine the optical resolution in mammalian brain

slices, we have analysed hippocampal neurons labeled with an
antibody against parvalbumin (Felmy & Schneggenburger, 2004;
Ammer et al., 2012) and a fluorescent secondary antibody (Fig. 2B).
The image showed a large-intensity dynamic and a resolution close
to that obtained with sub-resolution microspheres (Fig. 1A). The
optical resolution was dependent on the overall intensity in the anal-
ysed image region. The optimal FWHM had a value of
0.8 ! 0.1 lm in a region with low overall intensity (Fig. 2B2). In
brighter areas, the value was higher (FWHM = 1.8 ! 0.1 lm;
Fig. 2B3), most likely due to a not sub-diffraction size of the
structures.
The optical resolution was also evaluated in thicker brain samples

of the axolotl as used in all other experiments. The tissue was
260 lm thick and neurons had been retrogradely labeled with a fluo-

rescent dye (Alexa Fluor! 488 dextran) similar to the experiments
presented below. In these thick samples, a FWHM = 2.4 ! 0.2 lm
was still obtained, but the resolution might be even better.

Implementation of independent optical fields of interest

The working range and experimental applicability of our custom-
build microscope and imaging system was evaluated by testing func-
tional aspects of sensory-motor signal processing in axolotl central
vestibular neurons located in the alar plate of the brainstem. The
first step was to explore the possible range of different spatial
arrangements of dual FOVs as a major technical advancement of
this imaging system. The high degree of freedom introduced by the
epifluorescence aperture system allowed to generate two independent
FOVs that were either spatially overlapping or completely separated
(see green and red rectangles in Fig. 2C, top row). The optical con-
sequence of adjustable areas that contained various fluorescent neu-
ronal elements in different colors is illustrated by differential optical
appearance of distinct populations of ipsilateral- (green) and contra-
lateral-projecting (red) vestibulo-spinal neurons (Fig. 2C). The inde-
pendent adjustment of position and size of the multiple FOVs made
it possible to activate neurons within one brain region, and to record
responses in interconnected postsynaptic neurons located in the same
or a topographically remote area. The flexibility in defining particu-
lar regions of interest allowed a sampling of neuronal activity at
frame rates up to 100 Hz at maximum spatial resolution
(2560 9 2160 pixel), and up to 900 Hz at a lower spatial resolution
(320 9 240 pixel). The following opto-physiological experiments
took predominantly advantage of the high spatial resolution of our
imaging system.

Light-activated neuronal responses in central vestibular
neurons of larval axolotl

To elucidate the technical advancement of the microscope, action
potential generation in vestibular neurons was studied by a basal
electrophysiological characterization of these neurons in semi-iso-
lated axolotl preparation (Fig. 3A1,2). Stable whole-cell current-
clamp recordings of the cell bodies for periods of 25–40 min were
conducted on the two types of vestibular projection neurons (n = 4)
as well as on unlabeled neurons (n = 6), intermingled with the iden-
tified vestibular projection neurons. The membrane potential of the
vestibular neurons was clamped at the measured resting membrane
potential ("55 to "60 mV). Repetitively applied current steps of
constantly varying amplitude from "20 to +30 pA were used to
determine action potential thresholds and firing patterns (Fig. 3B).
Two neurons responded with a short, initial burst of one-
three spikes at the onset of the depolarization. In eight neurons, the
response consisted of repetitively generated action potentials
throughout the depolarizing current step, as illustrated in Fig. 3B.
The distinction into two subtypes is reminiscent of phasic and tonic
vestibular neurons described in adult frogs, suggesting that axolotl
central vestibular neurons also subdivide into two major functional
subpopulations with firing patterns that match the general concept of
frequency-tuned signaling pathways in the vertebrate vestibular sys-
tem (Straka et al., 2009).
Following characterization of the firing patterns of individual ves-

tibular neurons, the opto-physiological setup was challenged with a
Glu-uncaging experiment. MNI-caged Glu (MNI-Glu) was bath-
applied at a final concentration of 250 lM. Uncaging experiments
were limited to 45 min, as an overall, concomitant increase of excit-
ability within the preparation, most likely because of accumulation
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of uncaged Glu, was apparent. For UV activation of MNI-caged
Glu, a FOV with a size of 150 9 150 lm centered on the recorded
cell was generated. Sequentially applied UV light pulses of increas-
ing duration (10–100 ms), separated by a recovery period of 1 min

to allow the diffusion of released Glu, were used to evoke Glu-trig-
gered neuronal responses (Fig. 3C1,2). The efficacy of action poten-
tial activation by Glu-uncaging was determined by quantifying the
probability of triggering action potentials by UV pulses of different

A1

B1

C

B2

B3

A2

Fig. 2. Spatial features of the novel microscope. (A) Fluorescence intensity distribution and image (insets) of a typical microsphere in the xy-plane (A1) and z-
direction (A2). Intensities were fitted with a Gaussian distribution (red line), and yielded FWHM values of 1.2 ! 0.1 lm in the x-direction and 4.9 ! 0.3 lm
in the z-direction. (B) Fluorescence imaging of neurons in the rodent hippocampus (50-lm sections) labeled by means of an antibody against parvalbumin. An
image stack in the z-direction was taken with 15 frames at 1-lm intervals (excitation at 470 nm; size: 832 9 702 lm; 0.325 lm per pixel). (B1) Maximum pro-
jection of the image stack (scale bar: 100 lm). (B2 and B3) Magnification of the two marked regions in (B1). Along the white lines, the intensity distribution
had been analysed and fitted yielding FWHM = 0.8 ! 0.1 lm (B2) and FWHM = 1.8 ! 0.1 lm (B3), respectively. (C) Images show different aperture combi-
nations [columns (col) 1–4; black rectangle, full FOV; red rectangle, aperture (AP) 1; green rectangle, aperture 2]. The consequences of applying different aper-
tures are illustrated by the differential appearance of the two retrogradely labeled populations of ipsi- (green, Alexa Fluor! 488 dextran) and contralateral (red,
Alexa Fluor! 594 dextran) spinal-projecting hindbrain neurons within the optical field; scale bar: 100 lm.
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duration (Fig. 3C1,2). UV pulses of 5–20 ms duration elicited Glu-
evoked spike activity in < 20% of the 24 trials (n = 3; Fig. 3D).
UV pulses of 20–45 ms duration provoked a spike discharge in
almost 90% of the 26 trials (n = 3; Fig. 3C1 and D), while UV
pulses of even longer duration (50–100 ms) evoked spikes in almost
all 59 trials (n = 3; Fig. 3C2 and D).
The clear dependency of action potential probability on the dura-

tion of the Glu-uncaging pulse was matched by a corresponding
dependency of the latency of the first action potential with the
length of the uncaging pulse. The average latency of the first action
potential (~100 ms) decreased significantly to ~60 ms (Wilcoxon
signed-rank test; P < 0.01; n = 3 cells, 73 trials) with increasing
UV pulse length (Fig. 3E). Moreover, the observed jitter of the first
action potential (Fig. 3C1,2) indicated by the standard deviation of
the latency concomitantly decreased with increasing uncaging pulse
length (Fig. 3E). The significant reduction in latency of the first
action potential along with the increasing reliability of action poten-
tial generation with increasing UV pulse duration gave a convenient

estimate of basic parameters for reliable neuronal activation within
the specific experimental setting using the implemented technical
arrangement. In addition, the outcome of this set of experiments
indicated that LED light activation of neuronal activity through
adjustable single FOVs could be effectively combined with single-
cell electrophysiology.

Light-activated Ca2+ transients in central vestibular neurons

The applicability of two separate and independently controllable
FOVs for simultaneous optical triggering and recording of neuronal
activity was experimentally tested by bath application of MNI-Glu
(250 lM) to neurons that had been either bulk-loaded with OGB-
1AM or retrogradely labeled with Calcium GreenTM-1 dextran. Glu-
uncaging by UV light (LED 370 nm) within a large FOV
(200 9 200 lm) was combined with the imaging of Ca2+ transients
of central vestibular neurons (LED 470 nm) within different size-
adjusted FOVs. Technically, this was achieved by defining LED
combiner 1 with aperture 1 as UV activation channel (ChUV) for
Glu-uncaging, and LED-combiner 2 with aperture 2 as the channel
for optical recordings of Ca2+ responses (ChCa; Fig. 1A1,2). In the
first set of experiments, Ca2+ transients of commissural vestibular
neurons located in close proximity to the hindbrain ventricular sur-
face were recorded within a large FOV that had the same size and
position as the FOV used for Glu-uncaging (Fig. 4A1,2 and B).
MNI-Glu-uncaging elicited Ca2+ transients of a DF/F of 2–8% in

optically recorded vestibular neurons (Fig. 4A1,2 and B). The magni-
tude of these responses depended on UV pulse duration as indicated
by the increase in the average Ca2+ transient from 3.8% to 6.7%
DF/F, when the UV pulse length was augmented from 2.5 to
100 ms (Fig. 4E). In order to explore the spatial limitations of UV
light activation, the size of the FOV for MNI-Glu-uncaging was
gradually decreased to a region of ~50 9 50 lm (Fig. 4C). Com-
parison of the evoked Ca2+ responses during MNI-Glu-uncaging in
large (Fig. 4B) and small fields (Fig. 4D and E) indicated very simi-
lar magnitudes independent of the size of the optically activated
area. Ca2+ transients were consistently evoked if the neuron was
located inside or at least in close proximity to the UV light-activated
area, but not if the neuron was located at more remote positions
(> 100 lm; Fig. 4D).

Sensory stimulus-evoked Ca2+ transients in central vestibular
neurons

The major synaptic input to vertebrate central vestibular neurons
originates from ipsilateral semicircular canal and otolith organs
(Straka & Dieringer, 2004). Hair cells in these inner ear organs
detect and transduce head/body motion into voltage signals, which
are mediated as modulated spike trains by vestibular nerve afferent
fibers onto central vestibular neurons in the hindbrain. In the current
study on semi-isolated preparations, natural head rotations were
experimentally simulated by galvanic vestibular stimulation
(Fig. 5A) that allows a semicircular canal-specific electrical activa-
tion of hair cells/afferent fibers (Kaufmann et al., 2013). Accord-
ingly, one electrode was placed on the outside of the otic capsule in
close proximity to the horizontal semicircular canal ampulla, and a
second one in the bath chamber at a distance of ~2 mm from the
first electrode (Fig. 5A). A continuous sequence of 12 sinusoidally
modulated current cycles at a frequency of 0.2 Hz and amplitudes
between !25 and !100 lA were applied to the pair of electrodes.
Neuronal activity was monitored by imaging Ca2+ transients follow-

A1

C1 C2

D E

A2 B

Fig. 3. Isolated preparations of larval axolotl for combined whole-cell
recordings and UV light activation of MNI-caged Glu. (A) Photomicrograph
depicting a semi-isolated preparation of a larval axolotl (A1) with a dorsal
view of the hindbrain ventricular surface (A2); injection of fluorescent tracer
into the left vestibular nuclei retrogradely labeled commissural neurons on
the right side. (B) Patch recording of a tonic central vestibular neuron in cur-
rent-clamp configuration; overlay of responses to a series of hyper- and depo-
larizing current steps (600 ms) from "20 to +30 pA (top right). (C)
Superimposed single sweeps of evoked action potentials in a central vestibu-
lar neuron following uncaging of MNI-caged Glu with short (20–45 ms; C1)
and long UV pulses (50–100 ms; C2); gray arrows indicate UV pulse onset;
asterisks indicate the timing of the first light-evoked spike in each single
sweep. (D) Dependency of spike probability on the duration of UV pulses
(n = numbers of analysed single sweeps). (E) Onset latency of the first spike
evoked by Glu-uncaging with short (20–45 ms) or long (50–100 ms) UV
pulses.
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ing bulk loading of neurons in the vestibular nuclei with OGB-1AM
(Fig. 5B).
Despite the successful labeling of many central vestibular neurons

with OGB-1AM, a stimulus-related modulation of Ca2+ transients
was only encountered in a relatively small fraction (< 5%) of neu-
rons. This sparse activation was not unexpected and is likely due to
the fact that central vestibular neurons usually receive labyrinthine
afferent inputs from only one semicircular canal (Straka & Dieringer,
2004). The illustrated representative sample of neurons in a given
experiment (Fig. 5B and C) with a reliable modulation of the Ca2+

transients depicted the range and variability of response amplitudes
in different cells. The specificity of the galvanic stimulus is indicated
by the activation of Ca2+ transients whenever the current in the stim-
ulus electrode closer to the canal cupula depolarized the sensory
periphery (black trace in Fig. 5C2). Common to the responses in all
neurons was an initial summation with a subsequent modulation
around an elevated Ca2+ level (Fig. 5C1). This elevated signal after
the first cycle is likely due to the generally low dynamics of the Ca2+

sensor and a failure to return to baseline at a stimulus frequency of
0.2 Hz, rather than a direct correlate of the electrical signal. The pop-
ulation average of the Ca2+ response of ~6.5% DF/F for the illus-
trated sample of neurons (lower trace in Fig. 5C1) was very similar
to that observed during UV light-released Glu (Fig. 4B, D and E),
confirming an activation of central vestibular neurons within their
physiological range by external Glu in the vicinity of the recorded
neurons.

Inhibition of sensory stimulus-evoked Ca2+ responses in
central vestibular neurons by GABA-uncaging

In order to explore both the technological advancement in micros-
copy and the axolotl preparation, the effect of GABA-uncaging on
the activity of central vestibular neurons induced by galvanic stimu-

lation was assessed. As in adult ranid frogs (Malinvaud et al.,
2010), in axolotl GABA is expected to mediate commissural inhibi-
tory responses for bilateral signal amplification during head rotation
as well as in shunting vestibular nerve afferent inputs through short-
latency local circuits (Straka & Dieringer, 2000; Biesdorf et al.,
2008). Therefore, CNB-GABA was uncaged on central vestibular
neurons to suppress ipsilateral semicircular canal-evoked excitatory
responses recorded here by Ca2+ imaging.
Following bulk loading with OGB-1AM and identification of

vestibular neurons by their modulated responses, CNB-GABA was
bath-applied at a final concentration of 500 lM. For these experi-
ments, two different UV light-activation protocols and different
sizes of FOVs for imaging and uncaging were explored (Fig. 6A
and B). In the first protocol, a continuous UV light pulse was
applied for 1–3 s during a sequence of sinusoidally modulated
Ca2+ transients in vestibular neurons (Fig. 6C1,2). Depending on
the size of the FOV for uncaging of caged GABA, its position
with respect to the monitored neuron and the duration of the UV
pulse, modulated responses for up to three consecutive cycles were
reversibly shunted after the light pulse, likely due to a marked syn-
aptic inhibition by the optically released GABA (bottom traces in
Fig. 6C1,2). Even though the response modulation recovered rela-
tively quickly, the peak amplitude of the Ca2+ transients usually
remained smaller, suggesting a persistence of residual GABA at the
site of action.
Monitoring of Ca2+ transients during the uncaging period was

achieved by using pulsed UV light illumination (at 5 Hz) alternating
with Ca2+ imaging (Fig. 6D). Stepwise increase of the duration of
UV light pulses (from 10 to 100 ms) yielded an increasingly more
efficient suppression of the Ca2+ transients (Fig. 6D), likely due to
larger amounts of optically liberated GABA. The precise coordina-
tion of UV pulses and image acquisition enabled a monitoring of
Ca2+ transients with sufficient temporal resolution during CNB-

A1

C D E

A2 B

Fig. 4. Ca2+ responses in axolotl central vestibular neurons evoked by Glu-uncaging. Neurons labeled with either OGB-1AM (A1,2 and B) or Calcium
GreenTM-1 dextran (C–E) were stimulated by UV light activation of MNI-caged Glu. (B) Single sweeps of UV pulse (duration, 50 ms) evoked Ca2+ responses
in a sample of neurons (1–5 in A1) following irradiation of the entire FOV (200 9 250 lm). (C–E) Sample of neurons activated by Glu-uncaging within a
small area of 50 9 50 lm (blue rectangle). (D) Dependence of Ca2+ responses on the distance from the center of UV irradiation (center of blue rectangle in C;
UV pulse duration, 50 ms). The data were fitted with a one-phase exponential decay function (weight by 1/y2). The gray rectangle represents distances within
the activation rectangle. The inset shows Ca2+ responses of the neurons marked with colored circles in (C). (E) Ca2+ transients evoked by UV pulses of varying
duration. Three neurons in the irradiated area (blue rectangle in C) were analysed, and each data point represents the average of two stimulations of an
individual cell. The data were fitted with a Boltzmann sigmoidal fit. Scale bars: 50 lm (in A1; applies to A2, as well; and C).
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GABA-uncaging, but likely also of other, so far untested caged neu-
roactive compounds.
Taking advantage of independently adjustable FOVs used for UV

activation further allowed identifying those area(s) in which uncaged
GABA (Fig. 7) most effectively blocked Ca2+ signals. FOVs of dif-
ferent size and relative location with respect to OGB-1AM-labeled
central vestibular neurons (cells 1–4 in Fig. 7A) were generated by
the aperture system (Fig. 7A). Ca2+ transients, triggered by sinusoi-
dal galvanic stimulation, were differentially reduced or suppressed
depending on the location and/or size of the FOV used to uncage
CNB-GABA (see responses of neurons in Fig. 7B2 and C1–3). Com-
pared with control responses (Fig. 7B1), global pulsed UV illumina-
tion of the entire optical field temporarily suppressed the modulated
Ca2+ transients in all four tested neurons (Fig. 7B2). Smaller FOVs,
overlapping with the optically recorded cell, completely blocked the
Ca2+ transients (cell 1 in Fig. 7C1), whereas the responses of more
distantly located cells (e.g. cell 4) remained rather unaffected. Thus,
the possibility to generate FOVs of flexible size and position for
uncaging neuroactive compounds will provide substantial insight
into the local neuronal connectivity of functionally intact vertebrate
brains.

