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SUMMARY 

 

The genetic basis underlying adaptive evolution is still largely unknown. Adaptive 

evolution is facilitated by natural selection that acts on the genetic variation present 

in a population. Favoring some genetic variants over others, natural selection 

eventually produces adaptations that allow populations to survive in changing or 

new environments. Populations colonizing new habitats that differ from their 

original habitat are often confronted with a multitude of novel ecological constraints 

to which they need to adapt.  

A well-annotated genome and a diverse genetic toolkit make the fruit fly Drosophila 

melanogaster an ideal model system for studying the genetics underlying 

adaptation. As a cosmopolitan species, D. melanogaster has adapted to a wide range 

of thermal environments. Despite having a tropical origin in southern-central Africa, 

it has successfully settled in temperate environments around the world. Thermal 

adaptations that have helped to deal with the greater range and variability in 

temperature as well as low-temperature extremes have been required to prosper in 

temperate environments.  

Chromatin-based gene regulation is known to be disrupted by varying temperatures. 

Variation in the temperature, at which flies live, result in varying expression levels of 

Polycomb group (PcG) regulated genes with higher expression at lower 

temperatures. Chapter 1 and 2 of this thesis aim to answer the question whether 

this thermosensitivity of PcG regulation has been detrimental for colonizing 

temperate environments and thus needed to be buffered by natural selection. 

Thermosensitivity of PcG regulation was observed in different natural populations of 

D. melanogaster. A lower degree of thermosensitive expression was consistently 

found for populations from temperate climates when compared to those from the 

tropics. In Chapter 1, evidence is presented for positive selection acting on the 
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polyhomeotic (ph) gene region to reduce thermosensitivity of PcG regulation in 

temperate populations from Europe. The targets of selection appear to be single 

nucleotide polymorphisms (SNPs) in a relatively small cis-regulatory region between 

the two PcG target genes polyhomeotic proximal (ph-p) and CG3835 that are highly 

differentiated between European and African populations. Using reporter gene 

assays, it was demonstrated that these SNPs influence gene expression and that the 

European alleles confer reduced thermosensitivity of expression in contrast to the 

African alleles. In Chapter 2, thermosensitivity of another PcG target gene, vestigial 

(vg), was investigated in six natural populations including four temperate 

populations from high-altitude Africa and central to high-latitude Europe, and two 

tropical populations from the ancestral species range. All four temperate 

populations exhibited a lower degree of thermosensitive expression than the two 

tropical populations. The underlying mechanisms of increased buffering, however, 

seem to differ between these temperate populations. 

Thermal adaptation to temperate environments also includes dealing with low-

temperature extremes. Severe cold stress is a main limiting factor imposed on 

D. melanogaster by temperate climates. Increased cold tolerance in temperate 

populations is thought to have evolved by natural selection. Cold tolerance is a 

quantitative trait that appears to be highly polygenic and has been mapped to 

different quantitative trait loci (QTL) in the genome. In Chapter 3, such a QTL region 

was fine-mapped to localize causal genes for increased cold tolerance in temperate 

flies. As a result, brinker (brk) was identified as a new candidate gene putatively 

involved in cold stress adaptation. 
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ZUSAMMENFASSUNG 

 

Die genetische Grundlage adaptiver Evolution ist noch weitgehend unbeschrieben. 

Adaptive Evolution wird durch natürliche Selektion ermöglicht, die auf die 

genetische Variation einer Population einwirkt. Durch das Bevorzugen einiger 

genetischer Varianten gegenüber anderen führt natürliche Selektion letztendlich zu 

Anpassungen, welche Populationen erlauben in neuen oder sich verändernden  

Lebensräumen zu überleben. Wenn Populationen neue Lebensräume erschließen, 

die sich von ihrem ursprünglichen Lebensraum unterscheiden, werden sie meist mit 

vielerlei neuen ökologischen Bedingungen konfrontiert, an welche sie sich anpassen 

müssen. 

Ein gutkartiertes Genom und diverse genetische Werkzeuge machen die Fruchtfliege 

Drosophila melanogaster zu einem idealen Modelsystem um die genetischen 

Grundlagen adaptiver Evolution zu erforschen. Als eine weltweit verbreitete Art hat 

sich D. melanogaster  an Lebensräume verschiedenster Temperaturbedingungen 

angepasst. Trotz ihres tropischen Ursprungs im südlichen Zentralafrika, hat sie sich 

erfolgreich in Regionen des gemäßigten Klimas weltweit angesiedelt. 

Temperaturbedingte Anpassungen, die halfen mit größeren Temperaturspannen 

und -schwankungen sowie mit extremen Niedrigtemperaturen umzugehen, waren 

von Nöten um in gemäßigten Regionen zu gedeihen.  

Es ist bekannt, dass schwankende Temperaturen chromatinbasierte Genregulation 

stören können.  Schwankungen in der Umgebungstemperatur von Fruchtfliegen 

bewirken  wiederum Schwankungen im Expressionslevel von der Polycomb group 

(PcG)-regulierten Genen, wobei eine höhere Expression bei niedrigeren 

Temperaturen auftritt. Kapitel 1 und 2 dieser Dissertation versuchen die Frage zu 

beantworten, ob diese Temperatursensitivität in der PcG Regulation nachteilig für 

die Besiedlung von gemäßigten Regionen war und aufgrund dessen durch natürliche 
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Selektion reduziert werden musste. Temperatursensitivität von PcG Regulation 

konnte in verschiedenen natürlichen Populationen von D. melanogaster beobachtet 

werden. Im Vergleich zu Populationen tropischer Herkunft wurde in Populationen 

aus gemäßigten klimatischen Bedingungen einheitlich ein geringer Grad an 

temperatursensitiver Expression gefunden. In Kapitel 1 werden Beweise erbracht, 

dass es aufgrund von positiver Selektion in der polyhomeotic (ph) Genregion zu einer 

Reduzierung von Temperatursensitivität in der PcG Regulation in Populationen aus 

dem gemäßigten Klima Europas kam. Die Ziele der Selektion scheinen Single-

Nukleotid-Polymorphismen (SNPs) in einer relativ kleinen cis-regulatorischen Region 

zwischen den zwei PcG-regulierten Genen polyhomeotic proximal (ph-p) und CG3835  

zu sein, welche sich hochgradig zwischen europäischen und afrikanischen 

Populationen unterscheiden. Anhand von Reportergenexperimenten konnte 

nachgewiesen werden, dass diese SNPs die Genexpression beeinflussen und dass die 

europäischen Allele, im Gegensatz zu den afrikanischen Allelen,  zu einer reduzierten 

Temperatursensitivität in der Expression führen. In Kapitel 2 wurde die 

Temperatursensitivität eines anderen PcG-regulierten Gens, vestigial (vg), in 

natürlichen Populationen untersucht. Dafür wurden sechs Populationen betrachtet, 

vier aus gemäßigten klimatischen Regionen des afrikanischen Hochgebirges und des 

mittel- bis nordeuropäischen Kontinents und zwei tropische Populationen aus der 

Ursprungsregion von D. melanogaster. Alle vier Populationen aus gemäßigten 

Regionen wiesen einen geringeren Grad an temperatursensitiver Expression 

gegenüber den zwei tropischen Populationen auf.  Die der geringeren Sensitivität 

zugrundeliegende Mechanismen scheinen sich jedoch zwischen den Populationen 

gemäßigten Klimas zu unterscheiden.  

Die Anpassung an die Temperaturverhältnisse von gemäßigten Regionen beinhaltet 

auch mit extremen Niedrigtemperaturen umzugehen. Starker und ausdauernder 

Kältestress ist ein entscheidender limitierender Faktor gemäßigten Klimas für 

D. melanogaster. Natürliche Selektion scheint für die Entwicklung erhöhter 

Kältetoleranz in Populationen gemäßigter Regionen verantwortlich zu sein. 
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Kältetoleranz ist dem Anschein nach unter der Kontrolle vieler verschiedener Gene, 

so wurden mehrere Loci im Genom verantwortlich für die Ausprägung dieses 

quantitativen Merkmals, quantitative trait loci (QTL), gefunden. In Kapitel 3 wurde 

so eine QTL Region genauer untersucht um Gene ausfindig zu machen, die ursächlich 

für die erhöhte Kältetoleranz in Fruchtfliegen gemäßigter Regionen sind. Daraus 

resultierend konnte brinker (brk) als neues Kandidatengen involviert in der 

Anpassung an Kältestress identifiziert werden. 
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GENERAL INTRODUCTION 

 

When a species is expanding its range, it may colonize habitats that differ from the 

ancestral habitat from which it originated. Populations settling in such novel 

environments therefore often have to deal with plentiful of new constraints ranging 

from abiotic factors, the physical aspects of the environment like temperature or 

light regimen, to biotic factors that result from interactions with other organisms 

such as predation pressure or interspecific competition. In order to permanently 

settle in the new habitat, populations need to adapt to the novel ecological 

constraints they encounter. Adaptive evolution favors phenotypic traits that 

increase the chances of an organism to survive and reproduce and is facilitated 

through natural selection. Natural selection, in turn, operates on the genetic 

variation underlying these phenotypic traits. Such genetic differences can be of 

diverse nature like single nucleotide polymorphisms (SNPs), small insertions and 

deletions (indels), or larger structural variations. Both, newly arisen mutations and 

mutations already present in the population, i.e. standing genetic variation, can be 

of advantage in the new habitat and can play a part in local adaptation. Through the 

action of positive selection, advantageous mutations are likely to rise in frequency 

and might eventually become fixed in the population. Such mutations can occur in 

the coding region of genes leading to changes in protein sequences such as amino 

acid substitutions, and thus to structural changes of the protein product. Otherwise, 

mutations could entail regulatory changes that alter transcription, splicing, transcript 

stability, or other regulatory processes. To which amount each of the two types of 

genetic changes contribute to adaptive evolution is still debated (Hoekstra and 

Coyne 2007; Wray 2007), yet many cases have been described demonstrating the 

importance of both. For instance, a single point mutation in the gene 

acetylcholinesterase type 1 (ace-1) led to an amino acid substitution which allows 



GENERAL INTRODUCTION 

2 

 

the mosquito Culex pipiens to resist organophosphate and carbamate insecticides. 

This resistance allele is present worldwide and has risen to high frequency in areas 

treated with those insecticides (Lenormand et al. 1998; Lenormand et al. 1999; 

Labbé et al. 2007). A famous example for an adaptive regulatory change involves the 

lactase (LCT) gene. It enables humans to digest the milk sugar lactose throughout 

adulthood. Selection appears to have acted on certain SNPs in a cis-regulatory 

element upstream of the gene that confer persistent expression of LCT in adults. 

Lactase persistence has evolved in pastoralist populations from Africa and Europe, 

though independently on each continent. The cis-regulatory SNPs associated with 

adult lactase expression differ between African and European populations which 

indicates convergent evolution (Bersaglieri et al. 2004; Tishkoff et al. 2007; Ingram 

et al. 2009). In Drosophila melanogaster, an insertion of an Accord transposable 

element in the upstream regulatory region of the cytochrome P450 gene Cyp6g1 is 

associated with overexpression of Cyp6g1 and resistance to insecticides like DDT. 

Insecticide resistance due to Cyp6g1 overexpression is a trait that appears to have 

risen to high frequency in non-African populations due to recent positive selection 

favoring the Accord insertion (Daborn et al. 2002; Catania et al. 2004; Chung et al. 

2007; Schmidt et al. 2010).  

Many phenotypic differences among populations are thought to be derived from 

differences in gene expression. Recent advances in transcriptomic technologies have 

allowed to identify genes that are differentially expressed between populations on 

a genome-wide level. Abundant among-population variation in gene expression was 

observed for many species, and at least part of the variation seems to have evolved 

by natural selection (e.g., Oleksiak et al. 2002; Townsend et al. 2003; Fay et al. 2004; 

Whitehead and Crawford 2006; Storey et al. 2007; Voolstra et al. 2007; Hutter et al. 

2008; Catalán et al. 2012 ). DNA sequence polymorphisms at loci of differentially 

expressed genes are often used to infer natural selection. Recent strong positive 

selection, for example, can leave a specific pattern of polymorphism surrounding a 

recently selected locus. When a rare beneficial allele is driven to fixation in a 
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population due to directional selection, linked neutral or slightly deleterious variants 

hitchhike with it and also rise in frequency causing the depletion of variation around 

the selected site (selective sweep). Genetic variation increases as the 

recombinational distance from the selected site increases resulting in a valley of low 

polymorphism which is expected to be larger when recombination is lower and/or 

selection is stronger (Maynard Smith and Haigh 1974; Kaplan et al. 1989; Stephan et 

al. 1992). Another feature caused by genetic hitchhiking concerns the site frequency 

spectrum (SFS), which summarizes the counts of derived variants in a genomic 

region. Under positive directional selection, the SFS is expected to be shifted due to 

an excess of both rare and high-derived variants around the target site of selection 

(Braverman et al. 1995; Fay and Wu 2000). A third signature of a selective sweep is 

due to nonrandom associations of alleles in the selected region that give rise to 

specific linkage disequilibrium (LD) patterns such as an elevated level of LD in the 

early phase of the hitchhiking process and a decay of LD, across the selected sited at 

the end of the selective phase (Kim and Nielsen 2004; Stephan et al. 2006).  

Based on these characteristic sequence patterns, various population genetic tools 

were developed which can be applied to genetic data to infer recent positive 

selection (e.g., Fu 1997; Fay and Wu 2000; Kim and Stephan 2002; Kim and Nielsen 

2004; Nielsen et al. 2005; Pavlidis et al. 2013). In particular, with the advent of 

modern sequencing and genotyping technologies, it has become more and more 

feasible to scan genome-wide SNP data for signatures of positive selection (Nielsen 

et al. 2005; Pavlidis et al. 2010). Furthermore, genetic differentiation can be 

considered in the detection of genomic regions that have been under positive 

selection. When a locally beneficial allele rises in frequency in one population, it may 

lead to increased genetic differentiation between the population and other 

populations that have not been subjected to selection. Such allele frequency 

differences between populations can be measured by FST or related statistics, and 

exceptionally high levels of genetic differentiation may indicate the action of positive 

directional selection (Lewontin and Krakauer 1973; Beaumont and Balding 2004; Foll 
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and Gaggiotti 2008; Bonhomme et al. 2010; Günther and Coop 2013). Following this 

approach might be of advantage, when sweep patterns as described above are not 

observed in the selected region. For example, the sweep signal can have vanished 

over time due to the accumulation of recombination events in the region (Wollstein 

and Stephan 2015). 

However, one major challenge of inferring selection based on polymorphism 

patterns is that other processes can leave similar footprints in the genome. Effects 

of demography, for example, can shape genetic variation in similar ways as selection 

(Pavlidis et al. 2008; Pavlidis et al. 2010; Stephan 2010). Natural populations often 

have complex migration and colonization histories that can obscure the detection of 

selective events. If the demographic history of a species is known, it can be 

incorporated into the inference of selection as a null hypothesis and selection can be 

tested against it (Thornton and Jensen 2007; Pavlidis et al. 2008; Pavlidis et al. 2010; 

Stephan 2010; Wollstein and Stephan 2015). The demography of a species, however, 

is in general unknown. In such cases, the null hypothesis can be derived from the 

genomic background. This follows the rationale that demographic effects and other 

non-selective processes, such as population structure, influence the whole genome, 

whereas positive selection should only affect individual loci (Nielsen et al. 2005; 

Stephan 2010; Wollstein and Stephan 2015). 

Based on the described characteristic signatures a selective event can leave in the 

genome, positive selection can be inferred independent of phenotypes. A drawback 

of this bottom-up approach is that once loci under selection have been identified it 

can be challenging to study their function and relevance to fitness without 

phenotypic information. Top-down approaches like association and linkage studies 

avoid this problem by starting with phenotypes that are known to differ between 

environments or to have functional importance, and then go on to map the loci 

underlying these phenotypes. Such studies try to find correlations between the 

studied phenotypic trait and genotypic markers (e.g., SNPs). The assumption is that 
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markers which show strong correlations with the phenotype are in LD with the causal 

loci (Mackay et al. 2009). After the identification of causal loci, this top-down 

approach can be complemented by the aforementioned bottom-up approach to 

determine whether selection has acted on the traits under investigation. The study 

of adaptive evolution of cryptic coat color in deer mice (Peromyscus maniculatus) is 

an example of combining both approaches. Deer mice inhabiting the pale soils of 

Nebraska Sand Hills have a lighter coat color than nearby ancestral populations of 

prairie habitats with darker soil. There seems to be a selective advantage of crypsis 

against predation, and lighter pigmentation has been linked to polymorphisms 

within the Agouti gene locus, which also exhibits molecular signatures of recent 

positive selection (Linnen et al. 2009; Vignieri et al. 2010; Linnen et al. 2013).  

Linkage or association mapping is also the basis of quantitative trait locus (QTL) 

analysis that aims to unravel the genetic basis of complex traits (Mackay 2001; 

Mackay et al. 2009). Quantitative traits are controlled by a multitude of genes and 

show a continuous distribution of possible phenotypes within populations. 

Phenotypes might differ between populations due to adaptation to different 

environments. By dissecting the loci underlying quantitative traits, QTL mapping can 

be important to investigate the local adaptation of complex traits between 

populations of varying environments. However, identified QTL often contain 

numerous genes, and pinpointing causal genes by searching for footprints of positive 

selection might be challenging. The reason for this is that when positive selection 

acts on traits that are controlled by a large number of genes, the effect of any given 

gene is expected to be rather small, as is the resulting signature of selection (Mackay 

2001; Berg and Coop 2014; Wollstein and Stephan 2015). Alternative strategies to 

determine causal genes in QTL regions can include high-resolution recombination 

mapping, quantitative complementation tests, or gene expression analysis (Mackay 

2001; Mackay et al. 2009).  
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The fruit fly Drosophila melanogaster is one of the most intensively studied 

organisms across various fields of biology. Owing to its long history as a model 

organism in genetic studies, it is also an ideal species to study the genetic basis of 

adaptation with its well-annotated genome and diverse genetic toolkit. As a 

cosmopolitan species, D. melanogaster has successfully adapted to a wide range of 

different environments (Lachaise et al. 2007). The species demographic history is 

now largely known which is particularly useful when searching for molecular 

signatures of selection, as it can be used as a null model against which selection can 

be tested (Thornton and Jensen 2007; Pavlidis et al. 2008; Pavlidis et al. 2010; 

Stephan 2010; Wollstein and Stephan 2015). Knowing the demographic history of a 

species also provides the opportunity to compare derived populations that have 

undergone adaptations to novel environments and their presumably less adapted 

ancestors, which can be further helpful in finding genes and genetic changes that 

underlie adaptation. Like the other members of the Drosophila melanogaster species 

subgroup, D. melanogaster is thought to be of Afrotropical origin (Lachaise et al. 

1988; David et al. 2007). Recent genome-wide analyses of DNA sequence variation 

in various African and non-African populations support a sub-Saharan origin of 

D. melanogaster and provided further insights into the species biogeographic and 

demographic history (Ometto et al. 2005; Li and Stephan 2006; Laurent et al. 2011; 

Pool et al. 2012; Duchén et al. 2013). The center of origin appears to be in southern-

central Africa, since the highest genetic diversity was observed in populations from 

this region (e.g., Zambia and Zimbabwe) (Pool et al. 2012). From there, it first spread 

throughout sub-Saharan Africa, and then expanded further reaching the Eurasian 

continent after the last glaciation around 10,000 years ago (Li and Stephan 2006; 

Stephan and Li 2007; Pool et al. 2012). The out-of-Africa migration was concomitant 

with a drastic decrease in population size (bottleneck) which resulted in a significant 

loss of genetic variation (Li and Stephan 2006; Stephan and Li 2007; Pool et al. 2012). 

The initial non-African population may have been established in the Middle East 

where early human settlements in the Fertile Crescent could have helped the human 
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commensal to thrive. Around 5000 years ago, the original non-African population 

seems to have split into populations that moved on to colonize Europe and Asia, 

probably in the wake of human settlements (Keller 2007; Laurent et al. 2011). The 

colonization of North America appears to be even more recent, around 200 years 

ago, and is thought to have involved migration from Europe and Africa (Duchén et 

al. 2013). 

Despite their tropical origin, many non-African and also high-altitude African 

populations have successfully settled in regions of temperate climate. Temperature 

is an important environmental factor for ectotherms such as D. melanogaster with 

major impacts on physiology and fitness (Clarke 1996). Therefore, permanent 

settlement in such regions was probably facilitated by thermal adaptations that 

helped to tolerate a wide range of temperatures. The greater range and variability 

in temperature as well as freezing temperatures have probably been major 

challenges for D. melanogaster while colonizing temperate environments.  

Variation in temperature, for example, is known to affect chromatin-based gene 

regulation (Fauvarque and Dura 1993; Gibert et al. 2011). Genes regulated by the 

Polycomb group (PcG) are known to vary in their transcriptional output due to 

changes in ambient temperature. Decreasing the temperature, at which flies are 

reared or held, results in higher expression of genes regulated by PcG proteins 

(Fauvarque and Dura 1993; Chan et al. 1994; Zink and Paro 1995; Bantignies et al. 

2003; Gibert et al. 2011). PcG proteins are important regulators of development and 

cell differentiation and are present in all metazoans (Simon and Kingston 2009; Beisel 

and Paro 2011). Together with the Trithorax group (TrxG) of proteins, PcG proteins 

are involved in the regulation of several hundreds of genes in Drosophila. Many of 

the target genes encode transcription and signaling factors with important roles in 

development and cell-fate specification (Schuettengruber et al. 2009; Schwartz et al. 

2010; Simon and Kingston 2009; Kassis and Brown 2013; Steffen and Ringrose 2014). 

Both groups of proteins act in large multiprotein complexes to control transcription 
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by altering the chromatin structure through histone modifications and other 

mechanisms (Kassis and Brown 2013; Steffen and Ringrose 2014). PcG and TrxG 

proteins function in an antagonistical manner to maintain repressed and activated 

transcription states, respectively. They are recruited to their target genes by cis-

regulatory DNA elements called Polycomb response elements (PREs) that can 

preserve the memory of an activated or repressed state of their target genes over 

several cell generations. PREs consist of different binding sites for proteins that 

appear to be involved in PcG/TrxG recruitment (Kassis and Brown 2013; Steffen and 

Ringrose 2014). They regulate their target genes in combination with other 

regulatory DNA sequences (i.e., enhancers) in a cell- or tissue-specific fashion. This 

interplay between the different types of regulatory DNA modifies transcription in 

such a way that enhancers initially determine the level of transcription which is then 

epigenetically maintained by PREs (Schwartz et al. 2010; Kassis and Brown 2013; 

Steffen and Ringrose 2014). 

Since PcG regulation seems to be disrupted by lower temperatures, it was 

hypothesized that adaptation to temperate environments might have included the 

buffering of this thermosensitive regulatory process. A higher degree in expression 

plasticity due to a greater range and variability in temperature might have been 

detrimental, and natural selection might have acted to stabilize the transcriptional 

output of PcG-regulated genes in populations adapting to temperate climates 

(Levine and Begun 2008). Several studies (Harr et al. 2002; Levine and Begun 2008; 

Gibert et al. 2011) suggest that adaptation to temperate environments included 

selection acting on genes involved in PcG regulation. Furthermore, a genome-wide 

expression analysis found more genes that exhibit expression plasticity due to 

rearing temperature in tropical populations than in temperate populations (Levine 

et al. 2011). This indicates that thermosensitivity of gene expression has been 

detrimental for D. melanogaster while settling in temperate environments and has 

been reduced by selection.  
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The chapters 1 and 2 of this thesis present evidence for reduced thermosensitivity 

of expression of PcG-regulated genes in temperate populations of D. melanogaster 

at different gene loci. Both loci harbor known PcG target genes that were identified 

by genome-wide chromatin immunoprecipitation (ChIP) experiments 

(Schuettengruber et al. 2009; Schwartz et al. 2010), as well as experimentally 

validated and well-studied PREs (Fauvarque and Dura 1993; Okulski et al. 2011). 

Thermosensitivity of PcG target genes was observed in wild-type flies from different 

natural populations. A lower degree of temperature-induced expression plasticity 

was consistently detected in temperate populations when compared to tropical 

populations. The observations at both loci, therefore, seem to support the 

hypothesis that temperature-induced expression plasticity needed to be buffered 

when D. melanogaster settled in temperate climates (Begun and Levine 2008) 

In chapter 1, evidence is presented for recent positive selection acting on the 

polyhomeotic gene region in populations from temperate environments. The gene 

region harbors the two known PcG target genes polyhomeotic-proximal (ph-p) and 

CG3835 (Schuettengruber et al. 2009; Schwartz et al. 2010). While the function of 

CG3835 is still unknown, the PcG target gene ph-p is in itself a PcG protein belonging 

to one of the major PcG protein complexes (Kassis and Brown 2013; Steffen and 

Ringrose 2014). Five SNPs were identified as the potential targets of positive 

selection that are highly differentiated between African and European populations. 

The SNPs are located in the intergenic region of ph-p and CG3835 that also includes 

a PRE and the promoters of the two genes. Using transgenic reporter gene assays, 

these sequence variants could be linked to gene expression differences in response 

to rearing temperature with a reduced thermosensitivity for European variants.  

In chapter 2, we provide further evidence that thermosensitivity of PcG regulation 

has been buffered in temperate populations of D. melanogaster. The PcG target 

gene vestigial (vg) encodes a transcription factor that plays an important role in 

development and patterning of the wing (Williams et al. 1991; Lindsley and Zimm 



GENERAL INTRODUCTION 

10 

 

1992; Kim et al. 1996). Thermosensitive vg expression was observed in six different 

natural populations including four temperate populations from Europe and one from 

high-altitude Africa, as well as two tropical populations from the ancestral species 

range. The degree of temperature-induced expression plasticity was consistently 

lower in temperate than tropical populations. 

Another major challenge for D. melanogaster while colonizing temperate 

environments have been freezing temperatures. Severe cold stress is one of the main 

limiting factors imposed on D. melanogaster by temperate climates, and thus 

increasing cold tolerance has probably played a dominant role in the adaptation to 

such climates. Temperate and tropical populations, indeed, differ in their tolerance 

to low-temperature extremes, and increased cold tolerance is thought to have 

evolved by natural selection (Hoffmann et al. 2002; Schmidt et al. 2005). Cold 

tolerance is a quantitative trait that appears to be highly polygenic, and that has 

been mapped to different QTL in the genome (Morgan and Mackay 2006; Norry et 

al. 2008; Svetec et al. 2011; Mackay et al. 2012). In Chapter 3, such a QTL region was 

fine-mapped in an attempt to localize candidate genes that contribute to increased 

cold tolerance. In a previous study, this X-chromosomal QTL region was found to be 

responsible for differences in cold tolerance between temperate European and 

tropical African populations (Svetec et al. 2011). The fine-mapping approach 

included quantitative complementation tests, gene expression analysis, as well as 

population genetic analysis; and yielded a new candidate gene putatively involved in 

cold stress adaptation. 
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ABSTRACT Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments.

Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for

insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-

based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes

regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower

temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater

variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the

degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes,

polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of

D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic

fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response

element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations.

The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation,

whereas thermosensitivity is reduced for the European alleles.

KEYWORDS positive selection; gene regulation; environmental sensitivity; polycomb group

DROSOPHILA melanogaster is a species that has colo-

nized all continents on Earth. Now a cosmopolitan spe-

cies with a worldwide distribution, it started its global

spread from its sub-Saharan ancestral range relatively re-

cently. Its origin is thought to be in southern-central Africa

from which it first expanded through Africa and finally

reached the Eurasian continent on the order of 10,000 years

ago (David and Capy 1988; Lachaise and Silvain 2004; Li

and Stephan 2006; Stephan and Li 2007; Pool et al. 2012).

This settlement was accompanied by a severe population

size bottleneck and involved a significant loss of genetic

variation (Li and Stephan 2006; Stephan and Li 2007; Pool

et al. 2012). The colonization of Europe and Asia from its

original source population appears to be even more recent

since European and Asian populations share a most recent

common ancestor (MRCA) �5000 years ago (Laurent et al.

2011).

For insects, which are mostly ectotherms, differences in

temperature are one of the most important environmental

variables that influence the distribution of species in nature

(Clarke 1996). In the temperate climate of Europe, the

range of possible temperatures is probably one of the major

challenges D. melanogaster was confronted with during

colonization.

Chromatin-based gene regulation is known to be sensi-

tive to temperature (Fauvarque and Dura 1993; Gibert et al.

2011). In the case of the Polycomb group (PcG)-mediated

gene regulation, it is known that genes under the control of

this group of proteins have a higher transcriptional output

when flies are reared or held at lower temperatures than at

higher ones (Fauvarque and Dura 1993; Chan et al. 1994;

Zink and Paro 1995; Bantignies et al. 2003; Gibert et al.
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2011). The PcG and another group of proteins, the Trithorax

group (TrxG), act antagonistically to epigenetically maintain

repressed and activated transcription states, respectively.

They act through cis-regulatory DNA elements called Poly-

comb response elements (PREs), which recruit the proteins

of the two groups to their target genes. PREs regulate their

target genes in combination with other regulatory DNA

sequences (i.e., enhancers) in a cell- or tissue-specific man-

ner. This interplay modifies the expression of PcG-regulated

genes in such a way that enhancers initially determine the

level of transcriptional output, which is subsequently epige-

netically maintained by PREs (Schwartz et al. 2010; Kassis

and Brown 2013; Steffen and Ringrose 2014).

Several recent studies (Harr et al. 2002; Levine and Begun

2008; Gibert et al. 2011) explored the question of whether

the temperature-induced expression plasticity of PcG-regulated

genes may have been detrimental to D. melanogaster while

settling in temperate environments. These studies suggest that

adaptation included selection acting to buffer this thermosen-

sitive process in temperate populations.

In this study, we provide evidence for selection acting in

cis to buffer the temperature-induced expression plasticity of

PcG regulation in populations adapted to temperate envi-

ronments. We carried out population genetic analyses to

show that a DNA sequence region between the two PcG-

regulated genes polyhomeotic proximal (ph-p) and CG3835

has been the target of a selective sweep in European pop-

ulations of D. melanogaster. Furthermore, using transgenic

reporter gene assays, we demonstrate that sequence varia-

tion in this 5-kb selected fragment mediates differences in

gene expression between European and African sequence

variants. Temperature-sensitive expression is observed in

the case of the African alleles but not in the European ones.

These results are consistent with positive selection favoring

cis-regulatory polymorphisms that led to decreased thermo-

sensitivity of gene expression in temperate populations.

Materials and Methods

Fly lines and sequence data

Assembled full genome sequences were taken from the Dro-

sophila Population Genomics Project (DPGP) (http://www.

dpgp.org), including those from 133 sub-Saharan African

lines [among them the Zambian population sample (Sia-

vonga) of 27 lines] and a French population sample (Lyon,

8 lines). We additionally analyzed a Dutch population from

Leiden consisting of 10 lines and two Malaysian samples

from Kuala Lumpur and Kota Kinabalu consisting of 7 and

16 lines, respectively. Full genomes for the Dutch and

Malaysian samples were assembled following the approach

of Pool et al. (2012) and are available at http://evol.bio.

lmu.de/downloads. Nucleotides with known admixture or

identity-by-descent according to Pool et al. (2012) were replaced

with missing value labels in the analysis. The same was done

for sites exhibiting heterozygosity since heterozygotes are not

expected in genome data from haploid embryos (Pool et al.

2012). Additionally, 12 lines of the aforementioned Dutch

population and 12 lines of one from Zimbabwe (Lake Kariba)

were fully sequenced between positions 2,030,513 and

2,059,036 on the X chromosome (FlyBase release 5), applying

the Sanger method (Sanger et al. 1977). This method was also

used to sequence fragments containing the polymorphisms of

interest in population samples from Siavonga, Zambia (10

lines); Munich, Germany (12 lines); Umea, Sweden (14 lines);

and Kuala Lumpur, Malaysia (11 lines). All Sanger sequences

were deposited in GenBank (accession nos. KR024038–

KR024162).

Population genetic analysis

To analyze DNA sequence polymorphisms in a 73-kb region

around the ph locus, sequences of the Zambia, Dutch, and

French population samples generated by the DPGP were

used. Nucleotide diversity was estimated in terms of p

(Tajima 1989) and divergence was calculated against a

D. simulans sequence (Hu et al. 2013). The composite-likelihood

ratio (CLR) test of positive selection was performed, applying

the software SweeD (Pavlidis et al. 2013). It computes the CLR

between a selective sweep model and a neutral model based on

the background genomic patterns of polymorphism (Kim and

Stephan 2002). We ran the program on the complete X chro-

mosome and calculated the significance threshold (95th quan-

tile) by generating neutral coalescent simulations, using the

demographic model of Laurent et al. (2011). To improve the

power of the test statistic, the European sample was extended by

adding the French population sample (Pavlidis et al. 2010, 2013)

and two additional site classes of the site-frequency spectrum

(SFS) consisting of sites that are monomorphic in the European

sample and polymorphic in the Zambian one (Nielsen et al. 2005).

Polarization was done against D. simulans (Hu et al. 2013).

Outlier analyses were performed using BayeScan version

2.1 (Foll and Gaggiotti 2008), a Bayesian method based on

a logistic regression model that separates locus-specific

effects of selection from population-specific effects of de-

mography. FST coefficients (Beaumont and Balding 2004)

are estimated and decomposed into a population-specific

component (b) and a locus-specific one (a). Departure from

neutrality at a given SNP locus is assumed when a is signifi-

cantly different from zero. Positive values of a suggest positive

directional selection, whereas negative a-values indicate bal-

ancing selection. BayeScan runs were carried out using default

parameters for a 300-kb genomic window around the ph locus

with sequences from seven European and African populations.

These included samples from The Netherlands (10 lines),

France (8 lines), Cameroon (10 lines), Gabon (9 lines), Ethiopia

(8 lines), Rwanda (27 lines), and Zambia (27 lines).

Expression analysis in whole adult flies

Gene expression was analyzed in whole adult flies from the

aforementioned population samples from The Netherlands

and Zimbabwe. Flies were reared on a standard cornmeal–

molasses medium at �28� and 18� with a 14/10-hr light/dark

592 S. Voigt et al.

http://flybase.org/reports/FBgn0004861.html
http://flybase.org/reports/FBgn0004861.html
http://flybase.org/reports/FBgn0023507.html
http://www.dpgp.org
http://www.dpgp.org
http://evol.bio.lmu.de/downloads
http://evol.bio.lmu.de/downloads


cycle. Expression was measured in 11 fly lines per population.

For each line, RNA was extracted from five males and five

females (aged 4–6 days). RNA extraction including DNase I

digestion was performed using the MasterPure RNA Purifica-

tion Kit (Epicentre, Madison, WI; http://www.epibio.com).

RNA purity was assessed via the ratio of absorbances at 260

and 280 nm (A260/A280 . 1.8). It was then reverse transcribed

into complementary DNA (cDNA), using random primers and

SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad,

CA; http://www.lifetechnologies.com). RT-qPCR reactions

were run with iQ SYBR Green Supermix (Bio-Rad, Hercules,

CA; http://www.bio-rad.com) on a CFX96 real-time PCR cycler

(Bio-Rad). Primers for target and reference genes were

designed, applying the QuantPrime software (Arvidsson et al.

2008). Per fly line, two biological replicates were run in dupli-

cates. No template controls (NTCs) were included to control con-

tamination and primer specificity was confirmed by melting-curve

analysis. Relative expression was calculated using the qBase

relative quantification framework (Hellemans et al. 2007). Both

reference genes (RpL32 and RpS20) were stably expressed

across samples. This was assessed by calculating the coef-

ficient of variation and the M stability parameter according

to Hellesmans et al. (2007). Log-transformed normalized

relative quantities were subjected to a paired t-test to test

for statistically significant expression differences.

Reporter gene assays

The genomic region between ph-p and CG3835 reaching

from 2,030,598 to 2,035,598 on the X chromosome in FlyBase

release 5 (Pierre et al. 2014) was PCR amplified from one

Dutch and one Zimbabwean strain (NL01 and ZK186, respec-

tively), using the primers 59-GCCACAGTCACAGCACTAAGT-39

and 39-CCTTTCATCCATAAGTCAGTG-59. The PCR products

were cloned directly into the “pCR4Blunt-TOPO” vector (Invi-

trogen). The insert was then excised as a HindIII/NotI frag-

ment and cloned into the “placZ-2attB” integration vector

(Bischof et al. 2007). The identity and orientation of the cloned

fragments were confirmed by restriction analysis and sequenc-

ing. Integration vector DNA was purified with the QIAprep

Spin Miniprep Kit (QIAGEN, Hilden, Germany; http://www.

qiagen.com) and used for microinjection of early-stage em-

bryos of the FX86Fb strain (attP site at cyological band

86Fb). This strain includes a stable source of FC31 inte-

grase on the X chromosome. The integration site used was

selected by the criteria of no binding of PcG/TrxG proteins

and no occurrence of their specific histone marks within

a window of65 kb around the site. Following microinjection,

viable flies were crossed to a “white2” strain to remove the

integrase and establish stable lines. Resulting offspring

were screened for red eye color as a marker of successful

transformants.

Reporter gene expression was measured in brains and

midguts of third instar larvae via RT-qPCR. Flies containing

one copy of the inserted construct were grown on a standard

cornmeal–molasses medium at 28� and 17� with a 14/10-hr

light/dark cycle. Five females and five males were allowed

to mate and oviposit for 3 and 7 days at 28� and 17�, re-

spectively. Tissue of the resulting progeny was dissected and

immediately stored in RNAlater (QIAGEN). RNA extraction

and RT-qPCR were performed as described above. Primer

sequences for the lacZ reporter gene were taken from Zhang

et al. (2013). For normalization the two aforementioned

reference genes (RpL32 and RpS20) were used. Three biolog-

ical replicates per construct in the particular tissue at the par-

ticular rearing temperature were run in triplicates. Negative

controls included NTCs and no reverse-transcription controls

(NRTs) to exclude contamination. Furthermore, negative con-

trols also consisted of midgut and brain dissections of larvae

reared at the two different temperatures of an “empty”FX86Fb

strain without any integrated constructs. Both reference genes

were stably expressed across samples. Log-transformed nor-

malized relative quantities were calculated as described

above and subjected to a Welch two-sample t-test to test

for statistically significant expression differences between

the different rearing temperatures and transgenic constructs.

False discovery rate (FDR) was controlled using the multiple-

testing correction method of Benjamini and Hochberg (1995).

Results

DNA sequence polymorphism in the ph region

Full-genome data provided by the Drosophila Population

Genomics Project were used to analyze a 73-kb genomic

region of intermediate recombination rates (Fiston-Lavier

et al. 2010) that is located on the X chromosome between

positions 1,990,000 and 2,063,000 (FlyBase release 5). In

an African population sample from Siavonga, Zambia, a re-

duction of variation in the region is observed (Figure 1A)

that overlaps with the valley of low polymorphism detected

in previous studies in a Zimbabwean population sample

from Lake Kariba (Beisswanger et al. 2006; Beisswanger

and Stephan 2008). In these previous studies, evidence

was presented that this reduction of polymorphism origi-

nated most likely from the action of positive directional se-

lection in the recent past causing a selective sweep in the

ancestral species range. As was shown before (Beisswanger

et al. 2006), the Dutch population sample from Leiden har-

bors an even more pronounced valley of low polymorphism

that spans .60 kb (Figure 1A).

Likelihood analysis of selective sweeps in the
European population

The 73-kb region shown in Figure 1A was submitted to

a composite-likelihood-ratio test that is based on the site-

frequency spectrum used by SweeD (Pavlidis et al. 2013).

Since a larger sample size may lead to more accurate results

in distinguishing selective sweeps from demographic events

and inferring the genomic position of sweeps (Pavlidis et al.

2010, 2013), the French population sample from DPGP

(Pool et al. 2012) was added to the Dutch sample to obtain

a larger European data set. SweeD was run on the complete
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X chromosome and the CLR profile of the region of interest

is shown in Figure 1B. The SweeD test provided a likelihood

profile that is much broader than the valley of reduced var-

iation in Africa (Beisswanger et al. 2006; Beisswanger and

Stephan 2008) and spans almost the entire region of very

low polymorphism found in the European sample (Figure 1,

A and B).