Discussion

A novel, highly flexible and inexpensive LED-based fluorescence
microscope has been developed, suitable for simultaneous optical
manipulation of functionally identified neuronal subgroups and mon-

itoring of neural responses. The system is characterized by eight
high-power LEDs with seven different excitation wavelengths within
two multi-LED combiners, and by two separate FOVs adjusted by
rectangular-shaped apertures. As a major advance of the novel sys-
tem, the position and size of the FOVs as well as their illumination
wavelength and timing can be easily and independently controlled.
The computer control of camera and LEDs offers the possibility
of light exposure and image acquisition with high temporal accuracy
as well as rapid switching between excitation wavelengths. In
mammalian brain slices of 50 lm thickness, we could resolve struc-
tures with a size of 1 lm in the xy-plane, i.e. obtained a resolution
similar to that with 50 nm fluorescent microspheres. The fluores-
cence intensity exhibited a large dynamic. In thicker brain samples
(e.g. 260 lm), the resolution was inferior, but still in the range of
2–3 lm.

Advantages and limitations of the novel imaging system

For standard arc lamp-equipped fluorescence microscopes, the
switching between excitation filters for illumination with specific
wavelengths and the use of mechanical shutters for the control of
light exposure pose critical technical limitations on acquisition rates
of multi-color imaging. The incorporation of state-of-the-art LED
technology in our imaging setup facilitates handling of multiple
wavelengths with a simple control of light intensity and exposure
time in the microsecond range. This technical arrangement is suit-
able to analyse fast processes such as neuronal coding. By alternat-

A

B C1

C2

Fig. 5. Electrically evoked Ca2+ responses in axolotl central vestibular neurons. (A) Schematic view of the preparation and magnification of the hindbrain
region (red dashed rectangle) and semicircular canal stimulus arrangement (AC, PC, anterior, posterior vertical canal; HC, horizontal canal). Stimulation (Stim.)
and reference (Ref.) electrodes generate a sinusoidally oscillating electric field that cyclically activates neuronal elements in the cupula (Cup.) of the horizontal
semicircular canal (HC). (B) Images of Ca2+ transients evoked by sinusoidally modulated currents at various intervals after stimulus onset; scale bar: 15 lm.
(C) Ca2+ responses over several stimulus cycles in multiple neurons. (C1) Black, stimulus protocol; light gray bar, positive current phase at the electrode close
to the cupula; dark gray, single cell; blue, average Ca2+ response (avg). (C2) Ca

2+ transient of a typical neuron during two cycles of sinusoidal galvanic stimula-
tion (black sinusoid). The blue trace corresponds to the neuron marked by an arrowhead in (B) (upper left image). The red circle aligns with the first image (B;
top, left), the white square marks the last image (B; bottom, right).
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ing LED exposure for recording (Ca2+ imaging) and activating
(GABA-uncaging) with high frequency, it was possible to monitor
the neuronal activity with adequate temporal resolution during
GABA-uncaging for several seconds. Furthermore, the regulation of

the UV pulse length enabled the control of the uncaged GABA con-
centration, and as a consequence allowed a graded suppression of
labyrinthine nerve-evoked neuronal responses of vestibular neurons
in the current experimental model.

A

C1 C2 D

B

Fig. 6. GABAergic modulation of labyrinthine nerve afferent-evoked neuronal responses. (A) Schematic view of the experimental paradigm; blue rectangles
indicate the regions of UV uncaging, and the red dashed rectangle shows the area of Ca2+ imaging. (B) Electrical and photo-stimulation protocols, illustrating
the timing of image capture and UV light exposure; protocol 1: continuous UV pulse for 1–3 s; protocol 2: trains of short UV pulses (10–100 ms) at 5 Hz for
15 s alternating with image acquisition (black, electric stimulation; blue, UV pulse; red, camera acquisition). (C and D) Ca2+ responses in three different OGB-
1AM-labeled central vestibular neurons were transiently blocked by CNB-caged GABA following activation by either continuous UV irradiation (UV Prot. 1;
C1,2) or trains of UV pulses (UV Prot. 2; D). The impact of uncaged GABA on the Ca2+ responses in two individual neurons (C1,2) using different durations of
UV irradiation. Individual (light blue traces; D) and averaged Ca2+ transients (black trace) of five cells irradiated by the discontinuous UV protocol with
different durations of single UV pulses (0–100 ms).

A B1 B2

C1 C2 C3

Fig. 7. Spatially specific inhibitory modulation of labyrinthine nerve afferent-evoked neuronal responses. (A) Fluorescence image of OGB-1AM-labeled central
vestibular neurons superimposed by blue rectangles illustrating the different UV activation areas. Arrowheads and numbers mark cells analysed in (B) and (C)
(scale bar: 50 lm). (B) Ca2+ responses for cells 1–4 indicated in (A) without (B1) and with UV irradiation of the entire field of view (B2), or of three (C1–3)
distinct areas (AOA 1–3) highlighted by the position of the corresponding blue rectangles on the upper left in (C1–3) and in (A) of the visual field.
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The separation of the light source into distinct units and the
integration into individually adjustable apertures generated indepen-
dently controllable FOVs. Thereby, the described setup permits
recordings of multiple imaging tasks at various wavelengths and with
overlapping or completely segregated regions of interest, as illus-
trated by our series of Ca2+ imaging and uncaging experiments.
Thus, this setup is particularly suited for optical manipulations of
either overlapping or spatially segregated neural circuits and neuronal
subpopulations. The minimal aperture size of 40 9 40 lm allows
limiting photo-stimulation to only few or even single cells. While in
the present microscope prototype, size and position adjustments of
the apertures are accomplished manually, the next step would imple-
ment a motorized aperture control to further simplify experimental
procedures.
High-power UV LEDs in contrast to UV lasers are an inexpensive

and a sufficiently efficient light source for activating caged com-
pounds (Bernardinelli et al., 2005; Venkataramani et al., 2007).
This is indicated in the present study by demonstrating that UV
LED uncaging of MNI-caged Glu reliably elicited action potentials
and Ca2+ transients of central vestibular neurons in semi-isolated
in vitro preparations of axolotl larvae. Even though UV LEDs were
able to consistently evoke Glu responses in all trials, the required
pulses, however, were relatively long (20–100 ms) and the onset of
action potentials was considerably variable (Fig. 3C and D). These
observations might be caused by several parameters, but need fur-
ther clarification, which extend the scope of the current study.
Briefly, the UV irradiation intensity might be too low for two poten-
tial reasons: a 50 : 50 reflection transmission beam splitter is used,
which accordingly reduces the light intensity at the focal plane by
50%, and purchasable multi-band excitation filter-sets are not yet
optimized for LED spectra. Installing a variable reflection transmis-
sion beam splitter in an advanced version of the imaging setup as
well as optimizing the respective filter-sets will improve these cur-
rent technical limitations. Furthermore, the low recording tempera-
ture of 17 °C, even though representing physiological conditions for
amphibian species, limits the dynamics of synaptic transmission
compared with classical mammalian preparations at higher recording
temperatures.

Optical analysis of sensory signal processing in central
vestibular neurons

Vertebrate central vestibular neurons fall into two categories that
differ in several intrinsic and synaptic properties (Straka et al.,
2005). In adult frogs, the majority of these neurons (phasic vestibu-
lar neurons: ~80%) have highly dynamic response properties, while
a smaller portion of neurons (tonic vestibular neurons: ~20%) exhi-
bit characteristics that make these cells ideally suited to transform
and encode low-dynamic sensory signals (Straka et al., 2004; Bera-
neck et al., 2007; Pfanzelt et al., 2008). In larval axolotl, more
neurons appear to have tonic response properties as indicated by
the predominance of recorded vestibular neurons with a continuous
discharge during depolarizing current pulses (Fig. 3B). This notion
is supported by the repetitive synaptic firing in virtually all
recorded neurons following Glu-uncaging (Fig. 3C). The difference
in proportion of the two subtypes between adult frog and larval
axolotl might reflect eco-physiological adaptations of vestibular
neurons for encoding of head/body motion in animals with different
lifestyles or locomotor patterns as suggested earlier (Straka et al.,
2005). In fact, a pilot study in larval Xenopus also described a pre-
dominance of vestibular neurons with continuous firing patterns
upon depolarization (Beraneck et al., 2008), very reminiscent to

those described here and at variance with the predominant pattern
in adult frogs.
The magnitude of Ca2+ transients triggered by MNI-Glu-uncaging

was similar in all vestibular neurons independent of FOV size used
for uncaging, as long as the cell body was located within or in close
proximity to the illuminated area (Fig. 4). This observation is con-
sistent with the fact that the predominant termination of the major
excitatory input that derives from ipsilateral semicircular and otolith
afferent fibers on central vestibular neurons is on the soma (and the
proximal dendrite) and, therefore, most Glu receptors are located in
this region (Dieringer & Precht, 1979; Straka et al., 2005). The
small Ca2+ transients activated at more remote sites with respect to
the cell bodies might concur with the weak and slow commissural
excitatory inputs at distal parts of the large dendritic tree of vestibu-
lar neurons (Dieringer & Precht, 1979; Malinvaud et al., 2010).
Thus, the differential efficacy of activating Ca2+ transients in vestib-
ular neurons by Glu-uncaging at different distances relative to the
cell body coincides with the functional differentiation of the major
glutamatergic inputs in these neurons, provided the observed effect
of the uncaged transmitter in the current experimental setting is only
direct and not mediated in addition by unknown numbers of local
interneurons.
The amplitude and dynamics of Ca2+ transients evoked by

Glu-uncaging close to the soma are comparable to the responses fol-
lowing electrical stimulation of vestibular end-organs (Figs 5–7),
suggesting an excitation of similar numbers of synapses at similar
sites of central vestibular neurons. The employed sinusoidal galvanic
stimulation allows a spatially specific activation of individual semi-
circular canals and thus offers the possibility to imitate head rota-
tions in different planes by applying modulated currents (Kaufmann
et al., 2013). Whereas the evoked Ca2+ responses correlate with
each depolarizing half-wave of the sinusoid and thus comply with
theoretical considerations of this method (Goldberg et al., 1984), it
remains so far unclear if the applied current recruits vestibular hair
cells and/or afferent fibers at the sensory periphery. However, irre-
spective of the actually stimulated structural element(s) at the vestib-
ular sensory periphery, the induced Ca2+ transient is an excellent
estimate of vestibular neuronal activity. In combination with the
advantages of the novel imaging system, it allows simultaneous
visualization of larger neuronal populations in deep brainstem nuclei
as in the current experimental animal model. The responsiveness of
only a few vestibular neurons to galvanic stimulation of the ipsilat-
eral horizontal semicircular canal in the illustrated example is not
due to functional restrictions of the experimental setting, but com-
plies with the end-organ-specific monosynaptic activation of central
vestibular neurons and the limited convergence of excitatory inputs
from multiple vestibular end-organs in individual neurons (Straka
et al., 2002).
Sensory vestibular activation of central vestibular neurons is con-

trolled by inhibitory inputs mediated by local feed-forward circuits
(Minor & Goldberg, 1991; Straka & Dieringer, 2000), brainstem
commissural pathways (Shimazu & Precht, 1966; Malinvaud et al.,
2010) or cerebellar Purkinje cells (Magherini et al., 1975; Babalian
& Vidal, 2000). The local disynaptic inhibition with its short latency
has been shown to effectively shunt the sensory-driven monosynap-
tic excitation and, thereby, to terminate the afferent activation after
the first few action potentials (Biesdorf et al., 2008). The functional
consequence is a flexible control of different dynamic signal compo-
nents during head/body motion. While semicircular canal plane-spe-
cific commissural inhibitory connections improve the bilateral
sensitivity for angular head acceleration, Purkinje cell-mediated
inhibition controls the gain of vestibulo-ocular reflexes (Straka &
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Dieringer, 2004). Common to all these inhibitory inputs is a GABA-
mediated reduction of the ipsilateral vestibular sensory-driven excita-
tion. While bath application or systemic administration of GABA
antagonists was previously used to estimate the impact of the differ-
ent inhibitory circuits, the current study directly demonstrated the
potency of GABA on shunting vestibular nerve afferent activity
(Figs 6 and 7). The effect of GABA-uncaging on Ca2+ transients
was remarkably profound during the entire period of the uncaging
pulse in different vestibular neurons, provided the area for the
optical release included the soma of the recorded neuron. This is in
accordance with the assumption that uncaged GABA activates
somatic receptors, a condition that is particularly effective in shunt-
ing excitatory somatic inputs in close proximity to the inhibitory
synapses. The complete block of afferent excitation by local GABA-
uncaging is likely the result of an activation of all accessible recep-
tors at variance with a more fractional recruitment of these inputs
following separate activation of the different inhibitory circuits.
Nonetheless, it clearly demonstrates the considerable impact of
inhibitory signals on the processing of head/body motion-related
sensory-motor transformation in central vestibular neurons. Based
on the outcome of these first explorative sets of experiments, the
novel microscope allows employing numerous optical manipulations
that help deciphering the connectivity between larger groups of
identifiable neuronal elements along the hierarchical structure of spe-
cific functional circuitries in in vivo-like semi-isolated preparations.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Data S1. Zemax file of optical path (ray_trace.zmx).
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Abstract 

During active movements, neural replicas of the underlying motor commands may 

assist in adapting motion-detecting sensory systems to an animal’s own behavior. The 

transmission of such motor efference copies to the mechanosensory periphery offers a 

potential predictive substrate for diminishing sensory responsiveness to self-motion during 

vertebrate locomotion. Here, we demonstrate that shared efferent neural pathways to hair 

cells of vestibular endorgans and lateral line neuromasts in larval Xenopus express cyclic 

impulse bursts during swimming activity that are directly driven by spinal cord locomotor 

circuitry. Despite common efferent innervation and discharge patterns, afferent signal 

encoding at the two mechanosensory peripheries is influenced differentially by the efference 

copy signal, reflecting the different organization of body/water motion detecting processes in 

the vestibular and lateral line systems. The resultant overall gain reduction in sensory signal 

encoding in both cases, which likely prevents overstimulation, constitutes a dynamic 

adjustment to the altered stimulus statistics during locomotion. 
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Introduction 

The efficient encoding of sensory stimuli requires matching the sensitivity of neural 

coding processes to ongoing variations in stimulus statistics 1-3. A particularly relevant 

example of a sensory system that experiences a wide range of constantly altering stimulus 

amplitudes and frequencies is the vestibular system, the major sensor of body motion in 

vertebrates 4. Vestibular endorgans decompose an animal’s movement into spatio-temporal 

vector components as a prerequisite for correct visual orientation, postural control and spatial 

navigation 5. Accordingly, the accurate sensing of body motion-derived stimuli and their 

processing within the CNS depends critically on neuronal computations that ensure the 

optimal encoding of static and changing head/body positions in space during both passive and 

active movement 6. Locomotor activity thus poses a particular challenge for the vestibular 

system given the necessity to detect and encode a wide dynamic range of body motion to 

which the coding process must adapt.  