Genetic differentiation between the European and
African population samples in the ph region

Because a large fraction of the region of low variation in

Europe contains no or very few SNPs, the CLR test cannot be

used to identify the targets of selection. Instead, following

Wilches et al. (2014), we utilized genetic differentiation be-

tween African and European populations to obtain model-

based FST coefficients for each SNP (Foll and Gaggiotti 2008;

Riebler et al. 2008). BayeScan analyses (Foll and Gaggiotti

2008) were run on an X-chromosomal window of 300 kb

surrounding the ph locus between positions 1,900,000 and

2,200,000 (FlyBase release 5). SNP data from seven European

and African populations were considered, which included

samples from The Netherlands, France, Cameroon, Ethiopia,

Gabon, Rwanda, and Zambia. Including all seven population

samples with a total of 11,894 SNPs, BayeScan yielded 22

significant outlier SNPs (FDR ¼ 0.05) with positive a-values,

suggesting that these SNPs are targets of positive directional

selection (Supporting Information, Table S2).

Six of these 22 outliers are located in the region of

significant CLR values. While one of those 6 is already

segregating in the African samples, the other 5 are mono-

morphic in the population samples from Africa. The former

is also identified as an outlier SNP (FDR = 0.07), when the

European samples are excluded from the BayeScan analysis

(position on X chromosome, 2,039,998; see Table S2).

These results suggest that the differentiation of this SNP

started in Africa, whereas the differentiation of the other

5 SNPs occurred outside the ancestral species range. The

5 SNPs are located in the intergenic region between ph-p

and CG3835 (Figure 1). Except for 1 of the 5, in which case

no outgroup sequence was available, derived sequence var-

iants are observed for all lines of the two European samples

and ancestral variants for all lines of the five African samples.

Figure 1 Evidence of positive selection

in the Drosophila polyhomeotic (ph) ge-

nomic region. (A) Nucleotide variability

(p) in European population samples

from The Netherlands (blue line) and

an African sample from Zambia (black

line), as well as divergence (K) to D. sim-

ulans (dashed line), is shown in a sliding

window across the region (window size =

3000 bp, step size = 1000 bp). (B) Com-

posite-likelihood-ratio (CLR) analysis of a

selective sweep using the site-frequency-

based test statistic of SweeD (Pavlidis

et al. 2013) for a European sample con-

sisting of the Dutch and the French lines.

The significance threshold of the test

statistic is given by the dashed line. (C)

BayeScan FST coefficients (Foll and Gaggiotti

2008) averaged over seven population sam-

ples from Europe and Africa (see Materials

and Methods). BayeScan results based on

a 300-kb window surrounding the ph locus

(of which 73 kb are shown here) reveal

a total of six outlier SNPs (FDR = 0.05)

within the selective sweep region that was

identified by the SweeD test. One of these

is already segregating in the African sam-

ples, in contrast to the other five outlier

SNPs that are located in the ph-p/CG3835

intergenic region. The latter are highlighted

in red and by gray lines across panels. (D)

The positions of the genes contained within

the region. The arrowheads indicate the di-

rection of transcription. The hatched box

corresponds to the portion used for reporter

gene analysis.
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Thus, the 5 SNPs mark two distinct haplotype groups, a de-

rived one and an ancestral one. Complementing the DPGP

data with Sanger sequencing of lines from populations of

Europe, Africa, and Asia, it is observed that the derived hap-

lotype group is in very high frequency in Europe (44 of 46

lines) and the ancestral one is in very high frequency in Africa

(143 of 144 lines). Interestingly, in the two Asian population

samples from Malaysia a third haplotype group is quite abun-

dant (15 of 32 lines) (Figure 2). This group is a recombinant

between the derived and the ancestral haplotypes where the

second and third sequence variants are identical with those of

the derived group and the rest with those of the ancestral

one. In addition to the recombinant haplotype group, 8 lines

of the derived group and 9 lines of the ancestral one make up

the Southeast Asian samples (Figure 2). Thus, in contrast to

the European population samples, in which the derived var-

iants of these 5 SNPs are near fixation, the derived alleles

occur in intermediate frequencies in the Asian samples.

Taken together, our observations suggest that the ph re-

gion was hit not only by a selective event causing a sweep in

the ancestral African region, but also by another sweep that

may have occurred outside the ancestral range, leading to

the high frequency of the derived haplotype in Europe.

Sanger sequencing of the European sweep region

Accurate detection of short insertions and deletions is still

difficult using next-generation sequencing. Therefore, to

exclude insertion/deletion polymorphisms as possible tar-

gets of selection in Europe, we additionally sequenced the

region of interest in population samples from Europe and

Africa, using the Sanger method (see Materials and Meth-

ods). Since the target of selection in the European samples

appears to be located in the upstream half of the valley of

reduced variation, these 30 kb were fully sequenced in the

Dutch population sample from Leiden and a sample from

the ancestral range of D. melanogaster from Lake Kariba,

Zimbabwe (Pool et al. 2012). Sanger sequencing supports

the results of the full-genome data set in that the highest

genetic differentiation is observed in the intergenic region of

ph-p and CG3835 and no highly differentiated insertions/

deletions were found between the European and African

samples.

Expression analysis and reporter gene assays

The intergenic region between ph-p and CG3835 contains

a PRE and the promoters of the two genes. This PRE was

experimentally validated by using reporter gene assays and

different PcG mutant backgrounds (Fauvarque and Dura

1993). The fragment exhibiting PRE activity as demon-

strated by Fauvarque and Dura (1993) spans nearly the

whole intergenic region and overlaps with the promoters

of both genes. Since PREs function in an orientation-

independent fashion (Busturia et al. 1997; Americo et al.

2002; Kozma et al. 2008), which was shown in particular for

this specific PRE (Fauvarque and Dura 1993), and ph-p and

CG3835 are known PcG target genes as seen by chromatin

immunoprecipitation (ChIP) experiments (Schuettengruber

et al. 2009; Schwartz et al. 2010), it is likely that both genes

are under the control of the PRE residing in the region between

them. Thermosensitivity in expression as often found for genes

regulated by PcG proteins was observed for ph-p in its natural

genetic environment. In a rather crude experiment using whole

adult flies reared at different temperatures, we observed a sig-

nificantly higher expression when temperature was lower.

However, this effect was significant only for the Zimbabwean

population sample, not for the Dutch one (Figure 3).

To further test whether the five SNPs that define the

derived and ancestral haplotype groups have an effect on

gene expression, four reporter gene constructs were created

in which the 5-kb intergenic region from either a Dutch

(derived sequence variants) or a Zimbabwean (ancestral

sequence variants) strain was fused to the Escherichia coli

lacZ gene. The lacZ reporter gene was driven by either the

ph-p promoter or the one of CG3835 (Figure 4). Reporter

gene constructs were inserted into a common genetic back-

ground using the site-specific FC31 integration system

(Bischof et al. 2007), allowing the comparison of the expression

of the different constructs at the same genomic position in an

otherwise identical genetic background. It was also checked

that the selected integration site was not located in a PcG-

regulated genomic region (see Materials and Methods).

To explore whether a temperature-sensitive pattern can

be observed in the regulation of the two PcG target genes,

flies were reared at 17� and 28� and messenger RNA (mRNA)

expression levels of the lacZ reporter were quantified in the

different transgenic lines via RT-qPCR. Since ph-p is highly

expressed in the brain and CG3835 in the midgut of third

instar larvae (Chintapalli et al. 2007), these tissues were dis-

sected for the expression analysis. To measure lacZ mRNA

Figure 2 Geographical distribution of haplotype groups in the intergenic

region between ph-p and CG3835. The derived, ancestral, and recombi-

nant haplotype groups are shown in white, black, and gray, respectively.

The area of the pie chart is proportional to the size of the population

sample of a given region.
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levels, when expression of both genes is low, RT-qPCRs were

also run for lines in which the reporter gene is controlled by

the ph-p promoter on samples from the larval midgut and in

those with lacZ driven by the CG3835 promoter on samples

from the larval brain.

As expected from the endogenous expression, when the

ph-p promoter was driving the reporter gene, a higher lacZ

expression was observed in the brain than in the midgut,

and vice versa in constructs with lacZ under the control of

the CG3835 promoter (Table S1). For all tissues and treat-

ments, lacZ expression due to the ph-p promoter was higher

than expression due to the CG3835 promoter (Figure 5).

Constructs carrying the ancestral sequence variants exhibited

a temperature-sensitive expression pattern in the midgut

while no such temperature-dependent expression difference

was detected in the brain and for those constructs with the

derived sequence variants (Figure 5). In the case of the an-

cestral sequence variants, midgut expression was approxi-

mately twofold higher when larvae were reared at 17� than

at 28�. This difference due to temperature in lacZ expression

was highly significant for the ph-p promoter, whereas no sig-

nificance was reached for the promoter of CG3835 (Figure 5,

C and D, and Table S1). For the constructs with the derived

sequence variants and lacZ under the control of the ph-p pro-

moter, a significantly higher reporter gene expression at 28�,

compared to that of constructs with the ancestral variants, led

to a buffering of the thermosensitivity (Figure 5, C and D).

Therefore, we may conclude that nucleotide differences

between the European and African sequences in the inter-

genic region have led to differences in gene expression.

However, which of these differences confer the observed

expression differences is currently unknown. In addition to

the five candidate SNPs, there are two other sites in the 5-kb

insert that differ between the two fly strains (NL01 and

ZK186) from which the fragment was taken (Figure 4). One

of these two sites is upstream of the first candidate SNP and

the other one is downstream of this SNP (Figure 4B). The

latter harbors a derived variant in the African line that is

rare in Africa (6 of 139 lines) and not found in Europe,

whereas the former one is also highly differentiated between

Africa and Europe with the derived variant in high frequency

in Europe (42 of 42 lines) and rare in Africa (7 of 138 lines).

The seven sites that differ between the African and Euro-

pean reporter gene constructs are all candidates responsible

for the observed differences in lacZ expression (Figure 4 and

Figure 5). However, only the highly differentiated SNPs are

expected to be causative if selection is responsible for the

observed expression differences. Each of these SNPs has the

potential to insert or delete a transcription factor binding

site (TFBS) motif or change its binding affinity (Hauenschild

et al. 2008), located either in the PRE or in any other reg-

ulatory element in the ph-p/CG3835 intergenic region. In-

terestingly, for the fifth of the candidate SNPs (Figure 4), the

derived variant creates the Grh consensus sequence experi-

mentally identified by Blastyák et al. (2006) and a Dsp1

consensus sequence that was demonstrated to be important

in PcG recruitment (Déjardin et al. 2005). The derived state

of the aforementioned additional highly differentiated SNP

upstream of the first candidate SNP leads to the insertion of

a motif, a GTGT sequence, which was shown to be func-

tional in PRE activity in a number of studies (Kassis and

Brown 2013).

Discussion

As was shown before (Beisswanger et al. 2006; Beisswanger

and Stephan 2008), the genomic region around the ph locus

exhibits a strong reduction in nucleotide polymorphism in

D. melanogaster populations from Africa and Europe. Thus,

the data suggest positive directional selection acting at this

locus, leading to a selective sweep. In the previous studies,

however, the question remained whether the sweep in the

European population is independent of the African one or a

result of a trans-population sweep that arose in Africa before

the colonization of Europe (Beisswanger et al. 2006; Beisswanger

and Stephan 2008). The much more pronounced reduction in

nucleotide diversity in Europe could just be a product of the

severe population size bottleneck D. melanogaster underwent

during its migration out of Africa, and this bottleneck could

Figure 3 Expression of ph-p in population samples from The Netherlands

(NL) and Zimbabwe (ZK). mRNA abundance in adult flies reared at 18�

(shaded bars) and 28� (open bars) was measured via RT-qPCR. Error bars

represent the 95% confidence interval. **P , 0.01.

Figure 4 Schematic representation of the reporter gene constructs used.

(A and B) ph-p promoter (A) and CG3835 promoter (B) are driving the

E. coli lacZ gene. Blue lines give the relative location of the sequence

variants in the 5-kb intergenic region containing the PRE and the pro-

moters of ph-p and CG3835. The solid lines and numbers correspond to

the five highly differentiated candidate SNPs that mark the different hap-

lotype groups. Dashed lines indicate the other two sequence variants that

differ between the African and European strains from which the inter-

genic region incorporated in the constructs originated.
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also be the cause for the very high differentiation of the genomic

region between ph-p and CG3835. However, since Asian and

European populations share a MRCA after the out-of-Africa bot-

tleneck (Laurent et al. 2011), and populations from Asia show

a high genetic diversity in the aforementioned intergenic region,

it is unlikely that the bottleneck is responsible for the high fre-

quency of the derived sequence variants found in Europe.

The genes ph-p and CG3835 flanking this highly differen-

tiated region are known PcG target genes (Schuettengruber

et al. 2009; Schwartz et al. 2010) and harbor an experimen-

tally validated PRE between each other (Fauvarque and Dura

1993). PcG-regulated genes are temperature sensitive in their

expression; i.e., their transcriptional output is higher when

flies are reared or held at lower temperatures than at higher

ones (Fauvarque and Dura 1993; Chan et al. 1994; Zink and

Paro 1995; Bantignies et al. 2003; Gibert et al. 2011). This

phenomenon prompted the hypothesis that if cold temper-

atures disrupt PcG regulation, then adaptation to temperate

environments should include the buffering of this expression

plasticity (Levine and Begun 2008). Natural selection would

then act to stabilize the transcriptional output, leading to

a lower degree of gene expression plasticity in response to

varying temperatures. As a consequence, thermosensitivity of

PcG target gene expression would be reduced by limiting the

influence of the environment. A genome-wide expression

analysis indeed identified more genes with expression plas-

ticity due to rearing temperature in tropical compared to

temperate populations (Levine et al. 2011). Our study also

supports the reduced thermosensitivity of PcG target gene

expression in temperate populations. The data suggest tem-

perature sensitivity of PcG target gene expression in African

populations that was selected against in populations from

Europe to stabilize the transcriptional output across temper-

atures. At the locus under study, this was observed for the

expression of ph-p in the natural genetic background and for

larval midguts, using reporter gene assays. The reporter gene

analysis linked the SNPs that were detected as likely targets

of positive selection in Europe to the European stabilized

gene expression. Rearing temperature had no effect on gene

expression in larval brains. Possible explanations could be

that brain expression is under a greater selective pressure

against gene expression variability, and so the expression

level is already less environmentally sensitive in the Afri-

can populations, or that there is no thermosensitivity of

expression in the larval brain. In addition, for the ph-p

promoter-driven expression, the data indicate that higher

transcriptional output at lower temperatures is not in itself

detrimental. The greater variability in expression due to

a higher degree of variation in temperature in temperate

climates, however, seems to have been disadvantageous

and needed to be reduced by the action of selection during

the colonization of Europe.

More recent studies focused only on selection stabilizing

the temperature-sensitive transcriptional output by directly

acting on the proteins of the PcG system in populations from

temperate environments (Harr et al. 2002; Levine and Begun

2008; Gibert et al. 2011). In this study, we present evidence

for selection acting on cis-regulatory sequences to reduce the

temperature sensitivity of PcG-regulated gene expression.

Since PRE function is highly dependent on the genomic

location, one drawback of our study may be that reporter

gene assays were only done at one integration site in the

genome (Kassis and Brown 2013; Steffen and Ringrose

2014). This position effect is mainly due to regulatory ele-

ments in the vicinity of the integration site that can have an

influence on the function of the transgenic PRE. However, it

is likely that redoing the study at an additional integration

site would yield similar results to those reported here. One

reason for this is that studies observing this position effect

mainly looked at smaller PRE sequences (Kassis and Brown

2013). Our inserted fragment is �5 kb in length and likely

contains other regulatory sequences (i.e., enhancers) in ad-

dition to the two promoters and the PRE. Furthermore, we

could reproduce the endogenous expression pattern of the dif-

ferent tissues in the transgenic lines with a higher expression

Figure 5 Reporter gene expression in larval tissues at two different rear-

ing temperatures. mRNA abundance was measured via RT-qPCR in brains

(A and B) and midguts (C and D) from third instar larvae reared at either

17� (shaded bars) or 28� (open bars). In A and C the ph-p promoter is

driving lacZ expression whereas in B and D lacZ is under the control of the

CG3835 promoter. The intergenic region containing the PRE and the

promoters was taken from either a European strain from The Netherlands

(NL) or an African one from Zimbabwe (ZK); that is, constructs were

carrying either the derived or the ancestral sequence variants, respec-

tively. Error bars represent the 95% confidence interval. *P , 0.05,

**P , 0.01 (FDR = 0.05).
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of ph-p in larval brains than in midguts and vice versa for

CG3835.

Here, we report a cis-regulatory change mediating a de-

creased thermosensitivity of PcG regulation at a specific locus.

The question arises of whether selection against temperature-

sensitive expression variability in temperate populations is

a global phenomenon, i.e., PcG target genes in general exhibit

such a buffering, or whether it is specific for the locus exam-

ined in this study. The former is supported by other studies

that have shown greater expression plasticity in tropical pop-

ulations than in temperate ones (Levine et al. 2011) and

given evidence for spatially varying selection targeting pro-

teins of the Polycomb group (Harr et al. 2002; Levine and

Begun 2008). It would then also be of interest to which

amount either of both, cis-regulatory and trans-regulatory

changes, contributes to the reduced thermosensitivity in tem-

perate populations and whether one can observe other PcG

target genes with cis-regulatory changes.

The buffering of the temperature-induced expression plas-

ticity due to the derived sequence variants is likely to be

explained by changes in TFBS motifs. There are two possibil-

ities for how this could have happened. First, changes in TFBS

motifs occurred in enhancer sequences, altering the strength

of the enhancer, resulting in a change in the transcriptional

output that is then maintained by the associated PRE. Second,

the PRE could have been directly targeted by selection and

TFBSs of PcG proteins and associated factors could have been

modified, leading, e.g., to changes in PcG recruitment and

therefore to differences in the expression level that is main-

tained by the PRE (Schwartz et al. 2010; Steffen and Ringrose

2014). For enhancers as well as for PREs, it is well documented

that small changes in their sequences can have large effects on

the expressed phenotype and both cis-regulatory elements are

known to evolve rapidly (Hauenschild et al. 2008). Therefore,

it seems likely that a change in sequence of one of them (or

both) is responsible for the expression differences described in

this study. To find the causative sequence variant(s) and the

associated TFBS(s), further experimental studies are needed.
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Table S1  Fold-changes in lacZ reporter gene expression 

Promoter Comparison   Fold-change 

 between within  

ph-p BR/MG 17°C & NL 2.67  

  17°C & ZK 3.08 ** 

  28°C & NL 4.28 ** 

  28°C & ZK 6.81 ** 

 17°C/28°C BR & NL 0.77 

  BR & ZK 1.09 

  MG & NL 1.24 

  MG & ZK 2.41 ** 

 NL/ZK 17°C & BR 0.74 

  17°C & MG 0.85 

  28°C & BR 1.03 

  28°C & MG 1.64* 

CG3835 BR/MG 17°C & NL 0.33 ** 

  17°C & ZK 0.21 * 

  28°C & NL 0.61 * 

  28°C & ZK 0.40 * 

 17°C/28°C BR & NL 0.89 

  BR & ZK 0.70 

  MG & NL 1.08 

  MG & ZK 2.03 

 NL/ZK 17°C & BR 1.04 

  17°C & MG 0.67 

  28°C & BR 0.82 

  28°C & MG 1.27 

mRNA abundance was measured via RT-qPCR in brains (BR) and midguts (MG) of third instar larvae reared at 17°C or 28°C. 

lacZ reporter gene expression was either driven by the promoter of ph-p or the CG3835 promoter. Promoter and adjacent 

regulatory regions were either derived from a European strain from the Netherlands (NL) or an African one from Zimbabwe 

(ZK). Statistical testing included t-tests and correction for multiple testing. *P<0.05, **P<0.01 (FDR=0.05). 
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Table S2 BayeScan outlier SNPs 

Sample Number of 

Populations 

Position on X 

chromosome  

Posterior 

Probability 

Posterior 

Odds 

log10(PO) 

alpha FST 

Europe-Africa 7 2,054,375 1.000 3.699 1.834 0.739 

  2,035,164 0.926 1.095 1.700 0.712 

  2,173,611 0.928 1.111 1.677 0.709 

  2,035,208 0.917 1.042 1.676 0.708 

  2,034,789 0.919 1.054 1.665 0.706 

  2,032,933 0.921 1.064 1.661 0.706 

  2,035,090 0.920 1.059 1.641 0.702 

  2,054,995 0.996 2.442 1.502 0.687 

  2,039,998 0.990 1.996 1.449 0.678 

  2,055,053 0.988 1.930 1.438 0.676 

  1,999,363 0.976 1.617 1.391 0.668 

  2,053,119 0.976 1.617 1.379 0.666 

  2,056,220 0.972 1.537 1.369 0.664 

  2,054,347 0.966 1.448 1.337 0.658 

  1,907,955 0.955 1.329 1.248 0.643 

  2,056,678 0.933 1.141 1.248 0.642 

  2,055460 0.911 1.012 1.246 0.642 

  1,905,431 0.955 1.329 1.231 0.640 

  1,999,517 0.950 1.275 1.222 0.639 

  1,974,821 0.946 1.242 1.216 0.638 

  1,903117 0.942 1.212 1.202 0.635 

  1,974,723 0.923 1.081 1.162 0.628 

  2,090,045 0.901 0.958 -1.521 0.181 

  2,179,117 0.926 1.095 -1.573 0.174 

  2,136,315 0.941 1.203 -1.584 0.171 

  1,963,657 0.928 1.108 -1.609 0.170 

  2,181,270 0.948 1.257 -1.589 0.170 

  1,984,277 0.933 1.147 -1.644 0.166 

  2,171,163 0.953 1.309 -1.626 0.166 

  1,994,497 0.961 1.394 -1.673 0.160 

  2,069,894 0.954 1.315 -1.691 0.160 

  2,179,478 0.973 1.550 -1.702 0.157 

  2,141,928 0.976 1.606 -1.733 0.153 

  2,153,801 0.973 1.557 -1.742 0.153 

  1,965,347 0.979 1.669 -1.782 0.148 

  2,139,505 0.971 1.525 -1.846 0.144 



4 SI Voigt et al.  

 

 

 

Africa 5 2,054,375 0.998 2.698 1.731 0.674 

  1,972,008 0.959 1.365 1.343 0.599 

  1,972,114 0.958 1.354 1.335 0.598 

  2,054,995 0.955 1.331 1.324 0.595 

  2,112,292 0.945 1.238 1.290 0.589 

  2,141,480 0.939 1.190 1.296 0.590 

  2,053,119 0.899 0.951 1.215 0.573 

  1,944,464* 0.880 0.864 1.178 0.566 

  2,039,998* 0.865 0.807 1.140 0.558 

BayeScan analyses were run on a X-chromosomal 300-kb sequence window around the ph locus. Significant outlier SNPs 

at an FDR of 5% are shown here. For the African-exclusive analysis, also outliers at an FDR of 7% are given (marked by 

asterisks). Six outlier SNPs are located in the region of significant CLR values.  Bold font highlights the five outlier SNPs that 

are located in ph-p/CG3835 intergenic region and that are not already significantly segregating when only African 

populations are considered. The SNP at X-chromosomal position 2,039,998 (FlyBase release 5) is located within in the 

region of significant CLR values, but not between ph-p and CG3835. 
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DECREASED THERMOSENSITIVITY OF VESTIGIAL GENE EXPRESSION 

IN TEMPERATE POPULATIONS OF DROSOPHILA MELANOGASTER  

 

Susanne Voigt, Anna Christina Erpf, Wolfgang Stephan 

(unpublished manuscript) 

 

ABSTRACT 

Drosophila melanogaster originated in tropical Africa and has successfully adapted 

to temperate environments worldwide. A major limiting factor of temperate 

climates has probably been its low and varying temperatures. Gene regulation by the 

Polycomb group (PcG) may be disrupted by ambient temperature resulting in 

increased expression of PcG-regulated genes when temperature is low. However, 

there is evidence that this temperature-induced expression plasticity has been 

reduced during the colonization of temperate environments. In this study, we focus 

on the PcG target gene vestigial (vg) and provide evidence that the thermosensitivity 

of PcG regulation has been buffered in populations from temperate climates. We 

investigated thermosensitivity of vg gene expression in six natural populations 

including four temperate populations (three from Europe and one from high-altitude 

Africa), and two tropical populations from the ancestral species range. Temperate 

populations exhibited a lower degree of temperature-induced expression plasticity 

than tropical populations. Decreased vg expression plasticity likely evolved more 

than once, since the underlying mechanisms seem to differ between temperate 

populations. 
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INTRODUCTION 

Species colonizing new environments need to adapt to novel biotic and abiotic 

conditions. As a cosmopolitan species, the fruit fly Drosophila melanogaster 

successfully adapted to a wide range of new habitats. Its origin is thought to be in 

tropical southern-central Africa from where it spread around the world (David and 

Capy 1988; Lachaise and Silvain 2004; Pool et al. 2012).  After an initial expansion 

throughout Africa, it finally reached the Eurasian continent after the last glaciation 

around 10,000 years ago (Li and Stephan 2006; Stephan and Li 2007), and later 

moved on to colonize Asia and Europe (Laurent et al. 2011). A main limiting factor 

while settling in Europe and also at high altitudes in Africa has probably been the 

temperate climate with its low and varying temperatures. 

Chromatin-based gene regulation in D. melanogaster is known to be disrupted by 

ambient temperatures (Fauvarque and Dura 1993; Gibert et al. 2011). In the case of 

genes regulated by the Polycomb group (PcG) of proteins, transcriptional output 

increases with decreasing temperature at which flies are reared or held (Fauvarque 

and Dura 1993; Chan et al. 1994; Zink and Paro 1995; Bantignies et al. 2003; Gibert 

et al. 2011). This phenomenon prompted the hypothesis that adaptation to 

temperate environments might have included the buffering of this thermosensitive 

regulatory process (Levine and Begun 2008). Several studies, indeed, provided 

evidence for positive directional selection acting on proteins that are involved in PcG 

regulation (Harr et al. 2002; Levine and Begun 2008; Gibert et al. 2011). Another 

study found positive selection acting on cis-regulatory sites that led to decreased 

thermosensitivity of PcG gene regulation in European populations (Voigt et al. 2015). 

The selected sites were highly differentiated between African and European 

populations, and were located in a Polycomb response element (PRE), a cis-

regulatory module that recruits PcG proteins to their target genes. 

In this study, using the gene vestigial (vg), we again provide evidence that 

temperature-induced expression plasticity of PcG-regulated genes has been 
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buffered in temperate populations from D. melanogaster. The PcG target gene vg 

(Schuettengruber et al. 2009; Schwartz et al. 2010) is well-studied and located on 

the 2R chromosome arm of the D. melanogaster genome. It encodes a transcription 

factor that plays a central role in the development and patterning of the Drosophila 

wing (Williams et al. 1991). It is also known as a wing selector gene: a loss of vg 

results in the failure of wings to develop (Lindsley and Zimm 1992) and the ectopic 

expression of vg leads to the outgrowth of ectopic wing tissue (Kim et al. 1996). We 

investigated thermosensitive expression of vg in natural populations of 

D. melanogaster from six different locations. These included three temperate 

populations from Europe, one temperate population from a high-altitude location in 

Africa, and two tropical populations from the ancestral species range. The degree of 

expression plasticity differed between the populations with a higher degree in those 

from tropical climates than in those from temperate climates. This buffering effect 

likely evolved more than once, since the underlying mechanisms appear to differ 

between temperate populations. 

 

MATERIALS & METHODS 

Expression analysis  

Six population samples, each consisting of eight isofemale lines, from Sweden 

(Umeå), The Netherlands (Leiden), France (Lyon), Rwanda (Gikongoro), Zimbabwe 

(Lake Kariba), and Zambia (Siavonga) (Table 1) were selected for expression analysis 

in adult D. melanogaster. Tissue-specific expression analysis in third instar larvae was 

performed using samples of four of the aforementioned populations from Sweden, 

The Netherlands, Zimbabwe, and Zambia. Flies were reared on a standard cornmeal-

molasses medium with a 14/10h light/dark cycle at 17°C or 28°C. Five males and five 

females were allowed to mate and oviposit for seven or three days at 17°C and 28°C, 

respectively. Eight males aged 4-6 days of the resulting progeny, one per line, were 

pooled for RNA extraction. For tissue-specific expression-analysis, 50 eggs per vial 
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were allowed to hatch and develop into wandering third instar larvae from which 

tissue was sampled. Eight brain and sixteen wing imaginal discs of each line were 

pooled for RNA extraction. After dissection, tissues were immediately stored in 

RNAlater (Qiagen, Hilden, Germany; http://www.qiagen.com). RNA was extracted 

using the MasterPure RNA Purification Kit (Epicentre, Madison, WI, USA; 

http://www.epibio.com). RNA purity was assessed via the ratio of absorbances at 

260 and 280 nm (A260/A280 > 1.8). It was then reverse transcribed into cDNA using 

random primers and SuperScript® III Reverse Transcriptase (Invitrogen, Carlsbad, CA, 

USA;http://www.lifetechnologies.com). RT-qPCR reactions were performed with 

iQ™ SYBR® Green Supermix (BioRad, Hercules, CA, USA; http://www.bio-rad.com) on 

a CFX96™ real-time PCR cycler (BioRad, Hercules, CA, USA; http://www.biorad.com). 

Primers for target genes and two reference genes for normalization (RpS20 and 

RpL32) were designed applying the QuantPrime software (Arvidsson et al. 2008). 

Three biological replicates per population sample, rearing temperature and tissue 

were run in triplicates and primer specificity was confirmed by a melting curve 

analysis. Negative controls included no template controls (NTCs) and no reverse-

transcription controls (NRTs) to exclude contamination. Relative expression was 

calculated using the qBase relative quantification framework (Hellemans et al. 2007). 

Both reference genes were stably expressed across samples. This was assessed by 

calculating the coefficient of variation and the M stability parameter according to 

Hellesmans et al. (2007). Log-transformed normalized relative quantities were 

subjected to a Welch Two Sample t-test to test for statistically significant expression 

differences between the different rearing temperatures and population samples. 

False discovery rate was controlled using the multiple testing correction method by 

Benjamini and Hochberg (1995). 
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Table 1 Population samples  

Population sample Latitude Longitude Altitude (m) Climate 

Umeå, Sweden (SU) 63.83 20.26 12 cold - temperate 

Leiden, The Netherlands (NL) 52.17 4.48 0 warm - temperate 

Lyon, France (FR) 45.76 4.84 175 warm - temperate 

Gikongoro, Rwanda (RG) -2.49 28.92 1927 warm - temperate 

Lake Kariba, Zimbabwe (ZK) -16.52 28.80 619 tropical 

Siavonga, Zambia (ZI) -16.54 28.72 530 tropical 

Climate data was taken from http://en.climate-data.org/. 

 

Sequence analysis 

DNA polymorphisms at the vg locus were analyzed in five of the populations that 

were used in the expression analysis. Sequence analysis was performed for 

population samples from Sweden (Umeå), The Netherlands (Leiden), France (Lyon), 

Rwanda (Gikongoro), and Zambia (Siavonga). French (8 lines), Rwandan (24 lines), 

and Zambian (27 lines) sequences were taken from assembled full-genome data as 

provided by the Drosophila Population Genomics Project (DPGP) 

(http://www.dpgp.org). Swedish (14 lines) and Dutch (10 lines) sequences were 

extracted from full genomes assembled following the approach of Pool et al. (2012). 

Nucleotides with known admixture or identity-by-descent according to Pool et al. 

(2012) were replaced with missing value labels in the analysis. The same was done 

for sites exhibiting heterozygosity since heterozygotes are not expected in sequence 

data obtained from haploid embryos (Pool et al. 2012). Sites with an excess of 

missing data that is less than six lines per population not labeled as missing were 

excluded from the analysis. Nucleotide diversity was estimated in terms of π (Tajima 

1989), and divergence was calculated against a Drosophila simulans sequence (Hu et 

al. 2013). FST per SNP was estimated according to Weir and Cockerham (1984). 

Calculations of summary statistics were performed in the R package diveRsity 

(Keenan et al. 2013). 
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RESULTS 

Expression analysis in adult D. melanogaster 

Male adult flies from different natural populations were reared at two different 

temperatures (17° and 28°C) to examine whether the PcG target gene vg 

(Schuettengruber et al. 2009; Schwartz et al. 2010) exhibits thermosensitivity in its 

expression. Population samples were from six different locations with different 

climates (Table 1). Samples from tropical regions included two from the putative 

ancestral D. melanogaster species range: Zambia and Zimbabwe (Pool et al. 2012). 

The other four samples were derived from populations from temperate regions: 

three from warm-temperate climates including two European samples (France and 

The Netherlands) and an African high-elevation population sample from Rwanda, 

and one from the cold-temperate climate of Sweden.  

 

 

Figure 1 Expression of vg in adult D. melanogaster. mRNA abundance in adult males was measured 

via RT-qPCR. (A) Expression in Swedish (SU), Dutch (NL), French (FR), Rwandan (RG), Zambian (ZI), and 

Zimbabwean (ZK) flies reared at either 17°C (gray bars) or 28°C (white bars). Error bars represent the 

95% confidence interval. (B) Ratio of mean vg expression between rearing temperatures (17°C to 

28°C). 
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Thermosensitivity of vg gene expression due to variation in rearing temperature was 

observed for all population samples but not for the control gene Aats-asp that is 

adjacent to vg and is not known to be regulated by the PcG proteins 

(Schuettengruber et al. 2009; Schwartz et al. 2010) (Figure 1, Table 2). Expression of 

vg was consistently higher at 17°C than at 28°C, and this difference was highly 

significant for all samples except for the Dutch one in which expression at 17°C varied 

too much between biological replicates (Figure 1A, Table 2). Interestingly, with a ~2-

fold higher expression at 17°C, the ratio between vg expression at 17°C and at 28°C 

was lower in all four temperate population samples than in the tropical samples in 

which vg expression was more than 3-fold higher at 17°C (Figure 1B, Table 2). 

Therefore, temperature-induced expression plasticity of vg appears to be buffered 

in derived temperate genotypes when compared to ancestral tropical genotypes. 

 

Table 2 Fold-changes in gene expression between rearing temperatures in adult D. 

melanogaster 

Gene Gene expression ratio 17°C/28°C 

 

 

Sweden  

(SU) 

The 

Netherlands 

(NL) 

France  

(FR) 

Rwanda  

(RG) 

Zimbabwe 

 (ZK) 

Zambia 

(ZI) 

vg 1.76* 1.82 2.28** 1.88** 3.68** 3.02** 

Aats-asp 1.15 1.52 0.90 0.92 1.01 1.17 

Statistical testing included t-tests and correction for multiple testing. *P<0.05, **P<0.01 

(FDR=0.05). 

 

Although the amount of buffering among temperate samples appears to be the 

same, the mechanisms of how the lowered expression ratio between rearing 

temperatures comes about seem to be different. For the cold-temperate sample 

from Sweden, increased vg expression relative to the other population samples was 

observed at 28°C. The difference was statistically significant for all comparisons 

between the Swedish and the other samples, except for the one to Zimbabwe, which 

was of borderline significance (P=0.07) (Table 3). In contrast, for the three warm-

temperate population samples, vg expression was decreased at 17°C compared to 
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the other three samples. Statistical significance was found for all comparisons except 

for those including the Dutch sample (Figure 1A, Table 2). Again, the reason for this 

is the high variation between biological samples in the Dutch vg expression at 17°C 

which might be eliminated by increasing sample size. At least for the French and 

Rwandan samples, this decreased vg expression is also visible at 28°C, though to a 

lower extent than at 17°C (Figure 1A, Table 2). 

 

Table 3 Fold-changes in gene expression between population samples in adult D. melanogaster 

Gene Gene expression ratio between population samples 

 Population samples Rearing temperature 

  17°C 28°C 

vg Sweden (SU)/The Netherlands (NL) 1.69 1.75* 

 Sweden (SU)/France (FR) 2.35** 3.04** 

 Sweden (SU)/Rwanda (RG) 2.03* 2.16** 

 Sweden (SU)/Zimbabwe (ZK) 0.82 1.41 

 Sweden (SU)/Zambia (ZI) 0.85 1.78*** 

 The Netherlands (NL)/France (FR) 1.39 1.75* 

 The Netherlands (NL)/Rwanda (RG) 1.20 1.24 

 The Netherlands (NL)/Zimbabwe (ZK) 0.49 0.81 

 The Netherlands (NL)/Zambia (ZI) 0.50 1.02 

 France (FR)/Rwanda (RG) 0.86 0.71 

 France (FR)/Zimbabwe (ZK) 0.35** 0.65** 

 France (FR)/Zambia (ZI) 0.36** 0.59* 

 Rwanda (RG)/Zimbabwe (ZK) 0.41** 0.65** 

 Rwanda (RG)/Zambia (ZI) 0.42** 0.82 

 Zimbabwe (ZK)/Zambia (ZI) 1.04 0.79 

Aats-asp Sweden (SU)/The Netherlands (NL) 0.69* 0.92 

 Sweden (SU)/France (FR) 0.96 0.76 

 Sweden (SU)/Rwanda (RG) 0.88 0.70 

 Sweden (SU)/Zimbabwe (ZK) 0.90 0.91 

 Sweden (SU)/Zambia (ZI) 0.87 0.76 

 The Netherlands (NL)/France (FR) 1.39 0.83 

 The Netherlands (NL)/Rwanda (RG) 1.26 0.77 

 The Netherlands (NL)/Zimbabwe (ZK) 1.29 0.99 

 The Netherlands (NL)/Zambia (ZI) 1.25 0.83 

 France (FR)/Rwanda (RG) 0.91 0.93 

 France (FR)/Zimbabwe (ZK) 0.93 1.20 

 France (FR)/Zambia (ZI) 0.90 1.00 

 Rwanda (RG)/Zimbabwe (ZK) 1.02 1.29 

 Rwanda (RG)/Zambia (ZI) 0.99 1.08 

 Zimbabwe (ZK)/Zambia (ZI) 1.03 1.20 

Statistical testing included t-tests and correction for multiple testing. *P<0.05, **P<0.01, 

***P<0.001 (FDR=0.05). 
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Overall, two main conclusions can be drawn: first, populations from temperate 

environments show a reduction of temperature-induced plasticity in vg expression 

compared to tropical populations, and second, the mechanisms responsible for this 

buffering seem to differ between temperate populations. However, with this rather 

crude experiment, one cannot distinguish whether this is in general found for vg 

expression or whether differences between different tissues or developmental 

stages can be observed.  

 

Tissue-specific expression analysis in third instar larvae of D. melanogaster 

Adult structures are derived from larval structures called imaginal discs. Since the vg 

gene product has its main function in the control of wing formation (Williams et al. 

1991; Lindsley and Zimm 1992; Kim et al. 1996), the vg gene shows an enriched 

expression in the wing imaginal disc (Williams et al. 1991). Therefore, this tissue was 

chosen to further examine vg expression under different rearing temperatures. The 

same was done for larval brains in order to monitor vg expression in a tissue in which 

expression of the gene is known to be low (Chintapalli et al. 2007). Gene expression 

was measured in four samples of the aforementioned populations from Sweden, The 

Netherlands, Zambia and Zimbabwe (Table 1).  
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Figure 2 Tissue-specific vg expression in third instar larvae of D. melanogaster. mRNA abundance 

was assessed by RT-qPCR in brains (A) and wing discs (B) from  wandering third instar larvae reared 

at either 17°C (gray bars) or 28°C (white bars). Expression was measured in population samples from 

Sweden (SU), The Netherlands (NL), Zambia (ZI), and Zimbabwe (ZK). Error bars represent the 95% 

confidence interval. 

 

As expected vg expression was significantly higher in wing discs than in brains at both 

rearing temperatures and in all population samples (Table S1). A thermosensitive 

expression pattern as it is often observed for PcG-regulated genes (Fauvarque and 

Dura 1993; Chan et al. 1994; Zink and Paro 1995; Bantignies et al. 2003; Gibert et al. 

2011) and that we found for adults with an increased expression at lower rearing 

temperature was neither detected in wing discs nor in brains for vg or the control 

gene Aats-asp (Figure 2, Table 4). Decreased expression levels in the Zambian sample 

at 17°C relative to 28°C were the only statistically significant differences observed in 

vg expression (Table 4, Table S2). Thus, neither thermosensitivity in vg expression as 

observed for adults nor a buffering of it in temperate populations appear to play a 

role in the larval tissues examined here. 
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Table 4 Fold-changes in tissue-specific gene expression between rearing temperatures in third 

instar larvae 

Gene Tissue Gene expression ratio 17°C/28°C 

 

  

Sweden  

(SU) 

The 

Netherlands  

(NL) 

Zimbabwe 

 (ZK) 

Zambia 

(ZI) 

vg Wing disc 1.02 0.71 1.29 0.59* 

 Brain 0.73 0.85 0.84 0.50* 

Aats-asp Wing disc 0.95 0.87 0.99 0.88 

 Brain 0.90 0.99 1.07 0.81 

Statistical testing included t-tests and correction for multiple testing. *P<0.05 (FDR=0.05). 