 A convenient way for mechanosensory encoding to be adaptively adjusted during 

self-motion is through the employment of corollary discharge or efference copies originating 

from the locomotor neural centers themselves. The predictive nature of these intrinsic feed-

forward signals is well suited to inform associated sensory systems at various levels of the 

nervous system about impending and/or ongoing motor activity 7-10. In this context, 

vertebrates possess a highly suitable neuronal substrate for a peripheral gain control 

mechanism that can tune hair cell sensitivity and adapt afferent encoding in the movement-

detecting periphery of both the vestibular and lateral line sensory systems 11,12. Populations of 

hindbrain efferent neurons innervate the hair cells and primary afferent fibers of vestibular 

endorgans, and exclusively the hair cells of lateral line neuromasts 11,13-15. Moreover, for 

lateral line neuromasts - the sensors of water displacement in fish and aquatic amphibians - 

the efferent innervation is already known to affect afferent neuron discharge during 

locomotion-related behavior 16-19, although the origin and precise nature of the transmitted 

efferent signal thus far remain unknown.  

 Although various aspects of vestibular efferent pathway activity and its influence on 

inner ear endorgan receptors have been described in both anamniote 20-24 and amniote 

vertebrates 25-29, the findings have been divergent and even contradictory when compared 

across different experimental approaches or species. For instance, the effect of direct 

vestibular efferent activation on vestibular afferents has been reported to be exclusively 

excitatory in monkeys and fish, both excitatory and inhibitory in frogs 30, and at variance with 
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the consistently reported inhibitory efferent influence on afferent fiber discharge in the lateral 

line system 18,19. Furthermore, although vestibular efferents have been postulated to convey 

signals related to anticipated head/body motion, emotional states or ongoing sensory 

stimulation 31,32, there has hitherto been no conclusive demonstration of a clear causal 

relationship between vestibular efferent firing patterns and altered afferent signaling during 

an identified natural behavior. Thus, despite a prolonged accumulation of disparate morpho-

physiological evidence, a general functional picture of the vestibular efferent system and its 

impact on mechanosensory encoding has remained obscure.  

Here, we provide direct evidence in larval Xenopus frogs that ascending corollary 

discharge signals originating from CPG circuitry in the spinal cord are conveyed to 

mechanosensory efferent neurons of both the vestibular and lateral line systems during 

rhythmic locomotor activity. The phase-coupled discharge of these efferent pathways 

transmits the temporal structure of the locomotor CPG pattern and causes an overall gain 

reduction in afferent encoding of concomitant sensory inputs to both systems.  

 

Results 

Mechanoreceptor efferent neurons are rhythmically active during locomotion 

The neural correlate of undulatory tail-based swimming in Xenopus tadpoles is 

expressed as spontaneous, left-right alternating impulse bursts in spinal ventral roots (vr) of 

semi-isolated in vitro preparations (Fig. 1a-e). Such episodes of so-called ‘fictive locomotion’ 

typically consist of an initial irregular discharge at episode onset (black traces in Fig. 1b,c) 

followed by a more regular, bilaterally symmetrical vr burst rhythmicity (Fig. 1b,d) that 

persists for up to tens of seconds at a frequency of 2 to 8 Hz33.  

Single- and multi-unit recordings of the central severed ends of the anterior (AVN) or 

posterior branch (PVN) of the vestibular (VIIIth cranial) nerve (Fig. 1a) revealed the 

occurrence of locomotor activity-timed discharge in both of these otherwise silent 

mechanosensory nerves (Fig. 1b-e; Supplemental Fig. 1b,c). Following a short tonic firing at 

swim episode onset (red traces in Fig. 1b,c), the two vestibular nerve branches displayed 

sustained rhythmic discharge that was closely timed with spinal vr motor bursting on the 

same side of the cord (dashed vertical lines in Fig. 1d,e; Supplemental Fig. 1b,c). The strict 

in-phase coordination of AVN and PVN discharge with ipsilateral vr burst activity and their 

out-of-phase relationship with contralateral vr bursts was confirmed by circular plot analysis 
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of instantaneous vr firing relative to spiking in both vestibular nerves recorded on the same 

(PVN, blue in Fig. 1f) or opposite (AVN, red in Fig. 1f and Supplemental Fig. 1d,e) side. It is 

noteworthy, however, that in many preparations the predominant ipsilateral coupling between 

spinal vr and vestibular/lateral line nerve activity could be transiently replaced by a bi-phasic 

pattern where mechanosensory nerve discharge occurred in phase with the rhythmic vr bursts 

on both cord sides (see AVN recording in Fig. 1d and Supplemental Fig. 1b).  

An identical coupling relationship with spinal vr bursting was also observed for the 

anterior (ALLN) and posterior nerves (PLLN) of the neighboring lateral line system during 

fictive locomotion (Supplemental Fig. 1f-j), consistent with earlier reports on the activation 

of lateral line efferent fibers during swimming in both Xenopus and dogfish 16,17,19. 

Significantly, however, the coupling of lateral line (as well as vestibular) nerve activity with 

spinal vr bursts observed in our motionless semi-isolated preparations extends on these 

previous studies by excluding sensory feedback signals as a potential source of the rhythmic 

efferent signal during locomotion. Moreover, this common locomotor influence provided us 

with the unique opportunity to explore in parallel and directly compare the efferent control of 

the two co-existing mechanosensory systems under the same experimental conditions within 

the same animal.  
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Figure 1. Locomotor-related neural activity in vestibular nerve efferent neurons in Xenopus 
tadpoles. a-d, Episodes of spontaneous fictive swimming in semi-isolated in vitro 
preparations (a), recorded as multiple-unit impulse discharge (b-d) in the left (ipsilateral) and 
right (contralateral) ventral roots (i-vr and c-vr, respectively; black traces) of spinal segment 
14 together with the central cut portion of the left anterior vestibular (VIIIth) nerve branch 
(AVN, red trace). The initial discharge at episode onset (*) and subsequent regular (**) vr 
bursting (shaded areas in b) are shown on an extended time scale in c and d, respectively. 
After mostly tonic firing at swim episode onset (c), the AVN activity develops into rhythmic 
bursting occuring in phase with locomotor bursts in the ipsilateral vr (red dashed lines in d). 
e, Different preparation showing coincident burst coupling between ipsilateral vr11 and the 
posterior vestibular nerve (PVN) branch (blue dashed lines) during an episode of fictive 
swimming. f, Polar plot quantifying the phase relationship between the c-vr/AVN and i-
vr/PVN activity shown in d,e; AVN (red area) and PVN bursts (blue area) are respectively 
approximately out-of-phase (i.e., angle towards 180°) or in phase (angle towards 0°) with the 
i-vr burst rhythm. Calibration bars: 5 s in b, 1 s in c, 0.2 s in d,e. 
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Although mechanosensory afferent axons considerably outnumber the relatively small 

efferent fiber population in the vestibular and lateral line nerves 15, the rhythmic bursting 

observed in these cranial nerves during fictive swimming could be directly established to 

reflect a central activation of individual efferent neurons (ENs) by locomotor-related signals. 

Support for this conclusion derived from simultaneous recordings of the central and 

peripheral regions of the vestibular and lateral line nerves after an intervening transection 

close to their exit from the brainstem (for example, see configuration for PLLN recordings in 

Supplemental Fig. 2a). Axons in the central stump displayed rhythmic burst discharge in 

phase with fictive swimming (blue trace in Supplemental Fig. 2b) but otherwise remained 

silent at rest or during hydrodynamic stimulation of the skin (red trace in Supplemental Fig. 

2b). In contrast, spontaneous firing occurred in the detached distal nerve segment at rest as 

well as during fictive locomotion, but was strongly sensitive to mechanical skin stimulation 

(green trace in Supplemental Fig. 2b). These separate discharges recorded peripherally and 

centrally from vestibular and lateral line nerves thus corresponded to the dissociated activities 

of mechanoreceptor afferent and efferent axons, respectively. 

In a next step, the central nervous location and relative positions of vestibular and 

lateral line ENs was determined by double retrograde labeling with fluorescent tracers (Alexa 

Fluor 488 and 546 dextran) applied to different combinations of the two VIIIth nerve branches 

and the two lateral line nerves in individual preparations (Fig. 2a-d). Whereas vestibular and 

lateral line afferent axons terminated separately in adjacent areas of the hindbrain (red and 

green labeled fibers respectively in Fig. 2a,b), the somata of conjointly labeled ENs formed 

overlapping subgroups of 5-12 cells/preparation (AVN: 7.8 ± 4.6, n = 20; PVN: 7.7 ± 1.5, n = 

3; ALLN: 7.8 ± 2.8, n = 10; PLLN: 9.2 ± 3.4, n = 6) aligned ipsilaterally in rhombomeres (r) 

4 and 6 (Fig. 2a-d). The dendritic tree of this bipartite cell population extended 

predominantly into the ipsilateral reticular formation, although a few branches were found to 

cross the midline (arrow heads in Fig. 2d). While ENs with axonal projections in the two 

vestibular nerve branches and the PLLN were confined to single segments (r4 and r6, 

respectively), ALLN efferents form a larger subgroup (~70%) in r4 and a smaller population 

in r6, wherein they intermingled with PLLN efferent neuron somata. Moreover, the majority 

(~80%) of the ENs in r4 expressed double-labeling (see arrowheads in Fig. 2c) after 

combined tracer application to different combinations of the AVN, PVN and ALLN. The 

extent of this double-labeling was unrelated to mechanosensory nerve branch identity, 



	
  

	
   58	
  

complying with a previous proposal that individual ENs project to multiple hair cell targets 
15,34. 

To determine the proportion of neurons within the combined mechanosensory efferent 

population that become activated during locomotion, we used multi-cellular Ca2+-imaging to 

monitor intrasomatic Ca2+-fluctuations associated with electrophysiologically recorded fictive 

swimming (Fig. 2e). EN cell bodies in r4 were retrogradely loaded with a Ca2+-sensor 

(Calcium Green-1 dextran) from the AVN (Fig. 2f; see Methods). During episodes of both 

evoked and spontaneous fictive swimming (red and green * in Fig. 2f), all backfilled cells (32 

ENs in 7 preparations) exhibited coincident fluorescence changes with onsets that were 

strictly timed to the onset of rhythmic spinal vr bursting (Fig. 2f,g). The duration of these 

responses, measured as the half-width of the overall Ca2+-signal (Fig. 2g), was also closely 

correlated with the duration of the corresponding fictive swimming episode (Fig. 2h). 

Moreover, the dynamics of the Ca2+-responses of different EN pairs (n = 20 from a total of 25 

cells) during a given episode were very similar and highly correlated (Fig. 2i), suggesting a 

common underlying synaptic drive. Given the projection of individual ENs to multiple 

peripheral targets, and the close similarities of their Ca2+-transients (Fig. 2f,i) and firing 

patterns during rhythmic vr bursting (Fig. 1d,e; Supplemental fig. 1b,c,i,j), it is probable that 

the entire efferent population participates in conveying a copy of spinal CPG activity to the 

inner ear and lateral line sensory periphery during swimming. 
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Figure 2. Ca2+-imaging of morphologically identified mechanosensory efferent neurons 
(ENs) during fictive locomotion. a-d, Confocal reconstructions of hindbrain whole mounts 
after combined application of Alexa Fluor 546 (red) and 488 (green) dextran to the AVN and 
ALLN (a,c,d), and to the AVN and PLLN, respectively (b), showing afferent axonal 
projections and locations of EN somata in rhombomeres (r) 4 and 6. Note that the 
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longitudinal and rhombomere-specific transverse fibers (blue in a) were visualized by 612 nm 
illumination. The inset in (a) shows r4 and r6 ALLN efferent neurons (green) in relation to 
segmental boundaries (dashed lines). c, AVN (red) and ALLN (green) efferent neurons in r4 
at higher magnification; note the double-labeled neurons in yellow (arrow heads). d, ALLN 
ENs in r4 and r6 that extend dendrites (arrow heads) across the midline (ml). e,f, Imaging of 
Ca2+-transients in ENs of semi-isolated preparations (e) following retrograde loading of cell 
bodies with Calcium Green-1 dextran from the anterior vestibular nerve (AVN). Ca2+-
transients (f) were recorded simultaneously in several ENs (color coded cells and traces) 
during episodes of evoked (red *) and spontaneous (green *) ventral root/myotomal 
locomotor burst activity (black traces). g,h, Correlation between Ca2+-dynamics, measured as 
the overall response half-width (g), and corresponding locomotor episode duration (h) in 32 
cells during 4-7 swimming episodes per monitored cell (n = 160). i, Plot of Ca2+-response 
durations (measured as half-width; see color-coded, normalized transients in inset) of pairs of 
ENs (25 pairs) during 4-7 locomotor episodes/cell (n = 114). Red lines in h,i represent linear 
regression. Calibration bars: 0.1 mm in a,b and inset in a; 25 µm in c,d; 15 µm in f; 5 s for 
traces in f and inset in i; 0.2 s in g. 

 

Information content of the locomotor signal in ENs 

The corollary discharge activation of mechanosensory ENs offers the possibility of 

transmitting information about a range of different features of the propulsive motor 

commands to the vestibular and lateral line sensory peripheries. Moreover, given the 

communal projections of most ENs to both systems, it is predictable that equivalent efferent 

information is conveyed in the nerve branches to the two peripheral targets. As typified by 

the AVN recordings in Fig. 3a, spinal vr and vestibular (red) or lateral line EN activity (blue) 

during fictive swimming revealed a close temporal match (r2 = 0.99) in their overall 

discharge durations in each episode (Fig. 3a,b; see also Fig. 2h). Alterations in the strength of 

actual swimming in vivo derive from changes in the amplitude and frequency of horizontal 

tail excursions that in turn are represented in vitro by variations in the discharge intensity and 

cycle frequency of underlying vr bursts 33. Spontaneous changes in vr intra-burst firing rates 

(see shaded c-vr14 bursts in Fig. 3c) and burst frequency (see i-vr13 bursts in Fig. 3e) during 

fictive swimming were also accompanied by similarly graded alterations in burst magnitude 

and cycle rate of associated vestibular EN activity (AVN in Fig. 3c and 3e, respectively). The 

strong linear correlations for both discharge intensity (Fig. 3d) and burst frequency (Fig. 3f) - 

obtained from vestibular (red) and lateral line (blue) nerve recordings - indicate that 

swimming strength is faithfully represented on a cycle-to-cycle basis within the efferent 

activity to the vestibular and lateral line peripheries.  
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Changes in swimming strength are also inscribed in a further parameter of the corollary 

discharge of mechanosensory ENs. During vr bursts at lower cycle frequencies and/or lower 

burst amplitudes (green highlighted areas in Fig. 3c,g), vr/EN coupling consisted 

predominantly of an ipsilateral, single-phase pattern. However, when vr burst frequency or 

amplitude (blue shadings in Fig. 3c,g) was relatively high, the coupling pattern was typically 

a bi-phasic relationship in which the ENs were now activated along with vr bursts on both 

cord sides (red and blue * in Fig. 3c,g). Concomitant with this bi-phasic pattern, the 

ipsilateral vr/EN coupling became stronger and more pronounced and was correlated with an 

increase in the relative magnitude of vr burst amplitudes (p ≤ 0.01, Mann-Whitney U-test; 

Fig. 3h). Thus, during stronger swimming, the corollary signature expressed by 

mechanosensory ENs during each cycle represented the sum of the combined bilateral vr 

burst activity. However, even when bi-phasic coupling occurred during a given locomotor 

episode, the dominant ipsilateral phase relationship between vr and EN burst discharge was 

strictly maintained, and independent of rhythm frequency. Together, therefore, the above 

findings show that during tadpole swimming, the efference copy encoded in both vestibular 

as well as lateral line ENs conveys information about the duration, frequency and amplitude 

of locomotor activity to the mechanosensory periphery of the inner ear and lateral line 

systems. 
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Figure 3. Parameter representation of locomotor activity in mechanosensory efferent neuron 
discharge. a, Recordings of AVN (red traces) and c-vr15 activity (black traces) during three 
swimming episodes of increasing length in the same preparation. b, Pooled data plot showing 
closely matching episode durations of vestibular (red open symbols, n = 7 preparations) and 
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lateral line (blue symbols, n = 7 different preparations) efferent (EN) versus vr discharge (68 
swim episodes). Linear regression is indicated by black line. c, Recordings of AVN (red 
trace) and c-vr14 activity (grey trace) with corresponding integrals of intra-burst firing rates 
(pink and black traces) during sequences of strong (left) and weak fictive swimming (right) 
within the same episode (compare color shaded areas). During strong swimming (left), 
additional spikes occurred in the AVN (blue *) in phase with the contralateral vr. d, Group 
data plot showing a close correlation between the magnitudes of vestibular (red circles, n = 6 
preparations) and lateral line (blue circles, n = 6) EN versus vr burst integrals (313 burst 
cycles). Linear regression is indicated by black line. e, Recording of AVN (red trace) and i-
vr13 activity (grey trace) with respective integrals of intra-burst firing rates (pink and black 
traces) during a swim episode where vr bursting changed spontaneously from a slower (2.1 
Hz) to a faster (4.4 Hz) rhythm. f, Group plot showing a close correlation between vestibular 
(red symbols, n = 6) and lateral line (blue symbols, n = 6) EN versus vr burst frequencies 
(101 cycles of 5-10 bursts/episode). Note that any bi-phasic EN burst patterns were omitted 
from this analysis. Linear regression is indicated by black line. g, Recording of AVN (red 
trace) and c-vr15 activity (grey trace) with corresponding firing rate integrals (pink and black 
traces) during a swimming episode in which the single-phase vr-EN coupling (red * in g) 
followed a pattern of EN activity occurring in time with the vr bursts on both sides (red and 
blue * in g). h, Box and whisker plots showing that the bi-phasic EN activity (blue) occurred 
with vr bursts of significantly larger relative magnitude (p ≤ 0.001; Mann-Whitney U-test) 
than during mono-phasic EN-vr coupling. Number (n) of preparations is indicated in b,d,f,h. 
Vertical calibration bars in c,e,g indicate a discharge rate of 100 spikes/s. 