 

Sequence analysis 

In order to identify putative cis-regulatory changes, i.e. changes in regulatory 

sequences at the vg locus, between derived and ancestral populations that might 

contribute to the observed expression differences, FST per SNP (Weir and Cockerham 

1984) was calculated in the vg gene region. The vg gene region was defined as the 

interval between the two outer insulators (±500 bp) (Nègre et al. 2010) that flank 

the vg locus (Figure 3B). Insulators are DNA sequence elements that can block the 

interaction between regulatory elements and genes, as well as prevent the spread 

of regions of modified chromatin (Nègre et al. 2010). Therefore, most of the cis-

regulatory sequences with an effect on vg expression are expected to be located 

within this region. DNA sequences were extracted from available full genome data 

of five of the populations that were used in the expression analysis. FST per SNP 

(biallelic) was calculated between each of the temperate population samples 

(Sweden, The Netherlands, France, and Rwanda) and the ancestral tropical sample 

(Zambia). We arbitrarily chose FST > 0.6 as a cutoff value for candidate SNPs of cis-

regulatory changes that are highly differentiated between populations (i.e., high 

allele frequencies in the derived populations and low frequencies in the ancestral 

population), and therefore have the potential to account for a large proportion of 

the expression differences observed between derived and ancestral populations. 

Since the Swedish expression pattern differed from the one in the other derived 

populations, putative candidate SNPs are not expected to be shared among the 

Swedish and the other derived populations. Thus, candidate SNPs for the Swedish 
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population are not expected to be highly differentiated between the other derived 

populations and the ancestral population (FST < 0.4), and vice versa. Such SNPs were 

also excluded as candidates. The unlikely scenario of two alleles differing between 

the Swedish and the other derived populations at a multi-allelic site and both alleles 

being also highly differentiated to the ancestral population was considered as well, 

yet no such site was observed. Four candidate SNPs putatively responsible for the 

Swedish expression pattern were detected (Figure 3, Table S3). The three other 

temperate populations were similar in their expression response to temperature, 

therefore the simplest scenario would be a common genetic basis causing this 

response. However, no SNP with an FST above 0.6 to the ancestral population shared 

among all three derived population was observed. Thus, it seems less likely, if there 

is a common genetic basis in the three populations, that it would be largely due to 

shared cis-regulatory changes. However, highly differentiated insertions/deletions 

not detected by next-generation sequencing and sites excluded due to an excess of 

missing data could also be responsible (see Materials and Methods). Since the 

Rwandan and European populations are rather geographically distant populations, 

convergent evolution between the Rwandan and the two European populations was 

also considered as an explanation for the similar expression response to 

temperature. In turn, for the two geographically close European populations, three 

candidate SNPs with FST values above the cutoff value of 0.6 that were shared 

between the two populations could be identified and that were not highly 

differentiated (FST < 0.4) to the ancestral population in the other derived populations 

(Figure 3, Table S3). For the comparison of the Rwandan and the ancestral population 

samples, no SNP above the cutoff could be detected which renders it less likely that 

a large proportion of the Rwandan expression response is due to cis-regulatory 

changes. Yet again, highly differentiated undetected insertions/deletions and sites 

excluded due to missing data cannot be ruled out as being responsible. 

The French and Dutch candidate SNPs are clustered within a small region of about 

200 bp that shows strongly reduced nucleotide diversity (π) relative to the mean 
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across a 100-kb window surrounding the vg locus. In contrast, in all the other 

population samples, derived and ancestral, levels of π are rather high as well as 

divergence to D. simulans (Figure 3A). Thus, it seems unlikely that this reduction in 

genetic variation is the result of this region being under abnormally high selective 

constraint or having an unusually low mutation rate, but could indicate the action of 

positive directional selection. 

Except for one, all European candidate SNPs are located in introns of the vg gene 

(Figure 3, Table S3), which are known to contain many different regulatory elements 

(Pierre et al. 2014). Two of the three French and Dutch candidate SNPs fall into two 

known transcription factor binding sites (TFBSs) (Table 3). A Swedish candidate SNP 

in the vg promoter region co-localizes with several experimentally validated TFBSs 

including one for the Trithorax-like (Trl)/GAGA factor (GAF) protein, a PcG recruiter 

protein (Kassis and Brown 2013, Steffen and Ringrose 2014), as well as a putative 

PRE which was identified by chromatin immunoprecipitation (ChIP) experiments 

(Nègre et al. 2011) (Figure 3, Table S3). 

 

 

 

 

 

Figure 3 Genetic variation in the vg gene region and candidate SNPs (next page). (A) Nucleotide 

diversity (π) in the five population samples from Sweden, The Netherlands, France, Rwanda, and 

Zambia (black solid lines), as well as divergence to D. simulans (gray solid lines) in a sliding window 

across the vg gene region (window size = 500 bp, step size = 100 bp). Means of π and divergence in a 

100-kb window surrounding the vg locus, of which 36 kb are shown here, are given as black and gray 

dashed lines, respectively. Positions of candidate SNPs are given by red triangles and gray lines across 

panels. (B) Genetic map of the vg region. Coding regions are represented by black boxes, untranslated 

regions by gray boxes, and introns by black lines. Arrowheads indicate the direction of transcription 

and the positions of insulators are given by black triangles.  
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DISCUSSION 

Here we examined the expression response to temperature of the PcG target gene 

vg in natural populations of D. melanogaster from different latitudes and altitudes. 

The PcG together with another group of proteins, the Trithorax group (TrxG), are 

important epigenetic regulators of gene expression that act antagonistically to 

maintain repressed and activated transcription states, respectively. They are 

recruited to their target genes via PREs that influence the expression of their target 

genes in combination with other cis-regulatory DNA sequences (i.e. enhancers) in a 

cell- or tissue-specific manner. Enhancers initially determine the level of 

transcriptional output of PcG-regulated genes, and this transcriptional output is then 

epigenetically maintained by PREs (Schwartz et al. 2010; Kassis and Brown 2013; 

Steffen and Ringrose 2014).  

Another feature of PcG-regulation in Drosophila is that it is often observed to be 

sensitive to the temperature at which flies are held or reared with the transcriptional 

output increasing when temperature decreases (Fauvarque and Dura 1993; Chan et 

al. 1994; Zink and Paro 1995; Bantignies et al. 2003; Gibert et al. 2011). This 

phenomenon led to the hypothesis that adaptation of D. melanogaster to temperate 

environments might have included the buffering of this thermosensitive regulatory 

process (Levine and Begun 2008). Several studies explored the question whether the 

temperature-induced expression plasticity of PcG-regulated genes has been 

detrimental while settling in temperate habitats, and whether this plasticity has been 

buffered by the action of positive selection. Indeed, less expression plasticity due to 

temperature was observed in populations from temperate environments than in 

those from tropical environments (Levine et al. 2011). Other studies presented 

evidence for positive selection acting on PcG proteins (Harr et al. 2002; Levine and 

Begun 2008; Gibert et al. 2011), and for positive selection acting on cis-regulatory 

sequences that led to decreased thermosensitivity of PcG gene regulation in 

temperate populations (Voigt et al. 2015).  
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In this study, we observed temperature-sensitive expression of the PcG target gene 

vg in six populations from D. melanogaster with a decreased thermosensitivity in the 

four temperate populations relative to the two tropical populations from the 

ancestral species range. Temperate populations were derived from a range of 

different locations including high-latitude Europe and high-altitude Africa. The 

consistent response to temperature across all temperate populations indicates 

positive directional selection acting to decrease thermosensitivity of vg expression 

in those populations.  

However, the mechanisms underlying this reduced expression plasticity seem to 

differ between the temperate populations. Reduced vg expression at 17°C compared 

to the ancestral expression level led to a buffering of temperature-induced 

expression plasticity in the three population samples from warm-temperate 

climates. In contrast, in the cold-temperate sample from Sweden, increased vg 

expression at 28°C relative to the ancestral and the other population samples 

resulted in the observed buffering effect. Other ecological constraints due to the 

colder climate in Sweden could be a possible explanation for the observed 

difference. Higher overall vg expression, for instance, might have been additionally 

beneficial in the colder climate of Sweden. In contrast, convergent evolution leading 

to the same degree of buffering seems to be less likely, since Sweden was probably 

colonized by European flies already exhibiting reduced vg expression plasticity like 

the French and Dutch populations.  

We detected putative cis-regulatory candidate SNPs responsible for the Swedish 

expression response that are highly differentiated between Sweden and Zambia but 

not between the other temperate populations and the ancestral population. Since 

the three other temperate populations were similar in their expression response to 

temperature, the simplest scenario would be a common genetic basis causing this 

response. However, no highly differentiated SNP was detected that is shared among 

the three populations. Therefore, if there is a common genetic basis between the 
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three populations, it seems to be less likely that it is to a large extent explained by 

cis-regulatory changes. Given the large geographic distance between the Rwandan 

and the European populations, convergent evolution might also be a likely 

explanation for the similar expression response to temperature. In turn, for the two 

geographically close European populations, we could detect shared candidate SNPs 

that are clustered within a region that also shows signs indicative of positive 

selection. No highly differentiated SNP could be detected between the Rwandan and 

the Zambian populations. The lack of cis-regulatory candidates might indicate trans-

regulatory changes, which alter the abundance or activity of factors controlling vg 

expression (e.g., PcG proteins), to be largely responsible. However, since accurate 

detection of short insertions and deletions is still difficult using next-generation 

sequencing, highly differentiated insertions/deletions cannot be excluded as 

possible explanations for the observed expression differences. The same is true for 

sites that were excluded from the analysis due to an excess of missing data (see 

Materials and Methods). Support for trans-regulatory changes being important 

might come from another study that conducted a genome-wide scan to identify 

genes under positive selection within the Rwandan sample (Pool et al. 2012). Genes 

identified in this scan included two PcG/TrxG genes, pleiohomeotic like (phol) and 

female sterile (1) homeotic (fs(1)h), which are in turn putative candidates for trans-

regulatory factors responsible for the Rwandan decreased thermosensitivity. One of 

the four Swedish cis-regulatory candidate SNPs is located in the vg promoter region 

and a putative PRE identified by ChIP experiments (Nègre et al. 2011). In a reporter 

gene analysis that linked changes at cis-regulatory sites to differences in the 

thermosensitivity of PcG regulation, the sites were also found in a region harboring 

a known PRE (Voigt et al. 2015). The other six European candidate SNPs are located 

in intronic regions of the vg gene. It was shown before that mutations in vg introns 

can lead to changes in the thermosensitivity of vg expression (Silber et al. 1997). 

Since the main function of vg is in wing development (Williams et al. 1991; Lindsley 

and Zimm 1992; Kim et al. 1996), we also searched for temperature-induced 
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expression plasticity and its possible buffering in wing discs of wandering third instar 

larvae. In this tissue and at this developmental stage, vg is in an activated state and 

highly expressed (Williams et al. 1991). As a control tissue, we used the larval brain 

in which vg gene expression is low (Chintapalli et al. 2007). Thermosensitive 

expression as it is often observed for PcG-regulated genes and as we found for adults 

could not be detected in either of the two larval tissues. Therefore, selective 

pressure against such a temperature-induced expression plasticity might be much 

stronger in larval tissues compared to adult tissues and therefore is not observed in 

any of the populations, or PcG regulation is in itself not affected by temperatures in 

larval tissues like it is in adult tissues. At least for wing discs, the former explanation 

might be more likely. Silber et al. (1999) found mutations in vg introns causing 

thermosensitive expression of the gene in wing discs of these mutant flies, whereas 

no thermosensitivity was observed for wild type wing discs. 

In which adult tissue(s) the temperature-induced expression plasticity and its 

buffering in temperate populations is taking place, and whether the detected 

candidate SNPs are causing the observed buffering are questions still to be 

answered. However, here we have presented further evidence that temperature-

induced expression plasticity of PcG regulated genes has been buffered in temperate 

populations of D. melanogaster. 
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SUPPORTING INFORMATION 

 

Table S1 Fold-changes in gene expression at different rearing temperatures between tissues in 

third instar larvae 

Gene Rearing 

temperature 

Gene expression ratio wing disc/brain 

 

  

Sweden  

(SU) 

The 

Netherlands  

(NL) 

Zimbabwe 

 (ZK) 

Zambia 

(ZI) 

vg 17°C 11.77*** 10.53** 13.19*** 14.64** 

 28°C 8.45*** 12.71** 8.59*** 12.35*** 

Aats-asp 17°C 1.10 0.99 1.10 1.32 

 28°C 1.04 1.13 1.20 1.23 

Statistical testing included t-tests and correction for multiple testing. **P<0.01, ***P<0.001 

(FDR=0.05). 

 

Table S2 Fold-changes in tissue-specific gene expression between population samples in third 

instar larvae 

Gene Tissue Gene expression ratio between population samples 

  Population samples Rearing temperature 

   17°C 28°C 

vg Wing disc Sweden (SU)/The Netherlands (NL) 0.86 0.60 

  Sweden (SU)/Zimbabwe (ZK) 0.75 0.74 

  Sweden (SU)/Zambia (ZI) 1.35 0.78 

  The Netherlands (NL)/Zimbabwe (ZK) 0.87 1.59 

  The Netherlands (NL)/Zambia (ZI) 1.56 1.30 

  Zimbabwe (ZK)/Zambia (ZI) 1.79* 0.82 

 Brain Sweden (SU)/The Netherlands (NL) 0.77 1.14 

  Sweden (SU)/Zimbabwe (ZK) 0.84 0.90 

  Sweden (SU)/Zambia (ZI) 1.67 0.97 

  The Netherlands (NL)/Zimbabwe (ZK) 1.09 1.07 

  The Netherlands (NL)/Zambia (ZI) 2.17* 1.27 

  Zimbabwe (ZK)/Zambia (ZI) 1.99 1.18 

Aats-asp Wing disc Sweden (SU)/The Netherlands (NL) 0.94 0.86 

  Sweden (SU)/Zimbabwe (ZK) 0.84 0.87 

  Sweden (SU)/Zambia (ZI) 1.06 0.97 

  The Netherlands (NL)/Zimbabwe (ZK) 0.90 1.01 

  The Netherlands (NL)/Zambia (ZI) 1.13 1.13 

  Zimbabwe (ZK)/Zambia (ZI) 1.26 1.12 

 Brain Sweden (SU)/The Netherlands (NL) 0.85 0.93 

  Sweden (SU)/Zimbabwe (ZK) 0.84 1.00 

  Sweden (SU)/Zambia (ZI) 1.27 1.14 

  The Netherlands (NL)/Zimbabwe (ZK) 1.00 1.08 

  The Netherlands (NL)/Zambia (ZI) 1.50 1.23 

  Zimbabwe (ZK)/Zambia (ZI) 1.51* 1.15 

Statistical testing included t-tests and correction for multiple testing. *P<0.05 (FDR=0.05). 
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Table S3 Candidate SNPs  

Population samples Genomic 

position  

FST Gene region Regulatory 

region 

TFBS 

Sweden (SU) 2R:12,884,497 0.62 promoter PRE dl, Med, D 

Trl, bab1, 

twi, da,  

prd, sens, 

hb 

 2R:12,888,606 0.73 intronic -  

 2R:12,893,153 0.65 intronic -  

 2R:12,894,323 0.74 intronic -  

The Netherlands (NL) 

/France (FR) 

2R:12,898,469 0.63/0.61 intronic - chinmo, 

cad 

 2R:12,898,497 0.63/0.61 intronic - chinmo, 

cad 

 2R:12,898,678 0.73/0.71 intronic -  

Genomic position is given according to FlyBase release 6. FST (Weir and Cockerham 1984) was 

calculated between the respective derived and the ancestral Zambian population samples. 

Information about regulatory regions and transcription factor binding sites (TFBS) that were 

identified by immunoprecipitation (ChIP) experiments were also derived from FlyBase release 6 

(Pierre et al. 2014). 
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ABSTRACT There is a growing interest in investigating the relationship between genes with signatures of

natural selection and genes identified in QTL mapping studies using combined population and quantitative

genetics approaches. We dissected an X-linked interval of 6.2 Mb, which contains two QTL underlying variation

in chill coma recovery time (CCRT) in Drosophila melanogaster from temperate (European) and tropical

(African) regions. This resulted in two relatively small regions of 131 kb and 124 kb. The latter one co-localizes

with a very strong selective sweep in the European population. We examined the genes within and near the

sweep region individually using gene expression analysis and P-element insertion lines. Of the genes over-

lapping with the sweep, none appears to be related to CCRT. However, we have identified a new candidate

gene of CCRT, brinker, which is located just outside the sweep region and is inducible by cold stress. We

discuss these results in light of recent population genetics theories on quantitative traits.
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Quantitative genetics assumes that selection on an adaptive trait in-
volves simultaneous selection at multiple loci contributing to this trait.
This causes small to moderate allele frequency shifts at these loci
(Barton and Keightley 2002). Therefore, adaptation does not require
new mutations in the short-term. Instead, selection may use alleles
that are found in the standing genetic variation (Pritchard and Di
Rienzo 2010). Genome-wide data suggest that this quantitative genetic
view is relevant (Mackay et al. 2012). In particular, association studies
confirm that quantitative traits are typically polygenic.

However, there is the view that the molecular population genetics
scenario of selective sweeps is also important in describing selection
on quantitative traits. These sweeps may be caused by new mutations
or low-frequency alleles from the standing variation. Empirical
evidence for the occurrence of sweeps at QTL has been reported in
studies of artificial selection, including the domestication of chickens

(Rubin et al. 2010), dogs (Axelsson et al. 2013), pigs (Rubin et al.

2012), and cattle (Qanbari et al. 2014). Furthermore, there is growing
evidence of sweeps associated with positive directional selection on
quantitative traits in natural populations. Linnen et al. (2013) studied
coat color adaptation in deer mice controlled by a single large gene
that shows multiple signatures of sweeps. Incomplete sweeps in the
enhancer region of the gene ebony have contributed to the darker
color of the abdominal segments of high-altitude Drosophila

melanogaster from Uganda (Pool and Aquadro 2007; Rebeiz et al.

2009). Sweeps have also been observed at the EDA locus in three-
spine sticklebacks associated with the reduction of lateral plate armor
in fresh water environments (Cano et al. 2006). In the common sun-
flower, selective sweeps have revealed candidate genes for adaptation
to drought and salt tolerance (Kane and Rieseberg 2007).

Sophisticated methods have been developed to detect selective
sweeps in a genome (Thornton et al. 2007; Pavlidis et al. 2008; Stephan
2010). In this study, we utilized these methods in combination with
quantitative genetics tools to dissect a QTL interval for cold tolerance
in D. melanogaster. Cold tolerance has been shown to be driven by
environmental selection (Hoffmann et al. 2002; Schmidt et al. 2005)
and to have a highly polygenic basis (Morgan and Mackay 2006; Norry
et al. 2008; Svetec et al. 2011; Mackay et al. 2012). In a previous
analysis, using strains from African (tropical) and European (temper-
ate) regions, we have identified X-linked QTL controlling chill coma
recovery time (CCRT), a proxy for cold tolerance (Svetec et al. 2011).
Here, we chose one interval of size 6.2 Mb, which contains two QTL
shared between both sexes, and fine-mapped it using quantitative
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complementation tests. This resulted in a 131-kb region and a
124-kb region. In the European population, a strong selective sweep co-
localized with the 124-kb region. We then analyzed this region in
detail using population genetics and gene expression analyses. We
found that the genes within the selective sweep region are probably
not related to the trait, but a gene (brinker) just outside the sweep is
induced by cold stress.

MATERIALS AND METHODS

Fly lines

To conduct quantitative complementation tests on chromosomal dele-
tions, a set of available deficiency lines were ordered at the Bloomington
stock center (http://flystocks.bio.indiana.edu). Although the QTL interval
was defined by Svetec et al. (2011) to be 6.2 Mb long (6C to 11D), the set
of available deletions spans 5.8 Mb of its total length between coordinates
6,642,419 and 12,461,494 that correspond to cytological bands 6C to 11B
(Figure 1). This 5.8-Mb-long interval is covered by a total of 24 over-
lapping deletions with known breakpoints at the sequence level in 92% of
the cases. Additional deficiencies were tested if necessary.

The African and European versions of the X-chromosome used in
the complementation tests are contained in fly lines A� and E�, created
by introgressing one X-chromosome from a population of Zimbabwe
and one from the Netherlands into a common laboratory strain
(Svetec et al. 2011). Hence, these two lines bear different X-linked
alleles while the rest of the major nuclear chromosomes and mito-
chondrial DNA are the same. These two lines are the parents of an
X-recombinant inbred population used to localize the QTL interval
that concerns us in this project.

Prior to CCRT scoring experiments, virgin female flies bearing the
deficiency chromosome and the respective balancer were mated with
males of the A� and E� lines, respectively. Eggs were allowed to de-
velop in the same medium in which they were laid at 23�. Female F1
were sorted on hatching by phenotype as balancer or deletion bearer.
Because all balancer types used to maintain the deletions have a dom-
inant mutation for eye shape at the Bar (B1) locus, F1 flies exhibiting
the B1 mutant phenotype were considered as balancer bearers, whereas
wild-type appearance was indicative of bearing the deletion. Sorted

flies were kept at room temperature until CCRT scoring on their fourth
to sixth day of life.

Assessments of expression levels of candidate genes were con-
ducted using 4- to 6-day-old female flies belonging to the Netherlands
population (isofemale lines: NL01, NL12, NL14, NL15, NL16, NL18,
NL19, NL20) and the Zimbabwean population (isofemale lines: ZK84,
ZK131, ZK145, ZK157, ZK186, ZK229, ZK377, ZK398). Flies were
reared at 23� and subjected to cold stress in the same manner as
reported for CCRT scoring. Three flies per line were used as controls
(not exposed to cold). Three flies of each line were snap-frozen in
liquid nitrogen at 10 min after being brought to room temperature,
whereas three remaining flies per line were scored for their CCRT and
frozen 15 min after the minute in which they were reported as re-
covered. Control flies, which remained at 23� in glass vials during the
7 hr of treatment, were also snap-frozen at the end of this time period.
Frozen material was stored at 280� until RNA extractions were per-
formed. Population pools per line/treatment were made prior to RNA
extraction. Each population pool per treatment consisted of eight flies
of the same population. Three population pools per treatment were
made for both the Netherlands and Zimbabwe.

CCRT scoring

Once flies reached 4 to 6 days of age, they were scored for CCRT
following the protocol of Svetec et al. (2011). Briefly, flies were trans-
ferred to glass vials without anesthesia and placed in an ice-water bath
of 0� for 7 hr. At the end of this time period, flies were brought back
to room temperature (23�) and observed in time intervals of 1 min.
The minute in which a fly was standing on its feet was recorded as its
CCRT.

Quantitative complementation tests on deficiencies

On average, 35 female flies per each of the four resulting genotypes
E�/def, A�/def, E�/bal, and A�/bal were scored. For ANOVA analysis,
log-transformed CCRT scores per genotype, line (L), and genomic
background (G) were kept as fixed effects. We focused on the signif-
icance of the interactions of these two factors (L · G) as well as on the
following two conditions to call the procedure quantitative failure to

Figure 1 Map of tested deletions within the QTL interval undergoing study. All deletions, represented by green or blue bars, span a 5.8-Mb
fraction of the 6.2-Mb-long interval of interest on the X-chromosome. Deletion breakpoints at the base pair level are known for all deletions
except Df(1)HA32 and Df(1)C128, for which only cytological bands are reported. Both physical and cytological coordinates are provided. The 24
deletions represented in green represent the minimum available set spanning the 5.8-Mb QTL interval; deletions in blue were tested on failure to
complement of one of the overlapping deletions in green. Fractions of the QTL interval with light gray shading indicate regions of interest under
deletions that show failure to complement. Red borders of this gray background indicate highly significant failure to complement (P , 0.01).
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complement: the differences in CCRT for the genotypes bearing the
balancer had to be small compared with that of the genotypes bearing
the deletion; and in the latter case, the E�/def flies should show re-
duced CCRT with respect to the A�/def genotypes. It is expected that if
these conditions are satisfied, failures to complement due to the pres-
ence of other QTL outside the region in question can be ruled out.
However, a failure to complement detected with a given deficiency
either can be caused by its interaction with QTL alleles in the region
uncovered by a deficiency (allelism) or arise by interaction between
this deficiency and QTL alleles elsewhere in the genome (epistasis)
(Pasyukova et al. 2000; Service 2004). Because we are interested in the
allelic cases of failure to complement by using the E� and A� lines (as
well as its inbred wild-type progenitor lines) in the tests, we control
for most of the epistatic effects that can be caused by loci residing on
chromosomes 2 and 3. Bonferroni correction was applied to control
for multiple testing.

RNA extraction and cDNA synthesis

RNA was extracted from pools using the MasterPure RNA Purifica-
tion Kit (Epicentre Biotechnologies, Madison, WI), followed by DNase
treatment. Purified RNA was quantified with a nanodrop apparatus
and tested for genomic DNA contamination based on a PCR (Phusion)
protocol using a primer pair binding in nontranscribed regions of the
X-chromosome (Primer code: X-1435; sequence available on request).
Samples tested positive for genomic DNA were excluded from down-
stream protocols. cDNA synthesis was performed with SuperScript III
Reverse Transcriptase (Invitrogen, Carlsbad, CA) on 1400 ng of RNA
per reaction.

RT-qPCR assays

RT-qPCR assays for candidate genes CG1958, CG1677, CG2059, unc-
119, brk, and Atg5 were performed with primers designed using the
online tool QuantPrime (www.quantprime.de) to match all possible
transcript types per candidate gene. The ribosomal genes RpS20 and
RpL32 were taken as reference genes, against which relative gene
expression levels of our genes of interest were normalized. RT-qPCR
assays consisted of a total of three biological replicates each run in
triplicate and were conducted on a Real-Time thermal cycler CFX96
platform (BioRad, Hercules, CA). Each reaction was taken to a final
volume of 10 ml using iQ SYBR Green Supermix (BioRad, Hercules,
CA). Further details of the experimental setup, such as amplification
efficiency assessments with dilution series, can be provided on request.

Obtained Cq values per replicate within line (or pool) and treat-
ment were transformed to calibrated normalized relative quantities
(CNRQ) following Hellemans et al. (2007). Log-transformed CNRQs
were then used to test the hypothesis of expression differences between
pairs of lines (or pool) within and between treatments. For this pur-
pose, Welch two-sample t-tests were performed on comparisons with
fold differences above a threshold (defined by the variance between
technical replicates). The Benjamini and Hochberg (1995) P-value cor-
rection was applied to control for false positives, due to the high num-
ber of simultaneous tests performed.

Basic population genetics analysis

Molecular variation was characterized in the genomic fragment un-
covered by the deletion Df(1)ED9606; i.e., a total of 124 kb between
coordinates 7,089,000 and 7,212,999. Publically available whole-
genome sequences generated by Illumina NGS technology for four
D. melanogaster populations were retrieved from the Drosophila
Population Genomics Project (DPGP) at http://www.dpgp.org. The

populations include the Netherlands (NL) with 11 lines (NL01, NL02,
NL11, NL12, NL13, NL14, NL15, NL16, NL17, NL18, NL19), France
(FR) with 8 lines (FR14, FR151, FR180, FR207, FR217, FR229, FR310,
FR361), Rwanda (RG) with 25 lines (RG2, RG3, RG4N, RG5, RG6N,
RG7, RG8, RG9, RG10, RG11N, RG13N, RG15, RG18N, RG19,
RG21N, RG22, RG24, RG25, RG28, RG2, RG32N, RG33, RG36,
RG37N, RG38N), and Southeast Africa consisting of a pool of 18 lines
from Zambia (ZI91, ZI261, ZI268, ZI468, ZO12, ZO65), Zimbabwe
(ZK84, ZK131, ZK186, ZS5, ZS11, ZS56), and Malawi (MW6, MW11,
MW28, MW38, MW46, MW63). The corresponding D. simulans se-
quence (Hu et al. 2013) was used as outgroup.

The following quality-control steps during the initial handling of
the sequence data were used. First, nucleotides with a PHRED score
lower than 21 were set to N. Unless otherwise stated, this quality cri-
terion was applied to all analyses in which DPGP sequence data were
used. Second, if a given polymorphic site in the alignment showed
a frequency of N higher than 10%, then it was excluded from the
analysis. The following summary statistics were then computed on
2-kb-long nonoverlapping windows: up (Tajima 1983), uW (Watterson
1975), and divergence (Dxy) to the outgroup (Nei 1987). In addition,
pairwise FST was calculated as normalized distance of Nei (Nei and Li
1979). Neutrality tests based on the site frequency spectrum (SFS) using
the Tajima (1989) D statistic were also calculated.

Composite likelihood ratio test of positive selection

To investigate whether the observed SFS in the region of interest is
compatible with the one expected after a selective sweep, we calculated
the composite likelihood ratio (CLR) statistic (Kim and Stephan 2002;
Nielsen et al. 2005; Pavlidis et al. 2010) as it is implemented in the
software SweeD (Pavlidis et al. 2013). This likelihood ratio test statistic
compares a selective sweep model and a neutral model that is cali-
brated with the genomic background frequency spectrum. We used
the parallel version of the software (SweeD-P) to calculate the CLR
statistic along the X-chromosome in our European sample (19 lines
from the Netherlands and France). In addition to the classes of the SFS
(i.e., 1 to n-1, where n is the sample size), we considered two additional
site classes consisting of sites that are monomorphic in the European
sample and polymorphic in the Rwandan sample. Extending the SFS
in this way was shown to improve the power of the method to detect
selective sweeps (Nielsen et al. 2005). SweeD was run on a 16-core
CPU using the command line option “- -monomorphic” with 500,000
grid points. The background SFS was taken from the complete
X-chromosome. However, following Pool et al. (2012), we excluded from
the analysis telomere and centromere regions of the X-chromosome due
to their very low recombination rate. The coordinates of the excluded
regions range from the origin until position 2,222,391 for the telomere
and from position 20,054,556 to the end for the centromere region.
Finally we compared the CLR profile of our region of interest to the
profile calculated for the complete chromosome.

The significance level of the CLR-test statistic was calculated by
simulating large genomic regions with the coalescent simulator
fastsimcoal2 (Excoffier and Foll 2011) under a neutral model that
takes into account our current knowledge of the demography of
European populations of D. melanogaster (Laurent et al. 2011). For
every one of the simulated datasets, we computed the CLR-test sta-
tistic in the same way as we did for the observed dataset and recorded
the maximum CLR value. We used the 95th quantile of the distribu-
tion of top CLR values as our significance threshold. Because this
analysis becomes computationally intensive as the size of the simulated
genomic region increases, we investigated the relation between the
threshold value and the size of the simulated region. We simulated
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batches of 100 datasets of increasing size from 50 to 5000 kb in length
and took the asymptotic value reached as the chromosomal threshold.

FST-based scan for positive selection

For the set of FST analyses performed with BayeScan (Foll and
Gaggiotti 2008) (http://cmpg.unibe.ch/software/bayescan/), input files
were prepared following the authors’ instructions. The different runs
were performed using default parameters with the sequence data of
the same DPGP samples from the Netherlands, France, Rwanda, and
Southeast Africa. In addition, lines from the following African pop-
ulations were included: Ethiopia (ED2, ED3, ED5N, ED6N, ED10N,
EZ2, EZ5N, EZ9N, EZ25), Cameroon (CO1, CO2, CO4N, CO8N,
CO9N, CO10N, CO13N, CO14, CO15N, CO16), and South Africa
(SP80, SP173, SP188, SP221, SP235, SP241, SP254). SNP exclusion
criteria were as follows: positions showing more than two segregating
alleles as well as sites with less than 50% base calls in one population
were excluded from the analysis.

RESULTS
We first describe the results of the deficiency mapping and then those
of the population genetics analysis and the gene expression studies.

Quantitative deficiency mapping

To dissect the QTL interval reported by Svetec et al. (2011) corre-
sponding to the interval at 6C-11D of approximately 6.2 Mb in length,
we conducted quantitative complementation tests for 24 overlapping
deletions spanning 94% of this interval. The chromosome fractions
comprising the remaining 6% of the interval were left untested due to
lack of suitable deletions. With the set of 24 deficiencies (Figure 1), we
could potentially uncover the effect of line-specific alleles (line-specific
refers to the type of X-chromosome involved in the test, which is
either African or European) at 588 (95%) of the 622 annotated and
computationally predicted genes within the interval. Overall, 14 of 24
of the tested deficiencies showed significant line effects at the 5% level,
whereas 9 of 24 showed a significant effect of the genomic background
on CCRT scores (with the term “genomic background” we refer to the
involved deletion and balancer chromosomes; see Materials and

Methods). We observed failure to complement in 4 of the 24 tested
deletions (Table 1). Failure to complement implied both a significant
effect of line (L) and a significant line by genomic background in-
teraction (L · G) as long as the differences in CCRT followed the
expected direction. That is, there were shorter CCRT times for flies
bearing the E� X-chromosome in the presence of the deletion com-
pared with the corresponding flies bearing the A� X-chromosome in
the presence of the same deletion, but no difference was shown be-
tween the CCRT of the flies bearing the E� and A� X-chromosomes in
the presence of the balancer chromosome.

Deletions Df(1)ED6906 and Df(1)C128 were the only ones that
revealed a highly significant failure to complement. In the case of
Df(1)ED6906, the difference between the means of the CCRT scores
for the flies bearing this deletion is 9.18 min, whereas that of the flies
harboring the balancer chromosome is 1.82 min (Table 1). This means
that deletion Df(1)ED6906 has potentially uncovered E� X-chromosome
alleles and/or alleles with the opposite effect residing on the A�

X-chromosome. A similar interpretation can be given for the results
obtained for Df(1)C128, Df(1)BSC592 and Df(1)BSC537, which also
failed to complement, as evidenced by the significant L and L · G

effects and by the higher CCRT differences in the presence of the
deficiency than in the presence of the balancer. However, for the two
last deletions, these effects were only marginally significant (Table
1). Thus, they are not considered for further study.

Although our results with Df(1)ED6906 and Df(1)C128 meet the
requirements to be considered allelic failures to complement, these
can also be interpreted as an epistatic failure to complement due to
interactions of these deficiencies with other loci that affect CCRT
residing elsewhere on the X or in the other two major chromosomes.
We are aware of the limitation of quantitative deficiency mapping to
tell these two causes apart (Pasyukova et al. 2000). This is also a prob-
lem in similar studies (Fanara et al. 2002; De Luca et al. 2003;
Geiger-Thornsberry and Mackay 2004; Harbison et al. 2004). How-
ever, because we used the E� and A� lines that share the same genetic
background for their respective wild-type–derived X-chromosomes
and not the wild-type inbred lines NL14 and ZK157, we can exclude
interactions with factors located outside the X-chromosome.

The fact that we used a set of overlapping deficiencies allowed us to
better define the stretch that revealed quantitative failure to comple-
ment. With respect to the 210-kb-long deletion Df(1)ED6906, the
67.15 kb overlapping with deletion Df(1)BSC536 were subtracted from
the stretch of interest (Figure 1). Furthermore, the results of the com-
plementation tests with yet another overlapping deficiency at the same
end (Df(1)BSC711) allowed us to subtract an additional 19.64 kb from
the 210 kb encompassing Df(1)ED6906 (Figure 1). At the other end
of deletion Df(1)ED6906, its overlap with deletion Df(1)HA32 is not
known at the base pair level. Thus, the redefined fraction of interest
under deletion Df(1)ED6906 encompasses 124 kb between coordinates
7.09 and 7.21 Mb. Similarly, for the other highly significant deletion
Df(1)C128, the redefined region of interest has a of length 131 kb
(between coordinates 7.85 and 7.98 Mb).

This quantitative complementation mapping approach based on
overlapping deletions has allowed us to reduce the number of initial
candidate genes within the QTL undergoing study from 622 to a subset
of 21. A total of 7 genes are located within the 124 kb uncovered
by deletion Df(1)ED6906, and 14 genes were uncovered by deletion
Df(1)C128. This is remarkable given the substantial fraction of unchar-
acterized genes in the 6.2 Mb of the QTL defined by Svetec et al. (2011)
and the absence of known a priori candidate genes for CCRT in this
chromosomal region.

In the next section we show that of the two regions identified by
the complementation tests, the 124-kb region uncovered by deletion
Df(1)ED6906 overlaps with a selective sweep identified in several pre-
vious analyses (Glinka et al. 2006; Boitard et al. 2012; Langley et al.

2012), whereas we did not detect evidence for positive directional
selection in deletion Df(1)C128 (see below). Therefore, in the follow-
ing section we focus on deletion Df(1)ED6906.

Molecular population genetics analysis

We characterized molecular variation in the genomic region of 124 kb
uncovered by deletion Df(1)ED9606 in natural populations of
D. melanogaster. First, we calculated a set of summary statistics on
a 2-kb nonoverlapping window basis using next-generation sequence
data from two European (the Netherlands and France) and two Af-
rican (Rwanda and Southeast Africa) populations. The Netherlands
population and a set of Southeast African lines represent the gene
pools from which the E� and A� lines were derived. The additional
two populations consisted of French and Rwanda sequence data from
the DPGP (Pool et al. 2012). These four populations allowed us to
draw conclusions on patterns of variation in temperate and tropical
populations.

For each population we obtained nucleotide diversity estimates
measured by the average number of pairwise differences (up) and
Watterson’s estimator (uW). The European populations showed a
three-fold to four-fold reduction in nucleotide diversity when compared
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with the African populations (Table 2). Supporting Information, Figure
S1 depicts the values of the 2-kb windows along the entire region of 124
kb in the four populations. The up values in the Netherlands and
French populations are along a 40-kb fragment (positions 65,000 to
105,000) 1 SD lower than the average over the 124-kb region. This
pattern is in contrast to that observed in the two African populations
for the same coordinates, for which nucleotide diversity values tend to
be above their respective population averages. FST estimates along the
124-kb region between each of the European populations and the
Southeast African pool parallel the diversity estimates such that FST
vales are higher where diversity is low in the two European populations
(Figure S1). Regarding divergence of each population to D. simulans,
the averages of the two European populations are approximately 10%
whereas those of the African populations have values between 12% and
13% (Table 2).

We also analyzed possible deviations from the standard neutral
SFS using Tajima’s D statistic (Figure S2). The African samples from
Rwanda and Southeast Africa show generally negative D values that

are typical for these populations (Glinka et al. 2003; Pool et al. 2012).
The European samples have average D values near zero and a larger
variance, as was also found previously (Glinka et al. 2003). Most in-
terestingly, however, is the 40-kb window from position 65,000 to
105,000, in which Tajima’s D has lower than average values (except
for a peak around coordinate 87,000).

The patterns of polymorphism observed in the region of interest in
the European and African populations revealed a conspicuous re-
duction of genetic variability and a negative Tajima’s D in both Eu-
ropean populations that extends for approximately 40 kb between
relative position 65,000 and 105,000 in the 124-kb region. This re-
duction already has been identified as a footprint of positive selection
in non-African populations (Glinka et al. 2006; Boitard et al. 2012;
Langley et al. 2012). In this work, motivated by the link to the QTL,
we revisited these analyses.

Because demographic scenarios (particularly bottlenecks) can create
similar genomic patterns as positive directional selection (Stephan and
Li 2007), we subjected the data of the available European samples

n Table 1 Deficiency analysis of X-linked QTL affecting CCRT in female flies

Mean CCRT (SD), min

Deletion Balancer E�/Deletion E�/Balancer A�/Deletion A�/Balancer Ddef Dbal P L P G P L · G Stock No.