 

Origin of locomotor corollary discharge in ENs  

In theory, the locomotor-timed influence on mechanosensory ENs, as illustrated in 

Fig. 4a-c, could originate from the spinal CPG circuitry itself or from supraspinal levels, such 

as midbrain 35,36 (Cabelguen et al., 2003; Saitoh et al., 2007)(Cabelguen et al., 2003; Saitoh et 

al., 2007)or hindbrain reticular centers 17 known to control locomotor behavior. A midbrain 

contribution was excluded by surgical removal of the midbrain in isolated brainstem/spinal 

cord preparations (blue arrow in Fig. 4d; n = 7). Despite the midbrain ablation, the rhythmic 

activation of both vestibular as well as lateral line ENs persisted during fictive swimming 

(e.g. AVN in Fig. 4e). Moreover, neither the magnitude of locomotor-related EN firing nor 

the bi-phasic relationship with left/right vr bursting was affected by this lesion (Fig. 4e,f; cf. 

4b,c), compatible with an exclusive spinal origin of the corollary signal. Significantly, 

however, following an additional spinal cord hemisection at the level of the obex (Fig. 4g), 

any bi-phasic EN firing (Fig. 4b,e) was immediately replaced by a single-phase pattern (n = 

10) in which EN/vr coupling remained uniquely ipsilateral as indicated in Fig. 4h,I (cf. e,f) by 

the remaining EN activity occurring in phase-opposition with the contralateral vr. The 

suppression of EN activation in phase with contralateral vr bursts by this hemisection (see 

arrow heads and pink shaded segment in Fig. 4h,i; cf. 4f) thus suggests that ascending spinal 
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signals reach contralateral efferent neurons after traversing the midline above the obex in the 

brainstem, thus excluding a previously suggested contribution of the hindbrain reticular 

formation. Interestingly, a potential anatomical substrate for this contralateral input could 

include the midline-crossing dendrites of the mechanosensory efferent neurons themselves 

(see Fig. 2d).  

The origin and coupling dynamics between spinal CPG circuitry and the ENs were 

further assessed by recording spinal vr activity at different segmental levels during 

spontaneous episodes of in vitro fictive swimming (n = 5). Robust phase-coupled cyclic 

bursts occurred in efferent fibers (e.g. PLLN in Fig. 4j,k) whenever rhythmic locomotor 

activity was uniformly expressed along the cord (see vr3, vr10, vr16 in Fig. 4j). However, 

locomotor corollary firing in ENs disappeared in all preparations (red * in Fig. 4l; n = 5) 

whenever bursting in the most rostral vrs (segments 1-10) occasionally ceased (vr3 and vr10 

in Fig. 4l), although bursting in more caudal roots persisted (vr16 in Fig. 4l). Moreover, in 

preparations expressing typical axially-distributed CPG activity (as in Fig. 4k), the stepwise 

surgical removal of spinal segments, starting at the level of vr20 and continuing rostrally up 

to vr5, resulted in a gradual reduction of EN burst magnitudes during fictive swimming. 

Together these findings thus confirm for the first time that the locomotor efference copy 

drive to both lateral line and vestibular efferent neurons principally derives from CPG 

circuitry in the rostral cord region.  
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Figure 4. Spinal origin and trajectory of ascending pathways mediating locomotor corollary 
discharge signaling to mechanosensory efferent neurons. a-i, Episodes of spontaneous fictive 
swimming in the same in vitro preparation (a,d,g) recorded from the right (contralateral, c) 
vr16 (black trace) and the central stump of the left AVN (b,e,h; red, blue, green traces, 
respectively) in control (a-c), after midbrain removal (d-f) and then after a right obex 
hemisection (g-i). The corresponding polar plots in c,f,i show that the out-of-phase 
(contralaterally-timed) vr-EN coupling remained largely unaffected by the two lesions. 
However, although the additional synchronous (ipsilaterally-timed) EN activity (b,c) 
persisted after midbrain removal (e,f), it disappeared after obex hemisection (pink arrow 
heads in h and pink area/arrow head in i). j-l, Episodes of spontaneous swimming activity in a 
different semi-isolated preparation (j) recorded simultaneously from right vrs 3, 10 and 16 
(respectively black, dark gray, light gray traces) and the central stump of the left PLLN (red 
trace). PLLN bursting coupled with locomotor bursts in all three cord segments (k) 
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disappeared (l; red *) when CPG burst activity ceased spontaneously in vr3 and vr10 but 
persisted in vr16. Calibration bars: 0.2 s in b,e,h,k,l.  

 

Impact of locomotor corollary discharge on mechanosensory encoding  

The functional consequences of EN locomotor efference copy for sensory signal 

processing by lateral line neuromasts and vestibular endorgans were explored by making en 

passant recordings from afferent fibers in the PLLN and AVN. For this, the peripheral 

connectivity of ENs with lateral line/inner ear hair cells and their afferent innervation were 

left physically intact (Figs. 5a,g, 6a,e), in contrast to the experimental conditions described so 

far (Figs. 1-4) where the endorgans were disconnected. Consequently, the effect of spinal 

CPG corollary discharge on the transduction and encoding of natural motion-driven afferent 

activity during fictive locomotion could be directly assessed. 

 

Lateral line system. Previous in vivo studies on adult Xenopus 17 and dogfish 16,19 

provided qualitative evidence for an attenuating role of EN activity on lateral line afferent 

signal encoding 16,17,19. In order to extend these earlier observations and directly compare the 

consequences of locomotor efference copies on vestibular and lateral line primary afferent 

signaling, we first quantified the EN influence in the latter mechanosensory system. In the 

absence of locomotor activity, intact PLLN afferent fibers fired spontaneously at overall rates 

varying from 3 to 50 Hz, depending on the number of afferents recorded in a given 

experiment (red traces in Fig. 5b,c). During a bout of fictive swimming (see black vr trace in 

Fig. 5b,c), the discharge of most recorded lateral line afferent neurons (n = 22/33) became 

substantially reduced or even ceased completely (* in Fig. 5b,c). The afferent firing rate 

decrease (Fig. 5d), which was most pronounced immediately after swimming onset (see bar I 

in Fig. 5f) when rhythmic vr bursting was typically at its strongest, generally persisted for 

most of the ensuing episode (see bar E in Fig. 5f). A return to control discharge levels often 

occurred as vr burst amplitudes gradually declined towards episode termination (see Fig. 5c). 

In contrast to their dependence on the strength of swimming activity (as reflected in the 

intensity of vr bursting), afferent fiber firing rates were similarly reduced in the absence (Fig. 

5b) or presence (Fig. 5c) of a concomitant flow of Ringer solution across the skin surface. 

While a smaller group of lateral line afferent recordings (n = 11/33) exhibited no or minimal 

(< 10%) change in spontaneous discharge during fictive swimming (Fig. 5e), an actual 

increase in afferent cell firing during rhythmic vr bursting was never encountered, consistent 
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with the results of previous studies in which lateral line efferent axons were stimulated 

electrically 19. Consequently, the average firing rate of the entire recorded population of 

lateral line afferents (n = 33) displayed a significant reduction (p ≤ 0.001; Wilcoxon signed-

rank test) throughout episodes of locomotor CPG activity (bar E in Fig. 5f).  

Simultaneous recordings of lateral line afferent and efferent fibers with intact central 

and peripheral synaptic connectivity further substantiated the suppressive influence of EN 

locomotor corollary discharge on mechanosensory afferent neuron firing (Fig. 5g). Very 

occasionally in such experiments (n = 3), it was possible to record the activity of pairs of 

afferent and efferent axons in the same lateral line nerve recording. In the very rare example 

shown in Fig. 5h, simultaneous recordings were made from two branches of the same PLLN; 

an afferent and efferent fiber were recorded en passant in the still intact branch (red trace, 

PLLN1 in Fig. 5h) and several ENs alone were recorded with a different electrode placed on a 

second, severed branch of the same PLLN (blue trace, PLLN2 in Fig. 5h). During an episode 

of EN activity, visible as a barrage of rhythmic discharge in PLLN2 (blue trace in Fig. 5h), 

the firing of an individual lateral line afferent fiber recorded in PLLN1 (large spikes in the 

PLLN1 trace in Fig. 5h) was reversibly suppressed. The close temporal correlation between 

this suppression of afferent firing and the efferent corollary volley (cf. PLLN1 and PLLN2 

traces in Fig. 5h) was especially evident from the activity profile of a single efferent fiber 

(small spikes in the PLLN1 trace in Fig. 5h; blue arrow) that accompanied the afferent axon 

in the en passant electrode recording. These reciprocating firing patterns of afferent and 

efferent axons within the same PLLN branch therefore further support the conclusion that 

locomotor corollary discharge in mechanosensory ENs is responsible for attenuating sensory 

signaling in lateral line afferent pathways. 
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Figure 5. Locomotor corollary discharge influence on lateral line sensory encoding. a-c, 
Simultaneous recordings of right vr15 (black traces) and en passant recordings of afferent 
fibers in the left PLLN (red traces) of semi-isolated preparations with intact neuromast-lateral 
line nerve connectivity (a), in the absence (b) and presence (c) of constant sensory 
stimulation by Ringer flow along the skin surface. During episodes of fictive swimming 
(shaded areas in b,c; see black vr trace), tonic PLLN activity was initially abolished (* in 
b,c), but regained lower levels of firing as the locomotor activity progressed and eventually 
returned to resting discharge levels before episode termination. d,e, Plots illustrating a 
decrease (d, red) or absence of locomotor influence (e, blue) on the firing of individual lateral 
line afferents during CPG activity. f, Histograms showing significant average decreases in 
firing rates of the recorded afferent population (number indicated in each bar) during the 
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initial (I) and throughout the entire (E) duration of fictive swimming episodes. ** p ≤ 0.001; 
*** p ≤ 0.0001 (Wilcoxon signed-rank test). g,h, Distinguishable afferent and efferent fiber 
activity in a single PLLN (g) recorded en passant from one branch (PLLN1, red trace) 
connected to lateral line hair cells and from a second transected branch (PLLN2, blue trace) 
of the same nerve (h). During locomotor-related efferent activity (shaded area; indicated by 
the multiple-unit discharge in PLLN2 and spiking in the single small unit (arrow) in PLLN1), 
ongoing afferent firing (large spikes in PLLN1) was virtually suppressed throughout the swim 
episode. Horizontal calibration bars: 5 s in b,c and 1 s in h. 

 

Vestibular system. The shared projections of individual ENs to both the lateral line 

and vestibular sensory periphery (see Fig. 2c) also strongly suggested an action of locomotor 

efference copy on the encoding of motion-related signals in vestibular nerve afferent fibers. 

This possibility was tested by mounting semi-isolated preparations with still functional 

vestibular endorgans on a two-axis turntable for the application of rotational stimuli in 

different spatial planes 37 (Fig. 6a,e). En passant recorded afferent fibers in the AVN fired 

spontaneously at rest with rates of 2 to 20 Hz in different experiments (Supplemental Fig. 

3a,c,e). Imposed sinusoidal vertical roll motion (upper trace in Fig. 6b) or horizontal left-right 

oscillations (upper trace in Fig. 6f) caused a corresponding cyclic modulation of the 

discharge in all recorded AVN afferent fibers. The peak firing rates of individual recordings 

during this natural stimulation ranged from 10 to 35 Hz (Fig. 6c,g).  

During an episode of fictive swimming in the absence of motion stimulation, the 

spontaneous firing of vestibular afferents was variably affected, with the discharge rates of 

some fibers increasing while in others spiking decreased relative to resting levels (see red 

traces in Supplemental Fig. 3a,b and 3c,d, respectively). Consequently, when averaged over 

all recordings, neither the frequency (p = 0.067; Wilcoxon signed-rank test) nor the regularity 

(cv2; p = 0.57; Wilcoxon signed-rank test) of spontaneous discharge was significantly altered 

during locomotor activity (S’ in Supplemental Fig. 3e,f) compared to the respective controls 

(C and C’ in Supplemental Fig. 3e,f).  

Compatible with a variable impact of spinal CPG corollary activity on afferent fiber 

resting discharge, a similarly disparate influence of locomotor activity was observed in 

response to coincident, motion-induced vestibular activation. During a bout of fictive 

swimming, evidenced by an episode of rhythmic vr bursting (black traces in Fig. 6b,f) and/or 

associated corollary activity in mechanosensory ENs (ALLN, green trace in Fig. 6f), the 

ongoing modulation of afferent fiber discharge by sinusoidal rotational stimulation was 

affected differently in different recordings (shaded areas in Fig. 6b,f). As a first estimate, we 
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calculated the mean firing rate during table motion in the absence and presence of a fictive 

swimming event; the mean afferent firing rate (red line in Fig. 6c,d,g,h) throughout a given 

swim episode either decreased (n = 10; Fig. 6c,d), increased (n = 7; Fig. 6g,h) or remained 

unaffected (change < 10%; n = 5). Again, because of this variable influence of locomotor 

activity during rotational stimulation (color-coded plots in Fig. 6i), the mean firing rates of 

the overall afferent population (black and red box plots in Fig. 6i) during (11.0 ± 1.6 Hz; n = 

22) and in the absence of fictive swimming (11.8 ± 2.1 Hz; n = 22) were not significantly 

different (p = 0.434; Wilcoxon signed-rank test). However, irrespective of the diverse spinal 

CPG influences on individual afferent fibers, any firing rate alteration was always strictly 

associated with corollary activation of lateral line and vestibular ENs (see ALLN green trace 

in Fig. 6f, for example), further pointing to the causality between vestibular/lateral line 

efferent firing and changes in mechanosensory afferent encoding.  

Assuming representivity of the sampled vestibular afferent population, the overall 

alteration in stimulus-induced discharge modulation observed in our experiments provided a 

reasonable estimate of the global impact of locomotor corollary discharge on vestibular 

system movement encoding (Fig. 6j). This became particularly obvious from calculating the 

average peak-to-peak discharge modulation for a single motion cycle (Fig. 6c,d,g,h,j). 

Significantly, although mean firing rate levels were variably affected in different fibers by 

locomotor corollary activity (Fig. 6i), the peak-to-peak amplitudes of the motion-induced 

modulation were consistently diminished in all recordings compared to controls (compare red 

and black lines in Fig. 6j). Indeed, the average magnitude of discharge modulation during 

swimming was significantly reduced by ~45% (p ≤ 0.05; Wilcoxon signed-rank test) with 

respect to controls (Fig. 6j,k), thereby revealing a considerable reduction in the gain of 

afferent fiber sensory responsiveness during spinal CPG activity. Thus, together with a 

comparable impact on the lateral line system, this finding leads to the conclusion that 

locomotor corollary discharge conveyed by efferent pathways to the mechanosensory 

periphery causes a substantial attenuation of stimulus encoding in vestibular and lateral line 

afferent pathways during self-motion. 