Df(1)BSC351 FM7h 31.70 (7.99) 30.91 (7.88) 31.46 (9.42) 32.73 (8.72) 0.24 21.82 0.070057 0.838897 0.343401 24375
Df(1)BSC882 FM7h 29.39 (9.94) 30.91 (7.88) 32.69 (12.41) 32.73 (8.72) 23.3 21.82 0.018773 0.149609 0.574953 30587
Df(1)HA32 FM7c 37.75 (8.24) 32.16 (9.01) 41.61 (10.42) 33.25 (9.28) 23.86 21.09 0.177930 0.000001 0.454433 947
Df(1)ED6906 FM7h 26.93 (5.66) 30.91 (7.88) 36.28 (8.52) 32.73 (8.72) 29.35 21.82 0.000103 0.779708 0.000289 8955
Df(1)BSC711 FM7h 35.73 (6.52) 30.91 (7.88) 34.03 (8.45) 32.73 (8.72) 1.7 21.82 0.944120 0.011307 0.121501 26563
Df(1)BSC536 FM7h 36.27 (9.81) 30.91 (7.88) 36.43 (11.34) 32.73 (8.72) 20.16 21.82 0.055280 0.002486 0.473532 25064
Df(1)BSC622 Binsinscy 33.37 (9.22) 35.59 (8.83) 34.50 (8.65) 36.60 (9.59) 21.13 21.01 0.386305 0.121365 0.820123 25697
Df(1)C128 FM6 26.97 (6.16) 30.11 (8.63) 37.44 (8.11) 32.63 (7.74) 210.48 22.52 0.000012 0.606252 0.000885 949
Df(1)BSC866 Binsinscy 36.26 (8.16) 35.59 (8.83) 37.46 (11.06) 36.60 (9.59) 21.21 21.01 0.480645 0.501206 0.850165 29989
Df(1)BSC662 Binsinscy 40.29 (8.98) 35.59 (8.83) 39.89 (9.70) 36.60 (9.59) 0.39 21.01 0.330040 0.002076 0.615274 26514
Df(1)BSC592 Binsinscy 31.42 (7.47) 35.59 (8.83) 37.92 (9.16) 36.60 (9.59) 26.51 21.01 0.063548 0.639100 0.031094 25426
Df(1)Exel6241 FM7c 31.57 (7.29) 32.16 (9.01) 30.29 (8.76) 33.25 (9.28) 1.29 21.09 0.685768 0.224516 0.294193 7715
Df(1)ED6957 FM7j 27.90 (7.68) 32.16 (9.01) 29.21 (6.77) 33.25 (9.28) 21.31 21.09 0.261153 0.001693 0.795931 8033
Df(1)BSC537 FM7h 29.64 (7.36) 30.91 (7.88) 35.36 (8.17) 32.73 (8.72) 25.71 21.82 0.004959 0.528960 0.099098 25065
Df(1)BSC712 FM7j 40.21 (8.39) 35.59 (8.83) 39.66 (9.36) 36.60 (9.59) 0.55 21.01 0.623921 0.005147 0.565518 26564
Df(1)BSC539 Binsinscy 31.50 (7.07) 35.59 (8.83) 34.30 (7.52) 36.60 (9.59) 22.8 21.01 0.239470 0.026941 0.414266 25067
Df(1)ED7005 FM7h 29.63 (6.45) 30.91 (7.88) 29.21 (6.46) 32.73 (8.72) 0.43 21.82 0.060255 0.075504 0.350039 9153
Df(1)BSC755 Binsinscy 30.36 (7.49) 30.11 (8.63) 33.33 (6.92) 32.63 (7.74) 22.98 22.52 0.009057 0.547656 0.88738 26853
Df(1)BSC540 FM7h 32.20 (7.51) 30.91 (7.88) 34.73 (9.31) 32.73 (8.72) 22.53 21.82 0.022620 0.141156 0.845784 25068
Df(1)BSC572 FM7h 31.11 (6.04) 30.91 (7.88) 37.05 (7.54) 32.73 (8.72) 25.94 21.82 0.009129 0.070999 0.152617 25391
Df(1)BSC287 Binsinscy 36.11 (9.57) 35.59 (8.83) 35.23 (8.06) 36.60 (9.59) 0.87 21.01 0.596120 0.852371 0.643564 23672
Df(1)ED7067 FM7h 28.89 (7.99) 30.91 (7.88) 29.58 (7.80) 32.73 (8.72) 20.68 21.82 0.039538 0.029350 0.702833 9154
Df(1)Exel6242 FM7c 33.96 (7.48) 32.16 (9.01) 32.93 (7.68) 33.25 (9.28) 1.03 21.09 0.585559 0.397537 0.406384 7716
Df(1)ED7147 FM7h 31.43 (7.44) 30.91 (7.88) 34.96 (8.42) 32.73 (8.72) 23.52 21.82 0.010630 0.272976 0.497331 9171
Df(1)BSC543 FM7h 30.88 (6.43) 30.91 (7.88) 33.75 (6.67) 32.73 (8.72) 22.88 21.82 0.012423 0.689596 0.674376 25071
Df(1)ED7153 FM7h 29.80 (6.30) 30.91 (7.88) 30.47 (6.82) 32.73 (8.72) 20.67 21.82 0.028176 0.134114 0.603622 8953

Summary of quantitative deficiency tests performed with the listed deletions. Ddef is the difference between the average CCRT of flies bearing E� and A�

chromosomes in the presence of a given deletion. Negative differences suggested the presence of CCRT reducing alleles at sites potentially uncovered by the
deletion. Dbal is the difference between the average CCRT of flies bearing E� and A� chromosomes in the presence of a given balancer chromosome. Note that
deletions held with the same balancer show the same the Dbal values. P L is the value for the line effect (E� or A�) from two-way ANOVA analysis. P G is the value for
the genomic background effect (deletion or balancer) effect from two-way ANOVA analysis. P L · G P is the value for the interaction between the two aforementioned
variables. Stock no. is the code number under which the fly line bearing the deletion can be ordered at the Bloomington Stock Center in Indiana.

n Table 2 Summary statistics average for the QTL undergoing study in four D. melanogaster populations

Population up, Mean (SD) uW, Mean (SD) Dxy, Mean (SD) Tajima’s D, Mean (SD)

The Netherlands 0.0010 (0.0007) 0.0010 (0.0006) 0.0953 (0.0352) 20.4995 (1.0403)
France 0.0008 (0.0007) 0.0008 (0.0006) 0.1042 (0.0382) 20.1010 (0.869)
Rwanda 0.0031 (0.0011) 0.0041 (0.0013) 0.1286 (0.0422) 20.9671 (0.4024)
Southeast Africa 0.0034 (0.0011) 0.0042 (0.0012) 0.1248 (0.0482) 20.7834 (0.3875)
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(pooling the Netherlands and French lines) to the most advanced
composite likelihood ratio test (Pavlidis et al. 2013). This likelihood
ratio was computed between a selective sweep model and a neutral
model that is calibrated with the genomic background frequency spec-
trum. The background SFS was obtained from 20 Mb of the
X-chromosome, excluding the telomere and centromere regions (see
Materials and Methods). In our region of interest, the fragment be-
tween relative positions 65,000 and 105,000 exhibits a SFS that is in
contrast to that of the genomic background and is better described by
a selective sweep model (Figure 2A). The CLR values obtained for this
interval (LCLR .300) are within the top 1% of CLR values along the
entire region of the X-chromosome analyzed (Figure S3) and are above
the significance threshold of 72 that corresponds to the 95th quantile of
the top CLR values of 100 simulated subgenomic regions of 5 Mb. This
value did not increase when larger genomic regions were simulated
(Figure S4). Simulations were based on our current understanding of
the demographic history of European populations (Laurent et al. 2011;
Duchen et al. 2013).

Using the same CRL test, we also analyzed in detail Df(1)C128, the
second highly significant deletion uncovered by the quantitative com-
plementation test (between coordinates 7.85 and 7.98 Mb). However,
we could not find evidence for selective sweeps (see Figure S3).

Because a large fraction of the region of low variation in Europe
(particularly the coding regions of genes CG1958, CG1677, CG5059,
and unc-119; see the gene model below) (Figure 2B) contains no or
very little variation, the CLR tests cannot be used to identify the

targets of selection. Instead, we utilized genetic differentiation between
African and European populations to obtain model-based FST coeffi-
cients (Foll and Gaggiotti 2008; Riebler et al. 2008) for each SNP
within the 124-kb region of interest (Figure 2B). We considered
SNP data from seven populations along a gradient across Africa
and Europe: South Africa, Southeast Africa, Rwanda, Cameroon,
Ethiopia, France, and the Netherlands. Using BayeScan (Foll and
Gaggiotti 2008), we obtained a pattern of FST values from a dataset
of 7316 SNPs with an average FST of 0.2621 and revealed four outlier
SNPs that show the highest differentiation across populations at an
FDR of 5% (Figure 2B). These four SNPs are located within the 40-kb-
long fragment enriched for SNPs showing significant CLR values
between positions 65,000 and 105,000 (Figure 2A). The 65-kb-long
and 19-kb-long flanking regions to the left and to the right of the
40-kb fragment, respectively, are enriched for SNPs showing below-
average FST values (Figure 2B). However, none of these SNPs with low
differentiation across populations is significant at the 5% FDR.

The exclusion of European populations from the analysis did not
change the pattern of high-differentiation outlier SNPs (results not
shown). This suggests that allele frequency differentiation at outlier
SNPs had already started within the African continent. Furthermore,
because the European populations probably have experienced more
severe bottlenecks than the African populations (Li and Stephan 2006;
Pool et al. 2012), we may conclude that the BayeScan results are
relatively robust against demographic changes and are not due to
the strong bottleneck in the European population.

Figure 2 Evidence of positive selection and candidate SNPs in the 124-kb region under deletion Df(1)ED6906. (A) Likelihood (CLR) profile along
the 124-kb on the X-chromosome using SNP data of two pooled European D. melanogaster from the Netherlands and France. Two significance
thresholds are depicted. The solid line corresponds to the average of the top 1% CLR values for the X-chromosome in Europe and the dashed red
line represents the significance threshold from simulations of equivalent subgenomic regions. (B) Model-based FST values for 7316 SNPs from
a dataset including two European and five African samples (see Materials and Methods). Top SNPs (above the false discovery rate of 5%) are
marked with position and a thin continuous line across panels.
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Among the outlier SNPs that show high differentiation across the
entire intercontinental dataset, the top ones are 86,661C /T (FST=0.4697,
a=2.02, q-value=0.0024) and 86,670T/C (FST=0.4654, a=1.98,
q-value=0.0042). These two nonsynonymous SNPs are located in exon
5 of the computationally predicted gene CG1677 and show alleles in
perfect linkage disequilibrium (LD) (Figure 3). The TT haplotype
(86,661T–86,670T) is in high frequency in the Southeast African samples
and is intermediate in Rwanda; its frequency decreases with increasing
latitude to be replaced in the European populations by the CC haplo-
type. Both SNPs predict changes in the amino acid sequence of the
protein. The common Southeast African form of the protein codes for
a threonine (Thr) and an asparagine (Asn) at residues 936 and 939,
respectively, whereas the cosmopolitan form has an alanine (Ala) and
aspartic acid (Asp) at these two positions. The third highly significant
SNP is 80,089A/G (FST=0.4146, a=1.54, q-value=0.0313) located between
genes CG1958 and CG1677 (Figure 2). Its allele frequency distribution
across populations is also shown in Figure 3. Finally, SNP 101,154C/G

(FST = 0.4068, a=1.4804, q-value = 0.0481) is located 5 kb upstream of
gene unc-119 within the large intron of gene CG1677 (Figure 2).

Candidate gene expression analyses and
complementation tests with P-element insertion lines

We observed that the CLR profile of the selective sweep does not
overlap with brinker and Atg5, but spans four of the seven candidate

genes in the 124-kb region (see gene model below) (Figure 2B). To
analyze whether these four genes in the sweep region are related to
cold tolerance, we conducted expression analyses; brinker and Atg5

were also included (Figure 4). qPCR assays were performed on cDNA
prepared from pools of female flies from the Netherlands and
Zimbabwe (seeMaterials and Methods). Expression of candidate genes
was measured at two time points after cold stress exposure as well as
under control conditions. The two post-cold stress time points were
10 min after the end of cold stress and 15 min after flies recovered
from chill coma. Controls consisted of flies of the same lines that were
not subjected to cold stress.

Of the six genes, CG1958 and brinker showed significant differ-
ences in constitutive expression levels between the Netherlands pool
and the Zimbabwean pool (P , 0.01) (Figure 4). This difference in
expression levels between these populations also has been previously
observed (Hutter et al. 2008). Furthermore, average expression level
appeared to be unaffected by cold stress within pools at 10 min during
recovery from chill coma for five of the genes. At this time point, the
only highly significant difference between pools was observed for brinker
(P , 0.001). Expression levels measured at 15 min after recovery from
chill coma revealed one significant difference within pools: brinker was
significantly overexpressed with respect to controls in the Netherlands
pool (P , 0.05). Between-pool contrasts at 15 min after recovery from
chill coma revealed only a significant difference for brinker (P , 0.01).

Figure 3 Allele frequency change at highly differentiated SNPs at the QTL of interest. (A) Allele frequencies of the top four highly differentiated
SNPs across seven different populations along a latitudinal gradient. Populations are as follows: the Netherlands and France (EUR), Ethiopia (ED),
Cameroon (CO), Rwanda (RG), Southeast Africa (SEA), and South Africa (SP) (see Materials and Methods). (B) European and Southeast African
D. melanogaster haplotypes for the two nonsynonymous SNPs (86,661–86,670) in intron 5 of gene CG1677. These two SNPs correspond to amino
acid positions 939 and 936.
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This suggests that—of the six candidate genes—only brinker is induced
by cold stress and may contribute to CCRT variation between temperate
and tropical populations.

We also investigated brinker induction on the A� and E� lines
individually. Again, we found that brinker is significantly induced
15 min after recovery from chill coma only in the E� line (P , 0.01).
Furthermore, we noted that the constitutive expression differences
between A� and E� disappeared (in contrast to the experiment with
the African and the Netherlands pools described above), presumably
because the A� and E� lines share the same autosomal background
(data not shown).

Finally, we performed quantitative complementation tests on two
of the four genes under the sweeps (CG1677 and unc-119) for which
lines with P-element insertions were available. None of these tests
(performed in the same way as with the deletions) revealed quantita-
tive failure to complement (Table 3). This further supports our con-
clusion that it is unlikely that the genes under the sweep (at least
CG1677 and unc-119) affect cold tolerance.

DISCUSSION

Overview

First, we dissected a QTL interval for CCRT (a proxy for cold
tolerance) using quantitative complementation tests. This approach
revealed two deletions that failed to complement. Second, we used
population genetic methods to narrow the number of genes in these
two deletions. This approach led to the precise demarcation of a strong
selective sweep in deletion Df(1)ED6906. Third, we investigated the
genes within and near the sweep region by gene expression analysis.
We found no evidence that the four genes within the sweep region
(CG1958, CG1677, CG2059, and unc-119) are related to cold tolerance.
However, this analysis also revealed a new candidate gene related to
CCRT: brinker, a gene located just outside the sweep region that was
induced by cold stress. In the following, we discuss these results, in-
cluding the methods used.

Quantitative complementation tests on deficiencies and
gene expression assays

Using a set of deficiencies in the framework of the quantitative
complementation test allowed us to narrow the QTL interval to two

highly significant deficiencies, one of which contains a selective sweep.
Furthermore, the list of genes under the QTL (encompassing the
sweep) could be reduced to seven candidate genes. However, there is
a caveat, because for both deletions significant L · G interactions were
found in the presence of significant L effects. This is not uncommon
in D. melanogaster (Fanara et al. 2002; De Luca et al. 2003; Geiger-
Thornsberry and Mackay 2004; Harbison et al. 2004), but this means
that it is difficult to distinguish between allelic failure to complement
at the deficiency and an epistatic interaction between the deficiency
and variation elsewhere. However, for the context of this article, this is
not important because we have not relied exclusively on quantitative
complementation tests to show relatedness to CCRT. In the case of
brinker, our evidence of an association with CCRT is confirmed by
gene expression analysis.

The genes under the selective sweep and the putative
targets of positive selection

Although we have not estimated the selection coefficient, the large
value of the CLR statistic indicates that the selective sweep at deletion
Df(1)ED6906 in the European population is very strong, the strongest
on the entire X-chromosome analyzed (see Figure 2 and Figure S3). It
encompasses approximately 40 kb (with boundaries that are sharply
defined). Based on the demarcation of the sweep, we observe that
brinker, the only candidate gene that was induced by cold stress, is
located outside the sweep. The four genes under the sweep are not
induced in both African and European populations. CG1958 is differ-
entially expressed at the constitutive level (Figure 4), and it has been
reported that CG1677 expression is increased relative to constitutive
levels during sustained cold stress (Graveley et al. 2011). Therefore,
the expression of these genes may be temperature-dependent. How-
ever, it seems unlikely that regulatory elements determining their
expression are the target of selection related to cold tolerance. Further-
more, we have performed quantitative complementation tests on two
of the four genes under the sweep (CG1677 and unc-119) for which
lines with P-element insertions were available. None of these tests
(performed in the same way as with the deletions) revealed quantita-
tive failure to complement (Table 3). This supports our conclusion that
it is unlikely that the genes under the sweep affect cold tolerance.

This leaves us to search for fixed differences in coding sequences
on which selection for cold tolerance may have operated. To identify

Figure 4 Expression of genes located in the region under deletion Df(1)ED6906 that was affected by positive selection (see Figure 2A). Relative
expression was measured under two cold stress and control conditions in pools of flies from a temperate population [the Netherlands (NL)] and
a tropical population [Zimbabwe (ZK)]. Expression levels of these candidate genes were normalized with respect to that of the ribosomal genes
RpS20 and RpL32. The height of the bars represents the mean of three calibrated normalized relative quantities (CNRQ) per pool per gene rescaled
to that of the corresponding ZK control. Error bars also represent rescaled confidence intervals. Levels of significance for tests of differences in
expression levels among treatments within and between populations are indicated with asterisks: �P , 0.05; ��P , 0.01; and ���P , 0.001.
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strong selective fixations (leading to sweeps) in coding regions, we
need to analyze the sweep profile in more detail. Yet, because variation
is almost completely depleted in this genomic region, we cannot use
the CLR approach even if we include LD (Pavlidis et al. 2010). Instead,
we used an FST-based method (Foll and Gaggiotti 2008) to identify the
target(s) of positive selection. The results are shown in Figure 2B.

We found four significantly differentiated polymorphisms under
the selective sweep. The two SNPs that code for amino acid differences
in the gene CG1677 are most interesting. In the Southeast African
sample, both combinations, Thr-Asn and Ala-Asp, are present at
positions 936 and 939, where the former is more common. No other
combinations exist. In Europe, however, Ala-Asp is fixed (Figure 3B).
Subjecting the primary protein sequence encoded by this gene to
a structure prediction program (Kelley and Sternberg 2009) reveals
that both amino acid positions are part of the a-helix, i.e., they are
located on neighboring helix turns and can therefore interact. Inter-
estingly, Thr and Asn can form one hydrogen bond between their
side-chains more than Ala-Asp. The combination Thr-Asn may there-
fore make the protein more heat-stable than Ala-Asp (Perl and
Schmid 2002), which appears to be an advantage in tropical Africa,
given that ambient temperature is an important variant affecting life
history traits in fruit flies. Conversely, the combination Ala-Asp may
lead to a less rigid structure and thus possibly a more efficient protein,
which may be an advantage in the temperate climate of Europe.
Ancestral state reconstruction (Lewis 2001) shows that the Thr-Asn
combination represents the ancestral state with high probability and
that Ala-Asp arose through two point mutations. Because the inter-
mediate states are not observed in the European and African popu-
lation samples, the transition from Thr-Asn to Ala-Asp probably
follows a compensatory evolution model (Kimura 1985; Innan and
Stephan 2001) in which the intermediates are assumed to be strongly
deleterious.

Do these adaptive fixations have anything to do with cold
adaptation? The protein encoded by CG1677 is part of the spliceosome
(Herold et al. 2009) whose function may depend on temperature.
However, there is no evidence known to us that splicing has a specific
function in the protection of flies against cold. The other two signif-
icantly differentiated SNPs occur in noncoding regions between genes
CG1958 and CG1677 and within the huge intron of CG1677 (see gene
model below) (Figure 2B). There is no evidence that they are involved
in the regulation of cold tolerance. This leads us to conclude that
strong positive selection causing the observed sweep has probably
operated on traits (or molecular variants) other than cold tolerance.

Comparison with population genetics theory
One of our salient observations is that the genes within the selective
sweep region do not affect CCRT, whereas brinker located just outside
the sweep is related to this trait. A similar observation was made
previously for another QTL of cold tolerance in D. melanogaster

(Svetec et al. 2011). Recent theoretical work has addressed the ques-
tion of whether we should expect to find selective sweeps at genes
controlling a quantitative trait. Chevin and Hospital (2008) presented
a model for the footprint of selection at an adaptive QTL in the
presence of background variation due to other loci. This analysis is
based on the Lande (1983) model that consists of a locus of major
effect on the trait and treats the remaining loci of minor effects as
genetic background (such that background variation is maintained at
a constant amount). This model predicts that adaptive traits that are
under stabilizing selection and show the molecular signature of a se-
lective sweep are only a very small subclass of quantitative traits.
Pavlidis et al. (2012) analyzed a model with n loci controlling a traitn
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under stabilizing selection. In their model, sweeps are more com-
mon than in the scenario presented by Chevin and Hospital (2008).
They find that a multi-locus response to selection may in some
cases prevent selective sweeps from being completed, but that con-
ditions causing this to happen strongly depend on the genetic
architecture of the trait. For instance, the probability of fixation
of selected mutations decreases with the number n of loci involved
and also depends on their effect sizes. Fixations are more common
when the effects are approximately equal (in absolute size). This
raises the question of to what extent CCRT is under stabilizing
selection and to what extent CCRT is under directional selection.
Although there is evidence that cold tolerance may have experi-
enced positive directional selection from one optimum in Africa
to another optimum in Europe, it is currently unclear whether
this optimum shift is sufficiently large to overcome stabilizing se-
lection that is expected to be widespread (e.g., in the form of ap-
parent stabilizing selection due to pleiotropic deleterious effects of
mutations).

brinker—a new candidate gene of CCRT

Based on our gene expression study (Figure 4), brinker is a candidate
gene affecting variation in cold tolerance. However, it is important to
note that brinker is located outside the large selective sweep described
above and thus is not affected by the strong selection generating this
sweep. This is consistent with current theory that sweeps at genes
controlling phenotypic traits under stabilizing selection are expected
to be rare (see above).

Theoretical models of weak selection (particularly for highly
polygenic traits) predict the occurrence of allele frequency shifts
between populations as a hallmark of polygenic selection (Hancock
et al. 2010). For this reason, we searched the region upstream of
brinker and found one conspicuous indel polymorphism (Figure
S5A) at relative positions 109,442 to 109,976, i.e., approximately 3
kb upstream of brinker and thus also outside the sweep region. This
indel is located close to a polymorphic marker (Figure S5A) that is
significantly associated with CCRT in a Raleigh population (Mackay
et al. 2012). Using an extended sample of populations from the DGPG
project (Pool et al. 2012), we investigated the frequencies of this indel
polymorphism in these populations. We classified the indel polymor-
phism into nondeletion haplotypes and three classes of deletions (see
Figure S5B). Based on linear regression analysis of the frequencies of
the nondeletion haplotypes, we detected two antiparallel latitudinal
clines where one spans from the populations near the equator
(Rwanda, Gabon, Cameroon, Ethiopia, and Nigeria) to the north
(France and the Netherlands) and another one from the equator to
the south (Southeast Africa and South Africa) (P , 0.05 in both
cases). This agrees with models of weak selection on highly polygenic
traits. However, to what extent the observed frequency differences
from the equator to the north and to the south explain the expression
differences of brinker between tropical and temperate populations (see
Figure 4) is currently an open question and beyond the scope of this
article.
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Figure S1   Polymorphism and between‐population differentiation along the 124 kb of interest. Nucleotide diversity () 
obtained for consecutive 2‐kb long windows in four different populations: the Netherlands  (NL), France (FR), Rwanda (RG) 
and a pool of Southeast African (SEA) lines sampled around Lake Kariba in Zimbawe and Zambia. This pool also includes 
lines from Malawi. The SEA profile is shown in all three  panels for sake of comparison. Below each  panel, inter‐
population differentiation profiles are plotted. Differentiation (FST) was calculated as normalized distance of Nei. Thin 
continous lines represent the average value for each summary statistic across the 62 windows, dashed lines represent 1 SD 
above and below the corresponding summary statistic mean. 
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Figure S2   Tajima’s D statistics. Tajima’s D profiles along the 124 kb of interest are shown for the following populations: the 
Netherlands  (NL), France (FR), Rwanda (RG), and Southeast Africa (SEA). The solid thin lines represent the corresponding 
mean value across the entire region, while dashed lines mark 1 SD above and below the corresponding mean.  
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Figure S3   X‐chromosome CLR profile for Europe. Composite likelihood ratio (CLR) test results for 18 Mb of a sample of 19 
European (the Netherlands and French) D. melanogaster X‐chromosomes.  For this chromosome‐wide test all categories (0 
to n) of the SFS were included. The significance threshold at CLR=72 was obtained from simulated subgenomic datasets 
(see text and Figure S4). (A) indicates the interval with a CLR peak above 300 corresponding to that under deletion 
Df(1)ED6906 (124 Kb long), also depicted in Figure 2A. (B) shows the Interval corresponding to that revealed by deletion 
Df(1)C128 (131 Kb long). Note that this interval does not exhibit CLR peaks above the significance threshold. 
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Figure S4   CLR thresholds vs. simulated fragment size. CLR thresholds, i.e. the top 5% CLR values of 100 simulated 
fragments of lengths from 5 to 5000 kb reach an asymptotic value around 72 at fragment size ≥3000 kb. 
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Figure S5   Putative cis‐regulatory element upstream of brinker. A) Polymorphism table of a 534‐bp fragment between 
relative positions ‐3,000 to ‐3,553 upstream of brinker. The figure depicts SNPs and structural variants (indels) of two D. 

melanogaster population samples from the Netherlands (NL) and Zimbabwe (ZK), including E* (top line) and A* (bottom 
line) plus two outgroups (D. simulans and D. sechellia). Light blue and orange indicate the inferred ancestral state of the 
SNP considering the two outgroups in NL and ZK, respectively, whereas darker tones of the same color represent the 
derived allele. Deletions are indicated in white background. Relative position ‐3,268 marked with an asterisk is highly 
associated with CCRT in the Raleigh population. B) Four haplotypes defined by the presence/absence of deletions and their 
numbers in the fragment. C) Frequency clines of the non‐deletion haplotypes along a latitudinal gradient of D. 

melanogaster populations: the Netherlands (NL), France (FR), Nigeria (NG), Ethiopia (ED), Cameroon (CO), Gabon (GA), 
Rwanda (RG), Zambia + Zimbabwe + Malawi (SEA), and South Africa (SP).  
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GENERAL DISCUSSION 

 

Temperature is a crucial factor in determining the distribution and abundance of 

species. Ectotherms, like most insects, have evolved various physiological and 

molecular adaptations to survive and prosper in a wide range of thermal 

environments (Clarke 1996; Doucet et al. 2009). D. melanogaster as a cosmopolitan 

species has successfully adapted to diverse thermal environments, and is therefore 

a useful model system to investigate the genetic basis of thermal adaptation at the 

intraspecific level.  This thesis has tried to shed further light onto genes and genetic 

changes involved in the adaptation of D. melanogaster to temperate environments. 

Different natural populations from temperate and tropical origins were considered 

ranging from ancestral populations from tropical southern-central Africa to derived 

populations from temperate high-altitude Africa, temperate Europe and tropical 

Asia. Including ancestral and derived populations, in particular derived populations 

adapted to different temperature regimen, provides the opportunity to compare 

populations that have undergone adaptations to temperate climates to presumably 

less adapted populations from tropical regions. In this thesis, two different aspects 

of temperate climates and its accompanying low temperatures have been 

considered with which D. melanogaster has been confronted while colonizing 

temperate environments. One is the greater range and variability of ambient 

temperature and the other are low-temperature extremes such as freezing 

temperatures. The former is known to disrupt chromatin-based gene regulation 

(Fauvarque and Dura 1993; Gibert et al. 2011) and the latter results in cold stress.  

Chromatin-based PcG regulation is known to be thermosensitive. Decreasing the 

temperature at which flies are reared or held leads to an increased transcriptional 

output of genes regulated by PcG proteins. This phenomenon was demonstrated in 

several studies using reporter gene assays with constructs containing specific PREs 
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(Fauvarque and Dura 1993; Chan et al. 1994; Zink and Paro 1995; Bantignies et al. 

2003; Gibert et al. 2011). In chapter 1 and 2, thermosensitivity of PcG-regulated 

genes was observed in wild-type flies of different natural populations. At both loci, 

polyhomeotic (ph) and vestigial (vg), a lower degree of temperature-induced 

expression plasticity was consistently detected in populations adapted to temperate 

environments compared to populations from tropical environments. This supports 

the idea that temperature-induced expression plasticity of PcG-regulated genes has 

been detrimental in temperate climates, and that adaptation to such climates 

required the buffering of this thermosensitive regulatory process (Begun and Levine 

2008). 

Patterns of DNA sequence polymorphism at the ph locus suggest that it has been the 

target of recent positive selection within European and African populations from 

D. melanogaster (Beisswanger et al. 2006; Beisswanger and Stephan 2008). Chapter 

1 of this thesis provides evidence that the selective sweep observed in Europe is 

independent of the ancestral African sweep, and resulted from a selective event that 

led to reduced thermosensitivity of PcG regulation. Population genetic analysis 

pinpointed the likely targets of selection in Europe to derived SNPs in the intergenic 

region of the two PcG target genes ph-p and CG3835, and subsequent reporter gene 

assays linked the derived sequence variants to stable levels of gene expression across 

temperatures. Ancestral sequence variants, in contrast, led to thermosensitive 

expression with a higher expression at lower temperatures which is often observed 

for PcG regulation (Fauvarque and Dura 1993; Chan et al. 1994; Zink and Paro 1995; 

Bantignies et al. 2003; Gibert et al. 2011). Derived variants that conferred stable 

expression across temperatures were found nearly fixed in temperate populations 

from Europe, but not in tropical populations from Africa and Asia. These results are 

consistent with thermosensitivity of PcG regulation being detrimental in temperate 

environments, and selection acting to buffer this thermosensitivity in populations 

adapting to such environments. 
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Thermosensitivity of PcG regulation seems to be restricted to certain tissues. For the 

ph locus, temperature had no effect on gene expression in larval brains, whereas 

thermosensitive expression was observed in larval midguts and whole adults. 

Although thermosensitive vg expression could be detected in adult flies, lowering 

the rearing temperature did not result in higher vg expression in larval brains and 

larval wing discs. Possible explanations for this restriction could be that the selective 

pressure against thermosensitive expression is higher in some tissues than in others, 

and thus expression is already less environmentally sensitive in ancestral 

populations, or there is no thermosensitivity in expression in some tissues. Selection 

pressure could indeed be higher in developing tissues like the larval brain and wing 

discs than in adult tissues and those not important in development like the larval 

midgut. Yet to draw this conclusion, expression should be monitored in additional 

tissues, in particular adult tissues should be considered separately. 

Moreover, it appears that higher transcriptional output of PcG-regulated genes at 

lower temperatures is not in itself detrimental, but rather gene expression plasticity 

due to variations in temperature. Reduced expression plasticity in temperate 

populations either resulted from decreased expression levels of PcG-regulated genes 

at lower rearing temperatures or increased expression levels at higher temperatures 

when compared to expression levels in ancestral tropical populations. Expression 

levels of vg were decreased at lower rearing temperature in three temperate 

population samples (France, The Netherlands, and Rwanda) compared to ancestral 

samples leading to a buffering of thermosensitive expression in those populations. 

In contrast, the same effect resulted from increased expression levels at higher 

temperature in Swedish vg expression and reporter gene expression from the 

construct carrying the European sequence variants and the ph-p promoter. The 

higher degree in expression plasticity of PcG target genes therefore seems to have 

been disadvantageous and needed to be reduced during the colonization of 

temperate environments.  
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The difference of how the lower degree of vg expression plasticity comes about 

indicates that underlying regulatory changes also differ between the Swedish 

population and the other temperate populations. The reduction in vg expression 

plasticity is similar in all temperate population samples, which could be indicative of 

convergent evolution. However, convergent evolution leading to the same degree of 

buffering becomes less likely when one takes into account that Sweden was probably 

colonized by European flies already exhibiting reduced vg expression plasticity like 

the French and Dutch population samples. Other ecological constraints in the cold-

temperate climate of Sweden compared to the warm-temperate climate in France, 

The Netherlands and Rwanda could be a possible explanation for the observed 

differences. A higher overall expression level of vg might have been additionally 

beneficial in the colder Swedish climate. In contrast, by decreasing vg expression 

with decreasing temperature, the French, Dutch and Rwandan population samples 

were similar in buffering temperature-induced expression plasticity. The simplest 

scenario would be a common genetic basis for reduced thermosensitivity in all three 

populations. If there is a common genetic basis, it seems less likely that it is largely 

caused by cis-regulatory changes in regulatory elements at the vg locus, since no 

highly differentiated SNPs between the derived and the ancestral populations were 

detected in the gene region that are shared among all three populations. Given the 

large geographic distance between the Rwandan and the two European populations, 

convergent evolution might also be a likely explanation for the similar expression 

response to temperature. However, further studies are required to clarify whether a 

similar response is due to a common genetic basis or convergent evolution. 

While there are candidate SNPs for cis-regulatory changes at the vg locus in the 

Dutch and French populations that are shared between both populations and are 

highly differentiated between the two derived and the ancestral populations, none 

could be identified for the Rwandan population. The absence of such candidate SNPs 

might be indicative of trans-regulatory changes, which alter the abundance or 

activity of factors regulating the transcriptional output of vg (e.g., PcG proteins), 
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playing an important role in the response of vg expression to temperature in the 

Rwandan population. Support for this might come from another recent study in 

which a genome-wide scan was conducted to identify genes under positive selection 

in the Rwandan population sample (Pool et al. 2012). Genes identified in this scan 

included two PcG/TrxG genes, pleiohomeotic like (phol) and female sterile (1) 

homeotic (fs(1)h), which are in turn putative candidates for trans-regulatory factors 

responsible for the Rwandan decreased thermosensitivity. A change in a trans-

regulatory factor may simultaneously affect many of its target genes. Thus such a 

trans-regulatory change in the Rwandan population could also contribute to reduced 

thermosensitivity of the expression of other PcG target genes. At the ph locus, 

thermosensitivity was shown to be decreased by cis-regulatory derived sequence 

variants that are nearly fixed in Europe but rare in sub-Saharan Africa. The derived 

variants were not observed in the Rwandan population sample, although based on 

the observations at the vg locus one would expect decreased thermosensitivity of 

PcG regulation also at the ph locus in the temperate population from high-altitude 

Africa. A trans-regulatory change that confers decreased thermosensitivity to 

multiple PcG target genes could be a possible explanation. However, other cis-

regulatory changes private to the Rwandan population could also be responsible for 

a decreased thermosensitivity at the ph locus in Rwanda, if there is one.  

The transcriptional output of PcG target genes is controlled and modulated by a 

complex interplay of PREs and other cis-regulatory DNA sequences (i.e., enhancers) 

in cell- or tissue-specific manner. Enhancers initially determine the level of 

transcription which is then epigenetically maintained by PREs (Schwartz et al. 2010; 

Kassis and Brown 2013; Steffen and Ringrose 2014). As a consequence, buffering of 

thermosensitive expression could result from changes that alter the activity or 

strength of either of the two types of regulatory elements. This could be mediated, 

for example, either by an increased activity or abundance of trans-regulatory factors 

binding to the regulatory elements, or directly in cis through changes in the DNA 

sequence of the elements as it was observed at the ph locus. It is known that small 
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changes in the sequence of enhancers or PREs can have large effects on the 

expressed phenotype, and that both cis-regulatory elements evolve rapidly 

(Hauenschild et al. 2008). Changes in only a few base pairs of PREs, for instance, were 

shown to have profound effects on their function (Okulski et al. 2011).  

The question arises whether decreased thermosensitivity of PcG regulation in 

temperate populations is a global phenomenon detected for many of the several 

hundred PcG target genes in Drosophila, or restricted to a few loci like the two 

studied in this thesis. The former is supported by a genome-wide study that found 

greater temperature-induced expression plasticity in tropical than in temperate 

populations (Levine et al. 2011). Furthermore, several studies have provided 

evidence for positive selection acting on proteins involved in PcG regulation (Harr et 

al. 2002; Begun and Levine 2008; Gibert et al. 2011). Trans-regulatory changes might 

also play a dominant role in the reduced thermosensitivity of vg expression in the 

Rwandan population. In contrast to changes in cis-regulatory elements controlling 

expression of specific PcG target genes, changes in trans might have an effect on 

multiple PcG target genes, and could therefore confer a more global buffering effect. 

Nonetheless, changes in cis-regulatory elements of PcG target genes are involved in 

buffering thermosensitivity of PcG regulation as it was shown for the ph locus. 

Therefore, the relative amount to which either of both, cis- and trans-regulatory 

changes contribute to decreased thermosensitivity of PcG regulation in temperate 

populations is another question interesting to investigate further. 

Although the exact mechanisms underlying reduced thermosensitivity of expression 

of PcG-regulated genes remain unclear, in this thesis further evidence was provided 

that thermosensitivity of PcG regulation needs to be buffered when Drosophila 

adapts to temperate climates and that this can be facilitated through the action of 

positive selection. 

Increasing cold tolerance is another aspect that probably played a dominant role in 

adaptation to temperate environments in order to better deal with stress imposed 
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on D.melanogaster by low-temperature extremes. Temperate and tropical 

populations are known to differ in their cold tolerance and increased tolerance to 

cold stress is thought to have evolved by natural selection (Hoffmann et al. 2002; 

Schmidt et al. 2005). When exposed to extremely low temperatures like those 

around freezing, D. melanogaster as other insects enters a cold-induced coma (David 

et al. 1998; MacMillian and Sinclair 2011). The time required to recover from this 

chill coma varies between temperate and tropical populations with temperate flies 

recovering more quickly (Gibert et al. 2001; Hoffmann et al. 2002; Norry et al. 2008; 

Svetec et al. 2011). Chill coma recovery time is often employed as a proxy for cold 

tolerance to investigate the molecular basis underlying variation in cold tolerance 

(Hoffmann et al. 2002; Norry et al. 2008; Svetec et al. 2011; Mackay et al. 2012). 

Recovery from chill coma is a quantitative trait that appears to be highly polygenic, 

however, knowledge about the underlying genes is still limited with only a few 

known candidate genes (Morgan and Mackay 2006; Colinet et al. 2010; Colinet and 

Hoffmann 2010; Mackay et al. 2012). QTL analyses have been used to uncover 

genomic regions that harbor such candidate genes (Morgan and Mackay 2006; Norry 

et al. 2008; Svetec et al. 2011; Mackay et al. 2012). Svetec et al. (2011), for instance, 

localized several QTL regions on the X chromosome that contribute to faster 

recovery from chill coma in flies from temperate Europe.  As it is often the case, the 

identified QTL regions contained numerous genes, and further effort was necessary 

to localize candidate genes responsible for observed differences in chill coma 

recovery between temperate European and tropical African populations. The study 

presented in chapter 3 dissected a 6.2-Mb QTL interval identified by Svetec et al. 

(2011) trying to single out such candidate genes by combining several fine-mapping 

approaches. A fine-mapping approach based on quantitative complementation tests 

yielded two relatively small regions of 131 kb and 124 kb, of which the latter was 

scrutinized in more depth. Gene expression analysis, population genetic analysis, 

and additional complementation tests were employed to allow for deeper fine-

mapping in the region. The European patterns of DNA sequence polymorphism were 
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consistent with positive selection and a strong selective sweep which spans about 

40 kb of the 124-kb long region. However, none of the four genes within the sweep 

seemed to be related to cold tolerance as inferred from quantitative 

complementation tests and gene expression analysis. Expression levels of genes in 

the 124-kb region were determined at different time points after cold stress 

exposure. Although the genes within the sweep region were not affected in their 

expression by cold stress, the gene brinker (brk) upstream of sweep signal appears 

to be induced by cold stress. Expression levels of brk went up shortly after flies had 

recovered from chill coma when compared to untreated controls and other time 

points after cold stress exposure. In two independent experiments, cold stress-

induced increase in expression levels of brk were detected for temperate genotypes 

from Europe but not for tropical genotypes from Africa. Therefore, brk may 

contribute to variation in chill coma recovery between temperate and tropical 

populations, and is a candidate gene involved in the evolution of increased cold 

tolerance of temperate D. melanogaster.  

Using only sequence-level information, inference of positive selection might be 

difficult for highly polygenic traits like cold tolerance. Although a strong selective 

sweep was detected in the region putatively involved in increased cold tolerance of 

temperate D. melanogaster, genes within the sweep appear not to be related to cold 

tolerance. Instead a gene upstream of the selective sweep was found to be induced 

by cold stress and to differ in its expression between temperate and tropical flies. 

This fits the idea that when positive selection acts on a trait controlled by numerous 

genes, the effect of any given gene is expected to be rather small, as is the resulting 

signature of selection (Mackay 2001; Berg and Coop 2014; Wollstein and Stephan 

2015). 

The gene brk encodes for a transcription factor that appears to be important in the 

triggering of apoptosis (Suissa et al. 2011). Apoptosis, or programmed cell death, is 

associated with cold injury and occurs during cold stress (Yi et al. 2007). Programmed 
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cell death is needed for the removal of damaged cells and often compensated by 

extra proliferation of neighboring cells, another process whose triggering seems to 

be dependent on brk (Suissa et al. 2011). Therefore, brk might contribute to 

increased cold stress tolerance in temperate flies by coping more efficiently with cold 

injury. 
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