	
  

	
   71	
  

 
 
Figure 6. Locomotor corollary discharge influence on vestibular sensory encoding. a-h, 
Recordings of right vr12 (black traces in b,f), the left ALLN (green trace in f) and en passant 
recordings of afferent fibers in the left AVN (red traces in b,f) in semi-isolated preparations 
with intact inner ear hair cell-vestibular nerve connectivity (a,e) during sinusoidal (1 Hz, 
±60°/s) horizontal-axis roll-motion (a) or vertical-axis head rotations (e) imposed by a two-



	
  

	
   72	
  

axis turntable (Tpos). During fictive swimming (shaded areas in b,f), the firing of some 
vestibular afferent fibers was attenuated (b-d), but facilitated in others (f-h). c,d,g,h, 
Histogram (black bars), depicting the mean afferent firing rate modulation (responses of 
fibers recorded in b,f) over a single cycle of turntable motion (dashed lines) in the absence 
(c,g) and presence (d,h) of locomotor CPG activity; also plotted are the respective population 
averages (red curves) of fibers with decreasing (c,d) and increasing firing (g,h) during 
swimming activity. i, Plots of individual mean firing rate alterations during motion 
stimulation (green - increase, red - decrease, black - no change) before (Control) and during 
swimming activity. Gray and red boxes with whisker plots show the distributions of the 
average firing rates in the two conditions. ns, not significant. j,k, Averaged response of all 
recorded afferent fibers (± SEM, shaded areas in j; n = 22) over a single cycle of turntable 
motion (dashed gray line) before (black plot) and during (red plot) locomotor CPG activity 
(j). k, Averaged extent of firing rate modulation before (Control) and during fictive 
swimming (k). ** p ≤ 0.001 (Wilcoxon signed-rank test). Horizontal calibration bar in b,f: 1 
s. 
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Discussion 

During rhythmic locomotor activity, cranial mechanosensory efferent neurons fire in a 

cyclic burst pattern that derives from an efference copy drive from the spinal central pattern 

generator. This predictive intrinsic signal informs the hair cell sensory periphery in both the 

inner ear and neuromasts of the lateral line system about the temporal structure of the 

ongoing locomotor command. Despite a variable influence of locomotor corollary discharge 

on individual vestibular and lateral line afferents, in both cases the evoked population 

response during coincident natural stimulation is reduced, commensurate with an adaption of 

sensory encoding to the altered stimulus statistics that occur during locomotion. 

Active movements such as locomotion generate reafferent sensory signals that 

interfere with the detection and interpretation of concurrent extrinsically-induced passive 

motion 38,39. However, intrinsic neural copies of the actual commands that produce locomotor 

movement offer a convenient substrate for neural computations that account for the expected 

sensory outcome of active self-motion 40. In this way, locomotor efference copy 8 or corollary 

discharge 7 is highly suited to influence the processing of head/body motion signals at the 

vestibular/lateral line sensory periphery as well as within associated central circuitry 38.  

The functional impact of intrinsic corollary discharges is particularly well understood 

in the mormyrid fish electrosensory system, which is evolutionarily closely related to the 

vestibular and lateral line systems 41. During electric organ activity of weakly electric fish, 

corollary discharges of the electromotor commands suppress reafferent stimulation at the first 

central relay station in the cerebellum-like electrosensory lobe 42,43. Moreover, the correct 

interpretation of external electrosensory signals is not only impaired by self-generated 

electric fields but also by body motion due to locomotor or ventilatory activity 44-48. 

However, in the absence of efferent innervation of electroreceptors and their associated 

afferent fibers at the sensory periphery 41, the influence of motor corollary discharges occurs 

entirely centrally, where these intrinsic signals generate cancelling negative images of the 

sensory consequences of the fish’s own movements in neurons of the electrosensory lobe 48. 

In contrast to the electrosensory system, the mechanosensory endorgans of both the 

vestibular and lateral line systems are richly innervated by efferent neuron populations, 

thereby offering the additional possibility to influence signal encoding at the first neuronal 

level. Indeed, efferent pathways to peripheral sensors constitute an essential component for 

informing these movement-detecting systems about the altered stimulus conditions during 
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locomotion 11. However, despite known morphological, physiological and pharmacological 

properties of vestibular nerve efferent fibers (Hellmann and Fritzsch, 1996; Holt et al., 2006; 

Leijon and Magnusson, 2014)(Hellmann and Fritzsch, 1996; Holt et al., 2006; Leijon and 

Magnusson, 2014)12,15,27, their direct electrical or sensory activation has yielded widely 

differing effects on vestibular afferent fiber activity in various species and under diverse 

experimental conditions 13,20,21,23,24,28-30,49. Consequently, the functional role of vestibular 

efferent innervation has so far remained enigmatic. The results of the present study therefore 

place these earlier disparate observations into perspective by identifying a context-dependent 

role for vestibular ENs during the expression of an essential and definable natural behavior. 

While our discovery of rhythmic locomotor-related signals occurring in vestibular nerve 

efferents is novel, the activation of lateral line efferent fibers during swimming in dogfish and 

Xenopus has been previously reported 17,19. Our data also demonstrate for the first time that 

cranial mechanosensory efferent pathways reliably inform both the lateral line and vestibular 

sensory peripheries about ongoing locomotor activity by conveying parallel neural replicas of 

spinal CPG output to lateral line neuromasts and inner ear endorgans. 

Significantly, the distinct behavioral context in which these efferent pathways are 

engaged is inscribed in the information content of their corollary activation (Fig. 3). As found 

in a number of other systems, efference copies of motor behaviors with relatively predictable 

outcomes either adapt the sensory periphery to an altered stimulus condition or compensate 

for unwanted sensory consequences of the behavior in question 10,39,50-52. The corollary 

discharge signal conveyed by vestibular and lateral line mechanosensory efferents is 

therefore ideally suited to notify peripheral hair cell targets about the precise dynamics of 

ongoing locomotor activity. The neural origin of this internal signal within the first 10 cord 

segments complies with the large undulatory head movements that result exclusively from 

the alternating left/right contractions of rostral tail and trunk muscles during swimming, as 

found previously for the spinal source of locomotor efference copy-driven eye movements 
51(Lambert et al., 2012)(Lambert et al., 2012). However, although the corollary activity of 

ENs consists of discrete locomotor-timed bursts, these phasic signals are also likely to be 

converted into a more persistent postsynaptic hair cell/afferent fiber response, as shown in 

toadfish upon electrical activation of its mechanosensory efferent system 13,20,21. 

The previously reported effects of experimentally elicited vestibular efferent 

discharge on afferent firing patterns 20,23,24,30,49,53 comply with the variable influences of 

locomotor corollary EN activation found in the current study. However, despite the diverse 
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effects of efferent firing on the spontaneous activity of vestibular and lateral line afferents, 

the overall mechanosensory responsiveness of both afferent populations is significantly 

attenuated during locomotor activity. The finding that the resting rates of vestibular afferents 

may either decrease, remain unaltered or even increase in response to EN firing is possibly 

related to the bilateral push-pull organization of the vestibular system, in contrast to the 

lateral line system. In the semicircular canal system, any imbalance in afferent signaling 

between the two sides is interpreted centrally as resulting from head rotation 5(Straka and 

Dieringer, 2004)(Straka and Dieringer, 2004). Thus, maintaining bilaterally symmetrical 

global rates of afferent fiber resting activity by averaging out the opposing effects of 

locomotor corollary efferent signals would in turn ensure equilibrated resting activity within 

the bilateral central vestibular circuitry, in accordance with an underlying principle for 

effectively encoding angular motion in space 4,5. In contrast to vestibular (semicircular canal) 

sensory processing, which relies on bilateral organs for differential neural computations, the 

effective encoding of water motion in central lateral line nuclei only requires single patches 

of neuromasts containing hair cells with opposite polarities. The latter are innervated by 

separate lateral line afferent fibers, and thus comprise distinct perceptive entities that allow 

encoding bidirectional water motion without the necessity to extract integrative signals from 

bilateral comparisons (Bleckmann, 2008)(Bleckmann, 2008)54. The substrates for encoding 

head/body movement and water motion are also paralleled by differences in their respective 

efferent innervation patterns. While lateral line efferent neurons connect uniquely with their 

hair cell targets, vestibular ENs make synaptic connections with both hair cells and the 

afferent pathways that serve them 55 (Fig. 7). This latter dual innervation pattern coupled with 

an apparent greater pharmacological diversity in target influence 20,23,27,56 again points to a 

potentially more variable functional outcome of efferent pathway activation for vestibular 

signal encoding.  

Unlike the evident adaptive tuning of motion encoding in vestibular afferent fibers 

during locomotion in larval Xenopus, a corresponding efference copy influence on afferent 

discharge modulation during active head motion in primates has not been encountered 
57,58(Cullen and Minor, 2002; Sadeghi et al., 2007; Jamali et al., 2009)(Cullen and Minor, 

2002; Sadeghi et al., 2007; Jamali et al., 2009). While this difference might be related to 

species-specific diversity in neuronal computational requirements, it is more likely to be due 

to the difference in neural origins of the two underlying motor programs. In Xenopus, 

rhythmic locomotor behavior originates from a spinal CPG network whose associated 
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corollary discharge is conveyed by ascending spino-cerebral pathways that are likely to be 

the same as those that drive compensatory eye movements (Lambert et al., 2012). In 

monkeys, however, voluntary head movements are driven by descending cortical commands 
38,59,60(Cullen et al., 2011; Medrea and Cullen, 2013; Brooks and Cullen, 2014)(Cullen et al., 

2011; Medrea and Cullen, 2013; Brooks and Cullen, 2014). Even though there is no 

difference between vestibular afferent encoding of active and passive head movements, 

motor efference copies together with proprioceptive inputs during voluntary neck 

movements, that likely originate from descending cortico-spinal pathways, cause a 

suppression of sensory inputs in primate central vestibular neurons 28, thereby differentiating 

the two motion components. Thus, depending on the origin and nature of a motor program for 

self-motion, an accompanying efference copy may exert its influence on reafferent sensory 

signaling at different, yet potentially overlapping levels of the nervous system. Since spinal 

CPG-derived efference copies were probably already present in aquatic vertebrate ancestors 

as evidenced by current protochordate lineages 61,62, a corollary influence on mechanosensory 

afferent encoding via an associated efferent system is likely to represent an evolutionarily 

conserved condition that might also be effectively implemented during primate locomotion. 

Interestingly, supporting evidence for this idea comes from previous clinical studies in which 

human subjects with and without a vestibulopathy expressed a more stable posture during 

running than during walking 63,64(Brandt et al., 1999; Jahn et al., 2000)(Brandt et al., 1999; 

Jahn et al., 2000). This observation led to the conclusion that spinal locomotor signals might 

exert a direct influence on the vestibular sensory periphery, very reminiscent of the effects 

demonstrated in our study. Therefore, and in line with a parallel anecdotal report on a 

vestibular-impaired dog 63, an adaptation of neural encoding at the sensory periphery during 

locomotion may serve as a general mechanism amongst vertebrates. 
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Methods 

Experiments were performed on semi-isolated in vitro preparations of larval Xenopus 

laevis at stages 48-55 65 in compliance with the "Principles of Animal Care", publication by 

the National Institute of Health and the German law for animal protection (Tierschutzgesetz). 

Permission for the in vitro experiments was granted by the Regierung von Oberbayern (55.2-

1-54-2531.3-18-10). All animals were obtained from the in-house breeding facility at the 

Biocenter-Martinsried of the LMU Munich.  

 

Preparations 

In all experiments, animals were first anesthetized in 0.02% 3-aminobenzoic acid ethyl 

ester (MS-222; Sigma-Aldrich, Germany) in ice-cold frog Ringer (composition in mM: NaCl, 

75; KCl, 25; CaCl2, 2; MgCl2, 0,5; NaHCO3, 25; Glucose, 11; pH 7.4) 66. The ventral part of 

the skull, including the jaw, was carefully removed with the tail remaining attached to the 

head. Preparations were transferred to a Sylgard-lined Petri dish and the skin covering the 

dorsal head surface was removed, the soft skull tissue opened and the forebrain disconnected. 

The rostral spinal cord and ventral roots until segment 20 were exposed, then the latter were 

disconnected from tail/trunk musculature and the cord region was isolated from the 

surrounding tissue. In some preparations, the remaining caudal part of the tail was firmly 

secured with insect pins to the Sylgard floor at the level of segments 21 - 25 with the caudal 

part left free to perform undulatory swimming-related movements. Preparations were rinsed 

in fresh Ringer solution, transferred to a Sylgard-lined Petri dish (volume 5 ml) and 

continuously superfused with oxygenated Ringer solution at a rate of 1.3 - 2.1 ml/min. The 

temperature of the bathing solution was maintained at 17 ± 0.2°C. 

 

Electrophysiology 

Fictive swimming 

Motor output of the spinal locomotor CPG in such semi-isolated preparations was 

monitored in spinal ventral roots (vrs) recorded uni- or bilaterally from cord segments 3 to 18 

during episodes of so-called ‘fictive swimming’, the neural correlate of actual behavior that 

has been previously established in a number of animal model systems including locomotion 

in lamprey 67 and Xenopus 33,68,69 and vocalization in toadfish 70. In addition to the mostly 

spontaneous expression of fictive swimming under such in vitro conditions, and to more 
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predictably obtain swimming episodes, electrical stimulation of the head and caudal part of 

the tail was occasionally used to instigate locomotor sequences. Electrical stimuli were 

generated with an integrated stimulus isolation unit (STG 4004, Multichannel Systems, 

Germany) and consisted of trains of 2-10 pulses (0.2 ms, ~100 µA at 100 Hz) that were 

delivered through a pair of Teflon-coated silver wires (diameter: 0.76 mm; AG 25-T, Science 

Products, Germany).  

 

Mechanosensory efferent activity 

To record vestibular (VIIIth cranial) nerve efferent activity, the otic capsule on one or 

both sides was opened and the anterior and/or posterior branches of the vestibular nerve 

(AVN, PVN) were carefully isolated from their respective endorgans and cleaned from 

surrounding tissue. To record lateral line efferent fiber activity, the anterior and posterior 

lateral line nerves (ALLN, PLLN) were exposed bilaterally outside the brain case and 

disconnected from the sensory periphery.  

 

 

Mechanosensory afferent activity  

The potential influence of locomotor-related efferent fiber activity on afferent 

mechanosensory encoding was assessed in semi-isolated preparations with still intact sensory 

organs (inner ear, lateral line) and hair-cell afferent connectivity. En passant recordings from 

mechanosensory afferents and, in a few fortuitous cases, efferent nerve fibers were made 

during natural sensory stimulation and fictive locomotion recorded conjointly from spinal 

ventral roots.  

Vestibular afferent activity. Recordings from semicircular canal afferent fibers were 

made in preparations with intact otic capsules and functional inner ear endorgans in the 

absence and presence of fictive swimming. Semi-isolated preparations were secured to the 

Sylgard floor of a recording chamber with the ventral side up. A ventral opening of the 

cranium gave access to the VIIIth nerve between the intact otic capsule and the hindbrain. 

This allowed en passant recordings of sensory stimulus-evoked activity of vestibular nerve 

afferent fibers to be made in a condition where the connectivity of efferent fibers and the 

sensory periphery were preserved. For application of natural vestibular stimuli, the recording 

chamber was mounted on a computer-controlled, motorized two-axis turntable (Acutronic 
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Deutschland GmbH). Natural motion stimuli consisted of sinusoidal rotations around the yaw 

and roll axis at frequencies of 0.5-1 Hz with corresponding peak velocities of ±30-60°/s. 

Lateral line afferent activity. Recordings from the PLLN were made in preparations 

with intact tail musculature and cutaneous neuromasts at the dorso-lateral region of the 

head/tail. Transecting the spinal cord caudal to segment 15 prevented any potential residual 

motion artifacts during fictive swimming. For en passant recordings of afferent neuron 

activity, a short (~0.5-1 mm) section of the PLLN branch was detached from the skin and 

cleaned from surrounding tissue. Nerve afferent activity was recorded in the absence and 

presence of hydrodynamic stimuli. For the latter, neuromast hair cells on the skin surface 

were stimulated by a constant Ringer flow (~10 mm/s) that was directed rostro-caudally 

along the surface of the preparation. 

 

Electrophysiological recordings  

All extracellular recordings, including en passant recordings of vestibular and lateral 

line afferent and efferent fibers were made with glass suction electrodes fabricated with a 

horizontal puller (P-97 Brown/Flaming). To optimize recordings of spike discharges (both 

single- and multi-unit) in spinal vrs (from segments 3 to 18) and the central stumps of 

mechanosensory nerve branches, the tip diameter of electrodes was individually adjusted to 

match the respective nerve size. For en passant recordings, electrodes were broken back to a 

tip size of ~2 µm. Recorded activity was amplified (EXT 10-2F; npi electronics, Tamm, 

Germany), digitized at 10 kHz (CED 1401, Cambridge Electronic Design, Cambridge, UK), 

processed with commercial software (Spike 2, Cambridge Electronic Design, Cambridge, 

UK), stored on a PC and analyzed off-line.  

 

Recording analysis  

Recordings were analyzed using Igor pro software (Wavemetrics, USA) and custom-

written macros. Spike time measurements were used to calculate the instantaneous frequency 

for spinal vr, vestibular (VIIIth cranial) and lateral line nerve activity. Rate measurements 

included all spikes in a given multi-unit recording. The discharge of mechanosensory efferent 

neurons was compared with the corresponding phase of the swimming cycle by triggering 

instantaneous frequency measurements from the onset of each associated vr burst. The timing 

of efferent neuron firing relative to vr activity was transformed into a phase angle and 
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displayed as a polar plot in which the direction and length of an individual vector indicated 

the phase (0°, synchrony; 180°, alternation) and strength of coupling, respectively. Multiple 

episodes of locomotor activity were analyzed for each nerve recording with at least 10 cycles 

of stable fictive swimming per episode. The total duration of efferent neuronal and vr activity 

was defined as the time between the first and last bursts of a given fictive swimming episode. 

The frequency of rhythmic vr and efferent neuron bursting was calculated from the inverse of 

the interval between consecutive bursts in each case. The relationship between the 

magnitudes of vr and efferent neuron discharge was determined by calculating the respective 

integral from the raw vr and mechanosensory nerve recordings using a bin width of 10 ms. 

Due to the variable number of monitored axons in the different vr recordings, integrals were 

normalized within each animal. The timing of burst integral peaks was also used to separate 

single-phase (1:1 matching between efferent and vr burst rhythms) from bi-phasic (two 

efferent bursts per vr burst cycle) coupling patterns. 

 

Lesion experiments 

To identify the neural trajectories that convey corollary discharge signals from 

locomotor centers to the hindbrain mechanosensory efferent nuclei, various combinations of 

surgical lesions were made in semi-isolated CNS preparations. In a first set of experiments, 

the midbrain was removed by a transection of the brainstem rostral to the cerebellum, 

followed by a spinal hemisection immediately caudal to the obex. In a second series, 

successive complete transections of the spinal cord were made from vr20 in various step sizes 

until vr5. Following each surgical intervention, the preparation was allowed to recover for a 

period of 30 min before recording of neuronal activity commenced. After completion of 

physiological recordings, preparations were fixed in 4% paraformaldehyde (PFA) in 0.1 M 

phosphate buffer (PB; pH 7.4) for 5-6 hours and preserved for post hoc verification of lesion 

specificity by whole-mount light-microscopy.  

 

Central anatomy of mechanosensory efferent neurons 

The hindbrain segmental location and topographical organization of efferent neurons 

with axonal projections in the different lateral line and vestibular nerve branches were 

determined by retrograde transport following application of fluorescent tracers (Alexa Fluor 

488, 546 dextran, Life technologies, USA) in various combinations to the cut ends of the 
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mechanosensory nerves in semi-isolated in vitro preparations (Straka et al., 2001)(Straka et 

al., 2001)71. Crystals of the tracers, melted onto the tip of an injection needle were inserted 

into the lateral line nerves close to the cranial exit of the ALLN and PLLN roots or into one 

of the two vestibular nerve branches (AVN, PVN) after opening of the otic capsule. 

Following incubation for 24 - 48 hours in oxygenated Ringer solution at 14°C, preparations 

were fixed in 4% PFA in 0.1 M phosphate buffer (pH 7.4) at 10°C for 5 - 6 hours and rinsed 

(3 x 10 min) in cold 0.1 M PBS (phosphate buffer saline, pH 7.4). The brainstems were 

removed, cleaned of surrounding tissue, mounted on slides and coverslipped using Vectashield 

(Vector Laboratories, Burlingame, USA). The labeled somata and central projections of 

mechanosensory efferent neurons and afferent axon terminals were reconstructed from stacks 

of optical sections obtained from scanning on a confocal microscope (Leica SP5). Z-axis 

projections were generated using the ImageJ software package 

(http://fiji.sc/wiki/index.php/Fiji). In order to map the position of retrogradely labeled 

efferent neurons onto the hindbrain segmental scaffold, preparations were scanned with an 

illumination wavelength of 612 nm to demark rhombomere outlines.  

 

Ca2+-imaging of mechanosensory efferent neurons 

Efferent neuron cell bodies were retrogradely loaded with Calcium Green™-1 dextran 

(Invitrogen, Eugene, OR, USA) applied as crystals to the peripheral ending of the AVN 24 

hours prior to an experiment. Imaging of Ca2+-transients was performed with an 

epifluorescence microscope (Axio Examiner Z1, Carl Zeiss, Germany) and a CCD camera 

(Axiocam Hsm, Carl Zeiss, Germany) in both the absence and presence of locomotor 

activity. In order to prevent potential movement artifacts during imaging, all residual 

muscular elements of preparations were removed. Images were captured at a rate of 10-20 

frames/s (Axiovision, Zeiss), stored and analyzed post hoc using the MBF-ImageJ Java 

software package (http://rsb.info.nih.gov/ij/) and custom written scripts. The background 

fluorescence was subtracted and bleaching effects were corrected using a linear regression 

algorithm. All data were presented as relative changes in fluorescence (ΔF/F). The duration 

of an individual Ca2+-transient was taken as the time at half maximal amplitude of the 

fluorescence change during a given swimming episode. 
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Supplemental figures 

 

 
 
Supplemental figure 1 Coupling of spinal vr and mechanosensory nerve discharge during 
fictive locomotion in semi-isolated Xenopus tadpole preparations (a,f). b,c,g-j, Simultaneous 
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recordings of various combinations of a left/right spinal vr and the left AVN (b), PVN (c), 
ALLN (g-i) or PLLN (j) showing activity coordinated mainly in phase opposition (see 
corresponding polar plots in d,e,k,l). Note that a bi-phasic (coincident as well as alternating) 
coupling pattern was occasionally observed (dashed line in b; polar plot in d). The initial 
discharge at episode onset (*) and subsequent expression of regular rhythmic bursting (**; 
grey areas in g) are shown for simultaneously recorded ALLN and bilateral vrs on an 
extended time scale in h and i, respectively. After initial tonic firing at swim episode onset 
(h), the ALLN (i) and PLLN (j) express bursting that remains in strict phase opposition with 
bursts in the c-vr (see black dashed lines in I and corresponding plots in k and l).  
 
 

 
 
Supplemental figure 2 Identification of efferent and afferent mechanosensory activity in a 
semi-isolated in vitro preparation (a). b, Simultaneous recordings of a spinal vr (c-vr12; black 
trace in b) and the central (blue in a,b) and peripheral PLLN stumps (green in a,b) after 
transection of the nerve outside the cranium in a semi-isolated preparation with still intact 
neuromasts. Recordings in b were made at rest (left panel), during sinusoidal hydrodynamic 
stimulation (lower red trace) of the neuromasts (middle panel), and during fictive locomotion 
(right panel). Calibration bar in b: 0.2 s. 
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Supplemental figure 3 Vestibular afferent neuron firing at rest and during fictive swimming. 
a-d, Spontaneous afferent discharge (red traces; upper, raw; lower, instantaneous frequency) 
in the AVN of controls (a,c) either increases (b) or decreases (d) during locomotor-related 
rhythmic bursting in a contralateral spinal vr (blue traces). e,f, Box and whisker plots 
comparing resting rates (e) and discharge regularity (cv2; f) of all recorded afferent fibers (C; 
n = 22) in the absence of fictive swimming, and of a subpopulation (n = 6) that was 
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successfully recorded both before (C’) and during fictive swimming (S’). Horizontal 
calibration bar: 0.2 s for all traces. 
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3. Discussion 
 

3.1 Experimental advantages of isolated preparations 

 
Reduced amphibian preparations are well suited to study the morpho-functional organization 

of neuronal circuits, which can be considered to be homologues of those found in amniote 

vertebrates. The possibility of investigating properties of single neurons or of populations of 

neurons, which still receive peripheral and central inputs as in a behaving animal, represents 

a link between slice preparations, cell cultures and in-vivo approaches. Other advantages are 

given by the presence of relatively simple central and peripheral nervous system (CNS, PNS). 

The accessibility of all neuronal structures (see Fig. 1, 4) allows, by means of tract-tracing 

techniques, the identification of neuronal subtypes also in the absence of specific genetic 

tools. The axolotl in-vitro preparation, due to the remarkably unfolded and flat morphology 

of hindbrain regions (Fig. 1), the excellent optical properties of the neuronal tissue, the 

presence of large neurons (Roth et al., 1993) and to the long survival time in isolation, is 

perfectly suited for studies necessitating imaging techniques. Using the combination of 

known and newly established experimental approaches, the central and peripheral 

connectivity of single neurons can be compared with their responses to a variety of natural 

stimuli together with their specific genetic (rhombomeric) identity. All these aspects can also 

be investigated in the presence of fictive motor behaviors. During these motor programs, the 

possibility to completely remove all sensory feedback allows to unequivocally reveal the 

presence of CD signals in the different identified cellular subtypes. The origin of these CDs 

can also be addressed by selective ablations of brain regions. Alternatively, feedback 

(sensory periphery) and the feedforward mechanisms (CDs) can be kept functional and their 

interaction can be studied at different levels of sensory-motor processing.  

The study of sensory processing and CDs effect in mammalian animal models is often 

constrained by the CNS complexity together with the large repertoire of locomotor strategies. 

In contrast, tail/limb-based swimming/walking in amphibians and fishes represent simpler 

and stereotyped locomotor patterns (Wassersug and Hoff, 1985) with corresponding simpler 

structures of the related CDs. 
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3.2 Motor function of CDs 
 

The classical action of CDs on sensory systems has been proposed to be the suppression of 

reafferent stimulation. In this thesis, I demonstrated one example of locomotor CD, which 

affects the sensory transduction of passive head movement related signals in vestibular 

afferent fibers and of water motion related signals in lateral line afferent fibers, thus possibly 

preventing reafferent stimulation. In addition, I found evidence for another CD also present 

during locomotion that is directed to a subdivision of the trigeminal motor system. In this 

case the CD is responsible for the coupling of two otherwise discrete motor behaviors, 

swimming and tentacle movements. In the latter case, the CD influences a motor system and 

indirectly also affects a sensory system.  

Xenopus larvae display an undulatory tail-based swimming behavior. The propulsive effect of 

this locomotor activity can be changed by modulating the frequency (up to 5 Hz) and 

excursion (amplitude) of the single tail beating cycles. The absence of a neck in amphibians 

leads to a direct mechanical coupling of the tail dynamics with the head structures. The touch 

sensitive tentacles (up to 1 cm in length) are examples of head structures subjected to 

rhythmic displacement during swimming. In the absence of a stabilizing mechanism, the 

constant left-right displacement of the tentacles would potentially produce undesired touch 

sensation due to contacts with the head or to water friction. However, activation of the 

tentacle muscles during swimming produces a retraction of these appendages to a stable 

position at the side of the head, thus potentially preventing reafferent stimulation of the touch 

sensors. These tentacle retractions are adjusted to the swimming dynamics. Particularly, the 

tentacles were found to be in the retracted position during high amplitude/frequency 

swimming (large and fast head oscillations) and extended, due to the lack of corollary 

activation of tentacle motor neurons, during low amplitude/frequency swimming. These 

results might be due to the fact that in freely behaving animals during low intensity 

swimming the tentacles are not subjected to reafferent stimulation and are kept in an 

extended position to explore the environment. An indirect effect of a CD on a sensory system 

via the direct activation of a motor system is also represented by the recruitment of the 

extraocular motor system via locomotor intrinsic signals (Lambert et al., 2012). In this case 

the compensatory eye movements produced by the locomotor CD stabilize the image on the 

retina, to maintain a stable perception of visual environment.  
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Despite the possible function of attenuating overstimulation of the tentacle touch receptors, 

appendage retraction has been shown to streamline the body shape and increase the efficiency 

of swimming (Liu et al., 1997). The extended tentacles would produce a significant 

hydrodynamic drag and thus could impair the rhythmic motion of the head, especially during 

high intensity (amplitude/frequency) swimming. A comparable alignment of appendages 

(fore- and hind limbs) to the body in order to achieve streamlining has been found in 

salamanders (Devolve et al., 1997). In axolotl it has been reported that the external gills are 

retracted during swimming (D’Aout and Aerts, 1997). From these studies and from the 

results shown in this thesis, it appears that head appendages (tentacles, gills) and limb 

retraction represent a common strategy across different amphibian taxa to improve locomotor 

performances. Limb adduction, as described for salamanders, also occurs in alligators 

(Manter, 1940; Fish, 1984) and in ‘terrestrial swimming’ sandfish lizards (Maladen et al., 

2009) during the performance of tail-based swimming. Although in all of these studies 

appendage retraction has been found to be coupled to tail-based undulatory swimming, the 

neuronal mechanisms involved still remain unknown. However it can be hypothesized that 

locomotor related CDs, as I showed to be responsible for tentacle retraction in Xenopus, 

might also be the neuronal basis for appendage retraction present in all other vertebrates 

during locomotion.  
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3.3 Evolutionary origin of CDs 
 

During evolution, animals developed a way to resolve ambiguity regarding the nature of 

sensory inputs (Crapse and Sommer, 2008), in order to be able to perceive the world while 

moving. A conceptually similar strategy for reducing the effect of reafferent stimulation 

appears to be shared among the different species. The motor command responsible for 

producing muscle contraction is also used to inform sensory systems or other motor systems 

about impeding movements. The convergence of these motor copies together with the 

sensory inputs resulting from the actual motor activity (vestibular, lateral line, proprioceptive, 

auditory, visual inputs) was probably an evolutionary advantage for acquiring new complex 

motor behaviors. The comparison between motor commands and the resulting actual motor 

performance still plays a crucial role in learning of motor skills during animal development 

(e.g. vocalization, locomotion; Crapse and Sommer, 2008). Moreover corollary discharges 

were likely used to assist a variety of sensory systems even before the evolutionary 

appearance of a complex system for the detection of body motion in space (e.g. ‘present day’ 

vestibular system). In chordate ancestors, already able to perform undulatory swimming 

(Fetcho, 1992; Wada, 1998), a vestibular system driving compensatory eye movements and 

thus stabilizing the gaze during swimming, was unlikely present. A vestibular system able to 

sense horizontal angular displacement of the head appeared relatively late during evolution in 

jaw-bearing vertebrates (Fritzsch and Beisel, 2001; Beisel et al., 2005). In the absence of 

such a ‘modern’ vestibular system, gaze stabilization in the horizontal plane could be 

achieved via an appropriate coupling of locomotor regions responsible for the undulatory 

swimming with the brainstem extraocular motor system (driving eye movements). This 

possibility can be observed in Xenopus tadpoles where a CD originating in spinal premotor 

areas, is able to generate compensatory eye movements during swimming (also) in the 

absence of vestibular inputs (Lambert et al., 2012). In this thesis I showed the existence of 

two additional spinal CDs directed to hindbrain nuclei. The CD to the trigeminal nucleus is 

able to ensure tentacle retraction during intense locomotor activity, potentially adapting the 

tadpole hydrodynamics and touch sensation processing during swimming. The other CD is 

directed to the vestibulo-lateral line efferent nucleus and is involved in tuning the respective 

peripheral sensory processing, predominantly during intense swimming. These intrinsic 

signals, originating in the spinal cord and projecting to a variety of hindbrain nuclei in larval 

Xenopus, could represent an evolutionary retained condition, which was already present in 
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common ancestors of all vertebrates. It is possible that in common ancestors, spinal corollary 

discharges were present in all sensory modalities and later on were differentially 

lost/conserved within the different vertebrate subgroups, according to the specific 

evolutionary selection pressures. Another possibility is that these hindbrain nuclei receiving 

locomotor CDs were already part of the motor system. In agreement with this hypothesis is 

the organization of the most rostral neuroaxis (sharing homologies with the vertebrates 

hindbrain) of the cephalochordate amphioxus, which is closely related to vertebrates 

(Fritzsch, 1996; Wicht and Lacalli, 2005). In these animals this part of the nervous system is 

assembled as a partial extension of the spinal cord and contains myotomal motor circuits. 

Vertebrate hindbrain nuclei receiving locomotor inputs from spinal central pattern generators 

(sCPGs) could thus reassemble parts of the cephalochordate motor circuitries, which were 

already extending from the spinal cord to the rostral CNS region homologous of the 

hindbrain. 

Interestingly, all neurons in the hindbrain which were found to receive spinal locomotor CDs 

are motor neurons (i.e., extraocular motoneurons, Combes et al., 2008; Lambert et al., 2012; 

trigeminal tentacle motoneurons, this thesis), or originate from motoneurons (i.e., vestibular 

and lateral line efferent neurons, this thesis). Developmental studies of the efferent peripheral 

sensory innervation have shown that these latter cells derive from facial brachial motor 

neurons, which where rerouted from the primitive innervation of facial motor neurons to the 

newly evolved hair cells of the lateral line and inner ear (Simmons, 2002; Sienknecht et al., 

2014). 
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3.4 Effect of CDs during voluntary and stereotyped movement: context 

dependent adaptation of sensory-motor systems  

 
Across vertebrates the vestibulo-ocular reflex (VOR) stabilizes gaze during animals daily 

activities by producing eye movements with the appropriate amplitude and opposite direction 

with respect to the head motion. At the same time this system ensures posture control during 

head/body movements (Angelaki and Cullen, 2008; Cullen, 2012; Carriot et al., 2014). 

The classical view of these sensory-motor transformations as hardwired reflexes appears to 

be in contrast with the experimental findings of the last decade, where a variety of possible 

context dependent adaptations in the sensory-motor transformation have emerged. In humans 

(Zangemeister and Stark, 1982; André-Deshays et al., 1988) and non-human primates (Bizzi 

et al., 1971; Tomlinson and Bahra, 1986) gaze can be voluntarily redirected to a new spatial 

point by coordinated movements of the head and eyes. During this gaze shift, the VOR would 

produce eye movements in the opposite direction compared to the head rotation, not allowing 

the intended fixation of the new point. A variety of behavioral experiments in humans 

(Laurutis and Robinson, 1986; Guitton and Volle, 1987; Pelisson et al., 1988) and monkeys 

(Tomlinson and Bahra, 1986) have proved that the VOR is attenuated during the gaze shift, 

with a degree that is proportional to the amplitude of the head motion. Electrophysiological 

experiments conducted in monkeys revealed the neuronal correlate for the behavioral 

observations (Roy and Cullen, 1998, 2004). Vestibular neurons receiving afferent fibers and 

projecting to the extraocular motoneurons were found to encode head velocity during passive 

rotation of the entire body to a larger degree compared to voluntary head-gaze shifts. 

Furthermore, as it was the case in the behavioral experiments, the attenuation of encoded 

velocity, found at the level of the single vestibular neuron, was proportional to the magnitude 

of the gaze shift. For the first time, it clearly emerged that the VOR is not a hardwired reflex; 

it can be differentially modulated to efficiently enable specific behavioral tasks. Vestibular 

neurons in monkeys receive direct projections from afferent fibers encoding passive and 

voluntary head motions (Cullen and Minor, 2002), compatible with the absence of a 

peripheral sensory filtration. A subpopulation of these neurons, called vestibular only (VO) 

neurons carry information about motion only during passive and not during voluntary head 

rotation (Boyle et al., 1996; McCrea et al., 1999; Roy and Cullen, 2001). These cancellation 

signals at the level of VO neurons were found only when the head of the monkey was left 

free to perform actual rotational movements. In a head-restrained condition, the simple 
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attempt to perform head rotations did not cause any change in the resting firing rate of the 

VO neurons (Roy and Cullen, 2004). It was concluded that an integration between efference 

copies of the signals going to the neck muscles and proprioceptive inputs from these muscles, 

only present during actual head rotations, has to take place in order to generate the inhibition. 

From this study we can conclude that the adaptation of the VOR during voluntary head 

movements takes place, at least in monkeys, at the level of the central processing regions, 

since vestibular afferent fibers equally encode passive and active head movements. It still 

remains unknown if the efferent nucleus, projecting to hair cells and afferent fibers, is 

activated during this motor behavior, even though it is not responsible for this task- 

dependent tuning of the vestibular system in these animals. In contrast to this evidence from 

monkeys, in this thesis it has been shown that the vestibulo-lateral line efferent nucleus is 

active during another motor behavior, namely locomotion. This CD activation, mediated by 

the sCPG (spinal central pattern generator), in the absence of any sensory feedback, is able to 

produce attenuation in the sensory processing of natural head movements already at the level 

of the sensory periphery (afferent fibers). At the same time, in these animals, another 

previously identified spinal locomotor CD (Lambert et al., 2012) acts as a feedforward 

mechanism to stabilize gaze during swimming-induced head rotation. Interestingly, 

behavioral studies in mammals, including humans, have found a differential processing of 

vestibular inputs during walking or running (Brandt et al., 1999; Jahn et al., 2000). In studies, 

conducted on healthy humans with a reversible impairment of the vestibular system or in 

patients with vestibular deficits, the ability to maintain balance or to walk parallel to a 

straight line was greater during running than during walking. From these observations, the 

authors hypothesized that the independent spinal networks, predominantly active during 

running, could be responsible for the attenuated vestibular control of locomotion seen during 

running compared to walking (Jahn et al., 2000). It appears that once a stereotyped, automatic 

motor program has been initiated, the processing of vestibular inputs can be suppressed. In 

my thesis I showed that also in amphibian larvae, such a differential gating of vestibular 

inputs is present during stereotyped locomotor behavior. The spinal nature of the CD was 

also proved, as it was hypothesized for humans. Furthermore, one of the possible neuronal 

substrates for this adaptation was revealed, namely the activation of the vestibular efferent 

nucleus during locomotion. The behavioral differences found in humans during walking and 

running could be explained by means of a differential activation of the efferent system, 

similarly to what we could show in amphibians. Particularly, we found that all locomotor 

parameters (intensity/frequency, amplitude and duration) are reliably represented in the firing 
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pattern of the efferent nucleus and that, depending on these variables, the encoding of head 

motion is dynamically adjusted. From comparing these results with the vestibular adaptation 

present during active head movements and walking in monkeys and humans, some interesting 

and important considerations arise.  

1) Voluntary neck-driven movements of the head represent a non-stereotyped and non-

automatic motor behavior leading to an active, direct stimulation of the vestibular system.  

2) Running/swimming behaviors, on the other hand, are stereotyped, automatic and 

‘unconscious’ motor behaviors, causing movement of the entire body and thus indirect 

stimulation of the vestibular system.  

3) It might be possible that, depending on the nature of motor programs (stereotyped and 

non-stereotyped), two different CDs originating at two different levels of the nervous system 

(cortical premotor areas and spinal CPGs) are implemented to filter vestibular sensations.  

4) The two CDs act at different levels of the sensory-motor transformation: peripheral level 

via efferent neurons (spinal CD) and central level via second order vestibular neurons and 

cerebellum (cortical CD). 

 

3.5 Tuning of sensory systems to stimulus statistics 

 
Animals experience a large variety of stimuli that are detected by the specific sensory 

systems. Stimuli that are encoded within the same sensory modality can assume a widely 

extended range of values in different dimensions (e.g. amplitude, frequency, time, space). 

To understand this dimensional complexity, the natural visual environment can be 

considered. During daylight, luminance and contrast differ over orders of magnitudes in time 

and space; all these possible values can be referred to as the global (e.g. over the entire day 

and space) distribution of the stimuli. This distribution contains all the possible local 

distributions of the stimuli (e.g. over a smaller time or space scale), which can differ a lot 

from each other. Barlow (1961) hypothesized that, given a finite capacity to transmit 

information (given by a finite detection range for a sensory system), neuronal systems have to 

employ efficient coding strategies to maximally represent inputs that they mostly have to 

process. It clearly appears that, to achieve an efficient coding over the global distribution of 

stimuli (e.g. visual representation of the entire day), a sensory system has to be constantly 

tuned to the very different local distributions (Wark et al., 2007). Across animals, a variety of 

studies have shown that sensory systems can dynamically adapt over multiple time scales in 
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order to most efficiently detect and process stimuli which are more likely over that specific 

period of time (Wark et al., 2007).  

In experiments underlying this thesis, sensory adaptation was investigated for the vestibular 

and lateral line systems as well as its potential role in touch reception. The vestibular system 

has to deal with a global distribution of movement related stimuli, which comprises a variety 

of different local distributions encountered during the disparate animals daily motor activities 

(e.g. standing, voluntary head movements, head movements related to different locomotor 

strategies). During the different motor tasks, body/head acceleration can vary strongly along 

the different dimensions (magnitude, space and time); to ensure an efficient posture and gaze 

stabilization across these local distributions, an adaptation of the sensory-motor 

transformation, weighted on the stimulus statistics, has to take place. Maintaining body 

posture and stable gaze during a relatively stationary condition (standing, floating) requires 

compensation of small and slow movements. During these conditions, the sensory encoding 

has to be highly sensitive to small changes in head/body position. This high sensitivity would 

generate an overstimulation of the system during much higher amplitude and faster dynamics 

of head/body motion (e.g. walking/running, swimming), impairing the encoding of stimuli in 

this range. In my thesis, I showed that a dynamic tuning of the vestibular system is indeed 

present at the level of the sensory periphery. During swimming behavior in Xenopus tadpoles, 

large oscillations of the head are present compared to the relatively small motion in the 

absence of sustained tail-based propulsion. In these animals, the degree of adaptation is 

particularly related to the level of locomotor intensity, in accordance with the different 

stimulus statistics. The sensory periphery is informed about intense ongoing swimming 

activity driven by the entire trunk-tail musculature, which produces large oscillations of the 

head. During non-undulatory swimming (related to a drifting of the larvae with no 

oscillations of the head), produced by the most caudal part of the tail, no peripheral sensory 

gating is produced. This complies with the fact that the vestibular system has to maintain a 

high sensitivity for small amplitudes of slow motion related stimuli. 

The dynamic adaptation of head/body movement sensitivities might be responsible for 

ensuring efficient encoding across the global natural stimuli range encountered by the 

tadpoles.  

Conceptually similar functional consequences can be discussed for the adaptation of the 

lateral line sensory periphery also found in Xenopus during swimming. As previously 

discussed, the fact that the vestibular system has to deal with different stimulus statics is 

directly linked to its intrinsic sensitivity to movement related stimuli. For the lateral line 
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system, even if an intrinsic sensitivity to self-produced movements is not present, the change 

in stimulus statistics is related to the water motion produced during active body movements. 

The turbulences and the reflected water waves, consequences of intense undulatory 

swimming, can be detected by the lateral line neuromasts along the animal´s body axis as 

already shown in different fish species (Montgomery et al., 2009). Also in this case, we can 

argue that there are multitudes of local stimulus distributions related to the modulation of the 

different locomotor parameters. To ensure an efficient coding along the wide distribution of 

values it was found that the attenuation in water motion sensitivity is related to the swimming 

intensity. Also for this system, during non-undulatory swimming behavior (related to 

exclusive motor activity in the caudal spinal cord), no peripheral sensory adaptation was 

encountered.  

Across different sensory modalities and animals (reviewed in Wark et al., 2007), adequate 

time-scales have been shown to be necessary for the systems to acquire information about the 

local stimulus statistics in order to efficiently adapt the encoding process. In sensory systems 

involved in the processing of external stimuli (e.g. visual, auditory), the environment has a 

large impact in changing the stimulus statistics and thus a feedback mechanism has to be used 

to tune the system at the peripheral or central level (Fairhall et al., 2001; Zaghloul et al., 

2005; Nagel and Doupe, 2006). Due to the unpredictability of the environmental inputs, an a 

posteriori estimate of the stimulus probability distribution has to be computed in order to 

tune the encoding process. As discussed above, in the vestibular and lateral line system an a 

priori estimation can be implemented to ensure an efficient encoding across different 

stimulus statistics. In these sensory modalities, active body motion predicts different local 

stimulus distributions. A feed-forward mechanism, informing the sensory periphery about 

detailed locomotor parameters, is thus predictive of the impeding local stimulus statistics and 

can reliably be used to dynamically adapt sensory processing. Furthermore, it can be 

hypothesized that in the latter systems, depending on the specific motor tasks and the 

presence or absence of external stimuli, feedforward and feedback signals are integrated at 

different central levels of the nervous system to ensure optimal sensory encoding. 
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3.6 Open Questions 
 

In this thesis I showed that feedforward mechanisms are used in amphibian larvae to 

compensate for the reafferent stimulation of the sensory periphery resulting from locomotor 

activity. Thus, these locomotor CDs have been found to influence sensory processing directly 

at the peripheral level (otic capsule, lateral line neuromasts and tentacles). Future studies 

should reveal if spinal CPG-CDs are also involved in regulating the central gating of sensory 

information and thus if there is an interaction between intrinsic motion driving signals and 

the resulting motion sensory feedback signals (vestibular, lateral line, visual, muscle 

proprioception). The comparison between intrinsic and sensory signals has been shown to be 

essential in producing tuning at the level of the central vestibular system during voluntary 

head movements in monkeys (Cullen, 2004; Roy and Cullen, 2004). During this motor task 

the activation of extraocular motoneurons (i.e. the output of the vestibular sensory-motor 

transformation) is suppressed by inhibiting their central inputs (i.e. central vestibular 

neurons). In contrast, the peripheral inputs to central vestibular neurons (vestibular afferent 

fibers) are not affected during the motor behavior. From previous studies in Xenopus larvae it 

emerges that during locomotion there is a complete suppression of vestibular inputs to a 

specific sup-population of extraocular motoneurons; for these neurons the vestibular inputs 

are cancelled, with compensatory eye movements exclusively driven by the locomotor CD 

(Combes et al., 2008; Lambert et al., 2012). The complete cancelation of the VOR seen in 

these studies, due to the evidence found in my study, appears to be in disagreement with a 

pure peripheral suppression. The vestibular peripheral inputs (i.e. from hair cells/afferent 

fibers, to central vestibular neurons) are not completely cancelled during locomotion but only 

partially suppressed (40% reduction). From these considerations we can infer the presence of 

a central suppression of vestibular processing, which requires investigation in future studies. 

During preliminary experiments in axolotl at larval and juvenile stages (see Fig. 6) I could 

show that also in these animals the efferent nucleus of the vestibular system receives a 

locomotion (walking) related CD. Salamander species, due to their bimodal locomotor 

pattern (walking/swimming), offer great advantages for understanding the neuronal networks 

responsible for these two motor behaviors (Cabelguen et al., 2003; Chevallier et al., 2007). 

The spinal premotor network (i.e. sCPGs) has been investigated in great details over the last 

decades; clusters of specifically identified and localized CPGs have been shown to 

selectively drive the rhythmic/alternated flexion and extension of the limbs during walking 
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(Cheng et al., 1998; Delvolvé et al., 1999). 

Further experiments in axolotl could thus elucidate which of the locomotor related features 

are transmitted to the vestibular and lateral line efferent nucleus and in which subpopulations 

of sCPGs (extensor/flexor) the CD originates. 
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3.7 Conclusion 
 
In this thesis, novel and already established experimental approaches were combined to 

understand basic organizational and functional properties of brainstem sensory-motor 

circuits. This work represents one of the first steps in revealing neuronal substrates 

responsible for the diverse motor and sensory system adaptations, which have to take place 

during animal locomotion. Feedforward mechanisms, in absence of feedback inputs, were 

found to play a crucial role in creating a sensory-motor balance during rhythmic locomotor 

behaviors, potentially ensuring optimal efficiency of sensory encoding and motor 

performances.  

  



	
  

	
   105	
  

References 

André-Deshays C, Berthoz A, Revel M (1988) Eye-head coupling in humans. I. 
Simultaneous recording of isolated motor units in dorsal neck muscles and horizontal 
eye movements. Exp brain Res 69:399–406. 

Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. 
Annu Rev Neurosci 31:125–150. 

Barlow H (1961) Possible principles underlying the transformation of sensory messages. In: 
Sensory Communication (W.Rosenblith, ed), pp 217–234. Cambridge,Mass: M.I.T. 
Press. 

Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B (2005) Development and evolution of 
the vestibular sensory apparatus of the mammalian ear. J Vestib Res 15:225–241. 

Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of 
the vibrissae is under active muscular control. J Neurophysiol 89:104–117. 

Bernard C, Cochran SL, Precht W (1985) Presynaptic actions of cholinergic agents upon the 
hair cell-afferent fiber synapse in the vestibular labyrinth of the frog. Brain Res 
338:225–236. 

Bizzi E, Kalil RE, Tagliasco V (1971) Eye-head coordination in monkeys: evidence for 
centrally patterned organization. Science 173:452–454. 

Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle 
sensation. Nat Neurosci 1:635–640. 

Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp 
Physiol A Neuroethol Sens Neural Behav Physiol 194:145–158. 

Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to 
voluntary eye and head movements in the squirrel monkey. Ann N Y Acad Sci 781:244–
263. 

Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and 
efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus 
tau. J Neurophysiol 66:1504–1521. 

Brainard MS, Doupe AJ (2000) Auditory feedback in learning and maintenance of vocal 
behaviour. Nat Rev Neurosci 1:31–40. 

Brandt T, Strupp M, Benson J (1999) You are better off running than walking with acute 
vestibulopathy. Lancet 354:746. 

Branoner F, Straka H (2014) Semicircular canal-dependent developmental tuning of 
translational vestibulo-ocular reflexes in Xenopus laevis. Dev Neurobiol. 



	
  

	
   106	
  

Brichta AM, Goldberg JM (2000) Responses to Efferent Activation and Excitatory Response-
Intensity Relations of Turtle Posterior-Crista Afferents. J Neurophysiol 83:1224–1242. 

Brooks JX, Cullen KE (2014) Early vestibular processing does not discriminate active from 
passive self-motion if there is a discrepancy between predicted and actual proprioceptive 
feedback. J Neurophysiol 111:2465–2478. 

Cabelguen J-M, Bourcier-Lucas C, Dubuc R (2003) Bimodal Locomotion Elicited by 
Electrical Stimulation of the Midbrain in the Salamander Notophthalmus viridescens. J 
Neurosci 23:2434–2439. 

Cannone A, Kelly P (1977) The tentacles of Xenopus laevis tadpoles - Evidence for a 
mechano-receptive role. South African Med J 52:406–418. 

Carriot J, Jamali M, Chacron MJ, Cullen KE (2014) Statistics of the vestibular input 
experienced during natural self-motion: implications for neural processing. J Neurosci 
34:8347–8357. 

Chagnaud BP, Bass AH (2013) Vocal corollary discharge communicates call duration to 
vertebrate auditory system. J Neurosci 33:18775–18780. 

Chapman CE (1994) Active versus passive touch: factors influencing the transmission of 
somatosensory signals to primary somatosensory cortex. Can J Physiol Pharmacol 
72:558–570. 

Cheng J, Stein RB, Jovanović K, Yoshida K, Bennett DJ, Han Y (1998) Identification, 
localization, and modulation of neural networks for walking in the mudpuppy (Necturus 
maculatus) spinal cord. J Neurosci 18:4295–4304. 

Chevallier S, Jan A, Ryczko D, Nagy F, Cabelguen J (2007) Organisation of the spinal 
central pattern generators for locomotion in the salamander  : Biology and modelling. 57. 

Combes D, Le Ray D, Lambert FM, Simmers J, Straka H (2008) An intrinsic feed-forward 
mechanism for vertebrate gaze stabilization. Curr Biol 18:R241–R243. 

Combes D, Merrywest SD, Simmers J, Sillar KT (2004) Developmental segregation of spinal 
networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus 
laevis. J Physiol 559:17–24. 

Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev 
Neurosci 9:587–600. 

Cullen KE (2004) Sensory signals during active versus passive movement. Curr Opin 
Neurobiol 14:698–706. 

Cullen KE (2012) The vestibular system: multimodal integration and encoding of self-motion 
for motor control. Trends Neurosci 35:185–196. 



	
  

	
   107	
  

Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C (2011) Internal models of self-motion: 
computations that suppress vestibular reafference in early vestibular processing. Exp 
Brain Res 210:377–388. 

Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active and passive 
head-on-body rotations: implications for the role of vestibular efference. J Neurosci 
22:1–7. 

D’Aout K, Aerts P (1997) Kinematics and efficiency of steady swimming in adult axolotls 
(Ambystoma mexicanum). J Exp Biol 200:1863–1871. 

Davis WJ, Siegler M V, Mpitoses (1973) Distributed neuronal oscillators and efference copy 
in the feeding system of Pleurobranchaea. J Neurophysiol 36:258–274. 

Delvolvé I, Branchereau P, Dubuc R, Cabelguen J, Chau C, Giroux N, Barbeau H, Jordan L, 
Rossignol S (1999) Fictive Rhythmic Motor Patterns Induced by NMDA in an In Vitro 
Brain Stem − Spinal Cord Preparation From an Adult Urodele. :1074–1077. 

Dieringer N, Precht W (1979) Mechanisms of compensation for vestibular deficits in the 
frog. Exp Brain Res 36:311–328. 

Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001) Efficiency and 
ambiguity in an adaptive neural code. Nature 412:787–792. 

Fee MS, Mitra PP, Kleinfeld D (1997) Central versus Peripheral Determinants of Patterned 
Spike Activity in Rat Vibrissa Cortex During Whisking. J Neurophysiol 78:1144–1149. 

Fetcho JR (1992) The spinal motor system in early vertebrates and some of its evolutionary 
changes. Brain Behav Evol 40:82–97. 

Fish FE (1984) Kinematics of Undulatory Swimming in the American Alligator. Copeia 
1984:839–843. 

Fox H (1999) Barbels and barbel-like tentacular structures in sub-mammalian vertebrates  : a 
review. :153–193. 

Fritzsch B (1996) Development of the labyrinthine efferent system. Ann N Y Acad Sci 
781:21–33. 

Fritzsch B, Beisel K. (2001) Evolution and development of the vertebrate ear. Brain Res Bull 
55:711–721. 

Gibson JJ (1962) Observations on active touch. Psychol Rev 69:477–491. 

Gilland E, Baker R (2005) Evolutionary patterns of cranial nerve efferent nuclei in 
vertebrates. Brain Behav Evol 66:234–254. 

Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ (2014) A hindbrain segmental scaffold 
specifying neuronal location in the adult goldfish, Carassius auratus. J Comp Neurol 
522:2446–2464. 



	
  

	
   108	
  

Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: 
anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025. 

Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo 
calcium imaging reveals neuronal network activity with near-millisecond precision. Nat 
Methods 7:399–405. 

Guitton D, Volle M (1987) Gaze control in humans: eye-head coordination during orienting 
movements to targets within and beyond the oculomotor range. J Neurophysiol 58:427–
459. 

Hage SR, Jürgens U (2006) On the role of the pontine brainstem in vocal pattern generation: 
a telemetric single-unit recording study in the squirrel monkey. J Neurosci 26:7105–
7115. 

Hanneman E, Trevarrow B, Metcalfe WK, Kimmel CB, Westerfield M (1988) Segmental 
pattern of development of the hindbrain and spinal cord of the zebrafish embryo. 58. 

Häusser M (2014) Optogenetics: the age of light. Nat Methods 11:1012–1014. 

Hellmann B, Fritzsch B (1996) Neuroanatomical and histochemical evidence for the presence 
of common lateral line and inner ear efferents and of efferents to the basilar papilla in a 
frog, Xenopus laevis. Brain Behav Evol 47. 

Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents 
in the toadfish, Opsanus tau. J Neurophysiol 54:370–384. 

Holt JC, Lysakowski A, Goldberg JM (2006) Mechanisms of efferent-mediated responses in 
the turtle posterior crista. J Neurosci 26:13180–13193. 

Jahn K, Strupp M, Schneider E, Dieterich M, Brandt T (2000) Differential effects of 
vestibular stimulation on walking and running. Neuroreport 11:1745–1748. 

Jamali M, Sadeghi SG, Cullen KE (2009) Response of vestibular nerve afferents innervating 
utricle and saccule during passive and active translations. J Neurophysiol 101:141–149. 

Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent 
vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444. 

Lambert F, Malinvaud D, Gratacap M, Straka H, Vidal P-P (2013) Restricted neural plasticity 
in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic 
deformations. J Neurosci 33:6845–6856. 

Lambert FM, Beck JC, Baker R, Straka H (2008) Semicircular canal size determines the 
developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 
28:8086–8095. 

Lambert FM, Combes D, Simmers J, Straka H (2012) Gaze stabilization by efference copy 
signaling without sensory feedback during vertebrate locomotion. Curr Biol 22:1649–
1658. 



	
  

	
   109	
  

Laurutis VP, Robinson DA (1986) The vestibulo-ocular reflex during human saccadic eye 
movements. J Physiol 373:209–233. 

Lee RK, Eaton RC (1991) IIdentifiable reticulospinal neurons of the adult zebrafish, 
Brachydanio rerio. 3432. 

Lee RK, Eaton RC, Zottoli SJ (1993) Segmental arrangement of reticulospinal neurons in the 
goldfish hindbrain. J Comp Neurol 329:539–556. 

Leijon S, Magnusson AK (2014) Physiological characterization of vestibular efferent 
brainstem neurons using a transgenic mouse model. PLoS One 9:e98277. 

Liu H, Wassersug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole 
locomotion. J Exp Biol 200:2807–2819. 

Magherini PC, Giretti ML, Precht W (1975) Cerebellar control of vestibular neurons of the 
frog. Pflugers Arch Eur J Physiol 356:99–109. 

Maladen RD, Ding Y, Li C, Goldman DI (2009) Undulatory swimming in sand: subsurface 
locomotion of the sandfish lizard. Science 325:314–318. 

Malinvaud D, Vassias I, Reichenberger I, Rössert C, Straka H (2010) Functional organization 
of vestibular commissural connections in frog. J Neurosci 30:3310–3325. 

Manter JT (1940) The mechanics of swimming in the alligator. J Exp Zool 83:345–358. 

Margoliash D (1997) Functional organization of forebrain pathways for song production and 
perception. J Neurobiol 33:671–693. 

Margoliash D (2002) Evaluating theories of bird song learning: implications for future 
directions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:851–866. 

Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY 
(2009) Merkel cells are essential for light-touch responses. Science 324:1580–1582. 

McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons 
during active and passive head movements: vestibulo-spinal and other non-eye-
movement related neurons. J Neurophysiol 82:416–428. 

Medrea I, Cullen KE (2013) Multisensory integration in early vestibular processing in mice: 
the encoding of passive versus active motion. J Neurophysiol:2704–2717. 

Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among 
reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–
159. 

Minor L, Goldberg J (1991) Vestibular-nerve inputs to the vestibulo-ocular reflex: a 
functional- ablation study in the squirrel monkey. J Neurosci 11:1636–1648. 



	
  

	
   110	
  

Montgomery JC, Windsor S, Bassett D (2009) Behavior and physiology of 
mechanoreception: separating signal and noise. Integr Zool 4:3–12. 

Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory 
forebrain. Neuron 51:845–859. 

Nieuwkoop and Faber J (1956) Normal Table of Xenopus Laevis (Daudin): A Systematical & 
Chronological Survey of the Development from the Fertilized Egg till the End of 
Metamorp. Garland Science. 

Ovalle W (1979) Neurite complexes with Merkel cells in larval tentacles of Xenopus laevis. 
Cell Tissue Res 204:233–241. 

Ovalle W, Shinn S, Nahirney P (1998) Ultrastructure of the larval tentacle and its skeletal 
muscle in Xenopus laevis. Tissue Cell 30:216–225. 

Pelisson D, Prablanc C, Urquizar C (1988) Vestibuloocular reflex inhibition and gaze 
saccade control characteristics during eye-head orientation in humans. J Neurophysiol 
59:997–1013. 

Piston D (1999) Imaging living cells and tissues by two-photon excitation microscopy. 
Trends Cell Biol 9:66–69. 

Plotnik M, Marlinski V, Goldberg JM (2002) Reflections of Efferent Activity in Rotational 
Responses of Chinchilla Vestibular Afferents. J Neurophysiol 88:1234–1244. 

Poulet JFA, Hedwig B (2006) The cellular basis of a corollary discharge. Science 311:518–
522. 

Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. 
Anat Rec A Discov Mol Cell Evol Biol 287:1080–1102. 

Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and 
swimming dogfish. J Exp Biol 57:435–448. 

Rossi ML, Martini M (1991) Efferent control of posterior canal afferent receptor discharge in 
the frog labyrinth. Brain Res 555:123–134. 

Rossi ML, Prigioni I, Valli P, Casella C (1980) Activation of the efferent system in the 
isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from 
single fibres of the posterior nerve. Brain Res 185:125–137. 

Roth G, Nishikawa KC, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) 
Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav 
Evol 42:137–170. 

Roy JE, Cullen KE (1998) A neural correlate for vestibulo-ocular reflex suppression during 
voluntary eye – head gaze shifts. 1. 



	
  

	
   111	
  

Roy JE, Cullen KE (2001) Selective Processing of Vestibular Reafference during Self-
Generated Head Motion. J Neurosci 21:2131–2142. 

Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: 
neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111. 

Russell IJ (1968) Influence of efferent fibres on a receptor. Nature 219:177–178. 

Russell IJ (1971) The role of the lateral-line efferent system in Xenopus laevis. J Exp Biol 
54:621–641. 

Russell IJ, Roberts BL (1972) Inhibition of spontaneous lateral-line activity by efferent nerve 
stimulation. J Exp Biol 57:77–82. 

Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural variability, detection 
thresholds, and information transmission in the vestibular system. J Neurosci 27:771–
781. 

Sadeghi SG, Goldberg JM, Minor LB, Cullen KE (2009) Efferent-mediated responses in 
vestibular nerve afferents of the alert macaque. J Neurophysiol 101:988–1001. 

Saitoh K, Ménard A, Grillner S (2007) Tectal control of locomotion, steering, and eye 
movements in lamprey. J Neurophysiol 97:3093–3108. 

Schall JD (2004) On the role of frontal eye field in guiding attention and saccades. Vision 
Res 44:1453–1467. 

Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral 
labyrinth and its mediating pathway. J Neurophysiol 29:467–492. 

Sienknecht UJ, Köppl C, Fritzsch B (2014) Evolution and development of hair cell polarity 
and efferent function in the inner ear. Brain Behav Evol 83:150–161. 

Sillar KT, Roberts A (1988) A neuronal mechanism for sensory gating during locomotion in 
a vertebrate. Nature 331:262–265. 

Simmons DD (2002) Development of the inner ear efferent system across vertebrate species. 
J Neurobiol 53:228–250. 

Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of 
movements. Science 296:1480–1482. 

Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual 
inversion. J Comp Physiol Psychol 43:482–489. 

Straka H, Baker R, Gilland E (2001) Rhombomeric organization of vestibular pathways in 
larval frogs. J Comp Neurol 437:42–55. 

Straka H, Baker R, Gilland E (2006) Preservation of segmental hindbrain organization in 
adult frogs. J Comp Neurol 494:228–245. 



	
  

	
   112	
  

Straka H, Dieringer N (2000) Convergence pattern of uncrossed excitatory and inhibitory 
semicircular canal-specific inputs onto second-order vestibular neurons of frogs. Exp 
Brain Res 135:462–473. 

Straka H, Dieringer N (2004) Basic organization principles of the VOR: lessons from frogs. 
Prog Neurobiol 73:259–309. 

Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB (2005) Intrinsic membrane properties of 
vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 
76:349–392. 

Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of Vibrissal Active Touch. Neuron 
40:621–630. 

Tomlinson RD, Bahra PS (1986) Combined eye-head gaze shifts in the primate. II. 
Interactions between saccades and the vestibuloocular reflex. J Neurophysiol 56:1558–
1570. 

Von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–476. 

Von Uckermann G, Le Ray D, Combes D, Straka H, Simmers J (2013) Spinal efference copy 
signaling and gaze stabilization during locomotion in juvenile Xenopus frogs. J 
Neurosci 33:4253–4264. 

Wada H (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates 
as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol 15:1189–1194. 

Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17:423–
429. 

Wassersug RJ, Hoff K (1985) The Kinematics of Swimming in Anuran Larvae. J Exp Biol 
119:1–30. 

Wicht H, Lacalli TC (2005) The nervous system of amphioxus: structure, development, and 
evolutionary significance. Can J Zool 83:122–150. 

Zaghloul KA, Boahen K, Demb JB (2005) Contrast adaptation in subthreshold and spiking 
responses of mammalian Y-type retinal ganglion cells. J Neurosci 25:860–868. 

Zangemeister WH, Stark L (1982) Gaze latency: variable interactions of head and eye 
latency. Exp Neurol 75:389–406. 

 

  



	
  

	
   113	
  

Affidavit/Eidesstattliche Versicherung  
Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation ‘Role of 

locomotor corollary discharges in sensory-motor integration in Xenopus laevis and 

Ambystoma mexicanum’ selbstständig angefertigt habe, mich außer der angegebenen keiner 

weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder 

annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter 

Bezeichnung der Fundstelle einzeln nachgewiesen habe. 

 
I hereby confirm that the dissertation ‘Role of locomotor corollary discharges in sensory-

motor integration in Xenopus laevis and Ambystoma mexicanum’ is the result of my own 

work and that I have only used sources or materials listed and specified in the dissertation. 

 

 

München, den / Munich, date: 11.06.2015 

 
 

Roberto Banchi 
  



	
  

	
   114	
  

List of Publications 
• Direnberger S, Banchi R, Brosel S, Seebacher C, Laimgruber S, Uhl R, Felmy F, 

Straka H, Kunz L (2015) Analysis of signal processing in vestibular circuits with a 

novel light-emitting diodes-based fluorescence microscope. Eur J Neurosci 41:1332–

1344: co-first author 

• Hänzi S, Banchi R, Straka H, Chagnaud BP (2015) Locomotor corollary activation of 

trigeminal motoneurons: coupling of discrete motor behaviors. J Exp Biol 218:1748–

1758: co-first author 

• Chagnaud BP, Banchi R, Simmers J and Straka H, (2015) Spinal corollary discharge 

modulates motion detection during vertebrate locomotion. Nat Commun: co-first 

author; under revision 



	
  

	
   115	
  

List of Contributions 

 
  



	
  

	
   116	
  

 
  



	
  

	
   117	
  

 
 
 


	Thesis_Cover+1-3pages_final_Biblio
	PhD_Thesis_RB_Biblio

